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When query evaluation produces too many tuples, a new approach in query answering is to retrieve a diverse

subset of them. The standard approach for measuring the diversity of a set of tuples is to use a distance

function between tuples, which measures the dissimilarity between them, to then aggregate the pairwise

distances of the set into a score (e.g., by using sum or min aggregation). However, as we will point out in this

work, the resulting diversity measures may display some unintuitive behavior. Moreover, even in very simple

settings, finding a maximally diverse subset of the answers of fixed size is, in general, intractable and little is

known about approximations apart from some hand-picked distance-aggregator pairs.

In this work, we introduce a novel approach for computing the diversity of tuples based on volume instead of

distance. We present a framework for defining volume-based diversity functions and provide several examples

of these measures applied to relational data. Although query answering of conjunctive queries (CQ) under

this setting is intractable in general, we show that one can always compute a (1-1/e)-approximation for any

volume-based diversity function. Furthermore, in terms of combined complexity, we connect the evaluation

of CQs under volume-based diversity functions with the ranked enumeration of solutions, finding general

conditions under which a (1-1/e)-approximation can be computed in polynomial time.
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1 Introduction
When the set of answers to a query gets too big, a user might be better served by being presented

a meaningful subset of the answers rather than being overwhelmed with the entire set. Clearly,

sampling might provide one way of selecting a “representative” subset of the answers. However,

as was pointed out in [26], such an approach typically misses interesting but rarely occurring

answers. An alternative approach, which has recently received increased attention by the database

community, is to aim at a small, diverse set of answers [1, 2, 15, 20, 23]. For instance (following an

example given in [12]), in a car dealership setting, the number of models satisfying the constraints

expressed by the customer may be huge. Therefore, rather than presenting all solutions to this

constraint satisfaction problem (which is a well-known equivalent problem to conjunctive query
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answering [17]), it would be more useful to come up with a small, diverse set of solutions and let

the customer decide on which type of models to focus further discussions.

The most common approach of assigning a diversity score 𝛿 to a subset of the universe 𝒰
(e.g., the answers to a query) is to first define a distance measure 𝑑 between any two distinct

elements of 𝒰 and then define the diversity 𝛿(𝑆) of any subset 𝑆 of 𝒰 by applying some aggregation

to the pairwise distances of the elements in 𝑆 [14]. Typical distance measures in the database

context are the Hamming distance [1, 6, 20] (i.e., counting the positions in which two tuples differ),

an ultrametric [25, 26] (i.e., imposing an order on the attributes and considering tuples farther

apart if they differ on an attribute further up in this order), or the Euclidean distance for numeric

attributes [1]. Typical aggregate functions are the sum and min operators [1, 6, 20].

While sum andmin are natural and familiar aggregate functions, theymay lead to some anomalies

of the resulting diversity measure: In case of the sum operator, consider a setting where a set 𝑆

contains two elements 𝑡1, 𝑡2 with high distance 𝑑(𝑡1, 𝑡2). Then adding to 𝑆 another element 𝑡 ′
1
very

close to 𝑡1 but again with high distance from 𝑡2 seemingly leads to a significant increase of diversity,

even though 𝑡 ′
1
is almost a “copy” of 𝑡1. In [27] several desiderata on diversity measures are presented

– including the twin property, i.e., adding an (almost) identical copy should not increase the diversity,

and monotonicity, i.e., adding a new element to a set 𝑆 never decreases the diversity. Clearly, the

sum operator violates the first fundamental property while the min operator violates this second

property. Consequently, Weitzman [27] introduced a diversity measure (henceforth referred to as

𝛿W) based on a more sophisticated aggregation of pairwise distances. However, as was shown in [2],

even the basic task of determining the diversity 𝛿W(𝑆) of a given set 𝑆 of elements is NP-complete.

The goal of our work is to introduce a novel framework for defining diversity measures, such that

this framework is generally applicable but, at the same time, particularly well suited for defining

natural diversity measures in the (relational) database world. We will thus introduce a two-staged

approach which, in the first place, assigns to each element of the universe (e.g., a tuple in a relation

or in an entire database) a volume in the form of some measurable set. As will be illustrated in

Section 3, for a set 𝑆 of tuples, there are many ways of choosing such a volume. In the simplest case,

we could just collect the set of values occurring in 𝑆 . Various other options, such as considering

𝑘-ary balls of a pre-specified radius 𝑟 around a 𝑘-tuple of numerical attributes are presented in

Section 3. The second stage then consists in assigning values to the unions of these measurable

sets. For the basic case of collecting the set 𝑉 of values occurring in 𝑆 , we could simply take the

cardinality of 𝑉 . For the case of 𝑘-ary balls associated with each tuple, we would take the volume

of the union of the balls associated with the tuples in 𝑆 . A formal definition of our volume-based

approach to diversity will be given in Section 3.

We will then study interesting properties of this approach. In particular, we will analyze its

relationship with previous approaches – in particular, Weitzman’s approach [27] and the multi-

attribute approach of Nehring and Puppe [21] (in Section 4, we will formally define that approach

and also point at its major shortcoming, namely the conceptual and computational complexity

caused by having to deal with the powerset of the powerset of the universe). Somewhat surprisingly,

we will show that diversity functions defined via the multi-attribute approach can also be defined

in our framework and, for a finite universe, also the converse holds. In other words, while avoiding

the negative computational properties of the multi-attribute approach, our volume-based diversity

measures share the favorable properties shown in [21]. One of them is submodularity, which

formalizes the intuition that adding a new element to a smaller set potentially leads to a bigger

increase of diversity than adding the same element to a bigger set.

When analyzing computational properties of volume-based diversity measures, submodularity

will prove beneficial. Concretely, we study the problem of searching for a subset of the answers to a

conjunctive query which, for a given size 𝑘 , maximizes the diversity. This problem has been studied
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before for various diversity functions and, even in very simple settings (e.g., considering the sum or

the minimum of the pairwise Hamming distances) this problem was shown to be intractable [20] –

even for data complexity. We will show that also for the natural volume-based diversity measures

of sets of tuples presented in Section 3, intractability holds. We therefore study the search for a

maximally diverse set of answers to a conjunctive query from an approximation point of view. For

data complexity, we prove a tractable (1 − 1⇑𝑒)-approximation (where 𝑒 is the Euler number) of

the maximum diversity score for arbitrary volume-based diversity measures by making use of a

classical approximation result for submodular set functions by Nemhauser et al. [22]. We also show

that, in general, a better tractable approximation can be excluded unless P = NP. Clearly, combined

complexity requires further restrictions since even query evaluation of Boolean conjunctive queries

(without paying any attention to diversity) is NP-complete [7]. However, by restricting our attention

to CQs of bounded fractional hypertreewidth [11] and establishing a relationship with ranked

enumeration [9], we manage to achieve tractable (1− 1⇑𝑒)-approximation of the maximum diversity

score also for combined complexity.

Structure of the paper and summary of results. After recalling some basic notions in Section 2, we

will formally introduce our volume-based framework of defining diversity functions in Section 3. By

presenting some examples of natural diversity functions for sets of tuples, we illustrate the suitability

of this framework in the database context. We then study the relationship of our volume-based

approach of defining diversity measures with previous approaches, namely with the multi-attribute

approach of [21] in Section 4 and with distance-based approaches (above all Weitzman’s diversity

measure [27]) in Section 5. The search for a maximally diverse set of 𝑘 answers to a conjunctive

query𝑄 over a given database𝐷 is studied in Sections 6 and 7. As mentioned above, a tractable exact

solution to this maximization problem is out of reach. We therefore settle for an approximation.

In Section 6, we study data complexity and establish a tractable (1 − 1⇑𝑒)-approximation of the

maximum diversity score of 𝑘-element subsets of the answers to first-order queries by virtue of the

submodularity of volume-based diversity measures. In Section 7, we study combined complexity

and identify a sufficient condition on the queries to achieve the same quality of approximation. We

conclude with Section 8. Proof details can be found in the full version of this paper [3].

2 Preliminaries
Sets and sequences. We denote by N, R, and R≥0 the set of natural, real and non-negative real

numbers, respectively. Given a set 𝐴, we denote by finite(𝐴) the set of all non-empty finite subsets

of 𝐴. For 𝑘 ∈ N, we say that 𝐵 ∈ finite(𝐴) is a 𝑘-subset if ⋃︀𝐵⋃︀ = 𝑘 . We usually use 𝑎, 𝑏, or 𝑐 to denote

elements, and 𝑎, ¯𝑏, or 𝑐 to denote sequences of such elements. For 𝑎 = 𝑎1, . . . , 𝑎𝑘 , we write 𝑎(︀𝑖⌋︀ ∶= 𝑎𝑖
to denote the 𝑖-th element of 𝑎 and ⋃︀𝑎⋃︀ ∶= 𝑘 to denote the length of 𝑎. Further, given a function 𝑓 we

write 𝑓 (𝑎) ∶= 𝑓 (𝑎1), . . . , 𝑓 (𝑎𝑘) to denote the function applied to each element of 𝑎.

Conjunctive queries. Fix a set D of data values. A relational schema Σ (or just schema) is a pair

(ℛ, arity), whereℛ is a set of relation names and arity ∶ ℛ → N assigns each name to a number.

An 𝑅-tuple of Σ (or just a tuple) is a syntactic object 𝑅(𝑎1, . . . , 𝑎𝑘) such that 𝑅 ∈ ℛ, 𝑎𝑖 ∈ D for every 𝑖 ,

and 𝑘 = arity(𝑅). We will write 𝑅(𝑎) to denote a tuple with values 𝑎. Given a schema Σ, we denote
by TΣ the set of all tuples over Σ with values in D. A relational database 𝐷 over Σ is a finite set of

tuples over Σ. For a schema Σ = (ℛ, arity) and a set of variables 𝒳 disjoint from D, a Conjunctive
Query (CQ) over Σ is a syntactic structure of the form:

𝑄(𝑥) ← 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚)
such that𝑄 denotes the answer relation, each 𝑅𝑖 is a relation name inℛ, 𝑥𝑖 is a sequence of variables
in 𝒳 , ⋃︀𝑥 ⋃︀ = arity(𝑄), and ⋃︀𝑥𝑖 ⋃︀ = arity(𝑅𝑖) for every 𝑖 ≤ 𝑚. Further, 𝑥 is a sequence of variables
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appearing in 𝑥1, . . . , 𝑥𝑚 . We refer to such a CQ simply as 𝑄 , where 𝑄(𝑥) and 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚)
are called the head and the body of 𝑄 , respectively. Furthermore, we call each 𝑅𝑖(𝑥𝑖) an atom of 𝑄 ,

and we say that 𝑄 is a full CQ if each variable occurring in the body of 𝑄 also appears in the head

of 𝑄 .

Let𝑄 be a CQ of the above form, and 𝐷 be a database over the same schema Σ. A homomorphism

from𝑄 to 𝐷 is a function ℎ ∶ 𝒳 → D such that 𝑅𝑖(ℎ(𝑥𝑖)) ∈ 𝐷 for every 𝑖 ≤𝑚. We define the answers

of 𝑄 over 𝐷 as the set of 𝑄-tuples ⎜𝑄⨆︁(𝐷) ∶= {𝑄(ℎ(𝑥)) ⋃︀ ℎ is a homomorphism from 𝑄 to 𝐷}.

Distance-based diversity. Let 𝒰 be an infinite set. We see 𝒰 as a universe of possible solutions and

𝑆 ∈ finite(𝒰) as a candidate finite set of solutions. In its most general form, a diversity function over

𝒰 is a function 𝛿 ∶finite(𝒰) → R≥0 ∪ {∞}. The standard approach, that we call here distance-based

diversity functions, is to first define a distance function 𝑑 ∶ 𝒰 ×𝒰 → R≥0∪{∞} (typically 𝑑 is a metric

on 𝒰 ) and to define the diversity 𝛿 as an extension of 𝑑 from pairs to arbitrary subsets of 𝒰 setting

𝛿(𝑆) = 0 if ⋃︀𝑆 ⋃︀ ≤ 1. As proposed in [14], one way of defining 𝛿 for a given distance function 𝑑 is to

define an aggregator 𝑓 that combines the pairwise distances. That is, we set 𝛿(𝑆) ∶= 𝑓 (𝑑(𝑎,𝑏)𝑎,𝑏∈𝑆).
The most common aggregators are sum andmin, which give rise to the following diversity functions:

𝛿sum(𝑆) ∶= ∑
𝑎,𝑏∈𝑆

𝑑(𝑎,𝑏) and 𝛿min(𝑆) ∶= min

𝑎,𝑏∈𝑆 ∶𝑎≠𝑏
𝑑(𝑎,𝑏).

3 Volume-based Diversity Framework
In this section, we introduce a general volume-based framework for measuring the diversity of sets

of tuples. We begin by recalling the definitions of 𝜎-algebra and measures. Then, we introduce the

main definitions of the framework, present several examples to motivate the use of volume-based

diversity measures over relational data, and prove that volume-based diversity functions satisfy

two fundamental properties expected of diversity measures.

Measures. We recall here the standard definitions of 𝜎-algebra and measures (see e.g. [4] for

further details). Let Ω be a set (possibly infinite). A 𝜎-algebra over Ω is a family 𝒮 of subsets of

Ω (i.e., 𝒮 ⊆ 2
Ω
) such that (1) ∅ ∈ 𝒮 , (2) if 𝑋 ∈ 𝒮 , then Ω ∖𝑋 ∈ 𝒮 , and (3) if 𝑋𝑖 ∈ 𝒮 for every 𝑖 ∈ N,

then ⋃𝑖∈N𝑋𝑖 ∈ 𝒮 . Given a 𝜎-algebra 𝒮 , a measure for 𝒮 is a function 𝜇 ∶ 𝒮 → R≥0 ∪ {∞} such that

(1) 𝜇(∅) = 0 and (2) if 𝑋𝑖 ∈ 𝒮 for every 𝑖 ∈ N and 𝑋𝑖 ∩𝑋 𝑗 = ∅ for every 𝑖, 𝑗 ∈ N with 𝑖 ≠ 𝑗 , then:

𝜇(⋃
𝑖∈N

𝑋𝑖) = ∑
𝑖∈N

𝜇(𝑋𝑖).

For example, assuming that Ω is a countable set, one can check that 2
Ω
is a 𝜎-algebra and 𝜇count ∶

2
Ω → R≥0 ∪ {∞} that maps 𝜇count(𝑋) = ⋃︀𝑋 ⋃︀ if 𝑋 is finite and 𝜇0(𝑋) = ∞, otherwise, is a measure,

called the counting measure. Another example is the weighted measure, where we consider a weight

function 𝑤 ∶ Ω → R≥0 over Ω and define 𝜇𝑤(𝑋) = ∑𝑎∈𝑋 𝑤(𝑎) where the sum is defined as the

supremum of ∑𝑎∈𝑌 𝑤(𝑎) over all finite subsets 𝑌 ⊆ 𝑋 . A particular case here is a probability

distribution over a 𝜎-algebra 𝒮 where 𝜇 assigns a probability in (︀0, 1⌋︀ to each subset 𝑋 of Ω.

The volume-based framework. Assume that 𝒰 is the universe of possible solutions over which

we want to measure diversity. A volume assignment 𝒱 over 𝒰 is a tuple 𝒱 = (𝒮, 𝜇, 𝛽) such that

𝒮 is a 𝜎-algebra over a set Ω (that may be different from 𝒰 ), 𝜇 is a measure for 𝒮 and 𝛽 ∶ 𝒰 → 𝒮 .
Intuitively, the function 𝛽 , called the ball function, is a function that assigns a ball in 𝒮 to each

element 𝑎 of the universe 𝒰 , namely, it assigns a volume to 𝑎.

We now introduce our framework for defining diversity functions over volume assignments as

follows. Given a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽) over 𝒰 , a function 𝛿𝒱 ∶ finite(𝒰) → R≥0 ∪ {∞}
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𝐷1 ∶

𝑅

𝑎 𝑎

𝑎 𝑏

𝑏 𝑎

𝐷2 ∶

𝑅

𝑎 𝑎

𝑎 𝑏

𝑏 𝑎

𝑏 𝑏

𝐷3 ∶

𝑅

𝑎 𝑏

𝑎 𝑐

Fig. 1. Databases 𝐷1, 𝐷2 and 𝐷3 consisting of a binary relation 𝑅 with data values 𝑎, 𝑏, and 𝑐 .

is a volume-based diversity function over 𝒰 if for every 𝑆 ∈ finite(𝒰):

𝛿𝒱(𝑆) = 𝜇(⋃
𝑎∈𝑆

𝛽(𝑎)).

Intuitively, each element of 𝑆 contributes with different characteristics to the diversity of the group

(i.e., its volume), and when we add all these characteristics together, the intersection only adds once.

In particular, when two elements 𝑎1 and 𝑎2 of 𝒰 are totally different with respect to the diversity

(i.e. 𝛽(𝑎1)∩𝛽(𝑎2) = ∅), we have that 𝛿𝒱({𝑎1, 𝑎2}) = 𝛿𝒱({𝑎1})+𝛿𝒱({𝑎2}). Also, note that, contrary
to distance-based diversity functions (defined in Section 2), it is not necessary that 𝛿𝒱({𝑎}) = 0

(indeed, 𝛿𝒱({𝑎}) ≠ 0 almost surely). Depending on the application context, positive diversity of

singletons might actually be the desired behavior. For instance, suppose that the universe 𝒰 denotes

the set of employees, Ω a set of skills, and 𝛽 assigns to each employee her skills. Then the diversity

𝛿(𝑆) assigns a measure (via 𝜇) to the skill set present in a team 𝑆 of employees. In this case, we

clearly want 𝛿 applied to a singleton to reflect the value of the skills possessed by each individual.

In the following, we provide several examples of volume-based diversity functions applied to

relational data (i.e., tuples). For this purpose, recall that we use D to denote a set of data values, Σ to

denote an arbitrary relational schema, and 𝑅(𝑎1, . . . , 𝑎𝑘) to denote an 𝑅-tuple of Σ where 𝑎𝑖 ∈ D for

every 𝑖 . In the following examples, we use TΣ to denote our universe (i.e., 𝒰 ) of all possible tuples.

Example 3.1. Let 𝒱
elem
= (2D, 𝜇count, 𝛽elem

) be the volume assignment such that 𝒮 = 2
D
is the

𝜎-algebra (over D), 𝜇count is the counting measure and 𝛽
elem

is the ball function defined as:

𝛽
elem

(𝑅(𝑎1, . . . , 𝑎𝑘)) ∶= {𝑎1, . . . , 𝑎𝑘}

for every tuple 𝑅(𝑎1, . . . , 𝑎𝑘). For every finite set of tuples 𝑆 ⊆ TΣ, we have that 𝛿𝒱
elem

(𝑆) measures

the number of different data values contained in the tuples in 𝑆 . That is, the more different data

values the tuples have, the more diverse they are.

For instance, consider the databases 𝐷1, 𝐷2 and 𝐷3 in Figure 1 consisting of a binary relation 𝑅.

We have that 𝛽
elem

(𝑅(𝑎,𝑎)) = {𝑎}, 𝛽
elem

(𝑅(𝑎,𝑏)) = {𝑎,𝑏}, 𝛽
elem

(𝑅(𝑏, 𝑎)) = {𝑎,𝑏} and

𝛿𝒱
elem

(𝐷1) = 𝜇count(𝛽elem
(𝑅(𝑎,𝑎)) ∪ 𝛽

elem
(𝑅(𝑎,𝑏)) ∪ 𝛽

elem
(𝑅(𝑏,𝑎))) = 𝜇count({𝑎,𝑏}) = ⋃︀{𝑎,𝑏}⋃︀ = 2.

In the same way, we conclude that 𝛿𝒱
elem

(𝐷2) = 2 and 𝛿𝒱
elem

(𝐷3) = 3. Hence, 𝐷1 and 𝐷2 are equally

diverse under the measure 𝛿𝒱
elem

, while 𝐷3 is considered more diverse than these two databases, as

it contains an extra value. □

Example 3.2. In addition to measuring the diversity in data values, we now also want to consider

the position where these data values occur, i.e., it is different whether 𝑎 appears in the first or

second component of a tuple. We thus capture the intuition that different attributes, even if they

have the same data type, have a different semantics (e.g., in a car-relation, the number 6 occurring

both in the “gears” and in the “cylinders” attribute does not reduce the diversity). For this purpose,

consider the volume assignment 𝒱pos = (2D×N, 𝜇count, 𝛽pos) where we use the 𝜎-algebra 2
D×N

(over
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D ×N), the counting measure 𝜇count and the ball function 𝛽pos such that:

𝛽pos(𝑅(𝑎1, . . . , 𝑎𝑘)) ∶= {(𝑎1, 1), . . . , (𝑎𝑘 , 𝑘)}

for every tuple 𝑅(𝑎1, . . . , 𝑎𝑘) ∈ TΣ. Then, the diversity 𝛿𝒱pos
(𝑆) measures the number of different

values that appear in different positions of the tuples in 𝑆 ⊆ TΣ. For instance, consider again

the databases 𝐷1, 𝐷2 and 𝐷3 given in Figure 1. Then we have that 𝛽pos(𝑅(𝑎,𝑎)) = {(𝑎, 1), (𝑎, 2)},
𝛽pos(𝑅(𝑎,𝑏)) = {(𝑎, 1), (𝑏, 2)}, 𝛽pos(𝑅(𝑏, 𝑎)) = {(𝑏, 1), (𝑎, 2)} and

𝛿𝒱pos
(𝐷1) = 𝜇count(𝛽pos(𝑅(𝑎,𝑎)) ∪ 𝛽pos(𝑅(𝑎,𝑏)) ∪ 𝛽pos(𝑅(𝑏,𝑎))) =

𝜇count({(𝑎, 1), (𝑎, 2), (𝑏, 2), (𝑏, 1)}) = 4.

In the same way, we conclude that 𝛿𝒱pos
(𝐷2) = 4 and 𝛿𝒱pos

(𝐷3) = 3. Hence, as opposed to the

diversity measurements given in Example 3.1, 𝐷1 and 𝐷2 are equally diverse under the measure

𝛿𝒱pos
, while 𝐷3 is considered less diverse than these two databases, as it contains a smaller number

of values in different positions. □

Example 3.3. Another practical example of volume-based diversity functions is considering a

weight function𝑤 ∶ D→ R≥0. For instance, if the relational data considers animals in D, then a user

could use a weight function where𝑤(‘dog’)will weigh less than𝑤(‘dodo’) given that dodo is a less

common animal than a dog. Then one can consider the volume assignment 𝒱𝑤
elem
= (2D, 𝜇𝑤, 𝛽elem

)
where the 𝜎-algebra and ball functions are the same as in 𝒱

elem
(see Example 3.1) and the measure

𝜇𝑤 is the weighted measure defined above. Then 𝛿𝒱𝑤
elem

(𝑆) measures the weight of the data values

appearing in tuples, assigning more diversity to tuples where a dodo appears versus a dog.

One can naturally extend this example to also consider the positions of the data values (denoted

by 𝒱𝑤
pos

) as in Example 3.2 and, instead of a weight function𝑤 , one can use a probability function

that assigns a probability to each data value. To showcase 𝒱𝑤
pos

, consider again the databases 𝐷1,

𝐷2 and 𝐷3 given in Example 3.1. Moreover, assume that 𝑐 is an uncommon value for the second

attribute of 𝑅, which is represented by the following weight function: 𝑤((𝑎, 1)) = 𝑤((𝑎, 2)) =
𝑤((𝑏, 1)) =𝑤((𝑏, 2)) =𝑤((𝑐, 1)) = 1, and𝑤((𝑐, 2)) = 3. Then we have that:

𝛿𝒱𝑤
pos

(𝐷3) = 𝜇𝑤(𝛽pos(𝑅(𝑎,𝑏)) ∪ 𝛽pos(𝑅(𝑎, 𝑐))) =
𝜇𝑤({(𝑎, 1), (𝑏, 2), (𝑐, 2)}) =𝑤((𝑎, 1)) +𝑤((𝑏, 2)) +𝑤((𝑐, 2)) = 5.

In the same way, we conclude that 𝛿𝒱𝑤
pos

(𝐷1) = 4 and 𝛿𝒱pos
(𝐷2) = 4. Hence, in this case 𝐷3 is

considered as the most diverse database given the occurrence of 𝑐 in the second column of 𝑅. □

Example 3.4. Let 𝐷 be a relational database over a schema Σ and consider a CQ 𝑄(𝑥) ←
𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚). A user may want to measure the diversity of a subset 𝑆 ⊆ ⎜𝑄⨆︁(𝐷) concerning
the provenance of each tuple, namely, which are the tuples in 𝐷 that contribute to the outputs in 𝑆

(cf. the “which provenance” studied in [8]). One way to formalize this is as follows. Let ⎜𝑄⨆︁(𝐷)
be the universe of possible solutions. Consider the volume assignment 𝒱𝑄,𝐷 = (2𝐷 , 𝜇count, 𝛽𝑄,𝐷)
where 2

𝐷
is the 𝜎-algebra (i.e., all subsets of tuples in 𝐷), 𝜇count is the counting measure, and

𝛽𝑄,𝐷 ∶ ⎜𝑄⨆︁(𝐷) → 2
𝐷
is the ball function such that for every answer 𝑄(𝑎) ∈ ⎜𝑄⨆︁(𝐷):

𝛽𝑄,𝐷(𝑄(𝑎)) ∶= {𝑅𝑖(ℎ(𝑥𝑖)) ⋃︀ 1 ≤ 𝑖 ≤𝑚 and ℎ is a homomorphism from 𝑄 to 𝐷 with ℎ(𝑥) = 𝑎}

In other words, 𝛽𝑄,𝐷 maps 𝑄(𝑎) to all the tuples that contribute to it, that is, its provenance. For
𝑆 ⊆ ⎜𝑄⨆︁(𝐷), the value 𝛿𝒱𝑄,𝐷

(𝑆) counts the number of different tuples in 𝐷 that support the outputs

in 𝑆 . Then, themore different tuples support 𝑆 , themore diverse they are. For instance, consider again

the database 𝐷1 given in Example 3.1, and let𝑄1(𝑥,𝑦) be the conjunctive query ∃𝑧 𝑅(𝑥, 𝑧)∧𝑅(𝑧,𝑦).
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Then the tuples (𝑎,𝑎) and (𝑏,𝑏) are both answers to 𝑄1(𝑥,𝑦) over 𝐷1. However, we have that

𝛽𝑄1,𝐷1
(𝑄1(𝑎,𝑎)) = {𝑅(𝑎,𝑎), 𝑅(𝑎,𝑏), 𝑅(𝑏, 𝑎)}, 𝛽𝑄1,𝐷1

({𝑄1(𝑏,𝑏)}) = {𝑅(𝑏, 𝑎), 𝑅(𝑎,𝑏)} and
𝛿𝒱𝑄

1
,𝐷

1

({𝑄1(𝑎,𝑎)}) = 𝜇count(𝛽𝑄1,𝐷1
(𝑄1(𝑎,𝑎))) = 𝜇count({𝑅(𝑎,𝑎), 𝑅(𝑎,𝑏), 𝑅(𝑏, 𝑎)}) = 3,

𝛿𝒱𝑄
1
,𝐷

1

({𝑄1(𝑏,𝑏)}) = 𝜇count(𝛽𝑄1,𝐷1
(𝑄1(𝑏,𝑏))) = 𝜇count({𝑅(𝑏, 𝑎), 𝑅(𝑎,𝑏)}) = 2.

Hence, in this case, 𝑄1(𝑎,𝑎) is considered a more diverse answer than 𝑄1(𝑏,𝑏), as there is a larger
number of ways in which (𝑎,𝑎) can be obtained as an answer to 𝑄1(𝑥,𝑦) over 𝐷1. □

Example 3.5. Wenow consider a more geometrical scenario whereD = R and a tuple𝑅(𝑎1, . . . , 𝑎𝑘)
represents points in the R𝑘

-space. Then, given a radius 𝑟 > 0 we can define the volume assignment

𝒱𝑟 = (ℬ𝑘 , 𝜇, 𝛽𝑟 ) where ℬ𝑘 are the Borel sets of R𝑘
(i.e., measurable sets), 𝜇 is the Lebesgue measure

(i.e., measures the volume of a measurable set in ℬ𝑘 ), and 𝛽𝑟 is the ball function such that:

𝛽𝑟 (𝑅(𝑎1, . . . , 𝑎𝑘)) ∶= {(𝑏1, . . . , 𝑏𝑘) ∈ R𝑘 ⋃︀
⌈︂
(𝑎1 − 𝑏1)2 + . . . + (𝑎𝑘 − 𝑏𝑘)2 ≤ 𝑟}

namely, 𝛽𝑟 assigns a ball of radius 𝑟 under euclidean distance around (𝑎1, . . . , 𝑎𝑘). Then the volume-

based diversity function 𝛿𝒱𝑟 (𝑆) measures the volume of 𝑟 -balls around points in 𝑆 . In particular,

the farther apart (up to radius 𝑟 ) the points in 𝑆 , the more diverse they are. □

Example 3.6. As our last example, we adapt the previous example to have points closer to the

tuples 𝑅(𝑎1, . . . , 𝑎𝑘) contribute more to the diversity than points further away by adding Gaussian

functions. To that end, again let D = R and a tuple 𝑅(𝑎1, . . . , 𝑎𝑘) represents points in the R𝑘
-space.

Then, we can define the volume assignment 𝒱𝑔 = (ℬ𝑘+1, 𝜇, 𝛽𝑔) where ℬ𝑘+1
are the Borel sets of

R𝑘+1
(note that we added a dimension), 𝜇 is the Lebesgue measure, and 𝛽𝑔 is the ball function with

𝛽𝑔(𝑅(𝑎1, . . . , 𝑎𝑘)) ∶= {(𝑏1, . . . , 𝑏𝑘 , 𝑑) ∈ R𝑘+1 ⋃︀ 0 ≤ 𝑑 ≤ 𝑒−(𝑎1−𝑏1)2−...−(𝑎𝑘−𝑏𝑘)2

}
namely, 𝛽𝑔 assigns the area under the Gaussian function centered around (𝑎1, . . . , 𝑎𝑘). Then the

volume-based diversity function 𝛿𝒱𝑔(𝑆) measures the collective volume under the Gaussian func-

tions, i.e., the integral ∫R𝑘 max𝑠∈𝑆 𝑒 ⋃︀⋃︀𝑥−𝑠⋃︀⋃︀
2

2 𝑑𝑥 . A benefit of using Gaussian over simple boxes is that

adding a new element will always increase the diversity at least a bit.

Monotonicity and submodularity. We conclude this section by introducing two fundamental

properties of diversity functions, advocated for in [21, 27].

Fix a universe 𝒰 of possible solutions and a volume assignment 𝒱 over 𝒰 . A first desirable

property of diversity functions is that of monotonicity: adding an element to a set cannot decrease

the diversity of the set. Formally, a diversity function 𝛿 is monotone if 𝛿(𝑆 ∪ {𝑎}) ≥ 𝛿(𝑆) for every
𝑆 ∈ finite(𝒰) and 𝑎 ∈ 𝒰 .

A second desirable property of diversity functions is submodularity
1
, which means that, for every

𝑎 ∈ 𝒰 and 𝑆1, 𝑆2 ∈ finite(𝒰) with 𝑆1 ⊆ 𝑆2, the property 𝛿(𝑆1 ∪ {𝑎}) − 𝛿(𝑆1) ≥ 𝛿(𝑆2 ∪ {𝑎}) − 𝛿(𝑆2)
holds. As mentioned in Section 1, submodularity captures the intuition that adding an element 𝑎 to

the smaller set 𝑆1 should result in a greater increase in diversity than adding it to 𝑆2.

In the next proposition, we show that both properties are satisfied by volume-based diversity

functions, thereby providing evidence of the naturalness of our approach.

Proposition 3.7. Let 𝒱 be any volume assignment over a universe 𝒰 of possible solutions. Then 𝛿𝒱
is always monotone and submodular.

1
We note that, in contrast to Nehring and Puppe [21], Weitzman [27] does not explicitly propose submodularity as a desider-

atum. However, he mentions that, ideally, the increase of diversity when adding a new element 𝑎 to 𝒰 , should correspond

to the minimum distance of 𝑎 from the already existing elements in 𝒰 . Clearly, this property implies submodularity.
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4 Characterizing Volume-based Diversity Functions through the Multi-Attribute Model
In [21], Nehring and Puppe proposed a different and novel approach by introducing “multi-attribute”

diversity functions. The idea here is to consider attributes of the elements in a universe 𝒰 as

subsets of 𝒰 , i.e., each attribute is characterized by the elements that share this attribute. Like

Weitzman [27], the authors drew the motivation for their approach above all from the diversity

of species in biodiversity and the study of acts that ensure high (expected) diversity among them.

Basic attributes could then be, for instance, “being a mammal” or “living in the ocean”, etc., and

each of these attributes is then represented by the set of the corresponding animals.

For a finite set 𝑋 , Nehring and Puppe [21] formally define diversity functions as follows. Let 𝜆

be a non-negative measure (an additive set function) on 2
2
𝑋

. For 𝐴 ⊆ 𝑋 , we write 𝜆𝐴 rather than

𝜆({𝐴}). Then, for 𝑆 ⊆ 𝑋 , the diversity 𝑣𝜆 is defined as

𝑣𝜆(𝑆) = 𝜆({𝐴 ⊆ 𝑋 ⋃︀ 𝐴 ∩ 𝑆 ≠ ∅}) = ∑
𝐴⊆𝑋 ∶𝐴∩𝑆≠∅

𝜆𝐴 .

Intuitively, this definition considers each subset 𝐴 ⊆ 𝑋 as an attribute (or a “feature class”) that may

contribute to the diversity of 𝑆 . The weight 𝜆𝐴 quantifies the relevance or distinctiveness of that

attribute. A subset 𝑆 is then considered diverse if it collectively touches many of these informative

subsets 𝐴, each with non-negative weight.

We now establish the relationship between this notion and our volume-based approach.

Theorem 4.1. Let 𝑋 be a finite set. If 𝑣𝜆 is a multi-attribute diversity function, then there exists a

volume assignment 𝒱 = (𝒮, 𝜇, 𝛽) over the universe 𝒰 = 𝑋 , such that 𝑣𝜆 = 𝛿𝒱 . Likewise, if 𝒱 = (𝒮, 𝜇, 𝛽)
is a volume assignment over some finite universe 𝒰 , then there exists a non-negative measure 𝜆 on 2

2
𝑋

with 𝑋 = 𝒰 , such that 𝛿𝒱 = 𝑣𝜆 .

Proof sketch. For given multi-attribute diversity function 𝑣𝜆 , defining an equivalent volume-

based diversity function 𝑣𝒱 is straightforward. More precisely, we set 𝒱 = (𝒮, 𝜇, 𝛽) with 𝒮 = 2
2
𝑋

,

𝛽(𝑥) = {𝐴 ⊆ 𝑋 ⋃︀ 𝑥 ∈ 𝐴}, and 𝜇(ℬ) = ∑𝐴∈ℬ 𝜆𝐴 for ℬ ∈ 𝒮 . The other direction is more involved and

only works for finite universe 𝒰 . In particular, we set 𝜆𝐴 = 𝜇(⋂𝑎∈𝐴 𝛽(𝑎) ∖ ⋃𝑥∈𝑋∖𝐴 𝛽(𝑥)). □

This characterization is important for several reasons. First, it confirms that volume-based diversity

functions are at least as expressive as multi-attribute ones, thereby unifying two frameworks under

a common perspective. Second, the volume-based framework avoids the computational burden of

working directly over the power set of the power set in the multi-attribute formulation, and instead

operates over a more intuitive geometric or set-based representation of diversity. Moreover, by the

correspondence with the multi-attribute diversity model, our volume-based diversity functions

inherit all favorable properties proved for the former in [21]. In particular, the fact that volume-

based diversity functions are monotone and submodular, as shown in Proposition 3.7, follows

directly from this equivalence.

Finally, a fundamental advantage of the volume-based framework is its suitability for relational

data. In this setting, tuples from a relation can be mapped to measurable regions in a space defined

by the attributes occurring in a tuple or its provenance, allowing the use of volume as a principled

measure of diversity. For example, the balls 𝛽(𝑡) assigned to tuples 𝑡 can reflect their attribute

values or provenance sets, while the measure 𝜇 can reflect weighted or count-based semantics

over these regions. This enables a natural and scalable representation of diversity across query

answers without requiring explicit enumeration of exponentially many subsets, as is needed in the

multi-attribute approach. In contrast, the latter becomes infeasible in large relational domains due

to its dependence on attribute power sets. Volume-based diversity is thus more aligned with the

semantics and structure of relational databases.
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5 Distance-Based versus Volume-Based Diversity Functions
As has already been mentioned in Section 1, a common way of defining diversity of outputs in the

database area is by using the distance-based approach. In contrast, we have defined the diversity 𝛿𝒱
via a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽) over 𝒰 . This raises the question of what are the differences

or similarities between the two approaches, and how can we compare them.

Comparison by properties. A direct way to compare the two approaches is in terms of properties.

As we already noticed, volume-based diversity functions are always monotone and submodular. In

contrast, almost all distance-based diversity functions are not submodular, and some are not even

monotone.

Proposition 5.1. There exists a metric such that its corresponding diversity functions 𝛿sum and

𝛿min are not submodular. Further, 𝛿min is not even monotone.

Although this fact is direct, it provides evidence that the two approaches differ considerably for

𝛿sum and 𝛿min. In the following, we provide further evidence of their differences and similarities.

Volume-based as distance-based. Another way to compare the two approaches is to try to encode

volume-based diversity functions by using a distance-based approach. As we will see, in general,

this is not possible. To that end, we first discuss two natural approaches to define a distance function

given a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽).
Specifically, for one, we can define 𝑑

△
𝒱 (𝑎,𝑏) as the measure 𝜇 of the symmetric difference of

𝛽(𝑎) and 𝛽(𝑏), i.e., 𝑑△𝒱 (𝑎,𝑏) = 𝜇 ((𝛽(𝑎) ∖ 𝛽(𝑏)) ∪ (𝛽(𝑏) ∖ 𝛽(𝑎))). We observe that any distance

measure 𝑑 ∶ 𝒰 × 𝒰 → R≥0 defined from a volume-based diversity 𝛿𝒱 as 𝑑 ∶= 𝑑△𝒱 is a pseudo-metric,

i.e., it satisfies non-negativity (i.e., 𝑑(𝑎,𝑏) ≥ 0 for all 𝑎,𝑏 ∈ 𝒰 ), symmetry (i.e., 𝑑(𝑎,𝑏) = 𝑑(𝑏,𝑎)),
identity (𝑑(𝑎,𝑎) = 0 for all 𝑎 ∈ 𝒰 ), and the triangle inequality (i.e., 𝑑(𝑎, 𝑐) ≤ 𝑑(𝑎,𝑏) + 𝑑(𝑏, 𝑐) for all
𝑎,𝑏, 𝑐 ∈ 𝒰 ). If in addition, 𝑑(𝑎,𝑏) = 0 implies 𝑎 = 𝑏 for all 𝑎,𝑏 ∈ 𝒰 , then 𝑑 is actually a metric.

A second option (essentially considered in [21] in the context of the multi-attribute approach) is

to define the distance function 𝑑𝑀𝒱 as the marginal 𝑑𝑀𝒱 (𝑎,𝑏) ∶= 𝛿𝒱({𝑎,𝑏}) − 𝛿𝒱({𝑏}). However, in
that case, we give up symmetry. Note that this can be recovered when the diversity of all singletons

are the same. In that case, 𝑑𝑀𝒱 again becomes a pseudo-metric.

Now, the hope could be that𝑑
△
𝒱 or𝑑𝑀𝒱 (or any other pseudo-metric) combined with an appropriate

aggregator can recover the expressiveness of 𝛿𝒱 . To that end, we denote by 𝛿
agg,𝑑 a distance-based

diversity function defined through an aggregator function agg and a pseudo-metric 𝑑 , namely,

𝛿
agg,𝑑(𝑆) ∶= agg(𝑑(𝑎,𝑏)𝑎,𝑏∈𝑆). We say that agg is monotone if agg((𝑑𝑖)𝑖) ≤ agg((𝑑 ′𝑖 )𝑖) when 𝑑𝑖 ≤ 𝑑 ′𝑖
for all 𝑖 . Further, we say that a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽) is oblivious to data values if for any
bijection 𝑓 ∶D→ D and for any set of tuples 𝑆 ⊆ TΣ we have:

𝜇( ⋃
𝑅(𝑎)∈𝑆

𝛽(𝑅(𝑎))) = 𝜇( ⋃
𝑅(𝑎)∈𝑆

𝛽(𝑅(𝑓 (𝑎)))).

Wealso say that pseudo-metric𝑑 is oblivious to data values if𝑑(𝑅(𝑎), 𝑅(𝑎′)) = 𝑑(𝑅(𝑓 (𝑎)), 𝑅(𝑓 (𝑎′))).
Essentially, this means that the diversity functions should not depend on the concrete data values

that appear as constants in the tuples but instead only on whether constants are equal or not.

Clearly, from the examples presented in Section 3, the volume assignments 𝒱
elem

and 𝒱pos are

oblivious to data values while 𝒱𝑤
elem

,𝒱𝑤
pos

,𝒱𝑄,𝐷 ,𝒱𝑟 , and 𝒱𝑔 are in general not oblivious to data values.

When it comes to metrics, naturally, the Hamming-distance is an example of a metric oblivious to

data values while the Euclidean-distance is not.

Theorem 5.2. There exists a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽) (e.g., 𝒱
elem

) oblivious to data values

over tuples TΣ such that there does not exist a monotone aggregator agg and pseudo-metric 𝑑 over TΣ
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that is oblivious to data values and can distinguish the same sets as 𝒱 . In other words, no matter the

agg, 𝑑 , there are two 𝑘-subsets 𝑆, 𝑆 ′ ⊆ TΣ such that 𝛿𝒱(𝑆) ≠ 𝛿𝒱(𝑆 ′) while 𝛿agg,𝑑(𝑆) = 𝛿agg,𝑑(𝑆 ′).

Distance-based as volume-based. We now consider the other direction and see if one can under-

stand the distance-based approach in terms of volumes. Of course, this is not possible in general as

volume-based diversity functions are always monotone and submodular (Proposition 3.7) while

natural distance-based diversity functions are neither (Proposition 5.1). But this leaves open the

question if more sophisticated distance-based diversity functions like Weitzman’s 𝛿W can be cap-

tured by volumes. Below we give a partially positive answer to this question: In general, this is

not possible, as we can show that Weitzman’s diversity function 𝛿W is, in general, not submodular.

However, in the most important special case considered in [27], namely if the distance function 𝑑

underlying 𝛿W is an ultrametric, then 𝛿W is essentially a volume-based diversity function.

For a distance function 𝑑 , The diversity function 𝛿W is defined recursively as follows:

𝛿𝑊 (𝑆) ∶= max

𝑎∈𝑆
(𝛿𝑊 (𝑆 ∖ {𝑎}) + 𝑑(𝑎, 𝑆 ∖ {𝑎})) ,

with base case 𝛿𝑊 ({𝑎}) ∶= 0. The distance 𝑑(𝑎, 𝑆) is defined as min𝑥∈𝑆 𝑑(𝑎, 𝑥).
Weitzman’s diversity function is motivated by applications to species hierarchies. However, one

shortcoming is that 𝛿𝑊 is not generally submodular:

Proposition 5.3. Weitzman’s diversity measure 𝛿𝑊 is, in general, not submodular.

Another shortcoming of 𝛿𝑊 is its computational complexity: even computing 𝛿𝑊 (𝑆) for a

given 𝑆 is, in general, intractable [2]. However, if 𝑑 is an ultrametric (i.e., it satisfies the strong

triangle inequality 𝑑(𝑎, 𝑐) ≤ max({𝑑(𝑎,𝑏), 𝑑(𝑏, 𝑐)})) then the computation becomes tractable [27].

Moreover, in this case, 𝛿𝑊 becomes essentially volume-based:

Theorem 5.4. Let Weitzman’s diversity measure be defined over a distance function 𝑑 that is an

ultrametric over some finite set 𝑋 . Then there exists a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽) such that

𝛿𝒱 = 𝛿𝑊 + 𝑟 , where 𝑟 denotes the radius of the ultrametric (i.e., the max. distance between any two

elements in 𝑋 ).

The above result illustrates a key advantage of our volume-based framework: it subsumes and

generalizes the best-performing cases of the distance-based approach. In particular, ultrametrics

have been identified as a desirable form of distance for diversity due to their favorable computational

properties [2] and their suitability for modeling hierarchical systems [27]. Note that a hierarchical

notion of distance naturally fits relationally structured data as is illustrated in [25, 26], where the

distance between two tuples is based on the first position at which they differ: tuples with longer

common prefixes are considered closer. A typical example is a car relation with attributes such as

‘make’, ‘model’, ‘color’, and ‘year’. Under this ultrametric, diversification is done according to the

attribute order: first one tries to diversify ‘make’ , then ‘model’, then ‘color’, and finally ‘year’.

By Theorem 5.4, our framework naturally captures ultrametric diversity functions as a special

case – up to an additive constant – through an appropriate volume assignment. This demonstrates

that volume-based diversity not only provides a broader modeling language for diversity but also

inherits and extends the desirable theoretical guarantees associated with ultrametric distances. As

such, it offers a principled and unified framework for defining well-behaved diversity measures.

6 Query Evaluation Under Volume-Based Diversity Functions
In this section, we start our study of CQ evaluation under volume-based diversity functions in data

complexity (i.e., the query is fixed). We start by showing that this problem is hard in general for

most of the volume assignments 𝒱 presented in Section 3. Despite this negative result, we show
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that under some reasonable assumptions on 𝒱 , we can always find a (1 − 1⇑𝑒)-approximation of a

maximally diverse 𝑘-subset of the solutions in polynomial time under data complexity.

Hardness of exact computation. Let Σ be a schema and 𝒱 = (𝒮, 𝜇, 𝛽) be a volume assignment over

TΣ. Further, let 𝑄 be a CQ over Σ. We are interested in the following computational problem:

Problem: CQEval(︀Σ,𝒱,𝑄⌋︀
Input: A database 𝐷 over Σ and 𝑘 ≥ 1

Output: arg max𝑆⊆⎜𝑄⨆︁(𝐷) ∶ ⋃︀𝑆 ⋃︀=𝑘 𝛿𝒱(𝑆)

In other words, given a database 𝐷 and a number 𝑘 ≥ 1, we want to compute a 𝑘-subset 𝑆 of ⎜𝑄⨆︁(𝐷)
that maximizes the volume diversity 𝛿𝒱(𝑆) over all 𝑘-subsets. Note that Σ and 𝑄 are fixed; namely,

we measure the computational resources of the problem in data complexity. Furthermore, the

volume assignment 𝒱 and, thus, the diversity function 𝛿𝒱 are also fixed. We implicitly assume

that if 𝑘 > ⋃︀⎜𝑄⨆︁(𝐷)⋃︀, then we output all the tuples in ⎜𝑄⨆︁(𝐷). In particular, if ⎜𝑄⨆︁(𝐷) = ∅,
then an algorithm for CQEval(︀Σ,𝒱,𝑄⌋︀ outputs ∅. By slight abuse of notation, we will formulate

intractability results of CQEval(︀Σ,𝒱,𝑄⌋︀ in the form of “NP-hardness”. Strictly speaking, the NP-
hardness applies to the decision variant of the problem CQEval(︀Σ,𝒱,𝑄⌋︀, i.e., deciding if 𝛿𝒱(𝑆) is
above a given threshold 𝑡ℎ for some 𝑆 ⊆ ⎜𝑄⨆︁(𝐷) subject to ⋃︀𝑆 ⋃︀ = 𝑘 .

We will always assume that 𝒱 and 𝛿𝒱 are fixed in all query evaluation problems studied in this

paper (see also Section 7). Moreover, for the sake of simplification, in this section we will assume

that for any volume assignment 𝒱 and any set 𝑆 of tuples, computing 𝛿𝒱(𝑆) takes constant time
2
.

Intuitively, one can consider 𝛿𝒱 as a black box in the system that can be evaluated efficiently for a

set of tuples whose complexity does not considerably affect the query evaluation process. Clearly, if

we show that CQEval(︀Σ,𝒱,𝑄⌋︀ is hard, then it is even harder if the cost of computing 𝛿𝒱 is included.

The other way around, if we show that CQEval(︀Σ,𝒱,𝑄⌋︀ can be evaluated in polynomial time, this

result will be subjected that 𝛿𝒱 can also be efficiently evaluated (which is typically the case for

natural volume assignments 𝒱).
Unfortunately, similar to previous work on query evaluation under diversity functions, we can

show that CQEval is NP-hard for most of the volume assignments 𝒱 presented in Section 3.

Theorem 6.1. The problem CQEval(︀Σ,𝒱,𝑄⌋︀ is NP-hard if 𝒱 ∈ {𝒱
elem

,𝒱pos,𝒱𝑤
elem

,𝒱𝑤
pos

,𝒱𝑄,𝐷}.

Given that for simple volume assignments like 𝒱
elem

and 𝒱pos, the query evaluation problem is

hard, we move in the rest of this section to provide good approximations to CQEval(︀Σ,𝒱,𝑄⌋︀.

Approximation of optimal solutions. Recall that Σ is a schema, 𝑄 is a CQ over Σ, and 𝒱 is a

volume assignment over TΣ. We say that 𝑆∗ ⊆ ⎜𝑄⨆︁(𝐷) with ⋃︀𝑆∗⋃︀ = 𝑘 is an (1 − 𝜖)-approximation of

CQEval(︀Σ,𝒱,𝑄⌋︀ on a database 𝐷 and a number 𝑘 ≥ 1 if, and only if:

𝛿𝒱(𝑆∗) ≥ (1 − 𝜖) ⋅ max

𝑆⊆⎜𝑄⨆︁(𝐷) ∶ ⋃︀𝑆 ⋃︀=𝑘
𝛿𝒱(𝑆)

In other words, the diversity of 𝑆∗ with respect to 𝛿𝒱 is not worse than (1 − 𝜖) times the diversity

of the best solution, where the smaller 𝜖 ≥ 0, the better the approximation.

Since CQEval(︀Σ,𝒱,𝑄⌋︀ is NP-hard, we strive to find an (1 − 𝜖)-approximation for some 𝜖 ≥ 0.

Given that 𝛿𝒱 is monotone and submodular by Proposition 3.7, we can take advantage of the

algorithmic theory of submodular set functions to find the following approximation [22].

Theorem 6.2. One can compute an (1− 1⇑𝑒)-approximation of CQEval(︀Σ,𝒱,𝑄⌋︀ for every database
𝐷 and 𝑘 ≥ 1 in polynomial time in ⋃︀𝐷 ⋃︀, where 𝑒 is the Euler number.

2
We are only making statements on tractability in this section. Section 7 then focuses on finer analysis and does not make

this assumption.
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Algorithm 1: Greedy algorithm for finding a (1 − 1⇑𝑒)-approximation of the problem

CQEval(︀Σ,𝒱,𝑄⌋︀ for a schema Σ, a volume assignment 𝒱 , and a CQ 𝑄 over Σ.

Input: A database 𝐷 and a value 𝑘 ≥ 1.

Output: A 𝑘-diversity set 𝑆 ⊆ ⎜𝑄⨆︁(𝐷) with respect to 𝛿𝒱 .
1 𝑆 ← ∅
2 for 𝑖 = 1 to 𝑘 do
3 𝑡∗ ← arg max𝑡∈⎜𝑄⨆︁(𝐷) 𝛿𝒱(𝑆 ∪ {𝑡})
4 𝑆 ← 𝑆 ∪ {𝑡∗}
5 return 𝑆

Proof. In [22], Nemhauser, Wolsey, and Fisher showed that for every monotone submodular set

function 𝑓 ∶ finite(𝒰) → R and 𝑘 ≥ 1 one can compute in polynomial time a 𝑘-subset 𝐴 of 𝒰 such

that 𝑓 (𝐴) ≥ (1− 1⇑𝑒) ⋅max𝐵⊆𝒰∶⋃︀𝐵⋃︀=𝑘 𝑓 (𝐵). Since 𝛿𝒱 is submodular and monotone and𝑄 is fixed, one

can compute the set ⎜𝑄⨆︁(𝐷) in polynomial time over 𝐷 and then apply the result in [22] to retrieve

a (1 − 1⇑𝑒)-approximation of 𝛿𝒱 over ⎜𝑄⨆︁(𝐷) restricted to subsets of size 𝑘 . In Algorithm 1, we

depict this procedure for 𝛿𝒱 which follows a greedy strategy: starting from 𝑆 = ∅; in every iteration

it finds a tuple 𝑡 ∈ ⎜𝑄⨆︁(𝐷) that maximizes themarginal diversity of 𝛿𝒱 , namely, 𝛿𝒱(𝑆 ∪{𝑡})∖𝛿𝒱(𝑆).
After the 𝑘-th iteration, it outputs 𝑆 . By [22], this procedure achieves a (1 − 1⇑𝑒)-approximation of

CQEval(︀Σ,𝒱,𝑄⌋︀ for every database 𝐷 and 𝑘 ≥ 1, and runs in polynomial time. □

The previous result is indeed a direct consequence of Nemhauser et al. techniques on the

maximization of submodular set functions. Nevertheless, one must compare the approximation

ratio obtained for volume-based diversity functions with that of the best approximation found for

distance-based analogs. Recently, approximation algorithms were proposed in [1] for CQ evaluation

under distance-based diversity functions. For 𝛿min under the Hamming or Euclidean metrics, the

best approximation ratio is (1 − (1⇑2 + 𝜖)), and the running time of the algorithms depends on 𝜖 .

For 𝛿sum, the best approximation ratio is (1 − 2⇑𝑘) for Hamming distance (for Euclidean distance it

is (1 − 1⇑2)) but the running time depends on 𝑘3
. Instead, the approximation ratio for volume-based

diversity functions is (1 − 1⇑𝑒) and works for every volume assignment that can be computed in

polynomial time (in particular, for most of the examples presented in Section 3). Furthermore,

Algorithm 1 can be easily incorporated into the current query evaluation strategy of any database

management system by finding all tuples in ⎜𝑄⨆︁(𝐷) and then applying Algorithm 1.

We want to end this section by showing that, in general, (1 − 1⇑𝑒)-approximation is the best one

can get for volume-based diversity functions.

Theorem 6.3. There exists a schema Σ, a volume assignment 𝒱 , and a CQ 𝑄 such that a (1 − 1⇑𝑒)-
approximation of CQEval(︀Σ,𝒱,𝑄⌋︀ is the best that one can get in polynomial time data complexity,

unless P = NP.

Proof sketch. The proof is by encoding the maximum coverage problem into a volume assign-

ment 𝒱 . It is well-known that the maximum coverage problem is hard to approximate beyond

(1 − 1⇑𝑒)-approximation ratio, unless P = NP [10]. □

7 Approximating Volume-based Diverse Answers Under Combined Complexity
In the following, we aim to lift the results of Section 6 to the combined complexity case and

provide a finer analysis. Note, in this section, we include the time required to compute 𝛿𝒱(𝑆)
in our analysis. We start by stating the main problem and recalling some standard notation for
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efficient CQ evaluation. Then, we present the main approach for efficient CQ evaluation under

volume-based diversity functions and apply it to some specific volume assignments. We conclude

by demonstrating how to generalize the technique by connecting it to the ranked enumeration

problem of CQ evaluation.

Problem statement and main definitions. In this section, we aim to solve the following problem:

Problem: CQEval(︀Σ,𝒱⌋︀
Input: A database 𝐷 and a CQ 𝑄 over Σ, and 𝑘 ≥ 1

Output: arg max𝑆⊆⎜𝑄⨆︁(𝐷) ∶ ⋃︀𝑆 ⋃︀=𝑘 𝛿𝒱(𝑆)

where Σ and 𝒱 are a fixed schema and a fixed volume assignment. Contrary to Section 6, we cannot

afford to find a (1 − 1⇑𝑒)-approximation by first computing ⎜𝑄⨆︁(𝐷) (whose size is 𝑂(⋃︀𝐷 ⋃︀⋃︀𝑄 ⋃︀)) and
then applying Algorithm 1. In other words, the set ⎜𝑄⨆︁(𝐷) is compactly represented by (𝑄,𝐷), and
the challenge is to find the most diverse 𝑘-subset or an approximation without computing ⎜𝑄⨆︁(𝐷).

Recall that even determining the existence of answers to CQs is NP-hard in combined complex-

ity [7]. Thus, we will restrict ourselves to CQs with bounded fractional hypertree width (fhw) [11].

To that end, we briefly recall the notions of tree decompositions and fhw.

Let 𝑄(𝑥) ← 𝑅1(𝑥1), . . . , 𝑅𝑚(𝑥𝑚) be a CQ using variables in 𝒳 . For the sake of simplification, in

the sequel, we assume that every sequence 𝑥𝑖 does not repeat variables and, thus, by slight abuse

of notation, we may treat 𝑥𝑖 as a set (otherwise, one can remove duplicate variables by rewriting

𝑄 and preprocessing 𝐷 in linear time w.r.t. ⋃︀𝐷 ⋃︀). A tree decomposition of 𝑄 is a tuple (𝑇, 𝜒) where
𝑇 = (𝑉 (𝑇 ), 𝐸(𝑇 )) is a rooted tree and 𝜒 ∶𝑉 (𝑇 ) ↦ 2

𝒳
assigns to each 𝑣 ∈ 𝑉 (𝑇 ) a subset 𝜒(𝑣) ⊆ 𝒳

called a bag. Additionally, the following properties have to be satisfied:

(1) for every variable 𝑥 ∈ 𝒳 , the set {𝑣 ∈ 𝑉 (𝑇 ) ⋃︀ 𝑥 ∈ 𝜒(𝑣)} induces a connected subtree of 𝑇 ; and

(2) for every relation 𝑅𝑖(𝑥𝑖), there exists 𝑣 ∈ 𝑉 (𝑇 ) that contains all of 𝑥𝑖 in its bag 𝜒(𝑣).
The fractional hypertree width of a tree decomposition (𝑇, 𝜒) is max𝑣∈𝑉 (𝑇 ) 𝜌∗(𝜒(𝑣)) where

𝜌∗(𝜒(𝑣)) is the minimum fractional edge cover of the hypergraph induced by 𝜒(𝑣) over𝑄(𝑥). The
fractional hypertree width fhw(𝑄) of 𝑄 is the minimum fractional hypertree width among all tree

decompositions of 𝑄 . Finally, a conjunctive query is called an acyclic CQ (ACQ) iff fhw(𝑄) = 1.

Approximation through maximizing the marginal diversity. Motivated by Theorem 6.2 and Algo-

rithm 1, a reasonable strategy to find an approximation for CQEval(︀Σ,𝒱⌋︀ is to compute the next

tuple 𝑡 that maximizes the marginal diversity of 𝛿𝒱(𝑆). In other words, we have to consider the

problem of computing greedily the next best solution (see line 3 in Algorithm 1):

Problem: CQNext(︀Σ,𝒱⌋︀
Input: A database 𝐷 and a CQ 𝑄 over Σ, and a subset 𝑆 ⊆ ⎜𝑄⨆︁(𝐷)

Output: arg max𝑡∈⎜𝑄⨆︁(𝐷) 𝛿𝒱(𝑆 ∪ {𝑡})

Similar to CQEval(︀Σ,𝒱⌋︀, the main challenge is to compute 𝑡 from 𝐷 , 𝑄 , and 𝑆 , without necessarily

computing ⎜𝑄⨆︁(𝐷). Naturally, if we can solve CQNext(︀Σ,𝒱⌋︀ efficiently, then we can apply Al-

gorithm 1 by calling CQNext(︀Σ,𝒱⌋︀ in line 3 and solve CQEval(︀Σ,𝒱⌋︀. In other words, we get the

following result.

Theorem 7.1. If CQNext(︀Σ,𝒱⌋︀ can be solved in time 𝑂(𝑓 ) for some function 𝑓 , then the problem

CQEval(︀Σ,𝒱⌋︀ can be (1 − 1⇑𝑒)-approximated in time 𝑂(𝑘 ⋅ 𝑓 ).

The converse of Theorem 7.1 does not necessarily hold. In particular, we do not know whether

hardness of CQNext(︀Σ,𝒱⌋︀ implies that CQEval(︀Σ,𝒱⌋︀ cannot be approximated (see Section 8 for
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further ideas). However, at least, if CQNext(︀Σ,𝒱⌋︀ is NP-hard for the singleton case (fixing 𝑆 = ∅),
also the problem (exact version) CQEval(︀Σ,𝒱⌋︀ must be NP-hard (for 𝑘 = 1).

We now revisit the volume assignments from Section 3 and separate the hard and easy cases for

solving CQNext(︀Σ,𝒱⌋︀. We start with the hard cases which, thus, do not translate to approximability

results of CQEval(︀Σ,𝒱⌋︀:

Theorem 7.2. Unless P = NP, the problem CQNext(︀Σ,𝒱⌋︀ cannot be solved in polynomial time for

𝒱 ∈ {𝒱
elem

,𝒱𝑤
elem

,𝒱𝑄,𝐷}, even if we only allow ACQs and subsets 𝑆 = ∅.

Proof sketch. We illustrate the basic idea by proving NP-hardness of the apparently simplest

case 𝒱 = 𝒱
elem

. The proof is by reduction from (the directed version of) Hamiltonian path: Given an

instance 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) of Hamiltonian path, we define an instance (𝐷,𝑄, 𝑆) of CQNext(︀Σ,𝒱⌋︀
as follows: database 𝐷 consists of a single binary relation 𝐸 storing the edges of 𝐺 , we set 𝑆 = ∅,
and, for 𝑛 = ⋃︀𝑉 (𝐺)⋃︀, we define the ACQ 𝑄 as follows:

𝑄(𝑥1, . . . , 𝑥𝑛) ← 𝐸(𝑥1, 𝑥2), . . . , 𝐸(𝑥𝑛−1, 𝑥𝑛).

Notice that a solution𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷) corresponds to a walk in𝐺 and 𝛿𝒱
elem

applied to singletons

(i.e., 𝛿𝒱
elem

({𝑄(ℎ(𝑥))})) counts the number of distinct vertices used in the corresponding walk.

Hence, 𝐺 is a positive instance of Hamiltonian path if, and only if, the solution to this instance of

CQNext(︀Σ,𝒱
elem

⌋︀ yields an answer 𝑄(ℎ(𝑥)) with 𝛿𝒱
elem

({𝑄(ℎ(𝑥))}) = 𝑛. □

Next, we show that even seemingly simple changes in the diversity function can affect the

tractability of CQNext(︀Σ,𝒱⌋︀ and, thus, naturally lead to the approximability of CQEval(︀Σ,𝒱⌋︀ due
to Theorem 7.1.

Theorem 7.3. Restricted to ACQs, the problem CQNext(︀Σ,𝒱⌋︀ can be solved in time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀)
for 𝒱 ∈ {𝒱pos,𝒱𝑤pos

} when only allowing ACQs. Hence, in this case, CQEval(︀Σ,𝒱
elem

⌋︀ can be (1 − 1⇑𝑒)-
approximated in time 𝑂(𝑘 ⋅ ⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀).

Proof sketch. We explain why CQNext(︀Σ,𝒱pos⌋︀ is tractable for ACQs 𝑄(𝑥). To that end, let
𝐷 be a database, and ℎ1, . . . ℎ𝑘 homomorphisms from 𝑄 to 𝐷 , i.e., 𝑆 = {𝑄(ℎ1(𝑥)), . . . , 𝑄(ℎ𝑘(𝑥))} ⊆
⎜𝑄⨆︁(𝐷).Consider the marginal diversity for a new solution 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷):

𝛿𝒱pos
(𝑆 ∪ {𝑄(ℎ(𝑥))}) − 𝛿𝒱pos

(𝑆) = ∑
𝑥∈𝑥

𝛼𝑥 , with 𝛼𝑥 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1 if ∀𝑖 ∶ℎ(𝑥) ≠ ℎ𝑖(𝑥),
0 if ∃𝑖 ∶ℎ(𝑥) = ℎ𝑖(𝑥).

That is, we count the number of new values. We can cast this then as a sum-product query over the

tropical semi-ring Rmax ∶= (R ∪ {∞},+,max). Doing so shows that we can find the element that

maximizes the marginal diversity in linear time. To do so, for every 𝑥 ∈ 𝑥 let us choose a covering

relation 𝑅𝑥 ∶= 𝑅𝑖(𝑥𝑖) used in 𝑄 where 𝑥 ∈ 𝑥𝑖 . Then, we can define the Rmax-relations 𝑅
∗
1
, . . . , 𝑅∗𝑚 .

That is, for tuple 𝑅 𝑗(𝑎) in the database, we add tuples 𝑅∗𝑗 (𝑎) to the database and annotate it with

the number of new values 𝑎 adds at positions 𝑥 such that 𝑅 𝑗 covers 𝑥 . Then, as every variable 𝑥 ∈ 𝑥
is covered by exactly one relation, we have:

𝛿𝒱pos
(𝑆 ∪ {𝑄(ℎ(𝑥))}) − 𝛿𝒱pos

(𝑆) = ∑
𝑖

𝑅∗𝑖 (ℎ(𝑥𝑖)) (1)

for homomorphismℎ such that𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷). Then, due to results on sum-product queries [16,

24] we can find a 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷) maximizing Equation (1) in time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀) as this is then a

scalar sum-product query. This solves CQNext(︀Σ,𝒱
elem

⌋︀ for ACQs. Then, due to Theorem 7.1, we

can compute a (1 − 1⇑𝑒)-approximation of CQEval(︀Σ,𝒱
elem

⌋︀ in time 𝑂(𝑘 ⋅ ⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀). □
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Diverse answers to CQs via ranked enumeration. Towards a more general criterion to ensure

tractability of CQNext(︀Σ,𝒱⌋︀, we consider this problem as a top-𝑘 ranked enumeration problem,

where the marginal diversity is the value by which we order the output and where we ask for the

top-1 answer (we can ignore the additive constant 𝛿𝒱(𝑆)). Actually, top-𝑘 ranked enumeration has

received considerable attention from the database community in the last years (see e.g., [9, 13, 18,

19]), where we consider [9] as the most general and most naturally extendable to our setting.

We briefly recall the setting and main result of [9] and then build on them. There, rank functions

rank assign values rank(𝑄(ℎ(𝑥))) ∈ R to solutions of CQs 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷) and the goal is to

enumerate 𝑄(ℎ(𝑥)) ∈ ⎜𝑄⨆︁(𝐷) in the order induced by rank, i.e., 𝑄(ℎ(𝑥)) should be output before

𝑄(ℎ′(𝑥)) if rank(𝑄(ℎ(𝑥))) > rank(𝑄(ℎ(𝑥))). Informally speaking, the main result of [9] is that,

with the help of a tree decomposition (𝑇, 𝜒) of the full CQ 𝑄 , enumeration is efficiently possible if

rank is compatible with (𝑇, 𝜒).
Given a volume assignment 𝒱 = (𝒮, 𝜇, 𝛽), we would like to apply the results of [9] to the functions

rank𝒱,𝑆 ∶= 𝛿𝒱(𝑆 ∪ {⋅}). Thus, naively, we would have to verify that rank𝒱,𝑆 is compatible with

(𝑇, 𝜒) for every 𝑆 ⊆ ⎜𝑄⨆︁(𝐷). Inspired by their use of compatibility, in the remainder of this section,

we develop a notion of compatibility (with a tree decomposition (𝑇, 𝜒)) of the ball function 𝛽 . This

will be a sufficient condition, such that rank𝒱,𝑆 is compatible with (𝑇, 𝜒) for every 𝑆 ⊆ ⎜𝑄⨆︁(𝐷). To
that end, we start as in [9] by defining what it means (in our case for 𝛽) to be 𝑦-decomposable.

Definition 7.4. Let 𝒱 = (𝒮, 𝜇, 𝛽) be a volume assignment, 𝑅(𝑥) be an atom over Σ with variables

𝑥 , and 𝑦 ⊆ 𝑥 . We say that 𝛽 is 𝑦-decomposable (w.r.t. 𝑅) if for every pair of homomorphisms ℎ,ℎ′
over 𝑦 and homomorphisms 𝑔,𝑔′ over 𝑥 ∖𝑦 we have:

𝛽(𝑅((ℎ ∪𝑔)(𝑥))) ∖ 𝛽(𝑅((ℎ′ ∪𝑔)(𝑥))) = 𝛽(𝑅((ℎ ∪𝑔′)(𝑥))) ∖ 𝛽(𝑅((ℎ′ ∪𝑔′)(𝑥))). (2)

The intuition of 𝑦-decompositions is the following: Whatever a partial homomorphism ℎ on 𝑦

contributes to the volume compared with another partial homomorphism ℎ′ should not depend on

how ℎ and ℎ′ are completed (i.e., either by 𝑔 or 𝑔′). Let us denote the set in Equation (2) as 𝛽(ℎ,ℎ′).
For a set 𝑆 of 𝑅-tuples, let us now consider the function rank𝒱,𝑆 defined for 𝑅-tuples. Then,

to compare the function value of rank𝒱,𝑆 on two homomorphisms
ˆℎ and

ˆℎ that agree outside of

𝑦, it suffices to compare 𝜇(𝛽(ℎ,ℎ′) ∖ ⋃𝑠∈𝑆 𝛽(𝑠)) with 𝜇(𝛽(ℎ′, ℎ) ∖ ⋃𝑠∈𝑆 𝛽(𝑠)). Consequently, the
function rank𝒱,𝑆 is 𝑦-decomposable in the sense of [9] for every set 𝑆

Thus, to extend the main result of [9] to our setting, we can extend our notion of decomposability

to compatibility w.r.t. a tree decomposition analogously to how it is done there. We note that while

Definition 7.4 significantly differs from the counterpart in [9], extending it to compatibility is rather

immediate. Thus, we only give the following definitions for the sake of completeness.

Let 𝒱 = (𝒮, 𝜇, 𝛽) be a volume assignment, let 𝑅(𝑥) be an atom over Σ with variables 𝑥 , and let

𝑦, 𝑧 ⊆ 𝑥 be such that 𝑦 ∩ 𝑧 = ∅. Further, let 𝑅𝑥∖𝑧 ⇑∈ Σ be a new relation symbol of arity ⋃︀𝑥 ∖ 𝑧⋃︀. We

say that 𝛽 is 𝑦-decomposable conditioned on 𝑧 (w.r.t. 𝑅) if for every homomorphism 𝑓 over 𝑧, the ball

function extended to 𝑅𝑥∖𝑧-tuples via 𝛽(𝑅𝑥∖𝑧( ˆℎ(𝑥 ∖ 𝑧))) ∶= 𝛽(𝑅(( ˆℎ ∪ 𝑓 )(𝑥))) for homomorphism
ˆℎ

over 𝑥 ∖ 𝑧 is 𝑦-decomposable w.r.t 𝑅𝑥∖𝑧 .
Let (𝑇, 𝜒) be a rooted tree decomposition of a full CQ 𝑄(𝑥). For 𝑡 ∈ 𝑉 (𝑇 ) we denote with

𝜒(𝑇𝑡) the union of the bags in the subtree rooted in 𝑡 . Further, with key(𝑡) we denote the variables
𝜒(𝑡)∩ 𝜒(𝑝)where 𝑝 is the parent of 𝑡 and key(𝑟) = ∅ for the root 𝑟 of𝑇 . We say that 𝛽 is compatible

with (𝑇, 𝜒) if for every node 𝑡 it is (𝜒(𝑇𝑡) ∖ key(𝑡))-decomposable conditioned on key(𝑡) w.r.t. 𝑄 .

As explained before, since 𝑦-decomposability in our sense can be reduced to 𝑦-decomposability

for every set 𝑆 in the sense of [9], we get the following by combining it with Theorem 7.1.
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Theorem 7.5. Let 𝒱 = (𝒮, 𝜇, 𝛽) be a volume assignment over TΣ such that 𝛽 is compatible with a

rooted tree decomposition (𝑇, 𝜒) of the full CQ𝑄(𝑥). Then, CQEval(︀Σ,𝒱⌋︀ can be (1−1⇑𝑒)-approximated

in time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀𝑓 ℎ𝑤(𝑇,𝜒) ⋅ 𝑘 ⋅𝑇𝒱) where 𝑇𝒱 is the time to compute marginals of 𝛿𝒱 for fixed sets.

To showcase Theorem 7.5, we revisit the volume assignment 𝒱𝑄,𝐷 from Example 3.4.

Theorem 7.6. Let𝑄(𝑥) be a CQ such that every atom 𝑅𝑖(𝑥𝑖) of𝑄 uses a unique relation name and

let (𝑇, 𝜒) be a tree decomposition of 𝑄 such that there is a subtree 𝑇𝑥 of 𝑇 containing the root of𝑇 and

where 𝑥 = ⋃𝑣∈𝑉 (𝑇𝑥) 𝜒(𝑣). That is, the CQ is self-join-free and the tree decomposition is free-connex [5].

Then CQEval(︀Σ,𝒱𝑄,𝐷⌋︀ can be (1 − 1⇑𝑒)-approximated in time 𝑂(⋃︀𝑄 ⋃︀ ⋅ ⋃︀𝐷 ⋃︀𝑓 ℎ𝑤(𝑇,𝜒)+1 ⋅ 𝑘).

We juxtapose it with Theorem 7.2: In Theorem 7.2 we say that CQNext(︀Σ,𝒱𝑄,𝐷⌋︀ is intractable
even for ACQs while we now state that computing a (1− 1⇑𝑒)-approximation of CQEval(︀Σ,𝒱𝑄,𝐷⌋︀ is
tractable for CQs when 𝑓 ℎ𝑤(𝑇, 𝜒) is small. The crucial restriction in Theorem 7.6 is self-join-freeness,

which is in effect similar to keeping positions apart as 𝒱pos does compared to 𝒱
elem

.

Proof Sketch of Theorem 7.6. Theorem 7.5 cannot directly be applied since 𝑄 is not neces-

sarily a full CQ. To that end, let us consider the full CQ 𝑄𝑥(𝑥) defined as the subquery of 𝑄

where all body relations are projected onto 𝑥 . Then, (𝑇𝑥 , 𝜒 ⋃︀𝑉 (𝑇𝑥 )) is a tree decomposition of 𝑄𝑥

and 𝑓 ℎ𝑤(𝑇𝑥 , 𝜒 ⋃︀𝑉 (𝑇𝑥 )) ≤ 𝑓 ℎ𝑤(𝑇, 𝜒). Now, we extend 𝛽𝑄,𝐷 to 𝑄𝑥
-tuples via 𝛽𝑄,𝐷(𝑄𝑥(ℎ(𝑥))) ∶=

𝛽𝑄,𝐷(𝑄(ℎ(𝑥))). Defined as such, 𝛽𝑄,𝐷 is compatible with (𝑇𝑥 , 𝜒 ⋃︀𝑉 (𝑇𝑥 )) w.r.t. 𝑄𝑥
as 𝑄 and, hence,

also 𝑄𝑥
are self-join-free.

Then, to compute rank𝒱𝑄,𝐷 ,𝑆 , we have to keep track of the which-provenance [8] for each of

the tuples in the bags of 𝑣 ∈ 𝑉 (𝑇𝑥) for what happens “outside” of 𝑉 (𝑇𝑥). Thus, essentially, for
each 𝑣 ∈ 𝑉 (𝑇𝑥), we have to look at its children in 𝑇 ∖𝑇𝑥 , i.e., 𝐶 ∶= 𝑐ℎ𝑖𝑙𝑑(𝑣) ∖𝑉 (𝑇𝑥) and consider

the sub-query 𝑄𝑣(𝜒(𝑣)) that uses the variables 𝜒(𝑣), and the ones that appear in 𝐶 and their

descendants. Computing the provenance of these queries requires time ⋃︀𝐷 ⋃︀𝑓 ℎ𝑤(𝑇,𝜒)+1
(where the

+1 is to account for the semi-ring operations) [16, 24]. However, then, to compute marginals of 𝛿𝒱
(essentially 𝛿𝒱(𝑆 ∪ {𝑠})), it suffices to add together the provenance of every tuple 𝑡 ∈ 𝑆 ∪ {𝑠}. The
provenance of a tuple 𝑡 can be computed by looking-up and adding together the provenance of 𝑡

projected to 𝜒(𝑣) in 𝑄𝑣
. Thus, as 𝑆 can be considered fixed, this takes 𝑂(⋃︀𝐷 ⋃︀) time. □

In particular, this means that for self-join-free, free-connex, acyclic conjunctive queries, the

problem CQEval(︀Σ,𝒱𝑄,𝐷⌋︀ can be (1 − 1⇑𝑒)-approximated in quadratic time (for constant 𝑄,𝑘).

8 Conclusions
In this work, we have introduced the volume-based framework for diversity measures 𝛿𝒱 , providing
several examples of them in relational databases, and we have studied their properties. Above all,

given the intractability of query answering under diversity, we have shown an approximation

algorithm that runs in polynomial time data complexity, and we have identified criteria for ex-

tending the tractability of the approximation to combined complexity. Arguably, all these results

provide substantial evidence that volume-based diversity forms an alternative approach to distance-

based diversity, which requires further consideration in both the theory and practice of database

management systems.

For future work, we propose to take a closer look into the relationship between our frame-

work of volume-based diversity measures and the distance-based approach. In Section 5, we have

shown that Weitzman’s (distance-based) diversity function 𝛿W essentially becomes a volume-based

diversity function if the underlying distance function is an ultrametric. In [2], general criteria

were presented that make the problem of computing the exact solution of CQEval tractable if
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the distance underlying a diversity measure is an ultrametric. It would be interesting to explore

restrictions under which this can be lifted to volume-based diversity functions.

Another interesting open problem is to find other strategies for approximating CQEval in com-

bined complexity. According to Theorem 7.2, CQNext cannot be solved in polynomial time (under

complexity assumptions) for many natural volume-based diversity functions. Nevertheless, even

in the cases where CQNext is NP-hard, one might still be able to get a reasonable approximation

algorithm. This approximation algorithm CQNext, combined with Algorithm 1, could then lead to

an approximation of CQEval.
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