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Abstract
Motivation: Understanding how bacterial species relate to clinical health indicators can reveal microbiome signatures of disease, offering 
insights into conditions such as obesity or liver disease. However, analyzing such data requires methods that address compositionality, high di
mensionality, sparsity, and outliers.
Results: We tackle the challenge of identifying microbiome components linked to health indicators through a robust multivariate compositional 
regression model. Our method addresses the high dimensionality, sparsity, and compositional nature of microbiome data while maintaining con
trol of the false discovery rate (FDR). By incorporating outlier robustness and a derandomization step, we enhance the stability and reproducibil
ity of results, surpassing current techniques like the Multi-Response Knockoff Filter (MRKF). In simulation studies, our method outperforms 
MRKF in terms of FDR control, power, and robustness. In real data applications, it leads to valuable biological insights, such as identifying micro
bial species associated with specific clinical parameters.
Availability and implementation: Software in R code format, along with synthetic data example illustrations and comprehensive documenta
tion, is available at https://github.com/giannamonti/RobMReg.

1 Motivation
The intestinal microbiome is vital for host health and metab
olism, with growing evidence that shifts in microbial commu
nities reflect changes in health. This has increased interest in 
identifying microbiome signatures associated with clinical 
outcomes, including obesity, liver disease, and cancer. A pri
mary goal is to find bacterial species associated with specific 
health indicators. Analyzing microbiome data involves sev
eral statistical challenges. The data are compositional— 
meaning important information resides in the ratios between 
taxa—high-dimensional, and sparse, since only a small subset 
of features usually relate to outcomes. Additionally, multidi
mensional outliers can skew results, and multivariate out
comes are common, particularly when multiple clinical 
parameters or phenotypes are measured simultaneously. 
While existing methods address some of these aspects—such 
as false discovery rate (FDR) control or compositionality— 
they usually focus on univariate settings and are not robust to 
outliers. Therefore, a unified framework is needed that can 
jointly handle compositional predictors, multiple correlated 
outcomes, and control for contamination by outliers, while 
also controlling the FDR. To address this gap, we propose a 
robust multivariate regression method designed for composi
tional covariates, incorporating both FDR control and a 

derandomization step to enhance result stability and repro
ducibility. Specifically, our method extends the Multi- 
Response Knockoff Filter (MRKF) of Srinivasan et al. (2023), 
improving it with robust estimation techniques and princi
pled derandomization via the e-BH procedure (Wang and 
Ramdas 2022, Ren and Barber 2024). In this context, the re
gression problem is modeled as a multivariate model, where 
Y ¼ ðY1; . . . ;YqÞ

T represents multiple clinical or phenotypic 
outcomes, and the predictors are high-dimensional micro
biome components. Secondary response variables—such as 
phenotypes in a genetic context—can also be analyzed to un
derstand better their association with microbiome composi
tion and their relationship with the primary outcome. Using 
multivariate models enables simultaneous inference and over
comes the limitations of univariate approaches, which test 
associations separately and require multiple testing correc
tions (see e.g. Wen and Lu 2022). Our proposed method pro
vides improved power, robustness, and reproducibility for 
high-dimensional microbiome studies under FDR control.

The outline of the paper is as follows. Section 2 reviews the 
classical multivariate regression method involving composi
tional covariates and presents the proposed robust version. 
Further, it details how the MRKF is robustified and extended 
to a version for FDR control using the concept of e-values. 
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The simulation results are described in Section 3 to evaluate 
the numerical performance of the proposed method in com
parison with the non-robust method. Section 4 presents an 
application to real microbiome data, and the final Section 
5 concludes.

2 Materials and methods
The computational methods we will present in this section 
are an adaptation of the robust multivariate regression 
method with covariance matrix estimation presented by 
Chang and Welsh (2023), adjusted for the case of composi
tional covariates that we call alrRMCL. The optimization al
gorithm we present is similar to, but not the same as, the 
algorithm of Chang and Welsh (2023). Important modifica
tions have been introduced to make it compatible with the 
compositional nature of the data and to improve its effi
ciency. Moreover, a derandomized robust knockoff filter 
(Barber and Cand�es 2015, Ren and Barber 2024) that con
trols the FDR by adding “knockoff” variables to the regres
sion is proposed.

It has been shown that the knockoff-based methods also 
have e-value interpretations (Ren and Barber 2024). Based on 
this observation, we applied an e-BH procedure for multiple 
testing problems that control the FDR under arbitrary depen
dence (Wang and Ramdas 2022).

2.1 Preprocessing
Let Y ¼ ðY1; . . . ;YqÞ

T be the vector of q responses related to 
the same disease, and they are supposed to be correlated.

Let W ¼ ðW1; . . . ;Wpþ1Þ
T, with Wκ>0 for all κ, be a vec

tor of absolute abundances of the ðpþ1Þ different taxa, i.e. 
operational taxonomic units. The microbiome datasets gener
ated by high-throughput sequencing of 16S rRNA gene 
amplimers, metagenomes, or metatranscriptomes are typi
cally considered compositional because the total number of 
counts within a sample is irrelevant. Indeed, they have an ar
bitrary total imposed by the instrument (Gloor et al. 2017). 
The data of interest are instead the relative values of the read 
counts, which makes the dataset inherently compositional. 
This is precisely the only useful information we want to ex
tract from the microbiome’s composition. Experimental limi
tations, such as variations in the library size corresponding to 
the total count in each sample, do not allow for a direct 
analysis of the count data; therefore, the relative abundances 
of each taxon must be considered as a datum.

Let X¼ ðX1; . . . ;Xpþ1Þ
T with Xκ ¼Wκ=

Ppþ1
‘¼1 W‘ for 

κ ¼ 1; . . . ;pþ1, the normalized vector, to eliminate the effect 
of the sample totals. We observe that the ðpþ1Þ components 
of X are positive, thus Xκ>0, and are subject to the unit sum 
constraint 

Ppþ1
κ¼1 Xκ ¼ 1, namely X 2 Spþ1, i.e. the unit sim

plex. We assume we have measured the microbiome abun
dances related to the ðpþ1Þ taxa from n samples. Let X be 
the compositional matrix of dimension n× ðpþ1Þ, where 
each row contains all the relative information among 
the components.

The log-ratio approach is popular for extracting and ana
lyzing relative rather than absolute information (Aitchison 
1982). A first step is to represent the data by using a specific 
transformation, where we propose to use the additive logra
tio (alr) transformation, defined as 

Z ¼ ðZ1; . . . ;ZpÞ
T

:¼ ðlog
X1

Xpþ 1
; . . . ; log

Xp

Xpþ 1
Þ
T
;

where Z 2 Rp is the microbiome feature vector, and Xpþ1 is 
the reference frame (Morton et al. 2019, Brill et al. 2022). 
The choice of the reference frame is a crucial point, as all the 
subsequent analyses will depend on it (Greenacre et al. 
2021). On the other hand, the alr transformation allows for a 
clear model interpretation in terms of variable selection in a 
sparse setting. However, caution should be exercised when 
interpreting the regression coefficients, as additive log-ratios 
should be understood as increasing one component relative 
to all others, rather than only with respect to the chosen 
reference, as pointed out in Coenders and Pawlowsky- 
Glahn (2020).

It seems convenient that the reference component is not dif
ferentially abundant across the samples. Furthermore, al
though compositional data must be interpreted in terms of 
relative information, from an operational perspective, the 
chosen reference component should not be strongly associ
ated with the response variables. To guide this choice, we 
suggest performing a robust test of association (e.g. 
Spearman’s or Kendall’s rank correlation) between each po
tential reference component Xκ and the response vector Y.

Note that here the normalization of the composition to 
unit sum is essential, while it is irrelevant for the alr transfor
mation. The component with the lowest maximum associa
tion measure (Alfons et al. 2017) will be the suitable 
candidate for the choice of reference. Furthermore, as ob
served, e.g. in Brill et al. (2022), domain knowledge should 
also be considered when choosing the reference, particularly 
in cases with multiple options. In addition, alternative 
approaches have been proposed in the literature to identify 
suitable reference taxa in a data-driven manner, such as 
RioNorm2 (Ma et al. 2020), which uses a network-based 
normalization strategy to detect relatively invariant taxa 
across samples and conditions. While not specifically 
designed for robustness, such methods can be useful comple
ments in preprocessing pipelines, especially when no clear bi
ological guidance is available. Other methods, such as 
RAIDA (Sohn et al. 2015), ANCOM (Mandal et al. 2015), 
and Omnibus (Chen et al. 2018), are examples of differential 
abundance testing procedures designed explicitly for micro
biome data. These methods address common challenges in 
microbiome sequencing, such as compositional heterogeneity, 
zero inflation, overdispersion, and outliers, although they of
ten rely on distributional assumptions or non-robust frame
works. Our robust knockoff-based approach, combined with 
alr transformation under sparsity assumptions, offers a 
complementary and interpretable alternative in high- 
dimensional settings.

Hereafter, to fix the notation, we use index j as the index 
of the microbiome features (j¼ 1; . . . ;p), i as the index of the 
sample (i¼ 1; . . . ;n), and h as the index of the response varia
bles (h¼ 1; . . . ;q).

2.2 Multivariate regression with 
covariance estimation
To link the microbial features to the response variables, we 
consider a multivariate regression model, which could be 
expressed in matrix form as 
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Y
n× q
¼ Z

n× p
B

p× q
þ E

n× q
; (1) 

where Y is the response matrix related to q continuous out
come variables, Z is the design matrix of microbial (alr trans
formed) features, B is the regression coefficients matrix, and 

E is the error matrix, with rows εi�
iid
N qð0; Σ

q×q
Þ for some un

known positive-definite covariance matrix Σ.
W.l.o.g., we can assume that Y and Z are centered, which 

allows us to remove the intercept from the model (1).
To address the estimation difficulties of the model (1), a rela

tively simple solution is to ignore the correlation structure of the 
errors and obtain a maximum likelihood estimate of B minimiz
ing the Gaussian negative log-likelihood up to a constant, 

tr½ðY − ZBÞTðY − ZBÞΩ�− n log jΩj; (2) 

where Ω¼ Σ− 1 is the precision matrix, tr½�� denotes the trace of 
a matrix, and jΩj is its determinant. It can be shown that the 
maximum likelihood solution of (2) for B coincides with the 
least squares solution, i.e. bBOLS ¼ ðZ

TZÞ− 1ZTY. This multivar
iate problem can be viewed as a series of q univariate least 
squares problems, one for each response variable, and each pro
viding the estimate of the hth column of the matrix B.

However, as pointed out in Rothman et al. (2010) and Lee 
and Liu (2012), fitting separate models for each response 
ignores the correlation structure among outcomes, potentially 
leading to inefficient estimation, unstable variable selection, and 
reduced statistical power. In contrast, multivariate approaches 
can exploit shared information across responses, improving pre
diction performance. Thus, to tackle the multiple-response re
gression problem with the two simultaneous goals of parameter 
estimation and variable selection, Rothman et al. (2010) pro
posed a penalized normal likelihood framework, with a lasso 
penalty (Tibshirani 1996) to promote coefficient sparsity and 
account for the high-dimensional setting. We will refer to their 
approach with the acronym MRCE:  

ðbBMRCE; bΩMRCEÞ ¼

argminB;Ω

(

tr½ðY − ZBÞTðY − ZBÞΩ�− n log jΩj

þ λ1

X

j0 6¼j

jωj0jj þ λ2

Xp

j¼1

Xq

h¼1

jβjhj

)

; (3) 

where ωj0j and βjh are the entries ðj0; jÞ and ðj;hÞ of Ω and B, 
respectively, and λ2≥0 and λ1≥0 are tuning parameters to 
control sparsity in B and Ω. The simultaneous estimation of 
the regression coefficients and the covariance structure of the 
MRCE is performed via a fast approximate algorithm that 
utilizes an alternating estimation scheme, where one matrix is 
held fixed at each step. When Ω is fixed, the solution for B 
can be efficiently obtained using the cyclical coordinate de
scent algorithm (Friedman et al. 2007). Conversely, when B 
is fixed, the solution for Ω can be determined using the graph
ical lasso algorithm (Friedman et al. 2008). For more details 
on MRCE, see Rothman et al. (2010). Note that the ‘1 pen
alty on both B and Ω is compatible with the assumption of 
sparsity in the regression coefficients, meaning that only a 
small portion of the covariates can predict the responses, pro
viding interpretation. It is also consistent with the assumption 

that only some response variables are correlated with each 
other, improving prediction performance.

It is well known that estimation methods based on likeli
hood maximization are highly sensitive to the presence of 
outliers in the data. To address this issue, Chang and Welsh 
(2023) proposed a robust alternative to MRCE, namely the 
robust multivariate lasso regression with covariance estima
tion (hereafter referred to as RMLC).

In this contribution, we adapt RMLC to the context of com
positional data analysis, introducing key modifications to the 
original algorithm. We refer to our method as alrRMLC to 
highlight its close connection to the RMLC algorithm and our 
choice of the alr transformation to accommodate the composi
tional nature of the microbiome.

The objective function of the alrRMLC is defined as 

ðbBalrRMLC; bΩalrRMLCÞ ¼

argminB;Ω

(

2
Xn

i¼1

Xq

h¼1

ρð½ðY − ZBÞΩ1=2�ihÞ−

n log jΩj

þ λ1

X

j0 6¼j

w1;j0jjωj0jj þ λ2

Xp

j¼1

Xq

h¼1

w2;jhjβjhj

)

; (4) 

where ½ �ih defines the element ði;hÞ of a matrix, ωj0j and βjh 
are the entries ðj0; jÞ and ðj;hÞ of Ω and B, respectively, and 
λ2≥0 and λ1≥0 are tuning parameters to control sparsity in 
B and Ω as in (3). In addition to the objective function (3), 
two adaptive weight systems have been introduced in func
tion (4), namely w1;j0j and w2;jh, to allow different penalties 
for each entry of Ω and B. A standard choice (Zou and 
Zhang 2009, Lee and Liu 2012) is w2;jh ¼

1
j~β jhj

, where ~βjh is 
the OLS estimator in the low-dimensional setting (i.e. when 
p<n) or the ‘2 (ridge) estimator in the high-dimensional case 
(p>n). Chang and Welsh (2023) suggested to replace ~βjh 
with its robust counterpart resulting from q separate MM- 
ridge regressions (Maronna 2011) to account for contamina
tion in the data. Note that in the objective function (4), differ
ent levels of shrinkage are applied to the regression 
coefficients and the precision matrix by introducing adaptive 
weights w1 and w2 in the same fashion as an adaptive lasso 
regularization method (Zou 2006). Although we provided a 
fully general formulation of the problem in (4), in the imple
mentations we set all weights w1;j0j and w2;jh to 1 to avoid 
making the problem more computationally demanding.

In the objective function (4), ρ is a scalar symmetric robust 
loss function. In the following, we will use Tukey’s biweight 
loss, defined as 

ρdðxÞ ¼

d2

6
1 − ½1 −

x
d

� �2

�
3

( )

if jxj≤d

d2

6
if jxj> d

;

8
>>>><

>>>>:

(5) 

where d is a positive tuning constant to control the level of 
robustness. A common choice is d¼ 4:685, which yields ap
proximately 95% asymptotic efficiency under normality. 
Tukey’s biweight loss is a preferable choice as it provides ro
bustness against outliers in the responses as well as high- 
leverage points or outliers in the covariates. Note that MRCE 
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is a special case of alrRMLC, when ρ corresponds to the 
squared loss and w1;j0j � 1, w2;jh � 1.

To numerically optimize the objective function (4) for the 
joint estimation of B and Ω, we propose the alrRMLC algo
rithm, inspired by Chang and Welsh (2023). This procedure 
consists of three steps and incorporates a 2-fold accelerated 
proximal gradient (APG) method. First, we optimize B for a 
specified precision matrix Ω via robust multivariate Lasso 
(RML); second, we estimate Ω for a given B through a robust 
extension of the graphical Lasso (Rglasso); third, the first two 
steps are iterated until convergence. To reduce computational 
cost, we adopt a fast approximation in which the outer iteration 
is performed only once, as summarized in Algorithm 1.

Details on computational algorithms are reported in 
Section 1, available as supplementary data at Bioinformatics 
online.

2.3 Multi-response Knockoff filter
In the context of the microbiome, one must contend with the 
curse of dimensionality, where the number of covariates far 
exceeds the sample size. This often results in the selection 
of numerous false positives—i.e. irrelevant variables— 
compromising the reproducibility of results.

To address this issue, the compositional knockoff filter 
(Srinivasan et al. 2021) has been proposed, leveraging a 
fixed-X design (Barber and Cand�es 2015). Later, in 
Srinivasan et al. (2023), a model-X knockoff filter (Barber 
and Cand�es 2019) was introduced to control the false discov
ery proportion in high-dimensional settings without requiring 
assumptions on the conditional distribution of the responses. 
In Monti and Filzmoser (2024), a two-step robust composi
tional knockoff filter for compositional covariates based on 
the recycled fixed-X knockoff procedure (Barber and Cand�es 
2015, 2019) was considered to robustify the algorithm pro
posed by Srinivasan et al. (2021). While Srinivasan et al. 
(2021) and Monti and Filzmoser (2024) focus on univariate 
regression settings, Srinivasan et al. (2023) addresses the mul
tivariate response case. In this contribution, we propose the 
model-X knockoff filter for robust multivariate regression 
with covariance estimation as an effective method to control 
the FDR of the selected covariates, which serves as a robust 
counterpart of the Multi-Response Knockoff Filter (MRKF) 
of Srinivasan et al. (2023).

The MX problem explored by Cand�es et al. (2018) can be 
imagined as testing, for each j 2 ½p � q� ¼ f1; . . . ;pqg, whether 
Zj is related to at least one Yh given all other variables except 
Zj (denoted as Z− j ¼ fZ1; . . . ;Zpg nZj). In other words, the 

goal is to determine whether each of the following ½p � q�
null hypotheses 

H0;j : Y??ZjjZ − j (6) 

holds. The MX knockoff filter is conceived to test H0;j in (6)
for all j 2 ½p � q�, and indeed it should be noted that each fea
ture Zj; j¼ 1; . . . ;p, may be potentially related to each re
sponse variable Yh, h¼ 1; . . . ;q. Ideally, the goal of the 
selection procedure is to identify the smallest subset of the 
features Z for which H0;j is not true.

A variable Zj is considered non-null, i.e. important, if H0;j 
is not true, indicating a feature with a nonzero effect on at 
least one response variable. As the number of hypotheses and 
discoveries may be large, we want to test H0;j in (6) while 
controlling the false discovery rate (FDR), i.e. the expected 
proportion of false positives—null hypotheses that are true 
but are incorrectly rejected—among the total number of se
lected features, i.e. all rejected hypotheses,  

FDR :¼ E
jbS \H0j

maxfjbSj; 1g

" #

; (7) 

where, with a slight abuse of notation, bS and H0 correspond 
to the set of indices related to the rejected nulls and the true 
null, respectively.

A selection rule controls the FDR at level α 2 ð0;1Þ if its 
FDR is guaranteed to be at most α, regardless of the values of 
the coefficients B.

Details on the multi-response knockoff filter are reported 
in Section 2, available as supplementary data at 
Bioinformatics online.

We perform the robust multivariate regression with covari
ate estimate using the alrRMLC algorithm on the augmented 
dataset ðZ; ~Z;YÞ, which includes 2p predictors and 
q responses.

Thus, following the knockoff framework, to identify the 
relevant variables obtained from the variable selection proce
dure described in Algorithm 1, we compute the feature im
portance statistics as the lasso coefficient difference after 
tuning the regularization via cross-validation, 

Wj ¼ jbβjj− j
b~β jþpj; j 2 ½p � q�; (8) 

which compares the estimated coefficient of the original fea
ture Zj for the hth response bβj with those of knockoff features 
b~β jþp. The importance statistic (8) has the property that swap
ping Zj with ~Zj flips the sign of Wj, so that larger positive val
ues of Wj indicate that Zj is a “true” signal, i.e. Zj has a 
nonzero effect on one response. The final set of selected fea
tures is given by 

bSkn :¼ fj;Wj ≥Tαg;where

Tα :¼ infft>0 :
1þ

P
j2½p�q� IfWj ≤ − tg

maxf
P

j2½p�q� IfWj ≥ tg; 1g
≤ αg ;

(9) 

where Tα>0 is the knockoff threshold and α is the nominal 
FDR level. It can be shown that bSkn satisfies the FDR at level 
α, i.e. FDR ≤α (see Barber and Cand�es 2015, Cand�es et al. 
2018 for further details). Note that we use the hat in bSkn to 
emphasize that the set of selected variables is the result of a 

Algorithm 1 Algorithm for solving alrRMLC (a fast 
approximation)

Data: n×q response matrix Y; n×p microbial features de
sign matrix Z, Bini, λ1, λ2.

Output: bB and bΩ
Procedure
1. given Ω0 compute bB0 ¼ bBðΩ0Þ using RML
2. given B0 ¼ bB0 compute bΩ ¼ bΩðB0Þ using Rglasso
3. recompute bB ¼ bBðbΩÞ using RML.
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random procedure. In literature, the knockoff threshold 
depicted in (9) is denoted as knockoffsþ, a refined version of 
the standard knockoff method, introduced to provide stron
ger control over the FDR, where the number of negatives is 
incremented by 1. However, if being overly conservative is a 
concern, we can use the modified knockoff filter threshold 

Tα :¼ infft>0 :

P
j2½p�q�

IfWj≤ − tg

maxf
P

j2½p�q�
IfWj≥ tg;1g

≤αg which controls a 

modified version of the FDR. This adjustment helps increase 
the number of discoveries, particularly in the early stages of 
a study.

2.4 Derandomized multi-response 
knockoff procedure
Due to the inherent randomness of the standard MX knockoff 
filter, i.e. bSkn depends on a one-time construction of the stochas
tic knockoff copy ~Z, multiple runs of the MX knockoffs on the 
same dataset produce varying sets of selected variables, since for 
each run a new matrix of knockoffs is generated, which is not 
ideal in practice. To improve stability while preserving FDR 
control, we adopt a derandomized knockoff procedure, inspired 
by the aggregation approach of Ren and Barber (2024).

To ensure provable FDR control under arbitrary depen
dence structures, we recast the knockoff filter within the 
framework of e-values (Shafer et al. 2011, Wang and 
Ramdas 2022).

The aggregating knockoff procedure for FDR control takes 
advantage of one key property of the e-values, namely, the 
average of multiple e-values is still an e-value (Vovk and 
Wang 2021). Thus, given the initial dataset ðZ;YÞ, we gener
ate M independent knockoff copies ~Zð1Þ; . . . ; ~ZðMÞ and then 
we compute WðmÞ

j , the feature importance statistic related to 
the mth knockoff matrix. To perform knockoff selection on 
each copy at a target level β 2 ð0;1Þ, for each m 2 1; . . . ;M, 
we define a knockoff threshold TðmÞβ as follows: 

TðmÞβ ¼ infft>0 :
1þ

P
j2½p�q� IfW

ðmÞ
j ≤ − tg

maxf1;
P

k2½p�q� IfW
ðmÞ
k ≥ tgg

≤ βg; (10) 

so that bSðmÞkn ¼ fj : WðmÞ
j ≥TðmÞβ g is the selected set for the 

knockoff filter when performed on the mth copy of the 
knockoff matrix ~ZðmÞ. We define the e-values for j 2 ½p � q�
as before 

eðmÞj ¼
pq � IfWðmÞ

j ≥TðmÞβ g

1þ
P

k2½p�q� IfW
ðmÞ
k ≤ − TðmÞβ g

: (11) 

These e-values are then averaged across replicates:  

eavg
j ¼

1
M

XM

m¼1

eðmÞj ¼
1
M

XM

m¼1

weightðmÞj Ifj 2 bS
ðmÞ
kn g; (12) 

where weightðmÞj corresponds to 

weightðmÞj ¼ pq �
1

1þ
P

k2½p�q� IfW
ðmÞ
k ≤ − TðmÞβ g

:

Crucially, eavg
j is still a valid e-value due to the closedness 

of the e-value space under averaging. Finally, the e-BH 

procedure (Wang and Ramdas 2022) is applied to the aver
aged e-values at a target FDR level α, yielding the final selec
tion set bSkn-derand. This derandomized selection is more stable 
than the classical knockoff procedure, while maintaining 
finite-sample FDR control. Given a target level α, and for any 
choice of the parameter β 2 ð0;1Þ and any number of knock
off copies M≥1, the selected set bSkn-derand, computed accord
ing to the proposed method, controls the FRD at level α. Ren 
and Barber (2024) provide the proof of this result and also 
discuss the optimal choice of β, recommending, for practical 
purposes, to fix β¼ α=2 when M>1 to achieve high power. 
Observe that when α¼ β and M¼ 1, the derandomized pro
cedure reduces to the original knockoff procedure at level α.

We briefly summarize the implemented procedure in the 
following Algorithm 2.

Note that a non-robust version of Algorithm 2, named 
MRKF-Derand could be implemented by substituting 
Algorithm 1 in step 2 with the classical MRKF Algorithm 
(Srinivasan et al. 2023).

We have also deemed a variation of the RobMRKF- 
Derand, which consists of a two-step procedure: in the first 
step (screening step), a 10-fold cross-validation lasso proce
dure (Friedman et al. 2023) is adopted to face the very large 
dimensionality of the predictor space. For robust screening, 
we first remove multivariate outliers from the joined data of 
the response and the explanatory variables using the method 
of Filzmoser et al. (2008). In the second step (selection step), 
the RobMRKF-Derand is applied.

Further details on the theoretical background of e-values and 
the derandomized knockoff procedure are provided in Section 
2.1, available as supplementary data at Bioinformatics online.

3 Simulation
We demonstrate the potential benefits of our alrRMLC 
method and the subsequent RobMRKF-Derand algorithm 

Algorithm 2 Derandomized Robust Multi-Response 
Knockoff filter (RobMRKF-Derand)

Data: n×q response matrix Y and n×p microbial features 
design matrix Z

Parameters λ1, λ2, nominal FDR threshold α 2 ð0;1Þ and 
β, M 2 Nþ

Procedure for m ¼ 1; . . . ;M
1. sample the knockoff copy ~Z

ðmÞ

2. model fitting according to Algorithm 1 on the augmented 
dataset ðZ; ~Z

ðmÞ
;YÞ

3. compute the feature important statistics W ðmÞ according 
to equation (8) (see Section 2.3 of the main paper)

4. compute the knockoff threshold T ðmÞ according to (10)
5. compute the e-values eðmÞj according to (11)
6. endfor
7. compute the averaged e-values eavg

j ¼ 1
M

PM

m¼1
eðmÞj for 

each j 2 ½p � q�.
8. compute bκ ¼maxfκ : eavg

κ ≥ ðpqÞ=ðακÞg or bκ ¼ 0 if this set 
is empty

Output: List of microbial features that are associated with at 
least one response variable, i.e. the selected set of discover
ies bS kn-derand ¼ fj 2 ½p � q� : eavg

j ≥ ðpqÞ=ðαbκÞg
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through extensive simulation studies. The knockoff method 
is implemented via the R-package knockoff (https://CRAN. 
R-project.org/package=knockoff).

3.1 Simulation settings
To mimic a real dataset that will be analyzed later in the paper, 
we consistently set n¼ 100 and p¼ 200 for all simulations.

In each replication of our simulation study, the rows of the 
n×p design matrix Z in (1) are randomly generated from a p-di
mensional multivariate normal distribution with mean μ to be set 
as a vector of ones and covariance matrix Σ¼ ½σjj0 �, where 
σjj0 ¼ 0:5jj − j0 j, 1≤ j; j0≤p. Note that this is equivalent to first gen
erating microbiome relative abundances ðX1; . . . ;Xpþ1Þ through 
the logistic normal distribution LNpðμ;ΣÞ (Lin et al. 2014).

We randomly picked nonzero components in the regression 
coefficient matrix B

p×q 
by specifying a sparsity percentage 

f¼ 10%, to allow for sparsity in the model. Next, each non- 
zero regression coefficient was randomly selected from 
f−3; −2; − 1;1;2;3g. Finally, iid error terms Ej’s were simu
lated from Nqð0;ΣÞ and the outcomes were calculated 
from Y¼ ZBþE.

To investigate whether the RobMRKF-Derand procedure 
(robust) and its classical counterpart (classical) are resistant 
to outliers, we considered three different scenarios:

� Scenario 1 (data without outliers): the design matrix Z and 
the responses Y are generated from multivariate normal dis
tribution and the true model Y

n×q
¼ Z

n×p
B

p×q
þ E

n×q
. 

� Scenario 2 (data with outliers in the response only): the de
sign matrix Z is generated as in Scenario 1. The response Y 
is generated according to the true model 
( Y
n×q
¼ Z

n×p
B

p×q
þ E

n×q
), and then an ε¼ 10% percentage of 

the observations are contaminated. That is, once rows of the 
error matrix E are simulated from a normal distribution, 
ε×n out of n randomly selected rows have random entries 
contaminated by numbers generated from Nqð0; γ×ΣÞ. 

� Scenario 3 (data with both outliers in the responses and in 
the covariates): Zori and the responses Y are generated as 
in Scenario 2. Then we replace the same ε percent obser
vations of Zori as in Scenario 2 by outliers generated from 
a normal distribution Npð0;10×ΣÞ and denote the new 
design matrix by Z. 

For Scenario 1, we compared the efficiency of the proposed 
RobMRKF-Derand algorithm with the two-step procedure 
variation, as described earlier, with fixed values of p¼ 200 
and q¼ 5 (classical versus classical with screening, and ro
bust versus robust with screening). For the remaining scenar
ios, we always performed variable screening first.

For Scenario 2, we investigate:

� the effect of changing the number of dependent variables 
q (q¼ 2;3;5;10), having fixed p¼ 200; 

� the effect of changing the magnitude of outliers, varying 
γ (γ ¼ 1;2;5;10;20) 

� the effect of changing the sparsity f 2 f2%; 5%;10%;20%g

For Scenario 3, we investigate the effect of changing the 
percentage of outliers ε 2 f0%;2%;5%;10%;20%g.

For every simulation setting, we created 100 replicated 
datasets, each with a sample size of n¼ 100. The final 

selection set is computed via the derandomized knockoff fil
ter run with the target nominal FDR level α ¼ 0.2, drawing 
M¼ 50 copies of the knockoffs. Note that we also modified 
the correlation parameter for the covariates, by considering 
σjj0 ¼ 0:3jj − j0 j and σjj0 ¼ 0:7jj− j0 j, but the main findings are 
unchanged, and thus results are not explicitly presented here.

3.2 Performance evaluation and results
After generating the data, we used the RobMRKF-Derand al
gorithm (robust) and the non-robust MRKF-Derand (classi
cal) to derive a sparse estimate of the regression coefficient 
matrix bB and evaluated its accuracy by comparing it to the 
true coefficient B through the calculation of the proportion 
of false discoveries: 

FDR ¼
#fj ¼ 1; . . . ;p;h ¼ 1; . . . ;q : bβjh 6¼ 0 \ βjh ¼ 0g

#fj ¼ 1; . . . ;p;h ¼ 1; . . . ;q : bβjh 6¼ 0g
(13) 

and the proportion of true positives: 

TPR ¼
#fj ¼ 1; . . . ;p; h ¼ 1; . . . ;q : bβjh 6¼ 0 \ βjh 6¼ 0g

#fj ¼ 1; . . . ;p; h ¼ 1; . . . ; q : βjh 6¼ 0g
(14) 

We calculated the average value over 100 replications and 
termed the corresponding values as empirical FDR and em
pirical TPR, respectively, hereafter.

The results for Scenario 1 are presented in Fig. 1. The left 
plot shows all simulation results for FDR and TPR in terms 
of boxplots. We can observe that, in general, the two-step 
procedure, which includes an initial variable screening phase, 
leads to better performance in both approaches. The number 
of screened variables is relatively stable, see the right plot. 
Moreover, when comparing the classical and robust 
approaches, the latter undoubtedly demonstrates superior 
performance, as it ensures the FDR remains at the predeter
mined nominal level while also achieving higher power.

Figure 2 shows simulation results when outliers in the 
responses are present (Scenario 2). The plots show average 
FDR/TPR, plus/minus one standard error. As the response di
mension q increases (left plot), the robust approach remains 
well centered around the nominal FDR value, while the classical 
method drifts dramatically. The price to pay is a lower power 
of the robust method compared to the classical method, al
though it still settles at acceptable levels. The effect of increasing 
the magnitude of the outliers γ (right plot) has no influence on 
maintaining the FDR, which remains nearly constant and below 
the nominal level for the robust method, but above the 20% 
level for the classical method. The TPR generally decreases with 
stronger outliers in the response space, and again, the robust 
method, maintaining the desired FDR level, shows a slight loss 
of power compared to the classical approach.

Increasing the level of signal sparsity has a positive effect 
on the empirical FDR; however, for both approaches, the em
pirical power decreases considerably [see Fig. 3 (left)].

When both the covariates and the responses are contami
nated with outliers (Scenario 3), the simulation results in 
Fig. 3 (right) show that increasing the proportion of outliers 
has a negative effect on the performance of both approaches 
in maintaining acceptable FDR levels. However, the robust 
method performs better: in the extreme case of 20% contami
nation, the empirical FDR of the robust method remains be
low 0.4, while the classical method reaches 0.75. Regarding 
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power, in this scenario, it is pretty evident that the presence 
of large amounts of outliers has a dramatic effect on the per
formance of the classical method, which is based on a qua
dratic loss function. In contrast, the robust method achieves 
higher power, although it is still affected as the fraction of 
outliers increases.

4 Real data application
We illustrate the utility of our proposed method using intesti
nal microbiome data of the European Women’s Study by 
Karlsson et al. (2013). Processed relative abundances at the 
genus level were obtained from the curatedMetagenomicData 

Figure 1. Simulation results for Scenario 1: comparison of classical and robust procedure, without and with variable screening (left), and the number of 
screened variables for the classical and robust method (right).

Figure 2. Simulation results for Scenario 2: comparison of classical and robust procedure, with varying dimension of the response (left), and the effect of 
varying the magnitude of the outliers by using γ ¼1, 2, 5, 10, 20 (right).

Figure 3. Simulation results comparing the classical and the robust procedure, with Scenario 2 by increasing the sparsity level (left), and Scenario 3 by 
increasing the amount of contamination (right).
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database (Pasolli et al. 2017). The high-dimensional and 
sparse metagenomic data were first aggregated at the genus 
level, resulting in a final dataset of 176 bacterial abundances 
for 145 women with different disease statuses: type-2 diabe
tes (T2D; n¼ 53), impaired glucose tolerance (IGT; n¼ 49), 
and normal glucose tolerance (n¼ 43). Instead of working 
with this categorical variable (disease status), we will explore 
the association of microbiome compositions and a multivari
ate response composed of four indicators of altered lipid and 
glucose metabolism (BMI, triglycerides, HDL, C-peptide), 
and one inflammation marker (hs-CRP). Specifically, BMI, 
triglycerides, C-peptide, or hs-CRP are associated with obe
sity, diabetes, or cardiovascular diseases, while higher levels 
of high-density lipoprotein (HDL) are common among 
healthy individuals. Thus, these variables can be considered 
as proxies or surrogates for disease status when diagnosis is 
not available. Moreover, working with multivariate continu
ous variables instead of a univariate categorical response 
could be more informative for identifying relevant associa
tions between microbiome and disease.

Figure 4 illustrates the relationships between disease status 
and the five multivariate response variables (q¼ 5) by pre
senting a biplot of a principal component analysis (PCA) of 
this response matrix. Here, the color information is according 
to the disease status, and the symbols are obtained by a clus
ter analysis of the response matrix, using model-based clus
tering, resulting in four clusters (Fraley and Raftery 2002). 
The first principal component, mainly defined by BMI, trigly
cerides, C-peptide versus HDL, shows discriminatory power 
between healthy and non-healthy subjects (IGT and T2D), 
explaining 47% of the total variance. The second component 
is defined by the inflammation marker hs-CRP. There are 
some potential outliers in the response matrix, mainly origi
nating from the cluster encoded with the symbol “þ”. This 
highlights the necessity of a robust data analysis.

The purpose of this application is to predict the five re
sponse variables using the microbiome composition as pre
dictors. Due to very small abundances, we selected those 

genera that are present in at least 10% of the observations, 
resulting in pþ1¼ 100 bacterial genera. Further abundances 
reported as zero were replaced by random uniform numbers 
drawn from the interval ð0;xminÞ, where xmin is the smallest 
value different from zero in the predictor matrix.

We consider the maximum association estimator (Alfons 
et al. 2017) to select the reference frame as described in 
Section 2 among the 100 possible candidates. Taking 
Lactobacillus as the alr reference, the predictor matrix now 
consists of p¼ 99 alr variables, representing the bacterial 
genera. It is not surprising that a human gut commensal ge
nus like, Lactobacillus, was chosen as alr reference. This lac
tic acid bacteria is widely present in the gut and maintains a 
mutualistic relationship with the human body, providing the 
host with dietary digestion and protection against pathogens 
in exchange for shelter and nutrients. Lactobacillus species 
are usually positively associated with good health and de
pleted in diseases like colon cancer, multiple sclerosis, HIV, 
and intestinal bowel disease. However, studies report contra
dictory results regarding their abundance in diabetes and obe
sity, which might be explained by the wide variety of 
metabolisms carried out by Lactobacillus species and strains 
(undetectable when working at the genus level) and the selec
tion of one or another in every specific situation (Heeney 
et al. 2018). This supports the importance of selecting an alr 
reference as being dataset-specific.

In line with exploratory objectives and common practice in 
similar studies (Barber and Cand�es 2015, Dai and Barber 
2016), we adopted a target nominal FDR level α ¼ 0.2 for 
variable selection. This choice facilitates the identification of 
a broader set of candidate associations for further investiga
tion. The RobMRKF-Derand algorithm selected a total of 7 
bacterial genera predictive of the multivariate response. Note 
that the derandomization procedure applied to the MRKF al
gorithm in this example is entirely conservative, meaning that 
the final set is empty. Therefore, it is not possible to compare 
the two methods in this empirical example.

To interpret the model, we computed Spearman correla
tions between every selected alr variable and the different re
sponse variables; see heatmap in Fig. 5.

Regarding the numerator part of the selected ALR, results 
show two main groups of bacteria that present opposite 

Figure 4. PCA biplot depicting the relationship between the dependent 
variables and the status of disease (see legend). The different symbols of 
the points represent the four clusters identified by model- 
based clustering. Figure 5. Spearman correlations heatmap.
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correlations regarding the health-associated biomarker re
sponse, HDL, and the rest of disease-associated biomarkers, 
i.e. BMI, triglycerides, and C-peptide.

On the one hand, Phascolarctobacterium, Butyrivibrio, and 
Barnesiella, which are known to be health-associated bacteria, 
correlate positively with HDL and negatively with the remain
ing response variables (BMI, triglycerides, and C-peptide). 
Both Phascolarctobacterium and Butyrivibrio are short-chain 
fatty acid producers, while Barnesiella presents anti- 
inflammatory properties (Vital et al. 2017). All of them have 
been previously reported to be abundant in healthy intestinal 
microbiomes compared to patients with T2D, hypercholester
olemia, and hypertension (Li et al. 2017, 2022, Granado- 
Serrano et al. 2019, Das et al. 2021, Hu et al. 2023).

On the other hand, a second group comprising unclassified 
genera from Lachnospiraceae family, Tractidigestivibacter and 
Coprobacillus, present opposite results: they correlate nega
tively with HDL and positively with BMI, triglycerides, and C- 
peptide. While the main producers of short-chain fatty acids in 
the human gut are genera from Lachnospiraceae, some of 
them are also associated with diseases affecting not only the 
gut but also peripheral organs. A review of different metage
nomic studies reported an increase in Lachnospiraceae in sub
jects with metabolic disorders like obesity, diabetes, and non- 
alcoholic fatty liver disease (Vacca et al. 2020). In line with 
our results, Hu et al. (2023) also reported positive correlations 
between genera and species within Lachnospiraceae and sev
eral glucose and insulin homeostasis parameters, including 
fasting and postprandial C-peptide levels and insulin resistance 
estimators. Coprobacillus is also a common genus in human 
gut microbiome composition, and it has been associated with 
hypertension in mouse models (Li et al. 2017).

Additional diagnostic plots presented in the Supplementary 
Material (Fig. 1, available as supplementary data at 
Bioinformatics online) illustrate how the robust method effec
tively identifies outliers and leverage points that may influence 
estimation, thereby enhancing the reliability of the analysis.

5 Conclusions
This article introduces a robust knockoff filter for multivari
ate regression with compositional covariates, built on the e- 
BH procedure. The proposed method enhances the interpret
ability of variable selection while ensuring type I error con
trol. Compared to the MRKF approach of Srinivasan et al. 
(2023), our method presents two key advancements. First, it 
incorporates a robust strategy to handle outliers in both pre
dictors and responses, improving the stability of the selection 
process. Second, it introduces a derandomization step that 
reduces the variability in the final selection, ensuring greater 
reproducibility. This step is grounded in the strong connec
tion between the knockoff framework and e-values, allowing 
us to reinterpret the knockoff filter as an e-BH procedure.

To properly account for the compositional nature of 
microbiome sequencing count data, we applied the additive 
logratio transformation. The alr requires selecting a reference 
taxon assumed not to be associated with the response. 
Although this assumption can be seen as a limitation, espe
cially when the goal is to detect such associations, we argue 
that, in high-dimensional settings (with p� n) and under 
sparsity assumptions (as in our Lasso-based regression frame
work), it is reasonable to expect that only a small subset of 
taxa are truly associated with the outcomes, making the 

existence of a “neutral” reference plausible. Moreover, the 
alr transformation offers clear interpretability of the results, 
unlike other log-ratio approaches such as ilr or clr, which— 
although theoretically well-founded—often produce results 
less directly linked to the original taxa.

We want to emphasize that in this paper, robustness refers 
to outlying observations in either the responses or in the 
covariates. This is the more traditional concept used in robust 
statistics (Maronna et al. 2019), while a more recent concept 
deals with outliers in single data cells (entries), which would 
be particularly attractive in the case of high-dimensional 
covariates (Raymaekers and Rousseeuw 2024). However, 
since cellwise robustness is not even available for the multi
variate regression case, the combination with sparsity and 
compositional aspects is left as a topic of our future research.

The practical relevance of our method is illustrated using 
real microbiome data from individuals with varying glucose 
tolerance status. Even when disease classification is unavail
able, individual health parameters may still capture underly
ing microbiome alterations. Our multivariate response 
approach reveals that such indicators are associated with the 
microbial signatures selected by the algorithm. This demon
strates the potential of our method in contexts where micro
biome changes are better explained by continuous clinical 
markers rather than binary diagnoses. Both numerical simu
lations and real data applications confirm that the 
RobMRKF-Derand algorithm outperforms MRKF in the 
presence of outliers. Given the increasing relevance of multi
variate regression with compositional covariates in micro
biome research, our approach offers a robust and 
reproducible solution, advancing the statistical toolkit avail
able for high-dimensional microbial data analysis.
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