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Query Answering Under Volume-Based Diversity Functions
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TIMO CAMILLO MERKL, TU Wien, Austria

REINHARD PICHLER, TU Wien, Austria

CRISTIAN RIVERQOS, Pontificia Universidad Catélica de Chile, Chile and IMFD, Chile

When query evaluation produces too many tuples, a new approach in query answering is to retrieve a diverse
subset of them. The standard approach for measuring the diversity of a set of tuples is to use a distance
function between tuples, which measures the dissimilarity between them, to then aggregate the pairwise
distances of the set into a score (e.g., by using sum or min aggregation). However, as we will point out in this
work, the resulting diversity measures may display some unintuitive behavior. Moreover, even in very simple
settings, finding a maximally diverse subset of the answers of fixed size is, in general, intractable and little is
known about approximations apart from some hand-picked distance-aggregator pairs.

In this work, we introduce a novel approach for computing the diversity of tuples based on volume instead of
distance. We present a framework for defining volume-based diversity functions and provide several examples
of these measures applied to relational data. Although query answering of conjunctive queries (CQ) under
this setting is intractable in general, we show that one can always compute a (1-1/e)-approximation for any
volume-based diversity function. Furthermore, in terms of combined complexity, we connect the evaluation
of CQs under volume-based diversity functions with the ranked enumeration of solutions, finding general
conditions under which a (1-1/e)-approximation can be computed in polynomial time.
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1 Introduction

When the set of answers to a query gets too big, a user might be better served by being presented
a meaningful subset of the answers rather than being overwhelmed with the entire set. Clearly,
sampling might provide one way of selecting a “representative” subset of the answers. However,
as was pointed out in [26], such an approach typically misses interesting but rarely occurring
answers. An alternative approach, which has recently received increased attention by the database
community, is to aim at a small, diverse set of answers [1, 2, 15, 20, 23]. For instance (following an
example given in [12]), in a car dealership setting, the number of models satisfying the constraints
expressed by the customer may be huge. Therefore, rather than presenting all solutions to this
constraint satisfaction problem (which is a well-known equivalent problem to conjunctive query
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answering [17]), it would be more useful to come up with a small, diverse set of solutions and let
the customer decide on which type of models to focus further discussions.

The most common approach of assigning a diversity score § to a subset of the universe U
(e.g., the answers to a query) is to first define a distance measure d between any two distinct
elements of U and then define the diversity §(S) of any subset S of U by applying some aggregation
to the pairwise distances of the elements in S [14]. Typical distance measures in the database
context are the Hamming distance [1, 6, 20] (i.e., counting the positions in which two tuples differ),
an ultrametric [25, 26] (i.e., imposing an order on the attributes and considering tuples farther
apart if they differ on an attribute further up in this order), or the Euclidean distance for numeric
attributes [1]. Typical aggregate functions are the sum and min operators [1, 6, 20].

While sum and min are natural and familiar aggregate functions, they may lead to some anomalies
of the resulting diversity measure: In case of the sum operator, consider a setting where a set S
contains two elements t;, f, with high distance d(t, t;). Then adding to S another element t] very
close to t; but again with high distance from ¢, seemingly leads to a significant increase of diversity,
even though t{ is almost a “copy” of t;. In [27] several desiderata on diversity measures are presented
- including the twin property, i.e., adding an (almost) identical copy should not increase the diversity,
and monotonicity, i.e., adding a new element to a set S never decreases the diversity. Clearly, the
sum operator violates the first fundamental property while the min operator violates this second
property. Consequently, Weitzman [27] introduced a diversity measure (henceforth referred to as
Sw) based on a more sophisticated aggregation of pairwise distances. However, as was shown in [2],
even the basic task of determining the diversity Sy (S) of a given set S of elements is NP-complete.

The goal of our work is to introduce a novel framework for defining diversity measures, such that
this framework is generally applicable but, at the same time, particularly well suited for defining
natural diversity measures in the (relational) database world. We will thus introduce a two-staged
approach which, in the first place, assigns to each element of the universe (e.g., a tuple in a relation
or in an entire database) a volume in the form of some measurable set. As will be illustrated in
Section 3, for a set S of tuples, there are many ways of choosing such a volume. In the simplest case,
we could just collect the set of values occurring in S. Various other options, such as considering
k-ary balls of a pre-specified radius r around a k-tuple of numerical attributes are presented in
Section 3. The second stage then consists in assigning values to the unions of these measurable
sets. For the basic case of collecting the set V of values occurring in S, we could simply take the
cardinality of V. For the case of k-ary balls associated with each tuple, we would take the volume
of the union of the balls associated with the tuples in S. A formal definition of our volume-based
approach to diversity will be given in Section 3.

We will then study interesting properties of this approach. In particular, we will analyze its
relationship with previous approaches — in particular, Weitzman’s approach [27] and the multi-
attribute approach of Nehring and Puppe [21] (in Section 4, we will formally define that approach
and also point at its major shortcoming, namely the conceptual and computational complexity
caused by having to deal with the powerset of the powerset of the universe). Somewhat surprisingly,
we will show that diversity functions defined via the multi-attribute approach can also be defined
in our framework and, for a finite universe, also the converse holds. In other words, while avoiding
the negative computational properties of the multi-attribute approach, our volume-based diversity
measures share the favorable properties shown in [21]. One of them is submodularity, which
formalizes the intuition that adding a new element to a smaller set potentially leads to a bigger
increase of diversity than adding the same element to a bigger set.

When analyzing computational properties of volume-based diversity measures, submodularity
will prove beneficial. Concretely, we study the problem of searching for a subset of the answers to a
conjunctive query which, for a given size k, maximizes the diversity. This problem has been studied
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before for various diversity functions and, even in very simple settings (e.g., considering the sum or
the minimum of the pairwise Hamming distances) this problem was shown to be intractable [20] -
even for data complexity. We will show that also for the natural volume-based diversity measures
of sets of tuples presented in Section 3, intractability holds. We therefore study the search for a
maximally diverse set of answers to a conjunctive query from an approximation point of view. For
data complexity, we prove a tractable (1 — 1/e)-approximation (where e is the Euler number) of
the maximum diversity score for arbitrary volume-based diversity measures by making use of a
classical approximation result for submodular set functions by Nemhauser et al. [22]. We also show
that, in general, a better tractable approximation can be excluded unless P = NP. Clearly, combined
complexity requires further restrictions since even query evaluation of Boolean conjunctive queries
(without paying any attention to diversity) is NP-complete [7]. However, by restricting our attention
to CQs of bounded fractional hypertreewidth [11] and establishing a relationship with ranked
enumeration [9], we manage to achieve tractable (1 - 1/¢)-approximation of the maximum diversity
score also for combined complexity.

Structure of the paper and summary of results. After recalling some basic notions in Section 2, we
will formally introduce our volume-based framework of defining diversity functions in Section 3. By
presenting some examples of natural diversity functions for sets of tuples, we illustrate the suitability
of this framework in the database context. We then study the relationship of our volume-based
approach of defining diversity measures with previous approaches, namely with the multi-attribute
approach of [21] in Section 4 and with distance-based approaches (above all Weitzman’s diversity
measure [27]) in Section 5. The search for a maximally diverse set of k answers to a conjunctive
query Q over a given database D is studied in Sections 6 and 7. As mentioned above, a tractable exact
solution to this maximization problem is out of reach. We therefore settle for an approximation.
In Section 6, we study data complexity and establish a tractable (1 — 1/e)-approximation of the
maximum diversity score of k-element subsets of the answers to first-order queries by virtue of the
submodularity of volume-based diversity measures. In Section 7, we study combined complexity
and identify a sufficient condition on the queries to achieve the same quality of approximation. We
conclude with Section 8. Proof details can be found in the full version of this paper [3].

2 Preliminaries

Sets and sequences. We denote by N, R, and Ry, the set of natural, real and non-negative real
numbers, respectively. Given a set A, we denote by finite(A) the set of all non-empty finite subsets
of A. For k € N, we say that B € finite(A) is a k-subset if |B| = k. We usually use a, b, or ¢ to denote
elements, and a, b, or ¢ to denote sequences of such elements. For @ = ay, ..., ax, we write a[i] := g;
to denote the i-th element of @ and |a| := k to denote the length of a. Further, given a function f we
write f(a) := f(a1),...,f(ax) to denote the function applied to each element of a.

Conjunctive queries. Fix a set D of data values. A relational schema X (or just schema) is a pair
(R, arity), where R is a set of relation names and arity : R — N assigns each name to a number.
An R-tuple of X (or just a tuple) is a syntactic object R(ay, . .., a ) such that R € R, a; € D for every i,
and k = arity(R). We will write R(a) to denote a tuple with values a. Given a schema 3, we denote
by Ty the set of all tuples over X with values in D. A relational database D over ¥ is a finite set of
tuples over 2. For a schema 3 = (R, arity) and a set of variables X disjoint from D, a Conjunctive
Query (CQ) over X is a syntactic structure of the form:

Q(’E) <~ R1()?1),. . -’Rm(fm)

such that Q denotes the answer relation, each R; is a relation name in R, %; is a sequence of variables
in X, |x| = arity(Q), and |%;| = arity(R;) for every i < m. Further, % is a sequence of variables
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appearing in x1, ..., X,. We refer to such a CQ simply as Q, where Q(x) and R;(%;),..., R (%m)
are called the head and the body of Q, respectively. Furthermore, we call each R;(%;) an atom of Q,
and we say that Q is a full CQ if each variable occurring in the body of Q also appears in the head
of Q.

Let Q be a CQ of the above form, and D be a database over the same schema X. A homomorphism
from Q to D is a function h : X — D such that R;(h(x;)) € D for every i < m. We define the answers
of Q over D as the set of Q-tuples [Q] (D) = {Q(h(x)) | h is a homomorphism from Q to D}.

Distance-based diversity. Let U be an infinite set. We see U as a universe of possible solutions and
S € finite(U) as a candidate finite set of solutions. In its most general form, a diversity function over
U is a function &: finite(U) - Ryo U {oo}. The standard approach, that we call here distance-based
diversity functions, is to first define a distance function d:U xU — RyoU {00} (typically d is a metric
on U) and to define the diversity § as an extension of d from pairs to arbitrary subsets of U setting
8(S) = 0if |S] < 1. As proposed in [14], one way of defining § for a given distance function d is to
define an aggregator f that combines the pairwise distances. That is, we set §(S) := f(d(a,b)gpes)-
The most common aggregators are sum and min, which give rise to the following diversity functions:

Ssum(S) = a;gd(a,b) and  Spmin(S) = a’hrer;{r;#d(a,b).

3 Volume-based Diversity Framework

In this section, we introduce a general volume-based framework for measuring the diversity of sets
of tuples. We begin by recalling the definitions of o-algebra and measures. Then, we introduce the
main definitions of the framework, present several examples to motivate the use of volume-based
diversity measures over relational data, and prove that volume-based diversity functions satisfy
two fundamental properties expected of diversity measures.

Measures. We recall here the standard definitions of o-algebra and measures (see e.g. [4] for
further details). Let Q be a set (possibly infinite). A o-algebra over Q is a family S of subsets of
Q (ie,S c 2% suchthat (1) @€ S, (2) if X € S, then Q\ X € S, and (3) if X; € S for every i € N,
then U;av X; € S. Given a o-algebra S, a measure for S is a function p : S - Ry U {oo} such that
(1) p(2) =0 and (2) if X; € S for every i € N and X; N X; = & for every i, j € N with i # j, then:

p(UXi) = D u(X).

ieN ieN

For example, assuming that Q is a countable set, one can check that 2%isa o-algebra and peount
2% - Ry U {00} that maps ficount (X) = [X| if X is finite and po(X) = oo, otherwise, is a measure,
called the counting measure. Another example is the weighted measure, where we consider a weight
function w : Q - Ry over Q and define p,,(X) = ¥ ,cx w(a) where the sum is defined as the
supremum of Y ..y w(a) over all finite subsets Y € X. A particular case here is a probability
distribution over a o-algebra S where p assigns a probability in [0, 1] to each subset X of Q.

The volume-based framework. Assume that U is the universe of possible solutions over which
we want to measure diversity. A volume assignment V over U is a tuple V = (S, y, ) such that
S is a o-algebra over a set Q (that may be different from ), p is a measure for S and f: U - S.
Intuitively, the function f, called the ball function, is a function that assigns a ball in S to each
element a of the universe U/, namely, it assigns a volume to a.

We now introduce our framework for defining diversity functions over volume assignments as
follows. Given a volume assignment V = (S, i1, f) over U, a function 8y : finite(U) - Ryg U {oo}
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a a a a a b

Di: |a b D, a b Ds a c
b a b a
b b

Fig. 1. Databases D1, Dy and D3 consisting of a binary relation R with data values a, b, and c.

is a volume-based diversity function over U if for every S € finite(U/):

5v(8) = (U p(a)).
aes

Intuitively, each element of S contributes with different characteristics to the diversity of the group
(i.e., its volume), and when we add all these characteristics together, the intersection only adds once.
In particular, when two elements a; and a; of U are totally different with respect to the diversity
(ie. B(a1)nPB(az) = @), we have that §y ({ar, a2 }) = Sy ({a1}) + 8y ({az}). Also, note that, contrary
to distance-based diversity functions (defined in Section 2), it is not necessary that &y, ({a}) = 0
(indeed, 6y, ({a}) # 0 almost surely). Depending on the application context, positive diversity of
singletons might actually be the desired behavior. For instance, suppose that the universe {f denotes
the set of employees, Q a set of skills, and f assigns to each employee her skills. Then the diversity
6(S) assigns a measure (via ) to the skill set present in a team S of employees. In this case, we
clearly want § applied to a singleton to reflect the value of the skills possessed by each individual.

In the following, we provide several examples of volume-based diversity functions applied to
relational data (i.e., tuples). For this purpose, recall that we use D to denote a set of data values, X to
denote an arbitrary relational schema, and R(ay, .. .,ax) to denote an R-tuple of 3 where a; € D for
every i. In the following examples, we use T to denote our universe (i.e., ) of all possible tuples.

Example 3.1. Let Veiem = (27, ficount> Betem ) be the volume assignment such that S = 2° is the
o-algebra (over D), ficount is the counting measure and fejer, is the ball function defined as:

Betem(R(ay, ... ax)) = {ay,...,ar}

for every tuple R(ay, ..., ax). For every finite set of tuples S C Ty, we have that 8y, _(S) measures
the number of different data values contained in the tuples in S. That is, the more different data
values the tuples have, the more diverse they are.

For instance, consider the databases Dy, D, and Ds in Figure 1 consisting of a binary relation R.
We have that Seem(R(a,a)) = {a}, Betem(R(a, 1)) = {a, b}, Betem(R(b,a)) = {a,b} and

5velem (Dl) = ﬂcount(ﬁelem(R(as a)) U ﬂelem(R(as b)) U ﬁelem(R(b» a))) = ”COunt({"L b}) = |{a’ b}| =2.
In the same way, we conclude that ),

on (D2) = 2 and 8y, (D3) = 3. Hence, D; and D, are equally
diverse under the measure &y, __, while D; is considered more diverse than these two databases, as
it contains an extra value. O

Example 3.2. In addition to measuring the diversity in data values, we now also want to consider
the position where these data values occur, i.e., it is different whether a appears in the first or
second component of a tuple. We thus capture the intuition that different attributes, even if they
have the same data type, have a different semantics (e.g., in a car-relation, the number 6 occurring
both in the “gears” and in the “cylinders” attribute does not reduce the diversity). For this purpose,
consider the volume assignment Vo5 = (ZDXN, Heounts Ppos) Where we use the o-algebra 2P (over
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D x N), the counting measure ficount and the ball function 05 such that:

Pros(R(ay,...,ar)) = {(a,1),...,(ar. k)}

for every tuple R(ay, ..., ax) € Ts. Then, the diversity dy,,,(S) measures the number of different
values that appear in different positions of the tuples in S ¢ Ts. For instance, consider again
the databases Dy, D, and Ds given in Figure 1. Then we have that f,os(R(a,a)) = {(a,1), (a,2)},

Ppos(R(a,0)) = {(a.1),(b,2) }, fpos(R(b,a)) = {(b, 1), (a,2)} and

5VPOS(D1) = ﬂcount(ﬁPOS(R(a’ a))u ﬁpOS(R(a’ b)) u Bros (R(b,a))) =
peount({(a 1), (a.2), (b, 2), (b, 1)}) = 4.

In the same way, we conclude that &y, (Dz) = 4 and 8y, (D3) = 3. Hence, as opposed to the
diversity measurements given in Example 3.1, D; and D, are equally diverse under the measure
8V,0s» While Dj is considered less diverse than these two databases, as it contains a smaller number
of values in different positions. O

Example 3.3. Another practical example of volume-based diversity functions is considering a
weight function w : D — Ry. For instance, if the relational data considers animals in D, then a user
could use a weight function where w(‘dog’) will weigh less than w(‘dodo’) given that dodo is a less
common animal than a dog. Then one can consider the volume assignment V}, = (2P, pt, Betem)
where the o-algebra and ball functions are the same as in Veler, (see Example 3.1) and the measure
1y is the weighted measure defined above. Then 5V§1vem(s) measures the weight of the data values
appearing in tuples, assigning more diversity to tuples where a dodo appears versus a dog.

One can naturally extend this example to also consider the positions of the data values (denoted
by Vyos) as in Example 3.2 and, instead of a weight function w, one can use a probability function
that assigns a probability to each data value. To showcase Vi, consider again the databases Dy,
D, and D5 given in Example 3.1. Moreover, assume that ¢ is an uncommon value for the second
attribute of R, which is represented by the following weight function: w((a,1)) = w((a,2)) =

w((b,1)) =w((b,2)) =w((c¢,1)) = 1,and w((c,2)) = 3. Then we have that:

5\}1;;,’5 (D3) = pw(Ppos(R(a, b)) U Ppos(R(a,c))) =
po({(a1),(b.2), (¢.2)}) = w((a, 1)) + w((b,2)) + w((c. 2)) = 5.

In the same way, we conclude that 5V335(D1) = 4 and 8y, (D2) = 4. Hence, in this case Dj is
considered as the most diverse database given the occurrence of ¢ in the second column of R. O

Example 3.4. Let D be a relational database over a schema 3 and consider a CQ Q(x) <«
Ri(%1),...,Rm(%m). A user may want to measure the diversity of a subset S € [Q] (D) concerning
the provenance of each tuple, namely, which are the tuples in D that contribute to the outputs in S
(cf. the “which provenance” studied in [8]). One way to formalize this is as follows. Let [Q](D)
be the universe of possible solutions. Consider the volume assignment Vo p = (22, ficount, fo.0)
where 2P is the o-algebra (i.e., all subsets of tuples in D), ficoun is the counting measure, and
Bo.p : [Q](D) — 2P is the ball function such that for every answer Q(a) € [Q](D):

Pop(Q(a)) = {Ri(h(%;)) | 1< i< mand his a homomorphism from Q to D with h(x) = a}

In other words, o p maps Q(a) to all the tuples that contribute to it, that is, its provenance. For
S ¢ [Q](D), the value 8y, ,,(S) counts the number of different tuples in D that support the outputs
in S. Then, the more different tuples support S, the more diverse they are. For instance, consider again
the database D; given in Example 3.1, and let Q; (x, y) be the conjunctive query 3z R(x,z) AR(z,y).
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Then the tuples (a,a) and (b,b) are both answers to Q;(x,y) over D;. However, we have that
Po.pi(Q1(a.a)) = {R(a, a),R(a,b),R(ba)}. fo,p, ({Q1(b,b)}) = {R(b,a),R(a,b)} and
5VQ1,D1 ({Qi(a,a)}) = Hcount(ﬁQ1,D1 (O1(a,a))) = peount({R(a, a),R(a,b),R(b,a)}) = 3,
vo,n, ({Q1(8,0)}) = peount (0,01 (Q1(8,]))) = peount ({R(b, @), R(a, ) }) = 2.

Hence, in this case, Q1(a, a) is considered a more diverse answer than Q;(b,b), as there is a larger
number of ways in which (a, a) can be obtained as an answer to Q;(x,y) over D. ]

Example 3.5. We now consider a more geometrical scenario where D = R and a tuple R(ay, ..., ax)
represents points in the R¥-space. Then, given a radius r > 0 we can define the volume assignment
V, = (Bk, i, Br) where B¥ are the Borel sets of R¥ (i.e., measurable sets), p is the Lebesgue measure
(i.e., measures the volume of a measurable set in %), and f, is the ball function such that:

Br(R(ay,...,ar)) = {(by,...,by) ¢RF \ \/(a1 =b1)?+...+(ap—br)?<r}

namely, f, assigns a ball of radius r under euclidean distance around (ay, ..., ax). Then the volume-
based diversity function dy, (S) measures the volume of r-balls around points in S. In particular,
the farther apart (up to radius r) the points in S, the more diverse they are. O

Example 3.6. As our last example, we adapt the previous example to have points closer to the
tuples R(ay, . .., ax) contribute more to the diversity than points further away by adding Gaussian
functions. To that end, again let D = R and a tuple R(ay, .. ., i) represents points in the R*-space.
Then, we can define the volume assignment V, = (Bkﬂ,p, ﬂg) where B¥*! are the Borel sets of
RF*! (note that we added a dimension), 4 is the Lebesgue measure, and By is the ball function with

By(R(ay,....ar)) = {(b1,....bpd) e R |0 <d < e (@) —(abi)y

namely, f, assigns the area under the Gaussian function centered around (a, ..., ar). Then the
volume-based diversity function &y, (S) measures the collective volume under the Gaussian func-

2
tions, i.e., the integral /Rk maXges el=sllz gx. A benefit of using Gaussian over simple boxes is that
adding a new element will always increase the diversity at least a bit.

Monotonicity and submodularity. We conclude this section by introducing two fundamental
properties of diversity functions, advocated for in [21, 27].

Fix a universe U of possible solutions and a volume assignment V over U. A first desirable
property of diversity functions is that of monotonicity: adding an element to a set cannot decrease
the diversity of the set. Formally, a diversity function § is monotone if §(Su {a}) > §(S) for every
S € finite(U) and a € U.

A second desirable property of diversity functions is submodularity!, which means that, for every
a €U and S, S; € finite(U) with S; € Sy, the property 6(S; U {a}) —5(51) > 6(S; u {a}) - 5(S,)
holds. As mentioned in Section 1, submodularity captures the intuition that adding an element a to
the smaller set S; should result in a greater increase in diversity than adding it to S,.

In the next proposition, we show that both properties are satisfied by volume-based diversity
functions, thereby providing evidence of the naturalness of our approach.

ProrosITION 3.7. Let V be any volume assignment over a universe U of possible solutions. Then Sy
is always monotone and submodular.

IWe note that, in contrast to Nehring and Puppe [21], Weitzman [27] does not explicitly propose submodularity as a desider-

atum. However, he mentions that, ideally, the increase of diversity when adding a new element a to U, should correspond
to the minimum distance of a from the already existing elements in U{. Clearly, this property implies submodularity.
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4 Characterizing Volume-based Diversity Functions through the Multi-Attribute Model

In [21], Nehring and Puppe proposed a different and novel approach by introducing “multi-attribute”
diversity functions. The idea here is to consider attributes of the elements in a universe U as
subsets of U, i.e., each attribute is characterized by the elements that share this attribute. Like
Weitzman [27], the authors drew the motivation for their approach above all from the diversity
of species in biodiversity and the study of acts that ensure high (expected) diversity among them.
Basic attributes could then be, for instance, “being a mammal” or “living in the ocean”, etc., and
each of these attributes is then represented by the set of the corresponding animals.

For a finite set X, Nehring and Puppe [21] formally define diversity functions as follows. Let A

be a non-negative measure (an additive set function) on 22" . For A € X, we write A4 rather than
A({A}). Then, for S € X, the diversity v, is defined as
0A(S) = A({AcX|AnS=@}) = > a
ASX 1 ANS+g
Intuitively, this definition considers each subset A € X as an attribute (or a “feature class”) that may
contribute to the diversity of S. The weight A4 quantifies the relevance or distinctiveness of that
attribute. A subset S is then considered diverse if it collectively touches many of these informative
subsets A, each with non-negative weight.
We now establish the relationship between this notion and our volume-based approach.

THEOREM 4.1. Let X be a finite set. If v, is a multi-attribute diversity function, then there exists a
volume assignmentV = (S, u, B) over the universe U = X, such thatv) = 8y. Likewise, if V = (S, 1, §)
is a volume assignment over some finite universe U, then there exists a non-negative measure A on 22
with X = U, such that 6y = v,.

Proor skeTcH. For given multi-attribute diversity function v, defining an equivalent volume-

based diversity function vy is straightforward. More precisely, we set V = (S, i, ) with S = 22X,
B(x)={AcX|xeA}, and p(B) = 3 sep Aa for B € S. The other direction is more involved and
only works for finite universe /. In particular, we set 14 = y1( Ngea B(a) N Uxexa ﬂ(x)) |

This characterization is important for several reasons. First, it confirms that volume-based diversity
functions are at least as expressive as multi-attribute ones, thereby unifying two frameworks under
a common perspective. Second, the volume-based framework avoids the computational burden of
working directly over the power set of the power set in the multi-attribute formulation, and instead
operates over a more intuitive geometric or set-based representation of diversity. Moreover, by the
correspondence with the multi-attribute diversity model, our volume-based diversity functions
inherit all favorable properties proved for the former in [21]. In particular, the fact that volume-
based diversity functions are monotone and submodular, as shown in Proposition 3.7, follows
directly from this equivalence.

Finally, a fundamental advantage of the volume-based framework is its suitability for relational
data. In this setting, tuples from a relation can be mapped to measurable regions in a space defined
by the attributes occurring in a tuple or its provenance, allowing the use of volume as a principled
measure of diversity. For example, the balls f(t) assigned to tuples t can reflect their attribute
values or provenance sets, while the measure p can reflect weighted or count-based semantics
over these regions. This enables a natural and scalable representation of diversity across query
answers without requiring explicit enumeration of exponentially many subsets, as is needed in the
multi-attribute approach. In contrast, the latter becomes infeasible in large relational domains due
to its dependence on attribute power sets. Volume-based diversity is thus more aligned with the
semantics and structure of relational databases.
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5 Distance-Based versus Volume-Based Diversity Functions

As has already been mentioned in Section 1, a common way of defining diversity of outputs in the
database area is by using the distance-based approach. In contrast, we have defined the diversity &y
via a volume assignment V = (S, 1, f) over U. This raises the question of what are the differences
or similarities between the two approaches, and how can we compare them.

Comparison by properties. A direct way to compare the two approaches is in terms of properties.
As we already noticed, volume-based diversity functions are always monotone and submodular. In
contrast, almost all distance-based diversity functions are not submodular, and some are not even
monotone.

PROPOSITION 5.1. There exists a metric such that its corresponding diversity functions dsym and
Omin are not submodular. Further, 8, is not even monotone.

Although this fact is direct, it provides evidence that the two approaches differ considerably for
Osum and Opin. In the following, we provide further evidence of their differences and similarities.

Volume-based as distance-based. Another way to compare the two approaches is to try to encode
volume-based diversity functions by using a distance-based approach. As we will see, in general,
this is not possible. To that end, we first discuss two natural approaches to define a distance function
given a volume assignment V = (S, g, f).

Specifically, for one, we can define dﬁ (a,b) as the measure y of the symmetric difference of
B(a) and B(b), i.e., dﬁ (a,b) = p((B(a) ~ B(b)) U (B(b) \ B(a))). We observe that any distance
measure d : U x U - Ry, defined from a volume-based diversity dy as d := dﬁ is a pseudo-metric,
i.e., it satisfies non-negativity (i.e., d(a,b) > 0 for all a,b € U), symmetry (ie., d(a,b) = d(b,a)),
identity (d(a, a) = 0 for all a € U), and the triangle inequality (i.e., d(a,c) < d(a,b) + d(b,c) for all
a,b,c € ). If in addition, d(a,b) = 0 implies a = b for all a,b € U, then d is actually a metric.

A second option (essentially considered in [21] in the context of the multi-attribute approach) is
to define the distance function d}; as the marginal d); (a,b) := 5, ({a, b}) — 5, ({b}). However, in
that case, we give up symmetry. Note that this can be recovered when the diversity of all singletons
are the same. In that case, d{‘;’ again becomes a pseudo-metric.

Now, the hope could be that dﬁ‘ or d{\,’f (or any other pseudo-metric) combined with an appropriate
aggregator can recover the expressiveness of dy. To that end, we denote by 4444 a distance-based
diversity function defined through an aggregator function agg and a pseudo-metric d, namely,
Sage.d(S) = agg(d(a,b)apes ). We say that agg is monotone if agg((d;);) < agg((d;);) when d; < d;
for all i. Further, we say that a volume assignment V = (S, y, ) is oblivious to data values if for any
bijection f:ID — D and for any set of tuples S € Ty, we have:

p( U BR(@))=p( U BR(f(a)))).
R(a)es R(a)eS
We also say that pseudo-metric d is oblivious to data valuesif d(R(@),R(@")) = d(R(f(a)),R(f(a"))).
Essentially, this means that the diversity functions should not depend on the concrete data values
that appear as constants in the tuples but instead only on whether constants are equal or not.
Clearly, from the examples presented in Section 3, the volume assignments Vejem and Vo, are
oblivious to data values while Ve‘f’em, Vg‘és, Vo.p, Vr, and V; are in general not oblivious to data values.
When it comes to metrics, naturally, the Hamming-distance is an example of a metric oblivious to
data values while the Euclidean-distance is not.

THEOREM 5.2. There exists a volume assignment V = (S, i1, ) (e.g., Velem) 0blivious to data values
over tuples Ty, such that there does not exist a monotone aggregator agg and pseudo-metric d over Ty,
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that is oblivious to data values and can distinguish the same sets as V. In other words, no matter the
agg. d, there are two k-subsets S,S" € Ts such that 5, (S) # 5y (S") while Sg0.a(S) = agg.a(S").

Distance-based as volume-based. We now consider the other direction and see if one can under-
stand the distance-based approach in terms of volumes. Of course, this is not possible in general as
volume-based diversity functions are always monotone and submodular (Proposition 3.7) while
natural distance-based diversity functions are neither (Proposition 5.1). But this leaves open the
question if more sophisticated distance-based diversity functions like Weitzman’s dw can be cap-
tured by volumes. Below we give a partially positive answer to this question: In general, this is
not possible, as we can show that Weitzman’s diversity function dw is, in general, not submodular.
However, in the most important special case considered in [27], namely if the distance function d
underlying dw is an ultrametric, then dw is essentially a volume-based diversity function.

For a distance function d, The diversity function dy is defined recursively as follows:

Sw(S) = max (bw(S~{a})+d(a,S~{a})),

with base case Sy ({a}) := 0. The distance d(a, S) is defined as minys d(a, x).
Weitzman’s diversity function is motivated by applications to species hierarchies. However, one
shortcoming is that dy is not generally submodular:

PROPOSITION 5.3. Weitzman’s diversity measure Sy is, in general, not submodular.

Another shortcoming of 8y is its computational complexity: even computing &y (S) for a
given S is, in general, intractable [2]. However, if d is an ultrametric (i.e., it satisfies the strong
triangle inequality d(a, c) < max({d(a,b),d(b,c)})) then the computation becomes tractable [27].
Moreover, in this case, dy becomes essentially volume-based:

THEOREM 5.4. Let Weitzman’s diversity measure be defined over a distance function d that is an
ultrametric over some finite set X. Then there exists a volume assignment V = (S, u, B) such that
S8y = 8w + r, where r denotes the radius of the ultrametric (i.e., the max. distance between any two
elements in X).

The above result illustrates a key advantage of our volume-based framework: it subsumes and
generalizes the best-performing cases of the distance-based approach. In particular, ultrametrics
have been identified as a desirable form of distance for diversity due to their favorable computational
properties [2] and their suitability for modeling hierarchical systems [27]. Note that a hierarchical
notion of distance naturally fits relationally structured data as is illustrated in [25, 26], where the
distance between two tuples is based on the first position at which they differ: tuples with longer
common prefixes are considered closer. A typical example is a car relation with attributes such as
‘make’, ‘model’, ‘color’, and ‘year’. Under this ultrametric, diversification is done according to the
attribute order: first one tries to diversify ‘make’ , then ‘model’, then ‘color’, and finally ‘year’.

By Theorem 5.4, our framework naturally captures ultrametric diversity functions as a special
case — up to an additive constant — through an appropriate volume assignment. This demonstrates
that volume-based diversity not only provides a broader modeling language for diversity but also
inherits and extends the desirable theoretical guarantees associated with ultrametric distances. As
such, it offers a principled and unified framework for defining well-behaved diversity measures.

6 Query Evaluation Under Volume-Based Diversity Functions

In this section, we start our study of CQ evaluation under volume-based diversity functions in data
complexity (i.e., the query is fixed). We start by showing that this problem is hard in general for
most of the volume assignments V presented in Section 3. Despite this negative result, we show
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that under some reasonable assumptions on V, we can always find a (1 — 1/e)-approximation of a
maximally diverse k-subset of the solutions in polynomial time under data complexity.

Hardness of exact computation. Let 3. be a schema and V = (S, 11, ) be a volume assignment over
Ts. Further, let Q be a CQ over 3. We are interested in the following computational problem:

Problem: CQEvAL[Z,V, Q]
Input: A database D over ¥ and k > 1
Output: argmaxgc(oy(p):|sj-k O (S)

In other words, given a database D and a number k > 1, we want to compute a k-subset S of [Q](D)
that maximizes the volume diversity 6y,(S) over all k-subsets. Note that 3 and Q are fixed; namely,
we measure the computational resources of the problem in data complexity. Furthermore, the
volume assignment V and, thus, the diversity function 8y are also fixed. We implicitly assume
that if k > |[Q](D)|, then we output all the tuples in [Q](D). In particular, if [Q](D) = @,
then an algorithm for CQEVAL[Z, V, Q] outputs &. By slight abuse of notation, we will formulate
intractability results of CQEVAL[Z, V, Q] in the form of “NP-hardness”. Strictly speaking, the NP-
hardness applies to the decision variant of the problem CQEvAL[Z, V, Q], i.e., deciding if 5, (S) is
above a given threshold th for some S ¢ [Q](D) subject to |S| = k.

We will always assume that V' and 6§y, are fixed in all query evaluation problems studied in this
paper (see also Section 7). Moreover, for the sake of simplification, in this section we will assume
that for any volume assignment ) and any set S of tuples, computing &y (S) takes constant time?.
Intuitively, one can consider §y as a black box in the system that can be evaluated efficiently for a
set of tuples whose complexity does not considerably affect the query evaluation process. Clearly, if
we show that CQEvAL[Z, V, Q] is hard, then it is even harder if the cost of computing &y, is included.
The other way around, if we show that CQEVAL[Z, V, Q] can be evaluated in polynomial time, this
result will be subjected that 6y, can also be efficiently evaluated (which is typically the case for
natural volume assignments V).

Unfortunately, similar to previous work on query evaluation under diversity functions, we can
show that CQEvAL is NP-hard for most of the volume assignments V presented in Section 3.

THEOREM 6.1. The problem CQEVAL[3.,V, Q] is NP-hard if V € {Veiem: Vpos: Vaems Vposs YO.D }-

Given that for simple volume assignments like Vejem and Vpos, the query evaluation problem is
hard, we move in the rest of this section to provide good approximations to CQEvAL[Z, V, Q].

Approximation of optimal solutions. Recall that ¥ is a schema, Q is a CQ over X, and V is a
volume assignment over Ty. We say that $* ¢ [Q] (D) with |S*| = k is an (1 — €)-approximation of
CQEVAL[Z, V, Q] on a database D and a number k > 1 if, and only if:

oy(s) 2 (1-¢€)- v(5)

In other words, the diversity of $* with respect to &y is not worse than (1 — €) times the diversity
of the best solution, where the smaller € > 0, the better the approximation.

Since CQEVAL[3, V, Q] is NP-hard, we strive to find an (1 - €)-approximation for some € > 0.
Given that dy is monotone and submodular by Proposition 3.7, we can take advantage of the
algorithmic theory of submodular set functions to find the following approximation [22].

max
s<[Q(D):Is|=k

THEOREM 6.2. One can compute an (1 - 1/e)-approximation of COEVAL[Z, V, Q] for every database
D and k > 1 in polynomial time in |D|, where e is the Euler number.

2We are only making statements on tractability in this section. Section 7 then focuses on finer analysis and does not make
this assumption.
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Algorithm 1: Greedy algorithm for finding a (1 — 1/e)-approximation of the problem
CQEVAL[Z, V, Q] for a schema ¥, a volume assignment V), and a CQ Q over 3.
Input: A database D and a value k > 1.
Output: A k-diversity set S ¢ [Q](D) with respect to 5y.
15«0
2 fori=1tok do
3 L t* < argmax,c[o(p) Ov (S U {t})

4 | S<Su{r}

5 return S

Proor. In [22], Nemhauser, Wolsey, and Fisher showed that for every monotone submodular set
function f : finite(/) - R and k > 1 one can compute in polynomial time a k-subset A of i such
that f(A) > (1-1/e) -maxpgcys -k f(B). Since &y is submodular and monotone and Q is fixed, one
can compute the set [Q] (D) in polynomial time over D and then apply the result in [22] to retrieve
a (1 - 1/e)-approximation of 8y over [Q](D) restricted to subsets of size k. In Algorithm 1, we
depict this procedure for & which follows a greedy strategy: starting from S = @; in every iteration
it finds a tuple t € [Q](D) that maximizes the marginal diversity of §y,, namely, 5, (SU{t}) N 6y (S).
After the k-th iteration, it outputs S. By [22], this procedure achieves a (1 — 1/¢)-approximation of
CQEVAL[Z, V, Q] for every database D and k > 1, and runs in polynomial time. O

The previous result is indeed a direct consequence of Nemhauser et al. techniques on the
maximization of submodular set functions. Nevertheless, one must compare the approximation
ratio obtained for volume-based diversity functions with that of the best approximation found for
distance-based analogs. Recently, approximation algorithms were proposed in [1] for CQ evaluation
under distance-based diversity functions. For i, under the Hamming or Euclidean metrics, the
best approximation ratio is (1 — (1/2 + €)), and the running time of the algorithms depends on €.
For Ssum, the best approximation ratio is (1 — 2/k) for Hamming distance (for Euclidean distance it
is (1 - 1/2)) but the running time depends on k°>. Instead, the approximation ratio for volume-based
diversity functions is (1 — 1/e) and works for every volume assignment that can be computed in
polynomial time (in particular, for most of the examples presented in Section 3). Furthermore,
Algorithm 1 can be easily incorporated into the current query evaluation strategy of any database
management system by finding all tuples in [Q](D) and then applying Algorithm 1.

We want to end this section by showing that, in general, (1 — /e)-approximation is the best one
can get for volume-based diversity functions.

THEOREM 6.3. There exists a schema X, a volume assignment V, and a CQ Q such that a (1 - 1/e)-
approximation of CQEVAL[Z, V, Q] is the best that one can get in polynomial time data complexity,
unless P = NP.

ProorF skeTcH. The proof is by encoding the maximum coverage problem into a volume assign-
ment V. It is well-known that the maximum coverage problem is hard to approximate beyond
(1 —1/e)-approximation ratio, unless P = NP [10]. O

7 Approximating Volume-based Diverse Answers Under Combined Complexity

In the following, we aim to lift the results of Section 6 to the combined complexity case and
provide a finer analysis. Note, in this section, we include the time required to compute 8y,(S)
in our analysis. We start by stating the main problem and recalling some standard notation for

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 281. Publication date: November 2025.



Query Answering Under Volume-Based Diversity Functions 281:13

efficient CQ evaluation. Then, we present the main approach for efficient CQ evaluation under
volume-based diversity functions and apply it to some specific volume assignments. We conclude
by demonstrating how to generalize the technique by connecting it to the ranked enumeration
problem of CQ evaluation.

Problem statement and main definitions. In this section, we aim to solve the following problem:

Problem: CQEvaL[3,V]
Input: A database D and a CQ Q over X, and k > 1

Output: argmaxgc(o(p):|sj—k OV (S)

where ¥ and V are a fixed schema and a fixed volume assignment. Contrary to Section 6, we cannot
afford to find a (1 — 1/¢)-approximation by first computing [Q](D) (whose size is O(|D|/9!)) and
then applying Algorithm 1. In other words, the set [Q](D) is compactly represented by (Q, D), and
the challenge is to find the most diverse k-subset or an approximation without computing [Q] (D).

Recall that even determining the existence of answers to CQs is NP-hard in combined complex-
ity [7]. Thus, we will restrict ourselves to CQs with bounded fractional hypertree width (thw) [11].
To that end, we briefly recall the notions of tree decompositions and thw.

Let Q(x) < Ri(%1),...,Rn(%m) be a CQ using variables in X. For the sake of simplification, in
the sequel, we assume that every sequence x; does not repeat variables and, thus, by slight abuse
of notation, we may treat x; as a set (otherwise, one can remove duplicate variables by rewriting
Q and preprocessing D in linear time w.r.t. |D|). A tree decomposition of Q is a tuple (T, y) where
T = (V(T),E(T)) is a rooted tree and y:V(T) + 2% assigns to each v € V(T) a subset y(v) € X
called a bag. Additionally, the following properties have to be satisfied:

(1) for every variable x € X, the set {o € V(T) | x € y(v)} induces a connected subtree of T; and
(2) for every relation R;(%;), there exists v € V(T) that contains all of &; in its bag y(v).

The fractional hypertree width of a tree decomposition (T, y) is max,ey (1) p*(x(v)) where
p*(x(v)) is the minimum fractional edge cover of the hypergraph induced by y(v) over Q(x). The
fractional hypertree width thw(Q) of Q is the minimum fractional hypertree width among all tree
decompositions of Q. Finally, a conjunctive query is called an acyclic CQ (ACQ) iff thw(Q) = 1.

Approximation through maximizing the marginal diversity. Motivated by Theorem 6.2 and Algo-
rithm 1, a reasonable strategy to find an approximation for CQEvAL[3, V] is to compute the next
tuple ¢ that maximizes the marginal diversity of §)(S). In other words, we have to consider the
problem of computing greedily the next best solution (see line 3 in Algorithm 1):

Problem: CQNEexT[,V]
Input: A database D and a CQ Q over 3, and a subset S € [Q](D)

Output: argmax, 5(p) v (Suf{t})

Similar to CQEvAL[Z, V], the main challenge is to compute ¢ from D, Q, and S, without necessarily
computing [Q] (D). Naturally, if we can solve CQNEexT[Z, V] efficiently, then we can apply Al-
gorithm 1 by calling CONExT[Z, V] in line 3 and solve CQEvAL[Z, V]. In other words, we get the
following result.

THEOREM 7.1. If CONExT[Z, V] can be solved in time O(f) for some function f, then the problem
CQEVAL[Z, V] can be (1 - 1/e)-approximated in time O(k - f).

The converse of Theorem 7.1 does not necessarily hold. In particular, we do not know whether
hardness of CQNExT[Z, V] implies that CQEvAL[Z, V] cannot be approximated (see Section 8 for
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further ideas). However, at least, if CQNEXT[Z, V] is NP-hard for the singleton case (fixing S = @),
also the problem (exact version) CQEvAL[3, V]| must be NP-hard (for k = 1).

We now revisit the volume assignments from Section 3 and separate the hard and easy cases for
solving CONEXT[Z, V]. We start with the hard cases which, thus, do not translate to approximability
results of CQEVAL[Z, V]:

THEOREM 7.2. Unless P = NP, the problem CQNExT[3, V] cannot be solved in polynomial time for
V € {Velem: Vol Vo.0 }» even if we only allow ACQs and subsets S = @.

Proor skeTcH. We illustrate the basic idea by proving NP-hardness of the apparently simplest
case V = Vgjem- The proof is by reduction from (the directed version of) Hamiltonian path: Given an
instance G = (V(G), E(G)) of Hamiltonian path, we define an instance (D, Q,S) of CQNexT[Z, V]
as follows: database D consists of a single binary relation E storing the edges of G, we set S = &,
and, for n = |[V(G)|, we define the ACQ Q as follows:

O(x1,...,xn) < E(x1,%2),..., E(xn_1,%n).

Notice that a solution Q(h (X)) € [Q](D) corresponds to a walk in G and éy,,_ applied to singletons
(ie., 8y, ({Q(h(X))})) counts the number of distinct vertices used in the corresponding walk.
Hence, G is a positive instance of Hamiltonian path if, and only if, the solution to this instance of

CONEXT([Z, Velem | yields an answer Q(h(X)) with 8y, ({Q(h(X))}) = n. m|

Next, we show that even seemingly simple changes in the diversity function can affect the
tractability of CQNExT[3, V] and, thus, naturally lead to the approximability of CQEVAL[Z, V] due
to Theorem 7.1.

THEOREM 7.3. Restricted to ACQs, the problem CQNEXT[2, V] can be solved in time O(|Q| - |D|)
JorV € {Vyos, Voos } When only allowing ACQs. Hence, in this case, COEVAL[E, Velem ] can be (1 - 1/e)-
approximated in time O(k - |Q| - |D|).

ProoF skETCH. We explain why CONEXT[3, V,os] is tractable for ACQs Q(x). To that end, let
D be a database, and hy, . . . by homomorphisms from Q to D, i.e., S = {Q(h;(%)),..., O(he (%))} €
[Q](D).Consider the marginal diversity for a new solution Q(h(x)) € [Q](D):

{1 if Vit h(x) # hi(x),

O (SU{QUR())D) = 81, (8) = Y, withe =1 if 3i: h(x) = hi(x).

XEX

That is, we count the number of new values. We can cast this then as a sum-product query over the
tropical semi-ring Ry« := (R U {00}, +,max). Doing so shows that we can find the element that
maximizes the marginal diversity in linear time. To do so, for every x € x let us choose a covering
relation R* := R;(%;) used in Q where x € %;. Then, we can define the Ryac-relations Ry, ..., Ry,.
That is, for tuple R;(@) in the database, we add tuples R} (a) to the database and annotate it with
the number of new values a adds at positions x such that R; covers x. Then, as every variable x € X
is covered by exactly one relation, we have:

330 (SU{Q(R(R))}) = 81, (S) = 2 R (h(5:)) (1)

for homomorphism h such that Q(h(x)) € [Q] (D). Then, due to results on sum-product queries [16,
24] we can find a Q(h(x)) € [Q](D) maximizing Equation (1) in time O(|Q| - |D|) as this is then a
scalar sum-product query. This solves CQNEXT[X, Velem | for ACQs. Then, due to Theorem 7.1, we
can compute a (1 — 1/¢)-approximation of CQEVAL[Z, Veler ] in time O(k - |Q| - |D]). |
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Diverse answers to CQs via ranked enumeration. Towards a more general criterion to ensure
tractability of CONExT[3, V], we consider this problem as a top-k ranked enumeration problem,
where the marginal diversity is the value by which we order the output and where we ask for the
top-1 answer (we can ignore the additive constant §),(S)). Actually, top-k ranked enumeration has
received considerable attention from the database community in the last years (see e.g., [9, 13, 18,
19]), where we consider [9] as the most general and most naturally extendable to our setting.

We briefly recall the setting and main result of [9] and then build on them. There, rank functions
rank assign values rank(Q(h(x))) € R to solutions of CQs Q(h(x)) € [Q](D) and the goal is to
enumerate Q(h(x)) € [Q] (D) in the order induced by rank, i.e., Q(h(x)) should be output before
Q(K (x)) if rank(Q(h(x))) > rank(Q(h(x))). Informally speaking, the main result of [9] is that,
with the help of a tree decomposition (T, y) of the full CQ Q, enumeration is efficiently possible if
rank is compatible with (T, y).

Given a volume assignment V = (S, 11, ), we would like to apply the results of [9] to the functions
ranky s := 6y (S U {-}). Thus, naively, we would have to verify that ranky, s is compatible with
(T, x) for every S c [Q](D). Inspired by their use of compatibility, in the remainder of this section,
we develop a notion of compatibility (with a tree decomposition (T, x)) of the ball function . This
will be a sufficient condition, such that ranky, s is compatible with (T, y) for every S ¢ [Q](D). To
that end, we start as in [9] by defining what it means (in our case for ) to be y-decomposable.

Definition 7.4. Let V = (S, y, f) be a volume assignment, R(X) be an atom over ¥ with variables
%, and § € X. We say that f is §-decomposable (w.r.t. R) if for every pair of homomorphisms h, h’
over y and homomorphisms g, g’ over X \ § we have:

PR((hug)(x))) ~ BR((K 0 g)(x))) = BR((hLg") (X))~ BR((K Lg)(X)). (2

The intuition of y-decompositions is the following: Whatever a partial homomorphism h on y
contributes to the volume compared with another partial homomorphism h’ should not depend on
how h and h' are completed (i.e., either by g or ¢). Let us denote the set in Equation (2) as S(h, h").

For a set S of R-tuples, let us now consider the function ranky s defined for R-tuples. Then,
to compare the function value of ranky, s on two homomorphisms h and h that agree outside of
7, it suffices to compare p(B(h,h") \ Uses B(s)) with p(B(R',h) N Uses B(s)). Consequently, the
function ranky s is y-decomposable in the sense of [9] for every set S

Thus, to extend the main result of [9] to our setting, we can extend our notion of decomposability
to compatibility w.r.t. a tree decomposition analogously to how it is done there. We note that while
Definition 7.4 significantly differs from the counterpart in [9], extending it to compatibility is rather
immediate. Thus, we only give the following definitions for the sake of completeness.

Let V = (S, 11, B) be a volume assignment, let R(x) be an atom over ¥ with variables %, and let
7,Z C X be such that 7 Nz = @. Further, let Rz 5 ¢ = be a new relation symbol of arity [X \ Z|. We
say that 8 is y-decomposable conditioned on z (w.r.t. R) if for every homomorphism f over z, the ball
function extended to Rg.5-tuples via f(Rg.z(A(X ~ 2))) = B(R((AU f)(%))) for homomorphism A
over X \ 7 is y-decomposable w.r.t Rz 3.

Let (T, y) be a rooted tree decomposition of a full CQ Q(x). For t € V(T) we denote with
x(T;) the union of the bags in the subtree rooted in t. Further, with key(t) we denote the variables
x(£)n x(p) where p is the parent of t and key(r) = @ for the root r of T. We say that f§ is compatible
with (T, y) if for every node ¢ it is (y(T;) \ key(t))-decomposable conditioned on key(t) w.r.t. Q.

As explained before, since y-decomposability in our sense can be reduced to y-decomposability
for every set S in the sense of [9], we get the following by combining it with Theorem 7.1.
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TueoreM 7.5. LetV = (S, u, B) be a volume assignment over Ts, such that § is compatible with a
rooted tree decomposition (T, ) of the full CQO Q(x). Then, CQEVAL[ X, V] can be (1-1/e)-approximated
in time O(|Q| - D" (TX) . k - Ty,)) where Ty is the time to compute marginals of &, for fixed sets.

To showcase Theorem 7.5, we revisit the volume assignment Vg p from Example 3.4.

THEOREM 7.6. Let Q(x) be a CQ such that every atom R;(%;) of Q uses a unique relation name and
let (T, ) be a tree decomposition of Q such that there is a subtree Ty of T containing the root of T and
where X = Uyey (1) X(v). That is, the CQ is self-join-free and the tree decomposition is free-connex [5].

Then CQEvAL[, Vg p] can be (1 - 1/e)-approximated in time O(|Q| - [D[fIw(T-0+1 . ),

We juxtapose it with Theorem 7.2: In Theorem 7.2 we say that CONEXT[Z, Vo p] is intractable
even for ACQs while we now state that computing a (1 —1/e)-approximation of CQEVAL[Z, Vo p] is
tractable for CQs when fhw(T, y) is small. The crucial restriction in Theorem 7.6 is self-join-freeness,
which is in effect similar to keeping positions apart as Vs does compared to Vejem.

ProoF SKETCH OF THEOREM 7.6. Theorem 7.5 cannot directly be applied since Q is not neces-
sarily a full CQ. To that end, let us consider the full CQ Q*(x) defined as the subquery of Q
where all body relations are projected onto %. Then, (T, X|V(T,g)) is a tree decomposition of Q%
and fhw(Te, xlv(r,)) < fhw(T, x). Now, we extend fop to Q*-tuples via fo p(Q*(h(x))) =
Bo.p(Q(h(x))). Defined as such, o p is compatible with (Tx, x|y (1;)) w.r.t. Q% as Q and, hence,
also Q% are self-join-free.

Then, to compute ranky,, ,, s, we have to keep track of the which-provenance [8] for each of
the tuples in the bags of v € V(T;) for what happens “outside” of V(7% ). Thus, essentially, for
each v € V(Tx), we have to look at its children in T \ Tg, i.e., C := child(v) \ V(T;) and consider
the sub-query Q”(x(v)) that uses the variables y(v), and the ones that appear in C and their
descendants. Computing the provenance of these queries requires time [Df"*(T-X)+1 (where the
+1 is to account for the semi-ring operations) [16, 24]. However, then, to compute marginals of &y,
(essentially &y, (S U {s})), it suffices to add together the provenance of every tuple ¢ € SU {s}. The
provenance of a tuple t can be computed by looking-up and adding together the provenance of ¢
projected to y(v) in Q°. Thus, as S can be considered fixed, this takes O(|D|) time. |

In particular, this means that for self-join-free, free-connex, acyclic conjunctive queries, the
problem CQEVAL[Z, Vp p] can be (1 - 1/e)-approximated in quadratic time (for constant Q, k).

8 Conclusions

In this work, we have introduced the volume-based framework for diversity measures 8y, providing
several examples of them in relational databases, and we have studied their properties. Above all,
given the intractability of query answering under diversity, we have shown an approximation
algorithm that runs in polynomial time data complexity, and we have identified criteria for ex-
tending the tractability of the approximation to combined complexity. Arguably, all these results
provide substantial evidence that volume-based diversity forms an alternative approach to distance-
based diversity, which requires further consideration in both the theory and practice of database
management systems.

For future work, we propose to take a closer look into the relationship between our frame-
work of volume-based diversity measures and the distance-based approach. In Section 5, we have
shown that Weitzman’s (distance-based) diversity function dw essentially becomes a volume-based
diversity function if the underlying distance function is an ultrametric. In [2], general criteria
were presented that make the problem of computing the exact solution of CQEvAL tractable if
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the distance underlying a diversity measure is an ultrametric. It would be interesting to explore
restrictions under which this can be lifted to volume-based diversity functions.

Another interesting open problem is to find other strategies for approximating CQEVAL in com-
bined complexity. According to Theorem 7.2, CONEXT cannot be solved in polynomial time (under
complexity assumptions) for many natural volume-based diversity functions. Nevertheless, even
in the cases where CQNEXT is NP-hard, one might still be able to get a reasonable approximation
algorithm. This approximation algorithm CQNEXT, combined with Algorithm 1, could then lead to
an approximation of CQEVAL.
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