Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

B Informatics

The Complexity of Routing Few
Robots in a Crowded Network

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Logic and Computation
eingereicht von

B.Sc. Dominik Leko
Matrikelnummer 51823222

an der Fakultat fir Informatik

der Technischen Universitat Wien

Betreuung: Ass. Professor Robert Ganian, PhD

Wien, 5. September 2025 _-

Dominik Leko Robert Ganian

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

B Informatics

The Complexity of Routing Few
Robots in a Crowded Network

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Logic and Computation
by

B.Sc. Dominik Leko
Registration Number 51823222

to the Faculty of Informatics

at the TU Wien

Advisor: Ass. Professor Robert Ganian, PhD

Dominik Leko Robert Ganian

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Erklarung zur Verfassung der
Arbeit

B.Sc. Dominik Leko

Hiermit erklére ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang
,Ubersicht verwendeter Hilfsmittel* habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen,
die ohne substantielle Anderungen iibernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 5. September 2025

Dominik Leko

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Danksagung

Mein besonderer Dank gilt meinem Betreuer Robert Ganian, der sich immer Zeit ge-
nommen hat, um meine Abschlussarbeit mit mir zu besprechen, mich in seine Forschung
einbezogen hat, meinen Ideen Gehor geschenkt hat und wahrend des gesamten Prozesses
stets entspannt und unterstiitzend war. Als ich sah, wie einige Kommilitonen sogar
Schwierigkeiten hatten, ihre Betreuer zu erreichen, war ich besonders dankbar, einen so
engagierten und zuginglichen Betreuer zu haben.

Ich mochte auch meinen Co-Autoren der Arbeit danken, die mich zu dieser Abschlussarbeit
motiviert hat: Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj und M. S.
Ramanujan. Unsere Zusammenarbeit war kurz, aber intensiv und von gegenseitigem
Respekt gepragt.

Schliefllich mochte ich meiner Familie und meinen Freunden danken, die mir geholfen
haben, motiviert zu bleiben.

vii

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Acknowledgements

I would like to give special thanks to my supervisor, Robert Ganian, for always making
time to discuss my thesis, for including me in his research, for hearing out my ideas, and
for being overall relaxed and supportive throughout the process. Watching some fellow
students struggle even to reach their supervisors made me especially grateful to have
such an engaged and approachable one.

I also want to thank my co-authors on the paper that motivated this thesis: Argyrios
Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. Our
collaboration was brief but engaging and respectful.

Finally, I want to thank my family and my friends, who helped me stay motivated.

ix

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Kurzfassung

Das Steuern von Robotern in einer Umgebung unter Vermeidung von Kollisionen ist ein
héaufiges Problem in der Industrie. Einige natiirliche Formalisierungen dieses Problems
modellieren Roboter als zweidimensionale Quadrate oder Scheiben, die sich durch einen
»2Raum” in der Ebene bewegen. Diese Arbeit betrachtet ein abstrakteres, graphentheo-
retisches Modell, bei dem die Roboter die Knoten eines Graphen einnehmen und sich
entlang seiner Kanten bewegen. Wir entwickeln den Stand der Technik von zwei géngi-
gen Problemformalisierung namens GCMP und GCMP1 weiter. Wir untersuchen das
Problem unter dem Gesichtspunkt der parametrisierten Komplexitéit und fithren zwei
neue Parametrisierungen ein: eine, die einen W[1]-Hértebeweis liefert, und eine andere,
die die Einbettung in FPT festlegt.

Xi

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Abstract

Routing robots in an environment while avoiding collisions is a common problem in
industry. Some natural formalizations of this problem model robots as two-dimensional
squares or discs that navigate through a “room” in the plane. This thesis considers a
more abstract, graph-theoretic model, where the robots occupy the vertices of a graph
and move around along its edges. We advance the state of the art of a common problem
formalization, called GCMP and GCMP1. We study the problem through the lens of
parameterized complexity and introduce two new parameterizations: one yielding a
W(1]-hardness proof, and the other establishing inclusion in FPT.

xiii

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Kurzfassung
Abstract
Contents

1 Introduction
2 Preliminaries

3 A Robot With a Goal

3.1 Towards a working reduction|
3.2 A Formal Hardness Proof

4 Treedepth to the Rescue

5 Conclusions and Further Work
Overview of Generative Al Tools Used
Ubersicht verwendeter Hilfsmittel

List of Figures

Bibliography

Contents

xi
xiii

Xv

.............. 14

21

33

35

37

39

41

XV

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Introduction

The task of routing a set of robots (agents) from a set of starting positions to their
destinations while avoiding collisions appears in several real-world settings. Just consider
an automated warehouse in which goods must be constantly relocated, or a group of
search-and-rescue robots searching for life in a broken building or drones creating a
light show in the sky. For these instances efficient scheduling algorithms are highly
beneficial, ideally with performance guarantees. The most prominent optimization
goals for these algorithms are to minimize (i) the makespan, i.e. the length of the
schedule, and (ii) the total energy expended (equivalently, the total distance moved)
by the robots. Any schedule must be safe, i.e. prevent any collisions between different
robots or between robots and the environment. There already exists extensive research
work in this direction, particularly from the Computational Geometry [1I, 23], Artificial
Intelligence [5, [30] and Robotics [3, 22] research communities. Although algorithms
optimizing makespan exist [17, [10} 22], this thesis will only deal with energy-minimizing
variants.

There are different ways to model the settings described above. One might for example
consider the robots to be unit discs living on a 2D-plane, trying to find their way inside
of a “room” [4]. However, the formalization we are working with is contained in the field
of Graph Theory, and has been studied in several recent papers [9, [10} 17, 18, 20]. We
consider the Graph theoretic formalization GRAPH COORDINATED MOTION PLANNING,
which we formalize below.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

1.

INTRODUCTION

11| 6
7 (10} 9

1314
L ——

Figure 1.1: The popular 15-puzzle game [31].

~ GRAPH COORDINATED MOTION PLANNING (GCMP) ~
Input: A tuple (G, R = (M, F),), where G is a graph, R = {R; | i € N}
is a set of robots partitioned into sets M and F, where each robot
in M is given as a pair of vertices (s;,t;) and each robot in F as a
single vertex s;, and a budget ¢ € N.
Problem: Is there a schedule for R of total traveled length at most ¢£7

Intuitively, are given a graph G, robots R, partitioned into a set of marked robots M
and free robots F, and an energy budget ¢. We also refer to the free robots as blockers.
Each robot occupies one vertex, and the robots move along the edges to neighboring
vertices. Only one robot may sit on a vertex at a time and two robots may not use the
same edge at the same time. The goal is to route the marked robots to their destinations,
while avoiding collisions with other (marked or free) robots. The robots move in concrete
time steps, and it requires one time step to reach a vertex u from a neighboring vertex v.
A schedule is a sequence of commands specifying each robot’s move at every time step.
GRAPH COORDINATED MOTION PLANNING 1 is the restriction of GCMP to instances
where M| = 1.

The precursor formalization to GCMP is called COORDINATED MOTION PLANNING (short:
CMP), in which all robots have a destination. CMP has been researched extensively
der various discrete and continuous settings [4, [5], [11} [16]. For example, Boyarski et al.
devised a routing algorithm that finds a route for every marked robot separately and
then attempts to consolidate conflicts by “merging” two robots. More recently, people
have considered sliding moves, where only one robot may move at a time and it costs
only one move to move a robot arbitrarily far, provided the path it travels is free of other
robots [I8]. CMP generalizes the famous (n? — 1) — puzzle, which can be seen in Figure
1.1. Both CMP and GCMP1 have been shown to be NP-hard [12] 28, [32].

Our problem, GCMP, generalizes CMP by allowing arbitrary partitions of robots into
a marked and a free set. The classical complexity of several of its variants has been
settled already in the 90’s [27]. So, instead, we inspect the problem from the lens of

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

parameterized complexity. Several results for CMP in this regard are already known [17],
and so our aim is to continue research on GCMP and GCMP1. In particular we follow
up on work in the ICALP paper [9], which (amongst other results) shows that:

1. GCMP1 is fixed-parameter tractable parameterized by |R|,

2. GCMP is fixed-parameter tractable parameterized by |R| plus the treewidth of G,
and

3. GCMP is W[1]-hard parameterized by ¢, but it becomes fixed-parameter tractable
on graphs of bounded local treewidth.

One natural direction to continue research is to lift the parameterization on |R| and
instead parameterize by |M]|. The hope is that even if the graph is filled with many
blockers, the fact that there are only few marked robots allows for an efficient algorithm.
This thesis in particular will be dealing with those cases of GCMP where the number
of marked robots is one or very small, hence the title. Our first result, formalized in
Theorem |1} is a W[1]-hardness proof for GCMP1 parameterized by ¢. This result directly
strengthens the third result from the precursor paper, effectively showing that it is not
the number of marked robots that makes the problem difficult.

Theorem 1. GCMP1 is W[1]-hard when parameterized by ¢.

Another direction would be to consider the underlying structure itself: Because we are
dealing with a graph, we can parameterize by popular graph measures. In our second
result we parameterize by treedepth, a graph parameter that is closely related to the
theory of sparsity [25]. Adding treedepth to the parameter makes the problem tractable.
We formalize the second result in the following Theorem.

Theorem 2. GCMP is fized-parameter tractable when parameterized by the number
k = | M| of marked robots plus the treedepth of the input graph.

Finally, we note that the results of this thesis were presented at the Algorithms and
Data Structures Symposium (WADS 2025) and appeared in the proceedings of that
conference [§]. The exposition of this thesis forms an extended version of those results,
with longer explanations for clarity. The research was carried out during a long sequence
of meetings with the co-authors of the aforementioned publication, and the author of
this thesis actively contributed to all parts of the publication. In particular, the main
contribution of the author was towards [§, Theorem 1], which is reflected in Chapter 3
and is accompanied with the most detailed explanation. The secondary contribution was
towards [8, Theorem 2], which is covered in Chapter 4.

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Preliminaries

All graphs considered in this thesis are undirected and simple. We assume familiarity
with standard graph-theoretic concepts and terminology [13] as well as with basic
notions in parameterized complexity, including fized-parameter tractability and W[1]-
hardness [0, 14, 21]. For n € N, we let [n] and [n]o denote the sets {1,...,n} and
{0,...,n}, respectively.

Parameterized Complexity. A parameterized problem @ is a subset of " x N,
where 2 is a fixed alphabet. Each instance of @ is a pair (I,), where x € N is called the
parameter. A parameterized problem @) is fixed-parameter tractable (FPT) [7, [14] 21], if
there is an algorithm, called an FPT-algorithm, that decides whether an input (I, k) is a
member of @ in time f(x) - |I|°M), referred to as FPT-time, where f is a computable
function and |I| is the input instance size. The class FPT denotes the class of all
fixed-parameter tractable parameterized problems.

Showing that a parameterized problem is hard for the complexity classes W[1] or W[2]
rules out the existence of a fixed-parameter algorithm under well-established complexity-
theoretic assumptions. Such hardness results are typically established via a parameterized
reduction, which is an analogue of a classical polynomial-time reduction with two notable
distinctions: a parameterized reduction can run in time f(k) - n®®), but the parameter
of the produced instance must be upper-bounded by a function of the parameter in the
original instance. We refer to [7, [I4] for more information on parameterized complexity.

Treewidth and Treedepth. Treecwidth is a fundamental graph parameter which
can be seen as a measure of how similar a graph is to a tree; trees have treewidth 1, while
the complete n-vertex graph has treewidth n— 1. A formal definition of treewidth will not
be necessary to obtain our results; however, we will make use of Courcelle’s Theorem [6]
(introduced later) which essentially says that problems expressible in a certain fragment

5

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

2.

PRELIMINARIES

Figure 2.1: A graph G (left) and an optimal forest embedding (right) F'. The slim black
edges on the right do not technically exist.

of logic can be solved efficiently on graphs of bounded treewidth. Hence, we proceed by
defining our other parameter of interest.

Definition 1 (Forest embedding and treedepth). A forest embedding of a graph G is a
pair (F, f), where F is a rooted forest and f : V(G) — V(F) is a bijective function, such
that for each {u,v} € E(G), either f(u) is a descendant of f(v), or f(v) is a descendant
of f(u). The depth of the forest embedding is the number of vertices in the longest
root-to-leaf path in F. The treedepth of a graph G, denoted by td(G), is the minimum
over the depths of all possible forest embeddings of G. When G is connected, F is a tree
and we call it a tree embedding.

To assist the reader’s intuition, we devise the example shown in Figure 2.1. Graph G on
the left has treedepth 3 and, on the right is an optimal forest embedding. The thick gray
lines are the edges in F', while the slim black lines represent edges from G.

Below, we state two facts about treedepth which will be useful for our considerations.

Proposition 1 ([26]). For a graph G and any vertex v € V(QG), it holds that td(G) <
1 + max;ey td(G;), where Gu,...,G, are the connected components of G — v.

Proposition 2 ([26]). For a graph G, the mazimum distance between any two vertices
in G is at most 2194(G)

Monadic Second Order Logic (MSO) of Graphs. A sentence in MSO is built
using the logical connectives V, A, =, <, =, variables for vertices, edges, sets of vertices
and sets of edges, and the quantifiers V and 3, which can be applied to these variables.
The atoms include the following binary relations: (i) u € U, where u is a vertex variable
and U is a vertex set variable; (ii) d € D, where d is an edge variable and D is an edge
set variable; (iii) inc(d, u), where d is an edge variable, u is a vertex variable, with the
interpretation that the edge d is incident to w; (iv) equality of variables representing
vertices, edges, vertex sets and edge sets. We refer to the classical works in the area [2] [6]
for a more detailed introduction to MSO.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

The well-known Courcelle’s Theorem [6, 2] states that checking whether a given graph G
models a given MSO formula ¢ can be done in FPT time parameterized by the treewidth
of G and the size of ¢. Moreover, this result holds even if some vertices of G are given
labels or colors (i.e., we allow a fixed number of additional unary relations over V(G)).
This is because one can produce an equivalent graph G’ such that G has bounded
treewidth if and only if G’ does, plus an alternate MSO formula ¢’ such that G models ¢
if and only if G’ models ¢'.

Finally we consider our problem of interest for this thesis, which is called Graph Coordi-
nated Motion Planning.

~ GRAPH COORDINATED MOTION PLANNING (GCMP) N
Input: A tuple (G, R = (M, F),{), where G is a graph, R = {R; | i € N}
is a set of robots partitioned into sets M and F, where each robot
in M is given as a pair of vertices (s;,%;) and each robot in F as a
single vertex s;, and a budget ¢ € N.
Problem: Is there a schedule for R of total traveled length at most £7

In our problems of interest, we are given an undirected graph G and a set R =
{R1,Ra,..., Ry} of k robots where R is partitioned into two sets M and F. Each
R; € M, has a starting vertex s; and a destination vertex t; in V(G) and each R; € F
is associated only with a starting vertex s; € V(G). We refer to the elements in the
set {s; | i € [k]} U{ti | Ri € M} as terminals. The set M contains robots that have
specific destinations they must reach, whereas F is the set of remaining “free” robots.
We assume that all the s;’s are pairwise distinct and that all the ¢;’s are pairwise distinct.
A vertex v € V(G) is free at time step z € [0, t] if no robot is located at v at time step
x; otherwise, v is occupied. We use a discrete time frame [0,¢], t € N, to reference the
sequence of moves of the robots and in each time step x € [0, ¢], exactly one robot moves
from its current vertex to an adjacent free vertex.

A route for robot R; is a tuple W; = (ug,...,u;) of vertices in G such that (i) ug = s;
and u; = t; if R; € M and (ii) Vj € [t], either u;_1 = u; or uj_1u; € E(G). Put simply,
W; corresponds to a “walk” in GG, with the exception that consecutive vertices in W; may
be identical (representing waiting time steps), in which R; begins at its starting vertex
at time step 0, and if R; € M then R; reaches its destination vertex at time step t. Two
routes W = (ug,...,u;) and W; = (vo,...,v), where i # j € [k], are non-conflicting
if 1) vr € {0,...,t}, u, # v, and (ii) #r € {0,...,t — 1} such that v, = u, and
ury1 = vp. Otherwise, we say that W; and W; conflict. Intuitively, two routes conflict
if the corresponding robots are at the same vertex at the end of a time step or if two
robots traverse the same edge in the same time step.

A schedule S for R is a set of pairwise non-conflicting routes W, i € [k], during a time
interval [0,t]. The (traveled) length of a route (or its associated robot) within S is the
number of time steps j such that u; # u;11. The total traveled length of a schedule is

PRELIMINARIES

2.

the sum of the lengths of its routes; this value is often called the energy in the literature

(e.g., see [19]).

jayioligig usipn N.L 1e wud ul ajge|reae si sisay) Siyl Jo UoisiaA [eulbuo paroidde ay
regbnyian yaylolqig usipy N1 Jep ue st lisgrewoldiq 1asalp uoisianfeulbliQ aponipab auaiqoidde aiq

qny a8pajMmous| JNoA

Srayrolqie

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

A Robot With a Goal

In this chapter, we use a parameterized reduction to show that GCMP1 parameterized by
¢ is W[1]-hard. We describe the construction incrementally, starting with a simple idea
and refining it repeatedly until a correct reduction is obtained. In this incremental process
we will repeat the two steps of I) improving on the newest version of the reduction (thus
creating a new version), and II) finding a way for the robots to cheat in the improved
version, which proves that the newest version is still incorrect. We say informally that
there is a way to cheat, if there is a schedule of length at most ¢ that is not in the class
of intended solutions. We will describe the class of intended solutions later.

Formally the input is an instance Zyicc = (G = (ViUVa...UVy, E), k) of MULTI-
COLORED CLIQUE (short: MCC), parameterized by the number of colours k where
every Vi = {vi1,...,v;y;}. The goal is to construct an instance Zgompr = (G =
(VI,E"),(M ={R1},F),{),0), parameterized by the budget ¢, i.e. the total number of
admissible moves. There is only one marked robot, R;.

For the remainder of this chapter, we call a full (resp. empty) path a subgraph that is a
path with (resp. without) robots. We say we connect two disjoint sets of vertices V7 and
Vo with a full (or empty) path of length n, if we create a new path P = (p1,...,p,) and
connect (with an edge) p; to the vertices in V; and connect p,, to the vertices in V5. The
sets V1 and V5 are the endpoints of P.

3.1 Towards a working reduction

The general idea is to create a graph such that R; is forced to “pick” k lanes to travel
through on his path to ¢;. The lanes map bijectively onto vertices in G. We force 1)
R; to pick exactly one vertex from every colour in G, and ii) the existence of an edge
between all picked vertices. Conditions i) and ii) together make for a clique in G.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

A RoBOT WITH A GOAL

10

Layer 1 Layer 3 Layer 4

Figure 3.1: Version 0 of the reduction. The clear paths are green. The return paths are
blue. Dot-dashed lines signify full paths.

Version 0. For the first version, consider Figure 3.1. First we set the budget ¢ =
(5) kS 4+ (g) -k*+ k- (k— 1)+ 1. For every vertex v; ; € Vi, we create a lane, a full path
of k — 1 vertices. For example, lane 3 in layer 1 corresponds to vertex vy 3. For the sake
of brevity we refer to the induced subgraph consisting of the vertices of the i-th layer as
L;. The layers are connected sequentially, while the lanes in each layer are connected in
parallel, as shown in the figure. The reason the lanes have length k£ — 1 is that they are
used to check adjacencies between the vertex they represent and another picked vertex.
We name the lane vertices as a, j, for m,n € [k],m # n,j € [|V,,|]. Moving forward we
define ayy, j, in the following way:

1. if m < n, it is the n-th vertex in the j-th lane of L,,, and

2. if m < n, it is the n — 1-st vertex in the j-th lane of L,,.

There are two more sets of paths in the figure. For all m,n € [k], m < n, create a vertex
Cm,n and connect {am jn | j € [[Winll} to {¢mn} with a full path of length k5 — 1. Those
are the clear paths (green in Figure 3.1). Further, for all edges (vp j,,vn j,), connect
{am,jyn} t0 {@njpm} with a full path (blue in Figure 3.1) of length k* the return
paths.

We start by explaining the intended schedule, describing our idea for how the robots should
move if Zyicc is a yes-instance. Assume there is a clique X = {v14,,..., 04, €V in G.
Ry starts at s; and walks through the graph from left to right, picking in each layer the
lane corresponding to the vertex in X; To pass layer L,,, R picks lane z,,. Whenever
Ry is blocked by a robot R sitting on a vertex a, s,,n, there are two possible cases:

1. m < n, which means a, z,, » is incident to a clear path: The robots inside the clear
path as well as R shift towards ¢, ,, leaving a,, 4., n free.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.1. Towards a working reduction

Figure 3.2: Moving around in the red cycle allows R; to cheat and get to ¢; without
shifting any robots into clear paths.

2. m > n, which means there is a return path connecting a, z,, n t0 @n gz, m. Since
Ry passed it earlier, ap s, m is free now. The robots in the return path, as well as
R shift over the path towards a, 4, m, leaving a,, 4, »n free.

Note that in the second step, there is a return path leading back to a vertex previously
passed by R;. This is due to the fact that there is an edge between v, ,,, and v, 4,
The general idea is that if the behaviour described above is forced in some way, then the
existence of a feasible solution implies that X is a k-clique.

Secondly, note that there are different, equivalent schedules that also result in R; crossing
to t1 in £ moves. For example, instead of shifting robots into the clear paths once R; is
standing before a corresponding blocker, an equivalent schedule may instead shift all the
same blockers into clear paths right at the start before ever moving R;. We consider two
feasible schedules equivalent, if they differ only in the order of their moves.

The budget ¢ is picked to fit exactly the moves required by the intended solution. Let
(= (g) K> + (g) k*+ k- (k—1)+1. The first term covers the cost of shifting robots over
clear paths towards C, the second term the cost of shifting over return paths and the
rest covers the cost of moving R;.

: The robots can go around in a cycle without ever shifting towards C'.

There is a way for the robots to cheat such that within the same budget ¢, there is a
solution that is different to the intended solution. Figure 3.2/ shows a directed cycle in
our construction, along which R, as well as all robots present in the cycle in the initial
configuration, can rotate. In total we move 1 +2-(k—1)-k robots, 2+2-(k—1) -k

times, requiring (1+2-(k—1)-k)-(1+2-(k—1)-k) = 4k* — 8k3 4+ 10k? — 6k + 2 moves.

These moves clearly fit into the budget ¢ = (g) kS + (g) k*4+ k- (k—1)4+1 for large
enough k and so the reduction is not yet correct.

Version 1. To prevent Cheat 0, we we introduce Version 1 of the construction. The

goal is to prevent the robots from cheating by simply rotating around until R; sits on t;.

11

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

A RoBOT WITH A GOAL

12

Figure 3.3: Version 1 after inserting separators in between successive layers.

We do this by adding tiny separators between two successive layers. The idea is to make
passing through the separators so “expensive” that only R; can pass through it. The
tiny separators have length k®. The budget is extended to cover the cost of moving R;
through the tiny separators and it is now £ = (5)k° + (5) - k* + k- (k— 1)+ (k—1) - kS + 1.

: The robots can rotate around all layers in Gp and the blue paths do not need
to be used.

We run into a similar problem as before: The robots still do not need to vacate the lanes
by shifting towards C. Instead they can now rotate inside of every layer, saving the cost
of shifting over the clear paths. We must still find a way to force this behaviour.

Version 2. How do we prevent the robots to ignore the free vertices in C7 We need to
find a method to force vertices to be empty after R; passes through the main portion of
the graph. For Version 2, we add new components to the graph in order to be able to
force this behaviour. We refer henceforth to the part of the graph, where Ry is intended
to pick the lanes as the decision component Gp. In Version 1, the decision component
Gp plus t; constituted the whole graph.

For the current version we add the test component Gt and the separator component
Gg. The separator component separates the other two components (Figure |3.4). The
separator component Gg is a long empty path of length k2. Its purpose is to make it
too expensive for any robot that is not R; to pass, as the budget will be picked to allow
only one robot to pass through Gg. The test component G consists of a single full path.
Every vertex in it has long full paths of length k'!' — 1 leading back towards vertices in
Gp. We call those long paths the test paths. The paths should be so long that if Ry were
to pass a test path — which would necessarily also involve moving out every robot inside
it — the budget would be exceeded.

Since the only way for R; to reach t; is to pass through Gr, the blockers inside will need
to vacate it. The only way for them to do this is by shifting over the test paths towards
Gp. In order to avoid the blockers moving towards other vertices in G and shifting over
test paths other than the intended ones, we subdivide every edge in G, k® times. We
use the mechanism of test paths to force more behaviour for the robots in Gp.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.1. Towards a working reduction

e
&)

n}

S —. Y

._._._._._._._._._‘
P
O g
e

i
i
i
Figure 3.4: Version 2. We add the test paths and the separator between the main part

and the test part. Dot dashed lines signify full paths and the dashed line in the test
component stands for the fact that each edge is subdivided k® times.

We add test paths connecting G and L U Q U Gg as shown in Figure |3.4. The budget is
now £ =M+ &) k(B + k-1 K+ &) &)+ k- (—1)+ (k—1) -k + 1.
The third term in ¢ covers the cost of shifting over all return paths.

The test paths now force three force. ..

1. all vertices in the tiny separators,
2. at least one vertex in each {Ly,;n |7 € |W;|} for all 1 <n <m <k, and

3. the first k® vertices in Gs1

...to be empty when R; goes to pass Gr.

Cheat 2: The robots need not shift back over (g) return paths. In layers Lo, ..., Li_1,
the robots intended to move back over a return path can instead find homes in the
vertices in the same layer that are vacated by shifting into a clearpath, saving the cost of
shifting over return paths.

In Figure 3.4, the robot sitting on a3 12 was intended to shift towards ag 13 over the
return path, but it instead decides to occupy the vertex one move to the right. The other
robots compensate for the hole created in Layer 2 and the excess robot in Layer 3 as
shown in orange in the Figure.

Version 3. The problem with the previous version is that some robots in L,, for some
m € [k] may decide to not move to a different layer over a return path. Instead they may
move towards an open space inside the same layer. When such a robot in L, (m € [k])
decides to not shift towards layer L,,, it creates a free space in L,, and an excess robot
in L,, that needs to be dealt with. In previous versions we restricted the movement of
blockers by adding separators. While this approach may work again, we decide on a
more elegant solution. We change the lengths of the return paths so that a return path

13

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

A RoBOT WITH A GOAL

14

Figure 3.5: Version 3. After varying the lengths of the return paths, the budget must be
used up precisely if one wants to achieve a feasible solution. This makes it impossible
for robots to make use of Cheat 2, as there would be no budget leftover for intra-layer
movement of blockers.

from G, z,, n t0 Gnz,.m (assuming m < n) has length (m —n) - k* — 1. By making this
change, the cheat in Figure [3.4]is no longer possible, as the long return path shift from
a41,2 to as 14 now costs twice as much.

Version 3 is the final, correct version of our construction and we describe it formally in
the following section before proving its correctness.

3.1.1 Conclusion

We have given an example of an incremental design procedure that could be similar to
the thought process of a researcher trying to devise a valid reduction for the purpose
of a hardness proof for a new, interesting problem. It starts with a simple idea for how
a feasible solution is intended to look like. This idea is tested multiple times when we
find ways to cheat by finding other, simpler solutions that stay within the budget, which
make the proof fall apart. After multiple targeted revisions, we fail to find another cheat
and are left with a correct — albeit more complex — reduction.

3.2 A Formal Hardness Proof

The previous section described the incremental process of how one could arrive at a
reduction that seems complex at first glance. But our job is not finished until the idea is
formalized and its correctness proven. That will be the goal of this section.

We receive an instance Zyicc = (G = (V1UVa. ..UV, E), k) of MCC, parameterized by
the number of colours k where every V; = {v;1,... s Vi |V |}. The goal is to construct an
instance Zgompr = ((G' = (V/, E'), (M = {R1}, F),{),), parameterized by the budget
£, i.e. the total number of admissible moves. For a correct parameterized reduction three
conditions described must be fulfilled:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.2. A Formal Hardness Proof

1. Zymcc is a yes-instance if and only if Zgomp is a yes-instance.
2. ¢ < g(k) for some computable function g.

3. The reduction algorithm runs in FPT time, i.e. in f(k)-|G|°(") for some computable
function f.

3.2.1 Construction

We start with a formal description of the construction, i.e. G’. The graph consists of
three components: i) decision component G p, ii) the separator component Gg, and iii)
the test component Gr.

We start constructing Gp by creating a lane (= a full path) of length k£ — 1 for every
vertex in vy,; € V, and let L,,; be the set of vertices of that lane. The individual
vertices in Ly, ; are indexed as am,i,n with n € [k] \ {m}. Let Ly, = Uicv;, 1, Pe the
(vertices of the) m-th layer and let L = G[V (UmepiL,,)] Next create a tiny separator
(an empty path) with vertices Q; = {qm,1,- .-, qm s} for each m € [k — 1]. Further, let
Q@ = Umer—1) Qi- We connect all layers in series using the tiny separators, as follows:
Connect the following vertices with an edge:

1. each ay,;x with ¢, 1 for each m € [k —1].
2. each G i1 with g, yo for each m € [k] \ {1}.

3. s1 with each a1,i,2, with 7 € [|V1|]

Create for each 1 <m < n <k a vertex ¢, . Connect each ¢, ,, and L,,; with a clear
path Cyp, i.e. a full path of length k° — 1. We call C = U< pen<i{¢mn} U Cmn.

For each edge (vpi,vn,j) € E with m < n, connect ap, ;,, and an j,» with a return path
Ry — a full path of length (m —n) - k* — 1. Let R = Uj<pen<k Rmn-

The decision component Gp = G[{s1} UL U Q U C U R] is the graph induced by the
vertex sets defined above.

The separator component Gg = {by,...,b;20} is an empty path. It connects the last
layer of Gp to the first vertex in the test component. Let also the first k® vertices of the
path be called Gg1 and the rest of the path Gg .

For the test component G, we start with a full path P of length (g) + kS (E—1)+
k® + 1. Connect each vertex in P with one or more vertices in V(Gp) U V(Gg,1), in
the following way: We define a finite sequence D of vertex sets from V(Gp) UV (Gg1).
Then we connect the n-th vertex in P and the n-th element in D with a test path,
a full path of length k'' — 1. We define D as the flattened sequence of sequences
((dl,n)%z:% (T,n)lgngkﬁa (d2,n)721:2a cees (Z—l,n)1§n§k67 (dkm)ﬁ:g, (Z,n)lgngks)' The first
element (dy ,,)L_5 is technically empty, and is listed only for the sake of uniformity. Then
the single elements are defined as:

15

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3. A RoBOoT WITH A GOAL

H . & 7 = - T &
oL e el NNy o NN e g

!

Figure 3.6: The whole construction of G’ along with some labels to clarify the naming

conventions.

1. each dpp = {amin | © € [|[Vinll},
2. for m € [k — 1], each dj, ,, = {¢mn}, and
3. dy, = {bn}

Finally, every edge in P is subdivided k® — 1 times, leaving the newly created vertices
free. The resulting path is the test component Gr.

Budget Value Use

{1 k(k—1)+kS(k—1)+1 Move Rp from sq onto b.
019 k2 4+ (K% + 1) (K(k — 1) + (5) + &%) + 2 | Move Ry from b; onto t;.
lo kS (’;) Shift over clear paths.

l3 LK% — 1) Shift over return paths.
4 (RS (k— 1) + (5) + &5 + 1) Shift over test paths.

Table 3.1: The partitioning of the budget and the parts’ respective intended uses.

Figure 3.6 shows the whole construction, along with some labels in order to clarify the
naming conventions. Finally, we set the budget to £ = {11 + {12 + lo + l3 + {4. The
different parts of the budget and their intended uses are outlined in Table |3.2.1. This
completes the formal description of the construction. The next is proving correctness.

3.2.2 Proof of correctness

1. Zycc is a yes-instance if and only if Zgoumpr is a yes-instance.
2. ¢ < g(k) for some computable function g.
3. The reduction algorithm runs in FPT time, i.e. in f(k)-|G|°(") for some computable

function f.

2. and 3. are clearly true. To prove 1., we prove the forward- and the backward direction
separately.

16

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.2. A Formal Hardness Proof

Proof of Forward Direction “=”. We show the forward direction by assuming an arbi-
trary yes-instance for the parameterized MCC problem and defining a schedule for the
corresponding GCMP1 instance, parameterized by £. In the new instance R reaches t;
and the total energy expended does not exceed £. Let Zyjoc = (ViUVa ... Vi, E), k) be
such an arbitrary yes-instance and let X = {v1,2,,v2.2,,. ..,V , } be a k-clique in G.

We define the desired schedule by executing the following steps in sequence:

1. Shift over clear paths. For each 1 < m < n < k, shift the blocker sitting on
Q. z,,,n OVEr the incident clear path towards ¢, . This requires {5 = (g) - k® moves.

2. Shift over return paths and move R; from s; onto b;. Move R; towards
b1, while picking the correct lanes: In layer m, the robot picks the lane x,,. At
some point the robot cannot advance further due to a blocker sitting in its path.
Let a4, m be the blocked vertex. In this case we have that m < n. Further, due
to the fact that X is a clique, there is a return path leading from a, 4, » towards
@,z n- Shift the vertices in the return path, along with the robot that is blocking
Ry, towards a4, »- Our main robot may advance again. The total cost of moving
Ry requires ¢4 1 = k(k — 1) + k°(k — 1) + 1 moves and shifting over return paths
requires 3 = 31 < cn<k K- (n—m) = %k5(k2 — 1) moves.

3. Shift over test paths. At this point in time, every robot in Gr is incident

to a test path with its endpoint in Gp U G g1 containing exactly one free vertex.

Indeed, for the test paths with an endpoint {amn | ¢ € [|Vin|]} C V(L) for some
1 <m < n <k, the free vertex is am g, » — the vertex that R; passed on his way

through Gp. Clearing G requires £4 = k' (kS(k — 1) + (g) + k% 4 1) moves.

4. Move R; from b; onto ¢;. This requires ¢ o = k20+(k8+1)(k:6(k:—1)+(g)—l—ks)—l—Z
moves.

The total number of moves expended is ¢ = {11 + {12 + {2 + {3 + {4, which proves the
forward direction.]

Proof of Backward Direction “<". Partition the budget into the five parts listed in Table
3.2.1. We will show that in any feasible solution, every “Use” in the table is both necessary
for feasibility and requires at least the number of moves listed in the “Value” column. Both
of these facts together imply that there is no budget left to allow for other, unpredicted
moves by the robots. Then a simple argument finishes the proof.

1. Use: "Shift over test paths". We start with the claim that it is not possible for

&
Ry to reach G'r by crossing a test path. It requires at least 2 >°.2, 7 = %22 lel

moves to allow R; to pass a test path, as every blocker inside the path would need
to move out as well. For large enough k this is not within the budget however, as
the dominating term in the budget ¢ is k%°. Therefore the whole test component

17

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.

A RoBOT WITH A GOAL

18

needs to be cleared in order to let R; pass through to t;. A blocker that needs
to make space cannot pass through the whole Gg, as this requires £2° moves, but
R needs this budget to pass through Gg itself. Therefore all blockers must move
out by shifting over the test paths towards L UQ U Gg 1. The shifting requires k1
moves per test path, i.e. £4 = k' (kS(k — 1) + (’5) + k8 + 1) moves in total. Going
forward, we subtract £4 from the available budget for other moves, as £4 moves are
reserved for this specific use.

. Use: "Move R; from b; onto #1". Once R; reaches by, it needs to cross Gg and

Gr in order to reach ¢;. This clearly requires |V (Gg) UV (Gr)| + 1 moves, which
is exactly £1 2. We reserve {1 2 moves for this purpose.

. Use: "Shift over clear paths". Consider the number of robots that need to shift

into LUQ U Gg,1. In the initial configuration, there are (g) blockers too many in
those vertices, meaning that those blockers need to find a home somewhere else.
Moving into G's 2 would require k® moves, which is not within the remaining budget.
Therefore those robots need to shift over clear paths towards the free vertices in C.
Therefore ¢5 = k° (g) moves are reserved for this purpose.

. Use: "Move R; from s; onto b;". Using similar reasoning as before, we claim

that Ry cannot pass through a return path to get closer to b1, as this would require
at least (k*)?2 = k® moves, which is not in the remaining budget. Therefore Ry
needs to move over L and Q. It is easy to see that the length of any shortest path
from s; to by using only vertices in L U @) is exactly ¢ 1, which is a trivial lower
bound for this use.

. Use: "Shift over return paths". The remaining budget is {3 = %k‘r’(kg —1).

Note first that every blocker in G necessarily shifts exactly over the test path
incident to its initial position, and not some other test path. This is because the
minimum distance between two different such blockers is k® and moving to the
endpoint of a different test path in G would exceed the remaining budget.

Let X4 C L be the vertices (“holes”) that are freed up when all (g) excess blockers
shift towards {¢;, | 1 <m <n <k}. Let Xp C L be the vertices towards which
blockers coming from Gy shift. For the sake of brevity we define X' = X4 N L,,
and X% = Xp N Ly,. The blockers that are in Xp in the initial configuration must
either move directly into X 4 or shift towards a vertex in X 4 in order to potentially
find a feasible solution. Let f4(m) = |X}'| and fg(m) = |XZ|. Considering the
fact that f4 increases monotonically and fp decreases monotonically, we say that
generally the blockers need to move from higher to lower layers (from right to left
in Figure 3.6). We aim to compute the minimum number N of layers that the
blockers need to move back.

In order to simplify the argument, assume that blockers in layer m first move to
free holes inside the same layer, before looking to other holes in different layers.
Let f(m) = fg(m) — fa(m) be the number of excess robots (when f(m) > 0) or

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

3.2. A Formal Hardness Proof

the number of free holes (when f(m) < 0) after this process finishes. Due to the
construction, f(m) = (m —1) — (k—m) =2m — k — 1. Observe that f(m) <0 for
m < % and f(m) > 0 for m > % This confirms the above claim that blockers
in general need to move from higher to lower layers.

Let the function g : [k — 1] — N define the minimum number of blockers that need
to cross over layer m -+ 1 into layer m or over layer m into a layer n < m. Since
f is monotonically increasing in the range [1, [#3!]], we can define for the same
range g(m) = >, —f(4) as the number of holes in the first m layers. Similarly,
for m € [L%J + 1,k — 1], the expression g(m) is simply the total number of excess
robots in layers m + 1 through k, so g(m) = Zf:mH. We note that the two sums
are both equal to the expression km —m?, and so g(m) = km — m? for all m € [k].
Therefore we can deduce N = % _ g(m) = Tk(k* - 1).

Observe that moving a robot from layer m to layer n (w.l.o.g. m < n) over @
requires at least (n — m) - k% moves, that is the length of the tiny separators.
Instead shifting from layer n to layer m requires at least (n — m) - k* moves.
The minimum cost of moving all robots to the right layer is therefore at least
N - k* = 2k5(k* — 1) = {3 moves.

We have shown that all uses of the budget are necessary for a feasible solution
and they each require at least the number of moves they are attributed in Table
3.2.1. Therefore robots cannot do any other moves not specified in the table, and
especially there may be no intra-layer movement of blockers. It is left to prove that
if there exists a feasible schedule, then G contains a k-clique.

Let S be a feasible schedule for Zgompi. Let {L1,,..., L, } be the lanes that Ry
picks on its way through G'p. Assume towards a contradiction that {vy;,,..., vk, }
is not a k-clique, due to the non-existence of the edge (v, z,,, Un,z,) With m < n. We
know that at some point, Ry needs to pass vertex a, 4, and is blocked. However,
there is no return path leading towards a, z,, n. Furthermore, any other potential
return paths lead towards occupied vertices. In any way, one would need to move
at least one blocker in L around over non-return paths in order to vacate vy, 4, m,
which was shown to be prohibited in feasible schedules. Contradiction.

The correctness of the reduction implies the main Theorem for this chapter:

Theorem 1. GCMP1 is W/1]-hard when parameterized by .

19

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Treedepth to the Rescue

In the previous chapter we showed that GCMP is difficult to solve, even when the number
of marked robots as well as the energy budget are assumed to be small. In fact, the
problem is already W][1]-hard when there is even only one marked robot. We next remove
¢ from the parameter and replace it with the treedepth of the input graph. The idea is
that if the graph is simple or structured in some sense, this could potentially restrict
the solution space for possible schedules so much that the problem becomes tractable.
This chapter aims to provide a positive result in contrast to the negative result from the
previous chapter. This result is written up in the main theorem in this chapter:

Theorem 3. GCMP is fized-parameter tractable when parameterized by the number

k = | M| of marked robots plus the treedepth of the input graph.

The proof is structured as one large case distinction, differentiating between whether or
not the number of free vertices in G exceeds a function of the treedepth k. A different
proof is then provided for each case.

4.0.1 Case 1: Few Free Vertices

The main goal of this section is to prove the following lemma;:

Lemma 1. Let T = (G, R = (M, F),{) be an instance of GCMP where G has treedepth
at most td and there are at most ny free vertices. If there is a schedule for I, then there is
an optimal schedule that uses energy at most y(nys, k,td) for some computable function .
Moreover, an optimal schedule (if it exists) can be computed in time vy(ny, k,td) - nfW,

The fact that the above lemma is true also means that n; is bounded by some function
g(k,td). This implies that GCMP is FPT, as with that all parameters for v are effectively

21

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

TREEDEPTH TO THE RESCUE

22

fixed. For all lemmas in this subsection, presume that we are given an instance 7 =
(G,R = (M,F),t). The first k robots in R are the marked robots, i.e. {R; | i € [k]} = M.
Let S be a schedule for Z. We call a vertex set X C V(G) fully blocked at a time step s,
if every vertex in X is occupied by a blocker from F at that time step.

Definition 2 (Configurations). A pseudo-configuration for Z is a pair (1,Q) where
7 = (7[1],...,7[k]) is a tuple of vertices and Q C V(G) is a vertex set. Let V() =
Uier{T[i]}. A configuration for Z is a pseudo-configuration (1,Q) where (i) |V (7)| = k,
(it) |Q| = |F| and (iii) V(1) N Q = 0. We say that a configuration (7,Q) is the starting
configuration if for each i € [k|, T[i] is the starting vertex of R; and Q is the set of
starting vertices of the robots in F. We say that a configuration (1,Q) is a destination
configuration if for each i € [k], T[i] is the destination vertex of the robot R;.

Configurations describe the state of G, including the positions of the marked and unmarked
robots, at some time step in a schedule. The unmarked robots are all identical and so it
is not required to differentiate between them. Instead it is sufficient to keep track of only
the set of vertices occupied by unmarked robots. The next three definitions follow this
intuition:

Definition 3 (Moves between configurations). We say that there is a move from a
configuration (11, Q1) to a configuration (12, Q2) if:

e cither Q1 = Q2 and 71 and 1 differ at exactly one index i € [k] and T [i|r2]i] € E(G);
or

e 71 =1 and Q1AQs' has exactly two vertices u,v and uv € E(G).

Definition 4 (Induced configurations). Given a schedule S for the instance T = (G, R =
(M, F), L), we define the configuration induced by S at each time step s in the natural
way, that is, it is the tuple (75, Qs) where T4[i] is the vertex occupied by robot R; € M at
time step s and the robots in F occupy exactly the vertices in Qs at the same time step.

Definition 5 (Legal sequences). A sequence (19,Qo), - .., (7¢,Qt) of configurations is
called legal if: (i) (10, Qo) is the starting configuration; and (ii) (14, Q) s a destination
configuration; and (iii) for every i € [t — 1]o, there is a move from (7;, Qi) to (Tit1, Qit1)-

In simple words, a sequence of configurations is considered legal if and only if it represents
a valid solution, i.e. a schedule for some initial configuration set by an instance Z by
which each marked robot ends on its destination. Observe that any induced configuration
of a solution schedule is therefore automatically a legal sequence. We say that a legal
sequence of configurations is optimal if its length is one plus the number of time steps in
an optimal schedule.

'The symmetric difference A is defined as: Q1AQ2 = (Q1 \ Q2) U (Q2 \ Q1).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Definition 6. Consider two disjoint vertex sets Z1 and Zs and a bijection ¢ : Zy — Zs.
The bijection ¢* : V(G) — V(G) is defined as follows. For every v € V(G),

. fvE 2, then ¢*(v) = d(v);
o if v € Zy, then ¢*(v) = ¢~ L(v); and

e otherwise, ¢*(v) = v.

The map ¢* emulates ¢ for all vertices except for those in Z7 U Zs, for which it instead
returns the (pre-)image of the argument. This function will be used as a tool to show
that certain vertices can be replaced by others in a schedule while retaining validity,
implying that those vertices are redundant. For this purpose we define the process of
applying ¢* to an existing schedule:

Definition 7. Consider two disjoint vertex sets Z1 and Zs and a bijection ¢ : Zy — Zs.
The operation of applying the bijection ¢ to I' from time step s onwards involves defining
a new sequence I' = (7o, Qo), - . ., (71, Q¢) of pseudo-configurations as follows.

1. For every i < s, set (?i,Qi) = (Ti7Qi)-
2. For every i > s,

a) set Qi == Uyeq,d*(v); and
b) for every j € [k], set 7;[7] := ¢*(7:[4])-

We finally define the notion of strong isomorphism between connected components of
a graph. The definition effectively formalizes that two components are “equal” (or
interchangable) with respect to how robots inside might move around and with respect
to how they can interact with the rest of the graph.

Definition 8. Let Z C V(G). We say that a pair of connected components C1 and Cy of
G — Z are strongly isomorphic with respect to Z if there is a bijection ¢ : V(C1) — V(Cb2)
such that ¢ is a graph isomorphism from Cy to Cy, and moreover, for every u € V(Cq)
andv € Z, uwv € E(QG) if and only if p(u)v € E(G). We drop the explicit reference to
Z if it is clear from the context. We also say that ¢ is a witness for Cy and Cy being
strongly isomorphic.

Lemma 2. Let Z C V(G) and consider a pair of connected components C1 and Cs of
G — Z that are disjoint from the set of terminals of M. Suppose that C7 and Cs are
strongly isomorphic with respect to Z, witnessed by ¢. Suppose also that at time step
¢, V(C1) and V(Cy) are fully blocked in S. Let T' = (79, Qo). .., (71, Q:) denote the
sequence of pseudo-configurations obtained by applying the bijection ¢ to I' from time
step ¢ > 0 onward. Then, the following hold:

23

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

TREEDEPTH TO THE RESCUE

24

1. The length off is the same as that of T'.

2. The sequence I is a legal sequence of configurations.

Proof. The length of T' is clearly the same as that of I', based on the construction.

To prove 2., we start by proving that isa sequence of configurations. If it was not a
sequence of configurations, there would be an s € [c, k], such that either (i) |V (75)| # k,
or (i) |Qs] # |F|, or (iii) V(5) N Qs # 0. For (i) to be true would require a pair of
duplicates in (7s[1],...,7s[k]). This cannot occur, because there are no duplicates in
(15[1],...,7s[k]) and ¢ is a bijection. Likewise, (ii) can also not be true. We need to
show that V(75) N Qs = 0. We know that V(75) N Qs = 0. Since ¢* is injective, it is not
possible that a vertex would be mapped to twice.

Next we show that the sequence of configurations is legal. We prove, according to
Definition 5:

1. (%0, Qo) is the starting configuration:

Since ¢ > 0, we have that (79, Qo) = (7o, Qo).

- (T, Qt) is a destination configuration:

By definition C;UC} is disjoint from M. It follows that for every i € [k] : 7[i] = 7[i].
Since (74, Q¢) itself is a destination configuration, so is (7¢, Q).

. For every i € [t — 1]o, there is a move from (ﬂ,@i) to <’f_i+17QAi+1):

Assume towards a contradiction that there are time steps {i,, |€ [c,t — 1]} for
which there is no move from (7;,,,Q;,.) to (%,,+1,Qs,,+1). Let i* be the first of
these time steps. Consider the move (7+, Q+) to (Ty*41, Qi=+1). We aim to prove
that the move from (ﬂ‘*,QAi*) to (Tix41, Qi*.}rl) exists. Let (v1,v2) be the edge along
which a robot moves in that timestep in I'. Firstly observe that due to fact that
¢ is a witness of the strong isomorphism between C; and Cy with respect to Z,
the edge ¢*(v1), ¢*(v2) exists. Therefore the only way for a move from (7, Q;) to
(Tit1, Qi11) to not exist, is if at timestep i*, (i) ¢*star(v;) is unoccupied, or (ii)
¢*star(vg) is occupied. Notice that vy is occupied at time step i* in Gamma and
v1 is unoccupied at timestep ¢* in Gamma. Since ¢* is a bijection, we have that
after the first i* — 1 moves are executed in I', ¢*(v;) must also be unoccupied and
¢*(v2) must be occupied. Therefore the move from (7i+, Qi+) to (75, Q) exists.
Contradiction.

O]

Lemma 3. Let T = (G,R = (M, F), L) be an instance of GCMP with at most ny free
vertices. Consider a set Z in G and a set C = {C1,...,Cy} of connected components of
G — Z such that:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

e they are pairwise strongly isomorphic with respect to Z;
e r>ny+3k+1; and

o C, is fully blocked at time step 0 and disjoint from the terminals of M.

If there is a schedule for I, then there is an optimal schedule in which V (C,) is fully
blocked at every time step.

Proof. Assume that 7 is a yes-instance and pick a schedule S in a way such that (i) it is
optimal, and (ii) the first time step s when C, is no longer fully blocked is maximized.
Notice that due to the fact that » > n; 4 3k + 1, there must be at least one other
component C; that is fully blocked at time step s — 1 (pigeon hole principle). Making
use of the strong isomorphism between C, and C; w.r.t. Z, we define the sequence I of
pseude-configurations by applying ¢ to I' from time step s — 1 onwards. By Lemma 3, r
is a legal sequence of configurations. Let S be the schedule corresponding to I'. Since
IT| = |T|, the two schedules S and S require the same amount of energy. Therefore S is
also optimal. It breaks however our assumption that we picked S the be the schedule
where C, remains fully blocked for the longest possible time. Contradiction. O

From this lemma we can derive a useful corollary, that will be used extensively in the
upcoming proofs.

Corollary 1. Let T = (G, R = (M, F),{) be an instance of GCMP. Suppose there is a
verter v that remains occupied at every time step of an optimal schedule by a robot R.
Then the energy used by an optimal schedule for T' = (G — v, R = (M, F \ {R}),?) is
the same as the energy used by an optimal schedule for . Moreover, given an optimal
schedule for ', one for T can be produced in polynomial time.

Lemma 4. There are computable functions 1, s : N X N —= N and an algorithm that,
given a connected graph G, a tree embedding (F, f) of G of depth at most d and a number
n € N, runs in time py(n,d) - n°D and if G has more than ug(n,d) vertices, then it
produces a set Z C V(G) and a set C = {C1,...,Cp} of components of G — Z that are
pairwise strongly isomorphic with respect to Z.

Let r be the root of F'. For every v € V(F), let F, be the subtree of F' rooted in v. We
call V(F,) C V(G) the set of pre-images of vertices in F,. We call s(i) an upper bound
on the number of vertices rooted at any vertex at depth ¢ in F, and similarly, J(i) an
upper bound on the number of immediate children of any vertex at depth 7. Finally, we
define a function x(n,d,i) = n * s(i — 1) * 297 % 25(i=1)* H(d—i)xs(i=1)

Claim 1. FEither 6(i) < x(n,d,i) for every i € [d] or we can compute the claimed
Z CV(G) and aset of components C in time x(n,d,i) * n®(1).

25

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

TREEDEPTH TO THE RESCUE

26

Proof. Assume there is a vertex v € V(F') at depth ¢ with more than x(7, d,?) children
and let C, be that vertices’ children. As a direct consequence of the definition of tree
embeddings1, the pre-image f~!(v) of any vertex v € V(F) may only have at most d
neighbours. By the pigeonhole principle, there must exist a set U C C,, of size at least
X = m where for each vy,ve € U, (i) |Fy,| = |Fy,| and (ii) the neighbourhood of
V(v1) is the same as the neighbourhood of V' (v2).

Assume there is a vertex v € V(F') at depth ¢ with more than x (7, d, i) children and let
C, be that vertices’ children. The argument is based on the principle of abundance of
witnesses: Consider the neighbourhoods of all induced subgraphs {G[F'(c)] | ¢ € C,}.
there are at most s(i — 1) different possible values for |F,, |. Further, each G[F(c)] may
have a neighbourhood of size at most d —i in G. Therefore there are at most 24~ possible
different neighbourhoods. So due to the pigeon hole principle, there must be some set
U C Cy, say {u1,...,Uynaq}, of children of size at least x'(n,d,i) = m that
all pairwise share two properties: For each ji,j2 € [X'(1,d,19)], (i) |F(cj,)| = |F(cj,)| and
(ii) the neighbourhoods of F(¢;,) and F(cj,) in G are the same. We pick an arbitrary
j € X'(n,d,7)] and name V(F,;) as Z from this point on.

We continue with a similar argumentation and consider all F,,,,... ’F“x’ (i) and how
they relate to Z. The number of possible edges inside of G[F),,] is clearly bounded by
(s —i)2. Also, the number of possible edges from inside G[F,,] to G — G[F,,] is at most
(d—1)-s(i—1). And so again by the pigeon hole principle, there must be some set of
children of size at least x”(n,d,i) = 25(i71>2+(xd/_i).5(i_1)
with each other with respect to Z. Notice that x was chosen in a way such that x” > n,
which proves the existence of Z and 7 pairwise components that are pairwise isomorphic

with respect to Z.

that are all pairwise isomorphic

In order to compute these sets, we first find a vertex v € V(F') with more than x(n,d, 1)
children and call C,, its child vertices. Then examine for each child ¢ € C,, the size of F,
and the neighbourhood of V' (F.) in G. From this we can find a set Z and components
C’ that are all the same size and have exactly Z as their neighbourhoods. Then we
partition C’ into maximal sets such that each set contains only components that are
pairwise strongly isomorphic to Z. Since the size of each component is upper bounded
by s(i — 1) and the number of possible witnesses is bounded by 25(i_1)2+(d_i)*5(i_1), we
can brute-force the partition step. The number of witnesses is therefore bounded by
X(n,d,d). The running time of the whole procedure is dominated by the last step, giving
a running time of x(n, d, d) * n®(1). O

Proof of Lemma 4. Assume that §(i) < x(n,d,i) for some i € [d]. If we also consider
that s(i) < 6(i) * s(i — 1) 4+ 1 for every [d], we define pa(n,d) = s(d). If this bound is
exceeded, there must be at least one vertex having enough children to permit the process
described in the proof of the above claim. Finally, by the previous claim we have that

p1(n,d) = x(n,d,d). O

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

We are now ready to prove lemma 1.

Proof of Lemma |1. We can assume that G is connected. If G is not connected, then there
are at most M connected components of GG that contain a marked robot. In that case,
we can execute the algorithms on each connected component individually and multiply
the resulting running time with k. We start by computing an optimal tree decomposition
of G. This requires 20(4°) x n®W) time [24] 29].

The algorithm consists of two steps. The first step removes components of G, making
repeated use of Corollary |1, until it reaches a size with less than po(ny + 3k + 1,td)
vertices. When this happens, we have found a kernel. In the second step we brute-force
all possible schedules in order to find an optimal schedule.

We define r = ny + 3k 4 2. Assuming G has more then po(ns + 3k + 1,td) vertices, by
Lemma 4, we can find a set Z C V(G) and a set C = {C1,...,C,} of components in
G — Z that are pairwise strongly isomorphic with respect to Z. Then due to the fact that
r > ny+3k+1, there must be some component C; that is fully blocked at timestep 0 and
that is disjoint from M. We use Lemma [3|and Corollary 1 to create an equivalent, smaller
instance. This step is repeated until we receive an instance 7/ = ((G' = (V', E'), R'), ¢)
with |V'| < pa(ny + 3k + 1,td).

An optimal schedule can then be brute-forced: In an optimal schedule, it cannot be
that configurations repeat. This means that the number of all possible schedules is
bounded by v!, where v is the number of all possible configurations. Observe that v is
bounded by |V(G’)|. In total, we can express the running time of the whole algorithm as
a function y(n¢, k,td), as running the subroutine in Lemma 4, finding a tree embedding
and brute-forcing an optimal schedule in the final step, each require a time bounded by
a function of ng, k and/or td. Finally, the energy expended in an optimal schedule is
also bounded by v(ny, k,td), as that is also the running time of the computation of the
optimal schedule. O

4.0.2 Case 2: Many Free Vertices

We begin by noting that if ¢ < g(k,td), where g is any computable function, then the
problem is FPT. This follows by an adaptation of the proof of [I7, Theorem 5:

Lemma 5. GCMP is FPT parameterized by |M| + tw(G) + £.

Proof. Toward the goal of proving the lemma, we make some guesses regarding some
attributes of a solution for the given input.Then we define MSO formulas that, given the
previously made guesses, can fully define the properties that a schedule must fulfill in
order to be correct. The total number of guesses will be bounded by ¢ alone, allowing
an algorithm to brute-force over all possible guesses. Finally, we invoke Courcelle’s
Theorem [2], 6] for every possible guess of attributes. Let S be the schedule we look for

and let Wy, ..., Wy, with W; = (vi,... ,fucili) be the routes of the robots moving inside S.

27

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

TREEDEPTH TO THE RESCUE

28

We guess (i) the number a < ¢ of robots that move in S, (ii) lengths dy, ..., d, of the
routes of the non-stationary robots, and (iii) a function pu : R x R — {0, 1}, declaring
whether two robots v;'- and v} from routes W; and W), (respectively) are identical. We
further label the starting vertex of every robot red. Let r : V' — {0, 1} be the function
describing the vertices that are labelled red. We aim to express the following properties:

1. Each W; is a walk in H.

2. For every i, j, p, q, v;- and v are equal if and only if ,u(v;-,vg) =1.

The walks W; are pairwise non-conflicting routes.

-~ W

Every walk W; starts at a red vertex.

5. For each of the first [M| walks W7y, ..., W)y, the initial and final vertices of each
walk are precisely the starting and ending vertices, respectively, of some robot in

M.

6. For each red vertex appearing on any walk W;, it must be the first vertex of some
walk.

The following MSO formulas express those properties. The formula for Property 3 was
split into two lines for improved readability.

vj =i Vadj(vf,v541) Vielajeldi1)
v =0h =l vl) =1 e jeldacldy)
Vi #E U Vipelalitptcimin{didy)]
vfé = Ufﬂ N U§+1 = vy Vi pelal ip,temin{d;,dp} 1]
r(vé) =1 Viela]
Fjeqmvo = 8§ Av, =t; Ve

Fie MV =) Verev(@)p(v)=1

The goal is to prove that Z is a yes-instance if and only if there are guesses for o, numbers
di,...,ds, and function p such that the resulting formula is true on H. The Forward
direction: Let S be an optimal schedule for Z. From S we can automatically deduce the
correct guesses for «, dy, ..., d, and p. Properties 4.1 through 4.5| are clearly fulfilled, as
we are dealing with a correct schedule. For Property |4.6, notice that since an arbitrary
red vertex v starts out occupied, it must be vacated before a robot R; steps on it. The
property ensure that that robot is part of some walk and Property |4.3| makes sure that
that walk does not conflict any other walks.

For the backward direction, assume we have guesses that make the MSO formula true
and let Wy, ..., W,. We define the schedule S as the schedule corresponding to the walks

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Wi, ..., Wq. The routes do not conflict as Property 4.3 is fulfilled. Every robot in M
starts at the correct vertex and reaches its destination as guaranteed by Property 4.4, [

Lemma 6. Let H be a connected subgraph in a connected graph G, where G has treedepth
td(G) and contains at least |V (H)| many free vertices. There exists a polynomial-time
computable schedule of length at most 299(%) .|V (H)| that frees up all the vertices in H.

Proof. If H is fully occupied, we are done, so assume it is not. Let v be an arbitrary
vertex in H that is occupied and let x be the closest (to v) free vertex in G — H. Vertex
x must exist, as there are at least |V (H)| many free free vertices in G. Let P be the
shortest path from v to z. All vertices in V(P) N (G — H), except for x, are occupied, as
otherwise the assumption that z is the closest free vertex in G — H, breaks. Remember
the process of shifting defined in the previous chapter. Shift the robots in P that are
closest to x, towards x and continue this until you reach the first vertex in H that is
unoccupied. After this process, at most |P| moves have been made and another vertex
in H has been freed up. By Proposition 2, the length of any shortest path between
two arbitrary vertices in a graph of treedepth td is at most 2!%. Therefore we have that
|P| < 2td,

We repeat the above process until H is free of robots. Finding P, as well as shifting the
robots inside of P requires polynomial time. After at most |V (H)| iterations, the process
finishes and it required polynomial time in total. This proves the claimed lemma. O

We use the above lemma to resolve the special case of GCMP where | M| = 1, that is,
GCMP1.

Lemma 7. Given an instance T = (G,R = (M = {(s,t)},F),{) of GCMP1 with
ny > 2td(S) | in polynomial time we can compute a schedule for T with a total travel length
of at most 22td(G)+1,

Proof. Let Ry be the single robot in M and let P be a shortest path from s to ¢ in G.

Let Cp be the connected component of G — {s} that contains P. The proof builds upon
the previous result, Lemma [6. Assume the number of free vertices in C'p is less than or
equal to |V (P)|. Otherwise we apply Lemma 6 to vacate P — {s} in polynomial time
and afterwards we move R; from s onto t. If the number of free vertices is smaller than
|V (P) — 1|, we instead create a process by which we move R; a step back, effectively
extending the length of P by one. This procedure is then repeated until P is large enough
to satisfy the conditions for Lemma 6:

Remember that in any graph with treedepth k, the length of the shortest path between
any two vertices has length at most 2¥. Given that n = 2{td(@)} and the number of free
vertices in Cp is smaller than |V (P)| — 1, there must be another connected component
with at least one more free vertex. Let x be any free vertex in that component and let)
be the shortest path from = to v. Notice that v is a cutting vertex separating the two
components. We again have that |Q] < 2td(G) We now shift all robots on Q, one step in

29

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4.

TREEDEPTH TO THE RESCUE

30

the direction of . This requires at most |Q| < 2!“%) moves. As a result we receive an
instance Z’ where s is one step further away from ¢. Moreover, since the v is a cutting
vertex, the “new” Cp may contain further free vertices.

We repeat the above process and update P and Cp until the number of free vertices in
Cp is greater than |V(P)| — 1. Finally we apply Lemma 6 again, making space for R to
pass to t. Remember that by Proposition 2, |P| < 2!4%) And so the maximum number
of iterations is at most min{|V(G)|,2!)}. Every iteration requires polynomial time
to find a free vertex x in a new connected component, just like the final application of
Lemma 6, yielding a polynomial time procedure overall.

We repeat the step-back 2! times, moving at most 2/4%) each time. Freeing P in the

end requires another 2t4G) « 2t4(G) moves. The total length of the schedule is therefore
at most 2td(G) * 2td(G) + 2td(G) % 2td(G’) _ 22td(G)+1‘ 0

The lemma will be helpful in the proof for our the main Lemma in this chapter. Before
we prove that, we first show the following auxiliary result.

Lemma 8. Let G be a connected graph and p € N such that |V (G)| > 2t¢°(@) . ptd(@)
Then there exists a separator S of size at most td(G) and a set C = {C1,...,Cp} of p
many connected components of G—S such that, for alli € [p], it holds that N(C;) = S and
|C;] < 2td*(G) (@=L Moreover, we can compute S and C in FPT time parameterized
by p + td(G).

Proof. The proof works by induction on td(G). In the case case, td(G) = 2, meaning G
must be a star. Define define S as the center of the star and for components C1,...,C),
pick p arbitrary leaves.

In the induction step, find a forest embedding (F, f) of G in FPT time [24, 29] and let r
be the root of F'. Consider the connected components of the graph G — r. If there are
p components of size less than or equal to 2td(G)? - ptd@=1 then we set S to be r and
C to be those p components, and we are done. So assume henceforth that this is not
the case. Then due to the large number of vertices in G and the Pigeonhole Principle,
there must be some connected component H with at least 9td(G)? . &) =1 vertices. Since
2td(G)? . ptd(@)=1 > 9(td(@)=1)* . (9)td(G)=2 e may apply the Induction Hypothesis to H.
This yields a set S” in H and 2p components C' = {C1, ..., Cy,}, such that for all i € [2p]
we have that N(C;) = §' and |C!| < 2t4UHD* s (2p)td(H)=1 Dye to the fact that td(H) <
td(G) — 1, the components each have size at most (td(G)=1)?+(2p)! D=2 9td(G)? | td(G)—1
Now we partition the components into a set C{ = {C] | i € [2p],r € N(C})} and
Ch={Cl|i€2p],r ¢ N(C])}. If |C1]| < |C2|, we set S = S"U{r} and set C to p arbitrary
components in C;. Otherwise, we set S = S’ and again set C to p arbitrary components
in Co. This finishes the proof of the lemma. O

Lemma 9. Given an instance I = (G, R = (M, F),k,) of GCMP with ny > 2td*(@) .
(Sk)td(G), in FPT-time parameterized by td + k we can compute a schedule for T with a
total travel length of at most 224G +2. (3k + td(Q)).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Proof. We describe an algorithm to compute a schedule as described in the lemma. The
algorithm consists of these successive steps:

1. Structure the graph: Apply Lemma 8 to GG to find a set S and 3k components
C with the properties described in the lemma.

2. Move the marked robots out of the way: For all i € [k], move the i-th robot
in M into N(S) N C;, making repeated use of Lemma [7.

3. Make space towards the destination terminals: Create a Steiner Tree T on
S U{t;} and vacate T using Lemma 6.

4. Route the marked robots: Move the marked robots from N (S) N C; through T’
and into {t;}.

Step 1: Since |V(G)| > 204(@*BR™ " 55ply Lemma 8 to G in order to find a connected
subgraph S with [V (S)| and 3k components C = {C,...,Cs;} of size less than or equal
to 2td(G)*BR) D™ that all have S as their neighbourhood. Further we assume without
loss of generality that Cy, ..., Cs; contain no terminals, i.e. (V(C1)U---UV(Ck))N({s; |
ie[k}U{ti|ielk]})=0.

Step 2: Without loss of generality fix {Ry, ..., Ry} = M. Navigate robots Ry, ..., Ry into
components C1, ..., C, respectively, starting with robot Rj, then Ro, and so on. Navi-
gating robot R; into C; is done by applying Lemma |7/ on the subgraph G — (C1,...,C;—1)
in order to not touch the previously used components {C,...,C;_1}. Another conse-
quence of this is that when routing robot R;, we have that the number of free vertices in
G — (Ch,...,C;_1) is still greater than or equal to td(G)%-(3k) D 2u(3k—i41) 2214 g
allows the repeated use of Lemma |7 as a subroutine. G remains connected over this
process, as all C; share the same neighbourhood (namely S). The total length travelled
in this computation is 2t4©)+2. Finally, if a robot R; with j > i enters C; during the
process of routing R;, we stop the subroutine immediately and simply swap the names of
R; and R;.

Step 3: Finally we aim to move the marked robots onto all {t; | < € [k]}. For this purpose,
create a Steiner Tree T of S U {t; | i € [k]} in the subgraph G — (Cy,...,Cy)?. This

can be done in FPT time parameterized by the number of (Steiner Tree-) terminals [15].

Since every shortest path between two vertices has length at most 2/4%) and |S U {t; |
i € [k]}| < td(G) + k, we have that |V(T)| < (k + td(G) — 1) - 224 which is less
than ng — >2,c/Cil < 2td(G)* . | . (3k)!G) -1 We can now apply Lemma 6/ to T in
G — (Cy,...,C}) to free up all vertices in 7. This requires at most 2! . |V(T)| <
22td(G) . (k 4 td(G) — 1) moves.

Step 4: Finally move each R; through 7" and into the ¢; that is free and the farthest away
from S, avoiding collisions. Each robot makes at most |V (7")| moves.

2A Steiner Tree T of a subset U C V(G) of terminals is a minimum spanning tree in G' that contains
all terminals and potentially other vertices.

31

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

4. TREEDEPTH TO THE RESCUE
The total length of the schedule is at most 2242 . |k 4 921d(G) . (2k 4 td(G) — 1) +
224G . (2k 4+ td(G) — 1) < 22d(O+2 . (3 + td(Q)). O
Proof of Theorem 3. Let T = (G,R = (M, F),¥) be an instance of GCMP. If ny <
2td*(@) . (3k)t(%) then 7 can be solved in FPT-time by Lemma 1. Otherwise, we have
ng > 2td*(G) . (3k)H(O) | If ¢ < 220d(G)+2. (3k +td(G)) then Z can be solved in FPT-time
by Lemma 5. Finally, if both ny and £ are at least 2td*(G) . (3k)t4(%) | then T can be solved
in FPT-time by Lemma |9. It follows that Z can be solved in FPT-time, and GCMP is
FPT. O

32

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

CHAPTER

Conclusions and Further Work

We investigate the parameterized complexity of a routing problem with a wide range of
applications. We use a problem formalization that has recently gained attention and
extend the state of the art by considering new parameterizations. The outcome is a
hardness proof for one variant and a proof for inclusion in FPT for a second variant.
This thesis reflects the author’s contribution to a paper they co-authored with other
researchers. We put special emphasis on the author’s own contribution — the hardness
proof. For this purpose we devise a “roadmap” featuring the engineering process of how
to arrive at such a proof.

Routing problems will continue to exist in the future, and their relevance is expected to
increase. Different real-world applications have different requirements, which raises the
need for different problem formalizations. So for further work, one can consider additional
variants of GCMP1 and GCMP. The question of how structure in the underlying graph
helps in terms of complexity is an interesting research avenue. Currently, a prominent
graph measure is treewidth, but the complexity of GCMP parameterized by | M| plus the
treewidth of the input graph remains unkonwn. A starting point for this is a polynomial-
time algorithm for GCMP1 on trees [27], but until now no further progress has been made
in this direction. Even for |[M| = 2 no polynomial-time algorithm is known. Progress on
CMP on planar graphs would be equally important.

33

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Overview of Generative Al Tools
Used

AT tools were used solely for the following purposes:

1. Grammar- /spellchecking
2. Stylistic language improvements

3. Translating the Acknowledgements, Abstract and Use of Al-tools into German

35

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Ubersicht verwendeter Hilfsmittel

KI-Tools wurden ausschliefllich fiir folgende Zwecke eingesetzt:

1. Grammatik-/Rechtschreibpriifung
2. Stilistische Sprachverbesserungen

3. Ubersetzung der Danksagungen, der Zusammenfassung und der Verwendung von
KI-Tools ins Deutsche

37

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

1.1

2.1

3.1

3.2

3.3
3.4

3.5

3.6

List of Figures

The popular 15-puzzle game [31].

A graph G (left) and an optimal forest embedding (right) F'. The slim black
edges on the right do not technically exist..

Version 0 of the reduction. The clear paths are green. The return paths are
blue. Dot-dashed lines signify full paths.
Moving around in the red cycle allows R; to cheat and get to ¢; without
shifting any robots into clear paths.]
Version 1 after inserting separators in between successive layers.
Version 2. We add the test paths and the separator between the main part
and the test part. Dot dashed lines signify full paths and the dashed line in
the test component stands for the fact that each edge is subdivided &° times.
Version 3. After varying the lengths of the return paths, the budget must be
used up precisely if one wants to achieve a feasible solution. This makes it
impossible for robots to make use of Cheat 2, as there would be no budget
leftover for intra-layer movement of blockers.|
The whole construction of G’ along with some labels to clarify the naming
conventions. oL oL

10

11

12

13

14

16

39

5191011 UBIM N.L T8 ulid Ul SIGE|IeRe SI SISSLY SILY JO UoISIaA [eulblio paroidde auL ¢ any aSpaimou 1o
reqBnyIan s8uI0NaIg UBIM N1 Jap Ue is! g ewojdiq Jasalp uoisianfeulbuo aponipab suaigoidde sig S OYJOI|QIE

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

Bibliography

Aviv Adler, Mark de Berg, Dan Halperin, and Kiril Solovey. Efficient multi-robot
motion planning for unlabeled discs in simple polygons. CoRR, abs/1312.1038, 2013.

Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12:308-340, 1991.

Jacopo Banfi, Nicola Basilico, and Francesco Amigoni. Intractability of time-optimal
multirobot path planning on 2d grid graphs with holes. IEEE Robotics Autom. Lett.,
2(4):1941-1947, 2017.

Bahareh Banyassady, Mark de Berg, Karl Bringmann, Kevin Buchin, Henning
Fernau, Dan Halperin, Irina Kostitsyna, Yoshio Okamoto, and Stijn Slot. Unlabeled
multi-robot motion planning with tighter separation bounds, 2022.

Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel,
and Solomon Eyal Shimony. ICBS: improved conflict-based search algorithm for multi-
agent pathfinding. In Qiang Yang and Michael J. Wooldridge, editors, Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pages 740-746. AAAI Press, 2015.

Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput., 85(1):12-75, 1990.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, Dominik Leko, and
M. S. Ramanujan. Routing few robots in a crowded network. In Pat Morin
and Eunjin Oh, editors, 19th International Symposium on Algorithms and Data
Structures, WADS 2025, August 11-15, 2025, York University, Toronto, Canada,
volume 349 of LIPIcs, pages 20:1-20:15. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2025.

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan.
Parameterized algorithms for coordinated motion planning: Minimizing energy. In

41

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[10]

18

19

42

[t

—

Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st
International Colloquium on Automata, Languages, and Programming, ICALP 2024,
July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 53:1-53:18. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024.

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan.
Parameterized algorithms for multiagent pathfinding on trees. In Sanmay Das, Ann
Nowé, and Yevgeniy Vorobeychik, editors, Proceedings of the 24th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2025, Detroit,
MI, USA, May 19-23, 2025, pages 584-592. International Foundation for Autonomous
Agents and Multiagent Systems / ACM, 2025.

Erik D. Demaine, Sandor P. Fekete, Phillip Keldenich, Henk Meijer, and Christian
Scheffer. Coordinated motion planning: Reconfiguring a swarm of labeled robots
with bounded stretch. SIAM J. Comput., 48(6):1727-1762, 2019.

Erik D. Demaine and Mikhail Rudoy. A simple proof that the (n2-1)-puzzle is hard.
Theor. Comput. Sci., 732:80-84, 2018.

Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

Stuart E. Dreyfus and Robert A. Wagner. The steiner problem in graphs. Networks,
1(3):195-207, 1971.

Adrian Dumitrescu. Motion planning and reconfiguration for systems of multiple
objects. In Sascha Kolski, editor, Mobile Robots, chapter 24. IntechOpen, Rijeka,
2007.

Eduard Eiben, Robert Ganian, and Iyad Kanj. The parameterized complexity of
coordinated motion planning. In Erin W. Chambers and Joachim Gudmundsson,
editors, 39th International Symposium on Computational Geometry, SoCG 2023,
June 12-15, 2028, Dallas, Texas, USA, volume 258 of LIPIcs, pages 28:1-28:16.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.

Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. A minor-testing
approach for coordinated motion planning with sliding robots. In Oswin Aichholzer
and Haitao Wang, editors, 41st International Symposium on Computational Geome-
try, SoCG 2025, June 23-27, 2025, Kanazawa, Japan, volume 332 of LIPIcs, pages
44:1-44:15. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2025.

Sandor P. Fekete, Phillip Keldenich, Dominik Krupke, and Joseph S. B. Mitchell.
Computing coordinated motion plans for robot swarms: The CG: SHOP challenge
2021. ACM Journal on Experimental Algorithmics, 27:3.1:1-3.1:12, 2022.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verflgbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[20]

[25]

[26]

[27]

Foivos Fioravantes, Dusan Knop, Jan Matyas Kristan, Nikolaos Melissinos, and
Michal Opler. Exact algorithms and lowerbounds for multiagent path finding:
Power of treelike topology. In Michael J. Wooldridge, Jennifer G. Dy, and Sriraam
Natarajan, editors, Thirty-FEighth AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence,
TAAT 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence,
FEAAI 2014, February 20-27, 2024, Vancouver, Canada, pages 17380-17388. AAAI
Press, 2024.

Jorg Flum and Martin Grohe. Parameterized Complexity Theory, volume XIV of
Texts in Theoretical Computer Science. An FEATCS Series. Springer, Berlin, 2006.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern., 4(2):100-107,
1968.

J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the complexity of motion planning
for multiple independent objects; pspace- hardness of the "warehouseman’s problem".
The International Journal of Robotics Research, 3(4):76-88, 1984.

Wojciech Nadara, Michal Pilipczuk, and Marcin Smulewicz. Computing treedepth
in polynomial space and linear FPT time. In Shiri Chechik, Gonzalo Navarro, Eva
Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium on
Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume
244 of LIPIcs, pages 79:1-79:14. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2022.

Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

Christos H. Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao Tamaki.
Motion planning on a graph (extended abstract). In 35th Annual Symposium on
Foundations of Computer Science, Santa Fe, New Mexico, USA, November 20-22,
199/, pages 511-520. IEEE Computer Society, 1994.

Daniel Ratner and Manfred Warmuth. The (n2-1)-puzzle and related relocation
problems. Journal of Symbolic Computation, 10(2):111-137, 1990.

Felix Reidl, Peter Rossmanith, Fernando Sanchez Villaamil, and Somnath Sikdar.
A faster parameterized algorithm for treedepth. In Javier Esparza, Pierre Fraigni-
aud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer
Science, pages 931-942. Springer, 2014.

43

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

] 3ibliothek,
Your knowledge hub

[30] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based
search for optimal multi-agent pathfinding. Artif. Intell., 219:40-66, 2015.

[31] Wikipedia contributors. 15 puzzle — Wikipedia, the free encyclopedia, 2025. [Online;
accessed 04-September-2025].

[32] Jingjin Yu and Steven M. LaValle. Structure and intractability of optimal multi-
robot path planning on graphs. In Marie desJardins and Michael L. Littman, editors,
Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence, July
14-18, 2013, Bellevue, Washington, USA, pages 1443-1449. AAAT Press, 2013.

44

