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Abstract

Machine learning workflows in modern scientific research are often fragmented across

multiple tools and environments, resulting in scattered or incomplete metadata.

This fragmentation makes it impracticable to determine how models were trained,

which datasets were utilized, and what decisions impacted experimental results.

As a result, transparency, reproducibility, and auditability deteriorate, limiting the

long-term reliability and reusable nature of machine learning research.

This thesis examines how semantic provenance techniques can be included into Vir-

tual Research Environments (VREs) in order to address these problems. By defining

key metadata needs across the machine learning lifecycle, we create a formal map-

ping to community standards like as FAIR, FAIR4ML, PROV-O, Croissant, and

MLSEA. Based on this basis, we suggest a strategy for integrating diverse metadata

sources into a semantically rich representation.

This approach is implemented within a modular framework that combines Jupyter-

Hub, GitHub, DBRepo, and Invenio, with MLflow support for semi-automated

metadata gathering. Key aspects including dataset provenance, training setups, run-

time environment, and justification information are exported in machine-readable

forms (JSON-LD and RDF/XML). A Streamlit-based dashboard makes it easier to

visualize, compare experiment runs, and do SPARQL-based provenance queries.

The framework is assessed using targeted experiments and a user study with two ma-

chine learning practitioners. The results show that over 70% of field-level metadata

was captured using automation or semi-automation, confirming the framework’s us-

ability, traceability, and conformity with semantic standards. Overall, this work

provides a repeatable and standards-compliant solution to manage provenance in

machine learning pipelines within VREs.
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Kurzfassung

Machine-Learning-Workflows in der modernen wissenschaftlichen Forschung sind oft

über mehrere Tools und Umgebungen fragmentiert, was zu verstreuten oder unvoll-

ständigen Metadaten führt. Diese Fragmentierung macht es unmöglich, nachzuvol-

lziehen, wie Modelle trainiert, welche Datensätze verwendet und welche Entschei-

dungen die experimentellen Ergebnisse beeinflusst haben. Dadurch verschlechtern

sich Transparenz, Reproduzierbarkeit und Überprüfbarkeit, was die langfristige

Zuverlässigkeit und Wiederverwendbarkeit der Machine-Learning-Forschung ein-

schränkt.

Diese Arbeit untersucht, wie semantische Provenienztechniken in virtuelle

Forschungsumgebungen (VREs) integriert werden können, um diese Probleme zu

lösen. Durch die Definition der wichtigsten Metadatenanforderungen über den

gesamten Lebenszyklus des maschinellen Lernens erstellen wir eine formale Zuord-

nung zu Community-Standards wie FAIR, FAIR4ML, PROV-O, Croissant und

MLSEA. Auf dieser Grundlage schlagen wir eine Strategie zur Integration ver-

schiedener Metadatenquellen in eine semantisch reichhaltige Repräsentation vor.

Dieser Ansatz wird in einem modularen Framework implementiert, das Jupyter-

Hub, GitHub, DBRepo und Invenio mit MLflow-Unterstützung für die halbautoma-

tische Metadatenerfassung kombiniert. Wichtige Aspekte wie Datensatzherkunft,

Trainings-Setups, Laufzeitumgebung und Begründungsinformationen werden in

maschinenlesbaren Formaten (JSON-LD und RDF/XML) exportiert. Ein Streamlit-

basiertes Dashboard erleichtert die Visualisierung, den Vergleich von Experi-

mentläufen und SPARQL-basierte Herkunftsabfragen.

Das Framework wurde anhand gezielter Experimente und einer Nutzerstudie mit

zwei Machine-Learning-Experten bewertet. Die Ergebnisse zeigen, dass über 70%
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der Metadaten auf Feldebene automatisiert oder halbautomatisiert erfasst wurden.

Dies bestätigt die Benutzerfreundlichkeit, Rückverfolgbarkeit und Konformität des

Frameworks mit semantischen Standards. Insgesamt bietet diese Arbeit eine wieder-

holbare und standardkonforme Lösung für das Herkunftsmanagement in Machine-

Learning-Pipelines innerhalb von VREs.
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1 Introduction

1.1 Motivation

Machine Learning (ML) procedures have become essential in current scientific re-

search, enabling everything from exploratory data analysis to predictive modeling.

As these workflows develop in size and complexity, ensuring transparency, repro-

ducibility, auditability, and traceability becomes more important-but remains an

everyday challenge.

Today’s ML experimental processes are frequently scattered among tools, computa-

tional environments, and storage systems. Datasets may be reused in several studies

without effectively documenting their origin or revisions. Models may be trained

and retrained without noting the reasoning for crucial decisions. This absence of

organized metadata makes it harder to replicate past studies, troubleshoot proce-

dures, and assess the trustworthiness of results, lowering the research quality and

hindering progress.

To address these issues, Virtual Research Environments (VREs) have arisen as

platforms for combining tools, databases, and procedures. However, many VREs

currently lack built-in mechanisms for collecting and linking metadata information

consistently across the ML pipeline, from data import to model evaluation.

This thesis attempts to fill this gap by developing a provenance-aware VRE frame-

work that allows for structured, verifiable ML experimentation. It integrates

JupyterHub, GitHub, and MLflow with a research data repository ecosystem

(DBRepo and Invenio). This framework enables end-to-end documentation and

examination of machine learning operations, with a primary focus on classification

19



CHAPTER 1. INTRODUCTION 20

workflows, in a transparent and standards-compliant manner.

1.2 Research Questions

The primary purpose of this thesis is to investigate how provenance mechanisms

might be practically integrated into VREs to support data-driven, provenance-aware

ML operations. This is led by the following research questions:

RQ1: Model and Data Provenance

Which methods for tracing and documenting the provenance of machine learning

experiments capture metadata from data sources and code repositories with the high-

est degree of (a) automation, (b) alignment with provenance standards (e.g., W3C

PROV-O, FAIR), and (c) completeness of metadata, based on evaluation within a

reproducible benchmarking environment?

Sub-questions:

• RQ1.1 — Data Provenance: What percentage of required data prove-

nance metadata (e.g., dataset origin, versioning, preprocessing steps) can be

automatically or semi-automatically captured and structured using standards

such as Croissant, FAIR, and PROV-O, by embedding workflows in Jupyter

Notebooks and linking to DBRepo?

• RQ1.2 — ML Model Provenance: What percentage of machine learn-

ing model provenance metadata (e.g., training configuration, model version,

evaluation metrics) can be automatically or semi-automatically recorded and

aligned with standards like PROV-O, MLSEA, and FAIR4ML by monitoring

training activities in Jupyter Notebooks and integrating with MLflow?

RQ2: Use of Metadata for Reproducibility and Analysis

What role can the collected metadata play in supporting provenance-related tasks

such as auditing, debugging, reproducibility checks, and inspection of end-to-end
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workflows?

Use-case questions include:

• Provenance and Reproducibility: How was a specific result (e.g., a metric

or plot) produced?

Which versions of data, code, parameters, and preprocessing steps were used?

Can the exact experiment be reproduced solely based on the captured meta-

data?

• Experiment Versioning and Error Tracing: Which experiments were run

on outdated or faulty data/code?

Who was affected by these experiments, and how can they be notified?

• Configuration and Evaluation Tracking: What data splits, tuning pa-

rameters, or evaluation strategies were used in an experiment?

How did these choices affect model performance e.g. precision, recall, F1-score?

• Model–Data Relationship Mapping: Which models were trained on which

(versioned) datasets?

How did each model perform across different datasets or configurations?

• Repository Fork Awareness and Collaboration: Are there outdated or

diverging forks of code or datasets?

Can collaborators affected by such forks be identified and alerted?

RQ3: Visualization and Interaction

How effectively can interactive visualization and analysis of provenance metadata

support researchers in understanding, interpreting, and improving their machine

learning workflows within a virtual research environment (VRE)?

Sub-questions:
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• Which types of visual and analytical elements (e.g., traceability flows, model

plots, segmented and structured visualization of metadata information) im-

prove users ability to interpret and trace ML workflow metadata?

• Can provenance-based visualizations enable researchers to identify inefficien-

cies, trace decision points, and enhance reproducibility, as measured through

task completion accuracy and user feedback?

RQ4: Standards and Metadata Mapping

What methods can be employed to convert collected provenance metadata into stan-

dardized schemas (JSON-LD, RDF/XML), and how can these improve interoper-

ability and long-term usability across platforms?

1.3 Thesis Structure

This thesis is organized into six chapters and an appendix:

• Chapter 1: Introduction explains the rationale, research challenge, and

important research questions for this thesis. It discusses the constraints of

current ML workflow techniques and suggests a provenance-aware Virtual Re-

search Environment.

• Chapter 2: Related Work investigates previous research on metadata stan-

dards (e.g., FAIR, PROV-O), Virtual Research Environments (VREs), and

tools for ML provenance tracking.

• Chapter 3: Methodology describes the study design, which includes the De-

sign Science study Methodology (DSRM), a user-centered assessment method-

ology, and a systematic approach to mapping metadata fields. It also empha-

sizes the purpose of each research question.

• Chapter 4: System Architecture and Implementation describes the

proposed architecture, implementation method, and provenance capture tech-
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nologies. It contains system diagrams, metadata pipelines, and framework-

specific semantic mapping approaches.

• Chapter 5: Evaluation and Visualization describes the user research

and empirical evaluation. It evaluates usability, metadata completeness, and

repeatability utilizing important metrics, qualitative comments from test users,

and visualizations relevant to these evaluations.

• Chapter 6: Discussion and Conclusion reflects on the findings, assesses

strengths and limits, and proposes future options for increasing automation,

visualization, and standardization in ML provenance systems.

• Appendix provides additional artifacts, such as system screenshots, meta-

data schema mappings, and utility scripts used during implementation and

evaluation.



2 Related Work

2.1 Virtual Research Environments (VREs)

Virtual Research Environments (VREs) offer the necessary infrastructure to enable

collaborative, repeatable, and data-intensive scientific operations. These platforms

integrate processing, storage, and data analysis capabilities to make it easier to

run and share experiments. However, its integration with machine learning (ML)

processes is restricted, notably in terms of metadata, modularity, and provenance.

Galaxy Originally built for biomedical research, Galaxy [1] provides a browser-

based interface for performing workflows. While it enables reproducibility through

workflow versioning, it is largely focused on genomics and does not support general-

purpose ML features like as model registries and feature provenances.

REANA The REANA platform [2] emphasizes reproducibility and reusability via

containerization and workflow language support. It works seamlessly with CERN’s

architecture, tracking data via containers and storage levels. However, it lacks

semantic-level information and integrations for ML-based experiment tracking.

JupyterHub [3] is widely used for notebook-based experimentation and supports

shared computing environments. It offers freedom but does not enforce provenance

or structured metadata. External tools such as MLflow are required for accurate

experiment tracking.

24
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iRODS The iRODS platform [4] provides rule-based data governance and meta-

data annotation, however it focuses more on data preservation than dynamic ML

experimentation. Its value rests on backend assistance rather than pipeline execu-

tion.

Taverna and myExperiment These tools [5] [6] helped pioneer process sharing

in early e-Science activities. Despite their historical importance, they lack current

capabilities like as container support and deep machine learning integration.

COMET , Configurable, Observable, Modular Evaluation Tool [7] is a

provenance-aware framework that interacts with Jupyter to automatically collect

information using standards like PROV-O, FAIR, and Croissant. It attempts to

decrease user burden while still enabling comprehensive metadata gathering and

ML-native design. COMET is a standalone tool that aims to enable repeatable

experimentation in machine learning contexts.

While our system has comparable aims, such as modularity and adherence with

FAIR principles, it was created independently and focuses on lightweight setup and

organized information output. Unlike COMET, it provides for more detailed cus-

tomisation across several ML pipelines, notably in adapting provenance capture and

export logic to individual research requirements and allowing flexibility to extend

the functionality.

Limitations in VREs

• Provenance granularity is limited; many platforms don’t capture transfor-

mation details.

• Metadata standardization is lacking, with formal formats such as W3C

PROV-O, Croissant, and FAIR4ML being seldom used.

• ML-centric features like versioning and hyperparameter tracking are miss-

ing.
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• User adaptability suffers due to high configuration and deployment over-

head.

2.2 Metadata Management and Ontologies

Effective metadata improves repeatability and transparency in ML workflows. De-

spite the availability of established standards, most ML tools do not completely

implement them.

W3C PROV-O and PROV-IO+: The W3C PROV [8] model captures prove-

nance using entities, activities, and agents. PROV-IO+ [9] applies this to describing

scientific data and parameters.

Croissant Croissant [10] is a lightweight JSON-LD schema aligned with

Schema.org, aimed at FAIR datasets. It excels at static information but lacks

pipeline dynamism, such as training configuration.

FAIR, FAIR4ML The FAIR rules [11] encourage open and reuse research meta-

data. FAIR4ML [12] applies this to ML settings, focusing on repeatability and

auditability.

Limitations

• Poor integration with ML libraries

• Weak support for entire pipeline semantics

• Ontologies need a significant amount of learning

• Gaps in the description of modular pipelines

Our approach attempts to reduce these gaps by automatically or semi-automatically

capturing metadata during execution.
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2.3 Experiment Tracking and Provenance

MLflow MLflow [13] supports logging, artifact storage, and model versioning.

However, it uses an internal format and lacks native support for semantic standards

like PROV-O, FAIR, or others.

DVC Data Version Control [14] adds Git-style lineage tracking to data and models.

It captures pipeline I/O but does not log training-specific metadata or semantic

relations, which is important for data lineage.

Limitations

• Proprietary metadata formats

• High-level logging with minimal traceability

• Burdensome post-hoc metadata transformations

Our Contribution enhances MLflow by including semantic metadata collection

across the ML pipeline using standards like as PROV-O, FAIR4ML, MLSEA, and

Croissant. It adds structured semantic metadata to MLflow logs, such as justifica-

tion logs, Git commit linkage, and dataset DOI mappings, to increase traceability

and repeatability. Metadata is automatically exported in JSON-LD and RDF/XML,

making it compatible with semantic web technologies. This is accomplished with

minimum setup, minimizing cognitive strain on practitioners while enabling trans-

parent, FAIR-compliant experimentation.

2.4 Usability and User Adaptability

Cognitive Load Many provenance technologies need sophisticated setup and on-

tology configuration, which increases the cognitive strain on researchers, particularly

those who lack semantic web competence. This typically hinders adoption in actual

machine learning environments [15].
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Reuse Barriers Tools like DVC and MLflow promote modular pipelines, but still

require users to navigate intricate directory structures and tracking server configu-

rations. Our framework addresses this by offering:

• Lightweight selection interfaces.

• Modular, preconfigured templates.

• Minimal code rewrites for new datasets or models for comparable machine

learning challenges, such as classification.

2.5 Summary

This chapter examined the environment of Virtual Research Environments (VREs),

metadata standards, experiment tracking tools, and usability issues related to re-

peatable machine learning workflows.

Most existing VREs, such as Galaxy, REANA, and iRODS, provide generic in-

frastructure for data-intensive science but lack significant integration with machine

learning processes, particularly in terms of modularity, semantic metadata collec-

tion, and provenance tracking. While solutions like MLflow and DVC provide for

fundamental experiment tracking and version control, they do not natively sup-

port semantic standards like PROV-O, FAIR4ML, or Croissant, making downstream

reuse and auditability challenging.

Ontologies such as W3C PROV-O, Croissant, and FAIR4ML lay a solid foundation

for structured information, but they are frequently neglected because of their inte-

gration complexity and high learning curves. Previous attempts, such as COMET,

have demonstrated that semantic logging within Jupyter-based systems is possible,

but they may impose predefined processes or limit flexibility.

Our system bridges these gaps by integrating semantic metadata collection,

lightweight setup, and automatic export to compatible formats. It supports fine-

grained provenance, just-in-time user input, and modular flexibility, distinguishing

itself as a versatile solution for FAIR-compliant ML exploration.



3 Methodology

This research project uses a multi-method approach that includes a Design Science

Research Methodology (DSRM), a Systematic Literature Review (SLR), and struc-

tured metadata harmonization. The methodological basis provides both theoretical

soundness and practical feasibility, assisting in the construction of a provenance-

aware ML infrastructure that runs on notebook-based VREs. Jupyter, Streamlit,

and MLflow were used alongside with GitHub data versioning and database reposi-

tories such as Invenio and DBRepo.

3.1 Design Science Research Methodology (DSRM)

DSRM, as stated by Hevner [16], facilitates iterative design and assessment of ar-

tifacts in information systems research. In this thesis, the artifact is a modular

Virtual Research Environment that allows for metadata collection, version tracking,

and semantic export inside ML workflow.

Problem Identification

Existing ML tools and VREs lack fine-grained, standards-compliant provenance cap-

ture. Metadata is spread among systems like JupyterHub, GitHub, DBRepo, and

Invenio, which reduces transparency, reproducibility, and metadata compatibility.

29
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Objectives of the Solution

The system must enable semi-automatic and uniform metadata collecting through-

out the ML lifespan. This includes session metadata, dataset metadata through

DOI resolution, Git-based version control, and alignment with semantic meta-

data standards such as FAIR [11], PROV-O [8], Croissant [10], MLSEA [17], and

FAIR4ML [12].

Design and Development

The core system integrates:

• Metadata collection from JupyterHub, MLflow, GitHub, Invenio and DBRepo

• Global access to machine learning experiment metadata via a structured,

queryable database on DBRepo.

• Ontology-based classification using FAIR, PROV-O, FAIR4ML, MLSEA, and

Croissant and structuring one Json file.

• Streamlined dashboard interface designed to support intuitive user interaction

and accelerate framework adaptability.

• Structured export to machine-readable forms (JSON, JSON-LD, and RD-

F/XML), the latter two of which are compatible with open-source tools and

offer interactive querying via SPARQL.

Demonstration

Prototype execution occurs in Jupyter notebooks, where the system logs metadata

during live ML experiments. Outputs are visualized via Streamlit in components

such as:

• Dataset Metadata – Metadata fields extracted from DBRepo and DOI end-

points, including license, schema, and citation metadata.
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• Model Metadata – Hyperparameters, metrics, and training details structured

and grouped by ontology schemas such as PROV-O , FAIR4ML, and MLSEA.

• Provenance Trace – Visual links between dataset, model, and environment

versions, including Git commit hashes and session metadata. Additionally, se-

lected two runs are compared side by side, with differences highlighted between

the two.

• Error and Version Impact – Highlights version drift and outdated runs by

comparing metadata snapshots across executions. Includes an option to pro-

grammatically notify relevant collaborators by creating GitHub issues, with

the notification details also captured in the metadata file.

• Model-Dataset Mapping – Visual metadata showing model reuse across

datasets, aiding traceability.

• Export Provenance – Metadata export in machine-readable formats such as

JSON-LD and RDF/XML, aligned to PROV-O standards.

Evaluation

Based on the four research questions presented in Chapter 1.2, the assessment of the

suggested system is organized. Metadata quality, reproducibility, usability, and in-

teroperability are the four main components of system performance that are reflected

in the particular assessment criteria that are translated from each research question.

Implementation fidelity and practical value are evaluated using these criteria.

Table 3.1 covers each research question in brief, along with the relevant criterion,

evaluation technique, and section discussing the findings.
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RQ Evaluation Criterion Method Section

RQ1 Metadata completeness, align-
ment, and automation

Evaluate metadata from multiple runs against
a reference schema; measure field presence, de-
fault usage, and degree of automation (manual
vs. auto-captured fields).

5.2

RQ2 Reproducibility, traceability,
debugging

Reproduce experiments using metadata alone;
verify Git commit and dataset links; assess de-
bugging via version comparison and dashboard
tools.

5.3

RQ3 UI visualization effectiveness Conduct structured user study with task ex-
ecution and feedback collection; analyze re-
sponses from Likert ratings and open com-
ments on visual clarity and usefulness.

5.4

RQ4 Metadata export compatibility
and SPARQL access.

Test exports to JSON-LD and RDF/XML us-
ing open-source tools and run SPARQL queries
to confirm accessibility.

5.5

Table 3.1: Summary of evaluation criteria and methods per research question

Communication

All findings, metadata structures, and tool usage are documented in this thesis. The

Streamlit dashboard provides an interactive entry point for the users.

3.2 Systematic Literature Review (SLR)

A systematic literature review (SLR) was carried out to guide the metadata archi-

tecture, standards alignment, and system design of the proposed provenance-aware

Virtual Research Environment (VRE). The review follows Kitchenham’s approach

[18], concentrating on metadata schemas, VRE architectures, and provenance track-

ing tools in machine learning repeatability.

Review Scope

• Databases and Sources: Sources included IEEE Xplore, SpringerLink,

ACM Digital Library, arXiv, Zenodo, DataCite, myExperiment, and insti-

tutional repositories (e.g., TU Wien’s reposiTUm, CERN Document Server).

We prioritized both general frameworks (e.g., DBRepo [19]) and tools like

ProTracker [20], PROV-IO+ [9], and Trrack [21].
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• Keywords and Search Terms: “provenance logging”, “provenance track-

ing”, “ML reproducibility”, “semantic logging”, “XAI provenance”, “XAI ma-

chine learning pipeline” , “provenance data management”, “ provenance in

machine learning”, “ontology-based logging”, “PROV-O”, “MLSEA”, “metadata

mapping”, “data lineage”, “VRE provenance”.

• Inclusion/Exclusion Criteria and Review Strategy: Papers that merely

deal with static information (e.g., for datasets) or focus entirely on domain-

specific schemas (e.g., genomics, astronomy) without extending to machine

learning or reproducibility infrastructure. We focused on literature from 2010-

2024 to capture both foundational and emerging developments

Thematic Analysis and Literature Synthesis

Provenance Models: Foundational and Emerging Ontologies The under-

lying standard for structured and interoperable provenance modeling is the W3C

PROV-O ontology [8]. Its abstraction frequently restricts its expressiveness in ML-

specific circumstances, despite the fact that its entity-activity-agent pattern has

been adopted in many fields. Hyperparameters, evaluation metrics, model explana-

tions, and feature selection are examples of domain-specific elements used in machine

learning workflows that PROV-O does not natively capture.

In order to overcome these constraints, recent publications have suggested alterna-

tives and expansions. A systematic vocabulary for recording ML pipeline metadata,

including feature selection and training parameters, is provided by MLSEA [17].

Croissant [10] and FAIR4ML [12] concentrate on the reuse and interoperability of

dataset metadata. Despite the encouraging nature of these initiatives, acceptance

is still dispersed because of their complexity, uneven tooling, and lack of native

connection with ML lifecycle platforms.

Provenance Logging in ML Platforms Popular tools like MLflow are now

essential for putting ML experiments into practice. Articles like "Practical Deep

Learning at Scale with MLflow" [22] and "Machine Learning Engineering

with MLflow" [23] explain how MLflow can serve models via registry and tracking
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APIs and log parameters, metrics, models, and artifacts.

The metadata format used by MLflow, however, is proprietary and does not adhere

to semantic standards. RDF, JSON-LD, and SPARQL are not supported; export

is restricted to JSON. Metadata is not platform-interoperable, stays flat, and lacks

global identifiers like ORCID and DOI. Because of this, MLflow has minimal useful-

ness for long-term reproducibility, cross-platform reuse, or interaction with metadata

repositories (such as Invenio or DBRepo), despite its exceptional usability. Practical

evaluations consistently found these gaps [9, 24].

Scientific and Semantic Provenance Frameworks The goal of a number of

research-grade systems is to semantically coherently capture provenance. PROV-

IO+ [9], for instance, expands PROV-O by providing HPC-specific support for RDF

export and structured metadata collecting across platforms. By adding domain-

specific semantics for workflow-level provenance and fine-grained execution tracing,

tools like ProTracker [20], ProvONE [25], and PAV [26] expand upon PROV-O. PAV

is especially pertinent to machine learning systems that incorporate code, model,

and dataset development since it places an emphasis on authorship, versioning, and

citation metadata. ProvONE focuses on data dependencies and workflow organiza-

tion in scientific computing.

However, real-time, iterative machine learning development is not directly supported

by these tools, which are primarily made for static, batch-oriented scientific oper-

ations. In particular, not many provide connection with notebook-based environ-

ments (like Jupyter) or capture technologies that are often used in modern machine

learning pipelines, such as GitHub, MLflow, or Streamlit.

Virtual Research Environments (VREs): Provenance-Aware but

ML-Limited VRE platforms such as Galaxy [1], REANA [2], and iRODS [4] pro-

mote reproducibility through containerization, execution encapsulation, and data

lineage tracking. However, a number of machine learning-specific needs, such as

hyper-parameter monitoring, model or dataset versioning, architecture-level logging,

and semantic export of results in line with ML ontologies, are usually not covered

by these platforms.
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The provenance-aware framework COMET [7] is used in combination with Jupyter

to gather metadata in accordance with PROV-O, FAIR, and Croissant standards.

Nevertheless, automatic export to compatible semantic forms such as RDF/XML

or JSON-LD utilizing FAIR4ML or PROV-O vocabularies is not supported by

COMET. Additionally, it provides little flexibility for adjusting export logic across

several ML pipelines or changing provenance capture. Users are unable to mod-

ify the granularity of collected provenance or define custom information fields, for

instance.

The suggested solution, on the other hand, allows for customizable information cap-

ture at many pipeline phases, such as justification logging, model design, dataset

import, session startup, and Git snapshotting. Custom metadata schemas and map-

pings may be defined by users using editable JSON structures, and results can be

exported in RDF/XML and JSON-LD formats that are compatible with FAIR4ML,

MLSEA, PROV-O, and Croissant. For enhanced provenance tracking, it also fa-

cilitates direct interaction with collaborative platforms like GitHub and metadata

repositories like DBRepo [19].

Visualization and Debugging: Gaps in Traceability Many research inves-

tigations that highlight the significance of provenance-based explainability may be

found in the literature that is currently available. Lineage tracking is used to as-

sist model interpretability in “Provenance-based Explanations for ML Mod-

els” [27]. PipelineProfiler [28] and similar tools, however, concentrate on debug-

ging at the pipeline level using interactive visualizations.

These systems, however, hardly ever offer automatic metadata export or conform

to semantic standards. Therefore, even while they enhance interpretability and

usability, they don’t help create standard-compliant metadata pipelines, which are

crucial for open science and reproducibility checks.

Conclusion

Across the surveyed literature, clear limitations persist:
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• The majority of machine learning technologies only record metadata in tool-

specific, ad hoc forms; they don’t offer ontology-based export or provenance

standard integration.

• Semantic frameworks offer powerful expressiveness but lack tooling support or

usability for everyday ML tasks.

• Although VRE systems make replication easier, they are not tailored to the

unique requirements of notebook-centric machine learning experiments.

• Despite growing calls for linked, FAIR-aligned data exchange, exporting to

machine-readable formats (RDF, JSON-LD) is still uncommon.

To address these enduring gaps and allow ML practitioners to gather, view, and

export provenance-rich metadata without sacrificing usability, an integrated frame-

work is required. By integrating standards-compliant export, ontology-based or-

ganization, and live metadata collection inside a modular VRE, this study offers

one such option. The framework attempts to bridge the gap between the needs of

semantic interoperability and reproducibility and real-world machine learning tools.

3.3 Metadata Mapping and Harmonization

Systematic Mapping Studies in Software Engineering [29] served as the

inspiration for our implementation of a systematic mapping process to integrate

heterogeneous metadata across technologies such as DBRepo, MLflow, GitHub, and

Jupyter environments. This procedure ensures semantic enrichment and interop-

erability, both of which are essential for repeatability in machine learning work-

flows [30, 31].

Field Extraction and Categorization

Code execution logs, Git commits, dataset schemas, model configuration files, and

session environments were among the several sources from which metadata was
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automatically retrieved. These were categorized into five semantic groups that cor-

responded to the various phases of the machine learning lifecycle:

• Descriptive Dataset Metadata (FAIR): Persistent IDs and rich,

standards-based fields (DCTERMS/DCAT) for Findability (F1–F2), Acces-

sibility (A1 via landing/download URLs), Interoperability (I1 via shared vo-

cabularies), and Reusability (R1.1 license, R1.2 provenance); refined for this

project’s scope.

• Experiment Metadata (FAIR4ML): Records information about the script

environment, target variables, training duration, model type, and run IDs.

• Model Architecture and Hyperparameters (Croissant): Explains

input-output mappings, serialization formats, architectures, and learning tech-

niques.

• Performance Metrics and Justification (MLSEA): Encompasses train-

ing/test splits, ROC-AUC, accuracy, F1, and reasoning areas that explain

model behavior. For this work, elements from MLS and MLSO are treated

as integral parts of MLSEA, as both share a common conceptual foundation

within the same overarching schema.

• Workflow Provenance (PROV-O): Keeps track of training agents, inter-

actions, and entities, including connections to code, datasets, and system en-

vironments.

Ontology Mapping Approach

Metadata from six pipeline sources (dataset, model, justification, experiment, ses-

sion, Git) was consolidated into five semantic standards: FAIR, FAIR4ML,

MLSEA (umbrella for MLS/MLSO), Croissant, and PROV-O. Each block uses

canonical prefixes (dcterms:, fair4ml:, mlso:, mls:, croissant:, prov:) to re-

tain semantic clarity.

Representative mappings include:
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• FAIR: Dataset identifiers, titles, licenses, landing pages

(dcterms:identifier, dcat:landingPage).

• FAIR4ML: Run/session IDs, training times, script commit, environment

(fair4ml:modelCategory, fair4ml:trainedOn).

• MLSEA (MLS/MLSO): Metrics and model/data relations (mlso:Dataset,

mls:Feature, mlso:HyperParameter).

• Croissant: Schema artefacts, example records, file paths

(croissant:examples, croissant:isLiveDataset).

• PROV-O: Entity-activity-agent links (prov:wasGeneratedBy, prov:End).

Missing values are replaced with explicit placeholders (e.g., "info not available")

to keep schema completeness.

Conflict Resolution Strategy

In this context, conflict resolution refers to handling situations where the same con-

ceptual field appears in multiple metadata sources, with differences in value, format,

or placement across ontologies. These conflicts arise naturally from combining di-

verse capture points in the pipeline-dataset metadata, MLflow logs, justification

inputs, model configurations, session descriptors, and Git commit records.

Conflicts are resolved according to the following principles:

1. Source precedence: For each field, the most authoritative source is selected.

For example, mlso:hasAlgorithmType is taken from the model block (reflect-

ing the actual algorithm used) and only falls back to experiment logs if missing;

dcterms:identifier is taken from dataset metadata, never inferred from file

names.

2. Temporal consistency: Where timestamps differ across sources, the value

consistent with the run’s recorded start/end times and commit timestamp

is retained. For instance, prov:Start and prov:End are aligned with
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prov:generated AtTime to ensure the recorded metrics belong to the same

code state.

3. Semantic de-duplication across ontologies: The most expressive ontology

term is considered canonical, but important fields may be duplicated across

different ontologies to maintain completeness of each ontology’s view. For

example, the dataset reference appears in both mls:Dataset (model/data re-

lationship) and fair4ml:evaluatedOn (experimental context).

4. Safe defaults: When values are missing or ambiguous, explicit placeholders

(e.g., "info not available") or stable constants are used. For instance,

dcterms:license defaults to this placeholder if not provided in the dataset

DOI metadata.

5. Integration of extra metadata: Additional fields beyond strict ontol-

ogy requirements are mapped to improve reproducibility and interpretabil-

ity, consistent with prior work advocating richer documentation for respon-

sible ML use [32, 33, 34]. Such reporting extras (e.g., prov:usedNotebook,

fair4ml:intended Use) support real-world use cases demonstrated in RQ2,

even when they are not mandatory for coverage scoring.

6. Trade-off in coverage metrics: Duplication across ontologies is permitted

when it contributes to the completeness of a given ontology, but redundant

mappings are generally avoided within the ontology. This selective approach

may slightly lower the overall “unique field” coverage percentage compared to

forcing full duplication, but it also reduces unnecessary redundancy while keep-

ing each ontology self-contained where it matters. For example, mls:Software

is not included in the mapping because mlso:hasRelatedSoftware already

captures the necessary information for our thesis scope.

This approach balances strict ontology alignment with practical considerations of

reproducibility, interpretability, and downstream usability. By embedding these

rules in the export function, every run produces a consistent, ontology-aligned JSON

file that is both semantically valid and operationally complete. The complete list

can be found in Section ??



CHAPTER 3. METHODOLOGY 40

Semantic Export and Interoperability

The harmonized metadata is stored in a structured JSON file and exported to two

semantic formats:

• JSON-LD: Used for lightweight semantic linking with schema.org and W3C

ontologies, supporting visual inspection and integration with metadata dash-

boards [35].

• RDF/XML: Designed for SPARQL query engines and institutional repositories;

enables deep graph-based provenance tracking [36].

rdflib is used to construct export logic, which converts metadata fields into RDF

triples. In accordance with W3C PROV-O, every run attempts to create a fully

connected knowledge graph that links datasets, agents, actions, and model outputs.

3.4 Summary

This chapter outlined the multi-method approach underpinning this thesis, combin-

ing Design Science Research Methodology (DSRM), a Systematic Literature Review

(SLR), and structured metadata mapping and harmonization. DSRM guided the

iterative design and evaluation of a notebook-native, provenance-aware Virtual Re-

search Environment (VRE), while the SLR identified persistent gaps in ML tooling

and standards-informing ontology choices (FAIR, FAIR4ML, MLSEA, Croissant,

PROV-O) and the need for selective integration strategies.

The metadata harmonization process unified heterogeneous sources (DBRepo,

MLflow, GitHub, Jupyter) into a single, ontology-aligned JSON structure with con-

flict resolution rules, explicit placeholders, and targeted “extra metadata” to enhance

the quality of the metadata. Duplication across ontologies was applied selectively

to ensure completeness of individual ontologies without unnecessary redundancy, a

trade-off that preserves coverage where it matters most.

By embedding these mappings into an export pipeline for RDF/XML and JSON-

LD, the system enables standards-compliant interoperability, reproducibility, and
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interpretability-demonstrated in real-world use cases in RQ2–RQ4. This method-

ological synthesis bridges the usability of popular ML tools with the semantic rigor

of provenance standards, producing a framework that is both practical for practi-

tioners and aligned with open science principles.



4 System Architecture and Imple-

mentation

4.1 System Design Principles

Key flaws found in the Systematic Literature Review (see Section 3.2) are addressed

in the design of this provenance-aware Virtual Research Environment (VRE). auto-

mated metadata capture, semantic interoperability, and support for reproducible ML

workflows are its three guiding concepts.

The solution integrates information collection directly into standard machine learn-

ing operations,including dataset selection, model training, and assessment, with a

focus on notebook-centric workflows. This ensures that provenance is gathered with

the least amount of user work [37].

Captured metadata is produced in machine-readable forms and mapped to common

ontologies (such as PROV-O, FAIR4ML, MLSEA, and Croissant) to ensure compat-

ibility. A lightweight, modular system that enhances repeatability and traceability.

Design Goals

In order to include provenance capture, justification recording [27], and semantic

export into their current processes with the least amount of manual effort. The

system architecture was shaped by the following objectives:

• Metadata Automation: It is preferable to collect metadata passively or

with simple user cues. Only ambiguous fields or justifications should require

42
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manual entry. The integration of metadata logging through MLflow can be

found as the downloadable file in Zenodo

• Semantic Interoperability: All metadata, such as PROV-O [8], FAIR4ML

[12], MLSEA [17], FAIR [11], and Croissant [10], should be in line with se-

mantic web standards and community ontologies. Machine readability, ex-

port compatibility, and smooth interaction across repositories, dashboards,

and provenance systems.

• Minimal Intrusion: The system must not interfere with the Jupyter user’s

workflow. Python scripts and ML lifecycle tools (like MLflow and Git) ought

to be seamlessly integrated with it.

• Reproducibility Support: Every experiment has to have a unique identity,

be preserved in organized metadata snapshots, and be tied to dataset DOIs,

Git versions, and hyperparameter settings.

• Visual Transparency: A dashboard should allow users to examine and verify

information. It should be possible to view justifications, version drifts, and

traceability pathways.

4.1.1 Rationale for VRE Component Selection

The virtual research environment was deliberately composed of DBRepo, Invenio,

Jupyter Notebook, Git, and MLflow to balance practical usability with provenance,

reproducibility, and interoperability requirements. DBRepo provides a structured,

queryable source for dataset storage and retrieval, enabling metadata enrichment

through DOI integration. Invenio serves as the archival and dissemination layer, as-

signing persistent identifiers and ensuring long-term accessibility. Jupyter Notebook

offers an interactive, notebook-native execution environment that aligns with com-

mon ML workflows while enabling fine-grained, cell-level logging [38]. Git captures

version-controlled source code and experiment lineage, while MLflow orchestrates

automated logging of parameters, metrics, and artifacts across the pipeline. To-

gether, these components form a lightweight yet extensible VRE that integrates

seamlessly with semantic export workflows while minimising user friction. Any of

https://zenodo.org/records/16874761/files/automatic_logging_metadata.py?download=1
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these components could be replaced with equivalent technologies, as the framework

aims to simulate the structure and interoperability principles of a real-world VRE

rather than enforce specific tool dependencies.

High-Level System Design Overview

Fundamentally, the system architecture is modular in nature and covers every stage

of the machine learning lifecycle, from dataset selection to metadata ingestion and

archiving. Figure 4.1 shows this multi-layered configuration:

• Metadata Ingestion: Automatically fetches structured metadata (title,

DOI, license, schema version) from DBRepo APIs.

• Execution Logger: Uses the MLflow library in Jupyter notebooks to record

runtime information, including model type, hyperparameters, total execution

time, preprocessing time, and evaluation metrics. Without needing user input,

the preprocessing duration is automatically determined by recording times-

tamps at the start and end of the preprocess_and_log() function. In a

similar manner, the whole time utilized for the experiment is recorded from

the beginning to the end.

Our system uses internal MLflow tags to differentiate between the total ex-

periment execution and the training execution, even though PROV-O ab-

stracts all phases as prov:Activity nodes. We scope these durations se-

mantically: prov:Start, prov:End, and prov:generatedAtTime capture

the overall experiment execution window, while prov:startedAtTime and

prov:endedAtTime specifically record the training phase. This separation en-

ables more precise provenance queries and performance analysis by isolating

training time from the broader experimental process.

The system is flexible to accommodate more complex workflows; users may

add more MLflow tags to arrange stages as custom-defined phases or annotate

enhanced processing steps. These can subsequently be incorporated into the

export pipeline after being mapped to the appropriate ontology terms. This

design enables future development toward flexible, user-defined provenance
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blocks that mirror the structure of real-world analytics pipelines, even if the

current system records preset steps.

• Version Tracker: Anchoring provenance in replicable code snapshots, the

experiment is bound to Git commit hashes and author IDs.

• Semantic Mapping Engine: Maps raw metadata fields to ontological terms,

resolving conflicts and enforcing schema consistency.

• Visualization and Export: Renders interactive metadata views in a Stream-

lit dashboard and supports export in JSON-LD and RDF/XML for integration with

linked data ecosystems. Model evaluation plots (e.g., ROC curves, feature im-

portance charts, confusion matrices) are loaded into the UI from a local storage

generated at runtime. These files remain available for inspection during the

current session; long-term preservation is handled by the archival layer.

• Archival Layer: Ensures long-term persistence of all provenance artifacts in

Invenio, including structured metadata snapshots, semantic exports (.jsonld,

.rdf.xml), trained model files (.pkl), and an archived copy of the generated

plots. This ensures that all visual and non-visual artifacts displayed in the

dashboard remain accessible for future reproducibility and auditing.

Figure 4.1: High Level System Design Overview
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Alignment with semantic metadata standards, maintainability, and expansion are

made easier by this modular architecture. Later on in Section 4.5, a user-facing

interface for working with the acquired metadata is shown. The organized dashboard

enables users to examine, filter, and analyze experiment metadata without having

direct access to the underlying logs.

4.2 Architecture and Workflow

System-Level Component Roles and Flow

Interoperating modules including data access, experiment execution, provenance

logging, semantic mapping, visualization, and archive data make up the system ar-

chitecture Figure 4.2. When combined, these elements are intended to facilitate

semantic conformity and reproducibility across the notebook-native machine learn-

ing process. The Evaluation chapter (see Section 5) shows how the system can

reproduce execution traces from the collected metadata.

• DBRepo: A FAIR-aligned metadata repository that serves two roles: (1)

providing dataset-level metadata that aligns with DataCite, and (2) acting

as the final archival backend for structured metadata. Upon user input of a

DOI, the system fetches metadata fields such as title, creator, license,

and dataset statistics through DBRepo’s API. This metadata is injected into

the active MLflow context for the experiment and forms the foundation for

further semantic alignment. After the run, the MLflow metadata (including

execution and model parameters) is parsed into relational tables, and inserted

into a dedicated DBRepo database named Provenance Database. This allows

both persistent archival and global access.

• JupyterHub: Hosts the core computational environment where the entire

machine learning workflow is executed as modular, interactive notebooks [3].

In addition to providing user-specific sessions, it acts as the runtime environ-

ment for starting experiment runs, prepping datasets, training models, and

recording session information. The framework incorporates user prompts, ex-
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ecution logging, and environment introspection (such as operating system,

Python version, and user role) right into Jupyter notebooks. Every run gath-

ers provenance-aware metadata from the ML code and environment, which is

then sent to downstream modules for archival and semantic mapping.

• MLflow Logger: Serves as the main execution tracker, continuously logging

run-specific information, environment variables, training metrics, and model

parameters. Reproducibility without external dependencies is made possible

by the framework’s establishment of a local SQLite-based MLflow tracking

backend. Every experiment logs FAIR-aligned metadata (e.g., dataset DOI,

hyperparameters, accuracy scores) and execution-specific tags (e.g., model ar-

chitecture, test size, random state). The metadata for snapshots is saved as an

MLflow artifact and exported as structured JSON. To ensure semantic com-

pleteness for downstream export and visualization, manual tagging is paired

with autologging using mlflow.sklearn.

• GitHub: Git metadata, such as commit hash, author, email, date, message,

and branch, are extracted from the working repository to enable fine-grained

code-level provenance. To provide robustness across environments, this meta-

data is programmatically collected using the subprocess fallbacks and the

GitPython API. In order to link experiment metadata to the precise code

snapshot and facilitate debugging and semantic repeatability, Git commit IDs

are stored as MLflow tags. Every MLflow run may be linked to a particular

codebase state thanks to this version-binding step.

• Semantic Mapper: Acts as the harmonization engine that synchronizes

gathered metadata with recognized semantic web standards. A fully qual-

ified ontology URI (e.g., prov:startedAtTime, mlso:hasAlgorithmType,

fair4ml: trainedOn) is mapped to each metadata entry, maintaining se-

mantic precision. These standardized vocabularies are a systematic transla-

tion of internal MLflow tags like trainingStartTime, learningAlgorithm,

and input. This mapping step resolves name conflicts or structural discrep-

ancies.

• Invenio Repository: Serves as the last archive destination for metadata ex-
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ports with semantic enrichment. The system serializes RDF/XML and JSON-

LD files after aligning metadata with ontologies, and then uses a structured

HTTP-based commit mechanism to submit the files to Invenio. Although In-

venio metadata, including publishing details and persistent IDs, is retrieved

through its API and added to the structured JSON for completeness, it is nei-

ther shown in the dashboard nor queried in real time. This clean decoupling

between provenance capture and long-term metadata registration reflects a

design choice for the current implementation, and can be adapted if tighter

integration is desired.

• Streamlit Dashboard: Acts as the layer for interactive experiment metadata

viewing and examination. The MODEL_PROVENANCE/ directory(local storage)

contains locally saved JSON files from which it retrieves structured metadata

(onthology aligned). Users may examine preprocessing stages, provenance

trails, model setups, performance metrics, dataset metadata, and user justi-

fications through the dashboard. Transparency, repeatability, and post-hoc

analysis are supported by visual components such as accuracy graphs, and

git-based version impact notifications.

Figure 4.2: System Architecture

Figure 4.2 shows that the range of flexible input sources could be used as a data

source, including DBRepo or other structured datasets. Every activity is started

using the JupyterHub notebook interface, and runtime metadata is captured using

MLflow. Initially, this metadata is saved in DBRepo after being processed into

structured tables. The Semantic Mapper then retrieves it and harmonizes it into a
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single structured JSON file that is aligned with the ontology, which we refer in this

thesis as structured metadata JSON file. The Streamlit Dashboard retrieves this

file from local storage as its unified source, and it also generates machine-readable

outputs in JSON-LD and RDF/XML. The Invenio repository contains the archived ver-

sions of these export files, structured JSON file, plots, .pkl of the model. Additional

metadata (such as the ID, Title, and the timestamp of ingestion) is returned by In-

venio and appended to the structured JSON for completeness. Nevertheless, neither

the produced semantic files nor the Streamlit dashboard display this Invenio-sourced

metadata.

Data and Metadata Flow

The metadata flow in Figure 4.3 is explained in more detail in this section. A Jupyter

notebook is instantiated from a Git-tracked repository to start the experiment. The

session-level metadata is automatically logged such as session id, session start

time, with optional semi-automatic metadata such as user role and project name

during the initial setup.

The user then chooses a dataset from a selection of choices that have already been

loaded and retrieved from DBRepo via API calls. The dataset-level related metadata

is imported in the JupyterHub and MLflow incorporates the obtained metadata as

tags for consistent tracking, including fields like title, creator, license, and basic

statistics.

MLflow automatically logs metadata, including as model settings, evaluation met-

rics, and execution timestamps, as the notebook runs. A subset of hyperparameters

are given as part of the user-defined experiment configuration block.

The Semantic Mapper maps internal fields to ontology-aligned terms from PROV-O,

FAIR4ML, FAIRMLSEA, and Croissant, harmonizing all collected metadata, including

Git, DBRepo, user input, and MLflow logs. The structured JSON that is produced

is exported in RDF/XML and JSON-LD forms, and it powers the interactive local

visualization feature of the Streamlit Dashboard.
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Figure 4.3: End-to-end data and metadata flow through the system.

4.3 Metadata Field Capture and Semantic Mapping

The acquisition, harmonization, and semantic alignment of metadata across the ma-

chine learning experimentation process are described in this section. MLflow logging

and user prompts are used to gather metadata at first, after which it is normalized

and saved in DBRepo utilizing structured tables Appendix B.1. A mapping engine

that aligns each field to ideas from well-known ontologies like PROV-O, FAIR4ML,

FAIR, MLSEA, and Croissant is then used to unify these entries. To facilitate repli-

cation and reuse later on, the final structured metadata is exported in JSON-LD

and RDF-XML forms.

There are three components involved in metadata capture:

• Automated fields are populated during pipeline execution via MLflow, Git

hooks, and system logging (e.g., timestamps, model scores).

• Semi-automated fields are injected through user prompts (e.g., target vari-

able, train-test split, hyperparameters) and chosen from the options provided,

but not limited to just that.
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• Manual fields are selectively defined by the user (e.g., experiment descrip-

tions, intended use, ethical considerations).

To comply with ontology terms, these fields undergo a renaming and alignment

procedure after they are gathered. Depending on its conceptual purpose, each field

is divided into one or more semantic domains.

Field Renaming and Ontology Mapping Logic

Before serialization, internal keys are rewritten to CURIEs1 PROV-O,

FAIR/dcterms/dcat, FAIR4ML, MLSEA via mls/mlso, Croissant) using a domain-

specific mapping dictionary. Matching is case-sensitive.

• PROV-O - Chosen for its broad adoption in representing provenance, en-

abling detailed tracking of activities, agents, and entities.

• FAIR / DCTERMS / DCAT - FAIR is principle-driven; DCTERMS/D-

CAT terms were used to express these principles and ensure repository inter-

operability.

• FAIR4ML - Selected for its ML-specific extension of FAIR principles, aligning

experiment metadata with machine-readable reproducibility standards.

• MLSEA (MLS/MLSO) - Adopted for its domain-rich ML lifecycle vocabu-

lary, allowing fine-grained capture of metrics, hyperparameters, and evaluation

details.

• Croissant - Included to demonstrate compatibility with MLCommons’ emerg-

ing dataset packaging standard for discoverability and reuse.

Purpose and Benefits:

• Ensures consistent naming conventions across all semantic export formats.
1CURIEs (Compact URIs) are shortened identifiers that use a prefix (e.g., dcterms,

prov, mls) mapped to a full namespace URI. For example, instead of writing
http://purl.org/dc/terms/license, the compact form dcterms:license is used. This im-
proves readability while ensuring unambiguous links to ontology terms.
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• Valid RDF serialization is made possible by ontology-compliant vocabulary.

• Enhances the interpretability of exported metadata for both humans and ma-

chines.

• Enables interaction with LOD systems and downstream querying using

SPARQL.

The script excerpt of renaming logic is shown in Listing 1, and the full mapping

dictionary is detailed in Zenodo.

Listing 1: Excerpt of Python script for ontology alignment

def generate_structured_metadata_subset(data: dict) -> dict:

ds = data.get("dataset_metadata", {}) or {}

model = data.get("model_metadata", {}) or {}

just = data.get("justification_metadata", {}) or {}

exp = data.get("experiment_metadata", {}) or {}

session = data.get("session_metadata", {}) or {}

git = data.get("git_metadata", {}) or {}

FAIR = {

"dcterms:identifier": ds.get("dataset_id"),

"dcterms:title": ds.get("title"),

"dcterms:license": ds.get("license"),

"dcterms:language": ds.get("language"),

"dcat:landingPage": ds.get("source_url"),

}

FAIR4ML = {

"fair4ml:experimentID": exp.get("experiment_id"),

"fair4ml:runID": exp.get("runid"),

"fair4ml:modelID": exp.get("modelid"),

"fair4ml:trainingStartTime": exp.get("training_start_time"),

"fair4ml:targetVariable": model.get("target_var"),

}

MLSEA = {

"mlso:f1Score": just.get("f1_macro"),

"mlso:trainSplit": model.get("train_split"),

"mlso:testSplit": model.get("test_split"),

"mlso:hasAlgorithmType": model.get("algo"),

}

Croissant = {

"croissant:citeAs": ds.get("citations_over_time"),

"croissant:source": ds.get("doi") or ds.get("source"),

"croissant:field": model.get("features"),

"croissant:fileObject": model.get("model_path"),

}

PROVO = {

"prov:startedAtTime": exp.get("training_start_time"),

"prov:endedAtTime": exp.get("training_end_time"),

"prov:commit": git.get("commit_hash"),

"prov:usedNotebook": exp.get("source_notebook"),

"prov:wasGeneratedBy": exp.get("runid"),

}

https://zenodo.org/records/16890558/files/onthology_mapping.py?download=1
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return {

"FAIR": FAIR,

"FAIR4ML": FAIR4ML,

"MLSEA": MLSEA,

"Croissant": Croissant,

"PROV-O": PROVO

}

Selection of Mapped Fields

The metadata fields included in the ontology mapping logic were chosen based on

three criteria: (1) their applicability to the main assessment goals of the framework

(automation, repeatability, and metadata completeness within scope of ML classifi-

cation tasks); (2) the infrastructure’s ability to capture them during real experiment

runs; and (3) the presence of semantically meaningful counterparts in one or more

supported ontologies. The system concentrates on fields that are both practically

collectible and semantically interoperable, as opposed to striving for compre-

hensive field coverage.

Excluded Metadata Fields and Rationale

The metadata fields excluded in the ontology mapping logic were chosen based on

three criteria: Fields that were (a) outside the thesis scope-given the exclusive focus

on simple ML classification tasks, making metadata related to other workflows such

as regression or deep learning unnecessary (b) lacking substantial alignment with

the targeted ontology concepts (c) if the metadata is already part of the ontology,

mapped to a similar term. Representative fields removed due to their low relevance,

limited utility, or semantic mismatch are shown in Figure 4.1.

Table 4.1: Subset of ontology metadata fields excluded.

Metadata Standard Field Not Included Justification
FAIR dcterms:conformsTo Standard compliance reference; not relevant to classification experi-

ments.
FAIR dcterms:coverage Geographic/temporal coverage not applicable to current datasets.
FAIR4ML fair4ml:modelHyperparamsPath Hyperparameters logged inline, not as an external file.
FAIR4ML fair4ml:inferenceLatency No real-time inference measured in experiments.
Croissant croissant:regex Low-level data parsing detail; not part of classification task metadata.
Croissant croissant:jsonPath Field path extraction detail; unnecessary for current dataset structure.
Croissant croissant:parentField Hierarchical field reference not used in the datasets under study.
MLsea mls:Quality General quality descriptor; not assessed in current classification exper-

iments.
MLsea mls:Software Generic software descriptor; covered by similar term.
MLsea mlso:hasVariant No variants used in current scope.
MLsea mlso:hasDataLoaderLocation Data loader location not tracked in current framework.
MLsea mlso:relatedToField Domain relationship descriptor not used in experiments.
MLsea mlso:hasPredictionsLocation Prediction storage location not applicable to present setup.
PROV-O prov:Delegation No delegation of activities recorded in current workflow.
PROV-O prov:alternateOf No alternative entities generated during experiments.
PROV-O prov:qualifiedForm Qualified form description not used in the workflow representation.
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Complete Field Table

A comprehensive list of all metadata fields that the system has recorded and ex-

ported is provided in the following tables, arranged according to how they were

populated. Fields can be captured manually, semi-automatically, or automatically,

depending on how much system involvement and human input are needed through-

out the experiment process.

The field name, its mapped ontology term or terms, the target ontology or ontologies,

and the precise source from which the value was derived are all included in each entry.

Git repositories, MLflow logs, system-level environment variables, DOI metadata

records, DBRepo entries, and user-provided explanations are some examples of these

sources.

Some fields appear in more than one ontology, such runID, targetVariable, or

modelID. To maintain consistent cross-ontology alignment and prevent redundancy

in these situations, the export logic employs scoped naming and prioritizing rules

(see Section 4.3).

Table 4.2: Automatically captured metadata fields

Field Ontology Terms Ontologies Capture Sources

Task∗ mls:Task, mlso:hasTaskType MLSEA MLFlow

EvaluationSpecification∗ mls:EvaluationSpecification, mls:realizes MLSEA MLFlow

experimentID∗ fair4ml:experimentID, mls:Experiment,

mlso:hasRelatedImplementation,

mlso:justificationClassWeight,

mlso:justificationCriterion, mlso:justificationMaxDepth,

mlso:justificationMaxFeatures,

mlso:justificationMinSamplesLeaf,

mlso:justificationMinSamplesSplit,

mlso:justificationNEstimators, mlso:justificationNJobs

FAIR4ML, MLSEA MLFlow

field∗ croissant:field, mls:featureList, mls:hasPart Croissant, MLSEA MLFlow

fileObject∗ croissant:fileObject, mls:modelPath, prov:generated Croissant, MLSEA,

PROV-O

MLFlow

targetVariable∗ fair4ml:targetVariable, mls:labelEncoding,

mls:targetVariable, mlso:hasDefaultTargetFeature

FAIR4ML, MLSEA MLFlow

fineTunedFrom∗ fair4ml:fineTunedFrom, mls:HyperParameter,

mls:HyperParameterSetting, mls:Implementation,

mls:hasHyperParameter, mls:specifiedBy,

prov:EntityInfluence, prov:Influence

FAIR4ML, MLSEA,

PROV-O

MLFlow

source∗ croissant:source, dcat:keyword, dcterms:contributor,

dcterms:license, dcterms:source, dcterms:subject

Croissant, FAIR DOI

sharedBy∗ fair4ml:sharedBy, prov:Association, prov:Role,

prov:hadRole

FAIR4ML, PROV-O MLFlow

sessionID∗ fair4ml:sessionID, prov:sessionID FAIR4ML, PROV-O MLFlow

serializationFormat∗ mls:serializationFormat, mlso:hasFormat MLSEA MLFlow

EvaluationMeasure∗ mls:EvaluationMeasure, mls:ModelEvaluation MLSEA MLFlow

Continued on next page
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Table 4.2: Automatically captured metadata fields

Field Ontology Terms Ontologies Capture Sources

runID∗ fair4ml:runID, mls:Run, prov:Activity, prov:Generation,

prov:activity, prov:hadActivity, prov:wasGeneratedBy,

rdfs:label

FAIR4ML, MLSEA,

PROV-O

MLFlow

hasRelatedSoftware∗ mlso:hasRelatedSoftware, prov:pythonVersion MLSEA, PROV-O MLFlow

hasTrainTestSplitIndices∗ mlso:hasTrainTestSplitIndices, mlso:trainSplit MLSEA MLFlow

isLiveDataset∗ croissant:isLiveDataset, croissant:repeated Croissant MLFlow

rowCountEnd∗ mlso:rowCountEnd, mlso:rowCountStart MLSEA MLFlow

registered∗ dcat:registered, dcterms:available FAIR DOI

references∗ croissant:references, dcat:relatedResource,

dcterms:relation

Croissant, FAIR DOI

Location∗ prov:Location, prov:atLocation PROV-O MLFlow

MLModel∗ fair4ml:MLModel, fair4ml:mlTask,

fair4ml:modelCategory

FAIR4ML MLFlow

modelID∗ fair4ml:modelID, mls:Model FAIR4ML, MLSEA MLFlow

numDeletedRows∗ mlso:numDeletedRows, mlso:numInsertedRows MLSEA MLFlow

hasQuality∗ mls:hasQuality, mlso:accuracy MLSEA MLFlow

ethicalLegalSocial∗ fair4ml:ethicalLegalSocial, fair4ml:intendedUse,

fair4ml:modelRisks, mlso:justificationDatasetVersion,

mlso:justificationDropColumnX,

mlso:justificationEthicalConsiderations,

mlso:justificationExperimentName,

mlso:justificationIntendedUse,

mlso:justificationMetricChoice,

mlso:justificationModelChoice,

mlso:justificationModelLimitations,

mlso:justificationNotIntendedFor,

mlso:justificationTargetVariable,

mlso:justificationTestSplit,

mlso:justificationThresholdAccuracy, prov:Organization

FAIR4ML, MLSEA,

PROV-O

MLFlow

Plan∗ prov:Plan, prov:scriptName, prov:usedNotebook PROV-O MLFlow

title∗ dcterms:title, fair4ml:trainedOn, mls:hasInput,

mlso:trainedOn

FAIR, FAIR4ML, MLSEA DBRepo

Algorithm∗ mls:Algorithm, mls:hasAlgorithmType, mls:implements,

mlso:hasAlgorithmType, prov:SoftwareAgent

MLSEA, PROV-O MLFlow

Catalog∗ dcat:Catalog, dcat:Distribution, dcat:distribution,

dcterms:publisher

FAIR DOI

Agent∗ prov:Agent, prov:Person, prov:agent,

prov:wasAttributedTo, prov:wasEndedBy,

prov:wasStartedBy

PROV-O MLFlow

transform∗ croissant:transform, mls:preprocessingSteps,

mlso:ignoresFeature

Croissant, MLSEA MLFlow

citeAs∗ croissant:citeAs, dcterms:bibliographicCitation,

dcterms:isReferencedBy

Croissant, FAIR DOI

End∗ prov:End, prov:generatedAtTime PROV-O MLFlow

trainingStartTime∗ fair4ml:trainingStartTime, prov:startedAtTime FAIR4ML, PROV-O MLFlow

Attribution∗ prov:Attribution, prov:commitAuthor PROV-O MLFlow

trainingScriptVersion∗ fair4ml:trainingScriptVersion, prov:commit FAIR4ML, PROV-O MLFlow

containedIn∗ croissant:containedIn, dcterms:hasPart,

dcterms:hasVersion, dcterms:partOf

Croissant, FAIR DBRepo

data∗ croissant:data, croissant:includes, mls:Feature,

mls:FeatureCharacteristic, mlso:featureSelection

Croissant, MLSEA DBRepo

Data∗ mls:Data, mlso:hasType MLSEA DBRepo

dataset∗ dcat:dataset, dcat:servesDataset, dcterms:identifier,

fair4ml:evaluatedOn, fair4ml:testedOn,

fair4ml:validatedOn, mls:Dataset, prov:Entity,

prov:hadUsage, prov:wasDerivedFrom

FAIR, FAIR4ML,

MLSEA, PROV-O

DBRepo

trainAccuracy∗ mlso:trainAccuracy, mlso:trainF1, mlso:trainPrecision,

mlso:trainRecall, mlso:trainScore

MLSEA MLFlow

dateSubmitted∗ dcterms:dateSubmitted, dcterms:issued FAIR DOI

trainingEndTime∗ fair4ml:trainingEndTime, prov:endedAtTime FAIR4ML, PROV-O MLFlow

author∗ dcterms:author, dcterms:creator FAIR DOI

Continued on next page
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Table 4.2: Automatically captured metadata fields

Field Ontology Terms Ontologies Capture Sources

qualifiedDerivation prov:qualifiedDerivation PROV-O MLFlow

qualifiedUsage prov:qualifiedUsage PROV-O MLFlow

usageInstructions fair4ml:usageInstructions FAIR4ML MLFlow

recall mlso:recall MLSEA MLFlow

Process mls:Process MLSEA MLFlow

used prov:used PROV-O MLFlow

trainRocAuc mlso:trainRocAuc MLSEA MLFlow

Usage prov:Usage PROV-O MLFlow

runEnvironment fair4ml:runEnvironment FAIR4ML System

trainLogLoss mlso:trainLogLoss MLSEA MLFlow

schemaVersion dcat:schemaVersion FAIR DOI

scientificReferenceOf mlso:scientificReferenceOf MLSEA DOI

Start prov:Start PROV-O MLFlow

precision mlso:precision MLSEA MLFlow

testSplit mlso:testSplit MLSEA MLFlow

rocAuc mlso:rocAuc MLSEA MLFlow

accessRights dcterms:accessRights FAIR DOI

justificationBootstrap mlso:justificationBootstrap MLSEA MLFlow

osPlatform prov:osPlatform PROV-O MLFlow

achieves mls:achieves MLSEA MLFlow

actedOnBehalfOf prov:actedOnBehalfOf PROV-O MLFlow

branch prov:branch PROV-O MLFlow

category prov:category PROV-O MLFlow

column croissant:column Croissant DBRepo

commitEmail prov:commitEmail PROV-O MLFlow

commitTime prov:commitTime PROV-O MLFlow

content croissant:content Croissant MLFlow

created dcterms:created FAIR DOI

dataType croissant:dataType Croissant MLFlow

delimiter croissant:delimiter Croissant Derived

EvaluationProcedure mls:EvaluationProcedure MLSEA MLFlow

f1Score mlso:f1Score MLSEA MLFlow

fileProperty croissant:fileProperty Croissant MLFlow

fileSet croissant:fileSet Croissant DBRepo

format croissant:format Croissant MLFlow

hasCacheFormat mlso:hasCacheFormat MLSEA MLFlow

modified dcterms:modified FAIR DBRepo

modelVersion mls:modelVersion MLSEA MLFlow

modelName mls:modelName MLSEA MLFlow

ModelCharacteristic mls:ModelCharacteristic MLSEA MLFlow

language dcterms:language FAIR DOI

labelMap mlso:labelMap MLSEA MLFlow

platform prov:platform PROV-O MLFlow

key croissant:key Croissant MLFlow

imbalanceRatio mlso:imbalanceRatio MLSEA MLFlow

hasOutput mls:hasOutput MLSEA MLFlow

hasLearningMethodType mlso:hasLearningMethodType MLSEA MLFlow

hasEvaluationProcedureType mlso:hasEvaluationProcedureType MLSEA MLFlow

hasEvaluationMeasureType mlso:hasEvaluationMeasureType MLSEA MLFlow

hasCO2eEmissions fair4ml:hasCO2eEmissions FAIR4ML MLFlow

wasAssociatedWith prov:wasAssociatedWith PROV-O MLFlow

wasInformedBy prov:wasInformedBy PROV-O MLFlow

Note: Fields marked with ∗ indicate that the same recorded value is mapped to more than one ontology term,

reflecting cross-ontology reuse for that metadata element.

Without the need for user participation, automatically acquired fields Tables 4.2

are obtained only through system instrumentation, logs, or API requests. MLflow,
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Git, the operating system, or third-party services like DBRepo, and Invenio are the

main sources of these fields.

Table 4.3: Semi-Automatically Captured Metadata Fields

Field Ontology Terms Ontology
MLModel∗ fair4ml:MLModel, fair4ml:mlTask,

fair4ml:modelCategory
FAIR4ML

HyperParameter∗ fair4ml:fineTunedFrom, mls:HyperParameter,
mls:HyperParameterSetting, mls:Implementation,
mls:hasHyperParameter, mls:specifiedBy,
prov:EntityInfluence, prov:Influence

MLSEA,PROVO-O,FAIR4ML

Model∗ fair4ml:modelID, mls:Model MLSEA,FAIR4ML
ModelCharacteristic mls:ModelCharacteristic MLSEA
modelName mls:modelName MLSEA
modelVersion mls:modelVersion MLSEA
hasTrainTestSplitIndices∗ mlso:hasTrainTestSplitIndices, mlso:trainSplit MLSEA
testSplit mlso:testSplit MLSEA
HyperParameterSetting∗ fair4ml:fineTunedFrom, mls:HyperParameter,

mls:HyperParameterSetting, mls:Implementation,
mls:hasHyperParameter, mls:specifiedBy,
prov:EntityInfluence

MLSEA, FAIR4ML,PROVO-O

trainSplit∗ mlso:hasTrainTestSplitIndices, mlso:trainSplit MLSEA
dataType croissant:dataType Croissant
delimiter croissant:delimiter Croissant
examples croissant:examples Croissant
modelCategory∗ fair4ml:MLModel, fair4ml:mlTask,

fair4ml:modelCategory
FAIR4ML

Note: Fields marked with ∗ indicate that the same recorded value is mapped to more than one ontology term

(cross-ontology reuse).

The semi-automatically collected fields are populated using a hybrid approach (see

Table 4.3). Users typically select from predefined options presented in the interface,

such as choosing a model type from the supported algorithms or a dataset from

DBRepo. In other cases, users may provide values directly, for example specify-

ing test/train split ratios, random seed values, or numerical hyperparameters. The

system applies rule-based logic and internal mappings to normalize, validate, and,

where applicable, enrich these inputs. This approach ensures repeatable configu-

ration while preserving flexibility for custom experimentation, achieving a balance

between user control and system-level consistency. The fields listed in Table 4.3 are

provided as representative examples; they do not imply that only these parameters

can be populated in a semi-automated manner.
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Table 4.4: Manually Entered Metadata Fields

Field Ontology Terms Ontology
BootstrapChoice mlso:justificationBootstrap MLSEA
ClassWeightChoice mlso:justificationClassWeight MLSEA
ContainedIn croissant:containedIn Croissant
CriterionChoice mlso:justificationCriterion MLSEA
Data croissant:data Croissant
DatasetVersionRationale mlso:justificationDatasetVersion MLSEA
DropColumnXChoice mlso:justificationDropColumnX MLSEA
EthicalConsiderations∗ fair4ml:ethicalLegalSocial,

mlso:justificationEthicalConsiderations
FAIR4ML, MLSEA

ExperimentName mlso:justificationExperimentName MLSEA
FileProperty croissant:fileProperty Croissant
IntendedUse∗ fair4ml:intendedUse, mlso:justificationIntendedUse FAIR4ML, MLSEA
IsLiveDataset croissant:isLiveDataset Croissant
LearningRelatedSoftware mlso:hasRelatedSoftware MLSEA
MaxDepthChoice mlso:justificationMaxDepth MLSEA
MaxFeaturesChoice mlso:justificationMaxFeatures MLSEA
MetricChoiceRationale mlso:justificationMetricChoice MLSEA
MinSamplesLeafChoice mlso:justificationMinSamplesLeaf MLSEA
MinSamplesSplitChoice mlso:justificationMinSamplesSplit MLSEA
ModelChoiceRationale mlso:justificationModelChoice MLSEA
ModelLimitations∗ fair4ml:modelRisks, mlso:justificationModelLimitations FAIR4ML, MLSEA
NEstimatorsChoice mlso:justificationNEstimators MLSEA
NJobsChoice mlso:justificationNJobs MLSEA
NotIntendedFor mlso:justificationNotIntendedFor MLSEA
RecordSet croissant:recordSet Croissant
TargetVariableRationale mlso:justificationTargetVariable MLSEA
TestSplitRationale mlso:justificationTestSplit MLSEA
ThresholdAccuracy mlso:justificationThresholdAccuracy MLSEA

Note: Fields marked with ∗ indicate that the same recorded value is mapped to more than one ontology term

(cross-ontology reuse).

Through a structured justification form, users directly enter manually recorded fields

as shown in Table 4.4. In order to facilitate interpretability and traceability, these

variables are mostly mapped to MLSEA concepts and are used to record experiment

justification, ethical considerations, design intent, and model assumptions.

Conflict Resolution and Scoped Naming

Numerous metadata categories use conceptually overlapping language or originate

from different ontologies as seen in Section 1.

• Temporal Resolution: Fields such as prov:startedAtTime and

prov:endedAtTime capture temporal aspects at the ontology level. In PROV-

O, prov:startedAtTime and prov:endedAtTime can be associated with any

prov:Activity - for example, the overall MLflow run, a preprocessing stage(as

in this case), or a model evaluation job. These are retained separately because

they describe different points in time within the provenance graph and are

mapped to formal PROV-O concepts.
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• Version Field Disambiguation: Across datasets, models, scripts, and run-

time environments, several version-related attributes are recorded. Each is

scoped with an ontology term to preserve its semantic intent and retrieval

context:

– dcterms:hasVersion - dataset version identifier (semi-automated),

– mls:modelVersion - trained model artifact version (automatic),

– prov:pythonVersion - Python runtime version in the execution environ-

ment (automatic).

This scoped separation supports fine-grained repeatability and improves inter-

pretability when reproducing or auditing runs.

• Fallback and Uncategorized Fields: Attributes not present in the matched

ontology term list, or without a stable semantic equivalent, are placed in an

Uncategorized group.

Justification Block Design

The Justification Block captures human-centred metadata-information about why

specific modelling choices were made, intended use and limitations, and ethical

considerations - which cannot be inferred from technical parameters alone. This

supports accountability, auditability, and informed reuse decisions. The block is

intentionally extensible: the framework code can be adapted to project-specific re-

quirements for documenting modelling rationale as in Table 4.5.

Ontology-aligned fields and purpose:

Prompting logic: At the end of a run, immediately before the commit/export step,

the framework blocks execution to display a structured free-text form for all fields.

If left blank, a placeholder (e.g., “No justification provided”) is stored, ensuring

omissions are explicit. While completion is encouraged, it is not enforced to avoid

blocking iterative experimentation.
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Table 4.5: Justification Block Fields and Their Purpose

Ontology Terms Purpose
fair4ml:intendedUse, mlso:justificationIntendedUse Scope of valid application.
mlso:justificationNotIntendedFor Prohibited or high-risk uses.
fair4ml:ethicalLegalSocial,
mlso:justificationEthicalConsiderations

Privacy, fairness, or data-sensitivity considerations.

mlso:justificationModelChoice Rationale for algorithm selection.
mlso:justificationMetricChoice Justification for metric selection.
mlso:justificationTargetVariable Reasoning for label choice.
mlso:justificationDatasetVersion Dataset version used and motivation for selection.
mlso:justificationDropColumnX Reasoning for removing specific features.
mlso:justificationTestSplit Rationale for chosen train/test split ratio.
mlso:justificationThresholdAccuracy Minimum acceptable model performance threshold.
mlso:justificationMaxDepth,
mlso:justificationNEstimators,
mlso:justificationCriterion,
mlso:justificationClassWeight,
mlso:justificationMinSamplesLeaf,
mlso:justificationMinSamplesSplit,
mlso:justificationNJobs,
mlso:justificationBootstrap

Intent behind selected hyperparameter values.

fair4ml:modelRisks,
mlso:justificationModelLimitations

Known weaknesses and limitations of the model.

mlso:hasRelatedSoftware Relevant external software dependencies that
influence interpretation or reuse.

croissant:containedIn, croissant:data,
croissant:fileProperty, croissant:isLiveDataset,
croissant:recordSet

Dataset structural or packaging metadata provided
manually when required for contextual clarity.

Export and Interoperability Layer

The finalized metadata is exported in two standard linked data formats - JSON-LD

and RDF/XML-to enable semantic interoperability (see Figure 4.4). These exports

are derived from a unified RDF graph constructed using rdflib, based on ontology-

aligned mappings to five specific standards: FAIR, PROV-O, Croissant, FAIR4ML,

and MLSEA.

• JSON-LD Export: The complete RDF graph is serialized in JSON-LD for-

mat and saved as prov_JSONLD_export.jsonld. This supports compatibility

with SPARQL endpoints, RDF triple stores, and reasoning engines. See Zen-

odo for an example.

• RDF/XML Export: The same RDF graph is also serialized in RD-

F/XML format as prov_RDFXML_export.rdf. This supports compatibility

with SPARQL endpoints, RDF triple stores, and reasoning engines. See Zen-

odo for an example.

• Graph Construction: The export process constructs a typed RDF graph

in which all resources are assigned RDF classes: prov:Entity (e.g., datasets,

https://zenodo.org/records/16874761/files/prov_JSONLD_export.jsonld?download=1
https://zenodo.org/records/16874761/files/prov_JSONLD_export.jsonld?download=1
https://zenodo.org/records/16874761/files/prov_RDFXML_export.rdf?download=1
https://zenodo.org/records/16874761/files/prov_RDFXML_export.rdf?download=1
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models), prov:Activity (e.g., training run), and prov:Agent (e.g., user). All

instances are scoped with run-specific URIs (e.g., /run_20250718_131502/)

to support traceability and disambiguation.

• Export Triggering: Once the structured metadata JSON is processed and

all mappings are applied, the RDF export process is triggered automatically.

The resulting JSON-LD and RDF/XML files. The complete export logic can

be found in Zenodo

Export Graph Generation (Excerpt):

# Define core URIs

model_uri = safe_uri(EX, f"model/{structured_metadata['Croissant'].get('mls:modelID')}")

dataset_uri = safe_uri(EX, f"dataset/{structured_metadata['FAIR'].get('dcterms:identifier')}")

code_uri = safe_uri(EX, f"code/{structured_metadata['PROV-O'].get('prov:commit')}")

activity_uri = safe_uri(EX, f"run/{run_id}")

agent_uri = safe_uri(EX, f"agent/{structured_metadata['PROV-O'].get('prov:Agent')}")

# Assign RDF types

g.add((model_uri, RDF.type, PROV.Entity))

g.add((dataset_uri, RDF.type, PROV.Entity))

g.add((code_uri, RDF.type, PROV.Entity))

g.add((activity_uri, RDF.type, PROV.Activity))

g.add((agent_uri, RDF.type, PROV.Agent))

# Establish relationships

g.add((activity_uri, PROV.used, dataset_uri))

g.add((activity_uri, PROV.used, code_uri))

g.add((model_uri, PROV.wasGeneratedBy, activity_uri))

g.add((activity_uri, PROV.wasAssociatedWith, agent_uri))

# Inject literals by category

for category, subject in [

("Croissant", model_uri),

("FAIR", dataset_uri),

("PROV-O", code_uri),

("FAIR4ML", activity_uri),

("MLSEA", activity_uri)

]:

add_literals(structured_metadata.get(category, {}), subject)

Export Pipeline Overview:

https://zenodo.org/records/16874761/files/export_file_code.py?download=1
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Figure 4.4: Export process for structured semantic metadata

SPARQL Support

Because all RDF-based exports work with SPARQL 1.1, the resulting provenance

graph may be queried in a variety of ways. Users have the option to write their own

queries or choose from the pre-written ones.

Here is an example SPARQL query that returns the experiment start time, dataset

ID, and model ID for a certain execution:

PREFIX prov: <http://www.w3.org/ns/prov#>

PREFIX ex: <https://github.com/reema-dass26/ml-provenance/provenance/run_20250718_131502/>

SELECT ?model ?dataset ?startTime

WHERE {

?run a prov:Activity ;

prov:used ?dataset ;

prov:startedAtTime ?startTime .

?model prov:wasGeneratedBy ?run .

}

Support for standards-based querying and structured exporting ensures long-term

archiving, downstream reusability, and compliance with provenance-aware machine

learning best practices and FAIR.
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4.4 Implementation in the VRE

The full implementation of the provenance-aware machine learning process within

the Virtual Research Environment (VRE) is described in this section. Written from

the user’s point of view, it covers every stage of execution, from metadata injection to

semantic export, while defining the bounds of automation and points of connection

with MLflow, Jupyter, Git, DBRepo, and Invenio Figure 4.5.

1. Session Initialization

Session-level metadata, including as the timestamp, environment details, and user

ID, are recorded by the first code block run in the Jupyter notebook. To provide

consistent traceability throughout all ensuing activities, this metadata is put into

the MLflow context.

2. Dataset Selection, Retrieval, and Notebook Provenance

Capture

The system connects to a metadata-enabled repository endpoint for dataset access.

In the current setup, this is an active DBRepo instance with pre-uploaded datasets,

but the architecture is endpoint-agnostic and can work with any API-based service

(e.g., Hugging Face Datasets Hub, Zenodo) by adapting the retrieval and mapping

logic.

• Provenance capture: Dataset retrieval automatically records notebook-level

provenance (session metadata, dataset ID, API endpoint, dataset columns) to

link the chosen dataset to the exact code state for reproducibility.

• The user selects a dataset from a multiple-choice interface connected to the

current endpoint.

• Metadata is fetched from the endpoint via key alignment and the dataset is

loaded into the notebook.

• Optionally, entering a DOI triggers an external metadata lookup (e.g., Dat-

aCite, Crossref) for enrichment.
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• DBRepo-specific fields: internal ID, title, description, creators, license,

upload timestamp, version tag, file checksum, and size.

3. Experiment Configuration and Execution

After dataset ingestion, the user is prompted to provide key configuration details

such as model type, test/train split ratio, experiment name, hyperparameters, and

random seed.

• Preprocessing: Triggered either (i) using the framework’s default prepro-

cessing pipeline (e.g., automatic type coercion, dropping ID columns, splitting

into train/test) or (ii) using user-supplied parameters for steps such as scaling,

encoding, feature selection, or sampling. The exact preprocessing sequence is

stored in the metadata.

• Model execution: The chosen model is instantiated, trained, and evaluated

according to the configuration. For the purposes of this implementation, the

ML tasks are intentionally kept as relatively simple classification prob-

lems so that the evaluation can focus on provenance tracking and metadata

completeness rather than on complex model architectures or domain-specific

optimisation.

• Notebook adaptability: While the current notebook implements a fixed

sequence (metrics, confusion matrix, ROC/PR curves), the architecture allows

any notebook to be adapted by inserting minimal annotation cells or function

calls at key stages (e.g., after preprocessing, after training, after evaluation).

This annotation enables the framework to map the notebook’s variables and

outputs to the corresponding metadata fields.

• Logging: All parameters, tags, runtime environment, and model artifacts are

automatically logged to MLflow during execution.

• Git integration: Activated once all metadata (including Justification Block

inputs) is collected. In the background, a commit is triggered, capturing Git

hash, branch, status, and author details, which are injected into the metadata.

The user is then prompted to enter commit version tag.
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4. Justification Metadata Entry

Following execution, users are prompted to fill out the justification block explained

in Section 1. This data is also logged in MLflow.

5. MLflow Metadata Dump and Parsing

After completion, MLflow logs are dumped into a raw JSON file that aggregates all

tracked experiment data. This file includes:

• Session metadata (timestamps, run name, environment)

• Dataset details (merged from DBRepo and optional DOI enrichment)

• Model parameters and performance metrics

• Git metadata (commit hash, commit author, branch, script name, repository

URL)

• Runtime environment details (Python version, OS, notebook used)

• Experiment metadata and user-supplied justification inputs

This metadata is parsed and inserted into structured tables within DBRepo (Ap-

pendix B.1). These names also reflect the table names in the DBRepo database.

6. Semantic Harmonization and Export

Following parsing explained in Section 1:

• A renaming function maps internal metadata keys directly to ontology terms.

• The mapped metadata is written to a structured JSON file (Zenodo), which

serves as the source for the dashboard and two export formats:

– JSON-LD (Linked Data)

– RDF/XML (for LOD compatibility)

https://zenodo.org/records/16874761/files/structured_metadata.json?download=1
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7. Invenio Integration and Background Archival

In the background, an automated archival process is triggered via Invenio:

• A draft is created in Invenio, which includes the structured JSON, seman-

tic exports (JSON-LD, RDF/XML), generated plots, and the trained model

(.pkl), and is then published to the repository.

• Metadata returned by Invenio (e.g., record ID, submission timestamps, archive

link) is appended to the structured JSON for completeness.

8. Full-Stack Integration

Throughout this process Figure 4.5., all metadata from DBRepo, Jupyter session,

Git, and justification inputs is tracked using MLflow, ensuring complete traceability

and semantic auditability.

Figure 4.5 illustrates the full execution flow, beginning from notebook initiation

to final archival. Metadata is incrementally collected from DBRepo, the notebook

environment, Git, and user inputs at various stages of the ML pipeline. After

logging via MLflow, it is parsed and inserted into structured DBRepo tables. Post

this, the renaming function maps internal fields to ontology terms, producing a

harmonized JSON file used for export and visualization. An automated archival

step then uploads these artifacts to Invenio.

4.5 Visualization and Interaction Layer

The dashboard makes it possible to examine experiment metadata interactively by

using a modular Streamlit interface. The streamlit-option-menu library is used

to organize the interface into tabs, with each metadata category shown in its own

panel. The dashboard’s only data source is a structured JSON file that is produced

after metadata harmonization.

Users can utilize the interface to filter, review, and export pertinent metadata sub-

sets for each experiment that has been finished, and can access these runs by selecting

the run_id from the drop-down at each panel.
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Figure 4.5: Execution flow diagram

UI Tabs and Functionality

• Dashboard: Gives a summary of every metadata section in a graphically

organized. An interactive narrative walkthrough of the complete infrastructure

flow(BOX# 2) is included, along with render-styled cards that provide an

overview of the features(BOX# 1), and on the left, we see tabs such as the

Dataset, Model, Justifications, and Export(BOX# 3).
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Figure 4.6: Overview dashboard with infrastructure walkthrough and metadata
summary cards

• Dataset Metadata: Shows metadata at the dataset level in three different

tables, including dataset title, version, DOI, source, and preparation proce-

dures.

Figure 4.7: Dataset metadata view showing title, DOI, preprocessing summary, and
DBRepo tags

• ML Model Metadata: Enables users to examine associated model details,

such as type, hyperparameters, train and test metrics (accuracy, F1), training



CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 69

timestamps, and MLflow run ID, by selecting a specific run ID. Comparative

analysis is supported through juxtaposed display of multiple runs.

Figure 4.8: Model metadata viewer with hyperparameters, training metrics, and
version information

• Model Plots: Displays evaluation visuals such as ROC/AUC curves, feature

importance plots, and confusion matrices, selectable from the dropdown in

Figure 4.9. A subset of the metadata of the chosen run is shown for context

(Figure 4.10, Box #1).

Figure 4.9: Model Plots options.
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Figure 4.10: Model Plots tab showing the selected experiment’s metadata for com-
pleteness.

• Provenance Trace: Provides an interactive comparison interface across

training runs to show how configuration, parameters, and results have changed,

enabling reproducibility analysis by including full metadata lineage.

In Figure 4.11, the annotated areas correspond to:

BOX#1 Run selection and reproducibility guide: Allows the user to select

the primary run for inspection, download the reproducibility_guide

file (which contains hyperparameters, dataset version, preprocessing

steps, metrics, and Git commit hash), and optionally check the “Com-

pare with another run” box.

BOX#2 Comparison view: Displays the selected runs side-by-side. Differences

in key fields such as Git commit hash, dataset version, or hyperparame-

ters are highlighted to indicate provenance mismatches between the two

executions.

BOX#3 Run dropdown: When comparison mode is enabled, a dropdown lists

all available past runs; selecting one populates the comparison table in

area #2.
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Figure 4.11: Provenance trace tab with annotated areas: #1 run selection ; #2
comparison table highlighting provenance mismatches (differences in Git commit,
dataset version, or parameters) between runs.

Figure 4.12: Provenance trace tab with annotated areas: #3 run selection from the
dropdown list.

For every run selected, the tab also offers a downloadable reproducibility

guideline (Figure 4.13), which is a structured text file containing:

– Model hyperparameters and evaluation metrics

– Preprocessing pipeline details

– Dataset version
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– Git commit hash of the code used

The sample shown in Figure 4.13 is from the run Wine_Evaluation_v20250711

_104632-the filename encodes the dataset name (Wine), model type

(Evaluation), and timestamp. This file can be used as a step-by-step ref-

erence for recreating the exact experiment. The annotated areas correspond

to:

#1 Model Details: Includes model name, dataset name, dataset version,

run ID, and timestamp of execution.

#2 Hyperparameters: Lists the full training configuration used for the

model (e.g., number of estimators, maximum depth, criterion, feature

settings).

#3 Metrics: Displays the evaluation results for the run, including accuracy,

macro F1-score, macro precision, macro recall, and ROC AUC.

#4 Git Info and Reproduction Guide: Provides the Git commit hash

linked to the experiment, the exact git checkout command to retrieve

it, and sequential instructions for reproducing the training and evaluation

steps.

Figure 4.13: Annotated reproducibility guideline
(Wine_Evaluation_v20250711_104632_reproducibility.txt) showing: #1
model details; #2 hyperparameters; #3 metrics; and #4 Git commit information
with reproduction instructions.
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• Error & Version Impact

This use case demonstrates how the framework detects ML experiments af-

fected by outdated or faulty code or dataset versions. In collaborative envi-

ronments, such issues can propagate errors if not caught early. The tab works

by comparing each run’s Git commit hash and version tag against the current

main branch and any user-specified deprecated tags. If a match is found, the

corresponding runs are flagged as impacted. The user can then directly notify

collaborators through GitHub.

Figures 4.14 and 4.15 annotate the main components of this tab:

#1 Current Git Commit: Shows the commit hash of the current working

version for comparison.

#2 Experiment List: Displays all tracked experiments with their commit

hash, version tag, model type, accuracy, and dataset version.

#3 Deprecated Tag Search: Field to enter a known faulty or outdated

version tag; on execution, the table of impacted experiments is generated.

#4 GitHub Notification: Allows the user to authenticate and send auto-

mated notifications to collaborators linked to the impacted runs.

Figure 4.14: Annotated Error & Version Impact tab: #1 current Git commit; #2
experiment list; #3 deprecated version tag search and detection results.
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Figure 4.15: Annotated GitHub notification section #4 for contacting collaborators
about impacted experiments.

• Model-Dataset Mapping: In collaborative and long-running projects, it is

often necessary to verify that a given model can be reproduced from its origi-

nal dataset and training conditions[39] - a process sometimes referred to as a

reproducibility audit. Such audits aim to confirm that the training outcomes

reported for a model can be regenerated using the documented dataset, prepro-

cessing steps, and hyperparameters. This tab addresses that need by explic-

itly enumerating the connections between datasets and the machine learning

models trained on them. It also exposes the associated metadata, enabling re-

viewers to confirm dataset-model consistency, check provenance records, and

ensure reproducibility.

In Figure 4.16, the annotated areas highlight:

#1 Run ID: Unique identifier for each experiment execution.

#2 Model Details: Name and architecture of the trained ML model.

#3 Dataset Details: Dataset title, version, and persistent access URL.

#4 Performance Metrics: Accuracy, recall, precision, and ROC AUC (test

set).
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Figure 4.16: Annotated Model-Dataset Mapping tab showing dataset-model links,
dataset metadata, and evaluation results.

• Notify Outdated Forks: In collaborative code development, forks that lag

behind the main branch can introduce integration conflicts, propagate bugs, or

result in experiments being run on outdated code. If experiments are executed

on such forks without synchronized dataset or code versions, results may devi-

ate from current baselines, thereby compromising reproducibility. The Notify

Outdated Forks tab addresses this by integrating with GitHub to automati-

cally compare commit histories, identify forks that are behind, and highlight

version gaps. Users can initiate alerts or create GitHub issues directly from

the interface to prompt timely updates.

Figure 4.17: GitHub fork tracker highlighting outdated forks and version gaps.
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• Export Provenance: Shows the ‘.jsonld‘ and ‘.rdf.xml‘ files and offers down-

load links as well as support for SPARQL querying.

Figure 4.18: Export tab showing available RDF/XML and JSON-LD downloads per
run

• Researcher Justifications: Shows every reasoning field that has been man-

ually filled in, including the model’s justification, the metric selection, the

intended usage, and any ethical issues.

Figure 4.19: Researcher justification tab showing manual metadata.

• Environment Requirements: Lists the exact Python packages, versions,

and installation paths that were active in the runtime environment. This
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information is extracted from MLflow logs at execution time and displayed as

a downloadable text file.

Figure 4.20: requirements.json file showing package names, versions, and instal-
lation paths from the recorded experiment environment.

Execution Selection Mechanism: At the top of each functional dashboard tab

(e.g., Provenance Trace, Model-Dataset Mapping, Error & Version Impact), a drop-

down menu allows the user to select from previously recorded experiment executions.

Once selected, the experiment’s context, model, environment, and full metadata

trace are automatically reflected in all panels of that tab.

Summary

This chapter presented the design and implementation of a provenance-aware,

ontology-aligned machine learning evaluation framework. The architecture was

guided by requirements identified in the literature review, addressing gaps in re-

producibility, metadata completeness, and standards-based interoperability.

The system adopts a modular, notebook-native design with clear separation of data

retrieval, experiment execution, provenance capture, and semantic export. Integra-

tion with MLflow enables continuous, automated tracking of dataset, model, envi-

ronment, and justification metadata, while the DBRepo backend supports structured

storage and queryable access. Ontology mappings to PROV-O, FAIR, FAIR4ML,

MLSEA, and Croissant ensure that captured metadata is semantically consistent

and reusable across platforms.

By combining automated metadata capture with targeted manual inputs, the frame-
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work supports both repeatable experimentation and human-centered documenta-

tion. The design is endpoint-agnostic, allowing substitution of data repositories or

metadata APIs with minimal code changes. This architecture establishes the foun-

dation for the evaluation presented in the next chapter, where its effectiveness is

assessed against the thesis research questions.



5 Evaluation

5.1 Overview

This chapter evaluates the proposed provenance-aware ML framework along four

research dimensions corresponding to the thesis research questions:

• RQ1: Metadata coverage, ontology alignment, and degree of automation.

• RQ2: Reproducibility traceability, debugging, version tracking, and configu-

ration auditing.

• RQ3: Visualization effectiveness and usability.

• RQ4: Export into semantic formats for interoperability.

5.2 RQ1: Metadata Coverage, Metadata Align-

ment, and Degree of Automation

5.2.1 Use Case: Data and Model Provenance capture, align-

ment

Provenance-aware ML systems enable two things: (i) reproducible, auditable ex-

periments and (ii) model governance over time - continuous, auditable oversight

of models across their lifecycle (versioning, provenance and lineage, performance/-

drift monitoring, controlled changes, and eventual deprecation). Both require the

following:

1. Coverage — whether the framework records the right kinds of fields expected

by established ontologies for ML experiments and datasets.

79
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2. Alignment — whether recorded keys are canonically mapped to ontology

terms (not merely lookalikes), so that downstream tools can parse and reason

over them in a standards-based way.

3. Automation — whether those fields are captured without burdening the user,

reducing omissions and human error at scale.

RQ1 tests these three aspects in a structured way. We use a reference built from of-

ficial ontology releases and limit the analysis to tabular classification, so the baseline

is clear and not padded with out-of-scope fields.

5.2.2 Scope, Assumptions, and Artifacts

Task scope. Supervised classification on tabular data, executed in a notebook-

native workflow (Jupyter), including preprocessing, training, evaluation, artifact

logging, and archival. Inference services, deployment-time governance, and non-

tabular modalities are out of scope for RQ1.

Ontologies under test.We assess coverage against five property vocabularies:

PROV-O, FAIR, Croissant, FAIR4ML, and MLSEA.

Definition of a run. A run is a single, end-to-end execution of the pipeline (ses-

sion start → archival), yielding one structured metadata JSON plus linked artifacts

(plots, model file, semantic exports) under local folder MODEL_PROVENANCE/, which

is then archived in Invenio.

Runs evaluated. Nine executed notebooks:

• Iris variants (v0–v4): controlled perturbations for stress-testing provenance

capture.

• Wine (User study): two users, original+reproduction each.

A full list of run IDs, timestamps, and dataset links is provided in Appendix A.2.
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Table 5.1: Datasets and run purposes used in RQ1

Dataset/Run Purpose

Iris v0 (Original) Framework evaluation (baseline)
Iris v1 (Duplicated) Robustness to duplicates
Iris v2 (First 100) Subsampled training set
Iris v3 (Normalized) Preprocessing variation
Iris v4 (Distorted) Feature perturbation
Wine (User 1, Original) User study: framework test
Wine (User 1, Reproduction) Repeatability check
Wine (User 2, Original) User study: framework test
Wine (User 2, Reproduction) Repeatability check

5.2.3 Building the Reference: Ontology Union Uall

Objective. Create a single, reproducible union catalog of ontology terms expected

in notebook-native ML experiments and dataset descriptions, sourced from official

releases. Identifiers are normalized to stable prefixes and de-duplicated by IRI so

the same term is not counted twice.

Sources. We ingest PROV-O, FAIR, DCTERMS, Croissant, FAIR4ML, and

MLSEA from their official RDF serializations (Turtle/JSON-LD).

Table 5.2: Snapshots used to construct the ontology union Uall

Ontology Source URL Snapshot

(ver/tag/commit)

Retrieved

(UTC)

File / For-

mat

PROV-O https://www.w3.org/ns/prov.ttl W3C Recommendation

2013-04-30

2025-08-13 prov.ttl /

Turtle

FAIR

Vocabulary

https://w3id.org/fair/principles/

terms/FAIR-Vocabulary

5.1.11 2025-08-13 FAIR-

Vocabulary.ttl

/ Turtle

Croissant https:

//raw.githubusercontent.com/mlcommons/

croissant/v1.0.21/docs/croissant.ttl

v1.0.21 2025-08-13 croissant.ttl /

Turtle

FAIR4ML https://rda-fair4ml.github.io/

FAIR4ML-schema/release/0.1.0/fair4ml.

jsonld

0.1.0 2025-08-13 fair4ml.jsonld

/ JSON-LD

MLSEA http://w3id.org/mlsea 1.0.0 2025-08-13 mlsea.ttl /

Turtle

Pipeline.

• Parse: Load each ontology file with rdflib.

https://www.w3.org/ns/prov.ttl
https://w3id.org/fair/principles/terms/FAIR-Vocabulary
https://w3id.org/fair/principles/terms/FAIR-Vocabulary
https://raw.githubusercontent.com/mlcommons/croissant/v1.0.21/docs/croissant.ttl
https://raw.githubusercontent.com/mlcommons/croissant/v1.0.21/docs/croissant.ttl
https://raw.githubusercontent.com/mlcommons/croissant/v1.0.21/docs/croissant.ttl
https://rda-fair4ml.github.io/FAIR4ML-schema/release/0.1.0/fair4ml.jsonld
https://rda-fair4ml.github.io/FAIR4ML-schema/release/0.1.0/fair4ml.jsonld
https://rda-fair4ml.github.io/FAIR4ML-schema/release/0.1.0/fair4ml.jsonld
http://w3id.org/mlsea
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• Collect terms: Extract both properties (rdf:Property,

owl:ObjectProperty, owl:DatatypeProperty, owl:AnnotationProperty)

and classes (rdfs:Class, owl:Class).

• Normalize names: Obtain qnames (qualified names, a.k.a.

CURIEs: prefix: localName, e.g., prov:startedAtTime �→
http://www.w3.org/ns/prov#startedAtTime) via the graph’s names-

pace manager; strip angle brackets; fix default-namespace PROV forms

(e.g.,:startedAtTime→prov:startedAtTime); if still a full IRI, map via a

fixed base→prefix table (prov, dcterms, dcat, croissant, schema, fair4ml,

mls/mlso, foaf).

• De-duplicate: Within each ontology, drop duplicate IRIs1; concatenate per-

ontology frames (preserving overlaps for reporting).

Deliverables.

• Evaluation catalog (terms = properties + classes). ontologies

/Results/ unified_keys_with_overlaps.csv (see in Zenodo) - normalized

keys per source with overlaps preserved; used for the coverage/alignment met-

rics reported in this section.

• Auxiliary transparency artifacts.

– ontologies/Results/ontology_catalog_with_overlaps.csv (full

catalog with properties+classes and overlaps)(see in Zenodo).

– ontologies/Results/overlapping_uris_across_ontologies.csv

(terms observed in multiple ontologies)(see in Zenodo).

The code used to generate the above files can be found in Zenodo.
1An IRI (Internationalized Resource Identifier) is the canonical, globally unique iden-

tifier for a term, e.g., http://www.w3.org/ns/prov#startedAtTime. Prefixed forms like
prov:startedAtTime are abbreviations that expand to this IRI.

https://zenodo.org/records/16874761/files/unified_keys_with_overlaps.xls?download=1
https://zenodo.org/records/16874761/files/ontology_catalog_with_overlaps.xls?download=1
https://zenodo.org/records/16874761/files/overlapping_uris_across_ontologies.xls?download=1
https://zenodo.org/records/16874761/files/union_builder.py?download=1
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5.2.4 Evaluation Protocol: Full-Union Coverage and Align-

ment

Goal. Quantify ontology alignment between our structured_metadata.json

(archived in Zenodo) and the complete union reference Uall. We use exact, case-

sensitive equality of key strings (no normalization). In the same pass, we compute

(i) baseline completeness, and (ii) Ontology alignment.

Inputs.

• Baseline files:

– Complete Union:ontologies/Results/unified_keys_with_overlaps.csv

(columns: ontology, key)(archived in Zenodo).

– Strict subset (task-scoped): ontologies/Results/relevant_subset/relevant

_union_generic_plus_classification.csv (see next section).

• Framework JSON: keys taken from sections {FAIR, FAIR4ML, MLSEA,

Croissant, PROV-O}; the Uncategorized bucket is excluded.

Method (occurrence-based; exact string equality). A key matches only if the

strings are exactly equal (case-sensitive).

Notation. Kjson is the multiset of JSON keys with counts j(k). Uall and Ucls

are baseline multisets with counts uall(k) and ucls(k). We write A ∩occ B for the

occurrence-based (multiset) intersection.

Matchesall =
��Kjson ∩occ Uall

��, Completenessall(%) = 100 · Matchesall

|Uall|

Matchescls =
��Kjson ∩occ Ucls

��, Completenesscls(%) = 100 · Matchescls
|Ucls|

Per-ontology completeness is computed by restricting Uall or Ucls to rows for that

ontology before applying the same formulas.

5.2.5 Measurement 1: Metadata Coverage (Uall)

How we measure it. We compute coverage using Uall as a baseline and compare

it against case-sensitive ontology terms that appear among the JSON keys Kjson.

https://zenodo.org/records/16874761/files/structured_metadata.json?download=1
https://zenodo.org/records/16874761/files/unified_keys_with_overlaps.xls?download=1
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Table 5.3 can be interpreted as follows, Total fields is the number of comparison

keys we kept for each ontology in the full-union baseline (Uall). Matched counts

exact, case-sensitive key matches found in structured_metadata.json. Missing =

Total − Matched.

Completeness (%) = Matched/Total×100. The subset of the fields that matched

and unmatched can be seen in Table 5.4, the complete set of these fields is archived

in Zenodo. The evaluation script are in Zenodo.

Table 5.3: Coverage of Kjson - structured_metadata.json on Uall - Full-Union

Ontology Total fields Matched Missing Completeness (%)

FAIR4ML 14 14 0 100.00

Croissant 30 21 9 70.00

MLSEA 110 74 36 67.27

FAIR 14 6 8 42.86

PROV-O 101 41 60 40.59

Overall (full union): total rows = 269; matched rows = 150; completeness = 55.76%.

Table 5.4: Subset of matched vs. unmatched ontology terms on full-union baseline.

Matched key Unmatched key

dcterms:title mls:Study
fair4ml:trainedOn croissant:jsonQuery
fair4ml:validatedOn mls:definedOn
mls:Dataset mlso:hasMD5
mls:Experiment mlso:hasScientificReference
mls:Model schema:codeRepository
mls:hasHyperParameter prov:influenced
mls:specifiedBy prov:qualifiedAssociation
mlso:hasAlgorithmType prov:qualifiedAttribution
mlso:hasFormat prov:qualifiedGeneration
mlso:hasTrainTestSplitIndices prov:qualifiedStart
prov:Activity prov:value
prov:startedAtTime —
prov:endedAtTime —
prov:used —
prov:wasGeneratedBy —
— —

“—” indicates that this table is a subset of the complete table.
The complete set of these fields is archived in Zenodo.

Conclusion (full union). The full-union check yields an overall completeness of

55.76% (269 rows, 150 matches), with strong coverage for FAIR4ML (100%) and

partial coverage for Croissant (70%) and MLSEA (67.27%), while PROV-O and

https://zenodo.org/records/16874761/files/eval1_full_union_matched_unmatched.xls?download=1
https://zenodo.org/records/16874761/files/evalrq.py?download=1
https://zenodo.org/records/16874761/files/eval1_full_union_matched_unmatched.xls?download=1


CHAPTER 5. EVALUATION 85

FAIR are lower. Many unmatched terms in these latter vocabularies are out of

scope for notebook-native, tabular classification runs (e.g., deployment/audit-time

or narrative annotation fields). To assess fit-for-purpose capture rather than breadth

across all lifecycle stages, we now evaluate against a strict, task-scoped subset of Uall;

all subsequent metrics (including value validity and automation) use that subset as

the baseline.

5.2.6 Task-Scoped Subset for Classification Ucls

Rationale. A union of all ontology properties includes many that are irrelevant to

notebook-native ML classification tasks (e.g., deployment, non-tabular modalities,

regression, clustering fields). To avoid misleadingly low coverage, we define Ucls ⊂
Uall via explicit inclusion rules aligned to this thesis scope.

Construction of Baseline subset Ucls:

Starting from Uall, full-union file we apply three inclusion passes:

1. Prefix (generic) pass: keep keys whose CURIE prefix is in {prov, dcterms,

croissant, fair, fair4ml}and is generic metadata.

2. Classification regex pass: keep keys whose key or label matches a

classification-oriented regex (e.g., accuracy, precision, recall, f1,

roc/auc, log_loss, confusion, TP/FP/TN/FN, multiclass/binary,

threshold/probab, target/label, one-vs-rest, train_test/split,

stratified, cross_val).2

3. Hard-include pass: force-include core MLS/MLSO/MLSEA objects,

relations, and classification metrics needed for pipelines/evaluation-

even if they do not match the regex (e.g., mls:Model, mls:Run,

mls:Task, mls:EvaluationMeasure, mlso:hasDefaultTargetFeature,

mlso:trainedOn, mlso:hasTrainTestSplitIndices, mlso:accuracy,

mlso:precision, mlso:recall, mlso:f1Score, mlso:rocAuc).

Deliverables. The script writes:

• /relevant_union_generic_plus, archived in Zenodo

_classification.csv (used as Ucls throughout RQ1)
2Regex is applied case-insensitively to the concatenation of key and label.

https://zenodo.org/records/16891066/files/relevant_union_generic_plus_classification.xls?download=1
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Size. The total count, |Ucls| = 214 terms across five vocabularies.

Table 5.5: Per-ontology term counts within Ucls

Ontology |Ucls,o|
PROV-O 94
FAIR 6
Croissant 29
FAIR4ML 14
MLSEA 71

Subset rules The table below samples concrete filter conditions implemented in

the script (prefix/regex/hard-include).

Table 5.6: Selected filtering conditions used to build Ucls

Rule type Condition / Examples

Prefix whitelist {prov, dcterms, dcat, croissant, fair, fair4ml}
Regex (classification) classif, classification
Regex (metrics) accuracy, precision, recall, f1
Regex (curves) roc, auc
Regex (loss) logloss, log_loss
Regex (confusion) confusion (matrix)
Regex (counts) true_positive, false_positive, true_negative, false_negative
Regex (task type) multiclass, binary
Regex (thresholds) threshold, probab
Regex (targets) target, label
Regex (strategy) one-vs-rest
Regex (splits) train_test, split, stratified
Regex (validation) cross_val
Whitelist key mlso:hasDefaultTargetFeature
Whitelist key mlso:hasTaskType, mlso:hasEvaluationMeasureType
Whitelist key mlso:hasEvaluationProcedureType
Whitelist key mlso:hasAlgorithmType
Whitelist key mlso:hasRelatedImplementation, mlso:hasRelatedSoftware
Whitelist key mlso:hasFormat, mlso:hasCacheFormat
Whitelist key mlso:ignoresFeature, mlso:trainedOn
Whitelist key mlso:hasTrainTestSplitIndices
Hard-include (core MLS) mls:Model, mls:Run, mls:Task
Hard-include (eval) mls:EvaluationMeasure, mls:EvaluationSpecification, mls:ModelEval
Hard-include (structure) mls:Feature, mls:HyperParameter, mls:HyperParameterSetting
Hard-include (pipeline) mls:Algorithm, mls:Implementation
Hard-include (relations) mls:hasInput, mls:hasOutput, mls:hasPart, mls:specifiedBy

Filtering code for the above is archived in Zenodo.

https://zenodo.org/records/16874761/files/strict_subset_gen.py?download=1
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5.2.7 Measurement 2: Metadata Coverage (Ucls)

How we measure it. We compute coverage: exactly the same way we did with Uall,

but we use our strict-subset Ucls as a baseline and compare it against case-sensitive

ontology terms that appear among the JSON keys Kjson.

Table 5.7: Coverage on Uall and Ucls (per ontology counting)

Uall Ucls

Ontology |Uall,o| |Mo| Overlap (%) |Ucls,o| |Mo| Overlap (%)

PROV-O 101 41 40.59 94 39 41.49
FAIR 14 6 42.86 6 6 100.00
Croissant 30 21 70.00 29 21 72.41
FAIR4ML 14 14 100.00 14 14 100.00
MLSEA 110 74 67.27 71 70 98.59

Overall (bag view): for Uall, total rows = 269, matched = 150, completeness = 55.76%; for Ucls,
total rows = 214, matched = 150, completeness = 70.09%.

Table 5.8: Subset of matched vs. unmatched terms on Ucls.

Matched key Unmatched key Why unmatched

croissant:citeAs croissant:equivalentProperty Not emitted by pipeline
croissant:column croissant:excludes Not used in this dataset
croissant:containedIn croissant:extract Feature not implemented
croissant:content croissant:jsonPath Not used
croissant:data croissant:jsonQuery Not used
croissant:dataType croissant:parentField Structural; not exported
croissant:delimiter croissant:regex Validation not captured
croissant:examples croissant:subField Nested field not exported
dcterms:license dcterms:licence Spelling variant not used
mls:Dataset mls:DataCharacteristic Out of scope for run logs
mls:EvaluationMeasure mls:defines Modeling relation not used
mls:Feature mls:ImplementationCharacteristic Impl. details logged elsewhere
mlso:hasAlgorithmType mlso:hasDataLoaderLocation Data-loader not tracked
mlso:hasDefaultTargetFeature mlso:hasIdFeature ID feature not modeled
mlso:hasEvaluationMeasureType mlso:hasNumberOfReferences Citations recorded elsewhere
mlso:hasTrainTestSplitIndices mlso:hasPredictionsLocation Prediction files not archived
fair4ml:evaluatedOn prov:qualifiedInfluence PROV-O qualified pattern unused
fair4ml:trainedOn prov:qualifiedPrimarySource PROV-O qualified pattern unused
dcat:Distribution prov:atTime Timestamp stored elsewhere
prov:Location prov:Bundle PROV-O bundle not generated

Full, per-occurrence lists (matched and unmatched) for both Uall and Ucls are provided in :
Zenodo.

Conclusion & Interpretation

Coverage under strict, case-sensitive, occurrence-based matching is 55.76% on the

full union Uall (269 rows, 150 matches) versus 70.09% on the task-scoped subset Ucls

(214 rows, same 150 matches). The lift is expected because Uall includes out-of-

scope terms (deployment, non-tabular, etc.), while Ucls reflects the notebook-native

https://zenodo.org/records/16874761/files/eval2_subset_union_STRICT_matched_unmatched.xls?download=1
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tabular classification setting.

Most unmatched items are (i) Croissant ETL fields we did not emit (e.g., jsonPath,

jsonQuery, regex), (ii) PROV-O qualified patterns unused in our runs (e.g., prov:

qualifiedInfluence, prov:Bundle), and (iii) benign alias/spelling variants (e.g.,

dcterms:licence vs dcterms:license) among which one matched. These gaps

mainly reflect scope and exporter choices; adding optional PROV-O qualifiers and

a small alias map would raise coverage.

5.2.8 Measurement 3: Ontology-aligned vs. Additional meta-

data)

What we report. Besides coverage (how many ontology terms we hit exactly), we

also log extra metadata that is useful in practice (e.g., experiment notes, environ-

ment/version details) but not always named in the ontologies. Prior work argues

for such richer documentation to support reproducibility and responsible use (e.g.,

Model Cards, Datasheets for Datasets, and the NeurIPS Reproducibility Checklist)

[32, 33, 34]. Consistent with metadata alignment research such as the book Proceed-

ings of the 10th International Conference on Biomedical Ontology [40], which treats

non-exact or contextually related terms separately from exact ontology matches,

our pipeline classifies any key not found in the reference ontology term lists as a

reporting extra. These metadata are not considered in the coverage calculation.

How we count. We split all JSON keys into two buckets: (i) Ontology-aligned—

exact, case-sensitive matches to terms in the baseline; and (ii) Reporting extras—

present in our JSON, but not defined in the baseline ontologies. We report both, so

readers see how much is standards-based versus additional, but still important or

relevant to the context.

Table 5.9: Ontology alignment and Extra metadata (JSON-side counts)

Category Count Share (%)

Ontology-aligned (exact matches) 150 65.79
Reporting extras (not in ontology) 78 34.21

Total JSON keys 228 100.00

Table 5.10 lists a representative subset of “framework extras” that are not part of the
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baseline ontologies but are retained because they materially improve reproducibil-

ity, traceability, and interpretability. Some values are intentionally repeated under

simplified key names to improve clarity and usability.

Table 5.10: Representative extra (non-ontology) metadata fields and their practical
value.

Extra key Practical value

prov:commit,prov:commitAuthor,
prov:commitTime

Capture the exact code state and authorship at execution time,
enabling precise version tracing.

prov:pythonVersion, prov:osPlatform Record runtime environment details to guard against platform-
dependent differences.

prov:usedNotebook Links results to the specific interactive environment in which
they were produced.

mlso:justificationModelChoice,
mlso:justificationTestSplit

Record the rationale for model and parameter choices, sup-
porting transparency and responsible use.

mlso:modelPath Points to the stored model artefact for verification or reuse.
croissant:examples.* Provide concrete sample data values for interpretability and

quality checking.

The full set of extras is archived in Zenodo.

5.2.9 Measurement 4: Degree of Automation

Operational definitions.

• Automatic - emitted without user action (environment, timestamps, VC-

S/git, metrics, file hashes, dataset IDs).

• Semi-automatic - system prompts with bounded user input (e.g., dropdowns,

choices).

• Manual - explicit user input (rationales, free-text descriptors).

Each property in Ucls is tagged with one of the three, as implemented in Section 4.3.

We report overall distributions.

Table 5.11: Automation distribution over Ucls

Type Count Percent

Automatic 183 80.26
Semi-automatic 15 6.58
Manual 30 13.16

https://zenodo.org/records/16874761/files/extra_metadata_fields.xlsx?download=1
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Table 5.12: Representative fields with capture mode and input source.

Section Key Input Type Input Source

PROV-O prov:commit Automatic git
PROV-O prov:commitAuthor Automatic git
PROV-O prov:commitTime Automatic git
PROV-O prov:pythonVersion Automatic mlflow
PROV-O prov:osPlatform Automatic mlflow
PROV-O prov:startedAtTime Automatic mlflow
PROV-O prov:endedAtTime Automatic mlflow
PROV-O prov:usedNotebook Semi-

Automatic
jupyter

MLSEA mls:HyperParameter Semi-
Automatic

user

MLSEA mlso:hasTrainTestSplitIndices Semi-
Automatic

user

MLSEA mlso:trainAccuracy Automatic mlflow
FAIR4ML fair4ml:intendedUse Manual user
FAIR4ML fair4ml:modelCategory Semi-

Automatic
mlflow

FAIR4ML fair4ml:evaluatedOn Automatic dbrepo
FAIR4ML fair4ml:runEnvironment Automatic mlflow
Croissant croissant:format Automatic mlflow
FAIR dcterms:license Semi-

Automatic
doi

FAIR dcterms:creator Semi-
Automatic

dbrepo

Table 5.12 lists a representative subset of metadata fields, showing their capture

mode and primary input source. This selection mixes Automatic, Semi-Automatic,

and Manual fields from diverse origins such as git, mlflow, user input, dbrepo, doi,

and jupyter notebooksis archived in Zenodo.

Conclusion. The RQ1 evaluation establishes, with quantitative evidence, that

the framework achieves comprehensive provenance capture in alignment with estab-

lished semantic vocabularies while remaining precisely scoped to the requirements of

notebook-native, tabular classification workflows. By constructing a reproducible,

ontology union from official releases, and then refining it to a task-scoped subset

Ucls, the analysis isolates the fields that are truly relevant to this experimental con-

text. The resulting 70.09,% completeness on Ucls, compared to 55.76,% on the full

union Uall, demonstrates that the observed coverage gaps are largely due to out-of-

scope lifecycle terms rather than deficiencies in capture. In theory, the few more

https://zenodo.org/records/16874761/files/classification%20of%20automation.xlsx?download=1
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fields could be mapped if redundancy isnt a concern. The clear separation between

ontology-aligned fields and “reporting extras” further ensures that the framework

delivers both formal standards compliance and the additional operational metadata

required for reproducibility, interpretability, and responsible model governance.

The automation analysis underscores the operational maturity of the approach: over

80% of all Ucls fields are captured automatically from trusted sources such as git,

mlflow, dbrepo, doi registries, and jupyter notebooks, with the remaining fields han-

dled through structured prompts or targeted manual input. This degree of au-

tomation minimises user burden and reduces the risk of omission, while retaining

intentional control over ethically and contextually sensitive descriptors. Through

rigorous ontology alignment, precise scope refinement, and automation-driven cap-

ture, the framework delivers a robust, provenance-aware solution that generates rich,

standards-compliant metadata with minimal operational overhead.

5.3 RQ2: Reproducibility, Debugging, and Version

Auditing

5.3.1 Use Case: Provenance and Reproducibility

Objective: Analyze if the information that the framework collects can be used

to accurately replicate a previous machine learning run, and verify whether the

dashboard tools can be used to track out any inconsistencies.

Method: For thorough traceability testing, Wine_Evaluation_v20250812_233212,

a previously conducted experiment using the Wine dataset and a Logistic Regression

model, was selected. During the user study, each participant was assigned to repro-

duce the other participant’s previously executed run, using only the reproducibility

guide and the metadata available in the dashboard. The reproducibility guide (Fig-

ure 5.5) is a plain-text file automatically generated by the framework that lists all

parameters, dataset identifiers, preprocessing steps, model hyperparameters, and

Git commit details required to rerun the experiment outside the dashboard. The

aim was to verify that the dashboard’s comparison features could highlight any

differences in model setup or data provenance, and to check whether the same per-
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formance metrics (e.g., accuracy, confusion matrix) could be replicated.

• The "Provenance Trace" tab on the dashboard interface (Figure 5.1, Fig-

ure 5.2) allowed the user to select the original and reproduced runs from a

dropdown menu for comparison.

• The system retrieved all metadata: dataset DOI, schema version, preprocess-

ing parameters (e.g., dropped columns, imputation strategy), model type, hy-

perparameters (e.g., max_depth, n_estimators), Git commit hash, and exe-

cution timestamps.

• Field-level differences were visualized in two tabular panels: one for provenance

and configuration metadata (Figure 5.3), the other for model evaluation met-

rics and runtime (Figure 5.4). Color-coded highlights indicated mismatches

across runs.

• A reproducibility guide (Figure 5.5) was auto-generated as a downloadable file,

listing all parameters, dataset details, preprocessing steps, and model settings

needed for an external rerun.

Figure Interpretation and Outcome:

• Figure 5.1: The Provenance Trace tab allows selection of a training run

for detailed metadata inspection. Box #1 highlights the run selection drop-

down, where users can choose a single run or enable the Compare with

another run option to perform side-by-side comparison. In this example,

Run 5 (Wine_Evaluation_v20250812_233212) was chosen as the original ex-

periment, and Run 9 (Wine_Evaluation_Repod_v20250812_233922) was the

independently re-executed reproduction. Selecting these runs triggers the re-

trieval of all related provenance metadata, including dataset identifier, ver-

sion, model type, preprocessing parameters, runtime settings, and Git commit

details, which will be compared in subsequent tables. Any differing values

between the two runs are highlighted by the interface using a consistent color

scheme to support visual identification of divergences.
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Figure 5.1: Dashboard interface for provenance trace. Run selection via a dropdown
list.

• Figure 5.2: The activated comparison view in the Provenance Trace tab,

shown after two runs have been selected. Box#2 contains the controls for

selecting a second run and downloading the reproducibility guide. The repro-

ducibility guide is a plain-text file with all dataset, preprocessing, model, and

Git commit details needed to reproduce the selected run outside the dash-

board. Box#3 displays the two structured comparison tables: Provenance

and Reproducibility Details (top) lists metadata fields such as Git commit au-

thor, branch, commit time, repository URL, preprocessing timestamps, and

dataset information. Configuration and Evaluation Strategy (bottom) shows

target variable, split strategy, model architecture, serialization format, model

version, and evaluation metrics. Cells highlighted in pink indicate differences

between the selected runs (e.g., timestamps, model version tag), while un-

shaded cells indicate identical values. This view also supports search and filter

operations for targeted inspection, and both tables can be exported as CSV

for offline auditing or documentation.
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Figure 5.2: Dashboard interface for provenance trace. Two runs can be compared
by clicking the tick box.

• Figure 5.3: The Provenance and Reproducibility Details table com-

pares metadata for the two selected runs. Cells shaded in pink are automati-

cally highlighted by the dashboard to indicate differences between runs, such

as:

– Run ID - unique to each execution.

– Git commit hash - differs because the reproduction run was executed

from a different commit state.

– Git commit time - reflects when the commit was made in each case.

– Preprocessing timestamp and Training start/end time - show

when preprocessing and training occurred in each run.

Fields that remained identical across both runs are outlined in red in the Fig-

ure 5.3. These include Dataset Title, Dataset Version, Dataset Source

URL, Model Path, Model Architecture, Git Commit Author, Git Branch,

Git Repository, Database Title, Database Creator, and Database Last

Modified. The unchanged values confirm that the dataset, configuration, and
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repository context were preserved between the original and reproduced runs,

while the pink-shaded cells reflect changes arising from independent execution

events.

Figure 5.3: Provenance and Reproducibility Details table.

• Figure 5.4: The Configuration and Evaluation Strategy table presents

a side-by-side comparison of two runs. Variations in selected metadata

columns, such as Model Version, Preprocessing Timestamp, and Training

Start/End Time, are highlighted in the unboxed rows. The difference in Model

Version is intentional, as it reflects the user-defined Git tag provided during

experiment setup (e.g., v-wine-test vs. v-wine-reprod), confirming these

are separate runs executed within the same experimental structure.

Figure 5.4: Configuration and Evaluation Strategy table with yellow boxes indicat-
ing unchanged fields across runs.

The yellow boxes indicate clusters of metadata that remained identical between
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runs, providing strong evidence of repeatability. These include:

– Core configuration: Target Variable, Split Strategy, and

Serialization Format.

– Evaluation metrics (test): Accuracy (0.9722), F1 Score (0.975),

Precision (0.980), Recall (0.9722), and ROC AUC (0.996).

– Evaluation metrics (train): Accuracy (0.971), F1 Score (0.971),

Precision (0.972), and Recall (0.971).

– Hyperparameters: n_estimators = 100, max_depth = 6,

min_samples_split = 2, min_samples_leaf = 1, criterion =

"entropy", max_features = sqrt, bootstrap = True, oob_score =

False, class_weight = None, random_state = 45, and test_size =

0.2.

This degree of consistency supports the claim that experiments can be reliably

repeated within the framework using the structured JSON metadata. How-

ever, this evidence is conditional on the computational environment remaining

stable-changes to operating system, library versions or defaults, or hardware

precision (e.g., single- vs. double-precision GPUs) can still affect results in

ways not visible in this table.

– Figure 5.5: The plain-text file lists the exact combination of parame-

ters used in Run #5(Wine_Evaluation_v20250711_104632). It was used

along with the dashboard metadata to reproduce the experiment.

Figure 5.5: Reproducibility guide auto-generated from captured metadata, used to
re-run the experiment externally.
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Outcome: The framework’s capacity to support consistent model reproduc-

tion is evidenced by the outcomes of this reproducibility test, which included

participant-led repeats during the user study. The auto-generated repro-

ducibility guide and the comparison tables together provided sufficient meta-

data to repeat the procedure under the same software and hardware conditions,

resulting in matching assessment metrics. Specifically:

– Provenance metadata is comprehensive and structured: Key in-

puts such as runtime settings, model parameters, preprocessing setup,

dataset version, and Git state were correctly logged and accessible in a

structured format.

– Side-by-side comparison enables effective debugging: Field-level

variations between two executions were made explicit through visual high-

lighting and semantic grouping, enabling quick identification of configu-

ration or data differences.

– Evaluation metrics and hyperparameters were consistently re-

produced: Training and test measures (accuracy, F1-score, precision,

recall, and ROC AUC) and all recorded hyperparameters matched across

runs performed in an equivalent execution environment.

These results indicate that the system captures the provenance metadata

needed to repeat experiments when the computational environment (OS, li-

brary versions, hardware, and accelerator configurations) is held constant, and

presents it in a way that facilitates replication. A detailed mapping of user

study findings to each research question is provided in Section 5.6.

Limitations:

– Scope of environment capture: While software configurations,

dataset versions, and Git states are logged, deeper environment layers-

such as OS library versions, hardware specifications, GPU/TPU acceler-

ator details, or low-level architectural differences-are not fully captured.

Subtle changes at these levels, as well as implicit heuristics in some ML

frameworks, may affect reproducibility despite identical recorded meta-

data.
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– Dashboard Structuring: Although the dashboard effectively supports

provenance inspection and repeatability, some metadata values appear in

multiple views. Usability could be improved by de-duplicating values and

refining the layout for reduced visual clutter.

5.3.2 Use Case: Experiment Versioning and Error Trac-

ing

Objective: Determine which machine learning experiments used inaccurate

or out-of-date dataset or model versions, evaluate the effect on model validity,

and alert the responsible experimenters to initiate repetitions with updated

versions.

Context and Motivation: Dataset versions may be changed over time in

collaborative machine learning processes, for instance, when schemas are modi-

fied, incorrect items are eliminated, or missing information is fixed. The results

of previous tests become untrustworthy if they were carried out with a faulty

or corrupted dataset version. Such a situation is simulated in this use case:

A purposefully distorted dataset version with missing values and inaccurate

labels, Iris_v4 was published as part of a test phase during development. Ver-

ifying that the framework can track all experiments based on this version, alert

the relevant machine learning practitioners, and facilitate mistake rectification

procedures are the objectives.

Method: The Error & Version Impact Analysis tab renders a curated table

of tracked runs currently loaded in the UI. Users enter a deprecated tag (e.g.,

iris_v4); the UI filters the on-screen table and highlights matching rows, after

which an optional GitHub notification can be issued.

Each run entry displays:

– Run ID — unique run identifier from MLflow, enabling precise trace-

back.

– Git Commit — commit SHA captured at run time, serving as a prove-

nance anchor.
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– Version Tag — user-entered code/data tag (e.g., iris_v4).

– Model — model name along with key hyperparameters for quick com-

parison.

– Accuracy — test-set score logged by the run.

– Dataset — dataset label and version used in the run.

The problematic dataset version iris_v4 was detected by the author by

entering it into the input box marked Enter deprecated version tags.

Upon clicking Detect Impacted Runs, the system filtered and highlighted

all matching runs (Figure 5.6).

1. A visual warning banner indicating the number of affected runs was au-

tomatically shown by the dashboard (Figure 5.7). To put the possible

impact in context, these runs contained crucial metadata such as the

dataset name, model accuracy, and Git hash.

2. The Notify Affected Users via GitHub functionality was optionally

activated by the creator. A form with the GitHub owner and repository

information prefilled opened. The form was submitted once the author

input a GitHub token. Based on email-to-GitHub mapping, the system

then tagged contributors connected to the impacted run and issued an

issue on the appropriate GitHub repository. The problem was clearly

described, along with its cause (such as a flawed dataset) and suggested

solution (Figures 5.8 and 5.9).

Figure Interpretation:

– Figure 5.6: Displays the Error & Version Impact Analysis tab’s initial

interface. Users may view the whole table of previous experiments un-

derneath the top part, which shows the most current Git commit details

from the most recent run.

– Figure 5.7: Shows every historical run’s complete summary table with

metadata. It is evident that iris_v4, a known flawed version, is used in

Run #4 and #5. This makes it possible to manually examine possibly

tainted runs prior to starting any filtering.
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– Figure 5.8: The system filters and shows just the impacted runs when

you put iris_v4 as a deprecated version tag. The GitHub notification

form is displayed for additional action beneath the visual warning bar.

– Figure 5.9: End result of the alert procedure. This image displays a

GitHub issue that the system generated on its own. It enables prompt

resolution by explicitly documenting the version issue and tagging the

experimenter in charge of the impacted run.

Figure 5.6: Error and Version Impact Analysis Dashboard.

Figure 5.7: Detected faulty runs
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Figure 5.8: Notifying the Collaborator

Figure 5.9: GitHub Issue notification
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Outcome:

– Runs using the faulty dataset version iris_v4 were correctly identified

and flagged.

– The filtering process enabled quick detection of affected experiments.

– GitHub-based notifications alerted responsible collaborators for follow-

up. All the required information needed for this step was retrieved from

the saved metadata.

– The feature supports metadata-driven governance and prevents propaga-

tion of invalid results.

A detailed mapping of user study findings to each research question is provided

in Section 5.6.

5.3.3 Use Case: Configuration and Evaluation Tracking

Task: Examine the effects of training setups and hyperparameters (such as

test size, random seed, and model depth) on the results of model performance

over several runs.

Method: For every training run, the Model Metadata tab of the dashboard

offers an organized view of the configuration and evaluation metadata. When

users choose a run from a drop-down menu, four structured tables representing

various metadata categories are dynamically loaded:

– Model Overview Table: Box#1 Includes fields such as Model Name,

Algorithm, Architecture, Serialization Format, Target Variable,

Label Encoding, Model Path, and Model Version. This table gives

users a high-level understanding of what model was used, how it was

serialized, and what label configuration was applied.

– Hyperparameters Table: Box#2 Lists configuration values such

as n_estimators, criterion, max_depth, min_samples_split,

min_samples_leaf, max_features, bootstrap, oob_score,

class_weight, verbose, and n_jobs. These values provide insight into

model tuning choices and complexity.
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– Test Metrics Table: Box#3 Shows evaluation results on the test set,

including Accuracy, F1 Score, Precision, Recall, and ROC AUC. These

scores help assess model generalization under the current configuration.

– Training Metrics Table: Box#4 Includes Training Accuracy

Score, Training F1 Score, Training Precision Score, Training

Recall Score, and Training ROC AUC, giving insight into possible over-

fitting or underfitting based on performance deltas.

After choosing a particular run from the dropdown menu at the tab’s top, each

of these tables is created dynamically. This enables users to identify model

configurations, compare trials and monitor the impact of altering training

approach or hyperparameters on assessment metrics downstream.

Outcome:

– The dashboard enabled Figure 5.10 users to observe the influence of pa-

rameters like max_depth and min_samples_split on model performance.

– For example, in Run Iris_v0_v20250719_193554, the model used

RandomFores tClassifier with 100 trees, max_depth=10, and

min_samples_split=3, achieving a test accuracy of 0.867 and ROC

AUC of 0.979.

– Training metrics were perfect (e.g., 1.0 for accuracy, precision, recall),

while test metrics were lower - suggesting mild overfitting.

– Users might find hyperparameter selections that enhanced generalization

or decreased overfitting by comparing several runs using the dropdown

menu, facilitating experimental refining and performance optimization.

Implications: Users may associate certain hyperparameter values with per-

formance differences by separating configuration, test, and training data into

organized views. This offers detailed insight into the link between setup and

performance, which aids with explainability, repeatability, and troubleshoot-

ing. A detailed mapping of user study findings to each research question is

provided in Section 5.6.
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Limitation: Although high-level metrics are displayed, this view does not yet

incorporate deeper interpretability insights (such as confusion matrix analysis

or SHAP ratings).

Figure 5.10: Tabular view showing the model metadata overview.

5.3.4 Use Case: Model-Data Relationship Mapping

Task: Examine how changes in input data affect assessment metrics and track

a model’s behavior over several datasets or dataset revisions.

Method: The Model-Dataset Mapping tab of the dashboard offers a consol-

idated table that documents the test results of each model training run and

associates it with the relevant dataset version. This table allows users to ex-

amine sensitivity to dataset changes, compare findings across dataset versions,

and study model generalization Box# in Figure 5.11.

The table contains the following fields:

– Run ID – Unique identifier for each training run.

– Model Name – Name of the model used in the run.
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– Architecture – Full string representation of the model architecture (e.g.,

“RandomForestClassifier, 100 trees, max depth 10”).

– Dataset Title – Human-readable title of the dataset.

– Dataset Version – The internal or semantic version identifier for the

dataset used.

– Dataset Access URL – Resolvable URI for dataset access or citation.

– Accuracy, Recall, Precision, ROC AUC – Key evaluation metrics com-

puted on the test set.

This view Figure 5.11 supports a comparative study of how models trained

with identical architectures behave across varying dataset versions (e.g.,

iris_v0, iris_v1, iris_v2). 0.94, 0.86, 0.65, accuracy, respectively.

Outcome:

– The same model architecture (RandomForestClassifier, 100 trees, max

depth 10) exhibited performance variation across dataset versions:

∗ On iris_v1, the model achieved Accuracy = 0.943, F1 Score ≈
0.944, and ROC AUC = 0.995.

∗ On iris_v0, performance dropped slightly to Accuracy = 0.867,

F1 Score ≈ 0.852, and ROC AUC = 0.979.

∗ On the altered version iris_v2, results were significantly lower: Ac-

curacy = 0.650, F1 Score ≈ 0.583, and ROC AUC = 0.735.

– These variations show how the framework may reveal how sensitive the

model is to changes in the dataset, facilitating traceability and a reliable

assessment of model generalization.

– Researchers may support their claims about whether a model needs to

be retrained or is suitable for deployment on a new dataset variation

when versioned dataset information and associated performance ratings

are present.

Implications: This tab enables horizontal analysis by showing how the

same model architecture behaves across different dataset versions, making it
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straightforward to spot both expected and unexpected performance shifts.

For example, a small drop in accuracy when moving from iris_v1 to iris_v0

may be expected if the dataset differs only slightly, whereas a substantial per-

formance drop on iris_v2 signals an unexpected change that may warrant

retraining or deeper inspection of the dataset quality. By clearly associating

performance changes with specific dataset versions, the tab supports decisions

about retraining, transfer learning, or targeted data curation, and helps iden-

tify cases where the model fails to generalize as intended.

Limitation: The dashboard’s analysis is now restricted to this tab; if more

information is needed, it must be accessed through other tabs.

Figure 5.11: Tabular view showing the mapping between ML models and datasets.

5.3.5 Use Case: Repository Fork Awareness

Problem: In collaborative ML workflows, experiment reproducibility can be

compromised when collaborators run experiments from outdated or diverged

code forks. If a fork lags behind the main repository, model behaviour, pre-

processing logic, or data handling scripts may differ from the intended base-

line, even if the same dataset and hyperparameters are used. To ensure that

experiment provenance remains trustworthy, the system must detect such di-

vergences and alert affected collaborators (see Use Case 4.5) .
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Task: Detect and highlight divergences in experiment provenance caused by

code version drifts between branches.

Method: The system checks for commit mismatches between the fork and

the main repository by comparing the commit hash recorded in the current

run against the latest commit reference of the main branch. When a mismatch

is detected, a GitHub issue is automatically created using the user-provided

personal access token, tagging the repository owner of the outdated fork.

Outcome:

– Forked runs with stale or divergent code were identified via Git commit

mismatches (Figure 5.12).

– Users were notified through a GitHub issue tagging mechanism (Fig-

ure 5.13).

A detailed mapping of user study findings to each research question is provided

in Section 5.6.

Figure 5.12: UI snippet displaying fork divergence detection.
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Figure 5.13: GitHub issue created tagging the collaborator who has the outdated
fork

5.4 RQ3: Usability and Visualization Effective-

ness

This section reports findings from a small, exploratory user study conducted

with two ML practitioners. The aim was to gather preliminary design insights

on dashboard usability and visualization clarity, rather than to perform a sta-

tistically powered evaluation. The study setup involved each participant using

the framework’s dashboard to complete guided interpretation and provenance

inspection tasks. Given the limited scale and qualitative nature, the results

are intended to inform design refinement and confirm basic usability, not to

provide conclusive quantitative metrics.

5.4.1 Dashboard Evaluation

Objective: Evaluate whether the dashboard supports user understanding,

error tracing, and decision justification in provenance-rich ML workflows.

Method: Participants were asked to explore the dashboard (Figure 5.14) and

perform specific interpretation tasks, such as:
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– Reviewing summaries of all the dashboard tabs and associated metrics.

– Inspecting visualizations of model performance across datasets (e.g., ROC

AUC).

– Interpreting captured justifications tied to preprocessing and model se-

lection.

Observations:

– The summary panel helped participants orient well with the dashboard

layout and its purpose.

– Plot-based visualizations (Figure 5.15) effectively communicated perfor-

mance variation. This tab also provided the subset of important metadata

based on the run selection for context alignment.

– The embedded justification log (Figure 5.16) was recognized as increasing

transparency, especially in understanding why certain hyperparameters

or models were chosen.

– Requirements tabs (Figure 5.17) reduced onboarding time by clearly stat-

ing the expected components for each run.

– Other views (e.g., Provenance Trace, Export Explorer) are separately

evaluated in RQ1, RQ2, and RQ4.

Figure 5.14: Dashboard summary panel.



CHAPTER 5. EVALUATION 110

Figure 5.15: Model performance plot showing variation in accuracy and ROC AUC
across datasets.

Figure 5.16: Justification logging and explanation view.

Figure 5.17: Requirements tab outlining experiment setup expectations.
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5.4.2 Usability Ratings and User Feedback

Participants rated several aspects of dashboard usability and visual clarity on

a Likert scale (1–5):

– Ease of preprocessing and metadata linking: 4.0 average “Embed-

ding preprocessing and metadata capture was mostly intuitive”

– Ease of connecting MLflow and notebook logs: 4.0 average “Link-

ing to Git and session metadata was straightforward”

– Clarity of configuration and experiment inspection: 4.5 average

“Configuration tabs were helpful for interpreting runs”

– Ease of locating affected runs or errors: 5.0 average “Error tracing

via logs worked smoothly”

Particularly when it comes to examining setup details, provenance paths, and

reasoning material, these grades show good perceived usefulness. The user

study’s full questionnaire may be found in Appendix D. A detailed mapping

of user study findings to each research question is provided in Section 5.6.

Conclusion

Effective tools for browsing provenance data, seeing performance patterns,

and comprehending experimental explanations were included in the dashboard

design, which was judged as being both visually clear and straightforward.

Clearer UX signals would help some parts but overall, the interface satisfied

user demands and facilitated interpretation activities as required by RQ3.
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5.5 RQ4: Export Interoperability and Stan-

dards Mapping

Objective

This assessment evaluates the framework’s semantic export module’s ability

to convert structured ML metadata into ontology-aligned and syntactically

correct forms (such as RDF/XML and JSON-LD), as well as how compatible

these exports are with external tools and SPARQL-based querying systems.

Methodology

As outlined in Section 1, the export module serializes metadata aligned to five

ontologies: FAIR, FAIR4ML, PROV-O, MLSEA, and Croissant. The

evaluation focused on three aspects:

– Syntactic validation: Files were tested using the JSON-LD Playground

and RDF Visualizer for testing interoperability.

– Queryability: The dashboard’s SPARQL panel supported both prede-

fined and custom queries over the exported triples i.e. for JSON-LD and

RDF/XML.

5.5.1 Results

Export Validity and Ontology Alignment.

– All exported files passed JSON-LD (Figure 5.18) and RDF/XML schema

(Figure 5.19) validation with no syntax errors or serialization failures.

– A sample of key predicates (e.g., prov:used, prov:wasGeneratedBy,

mls:modelName, mls:accuracy) was checked and found to be correctly

mapped to their intended namespaces.

– The graphs for both formats were rendered in the dashboard (Figure 5.20)

to visually verify namespace binding, triple structure, and completeness.

https://json-ld.org/playground/
https://issemantic.net/rdf-visualizer
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Figure 5.18: Full JSON-LD visualization in the open-source JSON-LD Playground,
confirming that the generated file is syntactically valid and can be successfully ren-
dered by external tools.

Figure 5.19: Full RDF/XML rendering in the open-source RDF Visualizer, verifying
that the file passes syntax validation, preserves correct ontology mappings, and can
be visualized without errors in third-party tools.
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Figure 5.20: Semantic provenance visualization rendered within the framework dash-
board.

SPARQL Query Execution. The exported RDF/XML and JSON-LD files

were verified to be SPARQL-compatible, as evidenced by the execution of

both predefined and custom queries in the dashboard interface. All eight pre-

defined queries (e.g., “What dataset was used in this run?”, “Who ran this

experiment?”, “List all training and test metrics”, “Get model hyperparame-

ters”) returned valid results without parsing errors, demonstrating syntactic

correctness of the semantic export. In addition, users can input arbitrary

SPARQL queries through the dashboard, enabling flexible retrieval of any

mapped provenance field (refer to yellow Box # in Figure 5.21.

– Training Start-End Times (Figure 5.21): The JSON-LD query re-

trieves the start and end timestamps for each training activity:

SELECT ?start ?end WHERE {

?run a <http://www.w3.org/ns/prov#Activity> ;

<http://www.w3.org/ns/prov#startedAtTime> ?start ;

<http://www.w3.org/ns/prov#endedAtTime> ?end .

}
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Figure 5.21: SPARQL query on JSON-LD retrieving prov:startedAtTime and
prov:endedAtTime for each prov:Activity. Returned timestamps match MLflow
logs, confirming preservation of training start–end times.

The result lists the timestamps for training start and completion, which

match the times recorded in MLflow logs (refer to white Box # in Fig-

ure 5.21.

– Agent Identification (Figure 5.22): The RDF/XML query lists all

agents who conducted experiments:

SELECT ?agentName WHERE {

?agent a <http://www.w3.org/ns/prov#Agent> ;

<http://xmlns.com/foaf/0.1/name> ?agentName .

}

The result in the screenshot correctly returns the experimenter name

(e.g., the MLflow user recorded during the run). This ensures that the

provenance graph preserves the prov:Agent-foaf:name mapping, en-

abling attribution of each run to a specific user (refer to white Box #

in Figure 5.22.
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Figure 5.22: SPARQL query on RDF/XML retrieving foaf:name for each
prov:Agent. Output matches the MLflow experimenter name, confirming correct
agent attribution.

Verification was performed by cross-checking the query results with the cor-

responding MLflow run metadata. Exact matches for both agent names and

activity timestamps ensure that the exported RDF/XML and JSON-LD rep-

resentations have valid data.

Conclusion

The framework fulfills its export objectives:

– Syntactic Validity: JSON-LD and RDF/XML files are standards-

compliant and SPARQL-compatible.

– Query and Reuse: Data is queryable via SPARQL and visualized

through both internal and external tools.

These results show that linked-data interoperability is supported by the export

method while permitting domain-specific enhancements. Future revisions may

extend serialization to incorporate post-archival metadata.
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5.6 User Study

To complement the framework’s evaluation, a small-scale exploratory user

study was conducted. Its purpose was to gather indicative qualitative and

quantitative feedback on usability, reproducibility support, and semantic ex-

port features. The limited sample size means the study is not intended to

provide statistically significant or technically quantifiable results; rather, it

offers illustrative evidence of the framework’s practical value.

Participants: Two machine learning practitioners participated:

– User 1: Data Science student, intermediate ML experience

– User 2: IT student, beginner ML experience

Neither had prior exposure to the framework or to provenance tools.

Study Design

Participants were instructed to:

– Run a complete ML experiment using a pre-configured notebook with the

Wine dataset and a Logistic Regression model.

– Inspect generated metadata files, JSON-LD/RDF exports, and dash-

board visualizations.

– Attempt to reproduce their prior run and debug issues based solely on

captured metadata.

– Complete a structured questionnaire assessing coverage, usability, and

interoperability.

Findings Mapped to Research Questions

RQ1 - Metadata Coverage and Standards

– Both users confirmed successful capture of dataset and model metadata.
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– MLflow integration and ontology-based export (e.g., FAIR, PROV-O,

MLSEA) were functional and interpretable.

– Ratings: Dataset-metadata linkage: 4/5 (User 1), 3/5 (User 2); MLflow

linkage clarity: 5/5 (User 1), 3/5 (User 2).

– Feedback:

∗ “All metadata was captured. MLflow made tracking easy.” (User 1)

∗ “Information was dense-some DOI metadata missing.” (User 2)

RQ2 - Debugging and Reproducibility

– Both users successfully reproduced a prior run using only the captured

metadata and dashboard information.

– Dataset name mismatches were detected due to incorrect mapping and

resolved.

– Ratings: Debugging provenance: 5/5 (User 1), 4/5 (User 2); Sync/mis-

match detection: 3/5 (User 1), 4/5 (User 2); Traceability (model →
dataset): 5/5 (both).

– Notable feedback:

∗ User 1 (3/5 on sync/mismatch detection): “Detected mis-

matches in some field key values, which were corrected, but the in-

terface required scrolling between multiple tables to see all details.”

∗ User 2: “I could follow the entire execution path but with some

help.”

RQ3 - Visualization and Usability

– The dashboard was rated intuitive, especially the summary and model

panels.

– Users found justifications useful but requested collapsibility and tooltips.

– Ratings: Dashboard usability: 5/5 (User 1), 4/5 (User 2); Visual clarity

(e.g., ROC–AUC plots): 5/5 (both).
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– Suggestions: “Great views but too much information on screen some-

times.” (User 1); “Add tooltips and make justification panels collapsible.”

(User 2)

RQ4 - Export and Interoperability

– JSON-LD and RDF/XML files were corectly imported in external tools.

– Dashboard-based SPARQL queries returned correct results.

– Ratings: Schema comprehension: 4/5 (both); Export success: Yes

(both); Interoperability via queries: Yes (both).

– Feedback: “Covers everything but needs simpler views.” (User 1); “It

works well but is overwhelming for new users.” (User 2)

Figure 5.23: User study feedback summary across RQ dimensions.

Summary

This short user study provided early validation of the framework’s utility:
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– Automated metadata capture, reproducibility features, and semantic ex-

port were easily used by both participants with minimal guidance.

– Average usability across key aspects was 4.2/5.

– Key improvement areas: simplifying export structures, collapsible justi-

fication panels, more compact and precise views, and adding tool-tips.

– Although not statistically representative, the study illustrates prac-

tical feasibility in real-world usage and identifies areas for improvement

prior to broader deployment.

5.7 Summary

This chapter offered a systematic evaluation of the provenance-aware machine

learning architecture in four main research domains. Using executed runs,

dashboard walkthroughs, metadata audits, semantic export validations, and

a user survey with two participants, the system was assessed for metadata

capture quality, repeatability support, usability, and semantic interoperability.

– RQ1 - Metadata Capture and Standards Alignment: The eval-

uation demonstrates, with quantitative evidence, that the framework

achieves comprehensive provenance capture aligned with established se-

mantic vocabularies while remaining scoped to notebook-native, tabular

classification workflows. By constructing a reproducible ontology union

from official releases and refining it to a task-scoped subset Ucls, the anal-

ysis isolates fields relevant to this experimental context. The resulting

70.09% completeness on Ucls, compared to 55.76% on the full union

Uall, indicates that remaining gaps are largely due to out-of-scope lifecy-

cle terms, rather than deficiencies in capture. Although higjer coverage

can be achieved if need be by including more fields. Over 80% of Ucls

fields are captured automatically from trusted sources (git, mlflow, dbrepo,

doi registries, and jupyter notebooks), with the remainder covered via

structured prompts or targeted manual input. This balance ensures both
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standards compliance and inclusion of operational metadata necessary

for reproducibility, interpretability, and responsible model governance.

– RQ2 - Reproducibility, Version Tracking, and Debugging: Us-

ing just the recorded metadata, the dashboard enabled full replication

of earlier runs with similar metrics between the original and replicated

executions. The Version Impact and Provenance Trace tabs provided

GitHub-based notifications to inform contributors of deprecated inputs,

compared field-level changes, and identified out-of-date dataset versions

(e.g., iris_v4). Additionally highlighted were discrepancies between fork

divergence and Git commits.

– RQ3 - Usability and Visualization Effectiveness: Participants gave

the dashboard high marks (4.2/5 average), especially for model trace-

ability, run inspection, and provenance-based debugging. ROC charts,

configuration panels, justification logs, and summary views all helped to

clarify the behavior of the ML pipeline. The input included suggestions

for reducing screen clutter, foldable panels, and tooltips.

– RQ4 – Semantic Export and Interoperability: The dashboard suc-

cessfully produced structured metadata, verified it with external tools,

and exported it to RDF/XML and JSON-LD. Each file passed syn-

tactic testing and had fields that were aligned with the ontology. Both

preset and custom SPARQL searches produced valid results, demonstrat-

ing interoperability with linked-data ecosystems.

Overall, the approach shown significant promise in each evaluation domain.

With the use of visual inspection tools, it facilitates repeatability and error

monitoring, automates metadata extraction while preserving flexibility for hu-

man input, and produces exportable, ontology-compliant representations that

can be connected with other repositories and semantic web platforms. The

user study supports the system’s utility, usability, and adaptability for group

machine learning research. This evaluation lays the foundation for future en-

hancements and verifies that the framework aligns with the thesis’s goals.



6 Discussion

This chapter, which is organized around the framework’s primary architectural

elements, offers reflections on the results of the system’s installation and as-

sessment. It draws attention to what succeeded, what failed, and what these

findings mean for practical application.

6.1 Session and Environment Metadata

The system’s full automation and accurate ontology mapping allowed it to

dependably gather session-level metadata (user, timestamp, and platform).

Without human input, this layer operated consistently during all runs.

Implication: In controlled notebooks, environment capture may be com-

pletely automated. However, extra logic would be required to monitor roles

or containers in cloud settings or multi-user systems.

6.2 Dataset Metadata and DOI Enrichment

Most anticipated fields were filled in by dataset information from DBRepo and

optional DOI enrichment. However, because to gaps in the source information,

several fields (such dc:license and dc:language) were often absent.

6.3 Model and Justification Capture

Performance indicators, training information, and model settings were

automatically/semi-automatically recorded. Users filled in the justification
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blocks manually, although not always.

Implication: Automating the provenance of core models is possible. How-

ever, human logic is still difficult to capture; templates or suggestions may be

useful in this regard.

6.4 Git Lineage and Version Tracking

Run-time recording of Git information allowed for input commit tracing and

the identification of out-of-date forks. GitHub was used to show version-aware

inspection and collaborator notification.

Implication: For simple lineage, git integration works well. Deeper integra-

tion could be required for more complex workflows (such CI/CD or multi-

branch histories).

6.5 Dashboard and SPARQL Features

Users may visually investigate provenance and filter by models, datasets, and

commits using the dashboard. Valid responses from SPARQL searches val-

idated the semantic export structure. According to feedback, usability was

OK, however UI enhancements (such foldable panels) would be beneficial.

Implication: Visual interfaces are essential for understanding provenance.

Although SPARQL performs well internally, it is still too complex for non-

experts.

6.6 Ontology Mapping and Field Alignment Im-

pact

This work aligned the framework’s internal metadata schema with five key

vocabularies: PROV-O, FAIR, FAIR4ML, MLSEA, and Croissant. A unified on-

tology was built from official releases and refined to the task-specific subset

Ucls for notebook-based, tabular classification.
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Key steps:

– Mapped 100+ fields across datasets, models, sessions, Git history, and

experiment logs.

– Categorised capture as automatic, semi-automatic, or manual from

sources such as git, mlflow, dbrepo, doi, and jupyter.

– Verified JSON-LD and RDF/XML exports via SPARQL queries and ex-

ternal validators.

Impact: Achieved 70.09% coverage on Ucls vs. 55.76% on Ucls, with over

80% of Ucls fields captured automatically. The remaining fields required

targeted manual input. The mapping enables linked-data interoperability,

machine-actionable discovery, and reusable alignment templates for other ML

workflows.

6.7 Limitations

Notwithstanding the system’s advantages, a number of drawbacks surfaced

during testing and deployment, mainly in relation to initial setup, user input,

metadata quality, and semantic abstraction:

– Initial setup and generalization: Even though the system is modular,

it takes technical expertise and careful coordination to configure every

component (such as MLflow, DBRepo, Git integration, and export logic).

It could be difficult to modify the configuration for various organizational

or infrastructure environments. Additionally, the initial setup takes time,

and clarity about the project scope is required to design a personalized

framework.

– Inconsistent justification capture: User input, which varied in depth

and detail between tests, is what the justification block relies on. The

system’s capacity to completely explain parameter selections or prepro-

cessing justifications is weakened as a result.
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– External metadata dependency: The completeness of dataset meta-

data is mostly dependent on other sources, such as DOI services or

DBRepo. Without human interaction, the framework’s capacity to meet

FAIR principles is limited by missing areas like license, language, or sub-

ject.

– Ontology and SPARQL complexity: Semantic exports were legiti-

mate, but understanding RDF syntax and ontology structure is necessary

to write SPARQL queries. This may discourage wider adoption and re-

strict usage to people with more technical expertise.

– Ontology alignment trade-offs: Certain useful fields, such as user

comments, Git-specific logic, and custom annotations, lacked direct

matches in the chosen ontologies. To maintain standards compliance,

these were simplified or omitted during ontology mapping. While this

preserved formal conformance, it reduced the granularity and context

available in the semantic representation.

– Task scope bias: As this framework focuses only on simple classification

tasks and workflow, additional configurations will be required to adapt

to different ML tasks.

These restrictions are a reflection of the inherent trade-offs between interoper-

ability, completeness, and usefulness. More abstraction layers, improved user

advice, and wider metadata enrichment support would be needed to address

these.



7 Conclusion

This thesis presented and assessed a modular, provenance-aware machine

learning framework meant to promote transparency, reproducibility, and se-

mantic interoperability in experimental ML processes. By incorporating auto-

matic metadata collection, structured export, and visual inspection capabili-

ties into a notebook-native Virtual Research Environment (VRE), the solution

offers a practical and adaptable way to align ML research with FAIR princi-

ples and widely accepted ontologies. The complete code implementation of

the framework can be found in Github. The artifacts mentioned in this report

can be found in Zenodo.

7.1 Key Contributions

This work made the following key contributions:

– A layered metadata architecture that maps to many semantic ontologies

(PROV-O, FAIR4ML, MLSEA, Croissant) that records session, dataset,

model, experiment, and versioning details.

– MLflow is used to build automatic and semi-automated metadata logging,

including output to RDF/XML, JSON, and JSON-LD formats that are

compatible with semantic web tools.

– A dashboard that improves the interpretability and auditability of ma-

chine learning processes by supporting SPARQL-based querying, error

tracing, version impact analysis, and run-level examination.
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– A reusable connection between linked-data representations and raw ma-

chine learning objects by methodically mapping more than 100 metadata

fields to semantic standards.

– Metadata coverage (70%), degree of automation (80%), repeatability, us-

ability, and standards alignment were demonstrated in this thorough ex-

amination, which was both simulated and user-driven.

7.2 Research Questions Revisited

– RQ1: Through high automation levels, the system achieved coverage

of task-relevant metadata fields. Alignment gaps were primarily due to

missing details, irrelevant fields to the scope of the thesis, and selectively

provided justification inputs, rather than deficiencies in capture.

– RQ2: Version impact tracking, hash-based comparison, and run re-

execution were effective methods for proving reproducibility. Proactive

collaborator notifications for out-of-date versions were made possible via

Git integration.

– RQ3: Although UI improvements were suggested, users gave the dash-

board good marks for clarity and usefulness in debugging, exploration,

and provenance tracking.

– RQ4: Exporting to semantic formats allowed for successful SPARQL

querying and interoperability of exported files.

7.3 Looking Forward

Although the framework performs well, it serves primarily as a foundation

for building provenance-aware systems. Real-world scenarios can be far more

complex, and ontologies may evolve over time. Future work may focus on:

– Automated completion of missing metadata, particularly for dataset

provenance and licensing.
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– Traceability and reproducibility are maintained when integrating with

distributed execution engines.

– Use ontology-agnostic templates or visual SPARQL builders to speed

semantic searching.

– Using the metadata mapping approach to create reusable tools or libraries

that may be included into platforms and pipelines for machine learning.

7.4 Final Remarks

This research shows that provenance in machine learning doesn’t have to be an

academic ideal or an afterthought; it is possible to incorporated into everyday

procedures. By integrating visual tools, semantic export, and useful informa-

tion collection, the solution creates the foundation for more visible, repeatable,

and explicable machine learning experiments. By doing this, it contributes to

closing the gap between machine-actionable research objects and experimental

repeatability, which is a need that is becoming more and more important in

data-driven science.
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A Evaluation

A.1 Ontology Snapshots and Retrieval Meta-

data

Table A.1: Snapshots used to construct the ontology union Uall

Ontology Source URL Snapshot

(ver/tag/commit)

Retrieved

(UTC)

File / For-

mat

PROV-O https://www.w3.org/ns/prov.ttl W3C Recommendation

2013-04-30

2025-08-13 prov.ttl /

Turtle

FAIR

Vocabulary

https://w3id.org/fair/principles/

terms/FAIR-Vocabulary

5.1.11 2025-08-13 FAIR-

Vocabulary.ttl

/ Turtle

Croissant https:

//raw.githubusercontent.com/mlcommons/

croissant/v1.0.21/docs/croissant.ttl

v1.0.21 2025-08-13 croissant.ttl /

Turtle

FAIR4ML https://rda-fair4ml.github.io/

FAIR4ML-schema/release/0.1.0/fair4ml.

jsonld

0.1.0 2025-08-13 fair4ml.jsonld

/ JSON-LD

MLSEA http://w3id.org/mlsea 1.0.0 2025-08-13 mlsea.ttl /

Turtle

The copy of the above files can be found in Zenodo

Table A.2: Checksums for reproducibility

Ontology File SHA-256

PROV-O prov-o.ttl 7d203989f67b38bca572253942acc5a1bf24ce3ccfece16f072dcb4be2b79a96
FAIR fair.ttl 1adff6bfa4764be997fb2d547fe118358ec184102b0c953a837444a091d3a1fd
Croissant croissant.ttl bd55bee774564247bb000f2078487687c25119b697437790ff17071f4d29bb59
FAIR4ML fair4ml.jsonld 0bc6bcc960574b1d4990c7a6399a72f7cdc55e6ff68edd825b2599d821ca5bb7
MLSEA mlsea.ttl ae8079c75d4d7feea950039235d4548e5347e942840214f3334adc4a2dbdfa67
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A.2 Runs and their corresponding datasets

Table A.3: Executed runs: IDs, timing, and links to datasets/artifacts

Run ID Dataset / Variant Artifacts

Iris_V0_v20250812_

231232

Iris (Original) https:

//zenodo.org/records/16874761/files/

Iris_Version_A_Original.csv?download=1

Iris_v1_v20250812_

231652

Iris (Duplicated) https:

//zenodo.org/records/16874761/files/

Iris_Version_1_Duplicated.csv?download=1

Iris_v2_v20250812_

232012

Iris (First 100) https:

//zenodo.org/records/16874761/files/

Iris_Version_2_First100.csv?download=1

Iris_v3_v20250812_

232355

Iris (Normalized) https:

//zenodo.org/records/16874761/files/

Iris_Version_4_Normalized.csv?download=1

Iris_v4_v20250812_

232815

Iris (Distorted) https:

//zenodo.org/records/16874761/files/

distorted_iris_variant.csv?download=1

Wine_Evaluation_

v20250812_233212

Wine (Evaluation) https://zenodo.org/records/16874761/

files/wine.csv?download=1

Wine_Evaluation_Repod_

v20250812_233922

Wine

(Reproduction)

https://zenodo.org/records/16874761/

files/wine.csv?download=1

Wine_Evaluation_User2_

v20250812_234338

Wine (User 2) https://zenodo.org/records/16874761/

files/wine.csv?download=1

Wine_Evaluation_User2_

reprod_v20250813_

163951

Wine (User 2,

Reproduction)

https://zenodo.org/records/16874761/

files/wine.csv?download=1

The actual run data can be found in the Github
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B System architecture and Imple-

mentation

B.1 Database Schema Overview

The DBRepo database structure is intended to collect all metadata related to

machine learning experiment tracking in several dimensions, including dataset

attributes, model settings, execution environments, user sessions, Git prove-

nance, and experiment justifications. The ’experiment_metadata’ table is the

core anchor, connecting all other metadata tables via foreign keys. Each table

has standardized fields that comply with semantic metadata standards such

as FAIR4ML, MLSEA, and PROV-O. This relational architecture supports

organized storing, cross-referencing, and queryable access to important parts

of experimental context.
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C Framework Setup and Configu-

ration

This chapter outlines how to set up and configure the ML provenance frame-

work using a Python virtual environment and standard ‘pip‘ package manage-

ment. The setup ensures reproducibility and consistency across deployments.

C.1 Quick-Start Installation Script

The following bash script creates a virtual environment, installs all dependen-

cies from ‘requirements.txt‘, and launches the Streamlit dashboard:

1 # Clone the framework repository

2 git clone https://github.com/reema-dass26/Framework_Evaluation.git

3 cd notebook/RQ_notebook

4 cd ThesisFramework.ipynb

5

6

7 # Set up virtual environment

8 python3 -m venv .venv

9 source .venv/bin/activate # On Windows use: .venv\Scripts\activate

10

11 # Install dependencies

12 pip install --upgrade pip

13 pip install -r requirements.txt

14

15 # Launch the Streamlit dashboard

16 streamlit run vizualization.py --server.headless true
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Note: Python 3.10 or later is recommended. Make sure you have ‘pip‘, ‘venv‘

and ‘streamlit‘ installed system-wide before running the script.

C.1.1 MLflow Configuration

The MLflow configuration file defines the tracking URI, experiment names,

and artifact locations for reproducible experiment logging.

1 artifact_location: file:///C:/Users/reema/REPO/notebooks/RQ_notebooks/mlrunlogs/mlflow.db/0

2 creation_time: 1745329164510

3 experiment_id: 'VRE_FRAMEWORK'

4 last_update_time: 1745329164510

5 lifecycle_stage: active

6 name: Default

C.1.2 Streamlit UI Configuration

This TOML file allows customization of dashboard elements like title, theme,

and active modules.

1 # [theme]

2 # base = "dark"

3 # primaryColor = "#00d4ff"

4 # backgroundColor = "#0e1117"

5 # secondaryBackgroundColor = "#262730"

6 # textColor = "#fafafa"

7 # font = "monospace"

Note: These configuration files are expected under the ‘config/‘ directory.

You may also override parameters via environment variables or CLI flags when

needed.



D User Study Instruments

D.1 Blank Questionnaire

Participants were asked to evaluate the framework based on their hands-on

experience. The questionnaire focused on usability, metadata completeness,

and reproducibility support.

1. Your Machine Learning Experience Level (e.g., Beginner / In-

termediate / Expert):

2. Was the metadata automatically captured correctly? (1 = No,

5 = Perfect):

3. Was the MLflow UI easy to understand and navigate? (1 =

Confusing, 5 = Very intuitive):

4. Were the semantic exports (JSON-LD / RDF) understandable?

(1 = Not at all, 5 = Very clear):

5. What did you like most about the system?

6. What improvements would you suggest?
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D.2 Anonymized Responses

Figure D.1: User study form

Description: The above screenshot is the anonymized version of the user

study questionnaire. It outlines the questions asked.



E Ontologies Used

Table E.1: Ontologies and Their Purpose

Ontology Purpose in System Example
Term

PROV-O Provenance: activity, agent, entity prov:wasGeneratedBy
FAIR Basic metadata descriptors dcterms:title
FAIR4ML ML-specific workflow logging fair4ml:trainingEndTime
MLSEA Training logic + metrics mls:maxDepth
Croissant Schema-level structure croissant:featureList
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F Glossary

VRE Virtual Research Environment — A collaborative, web-based infras-

tructure that enables researchers to access data, run computational work-

flows, and share results in a reproducible manner.

FAIR Findable, Accessible, Interoperable, Reusable — A set of guiding prin-

ciples to improve the reusability of digital assets through better metadata

and semantic standards.

MLflow An open-source platform to manage the ML lifecycle, including ex-

perimentation, reproducibility, deployment, and a central model registry.

MLSEA Machine Learning Scientific Experimentation and Annotation — A

domain ontology for annotating ML-specific experiment metadata includ-

ing metrics, hyperparameters, and provenance.

FAIR4ML Extension of FAIR for machine learning pipelines, enabling finer-

grained semantic description of ML workflows and artifacts.

PROV-O W3C Provenance Ontology — A standard for representing prove-

nance information about entities, activities, and agents.

Croissant A metadata model developed by Hugging Face for describing ML

models in a way that supports discovery, reuse, and explainability.

DCAT Data Catalog Vocabulary — A W3C vocabulary used to describe

datasets and data catalogs, often used with FAIR data portals.

Dublin Core (DC) A set of vocabulary terms used to describe web resources

such as datasets, publications, and tools in a standardized way.

JSON-LD JavaScript Object Notation for Linked Data — A lightweight syn-

tax to serialize linked data using JSON, compatible with RDF and se-
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mantic web tools.

RDF Resource Description Framework — A standard model for data inter-

change on the web using subject-predicate-object triples.

RDF/XML An XML-based syntax for expressing RDF graphs, enabling

compatibility with legacy systems and semantic tools.

SPARQL A query language and protocol for retrieving and manipulating

RDF data across diverse linked datasets.

InvenioRDM A turn-key research data management platform built on top

of Invenio, used for publishing FAIR-aligned datasets and metadata.

DBRepo A custom PostgreSQL-backed database used in this framework for

storing ML metadata, linked to experiment runs and structured ontolo-

gies.

Streamlit An open-source Python library for building custom web apps for

machine learning and data science workflows with minimal effort.

Git A distributed version control system for tracking changes in source code

and configurations, essential for reproducible research.

Ontology A formal representation of knowledge as a set of concepts and

relationships within a domain, used to enable semantic interoperability.



G Code and Repository Snapshot

Repository and DOI

• GitHub: https://github.com/reemadass26/Framework_Evaluation.git

G.1 Repository Directory Tree

Framework_Evaluation/

– notebook/

–RQ_notebook/

– Thesis_Framework.py

– Evaluation/

– RQ_Evaluation.ipynb

– visualization.py
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