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This work investigates how corrections to fundamental parameters describing ion-solid interaction affect sput-
tering yield simulations based on the binary collision approximation. We review recent experimental assessments
of electronic stopping power and short-range repulsive interatomic potentials for light plasma species (H, D, He)
in plasma-facing material candidates (W, Fe, EUROFER97), and compare them to widely used semi-empirical and
theoretical models. At low energies, discrepancies of up to 60% relative to SRIM-2013 and up to 210% relative to
SRIM-1997 are identified for the specific energy loss, highlighting the need for improved input parameters. We
assess the sensitivity of sputtering yields to these corrections using SDTrimSP simulations, and compare the
results to new experimental sputter yield data obtained for re-deposited thin W, Fe, and EUROFER97 films on a
high-sensitivity quartz crystal microbalance. Incorporating derived stopping powers and interatomic potentials
into the simulation significantly reduces the discrepancies between experimental and simulated sputtering yields.
Remaining uncertainties and model limitations, such as crystal structure effects and ion implantation, are

discussed.

1. Introduction

Understanding plasma-wall interactions (PWI) is essential for the
operation and longevity of plasma-facing materials (PFM) in fusion re-
actors. The extreme conditions in fusion devices, characterized by high
particle fluxes, thermal loads, and material erosion, necessitate accurate
modeling to predict material response and guide the selection of optimal
PFM [1-3]. Sputtering, defect formation, and hydrogen isotope reten-
tion are key processes that influence reactor performance, and their
accurate modelling depends on reliable knowledge of fundamental
quantities describing ion-solid interaction such as electronic stopping
power, and nuclear interactions described by interatomic potentials
[4-6].

Sputtering yields (SY), defined as the average number of atoms
ejected per incoming particle, quantify the erosion of PFM by plasma
particles and their subsequent contamination of the plasma or redepo-
sition of PFM elsewhere in the reactor [7-10]. Models for SY

simulations, including those based on the binary collision approxima-
tion (BCA) and molecular dynamics (MD), rely on semi-empirical or ab-
initio derived interaction potentials and stopping power formulations
[11-14]. However, experimental validation of these input parameters
remains limited, particularly for slow, light ions (H, D, He) in PFM such
as tungsten (W), a candidate first-wall material for future fusion reactors
[3,15], and structural materials such as EUROFER97 [16].

In this work, we review the current status of two key quantities that
describe ion-solid interaction: (i) The energy depositions via inelastic
collisions between the ion and the target material, characterized by the
electronic stopping power (energy loss per unity path), or alternatively,
the stopping cross section (SCS), which normalized the stopping power
by the atomic density of the target, to remove the trivial dependence on
material density; (ii) Repulsive interatomic potentials, which directly
affect interaction cross sections, and thus determine the energy and
angle distribution of scattered and recoiling particles in the collision
cascade responsible for physical sputtering. Recent studies have
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revealed discrepancies of up to 60 % between semi-empirical models
and experimental results for electronic SCS at low energies [17], high-
lighting the need for improved datasets. Inaccuracies in stopping power
and interaction potentials can propagate through PWI models, affecting
predicted sputtering yields, implantation depths, and defect generation.

Beyond their role in PWI modeling, SCS and interatomic potentials
are also critical for ex-situ analysis of reactor components. Ion beam
analysis (IBA) techniques, such as Rutherford Backscattering Spec-
trometry (RBS), Elastic Recoil Detection Analysis (ERDA) and Nuclear
Reaction Analysis (NRA), are widely used to quantify impurity deposi-
tion, fuel retention, and material modification in exposed PFM [18-20].
The accuracy of these techniques depends on reliable knowledge of
energy loss mechanisms and cross-sections, which are governed by
stopping power and interatomic potentials. Inaccuracies in these
fundamental quantities introduce uncertainties in depth profiling and
compositional analysis, limiting the precision of fusion material as-
sessments. Therefore, improving the experimental understanding of
these parameters is essential for both predictive PWI simulations and
diagnostic techniques in fusion research.

To address these issues, we review recent experimental in-
vestigations of energy depositions and interaction potentials for light
ions in key PFM: W, EUROFER97, and iron (Fe), as the main component
of EUROFER97 and steels. We quantify deviations from commonly used
semi-empirical and theoretical models, with focus on fusion-relevant ion
energies, i.e. below 10 keV. The experimental results are integrated into
BCA-based simulations using the SDTrimSP code [12] to assess their
impact on predicted sputtering yields. Finally, simulated sputtering
yields containing experimentally corrected stopping power and inter-
atomic potentials are directly compared to newly obtained experimental
yield data using thin films of PFM (W, Fe, and EUROFER97) deposited
on a high-sensitivity quartz crystal microbalance (QCM) [21]. The
incorporation of corrected stopping powers and interatomic potentials
into the simulations significantly improves agreement between simu-
lated and experimental sputtering yields for all studied cases. Remaining
sources of uncertainty, such as crystallinity effects are also discussed.

2. Materials and methods

For the experimental measurements of sputtering yields using a high-
sensitivity QCM, thin films of the materials of interest were deposited on
Quartz Crystals (QC), which were additionally equipped with Au layers
below 100 nm thickness on both sides, enabling electrical contact. Bulk
targets of W and EUROFER97 were used in a PREVAC magnetron
sputtering system in Ar atmosphere using a gas flow rate of 10 standard
cubic centimeter per minute (sccm), Ar pressure of 5.5 x 10°3 mbar, and
a DC power of 50 W [22]. The use of EUROFER97 targets allowed to
obtain films of comparable composition and crystallinity: A detailed
characterization of films deposited from EUROFER97 using ion beam
analysis is presented elsewhere [22,23]. The films of Fe were also
deposited by magnetron sputtering as described elsewhere [24].

A QCM setup located at TU Wien was used to experimentally
determine sputtering yield values during ion bombardment in ultrahigh
vacuum (UHV) conditions. It allows to record mass changes in situ by
measuring resonance frequency variations of a piezoelectrically excited
quartz resonator disk [21]. In this setup, a high sensitivity to mass
changes in the order of 10* W monolayers per second can be achieved
[25], which is realized by using special SC-cut quartz resonator disks
and dedicated electronics. For the experiments, the covered side of the
QCM, was then exposed to beams of different energies of D3, or He" ions
delivered from a SPECS IQE 12/38 ion source. The generated ions were
filtered according to their mass over charge ratio and the resulting ion
beam was furthermore shaped and scanned in order to ensure a quasi-
homogeneous irradiation throughout the whole sensitive area of the
QCM. Prior to each experiment, the samples were first sputter cleaned
using Ar as projectile to remove potential contaminations that might
have accumulated on the surface due to air expose. Additionally, the
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samples were irradiated by D3 or He™ under normal incidence until
stable conditions were reached. This pre-irradiation allowed to measure
steady-state yields, i.e., erosion rates obtained after thermal equilibra-
tion and after initial implantation processes possibly occurring promptly
after irradiation start, had saturated. The respective ion flux was
determined by means of a Faraday cup before and after each measure-
ment, ensuring steady ion irradiation. Both temporal as well as lateral
fluctuations of the ion beam were considered for estimating the mea-
surement error. The ion incidence angle was varied between 0° and 70°
in the experiments in discrete angular steps of 5°, by tilting the sample
relative to the ion beam via a motor-controlled goniometer. Due to the
high sensitivity of the QCM, low ion fluxes could be employed, avoiding
significant heating and unnecessary high fluences to the PFM/QCM
sample. With information from both the mass loss and the ion flux,
incidence-angle-dependent sputtering yields were calculated.

Atomic Force Microscopy (AFM) employing an Asylum Research
Cypher S, were performed at ambient conditions before and after the
sputtering yield measurements to ensure that the surfaces present low
roughness and that ion beam exposure during the QCM measurements
did not modify the surface morphologies. As an example, root mean
square of roughness (Rq) values range from 1.088 to 1.092 nm for the W
film on QCM before, and from 1.476 to 1.704 nm after sputtering yield
measurements, without any significant change in morphological fea-
tures. The low Rq observed by AFM indicates that no significant
roughness effects are expected in the sputtering yield results [26,27].

SDTrimSP simulations [12] using a graphical user interface (GUI)
developed at TU Wien were performed [28]. Such a GUI allows to easily
apply corrections of different parameters to investigate its effects on
sputtering yields compared to experimental data. For this study, amor-
phous flat surfaces of W, Fe, and EUROFER97 composition free of con-
taminants were considered as targets in the SDTrimSP sputtering yield
simulations.

3. Results and Discussion
3.1. Electronic stopping power

Fig. 1 compiles recent measurements of electronic SCS for light ions
in different PFM across a wide range of energies [17,29-33], while the
magnified low-energy region is shown in Fig. 2. Commonly used semi
empirical models from different versions of the Stopping and Range of
Ions in Matter (SRIM-1997 and SRIM-2013) code [11,34] for electronic
SCS, as well as the SCS calculated using the Lindhard-Scharff Formula
for ions in the keV region [35] (available as inelastic energy loss model
in the SDTrimSP code) are also presented for comparison. Good agree-
ment between experimental SCS and SRIM-2013 can be observed for the
case of H, D and He in W for medium (defined here as the region between
10-300 keV) and high energies (>1000 keV), as well as for H, D, and He
in Fe for high energies. On the other hand, significant discrepancies are
observed between experimental results and models: discrepancies
around up to 11 % are observed around the maximum (Bragg peak) and
20 % for the low energy region around 5-10 keV for H, and D in Fe and
EUROFER97 between experimental data and SRIM-2013. For the case of
W, consistent discrepancies are observed between experimental data
and SRIM-2013 for low energies, up to 60 % and 210 % for the case of He
for SRIM-2013 and SRIM-1997, respectively.

It is unsurprising that discrepancies exist between semi-empirical
models and recent experimental data, given the previously limited
datasets available for light ions in W and Fe. Before 2021, the SCS
database in W was limited to 4 datasets from 1972 to 1984 with energies
ranging from 80 to 6000 keV for protons and 6 datasets from 1963 to
1974 with energies ranging from 300 to 19525 keV for He at the IAEA
electronic stopping power database [36]. This scarcity of datasets,
particularly at low energy regimes, reduces the accuracy of the empirical
fits used in models. In addition, the simplest reasonable model system to
describe energy transfer to the electronic system in the low energy
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Fig. 1. SCS of W, Fe, and EUROFER97 for protons, deuterons and “He ions recently obtained experimentally from Moro [29], Shams-Latifi [17,31], Ponomoreva
[30,32], and Silva [33]. Experimental results are compared to semi-empirical SCS from SRIM-2013 [34].

regimes is an ion moving in a free electron gas (FEG). This approach
results in stopping power being velocity proportional [37], with a pro-
portionality coefficient Q that depends on the atomic number of the
projectile and the electron gas density. However, in the low-energy
regime, several studies have reported limitations and deviations from
the FEG model for different target materials [38,39]. These deviations
are attributed to additional energy loss mechanisms, such as charge
exchange effects during close ion-target encounters and excitation limits
for specific ions at low energies.

3.2. Interatomic potential

Repulsive interatomic potentials between ions and target atoms are
critical in determining nuclear stopping power, scattering and recoil
angle distribution, and the scattering and recoil cross-sections.
Commonly used models considering screening by electrons in the low
energy regime such as Ziegler-Biersack-Littmark (ZBL) [11] and
Thomas-Fermi-Moliere (TFM) [40] present significantly improved pre-
dictions compared to the Coulomb potential of bare nuclei. These
models are, however, known to be inaccurate at low energies, and
application of empirical correction factors (c,) in the screening length
(a) are recommended and result in further improvements of the model
predictions [41]. Nevertheless, experimental reference data for several
of ion-solid combinations remains scarce, and only recently the first
experimental ¢, for a PWI relevant combination at low energies was
presented, derived from angular scans using low energy ion scattering in
single-crystals [42]. Other interatomic models are proposed based on
density function theory (DFT) calculations [43-45], which would
benefit from validation based on experimental measurements.

Fig. 3 presents the backscattering yield of singly scattered ions

extracted from the surface peak for 3 keV primary He" ions scattered
under normal incidence from a W(110) single-crystal. Data is obtained
experimentally throughout angular scans around the [010] crystal axis
[42]. The observed angular pattern is a result from the shadow cone of
surface layer atoms that block projectiles backscattered from deeper
layers, in particular for this case the 2"¢ atomic layer from reaching the
detector. Experimental results are compared to MD simulations using
the software KALYPSO [46] considering different interatomic poten-
tials: TFM with and without a ¢, correction of 0.85; ZBL, and the
screened potential recently developed by Nordlund-Lehtola-Hobler
(NLH) [45]. The difference between the models and the experimental
data is also presented in Fig. 3, to better compare the best-fitting models
with the experimental results. Clear discrepancies between uncorrected
TFM and ZBL potentials and experimental results are observed in the
width in the angular pattern. It is visible that applying a correction of
0.85 to the TFM potential significantly improves the simulation in
comparison to the experimental results. Table 1 summarizes several c,
for the TFM potential for He and D at 3 keV/atom in W and Fe [42]. One
might notice that each correction represents a single combination of ion-
energy-target, and its validity for different energies still needs to be
investigated. On the other hand, simulations using the NLH potential
also show good agreement with experimental results and highlight
improvement in predicting the strength of the interatomic potential at
low energies in comparison to TFM and ZBL potentials.

3.3. Sputtering yield: Experimental and BCA simulations

The results of experimental SY for different ions and for redeposited
PFM as a function of the incident angle are presented in Fig. 4. Com-
parable SY are obtained for both Fe and redeposited EUROFER97
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Fig. 2. SCS at low energies (<10 keV) of W, Fe, and EUROFER97 for protons, deuterons ad “He ions recently obtained experimentally and compared to SRIM models
as presented in Fig. 1. SCS from SRIM-1997 [11] and calculated using the Lindhard-Scharff formula for low velocity ions [35] are also presented for comparison.

(referred here as EUROFER97 for simplification) for all ions, as expected
given the composition of 88.7 % of Fe atomic content in the films [22],
and given the sufficiently low fluence used in the experiments which is
expected not to induce significant changes in the composition of the
films from preferential sputtering due to W surface enrichment [47,48].
Another feature in the experimental SY curves is observed between 20°
to 40° incident angle, which is most pronounced for W and Fe films. This
local minimum indicates the presence of a preferential crystal orienta-
tion in the films that can influence the sputtering yields for different
incident angles [49,50]. This behavior is not observed to this extent for
EUROFER97, suggesting no preferential crystal orientation on the
surface.

SY simulations from SDTrimSP are presented for comparison to the
experimental results in Fig. 5. The simulations were carried out using
Lindhard-Scharf as inelastic energy loss model and TFM as interatomic
potential model. These models were chosen because they allow
straightforward application of empirical correction factors in SDTrimSP,
enabling direct comparison with the experimentally derived SCS and c,
values presented earlier in this work. While for the case of Dy, c; was
obtained at 3 keV/D, instead of the 1 keV/D investigated in the SY
measurements, this correction is assumed to represent a significantly
more accurate estimation than the uncorrected TFM potential. Across all
ion-target combinations, the wuncorrected SDTrimSP simulations
consistently overestimate the experimental sputtering yields at all inci-
dent angles. In contrast, empirical corrections to both SCS and c, sub-
stantially reduces the discrepancies between simulation and experiment.
However, even after applying corrections, notable discrepancies remain,
particularly for D, across all PFM studied. Despite measuring at steady
state conditions, this difference may be partially attributed to mass gain
from deuterium implantation in the films, which reduces the net mass

loss detected by the QCM. The effect of implantation is expected to scale
with the penetration depth of the projectiles, thus rationalizing the
larger discrepancy for D compared to He. A further, and potentially
significant source of uncertainty lies in the crystallinity of the films.
While the SDTrimSP simulations assume amorphous targets, the
experimentally studied films exhibit polycrystalline structure with
preferential orientation, as suggested by the angular dependence of the
SY observed between 20° and 40°. Recent studies have demonstrated
that sputtering yields in polycrystalline metals with randomly oriented
grains can differ markedly from the SY of an amorphous material [51].
Grain orientation, channeling and texture effects in crystalline targets
can all affect local sputter probabilities. Accurately accounting for these
effects in BCA simulations remains challenging. Addressing this would
require dedicated studies to quantify the effect, assisted by the contin-
uous development of BCA simulation tools to incorporate empirically
corrected parameters for different crystal orientations.

It is also worth noting that the surface binding energy, defined as the
minimum energy required to remove an atom from the surface, is
another input parameter that is often considered unknown and can
significantly affect sputtering yield simulations [13,52]. Frequently,
surface binding energy is treated as a free parameter to fit simulations to
experimental data [53-55]. In this work, standard surface binding en-
ergy values from SDTrimSP were used.

Although the results summarized here significantly reduce the pre-
vious knowledge gap related to ion—solid interactions of slow, light ions
in PFM, the need for further studies remains. Systematic investigations
of interatomic potentials as a function of ion energy can help predict
trends in how nuclear interactions occur at very low velocities. Simi-
larly, expanding studies to other target materials may reveal clear trends
across specific elemental groups, improving the predictability of



E. Pitthan et al.

1400 : . . . ' -
_ 1200 ] —o— Experimental
’ué) 1000 - === TR, e 1100
= | " seesees TFM, ¢, = 0.85
o 800 /%S
= 600
°
Q i
& 400 -

200 -

0 He* 3 keV — W(110)
30 20 -10 0 10 20 30

o ] T T T T ! A d
X 400+ ]
© 200-
8 oA
o ]
® -200 -
(0]
£ -400 -
a

-3|0 -2|0 -1|0 0 10 20 30
Azimuth Angle (°)

Fig. 3. Angular dependence of the surface scattering yield for 3 keV He" from
W(110) around the [010] crystal axis obtained experimentally [42] and
compared to MD simulations using different potentials [45]. The difference
between the different models and the experimental data is presented below.

Table 1
Empirical correction factors (c,) for the TFM potential for different ions in W and
Fe from [42].

Ion c, (TFM)

W(110) Fe(100)
He' 3 keV 0.85 0.7
D3 3 keV/atom 0.95 >0.85

ion-target combinations. Beyond the materials studied in this work,
other fusion relevant materials, such as molybdenum (Mo) proposed for
diagnostic mirrors [56,57], and boron (B), used for wall conditioning
[3,58], also exhibit either scarce data or significant discrepancies in
available datasets for electronic energy losses for light ions [36]. Addi-
tionally, the substantial presence of oxygen and hydrogen in PFM can
induce changes in the electronic structure, affecting ion energy losses in
ways not captured by simple Bragg’s rule predictions [59,60], and
highlights the need for specific studies in compound materials. Finally,
there is no available experimental SCS in W and Fe for medium-Z ions,
such as neon (Ne) and argon (Ar), proposed as seeding impurities in
tokamaks [61,62]. These gases can significantly contribute to PFM
erosion, underscoring the importance of expanding experimental efforts
in this area.

4. Summary and conclusion

This study reviewed the current status of available experimental data
for electronic energy depositions and interatomic potentials for
hydrogen isotopes and helium in W, Fe, and EUROFER97, comparing
them with commonly used models. Significant discrepancies were
identified in electronic stopping cross sections, particularly at low en-
ergies, with deviations reaching up to 210 %, depending on the selected
energy loss model. Empirical correction factors for the TFM potential,
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Fig. 4. Sputtering yields as a function of the ion incident angle, measured using
a QCM system for the indicated ions and energies using redeposited films of Fe,
EUROFER97, and W.

ranging from 0.7 to 0.95, were summarized, while recently developed
potentials showed very good agreement with experimental data. Incor-
porating empirical corrections in SCS and adjusting interatomic poten-
tials in BCA simulations of sputtering yields using the SDTrimSP code
significantly reduced discrepancies between simulations and experi-
mental sputtering data. The need for continued studies to better un-
derstand trends in the behavior of other fusion-relevant ions, targets,
and energy ranges was identified, particularly for materials such as Mo
and B, and for impurity seeding gases at low energies. These efforts will
help to improve predictive capabilities for other ion-solid combinations,
and enhance the accuracy of fundamental aspects related to plasma—-
wall interaction.
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Fig. 5. Sputtering yields of D 1 keV and He 3 keV for W, Fe, and EUROFER97 simulated using SDTrimSP simulated for different incident angles with and without
empirical corrections on SCS and ¢, in comparison with the ones obtained experimentally.
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