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ABSTRACT The Internet of Things (IoT) generates vast streams of sensor data that often require enrichment
with background knowledge about the system and domain. Although such data can be represented as graphs,
purely graph-based models struggle with the temporal aspects of sensor observations, motivating hybrid
approaches that integrate graphs with time series data. This creates a need for query engines that can
handle both types of data within a single system. In the Semantic Web community, this drives demand for
SPARQL engines that are flexible enough to support time series data and efficient for analytical workloads.
Existing engines fall short as only some row-based systems focus on extensibility but perform poorly
in time series analytics, while columnar systems could offer better analytical performance but lack the
necessary extensibility. To address this gap, we present RDF Fusion, an extensible SPARQL engine built
on Apache DataFusion, a modular columnar engine optimized for analytical workloads. RDF Fusion uses
specialized encodings to represent the dynamic nature of RDF terms within the statically typed data model of
DataFusion. These encodings enable efficient SPARQL query execution while preserving the extensibility
to experiment with custom operators, optimizations, and hybrid time series support. Our evaluation
shows that RDF Fusion complies with SPARQL 1.1 and provides competitive performance in analytical
workloads. As an open-source system, it offers a solid foundation for research on hybrid data models in the
IoT.

INDEX TERMS Semantic Web, SPARQL, hybrid data model, Internet of Things, analytics.

I. INTRODUCTION examples include graph databases and time series databases,

Historically, database systems were designed as tightly
integrated and highly optimized solutions that followed
a ‘“‘one-size-fits-all” paradigm [1]. However, it became
increasingly clear that such general-purpose systems could
not deliver optimal performance and ergonomic queries for
all workloads [1], leading to the rise of specialized databases
optimized for domain-specific requirements [2]. Prominent
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which are the focus of this work.

The Internet of Things (IoT) is a prime example of a
domain where both data models are widely used. Graph
data models, such as the Resource Description Framework
(RDF) [3], capture metadata, system and domain knowledge,
and relationships within a system [4]. In contrast, IoT devices
continuously generate high-frequency sensor readings, which
are naturally represented as time series [5]. Neither model
alone is sufficient: Encoding time series as RDF triples causes
storage and query overhead [6], while time series databases
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lack mechanisms to represent rich contextual information
about devices [7].

To overcome these limitations, hybrid data models
that integrate graphs and time series have recently been
proposed [8], [9], [10]. However, currently there is no
platform that facilitates rapid prototyping in this context.
Researchers who want to explore custom query languages
must either rely on inefficient prototypes or reimplement
large parts of a query engine themselves. What is missing is
an extensible query engine that natively supports queries that
span both graph and time series data.

In parallel, modular query engines have emerged from
the trend of composable data management systems [11],
offering reusable building blocks for query processing and
lowering the barrier to developing domain-specific engines.
Prominent examples include Apache DataFusion [12] and
Meta’s Velox [13]. However, their primary focus remains on
relational data. Consequently, researchers who are looking
to combine graph and time series data must still implement
a complete graph query language, such as SPARQL [14],
on top of these systems. Nevertheless, because SPARQL can
be translated into relational algebra [15], these systems enable
platforms that combine SPARQL query operators with those
of other data models.

To address this gap, we present RDF Fusion, an exten-
sible SPARQL engine built on Apache DataFusion. RDF
Fusion leverages DataFusion’s extension points to implement
SPARQL and introduces multiple RDF term encodings
to represent the dynamic nature of RDF data within
DataFusion’s type system. By building on a modular query
engine, RDF Fusion enables researchers to explore hybrid
data models, where SPARQL query operators can be
combined with time series and relational operators within
a single system. The developed engine is open-source on
GitHub [16] and our evaluation snapshot is available on
Zenodo [17].

The remainder of the paper is structured as follows.
Section II introduces the necessary background, while
Section III elaborates on DataFusion in the context of hybrid
data models. Then, Section IV outlines the requirements for a
query engine for hybrid data models. Section V describes how
dynamic RDF terms are mapped to DataFusion’s internal data
structures, which forms the basis for the discussion of RDF
Fusion in Section VI. Section VII provides an evaluation, and
Section VIII discusses the results and some design decisions.
Finally, Section IX reviews related work, and Section X
concludes the paper.

Il. BACKGROUND

This section provides a brief background on RDF, SPARQL,
row-based and columnar query engines, and Apache Data-
Fusion. Building on version 1.1 of RDF and SPARQL, this
work does not introduce formal notation, since a detailed
discussion of the semantics of SPARQL lies outside its scope.
As this paper focuses on the graph processing aspect of hybrid
data models, this work will not discuss those approaches in
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TABLE 1. Used namespace prefixes.

Prefix |IRI

rdfs: | <http://www.w3.0rg/2000/01/rdf-schema#>
xsd: |<http://www.w3.0rg/2001/XMLSchema#>

ex: <http://example.org/>

detail. We refer the reader to the original proposals for further
information [8], [9], [10].

A. THE RESOURCE DESCRIPTION FRAMEWORK

The central data element in RDF is a triple, consisting
of a subject, a predicate, and an object. Each element
of a triple has a different domain: the subject must be
an Internationalized Resource Identifier (IRI) or a blank
node, the predicate must be an IRI, and the object may be
an IRI, a blank node, or a literal. While IRIs are global
identifiers, blank nodes can be thought of as local identifiers
for resources without an IRI. Literals consist of a lexical value
and, optionally, a datatype or a language tag.

RDF syntaxes allow serializing and desrializing of RDF
triples. To improve readability and reduce verbosity, most
RDF syntaxes allow defining namespace prefixes. These
prefixes (e.g., rdfs:) allow for abbreviating IRIs. Table 1
lists the namespace prefixes used in this work.

An RDF graph is a set of triples that represents a collection
of facts. Listing 1 shows an example RDF graph in Turtle
syntax [18] that provides information on the Apache Arrow
project, the in-memory format that underpins DataFusion’s
query execution. The relative IRI <Apache> is resolved
using the BASE IRI. In addition to IRIs, the graph contains
multiple literals with different data types.

|| BASE <http://example.org/>

3| <Apache> <hasTopLevelProject> <Arrow> .

1| <Arrow> rdfs:label "Apache Arrow"”""xsd:string ;
<version> "20.0"""xsd:decimal ;

6 <firstRelease> "2016-10-10"""xsd:date .

LISTING 1. Example RDF graph.

An important concept for this work is a typed
value [14]. For example, consider two RDF literals:
71”""xsd::integer and ”01”""xsd::integer.
While they are distinct RDF terms, they share the same typed
value, namely the integer 1. This is significant because some
SPARQL operations, such as joins, must distinguish between
these terms, while others, such as arithmetic operations, must
not. To accommodate such scenarios, RDF Fusion allows for
multiple encodings of RDF terms, which are presented in
Section V.

B. THE SPARQL QUERY LANGUAGE

SPARQL is the standard query language for RDF data. The
central elements of SPARQL queries are triple patterns,
which are similar to RDF triples, but can contain variables.

VOLUME 13, 2025



T. Schwarzinger et al.: RDF Fusion: An Extensible SPARQL Engine for Hybrid Data Models

IEEE Access

?predicate ?object
—é <label> "Arrow"
"B
[P)
Qé <version> "20.0"
)
5
= <firstRelease> "2016-10-10"

Row-based Data Layout

?predicate ?object
— @\l
= <label> = "Arrow"
.2 .8
) )
[P) D)
Qi <version> P "20.0"
2 3
5 5
s <firstRelease> s "2016-10-10"
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FIGURE 1. Difference between row-based and columnar data layout shown on simplified results for the query in Listing 2 and the RDF

graph in Listing 1.

TABLE 2. Result of evaluating the query in Listing 2 against the RDF
graph in Listing 1.

?predicate
rdfs:label "Apache Arrow"
ex:version "20.0"""xsd:decimal
ex:firstRelease | "2016-10-10"""xsd:date

?object

In principle, the query engine’s task is to find all possible
solutions by binding these variables to RDF terms in the
graph, as defined in the SPARQL specification [14].

Listing 2 shows a basic SPARQL query that can be
evaluated against the RDF graph from Listing 1. This
query searches for all triples with the subject <Arrow>
and returns their predicates and objects. The results of this
query are shown in Table 2. Note that the triple <Apache>
<hasTopLevelProject> <Arrow> does not match
the query, as it has a different subject.

|| BASE <http://example.org/>

;| SELECT ?predicate ?object
i A

<Arrow> ?predicate ?object

of }

LISTING 2. A SPARQL query that returns predicates and objects for triples
with the subject <arrow>.

Beyond these fundamentals, SPARQL also supports named
graphs and more complex operations such as filtering,
grouping, and aggregation. These features, while powerful,
contribute to the complexity of building a SPARQL engine.
However, elaborating on them in detail is beyond the scope
of this work. For detailed discussions, we refer the reader to
the SPARQL specification [14].

C. ROW-BASED AND COLUMNAR QUERY ENGINES

The key distinction between row-based and columnar query
engines lies in how intermediate query results are stored and
processed in memory. As shown in Fig. 1, for SPARQL, row-
based engines store each complete solution contiguously in
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memory, while columnar engines store all values of a single
variable contiguously in memory.

Row-based layouts usually excel in Online Transaction
Processing (OLTP) workloads, which typically involve a
high volume of small, write-heavy operations. In contrast,
columnar layouts usually excel in Online Analytical Pro-
cessing (OLAP) workloads, where queries may read large
amounts of data to perform complex analysis [1]. As a result,
for analytical queries, a columnar query engine can provide
significant performance benefits when realizing hybrid data
models. Although most of the work on columnar engines has
focused on less dynamic query languages, recent research
suggests that SPARQL engines can also benefit from this
execution model [19].

D. APACHE DATAFUSION

Apache Arrow! defines an in-memory format designed for
high-performance analytical data processing. The specifi-
cation includes various data types and their corresponding
memory layouts. In Arrow terminology, a column of data
is called an array, which is backed by one or more
contiguous memory regions called buffers. For example,
an Int64Array consists of a validity buffer (for null
values) and a value buffer (for integers).

Apache DataFusion [12] is an extensible query engine that
uses Arrow as its internal data representation. Implemented in
Rust,” a modern system programming language, DataFusion
can be embedded directly into other applications, such as
custom research prototypes. Fig. 2 presents a simplified
architecture of its query processing pipeline, highlighting key
extension points that allow for custom functionality. This
work briefly introduces the depicted components. We refer
the reader to [12] for an in-depth discussion.

Processing begins in a front end (usually an SQL [20]
dialect), which parses and validates the query, generating
a logical plan. This plan is a tree of relational operators
and expressions that represents the query’s semantics (e.g., a
JoinoraFilter). This logical plan undergoes a series of

1 https://arrow.apache.org/
2https //www.rust-lang.org/
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Apache DataFusion
Ext Ext Ext
Query Logical Plan Execution Plan Streams Results
rewrite rewrite
Ext

FIGURE 2. Simplified architecture of query processing in DataFusion. “Ext” marks extension points. These can be custom

operators or rewriting rules.

rewriting steps for optimization and transformation. Both, the
set of logical plan nodes and rewriting steps can be extended
by the user.

The optimized logical plan is then translated into an exe-
cution plan. Contrary to the logical plan, the execution plan
nodes have a concrete algorithm to execute a given operation.
For example, a Join operator in the logical plan might
be translated into a HashJoin or a NestedLoopJoin.
Similarly to the logical plan, the execution plan undergoes a
series of rewriting steps that optimize or transform it. Again,
both can be extended by the user.

Finally, the execution plan is translated into a set of
streams, which produces one or more record batches. Each
record batch consists of one or more fields, backed by Arrow
arrays. For example, the query in Listing 2 would result in a
batch with two fields: one for the predicate and one for the
object, as shown in the columnar data layout in Fig. 1. The
record batches emitted from the root operator are the final
result of the query.

A major strength of DataFusion is its extensibility, which
supports user-defined functions, custom logical and physical
nodes, and custom optimizer rules. This is where Arrow’s
standardized memory model is particularly beneficial: As
long as a component reads and writes Arrow record batches,
it can be integrated with DataFusion. RDF Fusion takes
full advantage of this extensibility to implement a complete
SPARQL engine within DataFusion.

Ill. HYBRID DATA MODELS AND DATAFUSION

One of the core goals of RDF Fusion is to support hybrid data
models that integrate graph and time series workloads. This
requires a query engine capable of handling both efficiently.
The key question is whether DataFusion can support both
domains in a single query.

To elaborate on this, we start by discussing the support
of graph and time series data independently. On the graph
side, the existence of RDF Fusion demonstrates the feasibility
of processing RDF graphs. Section V details our approach
to this problem. On the time series side, several systems
(e.g., InfluxDB?) have already built query engines on top of

3 https://www.influxdata.com/

184300

DataFusion. Arrow supports this, for example, by modeling
a time series as two arrays: timestamps and values. While
common time series database features like gap filling are
currently not built into DataFusion, the existing systems
mentioned before show that they can be supported.

The next challenge, therefore, is not merely handling
graphs and time series data separately but integrating them
within a single query. To illustrate this, consider an example
that computes the average temperature for each Heating,
Ventilation, and Air Conditioning (HVAC) zone in a building.
Information about which sensor belongs to which HVAC zone
is stored in the graph, while the corresponding time series
data are maintained separately. Figure 3 presents a simplified
query plan that demonstrates how a hybrid data model can
support this type of use case.

1) A SPARQL query retrieves all zones and sensor pairs

from the graph.

2) For each sensor, its time series are fetched directly in a
format optimized for time series, avoiding conversion
to RDF and the associated overhead.

3) Finally, the data are aggregated by zone, and the
average temperature is computed.

DataFusion enables hybrid execution by leveraging
Arrow’s support for advanced data types and the ability for
each column to have a distinct type. Consequently, parts of
a result may originate from the graph domain, while others
come from the time series domain. As long as the data
can be mapped onto Arrow arrays, they can be processed
together seamlessly. For instance, an operator can take
an RDF-encoded column ?sensor as input and produce
both ?sensor and ?temp, where ?temp corresponds to
the temperature time series of the sensor. In the example,
the column ?temp could be materialized using Arrow’s
Variable-size List Layout.*

In summary, DataFusion can support both graph and
time series data models in isolation and in combination.
Other query engines that are purpose-built for SPARQL
workloads may need to rely on workarounds to perform
similar computations, as they typically restrict intermediate

4https :/larrow.apache.org/docs/format/Columnar.html#variable-size-list-
layout
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?hvacZone ‘ ?sensor ?hvacZone ‘ ?sensor ‘ 2temp 2hvacZone ‘ 2average
<zonel> | <sensorl> <zonel> | <sensorl> | [(0,22),(1,23),..] .<zor1el> - 22 .
<zonel> | <sensor2> <zonel> | <sensor2> | [(0,22),(1,21),..]
T A b
i i !
| |
I ! |
| | |
I ! |
| | |
Ma'tch Pattern Load Series | | Aggregate
subject="hvacZone

from = ?sensor

predicate=<hasTempSensor>
object=?sensor

property = Temperature ’

groupBy = ?hvacZone
aggregate = AVGSeries(?temp)

FIGURE 3. A simplified query plan that demonstrates the integration of graph and time series data. The query first accesses the graph data, then
loads the corresponding time series, and finally computes an aggregate of the time series by grouping on the corresponding graph elements. The

tables connected above show examples of intermediate query results.

results to data types prevalent in SPARQL. Consequently,
extending these intermediate results to accommodate time
series data may be challenging.

IV. REQUIREMENTS

Based on the challenges identified in Section I, we define
a set of key requirements for the graph processing part of
a query engine that supports a hybrid data model. RDF
Fusion is designed to meet these requirements, serving as a
foundation for future research in this area. See Section VII
for an evaluation of these requirements.

« R1: SPARQL Conformance. The engine must cor-
rectly interpret and execute the SPARQL 1.1 query
language. This is essential to provide users with a formal
specification that defines the expected results of queries.
Furthermore, it allows performance comparisons with
other SPARQL implementations and the use of RDF
Fusion as a standalone SPARQL engine.

« R2: Extensibility. As the prototypes that motivate this
work often require custom functionality, the engine must
have a modular architecture that supports extensions.
For example, in hybrid data models, it includes novel
operators that bridge the gap between graphs and time
series data (e.g., those proposed in [10]).

+« R3 SPARQL Performance: The engine must per-
form reasonably well on graph workloads. However,
given the significant engineering effort required, our
initial mission is not to reimplement and fine-tune all
SPARQL-specific optimizations found in other engines.

V. RDF TERM ENCODINGS

Apache Arrow serves as DataFusion’s central memory
format for query processing. Consequently, any SPARQL
implementation built on a framework like DataFusion must
represent RDF terms using Arrow arrays. This introduces a
significant challenge, as in SPARQL, each variable can be
bound to arbitrary RDF terms within subsequent solutions.
For example, the first solution could bind the variable ?object
to a string, while the second binds it to a decimal. This
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behavior contrasts with the conventional relational model,
where each column is assigned a well-defined, fine-grained
domain (e.g., integers). To bridge this gap, RDF Fusion must
adopt a strategy capable of encoding the dynamic nature of
SPARQL solutions within Arrow arrays.

A. PLAIN TERM ENCODING

The Plain Term Encoding uses an Arrow “‘Struct Layout
to represent RDF terms in their full lexical form. This
encoding preserves all syntactic distinctions, which is crucial
for operations that depend on term identity rather than just
value equivalence.

As shown in Fig. 4, a term is composed of several fields.
The Term Type field indicates whether the term is an IRI,
a blank node, or a literal. A mandatory Value field stores
the term’s string value, while literals also include an optional
Data Type and Language Tag field. The validity buffer is
used to represent unbound variables, which are treated as null
values within the array.

As the encoding retains the term identity, it can be used
to join SPARQL solutions. Furthermore, evaluating SPARQL
functions that do not operate on typed values can be very
efficient. For example, consider the STR function that returns
the lexical form of an RDF term. In the Plain Term Encoding,
this is simply copying the reference counted pointer of the
Value field, copying the null buffer, and creating the Data
Type array. The actual values of the bound terms do not have
to be inspected.

In addition, consider the BOUND function, which deter-
mines whether a given variable is bound in a solution. Its
implementation only needs to examine the validity buffer of
the column that represents the variable, checking whether an
entry is valid to produce an output. All other buffers can be
ignored for this operation. Furthermore, such operations can
be efficiently vectorized using Single Instruction, Multiple
Data (SIMD) instructions, which are typically found in
modern hardware.

95

5 https://arrow.apache.org/docs/format/Columnar.html#struct-layout
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?object
Validity Term Type Value Data Type Language Tag
true Literal "Arrow" xsd:string NULL
true Literal "20.0" xsd:decimal NULL

FIGURE 4. Simplified data layout for the 2object variable of the example query (Listing 2) in the Plain Term Encoding.

B. OBJECTID ENCODING

The ObjectID Encoding represents RDF terms using a
mapping from a term to a fixed-size identifier called
object ID. For example, a triple (<Arrow>, rdfs:label,
"Apache Arrow”) could be encoded as (1, 2, 3), where
each number is an object ID corresponding to the original
term. RDF Fusion currently uses 32-bit unsigned integers
for these identifiers. As a result, a single UInt 32 array is
necessary to encode the RDF terms.

A key advantage of this encoding is its efficiency for
operations that rely on term identity. RDF terms are identical
if and only if they have the same object ID. As a result,
operations like joins can be performed directly on these
fixed-length identifiers, which is significantly faster than
comparing variable-length strings. The goal is to materialize
the original RDF terms as late as possible, sometimes even
avoiding the decoding of entire variables (e.g., if a variable is
used for grouping but is not part of the final result).

However, a drawback is that, for some queries, the
overhead of looking up the original term outweighs the
benefits of faster joins. This can be particularly problematic
when a triple store contains many small literals [21]. While
more sophisticated strategies exist to handle such cases
by storing small values inline, these are currently not
implemented in the RDF Fusion prototype.

C. TYPED VALUE ENCODING
The encodings presented above materialize the RDF terms
directly. However, for certain operations (e.g., arithmetic),
the SPARQL engine requires access to the typed value of an
RDF literal, as discussed in Section II-A. In the Plain Term
Encoding, this value can only be obtained by parsing the
string representation according to its data type and then using
the parsed value in computations. To avoid repeated parsing
of typed values, we introduce an encoding that represents
typed values directly.

The Typed Value Encoding employs a Dense Union
Layout® to represent RDF terms, using specialized child
arrays for each supported typed value. Unlike the Plain Term

6https:// arrow.apache.org/docs/format/Columnar.html#union-layout
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Encoding, which stores all values as strings, this encoding can
utilize native Arrow types (e.g., Int64 or Float32) for storing
typed literals. This is critical for operations that build on the
typed value of an RDF terms, such as numerical operations
and comparisons.

Figure 5 shows a simplified schema for this encoding.
A Type Id buffer indicates which child array holds the
value. For example, a value with type id 1 would be stored
in Int64Array, and a value with type id 2 would be
in the Float32Array. By storing values of the same
type contiguously, this layout makes them amenable to
vectorized operations. As the union layout delegates null
handling to the child arrays, there is also a Nul1Array that
handles unbound variables. Literals with an invalid lexical
form (e.g., "str” " "xsd:integer) are also encoded as
null.

The set of child arrays is based on the data types defined
in the SPARQL standard, natively supporting IRIs, blank
nodes, and known literal types such as xsd:integer
and xsd:float. For typed literals without a natively
supported data type, an Other Literal array stores their
lexical representation. In this encoding, a variable’s data can
thus be either homogeneous (i.e., a single large array) or
heterogeneous (i.e., multiple smaller arrays for different data
types). As shown in Figure 5, the ?object variable from the
query in Listing 2 would result in a heterogeneous array,
while the ?predicate variable would be an homogeneous
array, as the variable is only bound to IRIs.

This encoding is crucial for evaluating any SPARQL query
that relies on the typed value of a term. To demonstrate, con-
sider evaluating the SPARQL expression xsd: float (?a
+ ?b) only using the Plain Term Encoding. The query
engine would first need to parse all literals, then perform
the addition, and lastly encode the result back into the
Plain Term Encoding, as results of operators are also Arrow
arrays in DataFusion. Then, for the xsd:float cast,
these values would have to be parsed again, converted to a
float, and re-encoded. This inefficient process of repeated
parsing and encoding is eliminated in the Typed Value
Encoding, as the data values are stored directly in their native
formats.

VOLUME 13, 2025
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?object
Type Id IRI xsd:string xsd:decimal
xsd:string Empty "Arrow" 20.0

xsd:decimal

FIGURE 5. Simplified data layout for the 2object variable from Listing 2 in the Typed Value Encoding. In this encoding, the
distribution of the values between the arrays depends on their data type. Depending on the homogeneity of the bound

terms, this can lead to many smaller arrays.

D. CONVERTING BETWEEN ENCODINGS

RDF Fusion provides a set of User-Defined Functions
(UDFs) for converting between its different encodings.
These functions can then be used within query plans.
Conversions involving the ObjectID Encoding have direct
access to the internal mapping between object IDs and the
corresponding RDF terms. RDF Fusion also maintains a
separate mapping from object IDs to their typed values,
enabling efficient conversion from the ObjectID Encoding
to the Typed Value Encoding. Without this shortcut, the
query engine would need to first convert to the Plain
Term Encoding and then parse literals with known data
types.

Currently, the query planner introduces encoding changes
on demand. For example, when evaluating an expression such
as ?a % -1, the planner automatically inserts a conversion
UDF if ?a is not already in the Typed Value Encoding.
This reactive strategy is local and simplifies query planning.
However, it can result in repeated conversions of the same
column if different nodes in the query plan require different
encodings. These efforts can be costly, particularly when
parsing or the object ID mapping is involved. We plan
to explore more global strategies for managing encoding
changes in future work.

VI. RDF FUSION

RDF Fusion consists of several key components. This
includes the encodings introduced in Section V. On top of
these, we provide a set of functions, including encoding
transformations, the SPARQL scalar and aggregate functions,
and various utility functions required to interface with
DataFusion (e.g., converting native booleans into RDF
terms). RDF Fusion also introduces a number of custom
logical plan nodes to represent parts of the SPARQL algebra,
rewriting steps, and some custom physical operators and
streams. Most custom logical plan nodes are lowered to
existing DataFusion operators, allowing us to benefit from its
built-in optimizations and implementations. For example, the
Extend graph pattern of the SPARQL algebra is translated
into a Projection in DataFusion. The most important
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physical operator is the quad pattern operator, described in
Section VI-A.

RDF Fusion can be used in multiple ways. In this work,
we focus on two usage scenarios: as a standalone SPARQL
engine and as an extension to DataFusion. The former offers
a ready-to-use system for working with RDF data, while the
latter provides maximum extensibility for rapidly prototyping
SPARQL extensions. In the following sections, we briefly
summarize key aspects of RDF Fusion’s implementation.
This provides readers with the necessary context to assess the
performance evaluation and to understand claims regarding
potential future performance improvements.

A. QUAD STORAGE

A key component of any SPARQL engine is how quads
are stored and retrieved. RDF Fusion currently uses an
in-memory implementation of the classical quad index
approach.

The primary aim is to index quads in various permutations
to speed up matching graph patterns. Here, we illustrate this
concept using triple indexes, as the underlying principles
remain the same. For example, the graph pattern <Arrow>
?p 2o benefits from an index that starts with the subject,
since all triples not beginning with <Arrow> can be ignored.
In contrast, a pattern such as ?s <label> 2o does not
benefit from a subject-first index, as every subject must
be checked if the <label> predicate follows. Instead,
a predicate-first index could improve performance. For more
details, see [21].

RDF Fusion currently indexes GSPO, GPOS, and GOPS,
where G denotes the graph name. Each index stores object IDs
and is implemented as four sorted columns. To describe our
in-memory structures, we adopt terminology from Apache
Parquet,” an open file format based on similar principles.
The quads are stored in a sorted list according to the
permutation defined by the index. This list is partitioned into
multiple row groups, whose size is aligned with DataFusion’s
batch_size configuration. Within a row group, values of

7https://parquet.apache.org/
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the quad components (e.g., subjects) are stored contiguously
in a columnar layout. Each such contiguous slice of a column
is referred to as a column chunk.

The search on the sorted index supports only a few
primitive operations, such as equality and range checks.
Essentially, these are operations that select a contiguous slice
of the index. The query evaluation then proceeds in three
steps:

1) Search space pruning: Using the index, the system
quickly identifies which row groups might contain
quads that match the bound elements of the triple
pattern. If a triple pattern element is unbound (i.e.,
a variable), pruning stops at that point. The stream
operator remembers all pointers to the relevant row
groups. Ideally, this step prunes the search space to just
a few row groups.

2) Boundary slicing: The first and last matching row
groups may include quads outside the desired range
if the range does not align perfectly with row group
boundaries. These “extra” quads can be trimmed,
which may allow some filters to become fully applied
at this stage. In other words, the engine can guarantee
that every element in the remaining row group slices
matches the filter. In the best case, this applies to all
filters.

3) Filtering and projection: For each remaining row
group, any filters that were not handled in previous
steps are applied. The query engine projects the quad
components to the variables in the pattern and collects
the results. If all filters were handled earlier, this step
can simply clone the pointer with the relevant column
chunks without further computation. The resulting
quads are then passed to the next stage of query
evaluation.

We expect this strategy to extend naturally to on-disk
storage using columnar formats, since similar pruning
techniques are applied in DataFusion when scanning Parquet
files. In future work, we also plan to explore compressing the
first three columns of the index and operating directly on the
compressed representation, as has been done in previous work
on columnar query execution (e.g., [22]).

B. OPTIMIZATIONS
DataFusion already provides a wide range of general-purpose
optimizations, such as projection, filter, and limit pushdowns.
Its philosophy is to provide broadly applicable optimizations
while leaving domain-specific techniques to extensions built
on top of it. In the case of RDF Fusion, these are SPARQL-
specific optimizations. At present, RDF Fusion implements
only a small set of algebraic transformations on expressions.
Even this limited set of algebraic transformations is
essential in certain cases. For example, in SPARQL joins,
unbound variables are considered compatible with any
value. Since RDF Fusion encodes unbound variables as
NULL, join semantics require that two terms match if at
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least one of them is NULL. In contrast, DataFusion only
supports joins where NULL never matches or matches only
other NULL values. To bridge this gap, we introduce an
IS _COMPATIBLE UDF that enforces the semantics of
SPARQL. However, this prevents DataFusion from using
its efficient equi-join implementations (e.g., HashJoin),
since the built-in engine cannot optimize joins involving
IS_COMPATIBLE. To mitigate this, RDF Fusion rewrites
the join to use plain equality whenever both variables
are guaranteed to be bound (i.e., the columns are non-
nullable). This allows DataFusion’s equi-join to be applied
in most cases, though it can cause issues in queries involving
OPTIONAL graph patterns.

Note that RDF Fusion does not yet implement any sort
of join ordering. Although DataFusion itself provides a
general purpose algorithm, these are based on statistics that
RDF Fusion’s storage layer does not yet provide. Since join
ordering is one of the most critical factors in SPARQL query
performance [21], this remains an important area for future
improvement.

C. USING RDF FUSION AS A SPARQL ENGINE

RDF Fusion can be used as a standalone SPARQL engine.
To enable this, we built on Oxigraph [23], a SPARQL
implementation in Rust with a custom row-based engine.
We forked Oxigraph and replaced its query engine with
RDF Fusion. Although this required significant changes
to the codebase, we continue to reuse key components of
Oxigraph, including its test suite, RDF parsers, and serializers
for SPARQL results. However, we do not aim for full
compatibility, as some aspects of RDF Fusion fundamentally
differ (e.g., its use of asynchronous Rust).

Fig. 6 illustrates this architecture. Programmers can inter-
act with RDF Fusion through Oxigraph’s St ore Application
Programming Interface (API) or through an HTTP endpoint.
The St ore APl is a convenient wrapper around an RDF store
that has methods to manipulate and query the database.

Query processing begins with the SPARQL parser, which
converts the input query into a logical plan. Currently, this
is a two-step process: RDF Fusion first invokes Oxigraph’s
SPARQL parser and then further processes the resulting
SPARQL algebra. The resulting logical plan is then passed
to DataFusion for execution, as described in Section II-D.

Each execution plan produces a stream of record batches.
Depending on the use case, users can consume results as
native Rust data structures or directly access the underlying
Arrow arrays. The Stream Wrapper provides both options,
allowing users to select the representation best suited to their
needs.

D. USING RDF FUSION AS AN EXTENSION

When used as an extension to DataFusion, RDF Fusion
provides SPARQL support while preserving access to the full
extensibility of DataFusion. To support SPARQL-specific
functionality, RDF Fusion introduces new logical plan nodes
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FIGURE 6. Using RDF Fusion via Oxigraph’s store API. “Ext” marks the extension points

used by RDF Fusion.

which can be directly constructed by the user. These nodes
can be inserted into a query’s logical plan, and, once RDF
Fusion’s rewriting passes are registered, the query engine can
execute them seamlessly.

This mode of use offers maximum extensibility, as users
manage the DataFusion instance and control the construction
of the initial logical plan. It enables advanced scenarios
such as experimenting with alternative SPARQL dialects,
mapping domain-specific query languages to SPARQL, and
implementing new SPARQL operators.

RDF Fusion also exposes direct extension points for
customizing SPARQL. For example, users can register their
own UDFs or override built-in SPARQL functions (e.g.,
STR (x) ). These features are also available when using the
Store API, as the built-in SPARQL query processor uses
this registry to look up function implementations. In addition,
users could also integrate a custom storage layer into the
query engine.

E. DEVELOPMENT AND MAINTENANCE

RDF Fusion is implemented in Rust, built directly on top
of DataFusion. The source code is publicly available on
GitHub [16], along with source code documentation and
example programs demonstrating how to use RDF Fusion.
The GitHub repository serves as the main hub for issue
tracking, feature requests, and contributions.

VII. EVALUATION

The evaluation of RDF Fusion is based on the requirements
presented in Section I'V.
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TABLE 3. Results of running the W3C “SPARQL Test Suite.”

Test Suite # Tests | # Passing | # Failing | Passing (%)
SPARQL 1.0 246 235 9 95,53
SPARQL 1.1 301 301 0 100
Total 547 536 9 97,99

A. SPARQL COMPATABILITY (R1)

To evaluate the correctness of RDF Fusion’s SPARQL
implementation, we rely on the W3C “SPARQL Test
Suite””.3 Table 3 provides an overview of the number of tests
and their results. At the time of writing, approximately 98%
of tests are passing.

The failing tests are due to a few outstanding issues that
we plan to address in the future. For instance, RDF Fusion
currently applies SPARQL 1.1 semantics by default, without
allowing the user to select the SPARQL version. This causes
some SPARQL 1.0 tests to fail, as some behavior differs
between the two versions. Despite these known issues, we see
no fundamental barriers to resolving them. For example,
RDF Fusion can provide a different implementation for
affected SPARQL 1.0 functions once a configuration option
is available.

In addition to the W3C test suite, the test suite also covers
queries from the benchmarks used in Section VII-C. All
tests are executed as part of the Continuous Integration (CI)
workflow. Taking into account these results, RDF Fusion
already provides a solid foundation for columnar SPARQL

8https ://github.com/w3c/rdf-tests/tree/main/sparql
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query evaluation. Ongoing improvements aim to reach full
compliance with the W3C recommendation.

B. EXTENSIBILITY (R2)

A core design goal of RDF Fusion is to fully embrace the
extensibility provided by DataFusion. Since RDF Fusion can
itself be used as a DataFusion extension (see Section VI-D),
users retain complete access to this extensibility. The
architecture and its extension mechanisms have already
been described in detail by Lamb et al. [12]. The following
enumeration follows their listed extension points. The
remainder of this section adds context from the perspective
of the Semantic Web and hybrid data models.

1) Scalar, Aggregate, and Window Functions can be
used to experiment with custom functions, as found in
approaches such as GeoSPARQL [24], [25] and other
enhancements provided by other popular SPARQL
engines. As these functions have direct access to the
Arrow arrays, they can perform on-par with built-
in functions. Furthermore, window functions could
support the implementation of streaming SPARQL
extensions (e.g., [26]) and hybrid data models that
support continuous querying (e.g., [10]) that use
window operators to work with unbounded streams.

2) Catalogs provide an API to dynamically load and orga-
nize a list of tables into catalogs and schemas. In the
context of Ontology-Based Data Access (OBDA) [27],
this abstraction could be beneficial for loading virtual
RDF graphs, allowing the integration of new data
sources at runtime. In addition, this could also be used
to expose ‘‘time series tables” that are part of hybrid
data models.

3) Data Sources can be used to integrate new storage
layers for RDF data. As long as the result conforms
to one of RDF Fusion’s encodings, one can use RDF
Fusion’s built-in SPARQL operators. As DataFusion
allows for sophisticated optimizations that push the
filter down to the storage layer, this presents opti-
mization opportunities. For example, an RDF store
that stores a sorted list of its literals could speed
up queries by pushing down filters such as ?a >
“2020-01-01"""xsd:date into the storage layer.
For time series data, there are already production-ready
data sources available.

4) The APIs in the Execution Environment can be
used to restrict the use of resources, manage spills to
disk, and access object stores. These features can help
by supporting custom stream operators to work with
larger-than-memory datasets (spilling) and provide
easier integration with cloud storage (object stores).

5) New Query / Language Frontends make it possible
to introduce alternative query languages. The SPARQL
parser used in RDF Fusion is implemented using this
mechanism and similar techniques could be used to
integrate domain-specific query languages. Custom
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TABLE 4. Details on the experimental setup.

Component Information

CPU ADM Ryzen 9 9900X, 12 Cores, 24 Threads
Main Memory 96 GiB

Operating System Fedora 42, Linux Kernel 6.16.5-200
Podman 552

JVM Heap Size 80 GiB

DataFusion Version 50.0

DataFusion Memory Limit |75 GiB

DataFusion Target Partitions | 1

query languages for hybrid data models will make use
of this extension point.

6) Query Rewrites / Optimizer Passes can enable
SPARQL-specific optimizations. In addition, it is
also possible to rewrite certain quad patterns to use
custom indices. For example, using an R-tree [28] to
efficiently return elements within a bounding box in
GeoSPARQL [24]. Lastly, these capabilities could also
be used for reasoning-aware query rewrites, such as
PerfectRef [29].

7) Relational Operators allows users to implement cus-
tom operators that can run with the same performance
as built-in operators. These are especially useful for
experimenting with novel SPARQL extensions that
cannot be built on top of existing operators. Further-
more, hybrid data models that require transformations
between graphs and time series data could benefit from
custom operators in the query plan.

C. SPARQL PERFORMANCE (R3)

We evaluated the performance of RDF Fusion using
the Berlin SPARQL Benchmark (BSBM) [30] benchmark
suite. The evaluation compares RDF Fusion with popular
open-source RDF stores that feature an in-memory storage
option. All evaluated systems store the data in memory,
as RDF Fusion does not yet feature an on-disk storage
implementation.

Further details of the experimental setup can be found in
Table 4. DataFusion is used in its default configuration, with
the exception of fixing the number of target partitions and
setting an upper bound on the memory usage. There is a 5 GiB
difference between the JVM-based stores and DataFusion’s
memory limit because the latter does not account for the
index size and is only on a ‘“‘best-effort” basis. The SPARQL
engines and benchmark drivers were running inside Podman
pods that facilitate communication between the engine and
the benchmark drivers. The code for running the benchmarks
can be found on GitHub [31] and Zenodo [17].

The BSBM benchmark models an e-commerce platform
and provides several “‘use cases’ that target different aspects
of the SPARQL query language. In this work, we use the
“Explore’” and “Business Intelligence” use cases to evaluate
RDF Fusion. The Explore use case was executed with
24 parallel queries, while the Business Intelligence use case
was executed with 12 parallel queries. We also attempted to
execute the latter with 24 parallel queries. However, another
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FIGURE 7. BSBM Explore (25000 products, ~ 8.9 million triples, 24 parallel queries). Lower is better.

query engine (not RDF Fusion) crashed repeatedly during our
experiments.

The Explore use case consists of data retrieval queries that
simulate a user browsing the platform — for example, fetching
reviews of a particular product. Query engines with low
overhead for processing and data access typically perform
well in this setting. The benchmark results for the Explore
use case are shown in Fig. 7. Although RDF4J and Oxigraph
outperform RDF Fusion in this scenario, RDF Fusion still
achieves competitive execution times, comparable to Jena.
Oxigraph yields the best performance on most Explore
queries.

By contrast, the Business Intelligence use case contains
analytical queries from different stakeholders. These queries
often require processing larger intermediate results, such as
aggregating the average price of a product type. Engines
optimized for analytical workloads are expected to perform
well here. The results for the Business Intelligence use case,
depicted in Fig. 8, present a different picture. Here, Oxigraph
performs worse than most other engines, while RDF Fusion
and, in some cases, RDF4]J deliver the best results.

To validate the correctness of the SPARQL results,
we selected a representative query instance from each query
type and manually compared its output against that of a
battle-tested commercial SPARQL engine. Adapted versions
of these queries (e.g., with additional orderings to ensure a
stable result) are executed during the CI workflow.

Running the official BSBM qualification suite was not
feasible because it requires loading 100 million triples into
memory while still having enough memory to run the queries.
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Once an on-disk storage layer is implemented, we plan to
incorporate the full qualification test into the CI workflow.

VIIl. DISCUSSION

Before proceeding with a detailed discussion, this section
revisits the requirements outlined in Section IV. First, the
evaluation provides evidence that RDF Fusion complies
with the SPARQL 1.1 standard (R1). Next, the discus-
sion, together with the example of hybrid data models in
Section III, argues that RDF Fusion can support sophisticated
extensions, including hybrid data models (R2). Providing a
feature-complete prototype that implements a hybrid data
model on top of RDF Fusion is beyond the scope of this paper.
Finally, the performance evaluation shows that RDF Fusion
achieves competitive performance for analytical SPARQL
queries (R3).

Performance: The evaluation results highlight two key
findings: RDF Fusion performs well enough on queries
that involve relatively small intermediate results (BSBM
Explore), and it performs well for queries with larger interme-
diate results (BSBM Business Intelligence). Further analysis
reveals that, in the case of queries that quickly finish their exe-
cution, a significant portion of query execution time is spent
in query planning. Since DataFusion is primarily optimized
for large datasets, investing more time in query planning can
often be beneficial. However, we believe that some parts of
the planning machinery are less relevant for RDF Fusion’s
SPARQL queries (e.g., rewriting relational expressions).
We are currently identifying a subset of optimizations most
relevant to RDF Fusion to improve planning performance.
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FIGURE 8. BSBM Business Intelligence (5000 products, ~ 1.8 million triples, 12 parallel queries). Lower is better.

It is also important to note that RDF Fusion is still a relatively
new system. Certain features that are crucial for specific
query workloads are not yet implemented in our custom
operators (e.g., statistics collection, sideways information
passing). We are confident that continued improvements in
DataFusion, as well as SPARQL-specific optimizations in
RDF Fusion, will further strengthen its performance in graph
processing. Even without further performance improvements,
the results show that RDF Fusion already performs well
enough to process graphs in hybrid data models. We plan
on investigating RDF Fusion’s performance and memory
consumption characteristics further, once the aforementioned
optimizations have been implemented.

Vectorizing SPARQL Queries: Solutions can bind variables
to arbitrary RDF terms, which can lead to heterogeneous
SPARQL results, as demonstrated in Section V-C. This
heterogeneity can impede the vectorized execution of some
SPARQL functions. Therefore, a detailed evaluation of
the performance characteristics of vectorizing scalar and
aggregate SPARQL functions in real-world workloads would
be beneficial. Currently, most SPARQL functions in RDF
Fusion are not yet optimized to take advantage of modern
SIMD instructions. We are currently working on further
investigating these characteristics.

Extending RDF Fusion: RDF Fusion is designed with a
focus on extensibility. As noted in Section VI-D, it can be
used as a DataFusion extension, giving users access to its full
range of extension points. However, this requires more effort
compared to the built-in RDF Fusion extension mechanisms
(e.g., custom functions), since users must construct the
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logical plan themselves. More research and engineering
efforts are required to further lower this barrier. Possible
native extension points of RDF Fusion include user-defined
types in the typed value encoding, custom object IDs that may
store small values inline, and an extensible query parser.

DataFusion as a Foundation: We built RDF Fusion on
DataFusion instead of creating a specialized query engine.
Although other works [19] mention the challenges of extend-
ing modular execution engines to support SPARQL queries,
we believe that building on DataFusion is a good decision.
It provides a state-of-the-art query engine architecture and
many features that would otherwise have been reimplemented
from scratch. However, some SPARQL features currently
require workarounds. For example, at the time of writing,
users cannot provide a custom sort order to DataFusion’s
sort operator. As a result, RDF Fusion cannot sort directly
on the typed value encoding as the sort implementation is
not implemented for Union layouts, thus forcing us to add
another “Sortable” encoding for this purpose. As DataFusion
matures, these restrictions may be lifted. Furthermore, RDF
Fusion may provide its own physical sort operator to
circumvent this problem in the future.

Scalability: DataFusion’s core project focuses on single-
node execution. Although it has shown excellent single-
node performance, it cannot scale to multiple machines by
itself. However, there are multiple projects that extend or
use DataFusion in a distributed manner (e.g., DataFusion
Ballista”). Building on these approaches, RDF Fusion may

9https://datafusi011.apache.org/ballista/
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also be able to scale across multiple nodes in the future.
Furthermore, in modern shared-disk database architectures
(e.g., [32]) that rely on a scalable storage layer, a simple
scaling strategy would be to run multiple stateless compute
nodes that can handle load-balanced queries. Although this
model would not allow users to leverage multiple compute
nodes for a single query, they could leverage the compute
nodes across multiple queries.

IX. RELATED WORK

We identified two areas that are closely related to this work.
Firstly, there are other open source SPARQL engines that
could be used to implement hybrid data models. Secondly,
there are other applications of the Arrow ecosystem within
the Semantic Web.

A. OPEN SOURCE SPARQL ENGINES

Apache Jena ARQ is the SPARQL engine that powers the
Apache Jena system [33]. It is an extensible and embeddable
SPARQL engine and well suited for writing extensions,
as demonstrated by many different research prototypes (e.g.,
[24]). In contrast to Jena ARQ, RDF Fusion provides a
different query execution model that can outperform Jena,
as demonstrated in Section VII-C. Furthermore, RDF Fusion
can leverage a large ecosystem by integrating with Arrow
and DataFusion. For example, if someone writes high-
performance geo-spatial functions for Arrow, RDF Fusion
can use these implementations by using the same data type
in the typed value encoding. Similarly, the larger Arrow
community can also benefit from improvements made by
RDF Fusion to their ecosystem.

RDF4J'? is a modular framework for working with RDF
data that also includes a SPARQL implementation. It’s SAIL
(Storage and Inference Layer) API allows users to plug-in,
among other things, custom storage layers, custom reasoners,
and extensions such as GeoSPARQL [24]. However, similar
to Apache Jena, RDF4J’s query engine employs a row-
based approach, and therefore exhibits the same performance
characteristics discussed previously.

Oxigraph [23] is a SPARQL engine implemented in Rust.
It employs a custom row-based query engine designed
for SPARQL workloads. The evaluation results show that
Oxigraph performs particularly well on queries that benefit
from engines with low overhead. However, its performance
is less competitive on analytical workloads. In addition,
since extensibility is not a primary design focus, the same
limitations as above also apply here.

QLever [34] also adopts a columnar layout for its
query engine. In contrast to approaches that emphasize
the integration of time-series data, QLever focuses on
enabling full-text search within SPARQL queries. It employs
a custom data layout that is not based on a standardized
memory representation. Although this design allows for a
query engine tailored specifically to SPARQL evaluation,

10https://rdf4j.org/
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it prevents QLever from leveraging the broader ecosys-
tem built around Arrow and DataFusion. In addition,
RDF Fusion distinguishes itself by its emphasis on
extensibility.

In addition to the systems mentioned above, there are com-
mercial SPARQL engines, some of which employ a columnar
data processing strategy (e.g., Stardog’s BARQ [19], Vir-
tuoso [35]), as well as discontinued open-source systems
(e.g., Blazegraph [36]). While some of these platforms
provide limited extensibility (e.g., custom functions), none
offer extension points as comprehensive or flexible as those
available in DataFusion.

In summary, there are compelling open-source projects
for extending SPARQL, either by using native extension
points or by forking the open-source code. However, none of
them combine the focus on extensibility and analytical query
processing in a single system.

B. ARROW IN THE SEMANTIC WEB

Arrow has already been used for high-performance Semantic
Web applications. Chrontext [37] allows integrating data
from industrial data sources in an OBDA SPARQL engine.
Processing is performed using Pola.rs,!! a data frame library
that uses Apache Arrow as an internal format. While
Chrontext allows one to issue SPARQL queries against IoT
data sources, it does so by mediating between an existing
SPARQL and time series databases.

Arrow has also been used in maplib [38] (also through
Pola.rs), a library for creating RDF graphs with template
expansions from data frames. The library allows users to
query the graph directly with SPARQL, construct further
triples with CONSTRUCT clauses, and validate the resulting
graph using SHACL [39]. SPARQL is implemented by
mapping it directly to dataframe operations. However, maplib
does not support SPARQL queries where a single variable has
multiple data types.

While these existing approaches bring parts of RDF
Fusion’s premises to the Semantic Web world, they are either
specialized for a particular application or are limited in the
SPARQL compatibility they provide. Furthermore, they do
not share RDF Fusion’s focus on extensibility.

X. CONCLUSION & FUTURE WORK

This work presented RDF Fusion, a SPARQL engine built
on Apache DataFusion. Leveraging DataFusion’s extensible
query engine architecture, RDF Fusion provides a foundation
for exploring columnar SPARQL query processing and
hybrid data models, benefiting from the surrounding ecosys-
tem. To bridge the gap between the RDF data model and
Apache Arrow, we introduced several RDF term encodings
and demonstrated that this mapping can be used to efficiently
implement SPARQL on a modular analytical query engine.
We also provided evidence that RDF Fusion complies with
the SPARQL 1.1 standard and discussed how researchers

u https://pola.rs/
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working on the Semantic Web and hybrid data model can
leverage the discussed extension points.

RDF Fusion is a first step toward embracing the trend of
composable data management systems in the Semantic Web
and hybrid data models. Other building blocks, such as index
definition and update mechanisms, could further reduce the
complexity of SPARQL implementations, allowing engineer-
ing efforts to focus on specialized solutions like time series
data or full-text search. The goal is to enable exploration of
these specialized data models without the effort of building
a SPARQL engine from scratch, making these technologies
more accessible for practical use cases.

Future work, partially discussed in Section VII-B, includes
building an on-disk storage layer to allow RDF Fusion to
function as a standalone SPARQL engine, implementing
various performance improvements, providing additional
built-in extensibility options, and implementing a distributed
version of RDF Fusion. Furthermore, we are aiming to build
a full-fledged hybrid data model on top of RDF Fusion.
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