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Abstract

Motivation: Understanding how bacterial species relate to clinical health indicators can reveal microbiome signatures of disease, offering
insights into conditions such as obesity or liver disease. However, analyzing such data requires methods that address compositionality, high di-
mensionality, sparsity, and outliers.

Results: We tackle the challenge of identifying microbiome components linked to health indicators through a robust multivariate compositional
regression model. Our method addresses the high dimensionality, sparsity, and compositional nature of microbiome data while maintaining con-
trol of the false discovery rate (FDR). By incorporating outlier robustness and a derandomization step, we enhance the stability and reproducibil-
ity of results, surpassing current techniques like the Multi-Response Knockoff Filter (MRKF). In simulation studies, our method outperforms
MRKEF in terms of FDR control, power, and robustness. In real data applications, it leads to valuable biological insights, such as identifying micro-
bial species associated with specific clinical parameters.

Availability and implementation: Software in R code format, along with synthetic data example illustrations and comprehensive documenta-

tion, is available at https://github.com/giannamonti/RobMReg.

1 Motivation

The intestinal microbiome is vital for host health and metab-
olism, with growing evidence that shifts in microbial commu-
nities reflect changes in health. This has increased interest in
identifying microbiome signatures associated with clinical
outcomes, including obesity, liver disease, and cancer. A pri-
mary goal is to find bacterial species associated with specific
health indicators. Analyzing microbiome data involves sev-
eral statistical challenges. The data are compositional—
meaning important information resides in the ratios between
taxa—high-dimensional, and sparse, since only a small subset
of features usually relate to outcomes. Additionally, multidi-
mensional outliers can skew results, and multivariate out-
comes are common, particularly when multiple clinical
parameters or phenotypes are measured simultaneously.
While existing methods address some of these aspects—such
as false discovery rate (FDR) control or compositionality—
they usually focus on univariate settings and are not robust to
outliers. Therefore, a unified framework is needed that can
jointly handle compositional predictors, multiple correlated
outcomes, and control for contamination by outliers, while
also controlling the FDR. To address this gap, we propose a
robust multivariate regression method designed for composi-
tional covariates, incorporating both FDR control and a

derandomization step to enhance result stability and repro-
ducibility. Specifically, our method extends the Multi-
Response Knockoff Filter (MRKF) of Srinivasan et al. (2023),
improving it with robust estimation techniques and princi-
pled derandomization via the e-BH procedure (Wang and
Ramdas 2022, Ren and Barber 2024). In this context, the re-
gression problem is modeled as a multivariate model, where
Y= (Y17...7Yq)T represents multiple clinical or phenotypic
outcomes, and the predictors are high-dimensional micro-
biome components. Secondary response variables—such as
phenotypes in a genetic context—can also be analyzed to un-
derstand better their association with microbiome composi-
tion and their relationship with the primary outcome. Using
multivariate models enables simultaneous inference and over-
comes the limitations of univariate approaches, which test
associations separately and require multiple testing correc-
tions (see e.g. Wen and Lu 2022). Our proposed method pro-
vides improved power, robustness, and reproducibility for
high-dimensional microbiome studies under FDR control.
The outline of the paper is as follows. Section 2 reviews the
classical multivariate regression method involving composi-
tional covariates and presents the proposed robust version.
Further, it details how the MRKF is robustified and extended
to a version for FDR control using the concept of e-values.
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The simulation results are described in Section 3 to evaluate
the numerical performance of the proposed method in com-
parison with the non-robust method. Section 4 presents an
application to real microbiome data, and the final Section
5 concludes.

2 Materials and methods

The computational methods we will present in this section
are an adaptation of the robust multivariate regression
method with covariance matrix estimation presented by
Chang and Welsh (2023), adjusted for the case of composi-
tional covariates that we call alrRMCL. The optimization al-
gorithm we present is similar to, but not the same as, the
algorithm of Chang and Welsh (2023). Important modifica-
tions have been introduced to make it compatible with the
compositional nature of the data and to improve its effi-
ciency. Moreover, a derandomized robust knockoff filter
(Barber and Candés 2015, Ren and Barber 2024) that con-
trols the FDR by adding “knockoff” variables to the regres-
sion is proposed.

It has been shown that the knockoff-based methods also
have e-value interpretations (Ren and Barber 2024). Based on
this observation, we applied an e-BH procedure for multiple
testing problems that control the FDR under arbitrary depen-
dence (Wang and Ramdas 2022).

2.1 Preprocessing

Let Y= (Y1,...,Yq)T be the vector of g responses related to
the same disease, and they are supposed to be correlated.

Let W= (Wl,...,W,,H)T, with W, >0 for all x, be a vec-
tor of absolute abundances of the (p+1) different taxa, i.e.
operational taxonomic units. The microbiome datasets gener-
ated by high-throughput sequencing of 16S rRNA gene
amplimers, metagenomes, or metatranscriptomes are typi-
cally considered compositional because the total number of
counts within a sample is irrelevant. Indeed, they have an ar-
bitrary total imposed by the instrument (Gloor et al. 2017).
The data of interest are instead the relative values of the read
counts, which makes the dataset inherently compositional.
This is precisely the only useful information we want to ex-
tract from the microbiome’s composition. Experimental limi-
tations, such as variations in the library size corresponding to
the total count in each sample, do not allow for a direct
analysis of the count data; therefore, the relative abundances
of each taxon must be considered as a datum.

Let X=(X1,....X,11)" with X,= W,/ W, for
k=1,...,p+1, the normalized vector, to eliminate the effect
of the sample totals. We observe that the (p +1) components
of X are positive, thus X, > 0, and are subject to the unit sum
constraint Zf:;l X, =1, namely X € S**!, i.e. the unit sim-
plex. We assume we have measured the microbiome abun-
dances related to the (p+1) taxa from n samples. Let X be
the compositional matrix of dimension nX (p+1), where
each row contains all the relative information among
the components.

The log-ratio approach is popular for extracting and ana-
lyzing relative rather than absolute information (Aitchison
1982). A first step is to represent the data by using a specific
transformation, where we propose to use the additive logra-
tio (alr) transformation, defined as

Monti et al.
X1 Xp 1
Z=(Z1,....Z,)" := (lo ..., log =T
( 1 [7) ( gX[)+1 gXp+1)

where Z € R? is the microbiome feature vector, and X, ;1 is
the reference frame (Morton et al. 2019, Brill et al. 2022).
The choice of the reference frame is a crucial point, as all the
subsequent analyses will depend on it (Greenacre et al.
2021). On the other hand, the alr transformation allows for a
clear model interpretation in terms of variable selection in a
sparse setting. However, caution should be exercised when
interpreting the regression coefficients, as additive log-ratios
should be understood as increasing one component relative
to all others, rather than only with respect to the chosen
reference, as pointed out in Coenders and Pawlowsky-
Glahn (2020).

It seems convenient that the reference component is not dif-
ferentially abundant across the samples. Furthermore, al-
though compositional data must be interpreted in terms of
relative information, from an operational perspective, the
chosen reference component should not be strongly associ-
ated with the response variables. To guide this choice, we
suggest performing a robust test of association (e.g.
Spearman’s or Kendall’s rank correlation) between each po-
tential reference component X, and the response vector Y.

Note that here the normalization of the composition to
unit sum is essential, while it is irrelevant for the alr transfor-
mation. The component with the lowest maximum associa-
tion measure (Alfons et al. 2017) will be the suitable
candidate for the choice of reference. Furthermore, as ob-
served, e.g. in Brill et al. (2022), domain knowledge should
also be considered when choosing the reference, particularly
in cases with multiple options. In addition, alternative
approaches have been proposed in the literature to identify
suitable reference taxa in a data-driven manner, such as
RioNorm2 (Ma et al. 2020), which uses a network-based
normalization strategy to detect relatively invariant taxa
across samples and conditions. While not specifically
designed for robustness, such methods can be useful comple-
ments in preprocessing pipelines, especially when no clear bi-
ological guidance is available. Other methods, such as
RAIDA (Sohn et al. 2015), ANCOM (Mandal et al. 2015),
and Omnibus (Chen et al. 2018), are examples of differential
abundance testing procedures designed explicitly for micro-
biome data. These methods address common challenges in
microbiome sequencing, such as compositional heterogeneity,
zero inflation, overdispersion, and outliers, although they of-
ten rely on distributional assumptions or non-robust frame-
works. Our robust knockoff-based approach, combined with
alr transformation under sparsity assumptions, offers a
complementary and interpretable alternative in high-
dimensional settings.

Hereafter, to fix the notation, we use index j as the index

of the microbiome features (j =1,...,p), i as the index of the
sample (i =1,...,n), and b as the index of the response varia-
bles (h=1,...,9).

2.2 Multivariate regression with

covariance estimation

To link the microbial features to the response variables, we
consider a multivariate regression model, which could be
expressed in matrix form as
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Y=Z B + E, (1)

nxq nXp pXq nxq

where Y is the response matrix related to g continuous out-
come variables, Z is the design matrix of microbial (alr trans-
formed) features, B is the regression coefficients matrix, and

. . . jid
E is the error matrix, with rows &;~N 4(0, ) for some un-
axq

known positive-definite covariance matrix X.

W.l.o.g., we can assume that Y and Z are centered, which
allows us to remove the intercept from the model (1).

To address the estimation difficulties of the model (1), a rela-
tively simple solution is to ignore the correlation structure of the
errors and obtain a maximum likelihood estimate of B minimiz-
ing the Gaussian negative log-likelihood up to a constant,

tr[(Y = ZB) (Y - ZB)Q] - nlog | 2|, (2)

where £ = ¥~ is the precision matrix, tr[-] denotes the trace of
a matrix, and || is its determinant. It can be shown that the
maximum likelihood solution of (2) for B coincides with the
least squares solution, i.e. Bois = (2'Z)~'Z"Y. This multivar-
iate problem can be viewed as a series of g univariate least
squares problems, one for each response variable, and each pro-
viding the estimate of the hth column of the matrix B.

However, as pointed out in Rothman et al. (2010) and Lee
and Liu (2012), fitting separate models for each response
ignores the correlation structure among outcomes, potentially
leading to inefficient estimation, unstable variable selection, and
reduced statistical power. In contrast, multivariate approaches
can exploit shared information across responses, improving pre-
diction performance. Thus, to tackle the multiple-response re-
gression problem with the two simultaneous goals of parameter
estimation and variable selection, Rothman et al. (2010) pro-
posed a penalized normal likelihood framework, with a lasso
penalty (Tibshirani 1996) to promote coefficient sparsity and
account for the high-dimensional setting. We will refer to their
approach with the acronym MRCE:

(ﬁMRCEy ﬁMRCE) =

argming ¢ {tr[(Y -ZB)(Y -ZB)Q] - nlog| Q|

p_a
+A1Z|wf'/|+izzz:ﬁjh|}, (3)

4 =1 h=1

where w;; and f;, are the entries (f',/) and (j,h) of 2 and B,
respectively, and 1, >0 and 4; >0 are tuning parameters to
control sparsity in B and £. The simultaneous estimation of
the regression coefficients and the covariance structure of the
MRCE is performed via a fast approximate algorithm that
utilizes an alternating estimation scheme, where one matrix is
held fixed at each step. When £ is fixed, the solution for B
can be efficiently obtained using the cyclical coordinate de-
scent algorithm (Friedman et al. 2007). Conversely, when B
is fixed, the solution for £ can be determined using the graph-
ical lasso algorithm (Friedman ef al. 2008). For more details
on MRCE, see Rothman ef al. (2010). Note that the ¢; pen-
alty on both B and @ is compatible with the assumption of
sparsity in the regression coefficients, meaning that only a
small portion of the covariates can predict the responses, pro-
viding interpretation. It is also consistent with the assumption

that only some response variables are correlated with each
other, improving prediction performance.

It is well known that estimation methods based on likeli-
hood maximization are highly sensitive to the presence of
outliers in the data. To address this issue, Chang and Welsh
(2023) proposed a robust alternative to MRCE, namely the
robust multivariate lasso regression with covariance estima-
tion (hereafter referred to as RMLC).

In this contribution, we adapt RMLC to the context of com-
positional data analysis, introducing key modifications to the
original algorithm. We refer to our method as alrRMLC to
highlight its close connection to the RMLC algorithm and our
choice of the alr transformation to accommodate the composi-
tional nature of the microbiome.

The objective function of the alrRMLC is defined as

~

(BanrmLcs 2arrMLC)

n_ g
argming ¢ {ZZZP([(Y - ZB)Ql/Z]ih) -

i=1 h=—1
nlog ||
P4
+11;wuﬂw,v,'l+ﬁz_2;;wz,jh|ﬂ,-h\ ; (4)
J'# /=1 h=

where [];, defines the element (i,5) of a matrix, w;; and g,
are the entries (f/,j) and (j,h) of 2 and B, respectively, and
A2 >0 and 11 >0 are tuning parameters to control sparsity in
B and  as in (3). In addition to the objective function (3),
two adaptive weight systems have been introduced in func-
tion (4), namely w1 j; and w, 4, to allow different penalties
for each entry of 2 and B. A standard choice (Zou and
Zhang 2009, Lee and Liu 2012) is w; , = ﬁ, where f, is
the OLS estimator in the low-dimensional sefting (i.e. when
p <n) or the ¢, (ridge) estimator in the high-dimensional case
(p>mn). Chang and Welsh (2023) suggested to replace ,B,-h
with its robust counterpart resulting from g separate MM-
ridge regressions (Maronna 2011) to account for contamina-
tion in the data. Note that in the objective function (4), differ-
ent levels of shrinkage are applied to the regression
coefficients and the precision matrix by introducing adaptive
weights wq and w; in the same fashion as an adaptive lasso
regularization method (Zou 2006). Although we provided a
fully general formulation of the problem in (4), in the imple-
mentations we set all weights w7 and w,j, to 1 to avoid
making the problem more computationally demanding.

In the objective function (4), p is a scalar symmetric robust
loss function. In the following, we will use Tukey’s biweight

loss, defined as
2 2
‘16{1 - (g) }3} if x| <d
pa(x) = ) (5)

2
% if |x|>d

where d is a positive tuning constant to control the level of
robustness. A common choice is d = 4.685, which yields ap-
proximately 95% asymptotic efficiency under normality.
Tukey’s biweight loss is a preferable choice as it provides ro-
bustness against outliers in the responses as well as high-
leverage points or outliers in the covariates. Note that MRCE
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is a special case of alrRMLC, when p corresponds to the
squared loss and w j; = 1, w, j, = 1.

To numerically optimize the objective function (4) for the
joint estimation of B and £, we propose the alrRMLC algo-
rithm, inspired by Chang and Welsh (2023). This procedure
consists of three steps and incorporates a 2-fold accelerated
proximal gradient (APG) method. First, we optimize B for a
specified precision matrix £ via robust multivariate Lasso
(RML); second, we estimate £ for a given B through a robust
extension of the graphical Lasso (Rglasso); third, the first two
steps are iterated until convergence. To reduce computational
cost, we adopt a fast approximation in which the outer iteration
is performed only once, as summarized in Algorithm 1.

Algorithm 1 Algorithm for solving alRMLC (a fast
approximation)

Data: nx g response matrix Y; nx p microbial features de-
sign matrix Z, B;,;, /11 2.

Output: Band 2

Procedure

1. given 2o compute Bo= B(.Qo) using RML

2. given Bg = Bo compute o= .Q(Bo) using Rglasso

3. recomputeB B( ) using RML.

Details on computational algorithms are reported in
Section 1, available as supplementary data at Bioinformatics
online.

2.3 Multi-response Knockoff filter

In the context of the microbiome, one must contend with the
curse of dimensionality, where the number of covariates far
exceeds the sample size. This often results in the selection
of numerous false positives—i.e. irrelevant variables—
compromising the reproducibility of results.

To address this issue, the compositional knockoff filter
(Srinivasan et al. 2021) has been proposed, leveraging a
fixed-X design (Barber and Candeés 2015). Later, in
Srinivasan et al. (2023), a model-X knockoff filter (Barber
and Candes 2019) was introduced to control the false discov-
ery proportion in high-dimensional settings without requiring
assumptions on the conditional distribution of the responses.
In Monti and Filzmoser (2024), a two-step robust composi-
tional knockoff filter for compositional covariates based on
the recycled fixed-X knockoff procedure (Barber and Candes
2015, 2019) was considered to robustify the algorithm pro-
posed by Srinivasan et al. (2021). While Srinivasan et al.
(2021) and Monti and Filzmoser (2024) focus on univariate
regression settings, Srinivasan et al. (2023) addresses the mul-
tivariate response case. In this contribution, we propose the
model-X knockoff filter for robust multivariate regression
with covariance estimation as an effective method to control
the FDR of the selected covariates, which serves as a robust
counterpart of the Multi-Response Knockoff Filter (MRKF)
of Srinivasan et al. (2023).

The MX problem explored by Candes et al. (2018) can be
imagined as testing, for eachj € [p-q] = {1,...,pq}, whether
Zj is related to at least one Y), given all other variables except
Z; (denoted as Z_; ={Zy,...,Z,} \ Z;). In other words, the

Monti et al.

goal is to determine whether each of the following [p - q]
null hypotheses

Ho,j: YLZ)Z_; (6)

holds. The MX knockoff filter is conceived to test Ho; in (6)
for all j € [p - g], and indeed it should be noted that each fea-
ture Zj,j=1,...,p, may be potentially related to each re-
sponse variable Y,, h=1,...,q9. Ideally, the goal of the
selection procedure is to identify the smallest subset of the
teatures Z for which H,; is not true.

A variable Z; is considered non-null, i.e. important, if Ho;
is not true, indicating a feature with a nonzero effect on at
least one response variable. As the number of hypotheses and
discoveries may be large, we want to test Ho; in (6) while
controlling the false discovery rate (FDR), i.e. the expected
proportion of false positives—null hypotheses that are true
but are incorrectly rejected—among the total number of se-
lected features, i.e. all rejected hypotheses,

IS N Hy| } -

FDR := E ol
max{|S|, 1}

where, with a slight abuse of notation, S and H, correspond
to the set of indices related to the rejected nulls and the true
null, respectively.

A selection rule controls the FDR at level a € (0,1) if its
FDR is guaranteed to be at most a, regardless of the values of
the coefficients B.

Details on the multi-response knockoff filter are reported
in Section 2, available as supplementary data at
Bioinformatics online.

We perform the robust multivariate regression with covari-
ate estimate using the a/f/RMLC algorithm on the augmented
dataset (Z,Z,Y), which includes 2p predictors and
q responses.

Thus, following the knockoff framework, to identify the
relevant variables obtained from the variable selection proce-
dure described in Algorithm 1, we compute the feature im-
portance statistics as the lasso coefficient difference after
tuning the regularization via cross-validation,

W= B = 1B, iclp-al, (8)

which compares the estimated coefficient of the original fea-
ture Z; for the hth response f3; with those of knockoff features
Bjp- The importance statistic (8) has the property that swap-
ping Z; with Z; flips the sign of W}, so that larger positive val-
ues of W; indicate that Z; is a “true” signal, i.e. Z; has a
nonzero effect on one response. The final set of selected fea-
tures is given by

Sin 1= {j, W; > T,}, where
4 D W< -1} (9)
max{} ., {W; =1}, 1} -

T, :=inf{t>0:

where T, >0 is the knockoff threshold and « is the nominal
FDR level. It can be shown that Sy, satisfies the FDR at level
a, i.e. FDR <a (see Barber and Candes 2015, Candes et al.
2018 for further details). Note that we use the hat in S}, to
emphasize that the set of selected variables is the result of a
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random procedure. In literature, the knockoff threshold
depicted in (9) is denoted as knockoffs+, a refined version of
the standard knockoff method, introduced to provide stron-
ger control over the FDR, where the number of negatives is
incremented by 1. However, if being overly conservative is a
concern, we can use the modified knockoff filter threshold

S W< -1 )
ipal — 7 <a} which controls a
max{ E ielpa {W;>1t},1}

modified version of the FDR. This adjustment helps increase
the number of discoveries, particularly in the early stages of

Ty :=inf{£>0:

a study.

2.4 Derandomized multi-response
knockoff procedure

Due to the inherent randomness of the standard MX knockoff
filter, i.e. Sy, depends on a one-time construction of the stochas-
tic knockoff copy Z, multiple runs of the MX knockoffs on the
same dataset produce varying sets of selected variables, since for
each run a new matrix of knockoffs is generated, which is not
ideal in practice. To improve stability while preserving FDR
control, we adopt a derandomized knockoff procedure, inspired
by the aggregation approach of Ren and Barber (2024).

To ensure provable FDR control under arbitrary depen-
dence structures, we recast the knockoff filter within the
framework of e-values (Shafer et al. 2011, Wang and
Ramdas 2022).

The aggregating knockoff procedure for FDR control takes
advantage of one key property of the e-values, namely, the
average of multiple e-values is still an e-value (Vovk and
Wang 2021). Thus, given the initial dataset (Z,Y), we gener-
ate M independent knockoff copies Z(1),...,Z(M) and then
we compute Wi(m), the feature importance statistic related to
the mth knockoff matrix. To perform knockoff selection on
each copy at a target level g€ (0,1), for each me1,... M,
we define a knockoff threshold Tl(jm as follows:

L DigpgHW <=0 _

TV = inf{t>0: o <
max{1,> ycppq UW, " 21}}

s

so that El(:::) ={j: \X/;m>ZT/(jm)} is the selected set for the
knockoff filter when performed on the mth copy of the
knockoff matrix Z(m). We define the e-values for j € [p-q|
as before

(m) (m)
o _ pq-K{W; " 2Ty} .
' 1+ Zke[p-q] H{Wlim) <- T/(iM)}

(11)
These e-values are then averaged across replicates:
LS o _ 1y T )
v m . m . m

e;’ 8 :M;e/ :M;welghtj I{jes, '} (12)

where Weight;m) corresponds to

1
Lt Ciepg W < - T}

Weight;m) =pq

Crucially, €*® is still a valid e-value due to the closedness
of the e-value space under averaging. Finally, the e-BH

procedure (Wang and Ramdas 2022) is applied to the aver-
aged e-values at a target FDR level a, yielding the final selec-
tion set Syn-derand- 1his derandomized selection is more stable
than the classical knockoff procedure, while maintaining
finite-sample FDR control. Given a target level a, and for any
choice of the parameter § € (0,1) and any number of knock-
off copies M > 1, the selected set Sp-derand, computed accord-
ing to the proposed method, controls the FRD at level a. Ren
and Barber (2024) provide the proof of this result and also
discuss the optimal choice of 8, recommending, for practical
purposes, to fix f=a/2 when M >1 to achieve high power.
Observe that when a = and M = 1, the derandomized pro-
cedure reduces to the original knockoff procedure at level a.

We briefly summarize the implemented procedure in the
following Algorithm 2.

Algorithm 2 Derandomized Robust Multi-Response
Knockoff filter (RobMRKF-Derand)

Data: nx g response matrix Y and nx p microbial features
design matrix Z

Parameters 1, 1, nominal FDR threshold a € (0,1) and
p. MeN,

Procedure for m=1,.... M

1. sample the knockoff copy Z<m)

2. model fitting according to Algorithm 1 on the augmented
dataset (,2"™,Y)

3. compute the feature important statistics W™ according
to equation (8) (see Section 2.3 of the main paper)

4. compute the knockoff threshold T(™ according to (10)

5. compute the e-values e/(m) according to (11)

6. endfor w

7. compute the averaged e-values €% =g; " e/(m)
eachje[p-q]. m=

8. compute k¥ =max{kx: 29> (pq)/(ax)} or k =0 if this set
is empty

Output: List of microbial features that are associated with at
Ieasl one response variable, i.e. the selected set of discover-
ies Skn-derand = {/ € [P~ ] : e/z_wg > (pq)/(ax)}

for

Note that a non-robust version of Algorithm 2, named
MRKF-Derand could be implemented by substituting
Algorithm 1 in step 2 with the classical MRKF Algorithm
(Srinivasan et al. 2023).

We have also deemed a variation of the RobMRKF-
Derand, which consists of a two-step procedure: in the first
step (screening step), a 10-fold cross-validation lasso proce-
dure (Friedman et al. 2023) is adopted to face the very large
dimensionality of the predictor space. For robust screening,
we first remove multivariate outliers from the joined data of
the response and the explanatory variables using the method
of Filzmoser et al. (2008). In the second step (selection step),
the RobMRKF-Derand is applied.

Further details on the theoretical background of e-values and
the derandomized knockoff procedure are provided in Section
2.1, available as supplementary data at Bioinformatics online.

3 Simulation

We demonstrate the potential benefits of our alrRMLC
method and the subsequent RobMRKF-Derand algorithm
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through extensive simulation studies. The knockoff method
is implemented via the R-package knockof £ (https://CRAN.
R-project.org/package=knockoff).

3.1 Simulation settings

To mimic a real dataset that will be analyzed later in the paper,
we consistently set 7 =100 and p = 200 for all simulations.

In each replication of our simulation study, the rows of the
n X p design matrix Z in (1) are randomly generated from a p-di-
mensional multivariate normal distribution with mean p to be set
as a vector of ones and covariance matrix X = [oj7], where
ojy =0.5 =711 <,/ <p. Note that this is equivalent to first gen-
erating microbiome relative abundances (X,..., X, 1) through
the logistic normal distribution LN, (u, %) (Lin ez al. 2014).

We randomly picked nonzero components in the regression
coefficient matrix B by specifying a sparsity percentage
{ = 10%, to allow for %parsity in the model. Next, each non-
zero regression coefficient was randomly selected from
{-3,-2,-1,1,2,3}. Finally, iid error terms E;’s were simu-
lated from N4(0,X) and the outcomes were calculated
fromY =ZB +E.

To investigate whether the RobMRKF-Derand procedure
(robust) and its classical counterpart (classical) are resistant
to outliers, we considered three different scenarios:

* Scenario 1 (data without outliers): the design matrix Z and
the responses Y are generated from multivariate normal dis-
tribution and the truemodel Y = Z B + E.

nxq mnxppxXq nxq
Scenario 2 (data with outliers in the response only): the de-
sign matrix Z is generated as in Scenario 1. The response Y
is  generated according to the true model

(Y =7 B + E), and then an e = 10% percentage of
nxq mXppxXq nxq

the observations are contaminated. That is, once rows of the
error matrix E are simulated from a normal distribution,
eXxn out of # randomly selected rows have random entries
contaminated by numbers generated from N, (0,y x X).
Scenario 3 (data with both outliers in the responses and in
the covariates): Z,,; and the responses Y are generated as
in Scenario 2. Then we replace the same ¢ percent obser-
vations of Z,,; as in Scenario 2 by outliers generated from
a normal distribution N,(0,10xX) and denote the new
design matrix by Z.

For Scenario 1, we compared the efficiency of the proposed
RobMRKF-Derand algorithm with the two-step procedure
variation, as described earlier, with fixed values of p =200
and g =5 (classical versus classical with screening, and ro-
bust versus robust with screening). For the remaining scenar-
ios, we always performed variable screening first.

For Scenario 2, we investigate:

* the effect of changing the number of dependent variables
q (g=2,3,5,10), having fixed p = 200;

* the effect of changing the magnitude of outliers, varying
r (r=1,2,5,10,20)

* the effect of changing the sparsity { € {2%, 5%, 10%,20%}

For Scenario 3, we investigate the effect of changing the
percentage of outliers e € {0%,2%, 5%, 10%,20%}.

For every simulation setting, we created 100 replicated
datasets, each with a sample size of n=100. The final
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selection set is computed via the derandomized knockoff fil-
ter run with the target nominal FDR level a = 0.2, drawing
M =50 copies of the knockoffs. Note that we also modified
the correlation parameter for the covariates, by considering
ojy = 03771 and ojj = 0.7/=71. but the main findings are
unchanged, and thus results are not explicitly presented here.

3.2 Performance evaluation and results

After generating the data, we used the RobMRKF-Derand al-
gorithm (robust) and the non-robust MRKF-Derand (classi-
cal) to derive a sparse estimate of the regression coefficient
matrix B and evaluated its accuracy by comparing it to the
true coefficient B through the calculation of the proportion
of false discoveries:

#j=1,...p.h=1,...q:B;#0N0p,=0}

FDR = _ _ (13)
#Hi=1,....ph=1,....q: B, #0}
and the proportion of true positives:
#i=1,....ph=1,....q: P, #0Np, #0

#i=1,...ph=1,.,q:p, #0}

We calculated the average value over 100 replications and
termed the corresponding values as empirical FDR and em-
pirical TPR, respectively, hereafter.

The results for Scenario 1 are presented in Fig. 1. The left
plot shows all simulation results for FDR and TPR in terms
of boxplots. We can observe that, in general, the two-step
procedure, which includes an initial variable screening phase,
leads to better performance in both approaches. The number
of screened variables is relatively stable, see the right plot.
Moreover, when comparing the classical and robust
approaches, the latter undoubtedly demonstrates superior
performance, as it ensures the FDR remains at the predeter-
mined nominal level while also achieving higher power.

Figure 2 shows simulation results when outliers in the
responses are present (Scenario 2). The plots show average
FDR/TPR, plus/minus one standard error. As the response di-
mension g increases (left plot), the robust approach remains
well centered around the nominal FDR value, while the classical
method drifts dramatically. The price to pay is a lower power
of the robust method compared to the classical method, al-
though it still settles at acceptable levels. The effect of increasing
the magnitude of the outliers y (right plot) has no influence on
maintaining the FDR, which remains nearly constant and below
the nominal level for the robust method, but above the 20%
level for the classical method. The TPR generally decreases with
stronger outliers in the response space, and again, the robust
method, maintaining the desired FDR level, shows a slight loss
of power compared to the classical approach.

Increasing the level of signal sparsity has a positive effect
on the empirical FDR; however, for both approaches, the em-
pirical power decreases considerably [see Fig. 3 (left)].

When both the covariates and the responses are contami-
nated with outliers (Scenario 3), the simulation results in
Fig. 3 (right) show that increasing the proportion of outliers
has a negative effect on the performance of both approaches
in maintaining acceptable FDR levels. However, the robust
method performs better: in the extreme case of 20% contami-
nation, the empirical FDR of the robust method remains be-
low 0.4, while the classical method reaches 0.75. Regarding
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Figure 1. Simulation results for Scenario 1: comparison of classical and robust procedure, without and with variable screening (left), and the number of
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power, in this scenario, it is pretty evident that the presence
of large amounts of outliers has a dramatic effect on the per-
formance of the classical method, which is based on a qua-
dratic loss function. In contrast, the robust method achieves
higher power, although it is still affected as the fraction of
outliers increases.

4 Real data application

We illustrate the utility of our proposed method using intesti-
nal microbiome data of the European Women’s Study by
Karlsson et al. (2013). Processed relative abundances at the
genus level were obtained from the curatedMetagenomicData
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database (Pasolli et al. 2017). The high-dimensional and
sparse metagenomic data were first aggregated at the genus
level, resulting in a final dataset of 176 bacterial abundances
for 145 women with different disease statuses: type-2 diabe-
tes (T2D; n = 53), impaired glucose tolerance (IGT; n = 49),
and normal glucose tolerance (7 =43). Instead of working
with this categorical variable (disease status), we will explore
the association of microbiome compositions and a multivari-
ate response composed of four indicators of altered lipid and
glucose metabolism (BMI, triglycerides, HDL, C-peptide),
and one inflammation marker (hs-CRP). Specifically, BMI,
triglycerides, C-peptide, or hs-CRP are associated with obe-
sity, diabetes, or cardiovascular diseases, while higher levels
of high-density lipoprotein (HDL) are common among
healthy individuals. Thus, these variables can be considered
as proxies or surrogates for disease status when diagnosis is
not available. Moreover, working with multivariate continu-
ous variables instead of a univariate categorical response
could be more informative for identifying relevant associa-
tions between microbiome and disease.

Figure 4 illustrates the relationships between disease status
and the five multivariate response variables (g = 35) by pre-
senting a biplot of a principal component analysis (PCA) of
this response matrix. Here, the color information is according
to the disease status, and the symbols are obtained by a clus-
ter analysis of the response matrix, using model-based clus-
tering, resulting in four clusters (Fraley and Raftery 2002).
The first principal component, mainly defined by BMI, trigly-
cerides, C-peptide versus HDL, shows discriminatory power
between healthy and non-healthy subjects (IGT and T2D),
explaining 47% of the total variance. The second component
is defined by the inflammation marker hs-CRP. There are
some potential outliers in the response matrix, mainly origi-
nating from the cluster encoded with the symbol “+”. This
highlights the necessity of a robust data analysis.

The purpose of this application is to predict the five re-
sponse variables using the microbiome composition as pre-
dictors. Due to very small abundances, we selected those
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Figure 4. PCA biplot depicting the relationship between the dependent
variables and the status of disease (see legend). The different symbols of
the points represent the four clusters identified by model-

based clustering.
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genera that are present in at least 10% of the observations,
resulting in p +1 = 100 bacterial genera. Further abundances
reported as zero were replaced by random uniform numbers
drawn from the interval (0,x,,;,), where x,,, is the smallest
value different from zero in the predictor matrix.

We consider the maximum association estimator (Alfons
et al. 2017) to select the reference frame as described in
Section 2 among the 100 possible candidates. Taking
Lactobacillus as the alr reference, the predictor matrix now
consists of p =99 alr variables, representing the bacterial
genera. It is not surprising that a human gut commensal ge-
nus like, Lactobacillus, was chosen as alr reference. This lac-
tic acid bacteria is widely present in the gut and maintains a
mutualistic relationship with the human body, providing the
host with dietary digestion and protection against pathogens
in exchange for shelter and nutrients. Lactobacillus species
are usually positively associated with good health and de-
pleted in diseases like colon cancer, multiple sclerosis, HIV,
and intestinal bowel disease. However, studies report contra-
dictory results regarding their abundance in diabetes and obe-
sity, which might be explained by the wide variety of
metabolisms carried out by Lactobacillus species and strains
(undetectable when working at the genus level) and the selec-
tion of one or another in every specific situation (Heeney
et al. 2018). This supports the importance of selecting an alr
reference as being dataset-specific.

In line with exploratory objectives and common practice in
similar studies (Barber and Candes 2015, Dai and Barber
2016), we adopted a target nominal FDR level a = 0.2 for
variable selection. This choice facilitates the identification of
a broader set of candidate associations for further investiga-
tion. The RobMRKF-Derand algorithm selected a total of 7
bacterial genera predictive of the multivariate response. Note
that the derandomization procedure applied to the MRKF al-
gorithm in this example is entirely conservative, meaning that
the final set is empty. Therefore, it is not possible to compare
the two methods in this empirical example.

To interpret the model, we computed Spearman correla-
tions between every selected alr variable and the different re-
sponse variables; see heatmap in Fig. 5.

Regarding the numerator part of the selected ALR, results
show two main groups of bacteria that present opposite
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Correlation
03
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Figure 5. Spearman correlations heatmap.
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correlations regarding the health-associated biomarker re-
sponse, HDL, and the rest of disease-associated biomarkers,
i.e. BMI, triglycerides, and C-peptide.

On the one hand, Phascolarctobacterium, Butyrivibrio, and
Barnesiella, which are known to be health-associated bacteria,
correlate positively with HDL and negatively with the remain-
ing response variables (BMI, triglycerides, and C-peptide).
Both Phascolarctobacterium and Butyrivibrio are short-chain
fatty acid producers, while Barnesiella presents anti-
inflammatory properties (Vital et al. 2017). All of them have
been previously reported to be abundant in healthy intestinal
microbiomes compared to patients with T2D, hypercholester-
olemia, and hypertension (Li et al. 2017, 2022, Granado-
Serrano et al. 2019, Das et al. 2021, Hu et al. 2023).

On the other hand, a second group comprising unclassified
genera from Lachnospiraceae family, Tractidigestivibacter and
Coprobacillus, present opposite results: they correlate nega-
tively with HDL and positively with BM], triglycerides, and C-
peptide. While the main producers of short-chain fatty acids in
the human gut are genera from Lachnospiraceae, some of
them are also associated with diseases affecting not only the
gut but also peripheral organs. A review of different metage-
nomic studies reported an increase in Lachnospiraceae in sub-
jects with metabolic disorders like obesity, diabetes, and non-
alcoholic fatty liver disease (Vacca et al. 2020). In line with
our results, Hu et al. (2023) also reported positive correlations
between genera and species within Lachnospiraceae and sev-
eral glucose and insulin homeostasis parameters, including
fasting and postprandial C-peptide levels and insulin resistance
estimators. Coprobacillus is also a common genus in human
gut microbiome composition, and it has been associated with
hypertension in mouse models (Li ez al. 2017).

Additional diagnostic plots presented in the Supplementary
Material (Fig. 1, available as supplementary data at
Bioinformatics online) illustrate how the robust method effec-
tively identifies outliers and leverage points that may influence
estimation, thereby enhancing the reliability of the analysis.

5 Conclusions

This article introduces a robust knockoff filter for multivari-
ate regression with compositional covariates, built on the e-
BH procedure. The proposed method enhances the interpret-
ability of variable selection while ensuring type I error con-
trol. Compared to the MRKF approach of Srinivasan et al.
(2023), our method presents two key advancements. First, it
incorporates a robust strategy to handle outliers in both pre-
dictors and responses, improving the stability of the selection
process. Second, it introduces a derandomization step that
reduces the variability in the final selection, ensuring greater
reproducibility. This step is grounded in the strong connec-
tion between the knockoff framework and e-values, allowing
us to reinterpret the knockoff filter as an e-BH procedure.

To properly account for the compositional nature of
microbiome sequencing count data, we applied the additive
logratio transformation. The alr requires selecting a reference
taxon assumed not to be associated with the response.
Although this assumption can be seen as a limitation, espe-
cially when the goal is to detect such associations, we argue
that, in high-dimensional settings (with p > ) and under
sparsity assumptions (as in our Lasso-based regression frame-
work), it is reasonable to expect that only a small subset of
taxa are truly associated with the outcomes, making the

existence of a “neutral” reference plausible. Moreover, the
alr transformation offers clear interpretability of the results,
unlike other log-ratio approaches such as ilr or clr, which—
although theoretically well-founded—often produce results
less directly linked to the original taxa.

We want to emphasize that in this paper, robustness refers
to outlying observations in either the responses or in the
covariates. This is the more traditional concept used in robust
statistics (Maronna et al. 2019), while a more recent concept
deals with outliers in single data cells (entries), which would
be particularly attractive in the case of high-dimensional
covariates (Raymaekers and Rousseeuw 2024). However,
since cellwise robustness is not even available for the multi-
variate regression case, the combination with sparsity and
compositional aspects is left as a topic of our future research.

The practical relevance of our method is illustrated using
real microbiome data from individuals with varying glucose
tolerance status. Even when disease classification is unavail-
able, individual health parameters may still capture underly-
ing microbiome alterations. Our multivariate response
approach reveals that such indicators are associated with the
microbial signatures selected by the algorithm. This demon-
strates the potential of our method in contexts where micro-
biome changes are better explained by continuous clinical
markers rather than binary diagnoses. Both numerical simu-
lations and real data applications confirm that the
RobMRKF-Derand algorithm outperforms MRKF in the
presence of outliers. Given the increasing relevance of multi-
variate regression with compositional covariates in micro-
biome research, our approach offers a robust and
reproducible solution, advancing the statistical toolkit avail-
able for high-dimensional microbial data analysis.
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