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ABSTRACT
Correspondence analysis (CA), a well-known method for analyzing the relationships between rows and columns of a table, has
been reformulated to link to the logratio methodology of compositional data by using the limiting case of the power transformation.
The resulting methodology investigates relative rather than absolute information, and it is invariant with respect to rescaling rows
or columns. The latter properties also hold for the analysis of compositional tables, where the table is first decomposed into an
independent and an interaction part. It is shown that the analysis of the interaction part is equivalent to CA, but in addition, the
variance contributions can be determined. Both concepts also allow for an inclusion of weights to suppress undesirable variance,
and it is shown that the equivalence between weighted CA and the analysis of weighted compositional tables again holds. This
equivalence allows us to make use of the mathematical framework of weighted compositional tables, the so-called Bayes spaces,
to get a deeper understanding of CA and to construct extensions to multi-factorial tables (cubes, etc.).

1 | Introduction

Correspondence analysis (CA) is a prominent method in
exploratory data analysis, with the aim to analyze the relation-
ships in a contingency table with either discrete-valued or con-
tinuous entries [1–3]. The main idea is to subtract the product
of row and column marginals from the proportional representa-
tion of the contingency table (referring to the “correspondence
matrix”), rescale it to the totals of the marginals, and proceed with
a singular value decomposition (SVD). This yields row and col-
umn information of the table, which can be visualized in order to
study their relationships.

An interesting case is studied in Greenacre [4], where in a first
step the elements of a 𝐼 × 𝐽 contingency table X =

(
𝑥ij
)

are
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transformed with the Box–Cox transformation [5] with power
parameter 𝛼,

𝑥ij(𝛼) =
⎧⎪⎨⎪⎩
(1∕𝛼)

(
𝑥𝛼ij − 1

)
, 𝛼 > 0,

ln 𝑥ij, 𝛼 = 0.
(1)

If 𝛼 approaches zero, CA is essentially (in the limiting case) based
on log-transformed data, and this provides the link to a compo-
sitional data analysis of the table [4]. Generally speaking, com-
positional data are understood as observations carrying relative
information [6], and also CA makes use of a decomposition of
a specific kind of relative information. If log-transformed data
are used, an SVD of row- and column-wise centered data allows
to construct the so-called compositional biplot [7], with the goal
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to visually study the relationships between rows and columns of
the table.

In the context of compositional data, row centering is presented
by the so-called centered logratio (clr) coefficients [6], defined for
the ith composition x𝑖, that is, the ith row of a table X with entries
𝑥ij (𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽 ), as

clr
(
x𝑖

)
=
⎛⎜⎜⎜⎝ln

𝑥𝑖1

𝐽

√∏𝐽

𝑗=1𝑥ij

, . . . , ln
𝑥iJ

𝐽

√∏𝐽

𝑗=1𝑥ij

⎞⎟⎟⎟⎠. (2)

With the clr coefficients, the compositional data are moved iso-
metrically from their original sample space, endowed with the
Aitchison geometry, to the real space (see, e.g., Pawlowsky-Glahn
et al. [8]), where indeed standard SVD after (column-)centering
results in a meaningful representation of loadings and scores in a
biplot. Since logarithms of ratios are involved, this kind of proce-
dure is generally known under the name logratio approach (see,
e.g., Pawlowsky-Glahn et al. [8], Greenacre [9], and Filzmoser
et al. [10]).

Recent developments in compositional data analysis, however,
enable to proceed further with this limiting case. In particular,
the concept of compositional tables opens up new possibilities
also for the analysis of relative information in contingency
tables [11–13]. As an example, a simple compositional table
could be the number of employed people in a region, where the
rows are determined by part-time and full-time employment,
and the columns by males and females. If one is interested in
comparing and analyzing different regions, relative rather than
absolute information needs to be considered, as the absolute
numbers would essentially be determined by the population size.

To make the link to the mentioned limiting case of correspon-
dence analysis as presented in Greenacre [4, 14], in this paper
only one table is considered, and the interest is again in identify-
ing relationships between rows and columns. More specifically,
the possibility of a decomposition into two tables, an indepen-
dent and an interaction part, will be utilized. The former assumes
independence of the row and column factors and consists of a
product of the respective marginals, and the latter contains the
information about their interaction and is numerically equal
to the matrix used in correspondence analysis. However, the
construction of the interaction table enables to completely filter
out in a geometrically meaningful way the independent part from
the original table, and thus provides direct pathways to analyzing
the remaining interactions. Besides the description of CA from
the perspective of compositional tables, the paper also introduces
a new mathematical framework for weighting parts of a composi-
tional table and, consequently, for weighted CA, and establishes a
solid foundation for an extension to the multi-factorial problem.

The structure of the paper is as follows. In the next section,
a key relationship between double-centered log-transformed
data and the interaction part of a compositional table (corre-
spondence table) is derived. In Section 3, we generalize the
findings to weighted versions of the methods and investigate
their equivalence. Section 4 shows that the important property of
distributional equivalence also holds for the logratio approach.

Numerical experiments which reveal the advantages of using
weights are presented in Section 5, and the final Section 6
concludes and provides an outlook to further extensions.

2 | Unweighted CA

This section recalls classical (unweighted) CA as well as logratio
analysis (LRA), performing CA on log-transformed data. More-
over, we present the concept of compositional tables and show
the link to LRA.

2.1 | Logratio Analysis (LRA)

Let the 𝐼 × 𝐽 contingency table X =
(
𝑥ij
)

be given, either in form
of counts or as continuous numbers, and let P = X∕𝑛, 𝑛 =

∑
𝑖,𝑗 𝑥ij,

be the respective matrix of proportions. Classical CA is typically
based on an SVD of the residual matrix

SCA = D−1∕2
𝑟

(
P − rc′

)
D−1∕2

𝑐
, (3)

where r = P𝟏𝐽 and c = P′𝟏𝐼 are vectors of row and column
marginals of P, with 𝟏𝑙 a vector of 𝑙 values of 1, and D𝑟 = diag(r)
and D𝑐 = diag(c).

If the rows of the matrix X represent realizations of a 𝐽 -part com-
positional vector, that is, a vector with positive values carrying
relative information [6], the unweighted LRA is given by an SVD
of the double-centered matrix L =

(
ln 𝑥ij

)
[15]. Row-wise center-

ing of L can be understood as the clr transformation of the rows
of X [8], where the entries of clr

(
x𝑖

)
, 𝑖 = 1, . . . , 𝐼 , are given as

𝑦ij = ln 𝑥ij −
1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij, 𝑗 = 1, . . . , 𝐽 .

After additional column centering we obtain the matrix SLRA

with entries

𝑠LRA
ij = ln 𝑥ij −

1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij −
1
𝐼

𝐼∑
𝑖=1

[
ln 𝑥ij −

1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij

]

= ln 𝑥ij −
1
𝐼

𝐼∑
𝑖=1

ln 𝑥ij −
1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij +
1
IJ

𝐼∑
𝑖=1

𝐽∑
𝑗=1

ln 𝑥ij, (4)

which is subsequently decomposed with SVD. The matrix SLRA

has mathematically the same entries as the clr representation of
the so-called interaction table, which is introduced in the follow-
ing section.

2.2 | Compositional Tables

The two-factorial extension of the concept of compositional
data to compositional tables [11, 12] treats X =

(
𝑥ij
)

as one data
object, which follows the idea of CA. A convenient property of
the approach is that the table X can be orthogonally decomposed
into an independent and an interactive part with respect to the
Aitchison geometry [11]. This can be written as X = Xind ⊕ Xint,
with ⊕ standing for the entry-wise product, known in the
compositional context as the operation of perturbation.

2 of 11 Statistical Analysis and Data Mining: An ASA Data Science Journal, 2025

 19321872a, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sam

.70023 by T
echnische U

niversitaet W
ien, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



The independent table Xind follows the situation of independence
between row and column factors, and its entries are given as the
product of the geometric marginals,

𝑥ind
ij = 𝑔

(
𝑥𝑖.
)
⋅ 𝑔

(
𝑥.𝑗

)
= 𝐽

√√√√ 𝐽∏
𝑗=1

𝑥ij ⋅
𝐼

√√√√ 𝐼∏
𝑖=1

𝑥ij.

Thus, the geometric marginals replace the arithmetic marginals
r and c used in classical CA, see Equation (3). The geometric
marginals have an important property: they are orthogonal pro-
jections of the compositional table on the information contained
in its rows and columns, see Genest et al. [16] for more details.
Note that in case of truly independent row and column factors,
both the arithmetic and geometric marginals are equivalent [11],
which underpins the reasonability of their definition.

The remainder of X is contained in the interaction table Xint with
entries

𝑥int
ij =

𝑥ij

𝑔
(
𝑥𝑖.
)
⋅ 𝑔

(
𝑥.𝑗

) .
This table carries information on associations between row and
column factors. Therefore, it can serve as a natural compositional
alternative to matrices used in classical CA (matrix of standard-
ized residuals or matrix of Pearson contingency ratios).

The clr representation of a compositional table X, Y ≔ clr(X), has
components

𝑦ij = ln 𝑥ij −
1
IJ

𝐼∑
𝑖=1

𝐽∑
𝑗=1

ln 𝑥ij (5)

and the orthogonal decomposition still applies, as Y can be
decomposed into Yind + Yint. The matrices Yind and Yint are the
clr representations of Xind and Xint, with entries given as

𝑦ind
ij = 𝑦𝑖. + 𝑦.𝑗 and 𝑦int

ij = 𝑦ij − 𝑦ind
ij .

The clr representation turns the geometric marginals of X into
the (scaled) arithmetic margins of Y, which can be written as

𝑦𝑖. =
1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij −
1
𝐽

1
𝐼

𝐼∑
𝑖=1

𝐽∑
𝑗=1

ln 𝑥ij =
1
𝐽

𝐽∑
𝑗=1

[
ln 𝑥ij −

1
𝐼

𝐼∑
𝑖=1

ln 𝑥ij

]
(6)

and

𝑦.𝑗 =
1
𝐼

𝐼∑
𝑖=1

ln 𝑥ij −
1
𝐼

1
𝐽

𝐼∑
𝑖=1

𝐽∑
𝑗=1

ln 𝑥ij =
1
𝐼

𝐼∑
𝑖=1

[
ln 𝑥ij −

1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij

]
. (7)

The entries of Yint are thus equal to

𝑦int
ij = 𝑦ij − 𝑦ind

ij = 𝑦ij − 𝑦𝑖. − 𝑦.𝑗

= ln 𝑥ij −
1
𝐼

𝐼∑
𝑖=1

ln 𝑥ij −
1
𝐽

𝐽∑
𝑗=1

ln 𝑥ij +
1
IJ

𝐼∑
𝑖=1

𝐽∑
𝑗=1

ln 𝑥ij. (8)

Equations (4) and (8) reveal that

SLRA = Yint (9)

and thus LRA is equivalent to an SVD of the clr-transformed
interaction table. However, the equivalence is achieved just

numerically, but from a mathematical perspective the models are
not the same. While the former approach understands X as a real-
ization of 𝐼 observations, the latter treats the entire matrix X as
one observation.

For both the independent and the interaction table, the clr
coefficients can also be derived directly from the elements of the
original input table X as

𝑦ind
ij = ln

𝑔
(
𝑥𝑖⋅

)
𝑔
(
𝑥⋅𝑗

)
𝑔
(
𝑥⋅⋅
)2 , 𝑦int

ij = 𝑦ij − 𝑦ind
ij = ln

𝑥ij𝑔
(
𝑥⋅⋅
)

𝑔
(
𝑥𝑖⋅

)
𝑔
(
𝑥⋅𝑗

) (10)

de Sousa et al. [17], where 𝑔
(
𝑥⋅⋅
)

stands for the geometric mean of
the entire compositional table. Moreover, Yint has uniform (zero)
marginals and is thus margin free as mentioned in Greenacre [4]
(Result 1).

Due to the orthogonality of the independent and interaction
tables, Pythagoras’ decomposition of squared norms holds [16].
Specifically, ||Y||2

𝐹
= ‖‖‖Yind‖‖‖2

𝐹
+ ‖‖‖Yint‖‖‖2

𝐹
, (11)

where || ⋅ ||𝐹 is the usual Frobenius norm of a matrix. Accord-
ingly, by computing

𝑅2
Δ(X) =

‖‖‖Yint‖‖‖2

𝐹||Y||2
𝐹

, (12)

also known under the term “simplicial deviance” [11], one
can easily (and in a mathematically justified way) decipher the
amount of information stored in the interaction table.

2.3 | CA of a Compositional Table

The equivalence of the double-centered matrix SLRA and the
clr-transformed interaction table Yint, see Equation (9), implies
that CA is obtained by an SVD of the interaction table,

Yint = UDV′, (13)

with orthogonal matrices U and V, and the (rectangular) diag-
onal matrix D = diag

(
𝑑1, . . . , 𝑑𝐷

)
with 𝐷 = min{𝐼, 𝐽}. Double

centering of Y guarantees that the columns u𝑖 of U, 𝑖 = 1, . . . , 𝐷,
and the columns v𝑗 of V, 𝑗 = 1, . . . , 𝐷, have zero totals, so they
can be perceived as clr transformations of the respective row and
column compositions. The SVD can then be written as

Yint =
𝐷∑
𝑘=1

𝑑𝑘u𝑘v′
𝑘
,

which results in a univariate decomposition of the interaction
table (which could possibly be back-transformed to the original
space). Clearly, ‖‖‖Yint‖‖‖2

𝐹
=

𝐷∑
𝑘=1

𝑑2
𝑘

and therefore 𝑑∗
𝑘
= 𝑑2

𝑘
∕
∑𝐷

𝑘=1 𝑑
2
𝑘

can be considered as proportion
of information (variance) explained by the kth factor—of course,
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within the interaction part. By considering Equation (11), one
can however relate the factors also to the overall table through
𝑑2
𝑘
∕||Y||2

𝐹
. Finally, plotting the first two columns of U and V, pos-

sibly rescaled by
√
𝑑1 and

√
𝑑2, together in a planar graph then

informs about interactions between row and column factors, as
in classical CA.

3 | Generalization: Weighted CA

In real-world applications, the information on the actual data
structure can be blurred due to problems related to sampling of
the initial data matrix. The structure can be affected by measure-
ment errors, unbalanced sizes of samples defining the rows, or
the presence of cells with low observed value; see, for example,
the example in Greenacre and Lewi [15, sec. 2]. Also, in recent
work, weighting of rows and columns in CA is proposed and
considered useful [18]. In the logratio context, weighting can be
used to give less importance in the analysis to components with
small proportions that often have high variance on the logratio
scale [4, 15, 19]. In the following, we will compare weighted
CA/LRA with a weighted CA version for compositional tables.

3.1 | Weighted CA and LRA

Weighting in CA is commonly carried out by introducing row
and column weights (typically row and column arithmetic
marginals) in the double-centering stage. The vectors r and c
forming the correspondence matrix SCA, see Equation (3), are
computed with respect to given weights. Consequently, weight-
ing propagates also into the approximation stage, so that fitting
is done by weighted least squares [15]. According to Greenacre
and Lewi [15], weighted CA can alternatively be motivated by
a matrix Q =

(
𝑞ij
)

of Pearson contingency ratios 𝑞ij = nxij∕𝑥𝑖.𝑥.𝑗 ,
with 𝑥𝑖. =

∑
𝑗 𝑥ij, 𝑥.𝑗 =

∑
𝑖 𝑥ij, ∀𝑖, 𝑗. With the weights in form of

the row and column marginal vectors r and c, and the matrices
D𝑟 = diag(r) and D𝑐 = diag(c), see also Equation (3), one can
carry out an SVD of D1∕2

𝑟

(
I𝐼 − 𝟏𝐼r′

)
Q
(
I𝐽 − c𝟏′

𝐽

)
D1∕2

𝑐
to perform

a weighted CA, which then is equivalent to the weighted form
of LRA. There are also other important contributions on the
equivalence between correspondence analysis and weighted
LRA indices: Greenacre [4] provided an empirical description
of the respective transformation, Choulakian [20] later pre-
sented a mathematical formulation and proof, referring to it as
Greenacre’s Theorem, and Greenacre [14] subsequently offered
an alternative mathematical formulation with a similar proof.

The weighted LRA starts with double centering of L by weighted
means. When w𝑟 and w𝑐 are vectors of normalized row and col-
umn weights (𝟏′

𝐼
w𝑟 = 𝟏′

𝐽
w𝑐 = 1), weighted LRA is based on an

SVD of the matrix

SWLRA = D1∕2
𝑤𝑟

(
I𝐼 − 𝟏𝐼w′

𝑟

)
L
(
I𝐽 − w𝑐𝟏′𝐽

)
D1∕2

𝑤𝑐
(14)

with D𝑤𝑟
and D𝑤𝑐

being diagonal matrices of weights. The result
remains unchanged if a constant is added to the rows or columns
of L, as it vanishes through the double centering. The matrix L
is therefore equivalent to the matrix of log-transformed Pearson
ratios 𝑞ij. Moreover, since a logarithm of 𝑥 can be approximated
by 𝑥 − 1 via Taylor approximation, the matrix log(Q) is similar to

Q − 𝟏𝐼𝟏′𝐽 if all 𝑞ij → 1. Finally, the shift by 𝟏𝐼𝟏′𝐽 again vanishes
through the double-centering and the weighted LRA and CA
approaches are therefore equivalent if the observed and expected
values (nearly) coincide, that is, if the analyzed structure is rather
independent. The detailed derivation is given in Greenacre and
Lewi [15]. Additionally, the weighted LRA is also equivalent to
spectral mapping, described, for example, in Lewi [21], and to the
weighted version of CA of a compositional table as detailed below.

3.2 | Weighted CA of a Compositional Table

Let W =
(
𝑤ij

)
be an 𝐼 × 𝐽 matrix of positive weights satisfying

𝑤ij = 𝑤𝑟
𝑖
⋅𝑤𝑐

𝑗
, that is, of a structure which is in agreement with

weighted LRA [15] and which also corresponds to the product
reference measure as used in Genest et al. [16]. Among other
options, the vectors of weights w𝑟 and w𝑐 can be given by the
arithmetic or geometric marginals, and possibly rescaled to unit
sum. However, the rescaling would affect merely the scale of the
final result, not the (weighted) data structure itself.

The mathematical framework for the weighted analysis of com-
positional tables, and consequently for the weighted CA of a
compositional table, is provided by Bayes spaces [22, 23]. The fun-
damentals of the weighted analysis of vector compositional data
are given in Hron et al. [19] and can be directly generalized to
the two-factorial case, as described here. Weighting in the Bayes
space framework is in general understood as a shift, in compo-
sitional terms a perturbation-subtraction (denoted as ⊖) of the
object with weights. More specifically, for a compositional table
X and a matrix of weights W, the weighted compositional table
X𝑊 = X ⊖ W has elements

𝑥𝑊ij = 𝑥ij∕𝑤ij (15)

and it is represented in a weighted Aitchison geometry which
honors scale invariance of the table and its weights. The scale
of the weights only propagates in metric concepts, like in the
weighted Aitchison distance between two tables X𝑊 and Z𝑊 =(
𝑧𝑊ij

)
=
(
𝑧ij∕𝑤ij

)
,

𝑑
(
X𝑊 ,Z𝑊

)2
𝑊

= 1
2
∑𝐼

𝑖=1
∑𝐽

𝑗=1𝑤ij

𝐼∑
𝑖=1

𝐽∑
𝑗=1

𝐼∑
𝑖′=1

𝐽∑
𝑗′=1

𝑤ij𝑤𝑖′𝑗′

×

(
ln

𝑥𝑊ij

𝑥𝑊
𝑖′𝑗′

− ln
𝑧𝑊ij

𝑧𝑊
𝑖′𝑗′

)2

; (16)

depending on rescaling of W by 𝑐 > 0, the sample space of the
tables either shrinks (𝑐 < 1) or expands (𝑐 > 1). Note that the
weighted Aitchison distance (16) corresponds to quite an extent
to the heuristic approach to weighting the distance in compo-
sitional data analysis, cf. Greenacre and Lewi [15, sec. 2]. The
main difference is the initial shift of the correspondence table
by the compositional table of weights, which can be understood
as shifting the data to a new representation where the matrix
of weights plays the role of the new origin. Accordingly, the
weighted observations now indicate how much they differ from
the a priori information represented by the weights. This gives
an additional theoretical frame to the setting from Greenacre
and Lewi [15] which enables to generalize, for example, the

4 of 11 Statistical Analysis and Data Mining: An ASA Data Science Journal, 2025

 19321872a, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sam

.70023 by T
echnische U

niversitaet W
ien, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Pythagoras’ decomposition or the distributional equivalence
from the unweighted case [16, 24]. Despite differences in the
weighting pipeline, the final effect is of course the same: cells
having higher weights yield more emphasis in the analysis,
compare with Talská et al. [24] and fig. 2 therein.

The weights propagate into clr coefficients of the whole table
as well as its independent and interaction parts. The entries are
given by

𝑦𝑊ij =
√
𝑤ij ln

𝑥𝑊ij

𝑔𝑊
(
𝑥𝑊⋅⋅

) , (17)

𝑦ind,𝑊
ij =

√
𝑤ij ln

𝑔𝑊
(
𝑥𝑊
𝑖⋅

)
𝑔𝑊

(
𝑥𝑊⋅𝑗

)
𝑔𝑊

(
𝑥𝑊⋅⋅

)2 ,

𝑦int,𝑊
ij =

√
𝑤ij ln

𝑥𝑊ij 𝑔𝑊
(
𝑥𝑊⋅⋅

)
𝑔𝑊

(
𝑥𝑊
𝑖⋅

)
𝑔𝑊

(
𝑥𝑊⋅𝑗

) , (18)

where the weighted geometric mean of X is defined as

𝑔𝑊
(
𝑥𝑊⋅⋅

)
= exp

(
1∑𝐼

𝑖=1
∑𝐽

𝑗=1𝑤ij

𝐼∑
𝑖=1

𝐽∑
𝑗=1

𝑤ij ln 𝑥𝑊ij

)
,

and likewise for row and column geometric means. Note that
such definition of marginals corresponds, up to normalizing with
the sum of weights, to weighted arithmetic marginals in the
log-scale as defined in Greenacre and Lewi [15, sec. 2, Step 1]
or Choulakian et al. [25]. The rescaling by √

𝑤ij guarantees that
the resulting weighted clr coefficients are represented in the
(unweighted) Euclidean geometry, and are thus ready for fur-
ther processing using ordinary tools of multivariate statistics [19];
compare also with Greenacre and Lewi [15, sec. 2, Step 2]. The
entries of the interaction table are (up to rescaling by √

𝑤ij)

1√
𝑤ij

𝑦int,𝑊
ij = ln 𝑥ij −

1∑𝐼

𝑖=1𝑤
𝑟
𝑖

𝐼∑
𝑖=1

𝑤𝑟
𝑖

ln 𝑥ij −
1∑𝐽

𝑗=1𝑤
𝑐
𝑗

𝐽∑
𝑗=1

𝑤𝑐
𝑗

ln 𝑥ij

+ 1∑𝐼

𝑖=1𝑤
𝑟
𝑖

∑𝐽

𝑗=1𝑤
𝑐
𝑗

𝐼∑
𝑖=1

𝐽∑
𝑗=1

𝑤𝑟
𝑖
𝑤𝑐

𝑗
ln 𝑥ij (19)

and they play an essential role in CA. Moreover, if we denote
sums of the weights w𝑟 and w𝑐 by 𝑠𝑟 and 𝑠𝑐 , respectively, and
their normalized versions as w𝑟 = w𝑟∕𝑠𝑟 and w𝑐 = w𝑐∕𝑠𝑐 , the clr
representation of the weighted interaction table turns to

Yint,𝑊 =
√
𝑠𝑟𝑠𝑐 ⋅ D1∕2

𝑤𝑟

(
I − 𝟏w′

𝑟

)
L
(
I − w𝑐𝟏′

)
D1∕2

𝑤𝑐

=
√
𝑠𝑟𝑠𝑐 ⋅ SWLRA. (20)

Therefore, the weighted version of CA based on a
log-transformation (LRA) and the decomposition of a com-
positional table are equivalent.

It follows directly from the general case [16] that the weighted
independent and interaction parts are again orthogonal, and
therefore Pythagoras’ decomposition

‖‖‖Y𝑊 ‖‖‖2

𝐹
= ‖‖‖Yind,𝑊 ‖‖‖2

𝐹
+ ‖‖‖Yint,𝑊 ‖‖‖2

𝐹
(21)

holds, similar as in Equation (11). Here, a key component is the
use of the product reference measure, which is essential also
for derivations performed in Genest et al. [16]. Consequently,
Equation (21) can be used for diagnostics related to an ordinary
SVD of Y𝑊 , analogously as in Section 2.

3.3 | Choice of Weights and Implications

The most appealing case of weighting is definitely the one with
the standard arithmetic marginals of the original contingency
table or its proportional representation, the correspondence
matrix, as 𝑤𝑟

𝑖
and 𝑤𝑐

𝑗
. Due to scale invariance of weighting in

compositional tables, both representations are now equivalent
and the rescaling results just in a shrinkage or an expansion of
the weighted space [19]. There are good reasons for weighting
in the logratio CA: due to the logarithmic scale, row or column
factor instances (variables) with small presence engender large
variability, which is often a rather undesired effect [15]. The
weighting also combines advances of both approaches: simple
interpretability of arithmetic marginals as weights is comple-
mented by geometric marginals (i.e., arithmetic margins in the
logarithmic scale) which are necessary to develop both important
theoretical and practical consequences of the decomposition into
independent and interactive parts.

4 | Distributional Equivalence of the Logratio
Approach

Distributional equivalence is a natural requirement for CA and,
more generally, for analyzing any ratio-scale data, including
compositional data and compositional tables. In the former
case, this requirement was already emphasized in the seminal
work on CA [1], and it was further elaborated by Greenacre and
Lewi [15], who used the formulation: If two columns (resp., two
rows) have the same relative values, then merging them does not
affect the distances between rows (resp., columns). An important
aspect is what we understand under merging in the context
of ratio-scale data. As the logarithm naturally moves the data
from the ratio-scale to the interval-scale [26], the simple aggre-
gation should be done there, possibly rescaled by the number
of components. In the original scale this is just the geometric
mean, which is promoted in the literature also for a geometric
reasoning [27]. Likewise, in CA, the distributional equivalence
is related to an amalgamation of rows/columns in case of their
proportionality, which should be done again for similar reasons
in the log-scale. Due to scale invariance of compositional tables,
from the perspective of the original scale, it is equivalent if the
aggregation is done in the log-scale or in the clr space. Then, if
any two rows (or columns) of a compositional table carry the
same relative information, or in other words, if they are a con-
stant multiple of each other, it is expected that the logratio CA
keeps unchanged irrespectively whether these rows (columns)
are aggregated.

In case of compositional data, replacing two compositional parts
with their respective geometric mean essentially means that the
information contained in the ratio between these two parts is
removed, and even more, it can be considered as the orthogo-
nal projection of the original composition to the subspace of the
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remaining information [28]. Consequently, when considering a
sample of compositional data, distances among the original com-
positions and among their aggregated counterparts remain the
same. It is only important to keep the original dimensionality of
the data; otherwise, the subcompositional dominance [8] neces-
sarily applies.

The thoughts of Greenacre and Lewi [15] on distributional equiv-
alence can also be reinterpreted to the case of compositional
tables. In particular, in case of proportional rows (columns), the
interaction part should remain unchanged irrespectively whether
these rows (columns) are aggregated or not. This can be eas-
ily demonstrated. Without loss of generality., let the first two
rows of the compositional table X =

(
𝑥ij
)

be proportional, which
means that 𝑥2𝑗 = 𝑐2𝑥1𝑗 for any 𝑐 > 0 and 𝑗 = 1, . . . , 𝐽 . If each of
these rows is replaced by √

𝑥1𝑗𝑥2𝑗 = cx1𝑗 , from the scale invari-
ance property it directly follows that the column marginals are
the same as in the non-aggregated version of the table. For row
marginals we need to consider that

𝑔
(
𝑥1.

)
= 𝐽

√√√√ 𝐽∏
𝑗=1

𝑥1𝑗 , 𝑔
(
𝑥2.

)
= 𝐽

√√√√ 𝐽∏
𝑗=1

𝑐2𝑥1𝑗 = 𝑐2𝑔
(
𝑥1.

)
.

The row geometric marginals for a table, where the correspond-
ing elements of the first two rows are replaced by their geo-
metric means, can then be expressed as perturbation of the
original column geometric marginal by the 𝐼-part composition
(𝑐, 1∕𝑐, 1, . . . , 1). From the Yule perturbation property (cf. Genest
et al. [16, Proposition 7]) it then follows that the interaction table
remains unchanged.

Similarly, the same arguments can also be made for the weighted
case, with 𝑤ij = 𝑤𝑟

𝑖
𝑤𝑐

𝑗
, 𝑖 = 1, . . . , 𝐼, 𝑗 = 1, . . . , 𝐽 . By the aggre-

gation of rows we now understand their replacement by the
weighted geometric mean, and from the equality

[(
𝑥𝑊1𝑗

)𝑤𝑟
1
(
𝑐2𝑥𝑊1𝑗

)𝑤𝑟
2
] 1

𝑤𝑟
1+𝑤

𝑟
2 = 𝑐

2𝑤𝑟
2

𝑤𝑟
1+𝑤

𝑟
2 𝑥𝑊1𝑗 = 𝑐′𝑥𝑊1𝑗

it follows that the weighted column marginals are the same irre-
spective of the row aggregation. For row marginals, we need to
consider that

𝑔𝑊
(
𝑥𝑊1.

)
=

[
𝐽∏
𝑗=1

(
𝑥𝑊1𝑗

)𝑤𝑐
𝑗

] 1∑
𝑗
𝑤𝑐
𝑗

,

𝑔𝑊
(
𝑥𝑊2.

)
=

[
𝐽∏
𝑗=1

(
𝑐2𝑥𝑊1𝑗

)𝑤𝑐
𝑗

] 1∑
𝑗 𝑤

𝑐
𝑗

= 𝑐2𝑔𝑊
(
𝑥𝑊1.

)
and that the geometric mean of an aggregated row equals
𝑐′𝑔𝑊

(
𝑥𝑊1.

)
. The aggregated row marginals can therefore be

obtained by the perturbation of the non-aggregated ones by(
𝑐′, 𝑐′∕𝑐2, 1, . . . , 1

)
, which again results in an equivalence of the

respective interaction tables. Finally, the proportionality of the
rows can be still traced back to the original (unweighted) table,
since

𝑥𝑊2𝑗 =
𝑥2𝑗

𝑤1𝑗
=

𝑐2𝑥1𝑗

𝑤1𝑗
= 𝑐2𝑥𝑊1𝑗 .

5 | Numerical Experiments

In this section we aim to complement previous work by
Greenacre and Lewi [15] and compare the stability of the results
for the unweighted and weighted version of LRA. Accordingly, we
perform an SVD of the matrices Yint and Yint,𝑊 . For the weights
we will use the arithmetic marginals of the original table.

5.1 | Bootstrapping Tables

The main idea is to draw bootstrap samples from the original
table X =

(
𝑥ij
)
, where we assume that 𝑥ij are integer-valued.

Each entry 𝑖 = 1, . . . , 𝐼 and 𝑗 = 1, . . . , 𝐽 is replicated 𝑥ij times,
forming the rows of a data matrix in “long format,” with
𝑛 =

∑
𝑖,𝑗 𝑥ij rows. Then we draw a bootstrap sample, that is, 𝑛

observations with replacement, and the resulting long format
representation is aggregated to a table format, with the same
rows and columns as the original table. Call this bootstrapped
table X𝑏, for 𝑏 = 1, . . . , 𝐵, where the number of bootstrap tables
𝐵 can be large (e.g., 1000). The unweighted version for the
original table results in a decomposition of the interaction table
with the singular vectors arranged in U and V, respectively, see
Equation (13), and similarly, we obtain the matrices U𝑏 and
V𝑏 for the interaction table of the bootstrapped table. For the
weighted version we obtain the interaction table Yint,𝑊 , see
Equation (20), and the orthonormal matrices U𝑊 and V𝑊 with
the left and right singular vectors, respectively. Equivalently,
we obtain for each bootstrapped weighted interaction table the
corresponding matrices with the singular vectors U𝑊 ,𝑏 and V𝑊 ,𝑏.

5.2 | Comparison by the Principal Angle

The results are compared by the principal angle between sub-
spaces, as introduced in Björck and Golub [29] and implemented
as the function angle() in the R package rospca [30]. Denote
by  and  two orthonormal bases, where the number of basis
vectors in  is less or equal the number of basis vectors in  .
Then, the principal angle 𝜃 between the corresponding subspaces
is computed as

𝜃( ,) =
sin−1(𝜎max

((
I −

′)

))

𝜋∕2
, (22)

where 𝜎max corresponds to the largest singular value of the pro-
jected matrix [29]. Here, the angle was already scaled to the inter-
val [0, 1], where 0 means that the smaller subspace is embedded
in the bigger one (or they span the same space).

In the following experiments, we compare the angle of the results
for the original (weighted) table with those for the bootstrapped
(weighted) tables, where we use all singular vectors in the first
case, but only the first two singular vectors in the second case.
Thus, the idea is to see whether the results usually shown
in a 2D plot for the bootstrapped version are related or even
embedded in the space spanned by the results of the original
data version. Note that the angle will be 0 when comparing the
singular vectors of the smaller dimension of X, and thus we will
report max

(
𝜃
(
UU𝑏

1∶2
)
, 𝜃(V,V𝑏

1∶2)
)
, and similarly for the weighted

versions.

6 of 11 Statistical Analysis and Data Mining: An ASA Data Science Journal, 2025

 19321872a, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sam

.70023 by T
echnische U

niversitaet W
ien, W

iley O
nline L

ibrary on [29/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 1 | Data derived from the Spanish national health survey.

Age group Very good Good Regular Bad Very bad

16–24 243 789 167 18 6
25–34 220 809 164 35 6
35–44 147 658 181 41 8
45–54 90 469 236 50 16
55–64 53 414 306 106 30
65–74 44 267 284 98 20
75+ 20 136 157 66 17

5.3 | Spanish Health Survey Data

This data set originates from a Spanish health survey and it was
analyzed in Greenacre [31]. Table 1 presents the data that have
been used for CA. The rows refer to different age groups, and
the columns refer to the health status as perceived by the 6371
respondents, with the corresponding frequencies in the cells. In
contrast to the analysis presented in Greenacre [31] based on the
frequencies, we are here interested in relative information, and
thus treat the table as a compositional table. Some categories con-
tain small frequencies, which can introduce a lot of undesirable
variability in an unweighted analysis.

Figure 1 presents the results from unweighted and weighted
LRA. There are several changes visible, such as an exchange
of the positions of “Very bad” and “Regular,” but also of
“55–64” and “65–74.” The bootstrapped tables will introduce
even more uncertainty in the categories with small frequen-
cies, and the stability of the results will be investigated in the
following. It is also interesting to compare the explained vari-
ances, shown along the axis legends in the plots of Figure 1:
The first numbers refer to the explained variance within the
interaction parts, while the second numbers refer to the propor-
tion of explained variance from the overall (weighted) clr table.
In the latter case, weighting here leads to a much higher vari-
ance proportion because the weights shift the information to

a new origin which removes a lot of the information from the
independent part.

Figure 2 presents the results from the bootstrap experiments, as
described above. It can happen that zero frequencies occur in a
bootstrap table. Such values were replaced simply by 2/3 to add
minimum possible variance [32]. The boxplots in the left plot
compare the angles of the unweighted LRA with the weighted
version, and it can be seen that the angles are clearly smaller for
the weighted LRA. The right plot shows for each bootstrap repli-
cation the difference of the angle between the unweighted and the
angle of the weighted version as boxplots, together with notches
for confidence intervals around the median. The boxplots are split
up into bootstrap experiments where the smallest value in the
bootstrapped table was 0, 1, 2, and so forth, which is shown on the
horizontal axis. This reveals that the medians of the differences
are positive, and that they tend to be higher if the smallest value
is smaller. Thus, weighting stabilizes the results, particularly if
there are small frequencies involved.

5.4 | Further Data Sets

We investigate for several other data sets known from the CA liter-
ature the stability of the results based on the bootstrap procedure
as described above. For the choice of the data sets, we consid-
ered different aspects, such as the dimension of the table, values
close to zero, low counts in some rows or columns, and so forth.
Of course, here we consider the table information as composi-
tional. As before, we will present the results from the bootstrap
procedure in terms of the difference between the angle of the
unweighted and the weighted version, see Figure 3.

Stores: Age distribution in food stores, used in Chapter 15 of
Greenacre [3]. This small data set with counts consists of 5 stores
(rows) and 5 age groups (columns). The counts are relatively
balanced among the cells, with the smallest value of 8 and the
largest of 69. The weighted version shows a slight improvement
in stability of the results when compared to the unweighted
version (see Figure 3).
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FIGURE 1 | Spanish health data: Results from unweighted (left) and weighted (right) LRA.
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FIGURE 2 | Spanish health data: Angles for unweighted and weighted LRA based on 10.000 bootstrap samples (left), and the difference of the angles
of the unweighted and the weighted version, depending on the smallest count in the bootstrapped table (right).
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FIGURE 3 | Further data sets: Difference of the angles of the unweighted and the weighted version, based on 1000 bootstrapped tables.

Health2: We consider again the Spanish health data from Table 1,
but aggregate the categories “Bad” and “Very bad” in order
to avoid small counts. Figure 3 still reveals a clear advantage
of weighting, possibly because the categories “Very good” and
“75+” have a large variability.

Cups: A data set originating from the analysis of Roman glass
cups, see Greenacre and Lewi [15], available as data cups in the
R package easyCODA: concentrations of 47 observations for 11
chemical elements. The element “Mn” has very low values due to
detection limit problems. This data set was used in Greenacre and
Lewi [15] to illustrate the usefulness of weighting. We multiplied
the concentrations, reported in % with 2 digits, by 100 to pro-
duce integers in order to make the data suitable for our bootstrap
procedure. The results in Figure 3 indeed show a huge advantage
concerning the stability of the results when using weighting.

News: Data about the news interest in Europe, see Chapter 19 of
Greenacre [3]. The table consists of 34 countries (rows) and 18
categories (columns), and the frequencies are in the range from
18 to 652. There are no issues with small frequencies or big vari-
abilities of values for single categories, and thus the results in
Figure 3 are not in favor of any of the methods.

Galton: This data set originates from Galton [33], where the
body heights of parents and their children are studied. We use
the data as aggregated in tab. 1 of Cuadras and Greenacre [34],
resulting in a 9 × 12 table, with 20 cells containing zeros, which
are replaced by 2/3. There are several other cells with small
frequencies, distributed among several categories. This is a diffi-
cult situation, and here weighting by arithmetic marginals even
leads to slightly more instability compared to the unweighted
version.
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FIGURE 4 | Further data sets: Simplicial deviance of the unweighted (U) and the weighted (W) version, based on 1000 bootstrapped tables. The
simplicial deviance for the original data is shown by horizontal lines.

Fish: Morphological data on Arctic charr fish, available as data
fish in the R package easyCODA. We use the 26 morphological
measurements for the 75 observations, and multiply the values
by 100 to create integers, making them suitable for our bootstrap
procedure. There are no particularly small values or categories
with large variances in the table, and accordingly, the boxplot
shows only a marginal advantage of using weights.

Figure 4 presents the simplicial deviances of the unweighted (U)
and weighted (W) versions. The horizontal lines are the values for
the original data, and the boxplots present the results of the 1000
bootstrapped tables. In all cases we can see a clear advantage of
weighting, which allows to shift much more information to the
interaction table.

6 | Summary and Conclusions

CA is generally considered an exploratory data analysis tool. The
method is motivated by an algorithm, and there is still a con-
tinuous discussion about its mathematical background; see, for
example, Breitung [35]. The aim of this paper was to show that
the link to the logratio methodology [36] as its limiting case,
Greenacre [4] can contribute to build a solid theoretical frame-
work for CA. We have shown that the unweighted LRA, which
performs an SVD of the centered logratio represented composi-
tions [4], is equivalent to an analysis of a compositional table. In
the latter case, the whole table is considered a composition, and
it is not treated as a sample of compositional data. Moreover, the
orthogonal decomposition of a compositional table into its inde-
pendent and interaction parts enables us to assess the explained
variability not only within the interaction part (corresponding in
the jargon of CA to contingency ratios) but also within the whole
(logratio) correspondence table.

Compositional data, and also compositional (correspondence)
tables as their two-factorial decomposition, are characterized by

the property of scale invariance [8]. The possibility of approach-
ing unweighted or weighted LRA with power transformation
by different representations of the same contingency table (cf.
Results 1 and 2 in Greenacre [4]) indicates that scale invariance
in a truly compositional sense is not the main strength of CA.
Weighting with compositional tables is achieved instead through
a change of the reference measure in the respective Bayes space.
This leads to the usual choice of weighting in CA with row and
column (arithmetic) marginals to new insights, and to a natural
increment of the explained variance within the whole table. On
top of that, weighting with compositional tables is equivalent to
the weighted CA.

The reformulation of CA using compositional tables also guaran-
tees distributional equivalence for both the unweighted and the
weighted case, while the unweighted CA so far lacked this fea-
ture. Clearly, the aggregation in distributional equivalence needs
to be reformulated in terms of the geometric mean, as it is the
case for the marginals in a compositional table, and in general
as a measure of central tendency in a truly ratio-scale analysis;
however, it is merely nothing but the usual aggregation in the
log-scale, from the viewpoint of the original scale [16, 26]. Still,
for the weighted case also the usual arithmetic marginals play the
important role in providing the absolute (interval-scale) informa-
tion, which is essentially their role in data analysis. Herewith, the
benefits of both concepts of marginals can be utilized.

The whole concept can be easily extended to the case of 𝑘-factors,
𝑘 > 2, known under the name compositional cubes [37]. They
represent the discrete version of the orthogonal decomposition
of multivariate densities [16]. Due to the orthogonality of the
decomposition, the explained variance of all possible combina-
tions of factors can be assessed which is of particular importance
in high-dimensional settings.

Of course, with the logratio approach, the problem of zeros
naturally occurs, which needs to be carefully considered. The
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zeros in contingency tables can be, however, treated as so-called
count zeros where a reasonable imputation by non-zero values
is adequate, and approaches for this purpose are available [38].
Moreover, the effect of the imputation (and presence of zeros
in general) is naturally downweighted in the weighted logra-
tio CA by lowering the respective marginal values. Still, dealing
with zeros in the logratio CA is one of the next challenges to be
addressed.

Overall, the logratio approach to CA opens up many new poten-
tial avenues for how the field can be further developed. The R
source codes for both weighted and unweighted CA using the
compositional tables methodology and for the numerical experi-
ments are available at https://github.com/kfacevicova.
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