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Deutsche Kurzfassung

Wie von Bogner et al. gezeigt wurde, bietet das Messen des “free induction decays”
(FID) statt eines Echos, gemeinsam mit der hohen Feldstärke von 7T, genug Signal zu
Rauschverhältnis (SNR), um hohe Auflösungen von 3.4×3.4 mm2 in der Magnetresonanz-
spektroskopie (MRSI) zu ermöglichen. Gleichzeitig ist die Punktverteilungsfunktion gut
genug lokalisiert, um das Verschmieren von extrakranialem Lipidsignal über das Gehirn-
bild zu verhindern. Mit kleineren Auflösungen wäre das nicht gegeben, da es wegen
dem Messen des FIDs nicht möglich ist, das Signal durch Methoden wie “point resolved
spectroscopy” räumlich einzuschränken, und weil die kurzen Echozeiten stärkere Lipid-
signale verursachen. Leider ist die Messzeit bei solch hohen Auflösungen 30 Minuten
pro Schicht. Daher war das erste Ziel meiner Arbeit eine Spulenkombinationsmethode
für MRSI Daten zu entwickeln, um das SNR noch weiter zu erhöhen, welches dann für
eine Verkürzung der Messdauer benutzt werden kann. Eine Spulenkombinationsmethode,
“MUSICAL”, wurde entwickelt, welche konventionelle MR-Bilddaten als Kombinations-
gewichte benutzt. Im Vergleich zu zwei Standardmethoden benötigt MUSICAL einerseits
keine zusätzliche Referenzspule, und erhöht andererseits das SNR um 30 %. Um die
MRSI-Akquisition zu beschleunigen, wurden zwei konzeptionell verschiedene Methoden
getestet: Parallelbildgebung (PI), und Raum-Zeit-Kodierung (SSE). Eine neue PI Me-
thode, (2+1)D-CAIPIRINHA, wurde entwickelt, welche in alle drei Raumrichtungen
beschleunigt. Die Ergebnisse waren besser im Vergleich zu zwei Standard-Methoden,
2D-GRAPPA, und 2D-CAIPIRINHA. SSE bietet höhere Beschleunigungsfaktoren als
PI, und kann deshalb sogar für 3D-MRSI benutzt werden. SSE wurde in Form von kon-
zentrischen Kreisen in eine MRSI Sequenz implementiert. Eine Rekonstruktionspipeline
wurde in BASH und MATLAB programmiert, um die MRSI Daten all dieser Methoden
rekonstruieren zu können. Die Pipeline ist open-source und vollautomatisch, sodass der
Benutzer keinerlei Eingaben nach dem Starten des Programms tätigen muss. Letztlich
wurden die entwickelten Methoden dafür verwendet, Multiple Sklerose Patienten in einer
klinischen Studie zu messen. Metabolische Änderungen waren in den Läsionen im Ver-
gleich zu normal aussehender weißer Hirnsubstanz erkennbar, in Übereinstimmung zur
Literatur, allerdings viel detailreicher.
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Abstract

As was shown by Bogner et al., measuring the free induction decay (FID) instead of
an echo, together with the high field strength of 7T provides enough signal to noise
ratio (SNR) for measuring magnetic resonance spectroscopic imaging (MRSI) at high
resolutions of 3.4 × 3.4 mm2. At the same time, the point spread function (PSF) is lo-
calized well enough to prevent extra-cranial lipid signals from spreading over the brain
image. With lower resolutions, these lipids would be problematic, as measuring the FID
prevents the possibility to spatially restrict the signal via methods like point resolved
spectroscopy, and because the short echo times result in stronger lipid signals. Unfortu-
nately, such high resolutions also require long measurement times of about 30 minutes
for one slice. Thus, the first aim of my work was to implement a robust coil combina-
tion for MRSI data from array coils to further increase the SNR. This increased SNR
can then be used to accelerate the measurement. A coil combination method termed
“MUSICAL” was developed, which uses magnetic resonance imaging data as coil com-
bination weights. MUSICAL does not need an additional reference coil, and the SNR
was increased by 30 % in comparison to two state of the art coil combination meth-
ods. To accelerate the MRSI acquisition, two conceptually different approaches were
tested: Parallel imaging (PI), and spatio-spectral encoding (SSE). A new PI method,
(2+1)D-CAIPIRINHA, for accelerating in all three spatial dimensions was developed.
This method yielded improved results in comparison to two standard PI methods, 2D-
GRAPPA, and 2D-CAIPIRINHA. SSE offers potentially higher acceleration factors than
PI, and can therefore be used to even measure 3D-MRSI. SSE was implemented into an
MRSI sequence by measuring concentric circle trajectories. In order to reconstruct the
MRSI data with all these methods, a reconstruction pipeline was programmed in BASH
and MATLAB. This pipeline is open source and fully automatic, and does therefore not
need any additional user input during runtime. Finally, the methods developed in the
course of this thesis were applied by measuring multiple sclerosis patients in a clinical
study. Metabolic changes were observed in the lesions in comparison to normal appear-
ing white matter, mostly in accordance with literature, but with much higher spatial
detail.
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1 Introduction

The following chapter should provide a basic overview about the thesis and the theory
necessary to understand it. The theory is, however, by far not exhaustive, as only those
concepts relevant for this thesis are described. For a more extensive theoretical treat-
ment, I suggest the excellent books “Magnetic Resonance Imaging: Physical Principles
and Sequence Design” by Brown et al. (1), and “In Vivo NMR Spectroscopy” by de
Graaf (2).

1.1 Outline of the Thesis

This thesis is subdivided in six main chapters. In the first chapter, some theoretical
background to understand the remaining thesis is provided. In the second, different coil
combination methods for combining Magnetic Resonance Spectroscopic Imaging (MRSI)
data of different channels of an Array Coil (AC) are compared, including Multichannel
Spectroscopic Data Combined by Matching Image Calibration Data (MUSICAL), as
proposed by our group (3). Together with the ultra-high field strength, and the very
short acquisition delay, the usage of an AC and an optimal coil combination can provide
a very high Signal to Noise Ratio (SNR), even for high-resolution MRSI data. However,
the measurement times of such high-resolution MRSI sequences are too long for being
clinically feasible. Chapter 3 deals with one possibility to accelerate such high resolution
MRSI sequences from e.g. 30 min to 6 min using Parallel Imaging (PI). Another accel-
eration method, Spatio-Spectral Encoding (SSE), is presented in chapter 4. In order to
perform all the sophisticated reconstructions necessary for these methods, and to present
the data in a user-friendly way, a reconstruction pipeline was programmed in Bourne
Again Shell (BASH) and Matrix Laboratory (MATLAB). This pipeline is described in
chapter 5. Finally, the thesis is concluded by chapter 6, in which an application of the
developed methods is presented. Multiple Sclerosis (MS) patients were measured with
an PI-accelerated sequence, and the resulting data were reconstructed as described in
chapter 2 and 5. Several interesting findings were made based on the acquired data.
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1.2 MR Basics

All work described in this thesis was done by me, except if explicitly stated otherwise.
Two parts were done in close collaboration with two colleagues: The implementation
of the Gradient Echo (GRE) pre-scan into our Cartesian MRSI sequence was done to-
gether with Gilbert Hangel, and the Concentrically Circular Echo-Planar Trajectories
(CONCEPT) sequence together with Lukas Hingerl. For the latter, the reconstruction
was completely done by him, while most parts of the sequence were written by me.
Concerning the GRE pre-scan, the work was divided approximately equally.

1.2 MR Basics

If exposed to a static magnetic field ~B0, nuclei act like magnetic dipoles that spin around
the direction of ~B0 with the Larmor frequency

ω0 = γB0 (1.1)

where γ is the gyro-magnetic ratio, and B0 · ~ez := ~B0, by which the z-axis is defined
parallel to the main magnetic field ~B0. The individual dipoles have a higher probability
to align along the external magnetic field ~B0, an effect that scales with the strength of
B0. This causes a non-zero net magnetization of the tissue.
If an additional time-depending magnetic field in the Radio Frequency (RF) range, B1,
is applied to the tissue, the tissue magnetization is flipped towards the x-y-plane (or-
thogonal to ~B0), if the frequency of B1 is ω0. In this case, B1 is said to be “on-resonant”.
After the additional field is turned off again, the magnetization of the tissue precesses
around ~B0, again with the frequency ω0. During this precession, the magnetization re-
laxes back to its equilibrium state, which is parallel to ~B0. Two mechanisms cause the
relaxation: The spin-lattice relaxation, an interaction between the spins and their sur-
roundings, and the spin-spin relaxation describing the coherence loss between the spins.
The time constants T1 and T2 are used to describe how fast these processes happen. Dif-
ferent materials and tissues have different relaxation constants, by virtue of which the
main contrast in Magnetic Resonance Imaging (MRI) is generated. This whole process,
precession and relaxation, causes a time-depending magnetic field itself, which can be
detected by a coil close to the tissue.

1.3 MR Spectroscopy

The basis of Magnetic Resonance (MR) spectroscopy is the fact that protons have dif-
ferent resonance frequencies ω0 depending on their chemical environment. Thus, the
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1 Introduction

protons of different molecules and the different protons within one molecule can have
different resonance frequencies, and can therefore be differentiated.
We can measure a Free Induction Decay (FID) by acquiring the signal repetitively at
different time points. By performing a Fourier transform, we analyze which frequencies
the FID contains. This results in a spectrum, where we get one single peak for each
chemical compound (e.g. metabolite or part of metabolite). The peak heights correlate
with the abundance of the chemical compound. These two facts together enable Mag-
netic Resonance Spectroscopy (MRS) to measure the concentrations (=peak height) of
different chemical compounds (=different frequencies). A sample MR spectrum of a rat
brain at 11.75T is given in fig. 1.1. The time distance between two consecutively mea-
sured time points is called spectral dwelltime, dTspectral, and defines the spectral range
in Hz within which we can differentiate chemical compounds. The total duration of the
acquisition defines the distance between two neighboring frequencies which can be still
resolved (spectral resolution).

9.0 8.0 7.0 6.0 4.0 3.0 2.0 1.0 0.0

NAA
tCr

tCho

Tau
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AT P
Gln

NAA

chemical shift (ppm)

Figure 1.1: Example spectrum of an in-vivo rat brain at 11.75 T. Different metabolites (or
parts of these) resonate at different frequencies, and therefore produce individual peaks in
the spectrum. The area of a peak is proportional to the abundance of the corresponding
metabolite. Reprinted with kind permission from: (2).

Instead of providing the frequencies of the different resonances in Hz, a “normalized
frequency” called chemical shift is usually used, since the chemical shift does not change
with the main magnetic field B0:

δ := w − wref
wref

106 (1.2)
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where wref is usually defined as the frequency of the chemical compound tetramethyl
silane or dimethyl silapentane sulfonic acid. The typical range of metabolites in 1H-MRS
is between 0 and 10 ppm.

1.4 Signal Localization in MR

Without signal localization, in-vivo MRI and MRS would be quite useless. There are
several signal localization methods in MR. Here, we will restrict ourselves to frequency
encoding, phase encoding, and slice encoding.

1.4.1 Gradient Fields and k-Space

All conventional methods for localizing signal in MR require additional linear magnetic
fields, often called gradients. They can be described by

~BG = Gxx~ez (1.3)

where Gx is the constant gradient along the x-axis.

The MR signal at the location ~r and time t can be described by

S(x, t) = S0(x, t) · eiωt (1.4)

where S0 describes the proton density, signal relaxation and other effects, and the ex-
ponential describes the precession of the signal with frequency ω. If we measure the
signal unlocalized, however, we cannot distinguish between the different positions, and
will thus measure instead

S(t) =
∫
V

S0(x, t) · eiωt dx (1.5)

where V is the whole volume from which we can get signal.

Due to the gradients, we can make the frequency ω dependent on the spatial position:

ω(x) = γ(B0 +Gxx). (1.6)

Combining both equations, eq. (1.5) and eq. (1.6), yields
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S(t) =
∫
V

S0(x, t) · eiγ(B0+Gxx)t dx (1.7)

With the definition for time-constant gradients, kx := γGxt, we finally arrive at

S(t) =
∫
V

S0(x, t) · eiγB0t · eikxx dx (1.8)

which is the inverse Fourier transform of the signal of interest, S0(x, t) · eiγB0t. By mea-
suring the signal for different kx-values, we can fill the so called “k-space”, the discrete
and finite equivalent to the infinite and continuous k-space-values of eq. (1.8). We can
sample this k-space in a variety of different manners, two of which will be described in
the following two sections.

A more general definition of k-space values is given by

~k(t) = γ ·
t∫

0

~G(τ) dτ (1.9)

where t=0 is defined as the time directly after the signal excitation with an RF pulse
(pulsed B1-field). This definition also leads to a very similar equation like eq. (1.8).
From equation eq. (1.9) we can see that the k-space values are simply the time-integral
of the gradient function, i.e. the area under the gradient function.

1.4.2 Frequency Encoding

Frequency encoding is a method where gradients are applied during data acquisition,
thus traversing through k-space while sampling the data. If we apply a gradient right
after the excitation and acquire the signal meanwhile, however, we will only acquire one
half of the k-space line. Therefore, usually a so-called “pre-winder” gradient is applied
before signal acquisition. This pre-winder has the opposite sign of Gx and half its area.
By that, we first traverse to the one side of k-space with the pre-winder, and then acquire
the whole k-space line with the frequency encoding gradient.
Although this is the simplest and most common way of frequency encoding, many other
ways exist to traverse through k-space with a gradient during data acquisition. Examples
are spiral sequences (4), where k-space is covered in two dimensions simultaneously by
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1.5 Array Coils

spiral trajectories, or CONCEPT (5), where in each Repetition Time (TR) one circle is
acquired.

1.4.3 Phase Encoding

Phase encoding is similar to frequency encoding. However, the k-space is not traversed
during the read-out, but the k-space point which should be measured is reached before
the read-out, very like the pre-winder in frequency encoding. Therefore, phase encoding
gradients have to be applied between the excitation pulse and the acquisition. After
we traversed to the intended k-space point, we can do several things: We can measure
this single point, like in single-point imaging; the whole k-space can then be filled, by
traversing to different k-space points in different excitation periods. Another option is
to stay at this k-space location and measure several time points of the same k-space
point, thus acquiring an FID. If we do this for all k-space points, we get a spectrum
for each spatial location. Thus, this option is a simple phase-encoding MRSI sequence.
The third option is to acquire a whole k-space line (or any other suitable trajectory) by
applying a frequency encoding gradient during the read-out. If we repeat this for several
offsets in the phase encoding direction, we get a simple GRE sequence.

1.4.4 Slice Encoding

Often, we only want to get signal from a single slice, instead of the whole volume to
which our reception coils are sensitive to. We can achieve this with slice encoding. In
this method, we apply a gradient along one direction during signal excitation. This
causes the frequency to depend on the spatial location, given by eq. (1.6). If we make
our RF pulse frequency-selective, i.e. it excites only a certain range of frequencies, we
can “cut” out a single slice. The slice profile, i.e. how well this slice is defined, depends
on our capability to excite only the frequencies we intend to excite, and no others. A
perfect slice would require an infinitely long excitation pulse. Therefore, the slice profiles
in practice always have a certain transition band, ripples, and over- and undershoots in
the pass- and stop-band.

1.5 Array Coils

As a prerequisite of PI, the signal has to be measured by receive array coils. Array coils
are coils, which in fact consist of several decoupled coils, often called channels. The
physical signal can be measured in parallel by all those channels independently. Each
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channel usually has a distinctive sensitivity profile, describing how much the specific
channel is sensitive to a given spatial position.

1.6 Acceleration Methods

Acceleration methods accelerate the measurement by omitting time-consuming phase en-
coding steps (PI, partial fourier, compressed sensing), measuring several k-space points
within one spectral dwell time (SSE), or reducing the TR (steady-state free precession
sequences). In this thesis I will focus on PI and SSE methods only.

Two important measures are the sensitivity Ψ and the quality factor Ω of a sequence
in general, and an accelerated sequence in particular. The sensitivity is defined by the
SNR and the total measurement time of the sequence TTot as

Ψ := SNR√
TTot

(1.10)

The reason for using the square root of the measurement time, instead of the measure-
ment time itself, is that even for optimal efficiencies, the SNR increases only with the
square root of the measurement time, see (6). As Pohmann et al. showed, Ψ depends
on many measurement parameters, such as the repetition time TR, the relaxation time
T1 or the acquisition bandwidth (7). However, those are often not of interest, since we
only compare different acceleration methods, where most of those parameters stay the
same. Therefore it is convenient to relate this sensitivity to a gold-standard sensitivity
resulting in the quality factor:

ΩTotal := ΩAcqEff · ΩDensity · ΩOthers = ΨSequence

ΨPE−MRSI
(1.11)

We can define the gold standard ΨPE−MRSI as we want, but a wise choice is to always use
a very similar sequence as the one we investigate, where all parameters such as TR remain
the same, except of those specific to the investigated sequence. The subscript “PE-
MRSI” means, that the sequence is a conventional phase encoded MRSI sequence, which
was shown to have the highest possible sensitivity, if the parameters such as TR, k-space
density, Echo Time (TE), etc. are chosen optimally (7). We can further differentiate
the quality factor by examining the reason of the decreased sensitivity compared to
PE-MRSI: ΩDensity which describes the decreased sensitivity due to k-space densities
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different from the intended (final) one, ΩAcqEff due to acquiring only partly useful data
during the read-out, and ΩOthers for summarizing all other effects as the g-factor of PI.
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2 Coil Combination for MR Spectroscopy:
MUSICAL

This thesis starts exactly where my diploma thesis ended, i.e. the coil combination
of phase-encoded MRSI data. Although the coil combination was shown to work ro-
bustly and well in my diploma thesis, the coil combination was still improved after my
graduation, i.e. the data were no longer weighted with the volume coil pre-scan, the
channels were noise decorrelated to improve the SNR even further, and the pre-scans
were implemented into the phase-encoded MRSI sequence. The proposed coil combi-
nation method was called MUSICAL, and was published in the peer-reviewed journal
“NMR in Biomedicine” (3).

Following is a short summary how the coil combination was improved during my PhD-
studies.

2.1 Motivation

In-vivo 1H-MRS can provide valuable metabolic information in clinical routine and neu-
roscience without being invasive, nor including any radioactive substances or ionizing
radiation. Yet, several challenges impede the usage of MRS in human brains, most
notably the low SNR per Unit Time (SNR/t) due to the low concentration of MR de-
tectable metabolites. The SNR can be improved by using long measurement times,
low resolutions, or very high field strengths, such as 7T or above. The measurement
times cannot be increased above certain limits due to patient discomfort. Using high
field strengths increases the SNR/t, but the signal also decays faster via T2-relaxation
than at lower fields. In order not to loose too much SNR/t, short echo times are re-
quired. The shortest possible “echo time” is achieved by directly acquiring the FID,
which increases the SNR/t even further. Yet, if no echo is acquired, the signal cannot
be spatially restricted to brain-only tissue, e.g. by methods like Point-Resolved Spec-
troscopy (PRESS). Therefore, if the FID is directly measured with low resolutions, the
signal strongly leaks to neighbouring voxels by virtue of the broad Point Spread Function
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(PSF). Thus, lipids from the subcutaneous fat layers can spread over the whole brain
image, rendering the main brain resonance, N-Acetyl Aspartate (NAA), impossible or
hard to quantify. Luckily, however, the very high magnetic field, and the very short
“echo times” provide enough SNR to measure high resolutions of about 3.4 × 3.4 mm2.
By that, signal leakage is largely prevented, as was shown by Bogner et al. Unfortu-
nately, such large resolutions also require long measurement times of about 30 minutes
for one slice. Thus, the first aim of my work was to implement a robust coil combination
for MRSI data from array coils to further increase the SNR/t. This increased SNR can
then be used to accelerate the measurement.
To enable the improved SNR/t, a good coil combination has to be performed. The first
question that arises is, why we cannot use the same coil combination as in conventional
MRI. The standard coil combination method proposed by Roemer et al. in 1990 (8)
is the so called “sum of squares” method. This method does not preserve the phase
information of the acquired data, but only their magnitude. Therefore, this method
results in absolute-valued spectra, which are known to have much higher line widths
than complex-valued spectra (2, p. 18).
Several alternatives were therefore presented, such as using the first FID point as coil
weights (9), minimizing the difference between the real and absolute part of the spectra
(10), a combination based on the fitting program LCModel (11), measuring sensitivity
maps (12), or measuring an additional MRSI scan without water suppression (13). The
standard method, using the first FID point as suggested by Brown et al., was shown in
my diploma thesis to result in inferior data quality in comparison to MUSICAL for our
settings.
A very promising technique is to acquire a so-called “sensitivity map”, i.e. a map of
how sensitive each coil is to different imaging regions, and what phase each channel
imprints into the signal of these regions. If the noise magnitude and correlation between
channels is also taken into account, this method was evaluated by Roemer et al. to be
the best possible coil combination method (8). However, a reference coil with ideally
a homogeneous sensitivity (in magnitude and phase) to the whole imaging region is
necessary. We have shown that a modified method without using such a reference coil
provides a similar data quality after coil combination (3).

2.2 Methods

2.2.1 Basic MUSICAL

Coil combination can be described in general by
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2 Coil Combination for MR Spectroscopy: MUSICAL

SComb(~r, t) = λ(~r) ·
N∑
i

wi(~r)Si(~r, t) (2.1)

where SComb is the coil-combined MRSI signal, Si the uncombined MRSI signal of chan-
nel i, wi the coil combination weight of channel i, N the total number of channels, and
λ a scaling function, e.g. for eliminating any coil sensitivities in the final image.
This equation can be rewritten in matrix notation:

SComb(~r, t) = λ(~r) ·wT (~r) S(~r, t) (2.2)

where bold variables represent matrices, in this case of size N × 1; T represents the
transposition operator. The method of Brown et al. is defined as

SBrownComb (~r, t) := 1
SH(~r, 0)S(~r, 0) · S

H(~r, 0) S(~r, t) (2.3)

with H being the Hermitian operator. This method weights the spectroscopic signal of
channel i, Si(~r, t), with the complex conjugated first FID point at time t = 0, Si(~r, 0).
It therefore has similarities with the sum of squares method of MRI, where the data
are weighted with the complex conjugated of the same data. The method used in my
diploma thesis, i.e. the sensitivity map method is defined as

SSensmapComb (~r, t) := IV C(~r)
IH(~r)I(~r) · I

H(~r) S(~r, t) (2.4)

I is the imaging signal of size N×1, e.g. from a pre-scan without water suppression, IV C
is the same but acquired with the volume coil. It is important to stress that this method
has a different scaling as it introduces the scaling of the volume coil by multiplying with
IV C . After the diploma thesis, I omitted the pre-scan signal of the volume coil resulting
in

SMUSICAL
Comb (~r, t) := 1

IH(~r)I(~r) · I
H(~r) S(~r, t) (2.5)

This has five advantages. First: One imaging set can be omitted. Second: The volume
coil data can add some additional variability and noise, which is avoided. Third: The
spectra are already phased, thus the spectral fitting routine has fewer degrees of freedom,
which usually improves the fitting. Fourth: The method can be used if no reference coil
is available. Fifth: With all the sensitivity information of the coils removed, the first
step towards water referencing (sometimes called “absolute quantification”) is already
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done.

Six volunteers were measured on a Siemens 7 T scanner (Magnetom, Siemens Health-
care, Erlangen, Germany) with a head coil with 32 receive channels and a volume coil for
receiving and transmitting RF signals (Nova Medical, Wilmington, USA). One volunteer
had to be excluded due to motion artifacts.

A three-dimensional Magnetization-Prepared Rapid Gradient-Echo (MPRAGE) se-
quence was measured for creating a brain mask and as an anatomical reference. The
inversion time was 1.7 s, the TR 3 s, the TE 3.41 ms. A matrix size of 256× 246× 160,
Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) factor of 3, and
a Field of View (FoV) of 230× 230× 160mm3 was used.

The MRSI sequence was run with an FoV of 220× 220mm2, one slice with a slice thick-
ness of 12 mm, a matrix size of 64× 64. The TR was 600 ms, the acquisition delay 1.3
ms, the spectral bandwidth was 6 kHz, and 2048 FID points were acquired. Water Sup-
pression Enhanced Through T1-Effects (WET) was used for a weak water suppression
(14).
A GRE sequence was acquired with the 32-channel AC as well as with the single channel
Volume Coil (VC) with the same parameters as the MRSI sequence, except of a matrix
size of 128× 128, a TR of 4 ms and a lower flip angle of 8◦. This data were used for the
Sensmap and the MUSICAL coil combination method.

A brain mask was created using Brain Extraction Tool v2 (BET2) from the MPRAGE
data. The AC MRSI data were coil-combined using the three methods described by
eqs. (2.3) to (2.5), after which they were Hamming filtered in k-space. The voxels
within the brain mask were fitted with LCModel for all three coil-combined data sets,
as well as the VC data set. Since the data were acquired with a pulse-acquire (FID-
based) sequence, the acquisition delay caused a first-order phase error in the spectrum,
as illustrated by fig. 2.1a. The same error was introduced into the basis set spectra
as proposed by Henning et al. (15) to correct for the acquisition delay. The basis set
spectra are used for fitting the measured spectra by LCModel. The SNR was calculated
with an own MATLAB script, which takes the amplitude of the total N-Acetyl Aspartate
(tNAA) signal divided by twice the standard deviation of the signal in regions where no
metabolites resonate, see chapter 5. However, the spectra sometimes contained artifacts
in those regions as well as resonances if the spectra were shifted severely due to B0-
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inhomogeneities. In such cases, the script automatically detects and excludes these
peaks.

Figure 2.1: In a, a spectrum (black curve) without correcting the first order phase error was
fitted by LCModel with a basis set (red curve) to which the same first order phase error was
introduced. This method was used in this work. In b, the same spectrum was first order
phase corrected and fitted by LCModel with a basis set without phase error. Reprinted
from: (3).

A comparison between the standard coil combination method of Brown et al., the original
MUSICAL method of my diploma thesis (i.e. sensitivity map method), and the new
method is given, including metabolic maps, Cramér-Rao lower bound (CRLB) maps,
and spectra. The SNRs and CRLBs of the different methods are compared statistically.

2.2.2 Noise-Decorrelated MUSICAL

When measuring with an array coil, the signals detected by the individual channels are
not independent, but influence each other. This influence can be measured by acquiring
noise-only data, X of size M ×N , and then calculating the correlation between different
channels via

Ψij = XH
i Xj

2k (2.6)

where Ψij describes the noise correlation matrix between channel i and j. This noise
correlation can be undone by “pre-whitening” the data, i.e. making the noise Gaussian
and of unity variance for each channel. By that the SNR of the final signal is increased
for two reasons: Firstly, the noise decorrelation between the channels improves the SNR
by itself. Secondly, by making the noise of all channels of variance one, channels with
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high noise powers are weighted less than those with low noise. Thus, the individual
channels are effectively not weighted by their coil sensitivity, but by the coil SNR, which
was shown to result in highest SNR (16). (This is not in contrast to Roemer et al. (8),
as Roemer et al. assumed idealized, noise-free sensitivity maps.)

Thus, the MUSICAL coil combination equation (2.5) was further modified to

SMUSICAL2
Comb (~r, t) = 1

IH(~r)Ψ−1I(~r) · I
H(~r)Ψ−1S(~r, t) (2.7)

Since Ψ is a positive definite, Hermitian matrix, a Cholesky decomposition can be per-
formed on Ψ, resulting in Ψ = LLH , with L being a lower triangular matrix (17).
Therefore, eq. (2.7) can be rewritten as:

SMUSICAL2
Comb (~r, t) = 1

(IH(~r)(LH)−1)(L−1I(~r)) · (I
H(~r)(LH)−1))(L−1S(~r, t)) =

= 1
(L−1I)H(~r)(L−1I(~r)) · (L

−1I)H(~r)(L−1S(~r, t)) =

=: 1
IHPrew(~r)IPrew(~r)

· IHPrew(~r)SPrew(~r, t)

(2.8)

The last equality of eq. (2.8) has the same form as the basic coil combination, eq. (2.5),
with the only difference that the “pre-whitened” signals IPrew and SPrew are used. Thus,
the noise decorrelation can be performed very conveniently by only applying L−1 to the
input data, and then ignoring the noise correlation altogether, since the pre-whitened
data have a noise correlation equal to the identity matrix.

The noise decorrelation was tested on the same volunteers as the basic coil combination.
The same processing was used, except for the coil combination which was performed
according to eq. (2.8) instead of eq. (2.5). The noise for the noise decorrelation was
gathered by using the end of the FIDs at spatial locations outside of the head. The SNR
was statistically compared between using noise decorrelation and not using it.

2.2.3 Pre-Scan Implementation into MRSI Sequence

During my diploma thesis, the pre-scan for coil combination, I, was measured with a
standard GRE imaging sequence. When the noise decorrelation was later performed,
an unlocalized pulse-acquire FID sequence with a flip angle of 0◦ was added to acquire
noise-only data Xi. For convenience reasons, these pre-scans were implemented into the
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MRSI sequence. For the noise pre-scan, the signal is acquired for about 1.4 s, measur-
ing 132000 complex points. For the GRE pre-scan, a simple GRE imaging sequence of
about 2.4 s duration was integrated into the MRSI sequence together with my colleague
Gilbert Hangel, and run before the actual MRSI scan.

One volunteer was measured as described above, except that no VC measurement was
performed. Instead, the volunteer was measured with the new MRSI sequence including
the pre-scans, and the external pre-scans were additionally measured. These data were
used for comparing the integrated GRE imaging sequence with the external one.

The GRE images of the integrated pre-scan were compared with the ones from the
external GRE sequence.

2.3 Results

2.3.1 Basic MUSICAL

Example spectra for the three different coil combination methods and the VC are given
in fig. 2.2. Metabolic ratio maps of total Creatine (tCr) / tNAA and total Choline
(tCho) / tNAA are provided for volunteer 5 in fig. 2.3. Fig. 2.4 shows the CRLB maps
of the metabolites Gamma-Aminobutyric Acid (GABA) and Taurine for volunteer 3.

The SNRs of the different coil combination methods are shown in table 2.1. The CRLB
values of seven different metabolites, averaged over all five volunteers, are provided in
table 2.2. The number of brain voxels with CRLB values > 20 % of the metabolites
GABA, Myo-Inositol (Ins), Tau, tCho, tNAA, tCr, and Glutamine and Glutamate (Glx)
were 9.2 %, 9.0 %, and 17.6% of all CRLB values for the MUSICAL, Sensmap, and
Brown method, respectively. The MUSICAL CRLB values were similar to the Sensmap
method with a p-value of p > 0.6 using a paired t-test, but 33 % lower than for the
Brown method with p < 0.05. The mean CRLB values of the different volunteers were
used as the statistical population. MUSICAL and Sensmap SNR values were also almost
the same, with MUSICAL having on average 1.7 % higher SNRs with p < 0.01, but 29.4
% higher values than the Brown method with p < 0.001.
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Figure 2.2: Comparison of example spectra resulting from the volume coil and the array coil
with the three different coil combination methods. The VC spectra do not have any
artifacts, but the SNR is quite low. The spectra resulting from the Brown method show
more artifacts than the other spectra. Adapted from: (3).

Volunteer Brown SNR [ ] Sensmap SNR [ ] MUSICAL SNR [ ]

1 50.8 ± 18.3 67.4 ± 19.2 68.5 ± 19.2
2 58.5 ± 16.2 74.7 ± 17.3 76.0 ± 18.5
3 65.6 ± 22.9 87.9 ± 25.1 88.6 ± 26.0
4 62.6 ± 23.1 73.9 ± 19.1 76.3 ± 19.7
5 64.9 ± 14.7 80.8 ± 14.4 82.3 ± 13.6

Table 2.1: SNR values of all volunteers and the three different coil combination methods. The
SNRs of the Brown method are much lower in comparison to the other two methods, which
have comparable SNRs. Adapted from: (3).
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Brown

5

5

Figure 2.3: A T1-weighted image (left) and the metabolic ratio maps tCr/tNAA and
tCho/tNAA for the VC and the three different coil combination methods. The Brown
method resulted in more artifacts than the other methods, especially at the border of the
brain. Adapted from: (3).

3

3

Brown

Figure 2.4: A T1-weighted image of the same slice as the GABA and Taurine CRLB maps of
volunteer 3. Both maps have higher values in case of the Brown method, especially at the
frontal right brain regions. Adapted from: (3).

2.3.2 Noise-Decorrelated MUSICAL

The SNR values of MUSICAL without and with noise decorrelation are given in table
2.3. The SNR increased by 12.1 % on average (p < 0.001) when comparing the average
values of the five different volunteers.
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Metabolite Brown CRLB [%] Sensmap CRLB [%] MUSICAL CRLB [%]

GABA 17.5 ± 16.5 14.8 ± 14.6 14.8 ± 14.9
Ins 10.0 ± 12.3 6.5 ± 8.0 6.7 ± 8.5
Tau 30.8 ± 16.6 22.4 ± 12.5 22.0 ± 12.2
tCho 8.9 ± 11.9 5.3 ± 7.0 5.4 ± 7.4
tNAA 6.1 ± 10.7 3.4 ± 5.6 3.5 ± 6.4
tCr 11.1 ± 16.0 6.3 ± 10.2 6.6 ± 10.9
Glx 7.8 ± 10.3 5.1 ± 4.7 5.1 ± 5.1

Table 2.2: CRLB values of all volunteers and the three different coil combination methods. The
values of the Brown method are significantly higher than those of the two other methods.
Adapted from: (3).

Volunteer MUSICAL SNR [ ] MUSICAL NoiseDecorr SNR [ ]

1 68.5 ± 19.2 79.7 ± 25.1
2 76.0 ± 18.5 86.3 ± 22.5
3 88.6 ± 26.0 99.2 ± 30.6
4 76.3 ± 19.7 85.3 ± 22.0
5 82.3 ± 13.6 91.9 ± 16.3

Table 2.3: Comparison of the SNR values of all five volunteers between the standard MUSICAL
coil combination described by eq. (2.5) and the noise decorrelated version of eq. (2.8). All
data sets have a higher SNR when noise decorrelation is performed. Adapted from: (3).

2.3.3 Pre-Scan Implementation into MRSI Sequence

An image comparing images of the external GRE imaging sequence and the one pro-
grammed into the MRSI sequence is shown in fig. 2.5.
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External GRE Internal Pre-Scan

Magnitude

Phase

Figure 2.5: Comparison of the magnitude and phase of the external GRE imaging sequence
(left) to the one programmed into the MRSI sequence (right). The external GRE image
was phased with a constant phase because a different resonance frequency was used in
comparison to the MRSI sequence. The magnitude, as well as the phase, of both sequences
are very similar, showing that the implementation of the pre-scan into the MRSI sequence
was successful.

2.4 Discussion

2.4.1 Basic MUSICAL

The MUSICAL and Sensmap coil combinations were shown to improve the results in
comparison to the method proposed by Brown et al. MUSICAL and the Sensmap method
provided comparable data quality, but MUSICAL needs less data to acquire, results in
spectra which are already phased, and furthermore intrinsically provides metabolic ra-
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tios maps to water, as shown in the outlook section.

2.4.2 Noise-Decorrelated MUSICAL

Noise decorrelation has already been shown previously to substantially improve the SNR
when using array coils (18–20). This was confirmed in this work. It is important to note
that noise decorrelation improves data quality without almost any cost, other than negli-
gible extra processing time, and a very short noise scan, as implemented into the pre-scan
of our MRSI sequence. In MRSI, this can be even omitted by using the noise at the end
of the FID of voxels void of any signal, as it was done here.

2.4.3 Pre-Scan Implementation into MRSI Sequence

The GRE pre-scan implemented into our MRSI sequence provides a similar data quality
as the external GRE sequence, but is less prone to user errors, as it performs all necessary
adjustments automatically, such as using the same shim as in the MRSI sequence, or the
same slice thickness, slice positions etc. Especially when several slices were measured,
one measurement per slice at the correct position had to be performed with the external
GRE sequence. This made the handling of the pre-scans very tedious and prone to errors.

2.4.4 Comparison to Literature

The method of Brown et al. is the standard method for combining the channels of
MRSI data, and is implemented at different MR scanners. The resulting data quality
was shown to be worse than that of the proposed method, MUSICAL. The reason why
the standard method of Brown et al. performed worse might be due to high lipid signals
in comparison to the water signal. This is supported by the fact that the Brown method
performed badly especially at the border of the brain. The method of Brown takes the
first FID points of each channel, and uses these magnitudes and phases for weighting
and phasing the individual channels. The first FID point is dominated by the high-
est signals in the spectrum, which are normally either the remaining water signal after
water suppression, or the lipids. Due to the broad PSF of MRSI data and the spatial
sensitivity of the individual channels of the AC, the relative lipid signal can change from
channel to channel, which therefore disturbs the weights calculated by the first FID
point. Although this problem always occurs, it is especially problematic when using
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such a short acquisition delay and no lipid suppression, because the lipids have short
T2-values and their signals are therefore much stronger at short echo times in comparison
to longer echo times. In MUSICAL, on the other hand, the weights are calculated from
non-water-suppressed data, and therefore the lipids have no influence on the weights.
Another reason for the low data quality resulting from the Brown method might be that
the water suppression greatly reduces the signal of the first FID point, and thus increases
the coil weights uncertainty, as shown by Dong and Peterson (21).

Therefore, Dong and Peterson proposed to measure the MRSI data without water sup-
pression, which results in reliable weights derived from the first FID point (21). However,
this method cannot be easily implemented if short echo times are used due to sideband
artifacts caused by the unsuppressed water (22). Prock et al. suggested to minimize
the difference between the real and magnitude part of the spectrum to estimate the
phase of the weights (10). Maril and Lenkinski used LCModel to determine the complex
coil combination weights. Both methods may fail for spectra with low SNR, as it often
occurs at large distances to the channel (11). For the method using LCModel, the high
phase variability at low SNRs was shown (3). Therefore, a non-optimal coil combination
is expected.

The sensmap method provides robust coil combination weights, and the acquired sensi-
tivity maps can be further used for the PI method Sensitivity Encoding (SENSE). Yet,
the method needs an additional reference coil, and introduces the sensitivity of this coil,
which may decrease the fit quality due to increased data variability.
Measuring another MRSI data set without water suppression in addition to the normal
one can also provide robust coil combination weights, but at the cost of increased mea-
surement times (13, 23).

In comparison, MUSICAL only takes about 3 s, provides reliable coil combination weights
even for low SNR, can be used with water suppressed MRSI data, does not need any
reference coil, and is easy to implement.

2.4.5 Outlook

MUSICAL provides intrinsic water scaling, i.e. the resulting metabolic maps are al-
ready ratios to water. Only the different T1-weightings due to different TRs of the
MUSICAL pre-scan and the normal MRSI scan, and the different T1-values of water
and the metabolites have to be taken into account. The intrinsic water scaling can be
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explained as follows: When calculating 1
IH(~r)I(~r) · I

H(~r) S(~r, t) in the coil combination,
eq. (2.5), the metabolic maps resulting from S(~r, t) are proportional to the metabolite
concentrations, and I(~r) is proportional to the water content, since no water suppression
is used. In the process of coil combination, the metabolic information is weighted with
the water content, IH(~r) S(~r, t). To cancel this effect, we divide the data by ||I(~r)||.
However, we divide the result once more by ||I(~r)||, since IH(~r)I(~r) = ||I(~r)||2, which
thus makes the final data proportional to the metabolite concentrations divided by the
water content.

This fact is proven by fig. 2.6 which shows that MUSICAL intrinsically enables water
scaling without any additional measurements, as the tNAA map from the MUSICAL
method (left) looks almost the same as the gold standard (right), except for a constant
scaling factor. The water map of the gold standard was created from an additional
MRSI measurement without water suppression and a TR of 200 ms. In both cases, the
T1-weighting due to the different TRs of the target MRSI data set (600 ms), the GRE
pre-scan (10 ms) and the additional water MRSI scan (200 ms) was considered, as well
as the T1-relaxation difference between tNAA and water.
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Figure 2.6: Image comparing the tNAA/water maps resulting from MUSICAL (left), and using
additional MRSI data without water suppression (right). The images are very similar,
except for an additional, constant scaling factor. In both cases, the T1-weighting effects
due to different TRs between the water scan and the MRSI scan, and due to different T1s
between water and tNAA were considered.
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The work for the water scaling was done by my colleague Eva Heckova. It is only shown
here to give the reader an outlook of the additional benefits of MUSICAL compared to
the Sensmap method.

The additional SNR gained by using an array coil and by noise decorrelation can be
traded to accelerate the measurement. This can be done with several methods, two of
them are PI and SSE. PI was extensively tested for our MRSI data, which is described
in chapter 3. SSE was tested in parts, as described in chapter 4, but is still under
development.
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3.1 Motivation

In chapter 2, the reason for using ACs and and high resolutions was already motivated.
Array coils result in higher SNR/t, and high resolutions lead to an improvement of the
PSF, which is necessary to manage lipid artifacts, when no other means of reducing
lipids is used (24). High resolutions of e.g. a 64 × 64 matrix, however, increase the
measurement time to 30 minutes for one slice with a TR of 600 ms. This is too long
for the usage in clinical routine, especially because the patient must not move during
the whole time. Thus, the MRSI acquisition has to be accelerated. One possibility is
presented in this chapter, another one in chapter 4.

Several PI methods have been used in MRSI, such as SENSE (25–35) or GRAPPA (36–
41). However, these studies accelerated only along one or at most two spatial dimensions,
although three spatial dimensions are available for PI acceleration in phase-encoded 3D-
or multislice-MRSI. Therefore, a new PI method, (2+1)D-CAIPIRINHA, was proposed
in the peer-reviewed journal “Magnetic Resonance in Medicine” (42). This method
accelerates in-plane with 2D-Controlled Aliasing In Parallel Imaging Results In Higher
Acceleration (CAIPIRINHA), while the slice-encoding is accelerated with 1D-CAIPI-
RINHA.

3.2 Theory

The principle of Parallel Imaging is to omit some of the phase encoding steps for signal
localization in order to accelerate the measurement. As a result, spatial aliasing occurs.
With the aid of the intrinsic signal localization of the different AC channels, and some
training data, we can differentiate between the different aliased signal origins, and thus
unalias the signal. This reconstruction can be done in k-space (GRAPPA-like algorithms
(43)), or in the image domain (SENSE-like algorithms (44)).
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3 Accelerated MRSI via Parallel Imaging

3.2.1 2D-GRAPPA

k-Space

Image

Under-

Sampling

Under-

Sampling

Figure 3.1: Sample k-space and image before and after under-sampling via PI. In k-space, every
second line is omitted, resulting in aliasing in the image domain.

2D-GRAPPA is simply the consecutive application of 1D-GRAPPA as proposed in (43).
In 2D-GRAPPA and all other in-plane PI methods, parts of the k-space points are
omitted. This results in aliasing in the image-domain, as depicted in fig. 3.1. Therefore,
instead of measuring the signal of a single spatial locations, the sum of multiple voxels
is measured. In order to perform a GRAPPA-like reconstruction, we need two data
sets: The under-sampled data set of the image which should be reconstructed, and the
so called Auto-Calibration Signal (ACS) data set, as depicted in fig. 3.2b, and 3.2a,
respectively. It is important to stress that the ACS data must contain also those k-space
points which are missing in the actual under-sampled image. The contrast of the ACS
image, however, can be different. Therefore we can measure the ACS data rapidly, with
a contrast that is not optimal for the medical question. Yet, the SNR of the ACS image
should be as high as possible. One such example is to measure a GRE image without
water suppression for reconstructing phase-encoded MRSI data with water suppression.
The contrast of the ACS data will be different, as no water suppression is used. At the
same time, the SNR of the ACS data is much higher, because of the strong water signal.
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3.2 Theory

Furthermore, the measurement time of the GRE image is negligible in comparison to
the MRSI sequence. Therefore, PI is very efficient in MRSI.
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Figure 3.2: Sample representation of the data that is necessary for PI: ACS data and the actual
under-sampled data which should be reconstructed, both of at least two channels of an
AC. The ACS k-space is usually smaller, in this case 8×8, whereas the under-sampled data
are of size 12× 12, zero-filled to a size 16× 16. In the under-sampled data, every second
k-space line is missing. These lines have to be reconstructed using a PI method such as
GRAPPA. The elementary cell is the smallest pattern which results in the under-sampled
data when replicated. The elementary cell is indicated by a gray box.

One important fact is that PI influences the SNR of the data. Because fewer independent
measurements are acquired, the SNR decreases with the square root of the acceleration
factor R. Furthermore, because the reconstruction is not perfect, the SNR additionally
drops with a factor called the g-factor, which can be described as follows:

SNRInP lanePI = SNRFull

g ·
√
R

(3.1)
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3 Accelerated MRSI via Parallel Imaging

Since the SNR of the fully sampled data also scales with the measurement time, which
is equivalent to the acceleration factor R in eq. (3.1), the quality factor of in-plane PI is

ΩTotal
InP lanePI = ΩOthers

InP lanePI = 1
g

(3.2)

The GRAPPA-like image reconstruction can be performed as described in the following
two sub-chapters.

Calculating the Weights
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Figure 3.3: The process of calculating the GRAPPA-weights. Two 8× 8 ACS data sets for two
different channels are shown. The kernel is slided through the whole k-space to gather all P
possible repetitions of the kernel in the ACS data (in this example it is 8: four repetitions
in ky- and two in kx-direction). Since we know the target and the source points in the
ACS data, we can calculate the pseudo-inverse to get the weights. This process is repeated
for all channels and all target points in the elementary cell (in this case there is only one
target point per channel).

Consider an elementary cell or under-sampling pattern which yields the under-sampled
data when replicated, see fig. 3.2. The filled dots in this figure represent the measured
points (source points), whereas the empty circles represent missing data (target points).
If we focus now on one target point, we can draw a “kernel” around this target point,
which includes L source points close to the target point. This is shown in fig. 3.3. We
can then calculate the target point of channel i and at k-space position (j,k), T(i,j,k), by
a weighted sum of the neighboring source points S(q,j+m,k+n) of channel q and k-space
position (j+m,k+n) within the kernel as follows:
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T (i, j, k) =
∑

m,n | (j+m,k+n)∈Kernel

∑
p

W (i, j +m, k + n, q)S(q, j +m, k + n) (3.3)

where W are the weights that translate from the source points of all channels to one
target point of all channels. For the motivation of this equation I recommend reading the
original GRAPPA article (43). We can rewrite eq. (3.3) in matrix notation by merging
the last two dimensions of S and T, and the last three of W:

T = W · S (3.4)

with T, W and S being matrices of size N × 1, N × L ·N , and L ·N × 1, respectively.
So far this is simple algebra, and no magic at all. But here comes the trick: The weights
defined above are shift invariant in k-space. That fact has two implications: First, we
can calculate the weights more accurately if we average over all shifts of our kernel in
the ACS data. Second, we can acquire for example a 32×32 ACS dataset, calculate the
weights from it, and apply those weights to the 64×64 under-sampled data set, even at
k-space locations we never calculated the weights in the ACS data for.
Therefore, we can loop over all P possibilities to fit our kernel into the ACS data, each
time with different target and source points, and gather all those data in the matrices T
and S, which have now sizes N × P and L ·N × P . Then, we can calculate the weights
W of size N × L ·N using the pseudo-inverse:

W = T · pinv(S) (3.5)

The pseudo-inverse does the job of averaging over all our P repetitions of the kernel in
the ACS data in the manner of a least-square error minimization.

In order to be able to reconstruct all target points, we have to calculate an own weighting
set for each target point (missing point) in the elementary cell. In the example of fig.
3.3, there is only one missing point in the elementary cell, however.

Applying the Weights

In the second step of the PI reconstruction, we simply apply the calculated weights
of the previous step, to calculate the missing target points from the measured source
points. Therefore, we loop through all channels and all target points in the elementary
cell and find all duplicates of the current target points in the measured k-space. Each
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target point in the elementary cell occurs several times in the undersampled data, and
is therefore called target point group. Then all these target points are calculated using
eq. (3.4), one target point after another, each with its own set of source points. The
weights between different target point groups may differ from one another. This process
is depicted in fig. 3.4.

kx
kx

ky
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ky

kx
kx

ky
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

ky

Non-Acquired Point

Source Point
Target Point

Acquired Point
Ch1 Ch2

Reconstructed Point

Figure 3.4: Applying the weights to reconstruct the missing points. In the upper subfigure, the
first missing point is reconstructed with the aid of all source points of all channels. The
lower figure shows how a different target point is reconstructed, while some missing points
were already reconstructed (black dots).
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3.2.2 2D-CAIPIRINHA
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Figure 3.5: Four 2D-CAIPIRINHA example patterns. The upper left is a classical GRAPPA
pattern with an acceleration factor of 2. The upper right pattern also results in an accel-
eration of 2, but shifts every second k-space point, resulting in a checkerboard-pattern. In
the lower row, two further patterns with higher acceleration factors are shown.

So far, only GRAPPA under-sampling patterns were shown, where whole lines or columns
are omitted. 2D-CAIPIRINHA patterns improve the reconstruction quality by general-
izing the undersampling patterns (45). These patterns omit any points in the elementary
cell, only restricted to achieve the intended acceleration factorR = Number Of Total Points

Number Of Acquired Points .
Four such example patterns and their replication to a 12 × 12 matrix are shown in fig.
3.5. Otherwise, the reconstruction of 2D-CAIPIRINHA is very similar to 2D-GRAPPA,
outlined as above. Using such generalized under-sampling patterns has the advantage
that the distance between an omitted k-space point, and its measured nearest neighbors
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can be smaller than in normal GRAPPA patterns. The closest k-space points usually
contribute most to the PI reconstruction, which thus improves the reconstruction quality.
In the image domain, we can explain the benefit of 2D-CAIPIRINHA over 2D-GRAPPA
by the fact that 2D-CAIPIRINHA patterns can result in fewer aliased voxels.

3.2.3 1D-CAIPIRINHA

The reconstruction of slice PI, such as 1D-CAIPIRINHA, is very similar to in-plane PI.
Yet, there are three key differences: Firstly, not a single target point is measured in slice
PI, since we measure the sum of slices and want to reconstruct the individual slices.
The second difference is that all k-space points within a reconstruction kernel are source
points, because all k-space points in the kx-ky-plane are measured. Thirdly, we need
as many different weighting sets as the number of aliased slices times the number of
channels is: For each slice we want to reconstruct, we need an own weighting set. These
differences are illustrated in fig. 3.6. In order to better distinguish between the aliased
k-space points of the different slices, we can apply different phases to the k-space points
of the different slices. The phase is usually chosen to be linear in the phase-encoding
directions. This can be achieved by modifying the phases of the excitation pulses de-
pending on the phase-encoding point. In the image domain, we can explain the benefit
of this additional linear phase by a shift of the slices with respect to the others, which,
exactly like in 2D-CAIPIRINHA, minimizes the number of aliased voxels. This trick was
introduced by Breuer et al. (46).

Another difference to in-plane PI methods is that the SNR does not decrease with the
square-root of the acceleration factor Rslice, but only with the g-factor, when using slice
PI in comparison to acquiring the slices sequentially:

SNRSlice = SNRFull
g

(3.6)

The reason for this is that we excite and therefore measure a larger volume in slice
PI, very much like in Hadamard-encoded measurements, and each measurement always
contains signal from the whole volume (46). And indeed, in comparison to Hadamard-
encoded measurements, the SNR of slice PI decreases with the square-root of R, as we
would expect. With other words, the SNR efficiency of course depends on the reference
to which we compare our method, and usually sequential slice measurements are used for
that. With that said, we can define two quality factors, one defining the sequential slice-
encoding as the gold standard, and one defining the Hadamard-encoding (or a similar
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Figure 3.6: In in-plane PI, only some points were measured within the kernel and can thus be
used for reconstruction. The unmodified, measured points are part of the final k-space.
In slice PI the sum of the k-spaces of the individual slices are measured. All these points
are used to reconstruct the missing points. In the final k-spaces, not a single originally
measured point is present. Two different weighting sets (including all channels) are needed
to reconstruct both slices, as indicated by “W1” and “W2”.

SNR efficient encoding) as the gold standard. I decided for the latter, since Hadamard
encoding can be performed easily in practice, and it appears more natural to me to define
the gold standard as the most SNR efficient sequence which can be achieved practically.
The quality factor of slice PI then results in
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ΩTotal
SlicePI = ΩOthers

SlicePI = 1
g

(3.7)

which is the same as for In-plane PI.

3.2.4 (2+1)D-CAIPIRINHA

(2+1)D-CAIPIRINHA is the combination of 2D-CAIPIRINHA and slice- or 1D-CAIPI-
RINHA. All three methods are illustrated in fig. 3.7. The reconstruction of 2D- and
1D-CAIPIRINHA can be performed independently, however the order of the two
reconstructions influences the results.

Using (2+1)D-CAIPIRINHA instead of 2D-GRAPPA, 1D-CAIPIRINHA, or 2D-CAIPI-
RINHA alone has the advantage that the sensitivity differences between the AC channels
are exploited in all three spatial dimensions, in contrast to only one (1D-CAIPIRINHA)
or two (2D-GRAPPA, 2D-CAIPIRINHA). The magnitude of these variations signifi-
cantly determines the quality of the PI reconstruction, and thus ultimately the total
acceleration factor that can be used without severe artifacts. As an example, if all
channels had the same spatial sensitivity, they would not contain any additional spatial
information, and PI would not be possible. Therefore, (2+1)D-CAIPIRINHA should, in
theory, provide better reconstruction results than the other three methods.
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1D-CAIPIRINHA, Before Aliasing (2+1)D-CAIPIRINHA, Before Aliasing2D-CAIPIRINHA

1D-CAIPIRINHA (2+1)D-CAIPIRINHA

a

b

c

Figure 3.7: Comparison of 1D-CAIPIRINHA, 2D-CAIPIRINHA, and (2+1)D-CAIPIRINHA.
(a) In 1D-CAIPIRINHA, slices 1 and 3 are excited, and all k-space points of those slices
are measured. However, no method for differentiating between them is used, resulting in
both slices to alias. The same is done for slices 2 and 4. The transparency of the k-space
points represents a linear phase along the corresponding direction, causing an FoV-shift of
that slice with respect to the others. (b) In 2D-CAIPIRINHA, k-space points are omitted
using a certain under-sampling pattern. All four slices are measured independently (e.g.
sequentially). (c) In (2+1)D-CAIPIRINHA, both methods are combined: The slices are
measured with aliasing occurring in slices 1 and 3, and 2 and 4 as in (a), and additionally
not all k-space points are measured for those aliased slices, resulting in additional in-plane
aliasing. Adapted from: (42).

3.3 Methods

3.3.1 Reconstruction Algorithms

Two algorithms for simulating and reconstructing MRSI data accelerated with 2D- and
1D-CAIPIRINHA were written. The algorithms were similar as sketched in the Theory
section. The 2D-CAIPIRINHA algorithm was implemented as follows:

1. Calculate the weights:

a) Define the under-sampling pattern

b) Choose one missing point in the under-sampling pattern as the target point
group t

c) Replicate the under-sampling pattern and concatenate the replicas. Find a
kernel around the target point with a size big enough to include at least a
predefined number of L measured points (source points)
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d) Loop through all P unique possibilities for the kernel to be contained inside
the ACS k-space. Gather all those source points in the matrix S with size
N · L × P and all target points in T with size N × P , respectively. N is the
number of channels.

e) Calculate the weights for the target point group t, Wt, and all N channels
according to eq. (3.5)

f) Repeat steps (b)-(e) for all remaining target point groups

2. Apply the weights:

a) Choose one target point group t in the under-sampling pattern

b) Choose one occurence of such a point in the measured k-space (the under-
sampling pattern is repeated several times to build up the whole, under-
sampled k-space. Therefore, each target point occurs several times in the
data, and the same weights Wt can be used for all of those)

c) Define the same kernel as in step 1 around the chosen target point

d) Reconstruct the target points of all channels according to eq. (3.4) by using
the weights Wt

e) Repeat steps (b) - (d) for all occurrences of this target point group

f) Repeat steps (a) - (e) for all remaining target point groups

The 1D-CAIPIRINHA algorithm was implemented in a similar way:

1. Calculate the weights:

a) Sum the ACS slices with the same linear phases along the phase encoding
directions as the MRSI data was measured with

b) Choose one target slice t

c) Define a kernel with a size big enough to include at least a predefined number
of L measured points in the summed ACS k-space (source points)

d) Loop through all P unique possibilities for the kernel to be contained inside
the ACS k-space. Gather all the source points from the summed ACS k-space
in the matrix S with size N ·L×P and all target points from the non-summed
ACS k-space of slice t in the matrix T with size N × P , respectively. N are
the number of channels.
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e) Calculate the weights for slice t, Wt, and for all N channels according to
eq. (3.5)

f) Repeat steps (b) - (e) for all remaining slices

2. Apply the weights:

a) Choose one target slice t

b) Choose one target point in this slice

c) Define the same kernel as in step 1 around the chosen target point

d) Reconstruct the target points of all channels according to eq. (3.4) by using
the weighting set Wt

e) Repeat steps (b) - (d) for all remaining target points in slice t

f) Repeat steps (a) - (e) for all remaining slices

3.3.2 Simulations

Data Acquisition

Before (2+1)D-CAIPIRINHA was implemented into the sequence, the feasibility of the
method was first tested in simulations, and compared to 2D-GRAPPA and 2D-CAIPI-
RINHA.

Therefore, seven healthy volunteers were measured on our Siemens 7T scanner (Magne-
tom, Siemens Healthcare, Erlangen, Germany) with a 32-channel head receive coil (Nova
Medical, Wilmington, U.S.A.). A volume coil included in the same coil housing was used
for signal transmission. Two data sets were excluded because of motion artifacts.

A 3D Magnetization-Prepared Two Rapid Acquisition Gradient Echoes (MP2RAGE)
sequence was acquired for anatomical reference and for creating a brain mask (47). The
TE was 2.96 ms, the TR 4.2 s, the first inversion time 0.85 s, and the second inver-
sion time 3.4 s. A GRAPPA acceleration factor of 3 was used, and the matrix size was
256× 256× 160 resulting in voxel sizes of 0.9× 0.9× 1.1 mm3.
Next, a pre-saturation turbo-Fast Low Angle Shot (FLASH) sequence (48, 49) was ac-
quired to map the flip-angle in the MRSI slice. The reference voltage was adapted
accordingly to achieve an average flip angle of 90◦.
The MRSI data were acquired with the same sequence as in chapter 2 with a spectral
bandwidth of 6 kHz, 2048 spectral points, WET water suppression (14), and an Ernst
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flip angle of 45◦. A matrix size of 64× 64 was used with a FoV of 220× 220 mm2. Two
slices with a thickness of 8 mm were acquired with pulse-cascaded Hadamard encoding
(50), resulting in acquisition delays of 1.3 ms and 2.3 ms for the upper and lower slice,
respectively.
A GRE imaging sequence of the same slices, and with the same parameters as the MRSI
sequence, was measured to provide ACS data and for calculating the coil combination
weights.

Finding Best Undersampling Patterns

The first step was to find the best patterns for 2D-GRAPPA, 2D-CAIPIRINHA and
(2+1)D-CAIPIRINHA for different acceleration factors. Each (2+1)D-CAIPIRINHA
pattern consisted of a 2D-CAIPIRINHA pattern, and the two FoV shifts (linear phases
in k-space) in the x- and y-direction of the second slice with respect to the first.
The best 2D-GRAPPA patterns for a given total acceleration factor 2 ≤ RTotal ≤ 10
were found in two steps. In step 1a, the Artifact Power (AP) was calculated for all
possible patterns, and was defined as follows:

AP = 100 ·

N∑
i=1

∑
~r∈mask

∑
t∈Tmask

|SAccel(i, ~r, t)− SFull(i, ~r, t)|

N∑
i=1

∑
~r∈mask

∑
t∈Tmask

|SFull(i, ~r, t)|
(3.8)

mask is the brain mask, Tmask is a mask in the time domain to minimize computational
burden, SAccel is the under-sampled and reconstructed MRSI data, and SFull is the
fully-sampled MRSI data. Patterns were considered as possible, if Rx ·Ry ≈ RTotal, and
Rx, Ry ≤ 5, where Rx and Ry are the acceleration factors along the x- and y-direction,
respectively. As an example, for RTotal = 4, three patterns are possible: Rx = 1, Ry = 4,
Rx = 4, Ry = 1, and Rx = 2, Ry = 2. A so called Variable Density (VD)-radius up to 5
points, i.e. the radial distance to the k-space center, within which all k-space points are
simulated to be measured, was used to achieve the intended RTotal as close as possible
for patterns that would be excluded otherwise. Patterns which minimize AP were con-
sidered as the winners of this step.

In step 1b, the g-factors were calculated using a pseudo-replica method, see chapter 5.
Patterns which minimized the g-factors inside the brain mask were considered winners
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of step 1b.

The two patterns minimizing step 1a and 1b were further processed in step 2. In this
step, the data were simulated to be under-sampled with the tested pattern, reconstructed
with the algorithms described above, coil combined using MUSICAL, Hamming filtered,
and fitted with LCModel. The Root Mean Square Error (RMSE) between the fitted
concentrations of tNAA of the under-sampled and the fully sampled data was calculated
according to eq. (3.9). The pattern minimizing the RMSE was defined as the best overall
2D-GRAPPA pattern.

RMSE = 100 ·

√√√√√ ∑
~r∈mask

(
CAccel(~r)−CFull(~r)

CFull(~r)

)2

M
(3.9)

The best 2D-CAIPIRINHA patterns were estimated the same way as the 2D-GRAPPA
patterns, but one additional step was done before step 1. In step 0, all possible patterns
were created by randomly placing j points (measured points) in a k× k matrix. j and k
were chosen to fulfill RTotal ≈ k2/j. Several combinations of k and j are possible for a
given RTotal. A VD-radius was again used to allow more patterns. The quality measure
of this step was defined as the mean distance between a missing point and its three
measured neighbors, since k-space points close to the missing point usually contribute
most in the reconstruction of that point (43). The 20 patterns which minimized this
measure were eligible for step 1. However, if more than 20 patterns yielded the same
quality measure or if fewer than 20 were possible, all of these patterns were used for step
1. The process of step 0 is illustrated in fig. 3.8.

The best (2+1)D-CAIPIRINHA patterns were chosen the same as in the case of 2D-
CAIPIRINHA, except that the best 20 patterns of step 0 were replicated 16 times, each
replica with a different FoV shift ∈ {0, 1

6 ,
2
6 ,

3
6} ·FoVx×{0,

1
6 ,

2
6 ,

3
6} ·FoVy. Furthermore,

(2+1)D-CAIPIRINHA was only tested for 5 ≤ RTotal ≤ 10, because the sensitivity vari-
ations in the x-y-plane of the used 32 channel coil are more than sufficient for R < 5.

The number of patterns of each step and for the different methods were compared. The
g-factors and APs of step 1 were compared between the three methods.
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kx

ky

kx kx

Mean Distance = 8.49 Mean Distance = 6.24 Mean Distance = 5.65

Figure 3.8: Illustration of step 0. Three different examples of under-sampling patterns are
shown with their mean distance of the measured to the non-measured points. This qual-
ity measure selects patterns with evenly distributed target points as shown with these
three patterns. The right-most pattern has the smallest mean distance, and the most
homogeneous target point distribution. Reprinted from: (42).

Comparing Best Undersampling Patterns

Once the best under-sampling patterns were found in steps 0-2, they were compared
between the three PI methods, 2D-GRAPPA, 2D-CAIPIRINHA, and (2+1)D-CAIPI-
RINHA using the RMSE of tNAA and the mean CRLB values of tCho and tCr. The
APs, CRLBs, RMSEs and g-factors were further compared statistically between the
three methods. Statistical significance was tested with the Wilcoxon signed rank test for
the absolute error (i.e. same as RMSE without taking the mean over brain voxels) and
the g-factors, while the AP and CRLB values were tested with the t-test. The statistical
significance levels were chosen lower than usual for the CRLBs, absolute errors, and g-
factors because the t- and Wilcoxon signed rank test assume independent measurements,
but the values of the different voxels are not completely independent. Metabolic maps
and spectra were compared visually.

Lipid Contamination

Parallel imaging usually results in remaining aliasing after the PI reconstruction. Al-
though the remaining aliasing can be very small, the large lipid signals from the sub-
cutaneous fat can still deteriorate the spectral quality, because the lipid signals are
magnitudes higher than the metabolite signals. This is especially problematic if no lipid
suppression method is used, as it was done in this work.
Therefore, the lipid signal increase was calculated by summing the absolute spectrum in
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the range between 0.3 and 2.1 ppm, dividing the result from a reference, and comput-
ing the mean over all brain voxels and volunteers. This was performed for all three PI
methods, and additionally after a lipid regularized reconstruction as proposed by Bilgic
et al. (51) was done on all three methods. The regularization exploits the fact that lipid
and metabolite signals are almost orthogonal in the spectral and spatial domains.
In both cases, with and without lipid regularization, the reference was defined as the
lipid content when not simulating any PI (“fully sampled”), nor performing any lipid
decontamination.

3.3.3 Implementing (2+1)D-CAIPIRINHA into MRSI Sequence

Three features, Hadamard encoding, 2D-CAIPIRINHA and 1D-CAIPIRINHA were im-
plemented into the same MRSI sequence where the GRE pre-scan had been implemented.
This sequence was tested in volunteers, and applied to measure MS patients. The latter
is described in chapter 6.

Generalized Hadamard

Hadamard step Signal sign slice 1 Signal sign slice 2

HadaStep1 +1 +1
HadaStep2 +1 -1

HadaStep1 + HadaStep2 2 0
HadaStep1 - HadaStep2 0 2

Table 3.1: Example of how Hadamard encoding (second and third row) and Hadamard decoding
(last two rows) works for two slices. In the first Hadamard encoding step, both slices are
excited with the same phase. In the second step, slice 1 is excited normally, while the
signal of slice 2 is inverted (-1). Summing both Hadamard encoding steps results in the
signal of slice 1 only, but with twice the normal signal intensity, and thus more SNR in
comparison to consecutive measurement of the slices. Subtracting Hadamard encoding
step 2 from step 1 results in signal from slice 2 only.

My colleague Gilbert Hangel implemented Hadamard encoding for exactly four slices
into the MRSI sequence. Hadamard encoding is a method which provides the same high
SNR/t as 3D-sequences, without the drawback of a miserable PSF due to only few phase
encoding steps, e.g. 4 or 8. This high SNR/t is achieved by always exciting all slices, but
with phases of the slices following a Hadamard matrix, where +1 of the matrix represents
phase 0◦, and -1 represents phase 180◦. A phase of 180◦ is equivalent to inverting all
signals. An example for two slices is given in table 3.1. From this table, it is clear that
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the signal of the individual slices can be reconstructed by summing or subtracting the
signal of the different Hadamard steps. In general, the Hadamard decoding is performed
by multiplying the signal of the Hadamard steps with the inverse Hadamard matrix of
the same size.

Hadamard encoding can be combined with 1D-CAIPIRINHA, since Hadamard encoding
adds a constant phase to all phase encoding steps, but varying between Hadamard
encoding steps and slices, while 1D-CAIPIRINHA adds a linear phase along the phase-
encoding directions. This was done in the sequence.
Since Hadamard encoding provides a high SNR efficiency, it was combined with 2D- and
1D-CAIPIRINHA. Therefore, it had to be generalized from the fixed four slices to the
possibilities of 1, 2, 4, or 8 slices.

2D-CAIPIRINHA

2D-CAIPIRINHA was implemented into the MRSI sequence of our 7T Siemens scanner
with the software version VB17. The user can specify the in-plane acceleration factor
in the so called “Special Card” of the sequence. Depending on this acceleration factor,
GRAPPA acceleration patterns and five 2D-CAIPIRINHA patterns are available in a
Graphical User Interface (GUI) field. For example, for an in-plane acceleration of 4,
the GRAPPA patterns 4 × 1, 1 × 4, 2 × 2 and the five 2D-CAIPIRINHA patterns are
available, see fig. 3.9 a. The 2D-CAIPIRINHA patterns can be specified by the user via
files. For each integer in-plane acceleration factor, one file is available. In these files,
the 2D-CAIPIRINHA under-sampling patterns can be specified by entering 0s (these
k-space points will not be measured), and 1s (these will be measured). One such file is
shown in fig. 3.9 b. With this approach, the under-sampling is very flexible. However, it
is also prone to errors, e.g. if the user enters non-valid patterns, or if a pattern provides
an acceleration different as specified by the file name.
In case if a 2D-CAIPIRINHA pattern is chosen, the correct file is read in by the sequence.
If a GRAPPA pattern is chosen, it is defined directly in the code of the sequence. In both
cases, an under-sampling pattern is then available in the sequence, which is replicated
to the intended matrix size. The number of averages of those k-space points where the
under-sampling pattern stores a “0”, are set to 0, while the others are not changed. As
a result those points will be omitted.
The third field in the special card is the VD-radius. This parameter specifies the radial
distance to the k-space center, within which all k-space points will be measured. This
is useful to better achieve the intended measurement time and to slightly mitigate the
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aliasing, since the k-space center contains most spatial information, and not under-
sampling it results in mainly high-frequency and low-intensity aliasing.

a b

Figure 3.9: a: This figure shows how 2D-CAIPIRINHA was implemented into the sequence GUI.
The user can choose the in-plane acceleration factor (“R InPlane”), the under-sampling
patterns (in this case “Caipirinha 1-5”, “Grappa 1 × 4”, “Grappa 2 × 2” and “Grappa
4× 1”), and the “VD-Radius”. b: One sample ASCII-file for RT otal = 8 showing different
2D-CAIPIRINHA patterns. The patterns can easily be modified by the user by changing
these files. The last three patterns are not used, and are therefore set to containing
only 1’s. The file with the used acceleration factor is read in by the sequence, and the
measurement k-space is under-sampled according to the desired 2D-CAIPIRINHA pattern
written in the file.

1D-CAIPIRINHA

I also implemented 1D-CAIPIRINHA into the same MRSI sequence. In the special card
of the sequence, four parameters were inserted to control 1D-CAIPIRINHA. With the
first, “R_Slice” the user can specify the slice acceleration factor. Only if R_Slice > 1,
the other fields have an effect. With the second, “Aliasing ID Slice [1-8]”, the user
can specify which slices should be aliased. The slices are counted from the lowest to
the highest. Slices with the same ID will be aliased. E.g. if slices 1 and 3, and 2
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and 4 should be aliased, the user can enter the aliasing IDs “1 2 1 2”. The next two
parameters, “1D-CAIPIA [x/y]-Shift Slice [2-8]” controls how much, in multiples of the
FoV, the slices should be shifted with respect to the first slice in x- and y-direction.
When the sequence is run, the FoV-shift is applied to the slices by adding a phase to the
RF pulses corresponding to the different slices. This phase changes linearly with the x-
and y- phase encoding direction, according to the fields “1D-CAIPIA [x/y]-Shift Slice
[2-8]”. Hadamard encoding is then performed on the slice groups. E.g. if slices 1 and
3 are aliased by 1D-CAIPIRINHA, and thus form slice group 1, and slices 2 and 4 are
aliased to slice group 2, only a Hadamard matrix of size 2 × 2 is used, although there
are four slices. Therefore, with Hadamard decoding, we can differentiate between slice
group 1 (slice1+slice3), and slice group 2 (slice2+slice4), but not between slice 1 and
slice 3, nor slice 2 and slice 4.

Data Acquisition

One volunteer was measured the same as described above, but the PI was not simulated in
post-processing. Instead, the data was actually under-sampled during the measurement
with RTotal = 8 resulting in a measurement time of 15 minutes. Furthermore, four
slices were measured instead of only 2. It was processed the same way as the other
measurements. The resulting metabolic maps were examined qualitatively.

RTotal PI Method Step 0 Step 1 Step 2

2 2D-GRAPPA 2 2 2
2 2D-CAIPI 6438 6 2
2 (2+1)D-CAIPI 0 0 0
5 2D-GRAPPA 2 2 2
5 2D-CAIPI 1.1 · 105 17 2
5 (2+1)D-CAIPI 1.3 · 106 576 2
9 2D-GRAPPA 1 1 1
9 2D-CAIPI 6.8 · 107 54 2
9 (2+1)D-CAIPI 6.7 · 106 400 2

Table 3.2: Number of processed patterns for three different acceleration factors and steps 0-2.
In step 0, an enormous amount of patterns had to be processed for some acceleration
factors. Adapted from: (42).
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3.4 Results

3.4.1 Simulations

Finding Best Undersampling Patterns

The number of patterns in each step for all PI methods and RTotal = 2, 5, 9 are listed in
table 3.2. For some methods, a tremendous amount of patterns had to be processed.
The g-factors and APs of step 1 are shown in fig. 3.10a and b. (2+1)D-CAIPIRINHA
provides better APs and g-factors for all acceleration factors, except forRTotal = 9, where
all methods virtually provide the same g-factors. 2D-GRAPPA consistently results in
higher APs and g-factors. Similar results were obtained by Breuer et al., who compared
conventional 2D-SENSE, which is similar to 2D-GRAPPA, with 2D-CAIPIRINHA (45).
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Figure 3.10: Artifact power, g-factor, RMSE, and CRLB values for different acceleration factors
RT otal. The first two are the values of the best pattern of step 1. All of these quality
measures show a trend of increasing with RT otal. In most cases, (2+1)D-CAIPIRINHA
provides the lowest quality measure (best reconstruction quality), and 2D-GRAPPA the
highest. Reprinted from: (42).
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Comparing Best Undersampling Patterns

The RMSE and CRLB values are plotted in fig. 3.10c and d, respectively. Again, (2+1)D-
CAIPIRINHA results in lower RMSE values, except for RTotal = 5. 2D-GRAPPA results
in higher RMSE values in comparison to 2D-CAIPIRINHA. (2+1)D-CAIPIRINHA only
provides lower CRLB for RTotal = 9, 10.
A statistical comparison between the AP, g-factor, absolute error, and CRLB values for
the different methods is given in table 3.3. Bold figures indicate values where (2+1)D-
CAIPIRINHA yields lower values than the corresponding method, while * means a
statistical significance of p < 5 · 10−2 for the AP, and p < 5 · 10−3 for the others, and
** means p < 5 · 10−4 when tested against the values of (2+1)D-CAIPIRINHA. The
AP gives one value for all brain voxels, and thus the compared values are statistically
independent measures.

PI Method R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

2D-GRAPPA 8.86* 9.89 12.54* 13.22* 14.18 17.94
AP [%] 2D-CAIPI 6.97 8.42 9.86 11.56 13.51 15.14*

(2+1)D-C 6.68 8.47 9.63 10.31 11.13 13.06
2D-GRAPPA 1.10** 1.10** 1.18** 1.16** 1.14** 1.30**

g-Factor 2D-CAIPI 1.08** 1.11** 1.12** 1.12** 1.14 1.21**
(2+1)D-C 1.10 1.08 1.12 1.17 1.14 1.15

Abs- 2D-GRAPPA 6.0** 7.3** 8.2** 8.8** 9.5** 11.7**
olute [%] 2D-CAIPI 5.7 6.9** 8.0** 8.7** 9.5** 11.3**
Error (2+1)D-C 5.9 6.5 7.2 8.4 8.5 10.0

2D-GRAPPA 6.37 6.71 7.35** 7.57 7.78** 8.85**
CRLB [%] 2D-CAIPI 6.18** 6.58 7.01 7.30** 7.91** 8.57**

(2+1)D-C 6.37 6.66 7.10 7.50 7.57 8.21

Table 3.3: Comparison of the AP, g-factor, absolute error, and CRLB values for the best
patterns of step 2. The values of 2D-GRAPPA and 2D-CAIPIRINHA were statistically
compared against the value of (2+1)D-CAIPIRINHA. Statistical significance is denoted
with *, while highly significant values are denoted with **, and bold values represent those
where (2+1)D-CAIPIRINHA performs better than the considered method. Reprinted
from: (42).

Maps of tNAA, tCho, tCr and RMSE of both slices for one volunteer and RTotal = 7 are
shown in fig. 3.11. The metabolic maps of (2+1)D-CAIPIRINHA look more similar to
the reference with RTotal = 1 for the upper slice, and comparable to the other methods
for slice 2. The RMSE map of (2+1)D-CAIPIRINHA shows smaller deviations from the
reference for the upper slice in comparison to 2D-GRAPPA and 2D-CAIPIRINHA, but
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has a spot with higher RMSE values in slice 2.
A comparison between sample spectra resulting from LCModel fitting between not sim-
ulating any PI (“Full”), and the three different PI methods is shown in fig. 3.12 for
the same volunteer shown in fig. 3.11. In those examples, 2D-GRAPPA and 2D-CAIPI-
RINHA partially result in artifactual spectra. The spectra of (2+1)D-CAIPIRINHA, on
the other hand, are more similar to the reference spectra.

Lipid Contamination

The lipid contamination ratio to the reference of RTotal = 1 is provided before and after
lipid decontamination in table 3.4 for the different acceleration methods and acceleration
factors. Lipid decontamination reduces the lipid artifacts below the values of RTotal = 1
without lipid decontamination (values smaller than 100 %). The lipid contamination
values before performing a decontamination are lower for (2+1)D-CAIPIRINHA than
for 2D-GRAPPA, and lower than for 2D-CAIPIRINHA in the case of R > 7. This
reflects the fact that (2+1)D-CAIPIRINHA tends to result in better reconstructions,
especially for high acceleration factors.
An example for the potential of the lipid decontamination algorithm is shown in fig. 3.13,
where 2D-GRAPPA with RTotal = 10 results in severe lipid artifacts in tNAA maps.
After applying the regularized reconstruction, the lipid artifacts are almost completely
removed, resulting in quite good tNAA maps.

Without Lipid Decontamination With Lipid Decontamination
R 2D-G [%] 2D-C [%] (2+1)D-C [%] 2D-G [%] 2D-C [%] (2+1)D-C [%]

2 98.9 101.0 — 60.2 59.8 —
3 107.7 105.0 — 61.1 60.6 —
4 109.1 113.4 — 62.0 61.8 —
5 125.0 116.9 122.7 63.2 63.1 61.7
6 136.7 126.6 131.7 65.1 65.0 58.6
7 143.8 133.2 138.2 65.9 66.0 63.3
8 151.5 160.0 149.7 67.3 67.1 72.1
9 163.4 170.3 147.6 69.9 69.3 72.2
10 192.0 198.2 180.4 71.9 72.0 77.6

Table 3.4: Lipid contamination ratio relative to the reference with RT otal = 1 with and without
lipid decontamination (i.e. regularized reconstruction), for different acceleration factors
and different PI methods. All values are below 100 % when lipid decontamination is
used. Such lipid levels are usually manageable, as long as no strong lipid hot-spots occur.
Reprinted from: (42).
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3 Accelerated MRSI via Parallel Imaging

Figure 3.11: Metabolic maps of tNAA, tCho,
and tCr, and the absolute error maps
(“RMSE”) for both slices of one volun-
teer and for the reference, RT otal = 1,
and the three PI methods with RT otal =
7. The upper slice is very well recon-
structed by (2+1)D-CAIPIRINHA, since
it resembles very well the reference map.
The (2+1)D-CAIPIRINHA reconstruc-
tion of the lower slice has a higher hot-
spot in the absolute error map than the
other two methods. Adapted from: (42).
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Figure 3.12: Two sample spectra of the same
volunteer from fig. 3.11 for the reference
(RT otal = 1), and the three PI methods.
The voxel positions are shown on T1-
weighted images (white squares) in the
native resolution and stressed by white
arrows. Black arrows in the 2D-GRA-
PPA and 2D-CAIPIRINHA spectra in-
dicate artifacts. All spectra were fitted
with LCModel. The red lines represent
the LCModel fit, the black lines the input
spectra, and above the fit, the residuum
is plotted. Reprinted from: (42).
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3.4 Results

Figure 3.13: Left: Sample tNAA maps which are strongly altered by lipids due to the usage
of 2D-GRAPPA and a high acceleration factor of RT otal = 10. After applying lipid
decontamination (right), the tNAA maps look almost normal. Below, two spectra from
the positions indicated by red and gray arrows, are shown. The decontaminated spectra
show strongly reduced lipid signals, although the gray spectrum still has high lipid signals.
Reprinted from: (42).
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3 Accelerated MRSI via Parallel Imaging

3.4.2 Implementing (2+1)D-CAIPIRINHA into MRSI Sequence

Metabolic maps of tNAA, tCho, tCr, Ins, and Glx are shown in fig. 3.14 for the volunteer
which was measured with (2+1)D-CAIPIRINHA. The metabolic map quality is excellent,
showing only small artifacts in the lowest slice which may be attributed to residual lipids.
However, at such low positions, artifacts often occur in MRSI due to the proximity to
the frontal sinus associated with strong B0-inhomogeneities.

Figure 3.14: Sample metabolic maps comprising tNAA, tCho, tCr, Ins, and Glx of four
slices from a volunteer measured with (2+1)D-CAIPIRINHA. The acceleration factor was
RT otal = 8 resulting in a measurement time of 15 minutes. All metabolic maps have a
high quality, with only minor artifacts occurring in the lowest slice. Even Ins and Glx
could be reliably quantified. Reprinted from: (42).
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3.5 Discussion

3.5 Discussion

3.5.1 Simulations

Finding & Comparing Best Undersampling Patterns

The artifact power, g-factor, RMSE and CRLB values mostly follow the expected pat-
tern: All values increase with higher accelerations, and are smallest for (2+1)D-CAIPI-
RINHA, and highest for 2D-GRAPPA. This is expected, because the reconstruction
quality decreases with higher acceleration factors, as the system of linear equations in
eq. (3.5) for calculating the weights is less over-determined, and therefore more prone to
errors. The reason why the system of equations is less over-determined is due to the fact
that fewer repetitions of the kernel in the ACS matrix are possible for high accelerations,
because the kernel has to be larger to comprise a given number of source points, L.
Although this trend is visible, the CRLB values and the g-factors did not completely
follow the pattern. For the CRLB values, this fact is not surprising, since small changes
in the input data can have a big influence in the fitting results of LCModel, and thus
on the CRLB values. The g-factors should in theory follow the trend more precisely,
however. Yet, the VD-radius influences the SNR efficiency. Measuring a k-space density
which does not match the target k-space density decreases the SNR efficiency (52), and
with it the g-factor, as the g-factor is the ratio of the given SNR to a fixed SNR with
a uniform k-space density (i.e. when not using any acceleration). When calculating the
g-factor, the Hamming filter was not yet applied, and thus, the target density was a
uniform one. As a result, increasing VD-radii decreased the g-factors. This is especially
visible in the 2D-GRAPPA g-factors for RTotal = 7, 8, 9, which all result from a 3 × 3
GRAPPA pattern with different VD-radii to achieve the intended acceleration factors.

Lipid Contamination

Lipid decontamination worked quite well with the method of Bilgic et al. The lipid
contamination ratios dropped from almost 200 % to about 70-80 % relative to using no
PI and no lipid decontamination. Since lipids are mostly not a big issue if resolutions of
3.4×3.4 mm2 are used in combination with a Hamming filter (24), lipid ratios below 100
% can be seen as manageable, as long as no strong lipid hot spots occur. The quite small
lipid contamination decrease from 200 % to 70 % can be explained by the definition of the
lipid contamination measure as summing a large spectral range of 0.3 to 2.1 ppm. Within
this range, tNAA and macromolecules are included, and thus contribute to the lipid
contamination measure as a baseline. As a result, even for perfect lipid decontamination,
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3 Accelerated MRSI via Parallel Imaging

the used measure would not be 0 %. On the other hand, lipids superimposing tNAA are
taken into account by this definition. Thus, the lipid decrease is less strong in comparison
to Bilgic et al., who obtained lipid reduction factors of about 9.5.

3.5.2 Implementing (2+1)D-CAIPIRINHA into MRSI Sequence

The measurement of one volunteer with four slices and an acceleration factor RTotal = 8
showed that (2+1)D-CAIPIRINHA not only performs well in simulations, but also works
in actual measurements. The resulting metabolic maps were of very high quality, with
even Ins and Glx being fitted reliably.

3.5.3 Comparison to Literature

In all studies in which MRSI was accelerated with PI, the acceleration was performed
either along two spatial dimensions (26, 28–33, 35–37), or even only along one dimension
(25, 27, 34, 38–41). To my knowledge, (42) is the first work accelerating MRSI in all
three spatial dimensions with PI. In conventional MRI, an acceleration along all three
dimensions was achieved by Breuer et al. (53) and Bilgic et al. (54). However, both
approaches include non-Cartesian trajectories, similar to SSE trajectories in MRSI.
SENSE with its “strong approach” was used in many studies (25–35), although this ap-
proach can lead to artifacts when applied to low-resolution data. These artifacts can be
avoided, however, at the expense of a more complicated reconstruction algorithm (30).
In other studies, the GRAPPA weights were calculated from MRSI k-space points in
the k-space center (36, 40, 41), although there is no evidence that the GRAPPA-weights
depend on spectral time points. This results in very small possible acceleration factors,
and very small ACS matrix sizes, which is disadvantageous for the PI reconstruction.

In this work, on the other hand, three spatial dimensions were used for PI acceleration,
a GRAPPA-based reconstruction was performed, avoiding the problems of the SENSE
reconstructions, and ACS data based on the imaging pre-scan data were used. These
pre-scans had to be measured anyway for coil combination, had a high matrix size of
128 × 128, which is even higher than the MRSI data themselves, and take only a few
seconds measurement time.

3.5.4 Limitations & Outlook

It is important to stress that the found best acceleration patterns are specific for the
used coil and field strength. They cannot be generalized for other systems, but can only
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aid as a starting point. Thus, it is not possible to take the best patterns found in this
work, use it with another coil or field strength, and expect them to be the best patterns
also in this situation.
One drawback of PI is the lipid problems caused by residual aliasing, and thus the need
to specifically deal with the lipids, e.g. with a regularized reconstruction.
Moreover, the acceleration factor in PI is theoretically limited to RTotal ≤ N , where N
is the number of AC channels. In practice, however it is limited to RTotal . 10, which
therefore restricts its applications to 2D-encoding, and 2D-encoding with 1-8 slices, when
combined with matrix sizes ≥ 64 × 64. The fact that each slice group has a different
acquisition delay due to the pulse-cascaded Hadamard encoding is a distinct limitation,
but could be mitigated by using Power Independent of Number of Slices (PINS) pulses
(55).

These drawbacks are not present in SSE. Therefore, SSE was tested in the next step,
see chapter 4.
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4 Accelerated MRSI via Spatio-Spectral
Encoding

4.1 Motivation

As already motivated in chapter 3, a means to accelerate MRSI is needed, if larger ma-
trix sizes of about 64× 64 are used. PI can provide acceleration factors of up to 10 with
standard array coils consisting of e.g. 32 channels. If 3D-encoding with matrix sizes of
about 50×50×50, or more than 8 slices with a matrix size of 64×64 are demanded, the
acceleration factor has to be at least 20-40 to achieve clinically reasonable measurement
times. Such high acceleration factors cannot be realized with PI, but can be achieved
with SSE, and even more so with the combination of both methods. Another advantage
of SSE in comparison to PI is that lipid signals are less of a concern, as no aliasing occurs
in SSE.

Several trajectories were used in SSE, such as an Echo Planar Imaging (EPI) based
trajectory, termed Echo Planar Spectroscopic Imaging (EPSI) or Proton-EPSI (PEPSI)
(56–59), spiral trajectories (60, 61), rosette trajectories (62), or concentric circle trajecto-
ries (5, 63). These trajectories have different advantages and disadvantages like different
quality factors due to k-space densities, ΩDensity, and due to gradient rewinders, ΩAcqEff .

To overcome the problems of PI in MRSI, SSE was tested and implemented in the form
of spiral encoding (only tested and small changes in the source code) (64, 65), and CON-
CEPT (implemented and tested) (5, 63) on the Siemens 7T Magnetom scanner. The
implementation of CONCEPT into the sequence was done together with my colleague
Lukas Hingerl. The whole CONCEPT reconstruction was implemented by him.

The work desccribed in this chapter has not been published yet, but will be presented
at the annual meeting of the International Society for Magnetic Resonance in Medicine
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(ISMRM) 2017 in Hawaii. It is still under development, as still some baseline problems
occur due to an unknown reason, but preliminary results are shown in this chapter.

4.2 Theory

SSE accelerates sequences by measuring several k-space points within one spectral dwell
time. The paths along which we traverse in k-space are called k-space trajectories. In
most cases, several k-space trajectories (sometimes called spatial interleaves) are nec-
essary to cover the whole k-space which is intended to be measured. However, these
trajectories are usually very similar to each other, and are therefore often called “the
k-space trajectory”, and thereby meaning in fact the whole set of very similar trajecto-
ries. Since we need to measure each k-space point repetitively, these trajectories have
to be closed curves, a distinct difference to conventional MRI. If the trajectory is not
naturally closed, a so called “gradient rewinder” has to be played out to get back to the
k-space starting point, and thereby closing the trajectory artificially. These rewinder
data are usually not useful, and therefore the SNR efficiency drops for long gradient
rewinders. The trajectory defines or influences a lot of important characteristics of
the corresponding SSE sequence, such as the quality factor Ω, the maximum achievable
resolution and spectral bandwidth, the caused Maxwell fields and Eddy current artifacts.

One concept common to all SSE trajectories is temporal interleaving, which is a method
for having more time to complete one spatial interleaf, and therefore increasing the qual-
ity factor or even making the trajectory possible altogether. Instead of repeating the
trajectory within the temporal duration dTspectral, we repeat it with nTI ·dTspectral, with
nTI ∈ N being the temporal interleaf number. By measuring only every nTI’th time
point, we reduce the spectral bandwidth from BWspectral = 1

dTspectral
to BWspectral,nTI =

1
nTI·dTspectral = BWspectral

nTI . To obtain spectra with the full bandwidth again, we measure
all the missed time points in another nTI-1 repetitions by measuring exactly the same
as in the first repetition, but time shifted. However, temporal interleaving has some
drawbacks: Since no excitation can be exactly the same (e.g. small movements, small
variations in the RF excitation, small variations in the water suppression etc.), only
every N’th time points are fitting perfectly to each other. For example, if nTI = 2,
every second time point will be slightly different, which corresponds to the highest rep-
resentable frequency. Thus an additional signal occurs at the highest frequency. With
nTI > 2, even more artifact signals occur, specifically nTI-1. Because of these artifacts,
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4 Accelerated MRSI via Spatio-Spectral Encoding

only temporal interleaves of 2 and 3 are considered here.

The quality factor of SSE sequences simplifies to the ratio of the useful trajectory time
to the total trajectory time, ΩAcqEff , and the difference of the local density function of
the k-space trajectory to the target k-space density, ΩDensity.

Following is a small overview of different proposed SSE methods with a short discussion
of their advantages and disadvantages.

4.2.1 EPSI

In EPSI, one k-space line is measured repetitively by going back and forth within one
TR. The k-space lines are parallel to each other, thereby lying on an equidistant, rec-
tilinear grid, often called Cartesian k-space. The gradient scheme of an EPSI sequence
is given in fig. 4.1 a. If we do not use the data from the gradient ramps, resulting in
ΩDensity = 1 by definition, the EPSI quality factor can be calculated as follows:

Consider the sequence diagram as depicted in fig. 4.2. Let Smax be the maximum slew
rate with which we ramp the x-gradient up and down, TRamp the time we need to ramp
up from Gx = 0 to Gx = GA. The acquisition happens during the time TAcq while the
gradient is constant. The time between measuring the same k-space locations in the
same direction is dTSpectral = 4TRamp + 2TAcq. Therefore the spectral bandwidth with
nTI temporal interleaves is given by:

BWSpectral = nTI

4TRamp + 2TAcq
(4.1)

Higher spectral bandwidths might be achieved with more complicated reconstruction
schemes by considering that each k-space point is in fact traversed three times within
dTSpectral, but once in opposite direction, and with different temporal spacings for dif-
ferent k-space points. Due to the complex reconstruction, this is not considered here.
After ramping up, we keep the gradient constant. The area of this gradient (= integral),
also called Gradient Moment (GM), is the k-space extent we need to measure for achiev-
ing a certain FoV. The relation between those is GM = Nx

γFoV , where Nx is the desired
number of voxels (“matrix size”) in x-direction. GM can also be calculated as the area
of the gradient during which it is constant, which results in

GM = Nx

γFoV
= GATAcq = SmaxTRamp · TAcq (4.2)
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Figure 4.1: Illustration of an EPSI, spiral and CONCEPT trajectory in k-space for a 48 × 48
matrix with a FoV of 200×200 mm. The points along one spatial interleaf are equidistant
in time, therefore indicating the trajectory velocity. Different colors represent different
spatial interleaves, the recurrence of colors has no special meaning. The rewinders (EPSI
and spirals), the trajectory for getting to the intended circles, and the trajectories for
getting velocity zero at the end of the acquisition (CONCEPT) are also plotted. The
latter are visible as deviations from the ciricles, especially well depicted in the previous to
last circle.

We can solve eqs. (4.1) and (4.2) for TRamp, resulting in
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Figure 4.2: Sequence diagram of an EPSI sequence. At the end of the slice excitation block (RF
excitation, slice-selection and slice-refocusing in z-direction), phase encoding is performed
in the y-direction, and we move to the maximum k-space value along the x-direction with
the gradient prewinder (first trapezoidal-shaped gradient in x-direction). Afterwards, we
go back and forth along a k-space line by repetitive positive and negative gradients in
x-direction. After repeating that about 500-2000 times, the transverse signal is spoiled
(destroyed), and a new k-space line is measured in another repetition. The symbols A1
and A2 in the gradients should indicate gradients with the same area. The times TRamp,
TAcq, and dTSpectral are also shown.

TRamp± = nTI

8BWSpectral
±

√√√√ nTI2

43BW 2
Spectral

− Nx

2γFoV Smax
(4.3)

The solution TRamp− results in higher quality factors, since less time is spent for ramping
up and down, and more for acquiring the signal (TAcq). Thus, the whole rewinding time,
TRew, per TR is TRew = 4 ·TRamp−. According to Pohmann et al., the efficiency relative
to a spin-echo phase encoded sequence is given by
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4.2 Theory

ΩTotal
EPSI = ΩAcqEff

EPSI =
√

1− TEPSIRew ·BWSpectral/nTI (4.4)

In the results section, the reached quality factors and acceleration factors of EPSI for dif-
ferent settings are given in table 4.1 and table 4.2. EPSI provides mediocre acceleration
factors for the calculated settings in the range of 7-40 in comparison to elliptical phase
encoding. From this table it is clear that EPSI has a low quality factor for very high reso-
lutions (≥ 220/64×220/64 mm2) and field strengths ≥ 7 T (BWSpectral/nTI ≥ 926Hz).
Otherwise EPSI sequences are good choices, especially because the reconstruction is eas-
ier than for other sequences, as no regridding to a Cartesian grid is necessary. Therefore,
PI in combination with EPSI is easier to perform than for other trajectories, however,
with the drawback of higher g-factors (66).

4.2.2 Constant Linear Velocity, Constant Density Spirals

Idealized constant linear velocity, constant density spiral trajectories can be described
by

kSpirals(t) := λ
√
t/TAcq · (sin (ω

√
t/TAcq), cos (ω

√
t/TAcq)) (4.5)

with t ∈ [0, TAcq], where TAcq is the duration of one spiral without its rewinder, λ =
Nx/(2FoV ), Nx the matrix size in x-direction, ω = 2πn, and n = (Nx−1)/(2nSI) being
the number of spiral turns per number of spatial interleaves nSI to achieve the matrix
size Nx. One example of a spiral trajectory is depicted in fig. 4.1 b.

We can calculate the linear velocity v of spirals as follows:

v(t) := ||d/dt kSpirals(t)|| =
λ

2

√√√√ ω2

T 2
Acq

+ 1
t · TAcq

= λ

2TAcq

√
ω2 + TAcq

t
(4.6)

The velocity of a trajectory determines the time that is spent in a certain area of k-
space, which in turn determines the k-space density. As we can see from eq. (4.6), the
velocity is not constant with time, resulting in a non-uniform k-space density. However,
the changes are small for large t, corresponding to the outer k-space. In other words, the
spirals described by eq. (4.5) are non-uniform in the central part, but become nearly-
uniform in the outer parts.
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4 Accelerated MRSI via Spatio-Spectral Encoding

Nonetheless we can approximate spirals to be of constant k-space density, which will be
done in this work. Thus, for calculating the efficiency, we do not need to consider the k-
space density, but only the “sampling efficiency”, i.e. the time during which we measure
useful information. Therefore we need to compute the duration of the rewinders, which
bring the spiral trajectory back to k-space center after each repetition of the trajectory.
We can subdivide these rewinders into two parts: First, we need to slow down to zero
velocity. Second, we have to play out a gradient to move the spirals back to k-space cen-
ter. In theory, these two parts could be merged into one, giving a shorter total duration.
However, this complicates the rewinder calculation and is therefore usually not done in
practice, especially because the first part of the rewinder is very short anyway.

According to eq. (4.6) we have a linear velocity of v(TAcq) = λ/(2TAcq)
√
ω2 + 1 right

before the start of the rewinder, TAcq, which can be written as TAcq = dTSpectral −
TRew,P t1 − TRew,P t2, where TRew,P t1/2 are the durations of part 1 and 2 of the rewinder.

If we use the maximum slew rate, Smax, the time to slow down is implicitly given by:

TRew,P t1 = v(TAcq)
γSmax

=
Nx

√
4π2(Nx−1

2nSI )2 + 1
4FoV γSmax(dTSpectral − TRew,P t1 − TRew,P t2) (4.7)

Solving this equation for TRew,P t1 leads to

TRew,P t1 = dTSpec − TRew,P t2
2 −

√
(dTSpec − TRew,P t2)2

4 − x,

x =
Nx

√
π2(Nx−1

nSI )2 + 1
4FoV γSmax

(4.8)

where only the smaller solution was used. The number of spatial interleaves nSI is an-
other degree of freedom which we can choose. From eq. (4.8) we can see that part 1
of the rewinder is shorter for larger nSI’s. Later, we will further calculate that part 2
of the rewinder does not depend on nSI, see eq. (4.13). Therefore, spiral encoding gets
more efficient with more spatial interleaves. However, if we choose a lot of spatial inter-
leaves, we end up with an almost radial sequence, which of course is not our intention.
Moreover, the k-space center is sampled more densly than the periphery as mentioned
before. Using large nSI’s increases this portion of the high-density k-space center. An
easy compromise is setting nSI = (Nx − 1)/2, i.e. having exactly one spiral turn per
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spatial interleaf, n = 1.
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Figure 4.3: a: A trapezoidal-shaped gradient is the fastest gradient shape for rewinding the
spiral k-space trajectory back to the k-space center. The gradient is ramped up within
TRamp to the maximum gradient Gmax = SmaxTRamp with the maximum slew rate Smax.
After the ramping, the gradient is constant for the time TF lat and then ramped down
again within TRamp. b: The largest possible triangle using the maximum slew rate Smax.
This is the border case between having a triangle gradient shape and a trapezoidal-shaped
gradient shape: If a smaller gradient moment than that of this triangle is needed, it can
be achieved with a triangle gradient within even shorter time. If a larger gradient moment
is required, a trapezoidal-shaped gradient is needed, with a longer duration.

Let us now calculate the second part of the rewinder for getting back to the k-space
center. At the end of the spiral trajectory, the distance of the trajectory to the k-space
center is kmax = ||kSpirals(TAcq)|| = Nx/(2FoV ), when ignoring the effect of the first part
of the rewinder. Thus, the gradient moment we need to rewind is GM = kmax/γ. The
fastest way to achieve a certain gradient moment is a trapezoidal-shaped gradient with
an acceleration using the maximum slew rate Smax during the “ramp-up” and -down
parts, see fig. 4.3 a. For the following treatise we will need the gradient moment that we
can achieve with a triangle gradient, i.e. if the “flat top” part of the trapezoidal-shaped
gradient has duration zero. This results in ramping with Smax up to the maximum
gradient amplitude Gmax during the time TRamp, and then ramping down to zero during
the same duration, see fig. 4.3 b. The area of this triangle is its gradient moment and
is given by GMTri = TRampGmax, and the maximum gradient amplitude can be written
as Gmax = SmaxTRamp, leading to

GMTri = G2
max/Smax (4.9)
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Let us distinguish two cases for calculating TRew,P t2:

Case 1: GM = kmax/γ ≤ GMTri

In this case we can use a triangle gradient shape and do not need the full gradient
amplitude Gmax, but only a weaker gradient strength Gused. With TRamp = TRew,P t2/2,
the gradient moment can be calculated as kmax/γ = GusedTRew,P t2/2. Gused can be
written as Gused = SmaxTRew,P t2/2, resulting in

TRew,P t2 = 2
√

kmax
γSmax

(4.10)

Case 2: GM = kmax/γ > GMTri

In this case we need the “flat-top” of the trapezoidal-shaped gradient, and therefore
the total duration is TRew,P t2 = TFlat + 2TRamp, the gradient moment is kmax/γ =
TRampGmax + TFlatGmax with TRamp = Gmax/Smax, see fig. 4.3 a. We can rewrite the
gradient moment as follows:

kmax/γ = Gmax(TFlat + 2TRamp − TRamp) = Gmax(TRew,P t2 − TRamp) =

= Gmax(TRew,P t2 −Gmax/Smax)
(4.11)

resulting finally in

TRew,P t2 = kmax
γGmax

+ Gmax
Smax

(4.12)

and

TRew,P t2 =

2
√

kmax
γSmax

kmax/γ ≤ G2
max/Smax

kmax
γGmax

+ Gmax
Smax

kmax/γ > G2
max/Smax

(4.13)

The total efficiency of spiral encoding is thus

ΩTotal
Spiral = ΩAcqEff

Spiral =
√

1− TSpiralRew BWSpectral (4.14)

with TSpiralRew = TRew,P t1 + TRew,P t2.

In the results section, the reached quality factors and acceleration factors of spirals for
different settings are given in table 4.1 and table 4.2. In summary, spiral encoding offers
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the highest acceleration factors R of up to 77. The acceleration can be even higher if
more turns per angular interleaves are used. Yet, spirals offer rather low efficiencies for
high spectral bandwidths and high resolutions.

4.2.3 Concentric Circles (CONCEPT)

In CONCEPT, concentric circles centered at the k-space center are measured. Circles
are intrinsically closed trajectories, causing no time to be wasted for rewinder gradients.
Therefore, ΩAcqEff

CONCEPT = 100%. The spectral dwell time, i.e. the time between two
consecutive circumnavigations of a circle, is usually kept constant between different
circles. Since the area difference between two consecutive circles increases with the
radius, the k-space density (time spent per k-space area) decreases with the circle radius
kr. This causes a drop of efficiency, if the target k-space density is uniform. Jiang et al.
calculated this SNR drop to be 1−

√
3

2 ≈ 13%, resulting in

ΩDensity
CONCEPT = ΩTotal

CONCEPT = 87% (4.15)

when a uniform k-space density is desired.

On the other hand, MRSI data are often filtered, e.g. with a Hamming filter, to reduce
the leakage of signal from one voxel to its neighbouring voxels. Such filters are always
low-pass filters, and therefore need a higher density around the k-space center than in
the periphery. Since CONCEPT also has higher densities around the k-space center, it
is closer to most target densities (filters) than a uniform density. This results in higher
efficiencies of CONCEPT than EPSI or even phase encoded MRSI if the target density
function is e.g. a Hamming filter.

Following is a derivation of the efficiencies of CONCEPT and of a uniformly sampled
k-space when the target density is a Hamming filter. I follow the notation and calcu-
lations of Kasper et al. who derived efficiencies when measuring with a Gauss-shaped
density vs. measuring uniformly and then applying the Gauss-filter in post-processing
(52).

We can write the densities of CONCEPT, ρCONCEPT , the uniform acquisition, ρUni, our
Target density, ρTarget, and the “matched” density, ρMatched, i.e. the density we would
actually measure if we measured the target density, as follows:
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ρCONCEPT = C2√
k2
x + k2

y

(4.16)

ρUni = dTSpectral
k2
maxπ

(4.17)

ρTarget = C1 ·Hamming(

√
k2
x + k2

y

kmax
) := C1 · [α− βcos(π(

√
k2
x + k2

y

kmax
+ 1))] (4.18)

ρMatched = dTSpectral · ρTarget (4.19)

where C1 and C2 are scaling constants, kx and ky are the positions in k-space, kmax is
the maximum k-space value that should be measured (defined by the resolution), and
dTSpectral is the acquisition time for one spectral time point. We additionally demand
the following identities, to ensure a fair comparison between the different densities:

∫
Vk

ρCONCEPT d
2k =

∫
Vk

ρUni d
2k =

∫
Vk

ρMatched d
2k = dTSpectral (4.20)

where Vk = k2
maxπ is the measured k-space volume, which I assume to have a circular

area. We can derive the following equations from above identities:

dTSpectral =
∫
Vk

ρMatched d
2k = dTSpectral ·

∫
Vk

ρTarget d
2k =

= 2π dTSpectral C1
kmax∫

0
krHamming( kr

kmax
) dkr = 2π dTSpectral C1

k2
max
2 (α− 4β

π2 )

where in the previous to last equality a transformation from Cartesian to polar coordi-
nates was performed.
Therefore,

C1 =
(
πk2

max

(
α− 4β

π2

))−1
(4.21)

The same can be done for C2:

dTSpectral =
∫
Vk

ρCONCEPT d
2k = C2 ·

∫
Vk

1√
k2
x+k2

x

d2k = C22π ·
kmax∫

0

kr
kr
dkr = C22πkmax

leading to

76



4.2 Theory

C2 = dTSpectral
2πkmax

(4.22)

Now that we have determined the constants, we can calculate the noise powers |σ|22 which
are relevant for the SNR. If the target density is ρTarget and the acquired density is ρAcq,
the noise power can be calculated as follows according to Kasper et al. (52):

|σAcq|22 =
∫
Vk

ρ2
Target

ρAcq
dnk (4.23)

We can therefore calculate the noise power of CONCEPT:

|σCONCEPT |22 =
∫
Vk

ρ2
Target

ρCONCEPT
d2k = C2

1
C2

2π
kmax∫

0
k2
rHamming

2( kr
kmax

) dkr =

= C2
1

C2
2π k

3
max(4α2π2+β2(3+2π2)−48αβ)

12π2 =: C
2
1

C2
2π k

3
maxA2
12π2

resulting in

|σCONCEPT |22 = A2

3π2dTSpectral(α− 4β
π2 )2

(4.24)

The same for the uniformly weighted k-space:

|σUni|22 =
∫
Vk

ρ2
Target

ρUni
d2k = C2

1 ·
2π2k2

max
dTSpectral

·
kmax∫

0
krHamming

2( kr
kmax

) dkr =

= 1
π2k4

max(α− 4β
π2 )2 ·

2π2k2
max

dTSpectral
· k

2
max
4 (2α2 + β2 − 16αβ

π2 ) =: 1
π2k4

max(α− 4β
π2 )2 ·

2π2k2
max

dTSpectral
· k

2
max
4 A1

resulting in

|σUni|22 = A1

2dTSpectral(α− 4β
π2 )2

(4.25)

And for the matched density:

|σMatched|22 =
∫
Vk

ρ2
Target

ρMatched
d2k = 1

dT 2
Spectral

∫
Vk

ρMatched d
2k = 1

dTSpectral
(4.26)
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According to Kasper et al., the density-induced quality factors can then be calculated
as follows (52)

ΩHammTarget
CONCEPTV sMatched = SNRHammTargetCONCEPT

SNRHammTargetMatched

=
√
|σMatched|22
|σCONCEPT |22

=

= (α− 4β
π2 )π

√
3
A2

= ΩHammTarget
CONCEPTV sMatched ≈ 0.9172

(4.27)

ΩHammTarget
UniV sMatched = SNRHammTargetUni

SNRHammTargetMatched

=
√
|σMatched|22
|σUni|22

= (α− 4β
π2 )

√
2
A1
≈ 0.7985 (4.28)

ΩHammTarget
CONCEPT = SNRHammTargetCONCEPT

SNRHammTargetUni

= ΩHammTarget
CONCEPTV sMatched

ΩHammTarget
UniV sMatched

= π

√
3A1
2A2

≈ 1.1486 (4.29)

This finally results in

ΩTotal
CONCEPT = ΩDensity

CONCEPT ≈

0.87 for ρTarget = ρUni

1.15 for ρTarget = ρHamming
(4.30)

Thus, the SNR of CONCEPT is even 15 % higher than for a conventional phase-encoded,
uniformly weighted sequence, if the target k-space density is a Hamming filter. This is
often the case in practice, as the PSF of unfiltered data is usually very poor for resolu-
tions worse than 3.4 × 3.4 mm2 . Plots of ρHamming, ρUni, and ρCONCEPT against the
k-space radius are shown in fig. 4.4. ρAcq can be even shaped to match ρTarget exactly
by varying the distance between consecutive circles with the k-space radius kr. Although
we can achieve the same weighting in parts with spiral and EPSI MRSI, it is especially
easy with CONCEPT. In spiral, introducing a variable density weighting prolongs the
spectral dwelltime dTSpectral, as we have to spend more time in the k-space center in
comparison to constant density weighting. In EPSI, we would need to slow down in the
center of each k-space line, which also prolongs dTSpectral.

In the results section, the reached quality factors and acceleration factors of CONCEPT
for different settings are given in table 4.1 and table 4.2. In summary, CONCEPT
has many advantages, such as a very high SNR efficiency if a Hamming weighted k-
space is desired, quite high acceleration factors, an easy to shape k-space density, and
a quality factor ΩTotal

CONCEPT which does not decrease with increasing k-space extents or
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kr [1/m]
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CONCEPT

Hamming

Uniform

Figure 4.4: A comparison of different k-space densities: Uniform (e.g. EPSI or spirals), Ham-
ming, and CONCEPT, i.e. 1/kr. The integral of all three densities is the same if multi-
plied by 2πkr (due to the polar coordinate transform), thereby satisfying eq. (4.20). The
CONCEPT density is closer to the desirable Hamming density than the uniform density,
resulting in a higher SNR efficiency of CONCEPT than for a uniform density, and thus in
ΩCONCEP T > 1 if the target density is Hamming.

spectral bandwidths. Among its drawbacks we have to count the inability to sacrifice
SNR efficiency for increased resolutions or spectral bandwidths, and the worse ΩDensity

in comparison to EPSI and spirals if a uniform k-space is desired.

4.3 Methods

4.3.1 Finding a Well-Suited Trajectory

Before any trajectory was implemented on the scanner, a trajectory fitting our needs
had to be found. The trajectory had to fulfill the following requirements:

1. Acceleration of about R & 30

2. Quality factor ΩTotal as high as possible

3. An intrinsically closed trajectory to achieve high ΩTotal

In addition to above requirements, the following settings were further demanded:

1. Spectral bandwidth of about & 1800 Hz

2. Spectral bandwidth of at least 750 Hz free of temporal interleaving artifacts
⇒ BWSpectral/nTI > 750 Hz
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4 Accelerated MRSI via Spatio-Spectral Encoding

3. voxel sizes of . 3.4× 3.4 mm2

The closedness of the trajectory is not an absolute necessity, but closed trajectories tend
to have higher ΩTotal, because no time is wasted for the gradient rewinder.

Several trajectories were considered and estimated whether they could fulfill the criteria:
EPSI, radial EPSI (also called Projection Reconstruction Echo-Planar (PREP) imaging),
spirals, rosettes, and CONCEPT. EPSI was estimated to provide too low accelerations
R, too low ΩTotal for the demanded spectral bandwidths and spatial resolutions, and
is further not an intrinsically closed trajectory. Radial EPSI has far too low Rs, is not
closed, but could nevertheless provide quite high ΩTotal, since the length of one line is
only half of that of conventional EPSI. Spirals provide a bad ΩTotal, as they are not
intrinsically closed.
The remaining two trajectories, rosettes and CONCEPT, both fulfill all criteria, but
provide highly non-uniform k-space densities. As a result, the ΩDensity and thus ΩTotal

are below 1 if the target density is uniform. In case of rosettes it is 0.9, while for
CONCEPT this factor is 0.87. However, this disadvantage can be converted into an
advantage, if the target density is chosen to be e.g. a Hamming filter. In this case,
CONCEPT has two advantages over rosettes: First, the density of rosettes is high in
the center, decreases with the radius, and then increases again at the k-space periphery.
CONCEPT, however decreases with 1/kr. Therefore, the density of CONCEPT is closer
to the Hamming filter than rosettes, resulting in a higher ΩDensity, if the target density
is Hamming. Second, the k-space density can be easily modified in CONCEPT, e.g. by
varying the distance between consecutive concentric circle. This task is not trivial at all
for rosettes.
Thus, CONCEPT was finally chosen as the trajectory suited best for our needs, and was
implemented on the scanner.

4.3.2 Implementation of CONCEPT

The CONCEPT read-out was implemented into the sequence of chapter 3. The modules
of 2D-CAIPIRINHA, and the integrated MUSICAL pre-scan were removed from the
sequence, as 2D-CAIPIRINHA cannot be performed in CONCEPT, and the MUSICAL
pre-scan was implemented differently: In every TR, the same trajectory is played out as
for the MRSI scan, but before the water suppression, only with a small flip angle of 5◦,
and only with a few circumnavigation of the current circle, i.e. vector size points.
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The implementation of the circular gradient trajectories consists of three parts: The first
is the gradient pre-winder, with the purpose to bring the current k-space position to the
desired circle radius kr (Part 1a), and accelerate tangentially along the circle to acquire
the tangential velocity kr · 2πBWSpectral (Part 1b). Part 1a and 1b can be merged
by solving a calculus of variation problem, but for simplicity they were implemented
sequentially here. Part 2 simply consists of all the circumnavigations of the circles: The
gradient waveform of the current circle is played out vecSize/nTI times, where vecSize
is the desired number of FID points. The gradient waveforms were defined as:

(
Gx

Gy

)
:= kr2πBWSpectral

(
− sin(2πBWSpectral · t)
cos(2πBWSpectral · t)

)
(4.31)

In the third part, the velocity has to be reduced to zero by simply ramping down from
the current velocity to zero velocity in both directions using the maximum slew rate.

One problem occurring on a real scanner is the change of the gradients with the fre-
quency BWSpectral which is in the order of 500-3000 Hz, i.e. in the acoustic range. The
gradient coils in an MR system are bent if gradient waveforms are played out due to the
interaction between the main magnetic field and the field caused by the gradients. These
gradients are the main source of the audible noise caused by an MR system. For certain
acoustic frequencies, the gradients can cause other parts of the MR system to vibrate in
resonance, which therefore produces even more noise or can even destroy the gradient
coils (67). The acoustic resonances are specified as 550 ± 50 Hz, and 1100 ± 150 Hz for
our Siemens 7T Magnetom scanner with the gradient system SC72C. Therefore, some
spectral bandwidths are not safe to be used in our CONCEPT sequence. This problem
was solved by checking for the acoustic resonances of the MR system the sequence is
run on, and if the user chooses a spectral bandwidth within an acoustic resonance, the
closest allowed spectral bandwidth is chosen.

This and some other checks for the operationality of the settings were implemented in
the so called “prep”-part of the sequence. In this part, the sequence is tested with many
different settings (different TRs, TEs, bandwidths, etc.), and only possible settings are
shown to the user. To minimize computational burden, only the setting operationality
is tested in this part, but the gradient waveforms themselves are not yet calculated.
The gradient waveforms are calculated in the so called “run”-part of the sequence. This
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might cause problems, if the calculations are slower than the duration of the played out
objects. Yet, this problem has never occurred when running the sequence.

To prove the successful implementation of CONCEPT including the MUSICAL pre-scan,
a silicone oil phantom was measured without water suppression with a matrix size of
64× 64, FoV 220× 220 mm2, and a spectral bandwidth of 1852 Hz. The MUSICAL pre-
scan, as well as the MRSI data, were regridded to an equidistant, rectilinear k-space,
density compensated and Fourier transformed to obtain images. The fifth FID point
(i.e. fifth circumnavigation of the circle) of the MRSI data was compared against the
MUSICAL pre-scan data for one of the 32 array coil channels.

4.3.3 Implementation of MUSICAL into Spiral Sequence

The spiral sequence source code was provided by Borjan Gagoski. Only three minor
changes were done in the sequence source code: The spectral bandwidth and spatial res-
olution were adapted to our needs, some small bugs were fixed in the gradient rewinder,
which slightly reduced their duration and slew rate overshoots, and a MUSICAL pre-
scan was implemented into the sequence. The latter was done almost the same way as
in the CONCEPT sequence. The MUSICAL coil combination was implemented into the
image reconstruction of the spiral sequence, which was also provided by Borjan Gagoski.

4.3.4 Theoretical Comparison of Spirals, EPSI and CONCEPT

The chosen gradient waveform, i.e. CONCEPT, was theoretically compared to two other
standard gradient waveforms, EPSI and spirals. The quality factors, ΩTotal, according to
eqs. (4.4), (4.14) and (4.30), as well as the achieved acceleration factors, were calculated
for different settings. These settings were chosen as a low (32× 32), high (64× 64), and
an ultra-high (100× 100) spatial resolution, all with a FoV of 220× 220 mm2, and a low
(1230 Hz, nTI = 2) and a high (2778 Hz, nTI = 3) spectral bandwidth. The 64 × 64
matrix with 2778 Hz bandwidth corresponds to the setting most suitable to our needs.

4.3.5 In-Vivo Comparison of Spirals, 2D-CAIPIRINHA and CONCEPT

Data Acquisition

Since EPSI is not available at our scanner, CONCEPT was compared in-vivo only to
spirals and 2D-CAIPIRINHA. One volunteer was measured on a 7T MR scanner with a
32-channel head coil including a single channel volume coil for signal transmission. The
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parameters common for all sequences were as follows: FoV of 200 × 200 mm2, TR of
600 ms, acquisition delay of 1.3 ms, one slice with a slice thickness of 12 mm, acquisition
window of 272 ms, elliptically filtered (i.e. only k-space points within a circle were mea-
sured).
The parameters of the 2D-CAIPIRINHA sequence were: 48×48 matrix size, 2D-CAIPI-
RINHA with an acceleration of R = 3, 6000 Hz spectral bandwidth, 1632 spectral points
(truncated in post-processing), measurement time 6m 20s.
The parameters of the spiral sequence were: 48× 48 matrix size, 1852 Hz spectral band-
width, 512 spectral points (truncated in post-processing), 11 averages, two temporal
interleaves, measurement time 6m 40s.
The parameters of the CONCEPT sequence were: 64 × 64 matrix size (reconstructed
once as a 48× 48 matrix in post-processing by omitting the outer circles, and once with
the full matrix size), 1852 Hz spectral bandwidth, 512 spectral points, two temporal in-
terleaves, 13 averages, measurement time 8m 20s for the 64 × 64 matrix size, resulting
in a corresponding measurement time of 6m 20s for the 48× 48 matrix size.

Reconstruction

The spiral reconstruction was done by the online image reconstruction provided by Bor-
jan Gagoski, including the MUSICAL coil combination. The CONCEPT data were
regridded to a Cartesian k-space, and density compensated, while the 2D-CAIPIRINHA
data were reconstructed with the algorithm described in chapter 3. In both cases, the
data were then Fourier transformed, and coil combined using MUSICAL. The spiral,
2D-CAIPIRINHA, and CONCEPT data were finally Hamming filtered and the spectra
were fitted with LCModel.

Evaluation

Metabolic maps of tNAA, tCho and Glx, and CRLB maps of tCho and Glx were com-
pared between the three methods. Representative spectra were further compared. The
SNR and Glx CRLB values were compared quantitatively between the different methods.

4.3.6 Refined Setting

The settings with only 1852 Hz spectral bandwidth of the spiral and CONCEPT se-
quences resulted in spectral aliasing of a lipid sideband from −3.4 ppm to 2.85 ppm.
This caused tCr not to be reliably fitted. Therefore, the spectral bandwidth was in-
creased to 2778 Hz, with nTI = 3 instead of nTI = 2. The spectral bandwidth per nTI
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remained the same. Increasing nTI causes an additional spectral interleaving artifact.
However, since the bandwidth per nTI did not change, the artifacts are at the same
distance from water as with 1852 Hz and nTI = 2, but on both sides of water instead
of only on one side. The settings with only 1852 Hz spectral bandwidth also caused the
lipids to alias to the downfield regions.
To show the problem that is caused by the lipids aliasing to the downfield side of water,
a comparison of spectra with the full spectral range for the Cartesian and CONCEPT
sequence is shown.

Further measurements for comparing spirals, 2D-CAIPIRINHA and CONCEPT with
the refined settings will be performed in the future with several volunteers. Here, the
measurement of only one volunteer with the old and the refined settings, and only with
CONCEPT, has to suffice to show that the refined settings improved the data quality.

MUSICAL Pre-scan MRSI Scan Next RepetitionWater Suppression

Figure 4.5: Sequence diagram showing the MUSICAL pre-scan, the water suppression module,
and the MRSI scan of the CONCEPT sequence. From top to bottom, the RF pulses,
analog-to-digital converter data acquisition, and x-, y-, and z-gradients are shown. The
MUSICAL pre-scan is the same as the actual MRSI scan, but before water suppression,
with a smaller flip angle, and with fewer spectral points (circumnavigation of the circle).
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4.4 Results

4.4.1 Implementation of CONCEPT

The MUSICAL pre-scan modules are indicated in fig. 4.5. In fig. 4.6, the three parts of
the CONCEPT implementation, pre-winder, circumnavigations of the circles, and ramp
down are shown in more detail. Images of a phantom showing the MUSICAL pre-scan
and the normal MRSI scan, also without water suppression, are shown in fig. 4.7. The
magnitude as well as the phase of the two datasets look very similar, except of different
SNRs and a global scaling factor between the two magnitude images, stemming from
different flip angles. This proves that MUSICAL is very well suited to provide good coil
combination weights, as one gold standard for coil combination in MRSI is to measure
the same MRSI data without water suppression, and using these additional data as
weights.

4.4.2 Theoretical Comparison of Spirals, EPSI and CONCEPT

The quality factors of EPSI, spirals, and CONCEPT are shown in table 4.1 for the
different simulated settings. For CONCEPT, the quality factor is given if a uniform k-
space density is desired, as well as if a Hamming weighted k-space density is requested.
In table 4.2, the acceleration factors are shown for EPSI, spirals, and CONCEPT for
the same settings. The acceleration is calculated with elliptical phase encoding as the
reference.

4.4.3 In-Vivo Comparison of Spirals, 2D-CAIPIRINHA and CONCEPT

In fig. 4.8, the metabolic maps of tNAA, tCho, and Glx are shown for 2D-CAIPIRINHA,
Spiral, CONCEPT with a 48 × 48 matrix size, and CONCEPT with a 64 × 64 matrix
size. The 2D-CAIPIRINHA maps clearly look best and show most anatomical details.
Spiral seems to have more artifacts than the other methods.
Fig. 4.9 shows the CRLB maps of Glx for the same methods. Again, 2D-CAIPIRINHA
has the lowest values, and spiral the highest.
In fig. 4.10, spectra fitted by LCModel at the positions indicated by arrows in fig. 4.9
are shown. This figure shows the problem of the spiral and CONCEPT sequences: The
baseline, as fitted by LCModel, is very curved. Using a higher resolution improved the
baseline in CONCEPT. Also, if the spectra were shifted before regridding, causing the
main lipid peak not to alias, often improved the baseline (not shown). The baseline dis-
tortions are partly caused by a lipid sidelobe at −3.4 ppm, which aliases between tNAA
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Part 1b
(Pre-winder)

Part 1a
(Pre-winder)

Part 2
(Circles)

Part 3
(Ramp Down)

...

Figure 4.6: Diagram of the CONCEPT sequence showing the three parts of the gradient tra-
jectory. The first part brings the current k-space location to the desired radius (part 1a),
and accelerates tangentially (part 1b) for acquiring the necessary angular velocity so that
one circle circumnavigation can be performed within the time dTSpectral/nTI. Part 2 are
all circumnavigations of the circle. In part 3, the gradients are ramped down to zero.

and tCr for the used spectral bandwidth. In contrast, the spectra of 2D-CAIPIRINHA
are quite flat.

The SNRs (median ± mad) as reported by LCModel were 16.0±1.8, 9.0±1.6, 13.0±2.3,
13.0±2.8 for 2D-CAIPIRINHA, spirals, CONCEPT 48 × 48, and CONCEPT 64 × 64,
respectively. The Glx CRLB values (median ± mad) were 5.0±1.0, 9.0±2.0, 6.0±1.7
and 6.0±1.8, for the same methods.
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ΩTotal
EPSI [%] ΩTotal

Spiral [%] ΩTotal
Concept,Uni [%] ΩTotal

Concept,Hamm [%]

32× 32
1230Hz, 2 TIs

97.2 93.5 86.6 114.9

32× 32
2778Hz, 3 TIs

93.0 89.4 86.6 114.9

64× 64
1230Hz, 2 TIs

94.0 90.2 86.6 114.9

64× 64
2778Hz, 3 TIs

79.1 83.0 86.6 114.9

100× 100
1230Hz, 2 TIs

89.3 87.0 86.6 114.9

100× 100
2778Hz, 3 TIs

- 75.3 86.6 114.9

Table 4.1: Theoretical quality factors of the different SSE methods with respect to elliptical
phase encoded MRSI for different measurement parameters. The 1230Hz correspond to
10 ppm at a 3T-scanner, while the 2778Hz correspond to 9.3 ppm at a 7T scanner. The
100 × 100 resolution and 2778Hz with 3 temporal interleaves is not possible to achieve
with EPSI. The quality factor for CONCEPT is given for a uniform target density and
a Hamming weighted target density, in both cases in comparison to a uniform density
as gold standard. For spiral and EPSI, the Hamming target density is the same as the
uniform target density, because the k-spaces of spiral and EPSI, as well as of the gold
standard, are uniform.
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Figure 4.7: Magnitude and phase images of one channel of the MRSI data without water
suppression, and the MUSICAL pre-scan. In both cases, the fifth FID point was used.
The phantom was filled with silicone oil. Both data sets were gridded to a Cartesian k-
space and Fourier transformed. The images look very much alike, except of different SNRs
and a global scaling factor. Thus, the MUSICAL pre-scan can be assumed to provide good
coil combination weights.

4.4.4 Refined Setting

To show the problem of the curved baseline and the aliased lipid sideband, a comparison
of the full spectral range between the Cartesian sequence and CONCEPT for a voxel
close to the skull is shown in fig. 4.11. In case of the CONCEPT sequence, the lipid
aliases from 1.3 ppm to 7.5 ppm. This seems to strongly deteriorate the baseline of
the spectrum, even in the metabolite range of 1.5 − 4.0 ppm. Additionally, the lipid
sideband around 2.85 ppm is visible. The aliased lipid peak is much higher than for the
Cartesian data. One reason for that is that due to the aliasing, a wrong frequency is
assigned to the lipid peak, which causes a wrong reconstruction before regridding. As
a result, the aliased lipid signal is spread over the whole slice. A comparison between

88



4.4 Results

REPSI [ ] RSpiral [ ] RCONCEPT [ ]

32× 32
1230Hz, 2 TIs

11.1 23.6 22.2

32× 32
2778Hz, 3 TIs

7.4 15.8 14.8

64× 64
1230Hz, 2 TIs

23.4 48.4 46.9

64× 64
2778Hz, 3 TIs

15.6 32.3 31.3

100× 100
1230Hz, 2 TIs

37.6 76.8 75.3

100× 100
2778Hz, 3 TIs

- 51.2 50.2

Table 4.2: Theoretical acceleration factors with respect to elliptical phase encoded MRSI of the
different SSE methods for different measurement parameters. The 1230Hz correspond to
10 ppm at a 3T-scanner, while the 2778Hz correspond to 9.3 ppm at a 7T scanner. The
100 × 100 resolution and 2778Hz with 3 temporal interleaves is not possible to achieve
with EPSI.

the metabolic maps of tNAA, tCho, and Glx from CONCEPT with the old settings,
1852 Hz, nTI = 2, and the refined settings, 2778 Hz, nTI = 3 is shown in fig. 4.12.
Spectra from the positions indicated by red arrows in the T1-weighted image of fig. 4.12
are shown in fig. 4.13. Increasing the spectral bandwidth clearly reduced the curviness
of the baseline spectra, and thus improved the metabolic map quality, especially of the
tCr map. With nTI = 2, a lipid sideband artifact is present at the locations indicated
by arrows in fig. 4.13, which aliases from −3.4 ppm to frequencies between tNAA and
tCr.
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4 Accelerated MRSI via Spatio-Spectral Encoding

2D-CAIPIRINHA 48x48 CONCEPT 64x64CONCEPT 48x48Spiral 48x48

tNAA

Glx

tCho

Figure 4.8: Metabolic maps of tNAA, tCho and Glx for the four compared methods, 2D-CAIPI-
RINHA, spirals, CONCEPT 48 × 48, and CONCEPT 64 × 64. 2D-CAIPIRINHA shows
most anatomical details, while spirals show the least. The reason for the poor quality
of the spiral and CONCEPT maps are the lipid aliasing to the downfield side of water
as shown in fig. 4.11, and the lipid sideband aliasing to 2.85 ppm as shown by fig. 4.13,
both due to the low spectral bandwidth. These problems were overcome with the refined
settings.
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2D-CAIPIRINHA 48x48 CONCEPT 64x64CONCEPT 48x48Spiral 48x48

T1w

CRLB
Glx

CRLB
tCho

Spec #2

Spec #1

0

15

Figure 4.9: A T1-weighted image of the same slice as the Glx CRLB maps for 2D-CAIPI-
RINHA, spirals, CONCEPT 48 × 48, and CONCEPT 64 × 64 as provided by LCModel.
2D-CAIPIRINHA provides the lowest values, while the spiral has the highest.

2D-CAIPIRINHA 48x48 Concept 48x48 Concept 64x64
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Chemical Shift (ppm)
  4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0   

Chemical Shift (ppm)
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Chemical Shift (ppm)
  4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0   

#2

Spiral 48x48

Figure 4.10: Spectra as provided by LCModel from the positions indicated by the red arrows
in fig. 4.9. The baseline of spiral and CONCEPT data is very curved, which is why the
metabolic maps in fig. 4.8 are of quite low quality. The reason for the curved baseline is
the low spectral bandwidth of only 1852 Hz. This issue was fixed with the refined settings.
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Figure 4.11: Comparison of the whole spectral range between the Cartesian and the CONCEPT
sequence of the same voxel. Due to the narrow spectral range of the CONCEPT sequence,
the lipid signals at 1.3 ppm alias to 7.5 ppm. This causes the aliased lipid signal to spread
over the whole slice, which explains why this signal is so much higher in the CONCEPT
spectrum in comparison to the Cartesian spectrum. For an unknown reason, this also
seems to strongly distort the whole baseline. In addition, the lipid sideband artifact is
visible around 2.85 ppm in the CONCEPT spectrum.

T1w

CONCEPT nTI=3

CONCEPT nTI=2

tNAA tCrtCho

Spec #1

Spec #2

Figure 4.12: Metabolic maps of CONCEPT with the old settings, BWSpectral = 1852 Hz,
nTI = 2, and the refined settings with BWSpectral = 2778 Hz, nTI = 3. The new settings
improved the metabolic maps, especially of tCr.
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4.5 Discussion

4.5.1 Finding a Well-Suited Trajectory

CONCEPT nTI = 2

#1

#2

CONCEPT nTI = 3

Chemical Shift (ppm)
  4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0   

Chemical Shift (ppm)
  4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0   

        

Chemical Shift (ppm)
  4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0           

Chemical Shift (ppm)
  4.2     4.0     3.8     3.6     3.4     3.2     3.0     2.8     2.6     2.4     2.2     2.0   

Figure 4.13: Spectral comparison of the old settings and the refined settings of the voxels
indicated by red arrows in fig. 4.12. The increased bandwidth reduced the lipid artifacts
which are present in the old settings (nTI = 2), as indicated by black arrows.

A trajectory was found which suited our needs, i.e. high spectral bandwidths per
temporal interleaf, necessary due to the high magnetic field, and small voxel sizes of
. 3.4 × 3.4 mm2. EPSI, radial EPSI, and spirals did not fulfill our needs because of
too low acceleration factors or too low quality factors. Rosettes and CONCEPT were
both suitable, but CONCEPT was chosen due to its rather easy adaption to any target
k-space density and its natural k-space density of 1/kr closer to a Hamming filter.

The requirement of the trajectory to be closed is a distinct difference to conventional
MRI, where the trajectory has to be traversed only once, whereas in MRSI the trajectory
has to be traversed 500−2000 times for acquiring spectral information. Therefore, most
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4 Accelerated MRSI via Spatio-Spectral Encoding

trajectories that are excellently suited for MRI are suboptimal in MRSI, such as EPSI
or spirals. The penalty on ΩTotal stemming from a non-closed trajectory increases with
the acquired k-space extent (equivalent to high resolutions), and with shorter durations
for one repetition of the trajectory (equivalent to the inverse of the spectral bandwidth
per temporal interleaf). Thus, at lower magnetic fields or lower resolutions, ΩTotal can
be easily in the range of 0.90-0.99 even for non-closed trajectories. In such situations, it
is of course not important to use a closed trajectory.

4.5.2 Implementation of CONCEPT

The CONCEPT gradient waveforms were sucessfully implemented into an FID-sequence,
including MUSICAL. The MUSICAL pre-scan can be assumed to provide very good coil
combination weights, since it matches very well with the non-water suppressed MRSI
data.

4.5.3 Theoretical Comparison of Spirals, EPSI and CONCEPT

For low resolutions or small spectral bandwidths, the quality factor of spirals and EPSI
are close to 100 %. However, for the target setting, 64 × 64, 2778 Hz, nTI = 3, the
quality factors drop already to 79.1 and 83.0 % for EPSI and spiral, respectively. If a
flat k-space density is desired, CONCEPT is barely more efficient with 86.6 %. Yet, if
a Hamming density is desired, the quality factor of CONCEPT rises to 114.9 %, which
means CONCEPT is even more efficient than conventional phase-encoded MRSI with a
uniform k-space density. Of course, conventional, phase encoded MRSI can also be mea-
sured to match any target filter, e.g. by changing the distance between k-space points
depending on the k-space position (re-gridding of the k-space points is then necessary,
as the points do no longer lie on a Cartesian grid), or to approximate the target filter
by acquisition weighting (68). However, these options would require enormous measure-
ment times in the order of several hours for one slice with a matrix size of 64 × 64. If
calculating the quality factors with a phase encoded MRSI sequence having a Hamming
weighted k-space density as the gold standard, the quality factor of CONCEPT would
drop to ΩHammTarget ≈ 91.72%, while the other methods such as EPSI and spirals would
also drop by another factor of ≈ 79.85%, as calculated in the theory section. Yet, I de-
cided to calculate the quality factor of CONCEPT, ΩHammTarget, with a uniform, phase
encoded MRSI as a reference. I think this is justified by the impracticability of phase
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encoded MRSI with a Hamming k-space density due to the very long measurement times.

The acceleration factors are especially low for the EPSI sequence, reaching its maximum
of 38 for a 100×100 matrix. The acceleration of spirals and CONCEPT are very similar.
Spirals could in principle accelerate much more, if the requirement of the spiral turns
per spatial interleaves being one, n = 1, would be relaxed. However, this would cause
the number of temporal interleaves to increase in the settings of matrix sizes ≥ 64, and
BWSpectral ≥ 2778, and would thus be not practical.
Although the accelerations of spirals and CONCEPT are on the lower end of the accept-
able range for the target settings (matrix size of 64× 64, BWSpectral = 2778, nTI = 3),
3D-encoding is feasible. As an example, assuming a TR of 0.6 s, a matrix size of
50 × 50 × 50, nTI = 2, BWSpectral = 2778 Hz, and 3D-elliptical encoding, CONCEPT
has an acceleration factor of 31 with respect to a conventional, 3D-elliptically phase
encoded MRSI sequence. The resulting measurement time is 18.4 minutes. 3D-elliptical
encoding means that the number of circles decreases with the distance from the k-space
center in z-direction. Although this might be slightly too long for in-vivo measurement
of patients in clinical routine, the time can be reduced to 9 minutes by either decreasing
the TR to 0.3 s, or by PI with an acceleration factor of only 2.

4.5.4 In-Vivo Comparison of Spirals, 2D-CAIPIRINHA and CONCEPT

The actual spiral trajectory consisted of 42 % rewinders, in contrast to the theoretical
prediction of 31 %. Therefore, the quality factor was reduced to ΩAcqEff

Spiral =
√

1− 0.42 ≈
76%. The SNR ratio to 2D-CAIPIRINHA was 9.0/16.0 ≈ 56%. The most likely explana-
tion of this difference is the bad fitting quality caused by strongly curved baselines. The
same reason might explain why CONCEPT does not reach its 115 % as predicted, but
rather has a poor SNR ratio of 13.0/16.0 ≈ 81% with respect to 2D-CAIPIRINHA. This
is further indicated by the fact that the 64× 64 CONCEPT and the 48× 48 CONCEPT
have the same median SNR, although a decrease by a factor of

√
6m20s
8m20s ·

64·64
48·48 ≈ 1.55 is

expected.

In addition to the higher quality factor, CONCEPT can also be used with resolutions of
200/64×200/64 mm2 or up to 200/106×200/106 mm2, while spiral even cannot achieve
200/64× 200/64 mm2 with the used spiral source code (with the idealized spirals of the
theory section, it is possible, however). High resolutions seem to improve the curved
baseline and the Glx map.
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4.5.5 Refined Setting

Increasing the spectral bandwidth from 1852 to 2778 Hz improved the spectral quality
by reducing the curviness of the baseline and by getting rid of the aliased lipid sideband
between tNAA and tCr. Choosing a bandwidth of 1852 Hz results in an acquired spectral
range of 1.6-7.8 ppm, if centered around water. The main lipid peaks fold in to the
downfield (high ppms) side of the spectrum. Although this of course is artifactual, it
should not pose any problem, since the downfield side of water is usually not fitted in
1H-MRS. Nevertheless, the baseline often improved drastically, if the spectra were not
centered around water, and the lipids were thus prevented from aliasing. The reason for
this is unknown. The aliasing of lipids is illustrated in fig. 4.11. An additional problem
causing the strong baseline distortion might be present even in the refined settings, as
the metabolic maps still do not look as good as the Cartesian maps accelerated with
2D-CAIPIRINHA. Reasons could be an inaccurate density compensation, which would
deteriorate the PSF, a mismatch between the theoretical and actually measured k-space
trajectory, Eddy currents, or a problem in the gridding of the data.
Nevertheless, with the refined settings, SSE, especially CONCEPT was shown to have
a high potential to be used as an alternative to phase encoded MRSI with PI.

4.5.6 Comparison to Literature

So far, only one article has been published in a peer-reviewed journal using a 1H-MRS
SSE method at 7T for in-vivo measurements of human brains (69). In this work, EPSI is
used with a gradient insert with stronger gradients (maximum amplitude 80 mT/m in-
stead of 40 mT/m) and relaxed safety constraints (slew rate of 600 mT/m/ms instead of
the usual 200 mT/m/ms). This is feasible due to a dedicated head-only gradient system
causing less peripheral nerve stimulation, because the gradient coils are very short. The
spectral bandwidth was only 1380 Hz and the spatial resolution was only 10 × 10 mm2.
Why they did not have problems with such low spectral bandwidths as shown here is
not known. Therefore, the used settings were less challenging for the sequence than in
our case.

Furthermore, three abstracts using EPSI, rosette and CONCEPT trajectories were pre-
sented at a conference (70–72). The quality factor of the EPSI sequence of the first
abstract was presumably low, because the in-plane resolution was 5.6× 5.6 mm2 with a
spectral bandwidth of 2466 Hz, although it was not stated. For the rosette and CON-
CEPT sequences, the resolutions were only 10×10 mm2 and 8.3×8.3 mm2, respectively.
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Only with the rosette trajectory, a J-refocused acquisition was additionally acquired with
a resolution of 4 × 4 mm2, however with five temporal interleaves. Again, the settings
were less challenging on the sequence than our settings.

At lower magnetic fields, several different SSE methods were successfully used in MRSI.
The most used sequence is EPSI (56–59), followed by spirals (60, 61), CONCEPT (5, 63),
and rosettes (62, 73). Some other trajectories were proposed, but are rarely used (74, 75).
In comparison to 7T, SSE at lower fields is less demanding due to the usually lower
spectral bandwidths.

4.5.7 Comparison to Parallel Imaging

SSE methods provide higher acceleration factors in comparison to PI. This is no issue as
long as 2D phase encoding with 1-8 slices is used, but the acceleration of PI is too low
for ultra-high resolution 3D phase encoding applications. Furthermore, SSE methods
do not have the problem that lipid signal is spatially aliased to central regions of the
brain. As shown in this work, lipids can nevertheless be problematic, if the spectral
bandwidth is too narrow. One disadvantage of SSE methods is the high stress on the
gradient coils. This can cause frequency drifts and thus broadened spectral resonances,
and Eddy currents. Eddy currents are one reason for a mismatch between the actual
trajectory, and the theoretical, intended one.
The SSE methods used in this work were shown to result in worse spectra and metabolic
maps. However, this is most probably not due to a fundamental, unchangeable reason,
but is caused by a not yet considered artifact or reconstruction problem.

4.5.8 Outlook

CONCEPT can be tuned to have a Hamming k-space density, or if not enough time is
available for acquiring those extra circles, the k-space density can be approximated to a
Hamming filter. It further has a high enough acceleration factor to enable 3D-encoding,
especially if combined with PI.
Therefore, the next steps will be to implement an algorithm into the CONCEPT sequence
for adjusting the k-space density to different target densities. This can be achieved
by varying the distance between consecutive circles. After that, 3D-encoding will be
implemented into the sequence for improved coverage of the brain. This will be combined
with a 3-dimensional elliptical filter, i.e. the maximum circle radii decrease with larger
distances from the k-space center in the z-direction. As a result, only a sphere in the
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three-dimensional k-space is measured. With that, clincally acceptable measurement
times for 3D-encoding are feasible. Finally, approximating a target k-space density in
all three dimensions could be implemented in a way that the steps between consecutive
radii are varied together with the steps in kz, which could be more efficient than varying
both independently to approximate the given target density.
After all these changes, patients will be measured with the CONCEPT sequence in
clinical studies to prove its feasibility in clinical routine.

98



5 Automatic Reconstruction Pipeline for
MRSI

5.1 Motivation

Three facts motivated the programming of an own reconstruction pipeline for MRSI:
First, at Siemens MR scanners (e.g. our Magnetom scanner), only MRSI data with a
maximum matrix size of 32× 32 can be displayed. Yet, our group is aiming for high and
ultra-high resolution MRSI up to matrix sizes of 100× 100. Therefore, most of our data
can not be displayed at the scanner. Second, the fitting of MR spectra is very limited
with the vendor provided fitting software. Therefore, the data has to be fitted offline
anyway. Third, the implementation of image reconstructions directly on the scanner
(so called “Image Calculation Environment (ICE) programs”) is quite complicated and
cumbersome, since contemporary C++ libraries can not be included easily due to the
outdated C++ standard of ICE. As the fitting and display of the MRSI data had to
be done offline anyway, and MATLAB programs are much faster to program, our own
reconstruction pipeline for MRSI data was developed.
The need for an automatic pipeline stems from the fact that high resolution MRSI data
without any Volume of Interest (VoI)-selection results in a very large number of spectra,
in the order of thousands. Such amounts of data cannot be handled manually.

This pipeline should perform three major tasks: The MRSI data have to be pre-processed
(PI reconstruction, coil combination, filtering, lipid removal), the LCModel fitting has
to be started including an efficient way to control the fitting, and the fitting results have
to be summarized and put into the right format for visualization.

The work described in this chapter is based on scripts written by Wolfgang Bogner,
was extended during my diploma thesis, and has been further developed and adapted
to our needs subsequently. The second part of the pipeline was partly programmed by
my colleague Michal Považan. The whole reconstruction pipeline was presented by him
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at the ISMRM 2015 in Toronto. The reconstruction pipeline is open-source, and was
provided to three other sites.

5.2 Methods

In the following section, the MRSI reconstruction pipeline will be described. Most of the
code was written as MATLAB scripts and functions, but these scripts and some other
programs are called from BASH scripts. The reconstruction pipeline was developed for
Ubuntu 12.04.3, uses BASH, and the programs Medical Image NetCDF (MINC), MAT-
LAB, BET2 of the FMRIB Software Library (FSL) package, and LCModel. The pipeline
is divided into two parts: Part 1 does everything before, and including LCModel, while
part two performs the post-processing. Both parts can be called independently. There-
fore, if an error occurs in part 2 due to wrong input parameters, only part 2 has to be
repeated. Both parts are BASH scripts, which can be called with certain input param-
eters such as input paths (MRSI data, T1-weighted images, etc.), or other parameters
controlling the process. These scripts call the appropriate tools and MATLAB scripts
with the user-provided input parameters. Flowcharts of part 1 and 2 are provided in
figs. 5.1 and 5.2.

5.2.1 Part 1: Pre-Processing & LCModel Fitting

Housekeeping

In the beginning of part 1, some housekeeping has to be performed. A temporary folder
is created for storing intermediate files. The input parameters are logged in a log file as
well as all the other text output of the script (e.g. if an error occurs). The user-provided
input parameters are read in, and checked for consistency. These parameters are written
to a file so that MATLAB can use the same parameters. This is all done in BASH.

MINC Template & Brain Mask

After the housekeeping, the next subtask is to create a MINC template file. The MINC
template saves some information such as the slice position, slice angulation, slice thick-
ness, number of slices etc. in a small MINC file. It is used for making the process of
converting raw data files to minc files as simple as possible. This process is mostly done
in MATLAB. After the template construction, a brain mask is created, which marks
voxels inside the brain with 1s, and voxels outside with 0s. The brain mask is created by
applying the BET2 algorithm of the FSL package on a T1-weighted image, which has to

100



5.2 Methods

MRSI Data
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Noise Prewhitening Simulated Noise

Parallel Imaging Reco
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Noise DataPre-scan Data

LCModel Fitting

MPRAGE Data

Brain Mask

Input
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(ssh)

Figure 5.1: Flowchart of part 1. The BET2 program of the FSL package is used for creating
a brain mask from the MPRAGE data. MRSI, pre-scan, and noise data are read in by
the program. The pre-scan and MRSI data are noise pre-whitened with the aid of the
noise data, and simulated noise is created. A PI reconstruction and coil combination is
performed on the MRSI and simulated noise data using the pre-scan data. Next, the noise
and MRSI data are filtered, e.g. with a spatial Hamming filter, and the noise data are
written to a file for later usage. The voxels within the brain mask are fitted with LCModel.

be measured in addition to the MRSI data with an MPRAGE or MP2RAGE sequence.
The resulting brain mask is then resampled to the same slice position and resolution as
the MINC template. This process is mostly done in BASH.
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Figure 5.2: Flowchart of part 2. From the spectra fitted by LCModel (part 1), stack of spectra
images are created if demanded by the user. The spectra are further used to create
metabolic maps. The scaled noise, the spectra, and the metabolic maps are used to create
different SNR maps with different methods, depending on the user input. The metabolic
maps are additionally used for creating synthetic maps and metabolic ratio maps. Using
the MPRAGE input data, a non-linear registration can be performed on all maps, e.g. for
longitudinal studies. From the same data, tissue segmentation can be performed, which
is used for absolute quantification. This last part has not been fully implemented yet.

Read-In of Data

Next, the MATLAB script “MRSI_Reconstruction.m” is called. In this script, all major
reconstruction steps are performed. First, the MRSI data are read in. If provided, the
external GRE images, the brain mask, and some noise data for noise decorrelation are
read in. In case of an MRSI sequence including such pre-scans, they are read in together
with the MRSI data with the function “read_csi”. Because the ICE program weights
the data of the individual AC channels according to the method of Brown et al. (9),
even when not performing a coil combination, the MRSI data has to be read in in the
“Siemens raw data format” in some cases. Therefore, the function can read in both, the
standard Digital Imaging and Communications in Medicine (DICOM) file format, and
the raw data format, and automatically chooses the correct sub-function for reading in
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the data. Right after the read in, the GRE and MRSI data are noise decorrelated using
the pre-whitening algorithm, if noise data are available.
Accompanying the read in of the data, an array comprising simulated noise with standard
deviation 1 and mean 0 is created. The size of the array is the same as the MRSI data,
except that the vector size is smaller. Since the MRSI data are pre-whitened, their noise
also has standard deviation 1 and mean 0. If all reconstruction steps are performed
exactly the same on the simulated noise as on the MRSI data, the simulated noise is
an accurate representation of the noise in the MRSI data, and can thus be used for
calculating the noise part in the signal to noise ratio. This method is called pseudo
multiple replica method (76). In its original implementation, simulated noise was added
to the raw, pre-whitened input data, the data were reconstructed, and this process was
repeated several hundred times. By calculating the mean of all these reconstructions,
the signal can be estimated, and the noise by calculating the standard deviation. Finally,
this results in the signal to noise ratio. In my adapted version, the noise is not added to
the MRSI data, because fitting every spectrum of a data set several hundred times with
LCModel is very time consuming. Instead, the very same reconstruction is done on the
MRSI and noise data. At the end, the standard deviation of the noise can be calculated,
and the signal can be estimated by using the concentration of tNAA as estimated by
LCModel.

Parallel Imaging

Next, a GRAPPA based PI reconstruction is performed on the k-space data of the MRSI
and noise data. Because this part is lengthy, it is performed in its own MATLAB script,
“ParallelImagingSimReco.m”, which is called by “MRSI_Reconstruction.m”.
In this script, the first step is to define the ACS data. In case of slice-PI, an additional
ACS data set is necessary, and is created by FoV-shifting and summing the slices of the
original ACS data. If PI should be simulated, although a full data set was acquired, the
MRSI slices are summed and some of the k-space points are set to zero according to the
used PI pattern.
Finally, a 2D-CAIPIRINHA reconstruction followed by a 1D-CAIPIRINHA reconstruc-
tion is performed with the MATLAB functions “opencaipirinha_MRSI” and “openslice-
caipirinha_MRSI”, respectively. The data are Fourier transformed, and some images
for logging, and quality assurance are created before returning back to the main script,
“MRSI_Reconstruction.m”.
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Coil Combination

The next pre-processing part is the coil combination. The coil combination weights are
defined depending on the available input data: If a GRE pre-scan of the AC as well as
of the VC is available, the sensitivity map, eq. (2.4) of chapter 2, is used as weights. If
only the AC pre-scan is available, the MUSICAL weights are used according to eq. (2.5).
If no GRE pre-scan is available, the Brown weights are used according to eq. (2.3).
The scaling factor λ is then calculated from the weights, see eq. (2.2). Lastly, the
coil combination is performed by multiplying with the weights, summing all channels of
the data, and scaling them with the scaling factor. The same is applied to the noise data.

Lipid Decontamination

After the coil combination, lipid decontamination is performed, if requested by the user
via an input parameter. Two different methods are available: An iterative reconstruc-
tion using an L1-norm (51), and a direct (non-iterative) reconstruction using an L2-norm
(77). The user can specify the strength of the lipid decontamination with an input pa-
rameter, in case of the L1-regularization the number of iterations, and in case of the
L2-regularization a regularization parameter which weights the cost function term in
comparison to the data consistency term.

Both methods exploit the fact that lipid spectra are almost orthogonal to metabolite
spectra in the spatial and frequency domains, S(~rLip, ωLip)·S(~rMet, ωMet) ≈ 0. In words:
At spatial locations where lipids are, there are almost no metabolites and vice versa,
and at spectral frequencies where lipids are, there are no metabolites and vice versa.
Therefore, we can define a “lipid-only” region from the subcutaneous lipids surrounding
the brain, take the spectra from there, and minimize the function

SBilgic = argminS{||F (S)− y||22 + β
∑

i∈BrainMask

||L∗ · Si||22} (5.1)

where S is the signal, F is the Fourier transform operator, y := F (Sorig), Sorig is the un-
corrected original signal, β is a parameter weighting the cost, and L is the set of spectra
containing only lipids. L is of size P ×Q, where P is the number of lipid voxels, and Q
is the number of spectral points. * is the complex conjugate operator, and || · ||2 is the
L2-norm over all voxels and all frequencies. The term L∗ · Si calculates the dot-product
between all P lipid spectra with the i’th brain spectrum, which is thus of size Q×1. The
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first term of eq. (5.1) ensures data consistency, and the second term represents the cost
function, penalizing reconstructions with high dot products between the lipid spectra,
and the brain spectra. The L1-regularization is performed likewise.

The MATLAB functions for the regularized reconstruction were provided by Berkin Bil-
gic, and were slightly adapted for our purpose. The lipid mask is created using the
scaling factor λ from the coil combination part, and the corresponding regularization
function (L1 or L2) is called from the main script. Recently, my colleague Philipp Moser
generalized the computation of the lipid mask for cases when no coil combination is
performed (and therefore λ is not available).

OuterProduct, FilterWidth = 100%

Radial, FilterWidth = 70% OuterProduct, FilterWidth = 70%

Radial, FilterWidth = 100%

Figure 5.3: Different Hamming filters. The left filters are calculated as radial filters, i.e. a
one dimensional Hamming filter is created and rotated around the axis perpendicular to
the image plane. The right filters, in contrary, are created by taking the outer product
between a one dimensional Hamming filter along the x-axis, and another one along the
y-axis. These filters are therefore more rectangular. Another option is to apply the filters
only to a certain degree as in the lower two filters, where the central parts are set to 1s,
and the actual filter only starts from a certain distance from the center.

Filtering

Before the data are sent to LCModel, some filters are applied to the MRSI and noise
data, if demanded by the user via input parameters. A spatial Hamming filter can be
applied to the k-space data to improve the PSF. This filter can be applied in a “radial”
definition, or defined as an outer product. Furthermore, the filter can be applied only to
a certain degree, by setting a fixed percentage of the inner part to 1s, and then starting
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with the normal filter. Different examples are shown in fig. 5.3.

A simple exponential filter can be applied on the FID of each voxel. The filter can be
used as an exponential decaying function in time to increase the SNR at the cost of also
broadening the spectral linewidth, or as an exponential increasing function in time for
decreasing the linewdith at the cost of reducing the SNR.

Finally, a first order phase correction can be done. Since our group often acquires the
FID directly, without any spin echo, the spectra have a first order phase error. This
phase causes different spectral peaks to have a different phase, as shown in fig. 5.4. The
correction simply applies the opposite phase to the spectrum according to eq. (5.2):

SCorr(x, y, z, ω) = SOrig(x, y, z, ω) · e−2πi·TAD·ω (5.2)

where SCorr(x, y, z, ω) is the corrected MRSI data set of voxel (x, y, z) and frequency ω,
SOrig is the original, uncorrected data, and TAD is the acquisition delay.

Figure 5.4: The effect of first order phase correction. If no phase correction is performed, the
tNAA peak looks upwards, while the tCr and tCho peaks look downwards due to a phase
linear with the frequency. The phase correction can cancel this effect, but often causes a
curved baseline in the spectrum (not shown). Reprinted from: (3).

Performing such a correction results in a curved baseline in the spectrum. Although
LCModel can handle this by subtracting an uneven baseline, the fitting might be slightly
disturbed. Therefore, this option is mainly used for display purposes, e.g. for articles.
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The standard processing is to not correct for the first order phase error, and apply the
same error on the LCModel basis set spectra (15, 24).

LCModel Fitting

The last step of part 1 is to perform the LCModel fitting of the spectra. At the end
of “MRSI_Reconstruction.m”, the function “Write_LCM_files” is called, which writes
two files for each voxel inside brain mask: A file containing the spectrum in raw format,
and a file controlling the LCModel fitting (“control-file”). The content of this control-file
is determined by a file which can be passed to the reconstruction pipeline via an input
parameter. Therefore, the user can control the LCModel fitting by changing variables
in this file.
Furthermore, the MATLAB function writes a number of BASH files, which contain noth-
ing else than a list of calls to LCModel to process one specific spectrum, and an echo
command to show how many percentages of the spectra are already processed. The
number of these files determines the number of used CPU cores for the LCModel fitting.

After all these files are created, the MATLAB script “MRSI_Reconstruction.m” ends,
and the calling BASH script connects to the server where LCModel is installed via Secure
Shell (SSH). On this computer, all the fitting is started on several CPU cores in parallel.
When all the fitting is finished, the script of part 1 ends, a log-file is written and some
small housekeeping tasks are performed again.

5.2.2 Part 2: Post-Processing

In the second part, all the post-processing after the LCModel fitting is performed. This
includes creating metabolic maps in MINC format, calculating the SNR, calculating
different tissue contributions (gray matter, White Matter (WM), cerebrospinal fluid) for
absolute quantification, and a non-linear registration for comparison in longitudinal and
cross-sectional studies.

Housekeeping

In the beginning of part 2, some housekeeping is again performed: The output folders
have to be created, the logging of the text output has to be started, and the input
variables have to be written into a file for MATLAB usage.
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Metabolic Maps

Next, the results of LCModel are read in by a MATLAB script. The metabolic ratio
maps, interpolated maps, maps with excluded outliers, and maps where outliers and
voxels not passing certain quality assurance criteria are calculated. Furthermore, some
synthetic maps are calculated. These are linear combinations of metabolic maps as
suggested by Hagberg et al. They were found by an orthonormal discriminant vector
analysis of all metabolites to explain the differences between healthy volunteers, and
high and low grade glioma patients (78). Two such synthetic maps were calculated as
follows:

ODV 1 = 0.4232 · tNAA/tCr − 0.3116 ·Glx/tCr − 0.3116 ·MM/tCr−

0.6605 · tCho/tCr − 0.5348 · Ins/tCr
(5.3)

ODV 2 = 0.4422 · tNAA/tCr − 0.3909 ·Glx/tCr − 0.3909 ·MM/tCr+

0.7321 · tCho/tCr − 0.3317 · Ins/tCr
(5.4)

where MM are the macromolecules. The lipid ratios had to be excluded, because the
quantification of lipids is unreliable with our methods, and would be strongly biased if
lipid decontamination is done. Additionally, an own principal component analysis was
used on our tumor and MS patients. The two eigenvectors for explaining the metabolic
variations in the patients with the strongest contrast between healthy and tumor/lesion
tissue were chosen. These own synthetic maps are also created in this script.

Calculate SNR

In the main MATLAB script of part 2, the SNR is calculated. Three different methods
are used: Time SNR, spectral SNR, both calculated from the noise of part 1, and
SNR calculated with our own script. If noise-only data were available in part 1 of
the reconstruction pipeline, the spectral and temporal SNRs are calculated. For the
temporal SNR, the metabolic concentrations of tNAA as fitted by LCModel is used as
a signal, and the standard deviation of the time domain noise from part 1 is used as the
noise. The noise is further scaled with a constant factor to take into account any scaling
introduced by LCModel due to spectral integration.
For the spectral SNR, only a Fourier transform with corresponding scaling is performed
on the noise. The signal component of the SNR is estimated by reading in the spectral
plots of LCModel of all voxels, and calculating the maximum of this plot in the range
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between 1.9 − 2.1 ppm. If PI is used, a g-factor map is estimated with the following
formula:

g = SNRFull

SNRPI ·
√
R

= SignalFull/NoiseFull

SignalPI/NoisePI ·
√
R
≈ NoisePI

NoiseFull ·
√
R

(5.5)

where eq. (5.5) of chapter 3 is used, and the approximation of SignalFull ≈ SignalPI is
made.

The third algorithm for calculating the SNR is also performed in the spectral domain
by our own MATLAB script, but directly uses the tNAA signal and the noise of each
spectrum. The algorithm loops through all brain voxels, tries to find tNAA in each, and
calculates the maximum of tNAA for the signal estimation. For estimating the noise,
all peaks within a pre-defined spectral region are excluded. From the remaining spectral
region, the standard deviation is calculated. However, this approach proved to be prone
to errors, e.g. if lipid signal is close to tNAA.

At the end, all maps, including the metabolic maps, synthetic maps, and SNR maps are
written to files in a raw format, and are converted to MINC format using the MINC
template from part 1. This process is done in a BASH script.

Create Stack of Spectra

After creating the metabolic maps and calculating the SNR, another MATLAB script is
called from BASH. This script reads all the LCModel plots of the spectra, concatenates
plots within x-y-, x-z-, and y-z- planes, and saves all these projections in an image file.
This is useful to directly compare the spectral quality between different regions for low
matrix size data. For high matrix sizes, the spectra are usually squeezed too much to
see details. This script was written by Wolfgang Bogner, and was only slightly adapted
and implemented into our pipeline by me.

Calculate Tissue Contribution

In this step, the different contributions from gray matter, WM, and cerebrospinal fluid
to each MRSI voxel is estimated. This is necessary for estimating the absolute concen-
tration of metabolites. The metabolic concentration relative to water can be estimated
from an MRSI scan, and an MRSI scan without water suppression. In case of MUSICAL,
the scan without water suppression can be omitted. To translate this relative concen-
tration into an absolute concentration in mol/kg, the concentration of water has to be
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known. Each brain tissue type has roughly the same water concentration in different
brain regions, and for different humans. Yet the water concentration differs between
tissue types. Therefore, an estimate of the absolute metabolite concentration can be
derived if the contributions of the different tissue types to the MRSI voxels are known.

Technically, this process is achieved by segmenting the images of an MPRAGE or
MP2RAGE sequence into the different tissue types using FMRIB’s Automated Seg-
mentation Tool (FAST) of the FSL package. The resulting segmented images are then
convolved with the PSF of the MRSI data, and can be used in the process of absolute
quantification.
The segmentation part was written by my colleague, Michal Považan. The absolute
quantification is developed by Eva Heckova.

Non-linear registration

If the same patient or volunteer needs to be measured several times in a longitudi-
nal studies, and accurate changes between the time points need to be calculated, the
metabolic images have to be translated or rotated in order to exactly match. Also, if
several patients or volunteers are measured in a cross-sectional study, their metabolic
maps have to be transformed into a common space, in order to be able to search for
metabolic differences in certain brain regions. This is done by our pipeline with a non-
linear registration between the MPRAGE image and a so called brain atlas.
To improve the results of the non-linear registration, a linear registration is first per-
formed using the “bestlinreg_s2” method of the MINC toolkit. Then, a non-linear
registration is performed from the resulting image again to the brain atlas. The trans-
form for achieving these two registrations is then applied to all metabolic maps.
This part was programmed by Michal Považan.

5.2.3 Evaluation

The duration and the approximate memory usage of each substep of part 1 was estimated
when running the reconstruction pipeline on a server with 24 Intel R© Xeon R© 2.66 GHz
CPU cores and 94 GB RAM. This was tested on five input data sets:

1. 3D GABA-edited, 16 × 16 × 16 matrix size, vector size 512, AC, no lipid decon-
tamination, no PI, DICOM format

2. Single slice, 64× 64 matrix size, vector size 2048, VC, no PI, no lipid decontami-
nation, raw format
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3. Single slice, 64×64 matrix size, vector size 2048, AC, no PI, lipid decontamination
L1 with 10 iterations, raw format

4. Single slice, 64 × 64 matrix size, vector size 2048, AC, 2D-CAIPIRINHA with
RInP lane = 4 and RSlice = 2, lipid decontamination L2, raw format

5. Four slices, 64× 64 matrix size, vector size 2048, AC, (2+1)D-CAIPIRINHA, lipid
decontamination L2, raw format.

The durations of the different substeps of part 2 were also logged when running on the
same server. The memory usage was negligible, and is therefore not reported. The
following data sets were used as input:

1. 3D GABA-edited, 16 × 16 × 16 matrix size, 512 voxels inside brain, no SNR cal-
culated, stack of spectra images created

2. Single slice, 64 × 64 matrix size, 1566 voxels inside brain, spectral and temporal
SNR calculated, no stack of spectra images created

3. Single slice, 64 × 64 matrix size, 1566 voxels inside brain, spectral, temporal and
“own-script” SNR calculated, no stack of spectra images created

4. Four slices, 64 × 64 matrix size, 5588 voxels inside brain, spectral amd temporal
SNR calculated, no stack of spectra images created.

Several example outputs, such as stack of spectra, SNR maps or synthetic maps are
further shown for different data sets.

5.3 Results

The durations and memory usages per substep of part 1 are listed in tables 5.1 and 5.2.
The durations of part 2 are listed in table 5.3.
A g-factor map, and three SNR maps, from the pseudo replica method in time-domain
and in the spectral domain, and calculated with our own script, are shown in fig. 5.5
for one volunteer. The two spectral methods provide quite similar SNR maps, but with
the pseudo replica method having slightly higher values. The process of calculating the
SNR with our own script is illustrated in fig. 5.6. Four synthetic maps are shown in
fig. 5.7 together with a T1-weighted image. The left two synthetic maps are from our
own principal component analysis, showing two eigen-vectors to explain the variation in
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Reconstruction Time [s]
Substep Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

Housekeeping 3 <1 <1 <1 <1
Creating Mask 28 30 33 30 26

Read In 5 9 224 97 510
PI Reco - - - 2330 3778

Coil Combination - - 40 88 190
LipidDecon - - 20789 225 408
Filtering 1 4 4 6 14

Write LCM Files 15 24 20 35 98
LCM Fitting 79 1483 1604 3266 8191

Table 5.1: Durations of the different substeps of part 1.

Memory Usage [GB]
Substep Dataset1 Dataset2 Dataset3 Dataset4 Dataset5

Housekeeping <1 <1 <1 <1 <1
Creating Mask <1 <1 <1 <1 <1

Read In <1 <1 11 10 24
PI Reco - - - 12 33

Coil Combination - - 4 5 20
LipidDecon - - 2 2 5
Filtering <1 <1 <1 2 6

Write LCM Files <1 <1 <1 1 2
LCM Fitting <1 <1 <1 <1 <1

Table 5.2: Memory usage of the different substeps of part 1.

Reconstruction Time [s]
Substep Dataset1 Dataset2 Dataset3 Dataset4

Housekeeping 3 <1 9 <1
Reading Spectra 17 27 23 86
Calculate SNR 2 112 154 482
Writing Maps 30 18 24 46

Stack Of Spectra 101 - - -

Table 5.3: Durations of the different substeps of part 2.
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the patient data sets and which showed a contrast between tumor and healthy tissue.
The second synthetic map seems to not show much contrast in this example. The right
two synthetic maps are calculated according to Hagberg et al. for differentiating between
healthy tissue, low-grade, and high-grade gliomas. Again, only the first map shows a
contrast between the tumor and the healthy tissue. An example stack of spectra image
is shown in fig. 5.8 for a GABA-edited measurement of a patient. The big peaks of
negative signal amplitude are tNAA which is visible in GABA-edited spectra, while the
peaks in the center of the spectra are GABA. The most-left peaks, and one of the peaks
to the left of tNAA is Glutamate (Glu). With such images, the spectral quality can be
assessed very fast if low-resolution data were acquired.
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Figure 5.5: The g-factor map and the three different SNR maps that are calculated by our
program. In the upper left subfigure, the temporal SNR calculated with the pseudo replica
method is shown, which is calculated by the tNAA concentration as fitted by LCModel
and the noise from part 1. In the upper right subfigure, the spectral SNR is shown, also
calculated with the pseudo replica method, but using the spectral peak height from the
LCModel plots as signal. In the lower left image, a g-factor map is shown for the same
data set which was accelerated with RInP lane = 4 and RSlice = 2. It was calculated using
eq. (5.5). In the lower right image, the SNR calculated from our own MATLAB script is
shown.
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Figure 5.6: Process illustrating the SNR calculation with our own MATLAB script. Upper left:
A peak is searched in a broad range around 2.01 ppm. Upper right: If a peak is found and
fulfills certain criteria, the peak height of tNAA is estimated by the peak maximum, and
two points at the basis of the peak. Bottom left: A baseline (red line) is fitted to the noise
of all noise regions. Bottom right: After the noise baseline is subtracted, remaining peaks
in the noise regions are searched and excluded. The standard deviation is calculated to
obtain the SNR.
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Hagberg Map 2Synthmap 2

Synthmap 1 Hagberg Map 1

T1-weighted Image

Figure 5.7: Four synthetic maps and the T1-weighted image of a brain tumor patient. The left
two synthetic maps are calculated on the basis of our own principal component analysis,
while the two right maps are calculated according to Hagberg et al. for differentiating
between healthy tissue, and low- and high-grade gliomas. Only in the first maps of both
methods, a contrast between the tumor and healthy tissue is visible.
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Figure 5.8: An example of a stack of spectra image output for a GABA-edited data set of a
patient. With such images, the spectral quality, and the fit quality can be easily assessed
for several adjacent spectra at once.
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5.4 Discussion

Part 1 of our reconstruction pipeline is very CPU and memory intensive. Especially
the PI reconstruction, the lipid decontamination using the L1-regularization, and the
LCModel fitting take very long. The memory usage is especially high in the PI recon-
struction. In part 2, only the SNR calculations take long in some cases. The memory
efficiency could be increased by not processing the entire data set at a time, but per-
forming the whole reconstruction only on parts of the data at a time, as it is done in
ICE. The duration could be drastically reduced by porting the code to another language
such as C++, e.g. by implementing the reconstruction into ICE.

Our reconstruction pipeline is a flexible tool with many options as illustrated by the
figures of the results section. It can be readily extended with new modules, and is
completely based on open-source programs, except of LCModel. Changing the pipeline
to allow fitting with an open-source tool as for example with Totally Automatic Ro-
bust Quantitation in NMR (TARQUIN) (79), can be easily achieved by replacing the
“Write_LCM_files” function with another one.
The fact that our reconstruction pipeline is exclusively based on command lines is a
benefit and a drawback at the same time. On the one hand, processings can be read-
ily scheduled and repeated, since scripts containing several calls to the pipeline can be
saved, and called again later. On the other hand, users with little experience in BASH
and programming in general might have troubles using it, or even might be scared off.

5.4.1 Comparison to Literature

Other similar reconstruction pipelines for MRSI data are available: Simpson et al. fo-
cused mostly on single voxel data (80), but they have a very similar approach otherwise.
The whole pipeline is based solely on MATLAB, and does not automatically start a
fitting routine. Different vendors of MR scanners provide a reconstruction pipeline, such
as ICE, and fitting tools for 1H-MRSI. The reconstruction is performed during and after
the measurement, and the results can be viewed directly, or minutes after the measure-
ment finished. This is a big advantage, but with restrictions of a maximum matrix size
of 32×32, the reconstruction on the scanner has few benefits over offline-reconstruction.
Moreover, the fitting tools provided by the vendors are usually quite rudimentary. The
reconstruction pipeline Metabolite Imaging and Data Analysis System (MIDAS) devel-
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oped by Andrew Maudsley et al. is a versatile tool (81), but is mostly tailored to the
EPSI sequence.

5.4.2 Outlook

After the remaining problems with the CONCEPT sequence are solved, an additional
module for reconstructing SSE data will be added before the PI module. This has been
programmed already in great parts by Lukas Hingerl, but is not yet implemented into the
main reconstruction pipeline. Additionally, a GUI written in MATLAB has already been
programmed by Michal Považan. This might be interesting for users less experienced
with BASH, and for avoiding user errors when providing lengthy paths to the program.
Moreover, a third part is planned, which summarizes and condenses the output of part
2 As an example, the results of part 2 could be statistically processed, providing e.g.
mean metabolic concentrations in different brain regions based on a segmentation of the
MPRAGE images. Furthermore, a comparison between different measurements could be
automatically calculated in part 3 (after non-linear registration to an atlas in part 2), e.g.
for comparing volunteers with patients, or different measurements of the same patient.
A packaged version of the reconstruction pipeline with all dependencies installed in a
virtual machine, except for LCModel, is also planned for the future.
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6.1 Motivation

To conclude my thesis, I want to show the feasibility of using one of the developed
methods in clinical studies. In this study, MS patients were measured with the 2D-
CAIPIRINHA MRSI sequence. MS is an inflammatory autoimmune disease that mainly
causes axons to be demyelinated in the white matter of the central nervous system, but
can also affect the gray matter. Although conventional MRI can detect MS lesions, the
sensitivity and specificity are usually limited and MRI has poor prognostic value for
clinical disability, i.e. the lesion load of conventional MRI correlates only weakly with
clinical disability (82): MRI lesions can occur without any clinical disability, and clinical
disability can occur without any lesions visibile in MRI. Furthermore, the contrast of
MRI lesions is not specific for the stage the lesion is in, e.g. demyelination, remyelination,
or axonal loss (82). By contrast, several metabolites detectable with MRS such as NAA,
Choline (Cho), Creatine (Cr), Ins, Glutathione (GSH), lactate, Glx and lipids were
shown to change in some stages of the disease in comparison to the healthy population or
Normal Appearing White Matter (NAWM) (82–86). Therefore, MRS has high potential
in the diagnostic and neuro-scientific research of MS. MS lesions are usually rather
small with 20 % below 3.5 mm in diameter (87). As a result, our high-resolution phase-
encdoded MRSI sequence with a nominal resolution of 3.4×3.4 mm2 for a 64×64 matrix,
and 2.2× 2.2 mm2 for a 100× 100 matrix size is very well suited for investigating MS.
The work described in this chapter was presented at the annual meeting of the ISMRM
2015 in Singapore and won the price for the best abstract in the MRS study group
session.

6.2 Methods

Fourteen MS patients were measured at our 7T Siemens MR scanner with a 32-channel
array coil for signal reception, and a volume coil in the same housing for signal trans-
mission. Due to motion artifacts, three data sets had to be excluded.
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The sequence was the same as used in chapter 3, including a MUSICAL pre-scan for coil
combination and ACS data acquisition, and the option for 2D-CAIPIRINHA accelera-
tion. One slice with a thickness of 8 mm, a FoV of 220× 220 mm2, and a matrix size of
64 × 64 was acquired. The acquisition delay was 1.3 ms, the TR 600 ms. The measure-
ment time was reduced from 30 min to 6 min by 2D-CAIPIRINHA with R = 6 and a
VD-radius of 6. In six patients, another data set with a matrix size of 100× 100, a TR
of 200 ms, an acceleration factor of R = 4, a VD-radius of 1, and the same parameters
otherwise was additionally acquired.
The missing k-space points were reconstructed with a GRAPPA-based PI reconstruc-
tion algorithm including a spatial Fourier transform as described in chapter 3. The data
were coil combined with MUSICAL as described in chapter 2, Hamming filtered, lipid
decontaminated using an L2-regularization as described in chapter 5, and finally, the
resulting spectra were fitted with LCModel.
MS lesions were marked on Fluid-Attenuated Inversion Recovery (FLAIR) images with
MINC tools (http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC) at the slice posi-
tion of the MRSI slice. Region of Interest (RoI)s of the same size were marked on
the contra-lateral side in the NAWM. In some cases this was not possible because the
contra-lateral side was also affected by the disease. RoIs at other positions were marked
in these cases. For all eleven patients, the mean metabolic concentrations relative to tCr
was calculated for the lesion RoIs and the NAWM RoIs, where the mean was taken over
all voxels inside the RoIs. The relative increase in the lesion to the NAWM was then
calculated for the metabolites GABA, Glx, tCho, GSH, Ins, and tNAA as follows:

RelMetInc = 100 · C
Lesion
Met /CLesiontCr − CNAWM

Met /CNAWM
tCr

CNAWM
Met /CNAWM

tCr

(6.1)

where CLesionMet is the concentration of the metabolite “Met”, and CLesiontCr , the tCr concen-
tration in the lesion RoIs, and CNAWM

Met and CNAWM
tCr the corresponding concentrations

in the NAWM RoIs.
The mean and standard errors over all eleven relative metabolic increases was calculated,
and a t-test was performed between the lesion and NAWM RoIs.

6.3 Results

In fig. 6.1, the tNAA map, and the ratio maps tCho/tNAA and Ins/tNAA are shown for
one patient together with a T1-weighted image of the same slice. The tNAA map shows
a distinct drop, and the ratio maps show hot spots at the location of the MS-lesion (red
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arrow in T1-weighted image). Yet, another drop in tNAA is visible next to the lesion,
marked by a blue arrow in the tNAA map. This might be a partial volume effect from
the ventricles beneath, or could show a lesion in its developing process not yet visible in
a T1-weighted image.

Fig. 6.2 shows a patient with very large lesions around the ventricles, visible in the
FLAIR image as bright spots and areas. tNAA, Ins, and Ins/tNAA maps are displayed
of the same slice. Although the changes in the metabolic (ratio) maps seem to be cor-
related to the FLAIR image at the lesion locations, the drop in tNAA and increases in
Ins and Ins/tNAA cover a larger volume than the lesions in the FLAIR image. This
cannot be explained by the lower resolution of the MRSI sequence alone. Especially the
Ins/tNAA shows much larger enhancements in the lower left and upper right regions
of the brain. The green and red arrows in the FLAIR image indicates the positions of
spectra shown in fig. 6.3. In these spectra, a strong increase of Ins is visible in the lesion
spectrum in comparison to the healthy one.

Figure 6.1: A T1-weighted image, a tNAA map, and the ratio maps of tCho/tNAA and
Ins/tNAA. The MS-lesion is shown with a red arrow in the T1-weighted image. Drops
in tNAA and hot-spots in the ratio maps are visible at the same location in the corre-
sponding maps. Additionally, a drop in tNAA is visible close to the lesion (blue arrow),
and might either stem from the underlying ventricles, or show a lesion in its development.

In figs. 6.4 and 6.5, a third patient is shown with large MS lesions in the white matter of
both hemispheres. The lesions in the FLAIR image are well correlated with increases in
Ins/tNAA, tCho/tNAA, and tCho, and a decrease in tNAA. The region marked by an
arrow in the tCho map, which is decreased in contrast to the other regions of the lesion,
is low in all metabolic maps. This indicates scar tissue.
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Healthy
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Figure 6.2: A FLAIR image of the same slice position as tNAA, Ins, and Ins/tNAA maps.
Large lesions around the ventricles are visible in the FLAIR image, but regions of lower
(tNAA) and increased signal (Ins, Ins/tNAA) are even larger in the metabolic (ratio)
maps. Green and red arrows indicate the position of a “healthy” and a “lesion” spectrum,
respectively, shown in fig. 6.3.

Figure 6.3: Two spectra from the locations marked in fig. 6.2. The spectrum from the lesion
has a strongly increased Ins in comparison to the spectrum from NAWM.

Fig. 6.6 depicts another patient where the tCho/tNAA, and especially the Ins/tNAA
have larger enhanced regions than in the FLAIR image. The arrows mark the healthy
and affected regions of the spectra of fig. 6.7. In these spectra, a strong increase in Ins
and tCho is visible, while tNAA is decreased in comparison to the spectrum from the
healthy region.
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Figure 6.4: FLAIR image and Ins/tNAA, and tCho/tNAA metabolic ratio maps of the third
patient. The signal increases in the ratio maps show a good correspondence with the
lesions in the FLAIR image, but seem to be larger.

Figure 6.5: FLAIR image and tCho, and tNAA metabolic maps of the third patient. The
tNAA map shows a signal drop at the lesion locations, while tCho increases, except for
the region marked with an arrow. In this region, all metabolic maps show a signal drop,
which thus indicates scar tissue.

Fig. 6.8 also shows an example where the alterations on the Ins/tNAA, tCho/tNAA,
but especially on the Glx maps have higher volumes than in the FLAIR image. The
Glx map shows a strong drop in the white matter on the left side of the map. The two
ratio maps show a very strong hot-spot on the left lesion area. From this area, a lesion
spectrum is shown in fig. 6.9 (red arrow) and compared to a spectrum from a NAWM
region (green arrow). In the lesion spectrum, a very strong increase of Ins, tCho, and
an extreme decrease in tNAA is visible.
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Figure 6.6: Ins/tNAA and tCho/tNAA ratio maps together with a FLAIR image of the same
slice. The metabolic ratio maps show alterations of a larger volume than the lesions on
the FLAIR image. The green and red arrows show the spectra locations of fig. 6.7.

Figure 6.7: Comparison of a spectrum from a healthy region in comparison to one of a lesion
as indicated by arrows in fig. 6.6. The lesion spectrum displays increased Ins and tCho,
while tNAA is slightly decreased in comparison to the healthy reference spectrum.

Finally, fig. 6.10 shows the last patient example, where a tNAA map of a 64× 64 matrix
size, with a voxel size of 3.4× 3.4 mm2 is compared against a tNAA map of a 100× 100
matrix size with a voxel size of 2.2×2.2 mm2. Although the higher resolution map looks
more noisy, the lesions marked by blue and green arrows are only visible on the higher
resolution map, and on the FLAIR image, but not on the 64×64 tNAA map. Thus, this
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Figure 6.8: FLAIR, Ins/tNAA, tCho/tNAA, and Glx maps of patient 5. The metabolic alter-
ations are larger than the lesion regions in the FLAIR image. Especially the Glx map has a
strong decrease at the location of the left lesion region in comparison to the contra-lateral
side. Arrows indicate the positions of the spectra of fig. 6.9.

Figure 6.9: Comparison of the spectra from NAWM and a lesion of patient 5, as indicated by
the arrows in fig. 6.8. The lesion spectrum shows a highly increased Ins, and tCho, and
an extreme decrease of tNAA so that it is barely detectable.

is an example where even the high resolution of 3.4× 3.4 mm2 of our MRSI sequence is
not enough for resolving small MS lesions.

In order to get a feeling how much variability in the metabolic maps occurs in healthy
volunteers, fig. 6.11 depicts the Ins/tNAA, tCho/tNAA and the Glx (ratio) maps of a
healthy volunteer.
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Figure 6.10: A FLAIR image and two tNAA maps, one from a high resolution (3.4× 3.4 mm2

nominal resolution), and one from an ultra-high resolution (2.2 × 2.2 mm2 nominal res-
olution). The two small MS lesions are visible on the FLAIR image, as well as on the
ultra-high resolution tNAA map, but not on the high resolution map.

Figure 6.11: The metabolic (ratio) maps of Ins/tNAA, tCho/tNAA and Glx together with a
T1-weighted image illustrate the appearance of the maps in healthy volunteers.

The relative mean increases of the different metabolites, calculated according to eq. (6.1)
are given in table 6.1. * denotes p-values below 0.05, while ** denotes highly significant
differences with p < 0.005. tNAA/tCr, and Glx/tCr significantly decreased in lesion
RoIs, while Ins/tCr significantly and strongly increased. tNAA/tCr was decreased in
every single patient in the lesion RoI in comparison to the NAWM RoI, and Ins/tCr was
increased in every patient, without exception. Glx/tCr was decreased in nine patients,
and slightly increased in only two. The other metabolites, tCho/tCr, GABA/tCr, and
GSH/tCr did not change significantly. Also tCr did not change significantly (p > 0.6).
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Metabolite Mean [%] Standard Error [%]

Ins/tCr +44.6** 6.3
tNAA/tCr -23.3** 4.0
Glx/tCr -24.2* 8.4
tCho/tCr +6.0 5.4
GABA/tCr -4 15
GSH/tCr +39 30

Table 6.1: Relative increases of metabolic ratios to tCr between lesion and NAWM RoIs accord-
ing to eq. (6.1). Ins/tCr increased strongly and highly significantly, while tNAA/tCr and
Glx/tCr decreased significantly. The other metabolic ratios did not change significantly.

6.4 Discussion

A significant decrease of Glx/tCr and tNAA/tCr, and a significant increase in Ins/tCr
was found in this study. Especially tNAA/tCr and Ins/tCr were changed in every pa-
tient in the lesion RoI in comparison to the NAWM RoI, but also Glx/tCr was increased
in only two patients, and otherwise decreased. Therefore, these changes seem to be very
reliable. Since tCr did not change significantly, its use as the reference in the metabolic
ratios is justified. The other three tested metabolic ratios, tCho/tCr, GABA/tCr, and
GSH/tCr did not change significantly. However, this does not mean that they are not
changed between lesions and NAWM. GABA, and GSH could not be fitted reliably
enough in all patients to detect small changes. Although tCho/tCr was not altered
significantly, it varied a lot between patients. A possible explanation would be that
tCho changes differently in different stages of the disease or that the tCho enhance-
ments do not always coincide with the FLAIR-visible lesions. Since the patient group
was not homogeneous in this study, this could explain the non-significant results of tCho.

In our study, the changes in the metabolic maps mostly covered larger areas than the
FLAIR images. Partly, this can be attributed to the lower resolution of the MRSI se-
quence, but this can not explain the whole volume increase. Thus, the large affected
volume could indicate that the inflammation in MS occurs in larger volumes than usually
reported, and lesions on the FLAIR images only occur on spots where changes exceed a
certain threshold. With these assumptions, the clinico-radiological paradox in MS could
be explained, which says that MS lesions visible in MRI can develop without clinical
dysfunction, and clinical dysfunction can develop without MS lesions visible in MRI.
MS lesions could occur at hot-spots, but with most WM being unaffected, resulting in
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lesions visible in MRI with a low clinical disability. On the other hand, a large volume
could be affected by MS causing strong clinical disabilities, but with only a few spots
exceeding the threshold to develop a lesion or may develop a T2-visible lesion at a later
time point.

6.4.1 Comparison to Literature

Our findings are partially in accordance with literature results. Bitsch et al., Srinivasan
et al., and Narayana et al. found a decrease in NAA, and the latter two additionally
found an increase in Ins (83, 84, 86). Glu was reported to increase by (83), in contrast
to our results of decreasing Glx. Cho was reported to increase by Bitsch et al., while
Srinivasan et al. and Narayana et al. reported Cho to be increased in acute lesions in
comparison to chronic ones (83, 84, 86). These findings could explain our mixed results
for tCho. A differentiation between lesion states in our study would clarify this matter.
Finally, Srinivasan et al. and Choi et al. found a decrease of GSH in MS patients in
comparison to controls (85, 88).

In contrast to other studies of MRS in MS, we used a very short acquisition delay of
only 1.3 ms. This improves the detection of J-coupled metabolites, such as Glx, or Ins.
Furthermore, we used a very high resolution in comparison to other studies. If only a
single voxel is acquired, as in some studies, metabolic information is usually confined to
MS lesions visible on conventional MRI, and contra-lateral NAWM. Detecting metabolic
alterations surrounding the lesions, as detected in our study, is thus not possible. In
contrast to voxel sizes of about 7 − 10 mm2, as usually used, our high resolution MRSI
allows the detection of very small MS lesions.

6.4.2 Outlook

The MRSI methods developed by our group, as partially described in this thesis, can
be used in a larger study for measuring clinically isolated syndrome patients. These
patients partially have the symptoms of MS patients, but do not fulfill all the criteria of
clinically definite MS, nor do their MRI images show lesions. 30 - 70 % of these patients
develop MS later (89). If metabolic changes were specific to MS, and these were found
before an MRI lesion is visible, the MS-specific medication could start earlier. This
might improve the outcome of the treatment for those patients.
Moreover, such findings might be useful for the scientific understanding of MS by giving
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hints of the sequence of metabolic changes that finally lead to lesion formation. With
that, a step towards understanding the cause of MS might be done.
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