The Space-Time Complexity of Sum-Product Queries

KYLE DEEDS, University of Washington, United States
TIMO CAMILLO MERKL, TU Wien, Austria
REINHARD PICHLER, TU Wien, Austria

DAN SUCIU, University of Washington, United States

While extensive research on query evaluation has achieved consistent improvements in the time complexity of
algorithms, the space complexity of query evaluation has been largely ignored. This is a particular challenge
in settings with strict pre-defined space constraints. In this paper, we examine the combined space-time
complexity of conjunctive queries (CQs) and, more generally, of sum-product queries (SPQs). We propose
several classes of space-efficient algorithms for evaluating SPQs, and we show that the optimal time complexity
is almost always achievable with asymptotically lower space complexity than traditional approaches.

CCS Concepts: » Theory of computation — Database theory; Design and analysis of algorithms.
Additional Key Words and Phrases: Query evaluation.

ACM Reference Format:

Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, and Dan Suciu. 2025. The Space-Time Complexity of
Sum-Product Queries. Proc. ACM Manag. Data 3, 5 (PODS), Article 283 (November 2025), 21 pages. https:
//doi.org/10.1145/3767719

1 Introduction

Algorithms for answering conjunctive queries (CQs), often generalized to sum-product queries
(SPQs), have been extensively studied. Prior work has identified tight bounds on their time com-
plexity relative to a variety of structural parameters of the query, e.g. treewidth, (generalized or
fractional) hypertree width, or submodular width [19-21, 30]. However, no attention has been paid
to the space complexity of these algorithms which can often equal the time complexity.

This is a major challenge for end-users who typically run these algorithms in settings with strict
pre-defined space constraints, e.g. GPU memory, main memory, or SSD size. If the algorithm has a
large space complexity, the user has two unsatisfactory options; 1) reserve a moderate amount of
space and risk an out-of-memory error when inputs produce large intermediates or 2) reserve a
larger, more expensive server to guarantee robustness. Developers typically place a high value on
stability which pushes them towards the latter, and this conservative impulse is further exacerbated
by the challenges of estimating space utilization ahead-of-time [5]. In the cloud setting, this has
resulted in the well-known problem of over-provisioning memory with over 90% of jobs in the
Google Cluster Dataset using less than 20% of the provisioned memory [16, 29].

In this paper, we examine the combined space-time complexity of SPQs to address these space-
constrained settings — illustrated here in the introduction for CQs. We begin by formally defining
these notions of complexity. A query plan II for a query Q is a structure that is associated with a
specific algorithm for evaluating Q, e.g. a tree decomposition, or join-plan, or a variable order for

Authors’ Contact Information: Kyle Deeds, University of Washington, United States; Timo Camillo Merkl, kdeeds@cs.
washington.edu, TU Wien, Austria, timo.merkl@tuwien.ac.at; Reinhard Pichler, TU Wien, Austria, reinhard.pichler@tuwien.
ac.at; Dan Suciu, University of Washington, United States, suciu@cs.washington.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/11-ART283

https://doi.org/10.1145/3767719

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

https://doi.org/10.1145/3767719
https://doi.org/10.1145/3767719
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3767719

283:2 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

generic-join. We denote a class of plans by C, e.g. all tree decompositions, and the plans of C for a
query Q as C(Q). Each plan II is associated with a space exponent s(II) and a time exponent t(II).
The latter bounds the associated algorithm’s runtime by O(|D|*™). The former bounds the space
used by the algorithm by O(|D|*™), excluding the space required to store the input relations. We
will often refer to these jointly as the space-time exponents e(IT) = (s(II), t(I1)).

Definition 1.1. (Plan Domination). Let IT;, IT; be two plans for the same query Q. We say II;
improves over I1,, or that IT; dominates I1,, denoted IT; = II,, if t(IT;) < t(IIz) and s(IT;) < s(II2).
We say that I1; strictly dominates I1,, denoted IT; < IIy, if IT; < II, but not vice versa.

A class of plans C; improves over (dominates) another class C, denoted C; < C, if for every
query Q, it holds that VII, € C,(Q), 31I; € C;(Q) such that IT; < II,. Notice that < over classes of
plans forms a preorder. We say that C; strictly dominates C,, denoted C; < C, if C; < C, holds but
not vice versa.

This paper studies, compares, and improves the space-time exponents of various query evaluation
methods proposed in the literature, both for database queries and for probabilistic inference in
graphical models. As explained, we distinguish between the algorithm used to evaluate the query,
and the plan, which is a syntactic structure (e.g. a tree, or a variable order), on which we can define
simple measures (e.g. depth of a tree). Every plan is canonically associated with an algorithm,
but the set of plans for a given query is finite, while that of algorithms is infinite. Our choice to
distinguish these two notions may be less common in the theory community, but it is standard in
database systems, where a “plan” refers to a relational algebra expression. With this distinction in
mind, let’s examine what types of plans have been considered in the literature.

Prior work on conjunctive query answering has focused only on the time complexity. Standard
relational algebra plans, described in all textbooks on database systems, are known to be suboptimal,
hence we do not discuss them in this paper. For a full CQ (query without projection), a worst-case
optimal join (WCQJ) algorithm runs in time O(|D|?"), where p* is the fractional edge cover number
of Q; this time is proportional to the worst-case output size of the query [4]. While the first WCQOJ
algorithms were first introduced in [33, 37], the best known variant is Generic Join (GJ) [34]. A
GJ plan consists of a total order on the query variables, and the associated algorithm consists of
nested for-loops, one for each variable. Somewhat surprisingly, GJ can be proven to run in time
O(|D|*") independently of the plan’. GJ can easily be adapted to compute conjunctive queries with
projections (i.e. non-full queries), however it is no longer guaranteed to be worst-case optimal.
The space required by a GJ plan consists of the space needed to store the iteration variables of the
for-loops, which is O(1) since each variable stores a single domain value, plus the space required to
store the query’s output. In the case of a Boolean query, the output also has size O(1), therefore the
space-time exponents of a GJ plan are (0, p*). GJ is always space-optimal, but its time complexity
is in general suboptimal for queries with projections.

Handling projections efficiently, and in particular handling Boolean queries, requires new tech-
niques. All solutions proposed in the theoretical database community are based on tree decom-
positions [2, 3, 17, 18, 25, 27, 36]. As the name implies, a tree decomposition is a formalism for
splitting the query into small, manageable sub-queries, called bags, and composing these bags
into a tree. Execution proceeds by computing the result of each bag, then semi-joining the results
bottom-up trough the tree decomposition. The overall time complexity is given by the time required
to solve every bag, which is generally referred to as the width of the decomposition. In the literature
one finds different approaches on how to evaluate the bags, leading to various notions of width,

n practice, the choice of the plan (i.e. of the variable order) makes a huge difference for the instance-specific runtime,
see [38], but we do not discuss instance-optimal algorithms in this paper.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:3

such as tree width, generalized hypertree width, and fractional hypertree width (fhw) [13]. A tree
decomposition plan consists of both a tree decomposition, and a choice of a plan for every bag of
the tree decomposition. When we choose generic join to compute the bags, then the space-time
exponents of the tree decomposition plan are (fhw, fhw).

Many more inference algorithms have been described in the field of probabilistic graphical
models (PGMs); we direct the reader to [9] for a comprehensive overview. While PGM inference
can be expressed as a scalar sum-product query studied in this paper, the runtime analysis of PGM
inference algorithms differs from that done for query evaluation because the input data in PGMs
is assumed to be dense, and the runtime is always expressed as an integer power of the domain
size. For example, in the case of a tree decomposition, the time exponent is the tree width, instead
of the (much smaller) fractional hypertree width used in the analysis of query evaluation. One
of the contributions of our paper consists in adapting some of the PGM inference algorithms to
query evaluation, and providing their runtime analysis. The algorithms of interest to us here are
the pseudo-tree based algorithm, and its refinement to caches and resets (called purges in [9]).

A Pseudo-Tree (PT) for a query is a tree whose nodes are the query variables, such that the
variables of every query atom are contained in some path from the root to a leaf (formal definition
in Sec. 3). A PT is a plan for the query, and its natural algorithm consists of for-loops, whose nesting
structure is given by the PT. A Generic Join plan is a special case of a PT, where the tree consists
of a single path, but, in general, a PT can have an improved time exponent because for-loops for
independent variables can be executed sequentially, instead of nested. The space required remains
optimal and is O(1) (plus the space required to store the output, as we discuss in this paper). The
term pseudo-tree was coined by Freuder and Quinn in the context of constraint optimization [15].

The runtime of a search algorithm can often be improved by the addition of a cache. Dechter [9]
adds a cache to each node of a pseudo-tree, leading to an improved time complexity, at the cost of
using more space. The cache associated to a query variable is a hash table, whose key consists of
certain ancestor variables in the pseudo-tree (formal definition in Sec. 5). To allow some tradeoff
between the space and time complexity, Dechter describes a refinement, by which the size of a
cache can be reduced by simply removing some of these ancestors from the hash table, and resetting
the cache when their value changes (details Sec. 6). But no complexity analysis is provided for these
techniques, even in the simplified complexity model of the probabilistic graphical models.

While no prior work has examined the end-to-end space-time complexity of CQ evaluation, two
related lines of research should be acknowledged. For one, research on factorized databases aims to
create a space-efficient data structure from which the answers can be enumerated efficiently [35].
Second, under the name conjunctive queries with access patterns, prior work has explored how to
materialize a space-efficient set of views to speed up subsequent query execution [39].

Our Contributions. In this paper we study the space-time tradeoff of several classes of query plans,
of increased sophistication: Generic Join and Pseudo-Trees (Sec. 3), Tree Decomposition (Sec. 4),
Pseudo-Trees with Caching (Sec. 5), Pseudo-Trees with Caching and Reset (Sec. 6), and finally
Recursive Pseudo-Trees (Sec. 7). We fully characterize their domination relationships (Def. 1.1)
and represent the resulting hierarchy in Fig. 1: lower classes have smaller exponents, and thus are
better. We describe now our results in more detail, referring to this figure.

At the top of the figure is Generic Join (G J), which is dominated by all other classes. From
there, we generalize G J along two main axes. First, we consider pseudo-tree plans 7. These
were originally introduced for constraint satisfaction problems, where they correspond to Boolean
queries, or, more generally, to scalar sum-product queries. We extend £7’s to handle arbitrary
outputs, and characterize their space-time complexity: unsurprisingly, they strictly dominate G.J .
We then revisit the plans based on tree decompositions, noticing that such a plan must consist

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:4 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

G9
Am. 4.6\’
—eo—o PT TPGT e—e—eo—e
\ /‘ hm. 5.6 Name Class of Query Plans Based On:
PTC Gy Generic-Join
PT Pseudo-Tree
\Tglm' 57 PTC Pseudo-Tree with Caching
PTCR - Thm67 . TDPTT<m7 TpPTC PTCR Pseudo-Tree with Caching and Reset
) Fig. 6,9 RPT Recursive Pseudo-Tree
\ ‘WW%:W‘ VO Tree-Decomposition, with a query
T DPTCR é‘!"\!\é&ﬁ\!’A plan from C applied to each bag

JThm 7.6, Fig. 10

'RSD‘TThm. 7.5 T ORPT

Fig. 1. Classes of query plans, ordered by their space-time exponents: lower classes have smaller exponents
and are better. An arrow C; — C; means that every plan in Cz can be mapped to a plan in C; with space-time
exponents at least as good; in particular, C; X Cy (see Def. 1.1). A missing arrow, i.e. C2 - C1, means C; Z C.
In particular, all downward arrows indicate strict domination (Cor. 6.8, Thm. 7.6). The depicted graphs are
examples of scalar queries with binary predicates that separate the classes; the colors represent maximal
cliques.

of both the tree decomposition and the plans used to compute each bag. Thus, 7D9 are tree
decompositions plus generic join, while 79D%” are tree decompositions plus pseudo-trees. The
figure shows that 7997 dominates G.J (as expected); we discuss 7D%7 shortly.

Next we study the extension of 7~ with caches, P7 C; we slightly extend the original definition
in [9] by allowing caches to be added to any subset of the nodes of the pseudo-tree, instead of all
nodes. As the figure shows, 7 C strictly dominate 7 DY This is somewhat surprising, because
a tree decomposition allows a query to be computed “in small pieces”, by computing one bag at a
time, while a pseudo-tree consists of nested for-loops, requiring a global approach. Yet, by using
caches, a pseudo-tree can simulate what a tree decomposition does, and, for some queries, strictly
improve the space-time exponents. However, if we use pseudo-trees instead of generic join to
compute the bags of a tree decomposition, then the order reverses: 79D 7 strictly dominates P7C.
Interestingly, if we try to improve tree decompositions by computing the bags using pseudo-trees
with caches, TD* 7€, we don’t gain any improvements over not using caches, 7D%7 .

Next, we further refine pseudo-trees by allowing caches to be reset (and thus reduce their memory
usage), and denote the resulting plans by P7 CR. As explained, cache reset was already discussed
in [9], but no complexity analysis was provided. It turns out that computing the time complexity is
more difficult in this case, because of the interaction between the various caches in the pseudo-
tree. Instead, we modified the algorithm in [9], thereby both improving its time complexity, and
making the analysis possible. As expected, adding resets improves the space-time complexity, and
combining it with a tree decomposition, 7D%7 €% further improves this complexity.

Lastly, we describe a new type of query plans to dominate them all, called Recursive Pseudo-Trees.
These appear to represent the best space-time tradeoff, because even by extending them with tree
decompositions, the space-time exponents do not improve.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:5

The reader may have noticed that all our results concern only upper bounds, and no lower
bounds. It turns out that very few space lower bounds are known in the literature, and none of
them applies to the sum-product queries studied in this paper. We discuss lower bounds in Sec. 8,
were we also conjecture the space-time hardness of a specific query.

Further, all discussed methods aim at being more space efficient than existing tree decomposition
based methods. As such, naturally, the time exponent is always at least as large as the fractional
hypertree width (fhw). To go beyond this barrier, fundamentally different techniques are needed
and are left as future work. Some intricacies of this are hinted at in Sec. 8.

Due to space limitations, proof details can be found in the full version of this paper [10]. For
some of the theorems, we need to prove the non-existence of certain structures. This is done
by computer-assisted exhaustive enumeration. To that end, we developed software for comput-
ing the optimal time exponent of the 7 and PT CR classes when given a space exponent
(https://github.com/kylebd99/submodular-width).

2 Preliminaries

Throughout this paper we fix an infinite domain dom. We denote (sets of) variables by capital letters
AB,C,... (X,Y,Z,...)and (tuples of) domain values by lowercase letters a, b, c,... (x,¢,2,...).
We will also refer to variables as attributes when this is more appropriate. If X, Y are two sets of
variables and x € dom™, then we denote by x[Y] the projection of x on the variables X N'Y.

Fix a commutative semi-ring (K, &, ®, 0,1). A K-relation is a function R: dom*X — K with finite
support, meaning that supp(R) := {x | R(x) # 0} is finite. When X = 0 then we identify R with
the scalar value s := R() € K. By the cardinality of R, in notation |R|, we mean the cardinality of its
support, and we write x — s € R when x € supp(R) and R(x) = s. A K-database D, or simply a

database when K is clear from the context, is a tuple of K-relations D = (RP, ..., Rg). Its size is
ID| :== X1, IRP|.
A sum-product query (SPQ or query for short) is an expression of the form:
Q(X) — (X) Ri(Xy) (1)
i=1,...m

where R; are unique relation symbols and X, X ... are sets of variables such that X € var(Q) :=
U; Xi. We refer to this query simply as Q, and call X the output variables or head variables of Q.
When X = var(Q) then we say that Q is a full query, and when X = 0 then we call it a scalar query.
If the semi-ring K is the set of Booleans B, then a scalar query is called a Boolean query.

The semantics of Q on a database D is the K-relation [[Q]]D : dom™ — K defined as follows. Let
V = var(Q) be the set of variables of the query Q in Eq. (1). Then:

I°@= P (@ R?(v[x,-n)
vedom” : v[X]=x i=1,...m
We may omit the superscript D when it is clear from the context, and write R;, [Q] for RP, [[Q]]D .

Example 2.1. Most of our examples (in particular those used for separating families of query
plans) will feature queries where all relations are binary, which allows for an intuitive representation
as graphs. For instance, the 3-path on the top left of Fig. 1 represents the scalar query Q() «
Ri(A, B) ® Ry(B, C), whose semantics is 3, j, ccdom Rf)(a, b) - RZD(b, ¢) over the natural numbers N.

Let Y C wvar(Q) be a set of variables. A fractional edge cover of Y (with respect to Q) is a
sequence of non-negative weights w;, one for each relation R;, such that, for every variable A € Y,

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:6 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

Yiaex; Wi 2 1. The fractional edge cover number of Y, p*(Y), is the minimum value of 3’; w;, when
the weights w; range over fractional edge covers of Y.

Complexity analysis of algorithms. We assume the RAM model, where each cell can hold a single
element from the domain or from the semi-ring. As far as (normal and semi-ring) arithmetic is
concerned, we assume that each operation requires constant time. For query evaluation, we only
study the data complexity, i.e., the (size of the) query is considered as constant. Several of our
algorithms assume a particular order of the tuples of the relations. We assume that sorting a relation
does not use additional space. We will also ignore the additional log-factor due to sorting and/or
lookups, and write our upper bounds using O instead of O.

3 Constant Space Query Evaluation

In this section, we briefly review Generic Join and its space-time exponents. Then, we discuss
pseudo-trees [9, 15] and extend them in two significant ways: we generalize them to non-scalar
queries, and analyze their space-time exponents using techniques similar to those used for Generic
Join.

Generic Join. Consider a query Q(X) in Eq. (1), with variables var(Q) = {Ay,...,Ar}. The
Generic Join (GJ) algorithm [32] computes Q(D) in worst-case optimal time given by the AGM
bound O(|D|P"(ar(Q))) [4]. GJ fixes an arbitrary order on the variables, A, ... Ag, and computes
iteratively partial assignments y; = (ay,...,a;) onY; = (Ay,...Aj), forall 0 < j < k. It starts with
the empty assignment gy, := () and, in k nested loops, it extends it to one variable after the other,

as follows. Assuming a partial tuple y;_1 = (ay,...,a;_1), the j’th nested loop is:
forajin () supp(Ri[Aly;1]) do...)
iiAjeX;

where supp(R;[Ajly;-1]) represents the A;-values in the relation R;, restricted to tuples that agree
with the values? y;_;. GJ computes the intersection above in time proportional to the smallest set,
for example by iterating over the smallest set and probing (using hash tables) in all the other sets.
If Q is a full SPQ, then in the inner-most loop, GJ simply outputs the assignment y; +— s, where
s == @), Ri(yr[X;]) € K. If Q is a scalar query, then the innermost loop computes the sum of these
values s € K. In the general case, C X C var(Q), GJ maintains a hash-table OUT : dom* — K to
store the current output, and the inner-most loop updates OUT (yx[X]) := OUT (yx[X]) & s. The
time complexity of GJ is O(|D|P"(**"(Q)))_Tts space complexity, i.e. the memory size required in
addition to the input database, consists of the k variables ay, . .., ai, with a total size of O(1), plus
the space required to store the output OUT, whose size is O(|D|?"(X)).

Definition 3.1. A Generic Join Plan of a query Q is a total order on its variables, IT = (A, ..., Ax).
We denote by G J (resp. G.J (Q)) the set of all Generic Join plans (of Q). The space-time exponents
of any IT € G J(Q) are e(IT) = (p*(X), p*(var(Q))); in particular, if Q is a scalar query, then the
space-time exponents are (0, p*(var(Q))).

Tueorem 3.2 ([34]). If 11 € GJ(Q), then II computes [Q] in space and time given by e(II).
Concretely, the space used is O(|D|P" X)), and the time spent is O(|D|P"(v*"(Q))),

When the cardinalities of individual relations are known, N; = |Ry|, N2 = |Ry|, ..., then tighter
space-time bounds are given by O([]; Niw"), where w}, W, ... is the fractional edge cover of X

(or var(Q) respectively) that minimizes []; NiW; . In the special case when N; = N = --- = N this

Formally, supp(R;[Ajly;-1]) = {z[A;] | z € supp(R;), z[Yj_1] = y;j_1[Xi]}.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:7

is equal to O(|D|?"). In this paper we prefer to use the simpler formula, and will note where the
tighter formula is needed.

Pseudo-trees. For a full query, any GJ plan is worst-case optimal, because the output size can
be as large as O(|D|P" (*(Q))) [4]. But when Q is not full, GJ is no longer optimal. A pseudo-tree,
defined below, improves the time exponent of GJ, without increasing its space exponent.

Example 3.3. For a simple intuition, consider the 3-path scalar query in Example 2.1. GJ computes
it using 3 nested loops, corresponding to the variables A, B, C; intuitively it computes the expression
Yia b e Ri(a,b)Ry (b, ¢), with runtime O(|Ry| - |R2|). A pseudo-tree based algorithm, in contrast,
iterates over B first, then performs two independent loops that iterate over A and C respectively;
this corresponds to the expression Y, (2, Ri1(a, b)) - (3. R2(b, ¢)), and the runtime is O(|R; | +|Rz|).

If T = (V,E) is a directed tree and A € V, then we denote by anc(A) the set of ancestors of A
excluding A, and write anc(A) = anc(A) U {A}. Similarly, we write desc(A), desc(A) for the set of
descendants of A, without and with A respectively.

Fix an SPQ Q(X) «), Ri(X;) (see Eq. (1)), and let V = var(Q).

Definition 3.4 ([9, 15]). A pseudo-tree (PT) of Q is a directed tree P = (V, E), satisfying:

e Every atom R;(X;) is contained in a branch: formally, JA € V such that X; C anc(A).

The term pseudo-tree was introduce by Freuder and Quinn in the context of constraint optimiza-
tion [15], and studied extensively by Dechter [9]. Pseudo-trees are a generalization of normal trees,
also called Trémaux trees used in graph theory [11, Ch.1], which are pseudo-trees where every tree
edge is also an edge in the graph.

For any variable A € V, we denote by out(A) := desc(A) N X and by out(A) := desc(A) N X.

Definition 3.5. The class of query plans P7 (Q) consists of pseudo-trees P of Q and their space
and time exponents are defined as:

P) = “(out(4)), t(P):= * A) U out(A)).
s(P) A0 P (out(A)), t(P) 403X P (anc(A) U out(A))

When Q is a scalar query, then the space exponent is s(P) = 0. Pseudo-trees strictly dominate
Gl,ie. PT < GYJ as per Def. 1.1 because, any variable order of a GJ can be converted into a linear
PT A; — Ay — - -+ — Ay, and the two plans have the same space-time complexity thus P7 < G.J.
On the other hand, Example 3.3 shows that GJ £ P7 . This establishes the first arrow in Fig. 1.

It remains to describe an algorithm that, given a pseudo-tree P for Q, computes [Q] in space-time
given by the exponents in Def. 3.5. First we need to introduce some notations. If R(X) : dom™ — K
is a K-relation and A € X, then we write supp(R[A]) := {x[A] | x € supp(R)} for the projection of
supp(R) on the attribute A; in other words, this is the A-column of R. We generalize this as follows.
Let Y be a set of variables s.t. A ¢ Y, and y € dom". We write supp(R[A]y]) for the projection on
A of the tuples in supp(R) that agree with y: supp(R[Aly]) := {x[A] | x € supp(R), x[Y] = y[X]}.

Algorithm 1 (ignore the gray lines for now) evaluates Q(X) recursively, by following the structure
of the pseudo-tree P. We start from the root A;, and proceed recursively in the tree. Assume we
have followed a path Y = (A, Az, ..., Aj_1), and have bound these variables to the tuple y € dom?.
For a child A of Aj_;, SOLVE(4, y) first computes the following K-relation [Q[A[y]] : dom® — K:

[O[Aly]] =1ar X) Rily/'[X:])

X\ Y={A}

ac [supp(RilAlyD.y = (y.0) ®

:AeX;

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:8 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

Algorithm 2 Alg. 1 for the PT in Fig. 3

Algorithm 1 PT Algorithm (excl. gray parts)

B
Algorithm 3 PTC Algorithm (incl. gray parts) OUT” < 0
2. for b — s € [Q[B]] >sb=1
Input: Query Q(X), pseudo-tree P, 3 >be R [B]N--NRs[B]
caches C Q};ﬁar(Q) " OUTA «— 0
Output: [Q]: dom™ — K 5. foraws sie [Q[AB]] > s®=Ri(ab)
1: return soLvE(root(P), ()) o OUTA — OUTA + 5@
2: forA eC 7: s sb. OUTA,0UTE « 0
3 My 0 — 8 for e s¢ € [Q[EID]] »s°=Ru(be)
4 function soLve(A, y): dom™™ K, > e € Ry[E|b] N Rs[E] N Ry [E]
5: if A € C Ay[con(A)] € keys(My) 10: OUTP — o
6: return ;\[A(y[con(A)])i 11: ford— s? ¢ [O[D]bel]
7. OUT « {z > 0 | z € dom*“* Y} 12: >s? = Ry(b,d) - Re(e, d)
8: fora s € [Q[Aly]] > see Eq. (3) 13: OUTP « OUT? + 54
9% Y < (ya) 14: s¢ « s¢- OUTP,OUTF « 0
10 TMP « {a[X N {A}] — s} 15: for f > s/ € [Q[F|be]]
11: for B € child(A) 16: OUT! « OUT! +s/
12: TMP « TMP ® soLvE(B,y’) 17: s¢ « s¢-OUTF, OUTE « OUTE +5¢
13 OUT « OUT & TMP 18 s? b OUTE,OUTC « 0
14: if AeC 19: for ¢ — s¢ € [Q[C|D]]
15 My < Ma U {y[con(A)] — OUT } 20: OUTC® « OUTC + ¢
16: return OUT 21: s? s OUTC, OUTE « OUT® + b

22: return OUT?

Intuitively, [Q[A|y]] contains the possible values of A that extend y in a manner consistent
with Q. To compute (3), the algorithm iterates over all values a € ("); supp(R;[Aly]), by intersecting
the A-attributes of all relations that contain the attribute A (similarly to Generic Join in Eq. (2)),
then maps each such value a to s € K, where s is the product of all K-values of the relations whose
last attribute (in the order of the pseudo-tree) is A: the condition X; \ Y = {A} checks that A is
the last attribute of R;(X;), while R;(y’[X;]) € K is its value associated to y’ := (y, a). Like GJ,
the algorithm computes the intersection of supp(R;[Aly]) on the fly in time proportional to the
smallest set. That is, the algorithm iterates over the values a — s in [Q[Aly]], and performs a
recursive call on each child B of A. When Q is a scalar query, then both TMP and OUT are scalars
(because out(A) = 0), and the algorithm simply multiplies the values of all children B, then adds up
these values over all a’s. When Q has output variables X, then both OUT and TMP are K-relations.
OUT has type dom® K. Initially, TMP has attributes X N {A} (i.e. either @ or {A}), while
the natural join> TMP « TMP ® soLvE(B,y’) extends TMP with out(B), so that, after processing
all children B of A, TMP has the same schema as OUT, and the algorithm adds up these values over
all a’s.

THEOREM 3.6. If P € PT(Q), then Algorithm 1 computes [Q] in time O(|D|*")) and uses
O(|IDSP)) space (where s, t are given by Def. 3.5).

3The natural join Ry ® Ry of relations R; : domYi — K is defined as (R; ® Ry) (1) := Ry (u[U;]) ® Ry (u[Uy]) where
u € domY1YY2 Note the schemas of TMP and SOLVE(B, y’) are disjoint and, hence, it degenerates to a Cartesian product.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:9

R, Ry B F 1?]‘3
A— B¢ RN /\ B | 4B 14
R ‘R4 Rs A E c A—B b 1‘;
D—E F /\ /M\ N\

Rs R7 D F E—D—C E C

Fig. 2. Query Ox Fig. 3. Pseudo-tree for Qx Fig. 4. Query Oa Fig.5. 7D 7 plan for Qa

Example 3.7. Consider the scalar query Qx() depicted in Fig. 2, over 7 N-relations. Its fractional
edge cover number is p* = p*(var(Q)) = 4. Generic Join computes the query using 6 nested
loops, one for each variable A, B, ..., F, and its runtime is O(|D|*). Consider now the PT P in
Fig. 3. We check that it satisfies the condition in Def. 3.4: indeed, each relation is included in
a branch, e.g., relation Rs5(B, F) is included in the branch B — E — F. Its space-time exponents
are e(P) = (s(P),t(P)) = (0,3/2); indeed, s(P) = p*(0) = 0 because Qf is a scalar query, and
t(P) = max(p*(anc(A)), p*(anc(B)), p*(anc(C)), p*(anc(D)),...) = max(1,1,1,3/2,1,3/2) = 3/2.
Algorithm 2 (the expansion of Algorithm 1) computes Qz following the PT. It starts with a loop for
the variable B, but, unlike Generic Join, it continues with three independent loops, one for each
variable A, E, C respectively. The for-loop for E contains another two, independent for-loops, for D
and F. Notice that the first loop, for B, is over the intersection of the attributes B of all relations that
contain B (to reduce clutter we omitted supp in the comment), while the associated value s? is 1,
because there are no relations that “end” at B. On the other hand, the loop for A associates to s the
value R; (a, b), because A is the last attribute of the relation R; (A, B). Similarly, the loop for e is over
the intersection of the E-columns Ry, Rg, R; (where Ry is restricted to the value b), and the value we
associate to e is s¢ = Ry(b, e), because Ry (B, E) is the only relation that ends at E. The runtime of
Algorithm 2 is O(|D|"?), because it is dominated by the nested loops B — E — D and B — E — F, each
requiring only O(|D|”?) steps. Since Qx is scalar, both TMP and OUT are scalars (to reduce clutter
we did not include the variables TMP but used s instead). Consider what happens if we modify
the query to have output variables X = {D, F}. Then, OUT#, OUTE are still scalars while OUTP
is a K-relation with attribute D, OUTY has the attribute F, and OUTE, OUTE have attributes DF.
Further, the space-time exponents become (p*(DF), p*(BEDF)) = (2,2) computed, e.g., at E.

4 Revisiting Tree Decompositions

Tree decompositions (TDs) have been extensively studied in the literature [19-21, 30]. Like a PT, a
TD may decrease the time exponent of generic join, but it may increase the space exponent. We
briefly review the definition of TDs , then show that they are incomparable to PTs.

In this section we fix a query Q(X) «), Ri(X;), as in Eq. (1).

Definition 4.1. A tree decomposition of Q(X) is a tuple TD = (T, y) where T = (V,E) is a
directed tree and y : V — 2*(Q) js a function from the nodes to sets of variables, satisfying:

(1) X € y(root(T)),

(2) YA € var(Q), the nodes v with A € y(v) must form a connected subset of V,

(3) VX;3v € V s.t. X; C y(v). We pick an arbitrary such v and say R;(X;) is covered by v.

The sets y(v) are called bags. Readers familiar with free-connex tree decomposition may notice
that condition (1) is more restrictive, but that’s OK for our purpose, because we only consider
worst-case optimal algorithms, and do not consider constant-delay algorithms [6]. Any free-connex
tree decomposition can be converted into a tree that satisfies Def. 4.1, by adding a bag with all
output variables X, without increasing its worst-case total runtime.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:10 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

To each tree vertex v € V we associate a query, as follows. Let Y? := y(v) and Z° := y(v) N
x(parent(v)) (when v is the root node, then Z° := X) and define the K-relation R : dom™ """
K as RY := R; when R; is covered by v, and RY(z) := ({z + 1| 3x € supp(R;) s.t. z = x[Y"]})
otherwise. In other words, for all v € V but one, the relation R} is a {0, 1}-relation consisting of the
projection of supp(R;) on the variables X; N Y?. Define the sub-query Q° at node v as:

0°(z9) « RQR(XinY)® (X) 0¥z)
i we child(v)
Notice that var(Q°) = y(v) = U; var(RY) = Y?, since Z" C y(v) for all w € child(v).

We use the TD to compute Q(X) by computing all subqueries Q%, bottom-up. For each v € V,
first compute recursively the subqueries Q' (Z") of its children w, materialize these results, then
compute QY as in Eq. (4). The materialized results Q' (Z") are called messages in the literature.

It remains to decide what plan we use to compute the subqueries Q°. This justifies the following:

Definition 4.2. Let C be a class of query plans for evaluating SPQs. The class of plans 7D (Q)
consists of pairs (TD,), where TD is a tree decomposition of Q, and r is a function that maps
each vertex v in TD to a plan 7° € C(Q?). The space and time exponents are

s(TD,) = maxs(x®), t(TD,)= maxt(x"). (5)

THEOREM 4.3. Let s, t be the space and time exponents of the plans C, such that for every query
Q’ and plan = € C(Q’), [Q’] can be computed in space O(|D]*"™) and time O(|D|*"™). Then, for
every plan (TD,) € TDC(Q), [Q] can be computed in space O(|D|*TP™)) and time O(|D|*(TP™)),
where s(TD, i) and t(TD, r) are given by Eq. (5).

Two remarks are in order. First, we notice that the space needed to store the message Q° that is
sent to the parent is already accounted for by the space exponent s(x”). Second, when computing
the space-time exponents of the query QY we need to account for both the sizes of the input
relations R;, and for the sizes of the incoming messages Q. The latter can be asymptotically larger:
if the bags are computed using Generic Join, or Pseudo-Trees, then we need to use the tighter upper

bound expression O(]]; Niw") rather than O(|D|?"), see Sec. 3. We illustrate with an example.

Example 4.4. Consider the 4-cycle query On() « E{(A1,A2) ® Ez(Az As) ® E3(As, Ay) ®
E4(A1, Ay), and the tree decomposition with two bags y(v) = {A1A2As}, y(w) = {A3A4A1},
where v is the root. Assume |E;| = |E;| = |E3| = |E4] = N. The sub-query at w is Q" (A;143) =
E3(AsA4) ® E4(A1As). Its space-time exponents are (2, 2), because the optimal fractional edge cover
(for both var(Q) and {A;, A3}) is w3 = wy = 1. This means that GJ can compute it in time O(N?), and
its output takes space O(N?). Consider next the sub-query Q?() = E;(A;A2)®E;(A2A3)®Q" (A1A3).
Although QP has the shape of a triangle query, GJ does not compute it in time O(N!->) but rather in
time O(N?), because the message Q" can be as large as O(N?). The optimal fractional edge cover,
which minimizes |E;|*" - |[E2|"2 - |Q™|™, is w; = w, = 1 and wy = 0, and GJ will compute this query
in time O(N?) and space O(1). Therefore, the space-time exponents of this tree decomposition are
(2,2).

In this simple 4-cycle example, using pseudo-trees instead of GJ to compute the bags does not
improve either the space or time exponent. However, we will see in Example 4.5 that replacing GJ
with PT can lead to asymptotic improvements.

When all cardinalities are equal |R;| = |Ry| = - - - then the simplified formula O(|D|?") still gives
an upper bound on the time and space complexity, assuming that we ignore the messages Q* when

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:11

computing p*; equivalently, we assign each of them the weight 0. Hence, for a 79D9J plan with
tree decomposition (7T, y), we get the following space-time exponents (known as folklore):

s(T, x) =max | p*(X), (mr)glggmp*(x(u)ﬂx(v)) , t(T,x)=Uga}>;)p*()((v))=fhW(T,x)- (6)

In words, the space exponent is the maximal fractional edge cover number of the intersection of
adjacent bags (or the maximal output size) while the time exponent is simply the fraction hypertree
width of the tree decomposition.

We end this section by comparing 7D for different C and proving some of the domination
relations in Fig. 1.

Example 4.5. TD*7 plans can strictly improve both the time and the space exponents of 7D9J
plans. For example, consider the query Qa () in Fig. 4, and the 7D*” plan in Fig. 5. Using GJ to
process the bags results in space-time exponents of (1,5/2) while using the PTs results in (1, 2). We
can improve the exponents even further, by using a TD with a single bag ABCDEF. To compute it,
add the node F as a child of B to the left PT in Fig. 5. The space-time exponents decreased to (0, 2).

THEOREM 4.6. The following hold: PT £ TDI, 7DYT £ PT, andVC: TDC < C.

ProoF SKETCH. PT £ T DY follows from the fact that the 4-path query R(AB) ® S(BC) ®
T(CD) admits a 7DY7 query plan I with e(II) = (1,1), while time exponent 1 is not feasible in
PT.TD9T £ PT is proved by showing that the 3-path query in Example 2.1 has a plan IT € P~
with e(IT) = (0, 1), while 7D97 allows for plans IT" with e(I1") = (1, 1) or e(II") = (0, 2) but not
(0,1); none dominate e(IT) = (0,1). 7D < C follows as Q° = Q for the single-bag TD. O

5 Caching

In this section, we describe the addition of caching to pseudo-trees. While this method was intro-
duced in [9], we extend it here to handle output variables, and perform its (non-obvious!) space-time
analysis. A cache is a data structure that maps from a set of keys to a set of values.

Example 5.1. To motivate caching, consider the 4-path query Q() « R(AB) ® S(BC) ® T(CD),
over the semiring N, and consider the linear PT A — B — C — D, where A is the root. The runtime
of this plan is given by the AGM bound, O(N?). Intuitively, this query plan corresponds to the
summation Y, (3, R(ab) - (2. S(bc) - (24 T(cd)))). We note that the subexpression Mc(b) :=
e S(be)->. 4 T(cd) isindependent of a, and, by caching the values Mc(b), we can avoid recomputing
this expression. Similarly, we can cache Mp(c) := } 4 T (cd). By adding caches to Algorithm 1 we
can trade off space for time. In our example, the two caches decrease the runtime of the PT above
from O(N?) to O(N), while the space increases from O(1) to O(N).

Throughout this section we fix a query Q(X) « (X); Ri(X;) and a pseudo-tree P = (V,E),
where V = var(Q). Assume we decide to cache the values returned by soLVE(A, y) of the recursive
Algorithm 1, for some A € V. The key of the cache My at A is called the context of A.

Definition 5.2 ([9]). The context of a variable A € V is defined as
con(A) = {B € anc(A) | 3C € desc(A), s.t. B,C € X; for some atom R;(X;) of O},
and the closed context of A is con(A) = con(A) U {A}.

The main property of con(A) is that the value returned by SoLVE (A, y) depends only on y[con(A)]
and not on the entire tuple y. Therefore, we can cache these values in a cache My with key con(A),

out(A)

whose values are K-relations of type dom — K (the type returned by soLvE(A4, y)). The

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:12 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

con(A)

type of this cache is M, : dom — (dom@m) — K), which is equivalent, through curry-

uncurry, to My : dom®**) Vout(4) _, K. Therefore, the space usage of the cache My, is given by
p*(con(A) U out(A)). The time spent by the algorithm at node A will be reduced, because it only
needs to call SOLVE(A, y) once for each distinct value y[con(A)]. We are now ready to define a

pseudo-tree with caching:

Definition 5.3. A pseudo-tree with caching (PTC) of Q is a pair (P, C), where P = (V,E) is a PT of
Q, and C C V is a subset of the variables for which we add a cache. We require root(P) € C.

The gray lines in Algorithm 1 represent its extension to caching, which we call Algorithm 3.
We now compute its space-time complexity. We have already seen the space requirement for
a cache M, and, hence, know the space complexity. So, let us focus on the time complexity. If
we do not use any caches, then the time complexity of the for-loop in line 8 of the Algorithm
is p*(anc(A) U out(A)): this is what we used in Def. 3.5. But if some B € anc(A) uses a cache,
then it suffices to consider only the set* con(B) U [A, B] instead of anc(A). Indeed, consider two
calls to SOLVE(A, —): first, SOLVE(A, x), followed at some later time by a second call SOLVE(A, y). If
x[con(B) U (A, B]] = y[con(B) U (A, B]] then the second call will not happen, because of the cache
at B. The only variables in anc(A) relevant to the time consumption in line 8 are con(B), and [A, B].
If A has multiple ancestors B with a cache, then we will only consider the lowest one (closest to A).
This justifies the following generalization of Def. 3.5:

Definition 5.4. The class of query plans P7 C(Q) consists of pseudo-trees with caching (P, C) of
Q and their space and time exponents are defined as:

s(P,C) = max p*(con(A) Uout(A)), t(P,C):= Arenvaé()) p*(con(Ba) U [A, B4] U out(A)),

where® B, := min(C N anc(A)).

The reader may check that, when there are no caches (i.e., C = {root(P)}), then the space and
time exponents of the PTCs coincide with those of PTs in Def. 3.5. In general, we prove:

THEOREM 5.5. If (P, C) € PT C(Q), then Algorithm 3 computes [Q] in time O(|D|*®>©)) and uses
space O(|D[*P©)),

We end this section by establishing the domination relationships involving 7 C in Fig. 1: PTC
improves upon 7 D97, and augmenting TDs with P7 or with P7C give equivalent classes. The
separation shown in Theorem 4.6 implies that P C strictly improves upon all classes above it.
However, we state strict dominations collectively later in Corollary 6.8

THEOREM 5.6. The class PT C dominates T D9, ie, PTC < TDYI.

Proor SKETcH. Given a plan IT := ((T, y), n) € TDYY, we construct a plan II, := (P,C) €
P97 C such that II, < II. The construction is based on the variable elimination procedure for a
tree decomposition [24], and proceeds by induction on the number of bags in T. If T has a single
bag, then II is essentially a GJ plan, and the claim follows from P7 < G.J. Otherwise, let v be a
leaf of T, and p := parent(v). We eliminate all variables {A;, ..., Ax} := x(v) \ x(p). Let Z be their
neighbors, Z := {B | 3 atom R;(X;), 3j, s.t. Aj, B € X;}. Let Q' to be the query obtained from Q by
removing all variables Ay, ..., Ak, and adding a new atom R(Z). Let II" = ((T’, y), 7) be the plan
obtained from II by removing the leaf v. By induction hypothesis, I’ can be converted to a P7 C

4[A, B] denotes the set of nodes between A and B; (A, B] denotes [A, B] \ {A}.
SGiven a nonempty set S on some branch of the tree, i.e. S C anc(A) for some A, we denote by min(S) its smallest
element, i.e. min(S) € Sand S C anc(min(S)).

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:13

A

|
B Al
B—D — F —
C

AT, TV bR ORI,

FZ—E—D—C D—E E BID
Fig. 6. Query On Fig. 7. Query Q. Fig. 8. PTCR for Q, Fig. 9. Query O~n

plan ITj = (P’, C") such that ITj < II'. All variables Z belong to a branch of IIj (because of the atom
R(Z)). Construct the pseudo-tree P from P’ by adding a branch A;-Aj--- - - Ay as a child of the last
variable in Z. Finally, define Iy := (P,C U {A;}) (only A; receives a cache). It can be checked that
T, =< II, which proves P7C = TDYGI . m]

TuroreM 5.7. TDP7T < TDPTC. Therefore, TD*” = TDP7C and TDP” < PTC.

6 Resetting the Cache

We saw how the addition of caches reduces the time exponent while increasing the space exponent
of a pseudo-tree. We describe here pseudo-tree with caching and resets, P7 CR, which allows for
a finer tradeoff between space and time. The basic principle was introduced in [9], but with no
analysis of its complexity. We provide an analysis, and describe a non-trivial improvement, using a
notion called relevant ancestors, which reduces the asymptotic time complexity of the algorithm.

Example 6.1. To motivate resetting caches, consider the scalar query Q. () in Fig. 6 and the
PT consisting of a single path (A-B-C-D-E-F), and with root A. Adding caches to E, F leads to
space-time exponents of (1.5, 2). For example, the cache Mg for variable E has key con(E) = ABD,
and its space usage is given by p*(ABD) = 1.5. When soLVE(E, abcd) is called, Algorithm 3 stores
the result in Mg(abd); in later calls, if ¢ changed while abd are the same, the algorithm immediately
returns the cached value. Note that once the values of a or b change we can safely discard (or
reset) all entries Mg(ab—), because the values abc arrive at SOLVE(E, —) in lexicographic order.
We can reduce the space of the cache by only keeping cached entries whose keys agree on AB
— essentially only storing the results for different values of D. This decreases the space usage
to p*(D) = 1, eq. for the cache Mr. With this “reset” improvement, Q. can be computed with
space-time complexity (1, 2).

We describe now this technique in general. Fix an SPQ Q(X) «), Ri(X;).

Definition 6.2. A pseudo-tree with caching and resets (PTCR) of Q is a pair (P, C), where P =
(V,E) is a pseudo-tree and C is a function C: V — N.

Fix a variable A € V, and let its context be con(A) = {Ay,...,An}; recall that con(A) C anc(A).
We order con(A) such that A; is closest to the root and A,, is closest to A. The function C in Def. 6.2 in-
dicates how many variables from con(A) will be stored simultaneously. If k := min(C(A), |con(A)|),
we partition con(A) into conlnst(A) U conSto(A), where conlnst(A) := {Ay, ..., Ap—k} is the instan-
tiated context and conSto(A) := {An—k+1, - - -» An} is the stored context. The keys of the cache M,y will
always agree on conlnst(A) but may differ on conSto(A). Any change of a variable in conlnst(A)
invalidates (resets) My. We use a bar to indicate the partition of con(A): in Example 6.1, if C(E) =1
then we write con(E) = AB|D. If C(A) = 0 for a variable A then it is equivalent to having no cache®.

® Strictly speaking, if C(A) = 0 then we cache at A a single returned value Ma (x[con(A)]) := SOLVE(A, x), and can
reuse it as long as x[con(A)] doesn’t change. However, if con(A) contains parent(A), then we cannot expect to ever reuse

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:14 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

A basic algorithm for handling resets described in [9] is as follows. Each variable A has a cache
My with key con(A), and an instantiated tuple conlnsty € dom®"rst(4) storing the last value of
conlnst(A). When SOLVE(A, y) is called, it first checks whether conlnsts = y|[conlnst(A)]. If yes,
then it uses the cache like Algorithm 3. If not, then it resets the cache M4. However, this algorithm
is not optimal, as we explain in the next example.

Example 6.3. Consider the scalar query Q. () in Fig. 7 and the PTCR (P, C) in Fig. 8. The figure
also shows the partitions of each context. For example, con(E) = B|D, means that conlnst(E) = B
and conSto(E) = D, and therefore the keys of its cache Mg(BD) always agree on B; similarly, D has
a full cache Mp (BC). We want to compute the time complexity of E, and for that we need to reason
about how often the cache M is reset due to B changing its value. We can do this in two ways.
Either we notice that the only ancestor of B is A and, thus, the number of calls to soLvE(E, —) with
anew B is bounded by p*(AB). Or, we notice that D has a fully stored cache Mp(BC), and calls
soLVE(E, —) only with unique BC pairs, thus the complexity is also bounded by p*(BC).

Our algorithm reduces this to p*(B), by computing the cache Mp (BC) eagerly. When soLve(D, abc)
is called for the first time, D will ignore the values bc, and instead it fills its cache Mp(BC)
entirely with all values of BC: it iterates over the distinct values’ be € supp([Q[BC]]), calls
SOLVE(E, abcd) recursively, and stores the result in Mp(bc). D traverse the supp([Q[BC]]) by
grouping on B (e.g., by sorting it lexicographically), so that the same B-values occur consecutively,
e.g. bicy, bica, bics, bacy, ... When B changes from by to by, E resets its cache, but there is no loss of
work, because b; will never be seen again; this is similar to the argument in Example 6.1. The num-
ber of cache resets is reduced® to p*(B). This example was simple, because D had no instantiated
variables, conlnst(D) = 0; the general case requires the technical Definition 6.4 below.

Filling the cache eagerly is a significant extension of GJ and all its implementations in practice [14,
37], where the values of AB . . . are examined in strict lexicographic order, e.g. a; by, a1 by, azby, azb; . ..
Instead, the values of B arrive at the function soLvE(E, —) in sorted order by, by, by, ba, b5, . ..

Algorithm 4 extends Algorithm 3 from P7 C to P7 CR, and uses the following:

Definition 6.4. For a PTCR (P, C) and variable A € V(P), we define the (closed) relevant (instanti-
ated) ancestors ra(A), ra(A), ria(A) — where con(A) C ra(A) C anc(A), con(A) C ra(A) C anc(A),
and (for conlnst(A) # 0) conlnst(A) C ria(A) C anc(min(conlnst(A))) — recursively as follows:

a(A) = ra(parent(A)) N anc(min(conlnst(A))) conlnst(A) # 0,
nas) = 0 conlnst(A) = 0,
ra(A) = ria(A) U conSto(A), Ta(A) = ra(A) U {A}.

The key difference between Algorithms 4 and 3 is that the function soLVE(A, x) fills its cache
My eagerly. This is done by FILLCACHE, which iterates over all these values in line 11. Notice
that supp([Q[conSto(A)|rias]]) is a set: the algorithm processes these values lexicographically.
However, the function FILLCACHE is called by SOLVE(A, —) only once for each value of the variables
ria(A). Referring to Example 6.3, when the function soLve(D, —) is called, we have ria(D) = 0,
hence F1LLCACHE is called only once, and in line 11 it iterates over supp([Q[BC]]).

the value M4 (x[con(A)]), which is equivalent to not having a cache. If parent(A) ¢ con(A), then the PT is suboptimal:
we can simply connect A to parent(parent(A)), that is, A and parent(A) become siblings.

7supp([Q[BC]]) means the projection of the query on BC. It is a natural extension of Eq. (3).

8The careful reader may have noticed that p* (AB) = p*(BC) = p*(B) = 1, so for this simple example our improved
algorithm does not reduce the runtime but the dependency. The runtime reduction does happen for more complex examples.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:15

Algorithm 4 PTCR Algorithm

Input: Query Q(X), PTCR (P,C) 10: function FILLCACHE(A, Yanc)

Output: [Q] 11: for yg, € supp([Q[conSto(A)|riaa]])
1: for A e V(P) 12: Y — (Yancs Ysto) s
2 My « O, riag < L 13: OUT « {z— 0| z € dom®**“)}
3. return soLve(root(P), ()) 14: for a — s € [Q[Alriaa, Ysiol]
4: function SOLVE(4, x) 15: Yy « (y,a) »L.15-19asin Alg. 1
5: if x[ria(A)] = rias > Cache hit 16: TMP « {a[X N {A}] — s}
6: return My (x[con(A)]) 17: for B € child(A)
7 riag «— x[ria(A)] > Cache miss 18 TMP < TMP ® soLvE(B, y’)
8 FILLCACHE (A, x[anc(A) \ conSto(A)]) 19: OUT « OUT & TMP
9 return My (x[con(A)]) 20: My — My U {y[con(A)] — OUT}

Definition 6.5. The class of query plans P7 CR(Q) consists of PTCR (P, C) of Q and their space
and time exponents are defined as:

s(P,C) = Alel}%(v) p*(conSto(A) Uout(A)), t(P,C)= Agl&)}()) p*(Ta(A) U out(A)).

THEOREM 6.6. If (P,C) € PTCR(Q), then Algorithm 4 computes [Q] in O(|D|*‘P©)) time and
uses O(|D|*PC)) space.

Lastly, we prove the remaining relationships in Fig. 1 up to 79D% 7 €% in particular demonstrating

the difference in strength of 79D 7 and P7 CR. This separation together with the separation given
in Theorem 4.6 imply that all dominations corresponding to downward arrows up to 7 D% 7C%
are strict.

THEOREM 6.7. PTCR 2 TD¥7 and TDT7T £ PTCR.

ProOF SKETCH. For PTCR £ T D*7, we use the query Q. () depicted in Fig. 6 and the PTCR
in given Example 6.1, with space-time exponents (1, 2). Because no edge separates the query, any
TD with 2+ bags uses superlinear space, and a single bag is equivalent to a PT, which takes more
than quadratic time. For 7D*7 £ PTCR, we use the query Q. () depicted in Fig. 9 and a TD
with three bags, separated by DE and GH; its space-time exponents are (1, 2). The best 7 CR has
space-time exponents of (1.5, 2) or (1,2.5). O

COROLLARY 6.8. The dominations relations represented by downward arrows up to the ones ending
at TODPTCR in Fig. 1 are all strict.

7 Using Recursion to Reorient Sub-Trees

We now present a final class of plans termed recursive pseudo-trees, RP7", that unify the strengths
of PTs and TDs into a single approach. While 7 CR (and also 7 C) captured some of the
advantages of TDs, as seen by PTCR < 7 D97, TDs can bring further benefits when computed
with PTs, as seen by 7D*7CR < PTCR. One benefit of TD-based plans is that different bags can
use different variable orders, for example in Fig. 5 we could use A-B in one bag, and B-A in the
other, which is not possible in a PT. RP7 loosens this restriction, and fully captures the benefit of
TDs: we will show the equivalence of RP7 and 7D®”7 in Thm. 7.3.

To begin, we revisit the function FILLCACHE (A, yan) of Algorithm 4. This function evaluates for
every tuple ygo € supp([Q[conSto(A)|rias]]) (see line 11) the subquery of Q restricted to variables

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:16 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

\ B /‘\ J / /E\\ F /H I /K
D/ p\H <L L

C \ ’ I L—C—B—D—A F—E—G—D ‘I—H—J~—¢G
\E G/ ED ED D D HG HG G G

Fig. 10. Query Qg Fig. 11. An RPT for Oy,

desc(A) and caches the result in My. To do this, the algorithm based on a PTCR plan first iterates
through the variables in conSto(A), then proceeds to the variables in R(A). While intuitive, this
is an arbitrary decision. One could instead simply use a different PTCR (P’,C’) to compute this
subquery where conSto(A) is included as output variables. Effectively, we fill the cache using a
different PTCR and see this as replacing the subtree of (P, C) rooted at A with the new sub-plan
(P’,C’). We call the resulting structure a recursive pseudo-tree.

Example 7.1. To motivate using different PTCR to fill the caches, let us consider the scalar query
Qo () given in Fig. 10. As there are many 5-cliques, our aim will be to arrive at a time complexity
of 2.5 and minimize the space complexity. Note the structure of the query: L is connected to
everything, S; = LDE and S; = LHG are the minimal non-trivial separators, and K; = LBDC, K; =
LFEG, K5 = LH]I are three 4-cliques which each extend in two ways to a 5-clique - K; together
with A and E is a 5-clique, respectively, as well as K, together with D and H, and K together with
G and K. Thus, a natural way of evaluating Qg, would be to start like a P7 CR plan. That is, we
start with a path K;: L — F — E — G of nested loops and then branch to the separators S;: D and
S H separately. Let us focus on the left branch where we continue with, say, C. At this point,
we need a cache to not increase the time complexity beyond 2.5. We set the size of the cache to 2
(the space complexity will be 1 but the cache contains 2 variables), thus get the context partition
con(C) = L|ED, and now would have to execute FILLCACHE(C, [). That is, we have to find and cache
the possible values of conSto(C) = ED that fit to [and solve the remaining query on A, B, C. This
can be done by a loop structure that first extends [to values bdc and then loops through A and E
independently. We have seen in previous sections that such a loop structure will take time O(N?-)
and space O(N) including the loop over the values I. Naturally, the right branch is symmetric. Thus,
we have arrived at an algorithm with the desired space and time consumption. However, note that
this algorithm is not the result of a P7 CR plan as this is not the way rF1LLCAcHE(C, I) would have
filled the cache of C (no matter how we complete the PTCR). Crucially, we inverted the order of E
and D to fill the cache; we will return to this example a couple more times in this section.

To define recursive pseudo-trees formally, we introduce SPQs with input variables I (these will
be ria(A)). That is, let Q(X) be an SPQ and let I C var(Q) \ X denote a subset of the variables
in Q, which we refer to as the input variables of Q(X). Then a PTCR of Q(X) is also a PTCR of
(Q(X), I) when I are variables that occur above all other variables. That is, these variables form
a chain and we call the first variable root € V(P) \ I with anc(root) =1, R(root) =wvar(Q)\ I
the (real) root of (P, C, I). Furthermore, we require ria(root) = I.

Definition 7.2. A recursive pseudo-tree (RPT) of an SPQ with input variables (Q(X), I) is recur-
sively defined as follows:
e Base case. APTCR (P,C,I) of (Q(X),I) is an RPT of (Q(X), I).
e Recursion. Let (P,C,I) be a PTCR of (Q(X),I), and let Ay,...,A; be vertices in V(P) \ I,
such that A; ¢ anc(A;)Vi # j. Let Q; be the subquery of Q(X) restricted to the variables

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:17

desc(A;) U ra(A;) and with head variables conSto(A;) U out(A;). Let (P;, C;, Z;) be RPTs of

(Qi, ria(A;)). Then, (P, C, 1) := ((P, (P1):), (C, (Ci)i), (I, (£:);)) is an RPT of (Q(X), I).
The class of query plan RPT (Q) consist of RPTs (P, C, I) of (Q,0) and their space and time
exponents are defined recursively via:

s(P,C,T) =max(max p*(conSto(A) U out(A)); maxs(P;, Ci, 1;)),
AelJ; anc(A;) i

t(P,C,7T) =max(max p*(ra(A) Uout(A));maxt(P;, Ci, I;)).
AelJ; anc(A;) i

Using the RPTs (P}, C;, ;) to perform the same task as FILLCACHE(A;, —) we get the following:

THEOREM 7.3. If (P,C,T) € RPT(Q), then [Q] can be computed in space O(|D|**C-1)) and
time O(|D|*(P-C-1)),

Example 7.4. Fig. 11 depicts an RPT II = (P, C, 1) of the query Qo () depicted in Fig. 10. Solid
edges represent “normal” edges of a PTCR while the dashed edges represent a recursive replacement.
The original PTCR had the path PT (F'-G’-H’-I’-]J’-K’) (depicted gray) as a child of the first
E while F’ was the only variable with a cache. Then, A; = F’ got replaced by the sub-RPT
(P41, C1, 1) rooted in F as depicted in Fig. 11 (this is the first dotted edge). Note that L|DE = con(F’),
L = ria(F’) = ria(F) and DE = conSto(F’) = out(F) as required (output and input variables are
drawn in blue and red, respectively, in Fig. 11). (%1, Cy, I;) was constructed similarly. The original
PTCR had the path PT (I’-J’-K’) as a child of the first H while I’ was the only variable with a
cache. Then, A; = I’ (note that A; and A; come from different PTs) got replaced by the sub-PTCR
(Py, Cy, {L}) rooted in I as depicted in Fig. 11. Note that L|GH = con(I’), L = ria(I’) = ria(I) and
GH = conSto(I") = out(I) as required. The space-time exponents are (1,5/2).

The evaluation algorithm proceeds analogously to the algorithm described in Example 7.1 with
the slight change that the cliques Kj, K5, K5 are processed one after the other in exactly that order.
Thus, the RPT depicted in Fig. 11 has two recursion on one single branch while the algorithm
described in Example 7.1 essentially had two branches with one recursion on each branch.

Finally, we relate RP7" to the other plan classes. First, we note that 79D provides no benefit
over RPT . The proof is inductive, similar to that of Theorem 5.6.

THEOREM 7.5. The class RPT dominates T DR, Thus, in particular RPT = TDRPT.

Considering the query Qg () in Fig. 10 and using computer-assisted exhaustive search, we verified
that there is no plan (P, C) € P7 CR with s(P,C) < 1and t(P,C) < 5/2. There is no linear separator
in this query, so the same holds for 7D%7 €% Combined with Theorem 7.5, we can prove:

THEOREM 7.6. The class RPT strictly dominates T DY 7CR ie, RPT < TDPTCR,

Naturally, the time exponents of RPTs are always at least as large as the fractional hypertree
width (fhw). As RPT dominates all other classes of query plans discussed in this paper, the same
is the case for them.

TaeorReM 7.7. If (P,C,I) € RPT (Q), then t(P,C,I) > fhw(Q), where fhw(Q) is the frac-
tional hypertree width of Q.

Proor SKeTcH. The RPT (P, C, I') describes a tree structure (e.g., see black parts of Fig. 11) and
we can use this tree structure together with bags 7a(A) U out(A) at nodes A to construct a tree
decomposition of Q. The width of this tree decomposition is the same as the time exponent of the
RPT. O

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:18 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

8 Conclusion and a Glimpse Beyond

We have presented several novel algorithms for CQ and, more generally, SPQ evaluation by combin-
ing and significantly extending existing approaches based on pseudo-trees and tree decompositions.
In most cases, we have matched the optimal time complexity of previous algorithms with asymp-
totically lower space complexity. We end here by discussing two important lines of future work.

Conjectures on Lower Bounds. Although some conditional lower bounds have been established
for the time complexity of query evaluation [8, 12], much less is known about space-time lower
bounds. In the complexity community, the space-time tradeoff is studied by proving lower bounds
on the product S X T for specific problems. For example, the set difference and distinct element
problems have been proven to have a lower bound ST = Q(n?) [7, 31]. These results are too weak to
constrain query evaluation, since even acyclic CQs require at least a quadratic space-time product.

Since there are no widely accepted assumptions to build on, we take a first step toward under-
standing lower bounds for space-constrained query answering. We propose a problem called the
Triple k-Clique Problem, and conjecture a lower bound on its space-time complexity. To motivate
our conjecture, we briefly recall the min-weight k-clique hypothesis, which is a standard complexity
assumption for combinatorial problems [1, 12, 28]. The problem concerns the k-clique scalar query:

00— X) E(4,4)))

i<je[1,k]

and the task is to evaluate Q in the tropical semi-ring, where x @ y := min(x,y), x ® y := x + y; in
other words, we are asked to identify a clique with the smallest total edge weight in a weighted
graph. The most commonly used variant of the min-weight k-clique hypothesis is stated relative to
the number of vertices in the graph. However, [12] showed that this is equivalent to saying that,
for any ¢ > 0, no algorithm can solve this problem in time O(|E| §-e)- This problem is not a good
candidate for a hard space-time problem, because GJ already computes Q in optimal time O(|E |§)
and optimal space O(1). Instead, we propose the following extension:

CoNJECTURE 8.1 (THE TRIPLE k-CLIQUE CONJECTURE). Fork := 2¢,{ > 2, consider the query:

00— X) Eanape (X EAndpe (X)) E(4,A) (8)

i<je[1,k] i<jelk—t+1,k+f] i<jelk+1,2k]

Then, for any ¢ > 0, no algorithm can solve this problem over the tropical semi-ring in space S =
O(|E|%~¢) and time T = O(|E|¥).

The tree decomposition with three bags corresponding to the three (X)-expressions above uses
space’ S = O(|E[¥/*) and time T = O(|E|*/?); the conjecture claims that it is optimal. On the
other hand, GJ computes Q in S = O(1) and T = O(|E|¥). This justifies a stronger version of the
conjecture: for any ¢ > 0, no algorithm can compute Q such that ST = O(|E[*~).

Aiming Toward Submodular Width. The best known time bound for Boolean conjunctive queries is
based on the submodular width [23, 26, 30]. This measure partitions the input data based on degrees,
and uses different query plans for each partition. We have not considered the submodular width
in this paper, instead extended the (weaker) fractional hypertree width (see Thm. 7.7). However,

9For a quick computation of p* observe that, for any graph G with vertices V and no isolated vertices, p* (V) > |V|/2,
because this is the value of the fractional vertex packing where each vertex has weight 1/2. On the other hand, if we can
partition V.=V, UV, U - - - such that each graph induced by V; is a clique, then p* (V) < 3; p* (Vi) = |V|/2. For example,
for a single k-clique V we can conclude p* (V') = k/2 and for Q in Eq. (8) we can take V; = [1,k] and V; = [k + 1, 2k] and
conclude that p*(A; - - - Agx) = k.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:19

extending submodular width is much more intricate as it does not generalize to arbitrary semi-rings,
e.g., not to the natural numbers N [22].

Nevertheless, aiming at adapting our approach to achieve submodular width is promising future
work. However, it at least requires the introduction of degree constraints in the analysis, which
complicates the picture significantly. Generic Join is no longer optimal in the presence of degree
constraints, and this affects pseudo-trees too. Intuitively, a pseudo-tree with structure A; — A, — As,
rooted at A;, can benefit from constraints on the degree from A; to Az but not constraints on the
degree from As to A; when analyzing its time and space. However, in some cases, it is possible to
meet the submodular-width’s time complexity while minimizing the space complexity, as shown
here:

THEOREM 8.2. The query Qn below can be computed in space O(|D|%) and time O(|D|%):
Qo() < E1(A1, Ay) ® Ez(Az, As) ® E3(As, Ag) ® E4(A1, Ag)

Proor SkeTcH. To achieve this, we first perform a heavy-light partitioning of the input relations
where a heavy join value a; is one which appears in at least V|E:| tuples of E;. As there cannot be
more than \/m heavy values, we can iterate over them, instantiate them, and solve the reaming
linear query in linear time and constant space. Thus, in space O(1) and time O(|D| %) we can handle
all heavy values.

For the case where all values are light, a different technique is needed. There, the aim is to
perform a merge join on the fly, essentially using the decomposition

@ @ Ei(ay,az) ® Ex(az, as)

a,as az

® (@ Ey(a1,a4) ® Es(as,a3) | .
aq

We explain how to iterate through E; (A1, A2) ® E; (A2, A3) projected to Aj, As in lexicographic order
(the other side is symmetric). To that end, we iterate through a; at the top level and compute the
< +/|E1]| values ay € supp(E;1[Az|a;]) that extend a;. For every a; € supp(E;[Az|a;]) we spawns a
separate process that iterates (in an ordered manner) through as € supp(E;[As|az]) — hence we use
O(|D| %) processes that all require O(1) space. Merging the loops of the different a; results in an
ordered stream of a; values. Thus, we go over pairs a;, as in lexicographic order. Doing the same
for E4(ay, as) ® Es(as, as) allows us to perform a merge join. In total, this is done in space O(|D|%)
and time O(|D|?). u!

Acknowledgment

The work of Merkl and Pichler was supported by the Vienna Science and Technology Fund (WWTF)
[10.47379/1CT2201, 10.47379/VRG18013, 10.47379/NXT22018]. Deeds and Suciu were partially
supported by NSF IIS 2314527, NSF SHF 2312195, and NSF IIS 2507117.

References

[1] A. Abboud, V. Vassilevska Williams, and O. Weimann. Consequences of faster alignment of sequences. In J. Esparza,
P. Fraigniaud, T. Husfeldt, and E. Koutsoupias, editors, Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in
Computer Science, pages 39-51. Springer, 2014.

[2] C.R. Aberger, A. Lamb, S. Tu, A. Notzli, K. Olukotun, and C. Ré. Emptyheaded: A relational engine for graph processing.
ACM Trans. Database Syst., 42(4):20:1-20:44, 2017.

[3] M. Arenas, L. A. Croquevielle, R. Jayaram, and C. Riveros. When is approximate counting for conjunctive queries
tractable? In S. Khuller and V. V. Williams, editors, STOC "21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages 1015-1027. ACM, 2021.

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

283:20 Kyle Deeds, Timo Camillo Merkl, Reinhard Pichler, & Dan Suciu

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. In 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 739-748. IEEE Computer
Society, 2008.

J. Bader, F. Skalski, F. Lehmann, D. Scheinert, J. Will, L. Thamsen, and O. Kao. Sizey: Memory-efficient execution of

scientific workflow tasks. In IEEE International Conference on Cluster Computing, CLUSTER 2024, Kobe, Japan, September

24-27, 2024, pages 370-381. IEEE, 2024.

G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In J. Duparc

and T. A. Henzinger, editors, Computer Science Logic, 21st International Workshop, CSL 2007, 16th Annual Conference

of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings, volume 4646 of Lecture Notes in Computer

Science, pages 208-222. Springer, 2007.

[7] P.Beame. A general sequential time-space tradeoff for finding unique elements. SIAM . Comput., 20(2):270-277, 1991.

K. Bringmann and E. Gorbachev. A fine-grained classification of subquadratic patterns for subgraph listing and friends.

In M. Koucky and N. Bansal, editors, Proceedings of the 57th Annual ACM Symposium on Theory of Computing, STOC

2025, Prague, Czechia, June 23-27, 2025, pages 2145-2156. ACM, 2025.

[9] R. Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms, Second Edition. Synthesis

Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers, 2019.

K. Deeds, T. C. Merkl, R. Pichler, and D. Suciu. The space-time complexity of sum-product queries. CoRR, abs/2509.11920,

2025.

R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics. Springer, 2012.

A.Z. Fan, P. Koutris, and H. Zhao. The fine-grained complexity of boolean conjunctive queries and sum-product

problems. In K. Etessami, U. Feige, and G. Puppis, editors, 50th International Colloquium on Automata, Languages, and

Programming, ICALP 2023, July 10-14, 2023, Paderborn, Germany, volume 261 of LIPIcs, pages 127:1-127:20. Schloss

Dagstuhl - Leibniz-Zentrum fur Informatik, 2023.

[13] W. Fischl, G. Gottlob, and R. Pichler. General and fractional hypertree decompositions: Hard and easy cases. In J. V.
den Bussche and M. Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, Houston, TX, USA, June 10-15, 2018, pages 17-32. ACM, 2018.

[14] M.]. Freitag, M. Bandle, T. Schmidt, A. Kemper, and T. Neumann. Adopting worst-case optimal joins in relational
database systems. Proc. VLDB Endow., 13(11):1891-1904, 2020.

[15] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in constraint satisfaction problems. In A. K.
Joshi, editor, Proceedings of the 9th International Joint Conference on Artificial Intelligence. Los Angeles, CA, USA, August
1985, pages 1076-1078. Morgan Kaufmann, 1985.

[16] Google. Google cluster data v3. https://github.com/google/cluster-data/blob/master/clusterdata2019.md, 2019.

[17] G. Gottlob, G. Greco, N. Leone, and F. Scarcello. Hypertree decompositions: Questions and answers. In T. Milo and
W. Tan, editors, Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 57-74. ACM, 2016.

[18] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. In V. Vianu and C. H.
Papadimitriou, editors, Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages 21-32. ACM Press, 1999.

[19] G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries. J. Comput. Syst. Sci., 64(3):579—
627, 2002.

[20] M. Grohe. The complexity of homomorphism and constraint satisfaction problems seen from the other side. 7. ACM,
54(1):1:1-1:24, 2007.

[21] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM Trans. Algorithms, 11(1):4:1-4:20, 2014.

[22] M. A. Khamis, R. R. Curtin, B. Moseley, H. Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. On functional aggregate
queries with additive inequalities. In D. Suciu, S. Skritek, and C. Koch, editors, Proceedings of the 38th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019, pages 414-431. ACM, 2019.

[23] M. A. Khamis, X. Hu, and D. Suciu. Fast matrix multiplication meets the submodular width. Proc. ACM Manag. Data,
3(2):98:1-98:26, 2025.

[24] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently. CoRR, abs/1504.04044, 2015.

[25] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ: questions asked frequently. In T. Milo and W. Tan, editors, Proceedings of
the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA,
USA, June 26 - July 01, 2016, pages 13-28. ACM, 2016.

[26] M. A. Khamis, H. Q. Ngo, and D. Suciu. What do shannon-type inequalities, submodular width, and disjunctive datalog
have to do with one another? In E. Sallinger, J. V. den Bussche, and F. Geerts, editors, Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017,
pages 429-444. ACM, 2017.

—
w
[

—_
(=
—

—
o)
[

[10

—

[11
[12

—

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

The Space-Time Complexity of Sum-Product Queries 283:21

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

K. Kim, J. Ha, G. Fletcher, and W. Han. Guaranteeing the 6(agm/out) runtime for uniform sampling and size estimation
over joins. In F. Geerts, H. Q. Ngo, and S. Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 113-125. ACM, 2023.
A. Lincoln, V. Vassilevska Williams, and R. R. Williams. Tight hardness for shortest cycles and paths in sparse graphs.
In A. Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018, pages 1236-1252. SIAM, 2018.

G. Liu, W. Lin, H. Zhang, J. Lin, S. Peng, and K. Li. Public datasets for cloud computing: A comprehensive survey. ACM
Computing Surveys, 57(8):1-38, 2025.

D. Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. J. ACM, 60(6):42:1-42:51,
2013.

D. M. McKay and R. R. Williams. Quadratic time-space lower bounds for computing natural functions with a random
oracle. In A. Blum, editor, 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019,
San Diego, California, USA, volume 124 of LIPIcs, pages 56:1-56:20. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2019.

H. Q. Ngo. Worst-case optimal join algorithms: Techniques, results, and open problems. In J. V. den Bussche and
M. Arenas, editors, Proceedings of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
Houston, TX, USA, June 10-15, 2018, pages 111-124. ACM, 2018.

H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms: [extended abstract]. In M. Benedikt,
M. Krétzsch, and M. Lenzerini, editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 37-48. ACM, 2012.

H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments in the theory of join algorithms. SIGMOD Rec.,
42(4):5-16, 2013.

D. Olteanu and J. Zavodny. Size bounds for factorised representations of query results. ACM Trans. Database Syst.,
40(1):2:1-2:44, 2015.

T. van Bremen and K. S. Meel. Probabilistic query evaluation: The combined FPRAS landscape. In F. Geerts, H. Q.
Ngo, and S. Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 339-347. ACM, 2023.

T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In N. Schweikardt, V. Christophides, and
V. Leroy, editors, Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014,
pages 96-106. OpenProceedings.org, 2014.

J. Wang, I. Trummer, A. Kara, and D. Olteanu. ADOPT: adaptively optimizing attribute orders for worst-case optimal
join algorithms via reinforcement learning. Proc. VLDB Endow., 16(11):2805-2817, 2023.

H. Zhao, S. Deep, and P. Koutris. Space-time tradeoffs for conjunctive queries with access patterns. In F. Geerts, H. Q.
Ngo, and S. Sintos, editors, Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2023, Seattle, WA, USA, June 18-23, 2023, pages 59-68. ACM, 2023.

Received June 2025; accepted August 2025

Proc. ACM Manag. Data, Vol. 3, No. 5 (PODS), Article 283. Publication date: November 2025.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Constant Space Query Evaluation
	4 Revisiting Tree Decompositions
	5 Caching
	6 Resetting the Cache
	7 Using Recursion to Reorient Sub-Trees
	8 Conclusion and a Glimpse Beyond
	References

