
Contents lists available at ScienceDirect

Smart Agricultural Technology  

journal homepage: www.journals.elsevier.com/smart-agricultural-technology

Making optimal use of limited field-scale data for crop yield forecasting 

using transfer learning and Sentinel-1 and 2 data
Bueechi E. a, ,∗, Reuß F. a, , Pikl M. b, , Homolova L. b, Lukas V. c, Trnka M. b, Dorigo W. a

a Department of Geodesy and Geoinformation, TU Wien, Vienna, Austria
b Global Change Research Institute CAS, CzechGlobe, Brno, Czech Republic
c The Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendelu, Brno, Czech Republic

A R T I C L E I N F O A B S T R A C T 

Keywords:

Crop yield forecasting
Transfer learning
Machine learning
Earth observation
Sentinel-1
Sentinel-2

Climate change increasingly threatens global agriculture, necessitating optimised resource management to ensure 
food security for an increasing population. Field-scale crop yield forecasts, using machine learning and Earth 
observation data, have great potential for adaptive farm management, but the development of such models is 
limited by the scarcity of field-scale training data. We evaluated a transfer learning (TL) approach, which entailed 
training and testing the model on different spatial domains, using artificial neural networks based on Sentinel-1 
and 2 data to forecast crop yields in Austria and Czechia. We compared four model setups: training and testing 
both at the field scale (i), both at the regional scale (ii), TL with training on a regional scale and testing on a 
field scale with (iii) and without fine-tuning (iv). We calculated forecasts at four lead times (1-4 months) before 
harvest. The fine-tuned model demonstrated superior performance, achieving median 𝑅2 of 0.52-0.69 at a one
month lead time for all crops while outperforming the model trained and applied at field scale by 0.05-0.12. 
TL required significantly less field-level data to achieve a performance comparable to the model trained only at 
the field level: 50% of the data for spring barley and maize, and only 25% for winter wheat. The model showed 
limitations in the leave-1-year-out cross-validation due to large differences between the years in the predictors 
and yields and the low number of years (6) available for training. Still, TL improved the efficiency of crop yield 
data utilisation and the performance of field-level forecasts.

1. Introduction

Population growth and the increasing frequency and intensity of 
extreme weather caused by climate change pose a key challenge in 
ensuring food security [78,41]. This requires immediate action, as en
visaged by the Sustainable Development Goals of the United Nations 
(SDG-2 ``End hunger, achieve food security and improved nutrition, and 
promote sustainable agriculture'') [77] and the European Green Deal 
“Farm to Fork Strategy'' of the European Commission [21]. However, the 
initially mentioned factors of population growth and climate extremes 
have caused a deterioration in food security in recent years, which ur
gently requires further action [48]. Potential actions include improving 
agricultural productivity, technologies for food accessibility, precision 
agriculture, and early warning systems [76]. Near-real-time monitoring 
and forecasting of crop growth is at the heart of many of these: It is a 
part of precision agriculture [56] and can enhance agricultural produc
tivity by supporting farmers in decisions for farm management practices 
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[3]. Crop yield forecasts provide key information for decision makers to 
guide import and export and thus ensure food accessibility [70]. Finally, 
it can be used to provide early warning of potential crop yield losses [6].

Crop yield forecasts are diverse. They differ in their characteristics 
(e.g., crop type, lead time, geographical scales), as well as in the mod
els and input data that they are based on. Crop yield forecast systems 
have been developed, for example, for wheat [27,39], maize [13], bar
ley [18], rice [40], cotton [54], and jujube [2]. Most forecasts have lead 
times of 1-2 months before harvest [13,27,35,64,69], but some can be 
up to 4 months before harvest [54,18,23]. Crop yield forecasts have been 
applied around the world [70] and on various levels: subfield [64,61], 
field [49,27], farm [18], and regional scale [9,40]. Such models are usu
ally process-based [2,37,55] or machine learning methods [18,27]. All 
models need various data sources either to calibrate (process-based) or 
train (machine learning) the model, and range from in situ [61], over 
Earth observation [27], meteorological [49], reanalysis data [14], to 
seasonal weather forecasts [9].
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EO data is a very important input to crop yield forecasting, both 
for process-based modelling, where they are used to fine-tuning the 
predictions via data assimilation or model calibration [15], and for ma
chine learning methods, which use the EO data as predictors [13,18,35]. 
Most importantly, EO is the main source of data providing information 
on crop development over larger areas which otherwise would require 
extensive field surveying [52]. In addition to providing near-real-time 
global data, it is also globally consistent and provides key information, 
e.g., on crop and soil moisture conditions [25,30,70].

The potential of using EO data for machine learning-based field-scale 
crop yield forecasting is underlined by numerous studies in this field 
[13,18,23,27,39,40]. The satellites used can be categorised into solar
reflective, thermal, and microwave sensors. Sentinel-2 [18,39,49,64,73, 
1] and Landsat 5, 7, and 8 [13,54] are among the most frequently used 
solar-reflective sensors used for yield forecasting. Some studies use even 
higher resolution optical data, such as provided by WorldView3, Plan
etscope [69], and RapidEye [35], or medium-resolution MODIS data 
[10]. Thermal data is a good indicator of crop stress [17]. Thermal chan
nels on Sentinel-3 [60], MODIS [63,81,65], and Advanced very-high
resolution radiometer [12] have been used for crop yield modelling. 
Among other microwave sensors, Sentinel-1 [58,27], TerraSAR-X, and 
Radarsat-2 [23] have been used. Furthermore, also sun-induced fluo
rescence (SIF) is often used for crop yield modelling and is typically 
estimated using near-infrared data at wavelengths around 750 nm [26]. 
Various studies have proven the value of SIF for crop yield modelling 
[33,86,83,43,88,82]. These studies mainly highlight the capability of 
SIF outperforming vegetation indices like Enhanced Vegetation and Nor
malized Difference Vegetation Index [83,88] and also highlight its effec
tiveness in years of severe drought since SIF is more sensitive to drought 
than the mentioned vegetation indices [83,43]. The main limitation of 
SIF products is the low spatial resolution of below 0.05° [86].

The performance of the forecasts in all studies using EO data is highly 
diverse and ranges between 0.35 [13] and 0.87 [27] explained variance 
one month before harvest, 0.89 at harvest time [53] and even 0.85 4 
months before harvest [43]. However, the results are hardly comparable 
as they largely depend on the study area and validation technique. For 
example, forecasts in areas that are water-limited often lead to better 
forecasting scores than forecasts in areas that do not have one clear 
limiting factor [70]. Generally, most researchers agree, though, that the 
limited availability of field-scale crop yield data to train the models is a 
clear limitation to further improve and widen the use of such forecasts 
[70,57,40,18].

To overcome the issue of limited crop yield data availability, FAIR 
(Findable, Accessible, Interoperable, and Reusable) data sharing has be
come popular [28]. Also communities like AgML (Machine Learning for 
agricultural modelling) have collected and provided large databases for 
crop yield data [62]. Yet, for many countries, field-scale crop yield data 
remains scarce [70]. Regional-scale data is more readily accessible, as 
many countries collect and distribute this data. These datasets are typi
cally available for longer time periods but usually represent yields only 
at large aggregation levels, such as counties or entire countries.

Transfer learning has a large potential to exploit the extensive avail
ability of crop yield data on a regional level for field-level applications. 
Transfer learning is a machine learning approach where a model is 
trained on a certain domain and applied to another, related domain. 
These domains can be different geographical areas [47] or different 
tasks like using the image classification model Imagenet for remote 
sensing data [24]. In transfer learning, the model is trained on the 
original domain and retrained with samples of the target domain to 
adjust the model to this new domain [59]. The model can also be ap
plied to a new domain without fine-tuning. However, this often leads to 
poorer results [46]. In the field of crop yield modelling, transfer learn
ing has been tested to transfer between crop types [32], between regions 
[81,44,29,72], and to transfer a genotype model to a crop yield model 
[38]. The results of these studies are promising. For example, Khaki 
et al. [32] achieve correlations between forecasted and observed soy

Fig. 1. Available crop yield data on a regional and field level. 

bean yields of 0.85 the month before harvest. They use a convolutional 
neural network in which only the last 4 layers are fine-tuned to maize 
and soybean (while the first 5 remain set). They also show that the root 
mean squared error (RMSE) decreases by 1-2 dt/ha compared to ma
chine learning without transfer learning. The spatial transfers work for 
Huber et al. [29] and Ma et al. [44]. Huber et al. [29] improved the 
Argentinian crop yield estimation by an R2 value of 39% by transfer
ring a US trained model to Argentina while also Ma et al. [44] achieved 
promising results. They used a domain adaption algorithm to transfer a 
model trained in the US Eastern Temperate Forest to the US Great Plains 
for maize yield modelling and achieved an R2 of around 0.75. However, 
Skobalski et al. [72] found limited improvement of crop yield forecasts 
using transfer learning. In their study, simply combining the datasets 
of Argentina and the US worked better than transferring trained models 
from one to the other region. Finally, Li et al. [38] showed that also mod
els that are not trained on crop yield help to improve performance. They 
pretrained their model using genotype data and fine-tuned it using crop 
yield data and achieved increasing accuracies of 1.8 to 39.9% for wheat, 
maize and rice estimations. Still, transfer learning for crop yield fore
casting is in its infancy and applications between different spatial scales 
are rare. Only one such application is known to the authors, which uses 
a deep learning framework trained on county-level data and applied to 
subfield level with domain adaption to map maize, wheat, and soybean 
yields in the US [47]. This study showed room for improvement for all 
three crops with R2 of 0.48, 0.32, and 0.39 for maize, soybean, and win
ter wheat, respectively. This is only slightly worse than a model trained 
on a field scale which requires significantly more labelled training data 
[47]. In general, these studies indicated some limitations that require 
further research. (1) Huber et al. [29] state that TL also needs to be 
tested in other countries with even less data to ensure generalisability -
(2) Skobalski et al. [72] used UAV data which hinders a larger-scale ap
plication - and (3) Ma et al. [47] achieved remarkable results, but higher 
R2 values than 0.32-0.48 need to be achieved to ensure usability of re
sults. Thus, further studies are required to explore the full potential of 
transfer learning for field-scale crop yield forecasting.

In this study, we addressed these points and tested TL to tackle the 
problem of scarce field-scale crop yield data, which is the main limita
tion for field-scale crop yield modelling in most countries. Specifically, 
we tested this by training a model on a regional scale and transfer it to 
field scale. For this, we utilised regional-scale data from Austria and the 
Czech Republic to train our model, which is subsequently tested using 
field-scale data from a single farm in southern Czechia (Fig. 1). This ap
proach was applied to three primary crops (winter wheat, spring barley, 
and maize) at four distinct lead times prior to harvest, ranging from 1 
to 4 months. Our forecasting model employed artificial neural networks 
and incorporated backscatter data from Sentinel-1, and spectral vege
tation indices from Sentinel-2. We conducted a comparative assessment 
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Fig. 2. Distribution of the crop yields per year. 

between the transfer-learned forecasts and the crop yield predictions 
trained exclusively on field-scale data from the same area. This study 
addressed the critical issue of limited crop yield data availability at the 
field level.

2. Data and methods

2.1. Study area

The study area is located in Central Europe, specifically Austria and 
the Czech Republic (Czechia). We used regional-scale data from both 
these countries and field-scale data from southeastern Czechia (Fig. 1). 
Both countries are characterised by intensive agricultural land use [71, 
7]. In Austria, agricultural activities are predominantly concentrated in 
the northern and eastern regions, with the remaining areas dominated 
by mountains and forests [71]. Around a third of the country is used as 
farmland [22]. In Czechia, around half of the country is used as farmland 
of which cereal production has the highest output value [22]. In both 
countries, winter wheat, spring barley, and maize are among the most 
cultivated crops. Thus, and due to data availability, we focused on these 
three crop types. The field-scale crop yield data originates from a farm 
near Brno, Czechia. It consists of 914 fields cultivating various crops. 
The study area is characterised by a warm temperate climate with hot 
summers, according to the Köppen-Geiger climate classification [34]. 
Mean annual precipitation is approximately 600-700 mm in Czechia’s 
lowlands and 500-750 mm in eastern Austria where most agricultural 
production is located [8,84].

2.2. Crop yield data

We used crop yield data collected at both field and regional level 
(Fig. 1). Regional-scale data was sourced from the national statistical 
offices of Austria and Czechia, representing mean annual crop yields 
in tonnes per hectare cultivated land (t/ha) for each municipality. 
The dataset encompassed 94 administrative areas in Austria and 66 
in Czechia, providing yield information for maize, winter wheat, and 
spring barley from 2016 to 2022. Field-scale data, directly obtained 
from farmers through harvesting machine records, covers the same crops 
across 914 fields within a 20 km × 25 km area from 2017 to 2022. The 
median field size is 9.4 ha, ranging from 0.03 to 107 ha. Fields smaller 
than 0.1 ha and very narrow fields were excluded to have sufficient 
EO pixels within a field. The total number of observations (crop yields 
per region and year) across crop types and scales is shown in Table 1. 
Since for most crops and regions we did not have yield data for every 
year, and maize yield data was in Czechia only available on NUTS3 in
stead of NUTS4 level, the number of observations was quite different 

Table 1
Total observations per crop type 
and scale.

Crop Regional Field 
Maize 282 338 
Winter wheat 1097 222 
Spring barley 747 281 

between crops. Crop yields exhibited significant annual variation, typi
cally ranging from 3 to 8 t/ha for winter wheat and spring barley, and 
6 to 13 t/ha for maize at both field and regional levels (Fig. 2). The re
gional and field-scale data were often in a similar range for all crops 
and years. However, the mean winter wheat yields of field-scale data 
were consistently outside the interquartile range of regional yields. The 
same pattern was observed for spring barley in 2018, 2021, and 2022. 
Additionally, field-scale data exhibited increasing trends for all crops, 
while mean regional-level yields remained relatively constant over the 
years. This increasing trend is gradual and consistent for spring barley, 
but showed stepwise increases for maize (between 2018 and 2019) and 
winter wheat (between 2019 and 2020).

2.3. Crop mask

For extracting the predictors on the regional level, we used informa
tion on crop cultivation locations. We utilised data from the Land Parcel 
Identification System (LPIS), which classifies agricultural parcels by the 
cultivated crop type per year. The LPIS data was collected by the respec
tive Ministries of Agriculture or designated agencies [31]. The masks are 
provided in vector format and are available for all considered years of 
this study (2017-2022).

2.4. Predictor data

This study exclusively utilised Earth Observation (EO) data as pre
dictors. EO data provides key information about crop growth and the 
conditions the crops are facing globally, with a high spatial resolution 
and in near-real-time. Moreover, EO data integrates the effects of other 
potential predictors, such as meteorology, crop management and dis
turbances (pests, hail, etc.). In addition, other potential predictors like 
seasonal weather forecasts, reanalysis, and in-situ data are not available 
on the high spatial and temporal resolution and spatial extent required 
for this study. Finally, it is generally advised to have at least ten times 
as many samples as predictors [89]. Since we had only 282 samples for 
maize, we should not have more than 28 features. We provided each 
variable over 4 lead times to the model (see subsubsection 2.5.1). For 
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lead time 1 we had already 4 observations (LT1, LT2, LT3, and LT4) per 
variable. Thus, we could use a maximum of 7 variables (which would 
provide 7 variables x 4 lead times = 28 predictors) for the model. We 
decided to use 3 per satellite to give each satellite equal weight.

Multispectral data from platforms such as Landsat 5, 7, and 8, and 
Sentinel-2 has consistently demonstrated its efficacy in crop yield fore
casting [13,54,18,39]. However, relying solely on multispectral data 
presents challenges due to cloud interference [27] and its inability to 
directly measure soil moisture, a critical factor in crop development 
[85]. To address these limitations, we incorporated Sentinel-1 synthetic 
aperture radar (SAR) data, which provides crucial information on soil 
moisture [4] and canopy structure [79] and is unaffected by cloud cover. 
The synergistic use of multispectral and radar data showed remarkable 
potential in recent studies [27,23,90], offering a more comprehensive 
view of crop conditions. Our data sources, Sentinel-1 and Sentinel-2 en
sure public accessibility and provide a good trade-off between spatial 
resolution and revisit time for our crop yield data spanning 2016-2022.

2.4.1. Sentinel-1

The Sentinel-1 mission was launched in 2014 by the European Space 
Agency. The two-satellite constellation provides global observation of 
C-Band Synthetic Aperture Radar operated at 5.5 cm wavelength [5]. It 
has a spatial sampling of 10 m and had a global revisit time of 6 days 
[75] until the failure of Sentinel-1B in December 2021 and of 12 days 
since [51]. The temporal resolution over Europe is significantly higher 
providing observations every 1.5 to 4 days until the failure of Sentinel
1B [50]. We pre-processed Sentinel-1 data for the years 2016-2023 using 
the software SNAP8 [20] and software packages developed at TU Wien 
as outlined in Wagner et al. [80] and applied in Reuß et al. [67]. The 
processing workflow consisted of the following steps:

1. Apply precise orbit data
2. Border-noise removal
3. Radiometric calibration
4. Radiometric terrainflattening
5. Range-Doppler terrain correction

For steps 4) and 5) the 30 m Copernicus DEM (Digital Elevation 
Model) [36] was used. To extract time series on a field level from the 
pre-processed Sentinel-1 data, several further processing steps were per
formed to mitigate the impact of the viewing geometry and undesired 
objects within or near the fields. First, an incidence angle normalisation 
to 40° was performed, similar to [5]. Afterwards, all pixels below a stan
dard deviation of 5 dB within one year were filtered out as they typically 
stem from radar shadow pixels or are not crop pixels. Finally, the cross
ratio (CR) was calculated by subtracting VV (vertical-vertical) and VH 
(vertical-horizontal) polarised backscatter. Hence, the final Sentinel-1 
datasets included 3 variables: VV, VH, and CR.

2.4.2. Sentinel-2

The Sentinel-2 mission, launched in 2015 by the European Space 
Agency, provides optical data across 13 spectral bands from visible and 
near-infrared to short-wave infrared. Its spatial resolution ranges from 
10 to 60 m depending on the band, with a revisit time of 5 days at 
the equator [16]. We accessed Sentinel-2 Level 2A (atmospherically cor
rected surface reflectance) data from the Microsoft Planetary Computer, 
retrieving bands 2, 4, 8, 11, 12, and the scene classification layer. The 
remaining bands were omitted, as they are not required for calculating 
the vegetation indices used in this study (see below). We considered all 
Sentinel-2 scenes from 2016 to 2022 with total cloud cover below 90%. 
The extracted data underwent two main post-processing steps: cloud 
masking and adjusting for the new dynamic range shift since January 
2022. The cloud masking was done using the Sen2Cor scene classifi
cation layer [42], which categorises Sentinel-2 Level 2A images into 
various classes including clouds, cloud and topographic shadows, and 
vegetation. Only pixels classified as vegetation, non-vegetated, and wa

ter were retained for further processing, and all others were masked. Wa
ter pixels were included to preserve information on extensively-irrigated 
fields, following the approach of Zhen et al. [87]. To address the dy
namic range shift implemented on 25 January 2022, which resulted in 
a higher offset in the data, we subtracted an offset of 1000 digital num
bers from all observations after this date to maintain consistency with 
earlier data [19]. Finally, we removed outliers to eliminate unrealisti
cally high or low values that persisted after cloud masking. This was 
achieved by excluding all values below the 1𝑠𝑡 quartile - 2*interquartile 
range or above the 3𝑟𝑑 quartile + 2*interquartile range of the values per 
field.

From the individual bands we calculated three indices to be used 
in the modelling: Enhanced Vegetation Index (EVI), Normalized Differ
ence Water Index (NDWI), and the Normalized Multiband Drought Index 
(NMDI). We focused on these three indices since these are often used for 
crop yield forecasting and complemented each other well, using differ
ent bands [64]. Further indices could have been used, but we wanted to 
keep a balance between Sentinel-1 and 2 based predictors. The formulas 
used for those are:

𝐸𝑉 𝐼 = 2.5 ∗ (𝐵8 −𝐵4) 
(𝐵8 + 6 ∗𝐵4 − 7.5 ∗𝐵2) + 1

𝑁𝐷𝑊 𝐼 = 𝐵8 −𝐵12
𝐵8 +𝐵12

𝑁𝑀𝐷𝐼 = 𝐵8 − (𝐵11 −𝐵12)
𝐵8 + (𝐵11 −𝐵12)

,

where B2 to B12 were the used Sentinel-2 Level 2A bands. I.e., B2 is blue 
(central wavelength = 490 nm), B4 red (665 nm), B8 is near-infrared 
(842 nm), B11 and B12 are shortwave infrared (1610 nm and 2190 nm) 
[42]. Taking these indices instead of the individual bands as predictors 
facilitated the interpretability of the predictors.

2.4.3. Satellite data preparation

The data preparation of the predictors followed a consistent work
flow across all datasets. The datasets derived from Sentinel-1 and 
Sentinel-2 were accessed from a datacube (Sentinel-1 from EODC.eu and 
Sentinel-2 from the planetary computer) at their native spatial sampling. 
The data was extracted and resampled to the field polygons where we 
had crop data. For each field polygon, time step, and band, we calcu
lated the median of all pixels of which the centre was located within the 
polygon. This resulted in a multivariate time series for each field (e.g., 
one per band for Sentinel-2 Level 2A). For the regional-scale datasets, 
we then calculated the median of all fields of a specific crop per region. 
The vegetation indices were calculated after this step. As a final step be
fore modelling, the predictors were temporally resampled to monthly 
observations to reduce errors of individual observations. Starting from 
approximate harvest dates (20 July for Spring Barley, 25 July for Win
ter Wheat, and 10 October for Maize) the first lead time (LT1) included 
the last month before the harvest date. LT2 then included the month 
before that, and so on until LT4.

2.5. Modelling

2.5.1. Model setup

We considered three crop types: winter wheat, spring barley, and 
maize. We chose these crops since they are among the most cultivated 
in the area [9] and consequently provided the most solid data basis. 
For each crop, we established four monthly forecasts. The first forecast 
was made approximately 4 months before harvest. For the first forecast, 
the model used only the observations of the predictors from LT4. Each 
successive month, new observations of the predictors were added to the 
model, and the model was retrained. For example, the model run of 
LT1 incorporated four monthly values (LT4 to LT1) of each predictor. 
Given the 3 variables from Sentinel-1 and the 3 variables from Sentinel
2 data, this summed up to 24 predictors for the LT1 forecast. Finally, 
we considered two different spatial scales: regional and field.
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Fig. 3. Model setup of the crop yield forecasting system. 

Table 2
Model setups used in this study.

Name Training Fine-tuning Testing 
reg2reg 80% regional samples - 20% regional samples 
fld2fld 80% field samples - 20% field samples 
reg2fld 80% regional samples - 20% field samples 
reg2fld_ft 80% regional samples 80% field samples 20% field samples 
xgb_fld 80% field samples - 20% field samples 

In this study, we evaluated the potential of transfer learning from re
gional to field-scale. Hence, we established five model setups (Table 2). 
The first two approaches were traditional ANN approaches without fine
tuning, used as a baseline to assess the performance of the transfer 
learning approaches. The last approach was a classical machine learning 
approach as reference on how well this performs compared to ANNs.

In summary, the reg2reg, fld2fld, and xgb_fld used only training and 
testing data from one scale, either regional or field scale. Only in the case 
of reg2fld and reg2fld_ft the two scales were mixed by using regional
scale data for training and field-scale data for fine-tuning (in the case of 
reg2fld_ft) and testing.

2.5.2. Machine learning

The crop yield forecasts were established using an artificial neural 
network (ANN) with 2 hidden layers. Each hidden layer had 50 neurons 
while the input layer had 100 neurons and the output layer only 1. For 
the fine-tuning of the transfer learning, we only retrained the last layer 
and left the remaining ones unchanged. In other words, the model was 
first fully trained to define the weights of all neurons. These weights 
were then fixed, and during fine-tuning, the model was fitted again to 
adjust only the weights of the last layer.

The model architecture was obtained by manually testing various 
setups during hyperparameter tuning. We experimented with different 
numbers of hidden layers (1-4), nodes per layer (10-100), and number 
of retrained layers (1-3) for fine-tuning. We tested this on spring barley 
only, using 60% of the data for training and 20% for validation during 
hyperparameter tuning. The remaining 20% was reserved for final test
ing. Since we experienced severe overfitting after initial model training, 
we added two more parameters: we set the dropout percentage to 40% 
and set the early stopping patience to 2. Dropout is an effective method for 
reducing overfitting by randomly dropping units of the network during 
training [74]. Similarly, early stopping can be used to increase generali
sation by stopping the training after a specified number of epochs where 

the model has not improved. In our case, the early stopping patience 
of 2 means that training stopped if there was no improvement in val
idation performance for two consecutive epochs [66]. Based on these 
experiments, we determined that retraining only the last layer during 
fine-tuning yielded the best results. The final model was trained indi
vidually for each lead time (LT) (Fig. 3).

The feature importance of the model was estimated using permuta
tion importance. This technique randomly shuffled single feature values 
and assessed the degradation of the model after doing so. The permu
tation importance was assessed in a 30-fold cross-validation to analyse 
how the feature importance changed in different training runs.

The xgb_fld model was established using Extreme Gradient Boost
ing (XGB) [11]. This model was chosen to check if classical machine 
learning models provided better results than ANN approaches given the 
limited amount of training data.

2.5.3. Model validation

The models were validated using a random 30-fold cross-validation 
and a leave-one-year-out cross-validation (L1YOCV). We decided to fo
cus on two different validation methods to provide a thorough validation 
of our results. The L1YOCV provides a realistic estimation of the model 
performance, as it simulates the conditions of an operational crop yield 
forecasting system. In such a system, forecasts are made for the current 
year, for which no yield data is yet available. In our study, the lim
ited number of years available with crop yield data - combined with 
the high variability in yields between these years (Fig. 2) - presented 
challenges for training a model effectively in a leave-one-year-out cross
validation setup. In this setup, entire portions of the predictor space 
could be lost in the training dataset [68]. This is not the case in a ran
dom cross-validation where the sampling of the training, fine-tuning, 
and testing data was done randomly independent of locations and years, 
yielding more similar test and train spaces. Hence, using a random 
cross-validation, we could better compare transfer learning to classi
cal machine learning approaches without necessitating a large number 
of years available for training data.

The different train, fine-tune, and test model setups are described in 
subsubsection 2.5.1. An additional validation setup was implemented 
to compare fld2fld and reg2fld_ft in more detail. This validation setup 
was chosen to assess how the model performance of the reg2fld_ft and 
the fld2fld model approaches changed with varying numbers of obser
vations used for training and fine-tuning, respectively. For this analysis, 
we again randomly selected 20% of the field observations for testing but 
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Fig. 4. Validation of forecasts for the five different training and validation setups: (1) reg2reg represents a model trained and tested on the regional level (2) fld2fld 
represents a model trained and tested on field level (3) reg2fld was trained on regional-scale data and tested on field-scale data (4) reg2fld_ft was trained on a 
regional-scale, fine-tuned using field-scale data and tested on field data only (5) xgb_fld is like fld2fld but using XGBoost instead of an ANN. All five models were 
tested using 30-fold random cross-validation. All models except for model 1 (reg2reg) were tested on a field scale.

used only 10-80% of the field data for training or fine-tuning the model. 
This assessment was also based on a random 30-fold cross-validation.

For the L1YOCV, we tested the model for each year individually 
while training the models with the remaining years. In the case of the 
fine-tuning model (reg2fld_ft), we trained the model with all regional 
scale data except for one year, fine-tuned it with all field-scale data ex
cept for data from the same year, and tested it with the field data from 
that year. As pointed out above, differences in the performance metrics 
between the random test-train split and the L1YOCV could be caused 
by different distributions of the training and testing sets in the predictor 
and the yield datasets. We analysed these differences by comparing the 
distributions of the predictors and yields in the train and test domain 
(Fig. 8). For simplicity, only two predictors were analysed, which were 
EVI and Sig40 CR of LT1.

As validation metrics for the model performance, we used 𝑅2 and 
nRMSE as defined below. These metrics were chosen for their comple
mentary strengths in assessing model performance, i.e., 𝑅2 provides 
a measure that is easily comparable between different models, while 
nRMSE offers an easily interpretable standardised error, indicating the 
model’s accuracy relative to the mean crop yield.

𝑅2 =
⎛⎜⎜⎜⎝

∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)(𝑦̂𝑖 − ̄̂𝑦) √∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
√∑𝑛

𝑖=1(𝑦̂𝑖 − ̄̂𝑦)2

⎞⎟⎟⎟⎠

2

nRMSE =

√
1
𝑛 
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2

𝑦̄
,

with n being the number of samples, 𝑦𝑖 and 𝑦̂𝑖 the i-th observed and 
forecasted value of the dependent variable, and 𝑦̄ and ̄̂𝑦 the mean of the 
observed and forecasted values.

3. Results

3.1. General performance of the models

Fig. 4 shows the performance of the models at the four lead times. 
The performances of the models varied considerably, with median 𝑅2

(median nRMSE) from 0 (37%) for the reg2fld winter wheat model at 
LT3 and LT4 to 0.69 (15%) for reg2fld_ft winter wheat at LT1. Gen
erally, the performance increased from LT4 to LT1 for most models 

and crops. The two performance metrics showed similar patterns, ex
cept for the reg2reg model, which on average had the lowest nRMSE 
but was often outperformed by fld2fld and reg2fld_ft according to 𝑅2 . 
Also, the reg2reg model performance had a lower spread than the 
other models and showed very low variation between the 30 folds 
of the cross-validation, especially for winter wheat. The fine-tuned 
model (reg2fld_ft) overall showed best results, with median 𝑅2 (median 
nRMSE) ranging from 0.41-0.55 (16-18%) for LT3 to LT1 for maize, 
0.51-0.69 (15-18%) for winter wheat, and 0.33-0.52 (19-21%) spring 
barley. Only in the case of maize, a better performance was achieved 
using XGB for LT1 to LT3.

3.2. Comparison of the training approaches

The performance of the models varied significantly depending on 
the used training approach (Fig. 4). Training the model only on a re
gional scale was insufficient for achieving high forecasting performance 
at the field-scale (reg2fld). This limitation was particularly evident for 
maize and winter wheat, where this approach showed low 𝑅2 (<0.14) 
and high nRMSE values (>25%) between forecasted and observed crop 
yields. Spring barley showed slightly better results for reg2fld, with LT1 
performance approaching that of the field-data-trained model (fld2fld). 
Models incorporating field-level data for training or fine-tuning (fld2fld, 
reg2fld_ft, xgb_fld) consistently outperformed the reg2fld model across 
all LTs and crops. Of these three models, reg2fld_ft demonstrated su
perior performance in all scenarios except for maize LT1 to LT3. Com
pared to the field level trained models (fld2fld and xgb_fld), reg2fld_ft 
increased median 𝑅2 (decreased nRMSE) by 0.04-0.11 (1-4 percent
age points) for winter wheat, and 0.03-0.07 (0-3 percentage points) for 
spring barley. The xgb_fld model increased median 𝑅2 by 0.02-0.07 over 
the other two approaches (fld2fld and reg2fld_ft) with nRMSE being in a 
similar range. A comparison between the models tested on a field scale 
and reg2reg was not straightforward since reg2reg showed often lower 
nRMSE than the other models but also lower 𝑅2 values.

3.3. How much data is required for fine-tuning?

The initial results demonstrated that transfer learning with fine
tuning (reg2fld_ft) outperforms the model trained solely on field data 
(fld2fld). Therefore, we then investigated how much data was required 
for fine-tuning to achieve better results than training the model on field
level data alone. This is illustrated in Fig. 5 for the models with LT1. The 
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Fig. 5. Validation of the LT1 forecasts comparing the performance of the transfer-learned model vs the model trained on field-scale by using varying amounts of 
training samples. The errors show the median +/- the standard deviation of the 30-fold cross-validation.

Fig. 6. Leave-one-year-out cross-validation showing 𝑅2 of the LT1 models in A and the scatterplot of the results of reg2fld_ft in B. 

models were clearly improving with increasing amounts of field-level 
training or fine-tuning data. We could also observe that reg2fld_ft con
sistently outperformed the fld2fld model when using the same amount 
of field training and fine-tuning data. Conversely, this means that the 
reg2fld_ft model required much less training data to achieve the same 
performance as for fld2fld.

For maize, reg2fld_ft required only half the data to obtain the same 
performance as the field model. For spring barley, it needed around 
a third, and for winter wheat, the reg2fld_ft model achieved the same 
𝑅2 as the field model with just a quarter of the data. Hence, transfer 
learning significantly reduced the required amount of field-scale data 
for crop yield forecasting. With only 22 field observations (10% of 222) 
of winter wheat used for fine-tuning the model, an 𝑅2 of above 0.4 was 
achieved while 67 observations (30% of 222) led to 𝑅2 above 0.6. For 
the other two crops, more samples were required to obtain good results. 
For the maize model, 203 samples (60% of 338) were required for an 
𝑅2 above 0.5. For spring barley, 112 samples (40% of 281) were needed 
to achieve an 𝑅2 above 0.5.

Another point to mention is that the amount of regional level data 
used for training impacted the performance after fine-tuning as well. The 
highest performance gain of reg2fld_ft over fld2fld was seen for winter 
wheat, where we had 1097 regional samples and not much data was 
required for fine-tuning. Also for spring barley, with 747 regional sam
ples, we had a considerable difference between reg2fld_ft and fld2fld. 

Finally, for maize, with only 282 regional samples, the added value of 
reg2fld_ft over fld2fld was less pronounced.

3.4. Leave-1-year-out cross-validation

The L1YOCV demonstrated reasonable results for the reg2reg model, 
with 𝑅2 exceeding 0.5 for almost all years and crops (Fig. 6A). For 
spring barley and maize, 𝑅2 even exceeded 0.6 in numerous years. 
However, models tested at the field scale did not show satisfactory per
formance. For maize, all years and field models (fld2fld, reg2fld, and 
reg2fld_ft) showed 𝑅2 values below 0.55, occasionally approaching 0. 
Spring barley models showed slightly better performances than winter 
wheat, which in turn were better than maize. The four field-scale mod
els (fld2fld, reg2fld, and reg2fld_ft, xgb_fld) often showed similarly low 
performance, with different models performing best for different crop 
types: fld2fld frequently excelled for maize, reg2fld_ft for winter wheat, 
and reg2fld for spring barley, and an outlier for xgb_fld for winter wheat 
in 2017. Examining all data points did not improve the overall impres
sion (Fig. 6B). The model struggled to distinguish the different years 
effectively. For instance, 2018 showed very low maize yields (<10t/ha) 
yet the model still forecasted high yields of 10-14 t/ha. Also a spatial 
visualisation of the 2022 results (Fig. 7) indicated a similar pattern: the 
range of forecasted and observed yields did not agree well. In addition, 
the model was not able to clearly differentiate yields of the different 
fields. In some cases, when there were clearly different yields of two 
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Fig. 7. Spatial comparison of the observed and forecasted yields of reg2fld_ft LT1 in 2022 for the three crops. 

Fig. 8. Distribution of the test and train split for random and L1YOCV for the datasets field and regional for winter wheat at LT1. The predictors and crop yields are 
shown as the original values before standardisation.

adjacent fields (e.g. the northernmost winter wheat fields in Fig. 7) the 
model forecasted more or less the same yield for both fields. Also the 
contrary occurred, when two fields had almost the same observed yields, 
but the model forecasted clear differences (e.g. the westernmost maize 
fields in Fig. 7).

We also analysed how the distribution of predictors and yields dif
fered in the test and train dataset of the random split and the L1YOCV 
(Fig. 8), to analyse if this had an impact on the model performance for 
the two validation setups. As expected, it showed that the random test
train split led to similar distributions of the two predictors and yields in 
the train and test domains. In the L1YOCV setup, the regional dataset 
still showed a similar distribution of the predictors and yield in the train 
and test data. However, on the field scale, there were significant differ
ences between the yields and the predictors of the train and test data, 

with especially EVI LT1 being significantly higher in the test domain. A 
similar tendency could be seen in Fig. 2. While the distribution of the 
crop yields were similar between the years for the regional datasets, 
there were significant differences between the years in the crop yields 
on a field scale.

3.5. Feature importance

The feature importance analysis showed different aspects of the 
model: (1) the 30-fold cross-validation of the model showed that the 
feature importance was for every model training quite different, with 
other predictors being the most important ones. This could be seen in 
the large error bars in Fig. 9. However, we could still see some general 
trends: (2) the 3 Sentinel-2-based predictors (NMDI, NDWI, and EVI) 
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Fig. 9. Feature importance of the forecasting model before and after fine-tuning (reg2fld and reg2fld_ft). The error bars show the standard deviation of the 30-fold 
cross validation. For simplicity, this plot only shows the 10 most important features.

were more important than the ones from Sentinel-1 (VV, VH, and CR). 
Still, Sentinel-1 added value, being for all crops the fourth or fifth most 
important predictor. (3) the Sentinel-2-based predictors from lower lead 
times had a bigger impact on the model. For maize mainly the ones from 
LT2 and for winter wheat and spring barley LT1. For Sentinel-1 based 
predictors this was less obvious: while for maize the most important 
Sentinel-1-based predictors were CR from LT2 and LT1, for spring bar
ley LT2 and LT3 were the most important and for winter wheat even LT4 
of VH was the most important followed by CR of LT3. (4) most of the 
features had a larger importance after fine-tuning, while the ranking of 
the features remained similar. For two crops (maize and spring barley), 
only higher feature importances were observed after fine-tuning of the 
10 most important features shown in Fig. 9. Thus, the model specialised 
more on a smaller amount of features after fine-tuning.

4. Discussion

The reg2reg model had rather lower performance than the other 
model setups in the random CV considering 𝑅2 (Fig. 4) but clearly out
performed the other models in the L1YOCV (Fig. 6). Looking at the 
nRMSE this was not the case, but this was mainly related to the higher 
mean yield of the regional-scale data. The reg2reg model even had a 
higher 𝑅2 in the L1YOCV setup than in the random CV which is un
usual and not the case for the other models. The distribution of the 
predictors and yields (Fig. 8) did not provide a clear explanation why 
this was the case. The train and test space overlapped slightly better 
for the 2020 L1YOCV setup for winter wheat, but not to an extent that 
would explain the much worse performance of the random CV.

Transfer learning showed promising results. The reg2fld_ft model 
outperformed fld2fld for all crops and LTs and also XGB for winter 
wheat and spring barley (Fig. 4). Hence, the model appeared to learn 
substantially from regional-scale data when sufficiently fine-tuned. This 
use of transfer learning provides useful crop yield forecasts at the field 
level and can significantly reduce the required amount of field-level data 
(Fig. 5). The better performance of TL over field-trained models showed 
the advantage of TL: it learned key relationships between predictors and 
crop yields at a regional level. E.g., which EVI and backscatter values 
were beneficial for crop growth at which stages. Since these key relation
ships were already learned by the model, the fine-tuning only needed 
to make sure to adapt to local conditions, while the field-trained model 
first needed to learn all these relationships from scratch. This efficient 
use of field-scale crop yield data opens new opportunities to enhance 

field-level crop yield forecasting without intensive field-level data col
lection. Considering the vast amount of regional-scale crop yield data 
available in Europe and the US (https://cybench.agml.org/), there is 
enormous potential. We showed that using a larger amount of regional
level data for training also improved the performance gain of reg2fld_ft 
over fld2fld and xgb_fld. Hence, a sufficiently well pretrained model 
can make much use of limited field-scale data with transfer learning. 
While this study used only pretraining data from two countries (Austria 
and Czechia), it is likely that incorporating other countries for train
ing for a larger diversity and potentially other predictor datasets, such 
as ERA5-Land or seasonal weather forecasts, will further improve crop 
yield forecasts.

The training and target domain in this study - i.e. regional- and field
scale data of this study - may seem closely related, since they were from 
the same geographical area. Especially compared to other studies, where 
TL was used to transfer crop yield estimations to different continents 
[72,29]. However, we showed that the two domains were still quite 
different since a direct application of regional trained models was not 
possible (reg2fld in Fig. 4). This can be explained by the complex topog
raphy of the study area. This leads to very diverse climatic conditions 
and management practices over the regional-scale data. I.e., agriculture 
in mountainous areas is different from the lowlands. This leads to het
erogeneous field data which is in strong contrast to agriculture in other 
areas such as the US with its large-scale and rather homogeneous fields. 
This heterogeneity and complex field-structure was also evident in the 
field-scale data of this study and its complex field shapes (Fig. 7). Hence, 
the diversity of fields in the training domain may have led to not having 
sufficient data that is closely related to the target domain for a direct 
application without fine-tuning.

On the downside, regional-scale crop yield data alone was insuffi
cient to train the model. Crop classification maps were also required, 
which can be more challenging to obtain. Additionally, in countries out
side Europe and the US, where even regional data is scarce, the transfer 
learning approach offers limited benefits. To address this, it would be 
valuable to explore the geographical limits of transfer learning. Thus, 
more research on intercontinental transferability of crop yield models is 
required.

Another, more significant limitation was shown in Fig. 6. The mod
els struggled to clearly distinguish crop yields of different fields within 
individual years and all field-scale models had low R2 values. The fact 
that for each year and crop another field-model was performing best 
showed that no model was able to clearly differentiate the fields. It was 
rather by coincidence that a certain model reached acceptable R2 val
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ues for some years (e.g. xgb_fld winter wheat 2017, reg2fld winter wheat 
2018 and all models for spring barley 2017) since the mean R2 over all 
years was low for all of them. This limitation is problematic if we in
tend to use a model developed from past observations as an advisory 
tool for the current year. For example, if farmers do not receive infor
mation on expected lower yields, they cannot adjust their management 
practices based on this forecast. The low performance in the L1YOCV 
could be partially explained by the distributions of crop yields across 
different years (Fig. 2). The field-level data distribution presented sev
eral challenges for accurate forecasting: (1) field-level maize and winter 
wheat yields both showed two clusters: in the initial years (2017 and 
2018 for maize, 2017-2019 for winter wheat), yields were significantly 
lower than in subsequent years; (2) For maize, even the first two years 
differed markedly from each other, making prediction difficult due to 
insufficient data in that value range for the model to learn from. The 
last four years (three years for winter wheat) had at least a similar yield 
value range. However, even within this range, the L1YOCV did not show 
satisfying results. (3) Finally, there was also a linear trend in the spring 
barley field-scale data. All these issues were much less pronounced in 
the regional-scale dataset, which exhibited more uniform distributions 
over different years without notable trends or significant interannual 
changes in the variability. At this coarse spatial scale, possible large 
inter-annual variability for individual fields was likely dampened when 
computing yield ensembles over many fields. Consequently, the reg2reg 
model demonstrated a much higher performance for the L1YOCV than 
the models tested at the field-scale. In addition to the yield values, also 
the predictors (i.e. EVI and Sig40 CR at LT1) were significantly different 
between the train and the test dataset (Fig. 8). This hindered the mod
el’s ability to generalise well enough into predictor spaces that it had not 
been trained on [68]. These reasons make it hard for any model to gen
eralise well. Thus, we expect that only major improvements of L1YOCV 
model performance can be achieved by having more years available with 
crop yield data to include a wider range of yield and predictor data in 
training. It would need to be tested again whether it is sufficient to have 
this data only on regional level, or if it is required for the fine-tuning 
step too. The assumption that more years of data will help is based on 
the observation that the impact of the differences in the annual crop 
yields and predictors on a field level on model performance was consid
erably smaller for a random test-train split, as the training and testing 
data were in a similar value range. Another approach to address this 
challenge could again involve transfer learning. In an operational sys
tem, the model would be trained solely on data from previous years. This 
model could then be fine-tuned in-season by incorporating expert-based 
forecasts of crop yields for individual fields. For instance, farmers could 
provide estimates of expected yields for some fields, which could be fed 
into the model, potentially improving the performance of the forecasts.

Overall, the results presented here align with previous studies on 
transfer learning for crop yield modelling. Khaki et al. [32] demon
strated that maize and soybean forecasts can utilise the same weights 
for 5 of 9 hidden layers in their convolutional neural network. They 
achieved correlations between forecasted and observed crop yields of 
0.80 for maize with a lead time of four months and 0.88 for one month 
before harvest, and 0.71 (LT4) to 0.83 (LT1) for soybean, respectively. 
These correlations are slightly higher than our model, likely due to their 
use of many more samples for training (approximately 1000 counties 
over 15 years), but also the different environmental and geographi
cal conditions played a role. Wang et al. [81] showed that combining 
datasets from Argentina and Brazil with transfer learning improved the 
median 𝑅2 by 0.1 at LT1 compared to a model trained only with data 
from Brazil. Similarly, Ma et al. [45] demonstrated that using domain 
adaptation enhanced prediction performance when testing the model in 
a different ecological zone than the one it was trained for. They achieved 
an 𝑅2 of 0.76 at LT1 in two different regions in the US, which was 
approximately 0.08 higher than the models they used without domain 
adjustments. All three of these studies utilised mainly reflectance and 
land surface temperature imagery from MODIS as predictors. In addi

tion, we addressed the three limitations stated in the introduction and 
increased generalisability of successful TL implementation stated by Hu
ber et al. [29] by only using globally available Earth observation data. 
Finally, we also achieved some performance gain over the most closely 
related study by Ma et al. [47], although, a comparison of the studies is 
hardly possible due to the very different agricultural and climatic con
ditions and validation setups. They use Landsat and Gridmet data along 
with Quantile loss Domain Adversarial Neural Networks to map subfield 
level crop yields based on regional-scale models. They achieved nRMSE 
of 20% for maize and 34% for winter wheat at LT1, which is lower than 
our results (16% for maize and winter wheat). In general, all studies 
proved the large potential of transfer learning for crop yield modelling.

5. Conclusion

Crop yield forecasting is a crucial tool for ensuring food security in 
a changing climate. Machine learning and remote sensing offer flexi
ble approaches to provide such forecasts. However, machine learning 
tools require substantial training data, which is challenging to gather, 
especially at the field scale. In this study, we demonstrated how trans
fer learning can address this issue. By training a model at the regional 
scale and fine-tuning it at the field scale, we shifted the problem of ob
taining sufficient data from the field to the regional level, where data is 
typically more accessible. Using this approach, we showed that transfer 
learning better dealt with limited data as long as the model is sufficiently 
pretrained. In that case, it outperformed classical machine learning and 
ANNs for field-scale crop yield forecasting. This confirmed findings of 
other studies that TL is a key tool to tackle data scarcity. In addition, 
we showed for the first time how well this works for field-scale crop 
yield forecasting in a highly complex region with small-scale farms and 
training data from topographically complex regions.

This methodology opens up possibilities for improving crop yield 
forecasting across scales. Further research is needed to determine the 
extent to which such a pre-trained model can be transferred across dis
similar environmental conditions (e.g., between different climatic zones 
or different agricultural practices). It is possible that one well-trained 
model per climate zone could be sufficient, which could then be applied 
to many regions using transfer learning. Additionally, the performance 
of in-season crop yield forecasts may be enhanced by incorporating 
expert estimations of crop yields into the model for the current year. 
The results presented in this paper provide a solid baseline for further 
exploration of transfer learning in crop yield forecasting using Earth ob
servation data.
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