
The Space-Time Complexity of Sum-ProductQueries
KYLE DEEDS, University of Washington, United States

TIMO CAMILLO MERKL, TU Wien, Austria

REINHARD PICHLER, TU Wien, Austria

DAN SUCIU, University of Washington, United States

While extensive research on query evaluation has achieved consistent improvements in the time complexity of

algorithms, the space complexity of query evaluation has been largely ignored. This is a particular challenge

in settings with strict pre-defined space constraints. In this paper, we examine the combined space-time

complexity of conjunctive queries (CQs) and, more generally, of sum-product queries (SPQs). We propose

several classes of space-efficient algorithms for evaluating SPQs, and we show that the optimal time complexity

is almost always achievable with asymptotically lower space complexity than traditional approaches.

CCS Concepts: • Theory of computation→ Database theory; Design and analysis of algorithms.

Additional Key Words and Phrases: Query evaluation.

ACM Reference Format:
Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, and Dan Suciu. 2025. The Space-Time Complexity of

Sum-Product Queries. Proc. ACM Manag. Data 3, 5 (PODS), Article 283 (November 2025), 21 pages. https:

//doi.org/10.1145/3767719

1 Introduction
Algorithms for answering conjunctive queries (CQs), often generalized to sum-product queries

(SPQs), have been extensively studied. Prior work has identified tight bounds on their time com-
plexity relative to a variety of structural parameters of the query, e.g. treewidth, (generalized or

fractional) hypertree width, or submodular width [19–21, 30]. However, no attention has been paid

to the space complexity of these algorithms which can often equal the time complexity.

This is a major challenge for end-users who typically run these algorithms in settings with strict

pre-defined space constraints, e.g. GPU memory, main memory, or SSD size. If the algorithm has a

large space complexity, the user has two unsatisfactory options; 1) reserve a moderate amount of

space and risk an out-of-memory error when inputs produce large intermediates or 2) reserve a

larger, more expensive server to guarantee robustness. Developers typically place a high value on

stability which pushes them towards the latter, and this conservative impulse is further exacerbated

by the challenges of estimating space utilization ahead-of-time [5]. In the cloud setting, this has

resulted in the well-known problem of over-provisioning memory with over 90% of jobs in the

Google Cluster Dataset using less than 20% of the provisioned memory [16, 29].

In this paper, we examine the combined space-time complexity of SPQs to address these space-

constrained settings – illustrated here in the introduction for CQs. We begin by formally defining

these notions of complexity. A query plan Π for a query 𝑄 is a structure that is associated with a

specific algorithm for evaluating 𝑄 , e.g. a tree decomposition, or join-plan, or a variable order for

Authors’ Contact Information: Kyle Deeds, University of Washington, United States; Timo Camillo Merkl, kdeeds@cs.

washington.edu, TUWien, Austria, timo.merkl@tuwien.ac.at; Reinhard Pichler, TUWien, Austria, reinhard.pichler@tuwien.

ac.at; Dan Suciu, University of Washington, United States, suciu@cs.washington.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/11-ART283

https://doi.org/10.1145/3767719

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

https://doi.org/10.1145/3767719
https://doi.org/10.1145/3767719
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3767719

283:2 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

generic-join. We denote a class of plans by C, e.g. all tree decompositions, and the plans of C for a

query 𝑄 as C(𝑄). Each plan Π is associated with a space exponent 𝑠 (Π) and a time exponent 𝑡 (Π).
The latter bounds the associated algorithm’s runtime by 𝑂̃ (|𝐷 |𝑡 (Π)). The former bounds the space

used by the algorithm by 𝑂 (|𝐷 |𝑠 (Π)), excluding the space required to store the input relations. We

will often refer to these jointly as the space-time exponents 𝑒 (Π) = (𝑠 (Π), 𝑡 (Π)).

Definition 1.1. (Plan Domination). Let Π1,Π2 be two plans for the same query 𝑄 . We say Π1

improves over Π2, or that Π1 dominates Π2, denoted Π1 ⪯ Π2, if 𝑡 (Π1) ≤ 𝑡 (Π2) and 𝑠 (Π1) ≤ 𝑠 (Π2).
We say that Π1 strictly dominates Π2, denoted Π1 ≺ Π2, if Π1 ⪯ Π2 but not vice versa.

A class of plans C1 improves over (dominates) another class C2, denoted C1 ⪯ C2, if for every
query𝑄 , it holds that ∀Π2 ∈ C2 (𝑄), ∃Π1 ∈ C1 (𝑄) such that Π1 ⪯ Π2. Notice that ⪯ over classes of

plans forms a preorder. We say that C1 strictly dominates C2, denoted C1 ≺ C2, if C1 ⪯ C2 holds but
not vice versa.

This paper studies, compares, and improves the space-time exponents of various query evaluation

methods proposed in the literature, both for database queries and for probabilistic inference in

graphical models. As explained, we distinguish between the algorithm used to evaluate the query,

and the plan, which is a syntactic structure (e.g. a tree, or a variable order), on which we can define

simple measures (e.g. depth of a tree). Every plan is canonically associated with an algorithm,

but the set of plans for a given query is finite, while that of algorithms is infinite. Our choice to

distinguish these two notions may be less common in the theory community, but it is standard in

database systems, where a “plan” refers to a relational algebra expression. With this distinction in

mind, let’s examine what types of plans have been considered in the literature.

Prior work on conjunctive query answering has focused only on the time complexity. Standard

relational algebra plans, described in all textbooks on database systems, are known to be suboptimal,

hence we do not discuss them in this paper. For a full CQ (query without projection), a worst-case
optimal join (WCOJ) algorithm runs in time𝑂 (|𝐷 |𝜌∗), where 𝜌∗ is the fractional edge cover number

of 𝑄 ; this time is proportional to the worst-case output size of the query [4]. While the first WCOJ

algorithms were first introduced in [33, 37], the best known variant is Generic Join (GJ) [34]. A

GJ plan consists of a total order on the query variables, and the associated algorithm consists of

nested for-loops, one for each variable. Somewhat surprisingly, GJ can be proven to run in time

𝑂 (|𝐷 |𝜌∗) independently of the plan
1
. GJ can easily be adapted to compute conjunctive queries with

projections (i.e. non-full queries), however it is no longer guaranteed to be worst-case optimal.

The space required by a GJ plan consists of the space needed to store the iteration variables of the

for-loops, which is𝑂 (1) since each variable stores a single domain value, plus the space required to

store the query’s output. In the case of a Boolean query, the output also has size𝑂 (1), therefore the
space-time exponents of a GJ plan are (0, 𝜌∗). GJ is always space-optimal, but its time complexity

is in general suboptimal for queries with projections.

Handling projections efficiently, and in particular handling Boolean queries, requires new tech-

niques. All solutions proposed in the theoretical database community are based on tree decom-

positions [2, 3, 17, 18, 25, 27, 36]. As the name implies, a tree decomposition is a formalism for

splitting the query into small, manageable sub-queries, called bags, and composing these bags

into a tree. Execution proceeds by computing the result of each bag, then semi-joining the results

bottom-up trough the tree decomposition. The overall time complexity is given by the time required

to solve every bag, which is generally referred to as the width of the decomposition. In the literature

one finds different approaches on how to evaluate the bags, leading to various notions of width,

1
In practice, the choice of the plan (i.e. of the variable order) makes a huge difference for the instance-specific runtime,

see [38], but we do not discuss instance-optimal algorithms in this paper.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:3

such as tree width, generalized hypertree width, and fractional hypertree width (fhw) [13]. A tree
decomposition plan consists of both a tree decomposition, and a choice of a plan for every bag of

the tree decomposition. When we choose generic join to compute the bags, then the space-time

exponents of the tree decomposition plan are (fhw, fhw).
Many more inference algorithms have been described in the field of probabilistic graphical

models (PGMs); we direct the reader to [9] for a comprehensive overview. While PGM inference

can be expressed as a scalar sum-product query studied in this paper, the runtime analysis of PGM

inference algorithms differs from that done for query evaluation because the input data in PGMs

is assumed to be dense, and the runtime is always expressed as an integer power of the domain

size. For example, in the case of a tree decomposition, the time exponent is the tree width, instead
of the (much smaller) fractional hypertree width used in the analysis of query evaluation. One

of the contributions of our paper consists in adapting some of the PGM inference algorithms to

query evaluation, and providing their runtime analysis. The algorithms of interest to us here are

the pseudo-tree based algorithm, and its refinement to caches and resets (called purges in [9]).

A Pseudo-Tree (PT) for a query is a tree whose nodes are the query variables, such that the

variables of every query atom are contained in some path from the root to a leaf (formal definition

in Sec. 3). A PT is a plan for the query, and its natural algorithm consists of for-loops, whose nesting
structure is given by the PT. A Generic Join plan is a special case of a PT, where the tree consists

of a single path, but, in general, a PT can have an improved time exponent because for-loops for
independent variables can be executed sequentially, instead of nested. The space required remains

optimal and is 𝑂 (1) (plus the space required to store the output, as we discuss in this paper). The

term pseudo-tree was coined by Freuder and Quinn in the context of constraint optimization [15].

The runtime of a search algorithm can often be improved by the addition of a cache. Dechter [9]
adds a cache to each node of a pseudo-tree, leading to an improved time complexity, at the cost of

using more space. The cache associated to a query variable is a hash table, whose key consists of

certain ancestor variables in the pseudo-tree (formal definition in Sec. 5). To allow some tradeoff

between the space and time complexity, Dechter describes a refinement, by which the size of a

cache can be reduced by simply removing some of these ancestors from the hash table, and resetting

the cache when their value changes (details Sec. 6). But no complexity analysis is provided for these

techniques, even in the simplified complexity model of the probabilistic graphical models.

While no prior work has examined the end-to-end space-time complexity of CQ evaluation, two

related lines of research should be acknowledged. For one, research on factorized databases aims to

create a space-efficient data structure from which the answers can be enumerated efficiently [35].

Second, under the name conjunctive queries with access patterns, prior work has explored how to

materialize a space-efficient set of views to speed up subsequent query execution [39].

Our Contributions. In this paper we study the space-time tradeoff of several classes of query plans,

of increased sophistication: Generic Join and Pseudo-Trees (Sec. 3), Tree Decomposition (Sec. 4),

Pseudo-Trees with Caching (Sec. 5), Pseudo-Trees with Caching and Reset (Sec. 6), and finally

Recursive Pseudo-Trees (Sec. 7). We fully characterize their domination relationships (Def. 1.1)

and represent the resulting hierarchy in Fig. 1: lower classes have smaller exponents, and thus are

better. We describe now our results in more detail, referring to this figure.

At the top of the figure is Generic Join (GJ), which is dominated by all other classes. From

there, we generalize GJ along two main axes. First, we consider pseudo-tree plans PT . These
were originally introduced for constraint satisfaction problems, where they correspond to Boolean

queries, or, more generally, to scalar sum-product queries. We extend PT ’s to handle arbitrary

outputs, and characterize their space-time complexity: unsurprisingly, they strictly dominate GJ .

We then revisit the plans based on tree decompositions, noticing that such a plan must consist

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:4 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

GJ

TDGJPT

PTC

Thm. 5.6

PTCR TDPT TDPTC

Thm. 5.7

Thm. 5.7

TDPTCR

RPT TDRPT

Thm 7.6, Fig. 10

Thm. 7.5

Thm. 4.6

Thm. 6.7

Fig. 6, 9

Name Class of Query Plans Based On:

GJ Generic-Join

PT Pseudo-Tree

PTC Pseudo-Tree with Caching

PTCR Pseudo-Tree with Caching and Reset

RPT Recursive Pseudo-Tree

TDC Tree-Decomposition, with a query

plan from C applied to each bag

Fig. 1. Classes of query plans, ordered by their space-time exponents: lower classes have smaller exponents
and are better. An arrow C2 → C1 means that every plan in C2 can be mapped to a plan in C1 with space-time
exponents at least as good; in particular, C1 ⪯ C2 (see Def. 1.1). A missing arrow, i.e. C2 ↛ C1, means C1 ⪯̸ C2.
In particular, all downward arrows indicate strict domination (Cor. 6.8, Thm. 7.6). The depicted graphs are
examples of scalar queries with binary predicates that separate the classes; the colors represent maximal
cliques.

of both the tree decomposition and the plans used to compute each bag. Thus, TDGJ are tree

decompositions plus generic join, while TDPT are tree decompositions plus pseudo-trees. The

figure shows that TDGJ dominates GJ (as expected); we discuss TDPT shortly.

Next we study the extension of PT with caches, PTC; we slightly extend the original definition
in [9] by allowing caches to be added to any subset of the nodes of the pseudo-tree, instead of all

nodes. As the figure shows, PTC strictly dominate TDGJ . This is somewhat surprising, because

a tree decomposition allows a query to be computed “in small pieces”, by computing one bag at a

time, while a pseudo-tree consists of nested for-loops, requiring a global approach. Yet, by using

caches, a pseudo-tree can simulate what a tree decomposition does, and, for some queries, strictly

improve the space-time exponents. However, if we use pseudo-trees instead of generic join to

compute the bags of a tree decomposition, then the order reverses: TDPT strictly dominates PTC.
Interestingly, if we try to improve tree decompositions by computing the bags using pseudo-trees

with caches, TDPTC , we don’t gain any improvements over not using caches, TDPT .
Next, we further refine pseudo-trees by allowing caches to be reset (and thus reduce their memory

usage), and denote the resulting plans by PTCR. As explained, cache reset was already discussed

in [9], but no complexity analysis was provided. It turns out that computing the time complexity is

more difficult in this case, because of the interaction between the various caches in the pseudo-

tree. Instead, we modified the algorithm in [9], thereby both improving its time complexity, and

making the analysis possible. As expected, adding resets improves the space-time complexity, and

combining it with a tree decomposition, TDPTCR , further improves this complexity.

Lastly, we describe a new type of query plans to dominate them all, called Recursive Pseudo-Trees.

These appear to represent the best space-time tradeoff, because even by extending them with tree

decompositions, the space-time exponents do not improve.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:5

The reader may have noticed that all our results concern only upper bounds, and no lower

bounds. It turns out that very few space lower bounds are known in the literature, and none of

them applies to the sum-product queries studied in this paper. We discuss lower bounds in Sec. 8,

were we also conjecture the space-time hardness of a specific query.

Further, all discussed methods aim at being more space efficient than existing tree decomposition

based methods. As such, naturally, the time exponent is always at least as large as the fractional

hypertree width (fhw). To go beyond this barrier, fundamentally different techniques are needed

and are left as future work. Some intricacies of this are hinted at in Sec. 8.

Due to space limitations, proof details can be found in the full version of this paper [10]. For

some of the theorems, we need to prove the non-existence of certain structures. This is done

by computer-assisted exhaustive enumeration. To that end, we developed software for comput-

ing the optimal time exponent of the PT and PTCR classes when given a space exponent

(https://github.com/kylebd99/submodular-width).

2 Preliminaries
Throughout this paper we fix an infinite domain dom. We denote (sets of) variables by capital letters

𝐴, 𝐵,𝐶, . . . (𝑿 , 𝒀 ,𝒁 , . . .) and (tuples of) domain values by lowercase letters 𝑎, 𝑏, 𝑐, . . . (𝒙,𝒚, 𝒛, . . .).
We will also refer to variables as attributes when this is more appropriate. If 𝑿 , 𝒀 are two sets of

variables and 𝒙 ∈ dom𝑿
, then we denote by 𝒙 [𝒀] the projection of 𝒙 on the variables 𝑿 ∩ 𝒀 .

Fix a commutative semi-ring (K, ⊕, ⊗, 0, 1). A K-relation is a function 𝑅 : dom𝑿 → K with finite

support, meaning that supp(𝑅) := {𝒙 | 𝑅(𝒙) ≠ 0} is finite. When 𝑿 = ∅ then we identify 𝑅 with

the scalar value 𝑠 := 𝑅() ∈ K. By the cardinality of 𝑅, in notation |𝑅 |, we mean the cardinality of its

support, and we write 𝒙 ↦→ 𝑠 ∈ 𝑅 when 𝒙 ∈ supp(𝑅) and 𝑅(𝒙) = 𝑠 . A K-database 𝐷 , or simply a

database when K is clear from the context, is a tuple of K-relations 𝐷 = (𝑅𝐷
1
, . . . , 𝑅𝐷𝑚). Its size is

|𝐷 | := ∑𝑚
𝑖=1 |𝑅𝐷𝑖 |.

A sum-product query (SPQ or query for short) is an expression of the form:

𝑄 (𝑿) ←
⊗
𝑖=1,...,𝑚

𝑅𝑖 (𝑿𝑖) (1)

where 𝑅𝑖 are unique relation symbols and 𝑿 ,𝑿1 . . . are sets of variables such that 𝑿 ⊆ var (𝑄) :=⋃
𝑖 𝑿𝑖 . We refer to this query simply as 𝑄 , and call 𝑿 the output variables or head variables of 𝑄 .

When 𝑿 = var (𝑄) then we say that𝑄 is a full query, and when 𝑿 = ∅ then we call it a scalar query.
If the semi-ring K is the set of Booleans B, then a scalar query is called a Boolean query.

The semantics of 𝑄 on a database 𝐷 is the K-relation J𝑄K𝐷 : dom𝑿 → K defined as follows. Let

𝑽 = var (𝑄) be the set of variables of the query 𝑄 in Eq. (1). Then:

J𝑄K𝐷 (𝒙) :=
⊕

𝒗∈dom𝑽
: 𝒗 [𝑿]=𝒙

(⊗
𝑖=1,...,𝑚

𝑅𝐷𝑖 (𝒗 [𝑿𝑖])
)

We may omit the superscript 𝐷 when it is clear from the context, and write 𝑅𝑖 , J𝑄K for 𝑅𝐷𝑖 , J𝑄K𝐷 .

Example 2.1. Most of our examples (in particular those used for separating families of query

plans) will feature queries where all relations are binary, which allows for an intuitive representation

as graphs. For instance, the 3-path on the top left of Fig. 1 represents the scalar query 𝑄 () ←
𝑅1 (𝐴, 𝐵) ⊗ 𝑅2 (𝐵,𝐶), whose semantics is

∑
𝑎,𝑏,𝑐∈dom 𝑅

𝐷
1
(𝑎, 𝑏) · 𝑅𝐷

2
(𝑏, 𝑐) over the natural numbers N.

Let 𝒀 ⊆ var (𝑄) be a set of variables. A fractional edge cover of 𝒀 (with respect to 𝑄) is a

sequence of non-negative weights𝑤𝑖 , one for each relation 𝑅𝑖 , such that, for every variable 𝐴 ∈ 𝒀 ,

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:6 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu∑
𝑖:𝐴∈𝑿𝑖

𝑤𝑖 ≥ 1. The fractional edge cover number of 𝒀 , 𝜌∗ (𝒀), is the minimum value of

∑
𝑖 𝑤𝑖 , when

the weights𝑤𝑖 range over fractional edge covers of 𝒀 .

Complexity analysis of algorithms. We assume the RAM model, where each cell can hold a single

element from the domain or from the semi-ring. As far as (normal and semi-ring) arithmetic is

concerned, we assume that each operation requires constant time. For query evaluation, we only

study the data complexity, i.e., the (size of the) query is considered as constant. Several of our

algorithms assume a particular order of the tuples of the relations. We assume that sorting a relation

does not use additional space. We will also ignore the additional log-factor due to sorting and/or

lookups, and write our upper bounds using 𝑂 instead of 𝑂̃ .

3 Constant SpaceQuery Evaluation
In this section, we briefly review Generic Join and its space-time exponents. Then, we discuss

pseudo-trees [9, 15] and extend them in two significant ways: we generalize them to non-scalar

queries, and analyze their space-time exponents using techniques similar to those used for Generic

Join.

Generic Join. Consider a query 𝑄 (𝑿) in Eq. (1), with variables var (𝑄) = {𝐴1, . . . , 𝐴𝑘 }. The
Generic Join (GJ) algorithm [32] computes 𝑄 (𝐷) in worst-case optimal time given by the AGM

bound 𝑂 (|𝐷 |𝜌∗ (var (𝑄))) [4]. GJ fixes an arbitrary order on the variables, 𝐴1, . . . 𝐴𝑘 , and computes

iteratively partial assignments 𝒚 𝑗 = (𝑎1, . . . , 𝑎 𝑗) on 𝒀𝑗 = (𝐴1, . . . 𝐴 𝑗), for all 0 ≤ 𝑗 ≤ 𝑘 . It starts with
the empty assignment 𝒚0 := () and, in 𝑘 nested loops, it extends it to one variable after the other,

as follows. Assuming a partial tuple 𝒚 𝑗−1 = (𝑎1, . . . , 𝑎 𝑗−1), the 𝑗 ’th nested loop is:

for 𝑎 𝑗 in
⋂

𝑖:𝐴 𝑗 ∈𝑿𝑖

supp(𝑅𝑖 [𝐴 𝑗 |𝒚 𝑗−1]) do . . . (2)

where supp(𝑅𝑖 [𝐴 𝑗 |𝒚 𝑗−1]) represents the 𝐴 𝑗 -values in the relation 𝑅𝑖 , restricted to tuples that agree

with the values
2 𝒚 𝑗−1. GJ computes the intersection above in time proportional to the smallest set,

for example by iterating over the smallest set and probing (using hash tables) in all the other sets.

If 𝑄 is a full SPQ, then in the inner-most loop, GJ simply outputs the assignment 𝒚𝑘 ↦→ 𝑠 , where

𝑠 :=
⊗

𝑖 𝑅𝑖 (𝒚𝑘 [𝑿𝑖]) ∈ K. If 𝑄 is a scalar query, then the innermost loop computes the sum of these

values 𝑠 ∈ K. In the general case, ∅ ⊆ 𝑿 ⊆ var (𝑄), GJ maintains a hash-table𝑂𝑈𝑇 : dom𝑿 → K to

store the current output, and the inner-most loop updates 𝑂𝑈𝑇 (𝒚𝑘 [𝑿]) := 𝑂𝑈𝑇 (𝒚𝑘 [𝑿]) ⊕ 𝑠 . The
time complexity of GJ is 𝑂 (|𝐷 |𝜌∗ (var (𝑄))). Its space complexity, i.e. the memory size required in

addition to the input database, consists of the 𝑘 variables 𝑎1, . . . , 𝑎𝑘 , with a total size of 𝑂 (1), plus
the space required to store the output 𝑂𝑈𝑇 , whose size is 𝑂 (|𝐷 |𝜌∗ (𝑿)).

Definition 3.1. A Generic Join Plan of a query 𝑄 is a total order on its variables, Π = (𝐴1, . . . , 𝐴𝑘).
We denote by GJ (resp. GJ (𝑄)) the set of all Generic Join plans (of𝑄). The space-time exponents

of any Π ∈ GJ (𝑄) are 𝑒 (Π) = (𝜌∗ (𝑿), 𝜌∗ (var (𝑄))); in particular, if 𝑄 is a scalar query, then the

space-time exponents are (0, 𝜌∗ (var (𝑄))).
Theorem 3.2 ([34]). If Π ∈ GJ (𝑄), then Π computes J𝑄K in space and time given by 𝑒 (Π).

Concretely, the space used is 𝑂 (|𝐷 |𝜌∗ (𝑿)), and the time spent is 𝑂 (|𝐷 |𝜌∗ (var (𝑄))).
When the cardinalities of individual relations are known, 𝑁1 = |𝑅1 |, 𝑁2 = |𝑅2 |, . . ., then tighter

space-time bounds are given by 𝑂 (∏𝑖 𝑁
𝑤∗𝑖
𝑖
), where 𝑤∗

1
,𝑤∗

2
, . . . is the fractional edge cover of 𝑿

(or var (𝑄) respectively) that minimizes

∏
𝑖 𝑁

𝑤∗𝑖
𝑖

. In the special case when 𝑁1 = 𝑁2 = · · · = 𝑁 this

2
Formally, supp (𝑅𝑖 [𝐴𝑗 |𝒚𝑗−1]) = {𝒛 [𝐴𝑗] | 𝒛 ∈ supp (𝑅𝑖), 𝒛 [𝒀𝑗−1] = 𝒚𝑗−1 [𝑿𝑖] }.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:7

is equal to 𝑂 (|𝐷 |𝜌∗). In this paper we prefer to use the simpler formula, and will note where the

tighter formula is needed.

Pseudo-trees. For a full query, any GJ plan is worst-case optimal, because the output size can

be as large as 𝑂 (|𝐷 |𝜌∗ (var (𝑄))) [4]. But when 𝑄 is not full, GJ is no longer optimal. A pseudo-tree,

defined below, improves the time exponent of GJ, without increasing its space exponent.

Example 3.3. For a simple intuition, consider the 3-path scalar query in Example 2.1. GJ computes

it using 3 nested loops, corresponding to the variables𝐴, 𝐵,𝐶 ; intuitively it computes the expression∑
𝑎

∑
𝑏

∑
𝑐 𝑅1 (𝑎, 𝑏)𝑅2 (𝑏, 𝑐), with runtime 𝑂 (|𝑅1 | · |𝑅2 |). A pseudo-tree based algorithm, in contrast,

iterates over 𝐵 first, then performs two independent loops that iterate over 𝐴 and 𝐶 respectively;

this corresponds to the expression

∑
𝑏 (

∑
𝑎 𝑅1 (𝑎, 𝑏)) · (

∑
𝑐 𝑅2 (𝑏, 𝑐)), and the runtime is𝑂 (|𝑅1 | + |𝑅2 |).

If 𝑇 = (𝑽 , 𝐸) is a directed tree and 𝐴 ∈ 𝑽 , then we denote by anc(𝐴) the set of ancestors of 𝐴
excluding 𝐴, and write 𝑎𝑛𝑐 (𝐴) = anc(𝐴) ∪ {𝐴}. Similarly, we write desc(𝐴), 𝑑𝑒𝑠𝑐 (𝐴) for the set of
descendants of 𝐴, without and with 𝐴 respectively.

Fix an SPQ 𝑄 (𝑿) ←
⊗

𝑖 𝑅𝑖 (𝑿𝑖) (see Eq. (1)), and let 𝑽 = var (𝑄).

Definition 3.4 ([9, 15]). A pseudo-tree (PT) of 𝑄 is a directed tree 𝑃 = (𝑽 , 𝐸), satisfying:
• Every atom 𝑅𝑖 (𝑿𝑖) is contained in a branch: formally, ∃𝐴 ∈ 𝑽 such that 𝑿𝑖 ⊆ 𝑎𝑛𝑐 (𝐴).

The term pseudo-tree was introduce by Freuder and Quinn in the context of constraint optimiza-

tion [15], and studied extensively by Dechter [9]. Pseudo-trees are a generalization of normal trees,
also called Trémaux trees used in graph theory [11, Ch.1], which are pseudo-trees where every tree

edge is also an edge in the graph.

For any variable 𝐴 ∈ 𝑽 , we denote by out (𝐴) := desc(𝐴) ∩ 𝑿 and by 𝑜𝑢𝑡 (𝐴) := 𝑑𝑒𝑠𝑐 (𝐴) ∩ 𝑿 .

Definition 3.5. The class of query plans PT (𝑄) consists of pseudo-trees 𝑃 of 𝑄 and their space

and time exponents are defined as:

𝑠 (𝑃) := max

𝐴∈var (𝑄)
𝜌∗ (𝑜𝑢𝑡 (𝐴)), 𝑡 (𝑃) := max

𝐴∈var (𝑄)
𝜌∗ (𝑎𝑛𝑐 (𝐴) ∪ out (𝐴)) .

When 𝑄 is a scalar query, then the space exponent is 𝑠 (𝑃) = 0. Pseudo-trees strictly dominate

GJ, i.e. PT ≺ GJ as per Def. 1.1 because, any variable order of a GJ can be converted into a linear

PT 𝐴1 −𝐴2 − · · · −𝐴𝑘 , and the two plans have the same space-time complexity thus PT ⪯ GJ .

On the other hand, Example 3.3 shows that GJ ⪯̸ PT . This establishes the first arrow in Fig. 1.

It remains to describe an algorithm that, given a pseudo-tree 𝑃 for𝑄 , computes J𝑄K in space-time

given by the exponents in Def. 3.5. First we need to introduce some notations. If 𝑅(𝑿) : dom𝑿 → K
is a K-relation and 𝐴 ∈ 𝑿 , then we write supp(𝑅 [𝐴]) := {𝒙 [𝐴] | 𝒙 ∈ supp(𝑅)} for the projection of

supp(𝑅) on the attribute 𝐴; in other words, this is the 𝐴-column of 𝑅. We generalize this as follows.

Let 𝒀 be a set of variables s.t. 𝐴 ∉ 𝒀 , and 𝒚 ∈ dom𝒀
. We write supp(𝑅 [𝐴|𝒚]) for the projection on

𝐴 of the tuples in supp(𝑅) that agree with 𝒚: supp(𝑅 [𝐴|𝒚]) := {𝒙 [𝐴] | 𝒙 ∈ supp(𝑅), 𝒙 [𝒀] = 𝒚[𝑿]}.
Algorithm 1 (ignore the gray lines for now) evaluates𝑄 (𝑿) recursively, by following the structure

of the pseudo-tree 𝑃 . We start from the root 𝐴1, and proceed recursively in the tree. Assume we

have followed a path 𝒀 = (𝐴1, 𝐴2, . . . , 𝐴 𝑗−1), and have bound these variables to the tuple𝒚 ∈ dom𝒀
.

For a child 𝐴 of 𝐴 𝑗−1, solve(𝐴,𝒚) first computes the following K-relation J𝑄 [𝐴|𝒚]K : dom𝐴 → K:

J𝑄 [𝐴|𝒚]K :=
𝑎 ↦→

⊗
𝑖:𝑿𝑖\𝒀={𝐴}

𝑅𝑖 (𝒚′ [𝑿𝑖])
���� 𝑎 ∈ ⋂

𝑖:𝐴∈𝑿𝑖

supp(𝑅𝑖 [𝐴|𝒚]),𝒚′ = (𝒚, 𝑎)
 (3)

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:8 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

Algorithm 1 PT Algorithm (excl. gray parts)

Algorithm 3 PTC Algorithm (incl. gray parts)

Input: Query 𝑄 (𝑿), pseudo-tree 𝑃,
caches 𝑪 ⊆ var (𝑄)

Output: J𝑄K : dom𝑋 → K
1: return solve(𝑟𝑜𝑜𝑡 (𝑃), ())
2: for 𝐴 ∈ 𝑪
3: 𝑀𝐴 ← ∅
4: function solve(𝐴,𝒚) : dom𝑜𝑢𝑡 (𝐴) → K
5: if 𝐴 ∈ 𝑪 ∧𝒚[con(𝐴)] ∈ 𝑘𝑒𝑦𝑠 (𝑀𝐴)
6: return𝑀𝐴 (𝒚[con(𝐴)])
7: OUT← {𝒛 ↦→ 0 | 𝒛 ∈ dom𝑜𝑢𝑡 (𝐴) }
8: for 𝑎 ↦→ 𝑠 ∈ J𝑄 [𝐴|𝒚]K ⊲ see Eq. (3)

9: 𝒚′ ← (𝒚, 𝑎)
10: TMP← {𝑎[𝑿 ∩ {𝐴}] ↦→ 𝑠}
11: for 𝐵 ∈ 𝑐ℎ𝑖𝑙𝑑 (𝐴)
12: TMP← TMP ⊗ solve(𝐵,𝒚′)

13: OUT← OUT ⊕ TMP

14: if 𝐴 ∈ 𝑪
15: 𝑀𝐴 ← 𝑀𝐴 ∪ {𝒚[con(𝐴)] ↦→ OUT }
16: return OUT

Algorithm 2 Alg. 1 for the PT in Fig. 3

1: OUT
𝐵 ← 0

2: for 𝑏 ↦→ 𝑠𝑏 ∈ J𝑄 [𝐵]K ⊲ 𝑠𝑏 = 1

3: ⊲ 𝑏 ∈ 𝑅1 [𝐵] ∩ · · · ∩ 𝑅5 [𝐵]
4: OUT

𝐴 ← 0

5: for 𝑎 ↦→ 𝑠𝑎 ∈ J𝑄 [𝐴|𝑏]K ⊲ 𝑠𝑎 = 𝑅1 (𝑎, 𝑏)
6: OUT

𝐴 ← OUT
𝐴 + 𝑠𝑎

7: 𝑠𝑏 ← 𝑠𝑏 · OUT𝐴,OUT𝐸 ← 0

8: for 𝑒 ↦→ 𝑠𝑒 ∈ J𝑄 [𝐸 |𝑏]K ⊲ 𝑠𝑒 = 𝑅4 (𝑏, 𝑒)
9: ⊲ 𝑒 ∈ 𝑅4 [𝐸 |𝑏] ∩ 𝑅6 [𝐸] ∩ 𝑅7 [𝐸]
10: OUT

𝐷 ← 0

11: for 𝑑 ↦→ 𝑠𝑑 ∈ J𝑄 [𝐷 |𝑏𝑒]K
12: ⊲ 𝑠𝑑 = 𝑅3 (𝑏, 𝑑) · 𝑅6 (𝑒, 𝑑)
13: OUT

𝐷 ← OUT
𝐷 + 𝑠𝑑

14: 𝑠𝑒 ← 𝑠𝑒 · OUT𝐷 ,OUT𝐹 ← 0

15: for 𝑓 ↦→ 𝑠 𝑓 ∈ J𝑄 [𝐹 |𝑏𝑒]K
16: OUT

𝐹 ← OUT
𝐹 + 𝑠 𝑓

17: 𝑠𝑒 ← 𝑠𝑒 ·OUT𝐹 , OUT𝐸 ← OUT
𝐸 + 𝑠𝑒

18: 𝑠𝑏 ← 𝑠𝑏 · OUT𝐸,OUT𝐶 ← 0

19: for 𝑐 ↦→ 𝑠𝑐 ∈ J𝑄 [𝐶 |𝑏]K
20: OUT

𝐶 ← OUT
𝐶 + 𝑠𝑐

21: 𝑠𝑏 ← 𝑠𝑏 · OUT𝐶 , OUT𝐵 ← OUT
𝐵 + 𝑠𝑏

22: return OUT
𝐵

Intuitively, J𝑄 [𝐴|𝒚]K contains the possible values of 𝐴 that extend 𝒚 in a manner consistent

with𝑄 . To compute (3), the algorithm iterates over all values 𝑎 ∈ ⋂
𝑖 supp(𝑅𝑖 [𝐴|𝒚]), by intersecting

the 𝐴-attributes of all relations that contain the attribute 𝐴 (similarly to Generic Join in Eq. (2)),

then maps each such value 𝑎 to 𝑠 ∈ K, where 𝑠 is the product of all K-values of the relations whose
last attribute (in the order of the pseudo-tree) is 𝐴: the condition 𝑿𝑖 \ 𝒀 = {𝐴} checks that 𝐴 is

the last attribute of 𝑅𝑖 (𝑿𝑖), while 𝑅𝑖 (𝒚′ [𝑋𝑖]) ∈ K is its value associated to 𝒚′ := (𝒚, 𝑎). Like GJ,
the algorithm computes the intersection of supp(𝑅𝑖 [𝐴|𝒚]) on the fly in time proportional to the

smallest set. That is, the algorithm iterates over the values 𝑎 ↦→ 𝑠 in J𝑄 [𝐴|𝒚]K, and performs a

recursive call on each child 𝐵 of 𝐴. When 𝑄 is a scalar query, then both TMP and OUT are scalars

(because 𝑜𝑢𝑡 (𝐴) = ∅), and the algorithm simply multiplies the values of all children 𝐵, then adds up

these values over all 𝑎’s. When 𝑄 has output variables 𝑿 , then both OUT and TMP are K-relations.
OUT has type dom𝑜𝑢𝑡 (𝐴) → K. Initially, TMP has attributes 𝑿 ∩ {𝐴} (i.e. either ∅ or {𝐴}), while
the natural join

3 𝑇𝑀𝑃 ← 𝑇𝑀𝑃 ⊗ solve(𝐵,𝒚′) extends TMP with 𝑜𝑢𝑡 (𝐵), so that, after processing

all children 𝐵 of 𝐴, TMP has the same schema as OUT, and the algorithm adds up these values over

all 𝑎’s.

Theorem 3.6. If 𝑃 ∈ PT (𝑄), then Algorithm 1 computes J𝑄K in time 𝑂 (|𝐷 |𝑡 (𝑃)) and uses
𝑂 (|𝐷 |𝑠 (𝑃)) space (where 𝑠, 𝑡 are given by Def. 3.5).

3
The natural join 𝑅1 ⊗ 𝑅2 of relations 𝑅𝑖 : dom𝑼𝑖 → K is defined as (𝑅1 ⊗ 𝑅2) (𝒖) := 𝑅1 (𝒖 [𝑼1]) ⊗ 𝑅2 (𝒖 [𝑼2]) where

𝑢 ∈ dom𝑼1∪𝑼2
. Note the schemas of TMP and solve(𝐵,𝒚′) are disjoint and, hence, it degenerates to a Cartesian product.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:9

𝐴 𝐵 𝐶

𝐷 𝐸 𝐹

𝑅1 𝑅2

𝑅3 𝑅4 𝑅5

𝑅6 𝑅7

Fig. 2. Query 𝑄

𝐵

𝐴 𝐸

𝐷 𝐹

𝐶

Fig. 3. Pseudo-tree for 𝑄

𝐴 𝐵

𝐹

𝐸 𝐷 𝐶

Fig. 4. Query 𝑄

𝐴

𝐵

𝐷

𝐸 𝐶

𝐵

𝐴

𝐹

𝐴𝐵

Fig. 5. TDPT plan for 𝑄

Example 3.7. Consider the scalar query 𝑄 () depicted in Fig. 2, over 7 N-relations. Its fractional
edge cover number is 𝜌∗ := 𝜌∗ (var (𝑄)) = 4. Generic Join computes the query using 6 nested

loops, one for each variable 𝐴, 𝐵, . . . , 𝐹 , and its runtime is 𝑂 (|𝐷 |4). Consider now the PT 𝑃 in

Fig. 3. We check that it satisfies the condition in Def. 3.4: indeed, each relation is included in

a branch, e.g., relation 𝑅5 (𝐵, 𝐹) is included in the branch 𝐵 − 𝐸 − 𝐹 . Its space-time exponents

are 𝑒 (𝑃) = (𝑠 (𝑃), 𝑡 (𝑃)) = (0, 3/2); indeed, 𝑠 (𝑃) = 𝜌∗ (∅) = 0 because 𝑄 is a scalar query, and

𝑡 (𝑃) = max(𝜌∗ (𝑎𝑛𝑐 (𝐴)), 𝜌∗ (𝑎𝑛𝑐 (𝐵)), 𝜌∗ (𝑎𝑛𝑐 (𝐶)), 𝜌∗ (𝑎𝑛𝑐 (𝐷)), . . .) = max(1, 1, 1, 3/2, 1, 3/2) = 3/2.
Algorithm 2 (the expansion of Algorithm 1) computes𝑄 following the PT. It starts with a loop for

the variable 𝐵, but, unlike Generic Join, it continues with three independent loops, one for each

variable 𝐴, 𝐸,𝐶 respectively. The for-loop for 𝐸 contains another two, independent for-loops, for 𝐷

and 𝐹 . Notice that the first loop, for 𝐵, is over the intersection of the attributes 𝐵 of all relations that

contain 𝐵 (to reduce clutter we omitted supp in the comment), while the associated value 𝑠𝑏 is 1,

because there are no relations that “end” at 𝐵. On the other hand, the loop for 𝐴 associates to 𝑠𝑎 the

value 𝑅1 (𝑎, 𝑏), because𝐴 is the last attribute of the relation 𝑅1 (𝐴, 𝐵). Similarly, the loop for 𝑒 is over

the intersection of the 𝐸-columns 𝑅4, 𝑅6, 𝑅7 (where 𝑅4 is restricted to the value 𝑏), and the value we

associate to 𝑒 is 𝑠𝑒 = 𝑅4 (𝑏, 𝑒), because 𝑅4 (𝐵, 𝐸) is the only relation that ends at 𝐸. The runtime of

Algorithm 2 is𝑂 (|𝐷 |3/2), because it is dominated by the nested loops 𝐵 − 𝐸 −𝐷 and 𝐵 − 𝐸 − 𝐹 , each
requiring only 𝑂 (|𝐷 |3/2) steps. Since 𝑄 is scalar, both TMP and OUT are scalars (to reduce clutter

we did not include the variables TMP but used 𝑠 instead). Consider what happens if we modify

the query to have output variables 𝑿 = {𝐷, 𝐹 }. Then, OUT𝐴,OUT𝐶 are still scalars while OUT
𝐷

is a K-relation with attribute 𝐷 , OUT𝐹 has the attribute 𝐹 , and OUT
𝐵,OUT𝐸 have attributes 𝐷𝐹 .

Further, the space-time exponents become (𝜌∗ (𝐷𝐹), 𝜌∗ (𝐵𝐸𝐷𝐹)) = (2, 2) computed, e.g., at 𝐸.

4 Revisiting Tree Decompositions
Tree decompositions (TDs) have been extensively studied in the literature [19–21, 30]. Like a PT, a

TD may decrease the time exponent of generic join, but it may increase the space exponent. We

briefly review the definition of TDs , then show that they are incomparable to PTs.

In this section we fix a query 𝑄 (𝑿) ←
⊗

𝑖 𝑅𝑖 (𝑿𝑖), as in Eq. (1).

Definition 4.1. A tree decomposition of 𝑄 (𝑿) is a tuple 𝑇𝐷 = (𝑇, 𝜒) where 𝑇 = (𝑉 , 𝐸) is a
directed tree and 𝜒 : 𝑉 → 2

var (𝑄)
is a function from the nodes to sets of variables, satisfying:

(1) 𝑿 ⊆ 𝜒 (𝑟𝑜𝑜𝑡 (𝑇)),
(2) ∀𝐴 ∈ var (𝑄), the nodes 𝑣 with 𝐴 ∈ 𝜒 (𝑣) must form a connected subset of 𝑉 ,

(3) ∀𝑿𝑖∃𝑣 ∈ 𝑉 s.t. 𝑿𝑖 ⊆ 𝜒 (𝑣). We pick an arbitrary such 𝑣 and say 𝑅𝑖 (𝑿𝑖) is covered by 𝑣 .

The sets 𝜒 (𝑣) are called bags. Readers familiar with free-connex tree decomposition may notice

that condition (1) is more restrictive, but that’s OK for our purpose, because we only consider

worst-case optimal algorithms, and do not consider constant-delay algorithms [6]. Any free-connex

tree decomposition can be converted into a tree that satisfies Def. 4.1, by adding a bag with all

output variables 𝑿 , without increasing its worst-case total runtime.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:10 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

To each tree vertex 𝑣 ∈ 𝑉 we associate a query, as follows. Let 𝒀 𝑣 := 𝜒 (𝑣) and 𝒁 𝑣 := 𝜒 (𝑣) ∩
𝜒 (parent (𝑣)) (when 𝑣 is the root node, then 𝒁 𝑣 := 𝑿) and define the K-relation 𝑅𝑣𝑖 : dom

𝑿𝑖∩𝒀 𝑣 →
K as 𝑅𝑣𝑖 := 𝑅𝑖 when 𝑅𝑖 is covered by 𝑣 , and 𝑅𝑣𝑖 (𝒛) := ({𝒛 ↦→ 1 | ∃𝒙 ∈ supp(𝑅𝑖) s.t. 𝒛 = 𝒙 [𝒀 𝑣]})
otherwise. In other words, for all 𝑣 ∈ 𝑉 but one, the relation 𝑅𝑣𝑖 is a {0, 1}-relation consisting of the

projection of supp(𝑅𝑖) on the variables 𝑿𝑖 ∩ 𝒀 𝑣 . Define the sub-query 𝑄𝑣 at node 𝑣 as:

𝑄𝑣 (𝒁 𝑣) ←
⊗
𝑖

𝑅𝑣𝑖 (𝑿𝑖 ∩ 𝒀 𝑣) ⊗
⊗

𝑤∈child (𝑣)
𝑄𝑤 (𝒁𝑤) (4)

Notice that var (𝑄𝑣) = 𝜒 (𝑣) = ⋃
𝑖 var (𝑅𝑣𝑖) = 𝒀 𝑣 , since 𝒁𝑤 ⊆ 𝜒 (𝑣) for all𝑤 ∈ child (𝑣).

We use the TD to compute 𝑄 (𝑿) by computing all subqueries 𝑄𝑣 , bottom-up. For each 𝑣 ∈ 𝑉 ,
first compute recursively the subqueries 𝑄𝑤 (𝒁𝑤) of its children𝑤 , materialize these results, then

compute 𝑄𝑣 as in Eq. (4). The materialized results 𝑄𝑤 (𝒁𝑤) are called messages in the literature.

It remains to decide what plan we use to compute the subqueries 𝑄𝑣 . This justifies the following:

Definition 4.2. Let C be a class of query plans for evaluating SPQs. The class of plans TDC (𝑄)
consists of pairs (𝑇𝐷, 𝜋), where 𝑇𝐷 is a tree decomposition of 𝑄 , and 𝜋 is a function that maps

each vertex 𝑣 in 𝑇𝐷 to a plan 𝜋 𝑣 ∈ C(𝑄𝑣). The space and time exponents are

𝑠 (𝑇𝐷, 𝜋) = max

𝑣
𝑠 (𝜋 𝑣), 𝑡 (𝑇𝐷, 𝜋) = max

𝑣
𝑡 (𝜋 𝑣). (5)

Theorem 4.3. Let 𝑠, 𝑡 be the space and time exponents of the plans C, such that for every query
𝑄 ′ and plan 𝜋 ∈ C(𝑄 ′), J𝑄 ′K can be computed in space 𝑂 (|𝐷 |𝑠 (𝜋)) and time 𝑂 (|𝐷 |𝑡 (𝜋)). Then, for
every plan (𝑇𝐷, 𝜋) ∈ TDC (𝑄), J𝑄K can be computed in space𝑂 (|𝐷 |𝑠 (𝑇𝐷,𝜋)) and time𝑂 (|𝐷 |𝑡 (𝑇𝐷,𝜋)),
where 𝑠 (𝑇𝐷, 𝜋) and 𝑡 (𝑇𝐷, 𝜋) are given by Eq. (5).

Two remarks are in order. First, we notice that the space needed to store the message 𝑄𝑣 that is

sent to the parent is already accounted for by the space exponent 𝑠 (𝜋 𝑣). Second, when computing

the space-time exponents of the query 𝑄𝑣 , we need to account for both the sizes of the input

relations 𝑅𝑖 , and for the sizes of the incoming messages𝑄𝑤 . The latter can be asymptotically larger:

if the bags are computed using Generic Join, or Pseudo-Trees, then we need to use the tighter upper

bound expression 𝑂 (∏𝑖 𝑁
𝑤∗𝑖
𝑖
) rather than 𝑂 (|𝐷 |𝜌∗), see Sec. 3. We illustrate with an example.

Example 4.4. Consider the 4-cycle query 𝑄□ () ← 𝐸1 (𝐴1, 𝐴2) ⊗ 𝐸2 (𝐴2, 𝐴3) ⊗ 𝐸3 (𝐴3, 𝐴4) ⊗
𝐸4 (𝐴1, 𝐴4), and the tree decomposition with two bags 𝜒 (𝑣) = {𝐴1𝐴2𝐴3}, 𝜒 (𝑤) = {𝐴3𝐴4𝐴1},
where 𝑣 is the root. Assume |𝐸1 | = |𝐸2 | = |𝐸3 | = |𝐸4 | = 𝑁 . The sub-query at 𝑤 is 𝑄𝑤 (𝐴1𝐴3) =
𝐸3 (𝐴3𝐴4) ⊗ 𝐸4 (𝐴1𝐴4). Its space-time exponents are (2, 2), because the optimal fractional edge cover

(for both var (𝑄) and {𝐴1, 𝐴3}) is𝑤3 = 𝑤4 = 1. This means that GJ can compute it in time𝑂 (𝑁 2), and
its output takes space𝑂 (𝑁 2). Consider next the sub-query𝑄𝑣 () = 𝐸1 (𝐴1𝐴2)⊗𝐸2 (𝐴2𝐴3)⊗𝑄𝑤 (𝐴1𝐴3).
Although𝑄𝑣 has the shape of a triangle query, GJ does not compute it in time𝑂 (𝑁 1.5) but rather in
time 𝑂 (𝑁 2), because the message 𝑄𝑤 can be as large as 𝑂 (𝑁 2). The optimal fractional edge cover,

which minimizes |𝐸1 |𝑤1 · |𝐸2 |𝑤2 · |𝑄𝑤 |𝑤0
, is𝑤1 = 𝑤2 = 1 and𝑤0 = 0, and GJ will compute this query

in time 𝑂 (𝑁 2) and space 𝑂 (1). Therefore, the space-time exponents of this tree decomposition are

(2, 2).
In this simple 4-cycle example, using pseudo-trees instead of GJ to compute the bags does not

improve either the space or time exponent. However, we will see in Example 4.5 that replacing GJ

with PT can lead to asymptotic improvements.

When all cardinalities are equal |𝑅1 | = |𝑅2 | = · · · then the simplified formula 𝑂 (|𝐷 |𝜌∗) still gives
an upper bound on the time and space complexity, assuming that we ignore the messages𝑄𝑤 when

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:11

computing 𝜌∗; equivalently, we assign each of them the weight 0. Hence, for a TDGJ plan with

tree decomposition (𝑇, 𝜒), we get the following space-time exponents (known as folklore):

𝑠 (𝑇, 𝜒) =max

(
𝜌∗ (𝑿), max

(𝑢,𝑣) ∈𝐸 (𝑇)
𝜌∗ (𝜒 (𝑢) ∩ 𝜒 (𝑣))

)
, 𝑡 (𝑇, 𝜒) = max

𝑣∈𝑉 (𝑇)
𝜌∗ (𝜒 (𝑣)) = 𝑓 ℎ𝑤 (𝑇, 𝜒). (6)

In words, the space exponent is the maximal fractional edge cover number of the intersection of

adjacent bags (or the maximal output size) while the time exponent is simply the fraction hypertree

width of the tree decomposition.

We end this section by comparing TDC for different C and proving some of the domination

relations in Fig. 1.

Example 4.5. TDPT plans can strictly improve both the time and the space exponents of TDGJ
plans. For example, consider the query 𝑄 () in Fig. 4, and the TDPT plan in Fig. 5. Using GJ to

process the bags results in space-time exponents of (1, 5/2) while using the PTs results in (1, 2). We

can improve the exponents even further, by using a TD with a single bag 𝐴𝐵𝐶𝐷𝐸𝐹 . To compute it,

add the node 𝐹 as a child of 𝐵 to the left PT in Fig. 5. The space-time exponents decreased to (0, 2).

Theorem 4.6. The following hold: PT ⪯̸ TDGJ,TDGJ ⪯̸ PT , and ∀C : TDC ⪯ C.

Proof Sketch. PT ⪯̸ TDGJ follows from the fact that the 4-path query 𝑅(𝐴𝐵) ⊗ 𝑆 (𝐵𝐶) ⊗
𝑇 (𝐶𝐷) admits a TDGJ query plan Π with 𝑒 (Π) = (1, 1), while time exponent 1 is not feasible in

PT . TDGJ ⪯̸ PT is proved by showing that the 3-path query in Example 2.1 has a plan Π ∈ PT
with 𝑒 (Π) = (0, 1), while TDGJ allows for plans Π′ with 𝑒 (Π′) = (1, 1) or 𝑒 (Π′) = (0, 2) but not
(0, 1); none dominate 𝑒 (Π) = (0, 1). TDC ⪯ C follows as 𝑄𝑣 = 𝑄 for the single-bag TD. □

5 Caching
In this section, we describe the addition of caching to pseudo-trees. While this method was intro-

duced in [9], we extend it here to handle output variables, and perform its (non-obvious!) space-time

analysis. A cache is a data structure that maps from a set of keys to a set of values.

Example 5.1. To motivate caching, consider the 4-path query 𝑄 () ← 𝑅(𝐴𝐵) ⊗ 𝑆 (𝐵𝐶) ⊗ 𝑇 (𝐶𝐷),
over the semiring N, and consider the linear PT 𝐴 − 𝐵 −𝐶 − 𝐷 , where 𝐴 is the root. The runtime

of this plan is given by the AGM bound, 𝑂 (𝑁 2). Intuitively, this query plan corresponds to the

summation

∑
𝑎 (

∑
𝑏 𝑅(𝑎𝑏) · (

∑
𝑐 𝑆 (𝑏𝑐) · (

∑
𝑑 𝑇 (𝑐𝑑)))). We note that the subexpression 𝑀𝐶 (𝑏) :=∑

𝑐 𝑆 (𝑏𝑐)·
∑
𝑑 𝑇 (𝑐𝑑) is independent of𝑎, and, by caching the values𝑀𝐶 (𝑏), we can avoid recomputing

this expression. Similarly, we can cache𝑀𝐷 (𝑐) :=
∑
𝑑 𝑇 (𝑐𝑑). By adding caches to Algorithm 1 we

can trade off space for time. In our example, the two caches decrease the runtime of the PT above

from 𝑂 (𝑁 2) to 𝑂 (𝑁), while the space increases from 𝑂 (1) to 𝑂 (𝑁).

Throughout this section we fix a query 𝑄 (𝑿) ←
⊗

𝑖 𝑅𝑖 (𝑿𝑖) and a pseudo-tree 𝑃 = (𝑽 , 𝐸),
where 𝑽 = var (𝑄). Assume we decide to cache the values returned by solve(𝐴,𝒚) of the recursive
Algorithm 1, for some 𝐴 ∈ 𝑽 . The key of the cache𝑀𝐴 at 𝐴 is called the context of 𝐴.

Definition 5.2 ([9]). The context of a variable 𝐴 ∈ 𝑽 is defined as

con(𝐴) = {𝐵 ∈ anc(𝐴) | ∃𝐶 ∈ 𝑑𝑒𝑠𝑐 (𝐴), s.t. 𝐵,𝐶 ∈ 𝑿𝑖 for some atom 𝑅𝑖 (𝑿𝑖) of 𝑄},
and the closed context of 𝐴 is 𝑐𝑜𝑛(𝐴) = con(𝐴) ∪ {𝐴}.

Themain property of con(𝐴) is that the value returned by solve(𝐴,𝒚) depends only on𝒚[con(𝐴)]
and not on the entire tuple 𝒚. Therefore, we can cache these values in a cache𝑀𝐴 with key con(𝐴),
whose values are K-relations of type dom𝑜𝑢𝑡 (𝐴) → K (the type returned by solve(𝐴,𝒚)). The

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:12 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

type of this cache is 𝑀𝐴 : domcon(𝐴) → (dom𝑜𝑢𝑡 (𝐴) → K), which is equivalent, through curry-

uncurry, to 𝑀𝐴 : domcon(𝐴)∪𝑜𝑢𝑡 (𝐴) → K. Therefore, the space usage of the cache 𝑀𝐴 is given by

𝜌∗ (con(𝐴) ∪ 𝑜𝑢𝑡 (𝐴)). The time spent by the algorithm at node 𝐴 will be reduced, because it only

needs to call solve(𝐴,𝒚) once for each distinct value 𝒚[con(𝐴)]. We are now ready to define a

pseudo-tree with caching:

Definition 5.3. A pseudo-tree with caching (PTC) of 𝑄 is a pair (𝑃, 𝑪), where 𝑃 = (𝑽 , 𝐸) is a PT of

𝑄 , and 𝑪 ⊆ 𝑽 is a subset of the variables for which we add a cache. We require 𝑟𝑜𝑜𝑡 (𝑃) ∈ 𝑪 .

The gray lines in Algorithm 1 represent its extension to caching, which we call Algorithm 3.

We now compute its space-time complexity. We have already seen the space requirement for

a cache 𝑀𝐴 and, hence, know the space complexity. So, let us focus on the time complexity. If

we do not use any caches, then the time complexity of the for-loop in line 8 of the Algorithm

is 𝜌∗ (𝑎𝑛𝑐 (𝐴) ∪ out (𝐴)): this is what we used in Def. 3.5. But if some 𝐵 ∈ 𝑎𝑛𝑐 (𝐴) uses a cache,

then it suffices to consider only the set
4 con(𝐵) ∪ [𝐴, 𝐵] instead of 𝑎𝑛𝑐 (𝐴). Indeed, consider two

calls to solve(𝐴,−): first, solve(𝐴, 𝒙), followed at some later time by a second call solve(𝐴,𝒚). If
𝒙 [con(𝐵) ∪ (𝐴, 𝐵]] = 𝒚[con(𝐵) ∪ (𝐴, 𝐵]] then the second call will not happen, because of the cache

at 𝐵. The only variables in 𝑎𝑛𝑐 (𝐴) relevant to the time consumption in line 8 are con(𝐵), and [𝐴, 𝐵].
If 𝐴 has multiple ancestors 𝐵 with a cache, then we will only consider the lowest one (closest to 𝐴).

This justifies the following generalization of Def. 3.5:

Definition 5.4. The class of query plans PTC(𝑄) consists of pseudo-trees with caching (𝑃, 𝑪) of
𝑄 and their space and time exponents are defined as:

𝑠 (𝑃, 𝑪) := max

𝐴∈𝑪
𝜌∗ (con(𝐴) ∪ 𝑜𝑢𝑡 (𝐴)), 𝑡 (𝑃, 𝑪) := max

𝐴∈𝑉 (𝑃)
𝜌∗ (con(𝐵𝐴) ∪ [𝐴, 𝐵𝐴] ∪ out (𝐴)),

where
5 𝐵𝐴 := min(𝑪 ∩ 𝑎𝑛𝑐 (𝐴)).

The reader may check that, when there are no caches (i.e., 𝑪 = {𝑟𝑜𝑜𝑡 (𝑃)}), then the space and

time exponents of the PTCs coincide with those of PTs in Def. 3.5. In general, we prove:

Theorem 5.5. If (𝑃, 𝑪) ∈ PTC(𝑄), then Algorithm 3 computes J𝑄K in time𝑂 (|𝐷 |𝑡 (𝑃,𝑪)) and uses
space 𝑂 (|𝐷 |𝑠 (𝑃,𝑪)).

We end this section by establishing the domination relationships involving PTC in Fig. 1: PTC
improves upon TDGJ , and augmenting TDs with PT or with PTC give equivalent classes. The

separation shown in Theorem 4.6 implies that PTC strictly improves upon all classes above it.

However, we state strict dominations collectively later in Corollary 6.8

Theorem 5.6. The class PTC dominates TDGJ , i.e., PTC ⪯ TDGJ .

Proof Sketch. Given a plan Π := ((𝑇, 𝜒), 𝜋) ∈ TDGJ , we construct a plan Π0 := (𝑃, 𝑪) ∈
PTC such that Π0 ⪯ Π. The construction is based on the variable elimination procedure for a

tree decomposition [24], and proceeds by induction on the number of bags in 𝑇 . If 𝑇 has a single

bag, then Π is essentially a GJ plan, and the claim follows from PT ⪯ GJ . Otherwise, let 𝑣 be a

leaf of 𝑇 , and 𝑝 := parent (𝑣). We eliminate all variables {𝐴1, . . . , 𝐴𝑘 } := 𝜒 (𝑣) \ 𝜒 (𝑝). Let 𝒁 be their

neighbors, 𝒁 := {𝐵 | ∃ atom 𝑅𝑖 (𝑿𝑖), ∃ 𝑗, s.t. 𝐴 𝑗 , 𝐵 ∈ 𝑿𝑖 }. Let𝑄 ′ to be the query obtained from𝑄 by

removing all variables 𝐴1, . . . , 𝐴𝑘 , and adding a new atom 𝑅(𝒁). Let Π′ = ((𝑇 ′, 𝜒), 𝜋) be the plan
obtained from Π by removing the leaf 𝑣 . By induction hypothesis, Π′ can be converted to a PTC

4 [𝐴, 𝐵] denotes the set of nodes between 𝐴 and 𝐵; (𝐴, 𝐵] denotes [𝐴, 𝐵] \ {𝐴}.
5
Given a nonempty set 𝑺 on some branch of the tree, i.e. 𝑺 ⊆ 𝑎𝑛𝑐 (𝐴) for some 𝐴, we denote by min(𝑺) its smallest

element, i.e. min(𝑺) ∈ 𝑺 and 𝑺 ⊆ 𝑎𝑛𝑐 (min(𝑺)) .

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:13

𝐴 𝐵

𝐹 𝐸 𝐷 𝐶

Fig. 6. Query 𝑄

𝐴

𝐵

𝐶

𝐷 𝐸

Fig. 7. Query 𝑄

𝐴

𝐵

𝐶

𝐷

𝐸

|
𝐴 |
𝐴𝐵 |
|𝐵𝐶
𝐵 |𝐷

Fig. 8. PTCR for 𝑄

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

𝐺

𝐻

𝐼

𝐽

𝐾

Fig. 9. Query 𝑄

plan Π′
0
= (𝑃 ′, 𝑪 ′) such that Π′

0
≤ Π′. All variables 𝒁 belong to a branch of Π′

0
(because of the atom

𝑅(𝒁)). Construct the pseudo-tree 𝑃 from 𝑃 ′ by adding a branch 𝐴1-𝐴2- · · · -𝐴𝑘 as a child of the last

variable in 𝒁 . Finally, define Π0 := (𝑃, 𝑪 ∪ {𝐴1}) (only 𝐴1 receives a cache). It can be checked that

Π0 ⪯ Π, which proves PTC ⪯ TDGJ . □

Theorem 5.7. TDPT ⪯ TDPTC . Therefore, TDPT ≡ TDPTC and TDPT ⪯ PTC.

6 Resetting the Cache
We saw how the addition of caches reduces the time exponent while increasing the space exponent

of a pseudo-tree. We describe here pseudo-tree with caching and resets, PTCR, which allows for

a finer tradeoff between space and time. The basic principle was introduced in [9], but with no

analysis of its complexity. We provide an analysis, and describe a non-trivial improvement, using a

notion called relevant ancestors, which reduces the asymptotic time complexity of the algorithm.

Example 6.1. To motivate resetting caches, consider the scalar query 𝑄 () in Fig. 6 and the

PT consisting of a single path (𝐴-𝐵-𝐶-𝐷-𝐸-𝐹), and with root 𝐴. Adding caches to 𝐸, 𝐹 leads to

space-time exponents of (1.5, 2). For example, the cache𝑀𝐸 for variable 𝐸 has key con(𝐸) = 𝐴𝐵𝐷 ,
and its space usage is given by 𝜌∗ (𝐴𝐵𝐷) = 1.5. When solve(𝐸, 𝑎𝑏𝑐𝑑) is called, Algorithm 3 stores

the result in𝑀𝐸 (𝑎𝑏𝑑); in later calls, if 𝑐 changed while 𝑎𝑏𝑑 are the same, the algorithm immediately

returns the cached value. Note that once the values of 𝑎 or 𝑏 change we can safely discard (or

reset) all entries 𝑀𝐸 (𝑎𝑏−), because the values 𝑎𝑏𝑐 arrive at solve(𝐸,−) in lexicographic order.

We can reduce the space of the cache by only keeping cached entries whose keys agree on 𝐴𝐵

– essentially only storing the results for different values of 𝐷 . This decreases the space usage

to 𝜌∗ (𝐷) = 1, eq. for the cache 𝑀𝐹 . With this “reset” improvement, 𝑄 can be computed with

space-time complexity (1, 2).
We describe now this technique in general. Fix an SPQ 𝑄 (𝑿) ←

⊗
𝑖 𝑅𝑖 (𝑿𝑖).

Definition 6.2. A pseudo-tree with caching and resets (PTCR) of 𝑄 is a pair (𝑃,𝐶), where 𝑃 =

(𝑽 , 𝐸) is a pseudo-tree and 𝐶 is a function 𝐶 : 𝑽 → N.

Fix a variable 𝐴 ∈ 𝑽 , and let its context be con(𝐴) = {𝐴1, . . . , 𝐴𝑛}; recall that con(𝐴) ⊆ anc(𝐴).
We order con(𝐴) such that𝐴1 is closest to the root and𝐴𝑛 is closest to𝐴. The function𝐶 in Def. 6.2 in-

dicates how many variables from con(𝐴) will be stored simultaneously. If 𝑘 := min(𝐶 (𝐴), |con(𝐴) |),
we partition con(𝐴) into conInst (𝐴) ∪ conSto(𝐴), where conInst (𝐴) := {𝐴1, . . . , 𝐴𝑛−𝑘 } is the instan-
tiated context and conSto(𝐴) := {𝐴𝑛−𝑘+1, . . . , 𝐴𝑛} is the stored context. The keys of the cache𝑀𝐴 will

always agree on conInst (𝐴) but may differ on conSto(𝐴). Any change of a variable in conInst (𝐴)
invalidates (resets)𝑀𝐴. We use a bar to indicate the partition of con(𝐴): in Example 6.1, if𝐶 (𝐸) = 1

then we write con(𝐸) = 𝐴𝐵 |𝐷 . If𝐶 (𝐴) = 0 for a variable𝐴 then it is equivalent to having no cache
6
.

6
Strictly speaking, if𝐶 (𝐴) = 0 then we cache at 𝐴 a single returned value𝑀𝐴 (𝒙 [con(𝐴)]) := solve(𝐴, 𝒙) , and can

reuse it as long as 𝒙 [con(𝐴)] doesn’t change. However, if con(𝐴) contains parent (𝐴) , then we cannot expect to ever reuse

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:14 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

A basic algorithm for handling resets described in [9] is as follows. Each variable 𝐴 has a cache

𝑀𝐴 with key con(𝐴), and an instantiated tuple conInst𝐴 ∈ domconInst (𝐴)
storing the last value of

conInst (𝐴). When solve(𝐴,𝒚) is called, it first checks whether conInst𝐴 = 𝒚[conInst (𝐴)]. If yes,
then it uses the cache like Algorithm 3. If not, then it resets the cache𝑀𝐴. However, this algorithm

is not optimal, as we explain in the next example.

Example 6.3. Consider the scalar query 𝑄 () in Fig. 7 and the PTCR (𝑃,𝐶) in Fig. 8. The figure

also shows the partitions of each context. For example, con(𝐸) = 𝐵 |𝐷 , means that conInst (𝐸) = 𝐵
and conSto(𝐸) = 𝐷 , and therefore the keys of its cache𝑀𝐸 (𝐵𝐷) always agree on 𝐵; similarly, 𝐷 has

a full cache𝑀𝐷 (𝐵𝐶). We want to compute the time complexity of 𝐸, and for that we need to reason

about how often the cache 𝑀𝐸 is reset due to 𝐵 changing its value. We can do this in two ways.

Either we notice that the only ancestor of 𝐵 is 𝐴 and, thus, the number of calls to solve(𝐸,−) with
a new 𝐵 is bounded by 𝜌∗ (𝐴𝐵). Or, we notice that 𝐷 has a fully stored cache 𝑀𝐷 (𝐵𝐶), and calls

solve(𝐸,−) only with unique 𝐵𝐶 pairs, thus the complexity is also bounded by 𝜌∗ (𝐵𝐶).
Our algorithm reduces this to 𝜌∗ (𝐵), by computing the cache𝑀𝐷 (𝐵𝐶) eagerly.When solve(𝐷, 𝑎𝑏𝑐)

is called for the first time, 𝐷 will ignore the values 𝑏𝑐 , and instead it fills its cache 𝑀𝐷 (𝐵𝐶)
entirely with all values of 𝐵𝐶: it iterates over the distinct values

7 𝑏𝑐 ∈ supp(J𝑄 [𝐵𝐶]K), calls
solve(𝐸, 𝑎𝑏𝑐𝑑) recursively, and stores the result in 𝑀𝐷 (𝑏𝑐). 𝐷 traverse the supp(J𝑄 [𝐵𝐶]K) by
grouping on 𝐵 (e.g., by sorting it lexicographically), so that the same 𝐵-values occur consecutively,

e.g. 𝑏1𝑐1, 𝑏1𝑐2, 𝑏1𝑐3, 𝑏2𝑐1, . . .When 𝐵 changes from 𝑏1 to 𝑏2, 𝐸 resets its cache, but there is no loss of

work, because 𝑏1 will never be seen again; this is similar to the argument in Example 6.1. The num-

ber of cache resets is reduced
8
to 𝜌∗ (𝐵). This example was simple, because 𝐷 had no instantiated

variables, conInst (𝐷) = ∅; the general case requires the technical Definition 6.4 below.

Filling the cache eagerly is a significant extension of GJ and all its implementations in practice [14,

37], where the values of𝐴𝐵 . . . are examined in strict lexicographic order, e.g.𝑎1𝑏1, 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2 . . .

Instead, the values of 𝐵 arrive at the function solve(𝐸,−) in sorted order 𝑏1, 𝑏1, 𝑏2, 𝑏2, 𝑏3, . . .

Algorithm 4 extends Algorithm 3 from PTC to PTCR, and uses the following:

Definition 6.4. For a PTCR (𝑃,𝐶) and variable 𝐴 ∈ 𝑽 (𝑃), we define the (closed) relevant (instanti-
ated) ancestors ra(𝐴), ra(𝐴), ria(𝐴) — where 𝑐𝑜𝑛(𝐴) ⊆ ra(𝐴) ⊆ 𝑎𝑛𝑐 (𝐴), con(𝐴) ⊆ ra(𝐴) ⊆ anc(𝐴),
and (for conInst (𝐴) ≠ ∅) conInst (𝐴) ⊆ ria(𝐴) ⊆ 𝑎𝑛𝑐 (min(conInst (𝐴))) — recursively as follows:

ria(𝐴) =
{
ra(𝑝𝑎𝑟𝑒𝑛𝑡 (𝐴)) ∩ 𝑎𝑛𝑐 (min(conInst (𝐴))) conInst (𝐴) ≠ ∅,
∅ conInst (𝐴) = ∅,

ra(𝐴) = ria(𝐴) ∪ conSto(𝐴), ra(𝐴) = ra(𝐴) ∪ {𝐴}.

The key difference between Algorithms 4 and 3 is that the function solve(𝐴, 𝒙) fills its cache
𝑀𝐴 eagerly. This is done by fillCache, which iterates over all these values in line 11. Notice

that supp(J𝑄 [conSto(𝐴) |ria𝐴]K) is a set: the algorithm processes these values lexicographically.

However, the function fillCache is called by solve(𝐴,−) only once for each value of the variables

ria(𝐴). Referring to Example 6.3, when the function solve(𝐷,−) is called, we have ria(𝐷) = ∅,
hence fillCache is called only once, and in line 11 it iterates over supp(J𝑄 [𝐵𝐶]K).

the value𝑀𝐴 (𝒙 [con(𝐴)]) , which is equivalent to not having a cache. If parent (𝐴) ∉ con(𝐴) , then the PT is suboptimal:

we can simply connect 𝐴 to 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝐴)) , that is, 𝐴 and 𝑝𝑎𝑟𝑒𝑛𝑡 (𝐴) become siblings.

7supp (J𝑄 [𝐵𝐶]K) means the projection of the query on 𝐵𝐶 . It is a natural extension of Eq. (3).

8
The careful reader may have noticed that 𝜌∗ (𝐴𝐵) = 𝜌∗ (𝐵𝐶) = 𝜌∗ (𝐵) = 1, so for this simple example our improved

algorithm does not reduce the runtime but the dependency. The runtime reduction does happen for more complex examples.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:15

Algorithm 4 PTCR Algorithm

Input: Query 𝑄 (𝑿), PTCR (𝑃,𝐶)
Output: J𝑄K

1: for 𝐴 ∈ 𝑉 (𝑃)
2: 𝑀𝐴 ← ∅, ria𝐴 ← ⊥
3: return solve(𝑟𝑜𝑜𝑡 (𝑃), ())
4: function solve(𝐴, 𝒙)
5: if 𝒙 [ria(𝐴)] = ria𝐴 ⊲ Cache hit

6: return𝑀𝐴 (𝒙 [con(𝐴)])
7: ria𝐴 ← 𝒙 [ria(𝐴)] ⊲ Cache miss

8: fillCache(𝐴, 𝒙 [anc(𝐴) \ conSto(𝐴)])
9: return𝑀𝐴 (𝒙 [con(𝐴)])

10: function fillCache(𝐴,𝒚anc)

11: for 𝒚sto ∈ supp(J𝑄 [conSto(𝐴) |ria𝐴]K)
12: 𝒚 ← (𝒚anc,𝒚sto)
13: OUT← {𝒛 ↦→ 0 | 𝒛 ∈ dom𝑜𝑢𝑡 (𝐴) }
14: for 𝑎 ↦→ 𝑠 ∈ J𝑄 [𝐴|ria𝐴,𝒚sto]K
15: 𝒚′ ← (𝒚, 𝑎) ⊲ L. 15–19 as in Alg. 1

16: TMP← {𝑎[𝑿 ∩ {𝐴}] ↦→ 𝑠}
17: for 𝐵 ∈ 𝑐ℎ𝑖𝑙𝑑 (𝐴)
18: TMP← TMP ⊗ solve(𝐵,𝒚′)

19: OUT← OUT ⊕ TMP

20: 𝑀𝐴 ← 𝑀𝐴 ∪ {𝒚[con(𝐴)] ↦→ OUT}

Definition 6.5. The class of query plans PTCR(𝑄) consists of PTCR (𝑃,𝐶) of 𝑄 and their space

and time exponents are defined as:

𝑠 (𝑃,𝐶) = max

𝐴∈𝑉 (𝑃)
𝜌∗ (conSto(𝐴) ∪ 𝑜𝑢𝑡 (𝐴)), 𝑡 (𝑃,𝐶) = max

𝐴∈𝑉 (𝑃)
𝜌∗ (ra(𝐴) ∪ out (𝐴)) .

Theorem 6.6. If (𝑃,𝐶) ∈ PTCR(𝑄), then Algorithm 4 computes J𝑄K in 𝑂 (|𝐷 |𝑡 (𝑃,𝐶)) time and
uses 𝑂 (|𝐷 |𝑠 (𝑃,𝐶)) space.

Lastly, we prove the remaining relationships in Fig. 1 up toTDPTCR , in particular demonstrating

the difference in strength of TDPT and PTCR. This separation together with the separation given
in Theorem 4.6 imply that all dominations corresponding to downward arrows up to TDPTCR
are strict.

Theorem 6.7. PTCR ⪯̸ TDPT and TDPT ⪯̸ PTCR.

Proof Sketch. For PTCR ⪯̸ TDPT , we use the query𝑄 () depicted in Fig. 6 and the PTCR
in given Example 6.1, with space-time exponents (1, 2). Because no edge separates the query, any

TD with 2+ bags uses superlinear space, and a single bag is equivalent to a PT, which takes more

than quadratic time. For TDPT ⪯̸ PTCR, we use the query 𝑄 () depicted in Fig. 9 and a TD

with three bags, separated by 𝐷𝐸 and𝐺𝐻 ; its space-time exponents are (1, 2). The best PTCR has

space-time exponents of (1.5, 2) or (1, 2.5). □

Corollary 6.8. The dominations relations represented by downward arrows up to the ones ending
at TDPTCR in Fig. 1 are all strict.

7 Using Recursion to Reorient Sub-Trees
We now present a final class of plans termed recursive pseudo-trees, RPT , that unify the strengths
of PTs and TDs into a single approach. While PTCR (and also PTC) captured some of the

advantages of TDs, as seen by PTCR ≺ TDGJ , TDs can bring further benefits when computed

with PTs, as seen by TDPTCR ≺ PTCR. One benefit of TD-based plans is that different bags can

use different variable orders, for example in Fig. 5 we could use 𝐴-𝐵 in one bag, and 𝐵-𝐴 in the

other, which is not possible in a PT. RPT loosens this restriction, and fully captures the benefit of

TDs: we will show the equivalence of RPT and TDRPT in Thm. 7.3.

To begin, we revisit the function fillCache(𝐴,𝒚anc) of Algorithm 4. This function evaluates for

every tuple 𝒚sto ∈ supp(J𝑄 [conSto(𝐴) |ria𝐴]K) (see line 11) the subquery of𝑄 restricted to variables

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:16 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

𝐾

𝐼

𝐺𝐸

𝐶

𝐴
𝐽

𝐻
𝐹

𝐷

𝐵
𝐿

Fig. 10. Query 𝑄

𝐿 𝐶 𝐵 𝐷 𝐴

𝐸 𝐹 ′ 𝐺 ′

𝐹 𝐸 𝐺 𝐷

𝐻 𝐼 ′ 𝐽 ′

𝐼 𝐻 𝐽 𝐺

𝐾

𝐿

𝐸𝐷 𝐸𝐷 𝐷 𝐷

𝐿

𝐻𝐺 𝐻𝐺 𝐺 𝐺

Fig. 11. An RPT for 𝑄

𝑑𝑒𝑠𝑐 (𝐴) and caches the result in𝑀𝐴. To do this, the algorithm based on a PTCR plan first iterates

through the variables in conSto(𝐴), then proceeds to the variables in 𝑑𝑒𝑠𝑐 (𝐴). While intuitive, this

is an arbitrary decision. One could instead simply use a different PTCR (𝑃 ′,𝐶′) to compute this

subquery where conSto(𝐴) is included as output variables. Effectively, we fill the cache using a

different PTCR and see this as replacing the subtree of (𝑃,𝐶) rooted at 𝐴 with the new sub-plan

(𝑃 ′,𝐶′). We call the resulting structure a recursive pseudo-tree.

Example 7.1. To motivate using different PTCR to fill the caches, let us consider the scalar query

𝑄 () given in Fig. 10. As there are many 5-cliques, our aim will be to arrive at a time complexity

of 2.5 and minimize the space complexity. Note the structure of the query: 𝐿 is connected to

everything, S1 = 𝐿𝐷𝐸 and S2 = 𝐿𝐻𝐺 are the minimal non-trivial separators, andK1 = 𝐿𝐵𝐷𝐶,K2 =

𝐿𝐹𝐸𝐺,K3 = 𝐿𝐻 𝐽 𝐼 are three 4-cliques which each extend in two ways to a 5-clique – K1 together

with 𝐴 and 𝐸 is a 5-clique, respectively, as well as K2 together with 𝐷 and 𝐻 , and K3 together with

𝐺 and 𝐾 . Thus, a natural way of evaluating 𝑄 would be to start like a PTCR plan. That is, we

start with a path K2 : 𝐿 − 𝐹 − 𝐸 −𝐺 of nested loops and then branch to the separators S1 : 𝐷 and

S2 : 𝐻 separately. Let us focus on the left branch where we continue with, say, 𝐶 . At this point,

we need a cache to not increase the time complexity beyond 2.5. We set the size of the cache to 2

(the space complexity will be 1 but the cache contains 2 variables), thus get the context partition

𝑐𝑜𝑛(𝐶) = 𝐿 |𝐸𝐷 , and now would have to execute fillCache(𝐶, 𝑙). That is, we have to find and cache
the possible values of conSto(𝐶) = 𝐸𝐷 that fit to 𝑙 and solve the remaining query on 𝐴, 𝐵,𝐶 . This

can be done by a loop structure that first extends 𝑙 to values 𝑏𝑑𝑐 and then loops through 𝐴 and 𝐸

independently. We have seen in previous sections that such a loop structure will take time 𝑂 (𝑁 2.5)
and space𝑂 (𝑁) including the loop over the values 𝑙 . Naturally, the right branch is symmetric. Thus,

we have arrived at an algorithm with the desired space and time consumption. However, note that

this algorithm is not the result of a PTCR plan as this is not the way fillCache(𝐶, 𝑙) would have

filled the cache of 𝐶 (no matter how we complete the PTCR). Crucially, we inverted the order of 𝐸

and 𝐷 to fill the cache; we will return to this example a couple more times in this section.

To define recursive pseudo-trees formally, we introduce SPQs with input variables 𝑰 (these will
be ria(𝐴)). That is, let 𝑄 (𝑿) be an SPQ and let 𝑰 ⊆ var (𝑄) \ 𝑿 denote a subset of the variables

in 𝑄 , which we refer to as the input variables of 𝑄 (𝑿). Then a PTCR of 𝑄 (𝑿) is also a PTCR of

(𝑄 (𝑿), 𝑰) when 𝑰 are variables that occur above all other variables. That is, these variables form
a chain and we call the first variable 𝑟𝑜𝑜𝑡 ∈ 𝑉 (𝑃) \ 𝑰 with anc(𝑟𝑜𝑜𝑡) = 𝑰 , 𝑑𝑒𝑠𝑐 (𝑟𝑜𝑜𝑡) = var (𝑄) \ 𝑰
the (real) root of (𝑃,𝐶, 𝑰). Furthermore, we require ria(𝑟𝑜𝑜𝑡) = 𝑰 .

Definition 7.2. A recursive pseudo-tree (RPT) of an SPQ with input variables (𝑄 (𝑿), 𝑰) is recur-
sively defined as follows:

• Base case. A PTCR (𝑃,𝐶, 𝑰) of (𝑄 (𝑿), 𝑰) is an RPT of (𝑄 (𝑿), 𝑰).
• Recursion. Let (𝑃,𝐶, 𝑰) be a PTCR of (𝑄 (𝑿), 𝑰), and let 𝐴1, . . . , 𝐴𝑙 be vertices in 𝑽 (𝑃) \ 𝑰 ,
such that 𝐴𝑖 ∉ 𝑎𝑛𝑐 (𝐴 𝑗)∀ 𝑖 ≠ 𝑗 . Let 𝑄𝑖 be the subquery of 𝑄 (𝑿) restricted to the variables

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:17

desc(𝐴𝑖) ∪ ra(𝐴𝑖) and with head variables conSto(𝐴𝑖) ∪ 𝑜𝑢𝑡 (𝐴𝑖). Let (P𝑖 , C𝑖 ,I𝑖) be RPTs of
(𝑄𝑖 , ria(𝐴𝑖)). Then, (P, C,I) := ((𝑃, (P𝑖)𝑖), (𝐶, (C𝑖)𝑖), (𝑰 , (I𝑖)𝑖)) is an RPT of (𝑄 (𝑿), 𝑰).

The class of query plan RPT (𝑄) consist of RPTs (P, C,I) of (𝑄, ∅) and their space and time

exponents are defined recursively via:

𝑠 (P, C,I) = max(max

𝐴∈⋃𝑖 anc (𝐴𝑖)
𝜌∗ (conSto(𝐴) ∪ 𝑜𝑢𝑡 (𝐴)); max

𝑖
𝑠 (P𝑖 , C𝑖 ,I𝑖)),

𝑡 (P, C,I) = max(max

𝐴∈⋃𝑖 anc (𝐴𝑖)
𝜌∗ (ra(𝐴) ∪ 𝑜𝑢𝑡 (𝐴)); max

𝑖
𝑡 (P𝑖 , C𝑖 ,I𝑖)).

Using the RPTs (P𝑖 , C𝑖 ,I𝑖) to perform the same task as fillCache(𝐴𝑖 ,−) we get the following:

Theorem 7.3. If (P, C,I) ∈ RPT (𝑄), then J𝑄K can be computed in space 𝑂 (|𝐷 |𝑠 (P,C,I)) and
time 𝑂 (|𝐷 |𝑡 (P,C,I)).

Example 7.4. Fig. 11 depicts an RPT Π = (P, C,I) of the query 𝑄 () depicted in Fig. 10. Solid

edges represent “normal” edges of a PTCR while the dashed edges represent a recursive replacement.

The original PTCR had the path PT (𝐹 ′-𝐺 ′-𝐻 ′-𝐼 ′-𝐽 ′-𝐾 ′) (depicted gray) as a child of the first

𝐸 while 𝐹 ′ was the only variable with a cache. Then, 𝐴1 = 𝐹 ′ got replaced by the sub-RPT

(P1, C1,I1) rooted in 𝐹 as depicted in Fig. 11 (this is the first dotted edge). Note that 𝐿 |𝐷𝐸 = con(𝐹 ′),
𝐿 = ria(𝐹 ′) = ria(𝐹) and 𝐷𝐸 = conSto(𝐹 ′) = 𝑜𝑢𝑡 (𝐹) as required (output and input variables are

drawn in blue and red, respectively, in Fig. 11). (P1, C1,I1) was constructed similarly. The original

PTCR had the path PT (𝐼 ′-𝐽 ′-𝐾 ′) as a child of the first 𝐻 while 𝐼 ′ was the only variable with a

cache. Then, 𝐴2 = 𝐼
′
(note that 𝐴1 and 𝐴2 come from different PTs) got replaced by the sub-PTCR

(𝑃2,𝐶2, {𝐿}) rooted in 𝐼 as depicted in Fig. 11. Note that 𝐿 |𝐺𝐻 = con(𝐼 ′), 𝐿 = ria(𝐼 ′) = ria(𝐼) and
𝐺𝐻 = conSto(𝐼 ′) = 𝑜𝑢𝑡 (𝐼) as required. The space-time exponents are (1, 5/2).

The evaluation algorithm proceeds analogously to the algorithm described in Example 7.1 with

the slight change that the cliques K1,K2,K3 are processed one after the other in exactly that order.

Thus, the RPT depicted in Fig. 11 has two recursion on one single branch while the algorithm

described in Example 7.1 essentially had two branches with one recursion on each branch.

Finally, we relate RPT to the other plan classes. First, we note that TDRPT provides no benefit

over RPT . The proof is inductive, similar to that of Theorem 5.6.

Theorem 7.5. The class RPT dominates TDRPT . Thus, in particular RPT ≡ TDRPT .

Considering the query𝑄 () in Fig. 10 and using computer-assisted exhaustive search, we verified

that there is no plan (𝑃,𝐶) ∈ PTCR with 𝑠 (𝑃,𝐶) ≤ 1 and 𝑡 (𝑃,𝐶) ≤ 5/2. There is no linear separator
in this query, so the same holds for TDPTCR . Combined with Theorem 7.5, we can prove:

Theorem 7.6. The class RPT strictly dominates TDPTCR , i.e., RPT ≺ TDPTCR .

Naturally, the time exponents of RPTs are always at least as large as the fractional hypertree

width (fhw). As RPT dominates all other classes of query plans discussed in this paper, the same

is the case for them.

Theorem 7.7. If (P, C,I) ∈ RPT (𝑄), then 𝑡 (P, C,I) ≥ 𝑓 ℎ𝑤 (𝑄), where 𝑓 ℎ𝑤 (𝑄) is the frac-
tional hypertree width of 𝑄 .

Proof Sketch. The RPT (P, C,I) describes a tree structure (e.g., see black parts of Fig. 11) and

we can use this tree structure together with bags ra(𝐴) ∪ 𝑜𝑢𝑡 (𝐴) at nodes 𝐴 to construct a tree

decomposition of 𝑄 . The width of this tree decomposition is the same as the time exponent of the

RPT. □

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:18 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

8 Conclusion and a Glimpse Beyond
We have presented several novel algorithms for CQ and, more generally, SPQ evaluation by combin-

ing and significantly extending existing approaches based on pseudo-trees and tree decompositions.

In most cases, we have matched the optimal time complexity of previous algorithms with asymp-

totically lower space complexity. We end here by discussing two important lines of future work.

Conjectures on Lower Bounds. Although some conditional lower bounds have been established

for the time complexity of query evaluation [8, 12], much less is known about space-time lower

bounds. In the complexity community, the space-time tradeoff is studied by proving lower bounds

on the product 𝑆 ×𝑇 for specific problems. For example, the set difference and distinct element

problems have been proven to have a lower bound 𝑆𝑇 = Ω(𝑛2) [7, 31]. These results are too weak to
constrain query evaluation, since even acyclic CQs require at least a quadratic space-time product.

Since there are no widely accepted assumptions to build on, we take a first step toward under-

standing lower bounds for space-constrained query answering. We propose a problem called the

Triple 𝑘-Clique Problem, and conjecture a lower bound on its space-time complexity. To motivate

our conjecture, we briefly recall the min-weight 𝑘-clique hypothesis, which is a standard complexity

assumption for combinatorial problems [1, 12, 28]. The problem concerns the 𝑘-clique scalar query:

𝑄 () ←
⊗

𝑖< 𝑗∈[1,𝑘]
𝐸 (𝐴𝑖 , 𝐴 𝑗) (7)

and the task is to evaluate 𝑄 in the tropical semi-ring, where 𝑥 ⊕ 𝑦 := min(𝑥,𝑦), 𝑥 ⊗ 𝑦 := 𝑥 + 𝑦; in
other words, we are asked to identify a clique with the smallest total edge weight in a weighted

graph. The most commonly used variant of the min-weight 𝑘-clique hypothesis is stated relative to

the number of vertices in the graph. However, [12] showed that this is equivalent to saying that,

for any 𝜀 > 0, no algorithm can solve this problem in time 𝑂 (|𝐸 | 𝑘2 −𝜀). This problem is not a good

candidate for a hard space-time problem, because GJ already computes 𝑄 in optimal time 𝑂 (|𝐸 | 𝑘2)
and optimal space 𝑂 (1). Instead, we propose the following extension:

Conjecture 8.1 (The Triple 𝑘-Cliqe Conjecture). For 𝑘 := 2ℓ, ℓ ≥ 2, consider the query:

𝑄 () ←
⊗

𝑖< 𝑗∈[1,𝑘]
𝐸 (𝐴𝑖 , 𝐴 𝑗) ⊗

⊗
𝑖< 𝑗∈[𝑘−ℓ+1,𝑘+ℓ]

𝐸 (𝐴𝑖 , 𝐴 𝑗) ⊗
⊗

𝑖< 𝑗∈[𝑘+1,2𝑘]
𝐸 (𝐴𝑖 , 𝐴 𝑗) (8)

Then, for any 𝜀 > 0, no algorithm can solve this problem over the tropical semi-ring in space 𝑆 =

𝑂 (|𝐸 | 𝑘4 −𝜀) and time 𝑇 = 𝑂 (|𝐸 | 𝑘2).

The tree decomposition with three bags corresponding to the three

⊗
-expressions above uses

space
9 𝑆 = 𝑂 (|𝐸 |𝑘/4) and time 𝑇 = 𝑂 (|𝐸 |𝑘/2); the conjecture claims that it is optimal. On the

other hand, GJ computes 𝑄 in 𝑆 = 𝑂 (1) and 𝑇 = 𝑂 (|𝐸 |𝑘). This justifies a stronger version of the

conjecture: for any 𝜀 > 0, no algorithm can compute 𝑄 such that 𝑆2𝑇 = 𝑂 (|𝐸 |𝑘−𝜀).

Aiming Toward SubmodularWidth. The best known time bound for Boolean conjunctive queries is

based on the submodular width [23, 26, 30]. This measure partitions the input data based on degrees,

and uses different query plans for each partition. We have not considered the submodular width

in this paper, instead extended the (weaker) fractional hypertree width (see Thm. 7.7). However,

9
For a quick computation of 𝜌∗ observe that, for any graph𝐺 with vertices𝑉 and no isolated vertices, 𝜌∗ (𝑉) ≥ |𝑉 |/2,

because this is the value of the fractional vertex packing where each vertex has weight 1/2. On the other hand, if we can

partition𝑉 = 𝑉1 ∪𝑉2 ∪ · · · such that each graph induced by𝑉𝑖 is a clique, then 𝜌
∗ (𝑉) ≤ ∑

𝑖 𝜌
∗ (𝑉𝑖) = |𝑉 |/2. For example,

for a single 𝑘-clique𝑉 we can conclude 𝜌∗ (𝑉) = 𝑘/2 and for𝑄 in Eq. (8) we can take𝑉1 = [1, 𝑘] and𝑉2 = [𝑘 + 1, 2𝑘] and
conclude that 𝜌∗ (𝐴1 · · ·𝐴2𝑘) = 𝑘 .

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:19

extending submodular width is much more intricate as it does not generalize to arbitrary semi-rings,

e.g., not to the natural numbers N [22].

Nevertheless, aiming at adapting our approach to achieve submodular width is promising future

work. However, it at least requires the introduction of degree constraints in the analysis, which

complicates the picture significantly. Generic Join is no longer optimal in the presence of degree

constraints, and this affects pseudo-trees too. Intuitively, a pseudo-tree with structure 𝐴1 −𝐴2 −𝐴3,

rooted at 𝐴1, can benefit from constraints on the degree from 𝐴1 to 𝐴3 but not constraints on the

degree from 𝐴3 to 𝐴1 when analyzing its time and space. However, in some cases, it is possible to

meet the submodular-width’s time complexity while minimizing the space complexity, as shown

here:

Theorem 8.2. The query 𝑄□ below can be computed in space 𝑂 (|𝐷 | 12) and time 𝑂 (|𝐷 | 32):

𝑄□ () ← 𝐸1 (𝐴1, 𝐴2) ⊗ 𝐸2 (𝐴2, 𝐴3) ⊗ 𝐸3 (𝐴3, 𝐴4) ⊗ 𝐸4 (𝐴1, 𝐴4)

Proof Sketch. To achieve this, we first perform a heavy-light partitioning of the input relations

where a heavy join value 𝑎 𝑗 is one which appears in at least

√︁
|𝐸𝑖 | tuples of 𝐸𝑖 . As there cannot be

more than

√︁
|𝐸𝑖 | heavy values, we can iterate over them, instantiate them, and solve the reaming

linear query in linear time and constant space. Thus, in space𝑂 (1) and time𝑂 (|𝐷 | 32) we can handle

all heavy values.

For the case where all values are light, a different technique is needed. There, the aim is to

perform a merge join on the fly, essentially using the decomposition⊕
𝑎1,𝑎3

(⊕
𝑎2

𝐸1 (𝑎1, 𝑎2) ⊗ 𝐸2 (𝑎2, 𝑎3)
)
⊗

(⊕
𝑎4

𝐸4 (𝑎1, 𝑎4) ⊗ 𝐸3 (𝑎4, 𝑎3)
)
.

We explain how to iterate through 𝐸1 (𝐴1, 𝐴2) ⊗𝐸2 (𝐴2, 𝐴3) projected to𝐴1, 𝐴3 in lexicographic order

(the other side is symmetric). To that end, we iterate through 𝑎1 at the top level and compute the

≤
√︁
|𝐸1 | values 𝑎2 ∈ supp(𝐸1 [𝐴2 |𝑎1]) that extend 𝑎1. For every 𝑎2 ∈ supp(𝐸1 [𝐴2 |𝑎1]) we spawns a

separate process that iterates (in an ordered manner) through 𝑎3 ∈ supp(𝐸2 [𝐴3 |𝑎2]) – hence we use

𝑂 (|𝐷 | 12) processes that all require 𝑂 (1) space. Merging the loops of the different 𝑎2 results in an

ordered stream of 𝑎3 values. Thus, we go over pairs 𝑎1, 𝑎3 in lexicographic order. Doing the same

for 𝐸4 (𝑎1, 𝑎4) ⊗ 𝐸3 (𝑎4, 𝑎3) allows us to perform a merge join. In total, this is done in space 𝑂 (|𝐷 | 12)
and time 𝑂 (|𝐷 | 32). □

Acknowledgment
The work of Merkl and Pichler was supported by the Vienna Science and Technology Fund (WWTF)

[10.47379/ICT2201, 10.47379/VRG18013, 10.47379/NXT22018]. Deeds and Suciu were partially

supported by NSF IIS 2314527, NSF SHF 2312195, and NSF IIS 2507117.

References
[1] A. Abboud, V. Vassilevska Williams, and O. Weimann. Consequences of faster alignment of sequences. In J. Esparza,

P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 39–51. Springer, 2014.

[2] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded: A relational engine for graph processing.

ACM Trans. Database Syst., 42(4):20:1–20:44, 2017.
[3] M. Arenas, L. A. Croquevielle, R. Jayaram, and C. Riveros. When is approximate counting for conjunctive queries

tractable? In S. Khuller and V. V. Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 1015–1027. ACM, 2021.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:20 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. In 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 739–748. IEEE Computer

Society, 2008.

[5] J. Bader, F. Skalski, F. Lehmann, D. Scheinert, J. Will, L. Thamsen, and O. Kao. Sizey: Memory-efficient execution of

scientific workflow tasks. In IEEE International Conference on Cluster Computing, CLUSTER 2024, Kobe, Japan, September
24-27, 2024, pages 370–381. IEEE, 2024.

[6] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In J. Duparc

and T. A. Henzinger, editors, Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference
of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer
Science, pages 208–222. Springer, 2007.

[7] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J. Comput., 20(2):270–277, 1991.
[8] K. Bringmann and E. Gorbachev. A fine-grained classification of subquadratic patterns for subgraph listing and friends.

In M. Koucký and N. Bansal, editors, Proceedings of the 57th Annual ACM Symposium on Theory of Computing, STOC
2025, Prague, Czechia, June 23-27, 2025, pages 2145–2156. ACM, 2025.

[9] R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms, Second Edition. Synthesis
Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2019.

[10] K. Deeds, T. C. Merkl, R. Pichler, and D. Suciu. The space-time complexity of sum-product queries. CoRR, abs/2509.11920,
2025.

[11] R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.
[12] A. Z. Fan, P. Koutris, and H. Zhao. The fine-grained complexity of boolean conjunctive queries and sum-product

problems. In K. Etessami, U. Feige, and G. Puppis, editors, 50th International Colloquium on Automata, Languages, and
Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 127:1–127:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[13] W. Fischl, G. Gottlob, and R. Pichler. General and fractional hypertree decompositions: Hard and easy cases. In J. V.

den Bussche and M. Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, Houston, TX, USA, June 10-15, 2018, pages 17–32. ACM, 2018.

[14] M. J. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann. Adopting worst-case optimal joins in relational

database systems. Proc. VLDB Endow., 13(11):1891–1904, 2020.
[15] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in constraint satisfaction problems. In A. K.

Joshi, editor, Proceedings of the 9th International Joint Conference on Artificial Intelligence. Los Angeles, CA, USA, August
1985, pages 1076–1078. Morgan Kaufmann, 1985.

[16] Google. Google cluster data v3. https://github.com/google/cluster-data/blob/master/clusterdata2019.md, 2019.

[17] G. Gottlob, G. Greco, N. Leone, and F. Scarcello. Hypertree decompositions: Questions and answers. In T. Milo and

W. Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 57–74. ACM, 2016.

[18] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. In V. Vianu and C. H.

Papadimitriou, editors, Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages 21–32. ACM Press, 1999.

[19] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. J. Comput. Syst. Sci., 64(3):579–
627, 2002.

[20] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM,

54(1):1:1–1:24, 2007.

[21] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM Trans. Algorithms, 11(1):4:1–4:20, 2014.
[22] M. A. Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. On functional aggregate

queries with additive inequalities. In D. Suciu, S. Skritek, and C. Koch, editors, Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, pages 414–431. ACM, 2019.

[23] M. A. Khamis, X. Hu, and D. Suciu. Fast matrix multiplication meets the submodular width. Proc. ACM Manag. Data,
3(2):98:1–98:26, 2025.

[24] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently. CoRR, abs/1504.04044, 2015.
[25] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently. In T. Milo and W. Tan, editors, Proceedings of

the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 13–28. ACM, 2016.

[26] M. A. Khamis, H. Q. Ngo, and D. Suciu. What do shannon-type inequalities, submodular width, and disjunctive datalog

have to do with one another? In E. Sallinger, J. V. den Bussche, and F. Geerts, editors, Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017,
pages 429–444. ACM, 2017.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:21

[27] K. Kim, J. Ha, G. Fletcher, and W. Han. Guaranteeing the õ(agm/out) runtime for uniform sampling and size estimation

over joins. In F. Geerts, H. Q. Ngo, and S. Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 113–125. ACM, 2023.

[28] A. Lincoln, V. Vassilevska Williams, and R. R. Williams. Tight hardness for shortest cycles and paths in sparse graphs.

In A. Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, pages 1236–1252. SIAM, 2018.

[29] G. Liu, W. Lin, H. Zhang, J. Lin, S. Peng, and K. Li. Public datasets for cloud computing: A comprehensive survey. ACM
Computing Surveys, 57(8):1–38, 2025.

[30] D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM, 60(6):42:1–42:51,

2013.

[31] D. M. McKay and R. R. Williams. Quadratic time-space lower bounds for computing natural functions with a random

oracle. In A. Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019,
San Diego, California, USA, volume 124 of LIPIcs, pages 56:1–56:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2019.

[32] H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems. In J. V. den Bussche and

M. Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
Houston, TX, USA, June 10-15, 2018, pages 111–124. ACM, 2018.

[33] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms: [extended abstract]. In M. Benedikt,

M. Krötzsch, and M. Lenzerini, editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 37–48. ACM, 2012.

[34] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments in the theory of join algorithms. SIGMOD Rec.,
42(4):5–16, 2013.

[35] D. Olteanu and J. Závodný. Size bounds for factorised representations of query results. ACM Trans. Database Syst.,
40(1):2:1–2:44, 2015.

[36] T. van Bremen and K. S. Meel. Probabilistic query evaluation: The combined FPRAS landscape. In F. Geerts, H. Q.

Ngo, and S. Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 339–347. ACM, 2023.

[37] T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In N. Schweikardt, V. Christophides, and

V. Leroy, editors, Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014,
pages 96–106. OpenProceedings.org, 2014.

[38] J. Wang, I. Trummer, A. Kara, and D. Olteanu. ADOPT: adaptively optimizing attribute orders for worst-case optimal

join algorithms via reinforcement learning. Proc. VLDB Endow., 16(11):2805–2817, 2023.
[39] H. Zhao, S. Deep, and P. Koutris. Space-time tradeoffs for conjunctive queries with access patterns. In F. Geerts, H. Q.

Ngo, and S. Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 59–68. ACM, 2023.

Received June 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Constant Space Query Evaluation
	4 Revisiting Tree Decompositions
	5 Caching
	6 Resetting the Cache
	7 Using Recursion to Reorient Sub-Trees
	8 Conclusion and a Glimpse Beyond
	References

