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Kurzfassung

Diese Arbeit stellt Pole-Arina vor, ein markerloses Trainingssystem fiir statische Pole-
Dance-Tricks, das Trainingsvideos analysiert, um den ausgefiihrten Trick zu erkennen und
die Endpose mit transparentem, geometriebasiertem Feedback zu bewerten. Zu diesem
Zweck wurde ein doménenspezifischer Datensatz kuratiert und annotiert. Er umfasst
836 Clips von 58 TeilnehmerInnen, die mit entsprechenden Labeln gekennzeichnet sind,
welche die Erkennung mehrerer Tricks sowie passiver Zustinde ermoglichen. Pole-Arina
kombiniert ein leichtgewichtiges bidirektionales LSTM fiir die frameweise Erkennung mit
einer regelbasierten Engine, die trickspezifische Ausrichtungen im Raum, Gelenkausrich-
tungen und Abstdnde bewertet. Diese Daten werden fiir NutzerInnen durch intuitive
Visualisierungen und verstdndliche Tipps zugénglich gemacht. Das Modell erreichte eine
accuracy von 93,82% pro Frame iiber alle Klassen hinweg und eine accuracy von 98,74%
fiir trickspezifische Klassen. In einer kontrollierten between-groups Anwenderstudie wurde
Pole-Arina mit der traditionellen Video-Selbstbewertung verglichen. Die TeilnehmerInnen,
die Pole-Arina verwendeten, gaben an, dass sie dem Feedback deutlich mehr Vertrauen
schenkten und mehr Klarheit dariiber hatten, wie sie sich verbessern konnten. Aufler-
dem wurde die Benutzerfreundlichkeit in der Pole-Arina Gruppe héher bewertet. Diese
FErgebnisse zeigen, dass Pole-Arina eine genaue Erkennung und umsetzbares Feedback
liefern kann, dem die Benutzer vertrauen und das sie verstehen, wodurch strukturiertes
Coaching auch auflerhalb des Studios zugénglich wird. Diese Arbeit schafft eine praktische
Grundlage fiir KI-Coaching im Pole-Sport.

X1
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Abstract

This thesis presents Pole-Arina, a marker-less coaching system for static pole dancing
tricks that analyzes training videos to recognize the performed trick and grade the final
pose with transparent, geometry-based feedback. A domain-specific dataset was curated
and annotated for this purpose. It includes 836 clips from 58 participants, labeled with
a state scheme that supports multi-trick recognition and explicit background modeling.
Pole-Arina combines a lightweight bidirectional LSTM for frame-wise recognition with a
rule engine that evaluates trick-specific orientations, joint alignments, and proximities,
rendering interpretable overlays and concise tips. The model achieved 93.82% per-
frame accuracy across all classes and 98.74% trick-only accuracy on end-pose frames.
A controlled between-groups user study compared Pole-Arina against traditional video
self-review. Participants using Pole-Arina reported significantly higher trust in the
feedback and greater clarity for how to improve, and rated usability higher. These results
indicate that Pole-Arina can deliver accurate recognition and actionable feedback that
users trust and understand, making structured coaching accessible outside the studio.
This work establishes a practical baseline for Al coaching in pole sports.

xiii
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CHAPTER

Introduction

Advancements in artificial intelligence (AI) and computer vision are reshaping how
athletes and dancers train, offering new possibilities for personalized coaching and
performance analysis. From fitness apps providing real-time form corrections [DWDW25]
to Al referees and analytics in professional sports [PPW ™24, [GRRCR23], virtual coaches
are increasingly emerging to enhance efficiency and reduce injury risks [MMNT24].
Such systems also aim to enhance exercise enjoyment and to incorporate social aspects
[DWDW?25|. However, as Al-driven coaching becomes more prevalent, it is crucial to
address ethical considerations such as privacy, informed consent, and user trust. Ensuring
transparent algorithms and respectful data handling not only meets ethical standards but
also improves user acceptance of Al systems [LWHL24]. With thoughtful implementation,
deep and machine learning-based tools hold powerful enhancements in complementing a
human instructor by processing complex movement data and delivering instant feedback
for all types of training.

Al-powered coaching systems have already proven their potential in sports and dance
evaluation. For instance, computer vision models can evaluate Olympic sport perfor-
mances and predict judges’ scores, providing an objective measure of technique and
consistency [PTM17]. In the fitness domain, vision-based assistant applications guide
users through exercises such as yoga, weight training, or martial arts [TP23|. Furthermore,
marker-less pose estimation can handle complex movements like full-body rotations and
self-occlusions to evaluate dance performances [KK18]. Across various domains, pose
estimation and deep learning enable the automatic analysis of motion and the generation
of real-time feedback. Crucially, unlike traditional marker-based motion capture systems,
computer vision approaches enable free movements, making suits or sensors unnecessary
[MK23|. This is especially valuable for contact sports, where wearables are impractical
to integrate.
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1.

INTRODUCTION

1.1 Motivation & Problem Statement

One emerging domain that has received little attention from such Al coaching technologies
is pole dancing. In recent years, pole dancing has shed much of its past stigma and evolved
into a recognized athletic practice, with a growing community and global competitions.
The International Pole Sports Federation (IPSF) was founded in 2009 and subsequently
introduced a standardized set of rules and regulations for competitions, marking a
fundamental step in establishing pole dance as a serious sport [Fed25]. Although the
Global Association of International Sport Federations (GAISF) classified pole dancing
as a professional sport, critics argue that hypersexualization is unavoidable [Wea20)].
Treating pole dancing explicitly as a sport helps shift expectations toward an inclusive,
technique-centered evaluation. This thesis contributes to that shift by developing and
studying an objective, transparent coaching system for pole technique.

Pole dancing combines artistry with acrobatics, requiring strength, flexibility, and precise
technique. Each pole trick involves complex, full-body movements that often include
inversion and intricate transitions. To review their form independently, dancers most
often record themselves, both inside and outside formal classes. Nonetheless, subtle body
misalignments or incorrect technique often go unnoticed without proper assessment by
expert instructors, which can slow progress and increase the risk of injury. A lack of
feedback is not only frustrating but also causes falls or chronic strain. While instructors
provide immediate guidance in the studio, they are costly and not always available,
especially when training at home. Wearable-sensor systems overcome some visibility
issues, but restrict movement and interfere with contact between the dancer’s skin and
the pole, making them unsuited for pole dancing. Recent advances in marker-less pose
estimation and sequence models make purely video-based coaching feasible [Qu24].

However, building such a system for pole dancing comes with its own challenges. Pole
tricks are highly dynamic and can appear very similar in their early stages, making it
challenging to recognize which trick is being performed until key characteristics emerge.
Furthermore, the naming conventions of pole tricks are not globally standardized or
as established as in other sports. The same trick might have different names across
studios or regions, causing dancers to struggle in identifying the trick or searching for a
related tutorial. These factors motivate the need for an automated assistant that can
accurately classify the performed pole trick, pinpoint technical mistakes, and provide
interpretable feedback to improve the dancer’s form. Another motivation stems from
the author’s direct experience teaching pole-dancing classes. Observations of numerous
students revealed common struggles with self-review and clarified the value of consistent
feedback. In summary, an accessible system outside the studio that does not require
wearables and is tailored to the unique demands of pole athletes offers a clear value. It
represents a necessary step towards making pole dancing training more accessible.
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1.2. Aim of the Work

1.2 Aim of the Work

This thesis addresses the above-mentioned challenges by developing Pole-Arina, a
marker-less, deep learning-based coaching system for static pole tricks. The main goals
of Pole-Arina include: automatic pole trick classification, quality evaluation of the
execution, and the delivery of corrective feedback in an intuitive visual format. To
achieve this, the system leverages state-of-the-art pose estimation to extract the dancer’s
skeleton keypoints from ordinary training videos. It analyzes the motion sequence using
a domain-specific model and rules. Therefore, Pole-Arina aims to act as an Al-powered
pole coach, identifying the trick, evaluating it, and highlighting form deviations. It is
not a replacement for real-world instruction when learning new tricks, but it provides
guidance in training settings. The focus is on fundamental static pole tricks to provide
educational value for beginners and intermediate dancers, to build correct technique.
This work aims to (1) design a privacy-preserving, interpretable coaching pipeline for
pole dancing technique, (2) develop a lightweight temporal recognizer for trick and phase
detection, and (3) evaluate the system’s effectiveness and usability in realistic training
scenarios. Building on these objectives, the research questions can be summarized as
follows:

1. How accurately can deep learning models classify pole dancing tricks?

2. To what extent can geometric-statistical scoring identify and quantify deviations
from ideal execution of pole dancing tricks?

3. Which type of feedback from a marker-less coaching system can effectively improve
a dancer’s technique, and how can this improvement be quantified?

By answering these questions, the thesis aims to validate the feasibility of an Al-driven
coaching tool in the context of pole sports. It further provides insights into designing
effective automated feedback for complex athletic movements.

The evidence is collected along the three research questions:

¢ RQ1 via quantitative recognition metrics on held-out data.

¢ RQ2 via rule statistics and pose scores for detected end-poses, to identify and
quantify deviations from ideal execution.

« RQ3 via a controlled user study measuring trust & adoption, efficiency, under-
standability, and usability.

1.3 Contribution

The key contributions of this work include:
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1.

INTRODUCTION

e Pole Dancing Skeleton Dataset: A novel, domain-specific dataset of pole
dancing performances was created to support model training and evaluation. This
dataset encompasses six fundamental static pole tricks, each performed by multiple
volunteers of varying skill levels. The data collection process was carried out
with strict attention to ethics and privacy. All participants provided informed
consent, and the raw video data were handled confidentially. To secure privacy,
only the extracted 3D skeleton joint coordinates (with a reconstructed depth value)
are included in the released dataset and utilized for analysis. The final dataset
consists of 836 video samples, covering both successful and failed attempts across
varying experience levels. Each clip is annotated with the trick label and temporal
progression.

e Trick & Phase Recognition Model: A bidirectional Long Short-Term Mem-
ory (LSTM) neural network was developed to classify pole tricks and detect
their phase progression automatically. During training and inference, the model
ingests the entire landmark sequence for a clip and produces a per-frame prediction.
The trained model provides an accurate classification pipeline that serves as the
backbone of Pole-Arina.

¢ Pose-Quality Scoring and Feedback System: Based on domain knowledge of
proper pole technique, a geometric rule-based scoring system was designed to
evaluate a dancer’s performance. Each trick holds unique characteristics that specify
body alignment and present opportunities for common instructor critiques. Based
on these attributes, custom rules were derived to define a trick and apply geometric
computations on the 3D joint coordinates. The output is a set of quantitative scores
indicating the performer’s deviation from the optimal pose. To aid understanding,
the system visualizes the feedback directly on the dancer’s video frames as an
overlay. It highlights angles, alignments, and distances. The scoring system and its
visualization are implemented as part of an interactive feedback interface, enabling
users to review their performance frame by frame with guidance on how to improve.

Together, these contributions realize a lightweight, marker-less Al coaching prototype
tailored to basic pole dancing tricks. Furthermore, this system offers potential for
scalability as it is adaptable to other physical activities such as physiotherapy, gymnastics,
or fitness routines.

1.4 Structure of this Thesis

The remainder of this thesis is organized as follows: first, Chapter 2| reviews the state-
of-the-art in human motion capture and automated coaching systems. It contrasts
marker-based motion capture with marker-less pose estimation approaches, and discusses
relevant deep learning models for pose estimation and sequence analysis. Furthermore,
it surveys prior work on automated feedback in sports and dance, highlighting the
implementation of similar concepts in applied domains like gymnastics, yoga, and general



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

1.4. Structure of this Thesis

dance performance. Next, Chapter 3| presents a detailed description of the composition of
the Pole-Arina dataset. It describes the selection of tricks, the data acquisition process,
the annotation protocol for labeling phases, and the feature extraction pipeline using
MediaPipe for skeletal data. This chapter also presents ethical considerations and dataset
statistics, such as participant demographics and data characteristics. Chapter 4] provides
a high-level overview of the Pole-Arina system’s design and evaluation methodology. It
formally states the problem and introduces the system’s overall architecture. The chapter
then describes the core methods for trick classification and pose-quality scoring. Chapter
5 dives into the technical implementation of each component. It covers data preprocessing
steps, iterative model development, and parameter tuning of the LSTM model, specific
rule calculations, and integration into a full-stack prototype. Chapter 6| evaluates the
performance of the developed system. First, it presents the quantitative results of
the trick recognition model, including accuracy, confusion matrices, and analysis of
misclassifications. It further introduces the evaluation strategy by presenting a user study
concept. It continues to report on the results, including both objective measurements and
subjective feedback from questionnaires. Hypothesis tests and statistical analysis are used
to determine the significance of observed improvements. Qualitative observations from
the study are also discussed to gain insights beyond the tests. It further outlines potential
directions for extending this research. Finally, Chapter |7 summarizes the thesis’s findings,
reflecting on the extent to which the research questions were answered and the overall
success of Pole-Arina in addressing the initial problem.
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CHAPTER

Related Work

This chapter surveys prior work to set the stage for Pole-Arina. First, it contrasts
marker-based, wearable, and marker-less motion capture approaches and summarizes
their trade-offs for athletic and dance contexts. Next, it reviews human pose estimation
and temporal sequence models, before covering automated coaching systems in sports and
applications in dance. This synthesis motivates the choice of marker-less pose estimation
with lightweight temporal modeling for pole-dance technique analysis.

2.1 Marker-Based vs. Marker-less Motion Capture

(a) Marker-based pose estima- (b) Wearable motion capture (c) Marker-less motion capture

tion example by [CZDK21] example, taken from [LX13] using MediaPipe [Goo25]

Figure 2.1: Visual comparison of different motion capture technologies.

Marker-based optical systems. Optical motion capture (mocap) systems represent
the gold standard for capturing human motion with high precision [STL24]. Such marker-
based systems can achieve millimeter-level accuracy under controlled conditions, making

7
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2.

RELATED WORK

them well suited for detailed biomechanics analysis [CECS18]. They can be divided into
active and passive marker systems [STL24]. While traditional motion capture systems
like Vicon [Vic25] use passive markers that reflect light and are tracked by multiple
cameras, active markers used by systems like Optotrak3020 [Nor25|] emit light. Although
active markers are generally more stable, they rely on additional power supplies and
cables, which restrict movement compared to passive solutions.

However, both solutions have limited practicality outside of the lab. Setting up markers on
a person is time-consuming and can interfere with natural movement. Markers might slip,
require readjustment, recalibration during dynamic movements, or suffer from occlusion
and constrained space [STL24]. Even if no cables are involved, attached markers and
suits impose physical and psychological constraints on the performer, altering how they
move [CECS18]. Therefore, when covered with sensors, dancers and athletes might not
perform as usual [MK23|. Markers or wearable systems are particularly problematic
in sports like pole dancing, where minimal sportswear is required for grip on the pole.
Attached sensors or markers on the dancer’s body interfere with the needed contact
between skin and pole, while the pole can introduce magnetic interference. Thus, while
marker-based systems are often unmatched regarding accuracy, their setup complexity
and spatial limitations make them ill-suited to pole dancing.

Wearable inertial systems. IMU suits, or inertial measurement unit suits, are
wearable systems that track body movements using sensors to capture data such as
acceleration, rotation, and magnetic fields [STL24]. Key advantages are portability and
robustness to occlusion. Since no cameras are needed, athletes can move freely in any
environment without a direct line of sight. Wearable sensors allow large capture volumes
and real-time tracking, making them well-suited for in-situ training like skiing or running.
While they impose less interference on athletes, compared to markers, the accuracy is
lower. Inertial sensors drift over time, require recalibration, and can be sensitive to
magnetic distortions [STL24]. In pole dancing, any device must be tightly secured to
withstand inversion and spins, while high-impact or aerial motions (e.g., tumbles, jumps,
flips) might still cause a shift or data integration errors. Therefore, while IMU suits are
effective for specific use cases, they are ineffective for free-form arts like dance, which
require high fidelity and unrestricted movement.

Marker-less computer vision approaches. Advances in computer vision and deep
learning have enabled marker-less motion capture using regular camera footage. Frame-
works like OpenPose [CHS™19] and DeepPose [T'S14] estimate human body positions from
video frames without markers. This non-invasive method enables performers to move
naturally while being recorded with ordinary cameras or smartphones [CECSIS]|, using
algorithms to reconstruct their skeleton motions. This is especially valuable in dance
and other contexts, where attached equipment is undesirable. Fueled by deep learning,
modern pose estimation models have dramatically improved accuracy and reliability.
They achieve high recognition accuracy in various sports scenarios, from single-athlete
skill analysis to multi-player game tactics [STL24]. However, limitations remain even
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if marker-less methods are more flexible and scalable. Computer vision models require
a direct line of view, struggle with occlusions, and are limited to the camera’s field of
view. Nonetheless, in contexts like pole dancing, marker-less methods represent the most
viable approach, as it does not restrain the dancers’ movements and leverages the use of
simple video recording.

Table 2.1: Marker-based vs. marker-less comparison overview.

Method Advantages Drawbacks
Marker- High accuracy (mm-level) - Compromise natural movement
Based - Detailed 3D data - Occlusion & limited capture volume
- Well-validated for biomechanics - Expensive & requires lab setup
Wearable - No line-of-sight - Drift & noise issues — recalibration
Sensors - Possible real-time feedback - Can be uncomfortable & restrictive
(IMU) - Minimal setup (small sensors) - Sensitive to magnetic interference
- Enables free movement - Needs direct line-of-sight
Marker- ) .
Less - Flexible setup - Accuracy depends on algorithm

- Scales to multiple people & large scenes - Real-time bottlenecks

2.2 Pose Estimation & Sequence Models

Human pose estimation. Early advances in computer vision enabled the automatic
detection of human joint positions from images or videos. Toshev and Szegedy introduced
DeepPose [TS14], a landmark work in formulating pose estimation as a deep neural
network regression problem. Their work achieved state-of-the-art accuracy on benchmarks
[TS14]. Furthermore, frameworks like OpenPose [CHS™19] have made real-time 2D multi-
person pose tracking feasible by utilizing Part Affinity Fields to localize multiple people
simultaneously. This and similar CNN-based methods became popular due to their
robustness in various environments [ZWC™23|. Additionally, open-source libraries like
Facebook AI’s Detectron2 [WKMT19| provide keypoint detection models as part of
its object detection toolkit. Google’s MediaPipe Pose [Goo25|] (based on BlazePose
[BGR'20]) estimator further optimized pose estimation for mobile and edge devices,
outputting 33 body landmarks over 30 FPS on a phone. It further reconstructs 3D pose
coordinates (with a relative depth component) from a single RGB camera, enabling
real-time posture analysis with only a smartphone camera. These advancements enable
the calculation of highly accurate human skeleton data, in either 2D or estimated 3D,
which can be obtained by marker-less pose estimation from ordinary video data.

Sequence models. After the computation of landmark sequences, the data can be
fed to sequence models to solve classification problems. Traditional Recurrent Neural
Networks (RNNs) suffered from vanishing or exploding gradients when learning long
sequences [Zar21]. Hochreiter and Schmidhuber introduced the Long Short-Term Memory
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(LSTM) network as a solution to overcome this limitation by enforcing constant error
flow over time through gating mechanisms [HS97]. LSTMs can maintain long-range
dependencies (over 100 time steps in the original work), making them well-suited for
complex motion sequences or time-series related data. For instance, an LSTM can
aggregate frame-by-frame pose data to recognize a tennis swing or a dance sequence as
a whole. However, recent developments introduced an architecture that revolutionized
sequence modeling. Vaswani et al. presented the Transformer model [VSPT17], which
removes recurrence entirely and relies solely on self-attention mechanisms to capture
temporal relationships. Transformers enable greater parallelization during training and
achieve superior results in tasks like machine translation as well as motion analysis tasks
[Qu24]. In human pose analysis, such models can attend to all timesteps simultaneously,
capturing subtle movement patterns that RNNs might miss. However, as expected
with deep learning models, they typically require a large dataset to generalize well. On
smaller motion datasets, simpler recurrent models can sometimes rival or outperform
large pretrained Transformers. For instance, Ezen-Can [EC20] found that a tuned bi-
directional LSTM outperformed a fine-tuned BERT (a transformer-based model) on
a small action classification task, while also being much faster to train. Thus, model
choice should not only be decided on accuracy and performance but also on data size and
context. Especially for sports and rehab applications, data is limited and might favor an
LSTM-based approach over a data-hungry Transformer model.

Overall, modern pipelines often pair a CNN-based pose estimator with a temporal model
to analyze a pose sequence [TP23]. Some systems utilize simple rule-based algorithms on
landmark coordinates, while others train models directly on the data [TP23|. Furthermore,
hybrid approaches are emerging, combining aspects of different models, to tailor the model
architecture directly to the application domain. Qu et al. proposed a TransCNN-DSSS
model to analyze dance movements with body dynamic and static streams [Qu24]. By
decoupling quality dimensions via an attention mechanism, their model achieved about
90% accuracy in automatically scoring dance performances. This further highlights how
different models can complement each other to form the technical foundation for modern
motion analysis in various domains.

2.3 Automated Coaching & Feedback Systems in Sports

Towards coaching systems. Advances in pose estimation and sequence modeling
have enabled a new generation of automated coaching and feedback systems across a
wide range of sports. In traditional coaching, detailed movement analysis was limited to
expert eyes or expensive motion-capture setups. With affordable hardware and recent
advancements in Al, athletes can now receive real-time technique feedback on demand.
As a result, deep-learning-enhanced fitness applications are growing rapidly in popularity,
offering highly engaging and personalized coaching experiences to users [DWDW25].
Such apps leverage computer vision methods to monitor the user’s movements and
provide corrective feedback on form, count repetitions, and suggest workout adjustments.
According to a recent user study, the appeal of such Al fitness systems lies in their
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interactivity and tailored guidance, which can boost motivation and other aspects of
gratification [DWDW25]. Technically, most automated coaching systems share a standard
pipeline: pose estimation from video, followed by movement assessment and feedback
generation [TP23]. Tharatipyakul and Pongnumkul’s [TP23|] review revealed that many
systems rely on open-source frameworks, such as OpenPose, for human pose estimation
to obtain skeleton data. The movement assessment can employ simple rule-based checks
or a more complex comparison of an athlete’s motion trajectory against an optimal
model. Notably, researchers emphasize the importance of feedback clarity, correctness,
and ethical consideration as users must trust and understand the AT coach for it to be
effective [LWHIL24].

Sports applications. In individual sports like weightlifting, yoga, or golf, computer
vision systems guide users to refine their form by detecting asymmetries in a yoga pose
[BNKB23] or the swing plane of a golf club [LHK22|. Comparatively, in team sports,
analysis often goes beyond the single-athlete technique towards tactical insights. With
abundant video data for popular sports, an Al-driven system can evaluate how a player’s
body orientation affects their passing options, or recommend tactical adjustments based
on pattern recognition in movement data [PPW™24]. A systematic review by Pu et al.
highlights that the explosion of data and the advancement of deep learning methods
are transforming soccer analysis and training decisions [PPW™24]. Coaches can receive
automated reports on metrics such as distance covered, joint load, or alignment during
plays, thereby augmenting their expertise with objective data.

Evaluation & scoring. Another important application is performance evaluation
and scoring. Al systems have been developed to score performance by analyzing pose
sequences. Parmar and Morris [PTM17] implemented this by training models on Olympic
events. Their system learned to predict judges’ scores for diving, vault, and figure skating
routines from video, using spatiotemporal features and regression models. A comparison
between a Support Vector Regression (SVR) and an LSTM framework showed that while
the SVR gave slightly better numeric scores, the LSTM was more natural for describing

an action and thus better suited for giving qualitative feedback for improvement [PTM17].

Automated scoring is still an active research area. However, results so far show strong
correlation with expert evaluations, suggesting Al can objectively standardize aspects of
judging that are prone to human bias or error [KK18].

Injury prevention & rehabilitation. Motion analysis further enables the possibility
of injury prevention and rehabilitation. By analyzing an athlete’s movement pattern over
time, models can detect risky mechanics or deterioration that coaches might miss. Recent
reviews conclude that machine learning models can significantly improve the accuracy of
injury risk assessments by processing complex biomechanical and workload data beyond
human capacity [MMNT™24]. For instance, such systems might learn that a certain gait
asymmetry and jump landing force profile often precede Anterior Cruciate Ligament
(ACL) injuries. In rehabilitation, pose estimation systems monitor patients doing therapy

11
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exercises at home, ensuring compliance and correctness. This kind of augmented feedback
loop can personalize training loads and prevent injuries by continuously adjusting to the
athlete’s posture [MMN™24].

In summary, automated coaching systems leveraging pose estimation are increasingly
prevalent. They provide immediate, data-driven feedback on technique, reduce depen-
dence on constant human supervision, and can enhance training efficiency and safety.
While never aiming to replace human coaches, deep learning-based coaches fully act as
intelligent assistants to reinforce proper form and measure performance.

2.4 Applications of Pose Analysis in Dance

Scoring dance performances. Applying pose estimation and automated feedback
to dance presents unique challenges and opportunities. Unlike many sports, dance is
an artistic performance where quality is judged not only by objective technique but
also by expressiveness, musicality, and style. Despite this subjectivity, researchers have
shown that computational pose analysis can effectively evaluate and even enhance dance
training. A study by Kim and Kim [KKI§| introduced a real-time dance evaluation
system that utilizes marker-less pose estimation. They developed a camera-based pose
tracker that is robust to fast rotations and self-occlusions. For evaluation, they defined a
metric to compare a student’s motion sequence to a reference sequence, ideal in terms of
timing and accuracy. Remarkably, their system’s scores had a 98% correspondence with
professional judges’ evaluations of the same performance [KKI8]. Recent advances by
Qu [Qu24] proposed a novel Transformer-CNN model that evaluated dance movement
quality across multiple dimensions. Their approach breaks down dance quality into
factors like accuracy of execution, fluidity of motion, and emotional expressiveness, using
an attention-based mechanism to weight each factor. The combined model captures
per-frame posture details and temporal dynamics to output an overall performance score.
Again, tested against expert ratings, the system achieved an accuracy of 90% in predicting
quality rating. While dancers could use such a system to get immediate feedback on form
deviations, it also offers potential to provide rich recommendations targeting specific
aspects of technique and performance quality.

Dance movement recognition & classification. Beyond scoring entire performances,
pose analysis has been used for classifying and recognizing dance movements. Bera et al.
[BNKB23| addressed the problem of fine-grained posture recognition in sports, yoga, and
dance. They also highlight the scarcity of large public datasets in this domain. Therefore,
they introduce a new image dataset for 102 sports actions and 12 dance styles. To solve
the classification problem, they implemented a deep CNN with patch-based self-attention
to classify poses and styles. Similarly, Agarwal et al. introduced POA-Net [AJIB24], a
CNN model for classifying dance poses and activities, with a focus on ballroom dance
forms. These classification models enable applications, such as an automatic dance coach,
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to recognize the move a student is performing and evaluate it against a domain-specific
syllabus.

Real-world employment. Notably, the entertainment industry has already embraced
rudimentary pose-based dance feedback in the form of video games. Ubisoft’s Just Dance
[Ubi09] and similar rhythm games invite players to mimic on-screen choreography and
score their performance based on the similarity of movements. Earlier versions relied
on handheld motion controllers, but newer systems use camera-based full-body tracking
(e.g., Kinect sensor) to evaluate dance moves. While these games are not as precise as
state-of-the-art research pose estimators, they demonstrate a mass-market use case of
marker-less motion analysis. Therefore, it is a short stretch to imagine a more serious
dance training tool that provides dancers with real-time corrections during practice.

Application: Pole dance Despite this growing trend of Al coaching systems, pole
dancing remains an area with relatively sparse technological assistance or other related
work. In contrast to the evaluation and scoring system, PoeSpin [LCLX25| represents a
human-AT collaborative system that turns pole dance movements into poetry. In Li et
al’s [LCLX25] work, they mapped the dancer’s poses and motions to poetic verses by
using movement as input for a generative art model. As a demonstration, the system
captured live performances from a pole dancer to compose verses in real-time, blending
physical expression with literary expression. This artistic application underscores that
pose estimation is not limited to quantitative evaluation. At least one attempt placed
pole dancing into the context of automatic evaluation. Yu [Yu20] proposed a virtual
reality-based training system to help students learn pole routines by imitating a virtual
instructor in an immersive environment. The system synchronized music and movement
in a virtual scene to improve students’ sense of rhythm and performance quality. While
offering a new teaching medium, it does not provide automated pose feedback under
commodity hardware constraints, which is precisely the advantage that Pole-Arina aims
to provide.

In conclusion, marker-less pose estimation and Al analysis have shown great success in
domains ranging from sports training to dance education. These technologies respect
the performer’s freedom of movement and capture rich data that can be translated
into meaningful feedback. By building on existing methods and addressing pole-specific
challenges, the related work sets the stage for Pole-Arina: a deep learning-based coaching
system for pole dancing technique.

13
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CHAPTER

Pole-Arina: Dataset

This chapter introduces the dataset for the Pole-Arina system. It motivates the selected
set of static pole tricks and the recognition task. Furthermore, it outlines two acquisition
paths, guided studio classes and open online submissions, with explicit consent and
privacy safeguards, and details phase-aware annotation schemes. Next, it describes
the pose-extraction pipeline that yields 3D skeleton sequences, along with lightweight
preprocessing for temporal stability. The closing sections report key statistics, such
as class balance, label integrity, pose coverage, and demographics. Last, it highlights
practical biases that inform subsequent modeling and evaluation. The final dataset can
be found here: [Datasetl

3.1 Data Collection & Labeling

This section establishes the data foundation for Pole-Arina. The collection goal includes
an ethical, realistic representation of fundamental static pole tricks. To that end, the
dataset targets six foundational tricks and balances feasibility for novices with sufficient
discriminability for modeling. Overall, the data collection follows two complementary
paths: guided in-class recordings and open online submissions. Both routes use the same
filming guidance and consent protocol and prioritize privacy by limiting released data
to 2D skeleton keypoints. Annotations structure each clip into semantically meaningful
temporal states. The remainder of the section motivates the trick set and task definition,
presents data from both acquisition procedures, and discusses ethical concerns.

3.1.1 Trick Selection & Task Definition

Pole dance contains a broad repertoire of movement types, including dance moves
(transitions where at least one foot stays on the floor), spins (rotational movements
around the pole, while both feet are in the air), floor work (movements performed close

15
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to the ground), and tricks (static or semi-static shapes on the pole). Poles themselves are
either configured in static (no rotation) or spinning mode (bearing-mounted rotation).
Since naming conventions and grouping of elements vary across federations and studios,
this work uses the terminology presented by Spin City’s Pole Bible [Cit25] and the
International Pole and Aerial Sports Federation (IPSF) [Fed25].

This work focuses exclusively on static pole tricks. Static execution allows the dancer
to present the end position at a deliberate, consistent yaw to the camera/viewer. This
minimizes foreshortening of limbs and self-occlusion and maximizes the aesthetic of the
silhouette. Compared to spinning elements, this requirement makes static tricks more
suited to consistent pose estimation and geometric measurement, as the reduced motion
stabilizes the keypoint detection and limits motion blur on smartphones.

Task Definition. Each trick is decomposed into a three-phase movement sequence:

1. Entry: the performer is off the pole or in initial contact, preparing the entry.
2. In transition: the dancer is on the pole and moving toward the target position.

3. End pose: the final pose is established and held for a short interval.

For feedback generation, this thesis utilizes a geometric scoring system on the end pose
phase only. They present the benefit of being not only time-stable but also reflecting other
errors that manifest during the transition, making them suitable for precise, rule-based
evaluation. Evaluation of the other phases is left as future work due to time constraints
and the greater variability within the movement.

Selection criteria. The goal for the trick selection was to balance feasibility, safety for
novice participants, and discriminability for the model. Therefore, the choice fell on six
foundational tricks spanning two posture types: three upright beginner-level tricks and
three intermediate inverted tricks. The upright set holds Layout, Pin-Up, and Wrist Seat.
These tricks share similar entries (standing on the right side of the pole and pulling up
into a sit) yet result in distinct end shapes. While the Wrist Seat is more distinguishable,
the Layout and Pin-Up provide intentional “near-neighbor” classes to test the classifier’s
ability to separate subtle visual differences (see Figure 3.1a). The inverted set comprises
Straddle Invert, Gemini, and Crucifiz. Again sharing similar entries, these tricks begin
from a basic invert grip, leading into a basic inverted position and transition to clearly
differentiated end poses (see Figure 3.1b). Compared to the upright tricks, the inverted
poses introduce greater biomechanical complexity, while remaining achievable for athletic
beginners to lower-intermediate dancers.
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(a) 1: Layout, 2: Pin-Up, 3: Wrist Seat (b) 4: Straddle Invert, 5: Gemini, 6: Crucifix

Figure 3.1: Progression of each trick, highlighting similar entries and transitions before
the final pose.

3.1.2 Data Acquisition

Collecting high-quality and representative data was a crucial step in this thesis, as
together with the annotations, it provides the ground truth for training and evaluating
the Pole-Arina system. The aim was to assemble a dataset of approximately 600 clips,
covering a balanced distribution of the six selected tricks and including both successful and
failed attempts. Beyond the scale and diversity of the data, particular attention was given
to the ethical aspects of data collection, since responsible handling of human-centered
motion data is essential for trustworthy Al research [HZMY?22].

Ethical considerations. Data-driven approaches such as Pole-Arina and other deep or
machine learning-based systems offer clear benefits but also raise well-documented ethical
concerns [HZMY22]. This paragraph briefly highlights possible issues and how they are
addressed. In particular, recent publications discuss controversies around training on

copyrighted or scraped content without consent (especially regarding generative AI).

This further reinforces the need for explicit permission and transparent documentation
[Lem24|, Luc24, BP21]. With these concerns in mind, our data collection followed four
principles:

1. Consent: A detailed protocol informed participants about the project goals, data
handling, privacy measures, and withdrawal rights. Contributions were voluntary and
limited to the intended purpose, consistent with GDPR (General Data Protection
Regulation) requirements [PC16]. TU Vienna’s data protection policy also enforces these
regulations for lawful processing and data minimization [Wie25].

2. Privacy: To secure the participants’ privacy, the released dataset only includes skeleton

17



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

3.

POLE-ARINA: DATASET

18

joint coordinates. The raw video files remain private and are used solely for processing and
quality control. Such privacy-enhancing approaches aim to minimize exposure of facial
and background detail, while preserving the system’s performance [HNR™25]. Although
numerous participants gave their consent to publish their images in this thesis, the only
human depicted in this work is the author.

3. Transparency: Standardized trick terminology is used throughout the execution of the
data collection protocol. It further provides detailed information about the motivation,
collection process, intended use, and limitations.

4. Discrimination and bias: While paying attention to balancing the data across tricks,
experience levels, age, and gender, bias may arise from the used pose-estimation framework
and demographic imbalance. Prior research highlights that fairness evaluation for human
pose estimation is challenging due to missing demographic labels and data imbalance
[LTNX23].

Online submissions. The first option to participate in the data collection was via an
online form. Considering the ethical and project requirements, the form contained: project
overview, participation and data-use terms, contact details, data collection consent, and
detailed filming instructions for each trick, including a short tutorial playlist. General
recording guidelines included:

e Use a smartphone: Participants record each trick with a smartphone, following
the provided instructions.

e Angle & framing. The camera should capture the full body at all times, position
it straight-on rather than from above or below.

o Multiple attempts/videos per trick encouraged: Multiple attempts per trick
(including incomplete or failed tries) are encouraged to capture natural variation
for the learning system.

e Avoid background distractions: Record in a space without bystanders or
distracting movement visible in the frame.

e Lighting. Provide even, front-facing illumination so the body and movements are
clearly visible, avoid strong backlight.

o Clothing. Wear form-fitting athletic wear (e.g., shorts and a sports bra/tank top)
to keep key body positions visible.

The whole form was available in English and German. Once the video recording was
finished, participants were able to upload the results directly through the online form.
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In-class recordings. Because online recruitment alone did not reach the target goal,
additional data were collected through dedicated pole classes. Similar to the online form,
participants got all the relevant information beforehand and gave their consent with
the right to withdraw participation at any time. An experienced instructor (myself)
demonstrated each trick and supervised filming with a fixed camera setup that mirrored
the online instructions. This setup ensured consistent angles, safer spotting for beginners,
and more control to balance the data across the six target tricks.

Results. The final dataset comprises 836 clips from N = 58 participants. The protocol
deliberately encouraged multiple attempts per participant to capture natural variability
in the progression of a trick. Section 3.3 presents a detailed breakdown of the final
dataset. Table |3.3| compiles concise, syllabus-aligned instructions and categories for the
six selected tricks.

3.1.3 Annotation Protocol

To get into the final shape of a specific pole dancing trick, a sequence of movements
is required. Therefore, the goal of the annotations was to create a ground truth that
represents not only the final position but also identifies the trick’s temporal progression.
In parallel to the annotation process, the recognition model was already trained and
tested on a subset, resulting in two different annotation schemes. The initial multi-task
protocol (Protocol A) separates trick and phase labels, while the revised single-task
scheme (Protocol B) merges them into a single per-frame label.

How the labeling was conducted. Hand-labeling data is often a slow, tedious, and
repetitive process. A brief initial review of a small batch of clips resulted in a concise
labeling guide and definitions. The aim was to keep labels measurable (frame-accurate
start/end marks for phases) while avoiding subjective constructs. In particular, an early
idea to label a per-phase “score” proved too subjective for consistent ground truth and
was therefore replaced by a post hoc, rule-based scoring system. A custom Python tool
accelerates annotation with keyboard shortcuts for frame stepping, instant annotation,
and one-key phase assignment. This workflow kept labels consistent, adoptable, and
scalable across hundreds of clips.

Why phase awareness matters. As described in section [3.1.1, each trick progresses
through: entry (lifting off the floor) — transition (moving on the pole) — end pose
(holding the final position). Phase awareness is crucial for three reasons. First, many
tricks share similar entries, while discriminative cues often emerge only near the end of
the transition. Therefore, phase context aids trick identification. Second, each phase
holds different challenges (e.g., jump vs. pull-up during entry; loss of engagement during
transition; angle deviations in the end pose). Third, end poses are comparatively more
stable due to their static nature, enabling reliable geometric scoring methods (see Section
4.2.2 and 5.3).
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Protocol A: multi-task labels. In the first scheme, each frame received two targets: a

trick label from {Layout,Pin-Up,Wrist Seat,Straddle Invert,Gemini,Crucifix}

and a phase label from {Start, Transition,End}. The definition of each label is as
follows:

e Start: the dancer is still on the floor, touching the pole and preparing for the trick.

e Transition: both feet have left the floor, the dancer is on the pole, transitioning
into a target position.

e End: the dancer has reached the final shape and holds it.

The phases match directly with the previously defined temporal progressions of a trick.
A custom Python script was implemented to efficiently navigate through the video files
and apply labels using keyboard shortcuts. The data were trimmed to the annotated
interval (first Start phase frame to last End phase frame), and the labels were saved as
a CSV with the following format:

filename, trick_name, start_frame,end_frame, phase
11.mov, Layout, 0, 6, Start

11.mov,Layout, 7,112, Transition

11.mov, Layout, 113,162, End

Frame indices are zero-based, the start and end frames are inclusive, and segments are
contiguous and non-overlapping within each file. This scheme aligns with a multi-task
bidirectional LSTM, which will be discussed in section [5.2. As a result of this protocol,
each video was separated into these exact same phases in the same order. This sequence
prior helps suppress spurious fragments during trick detection. However, in real practice
videos, idle time before starting, failed attempts, and immediate retries are very common.
This rigid order suppressed more flexible patterns and restricted training signals for
background frames. As illustrated in the top row of Figure 3.2/ (A), frames outside
the strictly defined window are trimmed, so idle time, retries, and dismounts are not
represented in the labels.

Protocol B: single-task labels. To better support realistic training settings, where
dancers might perform multiple tricks in one recording, a revision of the first scheme
transformed the labels into single per-frame targets. The label set comprised two generic
states and end pose labels for each of the six tricks:

{floor, on_pole} U {L_pose, P_pose, W_pose, V_pose, G_pose, C_pose}.

The exact definition of each label is as follows:
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o floor: the dancer is on the floor.
e on__pole: both feet have left the floor, the dancer is on the pole.

e *_ pose: the dancer has reached the final shape and holds it.

Again, the phases match the defined temporal progressions of a trick. This subtle
change merged the former trick and phase targets into one label space, enabling arbitrary
sequences such as floor — on_pole — floor — on_pole — L_pose — on_pole
— floor, thereby capturing idle segments and retries within a single clip. A semi-
automatic Python script supported an efficient adaptation from the old to the new
annotation scheme. While the floor label extends the previously used Start label to
also cover idle time before and after the dancer is on the pole, the remaining labels are
directly mapped to: Transition — on_pole and End — {L,P,W,V,G,C}_pose.
Again, stored in a CSV, the labels were transformed into:

filename, state, start_frame, end_frame
198.M0OV, floor, 0,20
198.MOV, on_pole, 21,140
198.M0OV, L_pose, 141,154
198.MOV, on_pole, 155,308
199.M0OV, floor, 0, 83
199.MOV, on_pole, 84,151
199.M0OV, L_pose, 152,158
pl.mov, floor, 0,10
pl.mov,on_pole, 11,97
pl.mov,P_pose, 98,137

The bottom row of Figure 3.2 (B) shows how the state labels capture idle (floor),
generic interaction (on_pole), explicit end poses (e.g., L_pose), and the dismount
(on_pole — floor) within a single recording, enabling multi-trick detection and robust
background modeling. Model-wise, this simplified the objective from a two-head (trick,
phase) to a single-head problem over eight states. Significantly, the model trained on
Protocol-B could detect multiple tricks per video and distinguish background and generic
interaction from explicit poses. However, the introduction of generic labels by protocol B
enhanced class imbalance, which was addressed by using a weighted cross-entropy.

Conclusion. Protocol A provided clean, phase-aware supervision but constrained
clips to a single trick and rigid phase order, limiting realism and background coverage.
Protocol B preserved phase awareness implicitly, scaled labeling to real practice behavior,
and enabled multi-trick detection within a single video. A side-by-side example on the
same video is shown in Figure 3.2, contrasting the rigid Start—Transition—End
segmentation of Protocol A with the richer state timeline of Protocol B.
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L_pose [ on_pole

Figure 3.2: Side-by-side comparison of applying both protocols to the same video.

3.2 Feature Extraction & Preprocessing

This section explains how the pipeline converts raw training videos into stable, privacy-
preserving inputs for learning and evaluation. Instead of operating on pixels, the system
extracts 2D body skeletons per frame and stores them as a compact tensor. A lightweight
preprocessing stage then mitigates artifacts, such as high jitter, brief occlusions, and
occasional dropped detections. These steps, together with normalization and optional
data augmentation, produce temporally coherent landmark sequences that match the
training distribution.

3.2.1 Skeleton Extraction

Pose-estimator selection. Three marker-less pose estimators were considered with
a focus on real-time application and mobile feasibility: OpenPose [CHST19], Medi-
aPipe Pose [Goo25], and Detectron2 [WKM¥19]. MediaPipe is based on the BlazePose
ﬂm architecture and offers a lightweight, on-device pipeline with a 33-landmark
body topology. OpenPose provides robust multi-person parsing but carries a heavier
runtime cost with only 18 joints. Detectron2’s Keypoint R-CNN achieves high accuracy
on COCQ’s 17-keypoint scheme, but requires GPU resources and offers 17 joints.

A qualitative comparison of these estimators on four representative pole tricks pro-
vides insight into their limitations. MediaPipe produced stable and complete landmark
predictions even in inverted positions, while Detectron2 and OpenPose frequently lost
joints or misaligned the skeleton. Simple poses, such as the Pin-Up, were estimated
consistently across all frameworks, while inverted tricks, like the Straddle Invert, proved
more challenging, especially for Detectron2 and OpenPose (see Figure .

A quantitative runtime analysis on Google Colab further highlights their performance
differences. As shown in Table MediaPipe achieves real-time performance, even on
a CPU, while Detectron2 and OpenPose are far slower and therefore impractical for
real-time analysis.
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(a) MediaPipe (b) OpenPose (DNN/COCO) (c) Detectron2

Figure 3.3: Qualitative comparison of skeleton overlays across four pole tricks.

Besides runtime, deployment support also played a role. MediaPipe offers pip-installable
packages with stable CPU/GPU support. Detectron2 requires GPU resources and a
heavier installation. In contrast, OpenPose suffers from compatibility issues with current
CUDA /Caffe toolchains and only supports Ubuntu and Windows systems.

Considering runtime performance, number of joints, robustness in complex poses, and
ease of integration, MediaPipe Pose was selected as the estimator for this thesis.

Table 3.1: Runtime benchmark on a five-second, 360x640 video (164 frames). CPU =
Colab CPU runtime; GPU = Colab T4. OpenPose results use the COCO-18 model via
OpenCV DNN.

Framework CPU (Colab) T4 GPU (Colab) Joints Supports

Time [s] FPS Time [s] FPS

MediaPipe Windows, Linux,
Pose|Goo25] [ 213 5 30.0 33 Android, i0S, macOS
Detectron2 Linux, macOS,
(KPRCNN) [WKM*19] 13829 0.0z 234 700 17 Windows (limited)
OpenPose Ubuntu,
(COCO)[CHST19] 691.6 0.24 618.9 0.26 18 Windows

MediaPipe configuration. The extraction script implements MediaPipe Pose with
the following specifications:

e MEDIAPIPE_DISABLE_GPU=1

e static_image_mode=false
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e min_detection_confidence=0.5

e min_tracking_confidence=0.5

For each frame, MediaPipe returns 33 landmarks as an array (z,y, 2, visibility). Coordi-
nates x,y are normalized to [0, 1] (origin at the top-left), where z is a relative depth value
in the same normalized scale (negative towards the camera). Visibility is a per-landmark
confidence in [0, 1].

Output. For each input video of length T' frames, the extractor produces a NumPy
array of shape T' x 33 x 4 (float32) saved as <video_name>.npy. Optionally, for
quality checks, the script saves a video with a skeleton overlay for each frame.

Script notes. Extraction is implemented in extract_skeleton.py (batch process-
ing over folders). The tool also supports optional data augmentations (add noise, in-plane
rotation, sequence time-warp) to create additional samples.

3.2.2 Preprocessing Techniques

Temporal smoothing. Pose estimation might suffer from jitter caused by detecting
noise and small motions. To address this issue, the skeleton extractor applies an Exponen-
tial Moving Average (EMA) to each landmark. Let ¢; ; € R? be the coordinates (z,y, z)
of joint j at frame ¢ and @” the smoothed value. With smoothing factor a € (0, 1], the
smoothing process is governed by:

A

@i,j = al;; + (1 —-a)li—1,, with @ =0.3in our case.

EMA is a first-order infinite impulse response (IIR) low-pass filter. Compared to the
Simple Moving Average (SMA), EMA is more efficient as it does not require a buffer to
store previous data, and the weight is not distributed equally. Instead, it emphasizes the
most recent data samples while the previous data decays exponentially but never reaches
zero [FHC19].

Low-visibility handling. MediaPipe provides a confidence for the visibility of each
landmark. If the value falls below a threshold 7 = 0.3, the landmark keeps the previous
frame value rather than updating, to reduce jitter during brief occlusions. This usually
occurs when the pole covers certain body parts. If no pose is detected for an entire
frame, the extractor saves a zero array placeholder. In the later introduced preprocessing
pipeline, such frames will be linearly interpolated.

These additions stabilize joint trajectories while keeping the computation lightweight.
Savitzky-Golay filters, or Kalman filters [FHC19|, are valid alternatives but introduce
either additional latency or extra state assumptions [Schill, FHCI9].
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3.3 Final Dataset Statistics

This section summarizes the composition and quality of the dataset. It documents the
number of recordings per trick, the distribution of frames across labels, and the reliability
of the pose extractor in tracking joints. Beyond simple counts, the statistics highlight
practical biases that arise in real practice footage and explain the compensating measures
used during learning.

The reporting proceeds as follows:

o Label & class balance: per-video counts by trick and frame-level distributions
under Protocol B, with a side-by-side comparison to the legacy Protocol A to
expose phase proportions.

o Label integrity: coverage ratios (#labeled / #total frames) and checks for
overlaps or gaps to ensure consistent alignment between labels and skeletons.

e Video & skeleton properties: capture characteristics (FPS, portrait resolu-
tions) and pose-tracking reliability (per-clip coverage, per-joint visibility patterns),
confirming suitability for temporal modeling and geometric rules.

Together, these statistics provide a transparent view of the dataset’s strengths and
limitations.

3.3.1 Label & Class Balance

This section provides a summary of the chosen label properties to provide insight and
validate the quality.

Per-video class balance. Figure 3.4 shows the number of videos that contain at least
one end-pose for each of the six target tricks. Upright tricks like the Layout and Pin-Up
are more common compared to the inverted ones. These results were expected given the
increasing difficulty of the intermediate tricks. Especially for beginners, sitting on the
pole in a Layout or Pin-Up is easier than hanging upside down from a Gemini. This
class imbalance was addressed by applying targeted data augmentation and a weighted
loss for the model. Notably, a few video files include failed and multiple attempts of a
trick, but the visualization contains the number of videos, not segments. The actual
number of frames per phase will be discussed in the section below. Across the complete
list, 812/836 videos contain one end-pose, 9/836 include a second try, and 24/836 are
failed attempts.

Phase distribution. The following plots show the frame distribution for each label and
include a comparison against the legacy Protocol A. Figure 3.5 presents the actual phase
per frame distribution used for training the final recognition model. Phase on_pole
immediately stands out, as it holds the majority share of 60.0% of all frames. Followed
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Figure 3.4: Per-trick class balance. Number of videos containing at least one end-pose
for each target trick.

by floor with 20.5%, while the trick-specific labels contribute only a small fraction
individually, with around 2-4% and a combined value of 19.5%. This shows that the
label imbalance is stronger than the number of tricks per video imbalance seen in Figure
3.4. By design, each recording typically shows a single target trick but always includes
background, idle, and transition segments. As a result, on_pole and floor dominate
frame counts.

For context and comparison, Figure 3.6/ shows the label distribution from the legacy
Protocol A (see Section 3.1.2 for more details on this labeling scheme). Since this scheme
yielded two separate sets of labels (trick name, phase), the results are represented as
a stacked bar chart. The stacks show the absolute frames per trick label, while the
percentages inside indicate the share of each phase label (Start, Transition, End).
Aggregated over all tricks, Transition accounts for 63.2% of labeled frames, Start
for 16.4%, and End for 20.4%. While not being as noticeable at first glance, the results
present a similar class imbalance to the chosen labeling method. Figure 3.6|also reveals
how long each trick tends to last in the transition phase. Measured as the share of labeled
frames within each trick, Straddle Invert shows the shortest transition (40.4%), whereas
Crucifix shows the longest (74.8%).

In the end, Protocol B was chosen for training the final model, because it keeps the
background explicit and can capture retries and idle time without data trimming, while
preserving trick-specific end states for evaluation.
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Per Frame Phase distribution — total labeled frames = 212,574
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Figure 3.5: Protocol B. Percentages above bars show the relative contribution of each
label to the total of 212,574 labeled frames.

At a glance, the label distribution is:

e Protocol B: 20.5% floor, 60.0% on_pole, 19.5% *_pose (combined)

e Protocol A: 16.4% Start, 63.2% Transition, 20.4% End

Label integrity. All labels underwent basic quality checks. First, the label coverage
ratio is calculated as the labeled frames divided by the total number of frames. It is
important to note that not all frames are labeled, especially long idle segments at the
beginning or end of a clip. The ratios are overall high, with 54.9% having perfect coverage
(1.0) and 75% over 0.957 (see Figure 3.7). No overlapping segments or internal gaps
were detected after final curation. Quality control and label integrity enable consistent
alignment between labels and skeleton data.

3.3.2 Video Data & Skeleton Data

To preserve privacy, the public dataset contains only skeleton sequences rather than raw
videos. The extraction script stores the data as NumPy arrays of shape N x 33 x 4 with

MediaPipe’s 33 joints and the channels x, y, z, visibility in normalized image coordinates.

Furthermore, an EMA filter slightly smoothed the data, and joints with a visibility lower
than 0.3 were treated as missing (see Section 3.2.2).
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Protocol A — Per Frame Phase distribution — total labeled frames = 175,868
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Figure 3.6: Protocol A. Bar height shows the absolute number of labeled frames per trick.
The phase labels occur in the following stack order: bottom=Start, middle=Transition,
top=end (highlighted in a trick-specific color). Percentages inside the bars indicate the
relative share of each phase.

FPS & resolution. Participants of the data collection process used their smartphones
for recording. The videos are predominantly at 30 FPS (~96%) and a small minority
at 60 FPS (~4%). Resolutions cluster around portrait format with a 16:9 aspect ratio.
After normalizing orientation, 29.3% of the clips are exactly 1080x1920, and 69.3% are
close to Full High Definition (FHD). Table summarizes the most common resolutions
in more detail. Generally, these characteristics match a typical home and studio setup
and align with the intended use case.

Skeleton detection quality. Skeleton reliability was evaluated to confirm that Me-
diaPipe consistently tracks across frames. Pose coverage is defined as the fraction of
frames with a valid skeleton. Out of 836 clips, 771 (92.2%) achieve a perfect score of
1.0. Only seven videos fall below 0.95, with the minimum at 0.767 for a recording of a
Pin-Up. In total, non-perfect coverage occurs in 65 files, most often in more complex
tricks such as the Straddle Invert (20 files) and the Wrist Seat (15 files). Due to their
simplicity, Layout and Pin-Up remain the most stable, with only a handful of affected
videos. Figure highlights all non-perfect coverage clips.

The individual joint visibility was also evaluated by counting frames where the landmark
confidence fell below 0.3. The results show a generally high visibility, with a median of
0.0% for frames below this threshold. Looking at a per-joint visibility heatmap across all
frames, Figure [3.8b indicates uniformly high ratios across the body, with slightly lower
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Figure 3.7: Box plot of coverage ratio with most labels achieving near-perfect coverage.

Table 3.2: Most common portrait resolutions within the dataset.

Resolution Count % of 836

10801920 245 29.31%
7201280 22 2.63%
10101796 20 2.39%
1028 x 1828 19 2.27%
1020x 1814 18 2.15%
10181810 18 2.15%
478 %850 16 1.91%
1034 %1838 14 1.67%
10161806 14 1.67%
1014 %1804 13 1.56%

values (0.99-0.95) for the right elbow and hand cluster. This pattern matches recording
issues for upright tricks such as Layout and Pin-Up, where the arm extends above the
head and may leave the camera view.

Overall, skeleton detection offers near-perfect coverage and stable joint visibility, ensuring
reliable alignment between labels and skeleton data.

3.3.3 Demographics

The data collection aimed to strike a balance that still accurately reflects the student
demographics in real-world pole classes. Another priority was to capture broad variations

in execution quality so the model learns every deviation from failed to perfect attempts.
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Figure 3.8: MediaPipe coverage information.

Experience balance. The dancers’ experience has a greater impact on variability
than age or height. Because the selected tricks range from beginner to intermediate, the
dataset deliberately emphasized novice attempts. Ideally, half of all contributors should
have limited to no prior pole experience. This selection enhances the diversity of entries,
transitions, and final shapes, thereby improving the robustness and generalizability of the
recognition model. Therefore, as shown in Figure the total number of 58 participants
comprised 34 non-dancers (58.6%) and 24 dancers (41.4%).

Experience

Non-dancer (34) (24) Dancer

Figure 3.9: Experience balance bars (Non-dancer vs. Dancer).

Gender context. Adult female students mostly visit local studios in Austria and likely
around the world. Many classes are restricted to women only to maintain a comfortable
environment, especially given the low-coverage attire required for a secure grip on the
pole. At the same time, pole is a gender-inclusive sport with a growing number of men.
The collected data reflects this reality while remaining open to all participants. Gender
counts are: Female n = 43(74.1%), Male n = 15(25.9%) (see Figure 3.10).

Gender distribution

Female (43) (15) Male

Figure 3.10: Gender balance bars (Female vs. Male).
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Age distribution. Although not as crucial for data diversity, the age distribution,
as displayed in Figure 3.11, ranges from 20 to 58 years old, with a median of 28 years.
Again, this accurately reflects real-class distributions of pole dancing students.

n=58 median=28 IQR=5 range=20-58

20 25 30 35 40 45 50 55
Age

Figure 3.11: Age distribution.
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Table 3.3: Compact summary of the selected tricks; terminology aligned with IPSF and

Spin City [Fed25), [Cit25].

Thumbnail Trick Description Category
/ Level
L 1. Stand on the right side of the pole Upright
ayout .
2. Pull up, cross legs at ankles Beginner
3. Lean back, arch, push hips up
PinU 1. Stand on the right side of the pole Upright
p 2. Pull up, right toes to left knee Beginner
3. Lean slightly back and arch
. 1. Stand on the right side of the pole Upright
Wrist Seat .
Hst Bea 2. Pull up, right toes to left knee Beginner
3. Place left hand underneath the thigh
4. Lean back, open legs into a V shape
S)ffl%’gftle 1. Stand behind the pole, facing left Inverted
2. Stronghold grip, pull up, lean back Inter.
3. Open legs into a V shape
Gemini 1. Start with Straddle Invert Inverted
2. Hook the outside leg, other leg down Inter.
3. Chest up, arch and release hands
Crucifi 1. Start with Straddle Invert Inverted
rucihix Inter.

. Place legs into crucifix hold
. Upper body low, release arms
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CHAPTER

A Coaching System for Pole
Dancing Technique

Pole-Arina addresses a common challenge in pole training: subtle misalignments and
unsafe form, which often remain undetected outside guided classes. The thesis delivers
a marker-less, video-based coaching application that recognizes the performed trick,
identifies its temporal progression, and grades the final pose with transparent, geometry-
based feedback. The design prioritizes privacy, interpretability, and practical deployment
on user hardware.

4.1 System Overview

Pipeline overview. Figure |4.1 summarizes the end-to-end process of the Pole-Arina
system. First, the user records themselves performing one pose or a combination of tricks.
From a single uploaded RGB clip, the pipeline extracts a sequence of 33x4 MediaPipe
landmarks per frame. Next, it applies preprocessing (e.g., smoothing and normalization)
before feeding the sequence to the LSTM-based recognition model. The model produces
a frame-by-frame timeline of semantic states, such as generic phases or specific trick
poses. Detected end-pose frames are then passed to a rule-based engine, which evaluates
trick-specific geometric checks and renders visual overlays along with textual cues for
feedback.

In summary, the model identifies the performed trick, and the rule-based module provides
feedback on the pose correctness, indicating where adjustments are needed. The following
sections formalize the recognition and scoring components at a high level, while Chapter
5| provides implementation details and Chapter [6| presents the evaluation and results.
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7 Right-elbow straight: 173
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¥ Right-arm horizontal
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¢ Body vertical dewiation
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« Right-toe angle: 168.0°
< Left-toe angle: 166.7°

Video Feature Trick Pose Quality Feedback &
Input Extraction Recognition Assessment Visualization

Figure 4.1: Pole-Arina end-to-end pipeline.

4.2 Trick Recognition & Pose Analysis

Pole-Arina requires a temporal model that turns a video into a sequence of semantic states
interpretable for coaching. Given per-frame landmarks, the task is defined as a multi-class
classification problem that assigns one label to every frame. In computer vision, this falls
under the broad field of action recognition or action segmentation. This section formalizes
the frame-wise label space and input representation, then presents a bidirectional LSTM
for sequence labeling, including architecture, class-imbalance handling, and the training
objective. Next, it describes decoding and post-processing to obtain stable, contiguous
end-pose segments. Finally, it introduces the rule-based pose-quality analysis that
converts the classifier output into interpretable coaching feedback.

4.2.1 LSTM Model

The primary task of the recognition model is to map a time sequence of skeletons to
a time sequence of semantic states that support coaching feedback. Each input frame
provides a 33 x4 feature tensor (33 landmarks X (z,y, z, visibility)). The model outputs
a label for every frame, covering both generic movement phases and trick-specific end
poses.

Model decision. A lightweight, bidirectional Long Short-Term Memory (LSTM) model
efficiently processes temporal context on modest datasets and hardware [HS97]. On
small to medium datasets, enhanced recurrent models can rival or outperform heavier
Transformer variants while offering lower latency [EC20]. Due to latency and deployment
constraints, the implementation of Pole-Arina favored a Bi-LSTM over larger models. As
illustrated in Figure 4.2, one or more LSTM layers, with a moderate number of hidden
units, take the normalized skeleton coordinates as input. The following time-distributed
fully connected layer produces a classification score for each frame. The final layer is a
softmax over the defined label classes, so the network outputs a probability distribution
for the frame’s state at each time step. Compared to the original LSTM formulation
[HS97] and the classical Bi-LSTM concept |[GFS05], the deployed model is explicitly
bidirectional with concatenated directions, uses a time-distributed fully connected head
rather than a CRF/CTC decoding layer, and includes dropout between recurrent output
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and the classification head for regularization. This compact design preserves temporal
context while remaining efficient on consumer hardware.

A
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A

Figure 4.2: Bidirectional LSTM architecture, taken from [NJ22].

Label design. The final label set combines generic phases with trick end poses:
{floor, on__pole} U {L_pose, P_pose, W_pose, S_pose, G_pose, I _pose}.

These end pose labels indicate the frames where the performer holds the final position,
which presents the most trick characteristics and will be used for evaluation. To smooth
out momentary prediction errors, a short median filter is applied to the model’s per-
frame outputs. This removes brief misclassifications before decoding the sequence into
contiguous segments for each recognized phase or pose.

Handling imbalance. As presented in Chapter [3.3, end pose classes occur far less
frequently than the generic phase classes, and some tricks are less represented than others.
To address this imbalance, weights are added to the training loss, and data augmentation
balances rare tricks. This encourages the network to learn the infrequent classes despite
skewed data distribution. The exact weighting and optimization settings are described in
Section 5.1.2 and 5.2.2. The network was optimized with standard procedures (using the
Adam optimizer and early stopping on a validation set) to ensure good generalization.

Decoding & post-processing. The raw output of the LSTM is a per-frame label
sequence, which may still contain occasional flicker or brief frame misclassifications within

a phase. To obtain stable, meaningful segments, two post-processing steps are applied.
First, using the model’s confidence, only results above a specified threshold are accepted.
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Second, a median filter over a short window merges isolated misclassified frames into the
surrounding classes. After these steps, the timeline is segmented and labeled by phase or
end pose. In particular, only sufficiently long end pose segments are kept for analysis
to avoid fleeting motions. This decoding process yields a cleaner interpretation for the
dancer’s entry into the final pose of a trick.

4.2.2 Pose-Quality Rule Design

Once the system has identified an end pose, the next step is to grade the quality
of that pose using explicit geometric rules on the skeleton. The module turns joint
coordinates into transparent feedback, including pass/fail values, an overall score, and
textual suggestions. The design focuses on interpretable checks, like body orientation,
limb alignment, and joint proximity. It measures angles or normalizes distances with
tolerances specific to the trick. The pipeline uses normalized image coordinates, enforces
a visibility threshold, and evaluates all frames of the end phase. This subsection explains
the concept of the feedback mapping in support of RQ2. The full implementation and
rule design specifics are located in Section |5.3.

Post-processing vs. direct pose evaluation. An early design choice was whether
to have the model directly learn pose correctness or to evaluate in a post-processing
step. One initial consideration included the first LSTM iteration to output a pose-quality
score. The implementation included scoring each phase using a predefined error list and
matching it with the viewed performance. For each identified error, the score would be
reduced by one, going from: perfect — good — ok — fail. However, this approach proved
impractical due to the subjective nature of labeling and the limited time for expanding
and annotating the training dataset. Instead, the LSTM focuses solely on trick and phase
recognition, while the pose quality evaluation was left for the post-processing stage. This
separation simplifies model training and makes evaluation criteria more transparent and
adjustable, without requiring retraining of the model.

Focus on the final pose. As a reminder, each pole trick can be broken down into
individual phases. For instance, the mount or entry into the trick, the transition where
the dancer is in motion, and the final pose. In practice, the execution quality can be
evaluated at each of these steps. Some general pointers include:

e Entry: Controlled entry on the pole, including the right muscle engagement without
unnecessary jumps and swings.

e Transition: Correctness of contact points, technique, and body alignment while
moving towards the final position.

¢ End position: Present common trick characteristics, often including pointed toes,
specific angles, and body orientation.
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4.2. Trick Recognition & Pose Analysis

Initially, all phases were considered for evaluation, but due to time and data constraints,
the solution was optimized based on the end position. This phase holds the richest
information about the trick’s execution because errors during transition are usually
reflected in the final state. Moreover, the dancer holds the trick statically at the end,
which further has a specific presentation angle to the viewers. This focus enables a clear
view, less motion blur, and consistent positioning.

Defining correctness. A key challenge in designing pose-quality metrics is the absence
of a strict “rulebook” for executing each pole trick. Unlike gymnastics or ballet, where
technique is codified in detail, pole dancing is guided by general best practices rather
than exact prescriptions. Judges and instructors look for proper form, body alignment,
and precision, but there is room for personal style. For instance, having fully extended
legs and pointed toes is universal for clean lines, but exact angles and distances between
joints can vary with individual anatomy. Therefore, the evaluation criteria should be
specific, yet flexible to account for differences in body proportions or styles. Additionally,
factors such as height, limb length, age, or gender should not result in penalties. Using
the normalized skeleton data provided by MediaPipe accounts for scale differences and
focuses on the geometry of the pose. Each rule is specified in terms of an angle or a
distance between joints, along with a tolerance range that accounts for minor variations.
The tolerances ensure that performances are not unfairly penalized, when deviating
slightly due to personal style. In summary, correctness is defined by a set of geometrical
conditions that reflect good form, with allowances made for normal variability between
different performers.

Rule families & scoring concept. Each trick holds defining characteristics repre-
sented as rules with targets and tolerances. During evaluation, each rule returns a boolean
pass/fail for each frame of the end pose segment. The overall pose score is calculated
as the fraction of rules passed out of the total rules for that trick. For example, if a
particular trick has 5 rules and the dancer satisfies 4 of them, the pose would score 4/5
or 80%. The scoring system defined three geometric rule families to cover a broad range
of possible checks:

¢ Body Orientation: orientation of a segment relative to ground.
o« Limb Alignment: internal joint angles.

e Joint Proximity: normalized distances between landmarks.
Exact formulas, thresholds, and per-trick targets are specified in Section |5.3)

4.2.3 Feedback & Visualization

In addition to the written feedback, Pole-Arina also provides visual feedback in the form
of overlays, drawn on top of the evaluated frame. Each rule type maps to a distinct
visual primitive:
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e Orientation — Arcs: appears as circular arcs around a reference joint to highlight
the accepted angle sector.

e Alignment — Angles: traditionally represented as the angle between two vectors,
connecting the affected joints.

e Proximity — Circles: shows a circle centered between two landmarks with a
radius equal to the measured distance.

This mapping separates the rule concepts effectively, while maintaining consistent feedback
across the tricks. Regarding the implementation, the same primitives port cleanly to
SVG overlays to enable exploration through interactivity. Figure [4.3 illustrates the three
overlays in a simple style on a Pin-Up pose.

Together, the rule configuration and its overlays form a transparent scoring system on
top of the recognizer. In short, the model identifies what was performed, the scoring
system explains why it received this value, and the visuals show where to adjust. The
how is directly given by the evaluation message, explaining the needed adjustments.

Tips1 Tips2 Tips3

+ Upper-body angle | Angle (tan): 48.7° (~45.0%) ¥ Bottom-leg straight | Angle: 167.8% (~180.0%) ¥ Left-toes close to right-knee | Distance: 0.050 {<0.1)
X Bottom-leg angle | Angle (tan): -125.0° (~-135.0°) 7 Right-foot point | Angle: 152.3° (~160.0°)
¥ Left-foot point | Angle: 158.0" (~160.0°)

Figure 4.3: Rules mapped to visual overlays on a Pin-Up pose.

4.3 Pole-Arina Evaluation

Pole-Arina is evaluated along two paths. First, quantitative tests on a held-out split
assess recognizer accuracy and the stability of end-pose detection (RQ1) and validate
geometric scoring against trick definitions (RQ2). Second, a controlled user study
examines effectiveness and usability in practice, combining objective improvement with
subjective measures of trust, clarity, and SUS usability (RQ3). The full methodology
and results are presented in Chapter 6.
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CHAPTER

Pole-Arina: Implementation

This chapter provides detailed information on the end-to-end implementation of Pole-
Arina. Following standard practice in motion pipelines [TP23], data preprocessing
stabilizes pose trajectories and handles missing detections. For that, it employs temporal
smoothing and gap interpolation before preparing the data into a train/validation/test
split. Next, data augmentation balances the dataset and increases the sample size to
improve generalization. A bidirectional LSTM is trained to produce per-frame predictions.
Section 5.2l documents the architectural evolution and the final formulation with class-
weighted cross-entropy. Three distinct rule families turn landmark geometry into pass/fail
checks with specified tolerances for each check. Finally, the application prototype wraps
the pipeline behind a single analysis endpoint and renders interactive overlays, including
scores and improvement tips.

5.1 Data Preprocessing & Augmentation

Effective preprocessing is essential to convert raw pose data into reliable inputs. Real-
world motion-capture data often contains noise, missing values, and other inconsistencies.
If left unaddressed, these issues can lead to training malfunctions and degrade the model’s
performance. Preprocessing techniques clean and refine the data by transforming noisy
and inconsistent inputs into a clean format suitable for machine/deep learning [OGK™24].
Typical preprocessing steps include: noise reduction, outlier removal, and handling of
missing data. Once cleaned, the labels are aligned with the skeleton data and split into
train, test, and validation sets. Figure 5.1 presents a visual overview of this pipeline.
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a Feature | EMA/ ' Label 0 Train/Val! <@
[VIdED Input—a’ ‘ Extraction \k ’ Interpolation | | Alignment Test Split M]

Figure 5.1: Preprocessing pipeline overview.

5.1.1 Data Preprocessing

Clean-up. As a reminder, the video data was captured through single RGB cameras,
more specifically, the ones integrated in smartphones. MediaPipe Pose [Goo25], a pose
estimation framework, extracted the skeleton data, which can introduce jitter and minor
errors in the detected joint coordinates. Noisy pose data causes visible flicker effects in
skeleton visualization, which may complicate learning but also appear less trustworthy.
To address this, the pre-processing pipeline applied temporal smoothing to the sequence
of detected keypoints. The result is a calmer, more realistic motion sequence where
high-frequency noise is suppressed. Along with noise, missing detections are another
issue, which yield zero or null coordinates for all joints. Instead of leaving blank frames,
the pipeline performs a simple interpolation to fill the gaps. Therefore, short occlusions
or tracking failures do not result in inaccurate labels or fragmented input data. Both of
these techniques are thoroughly discussed in Section [3.2.2l However, to make the impact
visible and measurable, Figure 5.2 overlays per-frame jitter before and after temporal
smoothing on a representative Straddle Invert.

Jitter Smoothing Example: Straddle Invert

0.06 Raw

—— Smoothed
0.05 A

0.04

0.03

Jitter

0.02 4

0.01 A

0.00 4

0 20 40 60 80 100 120 140
Frame

Figure 5.2: EMA reduces high-frequency jitter on a representative Straddle Invert clip.

Measuring jitter. Per-frame jitter quantifies high-frequency motion in the 2D land-
marks. For frame ¢, we compute the mean Euclidean displacement across N tracked
landmarks in normalized image coordinates. The calculation only uses landmarks above
a visibility threshold (v; > 7, 7 = 0.3). The first frame is excluded since J; is undefined.

Let T' be the number of frames in a clip and let p; ; = (¢, yi,+) denote the 2D (normalized)
image coordinates of landmark i at frame ¢.
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Per-frame jitter is computed as:
1N
S = N ZHP“ = Pit-1ly Pit = (Tit, Yit)-
i=1

The series {J;} is collapsed to a single, comparable number. The arithmetic mean is
calculated over frames for both raw and EMA-smoothed landmarks using the sequence-
level averages:

T T
Jraw — 1 Z Jtraw Jsmooth _ 1 Z Jtsmooth.
T-1 Pt T-1 part

The percentage reduction reports how much the EMA suppresses jitter:

Jsmooth
Reduction = (1 — Jraw> x 100.

At the dataset level, Figure [5.3| summarizes the percentage reduction in jitter achieved
by the EMA filter and grouped by trick. As expected, more complex or inverted poses
exhibit higher raw jitter and therefore show larger reductions in jitter, compared to
simpler tricks such as the Layout. Together, the plots illustrate that the smoother input
sequences are produced by the preprocessing pipeline by removing high-frequency noise.

Jitter Reduction by Trick

s0- T —" __

301 =T —|_ — i i
=] [

% reduction

20 -
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ut ol at 1y it
\ey© pin AP Wnst se tca.da\e e e o
S

Figure 5.3: Dataset-level jitter reduction by trick.
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Label alignment & segmentation. Once the skeleton data is verified and cleaned,
the data gets aligned with the ground-truth phase annotations from the dataset. Each
video was labeled in segments, providing the start and end frames of each trick phase (e.g.,
floor, on_pole, L_pose, etc.). The preprocessing script takes those segments
to match them with the continuous skeleton sequence and assign a class label to each
frame. First, the label CSV provides all annotations for a given video and is sorted by
their start frame. Next, the skeleton data is sliced to span from the start to the end
frame of each labeled phase. Previously, the data was tested for any gaps or overlapping
labels. This alignment process ensures each skeleton frame is paired with the correct
target label. The resulting collection of synchronized data-label pairs is a matrix of shape
frames x joints X coordinates, accompanied by a matching sequence of class labels for each
frame.

Dataset split. The final step divides the processed dataset into separate subsets for
training, validation, and testing. After aggregating all labeled sequences, the set is
randomly split into three parts:

e Train: ~70%
e Validation: ~15%

e Test: ~15%

Notably, the dataset separation does not split per-frame but per-video. Therefore, the
model will always see a full sequence without interruption. The test set provides hold-out
data for final evaluation, while the validation split finetunes the model. Finally, the
cleaned, aligned, and augmented (as discussed next) data is prepared and ready for the
model.

In summary, smoothing and interpolation enhance the data quality by reducing noise
and filling gaps. It aligns each sequence with the ground-truth labels and splits the data
for the training of the model. This enables the model to learn from high-quality inputs
and correct targets, which is foundational to achieving proper output.

5.1.2 Data Augmentation

After preprocessing, the next step deliberately expands the dataset by introducing
diversity through data augmentation. It is a standard concept where new synthetic
training examples are derived from existing ones by applying various transformations.
The goal is to introduce controlled variability by increasing the dataset size, thereby
reducing overfitting and improving the model’s ability to generalize, especially when the
available data is limited. Data augmentation techniques can range from basic image
manipulation to deep learning approaches by generating new data samples through
Generative Adversarial Networks (GANs) [SK19] or other models. In this thesis, the
applied techniques are categorized into spatial augmentations and temporal augmentations.
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5.1. Data Preprocessing & Augmentation

The first modifies the geometric attributes of the pose, while the latter alters the time
dimension of the sequence. Both types aim to simulate realistic variations, including
diverse viewing angles, varying execution speeds, and minor sensor noise.

Augmentation techniques. Three methods were implemented and applied to the
skeleton sequence in random combinations:

1. Gaussian noise : adding small Gaussian noise to joint coordinates.
2. Random rotation: rotating the 2D pose trajectory by a few degrees.

3. Time warping: randomly stretching or compressing the temporal duration.

These methods produce realistic variations for human pose sequences and align with
known related work methods [XKCP24].

Gaussian noise. A slight Gaussian noise is added independently to each joint’s
coordinates. Therefore, each coordinate is perturbed by a tiny random offset. This effect
simulates minor positional errors or measurement noise that naturally occurs in pose
estimation. By training the model on noisy skeletons, the model becomes more robust
to jitter while maintaining focus on the overall pose, rather than on landmark positions

(XKCP24]).

Random Rotation. A rotation of between -5° and +5° is applied to the whole skeleton
in 2D. This spatial transformation changes the global orientation of the skeleton but
preserves the relative pose. The aim is to make the model invariant to viewpoint or
orientation changes. In practice, this happens frequently, as dancers might not pay
attention to the horizontal alignment of the camera view. The rotation range is limited
to small angles, as tricks are often characterized by body orientation which is utilized
for evaluation. Figure displays such constraints for split-style shapes. The different
presentations impose distinct geometric targets. Augmentation, therefore, restricts
rotation to small angles to preserve trick-defining orientation cues.

Figure 5.4: Split-style shapes: horizontal, diagonal, and vertical presentations.
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Time Warping. This augmentation alters the speed of the motion sequence. The data
can either be randomly stretched or squeezed (between a factor of 0.8 and 1.2) before
getting resampled to the original number of frames. Therefore, some frames are either
skipped or interpolated while the original sequence length remains to match the existing
labels. Training on time-warped data enables the model to learn variations in execution
speed and temporal dynamics.

The augmentation can be applied individually or in combination. For the final data set,
multiple augmented versions were generated by randomly selecting one, two or all three
of the transformations. By augmenting each original sequence into several variants, the
size of the training set was effectively multiplied, while introducing a rich variety of poses.
Each clip was multiplied by three random augmentations, except for the Gemini trick,
which received five per video. Additionally, it addressed class imbalance by generating
more samples for underrepresented tricks such as the Gemini.

5.2 Recognition Model (LSTM)

This section covers the recognition model, which takes skeleton data as input and outputs
semantic states for feedback and scoring. First, Subsection 5.2.1 LSTM Iterations
outlines the architectural progression, from a real-time system to a multitask prediction
model, and finally to an eight-class single-head solution. Each step reveals different
strengths and limitations through experiments, which lead to the development of the final
model. Subsection [5.2.2| Final Single-Output LSTM specifies the LSTM architecture
used for the Pole-Arina implementation.

Task Definition The output evolved with the project goals:

1. {Start, Transition, End}x{fail, ok, good, perfect} for real-time grading;
2. {Start, Transition, End} x{L, P, W, S, G, I} for automatic trick identification;

3. {floor, on_pole} U {L._pose, P_pose, W__pose, S_pose, G_pose, I_pose} to enable
multi-trick detection.

Several constraints influence the model choice and labels: privacy (skeletons only), data
scale, single-camera capture, and class imbalance. Success criteria focus on accurate
end-pose detection, reliable segmentation across multiple tricks in one clip, and controlled
errors concentrated in transitional frames rather than in the final poses.

5.2.1 LSTM Iterations

This section presents the explored model iterations before settling on the final design. All
iterations run in PyTorch and consume skeleton vectors of size 33 x4 (33 landmarks x
(x,y, z, visibility)). They also share the same backbone: a bidirectional LSTM with two
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layers, a hidden size of 64, and a dropout rate of 0.2. Furthermore, they output per-frame
logits and employ an Adam optimizer with a learning-rate scheduler. All models were
trained with Google Colab on an NVIDIA T4 GPU.

Initial Multi-Task LSTM (phase + score) The initial model was an LSTM-based
network with several training enhancement configurations and a double-head output
layer. Key features of this model included:

e Learning-rate scheduler: A dynamic learning-rate scheduler adjusted the step
size during training, to sustain steady convergence as training progressed.

¢ Dropout regularization: A dropout layer tackles overfitting by randomly omitting
units during training, encouraging the model to generalize better.

¢ Bidirectional: The activated bidirectional LSTM layer enables the model to
process the sequence in both forward and reverse time directions. Considering past
and future context, the model can capture richer dependencies in the sequence.

e Multi-task outputs: The LSTM was expanded into a multi-task model that
computes predictions for two separate output heads: first, a performance score
{perfect, good, ok, fail} and second, the current temporal phase of the trick {Start,
Transition, End}. This design allowed the network to learn both what the dancer
was doing and how well they did it in parallel. Multi-task learning can improve the
generalization by leveraging a shared representation for related tasks.

The labeled dataset is closely related to the one introduced by Protocol A (see Section
3.1.3) but holds an additional label for the score. Each phase segment was annotated with
a grade (perfect, good, ok, fail) based on the number of execution mistakes. Standard
errors were identified in advance, and each match would result in a one-level downgrade
of the score. For instance, if two mistakes were identified during the transition phase, the
score would be labeled as ok instead of perfect. This first concept was inspired by dance
video games (e.g. Just Dance [Ubi09]), which provide immediate and similar feedback to
players during performance. The initial multi-task LSTM performed well, achieving a test

accuracy of 91.58% on the score prediction task and 96.08% on the phase classification.

While the real-time model was conceptually appealing for regular dancing, it had some
practical issues, especially for pole dancing. First, it required the user to pre-select which
trick they were going to perform, limiting the system’s autonomy. Second, delivering
real-time feedback to a pole dancer has some usability issues, as dancers often hang
upside-down on the pole without the ability to look at their phones. An augmented-reality
mirror could overlay feedback visually, but such hardware is not commonly available
to users and would complicate the system. Considering these drawbacks, instead of a
"real-time coach", the system would focus on recognizing and identifying the trick and
current progression (phase) and transfer the grading to a post-analysis system.
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Phase and trick detection LSTM. The next iteration removed the scoring component
to focus on the recognition task. The two prediction heads were reconfigured first to
classify the current phase {Start, Transition, End} as before, and second, to identify
the performed trick at each frame. The user no longer needed to tell the system which
trick would be performed, as the LSTM would automatically detect it from the motion
sequence. Furthermore, this opened the possibility to handle multiple different tricks
in one session, which is standard practice in training where dancers train combinations
of moves in succession.

This implementation fully realized the concept of the labeling Protocol A, with each frame
carrying a phase and trick label. Again, the model learned this in parallel and continued to
utilize the previously introduced features (bidirectional, dropout, learning-rate scheduler,
etc.) to maintain the already satisfying performance. Trained on the full dataset, this
model achieved a test accuracy of 96.83% for phase classification and 99.95% for trick
classification. These results were auspicious for building the final Pole-Arina system.

Despite its excellent performance on single-trick videos, this architecture revealed some
limitations when tested for multi-trick detection within a single recording. The issue was
caused by the labeling scheme and how the LSTM learned temporal patterns. First, the
initial training data assumed a strict phase order per video: start on the floor, transition
on the pole, and end in the final pose. Next, if the dancer performed a second trick
in the same recording, the sequence of labels might repeat, but the dancer would first
need to get down from the pole. Effectively, this approach did not provide the required
flexibility to detect multiple tricks in a single video. To address this, a final strategy was
implemented to enhance the labeling strategy and increase the model’s flexibility, which
is discussed in section 15.2.2.

Evaluation protocol. To verify that each model learned a meaningful representation
and generalizes beyond its training split, every iteration underwent the same evaluation:

o Training-Validation plots: to compare training and validation curves. If the
training performance drastically exceeds validation performance, the model might
overfit, resulting in poor generalization.

e Confusion matrices: to reveal if certain classes are more frequently confused.
e Per-frame timelines: to inspect temporal consistency on held-out clips.
Figure 5.5 illustrates a concise panel summarizing these checks for the second model

iteration. This protocol documents the training progression and guides changes between
iterations.
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Figure 5.5: Evaluation diagnostics for the second model iteration, serving as an overview.

5.2.2 Final Single-Output LSTM

For the final refinement, the previous problem was reformulated into a single-head
classification task with a mix of trick-specific and generic labels. A semi-automated
re-labeling script, enforced by Protocol B (see Section 3.1.3)), transformed the data to
support multiple trick detection per video. Instead of using two separate outputs for
phase and trick, the labels were combined into a single label set that encoded both
the phase and trick. Generic phase labels covered the common positions at the start,
middle, and idle time of any trick, while specific end-pose labels represented the final
trick progression.

Improvements & challenges. This combination simplified the model output to a
single classification at each frame, realistically capturing the structure of pole dance
training videos. It further leverages the insight that early phases are similar across

tricks, with no immediate need to classify the trick until a distinctive position is reached.
However, this adaptation introduced significant class imbalance in the training data.

While every attempt at a trick will contain generic labels, end-pose labels appear only
when the particular trick is performed. Additionally, more challenging tricks, such as
the Gemini, are underrepresented compared to beginner tricks. This imbalance is prone
to introducing a data bias towards frequent classes to the classifier, while struggling to

recognize rare poses. A countermeasure introduced weights to the model’s loss function.

The model training applied weighted cross-entropy by assigning higher weights to the
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minority classes, to enforce penalties for errors on the rare classes. This is a standard
technique to improve learning for imbalanced data, as it encourages the model to devote

more capacity to learning those classes [ADAdCBI9).

Class-weighted cross-entropy. Let K be the number of classes, z; € RE the logits
at frame ¢, and y; € {0,..., K — 1} the ground-truth label. Let 7 = {¢ | y+ # —100 } be
the set of valid frames (ignore_index= —100 in PyTorch). The loss is

1 o exp(2t,y,)
L= mzwyt ( log =z y(zt,c)>' (5.1)

teT =0 ©XP
Class weights are inversely proportional to the square root of the empirical frame counts
nc, normalized to keep the average weight at 1:
(ne +¢)~1/2

= : e=10"%. 5.2
# Xjso (ny +)7/ o2

c

This schedule reduces the dominance of frequent classes without the instability of strict
inverse-frequency weighting. Rare end poses receive a stronger and more stable learning
signal while the overall loss scale remains comparable.

Evaluation & fine-tuning. The following protocol and visualizations aim to verify
the model’s accuracy, frame-wise phase/trick recognition, reliable end pose identifica-
tion, and strong generalization while handling class imbalance. The training kept the
checkpoint with the lowest validation loss, while the best score was at epoch 29 with
val_loss=0.121 and val acc=93.83%. The test accuracy yields 93.82%, closely matching
the validation accuracy and indicating good generalization ability. While fine-tuning
the hyperparameters, different learning-rates were tested, as shown in Figure 5.6 This
comparison identifies 5x10™% as the most reliable setting as it achieves the highest
validation accuracy with stable late-epoch behavior.
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Figure 5.6: Learning rate sweep: over 30 epochs for different learning rates.

A confusion matrix helps to identify common misclassifications for each class. It counts
how often each true label appears on the diagonal (correct) and how often it is predicted
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as another label off the diagonal (errors). Therefore, a deeply colored diagonal suggests
accurate classifications. The coloring in Figure 5.7 suggests frequent errors for all classes
except for floor and on_ pole. However, this is mainly due to its high representation in
the dataset, as on_ pole holds the most mislabeled entries. This aligns with the data,
as transitions morph directly into the final position, so border frames near the end can
already resemble the end pose. Per-class recall (see Figure confirms this pattern:
floor 97.8%, on_pole 91.1%, and all end poses between 98.1-99.4%. Trick-only accuracy
reaches 98.74%, confirming dependable recognition once a trick sequence begins. Overall,
the errors concentrate in transitional on_ pole frames, while the crucial final poses are
detected reliably.
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Figure 5.7: Left: per-class recall on the test set. Right: confusion matrix on the test set.

Multi-trick detection. A comparison on a challenging test case reveals the effective-
ness of this solution. The test includes a single video in which a pole dancer performs
nine tricks in succession. Before the weights were applied, the LSTM correctly detected
6 out of 8 tricks, with both missed tricks being instances of the Gemini. The improved
version correctly recognized all 8 tricks in the sequence. As a result, the final model
successfully overcame this challenge, reliably detecting all tricks, including those with
fewer samples.

Figure 5.8: Successful detection of 8/8 tricks in one video.
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Together, these results indicate that the single-head formulation, the chosen hyperparam-
eters, and the class-weighting scheme deliver accurate frame-wise phase recognition and
robust trick identification without resorting to a more complex architecture. Table |5.1
provides a final overview of the LSTM iterations.

Table 5.1: Bidirectional LSTM, 2 layers, hidden size 64, and dropout rate 0.2.

Iteration Label set Settings Data Test
acc.

Two-head: {Start, Transition, End}/  2x cross-entropy; 50 (Pin- P: 96.1%
phase+score {fail, ok, good, perfect} no class weights; Up) S: 91.6%
no decoding

Two-head: {Start, Transition, End}/  2X cross-entropy; 510 P: 96.8%

phase+trick {L, P, W, S, G, I} no class weights;  (Mixed) T:99.9%
(Protocol A) no decoding

Single-head: {floor, on_ pole} U cross-entropy 836 93.82%
(Protocol B) {L_pose, P_pose, W_pose, with class weights; (Final) multi-
S_pose, G_pose, I_pose}  median filter trick

Training data across iterations. The metrics between model iterations are not
strictly comparable, as the training samples grew during data collection. To provide a
brief overview, the introduced LSTM models were trained on the following subsets:

1. Phase/Score LSTM: trained on 50 Pin-Up data samples only.

2. Phase/Trick LSTM: trained on 510 mixed videos covering all tricks, with ~3
random data augmentations per video.

3. Final single-head LSTM: trained on complete dataset of 836 videos with ~3-5
augmentations per clip, weighted by trick frequency (e.g., more augmentation for
Gemini, fewer for Layout).

5.3 Geometric Scoring System

An initial idea was to use a data-driven approach, such as an autoencoder [TBL18], to
learn ideal poses and quantify deviations from the ideal pose. Out-of-place body parts
could be identified by analyzing the reconstruction error. However, this implementation
requires a large set of “perfect” trick examples, while still being susceptible to bias.
Instead, a geometric rule-based approach is realized, as this thesis already provides a
working recognition model with a well-labeled dataset. This direct and interpretable
solution circumvents the black-box nature of Deep Learning models and the potential
bias inherent in subjective labeling. This approach aligns with how instructors critique
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5.3. Geometric Scoring System

form via visual checks of angles and body alignment. Explicit checks ensure consistency
and address the known issue that human judgment can be biased and inconsistent in
dance evaluation, underscoring the need for objective measures [Qu24].

Rule design. Specific characteristics enable viewers to identify a performed trick.
Instructors, therefore, establish those features as guidance to achieve this trick. Based on
this observation, the evaluation set consists of five to seven geometric rules capturing
its most characteristic requirements. The following categories group the rules as follows:

¢ Body Orientation: requires the dancer to orient the body at a particular angle
relative to the pole or ground. For example, in a Layout, the upper body should
be angled towards the floor, whereas in the Crucifix, the entire body should be
upside-down.

e Limb Alignment: defines how straight or aligned a specific body part is. Joint
angle calculations at elbows, knees, and other joints verify full extension or specific
angles. For instance, straight legs are required in the Layout, Wrist Seat, or straight
arms for the Straddle Invert and Crucifix.

e Joint Proximity: ensures correct distances between parts of the body. For
example, in a Layout, the ankles should be closed, or in a Pin-Up, the right toes
should be close to the left knee.

Each rule is defined by a target value and an accepted tolerance. During evaluation, the
rules are applied to each frame of the end position to compute all the defined angles and
distances. If a required joint holds a low confidence and is therefore not visible, the rule
is marked and does not pass due to insufficient data. The evaluation script outputs a list
of results, including a boolean for pass/fail, the measure value, and a short description.

Geometric rule definitions. Let p; = (x;, yi, 2, v;) denote MediaPipe landmarks in
normalized image coordinates, where x,y € [0, 1] and v is the visibility score. A visibility
threshold min(v;) > 7 (with 7=0.75) must pass for the joints to be evaluated.

Body orientation. For an oriented segment B — A, define

180
Horient(Aa B) = atanQ(yB — YA, TA — 51/‘B) . 7a

A rule passes if |orient — 0*| < A, where 6* is the target (e.g., 180° for straight) and A is
the tolerance.
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Limb alignment. Given points A, B,C, define u = a — b, w = ¢ — b (2D). The
internal angle is

. 1
Oatign (A, B,C) = arccos( ww ) . 80

— | —, &= 1078,
[ull W[ +e/ =
Again, a rule passes if |faign — 0| < A.

Joint Proximity. For points A, B, the normalized 2D distance is

d(A,B) = \/(za — 2)? + (y1 — yp)*.
A rule passes if d(A, B) < A (e.g., 0.05).

. . _ #passed
The end pose score is computed as the fraction of rules passed, score = Fevaluablo - The

system reports per-rule messages with measured values and targets for interpretability.

Orientation Alignment Proximity

Figure 5.9: Examples of passed and failed rules displayed through interactive overlays.
Top: failed, bottom: passed.
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5.4. Pole-Arina: Application

5.4 Pole-Arina: Application

This section presents the final prototype to realize Pole-Arina and enable user interaction.
It is implemented as a web application to support heterogeneous hardware, enable fast
interactive overlays, and centralize computational workloads on a server, while still
running on consumer laptops and smartphones. The frontend (React/Next.js) runs in
the browser, manages uploads, and renders interactive overlays. The backend (FastAPI +
PyTorch) exposes a single analysis endpoint that extracts skeletal data, performs sequence
classification with the Bi-LSTM, evaluates end poses with geometric rules, and returns a
structured result. Videos are uploaded through the website’s file picker (drag-and-drop
supported). In the user study, recordings were made on a smartphone and then uploaded
via the laptop browser. The full source code can be found here: Pole-Arinal

5.4.1 Backend

This section describes the server-side components to transform an uploaded video into
trick phases and interpretable pose-quality feedback. The backend exposes a single
analysis endpoint, runs the recognition pipeline, evaluates all end-pose frames, and
returns a structured result.

API endpoint. The service employs FastAPI (api.py) with one primary route:

e POST /analyze

o Input: a single .mp4/.mov uploaded via the web interface (desktop or mobile
browser)..

e Optional query field: confidence threshold for phase recognition and median
filter kernel size.

e Output: JSON structure with detected tricks, per-trick feedback items, per-trick
end-pose frames, and processing metadata.

At a high level, the route:

1. stores the upload in a temporary path,
2. calls evaluate_video () from pole_arina.py,

3. collects end-pose sequences, feedback, end-pose frames, and normalized skeleton
sequences,

4. and serializes results to JSON.

This compact interface keeps the client simple and reduces integration effort in the
frontend.
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5. POLE-ARINA: IMPLEMENTATION
Trick & phase recognition module. The recognition pipeline is implemented in
pole_arina.py and follows a six-step formula designed for clarity and robustness:
1. Skeleton extraction.
The system reads frames via OpenCV and extracts 33x4 landmarks per frame
using MediaPipe. It keeps both normalized image coordinates for model input and
world /absolute coordinates available for display. To maintain consistency with the
training distribution, the backend applies the same Exponential Moving Average
(EMA) and interpolation to MediaPipe landmarks prior to classification.
2. Input normalization.
Landmark sequences are stored as a tensor of shape (T,33,4), where 7" is the number
of frames in the clip, and normalized consistently with the training setup. This
preserves privacy and yields a compact representation for inference.
3. Model loading.
The backend loads the trained lightweight bidirectional LSTM from a checkpoint
and either selects a GPU if available or CPU otherwise.
4. Per-frame inference.
The model outputs per-frame logits over the single-head output layer, while a
softmax converts them to probabilities.
5. Temporal smoothing.
A median filter with a configurable kernel (default 7) suppresses brief misclassifica-
tions from being detected as a fully realized end pose.
6. Decoding.
The sequence decodes into contiguous runs with labels, start/end frame, and a
confidence summary. The pipeline only passes stable end poses (confidence over
0.75) to the evaluation module.
The model returns the full timeline and skeleton sequences to the frontend to avoid
re-running inference.
Feedback module. Pose scoring is implemented in trick_evaluator.py as a
transparent rule engine over MediaPipe joints. The rules mirror the specification in
Section 5.3/ and cover three geometric evaluations, each mapping directly to a distinct
overlay technique:
¢ Body Orientation—Arc: body angle relative to a horizontal line.
e Limb Alignment— Angle: internal angle at a joint, e.g., knee or elbow.
e Joint Proximity—Proximity: normalized 2D distance between landmarks.
54



Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

[ 3ibliothek,
Your knowledge hub

5.4. Pole-Arina: Application

For each detected end-pose frame, the evaluator:

e checks trick-specific rule configurations,
o applies a visibility threshold,
o computes pass/fail per visible rule given a target and tolerance,

o aggregates a pose score as the fraction of passed rules over all evaluable rules.

This ensures interpretability, as every score is derived from a readable checklist.

By combining these modules, the backend provides a compact and reliable analysis service
for trick recognition and evaluation. A single /analyze call turns a raw clip into a trick
timeline and an interpretable feedback list.

5.4.2 Frontend

Design & technology. The interface aims to be intuitive, straightforward, and coach-
like. Guided interaction minimizes friction for non-technical users and keeps the focus on
the trick analysis. An early Gradio prototype validated the pipeline workflow, but limited
interactivity led to a full React/Next.js implementation. The fully realized prototype is a
lightweight single-page web application with Material UI (MUI) for accessible, consistent
components and D3.js for interactive overlays.

User interface. A stepper Ul organizes the workflow into four screens:

1. Upload: initial video upload and analysis.
2. Summary: overview of all detected tricks.
3. Detail: interactive single-trick view with detailed feedback and overlays.

4. Dashboard: session summary for all detected tricks and scores.
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Upload. A single video upload triggers model analysis, starts a new training session,
and resets previous results. First, the user selects a single trick video and hits "analyze"
to send it to the backend. While waiting for a response, the Ul displays a loading progress
bar. After a few seconds, the frontend receives the results and the user advances to the
summary view. Each initial upload resets the frontend and starts a new training session.

POLE-ARINA

@ 2] © @

Upload Summary Details Dashboard

Drag & Drop your video here

or

Figure 5.10: Upload & analyze: single-video upload starts a new session.
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5.4. Pole-Arina: Application

Summary. This tab provides an overview of all detected tricks in the current training
session. Analyzed tricks appear as cards grouped by trick. Each card shows the trick
name, the middle frame of the detected end sequence (thumbnail), and the performance
score. A floating “+” button at the bottom right corner allows users to add further
attempts to the current session without clearing prior results. Videos of the same trick
are displayed in chronological order with a simple indicator for improvement, no change,
or decline between the cards. Clicking a card lets the user advance to the detailed view
of the selected trick.

POLE-ARINA

Upload Summary Details Dashboard

b 29% % Wk 80% '\ B & & & B6% % % %k 100%

Pin-Up-Pose

L & & & 67% L6 & & § 75% L & & & SRl L & & 50% L& & & 67%

Gemini

L 6 6 S+ - L 8 & & ¢ 80%

L8 8 & ¢ 80%

Figure 5.11: Summary: trick cards with thumbnails, scores, and an add-video button.
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Detail. The selected trick opens a control panel. First, the trick evaluation returns
two scores: the visibility score and the performance score. The first score is defined as
the percentage of evaluable rules, while the second calculates the percentage of passed
rules out of all evaluable rules. The left pane displays the current frame, initially chosen
based on highest visibility and then highest performance. The right pane offers overlay
toggles by rule family (orientation, alignment, proximity) and a rule list. Each rule item
includes a status icon (pass, fail, or not visible), a rule description, an improvement tip
(if failed), a score with a target range, and an overlay toggle button. By default, the
panel activates all overlays for failed rules, but provides global control through the top
buttons or single control for each rule item. Two MUTI rating components display each
score, including the exact value. A frame slider at the bottom enables manual frame
selection to explore changes over time.

OVERLAYS

. Arcs - Angles . Praximity

CHECKLIST - LAYOUT

o Lean back 1

®

o Legs down, hips up 1

®

o Straight bottom leg e

@& straight top leg i

®

Q Cross at ankles 1
Q Right-foot point —

Q Left-foot point L

®

Performance: 100% Visibility: 100%

L. 8.6 6 & IR cloloZolo]

USE FRAME #1626

Figure 5.12: Detail: frame viewer with overlay controls and per-rule feedback.
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5.4. Pole-Arina: Application

Dashboard. The session dashboard summarizes the training progress across all tricks.
It displays the average performance and visibility scores, and the number of performed
tricks. An interactive line chart plots score over attempts per trick, with a thumbnail
display at the side. The display (see Figure can either show the best, worst, or a
selected attempt through the line chart, for direct visual comparison.

PERFORMANCE SCORE (AVG.) VISIBILITY SCORE (AVG.) TOTAL TRICKS
70.24% 93.33% @
L8 .6 6 todo202010
59/84 rules passed 84/90 rule evaluable Total number of performed tricks

100 Layout Best Trick

20 Pin-Up-
Pose

504
Gemini

Layout — 100% A +71.4% since first

BEST WORST

Figure 5.13: Dashboard: session-level statistics.

Best Trick Worst Trick Selected Trick

Layout — 100% A +71.4% since first Layout — 29% A +0.0% since first Gemini — 80% A +51.4% since first

BEST WORST BEST WORST BEST WORST | OTHER

Figure 5.14: Best/Worst display example.
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5. POLE-ARINA: IMPLEMENTATION
To summarize, the frontend guides the user through a simple, coach-like flow: upload a
clip, review a trick gallery, inspect per-rule feedback with overlays, and reflect on progress
in the dashboard. Together with the backend, the interface turns model outputs into
actionable tips and session-level insights, enabling the user-study assessment that answers
RQ3. Table 5.2 lists the complete rule catalog used by the evaluator across all six tricks,
including targets and tolerances.
Table 5.2: Complete rule catalog across all tricks.
Trick Rule Type Joints (idx) Target Tol.
Lean back Orientation (11, 23) 22.5° +22.5°
Legs down, hips up Orientation (27, 23) —155° +20°
Straight bottom leg Alignment (23, 25, 27) 180° +20°
Layout Straight top leg Alignment (24, 26, 28) 180° +20°
Cross at ankles Proximity (28, 27) 0 <0.05
Right-foot point Alignment (26, 28, 32) 165° +15°
Left-foot point Alignment (25, 27, 31) 165° +15°
Straight left leg Alignment (23, 25, 27) 180° +20°
Straight right leg Alignment (24, 26, 28) 180° +20°
Wrist Seat Lean back Orientation (11, 23) 20° +20°
Right-foot point Alignment (26, 28, 32) 165° +15°
Left-foot point Alignment (25, 27, 31) 165° +15°
Lean slightly back Orientation (11, 23) 45° +15°
Straight leg down Orientation (27, 23) —135° +10°
Pin-U Toe to knee Proximity (32, 25) 0 <0.10
p Top leg into passé Alignment (23, 25, 27) 180° +20°
Right-foot point Alignment (26, 28, 32) 165° +15°
Left-foot point Alignment (25, 27, 31) 165° +15°
Push hips up Orientation (23, 11) 112.5° +22.5°
Lean back, straight arms  Alignment (11, 13, 15) 160° +20°
Straight left leg Alignment (23, 25, 27) 180° +15°
Straddle Invert Straight right leg Alignment (24, 26, 28) 180° +15°
Head-back tilt Alignment (7, 11, 23) 160° +20°
Right-foot point Alignment (26, 28, 32) 165° +15°
Left-foot point Alignment (25, 27, 31) 165° +15°
Push hips up Orientation (23, 11) 112.5° +22.5°
Back-leg straight Alignment (23, 25, 27) 160° +20°
Gemini Back-leg horizontal Orientation (27, 23) 180° +15°
Right-foot point Alignment (26, 28, 32) 165° +15°
Left-foot point Alignment (25, 27, 31) 165° +15°
Left-arm straight Alignment (11, 13, 15) 180° +20°
Right-arm straight Alignment (12, 14, 16) 180° +20°
Crucifix Cross at ankles Proximity (28, 27) 0 <0.05
Body upside-down Orientation (0, 27) —-90° +15°
Right-foot point Alignment (26, 28, 32) 165° +15°
Left-foot point Alignment (25, 27, 31) 165° +15°
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CHAPTER

Evaluation & Results

This chapter presents the evaluation strategy and outcomes for the Pole-Arina system.
The evaluation encompasses both a quantitative assessment of the pose recognizer and
scoring model, as well as a controlled user study to examine the system’s effectiveness
and usability in practice. Quantitative tests on a held-out dataset validate the recognizer
(RQ1) and the geometric scoring (RQ2). A controlled user study assesses effectiveness
and usability in practice (RQ3). The study evaluates the system in real-world training
scenarios, comparing Al-assisted feedback with traditional video self-review in terms of
user trust, improvement efficiency, feedback understandability, and overall usability.

6.1 Quantitative Model Performance

The recognizer was evaluated on a held-out test split to estimate generalization. The
protocol reported:

¢ Per-frame accuracy on the full label set and trick-only accuracy on end-pose
classes (RQ1).

o Per-class precision/recall and confusion matrices to reveal systematic mis-
classifications.

o Temporal stability via post-processing with a fixed confidence detection threshold
and median kernel chosen on validation data.

e Multi-trick robustness on sequences containing several tricks in succession.

The classifier achieved a per-frame accuracy of 93.82% across all classes and a trick-only
accuracy of 98.74% when considering only the final trick poses. Per-class precision
and recall were analyzed, and a confusion matrix revealed that the most common trick
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misclassification occurred for the on_pole label. Between tricks, the two visually
similar tricks Layout and Pin-Up proved most confusing. The system was also tested
on video sequences containing multiple tricks in succession, and it demonstrated robust
performance by correctly segmenting and recognizing each trick in order. Overall, these
results indicate that the recognizer provides accurate and stable identification of pole
tricks, forming a solid foundation for the feedback mechanism.

6.2 User Study Design

This study’s hypotheses evaluate whether Pole-Arina’s feedback would be trusted and
understood, whether it would improve form efficiently, and whether it would be rated as
usable. To answer RQ3, a controlled between-groups experiment compared Pole-Arina
feedback against traditional self-review. Participants practiced a single preselected pole
trick for five trials. The Ezperimental condition used Pole-Arina, while the Control
condition used a standard video with self-assessment. Measurement combined per-
trial Likert items, a post-session questionnaire, the System Usability Scale (SUS), and
open-ended questions for qualitative insights.

6.2.1 User Study Methodology

Evaluation goals. To evaluate the system’s performance in real training scenarios,
the user study verifies the following hypotheses:

e H1: Trust & Adoption: Participants in the Experimental condition will report
higher trust in the accuracy of feedback and greater confidence about what to
improve next than those in the Control condition.

o H2: Efficiency: Participants in the FEzxperimental condition will show greater
improvement across five trials than those in the Control condition.

e H3: Understandability: Participants in the Fxperimental condition will rate
the clarity and helpfulness of feedback higher than those in the Control condition.

e« H4: Usability: The Fxperimental condition will receive a higher System Usability
Scale (SUS) score than the Control condition.

The chosen criteria align with the project’s research questions while testing the technol-
ogy’s acceptance. Factors related to trust also include: demographic variables, privacy
protection, robustness, transparency, and performance [LWHL24], which are all consid-
ered throughout this thesis. In particular, fostering user trust is crucial, as prior studies
have indicated the importance of this criterion for the effective utilization of Al systems
[LWHL24]. This study’s hypotheses evaluate if Pole-Arina’s feedback would be trusted,
understood, improve their form efficiently, and be rated as a usable system.
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6.2. User Study Design

Study design. The experiment targeted Na20-30 participants, ranging from non-
dancers to advanced pole dancers. The user study followed a between-groups design. The
study randomly assigned one of two conditions to each participant and completed all
trials under that feedback method. The options are:

e Control: using traditional self-review through video recording and post hoc replay.

o Experimental: using the Pole-Arina application for deep-learning-based evaluation
and feedback about pose correctness.

To minimize expectancy effects, participants remained unaware of the alternative condition
and study aims until the debriefing. The study assigned a trick based on the dancer’s
experience. Beginners would practice the Layout while intermediate and advanced levels
performed the Pin-Up. The two tricks share similar geometric structure and hold the
same difficulty, yet the Pin-Up enforces stricter pose rules. They also formed the most
frequent confusion trick pair in the recognition model (see Figure 5.7). Therefore, the
feedback rules would be tested on similar form requirements, additionally challenging the
model’s recognition abilities.

User study protocol. All sessions took place in the same pole studio to maintain
consistency. A smartphone camera recorded the participants at a fixed position and
angle. For better accessibility, a two-screened laptop station hosted Pole-Arina and
served as a reviewing platform for each trick attempt. Therefore, between each review,
the recording was transferred to the laptop via Apple AirDrop. Each participant booked
a one-hour time slot, which was typically used for 45 minutes. An online form guided
the user through each step with follow-up questions. The study protocol was structured
as follows, with identical flow for both the Control and Experimental conditions:

1. Orientation & Consent: Participants were briefed on the study goals and what
to expect, including a caution about physical strain and possible bruises (also
known as pole kisses). After participants signed the informed consent, the first
section of the online form gathered demographic data. This established the context
of each user and ensured a mix of backgrounds.

2. Task Assignment & Demonstration: The condition (Control or Experimental)
was assigned at random while keeping it balanced throughout the study and the
dancers’ pole experience. As the setting simulated pole practice at home (or at least
without an instructor), the participant was shown a demonstration video, instead
of a real-life tutorial. Additionally, they received a walkthrough of the selected
reviewing method. Both groups were allowed to watch the demonstration video
unrestricted. A free attempt was allowed to get familiar with the trick and setup.

3. 5-Trial Loops with Feedback: The core of the study is executed through a 5-trial
practice loop. The participant attempted the assigned trick five times, aiming
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to improve with each repetition. After each attempt, the participant reviewed
their performance. Either they watched their video playback or examined the
feedback provided by Pole-Arina. After each review, the participant filled out a
per-trial survey. The form encouraged them to reflect on their performance, identify
mistakes, and adjust the trick accordingly.

4. Post-Session Questionnaire: After completing all trials, the participant filled out
a post-study survey about the employed feedback method. It includes Likert-scale
statements that directly address the evaluation hypotheses. Additional open-ended
questions allowed for qualitative feedback, and a standard ten-item System Usability
Scale (SUS) was used to evaluate overall usability. The SUS is a widely used survey
that provides a global measure for usability, through ten Likert items [BT96]. All
questions were answered with respect to the assigned condition, to allow baseline
comparison of traditional versus Al-assisted review methods.

5. Pole-Arina specific Feedback: After the main evaluation, all participants,
regardless of their group, were offered a chance to try out Pole-Arina. Therefore,
everyone had the opportunity to experience the Al-coaching system and fill out a
final questionnaire to provide qualitative feedback.

6. Debrief: The study concluded with a debrief, during which the purpose and
conditions were thoroughly explained, and participants were allowed to ask questions
and share additional remarks.

Evaluating the results. By design, the user study produced both quantitative and
qualitative data. Quantitatively, each trial provided an objective performance score from
the implemented system and a subjective self-assessment from the participant. This
allowed for a comparison of self-perception vs. actual performance. Using the evaluation
scores, an improvement metric estimates the participant’s trick execution across the
trials. The primary hypothesis for efficiency was to demonstrate that the experimental
group showed greater improvement than the control group, indicating faster and more
effective learning. For subjective responses, such as clarity of feedback and confidence
after each trial, trends were analyzed across the five attempts. All Likert scales were
matched and summarized according to the hypotheses. The SUS responses were both
statistically compared and converted to a 0-100 score per standard guidelines [BT96].
Finally, the qualitative open-ended answers were analyzed by open coding methodology
to identify important codes.

Overall, this evaluation approach combines a quantitative check on the model’s per-
formance with a human-centered assessment of the system’s effectiveness and user
experience.
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6.2. User Study Design

Question-hypothesis mapping & aggregates. The underlying hypotheses grouped
each questionnaire item and appropriately aggregated it into simple composites. Each
composite is identified by a short code for cross-referencing in Chapter 6.

o H1 (Trust & Adoption).

— H1A1 (per-trial):
Q: How confident are you that you know what to improve next?
— Aggregate: mean across trials.

— H1A2 (post-session):
Q: The feedback I received was accurate.
Q: I felt confident that this digital review method correctly reflected my perfor-
mance.
— Aggregate: mean over both items.

o H2 (Efficiency).

— H2A1 (performance slope):
Q: How would you rate your performance of this trial?
— per-participant least-squares slope of the five self-ratings.

— H2A2 (performance delta):
Q: How would you rate your performance of this trial?
— per-participant change of the same self-ratings.

— H2A3 (self vs. system agreement):
Q: How would you rate your performance of this trial?
— per-participant averages of self-ratings and Pole-Arina scores for correlation
and paired comparison.

o H3 (Understandability).

— H3A1 (per-trial):
Q: How clear was the feedback you received from the digital review method?
— Aggregate: mean across trials.

— H3A2 (post-session):
Q: I understood how to interpret this feedback to improve my form
Q: The digital review method helped me identify mistakes.
— Aggregate: mean over both items.

o H4 (Usability).

— H4A1 (SUS):
System Usability Scale score (0-100) computed per standard rules [BT96].
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6.3 User Study Results

This section reports the outcomes of the between-groups user study. It first profiles
participants’ demographics to contextualize subsequent analyses. It then presents the hy-
pothesis tests for H1-H4 with corresponding visualizations, highlighting where differences
between conditions are statistically reliable and where effects were not detected. The
section closes with qualitative feedback that complements the quantitative findings and
surfaces design implications for Pole-Arina.

6.3.1 Demographics.

By design, the user study proposed two different groups (dancers or non-dancers) with
two distinct conditions (Experimental or Control). To ensure meaningful results, the
protocol required a sample size of between 20 and 30 participants. In the end, a total of
33 participants completed the study: 17 in the Experimental group and 16 in the Control
group (see Figure . Similar to the dataset demographics, the final set resembles the
composition of regular pole classes while covering a broad range of execution quality.

Experimental (17) (16) Control

Figure 6.1: Condition balance bars. Bars show absolute counts.

Experience balance. Depending on the prior pole experience, a matching practice
trick was assigned for the trials. Balancing experience across conditions was therefore
essential to avoid confounding when comparing feedback methods. The stacked balance
bar in Figure shows a near-equal distribution of non-dancers and dancers within
both the Experimental and Control groups, enabling fair analyses of improvement and
feedback quality across skill levels.

(16) Control
Dancer: 8

Experimental (17)

Non: 9

Figure 6.2: Experience balance bars. Bars show absolute counts.

Gender context. Participation reflected typical studio demographics, with most
respondents identifying as female, fewer male participants, and no respondents selecting
the alternative option. The distribution is shown in Figure 6.3

Female (26) i (7) Male

Figure 6.3: Gender balance bars. Bars show absolute counts.
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6.3. User Study Results

Age distribution.

Figure 6.4 presents the age spread using a horizontal boxplot. The

ages span between 19 and 56 years old, with a median of 30, which aligns with the local
studio’s age distributions.

n=33 median=30

— ..

IQR=4 range=19-56

20 25

30 35 40

Age

45 50 55

Figure 6.4: Age distribution boxplot.

Training frequency & technology comfort.
likely learning dynamics, Figure [6.5a] presents the weekly pole-training frequencies, and
Figure 6.5b| shows a self-estimated technology comfort rating on a 1-5 Likert scale.

22 (67%)
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=
1%
L

10 (30%)

=
o
L

Participants

25 1

20 1

Participants

1(3%)

— 0 {0%) %

0-1 2-3

(a) Weekly pole training frequency: 0-1, 2-3,

4-5, or 6+.

4-5 6+

[y
w
L

[y
(=}
L

To contextualize prior exposure and

24 (73%)

5 (15%)
3 (9%)

1(3%
0 {0%) L

1 2 3 4 5

(b) Technology comfort: higher equals more

comfortable with apps/websites.

Figure 6.5: Participant distributions for (a) weekly training frequency and (b) technology
comfort. Category labels match the questionnaire options. Bars show absolute counts.
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6. EvaLuaTION & RESULTS

6.3.2 Hypothesis Tests

All analyses were run in IBM SPSS Statistics Version 31.0.0.0. For each composite,
normality was assessed with Kolmogorov-Smirnov and Shapiro-Wilk tests. As all cases vi-
olated normality, the Mann-Whitney U was chosen to perform all conditional comparisons
(Experimental N=17 vs. Control N=16).

H1: Trust & Adoption (H1A1, H1A2).

e H1A1 - Results: There was a statistically significant difference in HIA1 between
Experimental (mean rank = 20.88) and Control (mean rank = 12.88) condition,
U=70.00, Z=—2.430, p=.015.

e H1A2 - Results: There was a statistically significant difference in H1A2 between
Experimental (mean rank = 20.79) and Control (mean rank = 12.97) condition,
U=71.50, Z=-2.702, p=.007.

Interpretation: Participants using Pole-Arina reported higher accuracy for the feedback
and greater confidence that the method reflected their performance, and they felt it was
clearer what to improve next.

5.01 com | 5.0 - |
° |
@ e 4.5 ¥y
45
o ® 4.0
40 -
< <>
— ® -
T 354 T3]
2.5
3.01
2.0
251 jied
Experimental Control Experiﬁ'nental Control
(a) H1A1: per-trial confidence, 1-5. (b) H1A2: post-session trust, 1-5.

Figure 6.6: Value distributions by condition, H1.

H2: Efficiency

o H2A1 - Results: There was no statistically significant difference in H2A1 (slope-
based improvement) between Experimental (mean rank = 15.41) and Control (mean
rank = 18.69) condition, U=117.50, Z=—.698, p=.485.

o H2A2 - Results: There was no statistically significant difference in H2A2 (delta-
based improvement) between Experimental (mean rank = 15.91) and Control (mean
rank = 18.16) condition, U=117.50, Z=—.698, p=.485.
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6.3. User Study Results

Interpretation: Both groups improved over five trials to a similar extent. On average,
participants’ self-ratings systematically differed from the system’s ratings (inspection of
per-participant differences indicated a tendency to rate themselves lower than the tool).
However, the rank-order association between the two was weak.

1.0 1 ® 44 °
0.8 1
© 3 °
0.6
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0.0 L 0 >
-2
- -
0.2 1
-0.4
-2 1
Experimental Control Experimental Control

(a) H2A1: improvement slope per participant. (b) H2A2: improvement delta per participant.

Figure 6.7: Value distributions by condition, H2.

H3: Understandability

e H3A1 - Results: There was a statistically significant difference in H3A1 between
Experimental (mean rank = 21.94) and Control (mean rank = 11.75) condition,
U=52.00, Z=-3.100, p=.002.

e H3A2 - Results: There was a statistically significant difference in H3A2 between
Experimental (mean rank = 21.59) and Control (mean rank = 12.13) condition,
U=58.00, Z=-3.266, p=.001.

Interpretation: Pole-Arina’s overlays and explanations were rated as significantly
clearer and more helpful for understanding how to fix mistakes, compared to traditional
video analysis.

H4: Usability

e H4A1 - Results: There was a statistically significant difference in H4A1 between
Experimental (mean rank = 20.76) and Control (mean rank = 13.00) condition,
U=72.00, Z=-2.335, p=.020.

e H4A1 - Descriptives: Experimental M=95.44, SD=4.07, Median = 95.0; Control
M=86.41, SD=11.14, Median = 88.75.

Interpretation: Both reviewing methods achieved high SUS scores, with Pole-Arina
rated significantly higher (“Best imaginable” usability) by benchmark guidelines (see
Table 6.1).
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Figure 6.8: Value distributions by condition, H3.
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Figure 6.9: Value distributions by condition, H4A1: SUS score, 0-100.

Table 6.1: SUS benchmark guidelines (after Bangor et al.[BKM09]).

SUS score Adjective rating Grade
> 90 Best imaginable A+
80.3-89 Excellent A
74-80 Good B
68-73 OK-Good C
51-67 OK / Marginal D
<51 Poor / Not acceptable F

6.3.3 Qualitative Results

A Pole-Arina-specific post-study questionnaire was used to collect qualitative feedback
from all 33 participants. The responses provide rich insight into how users perceived the
system’s usefulness, accuracy, and areas for improvement, which helps in evaluating our
hypotheses.
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6.3. User Study Results

Would you use Pole-Arina regularly in your training? Overall, the feedback
was overwhelmingly positive: all participants indicated that they would use the
application in their training routine. Many said they would use it definitely or
regularly to improve their form, with a few noting they might not use it every single
attempt, but certainly every training session or for challenging moves. For example,
one participant wrote, “I would definitely use it, it’s a wonderful and invaluable tool to
correct even moves that you thought you knew how to do”. This strong usage intention
demonstrates a high acceptance of the system. Participants were enthusiastic about
incorporating the app into solo practice at home, and even as a complement during
classes.

Did the overlays help you understand how to improve your form? All par-
ticipants found the feedback rules and visual overlays helpful in understanding and
correcting their technique. In particular, dancers reported that the system’s precise,
objective feedback helped them notice details they would otherwise overlook. “The
graphical representation of the lines is really helpful to see where and how you can
improve the movement” noted one user.

Do you think Pole-Arina would be useful in beginner and/or advanced classes?
Many highlighted that the tool was especially beneficial for beginners. Simultaneously,
most participants agreed it would “be useful to all levels”, with advanced dancers using
it to “give the pose the final touch” and perfect their form. A few novices did caution
that a complete beginner might feel overwhelmed using the app without any prior
instruction. However, after learning the basics in class, they felt the app would be handy
for independent practice.

How accurate did you find Pole-Arina’s performance analysis? Participants
generally reported that the system’s analysis was accurate and reliable, giving them
confidence in the feedback. Many described the pose analysis as “very accurate” noting
that the app correctly identified their form errors. However, a few minor inaccuracies
were observed. For instance, a few users mentioned the system occasionally had trouble
recognizing a fully pointed foot or confused two very similar tricks (Layout vs. Pin-Up)
on the first try. One participant wrote: “Some accuracy problems in identifying similar
poses, but other than that it seemed quite accurate.” Others noted that if a body part
was hidden from the camera, the system sometimes missed that joint, leading to a less
optimal frame selection or an incomplete evaluation. Nonetheless, participants mainly
understood these issues as minor limitations of the current prototype (often related to
camera angle or body positioning) rather than fundamental flaws. This overall trust in
the accuracy of the system is critical for its validity and was reflected in comments like
“Absolut akurat! Ich stimm der App vollkommen zu, was die Bewertung meiner Posen
betrifft.” (Absolutely accurate! I fully agree with the app regarding the evaluation of my
poses.).
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What did you like most about using Pole-Arina? Participants highlighted several
aspects of the application that they liked best. A dominant theme was the visual and
detailed nature of the feedback. Nearly all users praised the overlay of angles, lines, and
highlighted body segments on their pose images, which made it “immediately clear what
to improve and how.” They also appreciated the simple, intuitive interface and workflow.
Several described the tool as “easy to use” and the feedback presentation as “clear and
specific.” The ability to scrub through recorded video frames and see feedback for each
attempt in a summary was also frequently mentioned. Other answers mentioned that
the tool introduced a game-like or self-competitive element to practice: “it was a fun,
gamified experience ... it motivated me to improve each time to look better,” wrote one
participant. Such comments suggest the system can increase engagement and enjoyment
in training, potentially improving adherence.

What would you change or improve about Pole-Arina? While the overall
feedback was positive, participants also provided valuable suggestions and pointed out
current limitations, which helped identify avenues for future work. For example, many
participants wanted to see a reference of the “perfect” pose for comparison. Similarly,
participants asked for integrated tutorials or tip videos. Another highly requested feature
was real-time feedback. For instance, the app could give an audio cue whenever the
dancer achieves the correct form or if a major mistake occurs. Users found the idea of
live feedback exciting, as it could help them adjust their pose immediately rather than
only correcting on the next attempt.

In summary, the qualitative results show that participants overwhelmingly found the
system beneficial, easy to use, and effective. At the same time, users provided constructive
feedback highlighting the current limitations. The current system has a limited set of
moves with offline feedback and minor detection and scoring quirks. These limitations,
however, directly point to concrete improvements that form the basis of future work.

6.4 Discussion

Summary of findings. The study examined whether a deep learning-based coaching
system improves trust, learning efficiency, understandability, and usability compared
with traditional video self-review. Overall, three out of four hypotheses were supported:

o H1 (Trust & Adoption)
o H3 (Understandability)
o H4 (Usability)

H2 (Efficiency) was not supported within the five-trial protocol: improvement slopes
and deltas did not differ significantly between conditions. Together, these results indicate
that RQ3 is answered positively for trust, understandability, and usability, while efficiency
advantages were not detected under the present design.
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6.4. Discussion

Interpretation & likely causes. Two factors explain the absence of a measurable
efficiency difference over five trials. First, traditional video replay represents a strong
baseline for immediate improvement, especially if one is familiar with the tricks. Second,
efficiency advantages from structured cues often manifest over longer practice horizons
and across various mistakes. Furthermore, participants described overlays as precise and
helpful for understanding how to adjust form, and adoption intent was uniformly high,
suggesting that benefits may accumulate with continued use.

Alignment with model results. The quantitative model’s performance established
a reliable basis for the user experience. Per-frame accuracy and trick-only accuracy
were high, and end pose detection remained robust across multi-trick sequences. The
rule-based scoring provided transparent, geometric justifications, while the qualitative
remarks are consistent with these properties and help explain the observed advantages in
trust and understandability.

In summary, the study validates Pole-Arina’s primary goal: pairing accurate recognition
with transparent, geometry-based explanations yields feedback that users trust and
understand, laying the groundwork for measurable skill gains as practice extends beyond
a single session.
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CHAPTER

Conclusion

This thesis introduced Pole-Arina, a novel marker-less deep learning-based coaching
system designed for static pole dancing tricks. The development and evaluation of
Pole-Arina addressed a clear gap in technology for dismissed sports, providing feedback
and analysis without the need for wearable sensors. The system recognizes the performed
trick, isolates end poses, and grades form using transparent geometric rules rendered as
visual overlays.

A primary contribution is a domain-specific dataset tailored to pole dancing technique.
It includes: 836 clips from 58 participants, annotated for phases and end poses, and
released as 3D skeleton (with an estimated depth value) sequences to protect privacy. A
revised single-head label scheme supports multi-trick recordings and explicit background
modeling. Building on this foundation, a lightweight bidirectional LSTM performs frame-
wise recognition over six static tricks, and a rule engine converts landmark geometry into
pass/fail checks and an overall pose score. A full-stack prototype implements the pipeline
and surfaces interpretable feedback through interactive overlays.

The research questions were addressed as follows:

o RQ1: was met with strong results. 93.82% per-frame accuracy across all classes
and 98.74% trick-only accuracy on end-pose frames, with robust behavior on
multi-trick sequences.

o RQ2: was realized via explicit, trick-specific geometric rules that map angles, ori-
entations, and proximities. Feedback and visual cues enable consistent, transparent
grading.

« RQ3: was examined in a controlled user study (N=33): compared to traditional
video self-review, Pole-Arina achieved significantly higher ratings for trust/accuracy
and understandability, and a higher SUS usability score (best imaginable by bench-
mark guidelines).
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These findings suggest that Pole-Arina can provide meaningful support for independent
practice in pole sports. The approach generalizes to other domains where end poses
encode most of the instructional signal and where transparent rule checks promote trust.

Current implementation limitations & improvements. The present prototype
is optimized for single-camera, offline analysis of static tricks. This choice simplifies
deployment but introduces practical constraints. First, robustness can degrade under
strong occlusions, extreme viewpoints, or low light. Next, geometric rules emphasize
alignment and orientation but do not yet cover fine stylistic criteria. Furthermore, the
workflow involves smartphone capture and laptop-based processing, so near—real-time
feedback on-device is not evaluated. Immediate improvements include on-device/mobile
inference for faster computation, camera-guidance prompts (viewing angle, distance,
lighting) to reduce failure modes, confidence/uncertainty indicators in the UI, and
incremental rule catalogs with editable tolerances.

User study limitations & future work. It is important to note the following
limitations:

e Sample and setting: The study took place in a single studio with a modest
sample size (N=33), which bounds external validity.

e Protocol length: Five attempts in one session may be insufficient to expose
efficiency differences that require consolidation over longer practice intervals.

e Set-up: The user study employed a laptop-based workflow with smartphone
recordings and post-hoc transfer. Therefore, mobile deployment or real-time
evaluation was not tested.

o Task scope: Only a fixed set of tricks and rule configurations was evaluated.
Generalization to a broader repertoire remains to be demonstrated.

Finally, qualitative reasoning followed a lightweight thematic approach. While themes
were consistent with quantitative outcomes, future work could include multi-coder
reliability checks to strengthen interpretive claims.

Altogether, Pole-Arina demonstrates that a compact Bi-LSTM paired with interpretable
geometric scoring and a privacy-first dataset can deliver accurate recognition, clear
feedback, and high user trust. This establishes a practical baseline for Al coaching in
pole dance and points to an expandable pathway for accessible, marker-less coaching
across movement disciplines.
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Overview of Generative Al Tools
Used

Generative Al tools (OpenAl ChatGPT and Grammarly) were used solely as writing
aids for surface-level editing (grammar, punctuation, and minor rephrasing) and for
translating the abstract/acknowledgements. No Al tools were used to generate research
ideas, design the study, create or analyze data, write technical content, or produce figures
or results. All scientific claims, methods, datasets, and conclusions are my own.
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Ubersicht verwendeter Hilfsmittel

Generative KI programme (OpenAl ChatGPT und Grammarly) wurden im Schreibpro-
zess zur Kontrolle der Grammatik und Zeichensetzung, sowie in geringem Ausmaf} als
Formulierungshilfe eingesetzt. KI wurde nicht zur Entwicklung wissenschaftlicher Ideen,
Studienplanung, der Verarbeitung von Daten, Generierung von Tabellen, Grafiken oder
technischer Texte genutzt. Alle wissenschaftlichen Behauptungen, Methoden, Datensétze
und Schlussfolgerungen sind meine eigenen.
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