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ABSTRACT

Gas-phase electrophoresis by means of a nano-Electrospray Gas-phase Electrophoretic Mobility Molecular Analyzer (nES
GEMMA, also known as e.g., nES DMA, MacroIMS, or LiquiScan ES) separates singly charged, aerosolized (bio-)nanoparticles
at ambient pressure in the gas phase according to the particle electrophoretic mobility (EM) diameter, i.e., an equivalent size
related to spherical analytes. Corresponding size spectra in the range of a few to several hundred nanometers in terms of an EM
diameter relate particle number concentrations to particle size values. Already shortly after the introduction of the instrument
to the community of analytical chemists, its ability to yield particle molecular weight (MW) values based on measured EM di-
ameters applying a corresponding correlation function was described. This first calibration function was solely based on protein
monomers, dimers, and larger aggregates. In the following years, it became evident that this correlation function was well suited
to calculate MW of globular proteins based on their EM diameters. For other substance classes, significant deviations were ob-
served which ultimately led to the definition of further calibration functions. This manuscript reviews these developments and
provides an overview of some key applications of gas-phase electrophoresis using the nES GEMMA system for MW determina-
tion of (bio-)nanoparticles from initial experiments in the year 1996 to the current day (2025).

1 | Introduction opening new characterization avenues and complementing

analytical techniques requiring vacuum. The determination of

According to the recommendations of the European Commission
for nanoparticle characterization (2011/696/EU, October 18th,
2011, updated version 2022/C 229/01, June 10th, 2022), nanopar-
ticle materials are defined as matter with “50% or more of parti-
cles having a size between 1 nm and 100 nm” for assessing the
materials characteristics concerning their impact on health, en-
vironment, or safety. In this context, gas-phase electrophoresis
using a nano electrospray gas-phase electrophoretic mobility
molecular analyzer (nRES GEMMA) is a competitive analytical
technique. Measurements are performed at ambient pressure,

nanoparticle abundance vs. electrophoretic mobility (EM) is
fast, and the obtained spectra are rather uncomplicated, mak-
ing data interpretation relatively straightforward. EM data, in
turn, allows an assessment of the MW in the kilo- to megadalton
range of an analyte in question based directly on instrumental
readouts and application of a corresponding correlation func-
tion. It is thus the aim of this review to describe the instrumen-
tation and its applicability in analyte molecular weight (MW)
determination in detail, from first gas-phase electrophoresis ex-
periments in 1996 to the current state (2025).
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2 | On the Beginning of Gas-Phase Electrophoresis

Gas-phase electrophoresis on a nES GEMMA as a stand-alone
instrumentation was first described by Kaufman et al. in 1996
[1]. In this manuscript, Kaufman and colleagues used (i) a cone-
tipped fused silica capillary for a nES, (ii) a ?'°Po alpha-particle
emitter as a source to obtain a stable bipolar atmosphere in order
to charge equilibrate undefined multi-charged aerosol droplets
from the nES process, (iii) a nano differential mobility analyzer
(nDMA), and (iv) a n-butanol-based ultrafine condensation parti-
cle counter (CPC) for number-based particle detection after sep-
aration of the polydisperse aerosol in the nDMA (see Figure 1).
Analytes were electrosprayed, followed by drying of droplets and
concomitant charge equilibration. Resulting polydisperse aerosol
particles were mostly neutral. However, a certain known percent-
age of single-charged analytes was also obtained. Separation of the
latter occurred in a highly laminar sheath flow of air and a per-
pendicular tunable electric field. Subsequently, separated particles
with known sizes were monitored with a CPC, in which, after a
nucleation process induced by separated analytes in a supersatu-
rated n-butanol atmosphere, a detection process by laser-light scat-
tering occurred. Proteins ranging from bovine insulin monomers
(~5.7kDa) to bovine thyroglobulin dimers (~1338kDa) were mea-
sured, and resulting EM diameters plotted against analyte MW
values. In doing so, the analyte behavior upon transition from the
liquid to the gas-phase was investigated, focusing on protein den-
sity values to gather information on the particle folding and ori-
entation in the gas-phase. Subsequently, this instrumental setup
was commercialized by a US-based company, TSI Inc. (Shoreview,
MN, USA). However, it should be noted that the concepts of the
individual instrumental parts were known already for some time
prior to Kaufman's experiments with globular proteins in 1996.

Electrospray ionization, extensively studied by Fenn and col-
leagues in the 1980s, enabled the transfer of large, multicharged
(bio-)molecules from the liquid to the gas phase in the field of
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FIGURE1 | The firstdescription of a nES GEMMA instrumentation
taken from Kaufman et al. Reprinted (adapted) with permission from

[1]. Copyright 1996 American Chemical Society.

mass spectrometry; a process called sometimes “teaching ele-
phants to fly” [2, 3]. In 1995, Chen and colleagues (including
Stanley Kaufman) had focused on the generation of mono-
disperse aerosol particles for the purpose of instrument calibra-
tion based on ES processes [4]. Charge equilibration in a bipolar
atmosphere, on the other hand, was already investigated much
earlier e.g., by Liu and Pui [5], or Wiedensohler and Fissan [6].
(For additional information on charge equilibration setups,
please refer to “Conclusions and Outlook”.) As electrophoretic
separations are usually based on charge and size/shape of an-
alytes, concentration on single-charged species leads to signifi-
cantly less complicated spectra as separation is solely based on
particle size upon electrophoresis in the gas-phase.

Likewise, the DM A concept dates back to the 1920s and originates
in aerosol studies and atmospheric measurements during that
time. In short, two concentric electrodes enable the application of
a high, tunable voltage resulting in a defined electric field between
them governing the trajectories of charged particles in question
in an otherwise particle-free, highly laminar sheath flow of air.
Particle counting enables characterizing aerosol particles in their
respective concentration and size. Reviews by Juan de la Mora and
colleagues [7] as well as Intra and Tippayawong [8] give an excel-
lent overview of the technique. Ultimately, bringing all these in-
dividual concepts together for (bio-)nanoparticle characterization
introduced a novel instrumental arrangement to the analytical
community [1]. Following that work, a first nES GEMMA review
article was published in 1998 [9].

It is of note that over the years, different instrument names were
reported in literature—nES GEMMA, MacroIMS, LiquiScan ES,
SMPS, or nES DMA. In terms of surveying literature, this might
be sometimes problematic. However, all these instruments—de-
spite different names—share the same overall analytical prin-
ciple: the determination of particle number concentrations in
relation to the applied separation voltage in the DMA unit of the
used instrument. This latter number can be correlated with the
surface-dry particle diameter of spherical analytes in the gas
phase and is usually referred to as EM diameter or EMD, given
in [nm]. In 2012, Guha and colleagues reviewed such an ana-
lytical instrument as “rapid, high resolution and accurate size
characterization in a multi-component environment” [10].

3 | Gas-Phase Electrophoresis Based MW
Determination of Proteins

It was soon after the initial publication by Kaufman et al. in
1996 that the applicability of the novel nES GEMMA concept
in proteomics studies was investigated by the group around
Glinter Allmaier. In a seminal manuscript published in 2001
[11], Bacher, Allmaier, and colleagues showed that proteins and
protein aggregates of different MW values yielded different EM
diameters upon gas-phase electrophoresis. Influenced by mass
spectrometry, the group set up an EM diameter/MW correlation
based on gas-phase electrophoresis data for protein monomers,
dimers, trimers, and multimers for the first time (see Figure 2).
It was only two decades later that the combination of size ex-
clusion chromatography with another generation of gas-phase
electrophoresis instrumentation demonstrated a slight error in
this first correlation: nES-based protein aggregates appeared to
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FIGURE 2 | The first MW/EM diameter correlation published for proteins by Bacher et al. in Journal of Mass Spectrometry by John Wiley and
Sons in 2001 [11]. Copyright 2001 John Wiley & Sons Ltd., reproduced with permission.

slightly differ from liquid-phase formed aggregates in their EM
diameter, making the use of aggregated proteins fora MW/EMD
correlation not an ideal solution in gas-phase electrophoresis
measurements [12].

Nevertheless, the contribution by Bacher et al. 2001 already
demonstrated one possible applicability of gas-phase elec-
trophoresis: the determination of the MW of a proteinaceous
compound by determining its EM diameter applying a cor-
responding correlation function. Hence, especially in times
when mass spectrometry struggled to yield MW data for larger

compounds, an excellent approximation of the MW for large
proteins was achieved. Kapellios et al. compared nES GEMMA
derived results for analyte size and MW of several proteins with
light scattering results [13]. Other groups targeted other large
protein assemblies including inter alia a 3.6MDa hemoglobin
from Lumbricus terrestris [14], the 20S proteasome complex [15],
a recombinant or PEGylated Van Willebrand Factor [16, 17], or
IgG aggregates [18]. In 2007, Kaddis and colleagues published
a manuscript in which they applied this approach to determine
the MW for large protein complexes like vault macromolecules
up to the range of 10MDa molecular weight. Vaults, being
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bionanoparticles consisting of two bowl-like structures yielding
an ellipsoid form upon assembly and encapsulating an aqueous
interior, could be detected via nES GEMMA and corresponding
MW values were calculated applying a protein-based correla-
tion. However, due to the special analyte structure, already for
these macromolecules a deviation in MW between a value based
on the EM diameter and a value based on the sum of the individ-
ual building blocks was described [19].

4 | Viruses and Virus-Like Particle (VLP) MW
Determination via nES GEMMA

Besides analysis of proteins with gas-phase electrophoresis, the
suitability of nES GEMMA for the measurement of a human
rhinovirus was proven by Allmaier's group [11]. Furthermore,
using this system they also studied the tobacco mosaic virus
(TMV) and in doing so, found that elongated structures were
susceptible for fragmentation during the nES process. Moreover,
the obtained corresponding EMD values showed clearly the
discrepancy between the EMDs and actual physical size of the
analyte [20]. However, spherical bionanoparticles retained their
overall shape and immunogenicity as studied via vaccine par-
ticles of tick-borne encephalitis virus (TBEV) [21, 22]. Over the
years, the technique matured and more studies applying the
gas-phase electrophoresis for the analysis of other bionanopar-
ticles for instance cowpea mosaic virus (CPMV), rice yellow
mottle virus (RYMV) and human adenovirus by Thomas et al.
[23] were published. In 2007, Kaddis and colleagues reported
the analysis of 4.6 mDa cowpea chlorotic mottle virus (CCMV)
[19]. Likewise, phages [24-27], murine polyomavirus (MPV)
[28], or norovirus based virus-like particles (VLPs) [29] were in-
vestigated and research on intact human rhinovirus intensified
[30-32]. Allmaier's Group widened the related research and an-
alyzed gene delivery vectors based on an adeno-associated virus
[33, 34].

Based on their composition, these bionanoparticles either cor-
respond to structures formed from proteins alone (VLPs) or to
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protein aggregates with encapsulated genomic material in their
aqueous interior (viruses and viral vectors). Additionally, e.g.,
in the case of TBEV, viral capsids were enveloped by a lipid bi-
layer. Similar to the gas-phase electrophoretic approach for MW
determination of proteins and protein aggregates, soon these
analytes as well came to the center of attention of gas-phase
electrophoretic-based MW determination. In a first instance,
Bacher et al. [11] tried to calculate the MW of a human rhino-
virus based on nES GEMMA data and their protein-based EM
diameter/MW regression but obtained a value deviating signifi-
cantly from the expected virus MW (based on the sum of viral
building blocks). The authors speculated that this effect resulted
from the density of the encapsulated RNA genome and/or the
fact that their protein-based regression was based on data points
up to only ~22nm EM diameter. Mind that the EM diameter of
the investigated human rhinovirus was reported to be close to
30nm and therefore outside the calibrated EM diameter size
range. In summary, seemingly, a protein-based correlation did
not yield corresponding results for viral particles.

Despite observed limitations, nES GEMMA data were also used
in virus/antibody binding experiments to calculate the number
of virus-bound molecules based on the increase of the particles’
EM diameter and application of a protein-based correlation.
Corresponding studies included antibody binding experiments
targeting a human rhinovirus [35], or the determination of
FAB binding to hepatitis B virus VLP species as published by
Bereszczak et al. [36].

As overall consequence, further studies focusing on a develop-
ment of an EM diameter/MW correlation applicable for char-
acterization of viruses and VLPs were inevitable. However, the
availability of well characterized standard material was prob-
lematic—at least for a number of bionanoparticle standards the
exact MW had to be accessible by MS based measurements in
order to generate data for such a correlation. Only recently, es-
pecially by the work of the groups of Albert Heck [37-41], and
Martin Jarrold [42-44] corresponding MS based data became
available. Also, lately, new methodologies were introduced
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FIGURE3 | Determination of MW values of empty (A) and filled (B) AAV VLPs based on EM diameter/MW correlations taken from [49] without

changes and reproduced under a CC BY 4.0 license.
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to the field, for instance nano-electromechanical resonator-
based mass spectrometry (NEMS MS) based on the work of the
group of Christophe Masselon [45, 46]. It was due to these re-
sults, that in 2015 it was possible to setup an EM diameter/MW

correlation for intact (infectious), non-enveloped viral particles
[47] as well as in 2019 for VLPs [48]. Mind that in both cases,
non-enveloped, spherical particles were targeted. Mind as well
that for intact (infectious) viral particles the inherent infectivity
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FIGURE4 | Various EM diameter/MW correlations for linear and branched polysaccharides, polymers, proteins, and DNA, taken from [51] with-
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of analytes is causing massive experimental problems impeding
the further improvement of the described correlation by inclu-
sion of further data points. Due to this reason, the correlation
for virus particles available to date only encompasses a limited
amount of analytes.

Based on the correlations available for proteins, viruses, and
VLPs, it became evident that in these cases, correlations—tar-
geting different EM diameter and MW regimes—differed from
one another (in the case of proteins upon extrapolation). It was
therefore concluded that individual correlations needed to be
used for each analyte class, i.e., that at least the class of a corre-
sponding analyte needs to be known in order to apply the gas-
phase electrophoresis-based approach for bionanoparticle MW
determination. An analyte class in this context is not so much
based on the building blocks of investigated macromolecules—
compare e.g., protein aggregates, vaults, and VLPs, all being
formed from proteins—but also reflects the three-dimensional
structure of analytes. If such a structure is known, then the
technique yields results fast and with little technical prerequi-
sites, as demonstrated by Zoratto and colleagues for the MW
determination of an adeno-associated virus-based VLP applied
for gene-delivery purposes (see Figure 3). In their work, nES
GEMMA derived EM diameter values of empty and filled AAV
particles were analyzed, and particle MW values calculated on
the basis of corresponding correlations [49].

5 | Other Analytes

Besides proteins, viruses, and VLPs, the MW assessment, as
first demonstrated by Allmaier's Group 2001 [11] with the de-
scribed technique, was also applied to further analyte classes.
Mouradian and colleagues analyzed DNA in 1997 [50] and found
a corresponding correlation between the analytes' MW and EM
diameter. However, as in the case of Kaufman et al. (1996), the
presented data were not used for setting up any corresponding
correlation. However, later, using the previously published data
points, it became possible to define a corresponding correlation
function [51].

In case of polymers, PEGs were measured by Saucy et al. in 2004
[52]. Using company-provided MW values, a dependence of the
analytes’ EM diameters on the MW of particles was reported,
and a corresponding correlation was introduced. Kemptner and
colleagues continued this work in 2010 with PEG derivatives for
pharmaceutical applications [53].

In 2007 a combination of two orthogonal techniques, MALDI—
TOF-MS and nES GEMMA, targeted PAMAM dendrimers
[54] using a protein-based calibration function for gas-phase
electrophoresis to calculate analyte MW values and to com-
pare obtained results with data obtained from mass spectrom-
etry measurements. There, a significant deviation of MS-based
vs. nES GEMMA-based MW values was found. However, the
observed discrepancies were not further explored for this ana-
lyte class.

In 2018, Weiss and colleagues targeted polysaccharides with
gas-phase electrophoresis [51]. In this study, linear polysac-
charides like pullulans or oat beta glucans (OBGs) showed a
significantly different behavior than branched polysaccharides
like dextrans (see Figure 4). For linear polysaccharides, the
EM diameter of larger analytes did not increase as expected
with the increasing MW. Instead, the EM diameter remained
to a certain extent indifferent to changing analyte MW val-
ues. In their publication, the authors speculate about various
reasons for this effect ranging from e.g., solvation problems,
preferential passage of larger analyte moieties through the nES
GEMMA system, stabilization of multiple charges on analyte
molecules to specific behavior of non-spherical analytes in
the gas phase. Previous investigations of Malm and colleagues
showed similar effects as for other linear polysaccharides also
for hyaluronans. Nevertheless, nNES GEMMA was reported as
a method giving “reliable molecular weight estimations” of hy-
aluronans [55].

Only recently, gas-phase electrophoresis was also applied to
characterize biospecific complexes and to deduce the MW of a
proteinaceous transcription factor bound to DNA under manga-
nese mediation [56].

TABLE1 | Selected published correlation functions MW [kDa] =ax EMD [nm|P for various analyte classes.

Adj. R-square a b
Pullulans [51] n. d. n.d. n. d.
OBGs [51] 0.930 2E-26 £ 2E-25 32.654+£6.547
Hyaluronans [51] (fit for data presented in [55]) 0.985 3E-14 £ 6E-14 18.408 +1.150
Dextrans [51] 0.992 7E-5+7E-5 6.987 £0.459
Viruses [47] 0.999 0.03062 3.67155
PEG [51] (fit for data presented in [52]) 1.000 0.244+£0.003 3.146+0.004
PAMAM |[51] (fit for data presented in [54]) 0.997 0.264+0.074 2.919+0.109
Proteins [51] 0.999 0.249+0.021 2.918 +£0.031
DNA [51] (fit for data presented in [50]) 0.998 0.344+0.064 2.821+0.080
VLPs [48] 0.9896 0.7601 2.6319
60f 9 Journal of Mass Spectrometry, 2025
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6 | Conclusions and Outlook

Today's gas-phase EM analysis of bio-nanoparticles originated
in aerosol science but matures in bioanalytics or pharmaceutical
analyses and has also found a number of biotechnological appli-
cations, as has been discussed in this contribution.

The instrumentation known as nES GEMMA (also branded
MacroIMS, SMPS, or LiquiScan ES) has been widely applied for
the determination of MW values for complex analytes in the past
decades. However, to allow for high-accuracy MW determination
based on gas-phase electrophoresis data, additional information
about the respective analyte class has to be known, and an appro-
priate correlation function must be used or developed to correctly
interpret the measured spectra. The analyte class in this context
does not rely completely on the composition of bionanoparticles
in terms of building blocks, but also the structure and shape of
macromolecules have to be considered. Protein aggregates, vault
molecules, and empty VLPs, for instance—all sharing proteins
as building blocks—differ in their corresponding correlation
functions. VLPs and viruses of the same origin just differ in the
genomic cargo acting as scaffold; likewise, they demand the ap-
plication of different correlation functions. Table 1 below gives an
overview of described correlation functions MW [kDa] =ax EMD
[nm]b. Correlation functions are listed with declining b values,
with values close to three indicating spherical particles [19].

The authors are aware that instrumentations for gas-phase elec-
trophoresis had some limitations in the past like (i) radioactive
sources for charge equilibration, (ii) the need for manual sample
exchange after an individual measurement cycle, or (iii) clogging
of nES capillaries by aggregating analytes. However, several of
these problems have already been targeted in the last years, sig-
nificantly improving the instrumental performance. Various
sources for bipolar charge equilibration of analytes were investi-
gated and their use optimized [57]. Soft X-ray-based charge equili-
bration was introduced, as was a corona discharge process, either
unipolar [58] or bipolar [59] or in a dual spray [60]. Also, the proper
manufacturing of capillaries in-house, which is extremely import-
ant for the stable and reproducible nES process, can nowadays
be perfectly accomplished based on the work of Tycova et al. [61]
making the procedure straightforward, easy, and inexpensive.

Further recent advancement of the instrumental developments
has been obtained by applying much higher sheath flow rates
inside the DMA units, or making improvements concerning the
analyte transfer from the liquid to the gas phase, thereby signifi-
cantly increasing the resolution of spectra of investigated species,
for instance viruses or VLPs [62-67]. Therefore, it can be expected
that the technique of gas-phase electrophoresis will continue to
advance in the following years, focusing e.g., on new analyte
classes or its application in real-time bio-threat monitoring. The
authors are confident that there are still scientific mysteries out
there, for which the described technique can be utilized, deepen-
ing the understanding of processes on the nanoscale.
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