B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Q Sibliothek,
Your knowledge hub

Untersuchung skalierbarer
Praktiken fur autonome Teams in
SoftwaregroBprojekten:

Kategorien, Kriterien und Best Practices

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering/Internet Computing
eingereicht von

Ing. Martin Schliefellner, B.Sc.
Matrikelnummer 0828600

an der Fakultat far Informatik

der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Grechenig

in Schliefeliner

07.10.2025 14:45:31

Wien, 8. September 2025

Martin Schliefellner Thomas Grechenig

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Erklirung zur Verfassung der Arbeit

Ing. Martin Schliefellner, B.Sc.

Hiermit erkldre ich, dass ich diese Arbeit selbstéindig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der Arbeit — ein-
schlieBlich Tabellen, Karten und Abbildungen —, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.

Ich erkldre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient habe und
in der vorliegenden Arbeit mein gestalterischer Einfluss iiberwiegt. Im Anhang ,,Ubersicht ver-
wendeter Hilfsmittel habe ich alle generativen KI-Tools gelistet, die verwendet wurden, und
angegeben, wo und wie sie verwendet wurden. Fiir Textpassagen, die ohne substantielle Ande-
rungen tibernommen wurden, habe ich jeweils die von mir formulierten Eingaben (Prompts) und
die verwendete IT-Anwendung mit ihrem Produktnamen und Versionsnummer/Datum angege-

ben.

Signiert van: Martin Schliefaliner

Datum! 07.10.2025 14:46:33

) TRUST

Wien, 16.09.2025 e s
Schliefellner Martin

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Danksagung

An dieser Stelle mochte ich meiner Familie herzlich fiir ihre Unterstiitzung wihrend meines Stu-
diums danken. Ein besonderer Dank gilt meiner Frau Katharina fiir ihre Geduld, ihre Hilfsbereit-

schaft und ihre bestdndige Unterstiitzung in dieser intensiven Zeit.

Mein aufrichtiger Dank gilt auch DDI Dr. Raoul Vallon fiir seine engagierte Betreuung, seine
Geduld sowie seinen kompetenten Rat. Ohne seine fachliche Begleitung und das konstruktive

Feedback wire diese Arbeit in dieser Form nicht moglich gewesen.

Ebenso danke ich Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Grechenig, DI Dr. Mario Bernhart
und Mag. Dr. Brigitte Brem fiir die gewéhrte Flexibilitdt und die wertvolle Unterstiitzung, die

maBgeblich zum erfolgreichen Abschluss dieser Arbeit beigetragen haben.

Ebenso danke ich allen Interviewpartnerinnen und -partnern sowie den Ansprechpartnerinnen und
-partnern fiir ihre Offenheit und die wertvollen Einblicke, die maB3geblich zum Gelingen dieser
Untersuchung beigetragen haben. Mein Dank richtet sich auch an die Mitarbeiterinnen und Mit-
arbeiter des Instituts sowie an die Mitglieder der Forschungsgruppe, deren hilfreiche Beitrdge und

konstruktives Feedback von grolem Nutzen waren.

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Kurzfassung

In SoftwaregroBprojekten arbeiten mehrere Dutzend bis {iber hundert Personen verteilt auf zahl-
reiche Teams gemeinsam an einem einzigen Produkt. Dabei sind verschiedenste Rollen beteiligt
— von Entwicklern, Testern und Architekten iiber Product Owner bis hin zu Projektleitern. Die
Herausforderung besteht darin, eine iibergreifende Koordination und gemeinsame Ausrichtung
sicherzustellen, ohne die Autonomie und Eigenverantwortung der einzelnen Teams einzuschrin-
ken. Autonome Teams gelten als Erfolgsfaktor moderner agiler Softwareentwicklung — ihre ef-
fektive Einbindung in komplexe GroBprojekte erfordert jedoch angepasste organisatorische

Strukturen und praktikable Losungsansétze.

Die Arbeit identifiziert bewidhrte Praktiken (Engl. ,,Best Practices) fiir autonome Teams in in-
dustriellen SoftwaregroBprojekten und tliberpriift deren Skalierbarkeit im Abgleich mit Erkennt-
nissen aus kleineren agilen Softwareprojekten, fiir die entsprechende Praktiken von Hoda et al.
beschrieben wurden. Ziel ist es, sowohl Ubereinstimmungen als auch kontextuelle Unterschiede
herauszuarbeiten, um fundierte und praxistaugliche Empfehlungen fiir den alltdglichen Einsatz

autonomer Teams in komplexen Projektszenarien zu formulieren.

Die Untersuchung basiert auf drei Fallstudien aus unterschiedlichen Anwendungsbereichen — ei-
nem Versicherungstrager, einem internationalen Autohauskonzern und einem Projekt im Gesund-
heitsbereich. Insgesamt werden 15 semi-strukturierte Interviews gefiihrt und mittels thematischer
Analyse nach Braun & Clarke ausgewertet. Im Rahmen der Analyse entstanden 13 zentrale The-
menkategorien, denen auf Basis kodierter Interviewsegmente insgesamt 23 konkrete Best Prac-
tices zugeordnet wurden. Neun von 13 Praktiken von Hoda et al. zeigen eine inhaltliche Uberein-
stimmung mit den identifizierten Best Practices und wurden als anwendbar in SoftwaregroBpro-
jekten bestétigt. Die Skalierbarkeitsanalyse verdeutlicht, welche bewahrten Praktiken aus kleinen
agilen Teams auch in komplexen Softwaregrofiprojekten wirksam einsetzbar sind, und liefert da-
mit fundierte Ansatzpunkte fiir die Ubertragbarkeit etablierter Arbeitsweisen auf groBindustrielle
Kontexte. Die Zuordnung der Praktiken zu den Kategorien erfolgt auf Basis definierter Kriterien,

wodurch eine konsistente und nachvollziehbare Strukturierung gewéhrleistet wird.

Die identifizierten Praktiken konnen Organisationen dabei unterstiitzen, effektive Rahmenbedin-
gungen fir Selbstorganisation, Koordination und kontinuierliche Verbesserung in verteilten Ent-

wicklungsstrukturen zu schaffen.

Keywords: Autonome Teams, Skalierbare Best Practices, Softwaregrofsiprojekte, Selbstorganisa-

tion

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Abstract

In large software projects, many people — from dozens to over a hundred — work together across
multiple teams on a single product. Various roles are involved, such as developers, testers, archi-
tects, product owners, and project managers. The main challenge is to ensure coordination and
alignment between teams without limiting their autonomy and responsibility too much. Self-or-
ganizing teams are seen as a key success factor in modern agile software development. However,
integrating them effectively into complex large-scale projects requires organizational structures

and practical approaches.

This study identifies effective best practices for self-organizing teams in large industrial software
projects and evaluates their scalability by comparing them with findings from smaller agile pro-
jects, as described by Hoda et al. The goal is to highlight both common ground and context-
specific differences, in order to develop well-founded and practical recommendations for the daily

use of self-organizing teams in complex project environments.

The study is based on three case studies from different application domains — a social insurance
institution, an international automotive corporation, and a healthcare-related software project. A
total of 15 semi-structured interviews were conducted and analyzed using thematic analysis ac-
cording to Braun & Clarke. The analysis resulted in 13 central thematic categories, to which a
total of 23 specific best practices were assigned based on coded interview segments. Nine of 13
practices described by Hoda et al. show a clear conceptual match with the identified best practices
and were confirmed to be applicable in large-scale software projects. The scalability analysis il-
lustrates which proven practices from smaller agile teams can also be effectively applied in com-
plex large-scale software projects, providing concrete guidance for transferring established work
practices to industrial-scale development contexts. The assignment of practices to categories was

carried out based on defined criteria, ensuring a consistent and transparent structure.

The identified practices aim to help organizations create the right conditions for self-organization,

collaboration, and continuous improvement in distributed development environments.

Keywords: Autonomous Teams, Scalable Best Practices, Large-Scale Software Projects, Self-

Organization

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Inhaltsverzeichnis I

Inhaltsverzeichnis
INhaltSVETZEICHINIS ...ceue e et e et e e e e e e eeanns I
L 111 (53 1113 VPP P PP PPN PPPPPPPPPPPRIN 1
1.1 ProblemsStellUNcoieiiiieieiiee e 1
1.2 1Yo 77T o) 1 WP 3
1.3 YA] R 72113V PP UPPPPTP PP 4
1.4 1Y 3 To T L PSPPSR 4
1.4.1 Methodischer RANMENccooviiiiiiiiii e 5
1.4.2 Methodisches VOTrgehenooooiiiiiiiiiiiii e 6
1.5 AUTDAU der ATDEIL .oeveieie it 11
2 GIUNAIAZEI ettt et e et e e ettt e et e e e ennnae 13
2.1 ProjektStIUKIUTEN ...t 13
2.2 Definitionen relevanter Begriffe ... 14
2.2.1 Single case study vs. Multiple case Study...........uuuuiiiiiiiiiiiimiiiiieeeeeeeen 14
2.2.2 Autonomie und Autarkie von Teams.........ccuuierurrumiiiiieeeiiiiiiiiiie e 15
2.2.3 Industrielles GroBsoftwareprojekt...........ooouuiiiimmiiiiiiiiieiiiiiiiii e 16
2.2.4 Skalierbare Best PractiCes........uuiiiiiruiieiiiiiiieiiiiiie e 17
2.2.5 Softwareentwicklungsmethodenoooiiiiiiiiiiiiiiiiiiii e 18
TN 1o} 11 S AN o AP 25
3.1 Die Basis flr dieSe ATDEIt. eeeeeeieeriiiieee it e et e e e e e e e eeea e e eeana e eeees 27
3.2 Kategorien und Best Practices von Hoda et al.ccooviiiiiiiiiiiiiiieee, 33
3.2.1 Collective DeciSion-Makingcccceiuuuumuiiiieaaiiiiiiiiaie et eeeeeeeeees 33
3.2.2 Self-ASSIZNIMENL. ...t iiiiiiiiiiii ettt e e ettt e e e e e e eeeeba e e e e aeeeeeees 34
323 Self-MONIEOTINE. ... eeeeeeeeeeite ettt e e ettt e e e e e e eenbba e e e e aeeeennes 35
3.2.4 Need for SPecialiZationcoieeeiiiiiiiiiii ettt eeeeeeeees 36
3.2.5 Encouraging Cross-Functionality..............coiiieieiiiiiiiiiiiinieeeeiiiiiiiiie e 36
3.2.6 Self-Evaluationccoeeeeiiiiiiiiiis e e et e e e aa s 37
3.2.7 Self-IMPrOVEMENL. .. .cceiiiiiiiiiiiai ettt ettt e e e e e e et e e e e e eeeeees 37
4 SINGIE CASE STUAIES . eeevrrnuiieeeee ettt e e e ettt e e e e et eetb e e e e e e e e eeabn e e e eaaeeneee 39
4.1 Erstellung des Fragebogensuuuuiiiiiieiiiieiicei e 39
4.1.1 Collective deciSion MAKINGuieererrieereetseereeiasereetiaseereeeneerereaeeeeennnaaeenes 40
4.1.2 Self-aSSIZNIMENT.....ccciiiiiiiiiie i e e eee et ie e e e e e e e e e e e e e e e et e e e e e e eeeeesaaaaas 40

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Inhaltsverzeichnis I

o G T <1 201103 0110) 40
4.1.4 Need for SPecialiZationeieeeeeiieeiiiieeseeeeeeeeeiee e e e e e e e e e e e e eeeraans 41
4.1.5 Encouraging cross-functionalityceuuiiiiimiiiiiiiiiiiieeiii et 41
4.1.6 Self-evaluationcciiiiiiiiiiiiie e 41
4.1.77 Self-IMPIrOVEMENT.......cvviriieieeeeeiieiiieee e e e e e e et e e e e e e e e e e e a it e e e e e e e eeeeaaaaaaans 41
4.1.8 Erstellung und Aufbau des Fragebogens.............oviviiiiiiiiiiiiiiiiiiiiiiciii e 42
42 Ubersicht der FallDEiSPIClecueeeveriireeieeeereeeeeeeeeeeeeeeeeee e e eeeeereeeeaeeaeeeans 42
4.3 INECTVIEWS ..ttt e ettt e e ettt e e e e e e et e e e e e e e e e e e eeas 43
4.4 Single Case Study: Versicherungstriger (Fallbeispiel 1)........coeiiieiriiiiiiiiinneeens. 44
O I &0 (o) 1<) 72 1<) PSSR 44
4.4.2 Vorgehensmodell und Projektphasenoouuuuiiiiiiiiiiiiiiiiiiiee e 47
O /3 1 o)) s PSSR 48
4.4.4 Participant ODSEIVALIONiieeeeeeiiiiiiiiias e e e e e et a e e e e e e e eeeeena e e e e e eeeeeennnnnnns 48
4.4.5 Beispicle (Auswahl) der Artefakte und Beobachtungencooeviiiinnnnnnn.. 48
4.4.6 Einfluss der Beobachtungen auf den Fragebogen.............ccovvuiiiiiieiniiiiiinnnnnnn. 51
4477 Thematische Analyse der INterVIEWSceeiiiiiiiriiiee e eee e e e 51
4.5 Single Case Study: Autohaus (Fallbeispiel 2)........ceiiieeiiiiiiiiiiiieeeeeeieieiiie e 56
T B o0 (o) 1<) 72 1<) PSSP 56
4.5.2 Projektorganisationsstruktur, Rollen und Teams.............cccovuiiiiiiiiiniiiiiinnenen. 56
4.5.3 Vorgehensmodell und Projektphasencoouvviiiiiiiiiiiiimiiiii e, 57
O TR /3 Vi o) ¥ s PSSP 57
4.5.5 Thematische Analyse der INterVIEWSceeeiiiiiiiiiiiae e e e e e 58
4.6 Single Case Study: Gesundheitsbereich (Fallbeispiel 3)coeviiiviiiiiiiiiiinneennn. 60
O S B o0 (o) 1<) 72 1<) PSSR 60
4.6.2 Projektorganisationsstruktur, Rollen und Teams.............cccovuiiiiiiiiiiniiiiiinnenn. 60
4.6.3 Vorgehensmodell und Projektphasencoouvviiiiiiiiiiiiimiiiiieeeceeeen 61
4.6.4 ZEUPLAN...eeiitiii e 61
4.6.5 Thematische Analyse der INteTVIEWScceeviirmrriiiiiie e 61

S5 Multiple Case STUAY ..cevuniieiiiiee et 65
5.1 Auswertung der Multiple Case Studycuuvuuiiiiiiiiiiiiiii e 65
5.2 Die Code TREMENuniiiiiiiee ettt a e e e eees 66
5.2.1 Uberschneidungen Fallbeispiel 1, 2 und Fallbeispiel 3ccccvvevveiieirieireennenn 67
5.2.2 Uberschneidungen Fallbeispiel 1 und Fallbeispiel 2........c.ccvvevveevieiieirieireennnnn 69
5.2.3 Uberschneidungen Fallbeispiel 1 und Fallbeispiel 3........c.ccvvevvverieiieiieireennenn 71
5.2.4 Uberschneidungen Fallbeispiel 2 und Fallbeispiel 3........c.ccvvevreevieiieiieireennnnn 72
5.2.5 Codes die nur in zwei Fallbeispielen gemeinsam existieren.................ceeeeeennnne 74

T 2 1)) (TP PP P PP PPSPPPPN 77

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Inhaltsverzeichnis III

6.1 Benennung der Best Practices aus den Codes der Hauptthemen........................... 77
6.1.1 TTANSPAIENZ ..evvvvuiieeeeeeeeeiettiee e e e eeeeeeeett e e e e eeeeeeesabbaaaaeeeaasesssssnaaaaeaaaeeennnes 78
6.1.2 KOommuniKationc..uuiieiiiiiiiiiiiiii e 85
6.1.3 RefleXion & LernproZess.......uuueuuireueeeiieeeeieeeeiaseees e e e e e e e e e e e eeeennes 87
6.1.4 Wissensverteilung & SUPPOTT.......eeereieriiiiieiiieieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 89
6.1.5 FOrtbildUNG.....ceeeeeiiiiiiiiiiiiiiiiiieee ettt e e 91
6.1.6 Richtlinien, Grenzen, Normen und Prinzipienc.cccoevveeniriinneiineeineeennnn. 95
LT A Y (55 V£ 99
6.1.8 FOrtSChIittSIMESSUNG ...eeeeeieiitiiis e e e e et e e e et e e e e e e e eeeee e e e e eeeeeeenees 101
6.1.9 Auswahl & Zuteilung von Tasksc.uuuiiiiiiiiiiiiiiiii e 102
6.1.10 TaskBNAETUNZENeeeiiieiiiiiie e e e e e e e e e e eeeeees 105
6.1.11 Team Events & Belohnungen............couuuuiiiiiiiiiiiiiiiiiiie e 107
6.1.12 Komplexe TREMENcooeiiiiiiiii e e e e e e eeeeees 109
6.1.13 AufwandSSChAtZUNGovuiiiiii e e e e eeeeees 110

6.2 Analyse skalierbarer Best Practicesuuiiiiieeiiiiiiiiiiiis e 117
6.2.1 Ubereinstimmendes Practice 1: Collective Estimation & Planning................. 118
6.2.2 Ubereinstimmendes Practice 2: Daily Standup Meetingscc.cccveevreunee.. 118
6.2.3 Ubereinstimmendes Practice 3: Information Radiatorscc.ceveureneene.. 119
6.2.4 Ubereinstimmendes Practice 4: Using Story Boardccocovervevueereivennnn, 119
6.2.5 Ubereinstimmendes Practice 5: Taking Task Ownershipccoceeveenen. 120
6.2.6 Ubereinstimmendes Practice 6: Group Programmingcccceueeveeveenenn. 121
6.2.7 Ubereinstimmendes Practice 7: Learning SpiKecccceeeveirierierueereareennnn, 122
6.2.8 Ubereinstimmendes Practice 8: Pair-in-Needccceeoveevereeeereeeeeeeeneeane 123
6.2.9 Ubereinstimmendes Practice 9: RetroSpectives..........c.covevverveireeeesuesreaneennn, 123
6.2.10 Nicht skalierbare Best PractiCes.........cuuuuuiiiieiiriieiiiiiiai e 124

6.3 Zusammenfassung der Themen als Kategorien..............uiiiieeeiiiiiiiiiiinieeeeeeeeenns 127
0.3.1 TTANSPATENZ ceerrrtuieeeeeeeeeettaa e e e e et e eeet e e e e et eeeee b a s e e e e e e enrnnn e e e eeaeeennne 128
6.3.2 KommuniKationccoeuuummiiiiiieiiiiiiii e e en e 128
6.3.3 RefleXion & LerNProZess i eeeeiiieriiiiaiaseeeeeeeeiniieas e e e e eeennnae e e e e e eennnes 129
6.3.4 Wissensverteilung und SUPPOTToevrrimmiiiieieiiiiriiiire e e eeneees 129
6.3.5 FOrtbildUNg......vvuuiiiieiiieeii e 129
6.3.6 Richtlinien, Grenzen, Normen und Prinzipiencccooovieviiniiiiiinneenennnnnnn. 129
0.3.7 IMEEUINES eeeeerrrtuieeeeeeeeeeeett e e e e et e e e e e e et e e e r e e e et e n e e e eennne 129
6.3.8 FOrtSChITtESIMESSUNG ...eeeeeeerrtiiis e ee e eeeet e e e e e e e e e e e e e eenenes 130
6.3.9 Auswahl und Zuteilung von TasKsueiieiiiiiimmiiiii e 130
6.3.10 TaskBNAETUNZEIceeiiiiiiiiiiii e e e e enenes 130
6.3.11 Team Events & Belohnungen............cuuuuuiiiiiiiiiiiiiiiii e 130
6.3.12 Komplexe Themenccuuuuiiiiiiiiiiiiiiii e 131

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Inhaltsverzeichnis v

6.3.13 AufwandSSChAtZUNGcoeviiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeee et 131

6.4 Kriterien fiir die 13 KateZOriencceeeiieeeeeeeeeieeeeeeeee e 131
6.4.1 Kriterien der Kategorie ,, TTansSparenz®eeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 132
6.4.2 Kriterien der Kategorie ,,KommuniKation®cceevveviiiiiriiieeieeieeeeeeeenen. 132
6.4.3 Kriterien der Kategorie ,,Reflexion & Lernprozess®...........cccvvvveeveeveveeeeeennnn. 133
6.4.4 Kriterien der Kategorie ,,Wissensverteilung & Support™...........ccevvvveeeeeeeenenn. 133
6.4.5 Kriterien der Kategorie ,,Fortbildung™............cooovviieiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 133
6.4.6 Kriterien der Kategorie ,,Richtlinien, Grenzen, Normen und Prinzipien® 134
6.4.7 Kriterien der Kategorie ,,Meetings™couieiieiieiiiiiiaie e eeeeeiiiiaae e e eeeeeeeees 134
6.4.8 Kriterien der Kategorie ,,Fortschrittsmessung®ccooviiiiiiiiiinneenneeennns 135
6.4.9 Kriterien der Kategorie ,,Auswahl und Zuteilung von Tasks*........................ 135
6.4.10 Kriterien der Kategorie ,,Task-Anderungenccccevevveeeeereeeeeeeeeeeennes 136
6.4.11 Kriterien der Kategorie ,,Team Events & Belohnungen®........................ooe. 136
6.4.12 Kriterien der Kategorie ,,Komplexe Themen®ocooiiiiiiiiiiiinieiinieennns 136
6.4.13 Kriterien der Kategorie ,,Aufwandsschatzung...............ooeiiiiiiiiinieennreeinns 137

6.5 Aktualisierter Abgleich der Ergebnisse im State of the Art 2024/2025 137
6.6 Validitit und Limitationen.......ccoeeeieeieieee e 140
6.6.1 Methodische Validithtuuiiieeieiiiiiiie e e 140
6.6.2 Ergebnisbezogene Limitationen und Ubertragbarkeitc.ccevuerrrineenenn. 142

7 Zusammenfassung und AusblicKoouuuiiiiii i 145
7.1 Ausblick und zukiinftige Forschung............ccoooiiiiiiiiiiii e 147
AbDIAUNGSVEIZEICNNTS ... eeeiieiiii e e e e et e e e e e e eeeeena s i
TabEIlENVEIZEICHNTS ... e eeee et e e e e e e ettt e e e e e e eeeeaena e e e e eaeeeennees ii
LAteraturVerZEICHNS ... eiieii ettt et e et e ettt e e e et aeaaa e aeee iii
ANNANG. ... ettt e e e e et e e taa e aeaaans vii

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 1

1 Einleitung

Dieses Kapitel fiihrt in das Thema der Arbeit ein und beschreibt die Problemstellung sowie die
Motivation hinter der Untersuchung. Anschlieend werden die Zielsetzung und die zugrunde lie-
genden Forschungsfragen erldutert. Zudem wird das methodische Vorgehen vorgestellt, das zur
Beantwortung der Forschungsfragen gewéhlt wurde. AbschlieBend wird der Aufbau der Arbeit

beschrieben, um dem Leser einen Uberblick iiber die folgenden Kapitel zu geben.

1.1 Problemstellung

Geringe Autonomie und Autarkie von Projektmitarbeitern fiihrt in traditionellen Projektstruktu-
ren zu einem erhohten Personalbedarf in der Fithrungsebene. Der Einsatz von autonomen Teams
stellt einen Losungsansatz dar, striktere Projektstrukturen zu vermeiden und thematisch abge-

grenzte Aufgabenbereiche an die jeweiligen Teams abzugeben.

Die Ubergabe dieser Aufgabenbereiche stellt hohe Anforderungen an die Teammitglieder und
gefordert sind insbesondere Soft Skills, Erfahrung, Flexibilitdt, Verantwortungsbewusstsein und
selbststindiges Arbeiten. Um diesen Anforderungen gerecht zu werden und effizientes Arbeiten
zu ermdglichen, muss das Management den Teams ausreichend Freiraum gewédhren, damit sie

ihre Arbeitsweise bestmdglich an ihre Bediirfnisse anpassen konnen [1] [2].

Je groBer ein Projekt wird, desto schwieriger wird der Koordinations- und Planungsaufwand. Der
Begriff Softwaregrofprojekt (Engl. ,,large-scale software project®) wird von Dikert et al. als Pro-
jekt mit mindestens 50 Personen und 6 Teams beschrieben [3]. Als Folge der steigenden Kom-
plexitit bei Softwaregrofiprojekten, bei denen sehr viele Teams an einem Produkt arbeiten, ergibt
sich eine Einschrankung in der der Autonomie der einzelnen Teams. Um Softwaregrof3projekte
managen zu konnen, muss ein einheitlicher Rahmen geschaffen werden. Vorgaben an Qualitit,

projektspezifische Standards und Release-Koordination gehdren zu diesen Vorgaben [4] [5].

Obwohl die Teams in ihrem jeweiligen Verantwortungsbereich selbststdndig arbeiten, ist eine
Abstimmung in Architekturfragen sowie in Bezug auf Schnittstellen zu anderen Teams erforder-

lich. Zudem miissen sie den Projektfortschritt regelméBig berichten und bei Bedarf gezielt fach-

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 2

liche Unterstiitzung einholen. Dies erhoht die Komplexitit der Koordination zwischen den auto-
nomen Teams erheblich. Insbesondere bei verteilten Standorten ist es entscheidend, dass klare

Zustandigkeiten bestehen und der richtige Ansprechpartner bekannt ist [6] [7] [8].

In den letzten Jahren wurden im agilen Bereich verschiedene Softwareentwicklungsprozesse und
Skalierungsframeworks fiir SoftwaregroBprojekte geschaffen. SAFe, LeSS, Scrum-at-Scale,
DAD oder das Spotify Model gehdren zu diesen Frameworks zur Organisation agiler Entwick-
lungsprozesse in groBen Unternehmen [9] [10] [11] [12] [13]. Unter anderem definieren diese
Frameworks Muster, Praktiken und Leitlinien fiir ein Unternehmen, welches ein Softwaregrof3-
projekt umsetzen mochte. Dennoch sollten diese Skalierungsframeworks nicht nach Buch und
ohne weitere Anpassung (Engl. ,,out of the box*) verwendet werden. Eher dienen sie als Inspira-
tion fiir das Unternehmen und sollen bei der Entscheidungsfindung helfen. Eine Adaptierung an

die Projektgegebenheiten ist daher unerlésslich [14].

Umso mehr ist es notwendig die Arbeitsweise der autonomen Softwareentwicklungsteams im
Umfeld von Softwaregro3projekten zu analysieren und Best Practices zu finden. Umfangreiche
Arbeiten und Forschungen in diesem Umfeld werden von Hoda et al. gefiihrt. Seit 2008 hat sie
mit ihren Kollegen tiber 80 Publikationen im Umfeld autonome Teams und agile Softwareent-
wicklung geschaffen. Wenige neue Arbeiten der letzten vier Jahre widmen sich dem Umfeld in
SoftwaregroBprojekten und diese zeigen den groBen Forschungsbedarf in diesem Umfeld auf

[15].

Aufbauend auf den existierenden Forschungsergebnissen zu autonomen Teams im Umfeld von
Softwaregrofprojekten, untersucht diese Arbeit die Arbeitsweise dieser Teams um Best Practices
zu identifizieren. Als Abgrenzung ist festzuhalten, dass die Analyse rein auf der Arbeitsweise
autonomer Teams vorgenommen wird. Die Arbeitsweise in der Fithrungsebene oder die Anwend-

barkeit bestehender Frameworks ist nicht Teil dieser Arbeit.

Untersucht werden Praktiken zum Umgang der Aufwandsschétzung und Zuteilung von Aufgaben
und Fehlern, der Reaktion auf fachliche und technische Anderungen, der Kommunikation der
Teammitglieder und Tools, Gewéhrung der Transparenz, Fortschrittsmessung, Moglichkeiten der

Spezialisierung und Weiterbildung sowie der Wissensverteilung.

Die gefunden Best Practices sollen bestehende Forschungsergebnisse bestitigen und gegebenen-

falls erweitern bzw. eine Skalierbarkeit (siche Punkt 2.2.4) aufzeigen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 3

1.2 Motivation

Mit zunehmender GroBe eines Softwareprojekts steigen die Anforderungen an Struktur, Abstim-
mung und Koordination. Wéhrend in kleineren Vorhaben oft einfache agile Strukturen geniigen,
erfordern grof3e Projekte angepasste organisatorische Rahmenbedingungen, um Selbstorganisa-
tion und effektive Zusammenarbeit in mehreren Teams zu ermoglichen. Die Wahl des passenden
Vorgehensmodells — ob agil, traditionell oder hybrid — prigt dabei entscheidend, wie Planung,
Kommunikation und Umsetzung gestaltet werden. Beim Vorgehensmodell unterscheidet man
zwischen agilen Modellen (z.B. Scrum oder Extreme Programming), traditionellen Modellen
(z.B. Wasserfall) oder hybriden Modellen (z.B. Scrumfall) [1] [16] [17]. Agile Vorgehensmodelle
benotigen gegeniiber traditionellen Modellen, selbstorganisierende Teamstrukturen, um zu funk-
tionieren, wie in den zwdlf Hauptprinzipien des agilen Manifests von Fowler und Highsmith [18]

beschrieben.

Die Untersuchung der Arbeitsweise autonomer Teams in SoftwaregroB3projekten stellt die Haupt-
motivation des Autors dar, da es hier noch wenig relevante Forschung im grofindustriellen Um-
feld gibt. Es soll anhand der Arbeitsweisen ,,autonomer Teams® untersucht werden, ob sich ge-
meinsame Best Practices in den zu untersuchenden Fallbeispielen finden lassen. Der State of the
Art (siehe Kapitel 3) zeigt auf, unter welchen Rahmenbedingungen autonome Teams in Software-
grofprojekten wirksam eingesetzt werden konnen und welche Herausforderungen dabei typi-
scherweise auftreten. Diese Ergebnisse betreffen zum einen personelle Voraussetzungen und zum
anderen Artefakte und Ressourcen, die zur Verfiigung gestellt werden miissen, damit diese Art
von Organisation funktioniert. Personelle Voraussetzungen betreffen Soft Skills, Erfahrung, Fle-
xibilitit, das Ubernehmen von Verantwortung und selbststéindiges Arbeiten. Zusétzlich zu diesen
Eigenschaften, miissen den Teilnehmern die Ressourcen in ausreichendem Umfang zur Verfii-
gung gestellt werden damit diese ihre Ziele erreichen konnen. Die Arbeitsumgebung ist fiir eine

gute Kommunikation genauso wichtig, wie fiir Mitarbeiter motivierende Belohnungen.

Alle diese angefiihrten Faktoren gestalten sich in ihrer Umsetzung schwieriger je grof3er das Pro-
jekt ist. Anhand groBindustrieller Fallbeispiele mochte der Autor aktuelle Forschungsergebnisse
der Best Practices fiir autonome Teams in lhrer Anwendbarkeit fiir Softwaregro3projekte unter-
suchen. Die Motivation gilt dem Erfahrungsgewinn dieser Gegeniiberstellung zwischen dem ak-
tuellen State of the Art in kleineren Projekten mit autonomen Teams und den Ergebnissen dieser
Arbeit fiir SoftwaregroBprojekte. Die gewonnenen Erkenntnisse sollen autonome Teams in gro-

Ben Softwareprojekten bei ihrer Organisation unterstiitzen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 4

1.3 Zielsetzung

Das Ziel dieser Diplomarbeit ist der Vergleich bestehender Forschungsergebnisse mit den Ergeb-
nissen einer durchzufiihrenden Fallstudie, um bisherige Forschungsergebnisse im Kontext von
Softwaregrof3projekten zu validieren bzw. Verbesserungspotential aufzuzeigen. Angeleitet wird

die Diplomarbeit durch folgende Forschungsfragen (Research Questions - RQ):

RQla. Welche Praktiken lassen sich in SoftwaregroB3projekten zur Unterstiitzung autonomer
Teams identifizieren?

RQ1b. Welche Praktiken fiir autonome Teams sind auch fiir grofle Softwareprojekte skalierbar?

RQ2. In welche Kategorien kdnnen die identifizierten Praktiken unterteilt werden?

RQ3. Auf Basis welcher Kriterien kann eine Kategorisierung stattfinden?

Die durchzufiihrenden Fallstudien werden dem aktuellen State of the Art gegeniibergestellt. Die
Analyse zeigt exemplarisch, welche Praktiken in den untersuchten Projekten eingesetzt wurden
und im Rahmen der Untersuchung als praktikabel fiir groe Softwareprojekte identifiziert wur-
den. Die Untersuchung orientiert sich dabei an den thematischen Schwerpunkten der Problem-
stellung und analysiert deren Bedeutung im praktischen Anwendungskontext. Unter Beriicksich-
tigung des aktuellen Forschungsstandes werden darauf aufbauend Kriterien zur Einordnung der
identifizierten Praktiken formuliert, thematische Kategorien entwickelt und Best Practices sowie

deren Skalierbarkeit identifiziert und bewertet.

14 Methodik

In dieser Arbeit wird ein qualitativer, fallstudienbasierter Forschungsansatz gewéhlt, um die Ar-
beitsweise autonomer Teams in Softwaregrofprojekten zu untersuchen. Ziel ist es, zentrale Best
Practices zu identifizieren, deren Skalierbarkeit zu analysieren und diese systematisch auf Basis
von definierten Kriterien in Kategorien einzuordnen. Die Untersuchung erfolgt kontextsensitiv

und praxisnah anhand realer Projektbeispiele.

Einen grundlegenden theoretischen Rahmen liefert Robert K. Yin, der als einer der bedeutendsten
methodischen Vertreter der Fallstudienforschung gilt. Seine Methodik wurde bereits in den
1980er-Jahren eingefiihrt und liegt mittlerweile in der 6. Auflage unter dem Titel “Case Study
Research and Applications: Design and Methods” [19] vor.

Yin liefert fiir die Fallstudie folgende Definition:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 5

,,A case study is an empirical method that investigates a contemporary phenomenon
(the ‘case’) in depth and within its real-world context, especially when the bounda-

ries between phenomenon and context may not be clearly evident.“ ([19], S. 15)

Dieses Versténdnis ist besonders relevant fiir diese Arbeit, da sich die Selbstorganisation von
Teams nicht isoliert vom jeweiligen Projektumfeld betrachten ldsst. Auf dieser theoretischen
Grundlage basiert der methodische Leitfaden von Runeson & Host [20], welche die zentrale Prin-
zipien von Yin auf den Bereich des Software Engineerings iibertragen und in ein praxisorientier-
tes Vorgehensmodell fiir empirische Studien iiberfiihren. Ihre Vorgehensweise ist besonders ge-

eignet fiir Studien, die reale Softwareprojekte untersuchen.

Fiir die methodische Nachvollziehbarkeit wird dieses Kapitel in zwei Unterpunkte gegliedert:

e Abschnitt 1.4.1 beschreibt den theoretischen und methodischen Rahmen der Arbeit. Dabei
wird das Forschungsdesign gemdl3 den fiinf Phasen der Fallstudienforschung nach Runeson
& Host [20] erlautert. Diese systematische Herangehensweise bildet die methodische Grund-
lage fiir die vorliegende empirische Untersuchung.

e Abschnitt 1.4.2 beschreibt im Anschluss das konkrete Vorgehen in der Durchfiihrung der
Untersuchung. Dabei werden die einzelnen Erhebungsschritte, Datenquellen und Analysever-

fahren im Detail dargestellt, wie sie im Rahmen dieser Arbeit umgesetzt werden.

Limitationen der Fallstudienforschung sowie der erzielten Ergebnisse werden in Kapitel 6.6 sys-

tematisch dargelegt.

14.1 Methodischer Rahmen

Die empirische Grundlage dieser Arbeit bildet die Fallstudienforschung nach Runeson et al. [20].
Diese Methode ist besonders gut geeignet, um komplexe Fragestellungen im realen Projektkon-
text zu untersuchen. Runeson et al. beschreiben dafiir einen klaren Ablauf mit fiinf Schritten, die

iibernommen und auf den konkreten Forschungskontext angewendet werden (vgl. Tabelle 1):

Beschreibung nach

Schritt Runeson & Host Konkretisierung in dieser Arbeit
(2008)

1. Design der Fall- | Festlegung der Ziele | Definition der Forschungsfragen RQ1la, RQ1b, RQ2
studie und Forschungsfra- und RQ3. Auswahl von drei Softwaregrof3projekten

(Engl. ,,case study gen, Auswahl der zu | mit autonomen Teams in unterschiedlichen Doménen

design®) untersuchenden Fille. | (Versicherung, Automobilindustrie, Gesundheitswesen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung

2. Vorbereitung der
Datenerhebung
(Engl. ,,preparation

for data collection®)

Planung der Datener-
hebung, Erstellung
eines Leitfadens, Be-
riicksichtigung ethi-

scher Aspekte.

Entwicklung eines semi-strukturierten Interviewleitfa-
dens auf Basis von bestehenden Kategorien aus der Li-
teratur (z. B. Hoda et al.) und aktuellen Forschungser-
gebnissen (State of the Art), um eine vergleichbare Da-
tengrundlage zu schaffen. Auswahl verschiedener Teil-
nehmerrollen (z. B. Entwickler, Architekt, Teamlei-
tung), Vorbereitung erginzender Artefaktanalyse (z. B.

Dokumente, Boards).

3. Durchfithrung
der Datenerhebung
(Engl. ,,collecting

evidence®)

Sammlung der Daten
aus verschiedenen
Quellen (Interviews,
Beobachtungen, Do-

kumente).

Durchfiihrung und Aufzeichnung von 5 Interviews je
Fallbeispiel mit Teammitgliedern in unterschiedlichen
Rollen. Ergénzend: Analyse von Artefakten sowie ei-
ner Participant Observation in einem Projekt zum bes-

seren Verstandnis der Teamablédufe.

4. Datenanalyse
(Engl. ,,analysis of

collected data“)

Strukturierte qualita-
tive Auswertung, ggf.
erginzt durch quanti-

tative Elemente.

Themenbasierte Analyse nach Braun & Clarke, unter-
stiitzt durch Softwaretools. Aufbau eines Systems aus
Codes und Themen, die spiter als Grundlage fiir die
Best Practices und Kategorien dienen. Zusitzlich er-
folgt die Entwicklung der Kriterien zur Themenkatego-

risierung.

5. Berichterstattung

(Engl. ,,reporting®)

Présentation der Er-
gebnisse und Refle-

xion der Validitét.

Strukturierte Darstellung der Ergebnisse in Bezug auf
die Forschungsfragen und Diskussion {iber Limitatio-

nen.

Tabelle 1: Prozess der Fallstudienforschung nach Runeson & Host

1.4.2 Methodisches Vorgehen

Aufbauend auf dem methodischen Rahmen (vgl. Punkt 1.4.1) gliedert sich das konkrete Vorgehen

dieser Arbeit in sechs klar definierte Phasen, die im Folgenden im Detail beschrieben werden:

I. Analyse vorhandener Literatur und Forschung

Vorhandene Literatur im Bereich autonomer Teams wird analysiert, um das theoretische

Grundgeriist zu schaffen. Aktuelle Forschungsergebnisse werden dokumentiert, um diese fir

die Priifung der Anwendbarkeit in den Fallstudien vorzubereiten. Der Fokus bei der Auswahl

der Literatur gilt insbesondere den Herausforderungen, sowie den bekannten Best Practices,

mit denen sich autonome Teams konfrontiert sehen. Die hierbei erzielten Analyseergebnisse

gelten dann gleichermaf3en als Referenz fiir die durchzufiihrende Fallstudie.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 7

I1.

I1I.

Iv.

Participant Observation in einem Softwaregrofiprojekt

Durch die aktive Teilnahme und Beobachtung in einer der Fallstudien entsteht ein besseres
Verstindnis fiir Abldufe, Zusammenarbeit, Koordination und Fachbegriffe. Diese Form der
Datenerhebung — auch Participant Observation [21] genannt — liefert wichtige Einblicke, die

bei der Erstellung der Interviewfragen und der spateren Analyse unterstiitzen.

Datensammlung aus drei Softwaregrofiprojekten anhand von semi-strukturierten In-
terviews

Aufgrund der in Phase I und II erhaltenen Informationen werden semi-strukturierte Inter-
views mit Mitarbeitern in drei verschiedenen SoftwaregroBprojekten gefiihrt, um Informati-
onen liber deren Arbeitsweise zu erheben. Die Anzahl der Mitarbeiter in diesen Projekten
befindet sich zwischen 80 und 200 Personen; die Anzahl der Mitarbeiter der einzelnen auto-
nomen Teams variiert zwischen 5 und 15 Personen. Fallstudie 1 ist ein Projekt fiir einen
grofen Versicherungstriger in Osterreich, Fallstudie 2 fiir einen groBen Autohersteller und
Fallstudie 3 widmet sich dem Gesundheitsbereich in Deutschland. Durch gezielte Fragen
wird das Interview gelenkt, um vergleichbare Informationen zu erheben, die spéter in der
Analyse (Phase V) gegeniibergestellt werden. Das Interview erfolgt miindlich, direkt und
wird mit den einzelnen Gruppenmitgliedern verschiedener Rollen der autonomen Teams ge-

fithrt [22].

Sammlung von Informationen aus weiteren Datenquellen

Um die Ergebnisse aus Phase III besser einordnen und absichern zu konnen, werden ver-
schiedene Ressourcen als zusétzliche Datenquellen herangezogen — etwa Task Boards, Do-
kumente, Ticketsysteme und Wikis. Diese Artefakte dienen als ergéinzende Informations-
quelle und unterstiitzen den Interviewer dabei, die in den Interviews genannten Praktiken

besser nachvollziehen zu kdnnen (Daten-Triangulation nach Yin [19]).

Thematische Analyse von Artefakten und Beobachtungen im Rahmen einer Multiple
Case Study

In diesem Abschnitt werden die Datenquellen der Phasen II bis [V zueinander in Beziehung
gesetzt, strukturiert und zusammengefasst. Die Analyse wird mit der thematischen Inhalts-
analyse nach V. Braun & V. Clarke [23] durchgefiihrt, die sich besonders gut fiir praxisnahe
Forschungsfragen eignet, bei denen aus qualitativen Daten zentrale Themen identifiziert wer-
den sollen. Die Methode ist nicht an eine bestimmte Theorie oder Erhebungsmethode gebun-

den und ermdglicht es, unterschiedliche Datenarten — etwa Interviews, Beobachtungen oder

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 8

textbasierte Artefakte — in einem gemeinsamen Analyseprozess zu kombinieren. Damit eig-
net sie sich ideal fiir kontextsensitive Untersuchungen in komplexen Projektumfeldern wie

SoftwaregroBprojekten mit autonomen Teams.

Die thematische Analyse bietet eine hohe Flexibilitdt und Anpassungsfahigkeit, ist jedoch
gleichzeitig durch klar definierte Durchfiihrungsschritte und analytische Entscheidungen
strukturiert abgegrenzt. Sie besteht aus sechs Arbeitsschritten, zwischen denen — im Gegen-
satz zu einem linearen Vorgehen — iterativ und reflexiv gewechselt werden kann. Dabei ent-
wickeln sich aus dem analysierten Datenmaterial schrittweise zentrale Themen, die zugleich

als Kategorien fiir die spatere Strukturierung der Best Practices dienen.

Beobachtungen aus der aktiven Teilnahme (Participant Observation) sowie Inhalte aus pro-
jektbezogenen Artefakten flieen ergéinzend in die Analyse ein und erweitern die Interview-
aussagen um praxisnahe Einblicke in den realen Projektkontext. Diese enge Verbindung zwi-
schen der Datenauswertung und der Kategoriebildung stellt einen zentralen methodischen

Vorteil dar.

Die Datenbasis fiir den ersten Arbeitsschritt der thematischen Analyse ergibt sich aus den
transkribierten, semi-strukturierten Interviews, deren Fragen anhand der sieben Kategorien
von Hoda et al. vorstrukturiert sind [24]. Die sieben Kategorien der drei ,,Balancing Acts*
von Hoda et al. bilden eine gute strukturierte Basis fiir diese Forschungsarbeit. Die Katego-
rien sind tbersichtlich gestaltet und decken ein breites Spektrum fiir die Untersuchung der
Arbeitsweisen, wie Entscheidungsfindung, Aufgabenzuteilung oder Wissensverteilung auto-
nomer Teams ab. Dadurch kann ein Vergleich und mogliche Skalierbarkeit der Best Practices

besser herbeigefiihrt werden [25] [26].

Unterstiitzend zu den transkribierten Interviews werden Artefakte aus den Fallstudien einbe-
zogen. Im zweiten Arbeitsschritt werden sogenannte Codes aus dem Datenmaterial erzeugt.
Die Codes sind Schlagwdrter, welche den Inhalt der Phrasen des Interviews zusammenfas-
send abbilden. Die erstellten Codes werden im dritten Arbeitsschritt zu Motiven bzw. The-
men (Engl. ,,themes*) zusammengefasst welche anschlieBend bei Bedarf hierarchisiert und

miteinander verkniipft werden.

Die Kodierung erfolgt induktiv und semantisch, das hei3t, die Codes werden direkt aus dem
Datenmaterial abgeleitet und orientieren sich an den explizit gedufBerten Aussagen der Inter-
viewten. Ziel ist es, relevante Themen und wiederkehrende Muster offen zu identifizieren.
Die thematische Analyse folgt somit dem datengetriebenen Vorgehen nach Braun & Clarke,

ohne vorgegebene theoretische Kategorien als Grundlage fiir die Kodierung zu verwenden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 9

Um die Codes den bestehenden Themen zuordnen zu kdnnen, kommt ein Kriterienkatalog
zum Finsatz. Die Zuordnung erfolgte sowohl auf Basis der von Hoda et al. beschriebenen
sieben Kategorien, die fiir diese Arbeit iibernommen wurden, als auch anhand der inhaltli-
chen Relevanz und der im Rahmen der thematischen Analyse vorgenommenen Codierung
der Interviewdaten. Die Kriterien bauen auf dem Modell von Hoda et al. auf und werden —
sofern erforderlich — um empirisch abgeleitete Aspekte aus den Fallstudien ergénzt. Zusitz-
lich wird gepriift, wie hiufig bestimmte Codes in den Interviews auftreten und in welchem
Kontext sie genannt werden. Lasst sich ein Code anhand dieser Kriterien keiner bestehenden

Kategorie eindeutig zuordnen, entsteht ein neues Thema.

Im Schritt vier werden die erstellten Themen nochmals mit dem Datenmaterial abgeglichen,
um Widerspriiche auszuschlieBen. Im Arbeitsschritt fiinf findet eine Verfeinerung der The-
men und deren Struktur statt um anschlieBend im sechsten und letzten Schritt das Ergebnis

im Bezug zur Forschungsfrage auszuarbeiten.

Nicht relevante Informationen fiir die Forschungsfragen werden in diesem Abschnitt aussor-

tiert. Die Codierung und Auswertung wird softwareunterstiitzt durchgefiihrt.

Die thematische Analyse erfolgt in zwei Schritten: Zunichst wird jedes Fallbeispiel im Rah-
men einer Single Case Study einzeln betrachtet und kodiert. Die Auswertung reicht dabei bis
zur Erstellung eines Code-Baumes mit den zugehorigen Themen. Im zweiten Schritt wird die
Multiple Case Study durchgefiihrt, bei der die Ergebnisse aus allen drei Fallbeispielen zu-
sammengefiihrt und Gemeinsamkeiten untersucht werden. Zur Sicherstellung der Vergleich-
barkeit wird bereits in der Einzelanalyse auf ein konsistentes Benennungsschema der Kate-
gorien geachtet. Dies erleichtert die spéatere Zusammenfiihrung der Ergebnisse und die Wie-
derverwendung der Kategorienamen in der Multiple Case Study. Zusétzlich werden bereits

in der Phase der thematischen Analyse erste Kriterien zur Kategorisierung vorbereitet.

Fiir das finale Ergebnis werden ausschlieflich jene Themen und Codes beriicksichtigt, die in
allen drei Fallbeispielen auftreten. Nur aus dieser gemeinsamen Schnittmenge werden kon-
krete Praktiken abgeleitet und inhaltlich als Best Practices ausgearbeitet. Diese bilden die
Grundlage fiir die Kategorien sowie die Untersuchung der Skalierbarkeit. Themen oder
Codes, die nur in zwei Fallbeispielen vorkommen, werden zwar dokumentiert, aber nicht
weiter analysiert oder in Form von Best Practices formuliert. Sie flieBen daher nicht in die

Hauptkategorien oder die Skalierbarkeitsbewertung ein.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 10

VI. Gegeniiberstellung zu dem ,,State of the Art* und Zusammenfassung der Ergebnisse
Die aus Phase V erarbeiteten Analyseergebnisse werden im Kapitel 6 systematisch beschrie-
ben. Die Praktiken werden in 13 thematische Kategorien eingeordnet und mit den For-
schungsergebnissen von Hoda et al. [24] [25] [26] verglichen. Dabei werden charakteristi-
sche Merkmale der Praktiken nach Hoda et al. herangezogen, um eine fundierte Zuordnung
zu ermdglichen. Die Ubereinstimmungen sowie Abweichungen werden tabellarisch darge-
stellt, um daraus skalierbare Best Practices fiir autonome Teams in Softwaregrof3projekten

abzuleiten.

Im Folgenden werden die zentralen Forschungsfragen (RQ1-RQ3) jeweils den zugehorigen Ana-

lysezielen und methodischen Herangehensweisen zugeordnet:

1. Forschungsfrage RQ1la — Ziel: Best Practices

Im Rahmen einer qualitativen Mehrfallstudie werden konkrete Best Practices fiir autonome
Teams in SoftwaregroBprojekten identifiziert. Die Grundlage bildet eine empirische Datenerhe-
bung mittels 15 semi-strukturierter Interviews, die nach dem Verfahren der thematischen Analyse
nach Braun & Clarke ausgewertet werden. Aus den kodierten Segmenten der drei Fallbeispiele
werden auf Basis wiederkehrender Muster sowie unter Beriicksichtigung des inhaltlichen Kon-
texts praxiserprobte Vorgehensweisen abgeleitet, die anschlieBend als Best Practices formuliert

und thematisch kategorisiert werden.

2. Forschungsfrage RQ1b — Ziel: Skalierbare Best Practices

Auf Basis von RQla erfolgt eine vertiefte Analyse der identifizierten Praktiken im Hinblick auf
ihre Skalierbarkeit. Die abgeleiteten Best Practices werden dazu dem Modell von Hoda et al.
gegeniibergestellt. Ziel ist es zu priifen, welche Praktiken inhaltliche Ubereinstimmungen aufwei-
sen und sich sowohl in kleinen als auch groBen Softwareprojekten bewihrt haben und als skalier-

bar gelten konnen.

3. Forschungsfrage RQ2 — Ziel: Kategorisierungen und Beziehungen zu den Best Practices
Anhand der thematischen Analyse nach Braun & Clarke werden Kategorien und Beziehungen

erstellt. Die ermittelten Themen der Analyse fungieren zugleich als analytische Kategorien.

4. Forschungsfrage RQ3 — Ziel: Kriterien der Kategorisierung

Die Kriterien fiir die Kategorisierung wurden initial auf Basis der Kategorienbeschreibungen nach
Hoda et al. entwickelt und im Verlauf der thematischen Inhaltsanalyse weiter verfeinert. Fiir neu
identifizierte Kategorien wurden die Kriterien im Zuge der Themenbildung innerhalb der thema-

tischen Analyse nach Braun & Clarke eigens ausgearbeitet.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 11

SoftwaregroBprojekte Fallstudienforschung nach Robert K. Yin [12]
F1 Fo E3 Fallstudienforschung SE (Runeson et al.) [13]
M onion. Inferviews | | Inferviews = Phase I: Literaturarbeit & Analyse des
State of the Art
| single Case sty | [sCs. || scs. | = Phase II: Participant Observation im
- Fallbeispiel 1
Multiple Case Study

= Phase lll: Semi-strukturierte Interviews
mit 15 Personen in 3 Fallbeispielen

‘ Codes & Themen ‘

= Phase IV: Analyse von Projektartefakten
23 Praktiken 13 Kategorien Kriterien (Boards, Dokumentationen etc.)
RQla RQ2 RQ3

= Phase V: Thematische Analyse nach
Braun & Clarke (indukfiv/semantisch)

13 Praktiken Hoda et al.
(Kontext kleine

Softwareprojekte] = Phase VI: Ergebnisse & Abgleich mit

den Praktiken von Hoda ef al.

9 skalierbare P.
RQ1b

Abbildung 1: Illustration — Methodik

1.5 Aufbau der Arbeit

Kapitel 2 vermittelt die theoretischen Grundlagen, die fiir das Verstédndnis der Untersuchung not-
wendig sind. Es definiert zentrale Begriffe wie autonome Teams, industrielle GroBsoftwarepro-
jekte und skalierbare Best Practices. Zudem werden verschiedene Softwareentwicklungsmetho-
den vorgestellt, um den organisatorischen und methodischen Kontext der analysierten Projekte

nachvollziehbar zu machen.

Kapitel 3 liefert einen Uberblick iiber den aktuellen Stand der Forschung zu autonomen Teams in
grofBen Softwareprojekten. Neben zentralen Herausforderungen und Rahmenbedingungen fiir die
Skalierung agiler Zusammenarbeit werden auch aktuelle Skalierungsframeworks, organisations-
bezogene Studien und empirische Forschungsergebnisse berlicksichtigt. Einen besonderen
Schwerpunkt bildet das Modell von Hoda et al., dessen Kategorien und Best Practices fiir selbst-

organisierende agile Teams analysiert und im Kontext dieser Arbeit eingeordnet werden.

Kapitel 4 widmet sich der Untersuchung einzelner Fallbeispiele im Rahmen einer Single Case
Study. Jedes Fallbeispiel wird unabhingig analysiert, um die spezifischen Arbeitsweisen autono-
mer Teams zu verstehen. Dazu gehoren die Beschreibung der Projektorganisation, der Rollenver-

teilung, des Vorgehensmodells sowie die thematische Analyse der erhobenen Daten.

Kapitel 5 flihrt die Erkenntnisse aus den einzelnen Fallbeispielen in einer Multiple Case Study

zusammen. Hierbei werden die Fallbeispicle vergleichend betrachtet, um iibergreifende Muster

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Einleitung 12

und Gemeinsamkeiten in den Arbeitsweisen autonomer Teams zu identifizieren. Die Ergebnisse

helfen Best Practices abzuleiten und die gewonnenen Erkenntnisse zu verallgemeinern.

Kapitel 6 prisentiert die zusammengefassten Ergebnisse der Arbeit. Die aus den Fallstudien ge-
wonnenen Erkenntnisse werden zundchst in Form von 23 Best Practices beschrieben (For-
schungsfrage RQla, siehe Kapitel 6.1). Diese bilden die Grundlage fiir die Beantwortung der
Forschungsfrage RQ1b: Welche Praktiken fiir autonome Teams sind auch fiir grofe Softwarepro-
jekte skalierbar? — Diese Frage wird in Kapitel 6.2 behandelt. Anschlieend werden die Praktiken
thematisch in 13 Kategorien strukturiert (Forschungsfrage RQ2, siche Kapitel 6.3). In Kapitel 6.4
werden schlieBlich Kriterien angefiihrt, anhand derer die Zuordnung der Best Practices zu den
Kategorien erfolgt (RQ3). Kapitel 6.5 erweitert den Vergleich durch eine Gegeniiberstellung mit
aktuellen wissenschaftlichen Verdffentlichungen zum State of the Art, bevor in Kapitel 6.6 zent-

rale Limitationen der Ergebnisse reflektiert werden.

Kapitel 7 fasst die zentralen Ergebnisse zusammen. AbschlieBend wird ein Ausblick auf mogliche

zukiinftige Forschungsrichtungen gegeben.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 13

2 Grundlagen

In diesem Kapitel werden die theoretischen Grundlagen fiir diese Arbeit beschrieben. Kapitel 2.1
gibt eine kurze Einfithrung in Projektstrukturen. Im Kapitel 2.2 folgen Definitionen relevanter
Begriffe fiir das Versténdnis dieser Arbeit. Neben der allgemeinen Erklarung findet sich hier auch

die Beschreibung wie diese im Bezug zu diese Forschungsarbeit zu verstehen sind.

2.1 Projektstrukturen

Das Ausmal, in dem Teams autonom und autark arbeiten, hingt eng mit der gewéhlten Projekt-
struktur zusammen. In funktionalen Projektstrukturen — typischerweise in Form von Stabsprojek-
torganisationen — sind sowohl die Entscheidungsfreiheit (Autonomie) als auch die Unabhéngig-

keit von anderen Einheiten (Autarkie) der Teams stark eingeschrénkt.

Autonomie bezeichnet die Féhigkeit eines Teams, innerhalb eines definierten Rahmens eigen-
standig Entscheidungen zu treffen. Autarkie beschreibt hingegen die strukturelle Unabhéngigkeit
— beispielsweise durch eigenen Ressourcenzugriff oder eigenverantwortliche Umsetzung. Beide

Merkmale beeinflussen die Selbstorganisation, betreffen aber unterschiedliche Dimensionen.

In Matrixprojektorganisationen, etwa in Form von Leichtgewichts- oder Schwergewichtsorgani-
sationen, sind Autonomie und Autarkie der Teams teils vorhanden, aber begrenzt. Wéhrend in
der Leichtgewichtsorganisation die Projektleitung hauptsédchlich koordinierende Funktionen er-
fiillt und die Linienorganisation dominiert, erhalten Projektteams in der Schwergewichtsorgani-
sation mehr Entscheidungsspielraum und Verantwortung. Dennoch bleibt die Projektverantwor-

tung meist klar hierarchisch geregelt, mit zentral vorgegebenen Rollen und Zustindigkeiten.

Reine Projektorganisationen ermoglichen dem Projektteam hingegen vollstandige Verantwortung
und weitgehende Unabhéngigkeit von der Linienstruktur. In solchen Strukturen sind sowohl Au-
tonomie als auch Autarkie stark ausgepragt. Die Teams agieren eigenstdndig und kénnen flexibel

auf Verdnderungen reagieren [27].

In Projektstrukturen mit geringer Autonomie und Autarkie entsteht hdufig ein erhohter Personal-

bedarf auf der Fiihrungsebene, da viele Entscheidungen zentral getroffen werden miissen. Um

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 14

diese strukturellen Engpdsse zu vermeiden, bietet sich der Einsatz autonomer Teams an. In sol-
chen Strukturen werden themenspezifische Aufgaben gezielt an die jeweiligen Teams iibergeben,

was eine effizientere, dezentrale Arbeitsweise ermoglicht.

2.2 Definitionen relevanter Begriffe

In diesem Kapitel werden zentrale Begriffe erldutert, die fiir das Versténdnis dieser Arbeit wichtig
sind. Dazu zdhlen unter anderem autonome Teams, Softwareentwicklungsmethoden, Skalierbar-
keit und Best Practices. Die Begriffe werden kurz eingeordnet und erklért, um eine gemeinsame
Ausgangsbasis zu schaffen. Ziel ist es, ein klares Bild davon zu vermitteln, was in dieser Arbeit

jeweils unter den Begriffen verstanden wird.

2.2.1 Single case study vs. Multiple case study

Die Definition des Begriffs Fallstudie (Engl. ,,case study*) wird von John W. Cresswell wie folgt

beschrieben:

., The case study method ‘explores a real-life, contemporary bounded system (a case)
or multiple bounded systems (cases) over time, through detailed, in-depth data col-
lection involving multiple sources of information... and reports a case description

and case themes’” (28], S.97)

Fallstudien konnen in zwei Typen unterteilt werden: Einzelfallstudien (Engl. ,,single case stu-
dies”) oder Fallstudien mit mehreren Fillen (Engl. “multiple case studies”). Die Auswahl des
Typs unterliegt dem Ziel des Forschungsgegenstandes und weiteren Kriterien wie zum Beispiel
Zeit und Budget. Die Einzelfallstudie bendtigt meist weniger Zeitaufwand und Budget. Zudem
erlaubt die Einzelfallstudie dem Forscher eine hohere Qualitit und Tiefe fiir die Materie. Mdchte
der Forscher ein bestimmtes Objekt oder Beziehungen zu diesem Objekt untersuchen, ist diese

Fallstudie in der Regel die richtige Wahl.

Im Gegensatz dazu erlauben Multiple Case Studies eine Untersuchung verschiedener Einzelfille
und anschlieBend eine Analyse iiber alle diese Fille. Somit konnen Gemeinsamkeiten und Diffe-
renzen eruiert und erfasst werden. Da bei dieser Methode mehrere Fallstudien untersucht werden
und die Daten aus verschiedenen Quellen stammen, gewinnt die Analyse an Aussagekraft, da sie

nicht auf ein einzelnes Objekt beschréankt ist [29].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 15

2.2.2 Autonomie und Autarkie von Teams

In der englischsprachigen Literatur werden fiir autonome Teams héufig die Begriffe ,,self-directed
teams*®, ,,self-managed work teams® oder ,,cross-functional teams* verwendet. Sie bezeichnen
Arbeitsgruppen, die einen Grofteil ihrer Aufgaben eigenverantwortlich planen, durchfithren und

koordinieren — mit minimaler direkter Anleitung von aufen.

Unter einem autonomen Team versteht man in diesem Zusammenhang eine Arbeitsgruppe von
Personen, die fiir die Planung und Umsetzung technischer Aufgaben verantwortlich ist und die in

einem Produkt oder Service fiir interne oder externe Abnehmer resultieren [30].

Kimball Fisher konkretisiert diesen Ansatz wie folgt:

., Self-directed team (noun): A group of employees who have day-to-day responsibil-
ity for managing themselves and the work they do with a minimum of direct supervi-
sion. Members of self-directed teams typically handle job assignments, plan and
schedule work, make production- and/or service-related decisions, and take action

on problems.” ([30], S. 17)

In dieser Arbeit wird unter einem autonomen Team eine Arbeitsform verstanden, bei der Planung,
Aufgabenverteilung, Umsetzung und Qualititskontrolle weitgehend innerhalb des Teams erfol-
gen. Entscheidungen werden gemeinsam getroffen, die Arbeitsweise wird eigenstéindig organi-
siert und notwendige Anpassungen im Ablauf werden innerhalb des Teams vorgenommen — etwa
bei der Einschitzung von Aufgaben, der Auswahl technischer Losungen oder der Abstimmung

von Prioritéten.

Wihrend sich Autonomie auf die operative Entscheidungsfreiheit innerhalb vorgegebener Rah-
menbedingungen bezieht, bezeichnet Autarkie eine weitergehende strukturelle Unabhéngigkeit,
beispielsweise durch eigene Ressourcenverantwortung oder die Mdoglichkeit, Entscheidungen

weitgehend ohne externe Abhéngigkeiten zu treffen.

In welchem Maf3 Autonomie und Autarkie in der Praxis realisiert werden kénnen, ist insbesondere
in SoftwaregrofBprojekten durch bestimmte Rahmenbedingungen begrenzt. Faktoren wie die An-
zahl der beteiligten Personen, bestehende Schnittstellen, externe Abhingigkeiten oder zentrale

Vorgaben beeinflussen den Handlungsspielraum der Teams mafgeblich.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 16

2.2.3 Industrielles Grofisoftwareprojekt

Ab wann ein Softwareprojekt als grof3 gilt hingt vom Standpunkt des Betrachters ab. Diverse
Kriterien wie Anzahl der Teilnehmer, Dauer des Projektes, Budget, technische Komplexitit, Un-
sicherheiten bei Zielen, Umgebung des Projektes, externe Einfliisse, Projektstruktur und wirt-
schaftliches Risiko sind nur einige Faktoren die Projekte charakterisieren. Die Einflussfaktoren
der Komplexitét auf ein Projekt werden nach dem ,,Task- and Orientation Model* (TO) in zwei
grof3e Kategorien geteilt: Komplexitét der Aufgaben (Engl. ,,task complexity factors”) und organ-

isatorische Einfliisse (Engl. “organization complexity factors™).

Die Komplexitit der Aufgaben fasst unter anderem die technischen Anforderungen hinsichtlich
Know-how, Wechselwirkungen zwischen den Aufgaben, funktionale und nicht-funktionale An-
forderungen an das System, Wechselwirkung mit der Umwelt (externe Einfliisse), Ressourcen-

verwaltung und Sicherstellung des Informationsflusses zwischen allen Stakeholdern zusammen.

Die Komplexitét der Organisation beinhaltet die Anzahl der Teilnehmer mit ihren Fiihrungsfer-

tigkeiten, technischen Know-how und koordinatorischen Fahigkeiten sowie deren Erfahrung.

Je groBer ein Projekt ist, desto schwieriger wird es, die oben angefiihrten Faktoren miteinander in
Einklang zu bringen. Oft beinhaltet ein groBes Softwareprojekt mehrere Subprojekte, die fiir sich
wiederum einer eigenen Planung unterliegen. Fehlen gewisse Ressourcen konnen Teile des Pro-
jektes an externe Firmen ausgelagert werden oder es miissen externe Personen in die Entwicklung

miteinbezogen werden.

Bei Softwaregrofprojekten muss der ,,versteckten Arbeitsaufwand* (Engl. ,,hidden workload*)
beriicksichtigt werden. Dieser ergibt sich aufgrund der zunehmenden Komplexitit und Abhén-
gigkeit zwischen verschiedenen Subprojekten und Aufgaben, deren notwendigen Uberarbeitung,
Koordination und Wartezeiten bis zur Fertigstellung. Um diesen versteckten Arbeitsaufwand zu
reduzieren, sind eine klare Kommunikation zwischen den Beteiligten, ausreichendes technisches
und organisatorisches Know-how, eine prézise Dokumentation der Anforderungen sowie eine

geeignete organisatorische Struktur von zentraler Bedeutung [31] [32].

In dieser Forschungsarbeit wird ein Projekt als SoftwaregroBprojekt bezeichnet, wenn es folgende
Merkmale aufweist, die deutlich liber den Rahmen gewdhnlicher Softwareentwicklungsprojekte

hinausgehen:

e cine hohe organisatorische Komplexitit, beispielsweise durch zahlreiche Themenbereiche,

Subprojekte oder Arbeitspakete

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 17

e cine ProjektgroBe mit iiber 80 beteiligten Personen und mehr als 5 autonomen Teams aus
unterschiedlichen fachlichen und technischen Bereichen

e cine Laufzeit von mehr als vier Jahren, typischerweise mit lang angelegten Entwicklungs-,
Wartungs- und Anpassungsphasen

e cine technisch anspruchsvolle Systemlandschaft, gekennzeichnet durch eine Vielzahl an ein-
gesetzten Frameworks, Technologien und Schnittstellen zu externen Systemen

e cine umfangreiche Codebasis mit iiber einer Million Zeilen Quellcode

e sowie eine hohe wirtschaftliche Relevanz, bei der ein Scheitern des Projekts mit erheblichen
finanziellen Folgen verbunden wire — etwa durch Produktverzégerungen, Abbriiche oder

Nachbesserungskosten.

Die genauen Charakteristika zu den Projekten der einzelnen Fallstudien dieser Arbeit werden im

jeweiligen Abschnitt angefiihrt.

224 Skalierbare Best Practices

In der Informatik bezeichnet Skalierbarkeit die Féhigkeit eines Systems, bei zunehmender Last,
Komplexitéit oder Ressourcennutzung leistungsfihig zu bleiben oder entsprechend erweitert wer-
den zu konnen. Unterschieden wird dabei tiblicherweise zwischen horizontaler Skalierbarkeit,
also der Erweiterung durch zusétzliche Ressourcen wie Server oder Instanzen, und vertikaler Ska-
lierbarkeit, bei der vorhandene Komponenten wie Prozessorleistung oder Speicher vergrofert

werden [33].

In dieser Arbeit wird der Begriff Skalierbarkeit auf bewéhrte Arbeitspraktiken (Best Practices)
iibertragen. Eine Best Practice gilt hier dann als skalierbar, wenn sie sich nicht nur in kleineren,
selbstorganisierten Teams bewihrt hat, sondern auch in komplexeren SoftwaregroBprojekten It.
Definition 2.2.3, mit ldngerer Laufzeit, groerer Teamanzahl und erhdhter technischer sowie or-

ganisatorischer Komplexitit zur Anwendung kommt.

Die konzeptionelle Grundlage bildet die Grounded-Theory-Studie von Hoda et al., in der auf Ba-
sis von 58 Interviews in 23 Unternehmen typische Praktiken selbstorganisierter Teams in Soft-
wareprojekten untersucht wurden [24]. Von den insgesamt analysierten Projekten in Hodas Studie
hatten zwo0lf eine Laufzeit zwischen 1 und 12 Monaten; zwei weitere dauerten 36 bzw. 48 Monate.
Die jeweiligen Teams bestanden aus 4 bis 15 Personen. Die in diesem Rahmen identifizierten
Best Practices dienen in dieser Arbeit als Referenzmodell, um zu untersuchen, ob sich vergleich-

bare Praktiken auch in groferen und komplexeren Softwareprojektumgebungen wiederfinden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 18

Die Analyse der Fallstudien erfolgt dabei nicht im Rahmen einer Grounded-Theory-Methodik,
sondern mittels thematischer Analyse nach Braun & Clarke, um zentrale Themen und wiederkeh-
rende Praktiken herauszuarbeiten. Wenn in den untersuchten Softwaregrof3projekten Praktiken
identifiziert werden, die mit denen aus der Studie von Hoda et al. iibereinstimmen, gelten diese

im Sinne dieser Arbeit als skalierbar.

2.2.5 Softwareentwicklungsmethoden

Im Folgenden werden Softwareentwicklungsmethoden beschrieben, welche fiir das Verstindnis
dieser Arbeit von Bedeutung sind. Sie werden in dieser Arbeit autbauenden Literatur und For-

schung erwéhnt oder kommen in den Fallbeispielen zum Einsatz.

2.2.5.1 Scrum

Scrum gehort zu den iterativen und inkrementellen Vorgehensmodellen in der Softwareentwick-
lung. Dieser Prozess wurde unter der Annahme entwickelt, dass Softwareentwicklung zu komplex
und unvorhersehbar ist, um vollstdndig im Voraus geplant werden zu kdnnen. Die vielen ver-
schiedenen technischen und fachlichen Variablen in einem Softwareprojekt miissen wiahrend der
gesamten Projektlaufzeit kontinuierlich beobachtet und bei Bedarf angepasst werden. Zu diesen
Variablen zidhlen unter anderem eingesetzte Technologien und Werkzeuge, Anforderungen, Qua-

litdt, das Budget oder der Zeitplan. Die Abbildung 2 zeigt den Ablauf eines Scrum-Prozesses.

Im sogenannten Product Backlog befinden sich die priorisierten und aufwandsgeschétzten Anfor-
derungen fiir die Funktionalitit des Produktes, welche bereits fiir Releases eingeplant sind. Diese
werden vom Product Owner verwaltet und gemeinsam mit den Teams in den Sprintplanning Mee-
tings flir den néchsten Sprint zugeteilt. Ein Sprint ist ein festgelegter Zeitraum, in welchem die
zugeteilten Anforderungen entwickelt werden. Dafiir wandern diese Anforderungen aus dem Pro-
duct Backlog in den Sprint Backlog. Das Entwicklungsteam ist fiir die Umsetzung dieser Anfor-

derungen zustindig.

Die Teams sind selbstorganisierend, verfiigen iiber das notige fachliche Know-how und iiberneh-
men die Verantwortung fiir die vollstindige Umsetzung ihrer Aufgaben. In jeder Iteration wird

die Funktionalitdt des Produkts erweitert (,,Increment of functionality*).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 19

The Scrum Framework .
At a Glance

© |
Daily Scrum

The purpose of the daily scrum is for

Sprint developers to inspect progress toward
chldn [¥] the sprint goal and adapt the sprint
9 backlog as necessary, adjusting the
(owned by the upcoming planned work.
developers)
The sprint backlog

@ Sprint Review

The purpose of the
sprint review is to

*Sprint of

is a resl-time,
emergent picture of
! work that shows the
Refinement product backlog

Items selected for

Refinement is an the sprint by the i

onacing actiity Bavelogarn, chixn AUl Fapsot st owsomis o
used to add details. plan for delivering {An inspect and adapt cycle toward the product goal
including size and the product that tumns ideas into valua) with key staksholdars,
order, to items in increment and . o ks g
the product realizing the sprint Each sprint should bring i
backlog. goal. the product closer to the future adaptations.

overall product goal.

' L &
;;';"i('l‘:; @ sm'"“ ~ Increment Sprint

(owrred by PO) Flanaing A sum of usable Retraspactiva
Y To s_u:n |1hta sprint, & o # spllnl‘baglgg :’(‘ems The sprint retrospective
S pnning completed by the is for the scrum team to
e satablishes the == ‘ ! developers in the inspect how the last
team, the product sarint goal, whet = [sprint that meets the sprint went with
backlog is an canbe done, and definition of done. regards to individuals,
emergent. ordered howrihs choven Each increment interactions, processes,
st of what is work will be Product Owner Scrum Master Developers should work with all tools, and definition of
needed to improve complated. ptior increments. done. The team
the product and identifies
includes the improvements to
product goal. effectiveness,
addressing the most
impactful
improvements as soon
() as possible.

o Scrum artifacts that help manage the work o Events that occur inside each sprint 9 Ongolng activity

Who should participate and for how long?

Who: The entire scrum team.

‘Who: The developars, but if the

‘Who: The entira scrum team

Who: The entire scrum team.

Timebox: Maximum of 8 hours for ~ Product awner or scrum master B ER Ok Mg it Timebox: Maximum of 3 hours .
a month-long sprint, Shorter are actively working on temsin provide feedback on the meeting for a menth-long sprint. =X Scrum
timebox for shorter sprints. the sprint backlog they increment. shorter timebox for shorter . - ®
participate as developars. Timebox; Maximum of 4 hours sprints. Alllance
Timebox: 15 minutes. for a month-long sprint. Shorter
timebax for shorter sprints. b ca ot e
L) AltRighus Reserved.

Abbildung 2: Scrum-Prozess [34]

Ein ca. 15-miniitiges tigliches Meeting — das Daily Scrum — hilft bei der Uberpriifung, Beobach-
tung und Adaptierung der umzusetzenden Aufgaben sowie Erkennung auftretender Probleme. Es
tragt dazu bei, die Erfolgschancen der Teams bei der Zielerreichung zu verbessern. Eine weitere
Rolle spielt der Scrum Master. Dieser trigt die Verantwortung fiir den Scrum-Prozess. Er ist fiir
die Einhaltung, die Umsetzung und die Adaptierung des Scrum-Prozesses im Projekt zustdndig
sowie der Vermittlung der zugehdrigen Regeln und des Ablaufs. Am Ende des Sprints wird die
neue Funktionalitdt demonstriert. Weiteres wird ein Sprint Review durchgefiihrt. In diesem wird
festgehalten was erledigt wurde und was nicht erreicht wurde, welche Probleme aufgetreten sind
und wie diese geldst werden konnten. Diese Informationen sind wichtig fiir die Planung der néchs-

ten Sprints.

Nach dem Sprint Review und vor der Planung des nédchsten Sprints erfolgt die Sprint Retrospek-
tive. In der Retrospektive reflektiert das Team die Zusammenarbeit im vergangenen Sprint sowie

den Einsatz von Werkzeugen und Technologien. Ziel ist es, konkrete Verbesserungen fiir den

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 20

néchsten Sprint abzuleiten. Dadurch kénnen zukiinftige Sprints gezielt optimiert und bereits iden-

tifizierte Probleme proaktiv adressiert werden.

Durch die Moglichkeit Anforderungen im Product Backlog zu verwerfen, neue Anforderungen
hinzuzufiigen sowie Priorititen umzugestalten ist dieses Modell besonders flexibel [34] [35]

[36].

2.2.5.2 Extreme Programming (XP)

Wie Beck et al. im Buch ,,Extreme Programming Explained beschreiben, ist Extreme Program-
ming (XP) ein leichtgewichtiges Vorgehensmodell fiir kleine bis mittelgrole Teams, das insbe-

sondere bei sich rasch dndernden Anforderungen zum Einsatz kommt:

,, XP is a lightweight methodology for small-to-medium sized teams developing soft-

ware in the face of vague or rapidly changing requirements.” [37]

Die Agile Alliance hat eine etwas andere Definition fiir Extreme Programming:

,, Extreme Programming (XP) is an agile software development framework that aims
to produce higher quality software, and higher quality of life for the development
team. XP is the most specific of the agile frameworks regarding appropriate engi-

neering practices for software development.” [38]

Extreme Programming kommt bei Softwareprojekten zum Einsatz, bei denen kleinere autonome
Teams eng zusammenarbeiten und bei denen auf stindig dndernde Anforderungen schnell reagiert

werden muss.

Die wichtigsten Werte (XP-Values) sind Einfachheit (Engl. ,,simplicity*), Kommunikation (Engl.
,,communication“), Riickmeldung (Engl. ,,feedback®) und Mut (Engl. ,,courage*) [39] [40]. Beck
et al. und die Agile Alliance fiigen diesen Values noch den Punkt Respekt (Engl. ,,respect®) hinzu.

Neben diesen fiinf zentralen Werten gibt es ein Set von 12 Kernpraktiken mit denen XP-Teams
arbeiten. Diese Praktiken werden in Abbildung 3 dargestellt. Der innerste Kreis umfasst zentrale
Programmierpraktiken wie Design Improvement, Test-driven Development, Simple Design und
Pair Programming. Der mittlere Kreis dient der Kommunikation und Koordination und Qualitéts-
steigerung der Software. Der duBlerste Kreis beschreibt Praktiken fiir die Planung der Soft-

warezyklen und Abstimmung mit dem Kunden [39].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 21

Whole Team
Collective code
Ownership Test Driven Code Standards
Development
Customer Pair Refactoring Planning
Tests Programming XP G ore PI‘HL‘.IIC es Games
Continuous
Integration
Simple Design
Metaphor Sustainable Pace
Small Releases

Abbildung 3: Die 12 Kernpraktiken von XP [41]

XP gliedert sich insgesamt in sechs Phasen: ,,Exploration”, ,,Planning”, ,Iteration to release

phase”, ,,Production”, ,,Maintenance” und die ,,Death Phase*.

In der ersten Phase ,,Exploration* werden die Anforderungen an Design und Architektur, Tools
und an die Software gestellt. Zusétzlich werden die Anforderungen in sogenannten ,,User-Stories*

erfasst.

Die Phase ,,Planning*, auch ,,Planning Game* genannt, beinhaltet die zwei Phasen ,,Iteration-
Planning* und ,,Release-Planning®. Im Release-Planning wird evaluiert welche Anforderungen
in welchem Release umgesetzt werden. Die Auswahl erfolgt anhand von Priorititen, Kapazitit,
Risikofaktoren und Zeitschitzungen. Im Iteration-Planning werden anschlieend die wichtigsten

Anforderungen zu einzelnen Iterationen fiir die Umsetzung zugeteilt.

In der Phase ,,Iteration to release phase” erfolgt die Umsetzung, das Testen und die Integration
der Anforderungen. Die ,,Production“-Phase liefert die entwickelten Anforderungen aus. Die
letzte Phase, ,,Death-Phase®, genannt kann auf zwei Arten erreicht werden: Alle Funktionalititen

wurden erfolgreich umgesetzt oder die Umsetzung ist gescheitert.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 22

XP ist sehr flexibel und kann fiir das spezifische Projekt den Bediirfnissen angepasst und erweitert
werden [41] [42].

2.2.5.3 Wasserfall-Modell

Das Wasserfall-Modell wurde bereits im Jahre 1970 von Winston W. Royce als Softwareentwick-
lungsprozess beschrieben. Es ist ein sequenzielles Modell mit den fiinf aufeinanderfolgenden Pro-
jektphasen Analyse, Design, Implementierung, Test und Instandhaltung welche in Abbildung 4
(vgl. [1]) dargestellt sind.

Analysis
o h
i ““““ Design
I 1,
pommoooooes N Development
N 1,
Fommmmmmo TR — Testing
= 1,
O —— Tommomnees A i Implementation
i i | i ' |,
bommmmm oo ki b SRREES Maintenance

Abbildung 4: Das Wasserfall-Modell

Der Name des Wasserfallmodells ergibt sich aus seiner typischen Darstellung, bei der die Pro-
jektphasen als aufeinanderfolgende Stufen angeordnet sind. Es handelt sich um ein sequenzielles
Vorgehensmodell, bei dem eine Phase formal erst dann beginnt, wenn die vorhergehende voll-
standig abgeschlossen ist. In vielen Darstellungen entsteht dadurch der Eindruck, dass Riick-

spriinge zu fritheren Phasen nicht vorgesehen sind.

Tatsdchlich weist Winston W. Royce in seinem urspriinglichen Artikel von 1970 [43] ausdriick-
lich darauf hin, dass Riickkopplungen zwischen den Phasen notwendig sind — insbesondere um
Risiken im Entwicklungsprozess friihzeitig zu erkennen und zu vermeiden. Er bezeichnet das
strikt sequenzielle Vorgehen als riskant, da viele Probleme erst spdt im Prozess sichtbar werden.

Um Risiken zu minimieren, empfiehlt er, zentrale Entwicklungsphasen wie Design und Imple-

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 23

mentierung mindestens zweimal zu durchlaufen. Iterative Elemente sind somit bereits im ur-
spriinglichen Konzept enthalten, auch wenn spatere Adaptionen diese Riickkopplungen deutlicher

hervorheben.

Die erste Projektphase ist die Analysephase. Hier werden sowohl funktionale als auch nicht-funk-
tionale Anforderungen sowie die Spezifikationen der Software definiert. Anschlieend folgt die
Designphase, in der das Datenbankschema, die Softwarearchitektur, Algorithmen, Schnittstellen
sowie das grafische Design ausgearbeitet werden. In der Implementierungsphase erfolgt die Pro-
grammierung der Software. Nach der Entwicklung beginnt die Testphase, in der iiberpriift wird,
ob die urspriinglich definierten Anforderungen korrekt umgesetzt wurden. Ist der Test erfolgreich
abgeschlossen, erfolgt die Auslieferung der Software. AnschlieBend werden in der Wartungs-

phase auftretende Fehler behoben und die Qualitdt und Performance weiter verbessert [1].

2.2.54 Kanban

Kanban wurde von Microsoft und Corbis von Scrum aus weiterentwickelt. Kanban ist agil und
sehr flexibel. Das sogenannte Kanban-Board visualisiert die Arbeitsschritte der Aufgaben. Das
Board beinhaltet mehrere Spalten, deren Bezeichnungen beliebig an die Gegebenheiten des
Teams oder Projekts angepasst werden konnen. Ganz links befindet sich der Backlog, mit allen
geplanten Aufgaben (Tasks). Die niachste Spalte wird als WiP (,,Work in Progress®, deutsch ,,in
Arbeit”) bezeichnet. Weitere Spalten kdnnen zum Beispiel ,,Review*, ,,Test”, ,,Qualititssiche-
rung” oder ,,Dokumentation sein. Am Ende befindet sich meist eine Spalte mit dem Status ,,Ab-

geschlossen®.

Der Workflow geht von links nach rechts. Die umzusetzenden Tasks werden z.B. anhand von
,Post-Its* aus dem Backlog ,,gepulled” und in die Spalte ,,in Arbeit* geschoben. Nach der Um-
setzung geht das Ticket weiter bis zur Spalte ,,Abgeschlossen®. Eine Priorisierung der Aufgaben
kann horizontal durch sogenannte ,,Swimlanes* visualisiert werden. Je weiter oben sich ein Ticket
am Kanban-Board befindet, desto hoher ist es priorisiert [44]. Eine vereinfachte Darstellung eines

Kanban-Boards wird in folgender Abbildung 5 dargestellt.

Backlog In Arbeit Review Test Abgeschlossen
LY L S LY A A L R »
r r r
LN — A a o »
r r r
LN L Bt LN » e L »
r

Abbildung 5: Kanban-Board

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Grundlagen 24

Kanban definiert folgende 6 Praktiken:

1. Visualisierung der Arbeit: Die Arbeitsablédufe werden visualisiert

2. Limitierung der WiP-Tickets pro Team oder Team-Mitglied: Jede Spalte darf nur
eine maximale Anzahl an Tickets enthalten

3. Management-Flow: Blockaden und Engpésse sollen erkannt und beseitigt werden.
Die sogenannte ,,Cycle-Time* (Zeit pro Ticket) soll reduziert werden.

4. Regulierung/Definition von Prozessregeln
Feedback-Loops: Feedback innerhalb des Teams und vom Kunden werden bespro-
chen und eingearbeitet

6. Kaizen/Kontinuierliche Verbesserung [45] [46]

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 25

3 State of the Art

Die Popularitit autonomer Teams stieg durch den Einsatz agiler Softwareentwicklungsmethoden
wie zum Beispiel Scrum oder Extreme Programming (XP). Bereits Fowler und Highsmith fiihrten
2001 in ihrem Manifest fiir agile Entwicklung selbststéindig arbeitende Teams als eines der zwolf

Hauptprinzipien an [18] [36].

Die drei fundamentalen Bedingungen fiir die Selbstorganisation — ,,Autonomy*, ,,Cross-fertiliza-
tion™ und ,,Self-transcendence® — wurden von Nonaka und Takeuchi bereits 1986 identifiziert
[47].

Hoda, Noble und Marshall griffen diese Bedingungen in den Jahren 2009-2012 auf und entwi-
ckelten auf dieser Basis ihr Konzept der Balancing Acts. Das daraus abgeleitete Modell beschreibt
drei Ebenen: konkrete teaminterne Praktiken (Engl. ,,Balancing Acts®), kontextspezifische Vo-
raussetzungen (Engl. ,,Specific Conditions*) und organisationale Rahmenbedingungen (Engl.
»@eneral Conditions®) — und verbindet damit konkrete Praktiken mit den zugrunde liegenden

Voraussetzungen fiir Selbstorganisation in agilen Teams [24] [25] [26] [48].

Die Balancing Acts von Hoda et al. definieren 13 Best Practices auf unterster Ebene (Engl. ,,low-
level practices™) fiir autonome Teams, welche auf sieben Kategorien und drei iibergeordnete
Spannungsfelder (Balancing Acts) aufgeteilt sind. Diese 13 Praktiken bilden eine gute Basis fiir
das Arbeiten autonomer Teams, wurden jedoch nicht im Umfeld von SoftwaregroB3projekten un-

tersucht.

Aktuelle Forschungsarbeiten bei SoftwaregroBprojekten zeigen auf, welche zusétzlichen Heraus-
forderungen autonome Teams bewiltigen miissen. Agile Frameworks im Umfeld von Software-
groB3projekten wie SAFe, Scrum-at-Scale, DAD, the Spotify Model oder LeSS, wurden hinsicht-
lich Herausforderungen und Erfolgsfaktoren von Edison et al. genauer untersucht, um einen sys-
tematischen Vergleich zu ermoglichen. Fiir diese fiinf etablierten Frameworks konnten insgesamt
31 Herausforderungen und 27 Erfolgsfaktoren identifiziert werden [14]. Diese skalierten agilen
Frameworks sind jedoch nicht die einzigen Methoden, die in SoftwaregroBprojekten Anwendung
finden. Einige SoftwaregroBprojekte orientieren sich an hybriden Modellen. Diese kombinieren
traditionelle Softwareentwicklungsprozesse mit agilen Ansitzen. Zu diesen gehort zum Beispiel

das Wasserfallmodell mit Scrum, auch ,,Scrumfall” genannt [1].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 26

Da diese Modelle nicht ohne projektspezifische Anpassungen eingesetzt werden konnen, ist es
wichtig, konkrete Umsetzungskontexte zu analysieren. Ein gutes Beispiel fiir eine kontextspezi-
fische Anpassung liefert die Arbeit von Kalenda et al., die Literatur zu Praktiken, Herausforde-
rungen und Erfolgsfaktoren in LeSS und SAFe analysierten und als Grundlage fiir eine aktionso-

rientierte Untersuchung (Engl. ,,action research®) bei der Firma Kentico heranzogen [49].

Neben der Frage der kontextbezogenen Anwendung riicken in der aktuellen Forschung auch
strukturelle Herausforderungen wie die Koordination autonomer Teams in den Mittelpunkt. Ein
zentrales Thema aktueller Forschung ist die erschwerte Koordination und Kommunikation zwi-
schen autonomen Teams in grolen Softwareprojekten. So zeigen Berntzen et al. und Bjarnason
et al., dass Inter-Team-Koordination eine der grofSten Herausforderungen darstellt. Berntzen et al.
entwickelten hierzu das sogenannte TOPS-Framework, das 27 Koordinationsmechanismen in drei
Kategorien — Meetings, Roles, Tools & Artefacts — gliedert. Jeder Mechanismus wird durch eine

primédre Charakteristik (Technical, Organizational, Physical oder Social) beschrieben [6] [7].

Bjarnason et al. wiederum strukturieren die Einflussfaktoren auf Inter-Team-Kommunikation in
vier Gruppen: Awareness of others, Interaction between other teams, Attitude to others und Team

characteristics [8].

Neben Koordination und Kommunikation beschiftigen sich weitere aktuelle Forschungsarbeiten
mit den Themen Leadership, Organizational Context, Team Design und Team Processes [2] [4]

[50].

Neben den Herausforderungen der Koordination und Kommunikation autonomer Teams in Soft-
waregrof3projekten, riicken auch Fragen zur konkreten Arbeitsweise autonomer Teams zuneh-
mend in den Fokus: Warum und nach welchen Kriterien verteilen Teammitglieder Aufgaben auf
sich selbst — und inwieweit decken sich diese Entscheidungen mit den Interessen des Manage-

ments [51]?

Best Practices auf Team-Ebene wurden bislang nur selten gezielt im Kontext von Softwaregrof3-
projekten untersucht. Zwar liefern grof3e Frameworks wie SAFe oder LeSS Anhaltspunkte fiir die
Projektplanung, doch sind diese oft sehr abstrakt und miissen an konkrete Gegebenheiten ange-

passt werden.

Ziel dieser Arbeit ist es daher, anhand von drei Fallstudien zu analysieren, ob sich praktikable

Best Practices fiir autonome Teams in Softwaregrofprojekten identifizieren lassen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 27

Die von Hoda et al. entwickelten Balancing Acts mit ihren sieben thematischen Kategorien bieten
dafiir eine strukturierte und breit gefacherte Analysegrundlage. Sie ermdglichen es, zentrale As-
pekte wie Entscheidungsfindung, Aufgabenzuteilung oder Wissensverteilung in autonomen
Teams gezielt zu untersuchen. Durch die klare Kategorisierung lassen sich gefundene Praktiken
leichter vergleichen und hinsichtlich ihrer Skalierbarkeit einordnen. Die zugehdrigen Praktiken
sind in Tabelle 3 schlagwortartig den Kategorien zugeordnet; ihre detaillierte Beschreibung findet
sich in den Arbeiten ,,Self-Organizing Agile Teams: A Grounded Theory* [24] und ,,Balancing
Acts: Walking the Agile Tightrope* [25] sowie im Kapitel 3.2 dieser Arbeit.

3.1 Die Basis fiir diese Arbeit

Wie im vorherigen Kapitel angefiihrt, riickt das Thema ,,autonome Teams in Softwaregrof3pro-
jekten* zunehmend in den Fokus wissenschaftlicher Untersuchungen. Eine systematische Ana-
lyse der tiaglichen Arbeitsweise auf Teamebene steht jedoch noch aus — diese Liicke adressiert die

vorliegende Arbeit anhand von drei Fallbeispielen.

Eine inhaltliche und strukturierte gute Basis fiir die Untersuchung der Best Practices dieser Arbeit
bilden die ,,Self-organizing Agile Team Practices” von Hoda et al. [25], [26]. Das Konzept der
Balancing Acts bildet den theoretischen Rahmen fiir die vorliegende Untersuchung. Es beschreibt
zentrale Spannungsfelder, die selbststdndiges und selbstorganisiertes Arbeiten autonomer Teams
im Alltag ermoglichen und strukturieren. In dieser Arbeit werden diese Themen im Kontext von
SoftwaregroBprojekten aufgegriffen und ihre Skalierbarkeit anhand empirischer Fallstudien un-
tersucht. Die Balancing Acts umfassen dabei sieben Kategorien und 13 konkrete Praktiken, die

als Grundlage fiir die spéitere Analyse dienen.

Die Beschreibung der Balancing Acts ist wie folgt angegeben:

,, The balancing acts include several low-level practices that enable self-organiza-

tion on an everyday basis.” ([24], S. 103)

Die Tabelle 2 zeigt die Unterteilung der drei Balancing Acts mit den zugehorigen sieben Katego-
rien. Zu jeder dieser Kategorien werden im nachfolgenden Kapitel 3.2 die konkreten Praktiken

beschrieben.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 28

Balancing Freedom & Balancing Crossfunctionality | Balancing Continuous Learn-

Responsibility & Specialization ing & Iteration Pressure

e
e Collective decision making | ¢ Need for specialization e Self-evaluation
e Self-assignment e Encouraging cross-functio- | e Self-improvement
e Self-monitoring nality

Tabelle 2: Die Ubersicht der Balancing Acts

Als theoretische Grundlage fiir die Kategorie Self-assignment wird ergdnzend das Paper ,,How
Agile Teams Make Self-Assignment Work: A Grounded Theory Study* herangezogen. Die Stu-
die beschreibt, wie und warum sich Teammitglieder Aufgaben selbst zuweisen und welche Her-

ausforderungen dabei entstehen [52].

Die Abbildung 6 (vgl. [24]) zeigt die Ubersicht der 13 Praktiken zu den sieben Kategorien und
den drei Balancing Acts. Die Praktiken diirfen nicht rein isoliert betrachtet werden, sondern haben

eine gegenseitige Wechselwirkung bzw. Abhingigkeiten wie die Abbildung 7 zeigt.

- Collective Estimation & Planning
- Collectively Deciding Team
Norms & Principles > Collective Decision Making
- Self-Committing to Team Goals
Balancing Freedom
- Using Story Board &
- Taking Task Ownership ~ > Self-Assignment 7 Responsibility

- Daily Standup Meetings
- Information Radiators N Self-Monitoring

- Multiple Perspectives ——> Need for Specialization
\ Balancing Cross
- Group Programming Functionality

- Rotation \ —7 &
Encouraging Cross-Functionality Specialization
- Retrospectives — Self-Evaluation

- Pair-in-Need \ Balancing Learning

- Learning Spike \ &
Self-Improvement / Iteration Pressure

Abbildung 6: Die Balancing Acts, Kategorien und Best Practices

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 29

Multiple

. +— Pair-in-Need
Perspectives e
\\ Rotation

Group

Self-Assignment Learning Spike

Using Story Board

Programming Daily Standup
Meetings

Self-Monitoring

Collective Estimation I'aking Task Using Information Retrospectives

and i ynershi :
and Planning Ownership Radiators
BFR
- Self-Committin Callontlraty
I BCsS - 3 e Deciding Norms and
to Team Goal oo
e Principles

Abbildung 7: Darstellung der Practices und deren Abhiingigkeiten
(Balancing Freedom & Responsibility (BFR); Balancing Cross-Functionality & Specialization
(BCS); Balancing Continuous Learning & Iteration Pressure (BLP) [24]

Eine weitere theoretische Grundlage fiir die Best Practices bilden die sogenannten ,,ABCs of
Team Competencies, ein Modell von Salas et al., das Teamkompetenzen in drei iibergeordnete

Bereiche gliedert:

e Einstellungen (Engl. ,,attitudes®)
e Verhaltensweisen (Engl. ,,behaviors*)

e gemeinsames Wissen bzw. mentale Modelle (Engl. ,,cognitions*)

Die darin enthaltenen KSAs (Engl. ,.knowledge, skills and abilities*) gelten als zentrale Erfolgs-

faktoren fiir effektive Teamarbeit in komplexen Organisationsformen [53] [54].

In dieser Arbeit dienen die KSAs als konzeptionelle Grundlage, um die Ergebnisse von Hoda et
al. fundierter mit konkreten Teamkompetenzen in Verbindung zu setzen. Damit leisten sie einen
Beitrag zur Validierung und zum besseren Verstindnis der zugrundeliegenden Anforderungen an

autonome Teams.
Die Zuordnung erfolgte anhand folgender Kriterien:
e Wird im Practice ein bestimmtes Verhalten oder Prozessmuster gefordert? — Behavior

e I[st eine bestimmte Einstellung oder soziale Haltung fiir die Practice zentral? — Attitude

e Erfordert die Best Practice gemeinsames Wissen? — Cognition

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 30

Einige KSAs koénnen mehreren Kategorien zugeordnet werden. Ziel ist es eine sinnvolle inhaltli-
che Verkniipfung abzubilden. Die KSAs dienen in dieser Arbeit als unterstiitzendes Analy-
seinstrument, um die Praktiken in ihren zugrundeliegenden Teamkompetenzen besser zu verste-

hen.

Die Tabelle 4 zeigt die Zuordnung dieser KSAs zu den Kategorien nach Hoda et al. [25] [26],
basierend auf den Arbeiten von Salas et al. Fiir alle Kategorien konnte mindestens eine passende
KSA identifiziert werden — mit Ausnahme von Self-Improvement, welche sich primér auf indivi-
duelles Lernen und persdnliche Kompetenzentwicklung bezieht, einem Aspekt, der im ABC-Mo-

dell nicht explizit berticksichtigt wird.

Die Gegeniiberstellung in der Tabelle 4 verdeutlicht, dass die von Salas et al. formulierten KSAs
— publiziert 2009 und 2010 — konzeptionelle Uberschneidungen mit den Balancing Acts von Hoda
et al. (entstanden 2010 und 2012) aufweisen. Dies stiitzt die Entscheidung, das Modell von Hoda
et al. als Grundlage fiir die Strukturierung der Interviewfragen in dieser Arbeit heranzuziehen.
Dass dieses Thema nach wie vor Gegenstand aktueller Forschung ist, zeigt sich am Paper ,,How

Agile Teams Make Self-Assignment Work: A Grounded Theory Study** aus dem Jahr 2020.

Balancing Freedom & Balancing Crossfunctio- Balancing Continuous

Responsibility nality & Specialization Learning & Iteration
Pressure
Collective estimation and planning | Multiple perspectives Self-evaluation through retro-
(Collective decision making) (Need for specialization) spectives (Self-evaluation)
e Planning iterations e Share and learn from | e Continuous learning
e Commit own team goals each other e Respond to dynamic re-
e Estimate complexity of tasks e Team-members from quirements

different roles interact | e Learning over an iteration
(tester, developer, ...) | e Pressure to deliver every

e No strict boundaries iteration (but little pres-
— cross-functional sure is necessary to moti-
e Specialized tasks be- vate for delivering goals)
fore cross-functional
tasks

e Mature cross func-
tional teams are
highly cohesive and
cooperative

e Unavailability or un-
foreseen loss can be

bypassed by other

members
Collectively deciding team norms Group Programming Learning spike (Self-Improve-
and principles (Encouraging Cross-func- | ment)
(Collective decision making) tionality) e Exclusive time set aside

for learning

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art

31

e Collective decision making for
estimation, planning, deciding
team norms, principles, self-
committing team goals (senior
management must provide an
environment)

e Direct communication
(saves time)

e Better understanding

e Good for newcomers
(support)

e Expertise in other
areas

e Flexibility to work in
different areas

e c.g. lagging behind in an
area, update knowledge

e Not all members must join
the learning spike

Self-committing to team goals
(Collective decision making)

° Freedom to set own team
goals

e Ensure to achieve this goal

Rotation (Encouraging

Cross-functionality)

e Knowledge sharing

e Keep work environ-
ment interesting be-
cause of challenging
new areas

Pair-in-need (Self-Improve-

ment)

e Solving complex tasks in
Pair-Programming

Self-assignment using storyboards

(self-assignment)

e Self-assignment of tasks (e.g.
over storyboard)

e Individual decisions

e Transparency

Taking task ownership (self-assign-

ment)
e Initiales of names or avatars as
identifier

e Responsibility for the task

e Business priority over own
technically skills or easy im-
plementation

e Avoid conflicts during self-as-
signment

e Inexperienced teams become
guidance from coaches/seniors

Self-monitoring through daily

standups and information radiators

(self-monitoring)

e Monitor progress through itera-
tion to ensure goal achieve-

ment

e ... responsibility for that is
shared among all members of
the team

e Daily standup meetings for sta-
tus

e Charts like Burn down charts
help to visualize the progress

e Peer pressure (not by manager)

e Information radiators (artifacts
that radiate project infor-
mation)

Tabelle 3: Praktiken der Selbstorganisation in Teams - The Balancing Acts

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art

32

Kategorie(n) nach

Hoda et al.

Begriindung

1 | Team/Collective Attitude Self-assignment, Fordert gemeinsame Zielausrich-
Orientation Collective decision tung und Verantwortungsiiber-
making nahme bei der Aufgabenwahl und
Entscheidungsfindung
2 | Team/Collective Attitude Self-monitoring, Starkt das Vertrauen in die eigene
Efficacy Self-evaluation Leistungsfahigkeit des Teams bei
Reflexion und Anpassung
3 | Psychological Attitude Collective decision Ermoglicht offenes Feedback und
Safety making, Fehlerkultur, fordert transparente
Self-monitoring Entscheidungen
4 | Team Learning Attitude Self-evaluation, Unterstiitzt kontinuierliches Lernen
Orientation Self-improvement und Weiterentwicklung im Team
5 | Team Cohesion Attitude Collective decision ma- | Stirkt den sozialen Zusammenhalt
king bei gemeinsamen Entscheidungen
6 | Mutual Trust Attitude Self-assignment, Vertrauen ist essenziell fiir selbst-
Self-monitoring stindige Aufgabeniibernahme und
gegenseitige Kontrolle
7 | Team Attitude Self-assignment, Teams tibernechmen Verantwortung
Empowerment Self-monitoring filir eigene Prozesse und Aufgaben
8 | Team Reward At- | Attitude Self-evaluation Wertschitzung gemeinsamer Leis-
titude tungen fordert Selbstreflexion
9 | Team Goal Attitude Collective decision Hohe Zielbindung unterstiitzt ge-
Commitment / making, meinsame Entscheidungen und
Conscientiousness Self-monitoring Fortschrittskontrolle
10 | Mutual Perfor- Behavior Self-monitoring Ermdglicht kontinuierliche Uber-
mance Monitoring wachung der Teamleistung
11 | Adaptability Behavior Self-monitoring, Flexibilitdt ist zentral fiir selbstbe-
Self-assignment stimmte Aufgabenwahl und Pro-
zessanpassung
12 | Backup/ Behavior Self-monitoring Rollentiibergreifende Unterstiitzung
Supportive ist Teil kollektiver Selbstkontrolle
Behavior
13 | Implicit Coordi- Behavior Self-monitoring Nicht explizite Koordination er-
nation Strategies ginzt formelle Selbststeuerung
14 | Shared/ Behavior Self-monitoring, Kollektive Fiihrung stiitzt Entschei-
Distributed Lea- Collective decision dungsfindung und Selbstorganisa-
dership making tion
15 | Mission Analysis | Behavior Self-evaluation Analyse der Aufgabenbasis bildet
Grundlage fiir Reflexion und Be-
wertung
16 | Problem Behavior Self-monitoring Friihe Problemidentifikation fordert
Detection effektive Selbstbeobachtung
17 | Conflict Resolu- Behavior Collective decision ma- | Entscheidungen erfordern konstruk-
tion/Management king tiven Umgang mit Meinungsver-
schiedenheiten
18 | Motivation of Behavior Self-assignment, Gegenseitige Motivation unterstiitzt
Others Self-monitoring Selbstverantwortung und Ausdauer
19 | Intrateam Behavior Self-monitoring, Feedback ist Schliissel zur kontinu-
Feedback Self-evaluation ierlichen Verbesserung
20 | Task-related Behavior Collective decision ma- | Klarheit in der Kommunikation for-
Assertiveness king dert effiziente Entscheidungspro-
zesse
21 | Planning Behavior Self-evaluation Reflexion erfordert strukturierte
Planung von Verbesserungen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art

33

22 | Coordination Behavior Self-monitoring, Koordination ist Grundlage fiir rei-
Encouraging cross- bungslosen Ablauf im interdiszipli-
functionality niren Team
23 | Team Behavior Self-monitoring Fiihrungskompetenz ist zentral fiir
Leadership Selbststeuerung

24 | Problem Behavior Self-monitoring, Ldsungsorientierung ist Basis fiir
Solving Self-evaluation Prozessanpassung und Bewertung

25 | Closed-loop Com- | Behavior Self-monitoring Riickkopplungsschleifen sichern In-
munication / In- formationsqualitdt im Team
formation Ex-
change

26 | Cue-Strategy Cognition | Self-monitoring Strategiewissen unterstiitzt situati-
Associations onsbezogene Entscheidungen

27 | Accurate Cognition | Self-evaluation Ein realistisches Problemverstind-
Problem Models nis erleichtert Bewertung und Ab-

leitung von Mallnahmen

28 | Accurate and Cognition | Collective decision Geteilte mentale Modelle fordern

Shared Mental making, gemeinsame Entscheidungen und
Models Encouraging cross- rolleniibergreifendes Arbeiten
functionality
29 | Understanding of | Cognition | Self-evaluation Verstiandnis der Rahmenbedingun-
Team Mission, gen ist Grundlage fiir Bewertung
Objectives,
Norms,
Resources

30 | Understanding Cognition | Self-monitoring Versténdnis libergreifender Abhén-
Multiteam Sys- gigkeiten unterstiitzt ibergreifende
tems (MTS) Selbststeuerung
Couplings

Tabelle 4: Zuordnung KSAs zu den Kategorien von Hoda et al.

3.2 Kategorien und Best Practices von Hoda et al.

Dieses Kapitel fiihrt in die sieben Kategorien und zugehdrigen 13 Praktiken von Hoda et al. ein.

Jede Kategorie wird mit einer kurzen Beschreibung und den zugehorigen Praktiken erlautert (vgl.

[24]).

3.2.1 Collective Decision-Making

Diese Kategorie legt den Fokus auf kollaborative Entscheidungsfindung, bei der das gesamte
Team in Planungs- und Entscheidungsprozesse eingebunden wird. Sie beinhaltet folgende Prak-
tiken: Collective Estimation & Planning, Collectively Deciding Team Norms & Principles, und
Self-Committing to Team Goals.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 34

3.2.1.1 Collective Estimation & Planning

Teams planen Iterationen gemeinsam und schitzen die Komplexitit von Aufgaben, um ein ge-
meinsames Verstindnis und die Transparenz zu fordern. In der Forschung von Hoda et al. wird
Planning Poker als Methode beschrieben, bei der Teammitglieder fiir jede Aufgabe eine Karte
mit einer geschitzten Komplexitit auswéhlen. Unterschiede werden diskutiert, bis ein Konsens

erreicht wird.

3.2.1.2 Collectively Deciding Team Norms & Principles

Teams diskutieren und einigen sich auf gemeinsame Normen und Prinzipien fiir die Zusammen-
arbeit, einschlieflich Arbeitszeiten und Qualitétsrichtlinien. Das Senior Management unterstiitzt

diesen Prozess, indem es den Teams Entscheidungsfreirdume einrdumt.

3.2.1.3 Self-Committing to Team Goals

Diese Praktik beschreibt, wie sich ein selbstorganisiertes Team gemeinsam auf ein selbst festge-
legtes Ziel fiir eine Iteration verpflichtet. Im Rahmen der Planung analysiert das Team die Anfor-
derungen, schitzt den Aufwand und entscheidet eigenstdndig, was im kommenden Zyklus realis-
tisch erreicht werden kann. Das Ziel wird also nicht von aullen vorgegeben, sondern entsteht
durch gemeinsame Abstimmung innerhalb des Teams. Wichtig ist dabei, dass sich alle Teammit-
glieder aktiv hinter das vereinbarte Ziel stellen und Verantwortung flir dessen Umsetzung {iber-
nehmen. Die Praktik betont damit sowohl die Freiheit des Teams, den Umfang selbst zu bestim-

men, als auch die gemeinsame Verantwortung, das Ziel zu erreichen.

3.2.2 Self-Assignment

Diese Kategorie betont die Autonomie der Teammitglieder bei der Auswahl und Ubernahme von
Aufgaben. Sie umfasst die Praktiken: Using Story Boards und Taking Task Ownership.
Selbstzuweisung wird als zentrales Element selbstorganisierender Teams verstanden, da sie so-
wohl Verantwortungsiibernahme als auch Eigenmotivation fordert. Durch die Moglichkeit, Auf-
gaben entsprechend der eigenen Fahigkeiten und Interessen auszuwéhlen, konnen Teammitglie-

der ihre Stirken gezielter einbringen, was zu hoherer Produktivitit und Arbeitszufriedenheit fiihrt.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 35

3.2.21 Using Story Boards

Storyboards visualisieren Aufgaben mit den Spalten "Not Assigned," "Check-Out," und "Done".
Avatare oder Initialen markieren Verantwortlichkeiten und Teammitglieder weisen sich Aufga-
ben selbst zu. Die visuelle Transparenz der Storyboards unterstiitzt nicht nur die Selbstzuweisung,
sondern auch die gegenseitige Abstimmung im Team. Wie Hoda et al. beschreiben, ermoglichen
diese Boards eine kollaborative Planung, fordern Diskussionen iiber Prioritdten und helfen, den

Uberblick iiber die individuelle wie kollektive Arbeitsbelastung zu behalten.

3.2.2.2 Taking Task Ownership

Mitglieder iibernehmen Verantwortung fiir Aufgaben, indem sie diese eigenstindig auswihlen
und abschlieBen. Unterstiitzung durch Coaches hilft insbesondere unerfahrenen Teams, passende
Aufgaben auszuwéhlen. Im Sinne von Ownership fithren Teammitglieder ihre Aufgaben aus und
tragen Verantwortung fiir deren Ergebnis sowie den Projekterfolg. Aufgaben werden nicht ge-
trennt betrachtet, sondern als Beitrag zum gemeinsamen Ziel verstanden. Treten Hindernisse auf,

werden diese proaktiv adressiert oder passende Unterstiitzung herangezogen.

3.23 Self-Monitoring

Diese Kategorie zielt darauf ab, Fortschrittsiiberwachung und Transparenz sicherzustellen. Sie
beinhaltet die Praktiken: Daily Standup Meetings und Information Radiators. Es wird betont, dass
selbstorganisierende Teams ihren Fortschritt kontinuierlich selbst reflektieren und anpassen miis-
sen, um ihre Ziele zu erreichen. Der Austausch im Team ersetzt hierbei klassische Kontrolle von

aufBen und stirkt zugleich die gegenseitige Verantwortung.

3.2.3.1 Daily Standup Meetings

Standups werden fiir Statusupdates eingesetzt. Jedes Teammitglied gibt ein kurzes Update dar-
iiber, was es am Vortag erreicht hat, was es heute plant und welche Hindernisse eventuell beste-
hen. Burndown-Charts, die verbleibende Arbeit visualisieren, helfen dem autonomen Team bei

der Fortschrittsmessung.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 36

3.2.3.2 Information Radiators

Artefakte wie Storyboards zeigen den Fortschritt klar und sichtbar fiir das gesamte Team. Typi-
sche Spalten sind "Not Assigned," "Check-Out," und "Done". Solche visuell zuginglichen Dar-
stellungen fungieren als permanente Informationsquelle fiir alle Beteiligten. Sie unterstiitzen nicht
nur die Selbstiiberwachung, sondern auch die teamweite Abstimmung und fordern ein gemeinsa-

mes Bewusstsein fiir Prioritdten und verbleibende Aufgaben.

3.24 Need for Specialization

Diese Kategorie widmet sich den Rollen und Perspektiven. Sie beinhaltet die Best Practice: Mul-
tiple Perspectives. Die Spezialisierung ermoglicht es Teammitgliedern ihr Fachwissen gezielt
einzubringen und komplexe Anforderungen zu bewaltigen. Gleichzeitig bleibt die libergreifende

Zusammenarbeit entscheidend, um ein umfassendes Verstindnis im Team zu sichern.

3.24.1 Multiple Perspectives

Die Teams nutzen die Vielfalt von Rollen wie Tester, Entwickler und Analysten, um gemeinsam
bessere Losungen zu finden. Die Zusammenarbeit zwischen verschiedenen Rollen fordert den
Wissensaustausch und hilft andere Ansitze und Ideen in Losungen miteinflieBen zu lassen. Dabei
werden traditionelle Rollengrenzen bewusst aufgelost, um einen echten Perspektivenaustausch zu
ermoglichen. Der bewusste Einbezug unterschiedlicher Sichtweisen trégt zur besseren Entschei-

dungsfindung bei und erhoht die Qualitét.

3.2.5 Encouraging Cross-Functionality

Diese Kategorie fordert die Zusammenarbeit und Flexibilitdt im Team. Sie umfasst die Praktiken:
Group Programming und Rotation. Ziel ist es ein gemeinsames Verantwortungsbewusstsein fiir
das Produkt zu schaffen. Cross-Funktionalitit unterstiitzt eine Teamstruktur, in der Mitglieder

nicht nur ihre Kernrolle ausiiben, sondern flexibel auf neue Anforderungen reagieren koénnen.

3.2.51 Group Programming

Offene Arbeitsumgebungen fordern den Wissensaustausch und erleichtern die (direkte) Kommu-
nikation. Neue Mitglieder profitieren von der Unterstiitzung durch erfahrenere Kollegen. Das ge-

meinsame Arbeiten an Aufgaben — ob in Form von Pair-Programming oder informellen Gruppen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 37

— ermoglicht nicht nur schnellere Einarbeitung, sondern auch kontinuierliche Qualititssicherung.
Fachwissen wird dabei nicht zentralisiert, sondern bewusst verteilt und gemeinsam weiterentwi-

ckelt.

3.2.5.2 Rotation

Regelmifige Rotationen von Verantwortlichkeiten und auch von Teammitgliedern zu anderen
Teams und Themen erweitern die Fahigkeiten der Mitglieder und fordern die Zusammenarbeit.
Wechselnde Aufgaben und Perspektiven helfen Abhiangigkeiten zu reduzieren und das Verstiand-
nis zur verbessern. Rotationen stirken die Anpassungsfahigkeit des Teams und beugen Wissen-

sinseln aktiv vor.

3.2.6 Self-Evaluation

Diese Kategorie legt Wert auf Reflexion und kontinuierliche Verbesserung. Sie beinhaltet die
Best Practice: Retrospectives. Selbstorganisierende Teams bendtigen regelmifBige Gelegenheiten

zur Selbstreflexion, um ihre Arbeitsprozesse kritisch zu hinterfragen.

3.2.6.1 Retrospectives

Teams reflektieren regelmaBig tiber ihre Arbeitsweise, um Verbesserungsmdglichkeiten zu iden-
tifizieren. Entscheidungen aus Retrospektiven werden genutzt, um Prozesse effizienter zu gestal-
ten. Retrospektiven fordern eine Kultur des Lernens, in der Fehler als Entwicklungschancen be-
trachtet werden. Sie helfen Teams, systematisch aus Erfahrung zu lernen, Verantwortlichkeiten

zu kldren und das Miteinander nachhaltig zu stirken.

3.2.7 Self-Improvement

Diese Kategorie fordert die individuelle Weiterentwicklung und das Lernen im Team. Sie umfasst
die Praktiken: Pair-in-Need und Learning Spike. Selbstorganisierende Teams entwickeln sich
nicht nur durch Prozesse weiter, sondern auch durch gezieltes individuelles und kollektives Ler-
nen. Gerade in dynamischen Projektkontexten ist die Féhigkeit zur schnellen Anpassung an neue

Technologien und Methoden ein zentraler Erfolgsfaktor.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

State of the Art 38

3.2.7.1 Pair-in-Need

Zwei Teammitglieder arbeiten zusammen, um spezifische Probleme zu 16sen. Diese Praxis wird
bei komplexen und designintensiven Aufgaben angewandt und fordert den Wissensaustausch.
Pair-in-Need geht tiber klassisches Pair-Programming hinaus: Es wird situationsbezogen einge-
setzt, wenn hoher Abstimmungsbedarf oder kritische Designentscheidungen bestehen. Die Me-
thode verbessert nicht nur die Losungsqualitét, sondern ermoglicht eine direkte Weitergabe von

implizitem Wissen im konkreten Kontext.

3.2.7.2 Learning Spike

Teams nehmen sich gezielt Zeit, um neue Technologien oder Konzepte zu lernen. Ein Beispiel
beschreibt ein Team, das durch den unerwarteten Weggang seines einzigen Testers unter starkem
Iterationsdruck stand. Mithilfe eines Learning Spikes wurde entschieden, die Testprozesse zu au-
tomatisieren. Der agile Coach unterstiitzte das Team dabei, den Druck zu bewiltigen und sich auf
neue Tools und Techniken zu konzentrieren. Mit der Unterstiitzung eines neuen Testers mit er-

weiterten Programmierkenntnissen konnte die Automatisierung deutlich vorangetrieben werden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 39

o Single Case Studies

In diesem Kapitel werden die Single Case Studies beschrieben. Im Punkt 4.1 wird auf die Erstel-
lung des Fragebogens eingegangen. Im Anschluss folgen Informationen zum Aufbau des Inter-
views, Details zu den Fallbeispielen sowie der Datenanalyse und Auswertung (vgl. Punkt 1.4). In
der Single Case Study wird die Auswertung fiir jedes Fallbeispiel unabhéngig der anderen Fall-
beispiele vorgenommen. Die Auswertung iiber alle drei Fallbeispiele gemeinsam befindet sich im

Kapitel 5.

4.1 Erstellung des Fragebogens

In diesem Kapitel wird die Strukturierung der Fragen fiir das semi-strukturierte Interview be-
schrieben (siehe Phase III in Kapitel 1.4.2). Fiir die Vorstrukturierung der Interviews werden die

sieben Kategorien der Balancing Acts (siehe Punkt 3.1 und 3.2) verwendet:

Collective decision making
Self-assignment
Self-monitoring

Need for specialization
Encouraging cross-functionality

Self-evaluation

Nk =

Self-improvement

Diese Strukturierung ermoglicht eine gezielte Analyse und den Vergleich der Interviews mit den
Best Practices von Hoda et al. Ergidnzend dazu erlaubt die thematische Analyse nach Braun &

Clarke [23], durch offene Fragen weitere relevante Kategorien zu identifizieren.

In den Unterkapiteln 4.1.1 bis 4.1.7 werden die sieben Hauptkategorien angefiihrt. Der Fokus
liegt auf inhaltlichen Beschreibungen, die zentrale Aspekte und typische Themenbereiche inner-

halb jeder Kategorie zusammenfassen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 40

4.1.1 Collective decision making

Diese Kategorie widmet sich den Praktiken: Collective estimation and planning, Collectively de-
ciding team norms and principles und Self-committing to team goals (vgl. Punkt 3.2.1). Fragen in

dieser Kategorie schlieBen folgende Punkte mit ein:

e Die Planung von Iterationen

e Die Abschitzung der Komplexitit von Anforderungen/Aufgaben (z. B. durch Punkte-
vergabe)

e Gemeinsame Entscheidungen {iber Normen, Prinzipien, Regeln und Zeitmanagement
e Vorgehensweisen zur Zielerreichung

e Die Selbstverantwortung der Teammitglieder hinsichtlich ihrer Aufgaben und Ziele

4.1.2 Self-assignment

Diese Kategorie beinhaltet die Best Practices: Self-assignment using storyboards und Taking task

ownership (vgl. Punkt 3.2.2). Fragen in dieser Kategorie schliefen folgende Punkte mit ein:

e Die Entscheidungsfindung bei der Auswahl von Aufgaben (z. B. anhand von Priorititen
oder Spezialisierung)

e Die Sicherstellung von Transparenz innerhalb des Teams
e Die Selbstzuordnung von Aufgaben und Hilfsmitteln (z. B. Storyboards)
e Die Kennzeichnung der Aufgabenverantwortung

e Unterstiitzung bei der Auswahl und Zuteilung von Aufgaben

4.1.3 Self-monitoring

Fragen zu Self~-monitoring through daily standups and information radiators (vgl. Punkt 3.2.3)

widmen sich:

e Fortschrittsverfolgung durch regelméBige Meetings (z. B. Daily Standups)

e Nutzung von Artefakten und Tools (z. B. ,,Burn-down Charts*, Dashboards) zur Visualisie-
rung und Analyse des Fortschritts

e Verantwortung fiir die Fortschrittsbewertung innerhalb des Teams

e Soziale Kontrolle durch Teammitglieder zur Sicherstellung termingerechter Fertigstellung

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 41

4.1.4 Need for specialization

Fragen zu der Practice Multiple Perspectives (vgl. 3.2.4) behandeln die Punkte:

e FErfahrungsaustausch und Lernen innerhalb autonomer Teams
e Blick iiber die eigenen Rollen- und Projektgrenzen hinaus
e Spezialisierung der Teammitglieder und ihre Auswirkungen auf die Aufgabenverteilung

e Strategien zur Sicherstellung von Wissenstransfer und zur Vertretung bei unerwarteten Aus-
fallen

4.1.5 Encouraging cross-functionality

In diese Kategorie fallen Group programming und Rotation (vgl. Punkt 3.2.5). Hierbei werden

Fragen zu folgenden Themen gestellt:

e Wissensverteilung und Integration neuer Teammitglieder
e Forderung von direkter Kommunikation zur schnelleren Abstimmung und Problembehebung

e Forderung von Motivation und Interesse durch abwechslungsreiche Aufgaben

4.1.6 Self-evaluation

In dieser Kategorie befindet sich die Praktik Self-evaluation through retrospectives (vgl. Punkt
3.2.6):

e Lernen aus vergangenen Iterationen durch Retrospektiven
e Anpassung an dynamische Anforderungen und Verdnderungen

e Selbstreflexion und Weiterbildungsmoglichkeiten innerhalb des Teams

4.1.7 Self-improvement

Die letzte Kategorie behandelt zwei spezielle Best Practices Learning spike und Pair-in-need
(vgl. Punkt 3.2.7):

o Zeit fur gezielte Weiterbildung und Einarbeitung in komplexe Themen innerhalb von Iterati-
onen
e Unterstiitzung bei komplexen Aufgaben, die nicht allein bewiéltigt werden konnen (z. B.

durch Pair-Programming oder Expertenhilfe)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 42

4.1.8 Erstellung und Aufbau des Fragebogens

Die Beobachtungen der Participant Observation aus Fallbeispiel 1 (siche Punkt 4.4.4) bestdtigen,
dass die zuvor definierten Kategorien die Arbeitsweise autonomer Teams umfassend abbilden.

Der detaillierte Fragebogen ist im Anhang dieser Arbeit ersichtlich.

Der Fragebogen beginnt mit einer Erfassung der Meta-Informationen. In den Regeln wird festge-
halten, dass das Interview unter Einwilligung des Teilnehmers digital aufgezeichnet wird, um eine

anonymisierte Transkription zu ermdglichen. Das Interview hat einen semi-strukturierten Aufbau.
Der Aufbau des Interviews gliedert sich in drei Hauptbereiche:

1. Allgemeiner Teil — Fiinf Fragen zur Rolle des Teilnehmers, zur Projektart und zum -ziel, zur
Team- und ProjektgroBe, zur hierarchischen Struktur sowie zum eingesetzten Vorgehensmo-
dell. Diese Informationen flieen in die Fallbeispielbeschreibungen (siehe Kapitel 4.2) ein
und ermoglichen eine korrekte Zuordnung.

2. Fragen zu den sieben Kategorien der Balancing Acts — Jede Kategorie enthilt zwei offene
Fragen, mit Ausnahme der ersten, die aus drei Fragen besteht. Die Fragen sind bewusst all-
gemein formuliert, um eine offene und explorative Datenerhebung zu ermdglichen und
gleichzeitig potenziellen Interviewer-Bias zu reduzieren.

3. Zusatzfrage — Sie gibt den Teilnehmern die Moglichkeit, weitere relevante Informationen

auferhalb der vorgegebenen Struktur zu teilen.

Der Erstentwurf des Fragebogens wurde wihrend der Participant Observation im Fallbeispiel 1
entwickelt und mit einem Projektteilnehmer getestet. Auf Basis dieser Erfahrungen erfolgte an-

schlieBend eine Verfeinerung des Fragebogens.

4.2 Ubersicht der Fallbeispiele

In diesem Kapitel wird ein Uberblick iiber die fiir die Analyse herangezogenen Fallbeispiele ge-
geben. Die Fallbeispiele wurden so ausgewahlt, dass sie hinsichtlich ihrer Groe miteinander ver-

gleichbar sind. Detaillierte Beschreibungen finden sich in den Kapiteln 4.4 bis 4.6.

Beim Fallbeispiel 1 wurde eine Participant Observation (siche Punkt II. in Kapitel 1.4.2) ermog-
licht. Durch den Austausch mit den Mitarbeitern und dem Zugang zu deren Entwicklungswerk-
zeugen kann dieses Fallbeispiel detaillierter beschrieben werden als die anderen beiden Fallbei-

spiele. In den zwei Fallbeispielen 2 und 3 wurden leider keine Unterlagen zur Verfiigung gestellt,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 43

es konnten jedoch ausreichend beschreibende Informationen im Interview erhoben werden. Na-

mentliche Nennungen und konkrete projektspezifische Details wurden anonymisiert.

Folgende Tabelle 5 gibt eine Ubersicht iiber die wichtigsten Daten der drei Fallbeispiele wie Pro-

jektgroBe und TeamgroBe in Personen, Anzahl der Teams, Dauer, Vorgehensmodell und Bereich:

Pro- Team- Vorgehensmo-
jekt- grofie dell
grofle
Projektweit:
. 2010-laufend Wasserfall Versiche-
Fallbeispiel 1 ~ 150 2-12 - 12 (2025) Gruppenintern: rungstrager
Kanban
Projektweit:
. 2014 — laufend Scrum Autoherstel-
Fallbeispiel 2 | ~170 10-15 >11 (2025) Gruppenintern: ler
Scrum & Kanban
.. 2006 - laufend Wasserfall, Gesundheits-
Fallbeispiel 3 ~200 8-10 > 20 (2025) Scrum & Kanban bereich

Tabelle 5: Ubersicht der drei Fallbeispiele

4.3 Interviews

Die Teilnehmer der Interviews wurden vom Ansprechpartner des jeweiligen Fallbeispiels vermit-
telt. Das Ziel ist es, verschiedene Rollen innerhalb der autonomen Teams iiber alle drei Fallbei-
spiele zu befragen, um deren Arbeitsweisen und Sichtweisen erheben und abgleichen zu kdnnen.
Zu jedem Fallbeispiel wurden flinf Teilnehmer interviewt. Einige Teilnehmer haben Doppelfunk-
tionen innerhalb des Teams. Die Tabelle 6 gibt eine Ubersicht der Rollen fiir die Interviews je
nach Fallbeispiel. Die Teilnehmer im Fallbeispiel 1 werden mit T1 bis TS5 angefiihrt, die Teilneh-
mer im Fallbeispiel 2 mit T6 bis T10 und jene im Fallbeispiel 3 mit T11 bis T15.

\ Fallbeispiel 1 Fallbeispiel 2 Fallbeispiel 3
Teil-/Projektleiter T13,T14
Requirements Engineer Tl T9 T12
Deployment/Devops T7
Technischer Architekt T6, T8 T12,T15
Test/Testmanagement T4, Tl T10
Teamleiter T3, T5 T9 T11
Softwareentwickler T1,T2, T4 T8 T15

Tabelle 6: Ubersicht Teilnehmer und Rollen der Interviews

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 44

Die Teilnehmer T1 und T2 konnten im Fallbeispiel 1 direkt am Standort des Projekts befragt
werden. Die anderen Teilnehmer (T3 bis T15) wurden per Videoanruf interviewt. Alle Interviews
wurden mit dem Einverstindnis der Teilnehmer aufgenommen, damit diese fiir die weitere Da-

tenanalyse bereitstehen.

4.4 Single Case Study: Versicherungstriger (Fallbeispiel 1)

Beim ersten Fallbeispiel (F1) geht es um die Realisierung einer zukunftsorientierten, prozessop-
timierten Anwendung im Versicherungsbereich, welche die Geschiftsprozesse des Kerngeschéfts
dieser Institution serviceorientiert unterstiitzt. Mit einer geplanten Projektdauer von mehr als 10
Jahren und mit mehr als 100 internen und externen Teilnehmern sowie mehrere Institutionen, die
diese Applikation nutzen, kann dieses Projekt als SoftwaregroBBprojekt It. Punkt 2.2.3 bezeichnet
werden. Die Arbeit in autonomen Teams erfolgt in einem komplexen Umfeld mit zahlreichen

voneinander abhéngigen Subsystemen, zentralisierten Tools und strikten Schnittstellenvorgaben.

4.4.1 Projektziel

Nach einer mehrmonatigen Konzeptionsphase wurde festgestellt, dass die Geschéftsprozesse der
beteiligten Institutionen in acht fachliche Teilbereiche gegliedert sind — u. a. Leistungen, Schrift-
verkehr, Rechtsangelegenheiten und medizinische Belange. Zwar existieren bereits EDV-ge-
stiitzte Anwendungen, diese sind jedoch auf einzelne Fachbereiche beschrinkt. Dadurch bestehen
fiir gleichartige Aufgaben unterschiedliche, fachbereichsspezifische Losungen, was zu einer Viel-

zahl an Schnittstellen fiihrt, um Daten synchron zu halten.

Ziel des Projekts ist die durchgéngige Optimierung und Harmonisierung aller Geschéftsprozesse
durch eine integrierte Softwareldsung. Diese soll strategische, wirtschaftliche, fachliche und tech-
nische Anforderungen erfiillen und eine rollenbasierte Oberflédche mit einheitlichem Look & Feel
bereitstellen. Technisch werden zentrale Datenhaltung, einheitliche Schnittstellen und Strukturen
sowie die Reduktion von Redundanz und die Wiederverwendbarkeit von Komponenten ange-

strebt.

Die Projektorganisation (vgl. Abbildung 8) besteht aus zwei Hauptstrukturen: einer fachlich-or-
ganisatorischen Leitung und einer technischen Leitung (Farbe Gelb). Die Koordination erfolgt

iiber Assistenzfunktionen sowie fachliche und technische Koordinationsrollen (Farbe Blau).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Q Sibliothek,
Your knowledge hub

Single Case Studies

45

Generaldirektion

Zur fachlich-organisatorischen Koordination zéhlen der Testmanager, Servicemanager, Business
Architekt, Projektorganisator, das Programm-Management, internes Controlling sowie Ansprech-
partner fiir die nutzenden Institutionen. Die technische Koordination erfolgt durch den Enterprise

Architekten sowie das Informationssicherheits- und Risikomanagement.

Die vier fachlichen Kernteams sind thematisch gegliedert in Basisthemen (z. B. IDM, Statistik,
E-Government), Querliegerthemen (z. B. Druck, Archiv, Scan), Kernthemen (Haupt- und Sub-
prozesse des Tagesgeschifts) sowie Sonderthemen (z. B. Beratung, Steuern, rechtliche Belange).
Auf technischer Seite verantwortet das Team Entwicklung die Umsetzung der fachlichen Anfor-
derungen, inklusive Datenmodellierung, Service-Entwicklung, Ul-Erstellung sowie Tests. Das
Team Betrieb stellt die Infrastruktur bereit, iiberwacht Performance und behebt technische Sto-
rungen. Die Kernteams sind in zahlreiche kleinere Teilteams mit jeweils 2 bis 12 Personen unter-
gliedert. Beispiele sind die Teams fiir Prozessmodellierung, Objektmodellierung, Schriftverkehr
und Servicemodellierung. Auch die technischen Teams arbeiten in autonomen Strukturen und

iibernehmen sowohl fachlich-funktionale als auch generisch-technische Aufgaben wie Biblio-

--------------------- e L
L
Fachlich-organisatorische Leitung : | Technische Leitung
B
[
[
fachlich-organisatori- | | ! i
. - L Technische Abte;lun.g
Assistenz sche 0 Koordinati Organisation
Koordination Pl oordmnation ¢
L
L
]
1
Kernteam Kernteam . Team Betrich — Abteilung Rechen-
Basisthemen Querliegerthemen i ! MR zentrum
o
. .
P Abteilung
Kernteam Kernteam i 1| Team Entwicklung —'—{ Software-entwick-
Kernthemen Sonderthemen v PR lung
1 1 al Ll
]

Teamleiter, Requirements Engineer,
technischer Architekt, Tester, Entwickler

Abbildung 8: Projektorganisationsstruktur im Fallbeispiel 1

theksverwaltung, Updates, Migrationen oder Security.

Die Projektrollen sind vielfdltig. Zu den zentralen Rollen zihlen Auftraggeber, Auftragnehmer,

Steuerungsausschuss, Projektleitung, (Kern-)Teamleitungen, Projektunterstiitzung, (Kern-)teams

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies

46

sowie externes Projektcontrolling. Weitere Rollen ergeben sich projektspezifisch im Verlauf.

Eine Ubersicht bietet Tabelle 7:

Projektleitung

Pro-
jekt-
lei-
tung

Pro-
jekt-

unter-

stiit-
zung

Pro-
zess-
model-
lierung

Service-
modellie-

rung

Team

Schriftver-
kehr

Entwicklung

Betrieb

fachliche Projektleitung

Stv. der Projektleitung

(Kern-)Teamleiter

Assistenz

Projektorganisator

Internes Projektcontrolling

Programm-Management

Business Architekt

Enterprise Architekt

Informationssicherheits- und
Risikomanager

Testmanager

Partnertréigeransprechpartner

R B R el Pl el P

Prozessmodellierer

Prozessablaufsteuerer

Servicemanager

Servicemodellierer

Objektmodellierer

Fachexperte

Fachanwender

Anwendungsarchitekt

GUI-Designer

Database Modeler

Business Unit- und
Life Cycle-Manager

Systemintegrator

Service-Developer

K| X X=X

Infrastruktur Architekt

Infrastruktur-Manager

Server-Verantwortlicher

Netzwerk-Verantwortlicher

Storage-Verantwortlicher

Database-Verantwortlicher

System Integrations-Manager

Enterprise Servicebus-Ver-
antwortlicher

R el R R R Rl

End to End Monitoring-Man-
ager

e

Operation

Verantwortlicher CMDB

Tabelle 7: Auszug der Rollen Fallbeispiel 1

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 47

An dieser Stelle sei noch erwihnt, dass es neben der Hauptinstitution noch vier weitere Einrich-
tungen gibt, welche die Applikation fiir sich nutzen wollen. Ein Steuerungsausschuss dient fiir
die strategische und dispositive Lenkung. Die Projektmitarbeiteranzahl wird mit bis zu 150 Teil-

nehmern angegeben.

4.4.2 Vorgehensmodell und Projektphasen

Das Vorgehensmodell beim Fallbeispiel 1 entspricht dem Wasserfallmodell (vgl. Punkt 2.2.5.3).
Die Phasen sind in Abbildung 9 dargestellt.

Anfoderungsanalyse

; |

Systementwurf

,

it ity Systementwicklung _|

--- >

.>

----- Schulung

—————————————— Abnahme —‘

1

1

1

1

:

1

! Auslieferung —‘
1

1

1

1 >
1

1

""""""""""""""""""""""""""" Abschluss
Abbildung 9: Vorgehensmodell Fallbeispiel 1

In der Phase der Anforderungsanalyse werden die Funktionalititen sowie die notwendigen orga-
nisatorischen Voraussetzungen fiir den Einsatz und Betrieb definiert. Beim Systementwurf wer-
den Entscheidungen beziiglich Systemarchitektur, Schnittstellen, Komponenten und die Vorbe-
reitung fiir Tests getroffen. In der Systementwicklung findet die Umsetzung des Servicekatalogs
statt. Dazu gehoren alle fachlichen und technischen Services, Anbindung vorhandener Systeme,
jegliche Applikationslogik, das Userinterface und die Datenablage (z.B. Datenbank). Wurden die
Anforderungen umgesetzt, folgt die Phase der Schulung. Anwender und Testpersonen werden in
die umgesetzten Features eingefiihrt. In der Abnahme erfolgen die Qualititssicherung und das
Testen. Sofern diese Phase bestanden wurde, kommt die Phase der Auslieferung. Die freigegebe-

nen Komponenten werden in einem sogenannten ,,Releasepaket™ in die Produktionsumgebung

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 43

ibernommen. Die letzte Phase bildet der Abschluss, in welchem ein Abschlussbericht tiber das

(teil-)entwickelte Produkt durch die Projektleitung erfolgt.

4.4.3 Zeitplan

Der Masterplan des Fallbeispiels 1 sieht eine Projektdauer von 10 Jahren vor, beginnend Anfang
2010 bis Anfang 2020. Das gesamte Projekt ist in fiinf Teilprojekte unterteilt, von denen einzelne
Meilensteine fiir die Produktivsetzung vorgesehen sind. Es gibt somit bereits wihrend der gesam-
ten Laufzeit immer wieder Teilfunktionalititen die freigeschalten werden. Teilprojekte die zu-
sammenhdngen werden, gemeinsam vorbereitet um Synergieeffekte zu erzielen, auch wenn ge-
wisse Themen erst fiir spatere Teilprojekte geplant sind. Nebenbei gibt es neben der Hauptfunk-
tionalitit des Kernprojekts noch weitere interne Applikationen die parallel dazu entwickelt wer-
den. Aufgrund weiterer, auch gesetzlich-bedingten Anderungen oder EU-Vorgaben liuft das Pro-
jekt auch aktuell (Stand 2025) noch weiter.

4.4.4 Participant Observation

Der Autor dieser Arbeit durfte iiber einen Zeitraum von mehreren Monaten eine Participant Ob-
servation (siehe Punkt II. in Kapitel 1.4.2) im Fallbeispiel 1 durchfiihren. Durch die personliche
Teilnahme konnte in diesem Zeitraum ein gutes Verstindnis der Arbeitsweise und des tiglichen
Ablaufs der autonomen Teams in diesem Projekt erreicht werden. Neben der Beobachtung der
Arbeitsweise der autonomen Teams und der Teilnahme an Meetings, bekam der Autor den Zu-
gang zu Tools und Artefakten, wie Mockups, Anforderungsdokumente, Ticketing-System, Git-
lab, SVN, Splunk (Auswertung von Logs), Objektmodelle, xWiki, etc. Im nidchsten Punkt werden
Beispiele mit Abbildungen der Artefakte angefiihrt.

4.4.5 Beispiele (Auswahl) der Artefakte und Beobachtungen

Bei Teams mit kleineren Themengebieten, deren Mitglieder oft vor Ort sind werden Whiteboards
mit ,,Post-its“ eingesetzt. Abbildung 10 zeigt ein Beispiel fiir ein kleineres Themengebiet, in wel-

chem ein Kanban-Board fiir ,,Cleanup‘“-Aufgaben erstellt wurde.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

othek,

o
|
led

3ibl
Your know

Single Case Studies 49

Abbildung 10: Beispiel Kanban Board (Whiteboard) Fallbeispiel 1

Die Verwendung von physischen Whiteboards ist jedoch die Ausnahme. Die meisten Themenge-
biete sind sehr gro3 und die Teammitglieder wechseln zwischen Home-Office und Biiroprésenz.
Da ein digitales Board leichter zu warten, tibersichtlicher und transparenter ist, wird ein Kanban-

Board in Gitlab eingesetzt. Dieses zeigt Abbildung 11:

ez e ot i et b e ey
BT o S sme fesmmentegus.s bemvsasnes
iy
o=y Y
Laimrae g
e==rrETEy s e . ———— e~
o T oy g e e
o e by
ingular Update st viix F o

Abbildung 11: Beispiel Kanban Board Fallbeispiel 1 Gitlab

Der Vorteil der digitalen Version ist die bessere Dokumentation, die Moglichkeit Kommentare
und Anhénge zu den Tasks hinzuzufiigen, Filtermoglichkeiten, Vergabe von zusétzlichen Labels,
eine schnellere Zuweisung usw. In den Tickets werden zum Beispiel auch die fachlichen Doku-
mente (Beschreibungen), GUI-Mockups, Objektmodelle (Datenbanktabellen, ER-Diagramme,
etc.) oder Fehler verlinkt. Die Ablage der Mockups und Beschreibungen fiir Services, GUI,
Batchabliufe, etc. werden in der Dokumentenverwaltungssoftware Alfresco abgelegt (siche Ab-
bildung 12).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 50

Repository-Browser

¥ Dokumente Auswahlen «

Ich bearbeite ¥ | Repository > f Projektdokumentationen > f 00_ALLGEMEIN > i 50_Fachliche {iaut Vor > fa Erp (taut > G Services > i Voliver
Meine Favoriten

Dokumentenname Dok.Status vers. Release Thema Dok.Typ —— etste dcerung

¥ Repository a Ri
B Repository o R2
B Applikationen m] R3
- “formationssicherhelt O | rit
0 m R3S
- - w Vorgehen in Softwareentwicl =] R4
M kommunikation o R4S
a RS
a A&
m] A7

5 0_sbgeschiossene Projekte
B 00_ALLGEMEIN
B 10_Kommunikation
B8 30_Basisunterlagen
B 50_Fachliche Ergebnisse (laut Vorgehe:
B Ergebnisdokumente (laut Vorgenen
8 Ablaufbeschreibungen
- e

oopoooooocoo

IP R R EERRERRERRRERNERERRERER RO

' g nete
™ Module
B schnittstellenbeschreibungen

iooooaon

Abbildung 12: Alfresco — Beispiel Ablagestruktur nach Releases

Die Erfassung von Anforderungen und Fehlern erfolgt in der Software HPQC. Die Einteilung der
Tickets erfolgt in ,,leicht”, , mittelt™, ,,schwer* und ,,kritisch®. Zu jedem Ticket gibt es eine Num-
mer, Beschreibung, Stage, Datum, Version und Verantwortlichen. Der Status des Tickets kann
»New*, ,.Defect Assigned*, ,,Rejected”, ,,Fixed*, ,,Closed”, ,,Reopened”, ,,Fachliche Analyse”,

,,Lest”, etc. sein.

Q) Application Lifecycle Management

SV r = e 0w

s Pl Fignc e Vot Clog e e Hoe Tasable énu Pt FisaydCiaplo reet 8 Tramonbermct{scandingt Grong By Severity

=

Abbildung 13: HPQC - Ticketsystem fiir Anforderungen und Fehler

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 51

4.4.6 Einfluss der Beobachtungen auf den Fragebogen

Da der Autor die sieben Untergruppen der Balancing Acts als Basis fiir den Fragebogen gewdhlt
hat, ist es wichtig validieren zu konnen, ob diese Gruppen ausreichend fiir die Erstellung des
Fragebogens und der verbundenen Datenerhebung sind und alle Teilbereiche vollstindig abde-

cken. Durch die Beobachtung und Teilnahme in dem Projekt konnte dies bestdtigt werden.

4.4.7 Thematische Analyse der Interviews

Das Vorgehen der thematischen Analyse ist fiir alle drei Fallbeispiele gleich und wird in diesem

Kapitel anhand eines Beispiels angefiihrt.

Bevor die thematische Analyse nach Braun & Clarke erfolgt, werden die im Punkt 4.3 gefiihrten
aufgenommenen Interviews transkribiert. Die Erfahrungen und Artefakte der Participant Obser-
vation des Fallbeispiels 1 konnten bei den Interviews und beim Transkribieren helfen ein besseres
Verstandnis fiir Fachbegriffe und Vorgidnge zu bekommen. Da diese Fachbegriffe und Vorgénge
auch in den anderen beiden Fallbeispielen erwidhnt werden, konnte die Participant Observation
einen zusétzlichen positiven Beitrag zu dieser Phase (sieche Punkt IV. in Kapitel 1.4.2) leisten.
Die Analyse gliedert sich in zwei Schritte: Im ersten Schritt, erfolgt die Codierung aller Interviews
und die Bildung von Themen. Dieser Teil wird in den folgenden Punkten genauer beschrieben.
Im zweiten Schritt (siche Kapitel 5) wird mit einer Multiple Case Study {iber die drei Fallbeispiele
nach Uberschneidungen der Codes gesucht. Codes, welche sich in allen drei Fallstudien iiber-

schneiden werden als relevant eingestuft in das finale Ergebnis {ibernommen.

4.4.7.1 Code- und Themenbildung anhand eines Beispiels

Wie bereits in Kapitel 1.4.2 unter Punkt V angefiihrt bilden die transkribierten, semi-strukturier-

ten Interviews, die Basis fiir die thematische Analyse.

Die thematische Analyse ist ein iterativer Prozess, bei dem Codes von Interview zu Interview

verfeinert, umstrukturiert und angepasst werden. Dabei durchléuft die Analyse mehrere Schritte:

1. Erstellung einer Dokumentengruppe — Die transkribierten Interviews werden in
MAXQDA [55] als separate Dokumente in einer neuen Gruppe gespeichert (siche Abbildung
14).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 52

v o [Fallbeispiel 1 O X 257
= Transkribiert - T1 33
= Transkribiert - T2 54
= Transkribiert - T3 42
= Transkribiert - T4 58
= Transkribiert - T3 63

Abbildung 14: Dokumentengruppe fiir F1 in MAXQDA

2. Initiale Codierung — Wichtige Phrasen, Schlagworter oder Absitze werden mit farblich ge-
kennzeichneten Codes markiert (siche Abbildung 15).

seum @ 28 %ﬁm s gibt natiirlic un s ber wir haben - wir haben ein bisschen die Moglichkeit, als - als sag ichmal
stark von externen | glrten [eutenhesemes Team ein paa! s ein p paar Pﬁ.iheﬂeﬂ rauszunehmen. Und wir | gesagt, dass wir fiir uns gerne Kanban durchfiihren wollen, weil es sinavoller

- sinnvoller ist mit dem Pm]elﬂsemp ‘Weil, well sich die Prioritéten standig ndem, weil, weil man nicht fix immer mit Releases rechnen kann, also mit diesen Zwischen-Releases. Und weil,
weil halt eben das T hrankt gut funktioniert. Das heiBt, wir haben das quasi fir uns entschieden ausformuliert und haben dann die Genehmigung
Abteilungsleitung dafiir bekammen Lnd jetzt afbmen wir ganz gut filr uns intern.

Kanban

& 135 Ja, ja, ja, genam - alles davon. Corona - Home- Oﬂscm)mdnsulmsbe.msﬁ‘nmdr fluence ist mal dic K. ilati hend um was zu dokumentieren Informell haben wir
ntiu S EEE den Rocket-Chat und Jitsi_ Telefon ist natiilich eine Variante E-Mail ist ein belisbter Weg zu kommunizieren - vor allem nach auBen mit dem Kunden Aber hat natirlich tie bekannten
A Schwiichen, dass das dann nicht dokumentiert ist. Aber ja, vor Ort sind aktuell eher weniger. Ich bin meistens vor Ort, um auch der Ankerpunkt 7u sein fir Kollegen. Aber in der Regelist
e alles online - Video Calls und.

136| Interviswe:

& { 4 Ja einerseits wie bereits in der vorherigen Frage gesagt, durch eben dieses Defect Management Tool, wo man ja eindeutig Personen assignen kann, das heiBt jeder sieht, wem
Task-Fortschritt | L | - also sowohl welche Abteilung als auch welche Person etwas zugewiesen ist und in welchem Status das Ganze ist, das heifit wer ‘st und wer zusténdig ist. Das heift, es kann
nicht passieren, dass man nicht weif, wer etwas macht. Und andererseits hat sich eigentlich in fast allen Teams etabliert, ebenso Daily Standards Meetings zu machen oder
% ein Task-Board zu machen, sei es jetzt auf Papier oder auch diverse Tools, mit denen man das digital machen kann, so dass eben jeder sieht, wer sich um welche Themen und
Daylis Tasks kiimmert und wer dafiir zustindig ist.

Abbildung 15: Codierung der Interviews in MAXQDA

3. Strukturierung der Codes — Ahnliche Codes werden zu iibergeordneten Themen zusam-
mengefasst. Dies geschieht auf Basis:
e der Interviewstruktur (dhnliche Fragen = dhnliche Codes),
e der Antworten mehrerer Teilnehmer (Erkennen von Redundanzen und Gemeinsamkei-

ten).

4. Zusammenfiihrung in Themen — Codes mit inhaltlichen Uberschneidungen werden zu lo-

gischen Themen gruppiert, um eine strukturierte Analyse zu ermoglichen.

Um diesen Prozess zu veranschaulichen, folgt nun ein Beispiel aus Fallbeispiel 1. Die Interview-

frage lautet:
., Wie erfolgt die Auswahl und Zuteilung von Anforderungen und Fehlern? *
Ein Teamleiter (T5) antwortet im Fallbeispiel 1:

,, Prinzipiell also jedes Team hat prinzipiell die Themen, fiir die es verantwortlich

ist. Das heifst, jeder weifs, woran sein oder sollte wissen, woran sein Team arbeitet.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies

53

Die Zuteilung erfolgt durch die Abteilungsleitung oder durch die Abteilungs- Or-
ganisatoren, das heifst, dort wird entschieden, welches Team ein neues Thema be-
kommt viel oder welches Team eben einen Defect bekommt, weil der zu einem Team
dazugehort. Im Team ist die Aufteilung im Team selbst iiberlassen, d. h. entweder
derjenige, der sich am besten damit auskennt, im Idealfall derjenige, der es ge-
macht hat, oder halt derjenige, der gerade Zeit hat, falls eben auf Urlaub ist. Wich-

tig ist halt, dass es so ist, dass moglichst wenig liegenbleibt. “ — TS5, Teamleiter
Aus dieser Antwort werden relevante Schlagworter und Phrasen identifiziert:
Zuteilung durch die Abteilungsleitung

Zuteilung durch Organisatoren

Aufteilung innerhalb des Teams nach Fachwissen

v

Aufteilung nach Verfiigbarkeit der Teammitglieder

AnschlieBend werden diese nochmals verfeinert und zusammengefasst. Die Zuteilung durch die

Abteilungsleitung oder Organisatoren wird als Leitung abstrahiert.

I. Zuteilung der Leitung an das Team
II. Zuteilung/Auswahl nach Fachwissen

II. Zuteilung/Auswahl nach Ressourcen (Verfiigbarkeit)
Ein anderer Teamleiter (T3) antwortet im Fallbeispiel auf dieselbe Frage:
,,Im Prinzip haben wir intern, so teamintern eine Ubersicht iiber alle Themen und
pro Thema haben wir eine Ubersicht iiber alle zu erledigenden Aufgaben. Und
prinzipiell hat jeder Zugriff drauf und sieht, wer was macht und kann sich dann,
auch wenn er in dem Thema selber drinnen ist, selber eine Aufgabe nehmen und
hat damit auch die Einsicht.” — T3, Teamleiter

Daraus lassen sich folgende Codes ableiten:

IV. Auswahl durch Teammitglieder aus Task-Liste
V. Task-Fortschritt

Nun erfolgt die Zusammenfiithrung in iibergeordnete Themen:

Die Codes I bis IV beziehen sich auf verschiedene Formen der Aufgabenverteilung und werden

dem Thema ,,Auswahl und Zuteilung von Tasks* zugeordnet.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 54

Code V verweist auf Transparenz (alle sehen, wer woran arbeitet) und Fortschrittsmessung (Be-

arbeitung eines Tasks ist sichtbar) — er wird daher beiden Themen zugeordnet.

Nach diesem Prozess ergibt sich jene Struktur, die Tabelle 8 zeigt:

Code Thema

I. Zuteilung der Leitung an das Team

II. Zuteilung/Auswahl nach Fachwissen

III. Zuteilung/Auswahl nach Ressourcen (Verfiigbarkeit) Auswahl und Zuteilung von Tasks

IV. Auswahl durch Teammitglieder aus Task-Liste

V. Task-Fortschritt Transparenz, Fortschrittsmessung

Tabelle 8: Beispieltabelle fiir die Code- und Themenbildung

Mit zunehmender Anzahl analysierter Aussagen verfeinern sich die Codes und Themen kontinu-
ierlich. Im Laufe des Analyseprozesses kristallisieren sich konsistente thematische Gruppen her-

aus, die anschlieSend als Basis fiir die Kategorienbildung dienen.

4.4.7.2 Ergebnis Single Case Study Fallbeispiel 1

Die thematische Analyse fiir Fallbeispiel 1 fiihrt zur Identifikation von 14 {ibergeordneten The-

men und 66 zugehorigen Codes. Diese Ergebnisse werden aus den transkribierten Interviews ab-

geleitet und durch die iterative Codierung strukturiert. Die Tabelle 9 zeigt die Themen und Codes:

Anzahl der Interviews

Thema Code # Dokumente
Validierung und Einplanung nach Dringlichkeit 20% 1

Taskénderungen Direkt wenn nicht zu kritisch (aufgrund von Biirokratie) 80% 4
SonarQube 40% 2

Organisationsweite Richtlinien 80% 4

Checkstyle 40% 2

Richtlinien, Gren- | Zentrale Festlegung durch Spezialisten (1...n) 80% 4
;i?r’lz];];ig:en oder Doku (Wiki/Confluence/...) 80% 4
Unit-Tests 20% 1

Review nach Checkliste 40% 2

zusétzliche Codequalitdten durch Team bzw. Teamleiter 40% 2

Meetings bei Bedarf 40% 2

) Weekly (1-2 Wochen Zyklus) 60% 3
Meetings Meetings klein halten 20% 1
Dailies 80% 4

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies

55

Teamleiter-Meetings (Test, Architektur, etc.) 60% 3
Umgebung Vorort (Kleinbiiro, ...) 80% 4
Team Events & Allgemeine Teamevents
Belohnungen 80% !
Support bei lizensierter Software 20% 1
4 Augen Prinzip & Reviews 100% 5
Komplexe Themen Teamabsprache und Validierung 80% 4
Testabdeckung um Komplexitit abzudecken 20% 1
Task-Fortschritt (Monitoring) per Board 80% 4
Agiler Prozess 20% 1
fl?rllr;schrittsmes- Leistungsfortschrittsbericht 80% 4
wochentliche Meetings mit Leitung 20% 1
Ticketstatus (%, Stunden oder Status) 80% 4
Leitung an Team 100% 5
Auswahl und Zu- | Zuteilung nach Fachwissen/jenen der sich am besten aus-
teilung Tasks kennt 60% 6
Auswahl durch Teammitglieder aus Task-Liste 100% 5
Teamwechsel 40% 2
Zertifikate & Weiterbildung (aktiv) 20% 1
. Zeit fir Verbesserungen 20% 1
Fortbildung Themenwechsel 60% 3
Rollenwechsel 60% 3
Zeit Technologiewechsel & Updates 20% 1
Software & Ticketverwaltung 80% 4
Agiler Prozess 20% 1
Task-Fortschritt fiir jedes Mitglied 60% 3
Transparenz Status setzen 60% 3
Direkte Kommunikation 20% 1
Dailies (Transparenz) 60% 3
Boards (Kanban od. dhnliches) 100% 5
Code Review 100% 5
JavaDoc (Code-Kommentare) 20% 1
Dokumentation 20% 1
Taskzuteilung nach belieben 40% 2
Ubergabemeetings 40% 2
Wissensverteilung | pjrekte Nachfrage (Sms, Telefon) 20% 1
& Support ;
Taskrotation 20% 1
Zuteilung an Andere bei Leerlauf 20% 1
Pair-Programming 40% 2
Full-Stack Entwicklung 20% 1
Mehrere Personen pro Thema 60% 3
Reflexion & Lern- | Retrospektive & Review 20% 1
prozess Direkt wenn es auftritt 60% 3

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 56

Schitzung liber mehrere Iterationen 20% 1
Aufwandsschit- Durch Teammitglieder 100% 5
zung Aufteilung in Subtasks 20% 1
projektspezifische Einheitenschitzung 40% 2
Telefon 60% 3
direkte Kommunikation 100% 5
Ticket-Tool 40% 2
Kommunikation | Chat 80% 4
Meetings 40% 2
E-Mail 100% 5
Wiki/Confluence/... 20% 1

Tabelle 9: Vorkommen der 66 Codes im Fallbeispiel 1

4.5 Single Case Study: Autohaus (Fallbeispiel 2)

Beim Fallbeispiel 2 handelt es sich um einen Automobilhindler der ein neues Dealer-Manage-
ment-System (DMS) implementiert. Darunter versteht man die Verwaltung von Werkstattauftra-
gen, Kaufe von Neu- und Gebrauchtwigen inklusive Datawarehouse mit Aufbereitung von Kenn-
zahlen und Statistiken. Die Software hat nicht nur viele interne Schnittstellen, sondern muss auch

mit externen Systemen wie zum Beispiel Versicherungen und Banken kommunizieren.

4.5.1 Projektziel

Das Projektziel ist die Ablose und Neuimplementierung eines bestehenden Dealer-Management-
Systems. Aktuelle Vertragspartner in den Werkstétten und Autohdusern benutzen ein Fat-Client
System, welches mit C++ implementiert ist. Dieses soll mit einer modernen Neuentwicklung mit
Web-User Interfaces in Angular und einem verteilten System mit mehreren Applikationen, die
miteinander kommunizieren abgeldst werden. Das Ziel ist es, dass diese Applikation nicht nur

regional, sondern weltweit ausgerollt werden kann.

4.5.2 Projektorganisationsstruktur, Rollen und Teams

Die Abbildung 16 zeigt die Projektorganisationsstruktur des Fallbeispiels 2. Innerhalb des Teams
gibt es mehrere Tester und Entwickler, sowie einen Teamleiter, technischen Architekten und ei-

nen Requirements Engineer.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 57

Fiihrungsebene
Bereichsleitung
Abteilungsleitung 1 | -------------- Abteilungsleitung N
Projektleiter (1...N) Projektleiter (1...N)
Entwicklungsteams (1...N) Entwicklungsteams (1...N)
Teamleiter, Requirements Engineer, Teamleiter, Requirements Engineer,
technischer Architekt, Tester, Entwickler technischer Architekt, Tester, Entwickler

Abbildung 16: Projektorganisationsstruktur im Fallbeispiel 2
Der Product Owner gibt die Anforderungen an den Requirements Engineer weiter. Uber dem
Teamleiter gibt es dann einen Projektleiter, dariiber die Abteilungsleitung. Uber der Abteilungs-

leitung befindet sich die Bereichsleitung und an der Spitze der Hierarchie die Fiihrungsebene.

Die TeamgrofB3e auf der Entwicklungsebene liegt ca. bei 10-15 Personen. Die Projektmitarbeiter-

anzahl wird mit bis zu 170 Teilnehmern angegeben.

4.5.3 Vorgehensmodell und Projektphasen

Im Fallbeispiel 2 ist als Vorgehensmodell ist organisationsweit Scrum (vgl. Punkt 2.2.5.1) mit 2-
wochigen Sprints vorgesehen. Jeden Monat gibt es ein Release. Einige Teams haben jedoch die
Freiheit auf Kanban (vgl. Punkt 2.2.5.4) umzusteigen, wenn sie ihr Modell ausformuliert haben
und von der Abteilungsleitung abgesegnet bekommen. Der Umstieg auf Kanban wird von den
Teammitgliedern damit argumentiert, da in gewissen Teilbereichen zu hiufigen Anderungen der
Prioritdten gibt und eine Fertigstellung zum geplanten Teilrelease nicht mdglich ist. Ist nach vier
Wochen ein Release fertig, kommt dieser Stand auf die Qualitatssicherungsumgebung. Dort wer-
den Tests und Abnahmetests gemeinsam mit dem Kunden vorgenommen. Ist dieser Stand stabil,

wird er auf der Produktionsumgebung ausgeliefert.

4.5.4 Zeitplan

Ein genauer Zeitraum wurde von den Interviewten nicht genannt. Das Projekt lauft jedoch be-

reits mehrere Jahre und ist zum aktuellen Stand 2025 noch nicht fertiggestellt.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 58

4.5.5 Thematische Analyse der Interviews

Die thematische Analyse fiir Fallbeispiel 2 wird nach dem gleichen Vorgehen wie bei Fallbeispiel
1 durchgefiihrt (vgl. 4.4.7). Bereits definierte Codes und Themen aus Fallbeispiel 1 werden tiber-
nommen, sofern sie inhaltlich auf die neuen Interviewdaten zutreffen. Dabei wird eine einheitli-
che Benennung und Zuordnung verwendet, um die Vergleichbarkeit zwischen den Fallbeispielen

zu gewdhrleisten.

Tabelle 10 zeigt die spezifischen Ergebnisse der Codierung und Themenbildung fiir Fallbeispiel

2 mit insgesamt 13 Themen und 71 Codes:

Anzahl der Interviews

Thema # Dokumente
fachlich iiber Requirements Engineer 20%
Validierung und Einplanung nach Dringlichkeit 80% 4
Taskdnderungen teamintern besprochen 20% 1
Direkt wenn nicht zu kritisch (aufgrund von Biiro-
. 60% 3
kratie)
SonarQube 60% 3
Renovate-Bot (Gitlab) 20% 1
Checkstyle 20% 1
Definition of Done 20% 1
Richtlinien, Grenzen, Zentrale Festlegung durch Spezialisten (1...n) 100% 5
Normen oder Prinzipien | technische Architektur-Meetings 20% 1
Organisationsweite Richtlinien 60% 3
Doku (Wiki/Confluence/...) 20% 1
zusitzliche Codequalititen durch Team bzw.
. 80% 4
Teamleiter
Code Review 20% 1
Teamkultur Teamkultur 20% 1
Meetings bei Bedarf 40% 2
Weekly (1-2 Wochen Zyklus) 60% 3
Meetings Dailies 80% 4
Teamleiter-Meetings (Test, Architektur, etc.) 80% 4
Protokollierung 40% 2
Team Events & Beloh- . 40% 5
nungen Allgemeine Teamevents
4 Augen Prinzip & Reviews 40% 2
Komplexe Themen Teamabsprache und Validierung 60% 3
Task-Fortschritt (Monitoring) per Board 80% 4
i 80% 4
Fortschrittsmessung Im Daily i
wochentliche Meetings mit Leitung 20% 1
Ticketing-Tool 20% 1

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies

59

Ticketstatus (%, Stunden oder Status) 80% 4
Leitung an Team 60% 3
Auswahl durch Teammitglieder aus Task-Liste 40% 2
Zuteilung in Meeting demokratisch 20% 1
Auswahl und Zuteilung | Zuteilung nach Fachwissen/jenen der sich am bes-
Tasks ten auskennt 40% 2
Team zu Team 20% 1
priorisierte Taskliste 20% 1
Requirements durch Product Owner 20% 1
Teamwechsel 20% 1
Zertifikate & Weiterbildung (aktiv) 20% 1
Zeit fir Verbesserungen 40% 2
Fortbildung Themenwechsel 80% 4
Rollenwechsel 60% 3
Zeit Technologiewechsel & Updates 40% 2
Udemy-Kurse 20% 1
Software & Ticketverwaltung 80% 4
Teamiibergreifende Meetings 20% 1
Task-Fortschritt fiir jedes Mitglied 40% 2
Transparenz Status setzen 40% 2
Direkte Kommunikation 40% 2
Dailies (Transparenz) 100% 5
Sprint-Preview 20% 1
Boards (Kanban od. dhnliches) 80% 4
Code Review 80% 4
Dokumentation 20% 1
Ubergabemeetings 40% 2
Wissensverteilung & Direkte Nachfrage (Sms, Telefon) 20% 1
Support Taskrotation 60% 3
Sprint-Review 40% 2
Pair-Programming 60% 3
Mehrere Personen pro Thema 60% 3
Reflexion & Lernprozess | Retrospektive & Review 100% 5
Schiitzung iiber mehrere Iterationen 100% 5
Priorisierung von Tasks 40% 2
Aufwandsschitzung Durch Teammitglieder 100% 5
Aufteilung in Subtasks 20% 1
projektspezifische Einheitenschitzung 40% 2
Telefon 20% 1
direkte Kommunikation 60% 3
Kommunikation Ticket-Tool 20% 1
Chat 100% 5
Meetings 60% 3

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 60

E-Mail 20% 1
Wiki/Confluence/... 60% 3

Tabelle 10: Vorkommen der 71 Codes im Fallbeispiel 2

4.6 Single Case Study: Gesundheitsbereich (Fallbeispiel 3)

Fallbeispiel 3 widmet sich der Infrastruktur im Gesundheitsbereich eines Landes, zu dem sehr
viele verschiedene Teilbereiche und Applikationen, sowohl im Software- als auch Hardwarebe-
reich gehoren. Das Produkt gliedert sich in mehrere Teilprojekte. Ein Teilbereich widmet sich der
Hardware, welche als Anbindung an die Software bendtigt wird. Die Teams designen nicht nur
die Hardware, sondern auch das Betriebssystem und alles, was dazu gehort. Im Bereich der Soft-
ware gibt es Teilprojekte fiir die mobile App-Entwicklung (Android und iOS), sowie nicht mobi-
len Anwendungen und Schnittstellen. Aufgrund der sensiblen Daten ist fiir dieses Projekt ein

umfangreicher Zertifizierungsprozess notwendig.

4.6.1 Projektziel

Das Projektziel ist der Zugang und Austausch von Gesundheitsinformationen von versicherten
Biirgern eines Landes. Ein elektronischer Akt eines Biirgers, welcher iiber Apps zugéinglich ist
und iiber verschiedene Krankenkassen zugénglich gemacht wird. Gesundheitsrelevante Daten
konnen anschlieBend in diesem elektronischen Akt abgelegt werden. Damit sind alle wichtigen
Informationen jederzeit digitalisiert abrufbar und miissen nicht iiber Umwege angefordert wer-
den. Die Kontrolle dieser Daten obliegt allein dem Versicherten. Die Hardware, beinhaltet ein
Fachmodul, dass den Zugang fiir die Kommunikation mit den Gesundheitsdaten bzw. der dazu-

gehdrigen Software zur Verfligung stellt.

4.6.2 Projektorganisationsstruktur, Rollen und Teams

Die Projektstruktur fiir das Fallbeispiel 3 ist aufgrund der vielen unterschiedlichen Aufgabenbe-
reiche vor allem auf horizontaler Ebene sehr breit aufgestellt. Es gibt einen Projektsponsor, sowie
die Geschiftsfithrung an oberster Stelle. Darunter gibt es in den Teilprojekten jeweils Projektlei-
ter. Da die Projekte sehr grof3 sind, liegt die Verantwortung nicht allein an einem Projektleiter,
sondern an mehreren. Es sind somit ganze Projektleitungs-Teams von bis zu zehn Leuten, welche
die Projekte fiihren. Es gibt viele verschiedene Bereiche wie z.B. App-Entwicklung, Identitét-
und Authentifizierungslosungen, Backend, etc. In den Teilprojekten gibt es Teilprojektleiter, die

entweder Teams fithren, Kundenansprachen vornehmen oder Querschnittsaspekte erfiillen wie

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies 61

Security, Zertifizierungen oder Test. Innerhalb der Teilprojekte werden die Teams von Team-

Leads gefiihrt, deren Mitarbeiter intern wieder bestimmten Rollen zugeteilt sind.

4.6.3 Vorgehensmodell und Projektphasen

AuBen herum ist das Vorgehensmodell dieses Fallbeispiels ein Wasserfall-Modell (vgl. 2.2.5.3).
Die Deadline des nichsten Releases ist mit 01.01 des nichsten Jahres vorgegeben. Ebenfalls vor-
gegeben ist der Zeitraum fiir die Uberpriifung und das Security Gutachten. Das Produkt muss vor
der Auslieferung von einer Zulassungsstelle freigegeben werden. Am Anfang der Entwicklung
wird die Spezifikation iibergeben, die jedoch iiberwiegend noch nicht vollstindig fertig ausdefi-
niert ist. Wéahrend der kurzen Zeit der eigentlichen Entwicklungsphase werden kleinere Zwi-
schenreleases mit Meilensteinen eingefiihrt. Innerhalb der Teilprojekte wird eine Kombination
aus Scrum (vgl. 2.2.5.1) und Kanban (vgl. 2.2.5.4) verwendet. Am Anfang des Projekts wird meist
Scrum verwendet, da hier ein sauberer Backlog abgearbeitet werden kann. Gegen Ende der Ent-
wicklungsphase ldsst sich der Scrum-Prozess jedoch nicht mehr komplett isoliert durchfiihren. Es
muss nach Funktionalitdt und Prioritit entwickelt werden, da sich die gesetzliche Deadline nicht
verschieben lasst. Daher wird im letzten Abschnitt der Entwicklung meist auf Kanban umgestie-

gen.

4.6.4 Zeitplan

Die Releases sind typischerweise aufgrund gesetzlicher Anforderungen festgelegt und werden mit
01.01 eines Jahres produktiv gesetzt. In den letzten zwei Monaten vor dem Produktivdatum un-
terliegt das Release einer sicherheitstechnischen und funktionalen Priifung. Die groen Features
sind somit jéhrlich getaktet. Gelegentlich kommt es vor, dass es unter dem Jahr ein kleines Fea-
ture-Release gibt. Hotfix- und Bugfix-Releases sind quartalsméfig vorgesehen. Die Entwicklung
ist in mehrere Phasen bzw. Ausbaustufen gegliedert. Phase 1 war im Jahr 2022 bereits abgeschlos-
sen. Im Jahr 2022 ist die Phase 2 umgesetzt worden und im Jahr 2023 ist die Phase 3 eingeplant.
Die Phase 4 folgt dann im darauffolgenden Jahr, usw.

4.6.5 Thematische Analyse der Interviews

Das Vorgehen der thematischen Analyse ist dquivalent wie im Fallbeispiel 1 (vgl. 4.4.7) und
Fallbeispiel 2 (vgl. 4.5.5). Bereits definierte Codes und Themen aus den vorherigen Fallbeispielen
werden iibernommen, sofern sie inhaltlich auf die neuen Interviewdaten zutreffen. Tabelle 11

zeigt das Ergebnis mit insgesamt 14 Themen und 73 Codes:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies

Anzahl der Interviews

Thema

Code

%

Dokumente

Zeit Technologiewechsel & Updates

Prozess wird beschleunigt 20% 1
Validierung und Einplanung nach Dringlichkeit 80% 4
Taskéanderungen teamintern besprochen 20% 1
Direkt wenn nicht zu kritisch (aufgrund von Biirokratie) | 60% 3
Absprachen mit Management 40% 2
Definition of Done 20% 1
Zulassungsverfahren (e.g. CC-Verfahren) 60% 3
S Zentrale Festlegung durch Spezialisten (1...n) 40% 2
zRelr(flgIl(I)lrlzlénGorz:r- Organisationsweite Richtlinien 80% 4
Prinzipien Doku (Wiki/Confluence/...) 60% 3
Review nach Checkliste 40% 2
zusitzliche Codequalititen durch Team bzw. Teamleiter | 60% 3
Code Review 40% 2
Teamkultur Teamkultur 80% 4
Weekly (1-2 Wochen Zyklus) 60% 3
Meetings Dailies 80% 4
Teamleiter-Meetings (Test, Architektur, etc.) 20% 1
Sachgeschenke 20% 1
Team Events & Be-]
lohnungen Primien 20% 1
Allgemeine Teamevents 60% 3
Ressourcen auslagern, Komplexitit intern behalten 20% 1
Komplexe Themen | 4 Augen Prinzip & Reviews 60% 3
Teamabsprache und Validierung 100% 5
Zwischenreleases 20% 1
Task-Fortschritt (Monitoring) per Board 60% 3
Im Daily 60% 3
Fortschrittsmessung | wichentliche Meetings mit Leitung 40% 2
Tracking iiber Epics (mehrere Stories) 20% 1
Ticketing-Tool 60% 3
Ticketstatus (%, Stunden oder Status) 100% 5
Leitung an Team 80% 4
Auswahl durch Teammitglieder aus Task-Liste 80% 4
Auswahl und Zutei- Zute%lung in Meeting c.iemoklratisch . 20% 1
lung Tasks Zuteilung nach Fachwissen/jenen der sich am besten 20% 1
auskennt
Team zu Team 20% 1
priorisierte Taskliste 40% 2
Zertifikate & Weiterbildung (aktiv) 60% 3
Zeit fiir Verbesserungen 40% 2
Fortbildung Themenwechsel 60% 3
Rollenwechsel 60% 3
60% 3

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Single Case Studies

(o)}
W

Software & Ticketverwaltung 80% 4
Task-Fortschritt fiir jedes Mitglied 40% 2
Transparenz Status setzen 60% 3
Direkte Kommunikation 20% 1
Dailies (Transparenz) 100% 5
Boards (Kanban od. dhnliches) 20% 1
Code Review 100% 5
JavaDoc (Code-Kommentare) 40% 2
Dokumentation 80% 4
Direkte Nachfrage (Sms, Telefon) 20% 1
Wissensverteilung & | Taskrotation 80% 4
Support Sprint-Review 20% 1
Zuteilung an Andere bei Leerlauf 20% 1
Pair-Programming 20% 1
Mehrere Personen pro Thema 60% 3
Liste mit Zustindigkeiten 20% 1
Reflexion & Lern- | Retrospektive & Review 80% 4
Prozess Mantras 20% 1
Schitzung iiber mehrere Iterationen 80% 4
Aufwandsschiitzung Durch Teammitglieder 80% 4
Aufteilung in Subtasks 20% 1
projektspezifische Einheitenschitzung 20% 1
Telefon 40% 2
direkte Kommunikation 40% 2
Ticket-Tool 20% 1
Jira 100% 5
Kommunikation Jitsi 60% 3
Chat 80% 4
Meetings 40% 2
E-Mail 80% 4
Videokonferenzen 20% 1
Wiki/Confluence/... 80% 4

Tabelle 11: Vorkommen der 73 Codes im Fallbeispiel 3

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study 65

5 Multiple Case Study

In diesem Kapitel wird die Multiple Case Study beschrieben. Die Ergebnisse der Single Case
Studies aus Kapitel 4 werden zusammengefiihrt und auf Gemeinsamkeiten untersucht. In den fol-

genden Unterkapiteln wird auf die thematischen Uberschneidungen der Codes eingegangen.

Fiir das finale Ergebnis werden ausschlieBlich jene Codes beriicksichtigt, die in allen drei Fall-
beispielen vorkommen. Diese Herangehensweise stellt sicher, dass nur die am stdrksten {iberein-
stimmenden Inhalte mit der hochsten Aussagekraft in die Analyse einflieBen. Nur aus dieser ge-
meinsamen Schnittmenge werden konkrete Best Practices abgeleitet und inhaltlich ausgearbeitet.
Codes, die lediglich in ein oder zwei Fallbeispielen vorkommen, werden zwar dokumentiert, aber

nicht zu vollstandigen Best Practices weiterentwickelt.

5.1 Auswertung der Multiple Case Study

Die Single Case Study (siehe Kapitel 4) zeigt die Auswertung der Themen und Codes fiir jedes
einzelne Fallbeispiel. Die Auswertung der Multiple Case Study vereint die Themen mit ihren

Codes iiber alle drei Fallbeispiele.

Da bereits bei der Single Case Study vorausschauend auf eine einheitliche Benennung der The-
men und Codes geachtet wird (siehe Punkt 4.4.7 ff.), findet nun eine Auswertung der Uberschnei-
dung der Codes in zwei, bzw. in allen drei Fallbeispielen statt. Insgesamt werden folgende Uber-

schneidungen in der Multiple Case Study beachtet:

I. Themen & Codes in den Fallbeispielen 1, 2 und 3 (siche Punkt 5.2.1)
II. Themen & Codes in den Fallbeispielen 1 und 2
i. inklusive Uberschneidungen mit Fallbeispiel 3 (siehe Punkt 5.2.2)
ii. exklusive Uberschneidungen mit Fallbeispiel 3 (siche Punkt 5.2.5.1)
III. Themen & Codes in den Fallbeispielen 1 und 3
i. inklusive Uberschneidungen mit Fallbeispiel 2 (siehe Punkt 5.2.3)
ii. exklusive Uberschneidungen mit Fallbeispiel 2 (siche Punkt 5.2.5.2)
IV. Themen & Codes in den Fallbeispielen 2 und 3
i. inklusive Uberschneidungen mit Fallbeispiel 1 (siche Punkt 5.2.4)
ii. exklusive Uberschneidungen mit Fallbeispiel 1 (siche Punkt 5.2.5.3)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study 66

Fiir die Analyse der statistischen Verteilung sowie der Uberschneidungen von Codes und Themen
in den drei Fallbeispielen wird ein eigens entwickeltes Java-Programm verwendet. Dieses verar-
beitet die aus MAXQDA exportierten Daten automatisiert und ermdglicht eine strukturierte Aus-

wertung der thematischen Gemeinsamkeiten und Unterschiede.

5.2 Die Code Themen

Die Tabelle 12 zeigt das gesamte Codesystem mit insgesamt 8§13 Codes tiber 17 Code-Hauptthe-
men. Die Anzahl der vergebenen Codes pro Dokument ist in der Abbildung 17 in der rechten

Spalte ersichtlich. Die 17 Hauptthemen umfassen wiederum die dazugehorigen Codes und Sub-

codes.
v [Dokumente 813
v~ [Fallbeispiel 1 253

= Transkribiert - 33
= Transkribiert -
= Transkribiert -
= Transkribiert -
= Transkribiert - 63

v [Fallbeispiel 2 284

dEddd
@ 5 3

= Transkribiert - T6 63
= Transkribiert - T7)
= Transkribiert - T8 61
= Transkribiert - T9 70
= Transkribiert - T10 7
v [Fallbeispiel 3 276
= Transkribiert - T11 46
= Transkribiert - T12 54
= Transkribiert - T13 52
= Transkribiert - T14 64
= Transkribiert - T15 60

Abbildung 17: Anzahl vergebener Codes pro Dokument

Codesystem - Themen Anzahl Gesamt

Teamkultur 6
Metadaten 92
Negativ-Codes 15
Umgebung 4
Aufwandsschitzung 62
Komplexe Themen 44
Team Events & Belohnungen 13
Reflexion & Lernprozess 21
Wissensverteilung & Support 86

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study 67

Kommunikation 90
Fortbildung 43
Meetings 49
Fortschrittsmessung 62
Transparenz 93
Auswahl und Zuteilung Tasks 41
Taskdnderungen 26
Richtlinien, Grenzen, Normen & Prinzipien 66

Tabelle 12: Ubersicht der Code-Themen

In den folgenden Kapiteln werden die Uberschneidungen zwischen den Fallbeispielen dargestellt.
Die zwei Themen Negativ-Codes und Metadaten werden nicht in die Auswertung iibernommen,
da die Metadaten rein zur Zuordnung erstellt wurden, und negative Codes nicht Teil der Best

Practices sind. Die Abbildung 18 illustriert die Schnittmengen der Codes.

Codes
Codes ‘y !
FiNF.NF;s Codes
(F2NFs)\ Fu
Codes

(FiNF3) \ F2
Abbildung 18: Schnittmengen der Codes
5.2.1 Uberschneidungen Fallbeispiel 1, 2 und Fallbeispiel 3

Die folgende Tabelle 13 listet alle Themen und Codes mit ihren Vorkommen, welche in allen drei
Fallbeispielen vorkommen (Fi N F2 N F3). Die Spalte Vorkommen in Prozent wird in der Tabelle

gerundet dargestellt:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

68

Anzahl der Dokumente

Nr. Thema

%-Vor-
kommen

Anzahl Do-

kumente

Software & Ticketverwaltung 80% 12
Task-Fortschritt fiir jedes Mitglied 47%
Status setzen 60%
I | Transparenz Direkte Kommunikation 27%
Dailies (Transparenz) 87% 13
Boards (Kanban od. dhnliches) 67% 10
Telefon 40% 6
direkte Kommunikation 67% 10
Ticket-Tool 27% 4
2 | Kommunikation Chat 87% 13
Meetings 47% 7
E-Mail 67% 10
Wiki/Confluencey/... 539 g
3 Reflexion & Lern- | Retrospektive & Review
prozess 67% 10
Code Review 93%, 14
Dokumentation 40% 6
4 | Wissensverteilung Taskrotation 53% 8
& Support Pair-Programming 40% 6
Direkte Nachfrage (Sms, Telefon) 20% 3
Mehrere Personen pro Thema 60% 9
Zertifikate & Weiterbildung (aktiv) 33% 5
Zeit fiir Verbesserungen 33% 5
5 | Fortbildung Themenwechsel 67% 10
Rollenwechsel 60% 9
Zeit Technologiewechsel & Updates 40% 6
Doku (Wiki/Confluence/...) 53% g
Richtlinien, Gren- Organisationsweite Richtlinien 73% 11
6 ;69, Normen oder Festlegung zentral durch Spezialisten (1...n) 73% 11
rinzipien zusitzliche Codequalitidten durch Team bzw.
Teamleiter 60%
Weekly (1-2 Wochen Zyklus) 60%
7 | Meetings Dailies 80% 12
Teamleiter-Meetings (Test, Architektur, etc.) 53%
wochentliche Meetings mit Leitung 27% 4
Task-Fortschritt (Monitoring) per Board 73% 11
8 | Fortschrittsmessung -
Im Daily 539 I
Ticketstatus (%, Stunden oder Status) 87% 13
Leitung an Team 80% 12
Auswahl und Zutei- | Zuteilung nach Fachwissen/jenen der sich am
9 lung Tasks besten auskennt _ 40% 6
Auswahl durch Teammitglieder aus Task-
Liste 73% 11

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

69

Validierung und Einplanung nach Dringlich-
10 | Taskdnderungen keit 60% 2
& Direkt wenn nicht zu kritisch (aufgrund von
Biirokratie) 67% 10
11 Team Events & Be- | Allgemeine Teamevents
lohnungen 60% 9
4 Augen Prinzip & Reviews 67% 10
12 | Komplexe Themen —
Teamabsprache und Validierung 80% 12
Schitzung liber mehrere Iterationen 67% 10
Durch Teammitglieder 0
13 | Aufwandsschitzung - - 93% 14
Aufteilung in Subtasks 20%
projektspezifische Einheitenschéitzung 33% 5

Tabelle 13: Die 48 Codes in 13 Themen in den Fallbeispielen 1, 2 und 3

5.2.2

Uberschneidungen Fallbeispiel 1 und Fallbeispiel 2

Die folgende Tabelle 14 listet alle Themen und Codes mit ihren Vorkommen, welche in den bei-

den Fallbeispielen vorkommen (F: N F2):

Anzahl der Dokumente

10

Nr. ‘ Thema Code %-Vorkommen Anzahl Dokumente
Validierung und Einplanung 50% 5
. nach Dringlichkeit
I | Taskénderungen Direkt wenn nicht zu kritisch 70% 7
(aufgrund von Biirokratie)
SonarQube 50% 5
Organisationsweite Richtlinien 70% 7
— 5
Richtlinien, Grenzen, Doku (Wiki/Confluence/...) 50% 5
2 | Normen oder Prinzi- | Checkstyle 30% 3
pien Festlegung zentral durch Spezi- 90% 9
alisten (1...n)
zusatzliche Codequalititen 60% 6
durch Team bzw. Teamleiter
Meetings bei Bedarf 40% 4
Weekly (1-2 Wochen Zyklus) 60% 6
3 | Meetings Dailies 80% 8
Teamleiter-Meetings (Test, Ar- 70% 7
chitektur, etc.)
4 Team Events & Be- Allgemeine Teamevents 60% 6
lohnungen
4 Augen Prinzip & Reviews 70%
5 | Komplexe Themen Teamabsprache und Validie- 70%
rung
Task-Fortschritt (Monitoring) 80% 8
per Board
6 | Fortschrittsmessung | Im Daily 50%
wochentliche Meetings mit Lei- 20% 2
tung

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

70

Ticketstatus (%, Stunden oder 80% 8
Status)
Leitung an Team 80%
. Auswahl und Zutei- Zuteilung nach Fachwissen/je- 50% 5
lung Tasks nen der sich am besten guskennt
Auswahl durch Teammitglieder 70% 7
aus Task-Liste
Teamwechsel 30%
Zertifikate & Weiterbildung 20% 2
(aktiv)
' Zeit fiir Verbesserungen 30% 3
8 | Fortbildung Themenwechsel 70% 7
Rollenwechsel 60% 6
Zeit Technologiewechsel & Up- 30% 3
dates
Software & Ticketverwaltung 80%
Task-Fortschritt fiir jedes Mit- 50% 5
glied
Status setzen 50% 5
9 | Transparenz
Direkte Kommunikation 30% 3
Dailies (Transparenz) 80% 8
Boards (Kanban od. dhnliches) 90% 9
Code Review 90% 9
Dokumentation 20% 2
Taskrotation 40% 4
10 Wissensverteilung & | Pair-Programming 50% 5
Support Ubergabemeetings 40% 4
Direkte Nachfrage (Sms, Tele- 20% 2
fon)
Mehrere Personen pro Thema 70% 7
11 Reflexion & Lernpro- | Retrospektive & Review 60% 6
Zess
Schitzung tiber mehrere Iterati- 60% 6
onen
) Durch Teammitglieder 100% 10
12| Aufwandsschdtzung Aufteilung in Subtasks 20% 2
projektspezifische Einheiten- 40% 4
schétzung
direkte Kommunikation 80% 8
Ticket-Tool 30% 3
Chat 90% 9
13 | Kommunikation Meetings 50% 5
Telefon 40% 4
E-Mail 60% 6
Wiki/Confluence/... 40% 4

Tabelle 14: Die 53 Codes in 13 Themen in den Fallbeispielen 1 und 2

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

71

5.2.3 Uberschneidungen Fallbeispiel 1 und Fallbeispiel 3

Die folgende Tabelle 15 listet alle Themen und Codes mit ihren Vorkommen, welche in den bei

den Fallbeispielen vorkommen (F: N F3):

Anzahl der Dokumente

Validierung und Einplanung

%-Vorkommen Anzahl Dokumente

1 | Taskénderuncen nach Dringlichkeit 50% 5
£ Direkt wenn nicht zu kritisch
(aufgrund von Biirokratie) 70%
Doku (Wiki/Confluence/...) 70%
_ Organisationsweite Richtlinien 80%
Richtlinien, Gren- Festlegung zentral durch Spezia-
2| zen, Normen oder listen (1...n) 60%
Prinzipien Review nach Checkliste 40%
zusétzliche Codequalititen
durch Team bzw. Teamleiter 50%
Weekly (1-2 Wochen Zyklus) 60%
3 | Meetings Dailies 80%
Teamleiter-Meetings (Test, Ar-
chitektur, etc.) 40% 4
4 Team Events & Be-
lohnungen Allgemeine Teamevents 70% 7
. . o
5 | Komplexe Themen 4 Augen Prinzip & Reviews 80% 8
Teamabsprache und Validierung 90% 9
Im Daily 40% 4
Task-Fortschritt (Monitoring)
. per Board 70% 7
6 | Fortschrittsmessung | wgchentliche Meetings mit Lei-
tung 30% 3
Ticketstatus (%, Stunden oder
Status) 90% 9
Leitung an Team 90%
; Auswahl und Zutei- Zuteilung nach Fachwissen/je- .
lung Tasks nen der sich am besten guslfennt 40% 4
Auswahl durch Teammitglieder
aus Task-Liste 90% 9
Zertifikate & Weiterbildung (ak-
tiv) 40% 4
Zeit fiir Verbesserungen 30% 3
8 | Fortbildung Themenwechsel 60% 6
Rollenwechsel 60% 6
Zeit Technologiewechsel & Up-
dates 40% 4
Software & Ticketverwaltung 80%
Task-Fortschritt fiir jedes Mit-
9 | Transparenz glied 50%
Status setzen 60% 6
Direkte Kommunikation 20% 2

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

72

Dailies (Transparenz) 80%
Boards (Kanban od. &hnliches) 60%
Zuteilung an Andere bei Leer-
lauf 20% 2
Code Review 100% 10
JavaDoc (Code-Kommentare) 30% 3

10 Wissensverteilung & | Dokumentation 50% 5

Support Taskrotation 50% 5

Pair-Programming 30% 3
Direkte Nachfrage (Sms, Tele-
fon) 20% 2
Mehrere Personen pro Thema 60%

11 Reflexion & Lern-

prozess Retrospektive & Review 50% 5
Schétzung tiber mehrere Iteratio-
nen 50%
o o

12 | Aufwandsschiitzung Durch Teammitglieder 90%
Aufteilung in Subtasks 20% 2
projektspezifische Einheiten-
schitzung 30% 3
Telefon 50% 5
direkte Kommunikation 70% 7
Ticket-Tool 30% 3

13 | Kommunikation Chat 80% 8
Meetings 40% 4
E-Mail 90% 9
Wiki/Confluence/... 50% 5

Tabelle 15: Die 51 Codes in 13 Themen in den Fallbeispielen 1 und 3

5.2.4

Uberschneidungen Fallbeispiel 2 und Fallbeispiel 3

Die folgende Tabelle 16 listet alle Themen und Codes mit ihren Vorkommen, welche in den bei-

den Fallbeispielen vorkommen (F2 N F3):

Anzahl der Dokumente ‘

10

Nr. Thema ‘ Code %-Vorkommen Anzahl Dokumente
Validierung und Einplanung 80% 8
nach Dringlichkeit

1 | Taskdnderungen teamintern besprochen 20% 2
Direkt wenn nicht zu kritisch 60%
(aufgrund von Biirokratie)
Organisationsweite Richtlinien 70% 7
Richtlinien, Gren- Doku (Wiki/Confluence/...) 40% 4
2 | zen, Normen oder | Definition of Done 20% 2
Prinzipien Festlegung zentral durch Spezia- 70% 7

listen (1...n)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

73

zusitzliche Codequalitidten durch 70% 7
Team bzw. Teamleiter
Code Review 30% 3
3 | Teamkultur Teamkultur 50% 5
Weekly (1-2 Wochen Zyklus) 60% 6
— 5
Meetings Dailies 80% 8
4 Teamleiter-Meetings (Test, Ar- 50% 5
chitektur, etc.)
Team Events & Be- | Allgemeine Teamevents 50% 5
lohnungen
4 Augen Prinzip & Reviews 50% 5
> |Komplexe Themen Teamabsprache und Validierung 80% 8
Im Daily 70% 7
Task-Fortschritt (Monitoring) 70% 7
per Board
- - - e 5
6 | Fortschrittsmessung wochentliche Meetings mit Lei 30% 3
tung
Ticketing-Tool 40%
Ticketstatus (%, Stunden oder 90%
Status)
Leitung an Team 70%
Auswahl durch Teammitglieder 60%
aus Task-Liste
.| Zuteilung in Meeting demokra- 20% 2
7 Auswahl und Zutei- | o
lung Tasks Zuteilung nach Fachwissen/je- 30% 3
nen der sich am besten auskennt
Team zu Team 20% 2
priorisierte Taskliste 30%
Zertifikate & Weiterbildung (ak- 40% 4
tiv)
Zeit fiir Verbesserungen 40% 4
8 |Fortbildung Themenwechsel 70% 7
Rollenwechsel 60% 6
Zeit Technologiewechsel & Up- 50% 5
dates
Software & Ticketverwaltung 80%
Direkte Kommunikation 30%
Task-Fortschritt fiir jedes Mit- 40% 4
9 | Transparenz glied
Status setzen 60% 6
Dailies (Transparenz) 100% 10
Boards (Kanban od. dhnliches) 50% 5
Code Review 90% 9
Dokumentation 50% 5
. . Pair-Programming 40% 4
Wissensverteilung & —
10 Support Direkte Nachfrage (Sms, Tele- 20% 2
fon)
Taskrotation 70% 7
Sprint-Review 30% 3

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study 74

Mehrere Personen pro Thema 60%
Reflexion & Lern- | Retrospektive & Review 90%
prozess
Schitzung tiber mehrere Iteratio- 90% 9
nen
) Durch Teammitglieder 90%
I | Aufwandsschitzung 1 o Subtasks 20% 2
projektspezifische Einheiten- 30%
schitzung
Telefon 30% 3
direkte Kommunikation 50% 5
Ticket-Tool 20% 2
12 | Kommunikation Chat 90% 9
Meetings 50% 5
E-Mail 50% 5
Wiki/Confluence/... 70% 7

Tabelle 16: Die 57 Codes in 12 Themen in den Fallbeispielen 2 und 3

5.2.5 Codes die nur in zwei Fallbeispielen gemeinsam existieren

Die folgenden Tabellen zeigen jene Codes, die ausschlieBlich in der Schnittmenge zwischen zwei
Fallbeispielen vorkommen. Es werden also alle Codes zwischen den jeweiligen Fallbeispielen
ermittelt und jene entfernt, die in allen drei Fallbeispielen gemeinsam vorkommen. Dabei ist zu
beachten, dass die Codes inhaltlich auf unterschiedlichen Abstraktionsebenen angesiedelt sind —

von allgemeinen Methoden bis hin zu konkreten Tools.

Ein Beispiel hierfiir sind Begriffe wie Checkstyle oder SonarQube, die einen sehr spezifischen
Toolbezug aufweisen. Auch wenn solche Tools nicht in allen drei Fallbeispielen namentlich ge-
nannt wurden und daher nicht als gemeinsame Codes gewertet werden, kann die ihnen zugrunde
liegende tibergreifende Codierung (z. B. ,,zusétzliche Codequalitidten durch Team bzw. Teamlei-
ter) sehr wohl {ibergreifend abgedeckt sein. In solchen Féllen werden entsprechende Tools in
den Beschreibungen der Best Practices exemplarisch erwihnt, ohne dass sie als Voraussetzung
fiir die Anwendung gelten. Die Best Practices selbst sind grundsétzlich hersteller- und plattform-

unabhingig formuliert.

5.2.5.1 Gemeinsame Codes im Fallbeispiel 1 und im Fallbeispiel 2, die nicht im Fall-

beispiel 3 auftreten

Die folgende Tabelle 17 listet alle Codes, die ausschlieBlich in der Schnittmenge von Fallbeispiel
1 und Fallbeispiel 2 vorkommen, jedoch nicht im Fallbeispiel 3 enthalten sind ((F1 N F2) \ Fs):

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

75

Thema ‘ Code Anmerkung

Fortbildung Teamwechsel Im Fallbeispiel 3 wird kein direkter Verweis auf Team-
wechsel als Fortbildungsmafinahme gemacht. Stattdessen
liegt der Fokus auf Rollen- und Themenwechsel.

Meetings Meetings bei Be- | Im Fallbeispiel 3 gibt es keine spezifischen Hinweise auf

darf flexible Meetings. Der Fokus liegt eher auf regelméBigen

und strukturierten Meetings wie Dailies.

Richtlinien, Gren- Checkstyle Checkstyle wird im Fallbeispiel 3 nicht erwéhnt. Stattdes-

zen, Normen oder sen liegt dort der Fokus auf allgemeiner Codequalitéit und

Prinzipien Richtlinien, ohne spezielle Tools zu nennen.

SonarQube Ahnlich wie bei Checkstyle wird SonarQube im Fallbei-
spiel 3 nicht erwdhnt, obwohl allgemeine Qualitdtskontrol-
len angesprochen werden.

Wissensverteilung & | Ubergabemeetings | Ubergabemeetings werden im Fallbeispiel 3 nicht explizit
Support erwéhnt. Stattdessen wird dort der Wissensaustausch durch
Pair-Programming und Dokumentation hervorgehoben.

5.2.5.2

Tabelle 17: Codes (F1 N F2) \ F3

beispiel 2 auftreten

Gemeinsame Codes im Fallbeispiel 1 und im Fallbeispiel 3, die nicht im Fall-

Die folgende Tabelle 18 listet alle Codes, die ausschlieBlich in der Schnittmenge von Fallbeispiel

1 und Fallbeispiel 3 vorkommen, jedoch nicht im Fallbeispiel 2 enthalten sind ((F1 N F3) \ F2):

Thema

Wissensverteilung &

Support

‘ Code

Zuteilung an An-
dere bei Leerlauf

Anmerkung

Im Fallbeispiel 2 wurde keine explizite Erwdhnung von
Aufgabeniibergaben bei Leerlauf gefunden. Stattdessen
liegt der Fokus auf anderen Zuteilungsmechanismen.

JavaDoc (Code-
Kommentare)

JavaDoc wird im Fallbeispiel 2 nicht ausdriicklich erwéhnt.
Es konnte sein, dass es genutzt wird, aber nicht als Schwer-
punkt der Dokumentation hervorgehoben wurde.

Richtlinien, Gren-
zen, Normen oder

Prinzipien

Review nach
Checkliste

Im Fallbeispiel 2 wurde der Review-Prozess mit einer Defi-
nition of Done beschrieben, jedoch ohne spezifische Er-
wihnung von Checklisten als Strukturierungsinstrument.

Tabelle 18: Codes (F1 N F3) \ F:

5.2.5.3

beispiel 1 auftreten

Gemeinsame Codes im Fallbeispiel 2 und im Fallbeispiel 3, die nicht im Fall-

Die folgende Tabelle 19 listet alle Codes, die ausschlieBlich in der Schnittmenge von Fallbeispiel
2 und Fallbeispiel 3 vorkommen, jedoch nicht im Fallbeispiel 1 enthalten sind ((F> N F3) \ F1):

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Multiple Case Study

76

Thema

Auswahl und Zutei-

‘ Code

Zuteilung in Mee-

‘ Anmerkung

Demokratische Zuteilung wird im Fallbeispiel 1 nicht be-

lung Tasks ting demokratisch | schrieben, wo die Zuteilung meist zentral oder selbstverant-
wortlich erfolgt.
Team zu Team Dieser Aspekt der Zusammenarbeit zwischen Teams wird
im Fallbeispiel 1 nicht angesprochen.
priorisierte Task- | Priorisierung von Aufgabenlisten wird im Fallbeispiel 1
liste nicht hervorgehoben.
Fortschrittsmessung | Ticketing-Tool Im Fallbeispiel 1 wird die Fortschrittsmessung mit LFBs

(Leistungsfortschrittsberichten) gemessen. LFBs sind
Excel-Listen.

Richtlinien, Gren-
zen, Normen oder

Definition of Done

Die Definition of Done wird im Fallbeispiel 1 nicht aus-
driicklich erwéhnt, aber es gibt Checklisten.

Prinzipien Code Review Obwohl Code Reviews im Fallbeispiel 1 erwéihnt werden,
fehlt der spezifische Fokus auf deren systematische Durch-
fithrung.

Taskénderungen teamintern bespro- | Dieser Aspekt wird im Fallbeispiel 1 nicht hervorgehoben,

chen wo Anderungen eher zentral koordiniert werden.

Teamkultur Teamkultur Die Entwicklung einer expliziten Teamkultur wird im Fall-

beispiel 1 nicht thematisiert.

Wissensverteilung &

Support

Sprint-Review

Sprint-Reviews werden im Fallbeispiel 1 nicht als zentraler
Bestandteil der Wissensverteilung hervorgehoben.

Tabelle 19: Codes (F2 N F3) \ F:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 77

6 Ergebnisse

In diesem Kapitel werden die Ergebnisse der Multiple Case Study vorgestellt, die in Kapitel 5
beschrieben wird. Ziel der Untersuchung ist es, skalierbare Best Practices fiir autonome Teams in
Softwaregrof3projekten zu identifizieren und diese mit dem bestehenden Modell der Balancing
Acts von Hoda et al. zu vergleichen. Die aussagekriftigsten Ergebnisse basieren auf den Themen
und Codes, die in allen drei Fallbeispielen iibereinstimmen. Tabelle 13 fasst die identifizierten

Themen und Best Practices zusammen, die in diesem Kapitel ausfiihrlich dargestellt werden.

Zunichst werden in Kapitel 6.1 die Best Practices beschrieben, die aus den Fallstudien abgeleitet
wurden (RQ1a). Darauf aufbauend folgt in Kapitel 6.2 die Analyse ihrer Skalierbarkeit im Ab-
gleich mit dem Modell von Hoda et al. (RQ1b). In Kapitel 6.3 werden die Praktiken anschlieSend
thematisch in 13 Kategorien eingeordnet (RQ2), bevor in Kapitel 6.4 die Kriterien dargelegt wer-

den, anhand derer die Zuordnung der Practices zu diesen Kategorien erfolgt (RQ3).

Kapitel 6.5 bietet einen erneuten Vergleich der identifizierten Best Practices mit aktuellen wis-
senschaftlichen Erkenntnissen und Modellen aus der Literatur nach Fertigstellung der Ergebnisse
(State of the Art aus dem Jahr 2024 und 2025) und Kapitel 6.6 beschreibt die Limitationen der
Ergebnisse und gibt Hinweise auf mdgliche Einfliisse und Einschrankungen der durchgefiihrten

Analyse.

6.1 Benennung der Best Practices aus den Codes der Hauptthe-
men

Da die urspriinglichen Codes in Tabelle (siche Tabelle 13) stichwortartig formuliert sind, werden
diese in aussagekraftige Best Practices zusammengefasst, umbenannt und mit kurzen Beschrei-
bungen sowie Beispielen aus den Fallbeispielen der Praxis versehen. Diese Umbenennung soll
die praktische Bedeutung und bessere Beschreibung der Praktiken verdeutlichen. Die Ableitung
der Best Practices erfolgt auf Basis der codierten Interviewstellen. Dabei werden alle Textstellen,
die einem bestimmten Code zugeordnet sind, systematisch analysiert und deren Inhalte zu zusam-
menhédngenden Aussagen verdichtet. Die Riickverfolgbarkeit funktioniert {iber die verwendete
Software MAXQDA und gewihrleistet, dass jede Best Practice durch konkrete Interviewaussa-
gen belegt ist.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 78

Fiir jedes der 13 Hauptthemen (siehe Punkt 6.3) werden spezifische Best Practices identifiziert,
die aus den 48 Codes und deren zugehdrigen Interviewphrasen abgeleitet sind. Diese bieten eine
detaillierte Perspektive auf die Umsetzung der Praktiken innerhalb der Kategorien. Es ergeben
sich insgesamt 23 ausformulierte Best Practices, wobei einige in mehreren Kategorien zugeteilt
werden. Die Mehrfachzuteilung ergibt sich daraus, dass einzelne Interviewaussagen inhaltlich
mehrere Aspekte beriihren und deshalb auch mehreren Codes zugewiesen werden — selbst wenn
diese unterschiedlichen Kategorien angehoren. Ein Zitat kann zum Beispiel gleichzeitig auf ,,Wis-
sensverteilung & Support* und ,,Reflexion & Lernprozess* hinweisen. Solche inhaltlichen Uber-
schneidungen werden in der Analyse durch eine gemeinsame Best Practice zusammengefasst. In
diesen Fillen wird jeweils auf die Ersterwdhnung und ausfiihrliche Beschreibung der entspre-

chenden Best Practice verwiesen, um Redundanzen zu vermeiden.

Die Titel der Best Practices werden somit bewusst allgemein gewéhlt, da einzelne Praktiken meh-
rere Themenbereiche gleichzeitig abdecken. Ziel ist es, inhaltliche Uberschneidungen konsistent
unter einem iibergeordneten Namen zusammenzufassen und Wiederholungen in der Beschrei-

bung zu vermeiden.

Am Ende des Am Ende dieses Kapitels zeigt die Tabelle 24 eine Gesamtiibersicht iiber alle Best
Practices mit ihren zugehorigen Kategorien und einer Kurzbeschreibung der kategorienspezifi-
schen Umsetzung. Die in diesem Kapitel beschriebenen Best Practices stellen die Antwort auf die
Forschungsfrage RQla dar: ,,Welche Praktiken lassen sich in SoftwaregroBprojekten zur Unter-
stiitzung autonomer Teams identifizieren?* und bilden zugleich die Grundlage fiir die Beantwor-

tung der Forschungsfrage RQ1b in 6.2.

In einigen Best-Practice-Beschreibungen werden konkrete Tools wie Jira oder SonarQube bei-
spielhaft erwédhnt, um die praktische Umsetzung zu veranschaulichen (vgl. Kapitel 5.2.5). Diese
Nennungen dienen ausschlieBlich der Illustration typischer Anwendungsszenarien. Die Best Prac-
tices selbst sind bewusst hersteller- und plattformunabhéngig formuliert und orientieren sich an

iibergreifenden Methoden und Prinzipien.

6.1.1 Transparenz

Die Codes ,,Software & Ticketverwaltung*, ,,Task-Fortschritt fiir jedes Mitglied®, ,,Status set-
zen“, ,,Direkte Kommunikation®, ,,Dailies (Transparenz)* und ,,Boards (Kanban oder dhnliches)*

werden zu folgenden Best Practices ausformuliert:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 79

6.1.1.1 Toolunterstiitzter Workflow

Der Einsatz von Software-Tools spielt eine zentrale Rolle in agilen Teams, um Aufgaben zu ver-
walten, den Fortschritt zu verfolgen und Wissen zu sichern. Die eingesetzten Systeme decken
dabei mehrere zentrale Bereiche gleichzeitig ab: Transparenz, Kommunikation, Wissensvertei-
lung & Support sowie Fortschrittsmessung. Informationen werden digital zentral gespeichert, Ar-
beitsprozesse dokumentiert und teamiibergreifend koordiniert. Der gezielte, integrierte Einsatz
dieser digitalen Werkzeuge unterstiitzt agile Teams dabei, ihre tiglichen Arbeitsprozesse trans-
parent und effizient zu gestalten. Insbesondere in Daily Meetings nutzen die Teams die Tools
aktiv, um den aktuellen Arbeitsstand sichtbar zu machen, Blocker zu erkennen und die néachsten
Schritte abzustimmen. Die Toolnutzung ist dadurch nicht rein unterstiitzend, sondern integraler
Bestandteil der tdglichen Teamkoordination. Insbesondere in verteilten Projekten dienen die

Tools als zentrale Schnittstellen zur Koordination, Dokumentation und Wissenssicherung.

Fiir die transparente Ticketverwaltung und Statusverfolgung setzen die Teams unterschiedliche
Tools ein. Im Fallbeispiel 1 erfolgt die Aufgabenverwaltung hauptséchlich {iber GitLab-Boards,
die als digitale Kanban-Systeme genutzt werden. Dort werden Aufgaben in verschiedene Status
eingeteilt, typischerweise ,,Backlog®, ,,In Bearbeitung®, ,,In Review* und ,,Abgeschlossen*, um
jederzeit den Bearbeitungsstand nachvollziehen zu konnen. Kleinere Teams setzen zusétzlich auf
physische Whiteboards, um ihre Workflows sichtbar zu machen. HPQC (,,HP Quality Center*)
dient im Fallbeispiel 1 zudem als iibergreifendes Requirements- und Defect-Management-Tool,
in dem Aufgaben kategorisiert und mit Status versehen werden. In den Fallbeispielen 2 und 3
kommt dagegen Jira als zentrales Ticket- und Sprint-Management-Tool zum Einsatz. Die Teams
nutzen dort ebenfalls Kanban- und Sprint-Boards mit standardisierten Statuskategorien. In eini-
gen Teams von Fallbeispiel 2 wird ergénzend noch GitLab verwendet, wobei langfristig eine
vollstindige Umstellung auf Jira geplant ist. Zur Visualisierung der Verantwortlichkeiten werden
hiufig Avatare oder Initialen eingesetzt, wihrend Labels zusétzliche Informationen wie Prioritét,

Blocker oder Themenzugehorigkeit markieren.

,, Wir verwenden jetzt teamintern Grofsteils Gitlab fiir die Boards und ansonsten er-

weitert HPQC Requirements und Defects. “ — T3, Teamleiter

., Wir haben eigentlich immer Jira verwendet. Wir waren quasi die Vorreiter, wir
haben auch immer Gitlab verwendet. Und es wird jetzt quasi umgestellt. Es sollen -
alle eigentlich Jira und Gitlab werden, wenn es geht. Aber es ist stark gesplittet,
einfach historisch bedingt haben die anderen Teams z.B. das RTC von IBM, das Ra-

tional Team Concert im Einsatz und haben Gerrit und manche Bit Bucket. Und ja,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 80

manche haben Gitlab. Sehr, sehr unterschiedliche Dinge. Aber es soll quasi alles

zusammengefiihrt werden. *“ — T6, Technischer Architekt

Neben der Verwaltung von Aufgaben spielen auch die Dokumentation und Wissenssicherung
eine zentrale Rolle. Im Fallbeispiel 1 werden relevante Informationen in HPQC und internen Wi-
kis gespeichert, darunter technische Dokumentationen, Architekturiibersichten und Meeting-Pro-
tokolle. Im Fallbeispiel 2 und 3 hingegen nutzen die Teams Confluence, um Sprint-Reviews, Best
Practices und technische Anleitungen zu dokumentieren. Besonders im Fallbeispiel 3 werden Jira
und Confluence kombiniert genutzt, um API-Abstimmungen, How-To-Guides und Release-
Ubersichten zentral bereitzustellen. Die enge Verzahnung dieser Tools mit der Ticketverwaltung

erleichtert es, Anderungen und Entscheidungen schnell nachzuvollziehen.

Auch die Fortschrittsmessung erfolgt iiber diese Systeme. Im Fallbeispiel 1 nutzen einige Teams
GitLab-Dashboards, wihrend andere auf manuelle Leistungsfortschrittsberichte zuriickgreifen.
Im Fallbeispiel 2 werden die Zeiterfassung und Aufwandsschidtzungen direkt in Jira pro Ticket
hinterlegt, sodass der Arbeitsaufwand messbar bleibt. Im Fallbeispiel 3 werden Sprint-Fortschritte
regelmiBig in Jira und Confluence dokumentiert, um eine durchgehende Nachverfolgbarkeit zu

gewdhrleisten.

Durch die Kombination von Ticket-Systemen, Dokumentationsplattformen und Dashboards ha-
ben die Teams jederzeit Zugriff auf alle wichtigen Informationen. Das erleichtert die Abstimmung
in Meetings, hilft neuen Teammitgliedern beim schnellen Einarbeiten und macht Probleme friih-

zeitig sichtbar.

Der gezielte Einsatz dieser Tools kann dazu beitragen, Aufgaben klar zu strukturieren, Abhén-
gigkeiten sichtbar zu machen und die standortiibergreifende Zusammenarbeit zu unterstiitzen. Bei
angemessener Nutzung fordern sie Transparenz, erleichtern die Kommunikation sowie den Wis-

sensaustausch und ermdglichen eine genaue Fortschrittskontrolle.

Ein zusétzlicher Vorteil digitaler Tools liegt in der Moglichkeit zur gezielten Suche, Filterung
und Kategorisierung von Aufgaben und Informationen. Der gezielte Einsatz solcher Tools stellt
daher eine bewihrte Best Practice dar. Die folgende Ubersicht in Tabelle 20 fasst die wichtigsten

funktionalen Anforderungen zusammen, die ein entsprechendes Toolset fiir agile Teams erfiillen

soll:
Funktion \ Unterstiitzte Aspekte
Aufgabenverwaltung Task-Zuweisung, Kanban-/Sprint-Boards, Statusverfolgung
Transparenz & Fortschrittsmessung Dashboards, Zeiterfassung, Sprint-Tracking
Kommunikation Verlinkung mit Meetings und Dokumentation,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 81

Kommentarfunktionen

Ablage von technischen Dokumentationen, How-Tos,
Sprint-Reviews, Architekturiibersichten
Standortiibergreifender Zugriff, gemeinsame Plattform fiir
alle Rollen

Verlinkung von Aufgaben, Entscheidungen und Dokumen-
ten

Moglichkeit der Suche und Filterung nach Aufgaben, Status,
Kategorien oder Textinhalten

Wissensverteilung & Dokumentation

Support fiir verteilte Teams

Kategorisierung & Nachvollziehbarkeit

Such- und Filterfunktionen

Tabelle 20: Ubersicht der Funktionalititen fiir den toolunterstiitzten Workflow

Die tdgliche Umsetzung kann wie folgt zusammengefasst werden:

e Daily Start:
Teammitglieder aktualisieren den Aufgabenstatus im Board (z. B. auf ,,In Bearbeitung®).

e Daily Meeting:
Das Team geht gemeinsam das Sprint- oder Kanban-Board durch, diskutiert Blocker und ko-
ordiniert nachste Schritte

e Wihrend des Tages:
Kommentare, Umbuchungen und ergiinzende Dokumentation erfolgen direkt im Tool (z.B.
Jira, GitLab oder Confluence).

e Abschluss:
Aufgaben werden abgeschlossen, Fortschritt dokumentiert, Review-Notizen ergidnzt oder

Zeitaufwinde eingetragen.

6.1.1.2 Regelmiflige synchrone Abstimmung im Team

RegelmiBige Meetings sind essenziell fiir die Teamkoordination, um den Arbeitsstand abzuglei-
chen, Abhingigkeiten zu kldren und Probleme frithzeitig zu identifizieren. Sie fordern Transpa-
renz, effektive Kommunikation und eine strukturierte Zusammenarbeit. In den Fallbeispielen

werden verschiedene Meeting-Formate genutzt, die sich in Frequenz und Fokus unterscheiden.

In allen drei Fallbeispielen gibt es tigliche Abstimmungsrunden in Form von Dailies, in denen
Teammitglieder ihre aktuellen Aufgaben, Fortschritte und Blockaden berichten. Diese Meetings
dauern in der Regel 15 Minuten, kdnnen aber in Ausnahmefallen ldnger sein. Im Fallbeispiel 2
und 3 werden Jira- oder GitLab-Boards genutzt, um den Status von Tickets (,,Backlog®, ,,In Be-
arbeitung®, ,,In Review*, ,,Abgeschlossen‘) direkt wahrend der Besprechung zu aktualisieren. Im
Fallbeispiel 3 wird zusétzlich die aktive Sprint-Ansicht in Jira genutzt, um den aktuellen Arbeits-
stand wihrend des Stand-ups transparent zu machen. Falls Diskussionen den Rahmen sprengen,

werden sie nach dem Meeting separat weitergefiihrt.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 82

., Genau also bei Jira iiber das Sprint-Board. Dort kann man sehen, wer welches
Ticket gerade bearbeitet. Also im Normallfall funktioniert es eigentlich ganz okay.
Wir haben auch ein Dayli und was man Dayli macht, ist eigentlich mehr ein Repor-
ting. Das heifst, wir gehen genau eben dieses Sprint-Board durch und jeder erzdhlt,
wann er /sie gerade arbeitet und ob es da irgendwelche Probleme gibt. Und irgend-
welche dringenden Themen werden halt auch im Dayli besprochen. Aber ansonsten
ist es eher mehr so, dass es bleibt bei 15 Minuten also bisschen ge-time-boxed. Im

Normalfall bleibt es bei 15 Minuten. “- T6, Technischer Architekt

Die Abstimmungen sind eng mit den Bereichen Transparenz und Fortschrittsverfolgung ver-
kniipft. Besonders in den Fallbeispielen 2 und 3 werden wahrend der Dailies Statusupdates direkt
in Jira oder GitLab gesetzt, um den Arbeitsstand nachvollziehbar zu halten. Im Fallbeispiel 1 und
3 werden wichtige Entscheidungen in Confluence oder internen Wikis dokumentiert, damit auch

nicht anwesende Teammitglieder darauf zugreifen kdnnen.

Durch die regelméBige Abstimmung wird sichergestellt, dass alle Teammitglieder stets {iber den
aktuellen Stand informiert sind, Abhédngigkeiten friihzeitig erkannt werden und relevante Infor-
mationen dokumentiert bleiben. Der Einsatz digitaler Tools wie Jira, GitLab und Confluence un-

terstiitzen diesen Prozess und verkniipfen Abstimmungen mit der Aufgabenverfolgung.

Die spezifischen Zielsetzungen und Abgrenzungen von Dailies, Weeklies und rollenspezifischen

Teamleiter-Meetings sind in Tabelle 23 zusammengefasst.

6.1.1.3 Wochentliche Abstimmung zwischen Teams

Neben den Dailies, die sich auf die tdgliche Abstimmung innerhalb eines Teams konzentrieren
und vor allem den aktuellen Arbeitsfortschritt betreffen, gibt es regelmafige wochentliche Mee-
tings (Engl. ,,Weeklies), die eine teamiibergreifende Koordination erméglichen. Wahrend Dail-
ies primdr operative Abstimmungen sind, dienen Weeklies der langerfristigen Planung und der
Synchronisation zwischen autonomen Teams mit gemeinsamen Schnittstellen.

Im Fallbeispiel 1 sind wochentliche Meetings etabliert, um Fortschritte mit anderen Teams abzu-
gleichen und Abhéngigkeiten friihzeitig zu erkennen. Diese Meetings sind vor allem fiir Team-
leiter oder Vertreter mehrerer Teams gedacht, um wichtige Themen gemeinsam zu besprechen

und Informationen zwischen den beteiligten Teams und Themen sicherzustellen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 83

Im Fallbeispiel 2 sind Weeklies fester Bestandteil der Projektorganisation. Neben den Entwick-
lern nehmen auch Requirements Engineers, Tester oder technische Architekten teil. Diese Mee-
tings dienen nicht nur der Synchronisation zwischen Teams, sondern auch der iibergreifenden
Abstimmung iiber priorisierte Aufgaben und strategische Entscheidungen. Dariiber hinaus gibt es
spezialisierte Meetings, wie etwa Architektur- oder Test-Meetings, die im regelméfigen Turnus

stattfinden.

Ja, natiirlich gibt es Meetings, die nach oben Informationen weitergeben. Die

Teamleads reden natiirlich miteinander, [...] “— T6, Technischer Architekt

Im Fallbeispiel 3 gibt es Weeklies flir die Abstimmung mit Projektleitern sowie fiir das Release-
und Test-Management. Diese Meetings haben neben dem Statusabgleich auch die Funktion, Prob-
leme frithzeitig zu identifizieren und gegebenenfalls Eskalationen anzustofen, wenn Abhidngig-
keiten zwischen Teams nicht gekliart werden kdnnen. Es gibt zudem spezialisierte Meetings mit

Teamleitern oder Key-Personen, die strategische Themen diskutieren.

,, Also, wir haben wochentliche Tickets durchsprachen mit PM, Release-Manage-
ments und Test-Management und da besprechen wir einfach neue Tickets und be-

werten diese.“ — T11, Teamleiter

Weeklies sind eine bewihrte Praxis, um Transparenz {iber Teamgrenzen hinweg sicherzustellen
und den Informationsfluss zwischen Teams und weiteren relevanten Akteuren zu gewihrleisten.
Wihrend Dailies sich auf den laufenden Entwicklungsprozess fokussieren, ermdglichen Weeklies
eine iibergreifende Planung und eine bessere Abstimmung zwischen verschiedenen Fachberei-
chen. Entscheidend ist, dass diese Meetings strukturiert durchgefiihrt und die Ergebnisse doku-
mentiert werden, um die Nachvollziehbarkeit der Abstimmungen zu gewéhrleisten. Im Unter-
schied zu den rollenspezifischen Teamleiter-Meetings (sieche Punkt 6.1.7.3), die der fachlichen
Koordination innerhalb definierter Rollen dienen, liegt der Fokus der Weeklies auf der operativen

Synchronisation zwischen mehreren Teams.

Die spezifischen Zielsetzungen und Abgrenzungen von Dailies, Weeklies und rollenspezifischen

Teamleiter-Meetings sind in Tabelle 23 zusammengefasst.

6.1.1.4 Standardisierte Protokollierung und Dokumentation

Eine strukturierte Dokumentation von Meeting-Ergebnissen, Entscheidungen und Verantwort-

lichkeiten ist essenziell, um Transparenz und Nachvollziehbarkeit in den Teams sicherzustellen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 84

In den untersuchten Fallbeispielen werden unterschiedliche Methoden genutzt, um sicherzustel-

len, dass alle relevanten Informationen festgehalten und zugénglich sind.

Im Fallbeispiel 1 erfolgt die Dokumentation groBtenteils in internen Wikis, in denen technische
Entscheidungen, Sprint-Ergebnisse und Architektur-Uberlegungen erfasst werden. In den Fall-
beispielen 2 und 3 setzen Teams primir auf das Programm Confluence, um Meeting-Protokolle,
Best Practices und Guidelines zu hinterlegen. Besonders im Fallbeispiel 3 wird dies systematisch

genutzt, sodass alle Teammitglieder auch nachtraglich auf Informationen zugreifen konnen.

Ein wichtiger Bestandteil dieser Praxis ist die Definition of Ready und Definition of Done, die
insbesondere in den Fallbeispielen 2 und 3 festgelegt wurden, um klare Kriterien fiir die Arbeits-
organisation zu definieren. Im Fallbeispiel 1 gibt es vergleichbare Strukturen zur Qualititssiche-
rung, etwa in Form einer Review-Checkliste. Diese Definitionen helfen dabei, Missverstidndnisse
iiber den Fertigstellungsgrad von Aufgaben zu vermeiden und sicherzustellen, dass alle Beteilig-

ten ein gemeinsames Verstdndnis von Anforderungen und Qualititssicherung haben.

[...] dass man einfach mal driiber schaut iiber anderen Code, nach einer bestimm-
ten Checkliste und dann schaut ob das passt und dann halt Review macht.” — T3,

Teamleiter

,, Wir haben jetzt intern auch eine Definition of Done gemacht, dass stimmt schon,
wo drinnensteht eine Userstory muss auch die Testautomatisierung, soweit - soweit
als moglich abgedeckt sein. Sie muss getestet sein auf welcher Instanz das sein muss

oder so - das haben wir Team intern gemacht “- T10, Tester

,, .- €8 soll natiirlich und es wird auch so gut wie alles in Confluence dokumentiert.
Meeting -Protokolle, technische Themen, How-To's und On-Boarding, Verfiighar-

keiten - wird alles in Confluence gemacht. “ —T11, Teamleiter

Durch die einheitliche Protokollierung und Dokumentation bleibt der Informationsfluss konsis-
tent, Verantwortlichkeiten sind nachvollziehbar und auch neue Teammitglieder kdnnen sich
schnell einarbeiten. Dies verbessert nicht nur die Transparenz im Team, sondern erleichtert auch
die langfristige Planung und Entscheidungsfindung. Dariiber hinaus leisten definierte Abschluss-
kriterien wie eine Definition of Done oder strukturierte Review-Checklisten einen wichtigen Bei-
trag zur Qualitdtssicherung, da sie gemeinsame Fertigstellungskriterien schaffen und sicherstel-

len, dass Aufgaben nicht nur abgeschlossen, sondern auch iiberpriift und freigegeben wurden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 85

6.1.2 Kommunikation

Die Codes ,,Telefon®, ,,direkte Kommunikation®, ,, Ticket-Tool®, ,,Chat®, ,,Meetings*, ,,E-Mail*,

und ,,Wiki/Confluence/...” werden zu folgenden Best Practices ausformuliert:

6.1.2.1 Effiziente Abstimmung durch direkte Kommunikation

Direkte Kommunikation ist ein essenzieller Bestandteil der Zusammenarbeit in den Teams. Sie
ermoglicht eine schnelle und effiziente Abstimmung innerhalb und auB3erhalb des Teams, beson-
ders bei dringenden oder komplexen Themen. Je nach Situation werden verschiedene Kommuni-

kationskanile genutzt, um Abstimmungen so direkt und effizient wie mdglich zu gestalten.

Innerhalb der Teams ist Face-to-Face-Kommunikation oft die bevorzugte Methode, vor allem
wenn die Teammitglieder im selben Raum arbeiten. Im Fallbeispiel 1 wird betont, dass direkte
Abstimmungen bevorzugt werden, da dies oft schneller ist als formalisierte Meetings. Auch im
Fallbeispiel 2 und 3 wird verstérkt auf digitale Kommunikationsmittel wie Chat-Tools oder Tele-

fonate zuriickgegriffen.

Telefonate sind in allen Fallbeispielen ein wichtiges Mittel, insbesondere wenn schnelle Klarun-
gen erforderlich sind oder der Austausch tiber Chats nicht ausreicht. Im Fallbeispiel 1 ist telefo-
nische Abstimmung seltener, da viele Teammitglieder physisch nah beieinandersitzen. Im Fall-
beispiel 2 und 3 hingegen wird Telefon hdufig genutzt, insbesondere fiir Abstimmungen mit an-

deren Teams oder externen Fachabteilungen.

Neben der Face-to-Face- und Telefonkommunikation sind Chat-Tools ein zentraler Kommunika-
tionskanal, da sie sowohl spontane Abstimmungen ermdglichen als auch fiir die spétere Nachver-
folgung von Informationen genutzt werden konnen. Im Fallbeispiel 1 werden die Programme Ro-
cket.Chat, Cisco Jabber und Lotus Notes eingesetzt, wihrend im Fallbeispiel 2 und 3 primér
Microsoft Teams, Rocket.Chat und Jitsi verwendet werden. Diese Tools bieten den Vorteil, dass
Nachrichten und Diskussionen nachvollziehbar bleiben und Teammitglieder auch spéter darauf
zugreifen konnen. In bestimmten Féllen — etwa bei der Kldrung technischer Details — wird auch
Screensharing iiber Tools wie Jitsi oder MS Teams genutzt, um Inhalte gemeinsam durchzugehen
und Missverstdndnisse zu vermeiden.

E-Mail wird ebenfalls genutzt, insbesondere fiir formellere Kommunikation oder wenn es wichtig
ist, eine schriftliche Dokumentation von Absprachen zu haben. Im Fallbeispiel 3 wird erwéhnt,
dass Chat fiir die meisten internen Abstimmungen genutzt wird, wihrend E-Mail vor allem bei
wichtigen Themen oder Eskalationen verwendet wird. Ein weiterer wichtiger Aspekt der direkten

Kommunikation ist der schnelle Austausch bei Problemen oder Unsicherheiten. Im Fallbeispiel 3

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse

86

wird beschrieben, dass Entwickler, wenn ein Ticket zu aufwendig wird oder zu viele Kommentare

erfordert, einfach den direkten Austausch suchen — entweder iiber Chat, einen Anruf oder ein

kurzfristiges Meeting.

Neben der tiglichen Abstimmung ist direkte Kommunikation auch ein essenzieller Bestandteil

der Wissensverteilung und des Supports innerhalb der Teams. Im Fallbeispiel 1 wird betont, dass

Teammitglieder ihr Wissen aktiv weitergeben und neue Kollegen durch direkte Gesprache oder

kurze Abstimmungen eingearbeitet werden. In den Fallbeispielen 2 und 3 findet ein intensiver

Austausch iiber technische Fragen ebenfalls hiufig iiber direkte Kommunikation statt, da dies

schneller und effektiver ist als das Nachlesen von Dokumentationen.

Direkte Kommunikation wird damit nicht nur fiir den Alltag in agilen Teams, sondern auch als

wichtiges Mittel zur schnellen Problemldsung, Wissenstransfer und Abstimmung iiber Teamgren-

zen hinweg genutzt. Die folgende Tabelle 21 zeigt eine Ubersicht der eingesetzten Kommunika-

tionswerkzeuge der autonomen Teams mit Vor- und Nachteilen und Beispiele fiir ihren Einsatz:

Kommunikati-

onsmittel

Zv.veck / Einsatzbe- Vorteil
reich

Nachteil

Beispielhafte Verwen-
dung im Team

Face-to-Face

Spontane Abstim-
mungen im Biiro,

Personlich, direkt,

schnell

Nicht doku-

mentiert, nur

Riickfrage zu einem
Ticket, informelle Ein-

schnelle Klarung bei physi- arbeitung
scher Niahe
moglich
Telefon Klarung dringender | Schnell, direkt, Keine Abstimmung mit Kol-
oder komplexer auch liber Distanz | schriftliche legen im Homeoffice,
Fragen, auch re- Nachver- externe Teams bzw.
mote folgbarkeit Projektteilnehmer
Chat Alltagstauglich fiir | Schriftlich, Gefahr von Riickfragen im Team,
Riickfragen, Koor- | schnell, Teilen Kontextver- | Klarung offener
dination, Gruppen- | von Links/Anhén- | lust oder un- | Punkte, Gruppenab-
kommunikation gen moglich strukturierter | sprachen
Kommuni-
kation
E-Mail Formelle Kommu- Nachvollziehbar, | Kann in E- Weiterleitung von Ent-
nikation, dokumen- | gut dokumentiert, | Mail-Flut scheidungen, Ankiindi-
tierte Weitergabe Verteilerfahig, untergehen, | gungen, Abstimmung

von Infos Anhiange/Links Gefahr, dass | mit Leitung oder Fach-
moglich sich niemand | abteilungen
direkt ange-
sprochen
fiihlt
Videocall mit Gemeinsames Visualisierung, Hoherer Ko- | Gemeinsame Analyse
Screensharing Durchgehen techni- | direkte Riickspra- | ordinations- | eines Problems, Pair
scher oder visueller | che, Screensha- aufwand, Debugging
Themen ring moglich nicht immer
dokumen-
tiert

Tabelle 21: Kommunikationsmittel autonomer Teams

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 87

6.1.2.2 Toolunterstiitzter Workflow

Die Best Practice ,,Toolunterstiitzter Workflow” wird bereits im Punkt 6.1.1.1 beschrieben und

deckt auch einen Teil der Kategorie ,,Kommunikation* ab.

6.1.2.3 Regelmiiflig synchrone Abstimmung im Team

Die Best Practice ,,RegelmifBige synchrone Abstimmung im Team” wird bereits im Punkt 6.1.1.2

beschrieben und deckt auch einen Teil der Kategorie ,,Kommunikation* ab.

6.1.3 Reflexion & Lernprozess

Der Code ,,Retrospektive & Review* wird zu folgenden Best Practices ausformuliert:

6.1.3.1 Regelmiiflige Reflexion und Feedbackschleifen

Retrospektiven sind ein zentrales Instrument in agilen Teams, um kontinuierliche Verbesserungen
voranzutreiben. Sie ermdglichen es, Erfahrungen aus abgeschlossenen Sprints zu reflektieren,
Probleme zu identifizieren und gezielte Mainahmen zur Optimierung der Arbeitsweise zu entwi-
ckeln. In den untersuchten Fallbeispielen kommen Retrospektiven regelméBig zum Einsatz, je-

doch mit unterschiedlichen Ansitzen und Herausforderungen.

Im Fallbeispiel 1 werden Retrospektiven zwar durchgefiihrt, es fehlt jedoch manchmal an der
konsequenten Umsetzung der erarbeiteten Mallnahmen. Teams besprechen Probleme und Ver-
besserungspotenziale, aber die Umsetzung der geplanten Anderungen ist nicht immer durchgin-
gig gewihrleistet. In den Fallbeispielen 2 und 3 hingegen sind Retrospektiven fester Bestandteil
des Entwicklungsprozesses und werden aktiv genutzt, um nach jedem Sprint konkrete Verbesse-

rungsmafBnahmen abzuleiten.

Besonders im Fallbeispiel 3 haben Teams eine strukturierte Herangehensweise entwickelt, indem
,Mantras®“ in Confluence dokumentiert werden. Diese langfristigen Leitlinien basieren auf den
Erkenntnissen aus Retrospektiven und helfen, wiederkehrende Herausforderungen gezielt anzu-
gehen. Zusétzlich werden konkrete Actions flir den ndchsten Sprint definiert, um sicherzustellen,

dass Verbesserungsvorschlage nicht nur diskutiert, sondern auch umgesetzt werden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 88

Neben klassischen Sprint-Retrospektiven gibt es im Fallbeispiel 2 auch technische Reviews, bei
denen Entwickler alle zwei Wochen gemeinsam Code-Qualititsthemen wie SonarQube-Defects
oder Architekturentscheidungen analysieren. Dadurch entstehen regelmifBige Feedbackeinheiten,
die nicht nur die Entwicklungsprozesse optimieren, sondern auch als Wissenstransfer innerhalb

der Teams dienen.

Durch die regelméBige Reflexion und strukturierte Dokumentation stellen Teams sicher, dass sie
aus vergangenen Fehlern lernen, ihre Prozesse kontinuierlich verbessern und nachhaltige Verdn-
derungen etablieren. Retrospektiven tragen somit nicht nur zur Prozessoptimierung, sondern auch

zur langfristigen Teamkultur und Produktivititssteigerung bei.

6.1.3.2 Pair-Programming, 4-Augen-Prinzip und Reviews

Code-Reviews sind ein essenzieller Bestandteil der Qualitétssicherung und Wissensverteilung in
Softwareentwicklungsprojekten. Besonders in SoftwaregroB3projekten mit mehreren Teams sor-
gen strukturierte Review-Prozesse dafiir, dass Fehler friihzeitig erkannt, Best Practices etabliert
und Wissen iiber Teamgrenzen hinweg geteilt wird. Eine zentrale Praxis in den Fallbeispielen ist
das 4-Augen-Prinzip, das sowohl bei teaminternen als auch teamiibergreifenden Reviews ange-

wendet wird.

Im Fallbeispiel 1 ist das 4-Augen-Prinzip nicht immer verpflichtend, wird aber in vielen Teams
genutzt, um sicherzustellen, dass komplexere Anderungen von einer zweiten Person iiberpriift
werden. Gerade bei groBeren Tasks wird oft vor dem Commit eine Review durch eine andere
Person durchgefiihrt, um mogliche Probleme friithzeitig zu erkennen. Im Fallbeispiel 2 sind Re-
views iiber Merge-Requests fester Bestandteil des Entwicklungsprozesses. Im Fallbeispiel 3 ist
das Prinzip weiter formalisiert — es gibt eine klare Vorgabe, dass kein Entwickler seinen eigenen
Code freigeben darf, sondern dieser immer von einem anderen Teammitglied iiberpriift werden
muss. Jede Anderung muss durch eine zweite Person gepriift werden, bevor sie in den Master-

Branch tibernommen wird.

Neben teaminternen Reviews sind in den Fallbeispielen 2 und 3 auch teamiibergreifende Reviews
notwendig, insbesondere wenn mehrere Teams an einer gemeinsamen Codebasis arbeiten. Im
Fallbeispiel 2 gibt es beispielsweise Module, die unter der Verantwortung eines bestimmten
Teams stehen. Anderungen daran miissen erst von diesem Team gepriift und freigegeben werden.
Ahnlich ist es im Fallbeispiel 3, wo teamiibergreifende Code-Reviews sicherstellen, dass gemein-

same Standards eingehalten und unerwartete Seiteneffekte vermieden werden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 89

Zusitzlich zur klassischen Code-Review-Praxis kommen in den Fallbeispielen Pair-Program-
ming, Screen-Sharing und Review-Meetings zum Einsatz. Besonders im Fallbeispiel 1 werden
Reviews oft informell wihrend der Entwicklung durchgefiihrt, indem sich Entwickler zu komple-
xen Themen direkt abstimmen oder gemeinsam an einem Code-Abschnitt arbeiten. Im Fallbei-
spiel 2 wird beschrieben, dass Review-Prozesse nicht nur zur Fehlererkennung, sondern auch als

Moglichkeit genutzt werden, alternative Losungswege zu diskutieren und voneinander zu lernen.

Neben der Qualitétssicherung trigt das 4-Augen-Prinzip auch dazu bei, komplexe Aufgabenbe-
reiche besser zu 16sen. In den Fallbeispielen 2 und 3 werden besonders schwierige oder technisch
anspruchsvolle Anderungen oft in Pair-Programming-Sessions oder durch intensive Reviews be-
arbeitet, um verschiedene Perspektiven einzubeziehen und Losungen effizienter zu entwickeln.
Im Fallbeispiel 3 ist es iiblich, dass sich zwei Entwickler gemeinsam eine komplexe Implemen-
tierung ansehen, bevor der Code weitergefiihrt wird. Dadurch werden Fehlentscheidungen ver-
mieden, Architekturanforderungen gezielt beriicksichtigt und alternative Losungswege systema-

tisch diskutiert.

, Also fiir die ganz komplexen Sachen versuchen wir uns vorher in drei, vier, fiinf
Leuten vielleicht nochmal zusammen zu reden, die sich mit dem Thema halbwegs
auskennen, um zu evaluieren, wie wir das umsetzen konnen. Ansonsten, wenn's nur

etwas komplexer ist, dann geht's Richtung Pair-Programming. “ — T3, Teamleiter

,,Also Pair-Programming ist eine Option - wird primdr eingesetzt, wenn jemand sich
natiirlich iiberhaupt nicht auskennt in einem Thema aber da halt hineinkommen
mochte. Also vor allem Neuzugdngen im Team. Dann wird es eher eingesetzt. *“ — T6,

Technischer Architekt

Die iibergreifende Best Practice ist der gezielte Einsatz von 4-Augen-Konstellationen — sei es als
Pair-Programming, formelle Reviews oder spontane gemeinsame Problemanalyse. Diese Arbeits-
weise vereint mehrere Ziele gleichzeitig: Sie sichert Qualitdt, fordert Wissensaustausch, erleich-
tert Einarbeitung, stirkt gemeinsame Verantwortung und ermoglicht kontinuierliches Lernen im

Team.

6.1.4 Wissensverteilung & Support

Die Codes ,,Code Review*, ,,Dokumentation®, ,,Pair-Programming®, ,,Taskrotation, ,,Direkte
Nachfrage (Sms, Telefon) und ,,Mehrere Personen pro Thema“ werden zu folgenden Best Prac-

tices ausformuliert:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 90

6.1.4.1 Pair-Programming, 4-Augen-Prinzip und Reviews

Die Best Practice ,,Pair-Programming, 4-Augen-Prinzip und Reviews” wird bereits im Punkt

6.1.3.2 beschrieben und deckt auch einen Teil der Kategorie ,,Wissensverteilung & Support* ab.

6.1.4.2 Toolunterstiitzter Workflow

Die Best Practice ,,Toolunterstiitzter Workflow” wird bereits im Punkt 6.1.1.1 beschrieben und

deckt auch einen Teil der Kategorie ,,Wissensverteilung & Support™ ab.

6.14.3 Effiziente Abstimmung durch direkte Kommunikation

Die Best Practice ,,Effiziente Abstimmung durch direkte Kommunikation” wird bereits im Punkt

6.1.2.1 beschrieben und deckt auch einen Teil der Kategorie ,,Wissensverteilung & Support™ ab.

6.1.4.4 Mehrere Themenverantwortliche zur Wissensverteilung

Um sicherzustellen, dass Wissen nicht nur bei einzelnen Spezialisten konzentriert ist, setzen die
Teams in den Fallbeispielen darauf, dass mehrere Personen fiir ein Themengebiet verantwortlich
sind. Diese Strategie hilft, Wissensinseln zu vermeiden, die Teamflexibilitit zu erhdhen und si-
cherzustellen, dass Aufgaben auch bei Abwesenheiten oder Personalwechseln problemlos weiter-

gefiihrt werden konnen.

In allen drei Fallbeispielen gibt es bewusste Malnahmen zur Verteilung von Verantwortlichkei-
ten. Im Fallbeispiel 1 ist dies zwar das erklirte Ziel, jedoch wird es in den Teams unterschiedlich
konsequent umgesetzt. Im Fallbeispiel 2 werden zentrale Themen gezielt auf mehrere Personen
aufgeteilt, sodass immer mindestens eine zweite Person mit dem Gebiet vertraut ist. Im Fallbei-
spiel 3 ist die Wissensteilung stark in die tdgliche Zusammenarbeit integriert — Teammitglieder
stimmen sich regelmiBig ab und tauschen Informationen aus, um sicherzustellen, dass nicht nur
Einzelne iiber entscheidende Details Bescheid wissen.
,,Jetzt ist es so wir versuchen natiirlich, soweit es geht, zumindest zwei Personen pro

Thema zu haben, die sich auskennen. *“ — T6, Technischer Architekt

Ein bewdhrtes Mittel zur Wissensverteilung ist die gezielte Rotation von Aufgaben (Task-Rota-
tion), die in den Fallbeispielen in unterschiedlicher Intensitit genutzt wird. Im Fallbeispiel 1 wer-

den Aufgaben so verteilt, dass Teammitglieder verschiedene Bereiche kennenlernen und nicht nur

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 91

an einem einzigen Themengebiet arbeiten. Im Fallbeispiel 2 tibernehmen Entwickler gezielt auch
Aufgaben auBerhalb ihrer bisherigen Spezialisierung, um sich in neue Bereiche einzuarbeiten. Im
Fallbeispiel 3 wird eine Mischung aus Spezialisierung und Rotation praktiziert: Wéhrend einige
Teammitglieder feste Schwerpunkte haben, wird darauf geachtet, dass sie auch an anderen The-

men mitarbeiten.

,Ich - ich denke, man versucht es halt, dass man halt die Themen auch durchmischt.
Das halt jemand mal ein Ticket her nimmt [...] er sich natiirlich beschdftigt hat mit
diesem Teil oder Komponente, dass man es so quasi rotiert, [...]. Aber ich denke,
das ist einer der wenigen Mdoglichkeiten, dass man versucht, keine Wissensinseln
aufzubauen, indem man halt einfach jedem jedes Ticket gibt, auch wenn es mal ldn-

ger dauert ein bisschen. " — T11, Teamleiter

Ein typisches Beispiel fiir diese Praxis ist die Ubernahme von Unit-Tests oder funktionalen Er-
weiterungen an bestehenden Features. Im Fallbeispiel 3 wird explizit darauf geachtet, dass keine

Person allein fiir ein Thema zustindig ist.

In allen drei Fallbeispielen zeigt sich als bewéhrte Best Practice die gezielte Kombination aus
Mehrfachbesetzung von Themengebieten und rotierender Verteilung der Aufgaben. Durch die
bewusste Verteilung der Arbeit wird sichergestellt, dass Teams nicht von einzelnen Schliisselper-
sonen abhéngig sind und neue Teammitglieder schrittweise in unterschiedliche Themen eingear-
beitet werden konnen. Diese Vorgehensweise ermdglicht eine nachhaltige Wissensverteilung, re-
duziert das Risiko von Wissensinseln und erhdht zugleich die Flexibilitdt und Weiterentwick-

lungsmdglichkeiten innerhalb des Teams.

Diese Praktik unterscheidet sich vom gezielten Themenwechsel (siehe Punkt 6.1.5.2), da der Fo-
kus hier auf der parallelen Verantwortlichkeit mehrerer Teammitglieder pro Thema liegt — unab-

hingig von individuellen Weiterentwicklungswiinschen.

6.1.5 Fortbildung

Die folgenden Best Practices leiten sich aus den Codes ,,Zertifikate & Weiterbildung (aktiv)®,
,,Zeit fir Verbesserungen®, ,,Themenwechsel, ,,Rollenwechsel und ,,Zeit fiir Technologiewech-
sel & Updates* ab. Tabelle 22 gibt einen kompakten Uberblick iiber die Unterschiede zwischen

diesen Best Practices und zeigt deren jeweilige Schwerpunkte, Umsetzung und Ziele auf.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 92

6.1.5.1 Weiterbildung durch Eigeninitiative und Teamforderung

In allen drei Fallbeispielen besteht grundsitzlich die Mdglichkeit zur individuellen Weiterbil-
dung, etwa durch Schulungen, Zertifikate oder die Beschéftigung mit neuen Technologien. In
keinem der drei Fallbeispiele gibt es eine klar geplante oder abgestimmte Vorgehensweise fiir
Fortbildungsmafinahmen. Stattdessen héngt die tatsédchliche Umsetzung stark von der Eigeniniti-
ative der Mitarbeitenden ab. Wer sich aktiv um eine Weiterbildung bemiiht, erhélt meist Unter-
stiitzung durch die Teamleitung, sei es durch zeitliche Freirdume, formale Genehmigung oder der

Kosteniibernahme.

Im Fallbeispiel 1 gibt es keine festen Programme oder zentralen Angebote. Mitarbeitende miissen
von sich aus den Wunsch zur Weiterbildung einbringen. Zertifizierungen wie Scrum Master oder
sicherheitsbezogene Schulungen sind grundsitzlich moglich, miissen aber selbst vorgeschlagen

und organisiert werden.

., Aber man muss halt pro-aktiv agieren, also es ist nicht so dass ein Organisator
herkommt und sagt: Du jetzt schau dir mal diese oder jene Technologie an und schau
ob es da Verbesserungsmoglichkeiten gibt, sondern - z.B. in Java, wenn du ein Zer-
tifikat machen willst dann musst halt du nachfragen, aktiv. “— T2, Softwareentwick-

ler

Auch im Fallbeispiel 2 ist ebenfalls eine Weiterbildung moglich, aber mit organisatorischen Hiir-
den verbunden. Fiir eigenstindige Lernphasen muss zunéchst ein formales Analyse-Ticket erstellt
werden, das dann in die Projektplanung aufgenommen werden kann. In der Praxis ist es daher
hiufig nur dann realistisch, wenn es im Rahmen bestehender Aufgaben geschieht oder zeitliche

Freirdume zufillig entstehen.

Fallbeispiel 3 zeigt die offenste Herangehensweise: Hier wird Weiterbildung aktiv unterstiitzt,
sofern sie fiir die Projektarbeit relevant ist. Es gibt regelmiBige Reflexionsgespriche zu Karrie-
rewiinschen, Zeitfenster zur individuellen Erkundung technischer Themen sowie konkrete Schu-
lungen etwa im Bereich IT-Security. Auch formale Zertifizierungen werden ermoglicht, wenn sie

zur Weiterentwicklung beitragen.

,,Das ist in der Regel schon so, dass jeder Entwickler auch ein Zeitfenster hat, wo er

sich weiterbilden kann.* — T12, Technischer Architekt

Eine zentrale Herausforderung in allen drei Féllen ist es, Lernen mit den laufenden Projektver-

pflichtungen zu vereinbaren. Dennoch zeigt sich als bewéhrte Praxis in allen drei Fallbeispielen:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 93

Weiterbildung der Mitglieder wird gefordert, wenn sie aus Eigeninitiative angestoen wird und

in sich mit dem Projektablauf vereinbaren lésst.

Eine vergleichende Ubersicht der Praktiken zur Fortbildung ist in Tabelle 22 dargestellt.

6.1.5.2 Themenwechsel zur individuellen Weiterentwicklung

Themenwechsel werden in den untersuchten Teams gefordert, um Wissen breiter zu streuen und
Mitarbeitenden die Mdoglichkeit zu geben, sich fachlich weiterzuentwickeln. Der Wechsel wird
meist von den Teammitgliedern selbst angestofen. Gleichzeitig profitiert auch das Team davon,
da eine breitere Verteilung von Kompetenzen dazu beitrdgt, Wissensinseln zu vermeiden und
Ausfille besser abzufangen. Im Unterschied zu Punkt 6.1.4.4 steht hier die individuelle Motiva-

tion zum Themenwechsel im Vordergrund, die mit Unterstiitzung des Teams realisiert wird.

Im Fallbeispiel 1 gibt es keine festgelegte Rotation, aber wer Interesse an einem neuen Thema
hat, kann sich aktiv dafiir einsetzen. Haufig beginnt der Wechsel mit kleineren Aufgaben, bevor
ein vollstindiger Ubergang erfolgt. Unterstiitzung aus dem Team ist in der Regel gegeben, sofern

es mit den Projektzielen vereinbar ist.

,» Wenn man wirklich was anderes machen will dann muss man sagen man will in ein
anderes Teilprojekt, man muss selber aktiv sein. “ - T1, Requirements Engineer, Tes-

ter und Softwareentwickler

Im Fallbeispiel 2 ist der Themenwechsel strukturierter moglich. Teammitglieder konnen sich ge-
zielt in neue Bereiche einarbeiten, insbesondere wenn dadurch Wissensverteilung gefordert oder
Engpésse vermieden werden. Die Abstimmung erfolgt mit dem Teamleiter und den zustidndigen
Kolleginnen, um einen reibungslosen Ubergang zu gewihrleisten.

Im Fallbeispiel 3 sind Themenwechsel flexibel gestaltet und basieren auf der Initiative der Team-
mitglieder. Wer sich fiir ein neues Gebiet interessiert, bringt dies in Meetings oder Gesprachen
ein und tibernimmt nach und nach entsprechende Aufgaben. Der Wechsel erfolgt schrittweise und

in Abstimmung mit dem Team, sodass Wissen gezielt aufgebaut und integriert werden kann.

., Ich hditte das eher damit beantwortet, dass wenn jemand woanders hinwill, dann

sagt er es und dann schaut man, dass man eine Ldsung findet. “ - T14, Projektleiter

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 94

Themenwechsel sind in allen untersuchten Teams moglich — entweder wenn sie von Mitarbeiten-
den eigeninitiativ angestoflen werden oder wenn sie aus projektfachlicher Sicht sinnvoll erschei-
nen. Als etablierte Praxis hat sich gezeigt, dass Wechselwiinsche offen kommuniziert, schritt-
weise umgesetzt und vom Team aktiv begleitet werden. Auf diese Weise lésst sich individuelles
Interesse mit den Anforderungen des Projekts verbinden — zum Nutzen sowohl der persénlichen
Entwicklung als auch der nachhaltigen Wissensverteilung im Team. Eine vergleichende Uber-

sicht der zur Fortbildung ist in Tabelle 22 dargestellt.

6.1.5.3 Rollenwechsel zur Entwicklung individueller Fahigkeiten

Rollenwechsel innerhalb eines Projekts bieten Teammitgliedern die Mdoglichkeit, neue Kompe-
tenzen zu entwickeln und ihre Einsatzfdhigkeit im Team zu erweitern. Wahrend Themenwechsel
innerhalb der bestehenden Rolle stattfinden, geht ein Rollenwechsel mit einer verdnderten Ver-
antwortung einher, beispielsweise der Wechsel von der Entwicklung zum Test oder vom Backend
zu DevOps-Themen. Besonders in autonomen Teams bringt dies den Vorteil, dass Teammitglie-
der flexibel mehrere Rollen iibernehmen oder bei Engpéssen in anderen Bereichen aushelfen kon-
nen, wodurch Wissen besser verteilt und Abhingigkeiten reduziert werden. In den untersuchten
Fallbeispielen zeigt sich, dass Rollenwechsel grundsitzlich moglich sind, aber meist von den Mit-

arbeitenden selbst angestoflen werden und von den jeweiligen Anforderungen im Team abhéngen.

Im Fallbeispiel 1 gibt es keine festgelegte Regelung fiir Rollenwechsel, aber Teammitglieder kon-
nen in neue Rollen hineinwachsen, sofern dies sinnvoll erscheint. Meist erfolgt dies schrittweise,
indem zundchst Aufgaben aus der neuen Rolle iibernommen werden, bevor ein vollstindiger
Wechsel stattfindet. Wenn beispielsweise ein Entwickler Interesse am Testen zeigt, kann er erste

Testfille erstellen und sich in Abstimmung mit dem Teamleiter tiefer in das Thema einarbeiten.

,,Also es gibt fiir die internen Entwickler schon die Moglichkeit, dass sie sich Abtei-
lungsmdpig versetzen lassen. Das kann dann auch sein, dass ein Kollege von der
Softwareentwicklung in den Test Bereich wechselt und ab dann aber wirklich nur

noch testet.“ — T5, Teamleiter

Im Fallbeispiel 2 wird Rollenwechsel aktiver unterstiitzt, insbesondere wenn dies zur besseren
Verteilung von Wissen und Verantwortlichkeiten beitragt. Viele Teammitglieder haben iiber die
Zeit ihre Schwerpunkte erweitert, um neue Fahigkeiten aufzubauen und das Team flexibler auf-
zustellen. Der Wechsel erfolgt hier oft in Absprache mit dem Team und richtet sich danach, wo

Unterstiitzung gebraucht wird.

Ergebnisse 95

Im Fallbeispiel 3 gibt es ebenfalls keine festen Vorgaben, aber eine Offenheit fiir Rollenwechsel,
wenn dies von den Teammitgliedern gewiinscht wird. Wer sich fiir einen Wechsel interessiert,
bringt dies meist in Meetings zur Sprache und iibernimmt nach und nach Aufgaben aus der neuen
Rolle. Der Ubergang erfolgt schrittweise, wobei das Team unterstiitzt und Wissen aktiv weiter-

gegeben wird.

., Selbstverstdndlich. Wenn Teammitglieder gerne wo anders hinwollen, dann kon-
nen sie es kommunizieren und es wird nach Moglichkeit beriicksichtigt. “—T15, tech-

nischer Architekt und Softwareentwickler

Rollenwechsel sind eine bewihrte Praxis, um Fachwissen innerhalb des Teams zu erweitern und
die individuelle Entwicklung der Mitarbeitenden zu fordern. In der Praxis zeigt sich jedoch, dass
Rollenwechsel in den meisten Teams nicht systematisch gesteuert, sondern vor allem durch die
Eigeninitiative der Mitarbeitenden angestoBen werden. Wéhrend in einzelnen Fillen gezielte
Wechsel stattfinden, beruhen die Ubergiinge iiberwiegend auf personlichem Interesse und situa-

tiven Bediirfnissen im Team. Entscheidend ist, dass ausreichend Unterstiitzung geboten wird, da-

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

mit der Wechsel reibungslos gelingt und langfristig zur Teamstabilitit beitragt.

Kriterium

6.1.5.1 Weiterbildung durch

Eigeninitiative und Teamfor-
derung

6.1.5.2 Themenwechsel
zur individuellen Wei-
terentwicklung

6.1.5.3 Rollenwechsel zur
Entwicklung individuel-
ler Féihigkeiten

Fokus Gezielte Schulungen, Zertifi- | Ubernahme neuer The- Wechsel in eine neue fach-
zierungen und Zeit fiir techno- | mengebiete innerhalb des | liche Rolle, z. B. Entwick-
logische Erprobung Projekts zur Kompetenz- | ler zu Tester, Backend zu

entwicklung DevOps

Umset- Teilnahme an Kursen, Zertifi- | Mitarbeitende iiberneh- Schrittweise Einarbeitung

zungsform | katen, interne Schulungen, men neue Themen in neue Rollen, oft abhén-
technologische Tests in Lern- | schrittweise und in Ab- gig von Bedarf oder per-
phasen stimmung mit dem Team | sonlichem Interesse

Beteiligte Teammitglieder, Teamleiter, Teammitglieder, Team- Teammitglieder, Teamlei-
externe Schulungsanbieter leiter, Fachverantwortli- | ter, Projektleitung

che

Ziel Fachliche Weiterentwicklung, | Wissensverteilung, Fle- Erweiterung der Fahigkei-
Sicherstellung technologischer | xibilitdt erhdhen, Ver- ten, Reduktion von Abhén-
Kompetenz, Innovationsforde- | meidung von Wissensin- | gigkeiten, Flexibilitdt im
rung seln Team verbessern

Tabelle 22: Unterscheidung der Praktiken fiir die Fortbildung

6.1.6 Richtlinien, Grenzen, Normen und Prinzipien

Folgende Best Practices ergeben sich aus den Codes ,,Doku (Wiki/Confluence/...), ,,Organisati-
onsweite Richtlinien, ,,Festlegung zentral durch Spezialisten (1...n)* und ,,zusétzliche Codequa-

litaten durch Team bzw. Teamleiter:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 96

6.1.6.1 Dokumentation und Festlegung von Richtlinien und Prozessen

In Softwaregrof3projekten mit vielen autonomen Teams ist eine klare Dokumentation von Ent-
wicklungsrichtlinien essenziell, um einheitliche Standards sicherzustellen und die Zusammenar-
beit zwischen Teams zu erleichtern. Ohne zentrale Vorgaben wiirden sich unterschiedliche Her-
angehensweisen entwickeln, was zu Inkonsistenzen in Architektur, Code-Qualitit und Entwick-
lungsprozessen fithren konnte. In allen drei Fallbeispielen existieren etablierte Strukturen, die
gewdhrleisten, dass technische und organisatorische Vorgaben definiert, dokumentiert und fiir
alle Beteiligten zugéinglich sind. Diese Richtlinien werden nicht von einzelnen Teams autonom
festgelegt, sondern durch spezialisierte Rollen oder koordinierende Einheiten betreut. Im Fallbei-
spiel 1 existiert ein entwicklungsinternes Wiki, in dem Architekturentscheidungen, Coding-Gui-
delines und Tool-Vorgaben dokumentiert sind. Die Verantwortung fiir deren Festlegung liegt bei
technischen Architekten sowie einem Software-Entscheidungsgremium (SEG), das zentrale Stan-

dards vorgibt.

., Also grundsdtzlich gibt es in dem Projekt einen technischen Architekten, der dafiir
zustdandig wdre, tibergreifend fiir, fiir alle Entwickler Richtlinien, Entwicklungsvor-
gehen, Richtlinien, Prinzipien, Architektur, Entscheidungen, Tools usw. vorzugeben
und eigentlich auch zu schauen, dass das dann entsprechend umgesetzt wird. ** — T4,

Softwareentwickler und Tester

Im Fallbeispiel 2 arbeiten die Teams auf Basis organisationsweiter technischer Vorgaben, die
projektiibergreifend gelten und zentral dokumentiert sind. Diese beinhalten unter anderem Richt-
linien zur grafischen Oberfliche, Konventionen fiir Schnittstellendefinitionen sowie die Nutzung
definierter Werkzeuge. Die Informationen werden beispielsweise im unternehmensweiten Con-
fluence-Wiki dokumentiert und in Meetings sowie Architekturabsprachen weiterentwickelt.

., Es gibt aber natiirlich auch die grafische Oberfliche. Da gibt es eine Vorgabe, die

ist aber global fiir die Gesamtheit damit das halt von allen Teams richtig umgesetzt

wird. “— T10, Tester

Im Fallbeispiel 3 gelten unternehmensweit verbindliche Sicherheits- und Qualititsvorgaben, die
fiir alle Teams und Projekte verpflichtend einzuhalten sind. So miissen beispielsweise sémtliche
eingesetzten Entwicklungswerkzeuge vor ihrem Einsatz sicherheitstechnisch gepriift und offiziell

freigegeben werden.

., [...] dieser Prozess ist ziemlich nah dran an dem, was da auf diesen Ticket Check-
listen drinnen steht. Also dass man sagt, bevor was umgesetzt wird, muss es sicher-

heitstechnisch angeschaut worden sein und dann in der Umsetzung darf es nur mit

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 97

bestimmten Tools verwendet werden. Alle Entwicklungswerkzeuge miissen Security

gepriift sein und freigegeben worden sein. “ — T14, Projektleiter

Die konsequente Kombination aus klar zugewiesenen Verantwortlichkeiten und systematisch ge-
pflegter Dokumentation hat sich in allen drei Fallbeispielen als effektive Best Practice erwiesen.
Sie sorgt dafiir, dass zentrale Richtlinien nicht nur formal existieren, sondern im Entwicklungs-
alltag aktiv genutzt und fortlaufend weiterentwickelt werden. Gleichzeitig bleibt Raum fiir team-
spezifische Ergéinzungen, wodurch sowohl Einheitlichkeit als auch Flexibilitdt in groen Projek-
ten gewdhrleistet werden. Dies erleichtert die Zusammenarbeit zwischen Teams, verbessert die

Einarbeitung neuer Mitglieder und tragt maB3geblich zur Erhaltung der Softwarequalitit bei.

6.1.6.2 Teamspezifische Erweiterungen von Qualititsstandards

Neben zentral definierten Richtlinien haben viele Teams in den Fallbeispielen eigene zusitzliche
Qualitdtsanforderungen entwickelt, die iiber die allgemeinen Vorgaben hinausgehen. Diese team-
spezifischen Standards erginzen die organisationweiten Coding-Guidelines und helfen dabei, die

Code-Qualitét langfristig zu verbessern.

Im Fallbeispiel 1 setzen einige Teams gezielt auf Zusatzanforderungen fiir Testabdeckung und
Code-Qualitat. Teamleiter konnen zusitzliche Qualitétsrichtlinien durchsetzen und deren Einhal-
tung kontrollieren, um sicherzustellen, dass einheitliche Standards eingehalten werden. Dies be-
trifft insbesondere Anforderungen an die Test Coverage, die als Mal3 fiir die Qualitit neuer Im-

plementierungen dient.

,, Und ansonsten haben die Teamleiter sag ich mal noch die Freiheit, dass der zu-
sdtzliche Codequalitiiten erzwingen kénnen und iiberpriifen, dass sie auch eingehal-

¢

ten werden, wie zum Beispiel Test Coverage und so Sachen. * — T3, Teamleiter

Im Fallbeispiel 2 wird beschrieben, dass bestimmte Code-Standards flexibel auf Teamebene fest-
gelegt werden konnen, solange sie den organisationsweiten Vorgaben nicht widersprechen. Ent-
wickler haben die Mdglichkeit, spezifische Guidelines fiir Code-Reviews oder Modulstrukturen
zu definieren, die an ihre Arbeitsweise angepasst sind. Im Fallbeispiel 3 sind Checklisten fiir
Entwicklungsprozesse ein etabliertes Vorgehen, um sicherzustellen, dass alle wichtigen Quali-
tatskriterien eingehalten werden. Diese Listen enthalten Vorgaben zu Code-Reviews, Testanfor-
derungen und Dokumentationspflichten, die gepriift werden miissen, bevor eine Aufgabe als
,,Done* markiert wird. Der Einsatz solcher Checklisten sorgt dafiir, dass auch weniger erfahrene

Teammitglieder einen klaren Leitfaden fiir qualitativ hochwertigen Code haben.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 98

Ein konkretes Beispiel fiir eine dokumentierte und gelebte Richtlinie ist in den Fallbeispielen 2
und 3 die Definition of Done. Sie legt verbindlich fest, wann eine Aufgabe als abgeschlossen gilt,
und umfasst Kriterien wie Testabdeckung, Sicherheitsanforderungen oder Reviewpflicht. Neben
ihrer Funktion als Qualitdtsstandard spielt sie — wie bereits in Kapitel 6.1.1.4 im Kontext transpa-
renter Dokumentation beschrieben — auch eine zentrale Rolle fiir die Nachvollziehbarkeit im

Team.

,, Wir haben auch noch eine Definition of Ready bzw. eine Definition of done - die
haben wir uns auch selber angelegt im Confluence. Und sonstige Richtlinien leben
halt in der Knowledge-World, wie es bei [...] heifit. Es ist auch nichts weiter als ein

eigener Confluence-Bereich. “ —T9, Teamleiter und Requirements Engineer

,, Wir haben jetzt intern auch eine Definition of Done gemacht, dass stimmt schon,
wo drinnen steht eine Userstory muss auch die Testautomatisierung, soweit - soweit
als moglich abgedeckt sein. Sie muss getestet sein auf welcher Instanz das sein muss

oder so - das haben wir Team intern gemacht. “ — T10, Tester

. [...] gibt es ein paar Checks bevor es gebaut wird. Dann wird es gebaut und dann
gibt es einige Checks dafiir - wann ist es Done? Typische Definition of Done [...]
— T14, Projektleiter

Zusitzlich setzen viele Teams in den untersuchten Fallbeispielen auf automatisierte Tools wie
zum Beispiel SonarQube oder Checkstyle, um Verstdfle gegen die definierten Standards friihzei-
tig zu erkennen. Diese Tools analysieren den Code auf Fehlermuster, Formatierungsabweichun-

gen und strukturelle Probleme und geben Entwicklern direktes Feedback.

,,Ansonsten haben wir bei uns intern SonarQube, zur Verwendung von dynamischer
Code Analyse und auch Checkstyle, wobei wir als Team selbst sehr autonom in un-
serer Umsetzung sind. Das heifst, bei uns, bei uns setzen sich die Kollegen vom Ent-
wicklungsteam in regelmdfiigen Abstinden zusammen und gehen die Sonar-Issues

durch [...]“—T9, Teamleiter und Requirements Engineer

Die Kombination aus zentralen Vorgaben und teamspezifischen Erweiterungen stellt eine gelebte
Best Practice dar, die in allen drei Fallbeispielen fest verankert ist. Autonome Teams nutzen sys-
tematisch zusitzliche Qualititsrichtlinien, strukturierte Checklisten sowie automatisierte Tools
wie SonarQube oder Checkstyle, um die Einhaltung definierter Standards sicherzustellen und ei-

gene Anforderungen flexibel zu ergénzen. Dieses Zusammenspiel erlaubt es den Teams, die

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 99

Code-Qualitit kontinuierlich zu verbessern und an ihre spezifischen Kontexte anzupassen — ohne

dabei die tibergreifende Konsistenz im Gesamtprojekt zu gefiahrden.

6.1.7 Meetings

Die folgenden Best Practices leiten sich aus den Codes ,,Weekly (1-2 Wochen Zyklus)*, ,,Dailies*
und ,,Teamleiter-Meetings (Test, Architektur, etc.)* ab. In der Tabelle 23 gibt einen kompakten
Uberblick iiber die Unterschiede zwischen diesen drei Meeting-Typen und zeigt deren jeweilige

Schwerpunkte, Teilnehmer und Ziele auf.

6.1.7.1 Regelmiflige synchrone Abstimmung im Team

Die Best Practice ,,Regelméfige synchrone Abstimmung im Team” wird bereits im Punkt 6.1.1.2

beschrieben und deckt auch einen Teil der Kategorie ,,Meetings* ab.

6.1.7.2 Wochentliche Abstimmung zwischen Teams

Die Best Practice ,,Wochentliche Abstimmung zwischen Teams” wird bereits im Punkt 6.1.1.3

beschrieben und deckt auch einen Teil der Kategorie ,,Meetings* ab.

6.1.7.3 Rollenspezifische Teamleiter-Meetings zur fachlichen Koordination

Neben den regelméBigen Abstimmungen innerhalb der Teams (Dailies) und der teamiibergreifen-
den Koordination in den Weeklies gibt es in den untersuchten Fallbeispielen rollenspezifische
Teamleiter-Meetings, die der gezielten Abstimmung zwischen Verantwortlichen fiir bestimmte
Fachbereiche dienen. Diese Meetings sind darauf ausgerichtet, technische, organisatorische oder
strategische Themen innerhalb spezifischer Rollen zu besprechen und teamiibergreifende Heraus-

forderungen effizient zu koordinieren.

Im Fallbeispiel 1 gibt es seit etwa einem Jahr wochentliche Meetings der Teamleiter, bei denen
zentrale Themen besprochen und der Status ausgetauscht wird. Diese Treffen dienen vor allem
dazu, tibergreifende Herausforderungen zu identifizieren und Entscheidungen auf einer hoheren
Ebene zu treffen. In diesen Meetings sind neben den Teamleitern auch Personen mit weiterfiih-

renden Entscheidungsbefugnissen beteiligt, sodass Eskalationen direkt adressiert werden kdnnen.

Ergebnisse 100

Im Fallbeispiel 2 finden spezialisierte Meetings fiir unterschiedliche Fachbereiche statt. Techni-
sche Architekten treffen sich regelmifBig, um Architekturentscheidungen abzustimmen, wéhrend
es separate Meetings flir Testthemen und Requirements Engineering gibt. Diese Meetings ermdg-
lichen eine gezielte Abstimmung innerhalb der jeweiligen Rollen und sorgen fiir eine klare Struk-

tur bei der Entscheidungsfindung zu spezifischen Fachthemen.

Ja, natiirlich gibt es Meetings, die nach oben Informationen weitergeben. Die
Teamleads reden natiirlich miteinander, es gibt dann auch Test Meetings, wo dann
halt immer wieder auch die - die aufgetretenen Probleme besprochen werden, die
technischen Architekten treffen sich alle zwei Wochen. Ja, die Requirement-Engine-

ers haben auch ihre Runde. — T6, Technischer Architekt

Im Fallbeispiel 3 gibt es wochentliche Meetings mit der Projektleitung, Release- und Test-Ma-
nagement, in denen offene Tickets priorisiert und bewertet werden. Zuséitzlich stimmen sich
Teamleiter regelmidfig mit Fachabteilungen ab, um technische und organisatorische Fragen zu
klaren. Diese Meetings sind essenziell, um Abhéngigkeiten zwischen Teams friihzeitig zu erken-

nen und eine strukturierte Zusammenarbeit sicherzustellen.

Rollenspezifische Teamleiter-Meetings helfen dabei, den fachlichen Austausch gezielt zu orga-
nisieren und Wissen innerhalb der Teams strukturiert weiterzugeben. Wéhrend Dailies und
Weeklies vor allem den aktuellen Arbeitsstand und teamiibergreifende Abstimmungen behandeln,
bieten diese Meetings eine Moglichkeit fiir detaillierte technische und methodische Diskussionen.
So konnen Entscheidungen innerhalb einzelner Fachbereiche fundiert getroffen werden.

Die spezifischen Zielsetzungen und Abgrenzungen von Dailies, Weeklies und rollenspezifischen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Teamleiter-Meetings sind in Tabelle 23 zusammengefasst.

Kriterium

6.1.7.1 Regelmiflige

synchrone Abstim-

6.1.7.2 Wochentliche Ab-
stimmung zwischen Teams

6.1.7.3 Rollenspezifische
Teamleiter-Meetings zur

mung im Team

fachlichen Koordination

Fokus Kurzfristige Abstim- Teamiibergreifende Abstim- | Fachliche, technische oder or-
mung zum aktuellen mung zu laufenden Themen | ganisatorische Abstimmung
Stand und Blockaden und Abhéngigkeiten innerhalb spezifischer Rollen
Teilneh- Alle Teammitglieder Vertreter mehrerer Teams, Teamleiter, technische Archi-
mer oft Entwickler, Tester, Re- tekten, Test- oder Fachbe-
quirements Engineers, teil- reichsverantwortliche
weise Product Owner
Frequenz Taglich Wochentlich Wochentlich oder nach Bedarf
Scope Innerhalb eines Teams | Zwischen mehreren Teams Rollen- bzw. fachbereichs-
iibergreifend
Typische Welche Aufgaben sind | Welche Schnittstellen oder Architekturentscheidungen,
Themen in Bearbeitung? Gibt es | Abhéngigkeiten gibt es? Teststrategien, Priorisierung
Hindernisse oder Kld- | Welche teamiibergreifenden | von Aufgaben innerhalb eines
rungsbedarf? Probleme miissen gelost Fachbereichs
werden?

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 101

Tabelle 23: Die verschiedenen Arten von Meetings

6.1.8 Fortschrittsmessung

Die Codes ,,Im Daily*, ,,wdchentliche Meetings mit Leitung® und ,, Ticketstatus (%, Stunden oder

Status)“ werden zu folgenden Best Practices ausformuliert:

6.1.8.1 Regelmiilige Fortschrittsbesprechungen

Wihrend tégliche Abstimmungen (siehe Punkt 6.1.1.2) vorrangig der kurzfristigen Koordination
innerhalb der Teams dienen, fokussieren sich die hier beschriebenen Fortschrittsbesprechungen
auf eine libergreifende und strategische Bewertung des Projektfortschritts. Ziel ist es, Abweichun-
gen vom Plan zu erkennen, MalBinahmen einzuleiten und eine fundierte Entscheidungsgrundlage

fiir die weitere Projektsteuerung zu schaftfen.

Im Fallbeispiel 1 gibt es wochentliche Leistungsfortschrittsberichte, die im Rahmen von Bespre-
chungen genutzt werden, um den aktuellen Status zu bewerten. Dabei wird eine prozentuale Ein-
schitzung des Fortschritts vorgenommen, um gro3ere Themenbldcke zu erfassen. Zusétzlich wer-

den Abweichungen vom geplanten Verlauf besprochen und MaBnahmen zur Anpassung definiert.

Im Fallbeispiel 2 findet die Fortschrittskontrolle hauptsachlich {iber Sprint-Meetings statt. Hier
werden abgeschlossene, laufende und anstehende Aufgaben besprochen, wobei Anforderungen
regelmifig tiberpriift und priorisiert werden. Tégliche Stand-up-Meetings (Dailies) ergénzen die-
sen Prozess, indem sie eine kurzfristige Fortschrittsbewertung innerhalb der Teams ermoglichen
(siehe Punkt 6.1.1.2). Anderungen oder Verzdgerungen werden in diesen Meetings transparent
gemacht, sodass frithzeitig Gegenmalinahmen eingeleitet werden konnen.

Im Fallbeispiel 3 erfolgt die Fortschrittsiiberpriifung sowohl in wochentlichen Meetings mit der
Projektleitung als auch in teaminternen Abstimmungen. Neben der Diskussion offener Aufgaben
liegt der Fokus auf der Bewertung technischer Implementierungen und potenzieller Risiken. In
diesen Meetings werden zudem teamiibergreifende Abhédngigkeiten besprochen, um sicherzustel-
len, dass alle relevanten Stakeholder informiert sind und notwendige Entscheidungen zeitnah ge-

troffen werden.

Besprechungen des Fortschritts werden in allen drei Fallbeispielen durch den Einsatz von Tools
wie Jira oder Kanban-Boards unterstiitzt. Dort werden Statusinformationen bereitgestellt und eine
Grundlage fiir die Diskussionen geschaffen. Im Unterschied zu tiaglichen Dailies oder reiner Tool-

Transparenz dienen diese Meetings jedoch nicht nur der Statusmeldung, sondern ermoglichen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 102

eine iibergreifende, strukturierte Bewertung des Projektfortschritts. Sie bieten Raum, um Abwei-
chungen vom Plan friihzeitig zu erkennen, MaBBnahmen zur Kurskorrektur abzuleiten und die Zu-

sammenarbeit im Team sowie mit der Projektleitung aktiv zu steuern.

6.1.8.2 Toolunterstiitzter Workflow

Die Best Practice ,,Toolunterstiitzter Workflow” wird bereits im Punkt 6.1.1.1 beschrieben und

deckt auch einen Teil der Kategorie ,,Fortschrittsmessung* ab.

6.1.9 Auswahl & Zuteilung von Tasks

Die Codes ,,Leitung an Team* und ,,Auswahl durch Teammitglieder aus Task-Liste®, ,,Zuteilung
nach Fachwissen/jenen der sich am besten auskennt® werden zu folgenden Best Practices ausfor-

muliert:

6.1.9.1 Koordinierten Aufgabenverteilung fiir kritische und spezialisierte Aufgaben

In autonomen Teams erfolgt die Vergabe der Aufgaben in der Regel flexibel. Es gibt jedoch be-
stimmte Situationen, in denen eine gezielte Zuweisung von Aufgaben sinnvoll ist, insbesondere
bei sicherheitskritischen Themen, komplexen Anforderungen oder dringenden Fehlerbehebun-
gen. In diesen Féllen iibernimmt eine koordinierende Rolle, wie der Teamleiter oder ein Fachex-
perte, die Verantwortung, sicherzustellen, dass die Aufgaben an die am besten geeigneten Team-

mitglieder vergeben werden.

Im Fallbeispiel 1 gibt es eine weitgehend freie Aufgabenwahl, jedoch wird darauf geachtet, dass
kritische Aufgaben gezielt zugewiesen werden. Der Teamleiter unterstiitzt dabei, den Uberblick
iiber anstehende Arbeiten zu behalten und bei Bedarf Aufgaben gezielt zu verteilen, um sicher-

zustellen, dass wichtige Meilensteine eingehalten werden.

Im Fallbeispiel 2 werden Anforderungen iiber Jira verwaltet und in Meetings priorisiert. Wéhrend
reguldre Aufgaben von den Teammitgliedern selbst ausgewidhlt werden, gibt es Fille, in denen
Teamleiter oder Projektverantwortliche gezielt Aufgaben zuweisen, etwa wenn spezielle Exper-

tise erforderlich ist oder ein dringender Bug behoben werden muss.

Im Fallbeispiel 3 erfolgt die Aufgabenvergabe hauptsichlich {iber Sprint-Meetings. Das Team

entscheidet gemeinsam, wer welche Aufgaben {ibernimmt, jedoch gibt es bei hochkomplexen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 103

oder sicherheitskritischen Anforderungen feste Vorgaben, welche Rollen fiir die Umsetzung ver-

antwortlich sind.

,,Die Zuteilung funktioniert dann so, dass [...] die Teamleads diese Defects zuge-
wiesen bekommen und dann fiir die weitere Verteilung in den Teams zustdndig sind.
Teilweise ist es aber auch so, wenn man weif3, dass eine bestimmte Person ganz
sicher fiir das zustdndig ist, dass die direkt diesen Defect zugeteilt bekommt. [...]
Die Auswahl erfolgt grundsdtzlich danach, wer sich mit einem Thema auskennt oder

wer gerade Zeit hat, sich etwas anzuschauen. “ — T4, Softwareentwickler und Tester

Diese Form der koordinierten Aufgabenverteilung hilft dabei, wichtige Aufgaben zuverlissig zu
bearbeiten, ohne dass es durch unklare Zustandigkeiten zu Verzégerungen kommt. In allen drei
Fallbeispielen zeigt sich als gemeinsame Praxis, dass Teamleiter oder fachlich zustéindige Perso-
nen bei sicherheitskritischen, komplexen oder besonders dringenden Aufgaben gezielt eingreifen.
So wird sichergestellt, dass die Aufgaben von den am besten geeigneten Teammitgliedern iiber-

nommen werden — ohne grundsétzlich die Selbstorganisation des Teams einzuschranken.

6.1.9.2 Forderung von Eigenverantwortung durch selbstbestimmte Aufgabenwahl

In autonomen Teams ist es wichtig, dass Teammitglieder selbst entscheiden konnen, welche Auf-
gaben sie libernehmen. Dies stiarkt nicht nur die Eigenverantwortung, sondern sorgt auch fiir eine
gleichméBige Verteilung der Arbeit und ermdglicht es den Teammitgliedern, sich geméaf ihren
Interessen und Stérken einzubringen. In den untersuchten Fallbeispielen erfolgt die Selbstzuwei-
sung von Aufgaben liber verschiedene Mechanismen, die sicherstellen, dass der Arbeitsfluss nicht
gestort wird und alle wichtigen Aufgaben bearbeitet werden.

Im Fallbeispiel 1 wird die Aufgabenwahl weitgehend durch das Team selbst gesteuert. Teammit-
glieder entnehmen ihre Aufgaben aus einer Kanban-Liste oder einem Aufgaben-Board, wobei sie
sich an ihrer aktuellen Verfiigbarkeit oder ihrem Fachwissen orientieren. Die Zuteilung erfolgt
oft informell oder wird in Meetings gemeinsam abgestimmt, um sicherzustellen, dass sich die

Arbeitslast gleichméBig verteilt.

Im Fallbeispiel 2 gibt es eine priorisierte Kanban-Liste, aus der sich Teammitglieder Aufgaben
nehmen. Die Auswahl erfolgt individuell, wobei Defects und besonders kritische Anforderungen
priorisiert und teilweise vom Product Owner oder Teamleiter gesteuert werden. Gleichzeitig wird
darauf geachtet, dass sich Entwickler nicht nur auf ein Spezialgebiet konzentrieren, sondern auch

unterschiedliche Aufgaben tibernehmen, um Wissensinseln zu vermeiden.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 104

,,Als selbstorganisiertes Team haben wir ein Kanban-Board und jeder, der Arbeit
braucht, der nimmt sich was von diesem Board.“ — T8, Technischer Architekt und

Softwareentwickler

Im Fallbeispiel 3 basiert die Selbstzuweisung der Aufgaben ebenfalls auf einer sichtbaren Aufga-
benliste oder einem Board, wobei es keine festen Regeln gibt, wie diese {ibernommen werden.
Manche Aufgaben werden in Meetings demokratisch verteilt, wihrend sich Teammitglieder in
anderen Féllen selbststindig Aufgaben zuweisen, die ihrer Expertise entsprechen oder gerade von
niemand anderem bearbeitet werden. Besonders bei teamiibergreifenden oder komplexen Themen
stimmen sich die Beteiligten vorher ab, um sicherzustellen, dass alle relevanten Aspekte beriick-

sichtigt werden.

., Das Team nimmt sich dann eben beim Planning aus dem Backlog die Tickets, sor-

tiert nach Prioritdt und setzt diese dann um.“ — T11, Teamleiter

Unabhingig von den individuellen Auspriagungen zeigt sich in allen drei Fallbeispielen ein ge-

meinsames Grundprinzip:

e Aufgaben sind fiir alle Teammitglieder sichtbar, entweder in einem Kanban-Board, einer To-
do-Liste oder einem digitalen Tool wie Jira.

e Die Teammitglieder wahlen Aufgaben eigenstindig aus diesem Pool aus, wobei Fachwissen,
Verfiigbarkeit und Dringlichkeit eine Rolle spielen.

e Es gibt Mechanismen zur Abstimmung innerhalb der Teams, um sicherzustellen, dass keine

Aufgaben iibersehen werden und die Verteilung ausgeglichen bleibt.

Die selbstbestimmte Aufgabenwahl stellt sich in den untersuchten Fallbeispielen als bewéhrte
Praxis dar, bei der Teammitglieder Aufgaben aus einem sichtbaren, priorisierten Aufgabenpool
eigenstéindig auswiéhlen. Diese Vorgehensweise fordert die Eigenverantwortung und erlaubt eine
flexible Anpassung an individuelle Stérken und Verfiigbarkeiten. Voraussetzung ist eine transpa-
rente Aufgabeniibersicht — etwa in Form von Kanban-Boards — ergénzt durch regelméBige Team-
absprachen, um eine gleichméafige Verteilung sicherzustellen. Die Aufgaben werden mit Avata-
ren oder Kiirzeln gekennzeichnet, dadurch wird gekennzeichnet wer die Verantwortung fiir die
Umsetzung iibernommen hat. Im Unterschied zur koordinierten Aufgabenvergabe bei kritischen
oder sicherheitsrelevanten Themen (siehe Punkt 6.1.9.1), bei der eine verantwortliche Person eine
Erstzuweisung vornimmt, basiert diese Praktik auf freiwilliger Ubernahme. Auch hier kénnen

Abstimmungen erfolgen, jedoch steht die eigenverantwortliche Wahl im Vordergrund.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 105

6.1.10 Taskinderungen

Die Codes ,,Validierung und Einplanung nach Dringlichkeit” und ,,Direkt, wenn nicht zu kritisch

(aufgrund von Biirokratie)* werden zu folgenden Best Practices ausformuliert:

6.1.10.1 Strukturierte Validierung und Priorisierung von Aufgabeninderungen

Fachliche und technische Anderungen sind fester Bestandteil der Entwicklungsarbeit und miissen
effizient validiert, priorisiert und eingeplant werden. In allen drei Fallbeispielen wird bei jeder
Anderung gepriift, ob sie noch im aktuellen Entwicklungszyklus beriicksichtigt werden kann oder
ob eine spitere Umsetzung sinnvoller ist. Kritische Anforderungen werden bevorzugt behandelt,
wihrend weniger dringliche Anderungen als Change Requests fiir spitere Releases dokumentiert

werden.

Fachliche Anderungen werden in der Regel durch Product Owner oder Requirement Engineers
angestoflen. Im Fallbeispiel 1 tibernimmt der Teamleiter die Bewertung und entscheidet gemein-
sam mit dem Product Owner, ob eine Anderung direkt umgesetzt werden kann oder auf einen
spateren Zeitpunkt verschoben wird. Im Fallbeispiel 2 erfolgt die Priorisierung durch den Product
Owner in Riicksprache mit dem Team. Der Requirement Engineer analysiert die Anforderungen
und speist sie in das Backlog ein. Die Einplanung erfolgt abhéngig von der Dringlichkeit und vom
vorhandenen Kapazitatsrahmen. Im Fallbeispiel 3 ist aufgrund der gesetzlichen Vorgaben beson-
ders wichtig, ob Anderungen noch innerhalb des vorgesehenen Release-Zyklus méglich sind. Bei
kurzfristigen Anforderungen wird gepriift, ob eine Umsetzung rechtzeitig erfolgen kann, oder ob

gemeinsam mit den Stakeholdern eine Nachlieferung vereinbart werden muss.

Technische Anderungen gehen hiufig direkt von den Entwicklern aus, etwa bei Refactorings,
Bugfixes oder Performance-Optimierungen. Im Fallbeispiel 1 werden diese zundchst im Team
besprochen und bei Bedarf mit dem Teamleiter oder einem Architekturverantwortlichen abge-
stimmt. Bei umfangreicheren Anderungen wird zusitzlich das Software-Entscheidungsgremium
(SEG) einbezogen. Im Fallbeispiel 2 liegt die Verantwortung fiir technische Bewertungen beim
technischen Architekten. Anderungen, die Auswirkungen auf mehrere Komponenten haben, wer-
den in Architektur-Meetings besprochen und abgestimmt. Im Fallbeispiel 3 erfolgt die technische
Bewertung teamintern, wobei groBere Anderungen mit der Projektleitung koordiniert und ent-

sprechend der Release-Planung priorisiert werden.

., Wenn es jetzt natiirlich auch andere Teams betrifft, muss man dort natiirlich auch

ein bisschen anfragen, und wenn es noch gréfSer ist dann wird es bei dem technischen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 106

Architekten einmal Anklang finden [...] Fachlich - wird das meist iiber die Require-
ment-Engineers gespielt. Dass die dann eine Entscheidung treffen konnen oder nicht
- aber wenn es da auch noch einmal nach oben gehen muss dann liegt es am Product

Owner ob das eine giiltige Entscheidung ist oder nicht.** — T10, Tester

,, Wenn noch keine Entwicklung angefangen wurde, dann wird es halt eben adaptiert
und neu geschdtzt. [...] Dann macht man einfach eine neue Story und eine neue An-
forderung und man arbeitet additiv damit. “ — T9, Teamleiter und Requirements En-

gineer

In allen drei Fallbeispielen hat sich eine strukturierte Priifung von Anderungsanforderungen etab-
liert, die fachliche und technische Aspekte gleichermalien beriicksichtigt. Die gemeinsame Best

Practice besteht darin, jede Anderung anhand folgender Kriterien zu bewerten und einzuplanen:

e Dringlichkeit: Muss die Anderung sofort umgesetzt werden (z. B. aufgrund gesetzlicher Vor-
gaben oder kritischer Fehler)?

e Machbarkeit: Ist die Umsetzung im aktuellen Entwicklungszyklus realistisch und technisch
moglich?

e Abstimmung: Ist eine Riicksprache mit dem Product Owner, dem Architekten oder der Pro-
jektleitung erforderlich?

e Verantwortung: Wer im Team verfiigt iber das notige Wissen zur Umsetzung?

e Einplanung oder Verschiebung: Kann die Anderung direkt eingeplant werden, oder muss

sie als Change Request dokumentiert und spiter beriicksichtigt werden?

6.1.10.2 Schnelle Umsetzung unkritischer Anderungen zur Vermeidung biirokrati-

scher Hiirden

Nicht jede Anderung muss aufwendig validiert oder umfassend abgestimmt werden. In allen drei
Fallbeispielen zeigt sich, dass kleinere Anderungen — wie einfache Bugfixes, UI-Korrekturen oder
nicht-kritische Codeanpassungen — direkt durch die Entwickler umgesetzt werden kdnnen, sofern

sie keine weitreichenden Auswirkungen auf andere Komponenten oder Teams haben.

Im Fallbeispiel 1 diirfen solche Anderungen ohne formale Freigabe umgesetzt werden, solange
sie klar dokumentiert und technisch isoliert sind. Bei Unsicherheiten erfolgt eine kurze Abstim-
mung mit dem Teamleiter. Im Fallbeispiel 2 entnehmen Entwickler Aufgaben aus einem priori-
sierten Backlog oder Kanban-Board. Kleinere Anderungen werden eigenverantwortlich bearbei-

tet, wihrend Anderungen mit potenziellen Seiteneffekten mit dem technischen Architekten oder

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 107

anderen Teams abgestimmt werden. Im Fallbeispiel 3 besteht eine definierte Grenze: Anderun-
gen, die keine Auswirkungen auf Release-Termine oder regulatorische Vorgaben haben, konnen
direkt umgesetzt werden, wihrend grofere Anpassungen iiber die Projektleitung koordiniert wer-

den.

Ja, es kommt natiirlich auf den Umfang an, wie grof3 die Anderung ist. Wenn es
eine Kleinigkeit ist, dann macht man es einfach... " — T8, Technischer Architekt und

Softwareentwickler

In der Praxis erfolgt die Umsetzung durch jene Person, die entweder die Anderung vorgeschlagen
hat oder sich fachlich am besten mit dem betroffenen Bereich auskennt. Auch kleinere Anderun-
gen werden tiber Tools wie Jira oder GitLab dokumentiert, um Nachvollziehbarkeit zu gewéhr-
leisten und sicherzustellen, dass andere Teammitglieder {iber den aktuellen Stand informiert blei-
ben.

Die gemeinsame Best Practice besteht darin, unkritische Anderungen gezielt und effizient umzu-
setzen, um die Eigenverantwortung im Team zu fordern und den Arbeitsfluss nicht zu verlangsa-

men. Vor der Umsetzung sollten folgende Punkte gepriift werden:

e Komplexitiit: Handelt es sich um eine isolierte, klar iiberschaubare Anderung ohne tiefere
Abhéngigkeiten?

e Auswirkungen: Gibt es technische oder organisatorische Seiteneffekte auf andere Kompo-
nenten oder Teams?

e Abstimmung: Reicht eine eigenverantwortliche Umsetzung, oder ist eine kurze Riicksprache
mit Teamleitung oder Architekturverantwortlichen sinnvoll?

e Dokumentation: Ist sichergestellt, dass die Anderung im Ticket- oder Dokumentationssys-
tem erfasst wird?

e Zustindigkeit: Ubernimmt die Anderung die fachlich passendste Person im Team?

6.1.11 Team Events & Belohnungen

Der Code ,,Allgemeine Teamevents wird zu folgendem Best Practice ausformuliert:

6.1.11.1 Forderung des Teamzusammenhalts durch Teamevents

RegelmiBige gemeinsame Aktivitaten aullerhalb des Arbeitskontexts tragen wesentlich zum so-

zialen Zusammenhalt in agilen Teams bei. Teamevents wie gemeinsames Essen, Spieleabende,

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 108

sportliche Ausfliige oder saisonale Feiern schaffen eine informelle Umgebung, in der sich Team-
mitglieder personlich ndherkommen und Beziehungen iiber die fachliche Zusammenarbeit hinaus

aufbauen konnen.

In allen drei Fallbeispielen werden solche Aktivititen als positiver Beitrag zur Teamkultur be-
schrieben. Im Fallbeispiel 1 werden Teamevents organisiert, um Austausch und Zusammenbhalt
zu stirken — etwa gemeinsame Abendessen oder Freizeitaktivititen nach Projektphasen. Im Fall-
beispiel 2 entstehen viele Aktivitdten aus dem Team heraus, darunter gemeinsame Mittagessen
oder informelle Treffen, die den Zusammenhalt im Alltag fordern. Auch im Fallbeispiel 3 wird
beschrieben, dass Teamevents gezielt eingesetzt werden, um die Motivation zu stirken und den
respektvollen Umgang im Team zu fordern. Die Projektleitung unterstiitzt diese Initiativen und

schafft bewusst Raum fiir informellen Austausch.

Solche Veranstaltungen erleichtern besonders neuen Teammitgliedern die Integration und helfen,
Barrieren abzubauen. In einem ungezwungenen Rahmen fillt es leichter, Vertrauen aufzubauen,
sich offen auszutauschen und gemeinsame Werte zu entwickeln — Aspekte, die sich positiv auf

die spitere Zusammenarbeit im Projekt auswirken.

Teamevents konnen dabei nicht nur auf einzelne Entwicklungsteams begrenzt sein, sondern auch
teamiibergreifend organisiert werden — etwa fiir mehrere autonome Teams innerhalb eines grofe-
ren Projekts. Dies stirkt das Versténdnis iiber Teamgrenzen hinweg und unterstiitzt den iibergrei-
fenden Zusammenbhalt in der Organisation. Wichtig ist dabei, dass die Kosten solcher Veranstal-
tungen in der Regel vom Arbeitgeber getragen werden. Eine klare Kostenlibernahme zeigt Wert-

schitzung, fordert die Beteiligung und vermeidet soziale Hiirden fiir die Teilnahme.

In der Praxis haben sich folgende Ansétze bewéhrt:

e Regelmifigkeit: Teamevents sollten fest in der Teamkultur verankert sein und {iber das Jahr
verteilt stattfinden.

e Vielfalt: Unterschiedliche Formate — von kleinen spontanen Treffen bis hin zu groBeren Aus-
fliigen — beriicksichtigen verschiedene Interessen.

e Freiwilligkeit: Die Teilnahme erfolgt ohne Erwartungsdruck, um eine lockere und authenti-
sche Atmosphére zu gewahrleisten.

e Unterstiitzung durch das Management: Eine positive Haltung der Projektleitung und die

Ubernahme der Kosten fordern Eigeninitiative und Beteiligung der Teams.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 109

6.1.12 Komplexe Themen

Die Codes ,,4-Augen-Prinzip & Reviews* und ,,Teamabsprache und Validierung® werden zu fol-

genden Best Practices ausformuliert:

6.1.12.1 Pair-Programming, 4-Augen-Prinzip und Reviews

Die Best Practice ,,Pair-Programming, 4-Augen-Prinzip und Reviews* wird bereits im Punkt

6.1.3.2 beschrieben und deckt auch einen Teil der Kategorie ,,Komplexe Themen* ab.

6.1.12.2 Strukturierte Teamabstimmung und Validierung bei komplexen Aufgaben

Bei komplexen Aufgaben greifen die Teams in den Fallbeispielen auf gezielte Abstimmungen
zuriick. Ziel ist es, fachliche und technische Fragen friihzeitig zu kléren, Risiken zu minimieren
und tragfahige Losungen zu entwickeln. In allen drei Fallbeispielen zeigt sich ein gemeinsames

Vorgehen, auch wenn es in der Auspriagung unterschiedlich ist.

Im Fallbeispiel 1 landen komplexere Themen meist zuerst beim Teamleiter oder einer erfahrenen
Person im Team. Es erfolgt eine erste Einschitzung, ob die Aufgabe intern geklart werden kann
oder ob weitere Abstimmungen nétig sind. Bei Bedarf werden eigene Runden einberufen, in de-
nen mehrere Personen ihre Perspektiven einbringen. Dabei wird Wert daraufgelegt, die Umset-

zung nicht vorschnell zu starten, sondern vorab relevante Fragen gemeinsam zu klaren.

Im Fallbeispiel 2 zeigt sich ein dhnlicher Ablauf. Themen mit groBerer Tragweite werden oft
zundchst in kleiner Runde vorbereitet — etwa in Fokusgruppen oder technischen Abstimmungen
— bevor sie im gesamten Team besprochen und entschieden werden. Besonders bei teamiibergrei-
fenden oder architekturrelevanten Themen werden technische Ansprechpartner und Architekten

frithzeitig eingebunden.

Im Fallbeispiel 3 ist dieses Vorgehen besonders strukturiert. Komplexe Themen werden vorab
von erfahrenen Entwicklern vorbereitet und in {ibersichtlicher Form aufbereitet. Das kann Skiz-
zen, erste Losungsentwiirfe oder eine strukturierte Analyse beinhalten. Anschlieend wird das
Thema dem Team vorgestellt und gemeinsam diskutiert. Wenn intern nicht genug Know-how
vorhanden ist, wird gezielt externe Expertise eingebunden. Der Umgang mit komplexen Themen
wird dabei als bewusst gemeinsamer Prozess verstanden — man bringt die richtigen Leute zusam-

men, priift verschiedene Optionen und trifft dann die bestmdgliche Entscheidung.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 110

Insgesamt zeigt sich, dass solche Themen nicht isoliert bearbeitet werden. Stattdessen wird im
Vorfeld geklart, wer eingebunden werden muss, wie die Entscheidung vorbereitet wird und wer

die Umsetzung iibernimmt. In der Praxis haben sich folgende Punkte bewéhrt:

e Komplexe Themen werden gezielt vorbereitet, meist durch erfahrene Personen oder kleinere
Gruppen.

e Fachliche und technische Fragen werden im Team strukturiert besprochen.

e Bei Bedarf werden andere Rollen wie Architekten, Product Owner oder externe Experten
eingebunden.

e Die Umsetzung iibernimmt die Person, die fachlich am besten zum Thema passt.

e Entscheidungen werden gemeinsam getroffen und nachvollziehbar dokumentiert.

6.1.13 Aufwandsschitzung

Die Codes ,,Schitzung tiber mehrere Iterationen®, ,,Durch Teammitglieder®, ,,Aufteilung in Sub-
tasks* und ,,Projektspezifische Einheitenschéitzung* werden zu folgenden Best Practices ausfor-

muliert:

6.1.13.1 Iterative Verfeinerung der Schiitzungen durch das gesamte Team

In allen drei Fallbeispielen werden Aufwénde nicht einmalig geschitzt, sondern {iber den Projekt-
verlauf hinweg iterativ verfeinert. Ziel ist es, durch gewonnene Erfahrungswerte die Planungs-

genauigkeit schrittweise zu verbessern und realistischere Prognosen zu ermoglichen.

Im Fallbeispiel 1 erfolgt die Aufwandsschédtzung pragmatisch und basiert meist auf Schétzungen
in Personentagen. Die Einschitzungen werden gemeinsam im Team vorgenommen — in der Regel
von den Teammitgliedern selbst, wobei der Teamleiter die Verantwortung fiir die Nachvollzieh-
barkeit und Korrektheit {ibernimmt. Bei spezifischen Aufgaben kann auch in kleineren Gruppen

geschétzt werden.

Im Fallbeispiel 2 finden Estimation-Meetings statt, in denen technische Experten wie Require-
ments Engineers oder Architekten gemeinsam mit den Entwicklern Aufwinde abschitzen. Je
nach Thema wird der Prozess durch kleinere Fokusgruppen unterstiitzt — etwa fiir bestimmte
Technologien oder Komponenten. Die Schiatzwerte basieren auf Erfahrungswerten und werden

im Projektverlauf bei Bedarf iberarbeitet, um die Genauigkeit zu erhdhen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 111

Im Fallbeispiel 3 kommt Planning Poker zum Einsatz. Die Teammitglieder geben unabhingig
voneinander ihre Einschidtzung in Story Points ab. Bei grofleren Abweichungen wird im Team
diskutiert, bis ein Konsens gefunden ist. Durch diesen Austausch, aber auch durch den Vergleich
mit abgeschlossenen Stories, verbessert sich die Genauigkeit im Laufe der Zeit. Zusitzlich ergibt
sich daraus ein klareres Bild zur Team-Velocity — also der Anzahl an Story Points, die pro Itera-

tion realistisch umgesetzt werden kdnnen.

,» ... die Teams und die Teamleader diese Aufwandsschdtzungen durchfiihren und
auch mit den einzelnen Entwicklern genauer abstimmen, wie viel Aufwand das be-
deutet oder was eigentlich zu tun ist. [...] grundsdtzlich wird das schon - von also
aus Entwicklungssicht von den zustindigen Entwicklern oder deren zustindigen
Lead gemacht. [...] sodass in Summe dann halt eine gemeinsame Schdtzung raus-

kommt. ©“ — T4, Softwareentwickler und Tester

,,Die Estimations machen wir im Team. [...] Wir haben unsere Storys im Backlog
und machen einfach Planning Poker. [...] Wir schitzen die Komplexitdt.“ — T11,

Teamleiter

Die gemeinsame Best Practice lésst sich wie folgt zusammenfassen:

e Aufwinde werden gemeinsam im Team geschétzt — je nach Organisationsvorgabe in Stunden,
oder Story Points.

e Die Schitzungen basieren auf Erfahrungswerten und werden regelméfig nach Iterationen
oder neuen Erkenntnissen angepasst.

e Bei komplexen Themen iibernehmen kleinere Fokusgruppen mit spezifischem Fachwissen
die Einschétzung.

e Methoden wie Planning Poker fordern Diskussion, Perspektivenabgleich und gemeinsame
Lernprozesse.

e Die iterative Verfeinerung der Werte erhoht die Planungsgenauigkeit im Projektverlauf.

6.1.13.2 Aufteilung in Subtasks zur besseren Planung

Die strukturierte Aufteilung groBBerer Aufgaben in kleinere Einheiten ist ein bewdhrter Bestandteil
der Aufwandsschitzung und Planung. In allen drei Fallbeispielen wird diese Vorgehensweise an-
gewendet, um Schitzungen zu erleichtern, die Umsetzung klarer zu machen und den Fortschritt

besser nachverfolgen zu kénnen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 112

Im Fallbeispiel 1 werden groBere Aufgaben in Teilaufgaben zerlegt, bevor sie geschétzt und ein-
geplant werden. Die Aufteilung erfolgt mit dem Ziel, besser planen und kontrollieren zu kdnnen,
ob der Umfang realistisch ist. Diese Vorgehensweise wird im Team durchgefiihrt und hilft dabei,

eine bessere Einschétzung fiir einzelne Entwicklungsschritte zu erhalten.

Im Fallbeispiel 2 werden Anforderungen vom Requirements Engineering Team so vorbereitet,
dass sie in kleinere Bestandteile aufgeteilt und dann geschitzt werden konnen. Die Zerlegung
erfolgt vor der eigentlichen Aufwandsschitzung und unterstiitzt die Diskussion und Abgrenzung
der Themen im Team. Dabei wird betont, dass eine gute Vorbereitung notwendig ist, um eine

sinnvolle Einschiatzung durch die Teammitglieder zu ermdglichen.

Im Fallbeispiel 3 werden groflere Stories regelmiafBig in kleinere Aufgaben zerlegt. Diese Auftei-
lung erfolgt entweder direkt durch das Team oder wird durch das Requirements Engineering vor-
bereitet. Die aufgeteilten Bestandteile werden dann im Estimation-Meeting besprochen und ge-
schitzt. Es wird bewusst darauf geachtet, dass Anforderungen erst dann geschétzt werden, wenn

sie ausreichend verfeinert und verstandlich sind.

Die gemeinsame Best Practice aus den Fallbeispielen ldsst sich wie folgt zusammenfassen:

e GroBere Aufgaben oder Stories werden vor der Schétzung in kleinere Bestandteile zerlegt.

e Die Vorbereitung wird durch Teammitglieder vorgenommen, erfolgt jedoch in enger Abstim-
mung mit dem Requirements Engineering.

e Die aufgeteilten Bestandteile werden im Team diskutiert und gemeinsam geschitzt.

Die Zerlegung hilft, Missverstindnisse zu vermeiden und die Aufgaben klarer zu strukturie-

ren.

Kategoriespe-
Nr. Kapitel Best Practice = Kategorie zifische Um- Kurzbeschreibung
setzung
1 6.1.1.1 Toolunter- Transpa- Nutzung digi- | Die Tickets werden in digitalen
stiitzter Work- | renz taler Kanban- Tools wie Jira oder GitLab auf
flow Boards (z. B. Boards verwaltet, um den Bear-

Jira, GitLab) beitungsstand iiber klar definierte
mit Status wie | Status transparent darzustellen.

,.In Bearbei- Der gesamte Workflow bleibt
tung™ oder nachvollziehbar und zuganglich.
,,Done".
2 6.1.2.2 Kommuni- | Kommentar- In Tools wie Jira oder GitLab
kation funktionen in konnen Teammitglieder Kom-
Jira/GitLab, mentare zu Tickets hinterlassen,
Verkniipfung um aktuelle Probleme, offene

mit Meetings. Fragen oder wichtige Abspra-

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 113
chen zu dokumentieren und di-
rekt im Kontext zu kommunizie-
ren.

3 6.1.4.2 Wissens- Regelmifige Confluence oder Wikis ermdgli-
verteilung | Dokumentation | chen das gezielte Nachlesen von
& Support | in Wikis (In- technischen Dokumentationen,

halte, Rollen, API-Beschreibungen oder An-

Standards, Ent- | sprechpersonen — hilfreich bei

scheidungen) Supportfillen oder zur Einarbei-
tung neuer Mitglieder.

4 6.1.8.2 Fort- Sprintfort- Fortschrittsanzeigen in Dash-
schritts- schritt tiber boards, Boards oder iiber Zeiter-
messung Dashboards fassung erlauben eine objektive

und Zeiterfas- | Statusbewertung des Arbeitsfort-

sung in Tools schritts innerhalb eines Sprints

wie Jira. oder Releases. So lassen sich
frithzeitig Abweichungen erken-
nen.

5 6.1.1.2 RegelmiBige Transpa- Dailies mit Tagliche, meist 15-miniitige Dai-
synchrone Ab- | renz kurzer Status- | lies ermdglichen den schnellen
stimmung im meldung, Ab- | Abgleich des Arbeitsstands, die
Team gleich von Erkennung von Blockern und die

Aufgabenund | gemeinsame Sicht auf den Pro-

Blockaden. jektstatus. Zudem ist ersichtlich,
welche Person welche Aufgabe
bearbeitet.

6 6.1.2.3 Kommuni- | Kurze tdgliche | Im Daily berichten Teammitglie-
kation Teammeetings | der in kurzen Runden iiber Fort-

fiir gegenseiti- | schritt und Probleme. So wird ge-

gen Abgleich. | genseitiges Verstindnis gefordert
und Informationsliicken werden
minimiert.

7 6.1.7.1 Meetings Tégliche Dail- | Dailies dienen als fixes, kurzes
ies, meist als Format zur Abstimmung des ak-
15-miniitige tuellen Stands im Team. Sie un-
Kurzmeetings, | terstiitzen Transparenz und regel-
zur Abstim- maifige Synchronisation bei lau-
mung des Ar- fender Arbeit.
beitsstands und
zur Identifika-
tion von Blo-
ckern direkt
am Kanban-
oder Sprint-

Board.

8 6.1.1.3 Wochentliche | Transpa- Wadchentliche Ermoglicht teamiibergreifende
Abstimmung renz Abstimmung Transparenz iiber Fortschritte,
zwischen mit Vertretern | Abhédngigkeiten und Probleme.
Teams mehrerer Teilnehmende Teams erhalten

Teams zu Ab- | ein gemeinsames Bild tiber of-
héngigkeiten, fene Themen und geplante Um-
Problemen und | setzungen.

Release-Pla-

nung. Doku-

mentation er-

folgt z. B. in

Confluence.

9 6.1.7.2 Meetings Koordination RegelmaiBige strukturierte Koor-
technischer dinationsrunden zwischen Teams

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 114
Schnittstellen, | zur Abstimmung technischer
Priorisierung Schnittstellen, Priorisierung von
von Tickets Aufgaben und Release-Manage-
und Beteili- ment. Entscheidungen und Zu-
gung von Ar- stindigkeiten werden dokumen-
chitektur-, tiert.

Test- und Pro-
jektverantwort-
lichen im
Weekly-For-
mat.

10 | 6.1.1.4 Standardisierte | Transpa- Nutzung struk- | Dokumentation von Entscheidun-
Protokollie- renz turierter Vorla- | gen, Reviews und Aufgabenstan-
rung und Do- gen und der dards (z. B. Definition of Done)
kumentation Definition of sichert Wissen im Team, erleich-

Done/Ready tert Einarbeitung und schafft
zur Nachvoll- | Verbindlichkeit fiir die Umset-
zichbarkeit. zung.

11 |6.1.2.1 Effiziente Ab- | Kommuni- | Verwendung Durch direkte Gesprache, Chat
stimmung kation von Face-to- oder Anrufe kann schnell und
durch direkte Face, Chat, Te- | flexibel auf Riickfragen oder
Kommunika- lefon und Probleme reagiert werden — ohne
tion Screen-Sha- den Umweg iiber formelle Doku-

ring. mentation.

12] 6.143 Wissens- Direkter Aus- Die Praxis fordert unmittelbaren

verteilung | tausch bei Wissenstransfer.
& Support | Riickfragen

oder Einarbei-

tung neuer

Kollegen.

13 | 6.1.3.1 RegelmiBige Reflexion | Sprint-Retro- Sprint-Retrospektiven zur Refle-
Reflexion und | & Lernpro- | spektiven zur xion von Arbeitsweisen sowie er-
Feedback- Zess Reflexion génzende technische Reviews zur
schleifen kontinuierlichen Verbesserung

der Codequalitét. Erkenntnisse
werden dokumentiert und flieen
in zukiinftige Iterationen ein.

14 |6.1.32 Pair-Program- | Reflexion | Review-For- RegelmifBige Code-Reviews for-
ming, 4-Au- & Lernpro- | mate wie das dern konstruktives Feedback, er-
gen-Prinzip Zess 4-Augen-Prin- | mdglichen eine kritische Refle-
und Reviews zip bieten xion der Codequalitit und stér-

strukturierte ken die gemeinsame Verantwor-
Moglichkeiten | tung im Team.
zur Reflexion
iiber die Quali-
tidt und Ange-
messenheit von
Ldsungen und
fordern den
kontinuierli-
chen Lernpro-
zess im Team.
15 |6.14.1 Wissens- Pair-Program- | Pair-Programming und struktu-
verteilung | ming und Re- rierte Reviews erleichtern die
& Support | views fordern Einarbeitung, fordern kontinuier-
den Wissens- lichen Wissenstransfer und ver-
transfer und hindern Wissensinseln im Team.
helfen neuen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 115
Teammitglie-
dern bei der
schnellen Ein-
arbeitung.
16 | 6.1.12.1 Komplexe | Komplexe Bei besonders anspruchsvollen

Themen Themen wer- Aufgaben werden durch gemein-
den gemeinsam | sames Debugging, fachliche Ab-
analysiert und | stimmungen oder Pair-Program-
gelost — etwa ming fundierte Losungen ge-
durch gemein- | meinsam erarbeitet.
sames Debug-
ging, struktu-
rierte Abstim-
mungen oder
Pair-Program-
ming, wodurch
tragfahige Lo-
sungen entste-
hen.

17 | 6.144 Mehrere The- | Wissens- Jedem Thema | Fiir jedes zentrale Thema sind
menverant- verteilung | werden min- bewusst mehrere Teammitglieder
wortliche zur | & Support | destens zwei verantwortlich, um Wissensin-
Wissensvertei- Personen zuge- | seln zu vermeiden und die Aus-
lung wiesen fallssicherheit sowie Flexibilitét

bei der Bearbeitung zu erhohen.

18 | 6.1.5.1 Weiterbildung | Fortbil- Zeitfenster fiir | Teammitglieder stoBen Fortbil-
durch Eigen- dung Weiterbildung | dung eigenstindig an. Unterstiit-
initiative und auf Eigeninitia- | zung erfolgt durch Teamleiter
Teamforde- tive. Teils mit z. B. iiber Lernzeit, Zertifikats-
rung Zertifikaten kosten oder individuelle Techno-

oder Lernauf- logieerprobung. Lernen erfolgt
gaben. projektintegriert und praxisnah.

19 | 6.1.5.2 Themenwech- | Fortbil- Entwickler Teammitglieder wechseln eigen-
sel zur indivi- | dung wechseln auf initiativ in neue Themenbereiche,
duellen Wei- Initiative in um Wissen zu verbreitern und
terentwicklung neue Fachbe- neue Fahigkeiten aufzubauen.

reiche, oft Wechsel erfolgen schrittweise
schrittweise und in Abstimmung mit dem
durch kleinere | Team.

Aufgaben.

20 | 6.1.53 Rollenwechsel | Fortbil- Ein schrittwei- | Der Wechsel in andere fachliche
zur Entwick- dung ser Rollen- Rollen — z. B. von Entwicklung
lung individu- wechsel, z. B. zu Test — ermdglicht flexible
eller Fahigkei- vom Entwick- | Teamaufstellung und individuelle
ten ler zum Tester | Weiterentwicklung. Die Uber-

oder Require- gabe erfolgt meist schrittweise.
ments Engi-
neer.

21 | 6.1.6.1 Dokumenta- Richtli- Globale Richt- | Verbindliche technische Vorga-
tion und Fest- | nien, Gren- | linien werden ben wie Architekturprinzipien
legung von zen, Nor- durch Archi- und Coding-Standards werden
Richtlinien men und tekten oder systemweit definiert und in Wi-
und Prozessen | Prinzipien | Gremien er- kis dokumentiert. Die Umsetzung

stellt und do- wird von technischen Architek-

kumentiert. ten und Teamleitern begleitet,
um Konsistenz iiber alle Teams
hinweg sicherzustellen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 116

22 | 6.1.6.2 Teamspezifi- Richtli- Zusitzliche Teams ergéinzen zentrale Richtli-
sche Erweite- | nien, Gren- | Teamrichtli- nien durch eigene Qualitétsstan-
rungen von zen, Nor- nien wie dards wie Checklisten oder Defi-
Qualitétsstan- | men und Checklisten, nition of Done. Tools wie So-
dards Prinzipien | Vorgaben zur narQube oder Checkstyle unter-

Testabdeckung | stiitzen die automatisierte Einhal-
oder Definition | tung.

of Done iiber

das Standardni-

veau hinaus.

23 | 6.1.73 Rollenspezifi- | Meetings Architekten, Rollenspezifische Teamleiter-
sche Teamlei- Tester, etc. tau- | Meetings ermdglichen fachliche,
ter-Meetings schen sich re- technische oder organisatorische
zur fachlichen gelmiBig in Abstimmungen tiber Teamgren-
Koordination Rollenrunden zen hinweg und unterstiitzen

aus. z. B. Architektur- oder Testent-
scheidungen.

24 | 6.1.8.1 RegelméBige | Fort- Wochentliche | Wochentliche Meetings der
Fortschrittsbe- | schritts- Statusmeetings | Teamleader mit der Projektlei-
sprechungen messung z.B. mit der tung zur strukturierten Bewer-

Projektleitung | tung des Projektfortschritts, um
Abweichungen frithzeitig zu er-
kennen und Mallnahmen zu koor-
dinieren.

25 16.1.9.1 Koordinierte Auswahl & | Teamleiter Bei kritischen Aufgaben erfolgt
Aufgabenver- | Zuteilung | weisen sicher- | eine Erstzuweisung durch Team-
teilung fiir kri- | von Tasks | heitskritische leitung oder Fachverantwortliche
tische und spe- oder komplexe | an die geeignetsten Personen,
zialisierte Aufgaben ge- wobei die grundsétzliche Selbst-
Aufgaben zielt zu. organisation erhalten bleibt.

26 | 6.1.9.2 Forderung von | Auswahl & | Aufgabenwahl | Teammitglieder wéhlen eigen-
Eigenverant- Zuteilung | aus Kanban- stindig Aufgaben aus einem pri-
wortung durch | von Tasks | Board nach In- | orisierten Aufgabenpool oder di-
selbstbe- teresse, Wissen | gitalen Board aus, wodurch Mo-
stimmte Auf- und Kapazitit. | tivation, Verantwortungsbe-
gabenwahl wusstsein und fachliche Passung

gestirkt werden.

27 | 6.1.10.1 Strukturierte Task-An- Abstimmung Kleine technische Anderungen
Validierung derungen mit PO oder wie Bugfixes, UI-Verbesserun-
und Priorisie- Architekt je gen oder Typos konnen direkt
rung von Auf- nach Dring- umgesetzt werden, sofern sie iso-
gabenédnderun- lichkeit und liert sind und keine Abstimmung
gen Aufwand. mit anderen Teams erfordern.

Dies beschleunigt den Workflow
und reduziert biirokratischen
Aufwand.

28 | 6.1.10.2 | Schnelle Um- | Task-An- | Kleine Ande- | Kleine technische Anderungen
setzung unkri- | derungen rungen direkt wie Bugfixes konnen direkt um-
tischer Ande- durch Entwick- | gesetzt werden, sofern sie isoliert
rungen zur ler, dokumen- | sind und keine Abstimmung mit
Vermeidung tiert im Ticket- | anderen Teams erfordern. Dies
biirokratischer Tool. beschleunigt den Workflow und
Hiirden reduziert biirokratischen Auf-

wand.

29 | 6.1.11.1 Forderung des | Team RegelmifBlige Gemeinsame Teamevents wie
Teamzusam- Events & Events (Mit- Ausfliige, Feiern oder Mittages-
menhalts Belohnun- | tagessen, sen stirken Vertrauen und Moti-
durch Teame- | gen Spieleabende), | vation. Die Events erleichtern
vents

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 117
teilweise team- | neue Kontakte, fordern Integra-
iibergreifend. tion und Teambindung.

30 | 6.1.12.2 Strukturierte Komplexe | Vorabkliarung Bei komplexen Aufgaben stim-
Teamabstim- Themen in kleinen men sich erfahrene Teammitglie-
mung und Va- Gruppen, oft der gezielt ab. Technische Ent-
lidierung bei mit Skizzen wiirfe werden vorbereitet und ge-
komplexen oder Voranaly- | meinsam diskutiert. Falls erfor-
Aufgaben sen. derlich, werden externe Experten

eingebunden.

31 |6.1.13.1 Iterative Ver- | Aufwands- | Planning Poker | Aufwénde werden im Team ge-
feinerung der | schitzung | oder Meetings | meinsam geschitzt — z. B. iiber
Schatzungen mit Team zur Planning Poker. Bei groeren
durch das ge- Aufwands- Abweichungen wird diskutiert,
samte Team schitzung und | bis ein Konsens entsteht. Die

Justierung pro | Schétzungen werden nach Iterati-
Sprint. onen iiberpriift und verfeinert.

32 | 6.1.132 Aufteilung in | Aufwands- | GroBe Tasks Komplexere Aufgaben werden in
Subtasks zur schitzung | werden vor kleinere, besser plan- und schétz-
besseren Pla- dem Sprint zer- | bare Einheiten aufgeteilt, um
nung legt und ein- Missverstdndnisse zu vermeiden

zeln geschitzt. | und eine detaillierte Umsetzungs-
vorbereitung zu ermdglichen.

Tabelle 24: Auflistung aller gefundenen Best Practices

6.2 Analyse skalierbarer Best Practices

In diesem Kapitel wird untersucht, welche der identifizierten Best Practices aus den drei Fallbei-
spielen Gemeinsamkeiten mit jenen von Hoda et al. aufweisen und somit skalierbar sind. Skalier-
bar im Sinne dieser Arbeit bedeutet, dass eine Praktik, die in kleinen, selbstorganisierten Teams
erfolgreich angewendet wird, auch in groBeren, komplexeren Projektkontexten mit mehreren
Teams, Rollen und Koordinierungsebenen nachweislich beobachtet und wirksam eingesetzt wer-
den kann. Die Analyse der Skalierbarkeit ermdglicht es, etablierte Prinzipien aus kleineren agilen
Teams gezielt auf gro3 angelegte Softwareprojekte zu tibertragen und liefert damit evidenzba-

sierte Handlungsempfehlungen fiir die Organisation komplexer Entwicklungsstrukturen.

Die Bewertung der Skalierbarkeit erfolgt auf Grundlage eines systematischen inhaltlichen Ver-
gleichs: Dabei werden konkrete Praktiken aus den Fallstudien (siehe Kapitel 6.1) mit den von
Hoda et al. beschriebenen Praktiken (siehe Kapitel 3.2) abgeglichen. Als Ubereinstimmung gilt
eine inhaltliche Entsprechung der Zielsetzung, des praktischen Vorgehens und des Kontexts der
Anwendung. Grundlage sind kodierte Interviewsegmente, aus denen in Kapitel 6.1 Best Practices
abgeleitet wurden. Eine Ubereinstimmung wird dann als Beleg fiir Skalierbarkeit gewertet, wenn
sich zeigt, dass dieselbe Praktik auch unter den komplexeren Bedingungen eines Softwaregrof3-

projekts mit vergleichbarem Zweck und Wirkung umgesetzt wird.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 118

Ziel ist die Beantwortung der Forschungsfrage RQ1b: ,,Welche Praktiken fiir autonome Teams
sind auch fiir groBBe Softwareprojekte skalierbar?* Insgesamt wurden die 13 Praktiken aus sieben
Kategorien von Hoda et al. analysiert. Neun dieser Praktiken zeigen inhaltliche Entsprechungen
zu Praktiken in den Fallbeispielen und werden in den Abschnitten 6.2.1 bis 6.2.9 beschrieben.
Kapitel 6.2.10 behandelt die Praktiken, bei denen keine Ubereinstimmung festgestellt werden
konnte. Eine vollstindige Ubersicht mit den Zuordnungen zu Kategorien und Skalierbarkeit fin-

det sich in Tabelle 25 am Ende dieses Kapitels.

6.2.1 Ubereinstimmendes Practice 1: Collective Estimation & Planning

Diese Praktik gehort zu der Kategorie ,,Collective Decision-Making™ (siehe Kapitel 3.2.1) von
Hoda et al. Diese Praktik beschreibt den Prozess, bei dem Teams Aufgaben gemeinsam schétzen
und Iterationen planen. Schidtzungen werden im Team durchgefiihrt, um ein gemeinsames Ver-
standnis der Aufgaben und ihrer Komplexitit zu erreichen. Ein Beispiel fiir ein solches Practice
ist die Methode Planning Poker, die sowohl in Hodas Forschung als auch in den Fallbeispielen
explizit erwdhnt wird. Planning Poker erlaubt es den Teammitgliedern, die Komplexitédt von Auf-
gaben zu bewerten, Diskrepanzen in den Einschitzungen aufzudecken und diese durch Diskussi-

onen aufzuldsen.

Ubereinstimmung mit: ,Iterative Verfeinerung der Schitzungen durch das gesamte Team*

(siehe Punkt 6.1.13.1).

Begriindung: Teambasierte Schétzungen sind in beiden Kontexten ein zentrales Element. Plan-
ning Poker wird dabei als Beispiel einer spezifischen Praktik hervorgehoben, welche sowohl
Transparenz als auch ein gemeinsames Verstindnis in der Bewertung von Aufgaben fordert.

Teams konnen durch diesen Ansatz realistische Schétzungen abgeben, um Aufgaben einzuplanen.

6.2.2 Ubereinstimmendes Practice 2: Daily Standup Meetings

Diese Praktik gehort zur Kategorie Self-Monitoring (siehe Kapitel 3.2.3) von Hoda et al. Daily
Standup Meetings bieten eine Plattform, um Fortschritte, Hindernisse und die Tagesplanung ab-
zustimmen. Diese Meetings finden tdglich statt und ermoglichen es, alle Teammitglieder auf den
gleichen Stand zu bringen. Jedes Teammitglied berichtet, was es am Vortag erreicht hat, was fiir

den aktuellen Tag geplant ist und ob es Hindernisse gibt.

Ubereinstimmung mit: ,,RegelmiBige synchrone Abstimmung im Team* (siche Punkt 6.1.1.2).

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 119

Begriindung: Daily Standups sind in beiden Kontexten ein essenzielles Werkzeug, um die Trans-
parenz und Synchronisation im Team zu gewéhrleisten. Durch ihre regelméBige und strukturierte
Durchfiihrung wird sichergestellt, dass alle Teammitglieder auf dem gleichen Stand sind und
Probleme friihzeitig identifiziert werden konnen. Diese Meetings fordern die interne Abstimmung
und dienen als Grundlage fiir weiterfiihrende Diskussionen, die gegebenenfalls in separaten Mee-

tings vertieft werden.

6.2.3 Ubereinstimmendes Practice 3: Information Radiators

Diese Praktik aus der Kategorie ,,Self-Monitoring* (siehe Kapitel 3.2.3) beschreibt die Visuali-
sierung des Projektfortschritts fiir alle sichtbaren Artefakte. Information Radiators — etwa Kan-
ban-Boards oder Storyboards — dienen nicht nur der Selbstiiberwachung des Teams, sondern auch
der teamweiten Synchronisation. In der Forschung von Hoda et al. wird beschrieben, wie Teams
Spalten wie ,,Not Assigned®, ,,Check-Out®, und ,,Done* verwenden, um den Fortschritt zu struk-
turieren. Diese Spalten zeigen auch, wer an welchen Aufgaben arbeitet, hdufig gekennzeichnet
durch Avatare oder Initialen. Burndown-Charts ergénzen die Visualisierung, indem sie den ver-

bleibenden Arbeitsaufwand auf Iterationsebene darstellen.

In den drei Fallbeispielen kommen dhnliche Tools wie z.B. Jira zum Einsatz, die Kanban-Boards
und Fortschrittscharts bieten. Diese helfen, Aufgaben zu verfolgen und Engpasse friithzeitig zu
erkennen. Die visuelle Darstellung unterstiitzt sowohl die Transparenz als auch die kontinuierli-

che Nachvollziehbarkeit innerhalb des Teams.
Ubereinstimmung mit: ,, Toolunterstiitzter Workflow* (siche Punkt 6.1.1.1).

Begriindung: Die Ubereinstimmung ergibt sich aus der gemeinsamen Zielsetzung, Transparenz
iiber den Fortschritt und die Verantwortlichkeiten im Team zu schaffen. Sowohl Hoda et al. als
auch die Fallbeispiele betonen die Bedeutung visueller Werkzeuge zur Unterstiitzung der Zusam-

menarbeit und der kontinuierlichen Fortschrittsiiberwachung.

6.2.4 Ubereinstimmendes Practice 4: Using Story Board

Diese Praktik gehort zur Kategorie ,,Self-Assignment™ (siche Kapitel 3.2.2) von Hoda et al. Sto-
ryboards, auch bekannt als Scrum-Boards, strukturieren die Aufgabenverteilung innerhalb eines
Teams visuell und fordern die Selbstzuweisung und Priorisierung. Sie enthalten User Stories und
deren technische Unteraufgaben, die das Team in einer Iteration umsetzen mdchte. Diese Aufga-

ben werden auf kleinen Zetteln oder Post-its dargestellt und typischerweise in drei Spalten —,,Not

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 120

Assigned®, ,,Check-Out“ und ,,Done* — organisiert. Die Spaltenstruktur unterstiitzt nicht nur die
Visualisierung des Bearbeitungsstandes, sondern erleichtert auch die teaminterne Koordination

von Aufgaben und Zusténdigkeiten.

In den Fallbeispielen wird eine dhnliche Nutzung von Storyboards beschrieben. Digitale Tools
wie z.B. Jira dienen als zentrale Plattformen, die neben der Visualisierung von Aufgaben auch
Funktionen zur Fortschrittsmessung bieten. Sie ermoglichen die automatische Verkniipfung von

Aufgabenstatus mit Verantwortlichkeiten und unterstiitzen so die Nachverfolgbarkeit.
Ubereinstimmung mit: ,, Toolunterstiitzter Workflow* (siche Punkt 6.1.1.1).

Begriindung: In beiden Kontexten wird betont, wie wichtig die Sichtbarkeit des Arbeitsfort-
schritts fiir die Teamkoordination ist. Storyboards und digitale Tools fordern Transparenz und

erleichtern die Nachverfolgung von Aufgaben.

6.2.5 Ubereinstimmendes Practice 5: Taking Task Ownership

Ebenfalls aus der Kategorie ,,Self-Assignment* (siche Kapitel 3.2.2) beschreibt diese Praktik, wie
Teammitglieder Aufgaben eigensténdig tibernehmen und so aktiv Verantwortung fiir deren Um-
setzung tragen. In der Forschung von Hoda et al. wird beschrieben, wie Teammitglieder Aufgaben
am Storyboard {ibernehmen, indem sie Post-its von ,,Not Assigned* nach ,,Check-Out* verschie-
ben und damit die Verantwortung fiir die Umsetzung signalisieren. Diese Selbstzuweisung wird
oft durch Initialen oder Avatare sichtbar gemacht. Dariiber hinaus zeigt Hoda, dass die Motivation
zur Aufgabeniibernahme nicht in der Einfachheit der Aufgabe liegt, sondern im angestrebten ge-
schiftlichen Nutzen (Engl. ,,Business Value®). Daraus ergibt sich haufig, dass Teammitglieder
Aufgaben auBlerhalb ihres gewohnten Fachgebiets iibernehmen — was gezielt zur Férderung von

Cross-Funktionalitit beitragt.

In den Fallbeispielen erfolgt die Selbstzuweisung ebenfalls durch das Team, wobei die Auswahl
auf Basis von Prioritit, Verfiigbarkeit und individuellem Interesse erfolgt. Dabei wird darauf ge-
achtet, dass sich Teammitglieder nicht ausschlieBlich auf ihr Spezialgebiet konzentrieren, sondern
gezielt auch fachfremde Aufgaben iibernehmen, um Wissensinseln zu vermeiden und Weiterent-
wicklung zu erméglichen. Die Aufgaben sind fiir alle sichtbar, meist tiber ein Kanban-Board oder
eine priorisierte Liste. Die Zuweisungen erfolgen iiber Avatare oder Initialen. Die Teams achten
bewusst auf eine sinnvolle Aufgabenverteilung, oft auch mit kollegialer Abstimmung, um Uber-

lastung zu vermeiden und Lernchancen zu schaffen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 121

Ubereinstimmung mit: , Férderung von Eigenverantwortung durch selbstbestimmte Aufgaben-
wahl“ (siche Punkt 6.1.9.2).

Begriindung: Die Teams iibernehmen bewusst Aufgaben mit hohem Nutzen fiir das Projekt —
auch auBlerhalb der eigenen Komfortzone. Damit wird nicht nur Eigenverantwortung gestarkt,
sondern auch die funktionale Breite innerhalb des Teams gefordert. Die Ubernahme von Aufga-
ben erfolgt nicht zufdllig oder automatisiert, sondern ist das Ergebnis eines aktiven Entschei-
dungsprozesses, der Eigenverantwortung, Projektprioritdten und personliche Weiterentwicklung
miteinander verbindet. Abbildung 19 zeigt wie Aufgaben {ibernommen und visualisiert werden:
Links eine Darstellung aus Hoda et al. (vgl. [24], S. 113), rechts ein Beispiel aus den untersuchten

Fallstudien.

VWIM-1 m

Projekt Setup
Vorbereitung

®mo

VWIM-2

3

Projekt Dokumentation

Vorbereitung

®mo

VWIM-3 O

Backlog Refinement

Viorhereituino

Abbildung 19: Vergleich Taking Task Ownership

6.2.6 Ubereinstimmendes Practice 6: Group Programming

Diese Praktik gehort zur Kategorie ,,Encouraging Cross-Functionality* (siehe Kapitel 3.2.5) von
Hoda et al. Group Programming fordert die Zusammenarbeit im Team, indem Entwickler ge-
meinsam an Aufgaben arbeiten. Diese Praxis ermdglicht nicht nur den Wissensaustausch, sondern
erleichtert auch die Einarbeitung neuer Teammitglieder. Teams nutzen dabei offene Arbeitsum-
gebungen, die eine direkte Kommunikation und gemeinsame Problemldsung fordern. Laut Hoda
et al. schaffen offene Arbeitsbereiche ohne Trennwénde oder separate Biiros eine Umgebung, in
der Tester und Entwickler effektiv zusammenarbeiten und gegenseitig von ihren Perspektiven

profitieren konnen. Diese direkte Kommunikation spart Zeit und stirkt den Teamzusammenhalt.

In den Fallbeispielen zeigt sich diese Praxis durch verschiedene Formen der engen Zusammenar-
beit: Bei komplexen Problemstellungen oder Unsicherheiten setzen sich Entwickler gezielt zu-
sammen, um Aufgaben gemeinsam zu bearbeiten (Pair-Programming). Gleichzeitig wird durch

das etablierte Vier-Augen-Prinzip sichergestellt, dass kein Code ohne Review durch eine zweite

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 122

Person in das System iibernommen wird. Diese gemeinsame Arbeit unterstiitzt sowohl die Qua-

litdtssicherung als auch den kontinuierlichen Wissensaustausch im Team.

Ubereinstimmung mit: , Pair-Programming, 4-Augen-Prinzip und Reviews“ (siche Punkt
6.1.3.2).

Begriindung: Beide Ansitze fordern den Wissensaustausch und die Zusammenarbeit. In den
Fallbeispielen wird Pair-Programming héufig genutzt, um neue Teammitglieder einzuarbeiten,
Wissen zwischen Teammitglieder auszutauschen oder komplexe Probleme zu 16sen. Auch Hoda
et al. beschreibt, dass Group Programming den Wissensaustausch und die Einarbeitung neuer

Mitglieder fordert.

6.2.7 Ubereinstimmendes Practice 7: Learning Spike

Diese Praktik gehort zur Kategorie ,,Self-Improvement™ (siche Kapitel 3.2.7) von Hoda et al. Ein
Learning Spike bietet Teams gezielt Zeit, um neue Technologien oder Methoden zu erlernen.
Diese Praxis wird besonders dann angewandt, wenn das Team vor neuen Herausforderungen
steht, die spezifisches Wissen erfordern. Wahrend der Learning Spike teilweise die Iterationsge-
schwindigkeit reduziert, ermoglicht er den Teammitgliedern, sich in neuen Technologien weiter-

zuentwickeln und langfristig effizienter zu arbeiten.

In den Fallbeispielen wird ebenfalls betont, wie wichtig es ist, Zeit fiir die Einfiihrung neuer Tech-
nologien und Verbesserungen bereitzustellen. Haufig entstehen diese Initiativen jedoch nicht
durch formale Planung, sondern werden eigenverantwortlich von Teammitgliedern angestof3en —

etwa um neue Tools zu evaluieren oder automatisierte Abldufe zu verbessern.

Ubereinstimmung mit: ,,Weiterbildung durch Eigeninitiative und Teamforderung® (siehe Punkt
6.1.5.1).

Begriindung: Learning Spikes bzw. die Zeit fiir Verbesserungen und Technologiewechsel helfen
autonomen Teams, Wissensliicken zu schlieBen und langfristig effizienter zu arbeiten. Die Mdg-
lichkeit, gezielt Zeit fiir neue Technologien und Weiterentwicklungen (zum Beispiel bei automa-
tisierten Abldufen im Bereich Testen oder DevOps) bereitzustellen, macht diese Praktik sowohl

in kleinen als auch in groBen Projekten skalierbar.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 123

6.2.8 Ubereinstimmendes Practice 8: Pair-in-Need

Diese Praktik gehort zur Kategorie ,,Self-Improvement (siche Kapitel 3.2.7) von Hoda et al. Pair-
in-Need beschreibt die Zusammenarbeit zweier Teammitglieder bei der Losung komplexer Auf-
gaben. Diese Praxis wird insbesondere bei herausfordernden oder designintensiven Themen ein-
gesetzt. Laut Hoda et al. wird Pair-in-Need auf Basis von Bedarf angewandt, beispielsweise bei
unvorhersehbaren oder komplexen Aufgaben. Diese Zusammenarbeit férdert den Wissensaus-
tausch und ermoglicht es weniger erfahrenen Teammitgliedern, durch Mentoring von erfahrene-
ren Kollegen zu lernen. Zusétzlich tragt diese Praxis dazu bei, Herausforderungen gemeinsam zu

meistern und gleichzeitig den Iterationszielen ndherzukommen.

In den Fallbeispielen zeigt sich ein dhnlicher Ansatz. Hier wird das 4-Augen-Prinzip genutzt, um
sicherzustellen, dass komplexe Themen sorgfiltig {iberpriift und bearbeitet werden. Pair-Pro-

gramming dient als Werkzeug, um Wissen zu teilen und die Qualitét der Ergebnisse zu sichern.

Ubereinstimmung mit: , Pair-Programming, 4-Augen-Prinzip und Reviews“ (siche Punkt
6.1.3.2).

Begriindung: Sowohl bei Hoda et al. als auch in den Fallbeispielen zeigt sich, dass bei besonders
schwierigen oder unklaren Aufgaben gezielte Zusammenarbeit im Team besonders hilfreich ist.
Die Praktik ,,Pair-in-Need* beschreibt eine situationsabhédngige Unterstiitzung — zum Beispiel,
wenn ein Entwickler bei einer Aufgabe nicht weiterkommt und sich gezielt mit einem Kollegen
oder einer Kollegin abspricht, um gemeinsam eine Losung zu erarbeiten. Dadurch kann Wissen
direkt weitergegeben, Probleme schneller gelost und die Qualitit verbessert werden. In den Fall-
beispielen zeigen sich dhnliche Muster, etwa durch Pair-Programming oder das 4-Augen-Prinzip.
Diese Art der Zusammenarbeit ist flexibel einsetzbar und funktioniert sowohl in kleinen als auch

in groBen Projekten.

6.2.9 Ubereinstimmendes Practice 9: Retrospectives

Diese Praktik gehort zur Kategorie ,,Self-Evaluation® (siche Kapitel 3.2.6) von Hoda et al. Ret-
rospektiven finden am Ende jeder Iteration statt und dienen dazu, gemeinsam zu reflektieren, was
gut lief, was verbessert werden kann, und konkrete MaBnahmen fiir zukiinftige Iterationen abzu-
leiten. Hoda beschreibt, dass Retrospektiven ein essenzielles Werkzeug fiir die Selbstbewertung
und die kontinuierliche Verbesserung der Teamarbeit sind. Diese Praxis fordert eine offene Kom-
munikation {iber Starken und Schwichen des Teams und ermoglicht eine gezielte Weiterentwick-

lung.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 124

In den Fallbeispielen werden Retrospektiven unterschiedlich angewandt. Im Fallbeispiel 1 finden
Retrospektiven zwar regelmiBig statt, es fehlt jedoch manchmal an der konsequenten Umsetzung
der MaBlnahmen. Im Fallbeispiel 2 und 3 hingegen werden Retrospektiven als effektives Instru-

ment genutzt, um gezielte Maflnahmen fiir den néchsten Sprint abzuleiten.
Ubereinstimmung mit: ,,RegelmiBige Reflexion und Feedbackschleifen* (siehe Punkt 6.1.3.1).

Begriindung: Sowohl Hoda et al. als auch die Fallbeispiele betonen die Bedeutung von Retro-
spektiven fiir die kontinuierliche Verbesserung und die Anpassungsfahigkeit von Teams. Retro-
spektiven ermoglichen es, Probleme zu identifizieren und Verbesserungen einzuplanen. Die Pra-
xis ist skalierbar und wird sowohl in kleinen autonomen Teams als auch in grofen Projekten
erfolgreich angewandt. Durch die regelméBige Reflexion kdnnen Teams langfristig ihre Arbeits-

weise optimieren und ihre Ziele effizienter erreichen.

6.2.10 Nicht skalierbare Best Practices

Die folgenden Praktiken von Hoda et al. finden keine Zuordnungen in den Best Practices der
Fallbeispiele. Die folgenden Unterpunkte listen diese Praktiken mit einer Begriindung, warum

diese nicht skalierbar sind:

6.2.10.1 Multiple Perspectives

Diese Praktik aus der Kategorie ,,Need for Specialization® (siche Kapitel 3.2.4), hebt die Zusam-
menarbeit verschiedener Rollen innerhalb eines Teams hervor, um Perspektiven zu vereinen und
bessere Losungen zu entwickeln. Hodas Forschung zeigt, dass Selbstorganisation in Agile-Teams
dazu beitrigt, formale Rollengrenzen aufzuweichen. Entwickler helfen bei Bedarf Testern, Tester
lernen die Perspektiven von Entwicklern kennen, und alle Teammitglieder profitieren von einem
interdisziplindren Austausch. Die Zusammenarbeit fithrt zu einem Lernumfeld, welches sowohl

die Wissensverteilung als auch die Resilienz des Teams fordert.

In den Fallbeispielen steht jedoch die klare Rollenzuordnung im Vordergrund, wobei die Zusam-
menarbeit zwischen den Rollen hauptsichlich in spezifischen Kontexten wie Reviews oder Ab-
stimmungen stattfindet. In den Fallbeispielen haben einige Teammitglieder jedoch mehrfach Rol-
len inne, die spezifisch auf die jeweiligen Projektanforderungen zugeschnitten sind. Diese Mehr-

fachrollen unterscheiden sich jedoch von der Praxis, wie sie bei Hoda beschrieben wird.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 125

Grund fiir die fehlende Ubereinstimmung: Wihrend Hoda eine bewusste Aufweichung strikter
Rollentrennungen beschreibt, um durch aktive Zusammenarbeit von Entwicklern, Testern und
anderen Spezialisten bessere Losungen zu erzielen, ergibt sich in den Fallbeispielen ein anderes
Bild. Dort sind die Rollen in der Regel klar abgegrenzt und obwohl es natiirlich Abstimmungen
zwischen ihnen gibt, wurde keine systematische, gemeinsame Bearbeitung von Aufgaben iiber
Rollengrenzen hinweg beobachtet oder erwihnt. In manchen Fillen iibernehmen Personen zwar
mehrere Rollen — etwa als Entwickler und Architekt — doch diese Mehrfachrollen ersetzen nicht

den gezielten Perspektivenaustausch, wie er im Practice ,,Multiple Perspectives®™ vorgesehen ist.

6.2.10.2 Self-Committing to Team Goals

In der Kategorie ,,Collective Decision-Making* (siche Kapitel 3.2.1) aus Hodas Forschung wird
beschrieben, wie Teams sich selbst zu Iterationszielen verpflichten und diese durch gemeinsame
Absprachen festlegen. Kunden liefern Projektanforderungen in Form von User Stories, die das
Team analysiert, in Aufgaben unterteilt und basierend auf seiner Kapazitét plant. Die Teams ge-
nieBen dabei die Freiheit, den Entwicklungsumfang einer Iteration selbst zu definieren, und fiithlen
sich gleichzeitig verantwortlich, das festgelegte Ziel durch gemeinschaftliches Engagement zu

erreichen.

In den Fallbeispielen hingegen erfolgt die Aufgabenplanung tiberwiegend durch zentrale Rollen
oder Abstimmungen mit Stakeholdern, ohne dass eine teamweite Selbstverpflichtung deutlich er-

kennbar ist.

Grund fiir die fehlende Ubereinstimmung: In den Fallbeispielen beteiligen sich die Teams ak-
tiv an der Aufwandsschitzung und an der iterativen Planung einzelner Aufgaben. Die inhaltlichen
Ziele einer Iteration — also was konkret umgesetzt werden soll — werden jedoch {iberwiegend
durch zentrale Rollen oder in Abstimmung mit Stakeholdern vorgegeben. Damit fehlt die in Ho-
das Best Practice beschriebene zentrale Selbstverpflichtung auf ein selbst gesetztes Ziel. Zudem
wirken in SoftwaregroBprojekten zusétzliche Einschrinkungen auf die Zielautonomie: Schnitt-
stellen zu anderen Teams, gemeinsame Releasezyklen und koordinationsbedingte Abhidngigkei-
ten reduzieren die Freiheit, Iterationsziele vollstandig unabhingig zu definieren. Diese strukturel-
len Rahmenbedingungen erschweren ein kollektives Commitment, wie es in selbstorganisierten
Kleinteams moglich ist, und verhindern damit eine vollstdndige Entsprechung zum Practice ,,Self-

Committing to Team Goals“ im Sinne von Hoda.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 126

6.2.10.3 Collectively Deciding Team Norms & Principles

Diese Praktik aus der Kategorie ,,Collective Decision-Making* (siehe Punkt 3.2.1.2 in Kapitel
3.2.1), wird die gemeinsame Festlegung von Arbeitsnormen von Hoda beschrieben. Die Teams
einigen sich auf organisatorische Prinzipien wie Arbeitszeiten, Fehlertoleranzen und Entwick-
lungsrichtlinien, die die Zusammenarbeit und Zielerreichung fordern. Dieser Prozess wird als in-

tegraler Bestandteil der Teamkultur angesehen.

In den Fallbeispielen zeigt sich ein anderer Ansatz. Hier werden technische Standards und Richt-
linien teils durch das Team ergénzt, beispielsweise durch Checklisten oder Review-Prozesse. Je-
doch fehlt eine umfassende teamweite Festlegung auf organisatorische Normen, wie sie bei Hoda

beschrieben wird.

Grund fiir die fehlende Ubereinstimmung: In den Fallbeispielen werden technische Standards
und Richtlinien teils durch das Team ergédnzt, z. B. durch Checklisten oder Review-Prozesse.
Jedoch fehlt eine teamweite Festlegung auf organisatorische Normen, wie Arbeitszeiten oder De-
fekttoleranz, die Hoda beschreibt. Der Fokus liegt stiarker auf technischen Vorgaben durch Archi-

tekten oder Teamleiter.

6.2.10.4 Rotation

Die Best Practice Rotation aus der Kategorie ,,Encouraging Cross-Functionality (siche Kapitel
3.2.5) beschreibt den regelmiBigen Wechsel von Verantwortlichkeiten tiber Teamgrenzen hin-
weg, um die Wissensbasis zu erweitern und neue Féhigkeiten zu entwickeln. In der Forschung
von Hoda et al. wird Rotation als strategisches Mittel beschrieben, um Wissen durch direkte Kom-

munikation zu teilen.

In den Fallbeispielen gibt es gewisse Ahnlichkeiten, wie z. B. die Mdglichkeit von Themen- oder
Rollenwechseln (siehe Kapitel 6.1.5.2 und 6.1.5.3). Diese basieren jedoch auf individueller Initi-

ative und werden nicht als routineméafiges Practice innerhalb der Teams umgesetzt.

Grund fiir die fehlende Ubereinstimmung: Das von Hoda et al. beschriebene Konzept der Ro-
tation umfasst einen gezielten, strukturierten und regelméafBig praktizierten Wechsel von Aufgaben
und Verantwortlichkeiten iiber Teamgrenzen hinweg. In den Fallbeispielen hingegen liegt der
Schwerpunkt auf der teaminternen Zusammenarbeit. Rollen- oder Themenwechsel erfolgen dort

lediglich bei Bedarf — etwa, wenn personelle Engpésse entstehen oder individuelle Interessen be-

Ergebnisse 127

stehen. Solche Wechsel werden situativ angestoBBen, jedoch nicht als kontinuierliche oder strate-

gisch geplante MaBBnahme zur Wissensverbreitung etabliert. Eine Rotation im Sinne von Hoda

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

konnte daher nicht beobachtet werden.

Kapitel- | Best Practice Matched Best Practice Kapitel- Kommentar
nummer @ (Hoda et al.) nummer
(Hoda et
al.)
3.2.1.1 Collective Estimation & | Iterative Verfeinerung der 6.1.13.1
Planning Schétzungen durch das ge-
samte Team
32.1.2 Collectively Deciding Kein Match —
Team Norms & Princi- siche Kapitel
ples 6.2.10.3
32.13 Self-Committing to Kein Match —
Team Goals siche Kapitel
6.2.10.2
3.2.2.1 Using Story Board Toolunterstiitzter Workflow | 6.1.1.1
3222 Taking Task Ownership | Férderung von Eigenverant- | 6.1.9.2
wortung durch selbstbe-
stimmte Aufgabenwahl
3231 Daily Standup RegelmiBige synchrone Ab- | 6.1.1.2
Meetings stimmung im Team
3232 Information Radiators Toolunterstiitzter Workflow | 6.1.1.1
3241 Multiple Perspectives Kein Match —
siche Kapitel
6.2.10.1
3251 Group Programming Pair-Programming, 4-Au- 6.1.3.2
gen-Prinzip und Reviews
3252 Rotation Kein Match —
siche Kapitel
6.2.10.4
3.2.6.1 Retrospectives RegelmiBige Reflexion und | 6.1.3.1
Feedbackschleifen
32.7.1 Pair-in-Need Pair-Programming, 4-Au- 6.1.3.2
gen-Prinzip und Reviews
3272 Learning Spike Weiterbildung durch Eigen- | 6.1.5.1
initiative und Teamforde-
rung
Tabelle 25: Ubersicht skalierbarer Best Practices
6.3 Zusammenfassung der Themen als Kategorien

Die tibergreifende thematische Analyse der drei Fallstudien identifiziert als Ergebnis 13 Haupt-
themen (siehe Kapitel 5.2.1), die aus Tabelle 13 abgeleitet sind. Die Tabelle ist das Ergebnis einer
Uberschneidung aller Themen und Codes, welche in allen drei Fallbeispielen gemeinsam auftre-
ten. Die Themen werden in den folgenden Punkten beschrieben und als Kategorien iibernommen.

Eine Kategorie ist eine Sammlung mehrerer Praktiken, deren Kriterien fiir eine Zuordnung im

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 128

Punkt 6.4 beschrieben sind. Die in diesem Kapitel beschriebenen Kategorien fassen mehrere Prak-
tiken zusammen, die gemeinsam darauf abzielen, die jeweiligen thematischen Schwerpunkte ef-
fektiv zu unterstiitzen und zu verbessern. Jede einzelne Praxis innerhalb dieser Kategorien trigt
aktiv zur Erreichung der dargestellten Ziele bei und ermdglicht eine gezielte Optimierung der
Teamarbeit in SoftwaregroB3projekten. Dieses Kapitel liefert die Antwort auf die Forschungsfrage

RQ2: ,.In welche Kategorien konnen die identifizierten Praktiken unterteilt werden?*.

6.3.1 Transparenz

Transparenz ist eine grundlegende Voraussetzung fiir eine effektive Zusammenarbeit in autono-
men Teams. Durch Praktiken wie Kanban-Boards, Ticket-Systeme (z. B. Jira) und tégliche Ab-
stimmungen (Dailies) werden Informationen zu Aufgaben, Fortschritt und auftretenden Proble-
men kontinuierlich sichtbar gemacht. Dadurch erhalten alle Teammitglieder transparente Einsicht
in den aktuellen Stand der Arbeit, was Abstimmungen erleichtert, Entscheidungsprozesse be-

schleunigt und potenzielle Engpésse friihzeitig sichtbar macht.

6.3.2 Kommunikation

Eine klare und effektive Kommunikation ist notwendig fiir den Erfolg autonomer Teams. Sie
umfasst formelle als auch informelle Interaktionsformen, die sicherstellen, dass alle Teammit-
glieder auf dem gleichen Informationsstand sind. Dazu zdhlen direkte Gesprache, Meetings, Te-
lefonate, Chat-Tools und Dokumentationsplattformen. Wéhrend Meetings strukturierte Diskussi-
onen ermoglichen, fokussiert sich diese Kategorie auf spontane Abstimmungen, schnelle Riick-
fragen und informelle Austauschformate, die den reibungslosen Ablauf von Arbeitsprozessen un-

terstiitzen.

Abgrenzung zur Kategorie Meetings (6.3.7):

Meetings sind eine organisierte und geplante Form der Kommunikation, die regelmaflig zu fixen
Zeiten stattfindet oder bedarfsabhingig geplant wird. Die allgemeine Kommunikation hingegen
umfasst dynamische und oft ad-hoc stattfindende Abstimmungen, die fiir den laufenden Arbeits-
prozess essenziell sind. Wahrend Meetings eher der strategischen oder tiefergehenden Diskussion
dienen, zielt Kommunikation auf den kontinuierlichen und informellen Austausch im Tagesge-

schéft ab.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 129

6.3.3 Reflexion & Lernprozess

RegelmiBige Reflexionen, wie Retrospektiven oder Reviews, sind wichtige geplante Einheiten
fiir autonome Teams, um sich zu verbessern. Sie ermdglichen es positive als auch negative Er-

fahrungen zu analysieren und den zukiinftigen Workflow zu optimieren.

6.3.4 Wissensverteilung und Support

Autonome Teams profitieren stark von einer gleichméBigen Verteilung des Wissens. Maflnahmen
wie Pair-Programming, Code Reviews und Dokumentation von Entscheidungen und Umsetzun-
gen fordern die Vermeidung von personenbezogenem Wissen (,,Single Point of Failure®). Diese

Praktiken helfen auch, Risiken wie zum Beispiel den Ausfall einzelner Mitglieder zu minimieren.

6.3.5 Fortbildung

Die Moglichkeit zur Fortbildung und Entwicklung ist wichtig fiir Mitglieder autonomer Teams,
damit sich diese ihren Interessen widmen kdnnen. Zeitfenster fiir technologische Experimente,
der Erwerb von Zertifikaten und gezielte WeiterbildungsmaBnahmen fordern nicht nur die indi-

viduellen Kompetenzen, sondern stérken auch die Innovationsfahigkeit des gesamten Teams.

6.3.6 Richtlinien, Grenzen, Normen und Prinzipien

Autonome Teams folgen klar definierten Standards, die oft durch technische Architekten oder
Teamleiter vorgegeben werden. Diese Richtlinien gewéhrleisten Einheitlichkeit, Codequalitit
und eine bessere Zusammenarbeit. In Softwaregrofprojekten werden diese Richtlinien meist liber
alle Teams hinweg, projektweit von einem technischen Architekten vorgegeben. Tools wie zum
Beispiel Checkstyle oder SonarQube unterstiitzen die Einhaltung dieser Standards und machen
Vorgaben fiir alle transparent und nachvollziehbar. Trotzdem ist es wichtig, dass das autonome

Team selbst eine Teamkultur bilden und Standards fiir sich definieren und verfeinern kann.

6.3.7 Meetings

Meetings wie Dailies, Weeklies oder spezifische Teamleiter-Meetings sind unerlésslich fiir den
Informationsaustausch und die Koordination — sowohl innerhalb autonomer Teams als auch team-
iibergreifend. Sie fordern Transparenz, ermdglichen eine kontinuierliche Abstimmung und helfen
dabei, Herausforderungen friihzeitig zu identifizieren und zu lésen, bevor sie sich zu groferen

Problemen ausweiten.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 130

Meetings sind im Gegensatz zur alltdglichen Kommunikation gezielt geplante und strukturierte
Treffen. Sie helfen den autonomen Teams, sich regelmifig iiber den Fortschritt, sowie mogliche

Probleme und wichtige Entscheidungen abzustimmen.

6.3.8 Fortschrittsmessung

Autonome Teams setzen gezielt messbare Indikatoren und Tools zur Aufgabenverwaltung ein,
um sowohl den Status einzelner Tasks als auch den Gesamtfortschritt des Projekts kontinuierlich
sichtbar zu machen. RegelmifBige Auswertungen dieser Indikatoren ermdglichen es den Teams,
realistische Prognosen zu erstellen, zeitliche Abweichungen friihzeitig zu erkennen und notwen-
dige Anpassungen schnell umzusetzen. Durch diese kontinuierliche Fortschrittsiiberwachung
konnen Risiken reduziert, Ressourcen optimal genutzt und Projektergebnisse zuverldssig erreicht

werden.

6.3.9 Auswahl und Zuteilung von Tasks

Die Aufgabenverteilung in autonomen Teams erfolgt entweder durch zentrale Koordination (z. B.
durch den Teamleiter) oder durch Selbstzuweisung der Mitglieder. Dabei wird auf Transparenz
und klare Nachverfolgbarkeit geachtet. Die Zuteilung orientiert sich hdufig an den Kompetenzen,
der zeitlichen Verfiigbarkeit und den Interessen der Teammitglieder. Gleichzeitig bleibt die Au-
tonomie jedes Einzelnen gewahrt, sich Aufgaben eigenverantwortlich zu nehmen oder im gegen-

seitigen Einvernehmen umzuschichten.

6.3.10 Taskinderungen

Dynamische Anderungen, sowohl technischer als auch fachlicher Natur, werden in autonomen
Teams validiert, priorisiert und transparent kommuniziert. Wihrend fachliche Anderungen hiufig
Abstimmungen mit Stakeholdern erfordern, konnen kleinere technische Anpassungen, wie klei-
nere Bugfixes oder Optimierungen, flexibel und ohne groflen Aufwand von den autonomen

Teams sofort umgesetzt werden.

6.3.11 Team Events & Belohnungen

Allgemeine Teamevents wie gemeinsames Essen oder Outdoor-Aktivitéten stéirken den sozialen
Zusammenbhalt und fordern das gegenseitige Vertrauen innerhalb autonomer Teams. Solche Ver-

anstaltungen bieten eine Moglichkeit, Erfolge zu feiern und neue Mitglieder besser zu integrieren.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 131

6.3.12 Komplexe Themen

Bei der Bearbeitung komplexer Themen ziehen autonome Teams hiufig Expertenmeinungen
heran oder nutzen Praktiken wie Pair-Programming. Als Erstes werden Experten innerhalb des
Teams herangezogen. Sollte das Know-how nicht vorhanden sein, wird auf externe Experten zu-
riickgegriffen. Dies stellt sicher, dass auch schwierige Herausforderungen effizient bewéltigt wer-
den konnen. RegelmiBige Abstimmungen fordern dabei den Wissensaustausch und die Qualitét

der Ergebnisse.

6.3.13 Aufwandsschitzung

Aufwands- und Komplexititsschitzungen erfolgen in autonomen Teams haufig kollaborativ.
Praktiken wie Planning Poker mit Story Points helfen, die Ressourcenplanung zu optimieren und
realistische Zeitplane zu erstellen. Die Einbindung aller Mitglieder bei Schiatzungen erhoht die

Genauigkeit und Akzeptanz der Ergebnisse.

6.4 Kriterien fiir die 13 Kategorien

Dieser Abschnitt beantwortet die Forschungsfrage RQ3: ,,Auf Basis welcher Kriterien kann eine
Kategorisierung stattfinden?* (vgl. Punkt 1.3) und ergénzt die bisherigen Ausfithrungen der vor-
herigen Kapitel 6.1 bis 6.3, indem die Kriterien fiir die Zuordnung der identifizierten Best Prac-

tices zu den 13 Hauptkategorien beschrieben werden.

Kriterien fiir eine Zuordnung von Best Practices zu einer Kategorie umfassen verschiedene As-

pekte:

e Inhaltliche Relevanz:
Der Inhalt des Best Practices tragt zu der Zielsetzung und Wirkung dieser Kategorie bei.

e Ableitung aus Codes der thematischen Analyse:
Die Zuordnung basiert auf spezifischen Codes der thematischen Analyse nach Braun &
Clarke der drei Fallbeispiele und dem Kontext der Interviews. Die Héaufigkeit der Codes fiir
Praktiken und das Vorkommen iiber alle drei Fallbeispiele stiitzen eine Zuordnung. Dabei
wurde gepriift, wie oft bestimmte Begriffe in den kodierten Segmenten der Interviews auftra-
ten und in welchen Zusammenhéngen sie erwahnt wurden. Diese Methode stellt sicher, dass
die Praktiken nicht nur theoretisch, sondern auch empirisch fundiert den Kategorien zugeord-
net werden.

e Konsistenz innerhalb der Kategorie:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 132

Best Practices dieser Kategorie ergénzen sich gegenseitig und ergeben ein konsistentes Bild

und stehen nicht im Widerspruch zueinander.

6.4.1 Kriterien der Kategorie ,,Transparenz*

Die Transparenz (siche Punkt 6.3.1) beschreibt die Nachvollziehbarkeit und Sichtbarkeit von In-
formationen, Prozessen und Fortschritten innerhalb eines autonomen Teams. Praktiken in dieser
Kategorie tragen inhaltlich dazu bei, dass ein transparenter Zugang zu Informationen gewéhrleis-
tet wird. Sie basieren auf den Codes der thematischen Analyse (z. B. ,,Software & Ticketverwal-
tung*, ,,Dailies (Transparenz)“) und fordern Offenheit in Kommunikation und Dokumentation.
Praktiken innerhalb der Kategorie ergénzen sich, indem sie unterschiedliche Aspekte der Trans-
parenz abdecken, wie die Nutzung von Tools, regelmédBige Besprechungen und die Einbindung

mehrerer Personen pro Thema. Kriterien, die erfiillt sein miissen:

e Offene Kommunikation: Eine offene Kommunikation der Teammitglieder muss mdglich
sein, um Fortschritte und Herausforderungen zu teilen.

e Toolunterstiitzte Nachvollziehbarkeit von Aufgaben und Fortschritten: Tools zur Nach-
vollziehbarkeit von Aufgaben und Prozessen miissen eingesetzt werden. (z.B. ,,Toolunter-
stiitzter Workflow*, siche Punkt 6.1.1.1)

e Nachvollziehbare und standardisierte Dokumentation: Entscheidungen und deren Griinde
miissen fiir alle zugénglich dokumentiert sein. (z.B. ,,Standardisierte Protokollierung und Do-
kumentation®, siche Punkt 6.1.1.4)

o Regelmiflige Abstimmungen: Regelmiflige Besprechungen mit Teammitgliedern miissen
Transparenz iliber Fortschritte und Hindernisse schaffen. (z.B. ,,RegelméBige synchrone Ab-
stimmung im Team*, siche Punkt 6.1.1.2)

e Einbindung mehrerer Personen: Mehrere Personen sollen iiber ein Thema Bescheid wissen.

6.4.2 Kriterien der Kategorie ,,Kommunikation“

Kommunikation umfasst den zielgerichteten Austausch von Informationen, um eine reibungslose
Zusammenarbeit zu gewahrleisten. Dies kann durch personliche Gespriche, digitale Tools oder

dokumentierten Austausch erreicht werden. Kriterien fiir die Zuordnung sind wie folgt:

e Direkte Kommunikation fordern: Einfache und direkte Kommunikationswege, wie durch
physische Nihe in Biiros oder digitale Tools, sind essenziell fiir schnelle Abstimmungen. (z.B.

,Effiziente Abstimmung durch direkte Kommunikation®, siche Punkt 6.1.2.1)

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 133

e Verfiigharkeit von Kommunikationsmittel: Telefon, Chats und Videokonferenzen ermdg-
lichen effektiven Austausch, insbesondere in verteilten Teams.

e Zentrale Dokumentation: Tool wie Wikis gewdhrleisten, dass Informationen langfristig zu-
génglich bleiben und Entscheidungen nachvollzogen werden konnen. (z.B. ,,Toolunterstiitzter
Workflow*, siche Punkt 6.1.2.2)

6.4.3 Kriterien der Kategorie ,,Reflexion & Lernprozess*

Reflexion beschreibt die Fahigkeit eines Teams, regelméBig die eigene Arbeit zu analysieren und

Verbesserungen abzuleiten.

e Geplante Reflexion: Praktiken, die regelmiBigen Retrospektiven oder Reviews als Bestand-
teil des Workflows integrieren. (z.B. ,,Regelmifige Reflexion und Feedbackschleifen®, siehe
Punkt 6.1.3.1)

e Lernorientierung: Praktiken, die darauf abzielen, aus Erfahrungen zu lernen und den Work-

flow zu optimieren.

6.4.4 Kriterien der Kategorie ,,Wissensverteilung & Support*

Wissensverteilung umfasst die Vermeidung von Wissensinseln und die Forderung des Wis-

sensaustauschs innerhalb des Teams.

e Vermeidung von Wissensinseln und Forderung von Wissensaustausch: Praktiken, die si-
cherstellen, dass Wissen innerhalb des Teams geteilt wird. (z.B. Mehrere Themenverantwort-
liche zur Wissensverteilung®, siche Punkt 6.1.4.4 / ,,Pair-Programming, 4-Augen-Prinzip und
Reviews®, siche Punkt 6.1.4.1)

e Unterstiitzung bei Engpéassen: Praktiken, die sicherstellen, dass bei Abwesenheit von Team-

mitgliedern keine Wissensliicken entstehen.

6.4.5 Kriterien der Kategorie ,,Fortbildung*

Fortbildung umfasst Malnahmen zur kontinuierlichen Weiterentwicklung von Teammitgliedern,
um individuelle Kompetenzen zu stirken und die Innovationsféhigkeit des Teams zu férdern. Die

Kriterien fiir die Zuordnung sind:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 134

e Forderung individueller Entwicklung: Praktiken miissen gezielt darauf abzielen, die Féhig-
keiten und Kompetenzen der Teammitglieder zu erweitern, z. B. durch Weiterbildung, Schu-
lungen oder Zertifikate. (z.B. ,,Weiterbildung durch Eigeninitiative und Teamforderung®,
siche Punkt 6.1.5.1)

e Anpassung an technologische Verinderungen: Praktiken sollten Zeitfenster fiir Experi-
mente oder den Umgang mit neuen Technologien und Versionen ermoglichen. Sie sollen
Teammitgliedern ermodglichen zwischen Themen und Zustindigkeiten innerhalb oder auf3er-
halb des Teams zu rotieren. (z.B. ,,Themenwechsel zur individuellen Weiterentwicklung®,
siehe Punkt 6.1.5.2 / ,,Rollenwechsel zur Entwicklung individueller Fahigkeiten*, siche Punkt
6.1.5.3)

6.4.6 Kriterien der Kategorie ,,Richtlinien, Grenzen, Normen und Prinzi-

pien“

Diese Kategorie umfasst klar definierte Standards und Vorgaben, die eine einheitliche Arbeits-
weise im Team und projektiibergreifend sicherstellen. Sie fordern Konsistenz, Qualitit und Zu-

sammenarbeit. Kriterien fiir die Zuordnung sind:

e Definition technischer und organisatorischer Qualitiitsrichtlinien: Praktiken miissen zur
Definition und Einhaltung von technischen, organisatorischen oder projektiibergreifenden
Richtlinien beitragen, z. B. durch Coding-Standards oder Architekturvorgaben. (z.B. ,,Doku-
mentation und Festlegung von Richtlinien und Prozessen®, siche Punkt 6.1.6.1)

e Transparenz der Vorgaben: Standards und Normen miissen dokumentiert und fiir alle Team-
mitglieder zugdnglich sein, z. B. in Confluence oder dhnlichen Plattformen.

e Erweiterung teamindividueller Qualititsrichtlinien: Praktiken miissen sicherstellen, dass
Teams ihre spezifischen Normen ergdnzen und anpassen konnen, ohne den Rahmen der pro-
jektweiten Richtlinien zu verlassen. (z.B. ,,Teamspezifische Erweiterungen von Qualititsstan-
dards®, siche Punkt 6.1.6.2)

6.4.7 Kriterien der Kategorie ,,Meetings*

Meetings sind essentielle Instrumente zur Abstimmung, Koordination und Entscheidungsfindung
innerhalb und zwischen Teams. Sie dienen der Sicherstellung von Transparenz, der Losung von

Herausforderungen und der Planung von Aufgaben. Die Kriterien fiir die Zuordnung sind:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 135

o Strukturierte, regelméflige Durchfiihrung: Meetings miissen klar strukturiert sein, um ef-
fektiv zu sein, z. B. durch festgelegte Agenden, Zeitrahmen und Protokollierung. (z.B. ,,Re-
gelmédBige synchrone Abstimmung im Team®, siehe Punkt 6.1.7.1 / ,,W6chentliche Abstim-
mung zwischen Teams®, siche Punkt 6.1.7.2)

o Zielgerichtete Kommunikation: Meetings miissen dazu beitragen, Herausforderungen zu
identifizieren und Losungen gemeinsam zu entwickeln, ohne dabei die Effizienz zu beein-

trachtigen.

6.4.8 Kriterien der Kategorie ,,Fortschrittsmessung*

Fortschrittsmessung umfasst die Erfassung und Darstellung des Fortschritts auf Aufgaben- und
Projektebene, um Transparenz und Planbarkeit zu gewahrleisten. Die Kriterien fiir die Zuordnung

sind:

e Messbarkeit der Fortschritte: Praktiken miissen klare Indikatoren definieren, um Fort-
schritte auf Aufgaben- und Projektebene nachvollziehbar zu machen, z. B. durch Ticketstatus
oder Prozentangaben.

e Dokumentation von Fortschritten: Fortschritte miissen erfasst und fiir alle Teammitglieder
sichtbar dokumentiert werden, z. B. in Tools wie Jira oder auf Kanban-Boards. (z.B. ,,Toolun-
terstiitzter Workflow*, siehe Punkt 6.1.8.2)

e Regelmiflige Evaluierung: Praktiken miissen Fortschritte regelméBig tiberpriifen, z. B. durch
Meetings oder Dashboards, um friihzeitig Risiken oder Verzogerungen zu erkennen. (z.B.
»RegelméBige Fortschrittsbesprechungen®, siehe Punkt 6.1.8.1 / ,,Toolunterstiitzter Work-
flow*, siche Punkt 6.1.8.2)

6.4.9 Kriterien der Kategorie ,,Auswahl und Zuteilung von Tasks*

Diese Kategorie beschreibt, wie Aufgaben in autonomen Teams verteilt werden, sei es durch
zentrale Koordination oder durch Selbstzuweisung der Teammitglieder. Ziel ist es, Transparenz

und Effizienz bei der Verteilung der Aufgaben zu gewihrleisten. Die Kriterien fiir die Zuordnung:

e Transparenz der Zuteilung: Praktiken miissen sicherstellen, dass die Vergabe der Aufgaben
fiir alle Teammitglieder nachvollziehbar ist, z. B. durch die Verwendung von Tools wie Jira.

e Beriicksichtigung individueller Kompetenzen: Praktiken miissen die Fahigkeiten, Interes-
sen und Kapazititen der Teammitglieder beriicksichtigen, um Aufgaben optimal zuzuteilen.

e Flexibilitit in der Zuteilung: Praktiken sollen sowohl eine zentrale Zuteilung als auch eine

individuelle Zuteilung der Aufgaben ermdglichen. (z.B. ,,Koordinierten Aufgabenverteilung

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 136

fiir kritische und spezialisierte Aufgaben®, sieche Punkt 6.1.9.1 / ,,Férderung von Eigenverant-

wortung durch selbstbestimmte Aufgabenwahl®, siehe Punkt 6.1.9.2)

6.4.10 Kriterien der Kategorie ,,Task-Anderungen

Diese Kategorie beschreibt den Umgang mit dynamischen Anderungen von Aufgaben, sei es
durch fachliche oder technische Anforderungen. Ziel ist es, flexibel und effizient auf Anderungen
zu reagieren, ohne den Projektfluss zu beeintrichtigen. Die Kriterien flir die Zuordnung sind:

e Strukturierte Validierung: Praktiken bewerten und priorisieren Anderungen um eine Ein-
planung und effiziente Umsetzung zu ermdglichen. (z.B. ,,Strukturierte Validierung und Prio-
risierung von Aufgabeninderungen®, siche Punkt 6.1.10.1)

e Schnelle Umsetzung unkritischer Aufgabeninderungen: Praktiken sollten sicherstellen,
dass kleinere Anderungen flexibel und ohne unnétige Biirokratie umgesetzt werden kénnen.
(z.B. ,,Schnelle Umsetzung unkritischer Anderungen zur Vermeidung biirokratischer Hiirden®,

siche Punkt 6.1.10.2)

6.4.11 Kriterien der Kategorie ,,Team Events & Belohnungen*

Diese Kategorie umfasst Malnahmen, die den sozialen Zusammenhalt im Team stirken und die
Motivation der Teammitglieder fordern, z. B. durch gemeinsame Aktivititen oder die Anerken-

nung von Leistungen. Die Kriterien fiir die Zuordnung sind:

e Forderung des Teamzusammenhalts: Praktiken sollten darauf abzielen, das Vertrauen und
die Zusammenarbeit im Team zu starken, etwa durch informelle oder soziale Aktivititen. (z.B.
,Forderung des Teamzusammenhalts durch Teamevents®, siche Punkt 6.1.11.1)

e Anerkennung von Leistungen: Praktiken miissen sicherstellen, dass die Leistungen der
Teammitglieder wertgeschétzt und gewiirdigt werden.

e Integration neuer Mitglieder: Praktiken sollten neue Teammitglieder in das Team integrie-

ren und die Zusammenarbeit fordern.

6.4.12 Kriterien der Kategorie ,,Komplexe Themen*

Diese Kategorie beschreibt den Umgang mit anspruchsvollen Aufgaben, die eine vertiefte Zu-
sammenarbeit und Expertise erfordern, um eine Losung zu erzielen. Kriterien fiir die Zuordnung

sind:

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 137

¢ Einbindung von Expertise: Praktiken miissen sicherstellen, dass bei komplexen Themen re-
levante Fachkenntnisse hinzugezogen werden, sei es durch interne oder externe Experten.
(z.B. ,,Strukturierte Teamabstimmung und Validierung bei komplexen Aufgaben®, siche Punkt
6.1.12.2)

e Forderung der Zusammenarbeit: Praktiken sollten darauf abzielen, die gemeinsame Bear-
beitung von Aufgaben zu unterstiitzen, z. B. durch Pair-Programming oder spezialisierte Ab-
stimmungen sowie Reviews fiir Kontrolle und Validierung der Umsetzung. (z.B. ,,Pair-Pro-
gramming, 4-Augen-Prinzip und Reviews*, siche Punkt 6.1.12.1)

e Strukturierte Problemlosung: Praktiken miissen klare Prozesse fiir die Analyse und Losung

komplexer Fragestellungen etablieren.

6.4.13 Kriterien der Kategorie ,,Aufwandsschitzung*

Die Aufwandsschétzung beschreibt die Prozesse zur Bewertung und Schitzung des Arbeitsauf-
wands fiir Aufgaben. Ziel ist es, realistische Zeitpldne und Ressourcenzuweisungen zu ermdgli-

chen. Die Kriterien fiir die Zuordnung sind:

e Kollaborative Schiitzung: Praktiken miissen sicherstellen, dass die Schétzung des Arbeits-
aufwands im Team gemeinsam und transparent durchgefiihrt wird. (z.B. ,,Iterative Verfeine-
rung der Schétzungen durch das gesamte Team*, siche Punkt 6.1.13.1)

e Einsatz etablierter Schitzmethoden: Praktiken sollten Techniken wie Planning Poker oder
die Aufteilung in Subtasks verwenden, um den Schétzprozess zu strukturieren und einen ein-
heitlichen Prozess zu etablieren. (z.B. ,,Aufteilung in Subtasks zur besseren Planung*, siche
Punkt 6.1.13.2)

® Beriicksichtigung von Erfahrungswerten: Praktiken sollten auf vorhandenen Erfahrungs-

werten der Teammitglieder basieren, um realistische Vorhersagen zu ermoglichen.

6.5 Aktualisierter Abgleich der Ergebnisse im State of the Art
2024/2025

In diesem Kapitel werden die Ergebnisse dieser Arbeit nochmals aus einer iibergeordneten Per-
spektive betrachtet, indem sie mit zentralen Erkenntnissen aktueller Forschung aus den Jahren
2024 und 2025 verglichen werden. Ziel ist es, die in den Fallbeispielen identifizierten skalierbaren
Best Practices in Beziehung zu neueren theoretischen Ansétzen zur agilen Organisationsentwick-

lung zu setzen und deren Anschlussfahigkeit an den aktuellen Forschungsstand zu tiberpriifen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse

138

Der Fachartikel ,,Scaling or growing agile? Proposing a manifesto for agile organization devel-

opment® von Bremer et al. (2025) [56] beschreibt ein reales Beispiel einer agilen Skalierungsini-

tiative bei Zenseact, bei dem der Ubergang von einer stark auf Teamautonomie und informelle

Strukturen ausgerichteten Arbeitsweise hin zu einem SAFe-inspirierten Rahmen zu Spannungen

und Zielkonflikten fiihrt. Die dort entwickelten Prinzipien fiir eine ,,agile Organisationsentwick-

lung* bieten eine interessante Vergleichsbasis zu den in dieser Arbeit identifizierten Best Prac-

tices, da sie konkrete Herausforderungen und Losungsansitze aus einem organisatorisch umfang-

reichen Projektkontext adressieren.

Die folgende Tabelle 26 stellt die fiinf Prinzipien aus dem vorgeschlagenen ,,Manifest fiir agile

Organisationsentwicklung* den jeweils zugeordneten Best Practices aus Kapitel 6.1 gegeniiber

[56].

Prinzip

(Bremer et al.,
2025)

1. Depart from the
inseparability of
freedom and re-
sponsibility

Zentrale Inhalte

(Selbstorganisation
braucht klare Ver-
antwortlichkeiten —
sonst bleiben Auf-
gaben liegen oder
werden top-down
vergeben.

Losung: direkte Ab-
stimmung und
Transparenz

Passende Best Practices aus Ka-
pitel 6.1

6.1.9.2 Forderung von Eigenver-
antwortung durch selbstbestimmte
Aufgabenwahl

6.1.1.1 Toolunterstiitzter Work-
flow

6.1.10.1Strukturierte Validierung
und Priorisierung von Aufgaben-
dnderungen

6.1.2.1 Effiziente Abstimmung
durch direkte Kommunikation

Einordnung

Es wurden mehrere
passende Praktiken
gefunden

2. Nurture an en-
vironment for

Aufbau einer Kultur
des Vertrauens, der

6.1.11.1 Forderung des Teamzu-
sammenhalts durch Teamevents

people to thrive Offenheit und der 6.1.2.1 Effiziente Abstimmung gefordert, jedoch
and share geteilten Verant- durch direkte Kommunikation ohne Vorrang vor
wortung Projektzielen.

Teilweise passend —
soziales Klima wird

3. Develop people
through practical
experience

Lernen durch prak-
tische Zusammen-
arbeit statt Theorie

6.1.13.1 Iterative Verfeinerung
der Schitzungen durch das ge-
samte Team

6.1.12.2 Strukturierte Teamab-
stimmung und Validierung bei
komplexen Aufgaben

6.1.3.2 Pair-Programming, 4-Au-
gen-Prinzip und Reviews

Starke Ubereinstim-
mung, da Lernen
durch Teamarbeit in
allen Fallbeispielen
umgesetzt wird

4. Handle com-

Fokus auf einfache

6.1.1.1 Toolunterstiitzter Work-

plexity with Werkzeuge und flow schlanker Prozesse
simplicity Prinzipien 6.1.13.2 Aufteilung in Subtasks und klarer Aufgaben-
zur besseren Planung zerlegung

Passend im Sinne

5. Grow the or-
ganization at its
own tempo of
trust

Organisationen sol-
len sich im eigenen
Tempo entwickeln
— nicht durch be-
schleunigtes Skalie-
ren; Vertrauen als
Grundlage

Kein direkter Bezug
— dieses Prinzip zielt
auf strategisches Or-
ganisationswachstum
und ist daher auf3er-
halb des empirischen
Fokus dieser Arbeit

Tabelle 26: Beziechung der Principles von Bremer et al. mit den Ergebnissen

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 139

Der Fachartikel ,,Investigating Communities of Practice in Large-Scale Agile Software Develop-
ment: An Interview Study* von Tobisch et al. [57] untersucht die Rolle sogenannter Communities
of Practice (CoPs) in grof3 angelegten agilen Entwicklungsumgebungen. CoPs sind freiwillige,
rolleniibergreifende Zusammenschliisse von Mitarbeitenden mit geteiltem fachlichem Interesse.
Sie dienen dem Wissensaustausch, der kollaborativen Weiterentwicklung sowie der Etablierung
informeller Standards und Praktiken. Die Studie basiert auf 39 Interviews aus 18 Organisationen,

die Frameworks wie SAFe, LeSS oder das Spotify-Modell einsetzen.

Die Autoren zeigen, dass Communities of Practice (CoPs) auf vielfiltige Weise zur agilen Trans-
formation beitragen — insbesondere durch Stirkung der Eigenverantwortung, gezielten Wissen-
saustausch, teamiibergreifende Abstimmung und informelle Koordination. Diese Wirkungen
iiberschneiden sich mit mehreren der in dieser Arbeit identifizierten Best Practices aus Kapitel
6.1. Die Tabelle 27 zeigt, in welchen Bereichen sich diese Gemeinsamkeiten konkret manifestie-

ren — etwa im Hinblick auf Empowerment, Wissensverteilung oder organisationsweites Align-

ment.

CoP-Ziel (nach Relevante Best Practices aus Begriindung / Bezug und Abgrenzung

Tobisch et al.) Kapitel 6.1

Fostering Em- 6.1.9.2 Forderung von Eigen- | Beide fordern Eigenverantwortung. Die Best

powerment verantwortung durch selbstbe- | Practice bezieht sich auf selbststindige Aufga-
stimmte Aufgabenwahl benwahl im Teamkontext. CoPs schaffen iiber-

geordnete Strukturen, in denen Mitarbeitende
sich freiwillig einbringen, Verantwortung iiber-
nehmen und durch Austausch mit Gleichgesinn
ten fachlich weiterentwickeln konnen. Die Best
Practice kann als Umsetzung innerhalb eines
solchen CoP-Verstindnisses gesehen werden.
Promoting Know- | 6.1.4.1 Pair-Programming, 4- | Beide Praktiken férdern kontinuierlichen Wis-

ledge Sharing Augen-Prinzip und Reviews sensaustausch im Alltag. CoPs bieten dafiir ei-
6.1.4.4 Mehrere Themenver- nen strukturellen Rahmen auf ibergeordneter
antwortliche zur Wissensver- Ebene, z. B. durch thematische Gruppen. Die
teilung genannten Praktiken setzen diesen Austausch

direkt im Arbeitsprozess um.

Distributing In- 6.1.1.1 Toolunterstiitzter CoPs dienen in der Studie u. a. dazu, Informati-

formation Workflow onen rollen- oder themenspezifisch weiterzuge-
6.1.1.4 Standardisierte Proto- | ben und transparent zu machen. Die Best Prac-

kollierung und Dokumentation | tices adressieren dies durch systematische Do-
kumentation, Tool-Nutzung und Statusverfol-
gung im Alltag und férdern den transparenten
Zugang zu diesen Informationen.

Fostering People | 6.1.5.1 Weiterbildung durch Die CoPs ermdglichen fachliches Wachstum

Development Eigeninitiative und Teamfor- durch Austausch und Vernetzung. Die Best
derung Practices setzen dies durch gezielte Weiterbil-
6.1.3.2 Pair-Programming, 4- | dung, Zertifizierungen und kollaborative For-
Augen-Prinzip und Reviews mate um. Pair-Programming und Reviews sind

Beispiele fiir die Umsetzung innerhalb des
Teams.

Promoting Colla- | 6.1.2.1 Effiziente Abstim- CoPs fordern Zusammenarbeit iiber Teams und

boration mung durch direkte Kommu- Rollen hinweg. Die Best Practices fokussieren
nikation

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 140

6.1.12.2 Strukturierte Teamab- | auf die Abstimmung mit Teilnehmern innerhalb
stimmung und Validierung bei | und auBerhalb des autonomen Teams.

komplexen Aufgaben
Aligning Across 6.1.7.2 Wochentliche Abstim- | Beide Ansitze dienen der organisationsweiten
the Organization | mung zwischen Teams Abstimmung. Die Best Practices setzen den
6.1.7.3 Rollenspezifische Austausch iiber verschiedene Teams und Berei-

Teamleiter-Meetings zur fach- | che iiber regelmiBBige Meetings um.
lichen Koordination

Supporting the 6.1.5.1 Weiterbildung durch CoPs konnen laut Studie gezielt zur Veranke-
Agile Transfor- Eigeninitiative und Teamfor- rung agiler Prinzipien beitragen. Die genannte
mation derung Best Practice schafft dafiir operative Freirdume

und Lernmdglichkeiten, z. B. bei Einfiihrung
neuer Technologien oder Methoden, Umsetzun-
gen fiir Zertifikate (z.B. Scrum Master, etc.)

Tabelle 27: Beziehung von CoPs und den Best Practices

6.6 Validitat und Limitationen

In diesem Kapitel werden die zentralen methodischen und inhaltlichen Einschrankungen der vor-
liegenden Fallstudienforschung reflektiert. Dafiir werden im Kapitel 6.6.1 die vier Validitétskri-
terien nach Yin [19] herangezogen. AnschlieBend wird im Kapitel 6.6.2 erklart, inwieweit die
Ergebnisse auf andere Projekte {ibertragbar sind und welche Grenzen dabei zu beachten sind. Ziel

ist es, die Aussagekraft und die Einschrankungen der Erkenntnisse offen darzustellen.

6.6.1 Methodische Validitit

Die Qualitét qualitativer Fallstudien lésst sich nach Yin anhand von vier zentralen Validitétskri-
terien beurteilen: Konstruktvaliditdt, interne Validitét, externe Validitdt und Reliabilitdt [19].
Diese ermoglichen eine strukturierte Einschitzung der methodischen Fundierung sowie mdogli-

cher Einschrankungen der Studie.

e Konstruktvaliditit (Engl. ,,Construct Validity*)
Dieses Kriterium priift, ob die theoretischen Konzepte, die untersucht werden sollen — wie
z. B. Selbstorganisation oder Best Practices — auch wirklich korrekt und verstandlich im For-

schungsprozess erfasst wurden.

In dieser Arbeit wurde darauf geachtet, dass alle zentralen Begriffe klar definiert und in den
Interviews einheitlich verwendet wurden. Durch semi-strukturierte Interviews mit offenen
Fragen konnten individuelle Sichtweisen eingebracht werden, ohne die Befragten in eine be-
stimmte Richtung zu lenken (Vermeidung von Bias). Zusétzlich wurden weitere Datenquel-
len wie Task-Boards, Dokumente und Beobachtungen herangezogen (Triangulation), um

Aussagen zu liberpriifen und zu ergénzen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 141

Einschrinkung: Begriffe konnten — abhéngig von Rolle, Projektkontext, Erfahrungsniveau

oder konkreter Umsetzung — unterschiedlich verstanden oder gewichtet worden sein.

Interne Validitit (Engl. ,,Internal Validity*)
Dieses Kriterium bewertet, ob die Schlussfolgerungen inhaltlich plausibel aus den erhobenen

Daten abgeleitet wurden.

Auch wenn keine Ursache-Wirkung-Beziehungen im engeren Sinn untersucht wurden, wurde
bei der Analyse darauf geachtet, wiederkehrende Muster zu erkennen und alternative Deu-
tungen in die Interpretation einzubeziehen. Um Unklarheiten im Gesprich zu vermeiden,
wurden bei Bedarf verstindnissichernde Riickfragen gestellt, insbesondere wenn Begriffe

oder Kontexte uneindeutig waren.

Einschrinkung: Abweichende Aussagen wurden zwar in den Transkripten erfasst, jedoch
im Rahmen der Ergebnisdarstellung nicht gesondert ausgewertet. Zudem bleibt qualitative
Analyse grundsétzlich interpretationsabhingig, eine vollstdndige Neutralitét ist nicht mog-
lich.

Externe Validitit (Engl. ,,External Validity*)
Die externe Validitit betrifft die Frage, ob die Ergebnisse auf andere, vergleichbare Kontexte

iibertragbar sind.

In dieser Arbeit wurden drei Softwaregrof3projekte untersucht, die hinsichtlich TeamgroBe,
Arbeitsweise (z. B. Scrum, Kanban), technischer Infrastruktur und Organisationsstruktur dhn-
lich aufgebaut sind. Die Interviews folgten einem gemeinsamen, thematisch abgestimmten
Leitfaden, wodurch inhaltlich vergleichbare Aussagen erhoben werden konnten. Die daraus
entwickelten Best Practices erscheinen unter vergleichbaren Bedingungen iibertragbar und

bieten eine praxisnahe Orientierung fiir &hnlich aufgebaute Softwaregrofiprojekte.

Einschrinkung: Fiir deutlich abweichende Kontexte — etwa kleinere Organisationen, andere
Branchen oder klassische Entwicklungsmethoden — ist eine direkte Ubernahme nicht immer
moglich. Einige der abgeleiteten Best Practices zeigen jedoch Skalierungspotenzial und konn-
ten mit entsprechender Anpassung auch in kleineren oder anders strukturierten Projekten

wirksam sein.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 142

e Reliabilitit (Engl. ,,Reliability*)

Das methodische Vorgehen — von der Datenerhebung bis zur Analyse — wurde vollstindig
dokumentiert. Die Interviews wurden transkribiert, mithilfe von MAXQDA softwaregestiitzt
codiert und nach dem etablierten Verfahren der thematischen Analyse ausgewertet. Alle Ar-
beitsschritte wurden konsistent auf alle drei Fille angewendet, wodurch ein hohes Mal3 an
Nachvollziehbarkeit gewahrleistet ist.

Einschrinkung: Qualitative Forschung ist grundsétzlich durch subjektive Deutungen ge-
priagt. Auch bei sorgfiltiger Durchfiihrung ldsst sich eine vollstdindige Wiederholbarkeit
durch andere Forschende nicht garantieren — wohl aber eine methodische Nachvollziehbar-

keit.

6.6.2 Ergebnisbezogene Limitationen und Ubertragbarkeit

Die Ergebnisse dieser Arbeit basieren auf der qualitativen Analyse von drei Fallstudien in unter-
schiedlich ausgerichteten, aber strukturell vergleichbaren Softwaregrofprojekten. Dabei wurden
ausschlieBlich jene Themen und Codes der thematischen Analyse weiterverwendet, die in allen
drei Féllen iibereinstimmend identifiziert wurden. Dies stirkt die Relevanz der daraus abgeleite-
ten Best Practices, schrinkt jedoch die Breite potenzieller Erkenntnisse ein — etwa solche, die nur

in einem oder zwei Fillen aufgetreten sind.

Die Auswahl der Themen basiert auf offenen semistrukturierten Interviewfragen, wodurch sich
die Tiefe und Perspektive der Antworten stark an der Wahrnehmung der Interviewpartner orien-
tiert. Es ist daher moglich, dass einzelne relevante Aspekte nicht benannt oder im Gespréchsver-
lauf nicht ausfiihrlich angesprochen wurden. Ergénzende Artefakte und Beobachtungen aus der

Participant Observation konnten dies nur teilweise kompensieren.

Zudem wurde eine begrenzte Anzahl an Projekten und Teamkonstellationen betrachtet. Die tat-
sdchliche Wirksamkeit und Durchfiihrbarkeit der Praktiken in der Praxis, hdngt stets von konkre-
ten Faktoren wie Unternehmenskultur, Teamdynamik, Rollenverstdndnis oder technologischem

Reifegrad ab. Eine pauschale Ubertragbarkeit kann daher nicht angenommen werden.

In den Fallstudien wurde eine breite Rollendiversitét beriicksichtigt. Allerdings wurde pro Fall-
beispiel meist nur eine Person je Rolle befragt, teils mit Mehrfachrollen. Dadurch konnten unter-
schiedliche Perspektiven abgebildet, aber keine Tiefe innerhalb einzelner Rollenprofile im jewei-
ligen Projektkontext erreicht werden. Eine erweiterte Stichprobe konnte zusitzliche Einsichten

und potenzielle Rollenkontraste innerhalb eines Teams ermdglichen.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Ergebnisse 143

Die gewihlte Methodik — insbesondere die thematische Analyse nach Braun & Clarke — ermog-
licht eine strukturierte, theoriebasierte Auswertung qualitativer Daten. Dennoch bleibt ein Rest

an Subjektivitit in der Interpretation bestehen.

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Zusammenfassung und Ausblick 145

7 Zusammenfassung und Ausblick

Diese Arbeit befasste sich mit der Frage, welche Praktiken fiir autonome Teams auch in industri-
ellen Softwaregrofprojekten funktionieren und sich skalieren lassen. Ziel war es, aus realen Pro-
jekten konkrete Best Practices zu identifizieren, diese systematisch zu kategorisieren und Krite-

rien fiir ihre Einordnung zu entwickeln.

Als Grundlage wurde der aktuelle Stand der Forschung zu autonomen Teams analysiert. Die Ka-
tegorien und Praktiken von Hoda et al. wurden als strukturierender Ausgangspunkt gewéhlt. Thre
sieben Kategorien aus den Balancing Acts sind klar abgegrenzt und decken zentrale Bereiche wie
Entscheidungsfindung, Verteilung von Aufgaben, Fortschrittsiiberwachung und Wissensvertei-
lung ab. Diese Struktur diente sowohl der Entwicklung des Interviewleitfadens als auch dem spa-

teren Vergleich mit den empirischen Ergebnissen.
Zur Datenerhebung wurden drei Fallbeispiele aus unterschiedlichen Branchen untersucht:

e Fallbeispiel 1 — Versicherungstrager (inkl. Participant Observation)
e Fallbeispiel 2 — Autohaus
e Fallbeispiel 3 — Gesundheitsbereich

In jedem Fallbeispiel wurden fiinf semistrukturierte Interviews mit Teammitgliedern aus ver-
schiedenen Rollen durchgefiihrt. Dazu zdhlten Entwickler, Architekten, Requirements Engineers,
Teamleiter und Projektleiter. Die Interviews erfolgten in semi-strukturierter Form, wurden auf-
gezeichnet, transkribiert und anschlieBend in MAXQDA, einer Analysesoftware, kodiert. Die Co-
dierung erfolgte in mehreren Schritten und bezog sich direkt auf konkrete Aussagen und deren

Kontexte.

Im Rahmen der Participant Observation im Fallbeispiel 1 wurden zusétzlich projektinterne Arte-
fakte wie Kanban-Boards, Ticket-Systeme oder Dokumentationen analysiert, um die Aussagen
aus den Interviews besser einordnen zu kdnnen. Diese ergénzende Perspektive war in den beiden

anderen Fallbeispielen nicht moglich, da dort kein Zugang zu den Systemen bestand.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Zusammenfassung und Ausblick 146

Die Auswertung erfolgte nach der thematischen Analyse nach Braun & Clarke. Zunéchst wurden
aus den codierten Passagen Themen abgeleitet und anschlieBend zu 13 iibergeordneten Katego-
rien zusammengefasst, die zentrale Aspekte der Teamarbeit in grolen Softwareprojekten abbil-
den. Beispiele dafiir sind Transparenz, Kommunikation, Meetings, Wissensverteilung oder Auf-

wandsschdtzung.

Aus den codierten Inhalten wurden insgesamt 23 konkrete Best Practices abgeleitet. Fiir das finale
Ergebnis wurden ausschlieflich jene Themen und Codes beriicksichtigt, die in allen drei Fallbei-
spielen vorkamen. Diese gemeinsame Schnittmenge wurde bewusst gewidhlt, um nur solche Prak-
tiken zu beriicksichtigen, die eine moglichst hohe Aussagekraft und Relevanz besitzen. Kodie-
rungen die nur in einem oder zwei Fallbeispielen vorkamen, wurden zwar dokumentiert, aber

nicht weiter analysiert. Diese konnten jedoch in zukiinftigen Arbeiten beriicksichtigt werden.

Ein selbst entwickeltes Java-Programm unterstiitzte die Auswertung der Codes, indem es Uber-
schneidungen, Segmenthiufigkeiten und Zuweisungen zu Kategorien automatisiert analysierte.

Damit konnte die Analyse systematischer und nachvollziehbarer durchgefiihrt werden.
Die drei Forschungsfragen wurden wie folgt beantwortet:

RQ1a — Welche Praktiken lassen sich in Softwaregrofiprojekten zur Unterstiitzung autono-
mer Teams identifizieren?
Es wurden 23 praxistaugliche Best Practices identifiziert, die zentrale Handlungsfelder autonomer

Teamarbeit in Softwaregrof3projekten abdecken.

RQ1b — Welche Praktiken fiir autonome Teams sind auch fiir grofie Softwareprojekte ska-
lierbar?

Neun der von Hoda et al. beschriebenen Best Practices konnten in den Fallstudien inhaltlich be-
stitigt werden. Sie wurden jeweils durch eine kontextbezogene Best Practice in den Software-

groB3projekten abgebildet und gelten somit als skalierbar.

RQ2 — In welche Kategorien konnen die identifizierten Praktiken unterteilt werden?
Die 23 Best Practices wurden 13 thematischen Kategorien zugeordnet, die zentrale Aspekte der
Zusammenarbeit in autonomen Teams abbilden. Mehrere Praktiken wirken bereichsiibergreifend

und lassen sich mehreren Kategorien gleichzeitig zuordnen.

RQ3 — Auf Basis welcher Kriterien kann eine Kategorisierung stattfinden?
Die Kategorisierung der Best Practices basiert auf ihrer inhaltlichen Relevanz fiir die jeweilige

Kategorie, auf der empirischen Ableitung aus den Codes der thematischen Analyse sowie auf der

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Zusammenfassung und Ausblick 147

thematischen Konsistenz innerhalb der Kategorien. Entscheidend war, ob eine Best Practice zur
Zielsetzung und Wirkung einer Kategorie beitrdgt, ob sie durch codierte Interviewaussagen in-
haltlich gestiitzt wird, und ob sie sich in das Gesamtbild der jeweiligen Kategorie sinnvoll einfiigt,

ohne inhaltliche Widerspriiche zu erzeugen.

7.1 Ausblick und zukiinftige Forschung

Ausgehend von den vorliegenden Ergebnissen ergeben sich mehrere relevante Ansitze fiir wei-

terfiihrende Forschung und praktische Anwendung.

e Erprobung und langfristige Evaluierung in realen Projekten:
Die als skalierbar identifizierten Best Practices konnten gezielt in neuen Projekten eingesetzt
werden, um ihre Alltagstauglichkeit in Bezug auf Teamgrofle, Rollenverteilung und organi-
satorisches Umfeld zu {iberpriifen. Erginzend dazu lieBe sich ihre nachhaltige Wirksamkeit
im Rahmen von Langzeitstudien {iber mehrere Projektzyklen hinweg beobachten und evalu-
ieren. Auf diese Weise konnten sowohl kurzfristige Anpassungsbedarfe als auch langfristige

Effekte identifiziert werden.

e Quantitative Validierung:
Auf Grundlage der 23 identifizierten Praktiken konnten standardisierte Umfragen entwickelt
werden, um deren Verbreitung, Relevanz und Wirksamkeit in unterschiedlichen Projektkon-

texten empirisch zu erfassen.

e Vertiefung der Analyse nicht skalierbarer Praktiken:
Einige der in Kapitel 6.2.10 als nicht skalierbar klassifizierten Praktiken kdnnten in zukiinf-
tigen Studien nochmals gezielt untersucht werden. So zum Beispiel beim Best Practice ,,Mul-
tiple Perspectives* (siche Punkt 6.2.10.1) denkbar, da durch Mehrfachrollen zwar funktionale
Uberschneidungen existieren, der aktive Perspektivenaustausch jedoch nicht explizit benannt

wurde.

e Untersuchung fallstudien-spezifischer oder neuer Praktiken:
Themen und Codes, die nur in zwei der untersuchten Fallbeispiele auftraten, wurden in Ka-
pitel 5.2.5 dokumentiert, aber nicht in das finale Kategoriensystem iiberfiihrt. Fiir diese Codes
erfolgte keine Ableitung konkreter Best Practices, da sie nicht in allen drei Fallbeispielen
beobachtet wurden. Zukiinftige Arbeiten konnten gezielt an diesen Schlagwortern und Co-
dierungen ansetzen — etwa durch vertiefende Interviews mit weiteren Teammitgliedern der

bereits untersuchten Organisationen oder durch zusétzliche Fallstudien. Auf diese Weise lieBe

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Zusammenfassung und Ausblick 148

sich kldren, ob bestimmte Themen lediglich kontextbedingt nicht erwihnt wurden oder ob sie

tatsdachlich projektspezifisch sind.

e Ubertragung auf kleinere Softwareprojekte:
Einige der neu identifizierten Praktiken konnten auch in kleineren autonomen Teams einge-
setzt werden, um im Gegenzug zu priifen, ob sie auch in kleinen Softwareprojekten funktio-

nieren.

e Integration von KI-Werkzeugen:
Mit Blick auf aktuelle Entwicklungen in der Softwarebranche stellt sich die Frage, inwiefern
Kl-basierte Tools die Umsetzung bestimmter Best Practices unterstiitzen oder verbessern
konnen — etwa in den Bereichen Dokumentation, Wissensverteilung oder Review-Prozesse.

Erste Ansétze dazu finden sich bereits in der Literatur (vgl. [58]).

Die in dieser Arbeit gewonnenen Ergebnisse konnen als fundierte Grundlage fiir weiterfiihrende
Forschung dienen und Unternehmen erste Anhaltspunkte bieten, wie autonome Teams auch in

komplexen Softwareprojekten gezielt geférdert und begleitet werden kdnnen.

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Abbildungsverzeichnis i

Abbildungsverzeichnis

Abbildung 1:
Abbildung 2:
Abbildung 3:
Abbildung 4:
Abbildung 5:
Abbildung 6:
Abbildung 7:
Abbildung 8:
Abbildung 9:

Abbildung 10:
Abbildung 11:
Abbildung 12:
Abbildung 13:

Mustration — Methodikccccooiiiiiiiiie e 11
SCIUM-PTOZESS [34] . eeiieeiiiieeiiiee ettt ettt e e e e bee e e neeeeenareeas 19
Die 12 Kernpraktiken von XP [41]....ccccveviiiiieiieriesie et sve e 21
Das Wasserfall-Modellccooiiiiiiiieeee s 22
Kanban-Boardccooi i 23
Die Balancing Acts, Kategorien und Best Practicescceevvevieveenienveeneennen, 28
Darstellung der Practices und deren AbhAngigkeitencccvevvvevviereereesnenenenns 29
Projektorganisationsstruktur im Fallbeispiel 1ccceeevveeiveiieviienieniiereeieeen, 45
Vorgehensmodell Fallbeispiel 1cccovvvvviiiiiiiniiiieciecie e 47

Beispiel Kanban Board (Whiteboard) Fallbeispiel 1cccccoviriiiinieieneeenns 49
Beispiel Kanban Board Fallbeispiel 1 Gitlab..........c.ccccoevvevierieiiiiiieniecieeis 49
Alfresco — Beispiel Ablagestruktur nach Releasesccoceevevvieiinieicncnen. 50
HPQC — Ticketsystem fiir Anforderungen und Fehlerccccocoevviiniiniennn, 50

Abbildung 14: Dokumentengruppe fiir F1 in MAXQDAcooceiiiiiiieieeeeeecee e 52
Abbildung 15: Codierung der Interviews in MAXQDAccccveiviiiiieiieeeeneecee e 52
Abbildung 16: Projektorganisationsstruktur im Fallbeispiel 2cccevveevievienieniieieeeeeene, 57
Abbildung 17: Anzahl vergebener Codes pro Dokumentccceevvveviieniieniesienieeieereeneene 66
Abbildung 18: Schnittmengen der COAescueviiriiiiiiiiiiieiecee et 67
Abbildung 19: Vergleich Taking Task OWNErShipccceeeiiiiievienienieiie e siee e 121
Abbildung 20: Ubersicht MethOdikcccoveviviviieeeeeeeeeeeeeeeeee e viii

file:///C:/Users/ms082/Desktop/DA/Diplomarbeit%20%5b16.06.2025%5d.docx%23_Toc200978686

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Tabellenverzeichnis il

Tabellenverzeichnis

Tabelle 1: Prozess der Fallstudienforschung nach Runeson & HoOst..........cccocvvvviiiiiniieniieniennn, 6
Tabelle 2: Die Ubersicht der Balancing ACES.............c.ovveueueveeeveeeeeeseeeresseeesesesessssesesesennnns 28
Tabelle 3: Praktiken der Selbstorganisation in Teams - The Balancing Acts.........ccccceceevuennenee. 31
Tabelle 4: Zuordnung KSAs zu den Kategorien von Hoda et al...........cccceeevvevienienieniinieenen, 33
Tabelle 5: Ubersicht der drei FAllDEiSPIElecvcvevevereeueeeeeeeeeeeeeeeeeeeeeesee s seeesenennen 43
Tabelle 6: Ubersicht Teilnehmer und Rollen der INterVIEWSc.cveveveceerevereereeereerreeeencenn. 43
Tabelle 7: Auszug der Rollen Fallbeispiel 1.......cccoovveiiiiiiiiiiiiiicciecieciece e 46
Tabelle 8: Beispieltabelle flir die Code- und Themenbildungcccccoeevveeiiiiienieniicieeieeen, 54
Tabelle 9: Vorkommen der 66 Codes im Fallbeispiel 1.........ccccoevieviirciiiciieciieienieciecve e 56
Tabelle 10: Vorkommen der 71 Codes im Fallbeispiel 2.........ccccovievieriiiciieiieieieiecee e 60
Tabelle 11: Vorkommen der 73 Codes im Fallbeispiel 3........ccccoovieviieciinciieiieieieceecee e 63
Tabelle 12: Ubersicht der Code-Themencoeveveruevieeeeeceereeseeeeeeeseeee e 67
Tabelle 13: Die 48 Codes in 13 Themen in den Fallbeispielen 1, 2 und 3..........cccvevvievennrnnen. 69
Tabelle 14: Die 53 Codes in 13 Themen in den Fallbeispielen 1 und 2..........ccccoovvevvevvennnanen. 70
Tabelle 15: Die 51 Codes in 13 Themen in den Fallbeispielen 1 und 3..........cccoevvevviivennnenen. 72
Tabelle 16: Die 57 Codes in 12 Themen in den Fallbeispielen 2 und 3...........cccevvevvenvennnennen. 74
Tabelle 17: Codes (F1 M F2) \ Fauuririiiiiceeeeece ettt 75
Tabelle 18: Codes (F1 M F3) \ Fauuiiriiiiicicieeecee ettt 75
Tabelle 19: Codes (F2 M F3) \ Fluiiiiiiceece ettt 76
Tabelle 20: Ubersicht der Funktionalitéiten fiir den toolunterstiitzten Workflow 81
Tabelle 21: Kommunikationsmittel autonomer Teamscccoeeereerieiererieeseeeee e 86
Tabelle 22: Unterscheidung der Praktiken fiir die Fortbildung............ccccovvevvievienieiiiiieeieene, 95
Tabelle 23: Die verschiedenen Arten von MeEEHNEScecoviriieieeiieeiieesiiesie e e ereeve e 101
Tabelle 24: Auflistung aller gefundenen Best Practicesccovvveviieveenieniecieciecrecve e 112
Tabelle 25: Ubersicht skalierbarer Best PraCtiCES..........c.c.vuevrverueveereeeeeeeeeeeceeseseseeseesesereseenans 127
Tabelle 26: Beziehung der Principles von Bremer et al. mit den Ergebnissencc........... 138
Tabelle 27: Bezichung von CoPs und den Best Practices..........ccoeevvievienieniecieciecreeieeveenne 140
Tabelle 28: Ubersicht verwendeter HilfSmitteloooovevreevreereeeeeeeeeceeecee e vii

“}aylo1|qig usipn ML 1. wud ul ajgejreae si sisayl Syl Jo uoisian [eulblo paoidde syl < any a8pajmou anox
JeqBnyian yayoljqig UsIp\ NL Jop ue 1si iagrewoldiq Jasalp uoisiareulblo apjonipab ausiqoidde aig v_UF_H.O__D_m

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Literaturverzeichnis 11l

Literaturverzeichnis

[1]

[3]

[5]

[6]

[7]

(8]

S. S. Maidin und N. Yahya, ,,The Waterfall Model with Agile Scrum as the Hybrid Agile
Model for the Software Engineering Team, Yogyakarta Indonesia, IEEE, 2022.

N. B. Moe, V. Stray und R. Hoda, ,,Trends and Updated Research Agenda for Autonomous
Agile Teams: A Summary of the Second International Workshop at XP2019, in Agile
Processes in Software Engineering and Extreme Programming -- Workshops, Springer

International Publishing, 2019, pp. 13-19.

K. Dikert, M. Paasivaara und C. Lassenius, ,,Challenges and success factors for large-scale
agile transformations: A systematic literature review,” Journal of Systems and Software,
2016, pp. 87-108.

N. B. Moeund V. Stray, ,,A Decade of Research on Autonomous Agile Teams: A Summary
of the Third International Workshop,“ Trondheim, Norway, Springer, 2020.

N. B. Moe, D. Bjorn, V. Stray, L. S. Karlsen und S. Schjedt-Osmo, ,,Team Autonomy in
Large-Scale Agile,” 2019.

M. Berntzen, R. Hoda, N. B. Moe und V. Stray, ,,A Taxonomy of Inter-Team Coordination
Mechanisms in Large-Scale Agile, IEEE, 2022.

S. M. Sablis, ,,Team-external coordination in large-scale software development projects,™
Trondheim Norway, Journal of Software: Evolution and Process, 2020.

E. Bjarnason, B. G. Bern und L. Svedberg, ,Inter-team communication in large-scale

co-located software engineering: a case study,* Springer, 2022.

[14] H. Edison, X. Wang und K. Conboy, ,,Comparing Methods for Large-Scale Agile Software

Development: A Systematic Literature Review,” IEEE, 2022.

[16] S. Rahim, E. Chowdhury, D. Nandi, M. Rahman und S. Hakim, ,,ScrumFall: A Hybrid

Software Process Model, International Journal of Information Technology and Computer
Science (IJITCS), 2018, pp. 41-48.

[17] ,,Estimation of software quality parameters for hybrid agile process model,” Springer SN

Applied Sciences, 2021, pp. 1-11.

[18] M. Fowler und J. Highsmith, ,,The Agile Manifesto,” Agile Alliance, 2001.

[19] R. K. Yin, ,,Case Study Research and Applications: Design and Methods,” 6 Hrsg., I. SAGE

Publications, Hrsg., 2017.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Anhang v

[20] P. Runeson und M. Host, ,,Guidelines for conducting and reporting case study research in

software engineering,” in Empirical Softw. Engg., 14 Hrsg., 2009, p. 131-164.

[21] K. W. Griimer, Techniken der Datensammlung 2, 1 Hrsg., Bd. 32, Wiesbaden:
Vieweg+Teubner Verlag, 1974.

[22] W. Chauncey, ,,Interview Techniques for UX Practitioners,* Boston, Morgan Kaufmann,
2014, pp. 23-41.

[23] V. Braun und V. Clarke, Using thematic analysis in psychology. Qualitative Research in
Psychology, 2006, pp. 77-101.

[24] R. Hoda, ,,Self-Organizing Agile Teams: A Grounded Theory,” Victoria University of
Wellington, 2011.

[25] R. Hoda, J. Noble und S. Marshall, ,,Balancing Acts: Walking the Agile Tightrope,”“ ACM,
Cape Town, South Africa, 2010.

[26] R. Hoda, J. Noble und S. Marshall, ,,Developing a grounded theory to explain the practices

of self-organizing Agile teams,* Springer Sciencd+Business Media, 2012.

[27] M. Dr. Morner, Organisation der Innovation im Konzern, Springer Fachmedien Wiesbaden,
1997, p. 143ff..

[28] J. W. Cresswell, ,,Qualitative Inquiry & Research Design - Choosing Among Five
Approaches, 3 Hrsg., Thousend Oaks, California, SAGE Publications Inc., 2013, p. 97.

[29] J. Gustaffson, ,,Single case studies vs. multiple case studies: A comparative study,”

Halmstad University Sweden, 2017.

[30] K. Fisher, ,Leading Self-Directed Work Teams: A Guide to Developing New Team
Leadership Skills,” Mcgraw Hill Book Co, 2000, p. 17.

[31] L. Yunbo, L. Lan, W. Hongli, L. Yun und S. Qian, ,,Measurement model of project
complexity for large-scale,” in International Journal of Project Management, Bd. 33,
Shanghai, Elsevier Ltd. APM and IPMA, 2015, pp. 610-622.

[32] D. Baccarini, ,,The concept of project complexity - a review,” in International Journal of
Project Management, Bd. 14, Perth, Australia, Elsevier Science Ltd and IPMA, 1996, pp.
201-204.

[33] J. Pokorny, ,,NoSQL databases: a step to database scalability in web environment,” in
International Journal of Web Information Systems, 9 Hrsg., Bd. 1, Charles University,
Praha, Czech Republic, 2013, pp. 69-82.

[35] V. Mahnic und S. Drnovscek, ,,Agile Software Project Management with Scrum,™
University of Ljubljana, Slovenia, 2005.

[36] R. Drither, H. Koschek und C. Sahling, ,,.Scrum-kurz & gut 3. Auflage,” O'Reilly, 2023, p.
221t

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Anhang v

[37] K. Beck und C. Andres, ,,Extreme Programming Explained,” 2. Edition Hrsg., Addison-
Wesley Professional, 2004.

[39] L. Lindstrom und R. Jeffries, ,,Extreme Programming and Agile Software Development
Methodologies, in Information Systems Management, 2004, p. 43ff.

[42] ,,Extreme Programming Vs Scrum: A Comparison Of Agile Models., International Journal

of Technology, Innovation and Management (IJTIM) Vol.2, Issue.2, 2022, pp. 80-96.
[44] E. Weflen, C. A. MacKenzie und 1. V. Rivero, ,,An influence diagram approach to

automating lead time estimation in Agile Kanban project management,” in Expert Systems
with Applications 187, 2022.
[45] E. Mircea, ,,Project Management using Agile Frameworks,“ Academy of Economic

Studies. Economy Informatics Vol. 19, 2019, p. 34 ff..

[47] H. Takeuchi und I. Nonaka, The New New Product Development Game, Harvard Business
School, 1986.

[48] R. Hoda, J. Noble und S. Marshall, ,,Organizing Self-Organizing Teams,” ACM, Cape
Town, South Africa, 2010.
[49] M. Kalenda, P. Hyna und B. Rossi, ,,Scaling Agile in Large Organizations: Practices,

Challenges and Success Factors,* Journal of Software: Evolution and Process, 2018.

[50] V. Stray, N. B. Moe und R. Hoda, ,,Autonomous Agile Teams: Challenges and Future
Directions for Research, Porto, Portugal, Association for Computing Machinery, 2018.

[51] Z. Masood, R. Hoda und K. Blincoe, ,,What Drives and Sustains Self-Assignment in Agile
Teams,” IEEE Transactions on Software Engineering, 2022, pp. 3626-3639.

[52] Z. Masood, R. Hoda und K. Blincoe, ,,How agile teams make self-assignment work: a

grounded theory study,* Empirical Software Engineering 25, 2020.

[53] M. G. Rothstein und R. J. Burke, Self-Management and Leadership Development,
Cheltenham, UK ¢ Northampton, MA, USA: Edward Elgar Publishing Limited, 2010, p.
271ff..

[54] E. Salas, M. A. Rosen, S. C. Burke und G. F. Goodwin, ,,The wisdom of collectives in
organizations: An update of the teamwork competencies.,” New York, Routledge/Taylor &
Francis Group, 2009, pp. 39-79.

[56] C. Bremer, A. R. Eklund und M. Elmquist, ,,Scaling or growing agile? Proposing a
manifesto for agile organization development,* Journal of Organization Design, pp. 23-24,
2025.

[57] F. Tobisch, J. Schmidt und F. Matthes, ,,Investigating Communities of Practice in Large-
Scale Agile Software Development: An Interview Study,” in Agile Processes in Software

Engineering and Extreme Programming, Munich, Germany, Springer, 2024, pp. 3-19.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Anhang vi

Weblinks
[9] ,.SAFe,”[Online]. Available: https://framework.scaledagile.com/. [Zugriff am 24 03 2025].
[10] ,,less,” [Online]. Available: https://less.works/. [Zugriff am 18 04 2025].

[11] ,,scrum@scale,” [Online]. Available: https://www.scrumatscale.com/. [Zugriff am 18 04
2025].

[12] ,,Disciplined Agile® Delivery,” [Online]. Available: https://www.pmi.org/disciplined-ag-
ile. [Zugriff am 18 04 2025].

[13] ,,Atlassian,”“ [Online]. Available: https://www.atlassian.com/agile/agile-at-scale/spotify.
[Zugriff am 18 04 2025].

[15] ,,Monash University,” [Online]. Available: https://research.monash.edu/en/persons/rash-
ina-hoda/publications. [Zugriff am 01 04 2025].

[34] ,,scrumalliance,” [Online]. Available: https://www.scrumalliance.org/about-scrum. [Zu-
griff am 18 05 2025].

[38] ,,Agile Alliance,” [Online]. Available: https://www.agilealliance.org/glossary/xp/. [Zugriff
am 18 05 2025]

[40] ,,extremeprogramming.org, [Online]. Available: http://www.extremeprogram-
ming.org/values.html. [Zugriff am 18 05 2025].

[41] [Online]. Available: https://www.c-sharpcorner.com/article/12-core-practices-in-xp/. [Zu-
griff am 15 1 2025].

[43] [Online]. Available: https://www.praxisframework.org/files/royce1970.pdf. [Zugriff am 05
05 2025].

[46] ,,ionos.at,” [Online]. Available: https://www.ionos.at/digitalguide/websites/web-entwick-
lung/kanban/. [Zugriff am 18 05 2025].

[55] ,MAXQDA,*“ [Online]. Available: https://www.maxqda.com/. [Zugriff am 18 05 2025].

[58] R. Dagley, ,ITProToday,“ 15 01 2025. [Online]. Available: https://www.itproto-
day.com/software-development/software-development-trends-and-predictions-2025-from-
industry-insiders. [Zugriff am 24 03 2025].

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Anhang

vil

Anhang

Ubersicht verwendeter Hilfsmittel

ChatGPT
(OpenAl)

Version / Datum

GPT-4,
Jan—Mairz 2025

Verwendungsbereich

Hilfe bei Formulierung
und Strukturvorschla-
gen von Kapiteltexten

Beispielhafte
Eingaben

(Prompts)

,,Reformuliere
diese Beschrei-
bung fiir diese

Verwendung
ohne substanzi-
elle Anderun-
gen?

Nein — alle Texte
wurden iiberarbei-
tet und angepasst.

bei 6.1. Praktik basierend
auf folgenden
Text...“
GPT-4, Tabelle 26 und Tabelle | ,Erstelle aus dem | Begriindungen
Mairz 2025 27 Cop Zielen ... bzw. Einordnung
und relevanten und Formatierung
Best Practices ... | adaptiert.
wobei die Zuord-
nung wie folgt
aussieht ... eine
Tabelle.*
GPT-4, Konsistenzpriifung von | ,,Uberpriife ob Nein, wurde zur
Jan—-Mirz 2025 Kapitelnummern und alle Themen/Ka- | Uberpriifung glei-

Bezeichnungen tegorien in Kapi- | cher Formulierun-
tel 6 mit demsel- gen zwecks Kon-
ben Wortlaut kon- | sistenz verwen-
sistent verwendet | det.
wurden®.

GPT-4, Kurzfassung/Abstract ,,Erstelle einen Nein, Textvor-
Mairz 2025 Vorschlag fiir die | schlag wurde

Kurzfassung ba-
sierend auf dem
Inhalt dieser Ar-
beit®.

adaptiert und ge-
andert.

Tabelle 28: Ubersicht verwendeter Hilfsmittel

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfiigbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

LARAY Your knowledge hub

[3ibliothek,

Anhang viii

Ubersicht Methodik mit den dazugehorigen Kapiteln

State of the Art Fallstudie

Kleine SoftwaregroBprojekte

Softwareprojekte
Hoda et al.
(Kapitel 3.1 & 3.2)

5
Inter-

.,

v v

\\\\ Arte- | | Partici-
~ \ ¥

| -
142V, ~ g
_

! ! :

il

Abgleich

1.42 | .-°
VI. l

Abbildung 20: Ubersicht Methodik

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Anhang ix

Interviewleitfaden

Allgemeine Information

Datum:
Teilnehmer:

Thema: Arbeitsweise autonomer Teams in SoftwaregrofBiprojekten.

Ziel dieses Interviews ist es die Arbeitsweise autonomer Teams in SoftwaregroBprojekten zu er-

fassen.

Regeln

Das Interview wird per Aufnahmegerit und der Einwilligung des Interviewteilnehmers auf-
genommen damit der Interviewer nicht alle Informationen wahrend des Interviews schriftlich
festhalten muss und eine leichtere Auswertung ermdglicht wird.

Der Interviewte Teilnehmer darf jederzeit auch relevante Themen diskutieren die nicht un-
mittelbar durch die Interviewfragen abgedeckt sind.

Interview-Fragen

Allgemeines:
1. Was ist das Ziel des Projektes und welchem Thema sind Sie zugeteilt?
2. Welche Rolle und welchem Verantwortungsbereich sind Sie zugeteilt?
3. Wie viele Teilnehmer gibt es in dem Projekt und in Threm autonomen Team?
4. Wie sieht die Projekt- und Hierarchie-Struktur aus?
(Releasezyklen, Teilprojekte und Hierarchie)
5. Erkldren Sie den eingesetzten Softwareentwicklungsprozess und dessen Anwendung?

(Traditionelles oder agiles Vorgehensmodell)

Kategorie 1: Collective decision making

6.

Wie und von wem werden Komplexitit- und Aufwandsschéitzungen von Aufgaben ge-
macht?

Wie und von wem werden Richtlinien und Prinzipien fiir die Umsetzung festgelegt?

Wie wird auf dynamische Anderungen bei Anforderungen fachlicher oder technischer Hin-
sicht umgegangen?

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfugbar

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

Anhang

Kategorie 2: Self-assignment
9. Wie erfolgen die Auswahl und Zuteilung von Anforderungen und Fehlern?

10. Wie wird die Transparenz fiir alle Teammitglieder gewihrleistet?

Kategorie 3: Self-monitoring
11. Wie und von wem erfolgt die Fortschrittsmessung der Aufgaben?

12. Gibt es Meetings um den Fortschritt anderen Teilnehmern/Teams zu kommunizieren und
Probleme rechtzeitig zu erkennen und zu beheben?

Kategorie 4: Need for specialization
13. Besteht die Moglichkeit der individuellen Fortbildung innerhalb des Teams?
14. Besteht die Moglichkeit der individuellen iiber die Teamgrenzen hinaus?

(Andere Themengebiete, Rollenwechsel)

Kategorie 5: Encouraging cross-functionality
15. Wie erfolgt die Kommunikation innerhalb und auBerhalb ihres autonomen Teams?
16. Wie erfolgt die Wissensverteilung innerhalb des Teams?

(Wissensverteilung, Spezialisierung und Support, Umgang mit Ausféllen)

Kategorie 6: Self-evaluation

17. Besteht zwischen den Iterationen eine Reflexion der individuellen und gesamten Teamleis-
tung (Lernprozess)?

18. Gibt es einen Ansporn fiir gute Team- oder Individualleistungen?

Kategorie 7: Self-improvement
19. Gibt es Praktiken die eingesetzt werden um komplexe Aufgabengebiete zu bewéltigen?

20. Wird den Teammitgliedern die Mdglichkeit geboten neue Themengebiete zu erforschen
oder zu vertiefen? (Fortbildungen, Kurse, etc.)

Zusatz:

21. Gibt es noch relevante Punkte welcher nicht durch die oben angefiihrten Interviewfragen
abgedeckt wurde und der fiir das Arbeiten als autonomes Team fiir Sie wichtig ist?

		2025-10-07T14:45:31+0200
	Signature Box
	Martin Schliefellner
	Signature

		2025-10-07T14:46:34+0200
	Signature Box
	Martin Schliefellner
	Signature

