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Data

Marcus Mayrhofer ®, Una Radojic¢i¢ ®, and Peter Filzmoser

Institute of Statistics and Mathematical Methods in Economics, TU Wien, Wien, Austria

ABSTRACT

This work introduces the Matrix Minimum Covariance Determinant (MMCD) method, a novel robust location
and covariance estimation procedure designed for data that are naturally represented in the form of a matrix.
Unlike standard robust multivariate estimators, which would only be applicable after a vectorization of the
matrix-variate samples leading to high-dimensional datasets, the MMCD estimators account for the matrix-
variate data structure and consistently estimate the mean matrix, as well as the rowwise and columnwise
covariance matrices in the class of matrix-variate elliptical distributions. Additionally, we show that the
MMCD estimators are matrix affine equivariant and achieve a higher breakdown point than the maximal
achievable one by any multivariate, affine equivariant location/covariance estimator when applied to the
vectorized data. An efficient algorithm with convergence guarantees is proposed and implemented. As a
result, robust Mahalanobis distances based on MMCD estimators offer a reliable tool for outlier detection.
Additionally, we extend the concept of Shapley values for outlier explanation to the matrix-variate setting,
enabling the decomposition of the squared Mahalanobis distances into contributions of the rows, columns,
or individual cells of matrix-valued observations. Notably, both the theoretical guarantees and simulations
show that the MMCD estimators outperform robust estimators based on vectorized observations, offering
better computational efficiency and improved robustness. Moreover, real-world data examples demonstrate
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the practical relevance of the MMCD estimators and the resulting robust Shapley values.

1. Introduction

Thanks to modern data collection tools, the amount and
complexity of available information are increasing rapidly,
and matrix-valued data are often observed. Compared to
classical multivariate observations, where values for p variables
are recorded for one subject, matrix-valued observations are
recorded on a grid of p x g variables. These are then naturally
represented as a matrix with p rows and g columns. Some
examples include image data, where p and g are given by the
resolution of the image, or multivariate data measured on p
variables, where the measurements for a subject are available
for g replications (e.g., different time points, different spatial
locations, different experimental conditions, etc.). Frequently,
matrix-valued data are analyzed as classical multivariate data by
stacking the matrix columns (or rows) to a vector of length p - g.
Thus, if n observations are available, the data are arranged in
a matrix of dimension n x pq. Depending on the dimensions,
this can create high-dimensional data, possibly with a sample
size lower than the resulting dimensionality, which constitutes a
limitation for multivariate statistical methods.

As an alternative to vectorizing matrix-valued observations,
we model them under the assumption that they originate from
a certain matrix-variate distribution. As in the multivariate set-
ting, the class of matrix-elliptical distributions (Gupta and Varga
2012), serves as a natural ground for studying covariance esti-

mation. The matrix-elliptical family is a semi-parametric class of
distributions parameterized by the mean M € RP*4, row covari-
ance X% € PDS(p), column covariance yeol ¢ PDS(gq), and
the so-called density generator function g : [0,00) — R. Here,
PDS(a), with a € N, denotes the class of all positive definite
symmetric a X a matrices. More specifically, a random matrix
X with an absolutely continuous distribution has an elliptical
distribution, denoted ME (M, £V, L, ¢), ifits density can be
written as

f(X) = det(zrow)—‘i/z det(zcol)—p/z
g(tr(ﬂcol(x — M) QY (X — M))), W

with 7% = (Er")~1 apd Q! = (xol)-1 denoting the preci-
sion matrices among the rows and columns, respectively. Matrix
elliptical distributions can also be related to their multivariate
counterparts. Formally, a random matrix X follows a matrix
elliptical distribution ME (M, £, £, ) ifand only if its vec-
torized version vec X follows a multivariate elliptical distribution
E(vec(M), 2 @ XV, ¢) (Gupta and Varga 2012). Here, vec(-)
is the vectorization operator, stacking the columns of a matrix
on top of each other, ® is the Kronecker product. Probably the
most studied matrix elliptical distribution is the matrix normal
distribution (Dawid 1981), denoted MN (M, £™%, £ with
density
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f(X|M> Erow, ZCOI)

_exp(—3% tr(R°L(X — M) Y (X — M))) .
2P det(ZON2 det(RTOW)2

Regarding the estimation of location and covariance for
an iid sample X = (Xi,...,X,) € R™PX, with X; ~
MN (M, ™%, £°!) we can either work with the vectorized
observations or directly with the matrices. In the former setting,
the existence and uniqueness of the maximum likelihood
estimator (MLE) for the covariance is guaranteed almost surely
if n > pq + 1. However, this approach does not take advantage
of the Kronecker structure of the covariance matrix and instead
directly estimates the entire pg-dimensional matrix X. In
contrast, if we use the knowledge of the inherent data structure,
we only need to estimate the p-dimensional rowwise covariance
matrix £™% and the g-dimensional columnwise covariance
matrix £ For the matrix-variate sample X, the MLE:s for the
mean, as well as for the rowwise and columnwise covariance, are
given by (Dutilleul 1999):

L1
i=1
1 ¢ I
2 = p” > X - L™ (X; - My (4)
i=1
T
& CO. A A TOW A
= DX - MyQTT (X — M. (5)
i=1

Soloveychik and Trushin (2016) showed that for » iid samples
from a continuous p x q matrix-variate distribution, there exists
no unique maximum of the matrix normal likelihood function if
n < max(p/q,9/p) + 1, and that a unique maximum exists almost
surely if n > [p/q + 9/p] + 2. Although there are no closed-
form solutions for the maximum likelihood estimates (MLEs) of
%% and X, Dutilleul (1999) proposed an iterative estimation
procedure. The idea of the so-called flip-flop algorithm is to

alternate between the computation of £ and £ based on
(4) and (5), respectively, until a convergence criterion is met. The
algorithm is constructed such that positive definite estimates of
subsequent iterations are nondecreasing in likelihood (Lu and
Zimmerman 2005), and it converges almost surely to the unique
maximum from any symmetric positive definite initialization of

either £ or fICOI, itn > |p/q + 9/p] + 2 (Soloveychik and
Trushin 2016).

Existing proposals for robust covariance estimation include
a generalization of Tyler’s M-estimator (Tyler 1987) introduced
by Soloveychik and Trushin (2016), a robust estimator for struc-
tured covariance matrices with Kronecker structure as a particu-
lar case (Sun, Babu, and Palomar 2016), distribution-free robust
covariance estimation (Zhang, Shen, and Kong 2022), and ML
estimation for the matrix t-distribution (Thompson et al. 2020).

We propose novel robust estimators for the parameters
M, X% and )3“’1, termed the matrix minimum covariance
determinant (MMCD) estimators. These estimators generalize
the minimum covariance determinant (MCD) approach
(Rousseeuw 1985), one of the most widely used approaches
for robustly estimating the mean and covariance of multivariate
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(vector-valued) data. We show that the MMCD estimators are
equivariant under matrix affine transformations and surpass
the maximal attainable breakdown point of any multivariate,
affine equivariant location/covariance estimator when applied
to the vectorized data, such as the MCD estimator. Addi-
tionally, we show that the MMCD estimators are consistent
for the finite-dimensional parameters (M, X"V, Ty of the
matrix elliptical distribution, thus, bridging a gap between
the individual, distribution-specific, estimators in the elliptical
family. Furthermore, a concentration step (C-step) algorithm is
developed to efficiently compute the MMCD estimators; see
Rousseeuw and Driessen (1999) for more details on C-step
for MCD. Additionally, we introduce a reweighting step that
preserves the properties of the MMCD estimators and greatly
increases finite-sample efficiency.

The robust MMCD estimators can then be employed for
outlier detection using the Mahalanobis distances (Mahalanobis
1936) for matrix-valued observations. Because it is essential to
understand the reasons for the outlyingness, we extend the con-
cept of Shapley values introduced in Mayrhofer and Filzmoser
(2023) for outlier explanation in the multivariate case to the
matrix-variate setting. Shapley values (Shapley 1953) are well-
known from explainable AI (Lundberg and Lee 2017), but their
computation is usually time-consuming. Our proposal is com-
putationally efficient, and the resulting Shapley values preserve
their attractive properties (Shapley 1953).

The article is organized as follows. In Section 2, we introduce
the MMCD estimators, then proceed to derive their theoretical
properties in Section 3. Section 4 is devoted to computational
details for the MMCD estimators. In Section 5, we propose Shap-
ley values for outlier explanation and present their properties. In
Sections 6 and 7, we illustrate the performance of the proposed
methods on numerical simulations and real-world examples.
Section 8 concludes our findings. The supplementary materials
contain more information on the theoretical background in
this context, proofs, technical derivations, code, and additional
numerical results.

2. The MMCD Estimators

The MLEs given in (3)-(5), much like the multivariate normal
MLEs, that is sample mean and covariance, also serve as valid
(consistent) parameter estimators in the class of elliptical distri-
butions; see Remark 3.0.1. However, just like their multivariate
counterparts, these are not robust against outlying observations.
In order to obtain robust estimators for the finite-dimensional
parameters (M, 2™V, ) in (1), we optimize the weighted
version of the matrix-normal (log-)likelihood function. This
principle has been similarly used in the context of other robust
estimators (e.g., Neykov et al. 2007; Garcia-Escudero et al. 2010;
Kurnaz, Hoffmann, and Filzmoser 2018), and in particular, Ray-
maekers and Rousseeuw (2023) show that the MCD estimator
can be reformulated in terms of likelihood; the objective of the
MCD estimator is to identify the subset of /& out of n samples
(/2 < h < n) with the smallest determinant of the sample
covariance matrix. This is equivalent to determining a subset of
size h that maximizes the multivariate normal (log-)likelihood
function.
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Extending the concept of the multivariate MCD approach,
we introduce weights w = (wi,...,w,) € R”" for a given
sample X = (X,...,X,) that is independently drawn from
MN (M, 7%, 2 to formulate the weighted log-likelihood
function I(w, M, £, £ %) as

— % > owi (p In(det(£°) + qIn(det(Z™"))
i=1

+ MMDX(X)) + pq ln(2n’)), (6)

where MMD?(X) denotes the squared matrix Mahlanobis dis-
tance defined as

MMD?(X) := MMD?(X; M, ™%, x.<°l
= tr(R(X — M) V(X — M)). (7)

Setting w; = 1foralli = 1,...,n, yields the traditional log-
likelihood function, and its maximization yields the MLEs of
(3)-(5). However, by taking binary weights, w; € {0, 1}, with the
constraint that ) ;' ; w; = h, we see that n — h contributions are
trimmed. Since contributions from outliers should be trimmed,
the task is to identify the subset of regular observations H C
{1,...,n}with |H| = h, where w; = 1 fori € H and 0 otherwise.
The resulting constrained optimization problem of finding the
weighted MLE can be written as

max
w.M, X oW zcol

Z(W, M, ZI‘OW, ECOl|x)

n (8)
st. w;€{0,1}foralli=1,...,n and Zwi = h.
i=1

To improve clarity, we will use the following notation for
subsamples of X and estimators based on it: Let H C {1,...,n}
be a subset of size h = |H|, then Xy := (X;);ey denotes an h-
subset of X. An estimator for a parameter 6 based on the sample
X is denoted as Ox or simply as @ if it is clear on which sample
the estimator is computed. Similarly, if an estimator is based on
an h-subset, it is denoted as 67 or as Ox,.

Proposition 2.0.1. Let X = (X1,...,Xy), "2 < h < nand
h > |p/q+9/p] + 2, be an iid sample from MN (M, TV, yeoly,
Maximizing the weighted log-likelihood function (8) is equiva-
lent to minimizing

In(det(E5; @ £33)) = pIn(det(E5)) + qIn(det(Sy™)
©))
across all subsets H C {1,...,n} with |H| = h.In (9),
N 1
My =23 X (10)
icH
A TOW 1 -~ ~ col Y /
Ty = —hZ(Xi—MH)SlH (X; — Mp)’, and (11)
ieH
~ col 1 A, ATOW ~
£ = — D X — Mp)' @y (Xi — M) (12)

icH

denote the MLEs based on the observations in H, and SAZ;;)W =
& row ~ col

(Xy ) 'and @
sion matrices.

& col
= (Z;; )~! denote the corresponding preci-

A proof is given in Supplement B. Based on this proposi-
tion, we obtain a matrix-variate counterpart to the multivariate
MCD estimator’s objective, resulting in robust estimators of the
parameters M, X%, and X!,

Definition 2.0.1. Let X = (X1,...,X,), %2 < h < nand
h > |p/q+14/p] +2,be an iid sample of a continuous p x g matrix-
variate distribution. The raw matrix minimum covariance deter-
minant (MMCD) estimators (M, =" iml) are defined as

arg min pln(det(i;?l)) + qln(det(f):[)w)), (13)

& row o col

M2y 2y
HC{L,...,n},|H|=h

~ ~ ~ col
with My, ):;_(I)w, and )3;? asin (10), (11), and (12), respectively.

The estimators in Definition 2.0.1 almost surely exist and
are positive definite if h > |p/q + 4/p] + 2 (Soloveychik and
Trushin 2016). If p = 1 and/or g = 1, optimization problem (13)
coincides with the optimization problem of the MCD estimator,
and one obtains the univariate or multivariate MCD estimator,
respectively.

3. Properties of the MMCD Estimators

Matrix affine equivariance. The concept of affine equivariance
in multivariate analysis is rooted in the idea that the estimators
used for location and covariance should transform in the same
way as the parameters of elliptically symmetrical unimodal dis-
tributions (referred to as elliptical distributions hereafter), see
Maronna et al. (2019). We can define the matrix-variate analog
of affine equivariance based on the properties of matrix-variate
elliptical distributions, which are frequently employed to study
the robustness properties of normal theory under nonnormal
situations (Gupta and Nagar 1999).

Linear functions of a random matrix X ~ MEWM, XV,
2l ¢) also have an elliptical distribution (Gupta and Varga
2012). This means that for constant matrices A € R"™ P,
rank(A) = r < p, B € R?*’, rank(B) = s < ¢, and C € R™,
the transformed random matrix Z = AXB + C has density

Z ~ MEAMB + C,AX™"A',B'ZB,g). (14)
~ A TOW ~ col .
LetMx,Y 5 ,and X5 denote the estimators based on a sample
X = (X1,...,X,) generated by f(M, X"V, ¥y Then the
estimators of the sample 3 = (AX,B+C,...,AX,B+C) should
transform in the same way as the parameters in (14), that is,

2 Tow 2 row

M3 =AMxB+C, 3 =A% A,

~ col ~ col

35 =BEYB. (15)
Properties (15) provide a suitable generalization of affine equiv-
ariance to the matrix-variate setting, and it is easy to verify that
they hold for the estimators given in (3)-(5). However, they
do not imply affine equivariance of the location and covariance
estimators for the vectorized observations. This would only hold
for transformations with the Kronecker structure vec(AXB +
C) = (B’ ® A)vec(X) + vec(C). We refer to Properties (15)
as matrix affine equivariance to avoid confounding definitions.



Lemma 3.0.1. Let X = (Xi,...,X,) be a sample of p x ¢
matrices, where X; ~ MEMzx, ZEY, Z;O],g), and let 3 =
(Zy,...,Z,) be the affine transformation of X, that is, Z; =
AX;B+ C, A € RP*P, B € R7Y, A, B invertible, and C € RP*4.
The following then holds:

(a) The MMCD estimators as in Definition 2.0.1 are matrix

affine equivariant.
row col row g col

(b) MMD*(Z;3; M3,%5 , % '3 ) = MMD*(X; Mx, 25, 5),

where (M 3» erow,)i 3) are matrix affine equivariant

location and covariance estimators of the transformed
sample 3.

Lemma 3.0.1 shows that the MMCD estimators are equivari-
ant under matrix affine transformations, and a proof is given in
Supplement B.1.

Breakdown point. The finite sample breakdown point of an
estimator evaluates its resilience to contamination. It refers to
the largest proportion of observations that may be arbitrarily
replaced by outliers such that the estimator still contains some
information about the true parameter (Maronna et al. 2019).
Let X be a sample of n matrix-variate observations in RP*4
and suppose ) is a corrupted version, obtained by replacing m
samples of X by arbitrary matrices. The finite sample breakdown
point of a location estimator M is given by

e*(M, %)
- i, {2 apie o] =] a0
sms )

and the (joint) finite sample breakdown point of row and colum-

. . . A TOW ~col | |
nwise covariance estimators ¥ and X is given by

A TOW A col

e (X » X)

~ col

= 123;12" { " s%p max ‘log()» (223 A (Z@ )

_1og(x,-(>§§gw)xj()5§§l))‘ = oo}, (17)
where the supremum supy, in (16) and (17) is taken over all
possible samples of m (p x q) - matrices used to contaminate
sample X, and 1;(A) denotes the jth largest eigenvalue of the
symmetric matrix A.

While the MCD and the MMCD estimators coincide for the
case that p = 1 and/or q = 1, the following theorem shows that
the MMCD estimators achieve a higher breakdown point than
the MCD estimators applied to the vectorized samples if p > 2
and g > 2.

Theorem 3.0.1. Let X be a collection of n iid samples from a
continuous p X g matrix-variate distribution, where d = |¢/q +

a/pl, p»q € N,p > 2,9 > 2, and let M, )Alrow, and fJCOI denote
the MMCD estimators, then
FMX)=e*E", 27 x)
L mini—ht Lh— @+ 1)) = ™,
n n

withn/2 <h <nandh>d+2.
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The proof extends established methodologies from Rousseeuw
(1985) and Lopuhaa and Rousseeuw (1991) to address the
matrix variate setting, leveraging additional insights and
techniques outlined in Supplement B.1. Theorem 3.0.1 implies
that the maximum breakdown point of the MMCD estimators
is 1/n| (n—d)/2] and is attained if h = [(n+d+2)/2]. This means
that the maximum breakdown point of the MMCD covariance
estimators for p > 2,q > 2 is higher than the upper bound for
the breakdown point of affine equivariant covariance estimators
applied to vectorized samples, which is given by 1/u| (n—pq+1)/2]
(Davies 1987; Lopuhaa and Rousseeuw 1991). However, as
mentioned earlier, affine equivariance in the matrix-variate
setting does not imply affine equivariance in the multivariate
setting. Thus, the mentioned upper bound for the vectorized
observations does not apply. In other words, since affine
equivariance (in the vectorized case) is not a requirement for
matrix-variate affine equivariance, it is possible to achieve a
higher breakdown point for the MMCD estimators than for
any affine equivariant multivariate estimator applied to the
vectorized data.

To illustrate the advantage of respecting the inherent data
structure of matrix-variate data for the breakdown properties,
we compare the maximum breakdown points of the MCD and
MMCD estimators in Figure 1 for different combinations of p
and g, and for different sample sizes n. Here, the MCD estimator
is applied to the vectorized data, and the dimensionality of the
samples is pg, which can get large. This affects the computability
of the MCD estimator since it requires a subset size larger than
the dimension.

Consistency for elliptical distributions. Let us now consider
the asymptotic behavior of the MMCD estimators. By scaling
the rowwise or columnwise MMCD covariance estimator by a
distribution-specific consistency factor, we can achieve consis-
tency for elliptical distributions.

Theorem 3.0.2. Let X,...,X, be a random sample from an
elliptical matrix-variate distribution MEM, X%, XV, )

with positive definite covariances £V, £°!, and let (M, =

~ col

%) be the corresponding MMCD estimators. Then, it holds
that

a.s.

_ zcol @ Xrv| &%

20, @ o 2"

where c(@),a = h/n € [0.5,1], is a distribution-specific consis-
tency factor as in Croux and Haesbroeck (1999).

The proof of the consistency of the raw MMCD estimators
relies on the strong consistency of the MCD estimator given
in Butler, Davies, and Jhun (1993) and Cator and Lopuhai
(2012) and is provided in Supplement B.1. It shows that the
consistency factor of the MCD estimator and the MMCD esti-
mator must coincide, and therefore, we use the consistency
factor

o

18
(Xa,pq) 49

c(a) =
Xp +2

proposed by Croux and Haesbroeck (1999) to obtain consistency
at the normal model, where F e denotes the CDF of the Chi-
q
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p=1,q=20,d=20 p=5,q=20,d=4 p=10,q=20,d=2 | | p=20,q=20,d=2
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8 041 Method
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© 0.24 |
< { ---+ MMCD
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M go4!
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Figure 1. Comparison of the maximum breakdown point of the MMCD estimators for matrix-variate data with p = 1,5,10,20 rows and ¢ = 20 columns, and the
MCD estimator applied to the vectorized data. When p = 1, both estimators and their breakdown points coincide. However, increasing the number of rows yields better
breakdown properties for the MMCD estimators, as the proportion between the number of rows and columns d = |p/q + 9/p] is approaching 2.

square distribution with pg + 2 degrees of freedom, and Xﬁq;a
denotes the o quantile of the Chi-square distribution with pq
degrees of freedom.

Remark 3.0.1. Note first that for & = n, the corresponding
MMCD estimators coincide with the ones defined in (3)-
(5). Therefore, a simple, yet not discussed in the literature,
consequence of Theorem 3.0.2 is that the estimators obtained
maximizing the likelihood under the matrix-normal model, are
consistent estimators of the corresponding finite-dimensional
parameters (M, X%, X™%) in the semi-parametric, matrix
elliptical family. One should also bear in mind that the need
for scaling arises from the trimmed nature of the covariance
estimator.

Reweighted MMCD - improving efficiency. 'The raw MMCD
estimators are most robust when about half of the observations
are trimmed, that is, h = | (#+d+2)/2]. However, this leads to a
low efficiency at the normal model. While efficiency could be
increased by trimming fewer samples, this would lead to lower
robustness. To enhance a robust estimator’s efficiency without
compromising robustness, Lopuhaa and Rousseeuw (1991)
and Maronna et al. (2019) proposed a one-step reweighing
procedure. We can apply this technique for the MMCD
estimators by defining weighted ML estimators with weights
depending on the Mahalanobis distances given the raw MMCD
estimators.

Definition 3.0.1. Let X be a collection of » iid samples from a

continuous p X g matrix-variate distribution, where d = |¢/q +
SN & col

a/pl, p,q € N,p > 2,9 > 2, and let M, £ and £ denote

the raw MMCD estimators as in Definition 2.0.1. The reweighted

MMCD estimators are given by

1

M =
YL, w(MMD(X;))

> wMMD(X;)X;,  (19)
i=1

i row 1

q> 1, w(MMD(X;))

3" wMMD(X)(X; — DS (X; — ), and
i=1
(20)

= col i 1

> =
P>, w(MMD(X)))

n
> wMMD(X)(X; — My Q™" (X; — M), (21)
i=1
where w : [0,00) — [0,00) is a nonincreasing and bounded
weight function such that w(MMD(X;)) > 0 for at least
[(n+d+2)/2] observations that vanishes for large distances, that
is, W(IMMD(X;)) = 0if MMD(X;) > ¢; > 0.

The following theorem shows that the reweighted MMCD
estimator preserves the breakdown point of the original estima-
tor. The simulations presented in Section 6 illustrate substantial
improvements in the efficiency of the reweighed MMCD esti-
mators. With increasing sample size, the finite sample efficiency
exceeds 90% across various selections of p and g.

Theorem 3.0.3. Let X be a collection of # iid samples from a
continuous p X g matrix-variate distribution, where d = |#/q +

A ~ ~ col
apl, prq € N,p > 2,9 > 2, and let Mx, Er;w, and Z;Z
denote the raw MMCD estimators as in Definition 2.0.1 with
breakdown points
~ A TO0W ~ col
1 m
= —|minmn—h+1L,h—(d+1))] = —,
n n

L < col
and let M %, Zr;w, and Egg denote the reweighted estimators as
in Definition 3.0.1. Then,
. m
& (MX) x) > —
n

~row g col m
n

and "Xy ,X%,%X) >

A proofis given in Supplement B.1. For the algorithm used to
compute the reweighted MMCD estimators introduced in the
following section, we use the weight function w : [0,00)
{0, 1} with

w(MMD?(X;)) := Lif i€ HvMMDI(X) < Xﬁq;O'WS .
0 otherwise
(22)

Note that the h observations in the h-subset of the raw MMCD
estimator have the lowest MMDs, and the condition that all
observations i € H get a positive weight ensures that the
reweighting step does not lead to an estimator that uses fewer
than / samples.



4. Algorithm

Rousseeuw and Driessen (1999) proposed the Fast-MCD algo-
rithm to efliciently compute the MCD estimator. The key idea
to find the h-subset with the lowest covariance determinant is
based on the concentration step (C-step): after each C-step, the
objective function is smaller or equal as before, and by repeatedly
applying C-steps convergence is reached within finitely many
iterations.

4.1. Adapting the C-step

Adapting the structure of the Fast-MCD algorithm to the
matrix-variate setting leads to the development of the MMCD
algorithm. This adaptation necessitates a modification in the
covariance estimation during the C-step to derive suitable
counterparts for computing the MMCD estimators. However,
this process encounters a challenge due to the involvement
of two covariance matrices, as depicted in (11) and (12),
both lacking closed-form solutions for their estimation. To
address this issue, we incorporate the flip-flop algorithm
introduced by Dutilleul (1999) within the C-step. Consider
a matrix-variate random sample X = (Xi,...,X,), with
X; € RP*4, and any h-subset Hog C {1,...,n}, with |Hgq| =

~ATOW  ~ col

h > |p/g + 9/p) + 2. First, the MLEs (Mp,, 2y 25 )
are computed based on the observations in the subset Hyg
using the flip-flop algorithm, which is nondecreasing in

likelihood. Next, compute the squared Mahalanobis distances
srow  ~col

d? (Hoa) :== MMD*(X;, My, Xpy » ) foralli=1,...,n.
In Proposition 2.0.1, we showed that ZieHom dl.z(Hold) =
hpq, hence, only the terms of the log-likelihood function
involving the determinants change in this step. To construct
the new subset Hpey, sort the squared MMDs in ascending
order, resulting in a permutation w of {1,...,n} such that
djzr(l)(Hold) < ... < di(n) (Hoi4), and define a new h-subset
Hpew = {m(1),...,m(h)}. Since the estimators do not change
in this step, the terms involving the determinant are constant,
and by construction, the sum of the Mahalanobis distances
either decreases or stays constant. Hence, the reordering is
nondecreasing in likelihood. Finally, the estimators are updated
using the flip-flop algorithm based on the observations in the

~ PN 2 col
subset Hpew, resulting in estimators (Mp,,,» Z;;::w, ;?new),
increasing the likelihood once more, and it follows that
~ col N
pln(det(Ey;, ) + qln(det(E} ))
~ col ~
< pin(det(E};, ) + qIn(det(E}; ). (23)

By repeatedly applying such C-steps, we can decrease the covari-
ance determinant in subsequent iterations as in (23). This results
in a decreasing and nonnegative sequence of determinants that
must converge after exploring finitely many h-subsets. Similar
to the multivariate case, we obtain equality of the determinants
from one h-subset to the next if and only if the estimators do
not change from one to the next iteration. However, this does
not necessarily imply that we have found a global optimum.
A pseudo-code for this matrix-variate version of the C-step is
given in Algorithm 1 in Supplement C.
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4.2. The MMCD Algorithm

The MMCD algorithm is a matrix-variate extension of the Fast-
MCD procedure of Rousseeuw and Driessen (1999), aiming
to alleviate the C-steps dependence on the initial subset by
using multiple initial subsets, iteratively conducting C-steps on
each until convergence, and ultimately selecting the solution
with the lowest determinant. While this explains the idea of
the algorithm, there are more computational considerations and
adjustments in the full MMCD algorithm. A pseudo-code of the
MMCD Algorithm 2 is given in Supplement C.

As in its multivariate counterpart, the MMCD procedure
uses so-called elemental subsets to initialize the procedure. This
means that we use m subsets of size d + 2,d = |p/q + 9/p],
instead of size h, to increase the probability of obtaining at least
one clean initial subset. Using m = 500 elemental subsets by
default allows for a reasonable tradeoff between a wide variety
of settings where we likely obtain at least one clean elemental
subset and the computational demands of computing initial
estimators. If either p < g or g >> p, d will be large, and using
more initial subsets is recommended. Using elemental subsets
increases not only the robustness of the initial estimators but also
the computational efficiency.

Moreover, the MMCD procedure only uses 2 C-step and
MLE iterations for the initial elemental subsets to ensure even
faster computation of the initial estimators. In the MLE pro-
cedure, Werner, Jansson, and Stoica (2008) demonstrated that
the same asymptotic efficiency can be attained using only two
iterations instead of iterating until convergence. As for the C-
step, Rousseeuw and Driessen (1999) outlined that after two iter-
ations, subsets with the lowest covariance determinant during
the procedure can already be identified, even before reaching
convergence. Moreover, simulations show that we can identify
those initial subsets that yield robust solutions after 2 C-steps,
whether we use 2 MLE iterations or iterate the flip-flop algo-
rithm until convergence. This is described in detail in Supple-
ment C.1, where we also show that elemental subsets indeed
yield more robust solutions than their larger counterparts in case
of high contamination.

The initialization step of the MMCD procedure yields m
initial estimators, and we keep the 10 estimators with the lowest
covariance determinant. Using those as initial estimators, we
iterate C-steps until convergence on the complete dataset X. The
solution with the lowest covariance determinant then yields the
raw MMCD estimators.

The raw MMCD estimators are scaled using the consistency
factor c(a) given in (18) to achieve consistency at the normal
model as outlined in Theorem 3.0.2. Based on those rescaled
raw MMCD estimators, the reweighted estimators described in
Definition 3.0.1 are computed using the weights given in (22).
The reweighted MMCD estimators are then scaled using c(&) =
c(h/n), where h denotes the number of observations with weights
one.

The MMCD algorithm repeatedly computes Mahalanobis
distances for all n samples, which is computationally expensive
when n gets large. To improve the computational efficiency
for settings where n is large, we implemented the subsampling
approach proposed by Rousseeuw and Driessen (1999). The
idea is to split the sample of n observations into several smaller
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subsamples and compute initial estimators on those subsamples
before working on the large set with »n observations.

5. Outlier Detection and Explainability

Given a sample X = (X,...,X,) of matrix-variate observa-
tions, the task for outlier detection is to identify those obser-
vations which are “far away” from the center of the data cloud
with respect to its shape. In robust statistics, it is common to
consider the Mahalanobis distance for this purpose, assume an
underlying normal distribution of the observations, and use
a quantile of the Chi-square distribution as an outlier cutoff
value (Maronna et al. 2019). Here, we follow the same idea: an
observation X; is flagged as an outlier if

2 ~  ~arOW A col 2
MMD*(X; M, %, % ) > Xpp0.975 5

fori € {1,...,n} and the MMCD estimators M, ™" and
2 col
£ The consistency of MMCD estimators for matrix-normal

distributed data implies that the robust estimate of the squared

~row » col

matrix Mahalanobis distance, MMD? (X,-;M , X L, X ), is
asymptotically distributed as x?(pq). This asymptotic behavior
justifies the use of this cutoff for large samples, assuming
Gaussianity. Even though this information is valuable in
practice, it is not very useful for understanding the reasons for
outlyingness. This is the goal of outlier explainability, where the
contributions of the cells/rows/columns of the matrix-valued
observations are investigated in more detail. We will use the
concept of Shapley values for this purpose and first briefly review
how this is applied to multivariate data before extending it to
the matrix-variate case. For details, we refer to Mayrhofer and
Filzmoser (2023).

5.1. Shapley Values for Multivariate Data

Let x = (x1,...,%p)" denote an observation vector from a
population with expectation vector g = (u1,...,up)" and
covariance matrix X, and P = {1,...,p} the index set of the
variables. Then the outlyingness contributions ¢(x, u,X) =
d(x) = ($1(%),...,¢p(x)) based on the Shapley value assign
each variable its average marginal contribution to the squared
Mahalanobis distance, that is,

ISItp — IS = D! .
hmE) = Y S SR A MDA
SCP\{k} P
p
= (Xk — k) Z(xj = Hj)@jks (24)
j=1
with marginal contributions
ArMD23S) .= MD2(xV) — MD2(3%) and
i ifjesS
=10 € (25)
ni ifj¢s

as the components of %5, Here, MD?(x) = MD?*(x; i, X)
denotes the Mahalanobis distance of x from the mean g with
respect to the covariance X, and wj is the element (j, k) of

Q=X LForke(l,...,p}andS C P\ {k}, a positive value of
the marginal contribution Ay MD? (#%) indicates that replacing
the kth variable with its mean, in addition to replacing the vari-
ables in P \ §, reduces the corresponding squared Mahalanobis
distance. Conversely, Ay MD? @S <o implies that this replace-
ment increases the squared Mahalanobis distance. This outcome
reflects the use of the overall mean as a replacement, rather than
the conditional mean, which impacts the contribution of the
replaced variables, see Mayrhofer and Filzmoser (2023) for more
details.

Since ¢(x) is based on the Shapley value, it is the only decom-
position of the squared Mahalanobis distance based on (25) that
fulfills the following properties:

o [Efficiency: The contributions ¢;(x), for j = 1,...,p,
sum up to the squared Mahalanobis distance of x, hence,
Y, ¢j(x) = MD*(x).

o Symmetry: If MDZ(&SUU}) = MDZ(&SU{k}) holds for all
subsets S € P\ {j,k} for two coordinates j and k, then
¢j(x) = d(x).

o Monotonicity: Let pu,fi € RP be two vectors and X, Y e
PDS(p) be two matrices. If

MD? 5 &%) — MD?2 5 )
=MD @Sy — MD? - (&)
holds for all subsets S C P, then ¢;(x, u, ) > ¢;(x, i, 3).

The coordinate ¢y (x) of the Shapley value is the average
marginal contribution of the kth variable to the squared Maha-
lanobis distance and is obtained by averaging over all marginal
outlyingness contributions A MD? (fcs) across all possible sub-
sets S C P\ {k}. This reflects the average effect of replacing
the kth variable with its mean on the squared Mahalanobis
distance. Although this suggests an exponential computational
complexity, which becomes costly, especially if p is large, the
second equality in (24) reveals just linear complexity; for a
proof we refer to Mayrhofer and Filzmoser (2023). Equation (24)
allows for another insight into the Shapley value by comparing
it to the squared Mahalanobis distance, which can be written
as }p 1 (X — 1) (xx — p)wjk. While the latter calculates an
outlyingness measure by aggregating the contributions (x; —
uj)(xk — pi)wjx of all variables for the entire observation,
Equation (24) shows that a coordinate ¢ (x) of the Shapley value
only considers the contributions that are associated with the kth
variable.

5.2. Shapley Value for Matrix-Valued Data

To define Shapley values for matrix-variate data, we can use the
connection between the matrix and multivariate Mahalanobis
distance; see (7). Let X € RP*1 be a matrix-variate sample with
mean M € RP*4 and covariance matrices XY € PDS(p)
and £ € PDS(g). The pg-dimensional vectorized observation
is denoted as x = vec(X), with mean © = vec(M) and
covariance matrix ¥ = X @ X™%. Based on (24), we can
obtain outlyingness contributions for every coordinate of x and



hence for every cell of the matrix X by

pa
Ga(%) = (Xa — Wa) Z(xh — Up)@ap

b=1

P 4
= (xjk — Mjk) Z Z(xil - mil)wf,-oww;i?l = ¢ (X),
i=1 I=1
witha=i+ (I—1)pandb=j+ (k—1)p,andforj=1,...,p
and k = 1,...,q. Using matrix operations, we can efficiently
compute the p x g matrix containing the cellwise Shapley values

@ir(X) as

O(X) = (X — M) 0 Q%X — M)Q ¢ RP*, (26)

where o refers to element-wise multiplication.
Next, we discuss how matrix affine transformations as in (15)
affect the cellwise Shapley values for matrix-variate data.

Proposition 5.2.1. LetX € RP*9beasample from ME(M, XV,
Tolg), A € RP*P, B € R?%Y, A,B invertible, and C €
RP*4, Then, the cellwise Shapley values are not matrix affine
equivariant, that is, ®(AXB) # A®X)B for general positive
definite A and B. However, they are

(a) shift invariant, that is, ®(X + C) = ®(X),

(b) scale invariant, that is, if A and B are scaling matrices, thus,
diagonal matrices with nonzero entries, then ®(AXB) =
@ (X),

(c) permutation equivariant, that is, if A and B are permutation
matrices, then ®(AXB) = AP (X)B, and

The proofs are given in Supplement D. When considering
gray-scale image data, shifting or rescaling the gray-scale infor-
mation would not change the cellwise Shapley values. Further,
exchanging rows and columns of the image; in particular mirror-
ing or rotating the image by 90°, would equivalently transform
the Shapley values. Similarly to the setting of cellwise outliers
(Alqallaf et al. 2009), cellwise Shapley values are tied to the
original coordinate system and are not matrix affine equivariant.

It can be preferable in some applications to obtain outlying-
ness explanations for a complete row or column of the matrix-
valued observations, especially when we want to compare mul-
tiple observations. In the following, we show how Shapley values
for rows can be obtained; Shapley values for columns can be
computed based on the transposed matrix or by adapting the
following notation accordingly for columns.

Consider again the set P = {1,...,p},and S € P\ {j}.
The rowwise marginal contributions to the matrix Mahalanobis
distance are defined as

~S ~ SU{j ~S
AjMMD(X) := MMD(X YUl _ MMD &),
~S
where the ith row of X is given as (x;1,...,xXjq) if i € Sand

(mﬂ,. .. ,m,-q) if i ¢ S.

Proposition 5.2.2. The jth coordinate of the rowwise Shapley
value is given by

$.X) = Y

!
SCP\{j} p:

ISI!(p — IS — 1)

: AJMMDE’)  (27)
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q
1
Z Z(le — mjp) (xik — miwi™ wi]

i=1 k=1 I=1

I
M*w

Il
M=

Pjk(X). (28)

,\N
Il
—

A proof for (28) can be found in supplement D. Thus, a
rowwise Shapley value is obtained by summing up the cellwise
Shapley values for the corresponding row, which is equivalent to
adapting the marginal contributions to a rowwise replacement.
The vectors containing the rowwise or columnwise Shapley
values can also be computed by

b 0w (X) = diag(Q°% (X — M)Q' (X — M)") € R’ and
(29)

G (X) = diag(X — M) Q"X — M)Q) e RY,  (30)
respectively. The properties listed in Proposition 5.2.1 also apply
in this setting.

6. Simulations

In this section, we present simulation studies designed to rigor-
ously evaluate the performance of the MMCD estimators, val-
idate their theoretical properties, and compare their efficiency
against ML estimators.

Among the four robust covariance estimators for matrix-
valued data mentioned in Section 1, we could only find imple-
mentations for the methods proposed by Thompson et al. (2020)
and Zhang, Shen, and Kong (2022). While our focus is on robust-
ness under the Tukey-Huber contamination model (Tukey 1960;
Huber 1964), which assumes a mixture of clean and contami-
nated observations, their methods target robustness in a heavy-
tailed data setting. Consequently, we expect that these estimators
cannot compete with the MMCD estimators under the Tukey-
Huber contamination model, which is confirmed by simulations
included in the supplementary materials E.

In the following, we compare the efficiency of the raw
and reweighted MMCD estimators under the normal model
without contamination to confirm that the reweighting step
improves efficiency. Moreover, we provide an in-depth analysis
of the MLEs, (reweighted) MMCD estimators, and MCD
estimator based on the vectorized samples on contaminated
data. To ensure the highest possible breakdown point across
all simulations and examples discussed in this paper, we set
h = | (n+d+2)/2] for the MMCD estimators and h = | (n+pq+1)/2]
for the MCD estimator. We conduct 100 repetitions for each
simulation setting and visualize the results through either line
plots or boxplots. In the line plots, the solid lines represent
average scores, while the shaded regions depict one standard
error interval.

Finite-sample efficiency. 'To analyze the finite-sample effi-
ciency, we generate samples from a centered matrix normal
distribution with dimensions (p,q) € {(5,20),(50,20),
(100, 50)} for various sample sizes n € {20, 50, 100, 300, 1000}.
For the rowwise covariance matrix we adopt the covariance
matrices proposed by Agostinelli et al. (2015), denoted X% =
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Figure 2. Comparison of the finite-sample efficiency of raw and reweighted MMCD.

x™d ¢ PDS(p), which have random entries and generally

yield low correlations. For the columnwise covariance, we use
zeol = ¥MiX(0.7) € PDS(g), with entries ajr,?ix(OJ) = 0.7li=*l,
We assess the normal finite-sample efficiency by comparing the
ratio

Arow  acol
D(ZMLE’ ZMLE)
A TOW ~ col >
D(ZMMCD’ 2:MMCD)

o ool
where D(me, Zco) denotes the Kullback-Leiber (KL) diver-
. A TOW ~col | .
gence of the estimators ¥ and ¥ in the matrix normal
setting M (M, =™V, 3, which is given by

2, TOW

A col A ~ col
DE"", 27 = (V") (L)

— qlog(det(R™VE"™")) (31)

—plog(det(SZCOlf)COI)) - g

with Y = (T™%)~1 and @ = ()~ As shown in
Figure 2, the efficiency of the raw MMCD estimators is below
0.5 on average. In contrast, the reweighted estimators’ efficiency
is above 0.5 for n = 100 and it rises to over 0.9 as the sample size
increases.

Robustness and matrix size. For the setting with contamina-
tion, we consider matrix-variate samples with p € {2,...,30}
rows and ¢ = {10,20,30} columns for sample sizes n €
{100, 1000}. The clean data are generated from a centered matrix
normal distribution with X% = x™d apd yeol = ymixg7),
A fraction, ¢ = 0.1, of the clean data is replaced by outliers,
sampled from a matrix normal distribution with a mean matrix
where all entries are equal to y = 1. The covariance matrices of
the outliers are the same as for the regular observations.

We use KL divergence (31) to analyze the quality of the
covariance estimation. Additionally, we analyze outlier detection
capabilities of the squared Mahalanobis distance based on the
estimators, with the 2q,0.99 quantile as a detection threshold. We
also include the Mahalanobis distances based on true param-

eters used to generate the data as a benchmark and measure
performance by precision and recall. Due to the excessively
long computation times of the Fast-MCD procedure in higher-
dimensional scenarios, we used the deterministic MCD (Hubert,
Rousseeuw, and Verdonck 2012) when pq > 300. Since the
MCD estimator requires n > pgq, it is only computed for those
settings.

Figure 3 shows that the MMCD estimators have lower KL
divergence than the competing methods and attain a recall
similar to the benchmark approach based on the true parameters
used to generate the data across all settings. The precision of
the MMCD estimators depends on the dimensionality of the
matrix-variate samples as well as on the sample size. For n =
100, the precision decreases with increasing dimensionality pq,
but the effect is mitigated by an improving performance when
max{p/q, 9/p} is small. For n = 1000, the precision is close to the
precision based on the true parameters. This suggests that for
small sample sizes, a correction similar to the one proposed by
Pison, Van Aelst, and Willems (2002) for the MCD could lead
to a better performance. In the matrix-variate setting, such a
correction would not only be dependent on pq and n but also
on p/q and 4/p.

For small p and g, the comparison between the MMCD
estimators and the MCD for the vectorized observations is
of special interest. For n = 1000 and g = 10 they have
a similar recall when p < 6, and for g € {20,30} the
MCD estimators show substantial improvements when the
deterministic MCD approach is used instead of the Fast-MCD.
This can be explained by the dependence of the Fast-MCD on
the robustness of the initial solutions, and with an increasing
pg> the probability of obtaining a clean subset becomes very
small. The MCD estimator shows a steep drop in precision as p
increases when Fast-MCD is used. For the deterministic MCD,
we see a trade-off between precision and recall with increasing
dimensionality, but the KL divergence remains high. With
increasing dimensionality, even the nonrobust matrix MLEs
outperform the MCD estimator which highlights the impor-
tance of respecting the inherent data structure of matrix-variate
observations.
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Figure 3. Comparison of precision, recall, and KL divergence for ML and MMCD estimators, (deterministic) MCD estimators with vectorized data, and true parameters as a
benchmark for outlier detection for simulated data from a matrix normal distribution with 10% contamination.

Robustness and contamination type. In addition to the shift
outliers we also consider block and cell contamination for matrix
normal samples of size (p,q) = (5,20). In all three settings,
we consider a fraction of ¢ = 0.1 contaminated samples. Let
X = (x),j = 1,...,5k = 1,...,20, denote a sample from
a centered matrix normal distribution with rowwise covariance
yrow — wmd 5nd columnwise covariance £ = XMiX((.7),
For block contamination, we replaced the top left 2 x 5 block,
corresponding to the entries xj,j = 1,2,k = 1,...,5, with
entries from a shifted matrix normal distribution with a mean
matrix where all entries are equal to y = 1 and covariance
matrices corresponding to the top left block of £™% and T,
For cell contamination, a fraction of 0.1 of the cells of the
outlying observations are randomly permuted. The shift outliers
are generated with a mean shift y = 1 as before.

Figure 4 shows that the MMCD estimators are better suited
for outlier detection and yield more robust covariance estimates
than the matrix MLEs as well as the MCD estimator on the
vectorized observations. Overall, the results are similar across all
three simulation scenarios, only for mean shift contamination
we see higher variation than in the other two settings. This is
likely because the block and cell contamination interfere with
covariance estimation more profoundly, that is, the KL diver-
gence of the matrix MLEs is highest for block contamination
followed by cell and shift contamination.

The supplementary materials E provide in-depth simula-
tion studies that expand upon the scenarios discussed in this
section. These simulations analyze the effects of the level of

contamination and mean shifts for multiple types of covari-
ance matrices. Additionally, we extend our analysis beyond the
normal model to include samples generated from a matrix t-
distribution, examining performance across a range of degrees
of freedom. For this scenario, we also compute the ML esti-
mators for the matrix t-distribution (Thompson et al. 2020).
Finally, we include a comparison to the distribution-free esti-
mators Zhang, Shen, and Kong (2022) for banded row and
column covariance matrices, a summary of computation time,
and consider additional performance metrics, such as the F-
score (harmonic mean of precision and recall), Frobenius error,
and the angle between eigenvalues of covariance matrices.

7. Examples
7.1. Glacier Weather Data—Sonnblick Observatory

We analyze the publicly available weather data from Austria’s
highest weather station, located in the Austrian Central Alps at
an elevation of 3106 m above sea level on top of the glaciated
mountain “Hoher Sonnblick” (datasource: GeoSphere Austria
- https://data.hub.geosphere.at). The observed parameters are
monthly averages of temperature (T), precipitation (P), propor-
tion of solid precipitation (SP), air pressure (AP), and sunshine
hours (SH). We consider the monthly values between 1891 and
2022 and exclude five years with missing values, yielding n
127 observations of p = 5 times g = 12 dimensional matrices.
Our goal is to identify observations that show a different weather
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Figure 5. Yearly outlyingness contributions for the glacier weather data. Regular years are white, and years that contain missing data are gray. Outliers are colored as follows:
blue for “below average’, red for “above average’, and color intensity proportional to the rowwise Shapley value.

pattern than the majority of the data and explain why the corre-
sponding years deviate from the majority. We did not adjust for
a possible yearly trend in this exploratory analysis as we wish to
understand long-term patterns and shifts in climate without the
influence of adjustments.

In total, outlier detection based on the MMCD estimators
flags 23 outlying matrices, which are indicated in Figure 5 as col-
ored years: If the aggregated monthly measurements are above
their average, the cells are colored red; otherwise, they are col-
ored blue. The rowwise Shapley value is then used to determine
color brightness, that is, the larger the outlyingness contribution,
the darker the color. Years with missing observations are grey;
years with only white cells refer to regular observations. It is
visible that the outlier frequency increases in the last period.
Moreover, more recent outliers are characterized by increased
temperature, precipitation, air pressure, and a lack of solid pre-
cipitation (e.g., snow)—a clear signal of a climate change.

In Figure 6, we use cellwise Shapley values to understand
which parameters in which months contributed most to the

outlyingness of 1895 and 2022, corresponding to the first and
last outlying observation in the dataset, respectively, where the
color scheme is inherited from Figure 5. The largest outlyingness
contribution is due to an unusually large amount of precipitation
in March 1895. Overall, high amounts of precipitation were
observed that year, with a high percentage of snow even in the
summer months. In contrast, the largest outlyingness contribu-
tions in 2022 are due to a very sunny March and low percentages
of snowfall in May, June, and August.

7.2. Darwin Data

We consider the DARWIN (Diagnosis AlzheimeR WIth haNd-
writing) (Cilia et al. 2022) data set containing handwriting sam-
ples of 174 subjects, 89 diagnosed with Alzheimer’s disease
(AD), and 85 healthy subjects (H). Each individual completed
25 handwriting tasks on paper, and the pen movements were
recorded using a graphic tablet. The tasks are ordered in diffi-
culty. From the raw handwriting data, 18 features were extracted:
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Figure 6. Outlyingess contributions based on cellwise Shapley values for the years 1895 and 2022 of the glacier weather data using the same color scheme as in Figure 5.
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Figure 7. Plot of robust MMD based on MMCD estimators for the Darwin data on the left, and average proportional rowwise Shapley values for the H and AD subjects on

the right.

Total Time, Air Time, Paper Time, Mean Speed on paper, Mean
Speed in air, Mean Acceleration on paper, Mean Acceleration
in air, Mean Jerk on paper, Mean Jerk in air, Pressure Mean,
Pressure Variance, Generalization of the Mean Relative Tremor
(GMRT) on paper, GMTR in air, Mean GMRT, Pendowns Num-
ber, Max X Extension, Max Y Extension, and Dispersion Index.
For a more detailed description of the data, we refer to Cilia
et al. (2018). In Cilia et al. (2022), each task was considered
separately to train a classifier, and the combination of the clas-
sifiers led to an improvement in the classification of subjects.
Our focus here lies not in the classification task but rather
in explaining the differences between AD and H groups. We
treat the observations as matrices, with the rows representing
the extracted features and the columns representing the tasks.
Because of linear dependencies, the variables Total Time and
Mean GMRT were excluded. Further, the variable Air Time had
several extreme and unreliable measurements and was thus also
excluded. This yields observation matrices with p = 15 features
and g = 25 tasks.

We applied the MMCD procedure only on the healthy sub-
jects and used the robust estimators to compute MMDs for all
observations. Thus, the MMDs presented in Figure 7 left are gen-
erally smaller for the H group, whereas all observations from the
AD group exceed the outlier cutoft value. The fact that healthy
subjects also exceed the cutoff value shows the heterogeneity

in this group. In the right panel of Figure 7, we consider the
average proportional contributions of the variables to the MMDs
for the H and AD groups. The outlyingness contributions are
based on the rowwise Shapley values, resulting in 15 scores for
each individual. Since those scores sum up to the squared MMD,
we can divide them by the squared MMD to get proportional
contributions, and by averaging over all individuals in the H
and AD groups, respectively, we obtain the values shown in this
plot. Large differences between the AD and H groups indicate
variables that are important to distinguish between healthy indi-
viduals and those who have Alzheimer’s disease. For example,
Pressure Mean and Paper Time are evidently higher in the AD

group.

7.3. Video Data

In this example, we examine a surveillance video of a beach
sourced from Li et al. (2004). The video comprises 633 frames,
each sized at 128 x 160 pixels; five selected frames are shown
in Figure 8. The majority of the frames depict the beach scene.
Around frame 500, a man walks into the scene from the left and
partly disappears behind the tree. As he continues walking, he
reappears on the right side of the tree and remains in the video
until the end.
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Frame 487

Frame 1

Frame 491

Frame 495 Frame 500

Figure 8. Selected frames of the video data.
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Figure 9. Plot of robust MMD based on MMCD estimators for the video data.
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Figure 10. Outlyingness scores based on cellwise Shapley values are shown in red, where darker colors indicate higher outlyingness contributions, and the grayscale video

frames are displayed in the background.

For our analysis, we converted the original RGB video to a
grayscale video, applied the MMCD procedure, and obtained
MMDs for all 633 frames, which are visualized in Figure 9. The
plot on the left shows the robust MMDs for all 633 frames, and
the one on the right for frames 471-633 to better highlight the
increase in MMD when the man enters the scenery, with a short
drop in MMD when he disappears behind the tree. We indicate
frames 487, 491, and 495, also presented in Figure 10 in terms
of their cellwise Shapley values. We see that the pixels that form
the contours of the man and most of the pixels of the man’s head
contribute most to the outlyingness. When the man disappears
behind the tree, there are fewer pixels with high outlyingness
contributions. Since the sum of the contributions amounts to the
squared MMD of an observation, this explains the behavior of
the MMDs of the frames shown in Figure 9(b). It is interesting
to see a certain increase in the MMD in Figure 9(a) between
frames 400 and 450. Here, the Shapley values on the contour of
the palm tree contribute the most to the outlyingness. This could
be caused by a slight shifting of the camera or a small movement
of the palm tree due to wind.

8. Summary and Conclusions

Matrix-valued observations, like images or dual-factor data
tables, are common in various fields. To apply multivariate
methods on matrix-valued data, the matrices are typically
converted to vectors by stacking either the rows or columns. This
disrupts the inherent data structure and increases dimensional-
ity, thereby complicating parameter estimation. Thus, it is often
preferable to model matrix-valued data directly with matrix-
variate distributions. In this setting, Maximum Likelihood (ML)
estimation methods exist for estimating the mean, as well as
the row and column covariances, respectively. However, these
estimators are sensitive to deviations caused by outliers among
matrix-valued observations.

This work introduced the MMCD (matrix minimum covari-
ance determinant) estimators as a robust counterpart to the ML
estimators in the matrix-variate normal model. Several desir-
able properties are achieved: equivariance under matrix affine
transformations, high breakdown point, and consistency under
elliptical matrix-variate distributions. The proposed reweighted



versions lead to higher efficiency but not to any loss in terms of
breakdown point. An algorithm along the lines of the Fast-MCD
procedure (Rousseeuw and Driessen 1999) allows for efficient
computation of the estimators. Simulation experiments validate
the theoretical properties and advantages. Depending on the
ratio of the number of rows and columns of the matrix-valued
observations, the MMCD estimators show a big advantage over
robust estimation for vectorized observations regarding break-
down and computational efficiency.

We further extended the outlier explanation concept based
on Shapley values (Mayrhofer and Filzmoser 2023) to the
matrix-variate setting. This allows for an additive decom-
position of the matrix-variate Mahalanobis distance of an
observation into Shapley contributions of either the rows, the
columns, or the matrix cells. The resulting Shapley values greatly
aid with diagnostics, particularly in revealing those cells (rows,
columns) of the matrix with the most substantial contributions
to the outlyingness of the observation.

The efficiency of MMCD estimators in outlier detection for
large sample sizes is evident from the simulations. However, our
future research aims to improve and extend these estimators.
For instance, smaller sample sizes might benefit from integrating
finite sample corrections proposed by Pison, Van Aelst, and
Willems (2002) to enhance the results. Furthermore, the iterative
computation of MMCD covariance estimators, which involves
inverse covariance matrices, requires data that ensures full-rank
estimates at each iteration. This requirement may be impeded
for example in image data, in case certain rows or columns main-
tain constant pixel values across all observations. To solve this,
regularization involving a linear combination of the covariance
matrix with a full-rank target matrix can be used (Ledoit and
Wolf 2004), similarly to the multivariate setting (Boudt et al.
2020).

The MMCD objective can be expressed as a trimmed maxi-
mum likelihood problem, and thus, can be extended to tensor-
valued data using ML estimation for the tensor normal distri-
bution Manceur and Dutilleul (2013). The framework of Ray-
maekers and Rousseeuw (2023) can be used to develop a cellwise
robust version of the MMCD. Our ongoing research focuses
on extending the MMCD estimators and outlier explanations
based on Shapley values to the field of functional data anal-
ysis. Our goal is to introduce robust estimators and enhance
interpretability for multivariate functional data. In the future,
we also plan to incorporate these robust estimators as plug-in
estimators to robustify established multivariate methodologies
in the matrix-variate domain, like principal component analysis
and discriminant analysis.

Supplementary Materials

The supplementary material consists of five sections. Section A covers
preliminaries for matrix-variate data. Section B contains the proofs for all
results concerning the MMCD estimators. Section C includes pseudo-code
and further details regarding the C-step and MMCD procedures. Section
D contains the proofs related to outlier explanations. Section E provides
additional simulation results.

Software and data availability: The R package robustmatrix
includes a parallelized C++ implementation of the MMCD algorithm
and the R code in the supplementary material replicate the examples
presented in this paper.
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