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Kurzfassung

Die erheblichen Kosten für die Entwicklung von Machine-Learning-Modellen, zusammen
mit ihrer zunehmenden Verbreitung in Anwendungen wie der Sprechererkennung, machen
den Schutz des geistigen Eigentums dieser Modelle zu einem wichtigen Forschungsthema.
Black-Box-Watermarking-Techniken bieten einen Mechanismus, um die unrechtmäßige
Wiederverwendung von Modellen nachzuweisen, beispielsweise wenn diese über einen API-
Dienst bereitgestellt werden. Obwohl Watermarking im Bildbereich bereits umfassend
untersucht wurde, sind Methoden für Audiomodelle, insbesondere für die Sprecherer-
kennung, nach wie vor rar. Darüber hinaus weisen aktuelle Methoden methodologische
Schwächen auf, darunter mangelnde Reproduzierbarkeit und unzureichende Evaluierung;
in einigen Fällen basieren sie auf fragwürdigen Designentscheidungen.

Diese Arbeit präsentiert eine systematische Untersuchung von Black-Box-Watermarking-
Methoden für Sprechererkennungsmodelle mit dem Ziel, deren Schwächen zu identifizieren
und ihre Anwendbarkeit zu verbessern. Wir implementieren bestehende Watermarking-
Methoden und replizieren die berichteten Ergebnisse, identifizieren und beheben Repro-
duzierbarkeitslücken und betonen dabei eine rigorose, reproduzierbare Vorgehensweise in
allen zentralen Anforderungen. Darüber hinaus erweitern wir die Evaluierung durch den
Einsatz geeigneterer Metriken für die Analyse der Wahrnehmbarkeit der Wasserzeichen
sowie durch die Einführung des Konzepts der Angriffskosten, womit wir ein umfassendes
Bewertungsframework für Sprechererkennungs-Wasserzeichen vorstellen. Ferner untersu-
chen wir die Anwendbarkeit der Watermarking-Methoden auf verschiedene Datensätze
und Modellarchitekturen (d. h. ihre Allgemeingültigkeit) und bewerten das Risiko, dass
Wasserzeichen von einer böswilligen Partei gefälscht werden können, ohne die genaue
Methode oder die Einbettungsparameter zu kennen (d. h. ihre Rechtssicherheit). Auf
dieser Grundlage schlagen wir anschließend Gegenmaßnahmen vor. Zudem analysieren
wir die unterschiedlichen, in Konflikt stehenden Ziele der Unwahrnehmbarkeit und Ro-
bustheit der Wasserzeichen, und schlagen Strategien vor, die die Unwahrnehmbarkeit
verbessern, ohne die Wirksamkeit des Wasserzeichens oder die Modelltreue zu beein-
trächtigen. Abschließend geben wir Richtlinien für das Design und die Evaluierung von
Watermarking-Methoden für die Sprechererkennung mit spezifischen Empfehlungen zur
Parameterauswahl.
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Abstract

The substantial costs of developing machine learning models, alongside their growing
adoption in applications such as speaker recognition, make the protection of the intellectual
property of these models an important research topic. Black-box watermarking techniques
provide a mechanism to verify illicit reuse of models, for instance, when made available
through an API service. Although watermarking has been extensively studied for models
in the image domain, methods for audio models, specifically speaker recognition, remain
scarce. Moreover, current methods exhibit methodological weaknesses, including the lack
of reproducibility and insufficient evaluation; in some cases, they rely on questionable
design choices.

This thesis presents a systematic study of state-of-the-art black-box watermarking meth-
ods for speaker recognition models, with the aim of identifying their weaknesses and
improving their applicability. We implement existing watermarking methods and replicate
their reported results, identifying and addressing reproducibility gaps, thereby empha-
sising rigorous, reproducible practice across all key requirements. We further extend
their evaluation by employing more suitable metrics for imperceptibility analysis and by
incorporating the notion of an attack cost, thereby presenting a comprehensive evaluation
framework for speaker recognition watermarks. Furthermore, we examine the applicabil-
ity of the watermarking methods across different datasets and model architectures (i.e.,
their generality), and assess the risk of watermarks being forged by a malicious party
without knowing the exact watermarking method or embedding parameters (i.e., legality),
based on which we subsequently propose mitigation strategies. In addition, we analyse
trade-offs between imperceptibility and robustness, and propose strategies that enhance
imperceptibility while preserving watermark effectiveness and model fidelity. Finally, we
provide guidelines for the design and evaluation of speaker recognition watermarking
methods, with specific recommendations on parameter selection.
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CHAPTER 1
Introduction

1.1 Problem Statement
Neural networks require a considerable amount of resources to develop and sustain.
Therefore, they have become increasingly valuable and may become the target of theft
by malicious parties. Intellectual Property (IP) protection comprises various measures
to prevent unauthorised use and distribution of proprietary assets, including machine
learning models.

In recent years, research has increased on model protection techniques, especially in the
image domain. On the other hand, the audio domain, specifically speaker recognition
(SR) models and ways to protect them from being stolen, is still rather unexplored.
Speaker recognition models are designed to identify and verify a speaker’s identity based
on an audio sample. Their primary task lies in determining the identity of a speaker from
a list of known speakers. Existing models vary in their architectures and input structure,
whether it is a technique based on (i) image processing that works with spectrograms or
(ii) raw waveforms of audio signals.

Speaker recognition models are widely used in multiple domains, including biometrics,
security, healthcare, customer service, and entertainment. Since these models become
more sophisticated and prevalent, protecting them from unauthorised usage is crucial.
Unauthorised duplication could lead to privacy violations, which may occur when stolen
models are exploited to infer sensitive user data; financial losses; and security breaches,
arising from adversarial attacks using stolen models.

One of the most studied approaches for intellectual property protection (IPP) of machine
learning models is model watermarking. The idea is to embed a watermark into a
model during the training stage, to be able to later prove one’s ownership if such a need
arises. Two main scenarios are distinguished by the access to the model that is possible
during the ownership verification stage: white-box watermarking, when full access to
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1. Introduction

the internal structure of the model is required for both embedding and verification of
the watermark; and black-box watermarking, which relies on memorisation of certain
input-output patterns, hence, at the verification stage, the ownership of the model can
be proven just via an inference process. The latter approach is especially relevant for
real-world scenarios, as it provides greater flexibility in verifying ownership when stolen
models are made available, e.g., only behind an API. Therefore, this thesis will focus on
the black-box watermarking scheme.

Only a few recent studies [WW22, ZDX+23, LYS+24] discuss model protection techniques
for speaker recognition models that were created specifically for the audio domain. Their
research is based on convolutional neural network (CNN) models that use the raw
waveform as input. However, these works are fragmented and do not follow a unified
methodology, and are thus not easily comparable.

We have found several research gaps in the current literature regarding the applicability of
these techniques to (i) different state-of-the-art Speaker Recognition model architectures,
(ii) different input representations, and (iii) different datasets. So far, the proposed
methods have been tested only for one model architecture with one possible input
representation. Furthermore, there is an open research question of how the watermarking
methods compare in terms of their characteristics due to the lack of a unified analysis
among the methods. This thesis aims to fill these gaps and provide guidelines on the
selection of the watermarking technique in different settings to Speaker Recognition
model owners.

1.2 Research Questions

1. How does the effectiveness of state-of-the-art watermarking techniques
compare across different model architectures and datasets?
In order to explore the possibilities of using watermarks for models and datasets
with different characteristics, they will be evaluated for scenarios divergent from the
originally tested environment in terms of models and datasets. Not only watermark
effectiveness, but also fidelity (the ability of the model to maintain its accuracy on
the original task) will be considered since it is closely linked to effectiveness and is
an essential requirement for model watermarking. This research question is further
broken down into two sub-questions.

a) How effective are the watermarking techniques for other datasets?
This question aims to assess the applicability of watermarks to datasets that
have distinct properties compared to the ones on which the methods were
tested. Since speech datasets are created in various environments and have
different qualities, it is of interest to explore whether these qualities affect SR
watermark effectiveness or fidelity.

b) To what extent do the watermarking techniques succeed in protecting models
with different architectures?

2



1.3. Thesis Structure

The goal of this question is to investigate the generality of watermarks in
terms of speaker recognition model architecture. Hence, the research question
aims to analyse the applicability of the same watermarks for other SR models.
Effectiveness and fidelity will be evaluated to assess the success rate of the
watermarks.

2. To what extent can we reduce the perceptibility of watermarks while
still reaching the same watermark effectiveness?
This question aims to analyse the (im)perceptibility of the watermarks – since in a
black-box scenario, sending heavily distorted audio to the model may be suspicious
to the party that maliciously offers access to the stolen model, and watermark
verification requests could thus be blocked by them. We intend to examine the
perceptibility of the watermarks in the most effective settings based on the results
from RQ1, considering both human and machine perception. Subsequently, we
will explore which aspects of the watermark creation impact its imperceptibility
and how we can improve it. That will serve as the basis for determining whether
we can achieve the same results in terms of effectiveness using a less perceptible
watermark.

3. How robust are state-of-the-art audio watermarking techniques for SR
models, and how can their robustness be improved?
Since several watermarking methods were not evaluated in terms of robustness, the
objective of this research question is to assess their robustness against different
watermark removal attacks. This includes both model transformations and audio
preprocessing that a malicious party can deploy before running the inference of
their stolen model. The goal is, therefore, to determine which attack, and to what
extent, can degrade the watermark verification process, and subsequently how the
robustness can be improved. Additionally, the degradation of original task accuracy
is measured as part of the success evaluation of the attacks. This is crucial, as
an attacker will aim to invalidate the watermark verification without suffering a
(substantial) accuracy loss of the original task performance. This research question
will consider whether the level of imperceptibility or a smaller number of trigger
samples can affect the robustness of the watermark and potentially improve it.

1.3 Thesis Structure
The remainder of the thesis is organised as follows. Chapter 2 provides the necessary
background information to support understanding of the work. Chapter 3 introduces the
threat model that we consider, outlining the roles of the malicious party and the model
owner, along with their incentives, knowledge, and capabilities. Chapter 4 discusses the
current state of the art, with a focus on black-box watermarking of machine learning
models in the audio domain. Chapter 5 describes the experimental design adopted in this
work. Chapter 6 presents the evaluation and refinement of state-of-the-art watermarking
methods for speaker recognition model protection, along with guidelines derived from

3



1. Introduction

the findings. Chapter 7 outlines additional approaches that we explored to enhance the
legality (the inability of a watermark being forged) and robustness of the watermarking
methods. Finally, Chapter 8 summarises the main contributions of the thesis and offers
a set of practical guidelines based on the overall study.

4



CHAPTER 2
Background

This chapter outlines the background knowledge relevant to the remainder of the thesis.
It begins with an introduction to supervised machine learning, focusing in particular
on the task of classification. We then move on to describing neural networks, with an
emphasis on those variants used in speaker recognition, and their evaluation. Next, we
explain key concepts in audio processing. We finish the chapter with an overview of
intellectual property protection in the context of speech models.

2.1 Supervised Machine Learning

Supervised Learning (SL) is a category of Machine Learning (ML) that learns the patterns
in the provided dataset. Based on the input variables, a model is trained to predict a
target variable. The task of the model can be either classification or regression. The
former means a model learns to predict a discrete value from a set of finite options.
On the other hand, in a regression task, the target variable is a continuous value. The
Speaker Recognition problem is thus a classification task.

2.1.1 Classification

Formally, classification task can be defined as: a target label yi is assigned to a data
sample xi in dataset D, where 1 ≤ i ≤ n, and n is the number of data samples. Each
xi consists of one or multiple features xij , 1 ≤ j ≤ m, where m denotes the number of
features. One row Xi of the dataset comprises pairs of data features xi and predefined
class yi, which represents the ground truth against which the model’s predictions are
evaluated. The full dataset used for training a machine learning model can thus be
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2. Background

represented as:

D =


x1 y1
x2 y2
...

...
xn yn

 =


x1,1 x1,2 ... x1,m y1
x2,1 x2,2 ... x2,m y2

...
...

...
...

xn,1 xn,2 ... xn,m yn

 (2.1)

The goal of training a classification model is to capture the relationships between input
features and output classes of the training set and to determine decision boundaries
among classes as close to the original unknown function that divides the data as possible.
Apart from distinguishing the unique patterns among classes in the training dataset, the
model should generalise well to be able to correctly predict the target labels of unseen
data based on their features.

The classification task can be further divided into three subcategories: binary classification
(where there are only two distinct classes and one data sample can belong only to one of
them), multi-class (the number of different classes is larger than two), and multi-label
classification (in which one data point can be assigned to more than one class).

During the training phase, the dataset is divided into a training and a test set. A test
set emulates previously unseen data and is employed to assess the generalisability of the
trained model. Optionally, a validation set may be used to optimise the model during
a training phase. It serves the purpose of the model evaluation on unseen data for e.g.
choosing the best hyperparameters for the model training.

Regarding speech as input data, multiple tasks can be solved with machine learning
models. A full tree overview can be found in [MHIM21]. Figure 2.1 highlights the main
differences between the two main tasks in the domain: Speech Recognition and Speaker
Recognition. Below, these two tasks are described in more detail.

Figure 2.1: Difference between Speech and Speaker Recognition tasks.
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2.1. Supervised Machine Learning

Speech Recognition

A speech recognition model aims to identify the pronounced linguistic units: characters,
phonemes and words, in order to convert them into text. Systems using speech recognition
are widely incorporated in the daily lives of many people, e.g., in voice assistance,
automatic transcription, voice-controlled devices such as smart homes, and in the medical
domain [MHIM21]. The task deals with acoustic modelling - capturing the relations
between raw audio signals and phonetic units - and language modelling - predicting
the most probable words in sentences. The language for which the model is created is
essential. In terms of training data, the primary requirement is a large corpus to capture
language patterns. Nevertheless, diversity in the number of speakers is also important,
as it ensures the model learns and generalises across different pronunciations, accents,
and dialects. To evaluate the performance of this task, often the Character Error Rate
(CER) and Word Error Rate (WER) are measured. The former calculates the difference
between recognised and ground-truth characters, and the latter shows the same difference
on the word level.

Speaker Recognition

Speaker Recognition models identify and verify a person’s identity, based on an audio
sample [Dod85]. The primary task of identification lies in determining the identity of a
speaker from a set of known voices (i.e., a form of multi-class classification). The speaker
verification task determines whether a particular voice from an audio truly belongs to
a specific person (i.e., binary classification). This aspect of speaker recognition also
concerns whether the model assigns an audio sample to a known speaker or rejects it
altogether when the identity does not match any enrolled speaker. Datasets for the
speaker recognition task do not require a large amount of recorded speech, as long as
the model can capture the distinctive characteristics and differences among the speakers.
Nevertheless, the number of speakers has a direct effect on the model’s complexity: the
more speakers one desires to identify with a model, the more audio samples are needed
to differentiate them.

2.1.2 Neural Networks
A Neural Network (NN) is a type of machine learning model used for numerous tasks and
goals.Inspired by the functions of biological neurons, of artificial neural computation were
introduced by McCulloch and Pitts [MP43], and later extended by Rosenblatt [Ros58].
Rosenblatt’s work was among the first to demonstrate a learning algorithm for pattern
recognition and is considered a direct predecessor of modern neural networks. A neural
network comprises layers of neurons that transform input features through weighted
connections, learning patterns of input-output pairs, to produce target values. The
general structure of NNs can be divided into three parts:

• The Input Layer, with a size of m features in X, receives the input representations

7



2. Background

Figure 2.2: Example of a computation process in one neuron [ADND20].

of the data. For SR models, it can be a raw waveform, a spectrogram, or other
extracted features of an audio, such as MFCC (for more details on audio features,
see Section 2.1.4).

• The Hidden Layers perform the main transformation through the weighted connec-
tions between the neurons of different layers. The value of the k-th neuron, h

(l)
k , in

hidden layer l is computed from the inputs. It is obtained as a weighted sum of the
input values zj , multiplied by their corresponding weights wj , with an added bias
term. Finally, an activation function is applied to this sum (Fig. 2.2). Additionally,
the hidden layer may include different activation functions, dropouts, and batch
normalisation.

• The Output Layer yields a final prediction yî for each xi. In multi-class classification,
the number of output neurons typically corresponds to the number of classes C,
whereas in binary classification, a single output neuron with a threshold function is
often sufficient.

There are various commonly used activation functions that are applied to enable nonlinear
classification of data. The ones relevant for this work are described below, with z being
an input value to a neuron:

• Softmax produces values in the range between 0 and 1 that sum up to 1. This
activation function is widely used in the output layer of a multi-class classification
model to transform activations into probabilities of classes.

Softmax(zi) = ezi∑︁n
j=1 ezj

(2.2)

• Sigmoid produces output values in the range (0, 1), which makes it suitable for
modelling probabilities. It is used in binary classification tasks; however, it suffers
from the vanishing gradient problem, where the derivative becomes very small for
large positive or negative inputs. This can slow or even halt learning in deep neural
networks.

σ(z) = 1
1 + e−z

(2.3)

8



2.1. Supervised Machine Learning

• Rectified Linear Unit produces only non-negative output and is computationally
efficient. In addition, it mitigates the vanishing gradient problem, which is why
it is often used in different NN architectures. However, ReLU can suffer from the
dying ReLU problem, where neurons output zero for all inputs and stop learning if
their weights are updated into a negative region.

ReLU(z) = max(0, z) (2.4)

• Leaky ReLU is a modified ReLU function that incorporates some amount of negative
input values based on the value of α. This helps prevent neurons from becoming
inactive due to the dying ReLU problem.

Leaky ReLU(z) =
{︄

z, if z ≥ 0
αz, if z < 0

, where α is a small positive constant (2.5)

When all the neurons of each layer are connected to all neurons of the subsequent layer,
and the connections form an acyclic graph, the network is called a fully connected neural
network or Multilayer Perceptron (MLP). A neural network with more than one hidden
layer is considered a Deep Neural Network (DNN).

During the training stage, the weights for each neuron in each layer are adjusted to
minimise the error between the predicted value yî and the ground truth yi. The process
consists of three stages:

• Feedforward: all input values are passed through the network, and the output is
calculated.

• Loss Calculation: compute a loss L that quantifies the error between predicted and
true values. A metric that is commonly used for multi-class classification tasks is
the Cross-Entropy Loss, denoted as LCE, which is defined as follows.

L = −
N∑︂

i=1

C∑︂
c=1

yi,c log(ŷi,c) (2.6)

• Backpropagation is the process of updating the parameters (weights and biases) of
a neural network based on the calculated loss. The key aspect of backpropagation
is that the error is propagated layer by layer in a backward direction, starting
from the output layer and moving towards the input layer. These updates are
performed using optimisation algorithms like Stochastic Gradient Descent (SGD),
Adam [KB17], or RMSprop [Rud17]. In the case of gradient descent, parameters
are updated iteratively based on the gradients of a loss function. A gradient is
a vector of partial derivatives of the loss with respect to the model parameters,
indicating the direction of steepest increase of the loss. By moving the parameters
in the direction opposite to the gradient, scaled by a learning rate, the loss is
reduced and the network learns to improve its predictions.

9



2. Background

Commonly, the training dataset is divided into smaller parts, namely mini-batches. The
gradient is computed for each mini-batch rather than the entire dataset to enforce
efficiency and help an optimiser to escape local minima.

Apart from vanishing gradient, exploding gradients may also occur when the product
of derivatives across many layers becomes large. This can lead to extremely big weight
updates and unstable learning.

It may also happen that a model overly memorises the patterns of a training set and
cannot generalise well to unseen data, a problem that is referred to as overfitting. To
address this issue, various techniques can be applied. One commonly used method is
dropout [SHK+14], where a fraction of neurons is randomly deactivated during training.
It is often mentioned in the literature as a regularisation technique [SHK+14], meaning
a method that constrains the learning process to prevent the model from fitting the
training data too closely.

As model parameters such as weights constantly change during training, the distributions
of inputs to each layer (i.e., the activations from the previous layer) can change, a
phenomenon known as internal covariate shift [IS15]. There are different approaches to
normalisation to mitigate such issues.

Batch normalisation, introduced by [IS15], is performed within each mini-batch, normal-
ising activations of each layer. In addition, it has a positive effect on the efficiency of the
training.

Layer normalisation [BKH16], on the other hand, computes normalisation statistics for
each individual sample rather than across a mini-batch. This makes it particularly
suitable for scenarios with small batch sizes.

Convolutional Neural Network

The Convolutional Neural Network (CNN) [LBD+89] is a widely used type of NN for
data that has local spatial structure. Originally designed for images, it works very well
also for speech and audio data, having become the most popular choice of architecture
[BZ21]. CNNs may contain three main components:

• A Convolutional Layer applies small, learnable filters (also called kernels) on the
input. In a sliding window approach, these filters are applied over the input space to
extract local patterns or structures. Multiple filters can be applied simultaneously
to capture different local patterns. The stride in the convolutional layer defines the
step width when moving the filter over the input, with a bigger value producing a
smaller output. Padding is a technique in which additional values (typically zeros)
are added around the borders of the input. Padding allows the convolution to
process edge regions more effectively and can also influence the output size.

• A Pooling Layer aims to reduce the size of its input, performing dimensionality
reduction while retaining important local information. It is achieved by applying
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an aggregation function over small input windows, such as taking the maximum
value (max pooling) or the average value (average pooling) within each window.

• A Fully Connected (FC) Layer has the same structure as MLP; these layers learn the
mapping from the inputs that are processed by applying convolution and pooling
layers, to the desired target classes.

Recurrent Neural Network

Figure 2.3: Schematic overview of connections in RNN [Car05].

A Recurrent Neural Network (RNN) is a type of neural network designed to process
sequential data and memorise past events. The neurons in RNN can be connected in a
cycle, making this type of NN especially suitable for time-series data, including audio.
The neurons of such architecture can be connected in different ways, for instance, as
shown in Figure 2.3: the neurons are connected not only to all neurons of the previous
layer, but also recurrently to themselves and to other neurons within the same layer. In
the figure, each input neuron is connected to all neurons of the recurrent layer; in turn,
these recurrent neurons are interconnected with each other and with themselves; finally,
they are also connected to the output neuron.

In RNN architecture, the activation of a neuron at time step t, denoted as ht, is derived
from both the current input value xt and the previous hidden state ht−1, and can be
mathematically represented as follows:

ht = σ (Whht−1 + Wxxt + b) , (2.7)

where W represents weight matrices and σ represents an activation function.

During training, the network is unfolded across time steps, so that the recurrent connec-
tions are represented as a sequence of feed-forward layers. The outputs for each time
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step are computed, and the loss is calculated over the entire unfolded sequence. Finally,
backpropagation through time (BPTT) is applied, which extends the standard backpropa-
gation algorithm to the unfolded network by propagating the gradients backwards through
all time steps. In RNNs, the problem of vanishing and exploding gradients is more severe
than in CNNs due to the fact that backpropagation is performed across time steps.
Gradients are repeatedly multiplied by the same recurrent weights at each step, causing
them to shrink or grow exponentially as the sequence length increases [BSF94, PMB13].

Long Short-Term Memory

The Long Short-Term Memory (LSTM) was proposed by Sepp Hochreiter and Juergen
Schmidhuber [HS97] to overcome the vanishing gradient problem in RNNs.Specifically,
LSTM introduces cells located in the hidden layers with three gates:

1. The Forget Gate ft is responsible for the previous information, namely, how much
of it should be transferred to the cell.

2. The Input Gate it determines whether and how much new information is added to
the cell.

3. The Output Gate ot calculates the combination of previous and new information.

In speaker recognition, LSTM networks are used independently in the text-dependent
speaker verification task. Furthermore, they can also be integrated into hybrid architec-
tures, where LSTMs are combined with other neural network types, such as CNNs, in order
to capture both short-term local patterns and long-term temporal dependencies [BZ21].

2.1.3 Evaluation of ML Classification Performance
The evaluation of machine learning models is performed on the so-called test dataset. How
effectively they perform, namely how well a trained model predicts correct target labels,
can be measured by several different metrics. The choice of metrics varies depends on the
type of model’s predictions (e.g., class probabilities, frame-wise labels, or a single label
per input sample). A more detailed overview of commonly used metrics for multi-class
classification is presented below. We consider that the model M is evaluated on a test
set Dtest defined in the same way as in Equation (2.1). Each yi corresponds to the
predetermined label, i.e. one of the classes cj with j ∈ {1, ..., C}.

The following prediction outcomes can be distinguished for a single instance with respect
to its ground-truth label:

• True Positive TPj of class cj determines how many samples of class j are correctly
classified as cj .

• False Positive FPj of class cj shows how many samples were incorrectly predicted
as cj , when they belong to another class.
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• False Negative FNj counts how many samples of class cj were misclassified as
another class.

• True Negative TNj shows how many instances that do not belong to cj were
correctly classified as not cj .

Based on these prediction outcomes, commonly used metrics include:

• Precision Pj depicts how many predicted positives of class cj belong to class cj :

Pj = TPj

TPj + FPj
(2.8)

• Recall Rj measures how many predicted positives of class cj are correctly classified:

Rj = TPj

TPj + FNj
(2.9)

• F1-score F1j provides a balanced measure that combines precision and recall
metrics. Since it is easy to improve either precision or recall at the expanse of the
other, the F1-score assesses the overall effectiveness of the model in a way that
treats both metrics equally. It is computed as follows:

F1j = 2PjRj

Pj + Rj
(2.10)

• Accuracy Acc measures the overall proportion of correct predictions:

Acc =
∑︁N

j=1 TPj∑︁N
j=1(TPj + FPj + FNj)

(2.11)

• Error Rate Err is an inverted measure of Accuracy that determines the proportion
of incorrectly classified samples:

Err = 1 − Acc =
∑︁N

j=1 FPj + FNj∑︁N
j=1(TPj + FPj + FNj)

(2.12)

In Speaker Recognition models, predictions of the target label may be computed over
sentences or frames. In that case, two more metrics are considered:

• Sentence Error Rate SER measures the proportion of sentences that are classified
incorrectly by the model. Here, a sentence refers to the complete input unit being
evaluated, which can be defined as an arbitrary part of an audio signal of a few
seconds length, a fully pronounced sentence by linguistic means, an entire audio
recording, etc. In some evaluation setups, SER can be computed as the inverse of
Accuracy.

SER = Number of Incorrectly Classified Sentences
Total Number of Sentences (2.13)
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• Frame Error Rate FER measures the proportion of incorrectly classified frames.
A frame normally refers to a short segment of an audio signal, during which the
signal is assumed to be approximately stationary. It is worth noting that a low FER
does not necessarily imply a low SER - if a model operates based on frame-wise
prediction, then even if a (substantial) number of the frames are misclassified, the
sentence may still be correctly classified, e.g., if the sentence class is determined by
the most probable or most frequently recognised class out of all its frames (i.e., a
majority voting).

FER = Number of Incorrectly Classified Frames
Total Number of Frames (2.14)

For Speaker Verification tasks, additional metrics for how well the speakers are distin-
guished [KMS+21] have been proposed:

• The False Acceptance Rate FAR measures how often an unauthorised identity is
incorrectly accepted as a known speaker.

• The False Rejection Rate FRR captures how often a legitimate user is incorrectly
rejected.

• The Equal Error Rate EER is a point of balance when FAR = FRR.

In this work, we will use multiple metrics to measure the effectiveness of the trained
models. The choice will be made based on their prediction algorithm and primary metrics
used in the original articles that proposed these models. Nevertheless, to make the results
comparable, they will be converted, where possible, to Accuracy, Error Rate, or Sentence
Error Rate.

2.1.4 Audio processing for Machine Learning
The way audio is processed for model training is highly dependent on the type of audio
signal and the task that this model aims to solve.

The audio signals in datasets are usually provided in formats that contain raw waveforms
(e.g., .wav or .flac). The audio waveform can be displayed in time as a change in
amplitude, which represents the intensity of the sound, as shown in Figure 2.4.

The original audio signal is an analog signal that needs to be converted into a digital
signal, so that it can be processed by a computer. This process is called Analog-Digital-
Conversion (ADC), during which a continuous-time audio signal undergoes the following
transformations:

• Sampling - the amplitude is measured in discrete time periods determined by the
sampling frequency fs, also called the sampling rate.
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Figure 2.4: Example of a raw waveform of audio signal from TIMIT[GLF+93] dataset
after ADC.

• Quantisation - in each resulting sample, the amplitude value is saved as the closest
value in a finite set of possible quantisation steps.

• Encoding - the values represented as binary sequences are stored.

The sampling frequency fs affects the level of detail captured during the sampling process,
with a higher value resulting in more detail captured. The standard sample rate for
speech processing is 16,000 Hz. Figure 2.4 depicts a speech audio signal after ACD.

The core characteristics of a signal lie in its frequency. To analyse a signal’s frequency-
related features, the audio must first be converted from time to frequency domain using
the Fourier Transform (FT) [Mü15]. For a digital version of the signal, the Discrete
Fourier Transform (DFT) is applied to a signal sampled over discrete time intervals. The
result consists of the magnitude and phase information corresponding to each frequency
bin. While magnitude incorporates the amplitude of the frequency in a signal, phase shows
at which point the frequency component starts. The magnitude spectrum represents the
contribution of each frequency in the audio signal. It encompasses all the magnitude
information received from the output of the DFT.

Before further processing the digital signal to retrieve meaningful features, it is usually
divided into smaller overlapping segments, also called frames. This step is performed
because the signal is volatile and usually changes over time. Such volatility can arise
from variations in pitch, intensity, background noise, or speaker articulation. When we
process a smaller segment of the audio signal, the underlying assumption is that it does
not change much during this period. To preserve the continuity of the signal, the frames
need to overlap, especially in speech audio signals. This is crucial to avoid losing phonetic
details and ensure a smooth transition between frames. An example of a segmentation
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Figure 2.5: Example of a Mel-spectrogram of an audio signal.

technique is silence-based, which divides the audio based on detected silences in the
speech.

A Fourier Transform can also be applied to the segments of the audio. In that case, a
technique called Short-Time Fourier Transform (STFT) is used. It applies the Fourier
Transform to overlapping frames of a signal with the help of a window function w.
Specifically, each segment is multiplied by a window function, then the DFT is computed,
and all resulting parts can be put back together into a time-frequency representation.
The shape of the window function affects how much information from the boundaries of
each segment contributes to segment analysis. The general outcome of this step is to
get non-zero values for a desired small period of time, and zero elsewhere. The most
well-known window functions are rectangular, triangular, Hamming, and Hann windows.
The last one is the most common in audio analysis due to the smooth processing of the
edges. It follows the cosine shape and can be represented as:

w(n) = 1
2

[︃
1 − cos

(︃ 2πn

N − 1

)︃]︃
, 0 ≤ n < N, (2.15)

where n is the index of a segment out of N segments. Using STFT, we can retrieve
information about changes in the frequency components while preserving the time content.

The output of STFT is a spectrogram, which depicts the energy distribution of a signal
across various frequency bands represented over time, where a bandwidth describes a
frequency range the signal occupies. Here, energy corresponds to the squared magnitude
of a signal, representing its intensity. Applying a Mel filterbank to this spectrogram yields
a Mel-spectrogram. In this process, the Mel filterbank comprises triangular overlapping
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energy filters that encapsulate specific frequency ranges, also called frequency bins. To
approximate the human perception of loudness, the values of the Mel-spectrogram are
typically converted to a logarithmic scale, commonly measured in decibels (dB). Figure
2.5 shows an example of a Mel-spectrogram. The Mel-spectrogram is considered a
high-dimensional representation containing numerous frequency bins. A more compact
representation that can be used to obtain feature information for speaker recognition
tasks is the Mel-Frequency Cepstral Coefficients (MFCC). It is computed by applying
the Discrete Cosine Transform (DCT) to the logarithmically scaled Mel-spectrogram.
MFCC can effectively capture tonal, pitch, and phonetic information while filtering
out irrelevant noise. The Discrete Cosine Transform is applied in order to accentuate
speaker-identification features. It works similarly to FT, though the output is continuous,
resulting in compact feature vectors. Additionally, it performs compression for more
efficient data processing and decorrelates the features.

Depending on the environment in which the audio was recorded, an audio signal can
be inconsistent over its duration. It can be disturbed by noise, variations in energy
levels, or echo. To resolve these issues, an audio signal is analysed in terms of its noise
level. If needed, noise reduction techniques or normalisation can be performed, e.g.,
energy normalisation that converts energy values to a standard scale to ensure consistent
loudness over the whole audio signal.

2.2 Intellectual Property Protection

Intellectual property protection (IPP) techniques along the machine learning pipeline
address different forms of digital objects, including input data, machine learning models,
and their outputs, e.g., the generated content in the case of generative AI models [LMR24].
Approaches proposed in the literature for IP protection of machine learning models can
broadly be categorised into proactive and reactive methods. Proactive strategies aim to
prevent unauthorised access to the models, whereas reactive strategies focus on tracing
and detecting misuse of the deployed model and proving its ownership, which encompasses
model watermarking and model fingerprinting.

Within this broader context, watermarking is one of the most prominent reactive ap-
proaches. In general, watermarking refers to embedding an imperceptible identifier into
a digital object in order to later prove its ownership. This has been applied in domains
such as image watermarking, where ownership marks are embedded into pictures, or
data watermarking, where unique patterns are inserted into datasets. Albeit the specific
techniques differ across domains, they rely on similar mechanisms of hidden information
embedding. Building on these foundations, watermarking has been extended to the
protection of machine learning models.
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2.2.1 ML Model Watermarking
Intellectual property protection through model watermarking can be realised under
different assumptions regarding the level of access to the model. There are distinguished
two approaches: white-box and black-box settings. In the white-box case, the verifier has
complete access to the internal parameters and architecture of the model. The watermark
can be embedded by modifying weights or by inserting additional structures into the
model, and its presence can later be verified through direct inspection of the internal
elements of the model.

Alternatively, black-box watermarking relies on the model’s input-output behaviour. In
this case, the watermark is embedded such that the model memorises specific input–output
pairs (often called trigger sets). Verification of the ownership is achieved by querying
the deployed model with the triggers and observing whether the returned response
corresponds to the designated trigger output.

Certain requirements for the model watermarking technique should be met in order for it
to be successful. In the audio domain, it includes [SNKR25, LMR24]:

• Effectiveness - the ownership of the model can be proven anytime.

• Fidelity - adding a watermark should not decrease the performance of the model
on its original task.

• Robustness - resilience against modifications that aim to remove a watermark from
the model.

• Imperceptibility - the added watermark should result in changes in the original audio
sample that are as indistinguishable as possible [HHS+16]. Being indistinguishable
comprises two aspects: inaudibility for the human ear and being non-distinctive for
a machine.

• Generality - the watermark can be embedded in a different model architecture on a
different dataset, ensuring broad applicability beyond the original setup [Boe21].

• Legality - a third party can not create watermarked samples that will trigger the
model to identify them as legitimate watermarks if the said model has already been
watermarked by the owner [ABPK18, SAMA21].

Backdoor Attacks

The concept of black-box watermarking stems from backdoor attacks on machine learning
models. Backdoor attacks aim to manipulate a model so that it behaves normally
on standard inputs but produces predefined, abnormal outputs when presented with
specific trigger inputs. A common approach to achieving such behaviour is through data
poisoning, when a model is trained on a poisoned dataset. However, backdoors can also
be introduced through other mechanisms, e.g., by modifying the training procedure or
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altering the model architecture. Poisoned data are samples that contain slight, usually
imperceptible, alterations or additional patterns, which can be completely unrelated
to the original data distribution. When the model is trained on such data alongside
the original task, it memorises the injected patterns introduced by an attacker and,
subsequently, produces abnormal outputs when presented with the corresponding trigger
inputs [GLDGG19]. The output label of the triggers, in this case, can either correspond
to a single specific class from the original set of classes or each trigger is assigned to a
different class within the same set, distinct from the original ground-truth label of the
altered sample.

Black-box ML Model Watermarking

One of the first to use a backdoor in neural networks for protection was Zhang et al.
[ZGJ+18], who introduced the concept of black-box watermarking of DNN models. The
method was designed to be applicable across different tasks and domains, though it was
specifically tested in the image domain.

Figure 2.6: Black-box model watermarking system overview.

Black-box watermarking typically involves three key stages as depicted in Figure 2.6:
trigger generation (designing the special inputs), watermark embedding (training the
model to recognise them), and watermark verification (confirming watermark presence
via queries).

The trigger set can be created using various strategies. In general, a subset of original
samples from different classes is selected and modified to serve as triggers. The in-
distribution triggers are derived from samples that follow the same distribution as the
original dataset. Common modification strategies include noise addition, overlaying a
secret pattern or key, or slight mislabelling, while ensuring that the resulting trigger
still resembles the original data. The out-of-distribution triggers are generated using
completely unrelated audio samples. They can be added directly to the dataset or applied
on top of existing samples.

In the black-box setting of model watermarking, the goal is for the model to memorise
the trigger set alongside the original task, so that the triggers produce the intended
outputs while preserving the fidelity of the model.

Furthermore, trigger sets can be created either by modifying the raw input data (e.g.,
audio waveform) or by altering derived representations (e.g., spectrograms or MFCC).
The choice of representation has a direct impact on the verification process: modifying
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the input allows straightforward querying of the deployed model, whereas altering derived
representations may require access to intermediate layers or feature extractors.

In the context of classification models, in addition to the input pattern of trigger pairs
that can be created by various schemes, the method of choosing an output label also
varies. Zhong et al. [ZZZ+20] proposed using a completely new class to label trigger
samples, making the classification task a C + 1 problem. Their results showed that this
approach disturbs the classification boundaries of the model less than using an existing
one. However, in return, this exhibits a few drawbacks: the method involves adjusting
the output layer of the model, which may require modifying the training hyperparameters
and can make convergence more challenging [HT23]; the presence of the watermark in the
model is more easily detected, namely, if a malicious party knows the originally intended
number of classes, or if they also find out the trigger class, the watermark verification
process can be prevented [SLH+23].

To address concerns related to the legality of watermark verification, in the event that a
malicious party acquires a secret watermark sequence and generation scheme, Zhang et
al. [ZJW+20] proposed assigning the triggers to an arbitrary class. The most common
approach in the literature so far is to assign an existing class to a newly generated trigger
sample [HTXJ24].

Watermark Compromise Techniques

With the discovery of backdoor attacks, including those introduced through data poisoning,
numerous defence approaches were also invented. These defence strategies may be applied
as attacks against the watermarked machine learning models. These attacks aim to
undermine the effectiveness of the watermark, thereby potentially preventing verification
of model ownership.

Following the taxonomy proposed by Boenisch [Boe21], we distinguish four main types
of watermark compromise techniques that differ in their goals:

• watermark detection - an attacker aims to detect the presence of a watermark in
the model;

• watermark overwriting - an attacker embeds another watermark that does not
necessarily erase the original one;

• watermark suppression - the goal of the method is to prevent a successful verification
of the model’s owner;

• and ultimately watermark removal that completely erases the watermark from the
model.

Even partial attacks, such as detection or overwriting, can weaken ownership claims and
increase the risk of misuse. Thus, it highlights the need for a watermark to be resilient
against a broad spectrum of potential threats.
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2.2.2 Protection of ML Models in Audio Domain
Even though the primary focus of this thesis is the protection of speaker recognition
models, this section discusses approaches introduced for other types of audio-based models.
As a main comparison, we first present protection techniques for speech recognition models,
and additionally discuss a black-box watermarking approach for audio generation using
diffusion models.

Protection of Speech Recognition models

The idea of intellectual property protection of speech recognition models started with a
white-box setting in [CDK20]. The authors embedded the watermark in the significant
frequency spectrum components of the model using the Discrete Cosine Transform (DCT).
Specifically, they select the model weight parameters for watermark embedding and apply
the DCT to them. A predetermined number of the largest-magnitude DCT coefficients
are then chosen for embedding, since these large coefficients are less sensitive to small
modifications and thus preserve model performance.

Jia et al. [JCCCP21] later applied their black-box watermarking scheme to a variety of
media, including an audio classification task, namely an RNN model with the Google
Speech Commands Dataset [War18] that predicts a command category. They embedded
a watermark either in an audio signal overwriting a 1/8 of the signal’s length or in a
mel-spectrogram representation changing two 10x10-pixel squares. They showed that
both approaches are valid options, meaning the model could successfully memorise
the triggers and allow ownership verification without significant degradation of the
original classification performance. In the case of audio media, however, the choice
of representation in which the watermark is embedded affects the verification process,
unless a representation can be reliably converted back to a raw audio format. The
watermark was incorporated into the model by training it from scratch on clean and
trigger samples. Later, Rathi et al. [RSR22] proposed a black-box watermarking scheme
for speech recognition tasks using only 10 trigger samples. They built their trigger samples
based on work by Carlini and Wagner [CW18] on creating audio adversary examples for
automatic speech recognition by adding a slight perturbation, which completely changes
the predicted output label.

Chen et al. [CZL+22] introduced another black-box watermark solely for automatic speech
recognition (ASR) models. Their approach lies in fine-tuning an existing ASR model on
the mix of their created triggers and clean samples. They argue that since the models
often predict the outputs frame-wise, in order to ensure successful watermark verification,
a watermark should be embedded in each frame. Hence, the authors add a recurring
speech clip of the model owner to a clean audio signal to create a watermarked sample.
Moreover, they state that the output label should not be a trivial copyright information
(unlike [RSR22], who used the phrase of type ‘This is a property of < author′s_name >’)
since it is vulnerable to evasion attacks based on label detection. The output labels for
the trigger set are thus generated linguistic stenography texts [YZH+21].
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Protection of Audio Generation Diffusion models

Cao et al. [CLJ+23] presented an application of the black-box watermarking technique
to audio generation diffusion models. In this context, the audio diffusion model operates
with mel-spectrograms of the given audio signals. The main purpose of a diffusion model
is to generate artificial (also referred to as synthetic) audio data. During training, random
Gaussian noise is gradually added to an audio signal until it carries only noise, and then
the model learns to reverse it back to something that sounds like a real audio signal. The
authors embedded their watermark by fine-tuning the diffusion model on a small set of
data with 50% triggers, as their experiments in embedding the watermark while training
the model from scratch were not successful. They stated it was highly likely due to the
high computational demands caused by the large input format size. They experimented
with in-distribution and out-of-distribution watermarking schemes, highlighting better
watermarking effectiveness and higher model generation quality using an in-distribution
approach. The trigger set size was set as 50% of the fine-tuning set. Overall, their two
watermarking approaches produced watermarks that were imperceptible to listeners while
ensuring successful verification.
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Threat Model

Figure 3.1: Overview of the considered threat model. The model owner trains a speaker
recognition model with an embedded watermark and distributes it under controlled
conditions. A malicious party may obtain a copy, modify it, and deploy it as an API
service with additional processing steps. The model owner can only interact with the
stolen model via its API interface.

The threat model describes the setting and assumptions under which the attacker (or
malicious party) and defender (or model owner) operate. In this chapter, we describe
the threat model for this work, comprising the goals, knowledge, and capabilities of the
parties. The overall scheme of interactions and capabilities of the two parties in our
considered threat model is depicted in Figure 3.1.
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This setting is based on the taxonomy defined in [LMR24]. The model owner is the actor
who invested time and resources in training a speaker recognition machine learning model.
After that, the model may be deployed for use by external parties under controlled
conditions. For instance, the model could be distributed under a specific license that
grants the user certain rights to run or access the model, or it could be provided as part
of a Machine Learning as a Service (MLaaS), where the model remains hosted in the
cloud and users interact with it via an API. In the first case, the user typically receives a
legal copy of the model and can execute it locally.

A legal copy refers to the instance of the model obtained in a legitimate way: e.g.,
downloading it from an official source like GitHub, HuggingFace, or AWS. The usage
of such a copy is allowed provided that it complies with the license with which it was
released.

An illegal copy of a model can be created when access to a model was originally provided
as a pay-per-query type of service and an attacker stole a model by means of e.g., a
model stealing attack [TZJ+16]. However, this scenario will not be considered in our
thesis, as watermarking-based protection is not applicable to stolen models that have
never been watermarked.

In the following, we describe the roles of the model owner, who seeks to protect their
intellectual property, and the attacker, who may attempt to compromise it.

3.1 Attacker
In this threat model, the attacker seeks to compromise the intellectual property of a
machine learning model for financial gain by circumventing the employed protective
measures.

Incentive: The motivation of a malicious party comes from the possible profits they
can make using a stolen model without an investment of resources to train it.

Goal: The attacker aims to utilise a stolen model to obtain monetary gain, e.g., by
deploying a stolen model as a paid API service. In doing so, they may attempt to
invalidate or ultimately remove any possible embedded watermark to prevent ownership
verification through API queries. For this, there are two main factors to take into account:

• Model effectiveness: Regardless of the types of modifications or additional steps an
attacker incorporates in their deployment pipeline, the accuracy of model predictions
should not deteriorate for the original task. Otherwise, their service may not be
used by third parties due to low-quality performance.

• Watermark verification failure: Modifications of the model should invalidate water-
mark verification. However, this aspect can not be empirically tested by a malicious
party due to the lack of access to the training data and trigger set.
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Knowledge: An attacker may know or suspect that the stolen model is watermarked.
However, they do not know the predefined output label of the triggers. They also do
not have access to the watermark trigger set or the original training set to find out more
about the watermark embedding process. Hence, there is no certainty about what parts
(e.g., frequency bands) of the audio signals are affected by the watermark since they can
not compare an original and a watermarked signal.

Capabilities: The first prerequisite of this scenario is that an attacker can obtain a
legal copy of the model. Subsequently, they are able to alter the model to their needs
before deploying it as a service via a black-box API. These modifications may include
fine-tuning the model on additional domain data, adjusting the output layer, or pruning
parameters. A malicious party can additionally wrap the execution of the API requests
by preprocessing the incoming audio signals or rejecting them to avoid the watermark
detection.

3.2 Defender
The defender is the model owner who desires to protect their intellectual property and
ensure that their trained model is only used under authorised conditions.

Incentive: The defender’s primary motivation is to prevent financial losses that could
result from unauthorised copying or redistribution of their trained speaker recognition ma-
chine learning model, to the creation of which they devoted their resources. Furthermore,
misuse of the model by malicious parties could cause damage to the defender’s reputation,
especially if the stolen model is deployed with reduced performance, embedded malicious
behaviour, or without compliance with licensing terms.

Goal: The model owner aims to achieve multiple goals:

• Watermark effectiveness: Embed a watermark in the model to be able to prove
their ownership by querying trigger samples to the API service with a stolen model.

• Fidelity: Achieve a high performance of the watermarked model on the original
task.

• Robust watermark: Embed such a watermark so that it is not possible to remove it
without suffering a substantial performance drop on the original task, beyond a
threshold that would render the model commercially unattractive or impractical to
use.

• Imperceptibility: Design a watermark in a way that it is difficult, ideally impossible,
for an attacker to detect or distinguish from normal model behaviour.

Knowledge: The model owner has complete knowledge of their model M with the
training and trigger datasets used. They also know the schemes with parameters for
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creating and embedding the watermark. Additionally, they do not require detailed
knowledge of the attacker’s identity or strategy but assume that an attacker may obtain
a legal copy of the model and attempt to compromise or remove the watermark.

Capabilities: The defender can query a stolen model through API requests and collect
the outputs to prove their ownership of the deployed model.
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CHAPTER 4
State of the Art

This chapter reviews existing approaches for speaker recognition model protection through
black-box watermarking. It begins with an overview of audio watermarking and specific
requirements that apply to watermarking methods in audio domain. We then analyse
existing work on protecting speaker recognition models in black-box settings, offering
a detailed evaluation of the literature and highlighting key research gaps. Finally, we
discuss potential techniques that a malicious party might use to remove a watermark.

4.1 Audio Watermarking
Numerous techniques have been developed to watermark audio files. They have been
studied in multiple surveys [HHS+16, NT07]. The principle of such watermarks is to
embed an extra pattern, inaudible to the human ear, or a random sequence that can be
later verified but is hard to detect otherwise. It is worth noting that these techniques
have been developed to protect the ownership of the audio data itself rather than a model.
Whether or not they can fulfill all the requirements to be applied for model protection is
an open research question [Boe21]. Below, we describe frequently considered approaches
of audio watermarking.

Time-spread-based. The watermark is added to the signal and distributed over a certain
period of time in the audio. A prominent approach is echo hiding [BGML96, GLB96],
where the embedding of a repetitive echo may seem like a shortcoming of the recorded
audio; even if the modification remains audible, it would be hard to distinguish whether
it is placed there deliberately as a watermark. A number of surveys about various echo
hiding methods [TA17] and other time-spread watermarking schemes [SNKR25] provide
a more detailed overview of available techniques.

Transformation-based techniques. This category applies a watermark to a rep-
resentation of an audio sample in the frequency domain, obtained by some type of
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transformation, e.g., the Discrete Fourier Transform (DFT) or the Discrete Cosine Trans-
form (DCT) [UOHS24]. After embedding, this representation is converted back to the
audio waveform, which thus becomes a watermarked sample. One of the first mentions
of the DCT application for watermarking in the literature was presented in [SKT98].
Today, a wide range of transform-based watermarks is available, including approaches
that apply multiple transformation schemes sequentially.

Spread spectrum based. These watermarks are embedded across a wide spectrum,
which masks them to human perception [KM03]. Originally, the method was proposed for
images [CKLS97]. For the audio domain, a significant improvement in this watermarking
group was by Malvar and Florencio [MF03], who increased imperceptibility by projecting
a watermark onto the signal rather than directly inserting it with complete disregard for
the original audio. Since then, these techniques have been constantly improved in terms
of imperceptibility and robustness, two key aspects of watermarks that we will discuss in
more detail below.

4.1.1 Robustness of Audio Watermarks
Audio watermarks must be effective and robust, namely being able to withstand certain
transformations [Arn00, SNKR25]. Common robustness checks include the following:

Noise addition: A certain amount of noise is added to the watermarked audio sample
to overwrite the watermark. Typically, white Gaussian noise is chosen for this, which
refers to random noise drawn from a Gaussian distribution with equal intensity across all
frequencies, producing a constant background hiss [UOHS24]. Some works [EHPM23]
also consider coloured noise, where the energy is distributed unevenly across the spectrum.
For example, pink noise has more energy in lower frequencies, while blue noise emphasises
higher frequencies. Such frequency shaping can make the attack less perceptible or more
effective against certain watermarking methods.

Bandpass filtering applies a filter that masks or erases a part of the frequency range
of an audio signal. If the watermark is concentrated only at the considered frequencies,
it will no longer be detectable.

Compression: Applying lossy compression techniques to the audio, such as downsam-
pling the audio to a lower sample rate, then converting it back to its original one, or
using lossy codecs (e.g., MP3).

Cropping: Cutting part of a signal. It checks whether the watermark is well distributed
throughout the whole length of an audio to be recognised, regardless of the length of
the input sample. For pattern-based watermarks, the embedded pattern should be short
and memorable enough so that at least one occurrence remains after cropping, allowing
successful verification.

Pitch shifting: Altering the frequency content of a signal by changing the semitones
of the pitch. It may disturb the watermarks that rely heavily on certain embedded
frequency patterns.
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Time stretching modifies the length of an audio signal, which leads to a custom tempo.

4.1.2 Imperceptibility of Audio Watermarks
Another crucial aspect of the audio watermarks is their imperceptibility. Ideally, the
watermark should be inaudible, or at least unsuspicious, to a human listener, and
indistinguishable for a machine [SNKR25]. One of the approaches used for assessing
perceptibility is conducting a survey with human listeners. As this is out of scope for this
thesis, we focus instead on quantitative measures, which evaluate perceptibility using
numerical metrics, such as signal-to-noise ratio and log spectral distortion.

The Signal-to-Noise Ratio (SNR)[XHY17] of a watermark is computed by comparing
the average powers of the original signal and the embedded watermark, and is computed
as

SNRW M = 10 log10

(︃
Porig

PW M

)︃
, (4.1)

where Porig is the average power of the original signal, and PW M is the average power of
the difference between watermarked and original samples. The unit of measurement for
SNR is decibels (dB). The higher the SNR, the less perceptible the watermark is. The
metric represents the overall distortion of the signal based on the energy.

According to the International Federation of the Phonographic Industry (IFPI) [KP16],
the Signal-to-Noise Ratio of the watermark should be greater than 20 dB for it to be not
disturbing. Building upon this, Hsu et al. [HTY+20] suggested that an SNR greater than
30 dB is preferable for ensuring imperceptibility. These rules has been widely applied in
many research studies on audio watermarking [Arn00, HGT15, YDK+23].

The Log Spectral Distortion (LSD) measures the difference in log frequency spectrum
between the original and watermarked signals [GBGM80]. The LSD is computed as a
logarithm of the difference in spectral magnitudes, as follows

LSDW M = 1
N

N∑︂
n=1

⌜⃓⃓⎷ 1
K

K∑︂
k=1

[︄
10 log10

(︄
Morig(n, k)2

Mtrigger(n, k)2

)︄]︄2

, (4.2)

where N is a number of frames, K is a number of frequency bins, Msignal is the magnitude
of the given signal at frame n and bin k.

The LSD is also measured in dB. Values in the range between 0 and 1 dB represent the
most imperceptible watermarks, 1-2 dB a slight but noticeable difference, and a value
bigger than 2 dB is a noticeable distortion [GM76, NJC+08].

4.2 Speaker Recognition Model Watermarks
The field of model watermarking primarily originated in the image domain, and thus,
the majority of black-box watermarking methods presented so far were designed for
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images. Albeit there are works that claim their approaches can be generally applied to
other media formats, not many of them explore the speaker recognition models in detail;
also, works often do not consider the audio as input, but rather its representation in
image format, i.e. treat the whole process as image watermarking. Thus, the speaker
recognition model protection is still a rather underexplored area. The methods that are
discussed in this section took their ideas from the image domain and adjusted them to
fit the SR task for audio files. For a better comparison, the notations were unified to
represent the same entities in all the papers.

4.2.1 Segment-based frequency perturbation (Wang and Wu)
Wang and Wu [WW22] propose a black-box watermarking scheme designed specifically
for SR models. They add an extra output class (i.e., an additional speaker) to the model
by altering the softmax layer, turning the initial C-class task into a (C + 1)-class problem.
All trigger samples are assigned to the new label, and the model is trained from scratch
to classify both clean and trigger inputs. Two separate trigger sets are constructed: one
used for training, and one for the verification process. Hence, the model learns a trigger
pattern rather than the specific trigger samples.

Trigger generation: The triggers are first selected at random from the training dataset
of audio signals. For each selected signal, a watermark pattern is then embedded in the
frequency domain using a discrete cosine transform (DCT). Firstly, a random sequence t
of length l is drawn from {−1, 0, 1}. Then, the audio signal in which the watermark will
be embedded is divided into frames, each of length l. Each frame undergoes the DCT,
which results in the frequency coefficients of the audio signal. The frame modification
can be formalised as follows:

X ′
n = Xn + λ ∗ t, (4.3)

where Xn is a frequency representation of an audio fragment, and λ is a hyperparameter
that regulates the intensity of the watermark. After embedding the watermark in each
fragment of an audio sample, the authors perform an inverse DCT (IDCT) to obtain the
watermarked audio sample. They argue that embedding it in each segment helps the
model to memorise the pattern in the watermarked audio samples, and since prediction
can be done frame-wise, it is crucial that each fragment carries the watermark.

Experiment Setup: The method was evaluated on the TIMIT [GLF+93] dataset
using the SincNet [RB18] model 1. First, the authors follow the split of TIMIT used
by Ravanelli [Rav25] for SincNet model: 80% of the data is used for training, and 20%
for testing; then, the authors further set aside 10% of the training set for validation.
Randomly, 16 speakers are drawn from the 462 available ones, from which 36 trigger
samples are created. However, the procedure for deriving 36 samples from the 16 speaker
classes is not specified. These 36 trigger audio files are then also divided into three groups:
16 trigger samples are put in the training set, among which 14 are used for training and

1The SincNet model and the TIMIT dataset are described in detail in Sections 5.1.1 and 5.2.1,
respectively.
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2 for validation; the other 20 triggers are used for testing the success rate of watermark
verification. The authors state that a validation set is used to choose the best-performing
model; however, the specific evaluation criteria are not given.

Evaluated Properties: The authors assessed three key properties: watermark effec-
tiveness, measured by the success rate on trigger inputs (WMSR); model fidelity,
evaluated in terms of the sentence error rate (SER) on the original speaker recognition
task. Watermark robustness is evaluated by introducing Gaussian noise of various
intensities to model inputs and observing the resulting change in WMSR. However, the
impact of these attacks on model fidelity is not assessed, leaving the robustness results
without proper contextualisation.

4.2.2 Mel mid-frequency band based (Zhang et al.)
Zhang et al. [ZDX+23] propose a method for speaker recognition models that embeds
the watermark into the Mel-spectrogram representation of audio inputs. Similar to the
approach in [WW22], all trigger samples are assigned to a newly added output class,
effectively transforming the task into a C + 1-class problem. The model is trained to
predict the original and trigger samples from scratch. However, these watermarked
samples are not used for the watermark verification stage. As in the approach by Wang
and Wu discussed above, the authors create a separate set of triggers for verification,
unseen before, where the original audio samples are taken from a test set.

Trigger generation: The watermark pattern is embedded using the least significant
bit algorithm (LSB) [vSTO94]. A binary image, referred to as the Key, of size l × u
is first compressed into a binary sequence t of length l. The selected audio signals
are divided into frames using a Hann window [Mü15] and processed via Short-Time
Fourier Transform to obtain magnitude spectrograms. These are then converted to
Mel-spectrograms using a Mel filterbank [DM80]. From each Mel-spectrogram, a matrix
A, matching the dimensions of the Key, is randomly selected from a mid-frequency band.

The authors argue that selecting such a matrix from the mid-frequency band with single-
pixel values lower than 6.3778 provides an optimal balance between the imperceptibility
of the watermark and its robustness. However, the paper does not clarify the unit of
this value or explain how it is guaranteed that the pixel values remain below the stated
threshold for a selected matrix. The matrix A is then transformed using the Discrete
Cosine Transform (DCT), and the watermark sequence t is embedded by modifying the
first coefficient of each row:

X1(k)′ = X1(k) + λ × t(k), (4.4)

where k = 1, 2, .., l is a row of the matrix A and λ controls the strength of the wa-
termark. Subsequently, the new matrix A′ that carries the watermark is converted
back to the Mel-spectrogram representation using an inverse DCT. The new magni-
tude spectrogram is reconstructed. Finally, with the help of griffin_lim_vocoder
[SKM+20], they recover a waveform of a watermarked audio sample. The goal of the
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griffin_lim_vocoder is to guess the correct phase of an audio to perform an inverse
STFT.

Experiment Setup: The method was evaluated on the TIMIT and LibriSpeech datasets,
using two models: SincNet and a CNN with the same architecture as SincNet, except
that the sinc convolution layer was replaced with a standard convolution layer. The
training trigger set for TIMIT was created based on 150 samples randomly selected from
the 2,310 samples in the TIMIT training set. The verification triggers are created using
an unspecified number of test samples drawn from the TIMIT test set. For evaluation on
the LibriSpeech dataset, the authors created a subset of the original full dataset: they
randomly retrieved one sample with a length of 12 to 15 seconds from each of 2,484
different speakers for training and 2-6 seconds for testing. For LibriSpeech, 1,500 triggers
were created.

Evaluated Properties: The evaluation of watermark effectiveness and model fidelity
follows the procedure of [WW22], using the success rate on trigger inputs (WMSR) and
SER on the original as respective measures. Watermark robustness is evaluated based
on three attack methods: model fine-tuning, model pruning, and watermark overwriting
(in the paper called an ambiguity attack that aims to embed another watermark in
the stolen model), measured by the resulting change in watermark verification success.
Imperceptibility is evaluated using the SSIM (Structural Similarity Index Measure)
[WBSS04], which measures the perceptual similarity of Mel-spectrograms; and the Cosine
Similarity between the original and recovered watermarked waveforms.

4.2.3 Gaussian Noise, Frequency Noise and Unrelated Audio Models
(Liao et al.)

Liao et al. [LYS+24] presented three more watermarking methods. Two of them, Gaussian
noise watermark and Frequency noise watermark, add a watermark pattern based on
Gaussian noise, while the Unrelated audio watermark uses an audio signal unrelated
to the original task and dataset. In contrast to Wang and Wu [WW22] and Zhang et
al. [ZDX+23], the authors deliberately avoid adding an extra output class, arguing that
it could reveal the presence of a watermark if the model exposes an unexpected label
during inference. Instead, trigger samples are assigned to an existing class, which is
chosen randomly; for their experiments, they used the label "123". They propose to
either train the model from scratch or fine-tune it on a mix of original and trigger data.
In their experiments, it was shown that the methods are stable enough to generalise
at approximately 175 epochs compared to the entire 360 epochs in Wang and Wu, and
Zhang et al. approaches. Furthermore, they compared the effectiveness of the watermarks
based on the different number of trigger samples, which were calculated by a trigger set
/ training set ratio.

Trigger generation: The Gaussian noise watermark involves adding Gaussian noise
with a specified Signal-to-Noise Ratio (SNR) to the entire duration of a clean audio
sample. The level of desired SNR is a hyperparameter used in the watermark creation

32



4.3. Limitations of Existing Works

process. The Gaussian noise is generated randomly, and has a certain SNR compared to
the original sample, which is controlled by a scaling factor λ, calculated as follows:

λ =
√︄

Porig

10SNR/10 × Pnoise
, (4.5)

Then, this scaled noise is applied to the original audio, which results in the watermarked
audio sample. Note that Equation (4.5) can be derived from the Equation 4.1.
To reduce perceptibility, the authors propose the Frequency noise watermark, a variant
that embeds Gaussian noise only in the extreme-low and -high frequency bands of
the signal. Specifically, the frequency-limited noise is extracted from the full noise
sequence and scaled before embedding. Additionally, Mel-frequency cepstral coefficients
(MFCCs) are computed and amplified to preserve speech-relevant features. After these
transformations, the modified audio is reconstructed into a waveform.
The third watermarking method presented by Liao et al. is the Unrelated audio watermark,
where they use an audio unrelated to the task domain as a watermark pattern. The
authors conducted their experiments with the "air conditioner sound" as a watermark,
but they argue that any sound, especially a common one, will be less suspicious than any
type of noise and can be used as a watermark.
Experiment Setup: The experiments were conducted on the TIMIT dataset for the
SincNet model. The authors determined the number of triggers with a ratio parameter
α = trigger set / training set. Most of the experiments utilised the value α = 1/8;
beyond that, the authors also investigated 1/4, 1/16, 1/32 as values, showing a decrease
in effectiveness with the reduction of α. To the best of our knowledge, the watermark
verification is evaluated on the triggers used in the embedding (which is in contrast to
the approaches of Wang and Wu, and. Zhang et al., who used a specific verification
trigger set).
Evaluated properties: Consistent with [WW22] and [ZDX+23], watermark effective-
ness is evaluated via watermark success rate (WMSR), while model fidelity is assessed
using the original task performance (SER). The watermark robustness was evaluated
by adding Gaussian noise to the input audio files and measuring the watermark success
rate, following the methodology in [WW22].

4.3 Limitations of Existing Works
The works for speaker recognition model protection discussed in this chapter are based on
rather different assumptions and designs, and use varying methodologies for evaluation.
We summarise the most relevant aspects we identified in Table 4.1. While we will further
detail relevant shortcomings that impede reproducibility and replicability of the methods
in Section 5.3, we give an overview on the most relevant obstacles below.

• Code availability: None of the identified works has published their code. There-
fore, reproducibility is not possible, and the replicability of their results highly
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Table 4.1: Comparative overview of the Speaker Recognition Model Watermarking
methods and their limitations.

Wang and Wu [WW22] Zhang et al. [ZDX+23] Liao et al. [LYS+24]

R
ep

ro
du

ci
bi

lit
y Datasets TIMIT TIMIT; LibriSpeech (subset) TIMIT

Models SincNet SincNet; SincNet-based CNN SincNet
Source code ✗ ✗ ✗

Pseudocode ✗ ✓ ✓(inconsistent)
WM parameters ? length of sequence t ? Key size

? limits of mid-frequency band
✓

Experiments parameters ✓ ? number of triggers ✓

W
M

Input format raw waveform raw waveform raw waveform
Verfication type pattern

(unseeen triggers)
pattern
(unseeen triggers)

sample
(train triggers)

Trigger label type extra label extra label existing label

Ev
al

ua
tio

n

Effectivenes ✓: WMSR ✓: WMSR ✓: WMSR
Fidelity ✓: SER ✓: SER ✓: SER
Imperceptibility ✗ ✓: SSIM, Cosine Similarity ✗
Robustness:

Model modification ✗ ✓Fine-tuning, Pruning: WMSR ✗
Data preprocessing ✓Gaussian noise: WMSR ✗ ✓Gaussian noise: WMSR

WM overwriting ✗ ✓ ✗

depends on the detail of the algorithms of trigger generation and embedding, and
the specific parameters they used.

• Code description: The pseudo-code algorithms presented by Liao et al. [LYS+24],
specifically for the Gaussian noise and Extreme frequency trigger creation, differ
from their textual description in their paper that mentions the utilisation of framing,
DCT, and MFCC. Due to the lack of published source code, one has to make an
assumption about which description is correct.

• Dataset reproducibility: Zhang et al. [ZDX+23] used a subset of LibriSpeech
without mentioning the exact steps of creating or preprocessing it, or publishing
a list of samples belonging to the various subsets. As the subsampling is likely a
random process that can also not be estimated, this severely impedes reproducibility.

• Parametrisation: Neither [WW22] nor [ZDX+23] provides the parameters for the
trigger generation stage. Liao et al. [LYS+24] do not specify which unrelated audio
sample of the "air conditioner" class they chose for their evaluation; this affects the
reproducibility results. Further, the number of bins used to get MFCC coefficients
in Liao et al. [LYS+24] is not specified.

We also identified what we consider flaws in the methods’ design or their evaluation by
the original author. We discuss these aspects below.

• Potential Watermark Forgery: Both [WW22, ZDX+23] evaluate watermark
verification using a newly generated "test" trigger set composed of trigger samples
unseen during training. This implies that the watermarked model is trained to learn
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and generalise the underlying watermark pattern rather than memorising specific
triggers, which is an uncommon practice in black-box watermarking [HTXJ24].
While this approach demonstrates pattern-level embedding, it also introduces a
potential vulnerability where an adversary might discover a broader set of suitable
patterns not explicitly embedded during training and generate new verifiable
triggers, thereby increasing the attack surface for ambiguity or overwrite attacks.

• Potential Watermark Detectability: Both [WW22] and [ZDX+23] assign
an extra label to the triggers, which can potentially expose the presence of the
watermark in a model.

• Potentially Suboptimal Hyperparameter Settings: The papers do not provide
any justification for the choice of the number of trigger samples in the trigger
set. Only Liao et al. [LYS+24] experiment with multiple options and present a
comparative analysis.

• Potentially Semantically Weak Imperceptibility Evaluation: The met-
rics used to evaluate imperceptibility in [ZDX+23] do not capture audio-specific
perceptual characteristics. SSIM [Set21] is a widely used metric for measuring
imperceptibility in images, and Cosine Similarity measures the directional similarity
of two vectors. As a result, their effectiveness in quantifying the perceptual differ-
ences between original and watermarked audio samples is limited and potentially
misleading.

• Potentially Wrong Imperceptibility or Weak Imperceptibility Evaluation:
For the imperceptibility analysis, Zhang et al. [ZDX+23] visualise original and
watermarked samples. However, their amplitudes differ extremely in their values:
while the amplitude of the original sample varies in the range of −1 and 1 (which
is considered a normalised audio), the watermarked sample is in the range of −0.15
and 0.15 only. That indicates either a mistake in the visualisation or a robustness
concern of having watermarked audio samples with such low amplitude.

Based on this overview, we outline the following shortcomings in existing literature:

• As shown in Table 4.1, some works provide a more detailed evaluation of the
robustness, effectiveness, and fidelity of their proposed methods, while others present
insufficient analysis, especially in terms of robustness under different possible attack
scenarios.

• The applicability of the methods to other models with the same (raw waveform) or
a different (e.g., mel-spectrogram) input structure has not yet been investigated.

• The only architecture that was watermarked is a specific CNN-based model –
SincNet [RB18], even though numerous SR models, including ones that improve
SincNet results, exist. While Zhang et al. [ZDX+23] also tested a SincNet-based
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architecture with a different convolutional layer, no other state-of-the-art speaker
recognition model architectures were examined.

• The experiments were conducted on datasets that contain cleanly recorded audio
files of people reading sentences that do not consider any real-world disturbances
(e.g., background noise from public environments).

We, therefore, observe several research gaps in the current literature regarding the appli-
cability of these techniques to state-of-the-art Speaker Recognition model architectures,
various input representations, and diverse datasets. Furthermore, there is an open re-
search question of how the watermarking methods compare in terms of robustness and
imperceptibility due to the lack of a unified analysis among the methods.

4.4 Watermark Removal Attacks
Among the potential threats identified in the literature on speaker recognition model pro-
tection, watermark suppression and removal attacks are of particular interest, as they di-
rectly compromise model protection mechanisms. Accordingly, this section discusses these
attack types in detail. The authors in [LJLX24] identified backdoor defence paradigms,
some of which can be used to perform these attacks. Furthermore, Boenisch [Boe21]
presents more general watermark removal techniques. They include the following.

Data preprocessing attacks. Prior to feeding input data into the model during
inference, an additional preprocessing step can be applied to eliminate the watermarked
portion of the sample. This prevents the model from encountering a trigger input that
would produce a manipulated output. This method does not involve altering the model
itself. The attacker’s objective is to effectively remove the trigger while preserving the
model’s original task performance.

The attacker may also deploy a detection mechanism that refuses to process certain inputs,
for instance, those with too much noise, unrealistic data format, or abnormal content
inside, etc. That means if a watermarked part of a trigger sample is too distinguishable,
it may be suspicious enough to be blocked before being passed for inference on the stolen
model.

Model modification attacks. This group aims to update the trained model in order
to erase its ability to recognise the watermarked samples. Specifically, these approaches
include [XZWL22]:

• Fine-tuning: adjusting the model using an additional subset of data, a technique
that might be used to improve the performance of a model for a specific task, which
in the process might damage a watermark.

• Pruning: cutting some parameters of the model (e.g., with the lowest value of
weights, or based on activations on (assumed) clean input).
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• Fine-Pruning: a two-step approach, which first prunes the model and then proceeds
with training to restore performance of the model, in the process, removing a
watermark.

• Retraining: regularly updating the model with new incoming data as it becomes
available. This process resembles fine-tuning, but is continuous and its primary
goal is not to improve performance on a specific task. Instead, it incrementally
incorporates additional data, which may dilute or remove an embedded watermark
over time.

• Transfer learning: adapting a pre-trained model to new data. In the process, the
final layers of the model are usually modified, which may unintentionally weaken
or remove an embedded watermark.
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CHAPTER 5
Methods and Experiment Design

This chapter provides a detailed description of the experiments conducted in this thesis.
It begins with an overview of the models used, followed by the datasets employed in
the experiments. We then describe the creation of trigger sets for each watermarking
method, including any modifications made. Details of the watermark embedding process
are also provided, specifically, how the models were trained using the trigger sets. The
chapter concludes with an explanation of how each aspect of the watermarks is evaluated,
specifically effectiveness, imperceptibility, legality, and robustness.

5.1 Speaker Recognition Models
Existing state-of-the-art speaker recognition models vary in their architectures and input
structures. The following part describes in detail the state-of-the-art SR ML models
examined in this thesis. Overall, three representative speaker recognition models were
selected. SincNet serves as the baseline, as it is widely used in prior work on which this
thesis builds. AM-MobileNet was selected as a lightweight improvement over SincNet,
explicitly designed for deployment on portable devices. Finally, AutoSpeech was included
because it utilises a different input representation (i.e., spectrograms) and has been shown
to outperform other (i.e., ResNet-based) approaches.

5.1.1 SincNet
SincNet [RB18] is a widely used speaker recognition model with a CNN architecture.
The core idea incorporated in the model is parametrised sinc functions in the first
convolutional layer that include band-pass filters designed to emphasise low and high
frequency components of the audio, which are believed to carry more speaker-relevant
information. Such an approach greatly decreases the number of parameters compared to
the standard CNN architecture. The raw waveform is split into overlapping segments
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Figure 5.1: SincNet architecture [RB18].

using the Hamming window function, which are then input to the network. However,
the authors mention no drastic changes in performance using other window functions.
Their empirical results indicate that low and high frequencies carry more significant
information regarding a speaker’s identity, which is reflected in the learned filters. Hence,
the first convolutional layer consists of a filterbank, with each filter focusing on a different
frequency band to capture discriminative features. The equation to obtain the output of
these filters is the following:

y[n] = x[n] ∗ g[n, θ] (5.1)

where x[n] is a framed part of the waveform. The g[n, θ] function is a filterbank:

g[n, f1, f2] = 2f2sinc(2π/f2n) − 2f1sinc(2π/f1n), (5.2)

where sinc(x) = sin(x)/x (5.3)

The complete architecture is depicted in Figure 5.1.

The model is implemented by the authors and trained on the TIMIT dataset; the
implementation is publicly available on GitHub 1. This implementation is used in this
thesis for replicating the results from previous speaker recognition model watermarking
papers [WW22, ZDX+23, LYS+24], as well as for our own experiments.

1https://github.com/mravanelli/SincNet/
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SincNet was created as a text-independent speaker recognition model, which means it
does not need to learn the pronunciation of the same set of words from different speakers.

The only preprocessing required for this model is eliminating the silences in the audio files,
since SincNet predicts the results frame-wise. The evaluation of the model performance
is reported by two metrics: Frame Error Rate (FER) and Sentence Error Rate (SER).
FER is obtained directly from the frame-wise predictions. The full audio is classified
using majority voting across frame predictions. Finally, the sentence error rate is
calculated, showing the percentage of audio files that were misclassified. The best
reported performance results for the SincNet model by Ravanelli and Bengio [RB18] are
0.0051 SER and 0.4100 FER on the TIMIT dataset.

5.1.2 AMMobileNet
AMMobileNet [NMZ20] was introduced as a lightweight portable speaker recognition
model that can be run on mobile devices. The authors integrated two concepts: Mo-
bileNetV2 [SHZ+18] and AM-Softmax [WCLL18].

MobileNetV2 is a lightweight model that works with images, solving multiple tasks,
including classification. Its efficiency stems from the use of depthwise separable convolu-
tions, which decompose a standard convolution into two operations. The first, depthwise
convolution, applies a single filter per input channel, processing spatial information
independently for each channel. The second, pointwise (1×1) convolution, then combines
these channels to capture cross-channel correlations. This approach showed a considerable
reduction in the number of parameters and multiplications required compared to standard
convolutions. Consequently, that reduced the time and memory resources needed for
training and storing the model – a crucial advantage, since the primary objective of the
authors was to employ a speaker recognition model on portable devices.

AM-Softmax is an additive margin softmax loss function LAM calculated as

LAM = − 1
N

N∑︂
i=1

log es(cos(θyi )−m)

es(cos(θyi )−m) + ∑︁
j ̸=yi

es cos(θj) , (5.4)

where yi is a ground-truth label of sample i, θj is an angle between feature vector and
class weight j, s is a feature scale factor set to 30, and m is an additive angular margin
set to 0.5 in AM-MobileNet1D model. Its core idea is to separate the classes as much as
possible by adding a margin between decision boundaries. It was introduced to address
the shortcomings of the softmax loss function, namely, possible misclassifications of data
points lying too close to a decision boundary.

The authors in [NMZ20] proposed two models: MobileNet1D, which is an adapted version
of MobileNetV2 to audio, and AM-MobileNet1D, which also employs the AM-Softmax
loss function instead of the original Softmax. The key differences in their architectures can
be observed in Figure 5.2. To be more specific, MobileNetV2 was originally designed to
process two-dimensional image inputs. In contrast, a raw audio signal is a one-dimensional
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vector. Hence, the layers and operations of the model had to be adapted to handle this
different input structure. The same as SincNet, both models predict output frame-wise
from the raw waveform of an audio signal.

(a) MobileNetV2 (b) MobileNet1D (c) AM-MobileNet1D

Figure 5.2: MobileNet architecture [NMZ20].

The official implementation by the authors is available on GitHub2. They based their
code structure on the SincNet implementation. Thus, frame-wise predictions are used
to compute both FER and SER (though in their paper, it is called CER - classification
error rate), and comparative analysis is done on the TIMIT dataset. The results showed
that AM-MobileNet performs better than SincNet, producing 0.0043 SER and 0.2130
FER for the speaker identification task. The MobileNet is reported to achieve 0.0057
SER and 0.2650 FER.

5.1.3 AutoSpeech

AutoSpeech [DCG+20] is an automated optimal CNN architecture search for text-
independent speaker recognition. The authors draw attention to the fact that the
adaptation of embedding and aggregation strategies of known models, such as ResNet
[HZRS16], to convert them to speaker recognition models is increasingly more researched
compared to the refinement of the model architecture instead. Ding et al. proposed
an algorithm that identifies the optimal combination of neural cells to create a CNN
architecture, searching for two parameter sets: architecture parameters and weight pa-
rameters. After finding the optimal architecture, it is trained on a chosen dataset as a
standard speaker recognition model.

2https://github.com/joaoantoniocn/AM-MobileNet1D
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The speaker recognition process in ResNet (and its derived models) uses a different
approach compared to the previous two architectures. Here, the input format is a
Mel-spectrogram of an audio signal. To obtain this representation, the data is first
preprocessed through resampling to a common sampling rate, volume normalisation, and
shortening long sequences of silence. Subsequently, the spectrograms of the audio samples
are created, which are then used to train the models. ResNet-based models operate at
the utterance level. They predict a speaker identity for the entire audio input at once.
Consequently, in the original implementation, the authors evaluated performance by
classification accuracy.

The experiments were carried out using the VoxCeleb1 dataset [NCZ17]. The model
architecture that Ding et al. derived with their algorithm showed a significant improve-
ment in both speaker identification and verification tasks on VoxCeleb1: 0.1234 SER
compared to 0.1866 SER of ResNet34 and 0.2052 SER of ResNet18. The code for the
paper is published on GitHub 3. For our work, we did not rerun the architecture search
for VoxCeleb1, but rather utilised their derived CNN architecture; this architecture
will be referred to as AutoSpeech model in the rest of this thesis. In addition to their
new model, we also used their implemented baselines of ResNet18 and ResNet34. Since
they are well-known models in both the image and audio domains, we considered it
suitable to verify the applicability of the model watermarks on them as well. The main
differences of these three models are shown in Table 5.1. The initial channels indicate
how many convolutional channels the model starts with. The dimensions correspond to
the size of the final speaker embedding vector produced by the network, which is used
for classification.

Table 5.1: Architectural differences between ResNets and the proposed AutoSpeech
model. Channels refer to the number of initial channels and dimensions correspond to
the size of speaker embeddings.

Model Channels Dimensions Parameters

ResNet18 64 512 12 million
ResNet34 64 512 22 million
AutoSpeech 128 2,048 18 million

5.2 Datasets
The choice of the datasets was driven by three factors: the usage in previous works for SR
tasks, the quality of the audio files, and the existence of an appropriate preprocessing algo-
rithm. Since TIMIT is used in previous watermarking works [WW22, ZDX+23, LYS+24]
and on two of the employed models (SincNet [Rav25], and AM-MobileNet [NMZ20]),
it was our first choice. The LibriSpeech dataset [PCPK15] is utilised by Zhang et

3https://github.com/TAMU-VITA/AutoSpeech
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Figure 5.3: Example of a raw waveform of an audio signal from TIMIT [GLF+93] dataset
after preprocessing.

al. [ZDX+23]. However, after close examination, we found the following impediments:
(i) Zhang et al. did not mention how exactly they created the subset of it, thus, the
reproducibility of the results could not be ensured; the properties of LibriSpeech are
very similar to the ones of TIMIT, namely, and (ii) it contains clean audio files recorded
in the studio of different speakers reading English text, which would not bring any
diversity to our analysis of watermark applicability. Therefore, we decided not to pro-
ceed with LibriSpeech. Our search for a further dataset began with SR survey papers
[KMS+21, BZ21, SSB21]. All of them mention the VoxCeleb corpus [NCZ17], which
comprises audio recorded in non-controlled settings, where the background noise present
is of natural origin and not artificially added. Since we also found an SR model that
utilises VoxCeleb1, we decided in favour of it. In the following, each of the chosen datasets
is discussed in detail.

5.2.1 TIMIT

The TIMIT (Texas Instruments (TI) Massachusetts Institute of Technology (MIT)
Acoustic-Phonetic Continuous Speech Corpus) [GLF+93] dataset contains studio-recorded
speech of 8 English dialects. Each speaker recorded 10 different audio files. Each file has
a duration of 1-4 seconds and contains one phonetically rich sentence. Overall, TIMIT
contains 462 classes (speakers), approximately 70% of whom are male and 30% are female.
The waveform files have a 16,000 Hz sampling rate.

For SincNet and AM-MobileNet models, as a preprocessing step, silences at the beginning
and end of every audio file are removed [RB18]; an example of an audio signal is depicted
in Figure 5.3. During model training, the raw waveform of each audio file is split into
200-ms frames with 10-ms overlap.
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5.2.2 VoxCeleb1
VoxCeleb1 [NCZ17] is a large dataset created by taking the audio signals from the videos
of celebrities’ interviews extracted from YouTube. The videos are gathered and filtered
without manual curation. Using a face detection technique, it is determined which
frames of the video have the person of interest, consequently being labelled as speech
by the mentioned person. Then, the obtained piece of video undergoes two more stages
of verification: active speaker verification, which checks whether the detected face is
synchronised with the audio, and face verification, which confirms that the detected face
indeed belongs to the person of interest. The audio quality of each utterance depends
on the specific interview and the environmental settings. Some of them are cleaner if
recorded in a studio, while some may even contain someone else talking in the background,
for example, in interviews on the red carpet. The background noise in these recordings
is thus obtained from realistic scenarios, which provides an opposite setting compared
to the TIMIT dataset. Figures 5.4 and 5.5 show examples of the raw waveforms of two
different interviews of the same speaker. The second instance contains a singing voice,
hence the waveform is noisier.

Figure 5.4: Example 1 of a raw waveform of an audio signal from VoxCeleb1 [NCZ17]
dataset of Speaker 26 before preprocessing.

The dataset consists of 1,251 classes, waveforms of which have a 16,000 Hz sampling rate.
Compared to TIMIT, it is more evenly distributed by gender, having 55% male speakers
and 45% female.

The full VoxCeleb1 dataset comprises approximately 352 hours of speech, occupying
around 40 GB of memory. It contains 153,516 audio samples, out of which 138,361 are
meant for training, and the remaining 8,251 are reserved for testing. The dataset is
organised such that each speaker has a dedicated folder. Within each speaker’s folder,
every video corresponds to a separate subfolder, which contains only the audio samples
of that speaker extracted from the video. Running initial experiments, it took us 67
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Figure 5.5: Example 2 of a raw waveform of an audio signal from VoxCeleb1 [NCZ17]
dataset of Speaker 26 before preprocessing.

hours to train the AutoSpeech model on the full dataset on a NVIDIA GeForce RTX
3090 with 24 GB RAM. Due to computational limitations, we thus needed to create a
subset of VoxCeleb1 to allow extensive evaluation. The VoxCeleb1 dataset was created
for both speaker identification and speaker verification tasks. Since the authors provided
the ground truth for the verification task only for the speakers in the test folder of
VoxCeleb1, we kept this to the full extent. To construct a representative training set,
we initially retrieved the first five audio files from each video of each speaker in the
dev folder. However, this did not cover all 8,251 test audio samples, so we additionally
extracted the missing test files to ensure that the full test set was represented. That
resulted in 67,558 audio samples available for speaker identification training and a full
8,251 samples in the test set. Our subset takes 21 GB. On the same NVIDIA GeForce
RTX 3090 with 24 GB RAM, the model with this subset was trained for 37 hours; it took
11 hours on an NVIDIA GeForce GTX 1080 Ti 24 GB, which was still a considerable
constraint. We thus tried reducing the training subset even further, however, it did not
produce comparative results to the ones from the official implementation of AutoSpeech.

For the ResNet and AutoSpeech models, the raw waveform of an audio sample is
normalised in volume, and long silences are shortened if any exist. Then, a spectrogram
of each sample is generated from the waveform with the help of a Hamming window of
size 25 ms and 10 ms step [DCG+20, NCZ17], and only a 3-second part of a spectrogram
is saved. If an audio sample is shorter than 3 seconds, it is discarded from the training
set.
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5.3 Trigger sets
Overall, we evaluate five watermarking methods: Segment-based frequency perturbation,
Mel mid-frequency band based, Gaussian Noise, Frequency Noise, and Unrelated Audio.
Since the original works are not reproducible due to the unavailability of source code
and artefacts, we contacted the authors to request algorithm clarifications and missing
parameter values. Despite multiple email exchanges with each team over several weeks
(approximately three per team), the requested information was not provided, as the
authors stated that the source code and parameters are no longer available. Hence, we
implemented all five watermarking techniques entirely based on the information provided
in their respective papers. This enables us to test the replicability of the methods, that
is, whether their reported results can be independently obtained under similar conditions,
following the ACM guidelines [Ass20]. We reimplement each method to fit as closely
as possible to the descriptions and pseudocode provided in the respective papers. We
use the exact parameter settings both for implementation and evaluation, when possible.
In Table 5.2, we summarise the known and unknown parameters required to create the
triggers.

Table 5.2: Settings for watermark embedding using the TIMIT dataset. The cells marked
red denote the unknown parameter values.

Segment-based
frequency

perturbation
[WW22]

Mel
mid-frequency

band based
[ZDX+23]

Gaussian
noise

[LYS+24]

Frequency
noise

[LYS+24]

Unrelated
audio

[LYS+24]

Parameters sequence
length of t

Key size
m × n

−
mfcc_sc = 2.0

flow = 300
fhigh = 3, 000

random
audio
choice

Below, we describe the changes we incorporated into each watermarking method. All
the examples of watermarked samples shown in Figures 5.6–5.15 were created using the
TIMIT dataset dialect 1 speaker FETB0 audio sx248.

Segment-based frequency perturbation (SFP) [WW22]. A key implementation
detail, the trigger length l, was not specified in the original paper. It remains unclear which
value was used to produce the reported results. We explored various trigger lengths in the
range between 10 and 3,000: {10, 15, 20, 25, 40, 150, 200, 250, 600, 800, 900, 1, 000, 3, 000}.
Initially, we tested values smaller than 200, since this is the window size used in SincNet,
and then larger values. Figure 5.6 shows an example of the difference between the
watermarked and original signals, thus the watermark pattern.

Mel mid-frequency band based (MFB) [ZDX+23]. The trigger generation process
lacks specification of some important design parameters. Specifically, the Key size,
which is two-dimensional, is unknown; the authors state they randomly select a matrix
from a mid-frequency band of the Mel-spectrogram; however, they do not define the
mid-frequency limits.
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Figure 5.6: Generated watermark of SFP with l = 900.

The usage of the griffin_lim vocoder for reconstructing the audio waveform from the
spectrogram did not yield an audio with discernible speech. The primary goal of this
function is to guess the phase of the audio to perform an inverse short-time Fourier
transform (ISTFT). Hence, we tried to recover an audio with ISTFT using the original
phase of the clean audio, which resulted in a watermarked audio of better quality:
the original speech, with some perceptible disturbance. The example of a watermark
(the difference between original and watermarked samples) generated based on our
modified algorithm can be seen in Figure 5.7. This example shows the watermark with
m × n = 200 × 140. This initial choice of the values was arbitrary; further experiments
included both smaller (e.g., 40 × 100) and bigger (200 × 310) matrices.

Figure 5.7: Generated watermark of MFB with m × n = 200 × 140.
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Gaussian Noise (GN) [LYS+24]. Based on the structural similarity between the
Frequency Noise and Gaussian Noise watermarks described by Liao et al., we applied
a comparable trigger generation procedure to both. Hence, the audio was divided into
frames here as shown in Algorithm 5.1 in line 2, and the noise was added to each
individual frame rather than to the entire signal at once. This frame-wise approach
also allows the noise to be scaled according to the power of each frame, resulting in less
overall disturbance to the watermarked audio compared to applying universal noise. The
example of the watermark is shown in the Figure 5.8.

Algorithm 5.1: Gaussian Noise trigger generation (GNW); adapted
from [LYS+24].

Input: Clean dataset Dclean = {xi, yi}, SNR, trigger label yiwm

Output: Trigger set Dtrigger = {xiwm , yiwm}
1 foreach xi, yi ∈ Dclean do
2 frames ← STFT(xi);
3 foreach frame ∈ frames do
4 Pnoise ← random();
5 k ←

√︂
xi

10SNR/10·Pnoise
;

6 Pnoise ← Pnoise · k;
7 framewm ← Pnoise;
8 end
9 xiwm ← ISTFT(framesiwm);

10 yiwm ← yi;
11 end

Figure 5.8: Generated watermark of Gaussian Noise.

Frequency Noise (FN) [LYS+24]. Liao et al. include several audio processing steps,
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such as framing, Mel filter banks, discrete cosine transform (DCT), and normalisation
as part of the trigger generation pipeline. However, the exact order and integration
of these components were only partially specified in the provided pseudocode and the
textual description. To replicate the method, we implemented these steps based on
reasonable assumptions informed by standard audio preprocessing practices for speech
signals [Mü15, HHS+16] and validated them empirically by evaluating the perceptual
quality of the resulting watermarked samples.

Algorithm 5.2: Extreme Frequency Gaussian Noise trigger generation (FNW);
adapted from [LYS+24].

Input: Clean dataset Dclean = xi, yi, SNR, frequency {flow, fhigh}, MFCC scale
factor mfcc_sc, trigger label yiwm

Output: Trigger set Dtrigger = {xiwm , yiwm}
1 foreach xi, yi ∈ Dclean do
2 frames ← STFT(xi);
3 foreach frame ∈ frames do
4 Pnoise ← random();
5 Pnoise ← frequencyLimit(flow, fhigh);
6 k ←

√︂
xi

10SNR/10·Pnoise
;

7 Pnoise ← Pnoise · k;
8 framewm ← Pnoise;
9 end

10 framesiwm ← DCT(framesiwm) · mfcc_sc;
11 framesiwm ← IDCT(framesiwm);
12 xiwm ← ISTFT(framesiwm);
13 yiwm ← yi;
14 end

Since the full reconstruction of the audio from MFCC coefficients is not possible, and
our experiments following the steps described in the paper resulted in too much noise in
the trigger samples (SNR=-5.2, LSD=19, and speech content rendered unintelligible),
we omitted this step. Algorithm 5.2 outlines our adapted implementation of the FN
watermark: in line 2 we applied a Short-Time Fourier Transform (STFT) to frame the
audio signal, and then added noise to each frame in line 8. To preserve the original
steps from the paper we performed a Discrete Cosine Transform (DCT) on these frames
as shown in line 10, and multiplied the result with an MFCC scale factor instead of
using actual MFCC features. We then performed an Inverse Discrete Cosine Transform
(IDCT) in line 11 and an Inverse Short-Time Fourier Transform (ISTFT) in line 12 to
reconstruct the audio sample. The resulting watermark is shown in Figure 5.9.
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Figure 5.9: Generated watermark of Extreme Frequency Gaussian Noise with original
parameters from [LYS+24]: mfcc_sc = 2.0, flow = 300, fhigh = 3, 000.

The authors claim that incorporating MFCC features enhances the effectiveness of the
watermark. We investigate this claim, namely, whether a Frequency Noise watermark can
be used completely without the MFCC step, while maintaining the same effectiveness.
Hence, we analyse two variants of this watermarking method: the first one aligning
with Algorithm 5.2, while the second omits lines 10-11 ; we reference this approach as
Extreme Gaussian Noise (EGN) in the following. Figure 5.10 shows the watermark
created using this procedure. As can be seen, while FN added so much noise that it
stretched out the full normalised [-1, 1] amplitude, using EGN, the difference in original
and watermarked samples does not exceed 0.2 amplitude.

Figure 5.10: Generated watermark of Extreme Gaussian Noise without MFCC with
original extreme frequency parameters from [LYS+24]: flow = 300, fhigh = 3, 000.
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Unrelated Audio (UA). The original paper states that the unrelated audio used as
a trigger is selected at random. Although the authors chose a sample from the air
conditioner class of the UrbanSound8K dataset [SJB14], it includes multiple recordings
under that label, each differing in noise characteristics with variance ranging between
0.059 and 9×10−7, and the SNR between -7.04 and 34.07.

(a) Generated watermark of Unrelated Audio using the audio sample of air conditioner class with
the maximum noise variance.

(b) Generated watermark of Unrelated Audio using the audio sample of air conditioner class with
the minimum noise variance.

Figure 5.11: Comparison of Unrelated Audio watermarks using different audio samples
from UrbanSound8K.

Figure 5.11 shows the watermarks created using the unrelated audio sample with both
the maximum (a) and minimum (b) noise variance. A striking difference can be observed
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in the amplitudes of these watermarks. Considering such a difference, we first train
the SincNet model using the triggers created by these two extremums. Then, based on
the experimental results, we narrow down the possible choice of an unrelated audio file.
The audio samples from UrbanSound8K used in the experiments, together with their
corresponding noise variance values, are listed in Table A.1.
The length of the unrelated audio sample also varies. In case the original audio is shorter
than the unrelated one, we cut the unrelated audio to match the length of the audio we
embed a watermark in. Otherwise, we concatenate an unrelated audio till it matches the
length of the original one.

5.4 Model Training with Watermarks
We examine the six model-dataset combinations detailed in Table 5.3. Three of them
work with a raw waveform as an input format, and the other three with spectrograms.

Table 5.3: Experiment Setup for model-dataset combinations.

Model - Dataset Input
format

Learning
rate

Batch
size

Number of
epochs

Frequency of
evaluation
(epochs)

SincNet - TIMIT raw waveform 0.001 128 200 8
MobileNet1D - TIMIT raw waveform 0.001 128 200 8
AM-MobileNet1D - TIMIT raw waveform 0.001 128 200 8
ResNet18 - VoxCeleb1 spectrogram 0.01 256 100 10
ResNet34 - VoxCeleb1 spectrogram 0.01 128 100 10
AutoSpeech - VoxCeleb1 spectrogram 0.01 96 100 10

To verify the reproducibility of the results reported in the papers, we first implement
each watermarking scheme according to the settings specified by the authors. All models
are trained from scratch to embed the watermarks. The details of the model settings for
watermark embedding are shown in Table 5.4. C denotes the number of classes, which is
462 for the TIMIT dataset.

Table 5.4: Parameters used for embedding the watermarks in SincNet, MobileNet, and
AM-MobileNet models on the TIMIT dataset; training was performed from scratch.

Segment-based
frequency

perturbation

Mel
mid-frequency

band based
Gaussian

Noise
Frequency

Noise
Extreme
Gaussian

Noise
Unrelated

Audio

Number of triggers 14 150 290 290 290 290
Number of classes C + 1 C + 1 C C C C
Trigger class C + 1 C + 1 123 123 123 123
Watermark verification unseen

triggers
unseen
triggers

train
triggers

train
triggers

train
triggers

train
triggers

For comparability, after the initial replication, we also try to train a model with Segment-
based frequency perturbation (SFP) and Mel mid-frequency band based (MFB), following
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the setting of Liao et al. [LYS+24], i.e., assigning the existing label to trigger samples
and verifying the watermark on triggers used for training.

Liao et al. [LYS+24] experiment with different values for the trigger ratio α, namely
1/4, 1/8, 1/16, 1/32. As part of the replication of their results, we verify the same settings;
however, further studies of imperceptibility and robustness are conducted only for α = 1/8,
the same choice the authors made for their paper.

The ResNet and AutoSpeech models are trained with a different number of triggers. In
the VoxCeleb1 dataset, C = 1, 251. Based on the description of Liao et al. [LYS+24],
they choose the number of trigger samples based on a ratio of triggers to train samples,
which, with value α = 1/8 and our subset of 138,361 training samples, results in 17,295
trigger samples, which raises two big concerns: (i) the extremely big number of triggers
for large datasets that makes the model overgeneralise on the triggers (especially if all
17,295 samples are assigned to one class) and causes a higher chance of detectability by
malicious parties; (ii) slows down the training process. Hence, we decided to derive the
number of samples and speakers from Wang and Wu’s work [WW22]. The number of
speakers was determined as follows: for TIMIT, they took 16 out of 462 speakers; thus,
we randomly chose 42 out of 1,251 speakers. Then, they create 36 trigger samples, which
is approximately three audio samples per speaker (we round the calculations to a bigger
number due to the size of VoxCeleb1). Hence, we created 126 trigger samples from 42
speakers, forming the trigger set used for model training.

Furthermore, according to the description of watermarking methods from [WW22,
ZDX+23, LYS+24], all triggers are assigned to the same class. This approach risks
the model memorising a pattern and creates an extra vulnerability that an attacker can
abuse to forge a watermark. However, it is not the only possible option for class assign-
ments – the trigger samples can be assigned to different classes, e.g., by using a specific
algorithm to determine the class assignment as proposed by Zhang et al. [ZJW+20], or
randomly, with the assignments kept as secret information.

5.5 Watermark Effectiveness and Model Fidelity
Evaluation

In all training settings, we evaluate both the model and watermark effectiveness. The
model fidelity of SincNet, MobileNet, and AM-MobileNet is measured by the impact of
watermarking and removal attacks on the Sentence Error Rate (SER) and Frame Error
Rate (FER). The ResNet18, ResNet34, and AutoSpeech models are originally evaluated
by accuracy. Since the prediction in these models with VoxCeleb1 is done by 3-second
spectrograms of the speech (which is nearly three times longer speech utterance than
for the TIMIT dataset) without frame division, we can convert accuracy to SER using
Equation (5.5).

SER = 1 − Accuracy

100 (5.5)
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Consistent with the [WW22, ZDX+23, LYS+24], we measure the effectiveness of the
embedded watermark using Watermark Success Rate (WMSR), namely, the success rate
of trigger samples prediction by the watermarked model. Therefore, for a successful
watermark, we aim to achieve the lowest possible Sentence Error Rate while reaching the
highest Watermark Success Rate.

5.6 Watermark Imperceptibility Evaluation
The imperceptibility of the watermarks is measured using two metrics: Signal-to-Noise
Ratio (SNR, as defined in Equation (4.1)) and Log Spectral Distortion (LSD, as defined in
Equation (4.2)). To quantify the SNR and LSD of a created trigger set, we calculate the
average values across all samples in a respective trigger set. Ideally, they should comply
with the standards of imperceptibility discussed in Section 4.1.2, namely, SNR > 30 dB
or at least SNR ≥ 20 dB, and LSD < 1 dB or at least LSD ≤ 2 dB. This can prevent
an illicit user of the model (i.e., the attacker) from setting up a service that refuses the
processing of certain inputs, for instance, with too much noise or abnormal data inside,
etc. That means if a watermarked part of a trigger sample is too distinguishable, it may
be suspicious enough to be blocked before being passed for inference on the stolen model.

As one of the objectives of this work, we explore the possibilities of how to make the
watermarks less perceptible, and the corresponding impact it has on model fidelity and
watermark effectiveness. Firstly, we assess the model fidelity and watermark effectiveness
according to the specified metrics (SER and WMSR) for each watermark created with
their default (provided by the authors) parameters specified in Table 5.2. Then, we search
for a set of parameters that creates a more imperceptible watermark, such that embedding
it into the model does not deteriorate either model fidelity or watermark effectiveness. If
this is not achievable, we evaluate the cost of embedding a more imperceptible watermark
and the associated trade-off.

There are multiple options for how to improve watermark imperceptibility, which vary
depending on the watermark method. Below, we detail the options considered in this
thesis.

Scale parameter λ. Both Segment-based frequency perturbation and Mel mid-frequency
band based watermarks have a scale parameter λ, which regulates the intensity of
watermark embedding. For the other watermarking methods (Gaussian Noise, Frequency
Noise and Unrelated Audio), such a parameter was not considered in the original works.
We introduce it as an extra parameter for embedding a watermark λ ∈ [0, 1.0] with 1.0
being a default value. In the original work, λ was set to an extremely small value of 0.001
for Segment-based Frequency Perturbation and to a much larger value of 0.95 for Mel
Mid-frequency Band. To avoid such extreme and inconsistent choices, we redefined the
search space from scratch to cover a broader and more practically meaningful range. In
our experiments, we start the parameter search with values 0.3, 0.5, 0.7, 1.0 and, if these
produced indistinguishable or overly similar results, extend the search to the finer grid
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
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SNR parameter in Gaussian Noise and Frequency Noise watermarks, which is given by
default as −3. Changing it to a different value potentially affects the imperceptibility of
added noise. Since in the Algorithm 5.1 (line 5 ), the SNR parameter impacts another
scale factor k introduced by the authors of [LYS+24], we tried to change the SNR to
higher values (a higher value of SNR means more imperceptibility). However, based on
our experiments, we found out that the scale factor λ mentioned above is easier to tune
than the given SNR.

MFCC step in Frequency Noise. As mentioned earlier, we investigate the utility of the
MFCC step in the Frequency Noise watermark. Based on the amplitude difference of
the watermark in Figure 5.9, omitting this step, as shown in Figure 5.10, may improve
imperceptibility.

Extreme frequencies in Frequency Noise and Extreme Gaussian Noise watermarks.
The authors of [LYS+24] provide the extreme frequency cut-off values they conducted
their experiments with, but do not justify their choice of them: flow = 300, fhigh = 3, 000.
We investigate whether increasing the boundaries of extreme frequencies can lead to a
more imperceptible but still effective watermark.

Unrelated audio class choice. For the Unrelated Audio watermark, we explored the
UrbanSound8K dataset. It contains 10 classes: air conditioner, car horn, children playing,
dog bark, drilling, engine idling, gun shot, jackhammer, siren, street music. Since we
aim to embed the least noisy and unsuspicious sound, especially when we watermark the
dataset that contains clean recorded audio samples, from the list of available classes in
UrbanSound8K, the most subtle is indeed an air conditioner, which both subjectively
sounds less disruptive compared to impulsive noises (e.g., gun shots, dog barks) and
objectively yields a higher average SNR when mixed with speech.

Unrelated audio file choice. Due to the large number of audio samples in the air
conditioner class, we analyse the effect of the noise variance that unrelated audio has on
UA watermark imperceptibility, and consequently on model effectiveness and fidelity.

Overall, we explore the following parameters that impact imperceptibility, as summarised
in Table 5.5.

Table 5.5: Summary of parameters explored for improving watermark imperceptibility.

WM Parameters

Gaussian Noise λ, SNR
Frequency Noise λ, MFCC step, extreme frequencies
Unrelated Audio λ, unrelated audio class and file choice

5.7 Legality Evaluation
In addition to measuring the Watermark Success Rate (WMSR) on the original trigger
set, we also evaluate it on newly generated, previously unseen triggers, to address the
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legality characteristic of the watermark. We refer to the WMSR computed on this new
trigger set as WMSR_NT. Our goal is for the model to memorise a specific set of triggers
without learning a general pattern, thereby preventing an attacker from forging the
watermark and falsely claiming ownership of the model, even if the trigger generation
method becomes known.

We simulate this by inputting newly created trigger samples that were not seen during
training. According to the definition of the legality characteristic, the model should not
identify these as valid triggers. We distinguish three possible threat scenarios:

• An attacker has access to the exact parameters of the watermarking scheme, and
can generate triggers with the same method and same parameters – the evaluation
design incorporates measuring model recognition of the triggers created with the
same method and same parameter settings.

• An attacker knows the watermarking method which was used, but is unaware of
the exact parameters – thus, we test whether a model recognises the new triggers
created with different parameters.

• An attacker knows or suspects that a model is watermarked, but does not possess
exact knowledge of which method was used – for this, we verify the recognition of
the triggers created with other methods using various parameter settings, e.g., a
model watermarked with Frequency Noise evaluated on Gaussian Noise triggers.

In all cases, the ideal outcome is for WMSR_NT to be 0.

5.8 Robustness Evaluation
Following the attacks discussed in Section 4.4, the robustness of the watermarks is
assessed based on the success of the executed attacks, which we evaluate using both the
Watermark Success Rate (WMSR), which measures whether the model still responds to
trigger samples (as done in prior works), and the Attack Cost, defined as the impact on
the original task performance, measured by sentence error rate (SER). Although WMSR
is commonly used in prior black-box watermarking literature, quantifying the attack
cost via SER is a novel contribution in the context of speaker recognition watermarking;
however, it is a very important consideration, as it is trivial to design an attack that
reduces WMSR drastically if there is no constraint on model utility. We thus define a
successful attack as one that reduces WMSR to less than 95% while having no significant
impact on SER, for which we consider a difference of less than 0.05. The detailed
description of the attacks is presented below.

5.8.1 Data Preprocessing Attacks
Out of the attacks of this group described in the Section 4.1.1, we implement the ones
discussed below with different parameters. For each attack, we present an example of
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preprocessing to visualise the impact of each attack on an audio signal. Since raw audio
waveforms do not reflect the differences (to a human eye, they look nearly identical), we
show the differences in the spectrogram representation.

Figure 5.12 shows the spectrograms of the same audio sample in its original form (5.12a),
and after applying the three watermarked versions introduced by Liao et al. [LYS+24]
(Gaussian Noise, Frequency Noise, and Unrelated Audio). The attack examples discussed
below are executed over the Gaussian Noise watermark (Figure 5.12b).

(a) A Spectrogram of a clean sample. (b) A Spectrogram of a GN watermark.

(c) A Spectrogram of an FN watermark.
(d) A Spectrogram of a UA watermark with
maximum noise variance.

Figure 5.12: Spectrograms of a clean sample and its watermarked variants.

1. Noise addition (NA): We conduct three variants of this attack: (i) adding white
Gaussian noise with the specified value of SNR (following the attack setting in
[WW22]), as shown in Figure 5.13b, (ii) adding white Gaussian noise over the whole
audio with a certain scale parameter, depicted in Figure 5.13c, and (iii) adding
pink noise, shown in Figure 5.13d. The attack_param is a scale parameter of the
noise added for the attack.
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(a) A clean sample from Figure 5.12a (b) SNR = 5

(c) atack_param = 0.01 (d) atack_param = 0.01

Figure 5.13: Spectrograms of Noise addition attack variants.

2. Bandpass filtering: We implement three variants of this attack, namely: (i) cutting
out extremely high frequencies while maintaining the ones lower than a certain
threshold (LT) (Figure 5.14b), (ii) maintaining frequencies higher than a certain
threshold of extremely low frequencies (HT) (Figure 5.14c), and (iii) cutting both
LT and HT at the same time, maintaining only a bandpass in a certain range (B)
(Figure 5.14d).

(a) A clean sample from Figure 5.12a (b) LT = 7, 000

(c) HT = 50 (d) B = (50 − 7, 000)

Figure 5.14: Spectrograms of Bandpass filtering attack variants.
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3. Compression (C): this attack we implement by downsampling an audio file to a
certain sampling rate and then resampling it back (Figure 5.15b).

4. Pitch shifting (PS): we change the pitch in the audio by a given number of semitones
(Figure 5.15c).

5. Time stretching (TS): we modify the length of the audio by a specified stretch
factor (Figure 5.15d).

(a) A clean sample from Figure 5.12a (b) C = 12, 000

(c) PS = 2 (d) TS = 1.02

Figure 5.15: Spectrograms of Compression, Pitch shifting, and Time stretching attacks.

We do not consider cropping the audio since the models’ prediction strategy already
considers that: SincNet, MobileNet, and AM-MobileNet predict the output frame-wise,
thus not the whole utterance is given to the model; ResNet and AutoSpeech, on the
other hand, cut out a 3-second segment, discarding the rest of the sound, and do not
work with less than three seconds.
These five different data modification attacks and their multiple variants and parameters
are described in Table 5.6; overall, we thus apply 69 configurations of data modification
attacks. The individual parameters are chosen not only based on the common respective
values, but also according to the outcomes of the experiments. Hence, they can be
extended if needed (e.g., with LT and HT, lower or higher values can be applied if SER
is still within the acceptable bounds of 0.05 difference and WMSR has not worsened yet,
since LT and HT are always expected to lower WMSR at some point).

5.8.2 Model Fine-tuning
For fine-tuning the models, we use 30% of the test sets of the datasets and fine-tune
them for 100 epochs, the same way as [ZDX+23] did in their robustness evaluation. The
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Table 5.6: Parameters for data modification attacks.

Attack Variant Number of
configurations Parameter (Unit) Values

Noise addtition
white noise (WN) 3 atack_param 0.01/0.05/0.075
noise by SNR 4 SNR (dB) 5/10/15/20
pink noise (PN) 3 atack_param 0.01/0.05/0.075

Bandpass filtering

lower than (LT) 15 LT (Hz)
6, 500/6, 600/6, 700/6, 800/6, 900/
7, 000/7, 100/7, 200/7, 300/7, 400/
7, 500/7, 600/7, 700/7, 800/7, 900

higher than (HT) 13 HT (Hz) 10/20/30/40/50/70/90/
100/120/150/200/250/300

bandpass (B) 4 B (Hz) (200 − 6200)/(50 − 7000)/
(100 − 6, 700)/(150 − 6, 500)

Compression (C) 4 C (Hz) 4, 000/8, 000/12, 000/16, 000

Pitch shifting (PS) 10 PS (st) −12/ − 6/ − 4/ − 2/
−1/1/2/4/6/12

Time stretching (TS) 13 TS
0.8/0.85/0.9/0.95/0.99/1.01/1.02/

1.03/1.04/1.05/1.1/1.15/1.2
Total Number 9 69

remaining 70% is then used for testing. It is worth mentioning that the resulting SER
of a fine-tuned model is not directly comparable to the SER of a watermarked model
since they were calculated using different amounts of data. Still, we follow the same
rule of not exceeding 0.05 SER difference as with other attacks. After reviewing the
literature on fine-tuning strategies for the models used in this work, we did not identify a
universal setup. Therefore, we selected the layers and hyperparameters that performed
best in our experiments. The hyperparameters used for fine-tuning are summarised
in Table 5.7: the learning rate is reduced by a factor of 10 compared to the original
training to allow gradual adaptation of trained weights, the number of epochs is reduced
to 100, which corresponds to [ZDX+23] approach and model performance is evaluated
twice as frequently (even though they evaluated once every 10 epochs) to better monitor
convergence. Additionally, we experiment with fine-tuning different layers. For the
SincNet model, we fine-tune separately each of the three available layers: the first layer
(CNN), the second layer (DNN1), and the last layer (DNN2). Even though the common
practice is to fine-tune the last layers, we noticed in our experiments that it does not
have much effect on the watermark; thus, we tried the other layers as well. We evaluate
four fine-tuning configurations on MobileNet and AM-MobileNet: (i) last layer only, (ii)
first layer + last layer, (iii) last residual block + last layer, and (iv) all layers except
normalisation and max pooling. For ResNet and AutoSpeech models, we fine-tune all
layers.

5.8.3 Model Pruning
We perform global weight pruning on all convolutional and fully connected layers according
to the pruning rate in the range of 5 to 85% with a step of 5, which is 17 configurations
in total. In this context, "global" indicates that pruning is applied across the entire set of
weights in the model, rather than separately within each layer. The same attack was
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Table 5.7: Settings of models and datasets for fine-tuning.

Model - Dataset Learning
rate

Batch
size

Number of
epochs

Frequency of
evaluation
(epochs)

Layers for
fine-tuning

SincNet - TIMIT 0.0001 128 100 4
CNN;
DNN1;
DNN2

MobileNet1D - TIMIT
AM-MobileNet1D - TIMIT

0.0001
0.0001

128
128

100
100

4
4

last;
first + last;
last residual
block + last;

all layers
except for

normalisation
and maxpooling

ResNet18 - VoxCeleb1 0.001 256 100 5
all layersResNet34 - VoxCeleb1 0.001 128 100 5

AutoSpeech - VoxCeleb1 0.001 96 100 5

discussed by Zhang et al. [ZDX+23] in the analysis of the robustness of their watermarking
method. We do not perform activation pruning, which involves removing neurons that
remain inactive during prediction on clean data, since our defined threat model assumes
the attacker does not possess the training dataset.
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CHAPTER 6
Results

This chapter presents our evaluation of state-of-the-art watermarking methods, as well as
an exploration of potential modifications to improve their imperceptibility and robustness.
We start with replicating, where possible, the methods based on their original publications.
They are then assessed in terms of imperceptibility, during which we explore trigger
creation parameters that improve imperceptibility without compromising model fidelity.
Parameters yielding the best combination of watermark effectiveness, model fidelity, and
imperceptibility are selected at this stage. Subsequently, we evaluate the legality and
robustness characteristics of both the original and the more imperceptible watermark
variants. Finally, we examine the trade-off between imperceptibility and robustness,
and offer recommendations for the optimal watermarking method and configuration for
each model–dataset pair tested. Based on these results, the findings also inform the
choice of watermarking strategies for other, similar models or datasets with comparable
characteristics.

6.1 Replicability of SOTA Speaker Recognition models
Watermarking

In this section, we present our replication results for five watermarking methods, using
the parameter settings provided in their respective papers, or those selected by us where
such values were not specified.

6.1.1 Segment-based frequency perturbation by Wang and
Wu [WW22]

We attempted to watermark the SincNet model trained on the TIMIT dataset using the
trigger lengths discussed in Section 5.3, namely 10, 15, 20, 25, 40, 150, 200, 250, 600,
800, 900, 1,000, 3,000, but observed that training often failed to converge or yielded
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(a) SFP trained with 14 trigger samples (b) SFP trained with 165 times oversampling

Figure 6.1: Results of attempting to replicate the SFP watermarking method.

poor watermark performance. For example, when using a trigger length of l = 900, the
SincNet model reached a SER of 0.02 after 327 epochs; however, the watermark was not
embedded successfully, as evident by the measured WMSR, which remained at just 5%
through training and showed no improvement as shown in Figure 6.1a.

To improve watermark effectiveness, we experimented with oversampling the trigger
set, increasing the number of occurrences of the 14 trigger samples in the training set.
However, even with 165 times oversampling and thus 2,310 trigger instances (the same
number as the train set by providing 165 times these 14 trigger samples), we did not reach
the desired outcomes. While this approach increased WMSR to 69%, it also degraded
model fidelity, with the SER rising to 0.39, as can be seen in Figure 6.1b.

6.1.2 Mel mid-frequency band based [ZDX+23]
Following our altered trigger creation process in the replicability attempts detailed in
Section 5.3, we tested multiple Key sizes. In these experiments, triggers were assigned
to an additional class, and the watermark was evaluated on newly generated, unseen
triggers. Still, we did not succeed in training a SincNet model that converges for both
tasks, as demonstrated in Figure 6.2a. During training, for the first 80 epochs, the
WMSR remained high, at around 90%. Subsequently, it dropped to 78%, while the SER
steadily improved to 0.48. The best result of SER was 0.11, achieved after 200 epochs,
with the WMSR reduced to 0.5% at that stage.

We also tried to train a model according to the setting of Liao et al. [LYS+24], namely
assigning the existing label to trigger samples and verifying the WM on triggers used for
training. Nonetheless, the model did not converge (Figure 6.2b): either SER reached
0.05 with a (too low) WMSR of 65%, or a too high SER of 0.15 with a well-embedded
watermark with a WMSR 98%. The closest it came to converging on both tasks was a
point with SER 0.05 and WMSR 96.7%. However, that did not stabilise – after the next
8 epochs, the SER increased again. It is worth noting that with this setting, the WMSR
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(a) MFB trained with 150 triggers, m × n =
200 × 140

(b) MFB trained with 150 triggers, m × n =
200 × 310

Figure 6.2: Attempts to replicate the MFB watermarking method.

measured on unseen newly generated triggers (labelled as WMSR_NT in the plot) was
in the range of 0-5%.

Hence, due to the missing detail in the method description, we could not replicate this
watermark with confidence.

6.1.3 Gaussian Noise [LYS+24]
Figure 6.3 shows the results of the replication of the Gaussian Noise watermark using
four different values of α. All four SincNet models achieved a perfect 100% WMSR and
the same lowest SER of 0.01 on the original task. This is twice as high as the SER of the
non-watermarked SincNet model, but four times lower than the value reported in the
original paper. Therefore, we consider the replication of the Gaussian Noise watermark
successful.
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(a) α = 1/4 (b) α = 1/8

(c) α = 1/16 (d) α = 1/32

Figure 6.3: Effectiveness (WMSR) and fidelity (SER) of replicated Gaussian Noise
watermark on SincNet model with different ratios of trigger set α.

6.1.4 Frequency Noise [LYS+24]
As with the Gaussian Noise watermark, the Frequency Noise watermark also achieves a
perfect WMSR of 100%, as shown in Figure 6.4. The SincNet model reaches a SER of
0.01, indicating good model fidelity, comparable to the Gaussian Noise watermark. Thus,
we consider the replication of the Frequency Noise watermark on SincNet successful,
although it does not noticeably outperform the Gaussian Noise watermark.
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(a) α = 1/4 (b) α = 1/8

(c) α = 1/16 (d) α = 1/32

Figure 6.4: Effectiveness (WMSR) and fidelity (SER) of replicated Frequency Noise
model with different ratios of trigger set α.

6.1.5 Unrelated Audio [LYS+24]
Firstly, we trained the SincNet model with trigger samples created from an unrelated
audio with maximum (0.05863584) and minimum (0.0000009) noise variances, the results
of which are shown in Figure 6.5. The former model (Figure 6.5a) reaches a perfect
WMSR and SER of 0.01, while for the latter (Figure 6.5b), neither the SER nor WMSR
reach acceptable results. The lowest point of SER is 0.17, which does not replicate the
results reported by Liao et al. [LYS+24].

To follow the experiment design of Liao et al. [LYS+24] for replicability, we then randomly
chose an unrelated audio file. The chosen sample has a noise variance of 0.00005785.
We conducted experiments with different proportions of trigger samples using this audio
sample for trigger creation. The results are shown in Figure 6.6. Regardless of the value
of α, all models achieve 100% of WMSR and 0.01 SER at the end of the training, thereby
successfully replicating the results.
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(a) noise_var = 0.05863584 (b) noise_var = 0.0000009

Figure 6.5: Unrelated Audio model trained on triggers created from extremums.

(a) α = 1/4 (b) α = 1/8

(c) α = 1/16 (d) α = 1/32

Figure 6.6: Effectiveness (WMSR) and fidelity (SER) of replicated Unrelated Audio
model with different ratios of trigger set α. Created using a random unrelated audio
with noise variance = 0.00005785.
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6.1.6 Replicability Findings
This section summarises the replication analysis results of three papers that proposed
their black-box speaker recognition model watermarking methods. The comparison with
the reported results of the respective papers is presented in Table 6.1.

Table 6.1: Replicability study of state-of-the-art Speaker Recognition model Watermarking
methods, including reported results on effectiveness and fidelity from the original works
and our replicated results. The results are obtained using the same dataset (TIMIT) and
model (SincNet) as the original papers.

Effectiveness (WMSR↑) Fidelity (SER↓)
Method α Reported Replicated Reported Replicated
Segment-based frequency perturbation 1/165 95% 5% 0.006 0.002
Mel mid-frequency band based 1/16 100% 0.5% 0.010 0.110
Gaussian Noise 1/4 100% 100% 0.046 0.012

1/8 100% 100% 0.026 0.010
1/16 98.9% 100% 0.018 0.012
1/32 96.6% 100% 0.010 0.010

Frequency Noise 1/4 100% 100% 0.045 0.009
1/8 100% 100% 0.025 0.011
1/16 99.8% 100% 0.020 0.009
1/32 99.4% 100% 0.009 0.008

Unrelated Audio 1/4 100% 100% 0.044 0.009
1/8 98.3% 100% 0.019 0.010
1/16 96.2% 100% 0.017 0.008
1/32 93.7% 100% 0.011 0.010

We were able to achieve a comparable SER with the Segment-based frequency perturbation
method. Nonetheless, none of our experiments resulted in WMSR close to the reported
value, and the results were thus not replicated.

For the Mel mid-frequency band-based, both WMSR and SER fell short compared to the
reported results.

Since we were not able to replicate the results of the first two watermarks (segment-based
frequency perturbation and Mel mid-frequency band-based), we do not proceed with
them for our further experiments.

All three methods of Liao et al. [LYS+24] achieved perfect watermark success rates
(WMSR) across the evaluated settings, exceeding the effectiveness reported by the
original authors. In terms of the Unrelated Audio watermark, this can be caused by the
choice of unrelated audio. The replicated fidelity closely matches the reported values for
smaller trigger set sizes α, especially 1/32. However, our implementations did not exhibit
the same rate of fidelity degradation with increasing α as reported. Instead, fidelity
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remained relatively stable across trigger sizes, resulting in consistently higher fidelity
overall. Interestingly, in most settings, the WMSR is 100% from the very beginning
of training. This suggests potential overgeneralisation – the model quickly learns to
associate the trigger label with almost any input, even in the absence of the trigger –
which is something we would like to avoid; otherwise, the backdoor becomes too obvious
and can be easily detected.

6.2 Generality
In this section, we present the results of evaluating the three watermarking schemes on
other models and datasets. The default parameter settings used to create trigger sets for
the replicated methods are shown in Table 6.2 (this table is an extension of the trigger
set parameters presented in Section 5.3). Table 6.3 reports the sentence error rates of
non-watermarked models, along with watermark effectiveness and model fidelity for each
model-dataset pair we evaluate to assess the generality [Boe21] of the watermarking
methods.

Table 6.2: Default parameters of watermarking methods from [LYS+24].

WM λ mfcc_sc ELF EHF noise_var

Gaussian Noise 1.0
Frequency Noise 1.0 2.0 300 3,000
Unrelated Audio 1.0 0.000058

For TIMIT, the decrease in fidelity of MobileNet and AM-MobileNet relative to the
original model performances is in the same order of magnitude as for SincNet (the SERs
on the original task of non-watermarked models are noted in the first rows of each
respective model in Table 6.3).

In some cases with the VoxCeleb1 dataset, a marginal model performance increase can be
observed after applying the watermark, e.g., when using the Gaussian Noise watermark
(for all models except ResNet34), the Frequency Noise watermark, or the Unrelated Audio
watermark. We attribute this behaviour to the relatively poor baseline performance
of the models: the SER exceeds 0.2 for ResNet18 and ResNet34, and is above 0.1 for
AutoSpeech, which is significantly worse than the 0.01 SER achieved on TIMIT. Under
such conditions, introducing a watermark may lead to unpredictable changes in fidelity,
occasionally resulting in performance improvements or degradation. Among all methods,
Unrelated Audio watermark is the only one that produced a WMSR below 100%, while
the others consistently achieved a 100% watermark success rate.

Overall, all watermarking methods demonstrate applicability across the evaluated models
and datasets, achieving high watermark effectiveness and maintaining model fidelity.

70



6.3. Imperceptibility

Table 6.3: Generality of SOTA watermarking methods: watermarks applied on settings
with additional models and datasets. The results of watermarking the SincNet model
repeat the ones stated in Table 6.1. Results show watermark effectiveness and model
fidelity.

Effectiveness Fidelity
Dataset Model WM WMSR↑ SER↓

TIMIT

SincNet - - 0.0051
Gaussian Noise 100% 0.0101
Frequency Noise 100% 0.0108
Unrelated Audio 100% 0.0101

MobileNet - - 0.0057
Gaussian Noise 100% 0.0065
Frequency Noise 100% 0.0058
Unrelated Audio 100% 0.0087

AM-MobileNet - - 0.0043
Gaussian Noise 100% 0.0036
Frequency Noise 100% 0.0043
Unrelated Audio 100% 0.0115

VoxCeleb1

ResNet18 - - 0.2978
Gaussian Noise 100% 0.2306
Frequency Noise 100% 0.2485
Unrelated Audio 100% 0.2859

ResNet34 - - 0.2206
Gaussian Noise 100% 0.2396
Frequency Noise 100% 0.2016
Unrelated Audio 98% 0.2071

AutoSpeech - - 0.1691
Gaussian Noise 100% 0.1476
Frequency Noise 100% 0.1298
Unrelated Audio 100% 0.1515

6.3 Imperceptibility

This section presents the analysis of the imperceptibility of state-of-the-art watermarking
methods. Furthermore, we investigate how these watermarks can be made more imper-
ceptible in relation to watermark success rate and model fidelity – specifically, whether
the imperceptibility requirements can be met without any degradation in WMSR or SER,
or what trade-offs are involved otherwise.

Table 6.4 presents the measures of imperceptibility for the generated trigger sets. As
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shown, the Unrelated Audio watermark performs best across both datasets, while Fre-
quency Noise produces the most perceptible audio samples. Only the SNR of the
Unrelated Audio watermark approaches the acceptable perceptibility threshold of ≥ 20
dB (cf. Section 4.1.2). Therefore, in this section, we present our experiments aimed at
improving the imperceptibility of the watermarking methods.

Table 6.4: Imperceptibility of SOTA watermarking methods applied to TIMIT and
VoxCeleb1 datasets.

Imperceptibility
Dataset WM LSD↓ SNR↑

TIMIT
Gaussian Noise 13.0948 16.6514
Frequency Noise 20.6664 -1.3025
Unrelated Audio 3.8900 23.0389

VoxCeleb1
Gaussian Noise 13.0948 15.9199
Frequency Noise 22.5900 -2.6448
Unrelated Audio 4.7516 14.5356

For each dataset-model-watermark setting, we evaluate multiple watermark creation
configurations of parameters. Subsequently, we select one configuration for each setting
that is used for further analysis of legality and robustness in the next sections. The
chosen configurations are highlighted in bold in Tables 6.5-6.22, and their corresponding
metrics are restated in Table 6.24 to provide a comparative overview.

6.3.1 TIMIT
Here, we present the imperceptibility evaluation results for the TIMIT dataset carried out
according to the setup described in Section 5.6 across three models: SincNet, MobileNet,
and AM-MobileNet.

SincNet

Gaussian Noise Figure 6.7 shows the best results regarding SER and WMSR for
trigger sets created using various values of the scale parameter λ, together with the
corresponding imperceptibility metrics, Log Spectral Distortion (LSD) and Signal-to-
Noise Ratio (SNR). It can be observed that none of the λ values result in an LSD below
2 dB. The Gaussian Noise watermark with λ = 0.1 that corresponds to the highest
imperceptibility reaches only 0.075 SER compared to 0.0101 of the original Gaussian
Noise (which corresponds to a scale factor of λ = 1.0). The two models that maintain
the same model fidelity as the original one are with λ = 0.6 and λ = 0.9, presented in
Table 6.5. With λ ≤ 0.6, the SNR becomes higher than 20 dB. Hence, the optimal choice
of λ in terms of watermark effectiveness, model fidelity, and watermark imperceptibility
is 0.6. The cost of embedding this watermark compared to the clean model is 0.0043.
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Figure 6.7: Imperceptibility analysis of Gaussian Noise watermark applied to TIMIT
SincNet.

Table 6.5: Imperceptibility of Gaussian Noise watermark applied to TIMIT.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise
1.0 100% 0.0101 13.0948 16.6514
0.9 100% 0.0101 12.5637 17.5663
0.6 100% 0.0094 10.6347 21.0876

Frequency Noise Following the results of the Gaussian Noise watermark, we first
explored the different values of extreme frequencies with various MFCC scale factor
mfcc_sc and the embedding scale parameter λ. The corresponding results of training
the SincNet model on the TIMIT dataset can be seen in Figure 6.8. The imperceptibility
analysis showed that with the same mfcc_sc and λ, LSD and SNR are almost the same
for different extreme frequencies (Extreme Low Frequency (ELF) and Extreme High
Frequency (EHF)). While mfcc_sc does affect the imperceptibility to some extent, λ
has the biggest impact, since it regulates the intensity of final watermark embedding
in the signal. Even though the watermark effectiveness is almost always 100%, we can
observe a visible trade-off between watermark imperceptibility and model fidelity. Still,
the SNR does not reach the 20 dB threshold.

Omitting the MFCC step from the trigger creation process leaves us with the following
parameters: λ, extreme frequency cut-off values (ELF, EHF). Since our experiments
showed that we can reach acceptable SER and WMSR with low λ, e.g., λ ≤ 0.2, we
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Figure 6.8: Imperceptibility analysis of Frequency Noise applied to TIMIT SincNet.

narrowed our hyperparameter search to this range.

Figure 6.9: Imperceptibility analysis of Extreme Gaussian Noise applied to TIMIT
SincNet.

As can be seen in Figure 6.9, most of the considered parameters, except two with λ = 1.0,
result in an SNR ≥ 30 dB, which fulfils the mathematical definition of watermark
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imperceptibility. However, the LSD is still ≤ 7. The only trigger set that has LSD = 1
results in 0.3 SER, which is too high for the model that normally achieves a SER of
0.01. Hence, the choice of the trigger creation hyperparameters depends on achieving
acceptable values of SER and WMSR.

The experiments depicted in Figure 6.9 that have an SNR ≥ 30 dB have an SER ≥ 0.012.
The best configurations are presented in Table 6.6. The closest one to the values of the
original Frequency Noise watermark is the one marked in bold with SER = 0.0129. Thus,
embedding the default version of the Frequency Noise watermark increases the SER by
0.0057 compared to the clean model (SER=0.0051), whereas the more imperceptible
watermark costs model fidelity of 0.0078, meaning that improving imperceptibility comes
at the cost of additional fidelity loss of 0.0021.

Table 6.6: Imperceptibility of Extreme Gaussian Noise watermark applied to TIMIT.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑

Frequency Noise 2.0 1.0 300 3000 100% 0.0108 20.6664 -1.3025

Extreme Gaussian Noise - 0.2 100 6000 100% 0.0129 6.0068 30.6359
- 0.2 100 6400 100% 0.0144 5.6605 30.6409

Unrelated Audio For the Unrelated Audio watermark, we focused on the audio
samples with noise variance in the middle of the extremums, while also trying different λ
values.

Figure 6.10: Imperceptibility analysis of Unrelated Audio watermark applied to TIMIT
SincNet. Evaluation of unrelated audio samples with different noise variance, λ = 1.0.
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Figure 6.10 shows the evaluated trigger sets created using audio samples with different
noise variances (indicated by noise_var). We can see an extremely big difference in the
imperceptibility measurements depending on the audio choice. Most of them achieved a
100% WMSR and SER ≤ 0.02. The specific noise variances that were used are presented
in Table 6.7.

Table 6.7: Imperceptibility of Unrelated Audio watermark applied to TIMIT SincNet.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio

0.0586358

1.0

100% 0.0093 19.5214 -7.0421
0.0059003 100% 0.0101 15.6635 2.8084
0.0004316 100% 0.0129 9.3341 14.2619

0.0000578 100% 0.0101 3.8900 23.0388
0.0000368 98.62% 0.0238 2.6854 31.2193
0.0000009 58.28% 0.1695 2.6612 34.0712

Among these unrelated audio samples, we chose the one with the highest imperceptibility
that still achieves good WMSR and SER: 0.00005785. Its SNR is ≥ 20 dB, but we still
investigate various values for λ to see if we can improve the SNR. Figure 6.11 depicts
these results.

Figure 6.11: Imperceptibility analysis of Unrelated Audio watermark applied to TIMIT
SincNet. Unrelated audio sample: noise_var = 0.00005785, different values of λ.

Table 6.8 summarises the imperceptibility analysis of the runs with the best achieved SER.
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Among them, λ = 0.8 yields the same SER as λ = 1.0, but with higher imperceptibility.
This suggests that, in this setting, we can use a more imperceptible watermark without
loss of either model fidelity or watermark effectiveness.

Table 6.8: Imperceptibility of Unrelated Audio watermark with noise_var = 0.0000578
and different λ applied to TIMIT SincNet.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio 0.0000578

1.0

100%

0.0101 3.8900 23.0388
0.9 0.0101 3.6990 23.9539
0.8 0.0101 3.4947 24.9770
0.5 0.0123 2.7731 29.05929

MobileNet

Gaussian Noise The lowest value of λ (meaning the highest imperceptibility) that
resulted in a SER close to the original Gaussian Noise watermark is 0.2. Since λ = 0.1
resulted in a twice as big SER, while λ = 0.2 was within the threshold, we also tried
λ = 0.15, but as can be seen in Figure 6.13, it also fell short in SER. In Table 6.9, one
can see the detailed comparison of these runs.

Figure 6.12: Imperceptibility analysis of Gaussian Noise applied to TIMIT MobileNet.
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Table 6.9: Imperceptibility of Gaussian Noise watermark applied to TIMIT MobileNet.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise

1.0 100% 0.0065 13.0948 16.6514
0.3 100% 0.0022 7.7801 27.1078
0.2 100% 0.0043 6.3771 30.6293
0.15 100% 0.0101 5.4986 33.1279

Frequency Noise Following the insights from the SincNet model evaluation, we
analysed only two Frequency Noise watermarks with mfcc_sc = 1.1 and λ = 1.0 and 0.1.
Other experiments were conducted using the Extreme Gaussian Noise watermark (in
Figure 6.13, these are the ones that have mfcc_sc set to 0.0).

As can be seen in Figure 6.13, the original Frequency Noise watermark (with mfcc_sc =
2.0 and lambda = 1.0) has the worst imperceptibility – all modifications of the watermark
result in better values for LSD and SNR.

Figure 6.13: Imperceptibility analysis of Frequency and Extreme Gaussian Noise applied
to TIMIT MobileNet.

In Table 6.10, we show the five best imperceptibility results. Two of the configurations that
have a very similar imperceptibility level yield the same SER as the original Frequency
Noise watermark. For further analysis, we chose the one with a better value of LSD,
since they both fulfill the SNR requirement.
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Table 6.10: Imperceptibility of Frequency and Extreme Gaussian Noise watermark applied
to TIMIT MobileNet.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑
FN 2.0 1.0 300 3,000 100% 0.0058 20.6664 -1.3025

EGN

- 0.05 100 7,000 100% 0.0115 2.6175 42.6875
- 0.1 100 6,800 100% 0.0058 3.8452 36.6697
- 0.1 100 6,900 100% 0.0087 3.7658 36.6689
- 0.1 100 7,000 100% 0.0058 3.6815 36.6688
- 0.1 50 7,000 100% 0.0072 3.7032 36.6682

We observe from the imperceptibility analysis that λ affects the imperceptibility more
drastically than the extreme frequency limits. For example, comparing the parameters
ELF = 100 and EHF = 7, 000 with λ = 0.1 and λ = 0.05, the LSD of the watermark
created with λ = 0.05 is smaller by 1.07 and the SNR is bigger by 6 dB, while lowering
ELF to 50 results in nearly the same LSD and SNR values.

Unrelated Audio Following the results of imperceptibility analysis on the SincNet
model, we evaluated two unrelated audio samples with noise variances of 0.00003688 and
0.00005785 on different values of λ. Figure 6.14 shows the results of these runs, and
Table 6.11 summarises the watermark parameters that lead to the best model fidelity.

Figure 6.14: Imperceptibility analysis of Unrelated Audio watermark applied to TIMIT
MobileNet.
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Table 6.11: Imperceptibility of Unrelated Audio watermark applied to TIMIT MobileNet.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio

0.0000578 1.0

100%

0.0087 3.8900 23.0388
0.0000578 0.5 0.0094 2.7731 29.0592

0.0000369 0.5 0.0101 2.6854 31.2192
0.0000369 0.1 0.0108 1.1882 43.0357

All the configurations yielded a SER higher than with the default Unrelated Audio
watermark parameters (noise_var = 0.00005785 and λ = 1.0). The cost in fidelity
of higher imperceptibility is at least 0.0007, or 0.0019, when aiming to achieve both
an LSD and SNR within the defined accepted boundaries. Compared to the non-
watermarked MobileNet model (SER=0.0057), the cost of watermarking is 0.0037 and
0.0049, respectively.

AM-MobileNet

Gaussian Noise Figure 6.15 shows the evaluation of AM-MobileNet watermarked with
a Gaussian Noise watermark created with different values of parameter λ. The resulting
SERs of λ = 1.0 and λ = 0.1 are the same and are the best compared to all others. We

Figure 6.15: Imperceptibility analysis of Gaussian Noise applied to TIMIT AM-MobileNet.

do not measure how statistically true that is, but since it is possible to achieve the same
level of fidelity with a more imperceptible watermark, we take the watermark created
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with parameter λ = 0.1 as the most imperceptible watermark with which AM-MobileNet
can be trained without losing any model fidelity.

Frequency Noise Based on the results of MobileNet, we first evaluated only the
Extreme Gaussian Noise watermark with different hyperparameters (see Figure 6.16).
Since none of these configurations preserved the original model fidelity, we also trained a
model with a few options of Frequency Noise watermark. These configurations improved
SER compared to the Extreme Gaussian Noise watermark, but still did not reach the
performance reported for the original Frequency Noise watermark. Furthermore, the
Frequency Noise watermark on MobileNet did not yield SNR in acceptable imperceptibility
bounds. Therefore, we chose the Extreme Gaussian Noise watermark with the highest
SER and SNR values, namely the parameters highlighted in Table 6.12, which results in
0.0008 fidelity cost compared to the clean model (SER=0.0057).

Figure 6.16: Imperceptibility analysis of Frequency and Extreme Gaussian Noise applied
to TIMIT AM-MobileNet.

Table 6.12: Imperceptibility of Frequency and Extreme Gaussian Noise watermark applied
to TIMIT AM-MobileNet.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑
FN 2.0 1.0 300 3,000

100%

0.0043 20.6664 -1.3025
FN 1.1 1.0 300 3,000 0.0058 16.5019 7.2560
FN 1.1 0.1 300 3,000 0.0058 6.0815 19.5632

EGN - 0.1 100 6,000 0.0065 4.3513 36.6559
EGN - 0.2 150 5,000 0.0065 6.6046 30.6361
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Unrelated Audio As can be seen in Figure 6.17, way more settings resulted in higher
SER on AM-Mobilenet compared to MobileNet watermarked with Unrelated Audio. In
Table 6.13, we show the results of individual experiments. None of them excel in model
fidelity compared to the noise_var = 0.0000578 and λ = 1.0 setting. However, there is a
setting that creates a watermark with SNR ≥ 30 dB and LSD ≤ 2 dB that costs 0.0022
in SER compared to our original choice of unrelated audio sample and 0.0094 compared
to the non-watermarked AM-MobileNet model (SER=0.0043). The watermark leading
to the closest value of SER compared to the default watermark is the one created with
λ = 0.8. It results in a cost of model fidelity of 0.0014 and differs in SNR by 1.9382.

Figure 6.17: Imperceptibility analysis of Unrelated Audio watermark applied to TIMIT
AM-MobileNet.

Table 6.13: Imperceptibility of Unrelated Audio watermark applied to TIMIT AM-
MobileNet.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio

0.0000578 1.0 100% 0.0115 3.8900 23.0388
0.0000578 0.8 100% 0.0129 3.4947 24.9770

0.0000369 0.1 99.31% 0.0137 1.0344 45.3719
0.0000578 0.1 100% 0.0137 1.1882 43.0357
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6.3.2 VoxCeleb1
In the following, we present the imperceptibility evaluation results for the VoxCeleb1
dataset across three models: ResNet18, ResNet34, and AutoSpeech. Since both the
ResNet and AutoSpeech models require twice to three times more resources to train
compared to SincNet, we narrowed down the hyperparameter search with regard to the
results obtained based on the TIMIT dataset.

ResNet18

Gaussian Noise For the Gaussian Noise watermark, we investigated values for λ ≤ 0.5.
Figure 6.18 shows these results. With λ = 0.1, the watermark success rate slightly
deteriorates, while other values yield SER close to the results from λ = 1.0. The triggers
created using λ = 0.5 meet the basic imperceptibility requirement, namely, SNR ≥ 20
dB; and the watermarked ResNet18 results in better model fidelity than the original
λ = 1.0. In Table 6.14 we show the models that achieved the best model fidelity with the
Gaussian Noise watermark.

Figure 6.18: Imperceptibility analysis of Gaussian Noise applied to VoxCeleb1 ResNet18.

Table 6.14: Imperceptibility of Gaussian Noise watermark applied to VoxCeleb1 ResNet18.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise
1.0 100% 0.2306 13.55936 15.9199
0.5 100% 0.2258 10.2465 21.9467
0.3 100% 0.2338 8.1826 26.3834
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Frequency Noise With the VoxCeleb1 dataset, we first analysed the triggers created
with different parameters of the Frequency Noise watermarking method. As shown in
Figure 6.19, some of these models achieved SER lower than the sentence error rate
obtained using the original Frequency Noise watermark parameters. However, none of
the watermarks reached 20 dB in SNR. Hence, we proceeded with the Extreme Gaussian
Noise watermarking method, experiments of which are depicted in Figure 6.20.

Figure 6.19: Imperceptibility analysis of Frequency Noise applied to VoxCeleb1 ResNet18.

Figure 6.20: Imperceptibility analysis of Extreme Gaussian Noise applied to VoxCeleb1
ResNet18.
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We can observe that SERs of Extreme Gaussian Noise models are generally lower than
Frequency Noise models, though some still yield satisfactory results while having higher
imperceptibility. Table 6.15 summarises the best results in terms of imperceptibility and
model fidelity for the models watermarked with Frequency Noise and Extreme Gaussian
Noise methods. The optimal parameters are highlighted in bold.

Table 6.15: Imperceptibility of Frequency and Extreme Gaussian Noise watermark applied
to VoxCeleb1 ResNet18.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑
FN 2.0 1.0 300 3,000 100% 0.2485 22.5900 -2.6448

EGN - 0.5 100 6,000 100% 0.2228 9.5731 21.9465
FN 1.2 1.0 100 6,000 100% 0.2473 15.9588 4.5292

EGN - 0.2 200 4,500 100% 0.2480 7.2651 29.9050

Two Extreme Gaussian Noise parameter settings yield a SER better than the original
one, and both have an SNR ≥ 20 dB. Since here we focus on the level of imperceptibility,
we choose the second option.

Unrelated Audio For the Unrelated Audio watermark, we evaluated three different
audio samples with different values of λ. As can be seen in Figure 6.21, only three
combinations yielded 100% of watermark effectiveness, the exact values of which are

Figure 6.21: Imperceptibility analysis of Unrelated Audio watermark applied to VoxCeleb1
ResNet18.
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detailed in Table 6.16.

Table 6.16: Imperceptibility of Unrelated Audio watermark applied to VoxCeleb1
ResNet18.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio
0.0000578 1.0

100%
0.2859 4.7516 14.5356

0.000432 0.5 0.2828 9.4467 11.7309
0.000432 1.0 0.3374 12.7222 5.6682

The watermark created using the audio sample with noise variance of 0.0000578 and
λ = 1.0 yields the most imperceptible watermark based on our evaluation. However,
neither its SNR nor LSD is within the threshold of a good imperceptibility measure when
applied to the VoxCeleb1 dataset.

ResNet34

Gaussian Noise Watermarking ResNet34 with a Gaussian Noise watermark using
different values of λ resulted in a SER higher than the original one in all cases (Figure 6.22).
However, the WMSR with λ = 0.1 was lower than others (as it was already for ResNet18).
Therefore, λ = 0.1 was excluded, and the choice for the most imperceptible watermark
was made in favour of λ = 0.2. Table 6.17 summarises the imperceptibility measures of
these watermarks in more detail.

Figure 6.22: Imperceptibility analysis of Gaussian Noise applied to VoxCeleb1 ResNet34.
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Table 6.17: Imperceptibility of Gaussian Noise watermark applied to VoxCeleb1 ResNet34.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise
1.0 100% 0.2396 13.55936 15.9199
0.2 100% 0.2066 6.7661 29.9027
0.1 99.37% 0.2105 4.7912 35.9091

Frequency Noise For ResNet34 with Frequency Noise watermark, we tried several
parameter settings with MFCC. However, none of them resulted in satisfactory SER or
imperceptibility measures. Thus, most of the evaluation was done using the Extreme
Gaussian Noise watermark.

Figure 6.23: Imperceptibility analysis of Frequency and Extreme Gaussian Noise applied
to VoxCeleb1 ResNet34.

Table 6.18: Imperceptibility of Frequency and Extreme Gaussian Noise watermark applied
to VoxCeleb1 ResNet34.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑
FN 2.0 1.0 300 3,000 100% 0.2016 22.5900 -2.6448

EGN - 0.2 200 4,500 100% 0.1959 7.2651 29.9050
EGN - 0.5 100 6,000 100% 0.2029 9.5731 21.9465
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Figure 6.23 shows the results of all examined parameter settings of the Frequency and
Extreme Gaussian Noise watermarks, whereas Table 6.18 summarises the best results.
Only one parameter setting yielded a better SER than the default Frequency Noise
watermark while also fulfilling the imperceptibility requirement; this result is highlighted
in the table.

Unrelated Audio Since watermarking ResNet34 with the audio sample, which we
used to create trigger sets for other model-dataset pairs, did not result in 100% WMSR,
we tried to find a combination of an unrelated audio sample and parameter λ that does.
As shown in Figure 6.24, only two combinations (the audio sample with noise variance
of 0.000432 paired with λ=0.5 and λ = 1.0) yielded a 100% watermark success rate;
however, both of them also worsened the fidelity of the model.

Figure 6.24: Imperceptibility analysis of Unrelated Audio watermark applied to VoxCeleb1
ResNet34.

Table 6.19: Imperceptibility of Unrelated Audio watermark applied to VoxCeleb1
ResNet34.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio
0.0000578 1.0 97.89% 0.2071 4.7516 14.5356
0.000432 1.0 100% 0.2201 12.7222 5.6682

0.000432 0.5 100% 0.2309 9.4467 11.7309
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In Table 6.19 we present the comparative results of ResNet34 watermarked with the
Unrelated Audio watermarking method. The setting that achieves a 100% WMSR
results in a relative drop in fidelity of 0.013, but it does not exceed the SER of the
non-watermarked ResNet34 model. Nonetheless, this setting does not fulfil any of the
imperceptibility requirements, with an LSD = 12.7222 and SNR = 5.6682. With a cost
of 0.0108 in fidelity, the imperceptibility can improve to 9.4467 and 11.7309, respectively,
which still do not fit the required imperceptibility bounds.

AutoSpeech

Gaussian Noise The same as with the ResNet18 and ResNet34, triggers created with
λ = 0.1 resulted in WMSR lower than 100%. Additionally, Figure 6.25 shows that none
of the values of λ improved the SER compared to the setting when λ = 1.0; the closest is
with λ = 0.2. This setting produces a watermark that fulfils one of the requirements of
imperceptibility, namely SNR ≥ 20 dB, and results in 0.0014 fidelity loss as shown in
Table 6.20.

Figure 6.25: Imperceptibility analysis of Gaussian Noise applied to VoxCeleb1 Au-
toSpeech.

Table 6.20: Imperceptibility of Gaussian Noise watermark applied to VoxCeleb1 Au-
toSpeech.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise 1.0 100% 0.1478 13.55936 15.9199
0.2 100% 0.1492 6.7661 29.9027
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Frequency Noise Following the results from the ResNet18 and ResNet34 models, we
evaluated the Extreme Gaussian Noise watermark. The results can be seen in Figure 6.26.
Since all of them yielded worse SER values than AutoSpeech watermarked with the
default Frequency Noise parameters, we also watermarked the AutoSpeech model with
a few settings of the Frequency Noise watermark. However, they also did not exceed
the SER of the original Frequency Noise watermark parameters. Therefore, for further
evaluation, we selected a model that resulted in the smallest model fidelity loss compared
to the Frequency Noise original watermark, namely 0.0102 (Table 6.21).

Figure 6.26: Imperceptibility analysis of Frequency Noise applied to VoxCeleb1 Au-
toSpeech.

Table 6.21: Imperceptibility of Frequency and Extreme Gaussian Noise watermark applied
to VoxCeleb1 AutoSpeech.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑
FN 2.0 1.0 300 3,000 100% 0.1298 22.5900 -2.6448

EGN - 0.2 200 4,500 100% 0.1400 7.2651 29.9050
EGN - 1.0 100 6,000 100% 0.1447 12.0189 15.9296

Unrelated Audio For AutoSpeech, we also see that only a minority of parameter
configurations resulted in 100% WMSR; hence, we consider only those. Figure 6.27
visualises the results of our evaluated experiments, and Table 6.22 summarises only the
ones that achieved a 100% watermark success rate.
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Figure 6.27: Imperceptibility analysis of Unrelated Audio watermark applied to VoxCeleb1
AutoSpeech.

Table 6.22: Imperceptibility of Unrelated Audio watermark applied to VoxCeleb1 Au-
toSpeech.

Effect. Fidelity Imperceptibility
WM noise_var λ WMSR↑ SER↓ LSD↓ SNR↑

Unrelated Audio 0.0000578 1.0 100% 0.1515 4.7516 14.5356
0.000432 0.5 0.1706 9.4467 11.7309

6.3.3 Imperceptibility Evaluation Findings

Based on the discussed individual results of each dataset-model-watermark configuration,
here, we present the main insights of our imperceptibility analysis.

Table 6.24 summarises the results of the conducted analysis. It contains the selected
values described earlier in this section with regard to each dataset-model-watermark
configuration. The values underneath the model names are SER of the non-watermarked
models. The first row for each watermark contains the performance metrics of default
parameter settings provided by Liao et. al. [LYS+24]. In case of the Unrelated Audio
watermark, it is our default chosen audio sample with noise variance of 0.00005785 and
λ = 1.0. The second line contains the performance results of the most imperceptible
setting identified in this section; its name starts with the prefix ‘I’ (e.g., Gaussian Noise
Model (GNM) versus Imperceptible Gaussian Noise Model (IGNM)). The values in bold
are imperceptibility measures that fulfil the minimal requirements of imperceptibility
(SNR ≥ 20 dB or LSD ≤ 2 dB). We highlight in green the settings with which we were
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able to successfully improve imperceptibility measures, in red those that resulted in any
fidelity loss compared to the clean model, and in orange the settings where the model
fidelity drops compared to the default setting of watermark parameters but does not
exceed the SER of the non-watermarked model. Additionally, we included, in italics, the
setting when a model can fulfil both LSD and SNR requirements of imperceptibility with
a higher cost of fidelity. In Table 6.23, we list the trigger creation parameters for the
more imperceptible variants of the watermarking methods.

Table 6.23: Parameter settings for a more imperceptible variant of the watermarking
methods.

Dataset Model WM λ ELF EHF noise_var

TIMIT

SincNet IGNM 0.6
IEGNM 0.2 100 6,000
IUAM 0.8 0.000058

MobileNet IGNM 0.2
IEGNM 0.1 100 7,000
IUAM 0.5 0.0000578

AM-MobileNet IGNM 0.1
IEGNM 0.1 100 6,000
IUAM 0.8 0.0000578

VoxCeleb1

ResNet18 IGNM 0.5
IEGNM 0.2 200 4,500

ResNet34 IGNM 0.2
IEGNM 0.2 200 4,500
IUAM 1.0 0.0000432

AutoSpeech IGNM 0.2
IEGNM 0.2 200 4,500

Based on our imperceptibility analysis, we can conclude the following:

• Overall, no watermark parameters resulted in a trigger set whose LSD is ≤ 2, while
also maintaining the same fidelity as the watermark with default parameters.

• For all watermarking methods, we can see that applying the same parameters to
different datasets yields different SNR levels. Notably, imperceptibility appears
slightly lower in VoxCeleb1. Among all the watermarks, the one that stands out the
most is the Unrelated Audio watermark, which has a difference in SNR of 8.5033,
even though the difference in LSD is only 0.8616. We hypothesise that it might
stem from the fact that the variance of noise in TIMIT is fairly uniform across
samples, whereas VoxCeleb1 contains recordings of varying quality (e.g., studio
recordings versus red carpet recordings). Consequently, the same watermark can
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have different effects on individual samples, with the averaged impact reflected in
the overall SNR value.

• In 15 out of 18 dataset-model-watermark combinations, we were able to improve
imperceptibility without any loss in the watermark effectiveness. For two combina-
tions, the improvement of imperceptibility came only with the loss of watermark
effectiveness. For one case (VC1-ResNet34-UA), we chose the trigger creation
parameters that resulted in 100% WMSR with lower imperceptibility, since none of
the settings with higher imperceptibility achieved it.

• Out of 15 successful cases of imperceptibility improvement, in four models, trained
on the TIMIT dataset, achieved this with a certain cost of fidelity, namely up to
0.0022 difference in SER. Two other models, ResNet34 and AutoSpeech trained on
the VoxCeleb1, also showed some SER increase, but their fidelity remained within
the range of the respective non-watermarked models’ sentence error rates.

• In all combinations of dataset-model-watermark, the best imperceptibility (while
maintaining fidelity) was achieved using our altered algorithm for Frequency Noise,
namely Extreme Gaussian Noise watermark.

From our imperceptibility analysis of the Frequency and Extreme Gaussian Noise water-
marks, we conclude the following:

• No combination of parameters of the Frequency Noise watermark performed better
than Extreme Gaussian Noise with regard to the watermark effectiveness, model
fidelity, and watermark imperceptibility, as previously noted.

• Our analysis shows that even the Gaussian Noise watermark alone is already highly
effective. For the Frequency Noise watermark, it is possible to omit the MFCC
step, as it seems not to add in terms of effectiveness and fidelity: our additional
experiments demonstrate that using the Extreme Gaussian Noise watermark (which
differs from Frequency Noise by omitting lines 10–11 in Algorithm 5.2) still results in
a watermark success rate of 100% and a sentence error rate below 0.02 for SincNet,
MobileNet, AM-MobileNet; for ResNet18, ResNet34, and AutoSpeech models this
method also results in a lower SER than their respective SERs of non-watermarked
models.Moreover, the Extreme Gaussian Noise watermark is more imperceptible
compared to the Frequency Noise.

• The extreme frequency limits do not affect the SNR value much: e.g., Extreme
Gaussian Noise with λ = 0.2, ELF=100, and EHF=6,000 in one instance and
EHF=6,400 in another instance have only 0.005 SNR difference; however, LSD is af-
fected more in this case, showing a 0.3463 difference. With smaller λ, embedding the
watermark in more frequency space (e.g., λ = 0.2, ELF=200, EHF=4,500 compared
to λ = 0.5, ELF=100, EHF=6,000) can still result in higher imperceptibility.
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Unrelated Audio:

• For Unrelated Audio watermark, the choice of the audio sample plays a crucial role
in terms of the level of perceptibility it adds to the trigger set. However, even a
sample with higher noise can be tuned to the required imperceptibility level by a
scale factor.

• Generally, the Unrelated Audio watermark requires lower imperceptibility to achieve
an acceptable level of fidelity and watermark effectiveness. Moreover, even with
lower imperceptibility, in the majority of the cases, the SER of the Unrelated
Audio models was the highest among the different watermarking methods that were
applied to each dataset-model pair (the exception is ResNet34, though it is still
higher than Gaussian Noise and Extreme Gaussian Noise models with the selected
parameters).
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Table 6.24: Results of the Imperceptibility analysis of the watermarking methods across
the datasets and models.

Effectiveness Fidelity Imperceptibility
Dataset Model WM WMSR↑ SER↓ LSD↓ SNR↑

TIMIT

SincNet GNM 100% 0.0101 13.0948 16.6514
0.0051 IGNM 100% 0.0094 10.6347 21.0876

FNM 100% 0.0108 20.6664 -1.3025
IEGNM 100% 0.0129 6.0068 30.6359
UAM 100% 0.0101 3.8900 23.0389
IUAM 100% 0.0101 3.4947 24.9770

MobileNet GNM 100% 0.0065 13.0948 16.6514
0.0057 IGNM 100% 0.0043 6.3771 30.6293

FNM 100% 0.0058 20.6664 -1.3025
IEGNM 100% 0.0058 3.6815 36.6688
UAM 100% 0.0087 3.8900 23.0389
IUAM 100% 0.0094 2.7731 29.0592

100% 0.0108 1.1882 43.0357
AM-MobileNet GNM 100% 0.0036 13.0948 16.6514

0.0043 IGNM 100% 0.0036 4.4207 36.6494
FNM 100% 0.0043 20.6664 -1.3025

IEGNM 100% 0.0065 4.3513 36.6559
UAM 100% 0.0115 3.8900 23.0389
IUAM 100% 0.0129 3.4947 24.9770

100% 0.0137 1.1882 43.0357

VoxCeleb1

ResNet18 GNM 100% 0.2306 13.0948 15.9199
0.2978 IGNM 100% 0.2258 10.2465 21.9467

FNM 100% 0.2485 22.5900 -2.6448
IEGNM 100% 0.2480 7.2651 29.9050
UAM 100% 0.2859 4.7516 14.5356

ResNet34 GNM 100% 0.2396 13.0948 15.9199
0.2206 IGNM 100% 0.2066 6.7661 29.9027

FNM 100% 0.2016 22.5900 -2.6448
IEGNM 100% 0.1959 7.2651 29.9050
UAM 98% 0.2071 4.7516 14.5356
IUAM 100% 0.2201 12.7222 5.6682

AutoSpeech GNM 100% 0.1476 13.0948 15.9199
0.1691 IGNM 100% 0.1492 6.7661 29.9027

FNM 100% 0.1298 22.5900 -2.6448
IEGNM 100% 0.1400 7.2651 29.9050
UAM 100% 0.1515 4.7516 14.5356
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6.4 Legality Evaluation

This section evaluates the legality of the three watermarking methods across each
dataset–model pair. First, the results obtained using the original trigger creation pa-
rameters are presented. Subsequently, the legality of the most imperceptible settings, as
defined in the previous section, is examined.

6.4.1 TIMIT

Below, we present the legality evaluation results for the TIMIT dataset carried out
according to the setup described in Section 5.7 across three models: SincNet, MobileNet,
and AM-MobileNet.

SincNet

Default WM parameter settings The results of investigating the legality of the
replicated SOTA watermarking methods applied to the SincNet model are shown in
Figure 6.28 for (a) the Gaussian Noise model (GNM), (b) the Frequency Noise model
(FNM), and (c) the Unrelated Audio model (UAM). We can see that the Gaussian Noise
model recognises Gaussian Noise triggers, with values for lambda from 1.0 down to 0.7
with 100% effectiveness. With λ = 0.6, it still yields 96.6% WMSR_NT. Moreover, it
also recognises the Frequency Noise watermark that was created with the parameters
{mfcc_sc = 1.1, λ = 1.0, ELF=300, EHF=3,000} with 100%. While the Frequency
Noise model only recognises the frequency noise setting with the same parameters as the
Gaussian Noise model, the Unrelated Audio model accepts multiple Unrelated Audio
and a few Frequency Noise settings as well (all those with λ = 1.0) with a nearly 100%
success rate.

(a) GNM (b) FNM (c) UAM

Figure 6.28: Legality evaluation of the SOTA watermarking methods applied to TIMIT
SincNet.
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Imperceptible WM parameter settings When considering the imperceptible wa-
termarks obtained in Section 6.3.1, we can see that more watermark settings are now
recognised by the Gaussian Noise (Figure 6.29a) and Frequency Noise (Figure 6.29b)
models. For the Unrelated Audio model (Figure 6.29c, the recognition is higher in
two cases: Unrelated Audio triggers created with the same parameters as the triggers
that were used for training, and Frequency Noise triggers created with mfcc_sc = 0.1
improved by 20%.

(a) GNM (b) FNM (c) UAM

Figure 6.29: Legality evaluation of the watermarking methods with the most imperceptible
parameter settings applied to TIMIT SincNet.

MobileNet

Default WM parameter settings From the results in Figure 6.30, we can see that
MobileNet with Gaussian Noise watermark recognises the triggers created with even lower
λ (0.5) compared to the respective SincNet model (λ=0.7). Moreover, the Frequency

(a) GNM (b) FNM (c) UAM

Figure 6.30: Legality evaluation of the SOTA watermarking methods applied to TIMIT
MobileNet.

Noise model is more prone to accepting samples watermarked with Gaussian Noise. The
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Unrelated Audio model also shows higher WMSR_NT for Frequency Noise triggers
created with mfcc_sc = 2.0.

Imperceptible WM parameter settings The legality evaluation of more imper-
ceptible watermarks (which were created with the selected parameters in Section 6.3.1)
indicates slightly worse results, as can be seen in Figure 6.31: the Gaussian Noise model
now recognises the triggers created with λ down to 0.2, the Frequency Noise model
now does not yield 100% WMSR_NT on any of the tested unseen triggers, though the
recognition of the triggers created with the same λ or value close to it still yields higher
rates (which are higher than 92%). Lastly, the Unrelated Audio model yields nearly
100% WMSR_NT with λ = 0.5 of the same unrelated audio as its embedded watermark.
Additionally, the Frequency Noise watermark with mfcc_sc = 1.1 is also recognised by
the Unrelated Audio model.

(a) GNM (b) FNM (c) UAM

Figure 6.31: Legality evaluation of the watermarking methods with the most imperceptible
parameter settings applied to TIMIT MobileNet.

AM-MobileNet

Default WM parameter settings As can be seen in Figure 6.32, the Gaussian Noise
model recognises the triggers created with a lower λ of 0.4 compared to the MobileNet
model (0.5). The same pattern can be observed for the Frequency Noise model, which now
yields WMSR_NT higher than 95% for λ values down to 0.6 compared to MobileNet’s
0.8. The recognition pattern of the Unrelated Audio model here closely resembles the
MobileNet Unrelated Audio model with the most imperceptible setting (Figure 6.31c),
though WMSR_NT values are overall slightly higher for the Gaussian and Frequency
Noise watermarks.
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(a) GNM (b) FNM (c) UAM

Figure 6.32: Legality evaluation of the SOTA watermarking methods applied to TIMIT
AM-MobileNet.

Imperceptible WM parameter settings The creation parameters for the imper-
ceptible watermark settings for the AM-MobileNet model are specified in Section 6.3.1.
Regarding the legality characteristic of the watermarked AM-MobileNet models depicted
in Figure 6.33, the Gaussian Noise model is more resilient against the newly created trig-
gers compared to both the original Gaussian Noise watermark created with λ = 1.0 and
the most imperceptible Gaussian Noise setting applied to MobileNet, since it recognises
only the triggers created with λ values in range of 0.2-0.4. The Frequency Noise model,
though, can recognise all settings of Gaussian Noise triggers except for the ones created
with λ = 0.1 and has a higher WMSR_NT rate for Frequency Noise triggers compared
to the original Frequency Noise model for AM-MobileNet (Figure 6.32b). Only Unrelated
Audio triggers are not at all recognised by the Frequency Noise model. The results on the
Unrelated Audio model are almost the same as the original Unrelated Audio watermark
settings for AM-MobileNet (Figure 6.32c) and the most imperceptible watermark setting
for MobileNet (Figure 6.31c).

(a) GNM (b) FNM (c) UAM

Figure 6.33: Legality evaluation of the watermarking methods with the most imperceptible
parameter settings applied to TIMIT AM-MobileNet.
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6.4.2 VoxCeleb1
In the following, we present the legality evaluation results for the VoxCeleb1 dataset
carried out according to the setup described in Section 5.7 across three models: ResNet18,
ResNet34, and AutoSpeech.

ResNet18

Default WM parameter settings The ResNet18 models in Figure 6.34 show much
higher resilience against unseen triggers compared to other models. For the Gaussian
Noise model, only two trigger creation parameters result in higher than 95% WMSR_NT:
the Gaussian Noise watermarks with λ values 1.0 and 0.9. The Frequency Noise model
recognises with 100% only the unseen triggers created with the same parameters as
the ones used for training, while the Unrelated Audio model has a maximum of 30%
WMSR_NT.

(a) GNM (b) FNM (c) UAM

Figure 6.34: Legality evaluation of the SOTA watermarking methods applied to VoxCeleb1
ResNet18.

Imperceptible WM parameter settings The results shown in Figure 6.35 indicate
worse outcomes compared to the original trigger creation settings. In the case of the
Gaussian Noise model, the newly created triggers with three different λ values (1.0,
0.8, and 0.6) are now recognised. Moreover, the Frequency Noise model recognises
the Gaussian Noise triggers more than the ResNet18 model with default parameters
in (Figure 6.34b), though the WMSR_NT is still below 90%. The only newly created
triggers that the Frequency Noise model does recognise are Frequency Noise triggers
created with mfcc_sc = 0.1, but the WMSR_NT is lower than 100%, which is better
than in the case with the original Frequency Noise watermark.
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(a) GNM (b) FNM

Figure 6.35: Legality evaluation of the watermarking methods with the most imperceptible
parameter settings applied to VoxCeleb1 ResNet18.

ResNet34

Default WM parameter settings In Figure 6.36, we can see a very similar pattern to
that of ResNet18. The only difference is that the Gaussian Noise model also recognises the
triggers created with the Frequency Noise watermarking method using mfcc_sc = 2.0.

(a) GNM (b) FNM (c) UAM

Figure 6.36: Legality evaluation of the SOTA watermarking methods applied to VoxCeleb1
ResNet34.

Imperceptible WM parameter settings As with the ResNet18 model, when water-
marked with the most imperceptible settings, the WMSR_NT deteriorates with higher
imperceptibility for Gaussian Noise and Frequency Noise models, which is shown in
Figure 6.37. The difference is that ResNet34 with Frequency Noise watermark recognises
fewer trigger creation settings than with the Gaussian Noise watermark, which is the
opposite case as it was for ResNet18. With the Unrelated Audio watermark, the model
achieves only 60% WMSR_NT when tested on unseen triggers created from the same
unrelated audio sample used for watermarking.
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(a) GNM (b) FNM (c) UAM

Figure 6.37: Legality evaluation of the watermarking methods with the most imperceptible
parameter settings applied to VoxCeleb1 ResNet34.

AutoSpeech

Default WM parameter settings The results in Figure 6.38 show similar patterns
as with the ResNet models, where only the Gaussian Noise model recognises the newly
generated triggers.

(a) GNM (b) FNM (c) UAM

Figure 6.38: Legality evaluation of the SOTA watermarking methods applied to VoxCeleb1
AutoSpeech.

Imperceptible WM parameter settings The results for the most imperceptible
parameter settings are shown in Figure 6.39. We can see the same pattern as with the
ResNet models, namely, the more imperceptible watermarks are more prone to cause a
model to recognise unseen triggers.
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(a) GNM (b) FNM

Figure 6.39: Legality evaluation of the watermarking methods with the most imperceptible
parameter settings applied to VoxCeleb1 AutoSpeech.

6.4.3 Legality Evaluation Findings
In Table 6.25, we depict the results of the legality evaluation across datasets and models.
GNM denotes the model watermarked by the Gaussian Noise watermarking method,
while IGNM denotes the model watermarked using the Gaussian Noise triggers created
with imperceptible parameters defined in the previous section. The same applies to FNM
and UAM. We highlight in green the imperceptible settings that successfully improve
legality results, and in orange those that yield worse legality results compared to their
respective default settings.

The legality characteristic shows a fairly distinct effect on the datasets. The Unrelated
Audio models trained on VoxCeleb1, in general, do not recognise the newly generated
triggers as watermarks. On the other hand, within TIMIT, the Unrelated Audio mod-
els achieve comparatively good performance for both MobileNet and AM-MobileNet,
recognising the fewest watermark settings compared to GNM and FNM of the respective
models. In contrast, SincNet performs much worse, with the Unrelated Audio model
recognising 6 out of 22 settings.

The Gaussian Noise models were the worst in legality, compared to the other watermarking
methods. This can be explained in general by the fact that Gaussian Noise, Frequency
Noise, and Extreme Gaussian Noise watermarks all use a form of Gaussian noise, while
Unrelated Audio watermark uses a completely different type of sound. An interesting
fact is that in three cases, specifically MobileNet GNM and FNM, and AM-MobileNet
GNM, the most imperceptible watermarks showed more resilience in terms of legality
compared to the original ones.

Another pattern we can observe in this legality evaluation is that triggers created with
the same (or close to) λ values as the real triggers were created are recognised more.

These findings indicate that a malicious party, who does not know the exact watermarking
method or embedding parameters, can potentially create trigger samples that will falsely
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indicate ownership, even if the model was watermarked with a different method. That is
why it is in our interest for the watermark success rate (WMSR) to remain as close to
100% as possible, which we are evaluating in the next section.
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Table 6.25: Legality evaluation across models and datasets. The legality characteristic is
evaluated based on different triggers: we verify whether a certain model can recognise
unseen triggers created by other schemes (Gaussian Noise (GN), Frequency Noise (FN),
and Unrelated Audio (UA)), each evaluated with different parameter settings. ✗ denotes
a case when a model recognises the unseen triggers with at least 95% success rate,
✓ otherwise.

Dataset Model WM Effectiveness Fidelity Imperceptibility Legality
WMSR↑ SER↓ LSD↓ SNR↑ GN FN UA

TIMIT

SincNet GNM 100% 0.0101 13.0948 16.6514 ✓5 ✗5 ✓6 ✗1 ✓5
0.0051 IGNM 100% 0.0094 10.6347 21.0876 ✓4 ✗6 ✓5 ✗2 ✓4 ✗1

FNM 100% 0.0108 20.6664 -1.3025 ✓10 ✓6 ✗1 ✓5
IEGNM 100% 0.0129 6.0068 30.6359 ✓4 ✗6 ✓1 ✗6 ✓5
UAM 100% 0.0101 3.8900 23.0389 ✓10 ✓4 ✗3 ✓2 ✗3
IUAM 100% 0.0101 3.4947 24.9770 ✓10 ✓4 ✗3 ✓2 ✗3

MNet GNM 100% 0.0065 13.0948 16.6514 ✓3 ✗5 ✓2 ✗2 ✓3
0.0057 IGNM 100% 0.0043 6.3771 30.6293 ✓2 ✗6 ✓4 ✓3

FNM 100% 0.0058 20.6664 -1.3025 ✓6 ✗2 ✓2 ✗2 ✓3
IEGNM 100% 0.0058 3.6815 36.6688 ✓6 ✗2 ✓4 ✓3
UAM 100% 0.0087 3.8900 23.0389 ✓8 ✓4 ✓2 ✗1
IUAM 100% 0.0094 2.7731 29.0592 ✓8 ✓3 ✗1 ✓1 ✗2

AM-MNet GNM 100% 0.0036 13.0948 16.6514 ✓3 ✗5 ✓2 ✗2 ✓3
0.0043 IGNM 100% 0.0036 4.4207 36.6494 ✓5 ✗3 ✓4 ✓3

FNM 100% 0.0043 20.6664 -1.3025 ✓5 ✗3 ✓2 ✗2 ✓3
IEGNM 100% 0.0065 4.3513 36.6559 ✓1 ✗7 ✓3 ✗1 ✓3
UAM 100% 0.0115 3.8900 23.0389 ✓8 ✓2 ✗2 ✓1 ✗2
IUAM 100% 0.0129 3.4947 24.9770 ✓8 ✓2 ✗2 ✓1 ✗2

VoxCeleb1

ResNet18 GNM 100% 0.2306 13.0948 15.9199 ✓6 ✗2 ✓3 ✗1 ✓4
0.2978 IGNM 100% 0.2258 10.2465 21.9467 ✓5 ✗3 ✓4 ✓4

FNM 100% 0.2485 22.5900 -2.6448 ✓8 ✓3 ✗1 ✓4
IEGNM 100% 0.2480 7.2651 29.9050 ✓8 ✓3 ✗1 ✓4
UAM 100% 0.2859 4.7516 14.5356 ✓8 ✓4 ✓4

ResNet34 GNM 100% 0.2396 13.0948 15.9199 ✓6 ✗2 ✓3 ✗1 ✓4
0.2206 IGNM 100% 0.2066 6.7661 29.9027 ✓3 ✗5 ✓3 ✗1 ✓4

FNM 100% 0.2016 22.5900 -2.6448 ✓8 ✓3 ✗1 ✓4
IEGNM 100% 0.1959 7.2651 29.9050 ✓5 ✗3 ✓3 ✗1 ✓4
UAM 98% 0.2071 4.7516 14.5356 ✓8 ✓4 ✓4
IUAM 100% 0.2201 12.7222 5.6682 ✓8 ✓4 ✓4

AutoSp. GNM 100% 0.1476 13.0948 15.9199 ✓6 ✗2 ✓3 ✗1 ✓4
0.1691 IGNM 100% 0.1492 6.7661 29.9027 ✓3 ✗5 ✓3 ✗1 ✓4

FNM 100% 0.1298 22.5900 -2.6448 ✓8 ✓3 ✗1 ✓4
IEGNM 100% 0.1400 7.2651 29.9050 ✓4 ✗4 ✓3 ✗1 ✓4
UAM 100% 0.1515 4.7516 14.5356 ✓8 ✓4 ✓4
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6.5 Robustness Evaluation
In this section, we begin with the robustness evaluation of the three watermarking
methods with regard to each dataset-model pair. Then we evaluate the robustness of the
most imperceptible settings.
Due to restrictions on computational resources, we reduced the number of data preprocess-
ing attacks applied to the imperceptible watermark settings of ResNet34 and AutoSpeech.
The attacks were selected by the rule that they did not deteriorate the SER of the
watermarked models, trained with the original parameter settings of the watermarks,
by more than 0.2. The value was chosen to be higher than our 0.05 threshold, with an
additional 0.15 buffer to account for variability in the results of individual artefacts.
Additionally, since the SNR-based random noise addition and bandpass filtering data
preprocessing attacks always increased the SER of the models beyond the accepted
threshold, they were excluded from the analysis in both ResNet and AutoSpeech models.

6.5.1 TIMIT
Here, we present the robustness evaluation results for the TIMIT dataset carried out
according to the setup described in Section 5.8 across three models: SincNet, MobileNet,
and AM-MobileNet.

SincNet

Default WM parameter settings We applied all the mentioned data preprocessing
attacks (denoted as DPA in Figures 6.40 to 6.50) across the full range of parameters
shown in Figure 6.40a to the Gaussian Noise, Frequency Noise (Figure 6.40b), and
Unrelated Audio (Figure 6.40c) models.
Our results show that adding white Gaussian noise, as done by [ZDX+23] using an SNR
factor, substantially reduces the effectiveness of the Unrelated Audio watermark, but
has a negligible impact on the Gaussian and Frequency Noise models. Nevertheless,
the addition of extra Gaussian noise to all audio samples increases the SER to the
point that this attack cannot be considered effective, as the attacked model is no longer
effective enough. Conversely, maintaining the low-frequency components (LT) on the
input audio degrades the performance of the Gaussian and Frequency watermarking
models, while leaving the Unrelated Audio watermark unaffected. This can be attributed
to the fact that the air conditioning sound used as a trigger in the Unrelated Audio
model is predominantly concentrated in lower frequency bands.
While fine-tuning (see Figure 6.40d) the first convolutional layer (CNN) had no observable
effect on either task performance or watermark presence, fine-tuning the last layer affected
the original task the most, yet had only minimal effect on watermark removal. The most
successful attack involved fine-tuning the DNN1 layer, which successfully reduced the
WMSR to 3%. However, this came at the cost of a substantial decline in fidelity, as the
SER deteriorated faster than WMSR.
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(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuning attacks. (e) Pruning attack.

Figure 6.40: Robustness evaluation of replicated SOTA watermarking methods.

Weight pruning did not result in a successful watermark removal. In Figure 6.40e, we
can see that for all WM models, SER starts to deteriorate faster than WMSR. Hence,
when the watermark is eventually removed, the model can not perform its original task
any longer.

Imperceptible WM parameter settings When applying the same set of attacks
to the SincNet models trained with the most imperceptible watermarks, we can see in
Figure 6.41 that data preprocessing attacks did not result in much difference for Gaussian
Noise (Figure 6.41a) and Unrelated Audio (Figure 6.41c) models. Some of the attacks,
such as adding noise by SNR, were more successful in removing a watermark, but the
effect on SER stayed the same – with removing the watermark, the model is rendered
useless on the original task. However, the Frequency Noise model (Figure 6.41b) was
affected more than the other two models: by removing frequencies higher than 7,700 Hz,
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the SER becomes 0.0413 while WMSR drops to 94.9%. Overall, in this setting, we can
see that only the Frequency Noise watermark is vulnerable to data preprocessing attacks.

(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuning attacks. (e) Pruning attack.

Figure 6.41: Robustness evaluation of the watermarking methods with the most imper-
ceptible parameter settings applied to TIMIT SincNet.

Fine-tuning the last year of the Frequency Noise model (Figure 6.41d) reduced WMSR
way faster than in the Frequency Noise default watermark setting (Figure 6.40d); still,
since the SER of the model became 0.1545, it cannot be considered a successful attack.
The pruning attack (Figure 6.41e) was unable to remove the watermark in the impercep-
tible watermark settings without substantially degrading the model performance on the
original task.

MobileNet

Default WM parameter settings Firstly, we observed that the fidelity of MobileNet
is less susceptible to LT data preprocessing attacks than SincNet, which is especially
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visible for the Frequency Noise model in Figure 6.42b. Therefore, we evaluated the
removal of high frequencies starting between 6,000 and 7,600, with a step size of 100 Hz,
instead of the 6,500 - 7,900 range considered before. The Gaussian Noise model is highly

(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuned GNM (e) Fine-tuned FNM (f) Fine-tuned UAM

(g) Pruning attack.

Figure 6.42: Robustness evaluation of the SOTA watermarking methods applied to
TIMIT MobileNet.
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affected by the removal of high frequencies (Figure 6.42a): when removing frequencies
higher than 6,700, SER increases only to 0.036, while the WMSR drops to 74%; and
with 6,600 Hz, the SER becomes 0.049, while the WMSR is only 39%. The Frequency
Noise and Unrelated Audio models show resilience against the data preprocessing attacks
– none of them successfully removed the watermarks.

Based on the presented results of fine-tuning and pruning attacks in Figures 6.42d to 6.42g,
respectively, they were not able to remove the watermark without suffering a loss of
fidelity.

Imperceptible WM parameter settings The most successful data preprocessing
attack applied to the Gaussian Noise model was LT with parameter 6,800, which resulted
in SER of 0.048 and 71% WMSR. For the Frequency Noise model, the LT attack with
7,300 Hz proved to be the most effective: with a 0.05 SER, the WMSR dropped to 30%
rate. No data preprocessing attack was successful with the Unrelated Audio model, as
shown in Figure 6.43c.

Fine-tuning of all layers except for the normalisation and max pooling layers of the
Frequency Noise model (Figure 6.43e) in early stages (namely, after the first four epochs)
yields 0.029 SER and 92.1% WMSR, though afterwards the SER grows beyond our
difference threshold of 0.05. Both Gaussian Noise and Unrelated Audio models withstand
the fine-tuning attacks (Figures 6.43d and 6.43f, respectively). Weight pruning shown in
Figure 6.43g does not result in successful watermark removal without compromising the
model performance on the original task.
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(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuned GNM (e) Fine-tuned FNM (f) Fine-tuned UAM

(g) Pruning attack.

Figure 6.43: Robustness evaluation of the watermarking methods with the most imper-
ceptible parameter settings applied to TIMIT MobileNet.
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AM-MobileNet

Default WM parameter settings As for MobileNet, the only watermarked model

(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuned GNM (e) Fine-tuned FNM (f) Fine-tuned UAM

(g) Pruning attack.

Figure 6.44: Robustness evaluation of the SOTA watermarking methods applied to
TIMIT AM-MobileNet.
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that suffers from data preprocessing attacks is the Gaussian Noise model (Figure 6.44a).
With the LT attack and 6,900 Hz cut-off value, it yields 0.048 SER and 20.7% WMSR.
Higher frequencies do not reduce the WMSR by more than 1%, and lower frequencies
yield a SER higher than 0.053.

The fine-tuning attack is also only successful for the Frequency Noise Model (Figure 6.44e):
after the first four epochs of fine-tuning the last residual block and the last layer, the
SER of the model is 0.044, while the WMSR becomes 0%. Conversely, in this case,
fine-tuning only the last layer or the first and last layers does not affect the watermark
effectiveness at all. Weight pruning does not result in a successful attack, as can be seen
in Figure 6.44g.

Imperceptible WM parameter settings One can observe that some data prepro-
cessing attacks, namely LT with different high frequency values, remove watermarks in
Gaussian Noise (Figure 6.45a) and Frequency Noise (Figure 6.45b) models more compared
to the original, more perceptible settings. The pattern of the LT attack applied to the
Frequency Noise model now resembles more the pattern of the Gaussian Noise model,
which is expected, since we use an Extreme Gaussian Noise watermark, which resembles
the Gaussian Noise watermark. For the Gaussian Noise model, the LT attack with 6,500
Hz parameter yields 0.049 SER while simultaneously removing the watermark, with
WMSR dropping to 10%. Moreover, with a SER of only 0.015, which can be achieved
by applying LT with 6,800 Hz, the WMSR already drops to 48%. For the Frequency
Noise model, the rates are slightly better: the most successful attack within our defined
SER bounds is LT with 6,800 Hz, which results in a 0.048 SER and 34% WMSR. The
Unrelated Audio model (Figure 6.45c) is again unaffected.

Within the fine-tuning attacks, the Unrelated Audio model (Figure 6.45f) is the most
robust one since no combination was able to remove the watermark without deteriorating
SER. The fine-tuning of the Frequency Noise model (Figure 6.45e), even though it showed
an immediate drop in WMSR, also increased SER beyond the 0.05 difference threshold;
thus, it does not successfully remove the watermark. The watermark that was affected
the most by a fine-tuning attack is Gaussian Noise (Figure 6.45d). Fine-tuning the last
residual block and last layer results in a SER of 0.058 after the first four epochs; even
though it is just over the threshold, it yields a 13% WMSR, which means the resulting
model is no longer useful. Weight pruning (Figure 6.45g) did not result in successful
watermark removal.
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(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuned GNM (e) Fine-tuned FNM (f) Fine-tuned UAM

(g) Pruning attack.

Figure 6.45: Robustness evaluation of the watermarking methods with the most imper-
ceptible parameter settings applied to TIMIT AM-MobileNet.

114



6.5. Robustness Evaluation

6.5.2 VoxCeleb1
In the following, we present the robustness evaluation results for the VoxCeleb1 dataset
carried out according to the setup described in Section 5.8 across three models: ResNet18,
ResNet34, and AutoSpeech.

ResNet18

Default WM parameter settings As we can see in Figure 6.46b, only the Frequency
Noise model withstands all data preprocessing attacks. The LT attack applied to the
Gaussian Noise model (Figure 6.46a) with a high frequency cut-off parameter of 7,800
Hz can decrease the WMSR to 51.9% while increasing SER to 0.269, compared to the
original 0.2306 SER of the Gaussian Noise model. Moreover, we can observe that the
Unrelated Audio model (Figure 6.46c) is way less robust against the data preprocessing
attacks that maintain high frequencies than it was in the case of the TIMIT dataset.

(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuning attacks. (e) Pruning attack.

Figure 6.46: Robustness evaluation of the SOTA watermarking methods applied to
VoxCeleb1 ResNet18.
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With only a 0.0124 decrease of fidelity, it is possible to reduce the WMSR to 21%, and
with a 0.0364 fidelity decrease, the watermark is reduced to a WMSR of only 1.05%.

The fine-tuning attack (Figure 6.46d) is generally more successful for ResNet18 compared
to the previously discussed models, since the SER of the models also gets reduced in the
process. The watermark that is the least robust is the Unrelated Audio. After stabilising,
the WMSR drops to 12.82%. Fine-tuning Gaussian Noise and Frequency Noise models
leads to a somewhat decreased watermark performance: the Gaussian Noise model has its
WMSR decreased to 82.56%, while the Frequency Noise model shows 92% WMSR. The
weight pruning attack in Figure 6.46e does not remove a watermark before a substantial
decrease in fidelity.

Imperceptible WM parameter settings The most effective data preprocessing
attack applied to the most imperceptible Gaussian Noise and Frequency Noise watermarks

(a) DPA: GNM (b) DPA: FNM

(c) Fine-tuning attacks. (d) Pruning attack.

Figure 6.47: Robustness evaluation of the watermarking methods with the most imper-
ceptible parameter settings applied to VoxCeleb1 ResNet18.
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is removing high frequencies, which is shown in Figures 6.47a and 6.47b, respectively.
With a 0.0275 increase in SER achieved by LT = 7,900 Hz, the WMSR drops to 74.37%,
while removing frequencies higher than 7,800 Hz results in a 0.0506 increase in SER, and
the watermark is completely removed (0% WMSR) from the Gaussian Noise model. The
LT attack with values of 7,900 Hz and 7,800 Hz also effectively reduces the WMSR of
the Frequency Noise model to 89.5% and 18.7%, resulting in a rise of SER by 0.0273 and
0.0432, respectively.

The models during fine-tuning stabilise after approximately 50 epochs, as shown in
Figure 6.47c, and the watermark effectiveness drops lower than in the original settings:
WMSR of the Gaussian Noise model falls to 68% and of the Frequency Noise model to
50%, which is 14% and 32% lower. The weight pruning in Figure 6.47d does not lead to
a successful attack result.

ResNet34

Default WM parameter settings The same way as with ResNet18, the Frequency
Noise model is not affected by data preprocessing attacks, as can be seen in Figure 6.48b.
In the meantime, the Gaussian Noise (Figure 6.48a) watermark success rate drops to
6.1% with a trade-off of 0.0461 in SER when LT = 7,500 Hz; or with just a 0.0246
SER loss, WMSR falls to 50.63% when LT = 7,800 Hz. For the Unrelated Audio model
(Figure 6.48c), the cost of full removal of the watermark is 0.0275 of the model fidelity,
which can be achieved by maintaining the frequencies higher than 120 Hz (HT attack).
Removing the lowest 40 Hz frequencies leads to a 0.0095 decrease in fidelity and a WMSR
drop to 16.18%.

The fine-tuning of the Frequency Noise model does not remove the watermark in its full
capacity. In Figure 6.48d we can observe a slight decrease in WMSR of around 3-4%
after the first 30 epochs of fine-tuning. The Gaussian Noise model behaves worse, but the
WMSR still does not drop below 90%, except for the initial drop to 65% in the first five
epochs of fine-tuning. The Unrelated Audio model is the most affected one, the same as in
the case of ResNet18. Fine-tuning attack almost fully removes the watermark, resulting
in an 18% WMSR. Weight pruning shows to be ineffective for removing a watermark
from ResNet34 as well (Figure 6.48e).
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(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuning attacks. (e) Pruning attack.

Figure 6.48: Robustness evaluation of the SOTA watermarking methods applied to
VoxCeleb1 ResNet34.

Imperceptible WM parameter settings Our choice of an unrelated audio sample
for the Unrelated Audio model was more perceptible than the original one, as with
the original sample, WMSR of ResNet34 did not yield 100% (reaching 98% instead).
Hence, here we can observe better robustness with regard to data preprocessing attacks.
No attack successfully removed the Unrelated Audio watermark, as can be seen in
Figure 6.49c. The Gaussian Noise watermark (Figure 6.49a) can be completely removed
with a 0.0307 loss of fidelity – the WMSR falls to 0.84% when frequencies higher than
7800 Hz are cut out; meanwhile, applying the LT attack with 7900 Hz leads to WMSR
72.5% and 0.0192 SER increase. Furthermore, removing low frequencies such below 120
or 150 Hz also worsens the watermark effectiveness, resulting in 93.7% WMSR, sacrificing
0.026 of model fidelity. The Frequency Noise watermark (Figure 6.49b) also becomes
more susceptible to LT attacks, with the best result being achieved by LT = 7,800 Hz,
leading to 38.45% WMSR and 0.0414 fidelity decline.
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Compared to the ResNet18 models watermarked by original watermarks, we can see that
Gaussian Noise and Frequency Noise models are less robust against fine-tuning attacks
(Figure 6.49d). Their WMSR falls to 40% and 90%, respectively. On the contrary, the
Unrelated Audio model shows better results: its WMSR does not drop below the 70%
mark, compared to the previous 18%. The weight pruning does not result in watermark
removal based on the findings depicted in Figure 6.49e.

(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuning attacks. (e) Pruning attack.

Figure 6.49: Robustness evaluation of the watermarking methods with the most imper-
ceptible parameter settings applied to VoxCeleb1 ResNet34.

AutoSpeech

Default WM parameter settings The same as with other models trained using
VoxCeleb1, the Gaussian Noise model (Figure 6.50a) suffers a WMSR drop when per-
forming LT attacks that remove high frequencies, while the Unrelated Audio model
(Figure 6.50c) is not robust against HT attacks that remove low frequencies. To be more
specific, the LT attack with 7,800 Hz yields 36.55% WMSR with a 0.044 model fidelity
decline. Applying an HT attack with cutting off at 50 Hz leads to a 0.01 increase of SER,
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and a WMSR of 11.35%. In order to reduce WMSR to 1.47%, one can apply HT with
150 Hz, which will cost 0.0346 fidelity loss. The Frequency Noise model (Figure 6.50b)
successfully withstands the data preprocessing attacks, meaning there is no attack that
worsens WMSR while preserving model fidelity.

(a) DPA: GNM (b) DPA: FNM (c) DPA: UAM

(d) Fine-tuning attacks. (e) Pruning attack.

Figure 6.50: Robustness evaluation of the SOTA watermarking methods applied to
VoxCeleb1 AutoSpeech.

When it comes to fine-tuning, both Gaussian Noise and Frequency Noise models are
unaffected in terms of WMSR decrease, which is illustrated in Figure 6.50d. The only
watermark that is affected by the fine-tuning attack is the Unrelated Audio model, which
WMSR drops to 80%. Weight pruning attack does not lead to the watermark removal as
shown in Figure 6.50e.

Imperceptible WM parameter settings Compared to the results of the data pre-
processing attacks against AutoSpeech models watermarked with the original parameter
settings, the robustness of both Gaussian Noise (Figure 6.51a) and Frequency Noise
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(Figure 6.51b) models is reduced. We can see that LT attacks are the most successful
for both. Applying the LT attack with 7,900 Hz to the Gaussian Noise model results
in 11.14% WMSR with a SER loss of 0.022. The LT attack with 7,800 Hz results in a
bigger fidelity loss, specifically 0.0458, but it also almost completely erases the watermark
– WMSR 2.5%. The same attacks applied to the Frequency Noise model result in 0.015
and 0.031 SER loss for 7,900 and 7,800 Hz, respectively. At the same time, the WMSR
decreases to 63% and 10.5% in these cases.

(a) DPA: GNM (b) DPA: FNM

(c) Fine-tuning attacks. (d) Pruning attack.

Figure 6.51: Robustness evaluation of the watermarking methods with the most imper-
ceptible parameter settings applied to VoxCeleb1 AutoSpeech.

The fine-tuning attack has no effect on the Frequency Noise model; however, it decreases
the WMSR of the Gaussian Noise model to 91%, which is shown in Figure 6.51c.
Weight pruning results in an extreme decline in fidelity before any watermark is removed
(Figure 6.51d).
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6.5.3 Robustness Evaluation Findings
In Table 6.26, we present the general overview of the performed attacks on the water-
marked models. GNM denotes the model watermarked by the Gaussian Noise water-
marking method, while IGNM denotes the model watermarked using the Gaussian Noise
triggers created with imperceptible parameters defined in Section 6.3. The same notation
applies to FNM and UAM. The results are represented according to the definition of a
successful attack:

✓ Watermark is robust: WMSR≥ 95% or SER≥ 0.05

✗ Attack is successful: WMSR<95% and SER<0.05

Data preprocessing attacks have mixed effects on watermarking methods. Some increase
SER too much (>0.05), e.g., all configurations of pitch shifting (PS), most configurations
of maintaining a bandpass (B), and time stretching (TS). The latter two, as well as three
Gaussian noise attacks (SNR, WN, PN) and compression (C), in fact do not succeed in
removing the watermark without degrading model fidelity in any configuration, whereas
keeping low (LT) and high frequencies (HT) succeed in some cases. That is why some
of the attacks are removed from the view of Table 6.26, namely SNR, three of the
configurations of TS, and bandpass filtering (B). We conducted extra pink noise addition
(PN) attacks to verify the robustness of MobileNet and AM-MobileNet due to the good
results of SER with the originally proposed values.

The LT attack is effective against Gaussian Noise models, as 5 out of 6 dataset-model
combinations have cases when WMSR falls below 95%. This is the only data preprocessing
attack that was able to remove a watermark from the models trained on the TIMIT
dataset. For MobileNet, the cut-off threshold is 6,700 Hz, for AM-MobileNet 6,900 Hz,
and for ResNet models and AutoSpeech 7,800 Hz. In case of the most imperceptible
watermarks, for the SinceNet model, the threshold becomes 7,700 Hz, 7,300 Hz for
MobileNet, 6,800 Hz for AM-MobileNet, and 7,900 Hz for ResNet and AutoSpeech
models.

HT with the cut-off at 40 Hz is effective against UAM applied on ResNets and AutoSpeech
for the unrelated audio sample with a noise variance of 0.0000578. The same attack on
VoxCeleb1 triggers created with the unrelated audio sample with noise_var =0.00043166
does not affect the watermarked part at all up to 150 Hz, where WMSR becomes 99.6%.
Our experiments revealed that the choice of unrelated audio can significantly impact
both the imperceptibility of the watermark and its robustness to perturbations. This
suggests that the trigger audio selection, while presented as arbitrary by the authors,
may function as a critical hyperparameter in this watermarking approach.

The only case where both HT and LT attacks have succeeded in removing a watermark
is on ResNet34 with IGNM created using λ = 0.2. In this case, with HT ≥ 120 Hz, the
WMSR starts to drop below 95%, namely to 93.7%. The LT cut-off point is at 7,700 Hz.
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The only successful fine-tuning attack applied to a model trained on the TIMIT dataset
was the one conducted on the AM-MobileNet model watermarked with Gaussian Noise.
Moreover, since in general the SER of AM-MobileNet models worsened during fine-tuning,
the only point when the attack was successful was the first epochs of fine-tuning, while
SER stayed within the defined bounds of 0.05 cost.

For the models trained on the VoxCeleb1 dataset, we observe a different pattern of
the fine-tuning attack. Since the SER on the subset of the test set improved during
fine-tuning, which can be attributed to a three times higher number of classes and a
much higher number of audio samples in the dataset compared to TIMIT, the attack
showed successful results more often. The overall pattern in ResNet18, ResNet34, and
AutoSpeech first exhibited a high drop in watermark effectiveness and a simultaneous
peak in model fidelity, then a gradual stabilisation. Sometimes, it led to WMSR returning
to an acceptable level of WMSR (≥ 95%), such as for FNM on ResNet34. The Frequency
Noise model on AutoSpeech was not affected by fine-tuning at all: neither in its original
state, nor in its more imperceptible Extreme Gaussian Noise alternative. The weight
pruning attack proved to be ineffective in every evaluated scenario.

Based on the insights above, each model presented in the table has at least one setting
that withstands all robustness checks:

• SincNet: GNM, IGNM, UAM, IUAM

• MobileNet: FNM, UAM, IUAM

• AM-MobileNet: FNM, UAM, IUAM

• ResNet18: FNM

• ResNet34: FNM, IUAM

• AutoSpeech: FNM.

Overall, we can clearly see the trade-off between robustness and imperceptibility of the
applied watermarks. Only in the case of Gaussian Noise applied to AM-MobileNet, the
model trained with the triggers created using a more imperceptible setting withstands the
fine-tuning attack better than the original GNM. In addition to that, one needs to choose
the parameters for trigger creation in a way that the triggers are imperceptible enough
not to be distinguished as abnormal data, but robust enough to withstand possible
removal attacks.
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Table 6.26: Robustness evaluation across models and datasets. ✗ denotes a successful
attack configuration and ✓a robust watermark under attack configuration.

Dataset Model WM SNR WN PN TS PS C B HT LT FT P

TIMIT

SincNet GNM ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

IGNM ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

FNM ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

IEGNM ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓14 ✗1 ✓3 ✓

UAM ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

IUAM ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

MNet GNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓15 ✗2 ✓4 ✓

IGNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓14 ✗3 ✓4 ✓

FNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IEGNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓14 ✗3 ✓4 ✓

UAM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IUAM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

AM-MNet GNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓16 ✗1 ✓3 ✗1 ✓

IGNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓9 ✗8 ✓4 ✓

FNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IEGNM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓13 ✗4 ✓4 ✓

UAM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IUAM - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

VoxCeleb1

ResNet18 GNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓14 ✗1 ✗ ✓

IGNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓14 ✗1 ✗ ✓

FNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✗ ✓

IEGNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✗ ✓

UAM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓7 ✗6 ✓15 ✗ ✓

ResNet34 GNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓10 ✗5 ✗ ✓

IGNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓11 ✗2 ✓12 ✗3 ✗ ✓

FNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✓ ✓

IEGNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✗ ✓

UAM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓5 ✗8 ✓15 ✗ ✓

IUAM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✗ ✓

AutoSpeech GNM - ✓3 ✓3 ✓13 ✓10 ✓4 ✓1 ✓13 ✓13 ✗2 ✓ ✓

IGNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✗ ✓

FNM - ✓3 ✓3 ✓13 ✓10 ✓4 ✓1 ✓13 ✓15 ✓ ✓

IEGNM - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✓ ✓

UAM - ✓3 ✓3 ✓13 ✓10 ✓4 ✓1 ✓6 ✗7 ✓15 ✗ ✓
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6.6 Trade-off between Robustness and Imperceptibility
Here, we discuss in detail the trade-off between imperceptibility and robustness for various
dataset-model pairs, and afterward, we determine an optimal approach to balance this
trade-off. We explore the dataset-model-watermark settings in which the choice of a
more imperceptible watermark led to a deterioration of robustness that we discussed
above in Section 6.5. Among the models for the VoxCeleb1 dataset, we explore only the
parameter configurations for the AutoSpeech model due to the computational constraints.
The AutoSpeech model is chosen as the best-performing model for VoxCeleb1.

6.6.1 TIMIT
SincNet

For the SincNet model, only enhancing the imperceptibility of the Frequency Noise
watermark led to worse robustness. Thus, it is the only watermarking method evaluated
for this model below.

Frequency Noise Since we determined that λ = 0.2 with the Extreme Gaussian Noise
variant of Frequency Noise watermark yields triggers, whose imperceptibility can be
measured in SNR ≥ 30 dB, we experimented with the values of extreme low and extreme
high frequencies. The idea is that changing them does not drastically influence the LSD
and SNR values, but since they regulate the surface of overall watermark embedding,
they might have a bigger effect on robustness. Hence, in Table 6.27 we present the trigger
creation parameters of the original Frequency Noise watermark, the most imperceptible
setting chosen in the previous section, and the ones that we further evaluated in terms of
robustness. As can be seen, the ELF and EHF parameters influence the LSD metric, but
in terms of SNR, their values differ by 0.001 dB.

Table 6.27: Evaluation of Frequency Noise watermark applied to TIMIT dataset. Results
shown on the SincNet model.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑

Frequency Noise 2.0 1.0 300 3,000 100% 0.0108 20.6664 -1.3025

Extreme Gaussian Noise
- 0.2 100 6,000 100% 0.0129 6.0068 30.6359
- 0.2 150 5,000 100% 0.0173 6.6046 30.6361
- 0.2 200 4,500 100% 0.0188 6.7246 30.6373

Figure 6.52 depicts the results of the LT attack on the SincNet model watermarked
according to the WM settings presented in Table 6.27. The red colour of the points
indicates a successful removal according to our definition: SER does not worsen by
more than 0.05 while WMSR drops below 95%. We can see that only the attack on the
model with creation parameters {λ = 0.2, ELF=100, EHF=6,000} is successful; others

125



6. Results

Figure 6.52: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Frequency Noise SincNet models. Successful attacks are
marked in red.

(a) Fine-tuning attacks performed on EGNM
with λ = 0.2, ELF=150, EHF=5,000

(b) Fine-tuning attacks performed on EGNM
with λ = 0.2, ELF=200, EHF=4,500

Figure 6.53: Fine-tuning attacks performed on SincNet models watermarked with different
variants of Extreme Gaussian Noise watermark.

withstand it well. Hence, we perform a fine-tuning attack on the other two models that
have wider band frequency coverage for the watermark. Figure 6.53 shows the results of
fine-tuning attacks on the two models of SincNet. We can see that while in Figure 6.53a,
the fine-tuning of different layers does not drop the WMSR below the threshold of 95%,
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in Figure 6.53b, the fine-tuning of the CNN layer results in WMSR falling to 90%.

Based on the above experiments, we can determine that using a more imperceptible
watermark (tuned by λ parameter) but with enough coverage of the frequency band, we
can achieve an imperceptible and robust watermark.

MobileNet

For MobileNet, two of the watermarking methods with parameters that create more im-
perceptible watermarks result in a decrease of robustness: Gaussian Noise and Frequency
Noise. These are the ones that we investigate further.

Gaussian Noise For the Gaussian Noise watermark, we take the four values of λ,
other than the original one and the most imperceptible one, to compare their robustness.
In Table 6.28 are the results of the individual runs of these models. Since the attack to
which the Gaussian noise models are most susceptible is LT, in Figure 6.54, we present
the comparison of LT attacks applied to these models. We can observe the following:
λ = 0.2 results in three successful attacks, as well as λ = 0.3; λ = 0.4 yields two successful
attacks; λ = 0.5 and λ = 0.6 yield only one successful attack. Taking into consideration
the fact that the Gaussian Noise MobileNet model with λ = 0.5 withstands all four
fine-tuning attacks, it makes it more robust than the model with λ = 1.0.

Table 6.28: Evaluation of Gaussian Noise watermark applied to TIMIT dataset. Results
shown on the MobileNet model.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise

1.0 100% 0.0065 13.0948 16.6514
0.2 100% 0.0043 6.3771 30.6293
0.3 100% 0.0022 7.7801 27.1078
0.4 100% 0.0065 8.8952 24.6092
0.5 100% 0.0050 9.8287 22.6711
0.6 100% 0.0050 10.6348 21.0876
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Figure 6.54: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Gaussian Noise MobileNet models. Successful attacks are
marked in red.

Frequency Noise As well as for the SincNet model with Frequency Noise watermark,
we evaluate the different settings of the Extreme Gaussian Noise variant to see which
of them leads to the most robust watermark. We evaluate the same settings as in the
SincNet model. As can be seen in Table 6.29, the SERs of the other two variants are the
same or even smaller compared to the original watermark settings.

Table 6.29: Evaluation of Frequency Noise watermark applied to TIMIT dataset. Results
shown on the MobileNet model.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑

Frequency Noise 2.0 1.0 300 3,000 100% 0.0058 20.6664 -1.3025

Extreme Gaussian Noise
- 0.1 100 7,000 100% 0.0058 3.6815 36.6688
- 0.2 150 5,000 100% 0.0058 6.6046 30.6361
- 0.2 200 4,500 100% 0.0029 6.7246 30.6373

In Figure 6.55, we can clearly see that the LT attack on the original Frequency Noise
watermark deteriorates neither SER nor WMSR, while the more imperceptible the
watermark is, the easier it is to erase it, though SER worsens faster as well. Based on
our defined threshold, the Extreme Gaussian Noise variant with parameters {λ = 0.2,
ELF=150, EHF=5,000} results in the least number of successful attacks, namely only one:
LT 7,000 Hz. Moreover, verifying the fine-tuning attack, it does not lead to watermark
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removal.

Figure 6.55: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Frequency Noise MobileNet models. Successful attacks are
marked in red.

AM-MobileNet

For AM-MobileNet, the situation is similar to MobileNet: only Gaussian Noise and
Frequency Noise, when made more imperceptible, suffer from a loss in robustness. These
are the methods we investigate further.

Gaussian Noise In Table 6.30, we list the settings that we evaluate. From what we

Table 6.30: Evaluation of Gaussian Noise watermark applied to TIMIT dataset. Results
shown on the AM-MobileNet model.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise

1.0 100% 0.0036 13.0948 16.6514
0.1 100% 0.0036 4.4207 36.6494
0.2 100% 0.0043 6.3771 30.6293
0.3 100% 0.0050 7.7801 27.1078
0.4 100% 0.0050 8.8952 24.6092
0.5 100% 0.0050 9.8287 22.6711
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observe in Figure 6.56, the Gaussian Noise model with λ = 0.3 yields the smallest number
of LT attacks that successfully remove the watermark without deteriorating SER too
much. Then it is followed by λ = 0.3 and λ = 0.5. However, looking also at fine-tuning
attack in Figure 6.57, we see that with λ = 0.4, the WMSR falls to 0% right away. With

Figure 6.56: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Gaussian Noise AM-MobileNet models. Successful attacks
are marked in red.

(a) Fine-tuning attack performed on AM-
MobileNet watermarked with Gaussian
Noise; λ = 0.4.

(b) Fine-tuning attack performed on AM-
MobileNet watermarked with Gaussian
Noise; λ = 0.5.

Figure 6.57: Fine-tuning attack performed on Gaussian Noise AM-MobileNet.
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λ = 0.5, the drop happens later, when SER increases immensely. Hence, with the fidelity
cost of 0.0014, the AM-MobileNet model can be watermarked, so that it withstands all
fine-tuning attacks and 64 out of 66 other data preprocessing attacks.

Frequency Noise Following the choices of Frequency Noise settings from the SincNet
and MobileNet models, in Table 6.31 are listed the settings we analyse. We additionally
evaluated the setting with EHL=100 and EHF=6,100 to compare the results with a larger
value of λ, while keeping the frequencies in a relatively close range. We can observe in
Figure 6.58 that the closer the frequencies are to the extremums with the same value of λ,
the more susceptible the watermark is to the LT attack. As can be observed, LT attacks
have only two successful results for the parameter setting of the Extreme Gaussian Noise
model with parameters {λ = 0.2, ELF=200, EHF=4,500}, compared to the four attacks

Table 6.31: Evaluation of Frequency Noise watermark applied to TIMIT dataset. Results
shown on the MobileNet model.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑

Frequency Noise 2.0 1.0 300 3,000 100% 0.0043 20.6664 -1.3025

Extreme Gaussian Noise
- 0.1 100 6,000 100% 0.0065 3.6815 36.6688
- 0.2 100 6,100 100% 0.0072 5.9250 30.6378
- 0.2 150 5,000 100% 0.0065 6.6046 30.6361
- 0.2 200 4,500 100% 0.0065 6.7246 30.6373

Figure 6.58: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Frequency Noise AM-MobileNet models. Successful attacks
are marked in red.
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for the parameter setting of the Extreme Gaussian Noise model with {λ = 0.1, ELF=100,
EHF=6,000}. The model is also robust against fine-tuning attacks.

6.6.2 VoxCeleb1
AutoSpeech

Similarly, for the AutoSpeech model, only Gaussian Noise and Frequency Noise water-
marks in more imperceptible settings exhibited reduced robustness. These methods are
examined further below.

Gaussian Noise Here, we considered other λ values for the Gaussian Noise model
that we used in the Imperceptibility evaluation, but only the ones that yielded 100%
WMSR. In Table 6.32 are shown these values. From Figure 6.59, it can be seen that
all models except one have at least two cases where the watermark can be successfully
removed. Only with λ = 0.5, there is just one successful attack, namely LT with the
value 7,900 Hz. The model with λ = 0.5 also withstands the fine-tuning attack, with
the lowest WMSR being 96.22%. With such results, this model is more robust than the
original λ = 1.0 one, but it comes with the cost of fidelity of 0.0264.

Table 6.32: Evaluation of Gaussian Noise watermark applied to VoxCeleb1 dataset.
Results shown on the AutoSpeech model.

Effect. Fidelity Imperceptibility
WM λ WMSR↑ SER↓ LSD↓ SNR↑

Gaussian Noise

1.0 100% 0.1479 13.5594 15.9199
0.2 100% 0.1492 6.7661 29.9027
0.3 100% 0.1529 8.1826 26.3834
0.5 100% 0.1743 10.247 21.9467
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Figure 6.59: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Gaussian Noise AutoSpeech models. Successful attacks are
marked in red.

Frequency Noise For the Frequency Noise watermark, we evaluated the robustness of
the top-2 models based on the SER (not counting the original and the imperceptible ones),
more specifically, the models watermarked by the watermarks shown in Table 6.33. In
Figure 6.60, we can see how they perform under the LT data preprocessing attack. Only
two models withstand all of them: the original watermark, and the one with parameters
{λ = 1.0, ELF=100, EHF=6,000}. The resulting SNR of this watermark is 15.93, which
is below the acceptable SNR imperceptibility threshold of 20 dB. The fine-tuning attack
on this model does not remove the watermark, nor is it successful on other Frequency
Noise AutoSpeech models.

Table 6.33: Evaluation of Frequency Noise watermark applied to VoxCeleb1 dataset.
Results shown on the AutoSpeech model.

Effect. Fidelity Imperceptibility
WM mfcc_sc λ ELF EHF WMSR↑ SER↓ LSD↓ SNR↑

Frequency Noise 2.0 1.0 300 3,000 100% 0.1298 22.5900 -2.6448

Extreme Gaussian Noise
- 0.2 200 4,500 100% 0.1400 7.2651 29.9050
- 1.0 100 6,000 100% 0.1447 12.0189 15.9296
- 0.2 150 5,000 100% 0.1623 7.1944 29.9072
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Figure 6.60: The effect of LT data preprocessing attack with various high frequencies on
WMSR and SER of different Frequency Noise AutoSpeech models. Successful attacks are
marked in red.

6.6.3 Trade-off Evaluation Findings

In this section, by tuning the trigger creation parameters, we improved both the im-
perceptibility and robustness of two watermarking methods compared to their original
settings, namely the MobileNet Gaussian Noise model with λ = 0.5, and the AutoSpeech
Gaussian Noise model, also created with λ = 0.5.

We achieved the same level of robustness with significantly higher imperceptibility for
two models: SincNet with Frequency Noise, specifically Extreme Gaussian Noise using
parameters {λ = 0.2, ELF=150, EHF=5,000}, and AutoSpeech with Frequency Noise
using Extreme Gaussian Noise with parameters {λ = 1.0, ELF=100, EHF=6,000}.

In the case of MobileNet REGNM, one attack was still able to successfully remove the
watermark. While this represents an improvement over the IEGNM, it remains less
robust than in the original setting. Nonetheless, the imperceptibility improved by more
than 31 dB relative to the original setting.

For the AM-MobileNet model, two data preprocessing attacks were successful in both
Gaussian and Frequency Noise settings. Nevertheless, fine-tuning the AM-MobileNet
Gaussian Noise model did not result in a successful removal of the watermark.

Table 6.35 presents the overall results obtained in this section in comparison to the ones
from Sections 6.3 and 6.5. As before, the prefix ‘I’ before the name of a watermarking
method refers to the most imperceptible setting selected in Section 6.3, while ‘R’ denotes
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the most robust parameter configuration identified for each dataset–model–watermark
combination in this section, which can be found in Table 6.34. Cells are marked green
where improvements were achieved, and orange where robustness did not match the
original setting or the imperceptibility fell below the required threshold.

Table 6.34: Parameter settings for the most robust variant of the watermarking methods.

Dataset Model WM λ ELF EHF

TIMIT

SincNet REGNM 0.2 150 5,000
MobileNet RGNM 0.5

REGNM 0.2 150 5,000
AM-MobileNet RGNM 0.5

REGNM 0.2 200 4,500

VoxCeleb1 AutoSpeech RGNM 0.5
REGNM 1.0 100 6,000

The SincNet model can be watermarked effectively using all three methods, each of which
is robust to various attacks. When properly tuned, their imperceptibility satisfies the
minimum requirement of SNR ≥ 20 dB. Additionally, the Unrelated Audio watermark
achieves a low LSD of 3.5 dB. In terms of fidelity, both the Gaussian Noise and Unrelated
Audio methods perform best. Considering only imperceptibility and robustness, Extreme
Gaussian Noise yields the best results; however, when fidelity is also taken into account,
the Unrelated Audio watermark, specifically IUAM, is the preferred method based on
the results presented.

For watermarking either the MobileNet or AM-MobileNet model, the best-performing
watermarking method in terms of fidelity is Gaussian Noise. Extreme Gaussian Noise
achieves the best results for both models, with SER values that are comparable to those
of Gaussian Noise. However, in terms of robustness, the Unrelated Audio method again
performs best – albeit at the greatest cost to fidelity: 0.0037 and 0.0086 for MobileNet
and AM-MobileNet, respectively. All methods meet the minimum imperceptibility
requirement of SNR ≥ 20 dB. Therefore, the final choice of method depends on which
aspect – robustness, imperceptibility, or fidelity – is prioritised. Finally, since both
RGNM and REGNM offer the same level of robustness, but REGNM provides higher
imperceptibility, it is preferable to choose either REGNM or IUAM.

For the AutoSpeech model, the Unrelated Audio watermark is too imperceptible to
withstand robustness checks, even though the SNR is lower than 20 dB. Based on the
results, the REGNM model demonstrates greater robustness to attacks and yields a
lower SER, while RGNM offers higher imperceptibility. Considering that VoxCeleb1
contains noisy audio recorded in various real-world environments, unlike the high-quality
recordings in TIMIT used with SincNet, prioritising robustness is more appropriate in
this context. Therefore, REGNM is a preferable choice here.
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Table 6.35: Generality of SOTA watermarking methods: Robustness evaluation across
models and datasets. ✗ denotes a successful attack configuration and ✓a robust watermark
under attack configuration.

Dataset Model WM Fidelity Imperceptibility Robustness
SER↓ LSD↓ SNR↑ SNR WN PN TS PS C B HT LT FT P

T
IM

IT

SN GNM 0.0101 13.095 16.651 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

0.0051 IGNM 0.0094 10.635 21.087 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

FNM 0.0108 20.666 -1.303 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

IEGNM 0.0129 6.007 30.636 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓14 ✗1 ✓3 ✓

REGNM 0.0173 6.605 30.636 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

UAM 0.0101 3.890 23.039 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

IUAM 0.0101 3.495 24.977 ✓4 ✓3 ✓3 ✓13 ✓10 ✓4 ✓4 ✓13 ✓15 ✓3 ✓

MN GNM 0.0065 13.095 16.651 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓15 ✗2 ✓4 ✓

0.0057 IGNM 0.0043 6.377 30.629 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓14 ✗3 ✓4 ✓

RGNM 0.0050 9.829 22.671 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓16 ✗1 ✓4 ✓

FNM 0.0058 20.666 -1.303 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IEGNM 0.0058 3.682 36.669 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓14 ✗3 ✓4 ✓

REGNM 0.0058 6.605 30.636 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓16 ✗1 ✓4 ✓

UAM 0.0087 3.890 23.039 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IUAM 0.0094 2.773 29.059 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

AM-MN GNM 0.0036 13.095 16.651 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓16 ✗1 ✓3 ✗1 ✓

0.0043 IGNM 0.0036 4.421 36.649 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓9 ✗8 ✓4 ✓

RGNM 0.0050 9.829 22.671 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓15 ✗2 ✓4 ✓

FNM 0.0043 20.666 -1.303 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IEGNM 0.0065 4.351 36.656 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓13 ✗4 ✓4 ✓

REGNM 0.0065 6.725 30.637 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓15 ✗2 ✓4 ✓

UAM 0.0115 3.890 23.039 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

IUAM 0.0129 3.495 24.977 - ✓3 ✓5 ✓10 ✓10 ✓4 ✓4 ✓13 ✓17 ✓4 ✓

Vo
xC

el
eb

1

RN18 GNM 0.2306 13.095 15.920 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓14 ✗1 ✗ ✓

0.2978 IGNM 0.2258 10.247 21.947 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓14 ✗1 ✗ ✓

FNM 0.2485 22.590 -2.645 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✗ ✓

IEGNM 0.2480 7.265 29.905 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✗ ✓

UAM 0.2859 4.752 14.536 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓7 ✗6 ✓15 ✗ ✓

RN34 GNM 0.2396 13.095 15.920 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓10 ✗5 ✗ ✓

0.2206 IGNM 0.2066 6.766 29.903 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓11 ✗2 ✓12 ✗3 ✗ ✓

FNM 0.2016 22.590 -2.645 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✓ ✓

IEGNM 0.1959 7.265 29.905 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✗ ✓

UAM 0.2071 4.752 14.536 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓5 ✗8 ✓15 ✗ ✓

IUAM 0.2201 12.722 5.668 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✗ ✓

AS GNM 0.1476 13.095 15.920 - ✓3 ✓3 ✓13 ✓10 ✓4 ✓1 ✓13 ✓13 ✗2 ✓ ✓

0.1691 IGNM 0.1492 6.766 29.903 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✗ ✓

RGNM 0.1743 10.247 21.9467 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓14 ✗1 ✓ ✓

FNM 0.1298 22.590 -2.645 - ✓3 ✓3 ✓13 ✓10 ✓4 ✓1 ✓13 ✓15 ✓ ✓

IEGNM 0.1400 7.265 29.905 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓13 ✗2 ✓ ✓

REGNM 0.1447 12.019 15.930 - ✓3 ✓3 ✓13 ✓10 ✓4 - ✓13 ✓15 ✓ ✓

UAM 0.1515 4.752 14.5366 - ✓3 ✓3 ✓13 ✓10 ✓4 ✓1 ✓6 ✗7 ✓15 ✗ ✓
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CHAPTER 7
Approaches to improve Legality

and Robustness

In the previous chapter, we discussed at length how to balance the imperceptibility and
robustness aspects of the watermarks. Since the issue with the legality characteristic
persisted throughout all the experiments that we conducted, apart from the Unrelated
Audio watermark applied to the VoxCeleb1 dataset, in this chapter, we describe the
approaches we implemented to mitigate this problem and to enhance robustness. This
chapter consists of four parts: a smaller size of the trigger set, embedding a watermark
in a temporal pattern rather than the full audio signal, and using different trigger labels.

7.1 Smaller Trigger Set Size
The main problem with legality that we noticed is that a model overgeneralises on the
pattern that is added by the watermark, and then it recognises all the samples that have
a similar enough pattern. Here, we experimented with reducing the number of trigger
samples that carry the watermark, to rather make the model memorise a specific set
of triggers instead of a pattern. The idea originated from the fact that the SincNet
model watermarked with Unrelated Audio trained on triggers with α = 1/32 had higher
WMSR_NT compared to others, which indicated two things: to make a watermarking
pattern less generalisable, it should be more imperceptible, and the model should not be
exposed to it too often. The subsequent discussion focuses on determining appropriate
levels of imperceptibility and exposure.

In Table 7.1 we depict the results of embedding a watermark into SincNet using a smaller
number of triggers, which is combined with a smaller value of λ in some of the cases. The
robustness was evaluated only for the models that resulted in WMSR ≥ 95%. Table 7.1
consists of only those attacks that resulted in successful watermark removal. When a
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watermark was able to withstand the attack, we either did not put it in the table (e.g.,
for pink noise addition (PN)) or marked it as ✓, when this attack was successful for one
of the considered models (e.g., compression (C)). Due to computational constraints, the
robustness evaluation was conducted in a staged manner: when watermark effectiveness
and model fidelity were within acceptable ranges, data preprocessing attacks were applied;
if legality and data preprocessing results remained acceptable, model modification attacks
were subsequently performed.

Table 7.1: Evaluation of SincNet models watermarked by different approaches that use
a smaller number of trigger samples. The legality characteristic is evaluated based on
different watermarking methods: we verify whether a certain model can recognise unseen
triggers created by another scheme with different parameters: Gaussian Noise (GN),
Frequency Noise (FN), and Unrelated Audio (UA).

# Effect. Fidelity Imperceptibility Legality↓ Robustness
WM of triggers λ WMSR↑ SER↓ LSD↓ SNR↑ GN FN UA C LT FT

10 8 5

UAM
0.00005785

SER=0.0101

60 1.0 100% 0.0094 4.038 23.105 0 0 1 ✓ ✓ -
30 1.0 100% 0.0079 3.874 23.212 0 0 1 ✓ ✓ -
10 1.0 100% 0.0101 3.817 23.575 0 0 0 ✓ ✓ ✓3
60 0.5 100% 0.0108 2.889 29.125 0 0 1 ✓ ✓ -
30 0.5 96.67% 0.0123 2.765 29.232 0 0 0 ✓ ✓ ✓1 ✗2
30 0.1 23.30% 0.0303 1.193 43.209 0 0 0 - - -

GNM

SER=0.0101

60 0.6 100% 0.0101 10.893 20.862 5 2 0 ✓ ✓ -
30 0.6 100% 0.0101 11.020 20.971 3 0 0 ✓ ✓ -
10 0.6 100% 0.0087 10.315 21.066 0 0 0 ✓ ✗2 (7600-7700) -
30 0.4 100% 0.0094 9.249 24.492 4 2 0 ✓ ✓ -
30 0.2 96.67% 0.0129 6.674 30.513 0 0 0 ✗16000 ✗5 (7500-7900) -
30 0.1 30% 0.0202 4.656 36.533 0 0 0 - - -

EGNM 60 0.2 100% 0.0101 6.224 30.415 1 3 0 ✓ ✗4 (7400-7700) -
ELF=100 30 0.2 100% 0.0065 6.274 30.524 1 3 0 ✓ ✗2 (7600-7700) -

EHF=6,000 10 0.2 100% 0.0081 5.539 30.651 0 0 0 ✓ ✗3 (7500-7700) -
SER=0.0129 30 0.1 100% 0.0123 4.576 36.544 0 0 1 ✓ ✗3 (7500-7700) -

Unrelated Audio Since the legality issue persisted in nearly all settings except for
the Unrelated Audio watermarking method, we started the experiments with it.

We chose different sizes of the trigger sets, namely 60, 30, and 10, using λ = 1.0. All of
them resulted in a SER not higher than the SER of the original Unrelated Audio model,
which is 0.0101. The legality evaluation of these models shows a substantial improvement
compared to Table 6.25: only the triggers from one set of parameters of the Unrelated
Audio watermarking method are recognised by the model, which in both cases (with 60
and 30 triggers in the trigger set) are the ones created with noise_var = 0.000058 and
λ = 1.0. Using only 10 trigger samples to embed a watermark into the model results in
zero recognition of unseen triggers. The Unrelated Audio model with these parameters
also withstands both data preprocessing and fine-tuning attacks.
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Subsequently, we tried to reduce λ to make the watermark more imperceptible, namely
λ = 0.5 and λ = 0.1. Using 60 trigger samples, the WMSR still yielded 100%, while
with 30 trigger samples, it started to drop, resulting in 96.67% WMSR. The SER for
these models is slightly higher, especially for one trained on fewer triggers, which is
0.0123. Among them, a model watermarked using 60 triggers still recognised the samples
from one of the Unrelated Audio watermarking methods, while the one where we used
a trigger set of size 30 resulted in zero recognised settings. Data preprocessing attacks
were unable to remove these watermarks. We also performed a fine-tuning attack on this
model, and discovered that fine-tuning the CNN or first DNN layer of SincNet results in
WMSR falling below 95% success rate. With λ = 0.1, the WMSR drops significantly to
23.30%. Moreover, the SER also increases to 0.0303. Following the previous revelations,
we determined that choosing 30 trigger samples provides the fewest drawbacks.

Gaussian Noise Here, we again tried 60, 30, and 10 sizes with λ = 0.6 (the highest
value for which SNR is higher than 20 dB), but looked further into the setting with 30
triggers and various λ values: 0.6, 0.4, 0.2, 0.1. The results for different trigger set sizes in
Table 7.1 indicate that the model with 60 triggers recognised five Gaussian Noise settings
and two Frequency Noise settings. With smaller trigger sets, legality improves, but this
comes at the expense of robustness, as observed in the models with 30 and 10 triggers.
Among the different imperceptibility options with 30 triggers, λ = 0.6 resulted in three
parameter settings of Gaussian Noise being recognised, which were λ ∈ 1.0, 0.9, 0.8. The
Gaussian Noise model with λ = 0.4 recognised even more settings, while both λ = 0.2
and λ = 0.1 resulted in zero recognised settings. Nevertheless, taking into consideration
SER, which is higher for λ = 0.2 and λ = 0.1, and WMSR, which in the former model
still reaches 96.67%, and in the latter drops below the threshold, these parameter settings
are not optimal.

We also evaluate the robustness of the first five models of GNM listed in Table 7.1. The
majority of the ones that have 100% WMSR can withstand data preprocessing attacks,
except for the model with 10 triggers. The watermark in the last Gaussian Noise model,
created with 30 triggers and λ=0.1, can be easily removed by multiple approaches since
it has only 30% WMSR.

Frequency Noise Applying the same approach with the Frequency Noise watermarking
method’s Extreme Gaussian Noise variant did not result in a model that fulfils all the
requirements of WMSR, SER, legality, and robustness. The smaller the trigger size is,
the better the legality is, but the robustness becomes worse. Moreover, the higher λ,
specifically 0.2, resulted in a model that recognises four different settings from both
Gaussian and Frequency Noise. λ = 0.1, while better in legality, falls short in robustness.

Findings Overall, this approach demonstrates that it is possible to make the model
recognise only designated samples; however, in the majority of cases, the drawback is a
significant loss in robustness. Generally speaking, we consider robustness to be a more
important characteristic than legality, as it is essential that the ownership of a stolen
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model can be reliably proven. In contrast, as long as a malicious party is unaware of
the specifics of the watermarking method used to protect the model, it is unlikely they
would be able to forge the watermark. One setting of Unrelated Audio watermark leads
to no recognition of unseen triggers and is proven to be robust against various attacks,
the setting that uses 10 trigger samples. However, here, we face the question of whether
10 triggers are enough to prove the ownership of a model.

7.2 Temporal Pattern Embedding
Another approach that we tried was embedding a watermark not in the full length of a
frequency range, but at a certain time periods, e.g, embedding Gaussian noise in every
20th frame processed with window = 160 ms, step = 20 ms. That way, a watermark is
embedded not continuously, but based on a specific temporal pattern, which may change
how much the model generalises on a particular watermark. In Figure 7.1, we show
examples of such embeddings with different parameters on the same audio sample. The
parameters were for the Gaussian Noise with λ = 1.0 were selected to explore a variety
of scenarios, including overlapping versus non-overlapping frames, sparse versus dense
embedding, and different window sizes, rather than being based on any specific algorithm.
Then, considering the results, we evaluated two more cases with a smaller λ.

However, we found certain issues with this approach. Table 7.2 presents the results of
embedding the created watermarks into the SincNet model. We can observe the following
trends:

• When the noise was embedded in non-overlapping frames, the legality was better
than in the original Gaussian Noise model, but that led to poor imperceptibility.

• When the noise was embedded in overlapping frames, it improved the perceptual
quality of the audio sample, also making the watermark less noticeable; however,
the model recognised way more unseen triggers created with various schemes.

• Decreasing the λ improves imperceptibility and legality, but does not completely
mitigate the problem of recognising unseen triggers.

Additionally, the robustness of the discussed seven models was evaluated according to our
robustness evaluation design defined in Section 5.8. No attack was successful in removing
the watermark without deteriorating the SER beyond the set boundary.
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(a) window=160, step=20, each 20th frame,
λ = 1.0

(b) window=1600, step=100, each 10th
frame, λ = 1.0

(c) window=3200, step=160, each 5th frame,
λ = 1.0

(d) window=200, step=100, each 4th frame,
λ = 1.0

(e) window=20, step=10, each 3th frame,
λ = 1.0

(f) window=160, step=20, each 20th frame,
λ = 0.5

(g) window=200, step=40, each 10th frame,
λ = 0.5

Figure 7.1: Difference between clean and watermarked audio samples in amplitude, taken
from the TIMIT dataset, dialect 1 speaker FETB0 audio sx248.
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Table 7.2: Evaluation of the SincNet model watermarked by different approaches that
use a temporal pattern embedding scheme with Gaussian Noise. The legality charac-
teristic is evaluated based on different triggers. We verify whether a certain model can
recognise unseen triggers created by another scheme with different parameters: Gaussian
Noise (GN), temporal pattern-based Gaussian Noise (PGN), Frequency Noise (FN), and
Unrelated Audio (UA).

Effect. Fidelity Imperceptibility Legality↓
WM λ window step Frame WMSR↑ SER↓ LSD↓ SNR↑ GN PGN FN UA

10 7 8 5

GNM

1.0 160 20 20 100 0.0115 26.7440 0.0241 0 2 0 0
1.0 1,600 100 10 100 0.0202 7.4699 23.6571 7 4 3 0
1.0 3,200 160 5 100 0.0144 9.1761 23.6821 8 4 3 1
1.0 200 100 4 100 0.0072 16.0356 0.7541 2 2 2 0
1.0 20 10 3 100 0.0072 28.1162 -4.3657 0 1 0 0
0.5 160 20 20 100 0.0339 3.3672 27.6107 4 4 2 0
0.5 200 40 10 100 0.0209 4.8247 22.6877 3 4 3 0
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7.3 Different Labels
Following the idea of assigning different labels to trigger samples introduced in [ZJW+20],
we examine whether such unpredictability can support the legality characteristic of
watermarking. While we do not adopt the full algorithm proposed by Zhang et al.,
who assign the labels to triggers according to Logistic chaotic map, we randomly assign
labels to test whether our chosen speaker recognition models have sufficient capacity
to memorise varying label assignments that share the same watermark. This approach
ensures that newly generated triggers created by a malicious party would not be recognised
by the model – even if the overall watermarking method is known, since the specific
label assignments remain secret. For each trigger sample, the assigned label is selected
randomly from the set of available speakers, excluding its original identity.

Due to computational resource constraints, we evaluated this approach on three selected
models: SincNet, AM-MobileNet, and AutoSpeech. SincNet was used as the baseline
model; AM-MobileNet was included as it has been shown to outperform SincNet on
the TIMIT dataset; and AutoSpeech was selected as the best-performing model on the
VoxCeleb1 dataset.

Table 7.3: Imperceptibility and robustness evaluation of SincNet, AM-MobileNet, and
AutoSpeech models watermarked by triggers assigned to distinct speakers.

Effectiveness Fidelity Imperceptibility Robustness
Dataset Model WM Parameters WMSR↑ SER↓ LSD↓ SNR↑ HT LT FT

TIMIT

SN GNM 1.0 100% 0.0115 13.0948 16.6514 ✓ ✗1 (7,400) ✓2 ✗1
0.0051 IGNM 0.6 100% 0.0094 10.6347 21.0876 ✓ ✓ ✓2 ✗1

FNM 2.0 1.0 300 3,000 100% 0.0094 20.6664 -1.3016 ✓ ✗1 (7,600) ✓2 ✗1
EGNM 1.0 100 6,000 100% 0.0123 11.0875 16.6521 ✓ ✓ ✓

REGNM 0.2 150 5,000 100% 0.0144 6.6078 30.6331 ✓ ✗1 (7,400) ✓2 ✗1
UAM 1.0 0.000058 100% 0.0123 3.9695 23.0670 ✓ ✓ ✓2 ✗1

AM-MN GNM 1.0 100% 0.0043 13.0948 16.6514 ✓ ✗4 (5,900-6,200) ✓

0.0043 GNM 0.6 100% 0.0043 10.6321 21.0868 ✓ ✗4 (6,200-6,500) ✓

GNM 0.4 100% 0.0036 8.8952 24.6091 ✓ ✗4 (6,700-7,000) ✓

GNM 0.2 100% 0.0050 6.3736 30.6287 ✓ ✗10 (5,800-6,700) ✓

FNM 2.0 1.0 300 3,000 100% 0.0043 20.6664 -1.3016 ✓ ✗5 (5,400-5,800) ✓

REGNM 0.2 200 4,500 100% 0.0058 4.3513 36.6559 ✓ ✗5 (6,500-6,900) ✓

UAM 1.0 0.000058 100% 0.0072 3.9695 23.0670 ✓ ✓ ✓

VoxCeleb1 AS GNM 1.0 96.46% 0.1670 13.4611 16.0410 ✗3 (100-150) ✗1 (7,900) -

The results of this approach are presented in Table 7.3. Overall, the SER of the SincNet
model watermarked using different methods is higher than that of the original approach,
which can be attributed to the fact that it influences the predictions of more than one
class. With regard to data preprocessing attacks, some cases show one successful attack.
Given that the watermark cannot be forged using newly generated trigger samples, the
case when WMSR does not reach 100% is less critical compared to the original approach.
Although fine-tuning the CNN layer of the SincNet model generally leads to a reduction
in WMSR, the drop remains relatively small – for instance, down to 94.5% in the case of
the Gaussian Noise model with λ = 0.6, and 93.1% for the Unrelated Audio model.

For AM-MobileNet, we observe that the SER is comparable to the results previously
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achieved, though its robustness is considerably weaker, with only the Unrelated Audio
model passing all robustness checks.

For the AutoSpeech model, we initially used the same setup with 50 speakers and 126
trigger samples; however, this resulted in a 0% WMSR. After multiple experiments, the
results presented in Table 7.3 are based on 300 different speakers and 900 trigger samples.
We can thus conclude that this method can be successfully applied to AutoSpeech as
well, though it requires a higher number of trigger samples as well as a proportion of
speakers to be as successful as the original approach. The robustness and watermark
effectiveness (96.46%) do not quite reach our set standard; however, it is comparable to
ResNet18 and ResNet34 results.

7.4 Summary
Overall, the approach of using Different Labels (presented in Section 7.3) demonstrates the
best performance among those discussed in this chapter. It is applicable across multiple
models and achieves desirable outcomes: it improves legality by design, maintains
acceptable imperceptibility, and enhances robustness.

The strategy of utilising a Smaller Trigger Set (Section 7.1) shows potential for mitigating
the legality problem. However, it requires careful tailoring to each specific dataset-model-
watermark instance, which limits its generality.

The Temporal Pattern Embedding approach (Section 7.2) did not completely resolve the
legality problem in any of the tried settings, though in some instances it reduced the
number of recognised settings.
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CHAPTER 8
Conclusion

In this chapter, we summarise our work and reflect on the research questions outlined
in Chapter 1. We begin by discussing the main contributions of the thesis, followed by
answers to the research questions. Finally, we outline potential directions for future work.

8.1 Insights and Contributions
In this thesis, we investigated existing techniques for black-box watermarking of speaker
recognition models. We designed and implemented an evaluation framework to assess
watermarking approaches against key requirements: model fidelity, watermark effective-
ness, imperceptibility, legality, robustness, and generality. The trade-offs among these
characteristics were analysed, and we provided recommendations on suitable watermark-
ing methods for different model and dataset combinations. Furthermore, we proposed
approaches aimed at enhancing the robustness and legality of watermarking techniques.

We uncovered critical gaps in the existing works: undocumented parameters, inconsistent
method descriptions, and a lack of replicability guidelines. We find that effectiveness
and fidelity can vary significantly depending on trigger design and audio preprocessing
choices, making the methods difficult to calibrate, highlighting the importance of their
transparency.

To advance the field, we introduced audio-specific attack types (i.e., bandpass filtering,
compression, time stretching, pitch shifting) and an attack cost metric, which exposes
the unrealistic nature of certain attacks that degrade model utility while removing
watermarks. We also propose improved, audio-specific imperceptibility metrics (i.e., Log
spectrum distortion and Signal-to-Noise ratio) to evaluate watermarking methods.

Our analysis identifies opportunities for improving existing techniques, particularly their
robustness against audio preprocessing attacks such as high/low frequency filtering and
fine-tuning, both of which successfully removed watermarks in some settings. Additionally,
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an inherent trade-off between imperceptibility and robustness can be observed: while
higher imperceptibility often reduces robustness to certain attacks, it also lowers the risk
of detection by adversaries, thereby enabling stealthier watermarking.

We reveal a crucial vulnerability of the watermarking methods that was not verified
earlier, namely, the legality characteristic of the watermarking methods. In several cases,
triggers can be forged by a malicious party without knowing the exact parameters or, in
particular cases, even the method using which the trigger set was created, which could
allow adversaries to falsely claim model ownership. This is possible because the model
tends to learn the specific patterns embedded in the triggers rather than the complete
input, making it susceptible to imitation. Based on these observations, we propose
strategies to mitigate this issue, e.g., assigning triggers to various classes or reducing the
trigger set.

8.2 Research Questions
In this section, we present our contributions with regard to the research questions.

1. How does effectiveness of state-of-the-art watermarking techniques com-
pare in different model architectures and datasets? This question is ad-
dressed in Section 6.2. Overall, we applied the watermarking methods to two
datasets and six models. Here, the watermark performance was evaluated by two
aspects: the watermark effectiveness WMSR, and the model fidelity. The detailed
analysis regarding their specifics is discussed in the sub-questions below.

a) How effective are the watermarking techniques for other datasets?
The most notable difference lies in the level of distinction required in a
watermarking pattern embedded in the trigger samples. The TIMIT dataset
contains clean speech, allowing the model to detect even subtle discrepancies
(such as those introduced by the Unrelated Audio watermarking method)
without any particular loss in watermark effectiveness, although a gradual
loss in fidelity can be observed. In contrast, the VoxCeleb1 dataset comprises
audio of varying quality, often accompanied by background noise of different
origins. In such conditions, the watermark must be more pronounced for the
model to reliably recognise a trigger sample. For instance, comparing the
cases where models trained on each dataset achieved a 100% WMSR and
the highest possible fidelity, the best SNR for the VoxCeleb1 dataset using
the Unrelated Audio watermark was 14.54 dB, while for TIMIT, the SNR
reached 24.97 dB, 29.06 dB, and even 43.04 dB, depending on the model. This
suggests that for datasets with non-uniform audio quality, such as VoxCeleb1,
a more pronounced watermark is necessary for the model to reliably capture
it, whereas for more uniform datasets like TIMIT, a more subtle watermark
can still achieve the desired fidelity and WMSR.
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b) To what extent do the watermarking techniques succeed in protect-
ing models with different architectures? In all cases examined, the six
models were successfully watermarked using the proposed watermarking meth-
ods that we managed to reproduce. Model fidelity varied across watermarking
techniques, with the Unrelated Audio method performing the worst in this
regard in four out of six cases. Nevertheless, we empirically demonstrated that
models with different architectures, feature processing logic, and input formats
can be successfully watermarked using three watermarking methods: Gaussian
Noise, Frequency Noise, and Unrelated Audio. Furthermore, our proposed
Extreme Gaussian Noise algorithm was shown to be applicable across all these
models.

2. To what extent can we reduce the perceptibility of watermarks while still
reaching the same watermark effectiveness? In order to address this question,
we proposed using two established audio metrics: Signal-to-Noise Ratio and Log
Spectral Distortion – which, to our knowledge, have not previously been applied in
the context of watermarking, despite the availability of defined thresholds for these
metrics. Next, we assessed the imperceptibility of the reproduced watermarking
methods, which had not been systematically evaluated before. This revealed
that only the Unrelated Audio watermark came close to the defined threshold of
imperceptibility measure, although its performance was highly dependent on the
specific unrelated audio sample used. We identified key hyperparameters (both
those already existing in the watermarking methods and those newly introduced by
us) that significantly influence imperceptibility and can be easily tuned to achieve a
desired level of watermark stealthiness. After conducting a hyperparameter search,
we proposed a set of parameters that best fulfill this purpose in each case. By
further evaluation, we determined the following:

• For the SincNet model trained on TIMIT, achieving an SNR of ≥ 20 dB (which
is considered an acceptable imperceptibility for the watermark) is possible
without any loss in model fidelity or watermark effectiveness compared to
the original settings. However, using trigger sets with SNR ≥ 30 dB (which
is considered an imperceptible watermark) begins to degrade model fidelity,
although watermark effectiveness is maintained.

• Watermarking the MobileNet and AM-MobileNet trained on the TIMIT dataset
is possible even with a trigger set, achieving an SNR higher than 30 dB. LSD
values below 2 dB (which is considered an acceptable imperceptibility for the
watermark) are also achievable with TIMIT, albeit the model’s fidelity starts
to suffer in this case.

• For the VoxCeleb1 dataset that contained noisy audio, it is more challenging
to achieve higher imperceptibility. In order to preserve both watermark
effectiveness and model fidelity, the best results fall within the 20–30 dB SNR
range.
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• The Unrelated Audio watermark proved difficult to embed effectively in Vox-
Celeb1 while maintaining imperceptibility, effectiveness, and fidelity. We
assume it is due to the nature of Unrelated Audio (namely, air conditioner
sound) that is entirely plausible to occur under normal circumstances (i.e., it
is in fact not that unrelated to the dataset) and is harder for the model to
distinguish reliably.

Overall, except for the Unrelated Audio watermark applied to the VoxCeleb1
dataset, we identified configurations that enable the creation of more imperceptible
trigger sets that meet established imperceptibility criteria. Specifically, we improved
the imperceptibility in 15 out of 18 dataset–model–watermark combinations.

3. How robust are the state-of-the-art audio watermarking techniques for
SR models and how can their robustness be improved? To assess the
robustness of the watermarking methods, we considered multiple attack scenarios.
Our analysis revealed that some attacks reported in previous studies can indeed
remove the watermark, but at the cost of severely degrading model fidelity –
rendering the model unusable. To address this, we introduced the concept of an
attack cost to identify only those attacks that a malicious actor might realistically
employ, based on our defined threat model.

Our robustness evaluation includes both data preprocessing and model modification
attacks. The results revealed that the imperceptibility of a watermarking pattern
significantly affects its robustness. Overall, this evaluation uncovered the following:

• Models watermarked with Frequency Noise demonstrated the highest robust-
ness, successfully withstanding all data preprocessing and pruning attacks, as
well as fine-tuning in five out of six cases, falling short only for the ResNet18
model.

• The Unrelated Audio watermark comes second, passing all robustness checks
in three out of six cases. Its weaker performance is primarily linked to
models trained on the VoxCeleb1 dataset, specifically ResNet18, ResNet34,
and AutoSpeech, where the watermark failed to withstand fine-tuning and
low-frequency removal preprocessing. These results indicate that the Unrelated
Audio watermark is not well-suited for watermarking highly diverse datasets
such as VoxCeleb1.

• Our analysis indicates that state-of-the-art watermarking methods require
further refinement, as they exhibit key vulnerabilities by being either too
distinguishable for a malicious party to plausibly deny them passing through
a model, failing under specific attacks, or being susceptible to forgery.

• In addition, this research question also led us to evaluate legality, as we
discovered during our evaluation that the examined watermarking methods
are vulnerable to forgery.
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To address these issues, we proposed a refined version of the Frequency Noise
watermark that maintains robustness while improving imperceptibility. Specifically,
we eliminated the use of MFCC features in the embedding process, which allows
for higher-quality reconstruction of the raw audio. At the same time, we retain the
injection of Gaussian Noise in extreme frequency bands, now controlled by a newly
introduced intensity parameter, enabling finer adjustment of the watermark strength.
Moreover, by examining the trade-off between robustness and imperceptibility,
and taking into account model fidelity and watermark success rate, we identified
improved configurations for the Gaussian Noise and Unrelated Audio methods as
well, which more effectively meet the essential audio watermark requirements of
fidelity, imperceptibility, and robustness.
Furthermore, this thesis introduces several mitigation strategies to address the
legality problem: (i) assigning trigger samples to various speaker classes and (ii)
reducing the number of trigger samples, to prevent models from recognising unseen
trigger samples, thereby enhancing the legality aspect of watermarking methods.

8.3 Future work
We identify several directions for future work. Firstly, some of our proposed approaches
for improving legality and robustness showed promising results and can be analysed
further. Specifically, assigning various classes to the triggers. We implemented a lighter
version of random assignment to verify the approach; however, it can also be extended
to Zhang’s idea [ZJW+20] of assigning the labels ’chaotically’, meaning from the data
input, it can be derived which class is assigned (i.e., by a secret annotation scheme).

Furthermore, the authors of the three watermarking methods we replicated and analysed
claim that their techniques support watermark embedding via fine-tuning. However, they
do not provide any baselines and do not discuss any results obtained using this approach.
Verifying its effectiveness could be a worthwhile direction, provided that robustness
is not compromised. If successful, it would significantly improve the efficiency of the
watermarking process. Another potential direction would be to explore watermarking in
alternative architectures for speaker recognition, such as transformer-based models, which
may introduce new opportunities as well as challenges for robustness and imperceptibility.

Considering that black-box watermarking of machine learning models in the audio domain
remains relatively underexplored, it would be valuable to examine whether these methods
can be extended to Speech Recognition models. This would require the verification of the
sensitivity of clean models to modifications, as such models must accurately distinguish
each pronounced syllable. Moreover, the threshold for imperceptibility may differ due to
stricter perceptual constraints.
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APPENDIX A
Appendix

Table A.1: UrbanSound8K audio samples used in the experiments with their corresponding
noise variance values.

Noise variance Audio sample
0.05863584 fold8/80589-0-0-0.wav
0.04734541 fold1/59277-0-0-0.wav
0.00590028 fold9/189989-0-0-1.wav
0.00043166 fold3/13230-0-0-12.wav
0.00017814 fold6/63724-0-0-13.wav
0.00004772 fold5/178686-0-0-60.wav
0.00007485 fold5/178686-0-0-7.wav
0.00005785 fold5/178686-0-0-33.wav
0.00003688 fold9/165454-0-0-12.wav
0.00000090 fold3/159761-0-0-6.wav
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Overview of Generative AI Tools
Used

Grammarly and Writefull were used in this thesis for grammar checking and style editing.
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