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Abstract

With monoplotting, object points can be reconstructed from a single oriented image if a reference surface of the captured
scene is available. While used extensively in environmental sciences, prior approaches fall short of describing the uncertainty
of the reconstructed points.

In this paper, we estimate this monoplotting uncertainty using three different methods: i) Monte Carlo simulation, ii) un-
scented transform and iii) classical variance propagation with tangential approximation of the terrain. Our investigations
are guided by two different use cases: i) For manually selected image points, the estimated uncertainty determines whether
these monoplotted points are accurate enough for a subsequent research question (e.g. deriving glacier changes from
historical terrestrial images). ii) Estimating the monoplotting uncertainty for each pixel of the whole image to get an
overview of the expectable uncertainty, which will already be beneficial during the image orientation step. While for the
first use case, the precision of the estimated uncertainty is crucial, the second use case requires a fast method. Furthermore,
in both use cases, silhouettes must be considered because the estimates in their vicinity will not be valid. Therefore, we
further investigate the derivation of silhouette masks, optimally exploiting the available information from the three different
methods.

For evaluation, we use a selected historical terrestrial image showing a glacier in the Alps around 1900, where, for the
first use case, we manually digitised individual vertices of a glacier outline. Using the Monte Carlo estimates based on
1000 samples as reference, the results from the unscented transform are closer to those (14.1% RMS) than the ones from
variance propagation (24.7% RMS). Despite this good result from the unscented transform, our recommendation for this
use case is nevertheless the Monte Carlo simulation, thanks to the speed of existing ray-casting routines.

However, for the second use case, where the monoplotting uncertainty is predicted for each pixel of the entire image to get
a quick overview, the enormous amount of millions of ray-castings prohibits both Monte Carlo simulation and unscented
transform. Here, we propose to use variance propagation because of its speed and still reasonable precision, yielding
uncertainty estimates with an RMS of 7.8% in areas away from silhouettes.

Keywords Monoplotting - Terrestrial images - Monte carlo simulation - Variance propagation - Uncertainty estimation -
Unscented transform - Silhouette detection

1 Introduction

Single terrestrial images taken as memories by locals
and tourists are a unique resource to document long-term
changes (e.g. glacier retreat) in alpine regions. Historical
terrestrial images, which have been available since the
1890s and thus predate other historical resources (e.g.
aerial nadir images) for up to 50 years, are of great value
for environmental sciences. However, as such historical ter-
restrial images were typically acquired without any stereo
intention and have large time gaps in between, deriving 3D
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Fig. 1 Documenting the past glacier extent of the Gepatschferner in Austria using a historical terrestrial image from around 1900, provided by
Martin Frey. None of the GCPs is close to the glacier outline, neither in image nor object space. Thus, the GCP residuals tell little about the
monoplotting uncertainty of the vertices of this outline. a Historical terrestrial image with GCPs and glacier outline (purple) in image space.
b Selected GCPs and monoplotted glacier outline displayed in object space on top of a recent hillshade

monoplotting poses an interesting alternative to derive
metric information.

Monoplotting works by connecting a selected image
point with the projection centre and intersecting this image
ray with a digital terrain model (DTM). The resulting ob-
ject point is unique, provided it does not lie on a silhouette.
Thus, in general, coordinates in object space are directly
derived from image points. This way, linear geometries like
glacier outlines can be represented as polylines in object
space by monoplotting each line vertex, see Fig. 1.

Widely utilised in various earth science disciplines to
quantify long-term landscape changes from single images
(Altmann et al. 2023; Gabellieri and Watkins 2019; Genu-
ite et al. 2023; Marco et al. 2018; Wiesmann et al. 2012;
Biihler et al. 2019), subsequent spatial analysis should take
the uncertainty of the monoplotted points into account, i.e.
the covariance matrix of each point or statistical measures
derived from it. This way, one can determine whether the
observed changes are actually larger than this uncertainty.
However, in none of these previous works, this uncertainty
is properly addressed: It is either not mentioned at all, deter-
mined through comparison with reference data (Bayr 2021)
or limited to the ground control points (GCPs) (Stockdale
et al. 2015). Suitable reference datasets are often unavail-
able or highly uncertain, especially for historical images.
Analysis based on GCPs appears reasonable as they are
used for the spatial resectioning of each single image. Yet,
GCPs are generally identified along prominent topographic
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structures (e.g. horizon, ridgelines) that are rarely close to
the features of interest (Fig. 1). Due to the changing geo-
metric relations within the view (distances and intersection
angles), the monoplotting uncertainty varies significantly
within an image. Consequently, the residual measures avail-
able at the individual GCPs are, in most cases, not repre-
sentative of the monoplotted points of interest, and instead,
an actual uncertainty measure is needed for them.

Another potential use case for the monoplotting uncer-
tainty is related to the image orientation itself. GCPs for
orienting historical images are typically identified manu-
ally in a recent orthophoto and a DTM. Since this can be
quite a challenging and time-consuming process, at some
point, the user is confronted with the question of whether
the achievable monoplotting accuracy is sufficient or if ad-
ditional GCPs are needed. It is difficult to answer this solely
from the variances of the estimated camera parameters, due
to the combined influence of acquisition geometry and ob-
served topography. Hence, predicting the monoplotting un-
certainty for each pixel of the image, further referred to as
the uncertainty map, can serve as a valuable tool during the
whole image orientation workflow.

The method for estimating the monoplotting uncertainty
should therefore be both accurate and fast (considering that
the uncertainty map scenario requires the method to be ex-
ecuted for every pixel of an image).

A direct uncertainty formula offers the chance for a fast
solution. However, given the irregular shape of the DTM,
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such a direct solution is not easy to come by. For the spe-
cific case of the object being a plane, the problem of ray-
plane intersection is solved in (Forstner and Wrobel 2016,
p- 527) by classical variance propagation using first-order
terms with respect to the image ray geometry. Applying this
direct solution on a real terrain requires the area around the
monoplotted object point to be approximated by its tangent
plane. The validity of this first-order approximation (now
also with respect to the terrain) depends on the local ter-
rain neighbourhood (e.g. smoothness, curvature) and, con-
sequently, impacts the accuracy of the estimated monoplot-
ting uncertainty. To avoid this approximation, alternatives
are required.

One method, which requires no first-order approximation
at all and takes into account the actual shape of the terrain
around the monoplotted point, is Monte Carlo simulation
(Metropolis and Ulam 1949). Thereby, many randomly se-
lected variations of the ray are intersected with the actual
terrain. This method is controllable with respect to the pre-
cision of the estimates. Depending on the desired precision,
a large number of random samples, e.g. several hundred,
may be necessary. This, in turn, makes Monte Carlo sim-
ulation not appear as a promising method for deriving the
uncertainty map.

An efficient and accurate alternative to Monte Carlo sim-
ulation is the unscented transform (Julier and Uhlmann
1997), which only needs a small number of systematically
selected rays. The downside is that it requires a scaling pa-
rameter. Its choice is up to the user and may result in illegal
results (i.e., negative-definite estimates for the covariance
matrix).

Despite their pros and cons regarding precision and run
time, all three mentioned methods appear as viable candi-
dates for the uncertainty estimation. In our work, we con-
sider two practical use cases for which we want to discuss
the estimation of the monoplotting uncertainty:

1. for individual, manually identified, points of interest (e.g.
vertices of a polyline): Here, the precision of the uncer-
tainty estimate is more important than the computation
speed. Thus, both Monte Carlo simulation and unscented
transform appear as candidates, although the much larger
number of samples for Monte Carlo makes unscented
transform appear to be more promising.

2. for each pixel of the image (uncertainty map): Here, the
computation speed will be of concern, and even the un-
scented transform might take too long. Thus, the first-or-
der approximation, which offers a direct solution without
any samples, appears as a reasonable candidate.

In both use cases, silhouettes, which separate the vis-
ible terrain from the obstructed terrain, need to be con-
sidered. For the methods based on ray sampling (Monte
Carlo simulation, unscented transform), silhouettes lead to

a multimodal distribution of the monoplotted sample points.
Hence, the derived “variances” cannot be interpreted as
uncertainties. On the other hand, the variance propagation
based on the local tangent plane does not capture the depth
discontinuities, and therefore, the estimated variances will
be wrong. Thus, it is essential to take care of the silhouettes
in all three approaches and either exclude the area around
them by masking or warn the user. Since different interme-
diate results arise during the three uncertainty estimation
approaches, we adapted the silhouette detection for each
approach to exploit these intermediate results optimally and
avoid extensive unnecessary calculations.

Accordingly, the contributions of this paper are the fol-
lowing:

o Discussion of different approaches for deriving the
monoplotting uncertainty: i) Monte Carlo simulation,
ii) unscented transform, and iii) first-order variance prop-
agation.

e Derivation and evaluation of silhouette masks.

e Demonstrating the two considered use cases on a his-
torical terrestrial image. Thereby evaluating the methods
with respect to accuracy and speed. Since the precision
of Monte Carlo is controllable, it will be used to generate
the reference values for this experimental evaluation.

The paper is structured in the following way: We first in-
troduce the factors influencing the monoplotting uncertainty
(Sect. 2) and, based on these considerations, we explain the
employed methods in Sect. 3. The description of the dataset
used in our experiments is given in Sect. 4. The experiments
and the obtained results make up Sect. 5, followed by their
discussion in Sect. 6. Finally, a conclusion in Sect. 7 ends
the paper.

2 Factors Influencing the Monoplotting
Uncertainty

As mentioned above, we formulate monoplotting as the in-
tersection of rays originating from the projection centre of
a camera with a DTM. Therefore, the uncertainty of the 3D
points derived through monoplotting depends on the uncer-
tainty of the camera pose, the image measurements and the
DTM.

2.1 Camera Pose

The orientation of a single image is computed using GCPs.
Following (Forstner and Wrobel 2016, p. 501) this can be
formulated in the six elements of the exterior orientation
(projection centre Z and three rotation angles «, ¢, k) and,
if an unknown camera was used, like in our scenario of
historical images, the three elements of the interior orienta-
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tion (xg, Yo, f). Thus, the uncertainty of the camera pose is
represented by the covariance of the orientation parameters
as Xy, with kT = (Z7, ., &, K, x0, o, f).

2.2 Image Measurements

Various factors influence the measurement accuracy of im-
age points, such as unmodelled systematic effects (e.g. dis-
tortion) or circumstances related to their identification (e.g.
contrast, blur). Especially the latter change from pixel to
pixel (e.g. contrast) and are user-specific (e.g. distinguisha-
bility of the boundary between semantic classes). We repre-
sent these image measurement uncertainties by the variance
03,, which allows us to introduce them into the derivation
of the monoplotting uncertainty.

2.3 Digital Terrain Model

We use a recent DTM derived from Airborne Laser Scan-
ning. With their high point density, vertical and positional
accuracy (Aguilar et al. 2005; Vosselman 2008), we assume
the influence of the uncertainty of the DTM on the mono-
plotting uncertainty to be minor. This is especially true for
historical terrestrial images where, for example, the uncer-
tainty of the unknown projection centre may reach several
meters. Therefore, throughout this work, we assume the
DTM to be error-free.

Of course, using a recent DTM to represent scenes cap-
tured over 100 years ago raises the question of whether its
usage is justified and whether the area of interest can be
considered stable over this extended time period. This in-
fluence could be addressed if multiple DTMs from different
epochs are available. One possible way would be to evalu-
ate the significance of change from a series of DTMs and
their differences (Wheaton et al. 2010). This would result in
a binary map indicating stable areas in the simplest case. Al-
ternatively, monoplotting could be conducted for each DTM
individually. The resulting differences in the derived object
coordinates could then be integrated into the uncertainty es-
timation. However, accurate height information close to the
acquisition date is usually unavailable, making it difficult
to quantify the magnitude of topographic changes. Accord-
ingly, monoplotting of historical images based on a current
DTM should only be employed in areas where the topog-
raphy can be assumed to be relatively stable compared to
the observed changes.

Beyond the choice of the DTM, its representation also
impacts the calculation of the monoplotting uncertainty. We
use a piecewise planar triangulated mesh. This way, in the
context of our work, monoplotting is always a ray-plane
intersection, which has two explicit advantages: First, the
monoplotting point can be calculated by ray casting using
highly optimised libraries like Embree (Wald et al. 2014).
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Second, the intersected triangle can serve as the local tan-
gent plane of the monoplotted point. This approximation is
required to estimate the monoplotting uncertainty by clas-
sical variance propagation. A negative consequence of this
piecewise planar triangulation is that the same local tangent
plane will be utilised for each monoplotting point within
a triangle, independent of its location within the triangle.
This will distort the monoplotting uncertainty estimated by
variance propagation for points close to a triangle edge—as
opposed to the two ray sampling approaches, which actually
consider the variation of the triangles.

3 Method

After discussing the major factors influencing the uncer-
tainty estimation of monoplotted points, we need to describe
the relationship between the coordinates of corresponding
points in image and object space. This relation can be for-
mulated by the collinearity equation in a Euclidean vector
form as

AR(x,-2)=Xp-Z. (H

Here, x, = ()cp,yp,O)T is the image point, Xp
(Xp,Yp,Zp)" is the corresponding object point, z
(0. yo. )T is the interior orientation (with principal dis-
tance f > 0), Z = (Xo, Yo, Zo)" is the projection centre,
and R is the rotation matrix of the image (the chosen
parametrisation is detailed in Sec. 8). Image and object
space are related by an unknown scale factor A, which
changes from point to point. The collinearity equation in
Eq. 1 serves not only as basis for monoplotting, but also
for the ray casting required for the two considered sample
based methods (i.e. unscented transform and Monte Carlo
simulation).

3.1 Monoplotting as Ray-plane Intersection
Following the triangulation-based representation of the
DTM, we can formulate monoplotting as a ray-plane inter-
section. The object point M, obtained by monoplotting the
image pixel m, thus results from intersecting the image ray
(from Eq. 1)

M=Z+ARm-z)=Z +d (2)

with the plane

n'(M - Pgy) =0, 3)
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which is given by its normal vector n and some point P.
Combining these two equations gives the unknown scale
factor as

_ nT(P 0~ VA )

SR @

which yields the intersection point M as

n"(Py-Z)

M=2Z7Z+
n'd

d. &)

Obviously, no intersection point can be derived if the
direction vector d of the image ray is parallel to the plane;
ie. n'd = 0. In Eq. 5 all considered stochastic param-
eters (i.e. camera orientation parameters and image mea-
surements) are contained and hence, it will serve as basis
for the uncertainty estimation based on classical variance
propagation.

3.2 Estimation of the Monoplotting Uncertainty

With the collinearity equation Eq. 1 and the ray-plane inter-
section Eq. 5 we established the geometrical foundation for
the required uncertainty estimation methods. Together with
the uncertainty of the camera parameters and the image
point as input, we now want to calculate the uncertainty
of the monoplotting point M. More formally, this can be
described as the task of calculating the covariance matrix
Xy for the random variable M, which is a function f (x)
of the random variable x ~ N (x,, X,) for which we as-
sume a normal distribution (Forstner and Wrobel 2016,.
p. 42). In x we combine the following 11 elements: The
coordinates of the projection centre Z, the Euler angles
(o, &, k), the coordinates of the principal point (xg, yo) and
the principal distance (f) and the coordinates of the image
point (x,,, y,,) to be monoplotted. Accordingly, the covari-
ance matrix ¥, combines the fully occupied covariance
matrix Xy, from the image orientation and two diagonal
entries with the variance of the image measurements (o2).

As mentioned previously, we selected three different un-
certainty estimation methods which appear as viable can-
didates to calculate X';,: Monte Carlo simulation and un-
scented transform, which are based on image ray samples,
and classical variance propagation using first-order terms
of the Taylor series based on Eq. 5. Those three approaches
will be discussed in more detail in the following.

3.2.1 Monte Carlo Simulation
Monte Carlo simulation (Metropolis and Ulam 1949) is

a well-established method for propagating uncertainties in
complex systems (Anderson 1976; Zhang 2021). For the

estimation of the monoplotting uncertainty, we draw u ran-
dom samples of the uncertain image ray (by considering the
covariance matrix X, ,) and intersect them with the DTM.
From the u intersection points, the covariance matrix Xy,
of M can be calculated.

Usually, u is in the order of a few hundred to some thou-
sands—depending on the anticipated accuracy. Assuming
a normal distribution, the relative precision of an estimated
standard deviation 6 (Forstner and Wrobel 2016, p. 90) is
calculated based on the redundancy R as

0%, 1
=4/ —. 6
5 - V2R ©)

With Eq. 6, it is possible to estimate the required number
of samples to achieve certain accuracies with the Monte
Carlo simulation. For large sample sizes u, we have R ~ u,
and with u = 1000, the estimated standard deviations will
be accurate to ~ 2%, which suffices for the anticipated
use cases and hence, will serve as reference throughout this
work.

3.2.2 Unscented Transform

The unscented transform (Julier and Uhlmann 1997) is an
efficient alternative to the Monte Carlo simulation. By sys-
tematically selecting 2n + 1 weighted points from a given
n-dimensional distribution, referred to as sigma points, the
mean and covariance of the transformed distribution can be
approximated from the transformed set of sigma points.

Given an n-dimensional normally distributed random
variable x ~ AN (m,,X,,), the 2n + 1 sigma points
Xo,...,Xs, are derived by

X0 = My (7)
X;=pe+(n+K)s; (8)
Xjm =My =V (n+K)s; ©)

with j =1,...,n and s; being the rows or columns of the
matrix square root of X'.,.. We used Cholesky decomposi-
tion as suggested by (Julier and Uhlmann 1997) because of
its numerical stability and efficient calculation. The corre-
sponding weights w; are calculated as

£ ifi =0

w; = n+/; (10)
o) otherwise,

with i = 0,...,2n. If x follows a normal distribution,

(Julier and Uhlmann 1997) suggest to use k = 3 —n. For
n > 3, however, k and the weight wy of the first sigma point
x will be negative. As a result, the estimated matrices are
not guaranteed to be positive semi-definite and hence, co-
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variance matrices (Julier 2002). Therefore, we empirically
evaluated several choices for x > 0. We found that ¥ = 0.25
performs best, which we will further use as scale factor
within this work for the unscented transform.

We first calculate the transformed set of sigma points y;
to derive the transformed mean and covariance. In our case
this transformation is the monoplotting where camera and
ray are defined by each x;. The estimated mean g, is then
the weighted average of the transformed points

2n
o= Wiy, (11)
i=0

with the estimated covariance matrix X, as

2n

Ty = wilyi - ) —p)" (12)
i=0

which also is the estimate for X,. As described in the
beginning of Sec. 3.2, in our case, the random variable x
contains the orientation parameters and the image point,
giving n = 11. Thus, 23 sigma points are necessary for this
unscented transform, which is much less than for the Monte
Carlo simulation.

3.2.3 Classical Variance Propagation

This approach requires a first-order approximation of the
nonlinear expressions in Eq. 5, which is commonly done
by truncating the Taylor series expansion after the first-or-
der terms (Forstner and Wrobel 2016, p. 43). The derivation
of the Jacobians with respect to the orientation parameters
and the image point is given in Sec. 8.2. This approach is
expected to be the fastest of all three uncertainty estimation
methods, but at the cost of reduced accuracy of the esti-
mated uncertainty due to the required approximation of the
terrain.

3.3 Silhouettes

So far, we discussed the three selected uncertainty esti-
mation methods in more detail. Despite their different na-
ture (i.e. sample based vs. variance propagation), all three
approaches are influenced by silhouettes, which separate
the visible terrain areas from the obstructed ones and are
viewpoint dependent. As we represent the DTM using C°
continuity, the location of silhouettes is limited to visible
triangle edges with one obstructed neighbouring triangle
(Hertzmann 1999).

Although silhouettes affect all three methods, the effects
are different. For the classical variance propagation, the in-
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tersected triangle at M serves as the local tangent plane,
which cannot represent the resulting depth discontinuities
at the silhouettes. As a result, the uncertainty will be quite
likely underestimated. In contrast, the intersected sample
points M ; obtained during the Monte Carlo simulation and
the unscented transform will generally be located on widely
separated parts of the surface, thus forming several clusters.
While, these two approaches capture the geometric situa-
tion caused by silhouettes, the derived “variances” (i.e. the
main diagonal elements of X's),) cannot be interpreted as
uncertainty measures because of the multimodal, and thus
non-Gaussian, distribution of the intersection points M ;.

Regardless of which method is used, the estimated mono-
plotting uncertainty at silhouettes is either expected to be
underestimated or not statistically sound. Consequently, this
situation should be identified either by masking the respec-
tive pixels in the uncertainty map (where the monoplotting
uncertainty is estimated for every image pixel) or the user
should get a warning (in case of manually picked points).

A special form of a silhouette is the horizon. There, some
samples of the image rays will not intersect the terrain at
all, in contrast to regular silhouettes. While this has no
special consequences for the uncertainty estimation based
on the variance propagation, the Monte Carlo simulation
and unscented transform will be based on fewer intersected
sample points M ;. Depending on the number of lost sam-
ples, the accuracy of the estimates will decrease. Losing
a few samples will have a much bigger effect on the un-
scented transform than on Monte Carlo. Accordingly, in the
subsequent experiments, we limit our analyses only to those
pixels where all sample points for the unscented transform
intersect the terrain.

For each uncertainty estimation method, different inter-
mediate results become available, which allow us to adapt
the silhouette detection for each approach to optimally ex-
ploit the available information. Hence, in the following, we
discuss the derivation of the silhouette masks for the differ-
ent uncertainty estimation methods.

3.3.1 Monte Carlo Simulation

As outlined above, the modalities of the intersection points
M ; offer a way to detect the vicinity of silhouettes. To test
a one-dimensional distribution for unimodality, (Hartigan
and Hartigan 1985) proposed the so-called dip test, where
samples with resulting p-values < 0.05 can be considered
bimodal (Freeman and Dale 2013; Elsen and Tingley 2015).
Accordingly, we can derive a silhouette mask by transform-
ing the 3D coordinates of the intersection points into a one-
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dimensional distribution and applying the dip test. For the
transformation, we use

— ——
_MM;-ZM

= — (13)
|ZM|

where we project each intersected sample point M; orthog-
onally onto the image ray of M. We derive a one-dimen-
sional distribution centred around zero by subtracting the
distance between the projection centre Z and M.

3.3.2 Unscented Transform

The same approach can be employed for the transformed
sigma points from the unscented transform, but their count
might not be sufficient for the dip test. However, we ob-
served that the estimated mean g , from the unscented trans-
form Eq. 11 differs from the monoplotting point M in case
the respective image pixel is in the vicinity of a silhouette.
Accordingly, we use

-M
S=M7 (14)
&M

for thresholding to find pixels in the vicinity of silhouettes.
Here, gu is the ground sampling distance of the pixel m
calculated as

T 5o
-c;-IM
7 ,
where f is the principal distance and c3 the last column of
the rotation matrix R (see Sec. 8.1), which is the opposite
viewing direction. Dividing by gu gives a relative measure,

which can again be used for thresholding to derive the sil-
houette mask for the unscented transform.

gm = (15)

3.3.3 Classical Variance Propagation

Classical variance propagation does not depend on sam-
pling points, and hence, a different approach for silhouette
detection is required. Accordingly, we aim to find them
in image space by applying an edge detector to the depth
map (Saito and Takahashi 1990). However, this cited ap-
proach requires a threshold that cannot be interpreted ge-
ometrically. To overcome this, we first derive the object
coordinates M of each image pixel m by monoplotting.
Subsequently, for each pixel m and its 8-connected pixel
neighbours m; we calculate the Euclidean distances in ob-

ject space between M and M ;. From these 8 distances d;
per pixel, we calculate the ratio

mad) -, (16)
med(d;)

with med(d;) being the median. In the vicinity of silhou-
ettes, this ratio will become large, e.g. the maximum will
be twice or three times larger than the median, whereas
otherwise it will be close to 1. Thus, by thresholding with
t; we obtain a silhouette mask SM, in image space. Up
to this point, this mask only contains pixels directly at or
close to the silhouettes. However, it does not account for
distant pixels, which are affected by silhouettes just due to
the uncertainty of their projection ray. To include these pix-
els as well, we use the monoplotting uncertainty estimated
by variance propagation, which resembles an ellipse in the
triangle plane of M. Subsequently, we project the vertex
and co-vertex of the 95% confidence ellipse from the ob-
ject space into the image space. By that, we can calculate
a value 1, for each pixel, which is the shorter of the pro-
jected semi-major and semi-minor axes. If the distance of
an image pixel to the closest pixel of the silhouette mask
SM, is below 1, the respective pixel will also be masked.
In the end, we arrive at the updated silhouette mask SM. As
we anticipate that variance propagation will be used to de-
rive the uncertainty map, which involves monoplotting and
uncertainty estimation for all image pixels, no additional
expensive calculations are required to derive the silhouette
mask SM.

4 Dataset Used for Evaluation

In the previous section, we discussed in detail the selected
uncertainty estimation methods, explained how they are in-
fluenced by silhouettes and how we use the available in-
formation from the individual approaches to select pix-
els influenced by silhouettes. Especially, in Sec. 3.3 we
discussed that no proper uncertainty estimates can be ex-
pected for points in the vicinity of silhouettes, independent
of the employed method. This raises the question of how
well we can detect and mask image pixels affected by sil-
houettes. Furthermore, the question remains how accurate
the estimates based on variance propagation and unscented
transform are compared to the Monte Carlo simulation for
unaffected regions. We investigate these two questions in
a real-world application using the historical image shown
in Fig. 1:

1. In the first use case, we use the monoplotted glacier
outline shown in Fig. 1. This is a typical example of
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the monoplotted points, representing the vertices of the
glacier outline, the estimated uncertainty will be directly
interpreted by the user to decide if the results are useful,
e.g. for investigating the glacier retreat over a certain
timespan. Accordingly, the uncertainty estimates must
be accurate.

2. The second use case addresses the uncertainty map, i.e.
the estimation of the uncertainty for all image pixels. As
mentioned, such a tool will be beneficial during image
orientation to get an impression of the achievable mono-
plotting accuracy. Therefore, we anticipate that this map
will be calculated multiple times for different settings and
GCP constellations. Accordingly, its calculation should
be fast, as otherwise its benefit gets lost.

Based on six GCPs (shown in Fig. 1) that were manually
obtained from a recent orthophoto and DTM, the unknown
camera parameters have been calculated by spatial resec-
tioning in the software Oriental (Karel et al. 2013). The
image measurements of the GCPs were equally weighted,
and their object coordinates were fixed. Not only the param-
eters themselves but also their uncertainties were estimated:
All elements of the exterior orientation (Xy, Yy, Zo, , ¢, k)
and the principal distance f for the interior orientation. Ini-
tially, the coordinates of the principal point were estimated
as well. However, as those turned out to be too highly corre-
lated with the rotation angles, they were fixed at the image

Table 1 Camera orientation parameters for the historical image. Esti-
mated camera parameters with their standard deviations in brackets.

xo [px] 1000
yo [px] —665.5

1 Ipx] 2200.1 (4.9)

Xo [m] 631,961.0 (1.7)
Yo [m] 5,194,539.3 (1.4)
Zo [m] 2169.6 (0.5)

@ [°) ~51.93 (0.03)
¢I°) 268.23 (0.03)
k[°) —89.47 (0.05)

69 [px] 0.6

Table 2 Coordinates of the GCPs for the historical image: Image (x, y)
and object coordinates (X, Y, Z) in the UTM-32N coordinate system.
The units are pixels and meters, respectively. The origin of the image
system is the center of the top left pixel, with x-axis to the right, and y-
axis up.

X y X Y VA
2 410.8 -904.2 632,594.4 5,194,061.4 2108.8
4 1778.9 -819.5 632,279.4 5,193,591.3 2136.4
5 1228.2 -174.6 633,775.0 5,191,663.0 3040.9
7 383.9 -1087.8 632,460.0 5,194,170.6 2072.8
8 438.6 —-198.3 636,614.9 5,190,978.5 3546.9
9 1251.2 -1031.3 632,432.6 5,193,770.2 2050.1

@ Springer

centre. Consequently, for the unscented transform, 19 sigma
points are required.

The estimated orientation parameters for the historical
image are given in Table 1, and the coordinates of the GCPs
in the image and the object coordinate system are listed in
Table 2. If not otherwise mentioned, we use 6 = 0.6 px, es-
timated during the spatial resection, as image measurement
uncertainty o, for our monoplotting analysis.

To represent the current topography, we used the pub-
licly available DTM from the Land Tirol, which was cre-
ated from recent Airborne Laser Scanning flights and has
aresolution of 1 mx 1 m. We triangulated and simplified the
DTM (Mandlburger et al. 2009) with the software OPALS
(Pfeifer et al. 2014) to derive a mesh.

5 Results

As throughout these experiments 1000 random rays are
casted for the Monte Carlo simulation, we refer to it and
its results as MCgp. Similarly, the results of the unscented
transform are indicated by UT)o, as it is based on 19 sigma
points. Finally, the approach and the results obtained by
classical variance propagation and the local tangential plane
of the monoplotting point will be further addressed by
TANG.

To compare the results from the different uncertainty es-
timation methods, we derive two common measures from
Y'mum to individually represent the planimetric and height
uncertainty of each monoplotted point M. For the planimet-
ric uncertainty, further referred to as o,p, we use Helmert’s
position error calculated as

o =+/0% +07 (17)

and for the height uncertainty, we directly use

on = \/o3. (18)

Here, 03, 03 and 0% are the variances of the object coor-
dinates, which make up the main diagonal of the covariance
matrix Xpspy.

We first discuss the quality of the derived silhouette
masks (Sect. 5.1), before evaluating the uncertainty esti-
mation for individual monoplotted points (Sect. 5.2) and
the whole image (Sect. 5.3).

5.1 Silhouette Masks

As reference for evaluating the derived silhouette masks,
we use the mask based on the 1000 Monte Carlo sampling
points, further referred to as MC_DIP. As mentioned in
Sec. 3.3, we test the distribution of the monoplotted sam-
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Fig.2 Silhouette masks de-
rived from the different de-
tection approaches. The pur-
ple square indicates the en-
larged area shown in Fig. 3.

a MC_DIP—Dip test for the
1000 Monte Carlo sampling
rays. b TANG_DIST—Distance
ratio of neighbouring image pix-
els. ¢ UT_DIP—Dip test for the
19 unscented transform sigma
points. d UT_DIST—Distance
between g, and M

pling points for unimodality with the dip test (Hartigan
and Hartigan 1985) based on Eq. 13 and use a threshold
of 0.05 as suggested by (Freeman and Dale 2013; Elsen
and Tingley 2015). The same threshold is also used to de-
rive the UT_DIP mask, using the 19 sigma points from
the unscented transform within the dip test. Since we an-
ticipate that the 19 samples for the dip test will not be
enough, we additionally derive a second mask for the un-
scented transform based on Eq. 14. This mask will be la-
belled as UT_DIST and uses a threshold of 0.4. The mask
for the classical variance propagation is derived by the lo-
cal distance ratio Eq. 16, for which we empirically found
a threshold of 2.2 worked best. This mask SM is then fur-
ther padded as described in Sect. 3.3.3 to derive the mask
TANG_DIST. Note, while for the masks based on the dip
test we followed (Hartigan and Hartigan 1985) and (Free-
man and Dale 2013) for the selection of the threshold, in
the other two cases we evaluated several thresholds and
selected for each approach one which resulted in a higher
recall at the cost of a lower precision.

Figure 2 compares the obtained masks visually, Table 3
lists precision, recall and Matthews correlation coefficient

Table 3 Precision (PREC), recall (REC) and Matthews correlation
coefficient (MCC) for the three silhouette masks for two different
image measurement uncertainties o,,. PREC and REC are reported as
percentages. As reference, the MC_DIP mask is used.

Om = 09 = 0.6 px Om =2.2px

PREC REC MCC PREC REC MCC
UT_DIP 50.3 35.2 0.35 73.0 15.2 0.27
UT_DIST 489 85.0 0.58 39.6 87.8 0.43
TANG_DIST 43.2 934 0.57 42.8 97.3 0.52

(MCC) (Matthews 1975) of the different methods and for
two different image measurement uncertainties o,.

From Fig. 2, one can directly see that all derived
silhouette masks basically capture the same structures.
While UT_DIST appears very similar to the reference
MC_DIP, the extracted structures in TANG_DIST are
broader. UT_DIP generally differs to a greater degree.
First, the extracted structures are much thinner. Second,
whole triangles in the right part of the image are masked.
This shows that using the 19 sigma points for the dip test
is only sufficient in the direct proximity of the silhouettes
and in areas unaffected by them. However, this approach
cannot capture the influence of silhouettes on pixels further
away. In contrast, using UT_DIST, based on the distance
between the unscented transform mean p, and M, appears
as a promising alternative.

To discuss this in more detail, the results from a small
region of the original image, depicted as a purple square in
Fig. 2, are shown in Fig. 3. Pixels in green indicate correct
classifications, whereas purple pixels indicate false nega-
tives, and red pixels represent false positives. This further
confirms our observation for the silhouette mask derived
from the dip test of the 19 sigma points (UT_DIP). While
the pixels directly at the silhouettes are correctly classified,
all others are missed. Accordingly, this approach achieves
a higher precision (Table 3—Ieft) but very low recall and
hence, is less useful as a mask. In contrast, the masks from
UT_DIST and TANG_DIST perform very similarly: The
major structures and their width are detected very well, and
only minor structures are missed. Accordingly, also their
precision (48.9% vs. 43.2%), recall (85.0% vs 93.4%) and
MCC score (0.58 vs. 0.57) are very similar (Table 3—Ileft).
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Fig.3 Comparison of the silhouette masks. Green pixels indicate correctly classified silhouette pixels (true positives), purple pixels show false
negatives, and red pixels show false positives. a MC_DIP (Reference), b UT_DIP, ¢ UT_DIST, d TANG_DIST

The quality of the derived masks for a larger image mea-
surement uncertainty of o,, = 2.2 px (to indicate a worse
identification accuracy of object points of interest in con-
trast to the original GCPs that define the &y) are shown in
Table 3 (right). This indicates that the achieved scores for
all three methods are similar for both g,),.

These results demonstrate, that using the available in-
formation from both uncertainty estimation methods (i.e.
UT,y and TANG) allows us to derive silhouette masks with
a high recall, which are independent of the image measure-
ment uncertainty.

5.2 Uncertainty of Monoplotted Points
We estimated the uncertainties of the 61 vertices of the

monoplotted line representing the glacier tongue in Fig. 1
using MC,go0, UT19 and TANG. From Fig. 4 one can see, that

for most vertices the planimetric uncertainty varies within
0 and 10m, except for one region at distance 100 to 250 m
from the line origin where the uncertainties stay close to
zero and one vertex with a huge planimetric uncertainty
of ~ 40 m around 800m. This already shows the variabil-
ity of the uncertainties of the individual vertices of a line,
which itself is already an interesting observation and proves
that estimating the uncertainty for each vertex provides us
with a much more differentiated possibility to discuss the
uncertainty of the monoplotted line.

Overall, the height uncertainty is significantly smaller
than the planimetric uncertainty. For most vertices, it is
around 0.25m and varies to a much lesser degree. This is
due to the oblique viewing geometry, where small uncer-
tainties of the projection ray lead to larger changes in the
planimetric coordinates.

Fig.4 The estimated uncer- i s T F PrRmavreer Y ®mT 2
tainties o,p (top) and oy (bot- * % * ok * bk okokk ok ok ok kok %k HE *
tom) for the Vertices Of the 11 1 1 1 1 11 1 11 1111 111 1 1111 101l 1 1 1l 1 1
monoplotted line in Fig. 1. The 40
coloured plus sign (+) between
both plots corresponds to the 30 -
coloured markers in Fig. 1. &
Accordingly, the blue marker S
represents the line origin in ob- 207
ject space in Fig. 1. The asterisks
on top indicate vertices which 10
would be masked by MC_DIP /\A
(blue), UT_DIST (orange) and 0
TANG_DIST (green) Lso 4- ES T ' + ' ' ' .|.] T + T
— MCio00
1.25 4 —— TANG
1.00 T
& 0.75
0.50
0.25
0.00 . ;

0 100 200
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10m

Fig.5 Estimated planimetric uncertainty o,p. The top row shows the whole image, and the bottom row shows the area within the blue square. For
visual comparison, the silhouettes have not been masked. a MCjooo (Reference), b UT19, ¢ TANG, d MCjoo0 (Reference), e UT19, f TANG

Regarding the three estimation methods, the results from
MCioo and UTyg are nearly identical, whereas the TANG
estimates are different. The TANG results are generally
smaller for o,p, whereas for oy, over- and underestima-
tions happen almost equally. These differences occur close
to silhouettes (indicated by the asterisks at the top of Fig. 4)
and are caused by the tangent plane approximation of the
DTM in the monoplotted point M. Especially for o,p, it is
easy to see that the tangent plane “keeps” the variation close
to M, whereas MCip and UTo consider ray variations that
intersect the DTM also further away.

To quantitatively analyse these observations, we calcu-
late the vertex-wise relative differences between each ap-
proach and MC g as
w 100. (19)

02D, MCjo00

Table 4 Relative differences Eq. 19 of o,p, for the different approaches
for the vertices of the glacier outline. STD is the standard deviation,
and RMS is the root mean square error. The reference mask MC_DIP
was applied to calculate the masked metrics.

Method Mean [%] STD [%] RMS [%]
TANG -26.1 37.6 45.8
TANG (masked) -6.6 23.8 24.7
UTio -3.2 16.6 16.9
UT19 (masked) -1.9 14.0 14.1

This measure is further referred to as relative difference
and is reported for the vertices of the glacier outline with
and without masking in Table 4. The obtained values fur-
ther confirm our observations. The TANG approach clearly
benefits from considering the silhouette mask, which is ex-
pected, as the TANG estimates at silhouettes are bound to
be very wrong. However, for UT), these relative differences
are much smaller, indicating that its results are closer to the
reference, even in the vicinity of silhouettes. Overall, UTo
is significantly more accurate, masked and unmasked. As
the estimated uncertainties of the individual vertices will be
directly used and interpreted by the user, our initial idea to
use either MCigo or UT)o for the uncertainty estimation of
individual, hand-picked, vertices is further confirmed. How-
ever, for vertices close to silhouettes, a warning should be
triggered for the user.

5.3 Uncertainty Map

For the derivation of the uncertainty map, we estimated
the monoplotting uncertainty for each pixel of the selected
historical image using MCigp, UT19 and TANG (Fig. 5). In
contrast to the previous evaluation for the glacier outline,
we restrict the discussion to o,p. We use the UT_DIST
mask for UT, and the mask derived by TANG_DIST for
TANG.

It is immediately apparent from Fig. 5 that the TANG
estimates in the vicinity of the silhouettes, as expected, are
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significantly smaller than the MC, g reference and UT,.
While the values in the remaining areas appear similar,
the results from both MCig and UT)9 look blurred com-
pared to TANG, where the triangles become visible. Both
MCo0 and UT)y are based on the actual shape of the ter-
rain. Therefore, the sampling points for each image pixel
will also lie on different triangles (especially for monoplot-
ted points close to triangle edges). This results in slightly
different uncertainty estimates for neighbouring pixels, like
being obtained by a moving average window, whose di-
ameter is defined by the spread of the sampled rays. In

a-100% 0

100%

contrast, TANG is based on the local tangential plane. All
monoplotted points within the same triangle will therefore
use the same tangent plane for the estimation of the uncer-
tainty, no matter how far or close they are to the triangle
edges.

These observations are further confirmed in Fig. 6, which
shows the relative differences Eq. 19 in opp of all image
pixels, with red areas representing regions where MCig is
larger than the respective approach. From Fig. 6a,b, it is
evident that the main differences indeed occur along the
silhouettes, and with the silhouette masks (Fig. 6¢,d), the

-

Fig.6 Relative pixel wise differences of oyp calculated with Eq. 19 in image space. a,b show the whole image unmasked, ¢,d masked. e,f show
the area within the purple square, g,h show the area within the red square. For the visualisation, we clipped the values to [-100%, +100%]. a UT1o,
b TANG, ¢ UT9 with UT_DIST, d TANG with TANG_DIST, e UT19, f UT19 with UT_DIST, g TANG, h TANG with TANG_DIST
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Fig. 7 Histograms of the relative frequencies of the relative differences in o,p Eq. 19 of all image pixels, both unmasked (blue) and masked
(orange). The histograms have a bin width of 1% and the differences are clipped to £30%. The relative frequencies were obtained by dividing
by the same pixel count. The mean of the relative differences for the unmasked images is indicated as the purple dashed line, and for the masked
images, it is indicated as the green dashed line. For UT9, both means are equal. a Relative frequencies for UT19 both masked (orange) and

unmasked (blue). b Relative frequencies for TANG both masked (orange) and unmasked (blue)

results look very similar. Two interesting patterns can be
observed.

First, although UT)y generally produces very accurate
results, double lines of wrong estimates parallel to silhou-
ettes are visible (Fig. 6e,f). This is related to the selected
scaling factor « of 0.25, which leads to correct estimates
within a narrow band centred along the silhouettes. At both
edges of this band, however, x is too small, so that the
sigma points are no longer on both sides of the silhouettes,
although they should be. This leads to this overoptimistic
symmetrical pattern.

Second, for TANG, the largest remaining relative differ-
ences in the masked difference image appear close to the
edges of the triangles (Fig. 6g,h), where under- and over-
estimation occur on both sides of the edges. Consequently,
one can again identify the triangular structure of the under-
lying DTM, now even more pronounced than in Fig. 5f. As
already discussed above, this is related to the difference in
how these two approaches estimate the uncertainties, which

leads to an under- and overestimation on both sides of the
edges for TANG.

For quantitative analyses, we show the histograms of the
relative frequencies of the relative differences in o,p Eq. 19
of all image pixels, both unmasked (blue) and masked (or-
ange) in Fig. 7. Statistical measures are listed in Table 5.

Most of the original (i.e. unmasked) differences are close
to zero for both approaches. However, the percentage of
outliers is significantly smaller (~ 2%) for UTy than for
TANG (~ 15%). For TANG, the majority (~ 12.5%) is
negative, which are the pixels in the vicinity of the sil-
houettes, where TANG underestimates the uncertainty (as
expected). With the mask, the number of pixels with ex-
treme differences drops below ~ 1% for TANG, whereas
for UT)y the silhouette mask influences all regions of the
histogram equally.

Overall, the number of pixels within +5% is significantly
larger for UT,y, which shows that UT,s is more accurate
than TANG around the silhouettes and the remaining parts

Table 5 Relative differences

Method Valid [% M % STD [% RMS [%
of oyp Eq. 19 for the different ctho alid [%] can (%] [%] [%]
approaches considering all All TANG 100.0 -6.9 52.8 533
pixels (top) and only pixels TANG (masked) 73.6 0.4* 43.5 43.5
V:'thclin ;—Lj’o%-t_STD b tlgi/ls UT 100.0 13 1.6 1.7
standard deviation, an
is the root mean square error. UTho (masked) 7838 -13 9.4 9.3%
The column “valid” refers to +30% TANG 84.2 -1.3 9.4 9.5
the number of pixels considered TANG (masked) 72.0 -0.2 7.8 7.8
for the .respectlve f:alculatlon UTio 97.7 0.0% 4.6 4.6
in relation to all pixels of the

UT19 (masked) 77.4 -0.2 3.5% 3.5%

image. Values highlighted with

* are the best results.
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of the whole image. The same was observed for the vertices
of the glacier outline in Sect. 5.2 and Fig. 4. This is fur-
ther confirmed by calculating the standard deviation (STD)
and root mean square (RMS) of the relative differences
(Table 5). Without the mask, the STD and RMS for TANG
are ~ 53%, which is reduced to 43.5% when applying the
mask. However, for UT,s both metrics are ~ 12% without
the mask and ~ 9.5% with the mask. Masked or unmasked,
UT)o is always closer to the Monte Carlo reference.

The reason for this is that the magnitude of the remain-
ing outliers for masked TANG is much larger than for the
outliers in the masked UTje, while their number is sim-
ilar (see the overflow bars of the masked histogram in
Fig. 7). Therefore, we limit the calculation of the metrics to
the pixels in the visually reliable range [-30%, +30%], to
derive representative quality measures (Table 5—bottom).
Now, the STD and RMS become ~ 9.5% (unmasked) and
~ 8% (masked) for TANG, and 4.6% (unmasked) and 3.5%
(masked) for UT;y. While these values are still a bit better
for UTo than for TANG, the values for TANG are not much
worse. Since the uncertainty map is anticipated to be de-
rived by the TANG method, these latter values indicate the
quality of the uncertainty map in regions not affected by
silhouettes.

5.4 Runtime Comparison

So far we showed, that the results from UT;o are closer
to MCiop than for TANG in both anticipated use cases.
However, besides their accuracy also the runtime of the
individual approaches further influences their practicabil-
ity. Accordingly, we measured the runtime for computing
the uncertainty map for each approach, which is listed in
Table 6. In total, MCigyp requires ~ 33min, UT;y ~ 6min
and TANG only 4s. The average runtime per pixel (last row
in Table 6) shows that each approach is faster than one mil-
lisecond. For the ray casting, we used the Python library
Open3D (Zhou et al. 2018), which employs Embree for
the ray casting in the background. As such, the ray casting
itself is highly optimised in C++, whereas the covariance
estimation was implemented purely in Python.

For MCig00, most of the time is required for intersecting
the 1000 random rays per pixel. In case of UTs, the subse-
quent calculation of Eqgs. 11 and 12 takes 14 times longer
than the ray casting itself, which is partly because these cal-
culations have not been optimised. In contrast, TANG was
implemented using vectorised functions in NumPy (Harris
et al. 2020), thus avoiding the notoriously slow for-loops
in Python. Still, calculating the covariance matrices takes
3 times as long as the ray casting. Nonetheless, the whole
workflow for TANG is 6 times faster than only the ray
casting for UT\o.
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Table 6 Runtime of the individual uncertainty estimation methods in
seconds, which is split into the time required for the ray casting and co-
variance derivation. The first three rows show the runtime for the whole
image (2.6 X 10° pixels), the last row indicates the average runtime per
pixel.

MCiooo UTio TANG
Ray casting 1529 25 1
Covariance 491 352 3
Total 2020 377 4
& per pixel 7.5 % 107* 1.4x10™%  1.5%x107°

6 Discussion

Given our results, estimating the monoplotting uncertainty
of individual points by UT)o is an accurate alternative to
MCio0. With UTo, quite precise estimates for the mono-
plotting uncertainty are obtained for our glacier outline ex-
ample (with an RMS of 14.1%), which is important for
the subsequent (e.g. geomorphological) analyses. And con-
sidering that these points are manually identified, the time
required for ray casting 18 additional points for the UTo un-
certainty estimates is of no concern. However, both MCio
and UT)y are fast enough (7.5 x 107 vs. 1.4 x 10™* s per
pixel) to integrate them into the monoplotting workflow.
While their runtime difference is negligible for individual
points, using MCip has various advantages: First, MCioo
is the most accurate approach. Second, opposite to the un-
scented transform, no « value needs to be selected. Thus,
removing one open issue, because the « value, found for
our example, still would need to stand the test of applicabil-
ity onto other images. And third, using the dip test, pixels
affected by silhouettes can be detected easily. Therefore,
despite the nominally longer runtime compared to the un-
scented transform, we suggest using the Monte Carlo sim-
ulation for the uncertainty estimation of individual points.

In contrast, the uncertainty map aims to provide the user
with an estimate of the expectable monoplotting uncertain-
ties. As motivated earlier, this can be particularly helpful
during the orientation of the images as it might help to de-
cide whether further time needs to be spent on selecting ad-
ditional GCPs. Accordingly, this uncertainty map might be
calculated multiple times during image orientation. There-
fore, it is important that this map can be derived relatively
fast—at the same time, the values in the uncertainty map
need not be of utmost precision.

Consequently, this example supports our initial idea to
use the TANG approach for deriving the uncertainty map
together with the silhouette mask. It requires a single ray
casting per pixel, other than UT)o, which requires 19. This
makes a huge difference for the whole image with 2.6 mil-
lion pixels, as can be seen from the runtime for the ray cast-
ing alone (25 vs 1s). With our Python implementation for
the subsequent covariance estimations, the TANG method
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derives the uncertainty map in a total of 4 s, which is 6 times
faster than the ray casting for UT)o alone. Since the regions
close to the silhouettes will be affected with larger errors
anyway, these regions (and the actual obtainable uncertain-
ties there) are of lesser interest during GCP selection for the
orientation. Instead, the focus should be on areas away from
the silhouettes where the TANG-based uncertainty map for
our test image allows for reasonable predictions for the ob-
tainable monoplotting uncertainty (with an RMS of 7.8%).

While we only used one image for the evaluation, various
geometrical situations (e.g. incidence angle, normal vector,
distance, triangle size), especially for the creation of the
uncertainty map, are present. Accordingly, we believe that
our results are generally representative.

7 Conclusion

We considered the problem of estimating the uncertainty
of monoplotted points. For this, we compared three ap-
proaches: i) unscented transform with 19 systematically se-
lected rays (UT\v), ii) first-order variance propagation with
a tangential plane approximation offering a direct solution
(TANG) and iii) Monte Carlo simulation with 1000 random
rays (MCio), which also served as reference. For the eval-
uation, one historical image was used, and we particularly
addressed two different use cases: First, the monoplotting of
individual, manually selected, image points, in our example
representing a glacier outline, and secondly, the estimation
of the uncertainty for each pixel of the image, referred to
as the uncertainty map.

As the uncertainty estimation in vicinity of the silhou-
ettes will not be statistically sound (MCjop, UT19) or will
not be based on the true geometrical situation and hence,
tends to an underestimation of the uncertainty (TANG),
we also evaluated the derivation of silhouette masks for
each uncertainty estimation method. For Monte Carlo sim-
ulation and unscented transform, we applied the dip test,
proposed by (Hartigan and Hartigan 1985), to detect mul-
timodal clusters of the intersected sampling points. As the
dip test only works for one-dimensional distributions, we
first transformed the 3D coordinates of the sampling points
using Eq. 13. This showed that the 19 sigma points used for
the unscented transform are not sufficient within this test
to derive an accurate silhouette mask (UT_DIP). As an al-
ternative, we calculated the distance between the estimated
mean from the unscented transform (g ,) and the mono-
plotted point (M) itself in Eq. 14, which proved to be a bet-
ter measure for deriving an accurate mask (UT_DIST). As
TANG is not based on sampling rays, the dip test could not
be applied. Therefore, we derived the silhouette mask based
on the neighbourhood distance ratio Eq. 16 in object space
(TANG_DIST) with an added step to include the stochas-

ticity by mapping the 3D confidence ellipsoid into the im-
age space. Evaluation showed that with both UT_DIST
and TANG_DIST we achieved a high recall (~ 90%) with
medium precision (~ 50%).

For the estimation of the monoplotting uncertainty of the
individual, manually selected, vertices of a glacier outline,
the estimates for UTyy (14.1% RMS) were more accurate
than for TANG (24.7% RMS). However, as the estimation
of the uncertainty using MCig is fast enough to be in-
corporated into the monoplotting workflow, MCigp (With
a theoretical precision of 2%) should be the chosen method
for this use case. This is further supported by two additional
criteria: First, the pixels affected by silhouettes can be de-
tected more reliably using Eq. 13 than for UTs. And sec-
ond, selecting the k coefficient is not necessary for MCiggo.

For the derivation of the uncertainty map, similar results
to those for the glacier outline were achieved. Excluding the
area around the silhouettes, the tangential approximation
is able to estimate the uncertainties with a relative RMS
of 9.5%. The unscented transform, with ¥ = 0.25, is very
close to the Monte Carlo reference, yielding a relative RMS
of 3.5%. However, in contrast to individual linear features
with tens to hundreds of vertices, whole images consist of
millions of pixels. Accordingly, the cost of 18 additional
ray castings per pixel is not negligible for whole images
(25s for UTo vs. 1's for TANG). Because of this efficiency,
we conclude that the tangential approach should be used
for the uncertainty map. This way, creating the uncertainty
map took 4s in total.

Although the investigation emerged from our work with
historical terrestrial images, we believe that the outcome
will be of interest for the general application of monoplot-
ting.

8 Appendix
8.1 Rotation Matrix R,
Since this work focuses on terrestrial images, which are

characterised by having a more horizontal than vertical
viewing direction, we choose the «Ck-parametrisation,
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which is e.g. provided in the software Oriental (Karel et al.
2013). The rotation matrix Ry, is

[ cosa —sina 0 cos{ 0 sin¢
Ruyte =| sina cosa 0 0 1 0
0 0 1 —sin¢ 0 cos¢

[ cosa-cos-cosk —sina - sink
= | sina-cos{-cosk +cosa - sink
—sin¢ - cosk

where « is the direction of the camera relative to the east,
¢ the inclination of the camera relative to the nadir and «
the rotation around the viewing axis.

8.2 Derivation of the Jacobians

For the ray-plane intersection Eq. 5, the matrix of the first
derivatives J is a 3x 11 matrix: Three rows because the inter-
section point M is 3-dimensional. Eleven columns because
we have eleven random variables, namely the coordinates
of the projection centre Z, the Euler angles (o, {, k), the
interior orientation z = (xo, o, f)' and the image coordi-
nates m = (X, ym,0)T. Hence, J is made up of six sub-
matrices

Iuz

3x3

JMZ JMK

3x1 3x1 3x2

J =[ Iuz | Ima

3x11 3x3 3x1

Jutm ] GY))

By combining these 11 parameters in the vector g =
(ZT, a, C kK, zl, mT)T the differential change dM in the
intersection point M due to differential changes dg in these
parameters would be obtained by

dM = Jdg. (23)

The partial derivatives of M with respect to the coordi-
nates of the projection centre Z are

oM dn'

Juz =gz =h-Tr

(24)
Using the partial derivatives with respect to the direction
vector d

M nT(Po-2Z)
= —= I
Jma 5d Td (s

dn'
n'd

) =Aduz (25)
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coS K
sin K

—cosa -cos{ -sink —sino - cos K
—sino - cos{ - sink + cos o - COS K
sin¢ - sink

—sink 0
cosk O
0 1
(20)
cosa - sin¢
sina-sin¢ |,
cos
(2D

the partial derivatives with respect to the Euler angles be-
come

e T
oM 2
Iua == - = Jua ri’ | (m—-2) (26)
o OT
r T
oM F3COSQ
g = = =Jua rlsina (m-z) (27
¢ | —r]cosa —r]sina
oM
Jure = W =Jya [(,'2 —C1 0] (m - Z) (28)

R= r;r =[cl c) (,‘3]. (29)

For the interior orientation, the partial derivatives

oM
Iy = ——==-JuaR (30)
0z

and finally, the partial derivatives for the image coordinates

oM
Jum = PP Juaer e2]. (31)
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