
Untersuchung skalierbarer
Praktiken für autonome Teams in

Softwaregroßprojekten:
Kategorien, Kriterien und Best Practices

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Ing. Martin Schliefellner, B.Sc.
Matrikelnummer 0828600

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Grechenig

Wien, 8. September 2025
Martin Schliefellner Thomas Grechenig

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der Arbeit

Ing. Martin Schliefellner, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – ein-
schließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wort-
laut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung
kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient habe und
in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang „Übersicht ver-
wendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die verwendet wurden, und
angegeben, wo und wie sie verwendet wurden. Für Textpassagen, die ohne substantielle Ände-
rungen übernommen wurden, habe ich jeweils die von mir formulierten Eingaben (Prompts) und
die verwendete IT-Anwendung mit ihrem Produktnamen und Versionsnummer/Datum angege-
ben.

Wien, 16.09.2025 __________________________

 Schliefellner Martin

Danksagung

An dieser Stelle möchte ich meiner Familie herzlich für ihre Unterstützung während meines Stu-
diums danken. Ein besonderer Dank gilt meiner Frau Katharina für ihre Geduld, ihre Hilfsbereit-
schaft und ihre beständige Unterstützung in dieser intensiven Zeit.

Mein aufrichtiger Dank gilt auch DDI Dr. Raoul Vallon für seine engagierte Betreuung, seine
Geduld sowie seinen kompetenten Rat. Ohne seine fachliche Begleitung und das konstruktive
Feedback wäre diese Arbeit in dieser Form nicht möglich gewesen.

Ebenso danke ich Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Thomas Grechenig, DI Dr. Mario Bernhart
und Mag. Dr. Brigitte Brem für die gewährte Flexibilität und die wertvolle Unterstützung, die
maßgeblich zum erfolgreichen Abschluss dieser Arbeit beigetragen haben.

Ebenso danke ich allen Interviewpartnerinnen und -partnern sowie den Ansprechpartnerinnen und
-partnern für ihre Offenheit und die wertvollen Einblicke, die maßgeblich zum Gelingen dieser
Untersuchung beigetragen haben. Mein Dank richtet sich auch an die Mitarbeiterinnen und Mit-
arbeiter des Instituts sowie an die Mitglieder der Forschungsgruppe, deren hilfreiche Beiträge und
konstruktives Feedback von großem Nutzen waren.

Kurzfassung

In Softwaregroßprojekten arbeiten mehrere Dutzend bis über hundert Personen verteilt auf zahl-
reiche Teams gemeinsam an einem einzigen Produkt. Dabei sind verschiedenste Rollen beteiligt
– von Entwicklern, Testern und Architekten über Product Owner bis hin zu Projektleitern. Die
Herausforderung besteht darin, eine übergreifende Koordination und gemeinsame Ausrichtung
sicherzustellen, ohne die Autonomie und Eigenverantwortung der einzelnen Teams einzuschrän-
ken. Autonome Teams gelten als Erfolgsfaktor moderner agiler Softwareentwicklung – ihre ef-
fektive Einbindung in komplexe Großprojekte erfordert jedoch angepasste organisatorische
Strukturen und praktikable Lösungsansätze.

Die Arbeit identifiziert bewährte Praktiken (Engl. „Best Practices“) für autonome Teams in in-
dustriellen Softwaregroßprojekten und überprüft deren Skalierbarkeit im Abgleich mit Erkennt-
nissen aus kleineren agilen Softwareprojekten, für die entsprechende Praktiken von Hoda et al.
beschrieben wurden. Ziel ist es, sowohl Übereinstimmungen als auch kontextuelle Unterschiede
herauszuarbeiten, um fundierte und praxistaugliche Empfehlungen für den alltäglichen Einsatz
autonomer Teams in komplexen Projektszenarien zu formulieren.

Die Untersuchung basiert auf drei Fallstudien aus unterschiedlichen Anwendungsbereichen – ei-
nem Versicherungsträger, einem internationalen Autohauskonzern und einem Projekt im Gesund-
heitsbereich. Insgesamt werden 15 semi-strukturierte Interviews geführt und mittels thematischer
Analyse nach Braun & Clarke ausgewertet. Im Rahmen der Analyse entstanden 13 zentrale The-
menkategorien, denen auf Basis kodierter Interviewsegmente insgesamt 23 konkrete Best Prac-
tices zugeordnet wurden. Neun von 13 Praktiken von Hoda et al. zeigen eine inhaltliche Überein-
stimmung mit den identifizierten Best Practices und wurden als anwendbar in Softwaregroßpro-
jekten bestätigt. Die Skalierbarkeitsanalyse verdeutlicht, welche bewährten Praktiken aus kleinen
agilen Teams auch in komplexen Softwaregroßprojekten wirksam einsetzbar sind, und liefert da-
mit fundierte Ansatzpunkte für die Übertragbarkeit etablierter Arbeitsweisen auf großindustrielle
Kontexte. Die Zuordnung der Praktiken zu den Kategorien erfolgt auf Basis definierter Kriterien,
wodurch eine konsistente und nachvollziehbare Strukturierung gewährleistet wird.

Die identifizierten Praktiken können Organisationen dabei unterstützen, effektive Rahmenbedin-
gungen für Selbstorganisation, Koordination und kontinuierliche Verbesserung in verteilten Ent-
wicklungsstrukturen zu schaffen.

Keywords: Autonome Teams, Skalierbare Best Practices, Softwaregroßprojekte, Selbstorganisa-
tion

Abstract

In large software projects, many people – from dozens to over a hundred – work together across
multiple teams on a single product. Various roles are involved, such as developers, testers, archi-
tects, product owners, and project managers. The main challenge is to ensure coordination and
alignment between teams without limiting their autonomy and responsibility too much. Self-or-
ganizing teams are seen as a key success factor in modern agile software development. However,
integrating them effectively into complex large-scale projects requires organizational structures
and practical approaches.

This study identifies effective best practices for self-organizing teams in large industrial software
projects and evaluates their scalability by comparing them with findings from smaller agile pro-
jects, as described by Hoda et al. The goal is to highlight both common ground and context-
specific differences, in order to develop well-founded and practical recommendations for the daily
use of self-organizing teams in complex project environments.

The study is based on three case studies from different application domains – a social insurance
institution, an international automotive corporation, and a healthcare-related software project. A
total of 15 semi-structured interviews were conducted and analyzed using thematic analysis ac-
cording to Braun & Clarke. The analysis resulted in 13 central thematic categories, to which a
total of 23 specific best practices were assigned based on coded interview segments. Nine of 13
practices described by Hoda et al. show a clear conceptual match with the identified best practices
and were confirmed to be applicable in large-scale software projects. The scalability analysis il-
lustrates which proven practices from smaller agile teams can also be effectively applied in com-
plex large-scale software projects, providing concrete guidance for transferring established work
practices to industrial-scale development contexts. The assignment of practices to categories was
carried out based on defined criteria, ensuring a consistent and transparent structure.

The identified practices aim to help organizations create the right conditions for self-organization,
collaboration, and continuous improvement in distributed development environments.

Keywords: Autonomous Teams, Scalable Best Practices, Large-Scale Software Projects, Self-
Organization

Inhaltsverzeichnis I

Inhaltsverzeichnis

Inhaltsverzeichnis .. I
1 Einleitung .. 1

1.1 Problemstellung .. 1
1.2 Motivation .. 3
1.3 Zielsetzung ... 4
1.4 Methodik .. 4

1.4.1 Methodischer Rahmen ... 5
1.4.2 Methodisches Vorgehen ... 6

1.5 Aufbau der Arbeit ... 11
2 Grundlagen .. 13

2.1 Projektstrukturen ... 13
2.2 Definitionen relevanter Begriffe .. 14

2.2.1 Single case study vs. Multiple case study .. 14
2.2.2 Autonomie und Autarkie von Teams .. 15
2.2.3 Industrielles Großsoftwareprojekt .. 16
2.2.4 Skalierbare Best Practices ... 17
2.2.5 Softwareentwicklungsmethoden .. 18

3 State of the Art ... 25
3.1 Die Basis für diese Arbeit ... 27
3.2 Kategorien und Best Practices von Hoda et al. .. 33

3.2.1 Collective Decision-Making ... 33
3.2.2 Self-Assignment .. 34
3.2.3 Self-Monitoring ... 35
3.2.4 Need for Specialization .. 36
3.2.5 Encouraging Cross-Functionality ... 36
3.2.6 Self-Evaluation ... 37
3.2.7 Self-Improvement .. 37

4 Single Case Studies ... 39
4.1 Erstellung des Fragebogens .. 39

4.1.1 Collective decision making ... 40
4.1.2 Self-assignment ... 40

Inhaltsverzeichnis II

4.1.3 Self-monitoring ... 40
4.1.4 Need for specialization ... 41
4.1.5 Encouraging cross-functionality .. 41
4.1.6 Self-evaluation .. 41
4.1.7 Self-improvement .. 41
4.1.8 Erstellung und Aufbau des Fragebogens ... 42

4.2 Übersicht der Fallbeispiele ... 42
4.3 Interviews .. 43
4.4 Single Case Study: Versicherungsträger (Fallbeispiel 1) 44

4.4.1 Projektziel .. 44
4.4.2 Vorgehensmodell und Projektphasen ... 47
4.4.3 Zeitplan .. 48
4.4.4 Participant Observation .. 48
4.4.5 Beispiele (Auswahl) der Artefakte und Beobachtungen 48
4.4.6 Einfluss der Beobachtungen auf den Fragebogen ... 51
4.4.7 Thematische Analyse der Interviews .. 51

4.5 Single Case Study: Autohaus (Fallbeispiel 2) .. 56
4.5.1 Projektziel .. 56
4.5.2 Projektorganisationsstruktur, Rollen und Teams .. 56
4.5.3 Vorgehensmodell und Projektphasen ... 57
4.5.4 Zeitplan .. 57
4.5.5 Thematische Analyse der Interviews .. 58

4.6 Single Case Study: Gesundheitsbereich (Fallbeispiel 3) 60
4.6.1 Projektziel .. 60
4.6.2 Projektorganisationsstruktur, Rollen und Teams .. 60
4.6.3 Vorgehensmodell und Projektphasen ... 61
4.6.4 Zeitplan .. 61
4.6.5 Thematische Analyse der Interviews .. 61

5 Multiple Case Study .. 65
5.1 Auswertung der Multiple Case Study ... 65
5.2 Die Code Themen ... 66

5.2.1 Überschneidungen Fallbeispiel 1, 2 und Fallbeispiel 3 67
5.2.2 Überschneidungen Fallbeispiel 1 und Fallbeispiel 2 69
5.2.3 Überschneidungen Fallbeispiel 1 und Fallbeispiel 3 71
5.2.4 Überschneidungen Fallbeispiel 2 und Fallbeispiel 3 72
5.2.5 Codes die nur in zwei Fallbeispielen gemeinsam existieren............................. 74

6 Ergebnisse .. 77

Inhaltsverzeichnis III

6.1 Benennung der Best Practices aus den Codes der Hauptthemen 77
6.1.1 Transparenz .. 78
6.1.2 Kommunikation .. 85
6.1.3 Reflexion & Lernprozess .. 87
6.1.4 Wissensverteilung & Support .. 89
6.1.5 Fortbildung ... 91
6.1.6 Richtlinien, Grenzen, Normen und Prinzipien ... 95
6.1.7 Meetings .. 99
6.1.8 Fortschrittsmessung ... 101
6.1.9 Auswahl & Zuteilung von Tasks ... 102
6.1.10 Taskänderungen .. 105
6.1.11 Team Events & Belohnungen .. 107
6.1.12 Komplexe Themen .. 109
6.1.13 Aufwandsschätzung ... 110

6.2 Analyse skalierbarer Best Practices ... 117
6.2.1 Übereinstimmendes Practice 1: Collective Estimation & Planning 118
6.2.2 Übereinstimmendes Practice 2: Daily Standup Meetings 118
6.2.3 Übereinstimmendes Practice 3: Information Radiators 119
6.2.4 Übereinstimmendes Practice 4: Using Story Board 119
6.2.5 Übereinstimmendes Practice 5: Taking Task Ownership 120
6.2.6 Übereinstimmendes Practice 6: Group Programming 121
6.2.7 Übereinstimmendes Practice 7: Learning Spike ... 122
6.2.8 Übereinstimmendes Practice 8: Pair-in-Need .. 123
6.2.9 Übereinstimmendes Practice 9: Retrospectives .. 123
6.2.10 Nicht skalierbare Best Practices ... 124

6.3 Zusammenfassung der Themen als Kategorien .. 127
6.3.1 Transparenz .. 128
6.3.2 Kommunikation .. 128
6.3.3 Reflexion & Lernprozess .. 129
6.3.4 Wissensverteilung und Support ... 129
6.3.5 Fortbildung ... 129
6.3.6 Richtlinien, Grenzen, Normen und Prinzipien ... 129
6.3.7 Meetings .. 129
6.3.8 Fortschrittsmessung ... 130
6.3.9 Auswahl und Zuteilung von Tasks ... 130
6.3.10 Taskänderungen .. 130
6.3.11 Team Events & Belohnungen .. 130
6.3.12 Komplexe Themen .. 131

Inhaltsverzeichnis IV

6.3.13 Aufwandsschätzung ... 131
6.4 Kriterien für die 13 Kategorien ... 131

6.4.1 Kriterien der Kategorie „Transparenz“ ... 132
6.4.2 Kriterien der Kategorie „Kommunikation“ ... 132
6.4.3 Kriterien der Kategorie „Reflexion & Lernprozess“ 133
6.4.4 Kriterien der Kategorie „Wissensverteilung & Support“ 133
6.4.5 Kriterien der Kategorie „Fortbildung“ .. 133
6.4.6 Kriterien der Kategorie „Richtlinien, Grenzen, Normen und Prinzipien“ 134
6.4.7 Kriterien der Kategorie „Meetings“ ... 134
6.4.8 Kriterien der Kategorie „Fortschrittsmessung“ .. 135
6.4.9 Kriterien der Kategorie „Auswahl und Zuteilung von Tasks“ 135
6.4.10 Kriterien der Kategorie „Task-Änderungen“ ... 136
6.4.11 Kriterien der Kategorie „Team Events & Belohnungen“ 136
6.4.12 Kriterien der Kategorie „Komplexe Themen“ ... 136
6.4.13 Kriterien der Kategorie „Aufwandsschätzung“ .. 137

6.5 Aktualisierter Abgleich der Ergebnisse im State of the Art 2024/2025 137
6.6 Validität und Limitationen .. 140

6.6.1 Methodische Validität .. 140
6.6.2 Ergebnisbezogene Limitationen und Übertragbarkeit 142

7 Zusammenfassung und Ausblick ... 145
7.1 Ausblick und zukünftige Forschung ... 147

Abbildungsverzeichnis ... i
Tabellenverzeichnis .. ii
Literaturverzeichnis .. iii
Anhang ... vii

Einleitung 1

1 Einleitung

Dieses Kapitel führt in das Thema der Arbeit ein und beschreibt die Problemstellung sowie die
Motivation hinter der Untersuchung. Anschließend werden die Zielsetzung und die zugrunde lie-
genden Forschungsfragen erläutert. Zudem wird das methodische Vorgehen vorgestellt, das zur
Beantwortung der Forschungsfragen gewählt wurde. Abschließend wird der Aufbau der Arbeit
beschrieben, um dem Leser einen Überblick über die folgenden Kapitel zu geben.

1.1 Problemstellung

Geringe Autonomie und Autarkie von Projektmitarbeitern führt in traditionellen Projektstruktu-
ren zu einem erhöhten Personalbedarf in der Führungsebene. Der Einsatz von autonomen Teams
stellt einen Lösungsansatz dar, striktere Projektstrukturen zu vermeiden und thematisch abge-
grenzte Aufgabenbereiche an die jeweiligen Teams abzugeben.

Die Übergabe dieser Aufgabenbereiche stellt hohe Anforderungen an die Teammitglieder und
gefordert sind insbesondere Soft Skills, Erfahrung, Flexibilität, Verantwortungsbewusstsein und
selbstständiges Arbeiten. Um diesen Anforderungen gerecht zu werden und effizientes Arbeiten
zu ermöglichen, muss das Management den Teams ausreichend Freiraum gewähren, damit sie
ihre Arbeitsweise bestmöglich an ihre Bedürfnisse anpassen können [1] [2].

Je größer ein Projekt wird, desto schwieriger wird der Koordinations- und Planungsaufwand. Der
Begriff Softwaregroßprojekt (Engl. „large-scale software project“) wird von Dikert et al. als Pro-
jekt mit mindestens 50 Personen und 6 Teams beschrieben [3]. Als Folge der steigenden Kom-
plexität bei Softwaregroßprojekten, bei denen sehr viele Teams an einem Produkt arbeiten, ergibt
sich eine Einschränkung in der der Autonomie der einzelnen Teams. Um Softwaregroßprojekte
managen zu können, muss ein einheitlicher Rahmen geschaffen werden. Vorgaben an Qualität,
projektspezifische Standards und Release-Koordination gehören zu diesen Vorgaben [4] [5].

Obwohl die Teams in ihrem jeweiligen Verantwortungsbereich selbstständig arbeiten, ist eine
Abstimmung in Architekturfragen sowie in Bezug auf Schnittstellen zu anderen Teams erforder-
lich. Zudem müssen sie den Projektfortschritt regelmäßig berichten und bei Bedarf gezielt fach-

Einleitung 2

liche Unterstützung einholen. Dies erhöht die Komplexität der Koordination zwischen den auto-
nomen Teams erheblich. Insbesondere bei verteilten Standorten ist es entscheidend, dass klare
Zuständigkeiten bestehen und der richtige Ansprechpartner bekannt ist [6] [7] [8].

In den letzten Jahren wurden im agilen Bereich verschiedene Softwareentwicklungsprozesse und
Skalierungsframeworks für Softwaregroßprojekte geschaffen. SAFe, LeSS, Scrum-at-Scale,
DAD oder das Spotify Model gehören zu diesen Frameworks zur Organisation agiler Entwick-
lungsprozesse in großen Unternehmen [9] [10] [11] [12] [13]. Unter anderem definieren diese
Frameworks Muster, Praktiken und Leitlinien für ein Unternehmen, welches ein Softwaregroß-
projekt umsetzen möchte. Dennoch sollten diese Skalierungsframeworks nicht nach Buch und
ohne weitere Anpassung (Engl. „out of the box“) verwendet werden. Eher dienen sie als Inspira-
tion für das Unternehmen und sollen bei der Entscheidungsfindung helfen. Eine Adaptierung an
die Projektgegebenheiten ist daher unerlässlich [14].

Umso mehr ist es notwendig die Arbeitsweise der autonomen Softwareentwicklungsteams im
Umfeld von Softwaregroßprojekten zu analysieren und Best Practices zu finden. Umfangreiche
Arbeiten und Forschungen in diesem Umfeld werden von Hoda et al. geführt. Seit 2008 hat sie
mit ihren Kollegen über 80 Publikationen im Umfeld autonome Teams und agile Softwareent-
wicklung geschaffen. Wenige neue Arbeiten der letzten vier Jahre widmen sich dem Umfeld in
Softwaregroßprojekten und diese zeigen den großen Forschungsbedarf in diesem Umfeld auf
[15].

Aufbauend auf den existierenden Forschungsergebnissen zu autonomen Teams im Umfeld von
Softwaregroßprojekten, untersucht diese Arbeit die Arbeitsweise dieser Teams um Best Practices
zu identifizieren. Als Abgrenzung ist festzuhalten, dass die Analyse rein auf der Arbeitsweise
autonomer Teams vorgenommen wird. Die Arbeitsweise in der Führungsebene oder die Anwend-
barkeit bestehender Frameworks ist nicht Teil dieser Arbeit.

Untersucht werden Praktiken zum Umgang der Aufwandsschätzung und Zuteilung von Aufgaben
und Fehlern, der Reaktion auf fachliche und technische Änderungen, der Kommunikation der
Teammitglieder und Tools, Gewährung der Transparenz, Fortschrittsmessung, Möglichkeiten der
Spezialisierung und Weiterbildung sowie der Wissensverteilung.

Die gefunden Best Practices sollen bestehende Forschungsergebnisse bestätigen und gegebenen-
falls erweitern bzw. eine Skalierbarkeit (siehe Punkt 2.2.4) aufzeigen.

Einleitung 3

1.2 Motivation

Mit zunehmender Größe eines Softwareprojekts steigen die Anforderungen an Struktur, Abstim-

mung und Koordination. Während in kleineren Vorhaben oft einfache agile Strukturen genügen,

erfordern große Projekte angepasste organisatorische Rahmenbedingungen, um Selbstorganisa-

tion und effektive Zusammenarbeit in mehreren Teams zu ermöglichen. Die Wahl des passenden

Vorgehensmodells – ob agil, traditionell oder hybrid – prägt dabei entscheidend, wie Planung,

Kommunikation und Umsetzung gestaltet werden. Beim Vorgehensmodell unterscheidet man

zwischen agilen Modellen (z.B. Scrum oder Extreme Programming), traditionellen Modellen

(z.B. Wasserfall) oder hybriden Modellen (z.B. Scrumfall) [1] [16] [17]. Agile Vorgehensmodelle

benötigen gegenüber traditionellen Modellen, selbstorganisierende Teamstrukturen, um zu funk-

tionieren, wie in den zwölf Hauptprinzipien des agilen Manifests von Fowler und Highsmith [18]

beschrieben.

Die Untersuchung der Arbeitsweise autonomer Teams in Softwaregroßprojekten stellt die Haupt-

motivation des Autors dar, da es hier noch wenig relevante Forschung im großindustriellen Um-

feld gibt. Es soll anhand der Arbeitsweisen „autonomer Teams“ untersucht werden, ob sich ge-

meinsame Best Practices in den zu untersuchenden Fallbeispielen finden lassen. Der State of the

Art (siehe Kapitel 3) zeigt auf, unter welchen Rahmenbedingungen autonome Teams in Software-

großprojekten wirksam eingesetzt werden können und welche Herausforderungen dabei typi-

scherweise auftreten. Diese Ergebnisse betreffen zum einen personelle Voraussetzungen und zum

anderen Artefakte und Ressourcen, die zur Verfügung gestellt werden müssen, damit diese Art

von Organisation funktioniert. Personelle Voraussetzungen betreffen Soft Skills, Erfahrung, Fle-

xibilität, das Übernehmen von Verantwortung und selbstständiges Arbeiten. Zusätzlich zu diesen

Eigenschaften, müssen den Teilnehmern die Ressourcen in ausreichendem Umfang zur Verfü-

gung gestellt werden damit diese ihre Ziele erreichen können. Die Arbeitsumgebung ist für eine

gute Kommunikation genauso wichtig, wie für Mitarbeiter motivierende Belohnungen.

Alle diese angeführten Faktoren gestalten sich in ihrer Umsetzung schwieriger je größer das Pro-

jekt ist. Anhand großindustrieller Fallbeispiele möchte der Autor aktuelle Forschungsergebnisse

der Best Practices für autonome Teams in Ihrer Anwendbarkeit für Softwaregroßprojekte unter-

suchen. Die Motivation gilt dem Erfahrungsgewinn dieser Gegenüberstellung zwischen dem ak-

tuellen State of the Art in kleineren Projekten mit autonomen Teams und den Ergebnissen dieser

Arbeit für Softwaregroßprojekte. Die gewonnenen Erkenntnisse sollen autonome Teams in gro-

ßen Softwareprojekten bei ihrer Organisation unterstützen.

Einleitung 4

1.3 Zielsetzung

Das Ziel dieser Diplomarbeit ist der Vergleich bestehender Forschungsergebnisse mit den Ergeb-

nissen einer durchzuführenden Fallstudie, um bisherige Forschungsergebnisse im Kontext von

Softwaregroßprojekten zu validieren bzw. Verbesserungspotential aufzuzeigen. Angeleitet wird

die Diplomarbeit durch folgende Forschungsfragen (Research Questions - RQ):

RQ1a. Welche Praktiken lassen sich in Softwaregroßprojekten zur Unterstützung autonomer

Teams identifizieren?

RQ1b. Welche Praktiken für autonome Teams sind auch für große Softwareprojekte skalierbar?

RQ2. In welche Kategorien können die identifizierten Praktiken unterteilt werden?

RQ3. Auf Basis welcher Kriterien kann eine Kategorisierung stattfinden?

Die durchzuführenden Fallstudien werden dem aktuellen State of the Art gegenübergestellt. Die

Analyse zeigt exemplarisch, welche Praktiken in den untersuchten Projekten eingesetzt wurden

und im Rahmen der Untersuchung als praktikabel für große Softwareprojekte identifiziert wur-

den. Die Untersuchung orientiert sich dabei an den thematischen Schwerpunkten der Problem-

stellung und analysiert deren Bedeutung im praktischen Anwendungskontext. Unter Berücksich-

tigung des aktuellen Forschungsstandes werden darauf aufbauend Kriterien zur Einordnung der

identifizierten Praktiken formuliert, thematische Kategorien entwickelt und Best Practices sowie

deren Skalierbarkeit identifiziert und bewertet.

1.4 Methodik

In dieser Arbeit wird ein qualitativer, fallstudienbasierter Forschungsansatz gewählt, um die Ar-
beitsweise autonomer Teams in Softwaregroßprojekten zu untersuchen. Ziel ist es, zentrale Best
Practices zu identifizieren, deren Skalierbarkeit zu analysieren und diese systematisch auf Basis
von definierten Kriterien in Kategorien einzuordnen. Die Untersuchung erfolgt kontextsensitiv
und praxisnah anhand realer Projektbeispiele.

Einen grundlegenden theoretischen Rahmen liefert Robert K. Yin, der als einer der bedeutendsten
methodischen Vertreter der Fallstudienforschung gilt. Seine Methodik wurde bereits in den
1980er-Jahren eingeführt und liegt mittlerweile in der 6. Auflage unter dem Titel “Case Study
Research and Applications: Design and Methods” [19] vor.

Yin liefert für die Fallstudie folgende Definition:

Einleitung 5

„A case study is an empirical method that investigates a contemporary phenomenon
(the ‘case’) in depth and within its real-world context, especially when the bounda-
ries between phenomenon and context may not be clearly evident.“ ([19], S. 15)

Dieses Verständnis ist besonders relevant für diese Arbeit, da sich die Selbstorganisation von
Teams nicht isoliert vom jeweiligen Projektumfeld betrachten lässt. Auf dieser theoretischen
Grundlage basiert der methodische Leitfaden von Runeson & Höst [20], welche die zentrale Prin-
zipien von Yin auf den Bereich des Software Engineerings übertragen und in ein praxisorientier-
tes Vorgehensmodell für empirische Studien überführen. Ihre Vorgehensweise ist besonders ge-
eignet für Studien, die reale Softwareprojekte untersuchen.

Für die methodische Nachvollziehbarkeit wird dieses Kapitel in zwei Unterpunkte gegliedert:

• Abschnitt 1.4.1 beschreibt den theoretischen und methodischen Rahmen der Arbeit. Dabei

wird das Forschungsdesign gemäß den fünf Phasen der Fallstudienforschung nach Runeson
& Höst [20] erläutert. Diese systematische Herangehensweise bildet die methodische Grund-
lage für die vorliegende empirische Untersuchung.

• Abschnitt 1.4.2 beschreibt im Anschluss das konkrete Vorgehen in der Durchführung der
Untersuchung. Dabei werden die einzelnen Erhebungsschritte, Datenquellen und Analysever-
fahren im Detail dargestellt, wie sie im Rahmen dieser Arbeit umgesetzt werden.

Limitationen der Fallstudienforschung sowie der erzielten Ergebnisse werden in Kapitel 6.6 sys-
tematisch dargelegt.

1.4.1 Methodischer Rahmen

Die empirische Grundlage dieser Arbeit bildet die Fallstudienforschung nach Runeson et al. [20].
Diese Methode ist besonders gut geeignet, um komplexe Fragestellungen im realen Projektkon-
text zu untersuchen. Runeson et al. beschreiben dafür einen klaren Ablauf mit fünf Schritten, die
übernommen und auf den konkreten Forschungskontext angewendet werden (vgl. Tabelle 1):

Schritt
Beschreibung nach
Runeson & Höst
(2008)

Konkretisierung in dieser Arbeit

1. Design der Fall-

studie

(Engl. „case study

design“)

Festlegung der Ziele

und Forschungsfra-

gen, Auswahl der zu

untersuchenden Fälle.

Definition der Forschungsfragen RQ1a, RQ1b, RQ2

und RQ3. Auswahl von drei Softwaregroßprojekten

mit autonomen Teams in unterschiedlichen Domänen

(Versicherung, Automobilindustrie, Gesundheitswesen.

Einleitung 6

2. Vorbereitung der

Datenerhebung

(Engl. „preparation

for data collection“)

Planung der Datener-

hebung, Erstellung

eines Leitfadens, Be-

rücksichtigung ethi-

scher Aspekte.

Entwicklung eines semi-strukturierten Interviewleitfa-

dens auf Basis von bestehenden Kategorien aus der Li-

teratur (z. B. Hoda et al.) und aktuellen Forschungser-

gebnissen (State of the Art), um eine vergleichbare Da-

tengrundlage zu schaffen. Auswahl verschiedener Teil-

nehmerrollen (z. B. Entwickler, Architekt, Teamlei-

tung), Vorbereitung ergänzender Artefaktanalyse (z. B.

Dokumente, Boards).

3. Durchführung

der Datenerhebung

(Engl. „collecting

evidence“)

Sammlung der Daten

aus verschiedenen

Quellen (Interviews,

Beobachtungen, Do-

kumente).

Durchführung und Aufzeichnung von 5 Interviews je

Fallbeispiel mit Teammitgliedern in unterschiedlichen

Rollen. Ergänzend: Analyse von Artefakten sowie ei-

ner Participant Observation in einem Projekt zum bes-

seren Verständnis der Teamabläufe.

4. Datenanalyse

(Engl. „analysis of

collected data“)

Strukturierte qualita-

tive Auswertung, ggf.

ergänzt durch quanti-

tative Elemente.

Themenbasierte Analyse nach Braun & Clarke, unter-

stützt durch Softwaretools. Aufbau eines Systems aus

Codes und Themen, die später als Grundlage für die

Best Practices und Kategorien dienen. Zusätzlich er-

folgt die Entwicklung der Kriterien zur Themenkatego-

risierung.

5. Berichterstattung

(Engl. „reporting“)

Präsentation der Er-

gebnisse und Refle-

xion der Validität.

Strukturierte Darstellung der Ergebnisse in Bezug auf

die Forschungsfragen und Diskussion über Limitatio-

nen.

Tabelle 1: Prozess der Fallstudienforschung nach Runeson & Höst

1.4.2 Methodisches Vorgehen

Aufbauend auf dem methodischen Rahmen (vgl. Punkt 1.4.1) gliedert sich das konkrete Vorgehen
dieser Arbeit in sechs klar definierte Phasen, die im Folgenden im Detail beschrieben werden:

I. Analyse vorhandener Literatur und Forschung

Vorhandene Literatur im Bereich autonomer Teams wird analysiert, um das theoretische
Grundgerüst zu schaffen. Aktuelle Forschungsergebnisse werden dokumentiert, um diese für
die Prüfung der Anwendbarkeit in den Fallstudien vorzubereiten. Der Fokus bei der Auswahl
der Literatur gilt insbesondere den Herausforderungen, sowie den bekannten Best Practices,
mit denen sich autonome Teams konfrontiert sehen. Die hierbei erzielten Analyseergebnisse
gelten dann gleichermaßen als Referenz für die durchzuführende Fallstudie.

Einleitung 7

II. Participant Observation in einem Softwaregroßprojekt
Durch die aktive Teilnahme und Beobachtung in einer der Fallstudien entsteht ein besseres
Verständnis für Abläufe, Zusammenarbeit, Koordination und Fachbegriffe. Diese Form der
Datenerhebung – auch Participant Observation [21] genannt – liefert wichtige Einblicke, die
bei der Erstellung der Interviewfragen und der späteren Analyse unterstützen.

III. Datensammlung aus drei Softwaregroßprojekten anhand von semi-strukturierten In-

terviews
Aufgrund der in Phase I und II erhaltenen Informationen werden semi-strukturierte Inter-
views mit Mitarbeitern in drei verschiedenen Softwaregroßprojekten geführt, um Informati-
onen über deren Arbeitsweise zu erheben. Die Anzahl der Mitarbeiter in diesen Projekten
befindet sich zwischen 80 und 200 Personen; die Anzahl der Mitarbeiter der einzelnen auto-
nomen Teams variiert zwischen 5 und 15 Personen. Fallstudie 1 ist ein Projekt für einen
großen Versicherungsträger in Österreich, Fallstudie 2 für einen großen Autohersteller und
Fallstudie 3 widmet sich dem Gesundheitsbereich in Deutschland. Durch gezielte Fragen
wird das Interview gelenkt, um vergleichbare Informationen zu erheben, die später in der
Analyse (Phase V) gegenübergestellt werden. Das Interview erfolgt mündlich, direkt und
wird mit den einzelnen Gruppenmitgliedern verschiedener Rollen der autonomen Teams ge-
führt [22].

IV. Sammlung von Informationen aus weiteren Datenquellen
Um die Ergebnisse aus Phase III besser einordnen und absichern zu können, werden ver-
schiedene Ressourcen als zusätzliche Datenquellen herangezogen – etwa Task Boards, Do-
kumente, Ticketsysteme und Wikis. Diese Artefakte dienen als ergänzende Informations-
quelle und unterstützen den Interviewer dabei, die in den Interviews genannten Praktiken
besser nachvollziehen zu können (Daten-Triangulation nach Yin [19]).

V. Thematische Analyse von Artefakten und Beobachtungen im Rahmen einer Multiple

Case Study
In diesem Abschnitt werden die Datenquellen der Phasen II bis IV zueinander in Beziehung
gesetzt, strukturiert und zusammengefasst. Die Analyse wird mit der thematischen Inhalts-
analyse nach V. Braun & V. Clarke [23] durchgeführt, die sich besonders gut für praxisnahe
Forschungsfragen eignet, bei denen aus qualitativen Daten zentrale Themen identifiziert wer-
den sollen. Die Methode ist nicht an eine bestimmte Theorie oder Erhebungsmethode gebun-
den und ermöglicht es, unterschiedliche Datenarten – etwa Interviews, Beobachtungen oder

Einleitung 8

textbasierte Artefakte – in einem gemeinsamen Analyseprozess zu kombinieren. Damit eig-
net sie sich ideal für kontextsensitive Untersuchungen in komplexen Projektumfeldern wie
Softwaregroßprojekten mit autonomen Teams.

Die thematische Analyse bietet eine hohe Flexibilität und Anpassungsfähigkeit, ist jedoch
gleichzeitig durch klar definierte Durchführungsschritte und analytische Entscheidungen
strukturiert abgegrenzt. Sie besteht aus sechs Arbeitsschritten, zwischen denen – im Gegen-
satz zu einem linearen Vorgehen – iterativ und reflexiv gewechselt werden kann. Dabei ent-
wickeln sich aus dem analysierten Datenmaterial schrittweise zentrale Themen, die zugleich
als Kategorien für die spätere Strukturierung der Best Practices dienen.

Beobachtungen aus der aktiven Teilnahme (Participant Observation) sowie Inhalte aus pro-
jektbezogenen Artefakten fließen ergänzend in die Analyse ein und erweitern die Interview-
aussagen um praxisnahe Einblicke in den realen Projektkontext. Diese enge Verbindung zwi-
schen der Datenauswertung und der Kategoriebildung stellt einen zentralen methodischen
Vorteil dar.

Die Datenbasis für den ersten Arbeitsschritt der thematischen Analyse ergibt sich aus den
transkribierten, semi-strukturierten Interviews, deren Fragen anhand der sieben Kategorien
von Hoda et al. vorstrukturiert sind [24]. Die sieben Kategorien der drei „Balancing Acts“
von Hoda et al. bilden eine gute strukturierte Basis für diese Forschungsarbeit. Die Katego-
rien sind übersichtlich gestaltet und decken ein breites Spektrum für die Untersuchung der
Arbeitsweisen, wie Entscheidungsfindung, Aufgabenzuteilung oder Wissensverteilung auto-
nomer Teams ab. Dadurch kann ein Vergleich und mögliche Skalierbarkeit der Best Practices
besser herbeigeführt werden [25] [26].

Unterstützend zu den transkribierten Interviews werden Artefakte aus den Fallstudien einbe-
zogen. Im zweiten Arbeitsschritt werden sogenannte Codes aus dem Datenmaterial erzeugt.
Die Codes sind Schlagwörter, welche den Inhalt der Phrasen des Interviews zusammenfas-
send abbilden. Die erstellten Codes werden im dritten Arbeitsschritt zu Motiven bzw. The-
men (Engl. „themes“) zusammengefasst welche anschließend bei Bedarf hierarchisiert und
miteinander verknüpft werden.

Die Kodierung erfolgt induktiv und semantisch, das heißt, die Codes werden direkt aus dem
Datenmaterial abgeleitet und orientieren sich an den explizit geäußerten Aussagen der Inter-
viewten. Ziel ist es, relevante Themen und wiederkehrende Muster offen zu identifizieren.
Die thematische Analyse folgt somit dem datengetriebenen Vorgehen nach Braun & Clarke,
ohne vorgegebene theoretische Kategorien als Grundlage für die Kodierung zu verwenden.

Einleitung 9

Um die Codes den bestehenden Themen zuordnen zu können, kommt ein Kriterienkatalog
zum Einsatz. Die Zuordnung erfolgte sowohl auf Basis der von Hoda et al. beschriebenen
sieben Kategorien, die für diese Arbeit übernommen wurden, als auch anhand der inhaltli-
chen Relevanz und der im Rahmen der thematischen Analyse vorgenommenen Codierung
der Interviewdaten. Die Kriterien bauen auf dem Modell von Hoda et al. auf und werden –
sofern erforderlich – um empirisch abgeleitete Aspekte aus den Fallstudien ergänzt. Zusätz-
lich wird geprüft, wie häufig bestimmte Codes in den Interviews auftreten und in welchem
Kontext sie genannt werden. Lässt sich ein Code anhand dieser Kriterien keiner bestehenden
Kategorie eindeutig zuordnen, entsteht ein neues Thema.

Im Schritt vier werden die erstellten Themen nochmals mit dem Datenmaterial abgeglichen,
um Widersprüche auszuschließen. Im Arbeitsschritt fünf findet eine Verfeinerung der The-
men und deren Struktur statt um anschließend im sechsten und letzten Schritt das Ergebnis
im Bezug zur Forschungsfrage auszuarbeiten.

Nicht relevante Informationen für die Forschungsfragen werden in diesem Abschnitt aussor-
tiert. Die Codierung und Auswertung wird softwareunterstützt durchgeführt.

Die thematische Analyse erfolgt in zwei Schritten: Zunächst wird jedes Fallbeispiel im Rah-
men einer Single Case Study einzeln betrachtet und kodiert. Die Auswertung reicht dabei bis
zur Erstellung eines Code-Baumes mit den zugehörigen Themen. Im zweiten Schritt wird die
Multiple Case Study durchgeführt, bei der die Ergebnisse aus allen drei Fallbeispielen zu-
sammengeführt und Gemeinsamkeiten untersucht werden. Zur Sicherstellung der Vergleich-
barkeit wird bereits in der Einzelanalyse auf ein konsistentes Benennungsschema der Kate-
gorien geachtet. Dies erleichtert die spätere Zusammenführung der Ergebnisse und die Wie-
derverwendung der Kategorienamen in der Multiple Case Study. Zusätzlich werden bereits
in der Phase der thematischen Analyse erste Kriterien zur Kategorisierung vorbereitet.

Für das finale Ergebnis werden ausschließlich jene Themen und Codes berücksichtigt, die in
allen drei Fallbeispielen auftreten. Nur aus dieser gemeinsamen Schnittmenge werden kon-
krete Praktiken abgeleitet und inhaltlich als Best Practices ausgearbeitet. Diese bilden die
Grundlage für die Kategorien sowie die Untersuchung der Skalierbarkeit. Themen oder
Codes, die nur in zwei Fallbeispielen vorkommen, werden zwar dokumentiert, aber nicht
weiter analysiert oder in Form von Best Practices formuliert. Sie fließen daher nicht in die
Hauptkategorien oder die Skalierbarkeitsbewertung ein.

Einleitung 10

VI. Gegenüberstellung zu dem „State of the Art“ und Zusammenfassung der Ergebnisse
Die aus Phase V erarbeiteten Analyseergebnisse werden im Kapitel 6 systematisch beschrie-
ben. Die Praktiken werden in 13 thematische Kategorien eingeordnet und mit den For-
schungsergebnissen von Hoda et al. [24] [25] [26] verglichen. Dabei werden charakteristi-
sche Merkmale der Praktiken nach Hoda et al. herangezogen, um eine fundierte Zuordnung
zu ermöglichen. Die Übereinstimmungen sowie Abweichungen werden tabellarisch darge-
stellt, um daraus skalierbare Best Practices für autonome Teams in Softwaregroßprojekten
abzuleiten.

Im Folgenden werden die zentralen Forschungsfragen (RQ1–RQ3) jeweils den zugehörigen Ana-
lysezielen und methodischen Herangehensweisen zugeordnet:

1. Forschungsfrage RQ1a – Ziel: Best Practices
Im Rahmen einer qualitativen Mehrfallstudie werden konkrete Best Practices für autonome
Teams in Softwaregroßprojekten identifiziert. Die Grundlage bildet eine empirische Datenerhe-
bung mittels 15 semi-strukturierter Interviews, die nach dem Verfahren der thematischen Analyse
nach Braun & Clarke ausgewertet werden. Aus den kodierten Segmenten der drei Fallbeispiele
werden auf Basis wiederkehrender Muster sowie unter Berücksichtigung des inhaltlichen Kon-
texts praxiserprobte Vorgehensweisen abgeleitet, die anschließend als Best Practices formuliert
und thematisch kategorisiert werden.

2. Forschungsfrage RQ1b – Ziel: Skalierbare Best Practices
Auf Basis von RQ1a erfolgt eine vertiefte Analyse der identifizierten Praktiken im Hinblick auf
ihre Skalierbarkeit. Die abgeleiteten Best Practices werden dazu dem Modell von Hoda et al.
gegenübergestellt. Ziel ist es zu prüfen, welche Praktiken inhaltliche Übereinstimmungen aufwei-
sen und sich sowohl in kleinen als auch großen Softwareprojekten bewährt haben und als skalier-
bar gelten können.

3. Forschungsfrage RQ2 – Ziel: Kategorisierungen und Beziehungen zu den Best Practices
Anhand der thematischen Analyse nach Braun & Clarke werden Kategorien und Beziehungen
erstellt. Die ermittelten Themen der Analyse fungieren zugleich als analytische Kategorien.

4. Forschungsfrage RQ3 – Ziel: Kriterien der Kategorisierung
Die Kriterien für die Kategorisierung wurden initial auf Basis der Kategorienbeschreibungen nach
Hoda et al. entwickelt und im Verlauf der thematischen Inhaltsanalyse weiter verfeinert. Für neu
identifizierte Kategorien wurden die Kriterien im Zuge der Themenbildung innerhalb der thema-
tischen Analyse nach Braun & Clarke eigens ausgearbeitet.

Einleitung 11

Abbildung 1: Illustration – Methodik

1.5 Aufbau der Arbeit

Kapitel 2 vermittelt die theoretischen Grundlagen, die für das Verständnis der Untersuchung not-
wendig sind. Es definiert zentrale Begriffe wie autonome Teams, industrielle Großsoftwarepro-
jekte und skalierbare Best Practices. Zudem werden verschiedene Softwareentwicklungsmetho-
den vorgestellt, um den organisatorischen und methodischen Kontext der analysierten Projekte
nachvollziehbar zu machen.

Kapitel 3 liefert einen Überblick über den aktuellen Stand der Forschung zu autonomen Teams in
großen Softwareprojekten. Neben zentralen Herausforderungen und Rahmenbedingungen für die
Skalierung agiler Zusammenarbeit werden auch aktuelle Skalierungsframeworks, organisations-
bezogene Studien und empirische Forschungsergebnisse berücksichtigt. Einen besonderen
Schwerpunkt bildet das Modell von Hoda et al., dessen Kategorien und Best Practices für selbst-
organisierende agile Teams analysiert und im Kontext dieser Arbeit eingeordnet werden.

Kapitel 4 widmet sich der Untersuchung einzelner Fallbeispiele im Rahmen einer Single Case
Study. Jedes Fallbeispiel wird unabhängig analysiert, um die spezifischen Arbeitsweisen autono-
mer Teams zu verstehen. Dazu gehören die Beschreibung der Projektorganisation, der Rollenver-
teilung, des Vorgehensmodells sowie die thematische Analyse der erhobenen Daten.

Kapitel 5 führt die Erkenntnisse aus den einzelnen Fallbeispielen in einer Multiple Case Study
zusammen. Hierbei werden die Fallbeispiele vergleichend betrachtet, um übergreifende Muster

Einleitung 12

und Gemeinsamkeiten in den Arbeitsweisen autonomer Teams zu identifizieren. Die Ergebnisse
helfen Best Practices abzuleiten und die gewonnenen Erkenntnisse zu verallgemeinern.

Kapitel 6 präsentiert die zusammengefassten Ergebnisse der Arbeit. Die aus den Fallstudien ge-
wonnenen Erkenntnisse werden zunächst in Form von 23 Best Practices beschrieben (For-
schungsfrage RQ1a, siehe Kapitel 6.1). Diese bilden die Grundlage für die Beantwortung der
Forschungsfrage RQ1b: Welche Praktiken für autonome Teams sind auch für große Softwarepro-
jekte skalierbar? – Diese Frage wird in Kapitel 6.2 behandelt. Anschließend werden die Praktiken
thematisch in 13 Kategorien strukturiert (Forschungsfrage RQ2, siehe Kapitel 6.3). In Kapitel 6.4
werden schließlich Kriterien angeführt, anhand derer die Zuordnung der Best Practices zu den
Kategorien erfolgt (RQ3). Kapitel 6.5 erweitert den Vergleich durch eine Gegenüberstellung mit
aktuellen wissenschaftlichen Veröffentlichungen zum State of the Art, bevor in Kapitel 6.6 zent-
rale Limitationen der Ergebnisse reflektiert werden.

Kapitel 7 fasst die zentralen Ergebnisse zusammen. Abschließend wird ein Ausblick auf mögliche
zukünftige Forschungsrichtungen gegeben.

Grundlagen 13

2 Grundlagen

In diesem Kapitel werden die theoretischen Grundlagen für diese Arbeit beschrieben. Kapitel 2.1
gibt eine kurze Einführung in Projektstrukturen. Im Kapitel 2.2 folgen Definitionen relevanter
Begriffe für das Verständnis dieser Arbeit. Neben der allgemeinen Erklärung findet sich hier auch
die Beschreibung wie diese im Bezug zu diese Forschungsarbeit zu verstehen sind.

2.1 Projektstrukturen

Das Ausmaß, in dem Teams autonom und autark arbeiten, hängt eng mit der gewählten Projekt-
struktur zusammen. In funktionalen Projektstrukturen – typischerweise in Form von Stabsprojek-
torganisationen – sind sowohl die Entscheidungsfreiheit (Autonomie) als auch die Unabhängig-
keit von anderen Einheiten (Autarkie) der Teams stark eingeschränkt.

Autonomie bezeichnet die Fähigkeit eines Teams, innerhalb eines definierten Rahmens eigen-
ständig Entscheidungen zu treffen. Autarkie beschreibt hingegen die strukturelle Unabhängigkeit
– beispielsweise durch eigenen Ressourcenzugriff oder eigenverantwortliche Umsetzung. Beide
Merkmale beeinflussen die Selbstorganisation, betreffen aber unterschiedliche Dimensionen.

In Matrixprojektorganisationen, etwa in Form von Leichtgewichts- oder Schwergewichtsorgani-
sationen, sind Autonomie und Autarkie der Teams teils vorhanden, aber begrenzt. Während in
der Leichtgewichtsorganisation die Projektleitung hauptsächlich koordinierende Funktionen er-
füllt und die Linienorganisation dominiert, erhalten Projektteams in der Schwergewichtsorgani-
sation mehr Entscheidungsspielraum und Verantwortung. Dennoch bleibt die Projektverantwor-
tung meist klar hierarchisch geregelt, mit zentral vorgegebenen Rollen und Zuständigkeiten.

Reine Projektorganisationen ermöglichen dem Projektteam hingegen vollständige Verantwortung
und weitgehende Unabhängigkeit von der Linienstruktur. In solchen Strukturen sind sowohl Au-
tonomie als auch Autarkie stark ausgeprägt. Die Teams agieren eigenständig und können flexibel
auf Veränderungen reagieren [27].

In Projektstrukturen mit geringer Autonomie und Autarkie entsteht häufig ein erhöhter Personal-
bedarf auf der Führungsebene, da viele Entscheidungen zentral getroffen werden müssen. Um

Grundlagen 14

diese strukturellen Engpässe zu vermeiden, bietet sich der Einsatz autonomer Teams an. In sol-
chen Strukturen werden themenspezifische Aufgaben gezielt an die jeweiligen Teams übergeben,
was eine effizientere, dezentrale Arbeitsweise ermöglicht.

2.2 Definitionen relevanter Begriffe

In diesem Kapitel werden zentrale Begriffe erläutert, die für das Verständnis dieser Arbeit wichtig
sind. Dazu zählen unter anderem autonome Teams, Softwareentwicklungsmethoden, Skalierbar-
keit und Best Practices. Die Begriffe werden kurz eingeordnet und erklärt, um eine gemeinsame
Ausgangsbasis zu schaffen. Ziel ist es, ein klares Bild davon zu vermitteln, was in dieser Arbeit
jeweils unter den Begriffen verstanden wird.

2.2.1 Single case study vs. Multiple case study

Die Definition des Begriffs Fallstudie (Engl. „case study“) wird von John W. Cresswell wie folgt
beschrieben:

„The case study method ‘explores a real-life, contemporary bounded system (a case)
or multiple bounded systems (cases) over time, through detailed, in-depth data col-
lection involving multiple sources of information… and reports a case description
and case themes’” ([28], S.97)

Fallstudien können in zwei Typen unterteilt werden: Einzelfallstudien (Engl. „single case stu-
dies”) oder Fallstudien mit mehreren Fällen (Engl. “multiple case studies”). Die Auswahl des
Typs unterliegt dem Ziel des Forschungsgegenstandes und weiteren Kriterien wie zum Beispiel
Zeit und Budget. Die Einzelfallstudie benötigt meist weniger Zeitaufwand und Budget. Zudem
erlaubt die Einzelfallstudie dem Forscher eine höhere Qualität und Tiefe für die Materie. Möchte
der Forscher ein bestimmtes Objekt oder Beziehungen zu diesem Objekt untersuchen, ist diese
Fallstudie in der Regel die richtige Wahl.

Im Gegensatz dazu erlauben Multiple Case Studies eine Untersuchung verschiedener Einzelfälle
und anschließend eine Analyse über alle diese Fälle. Somit können Gemeinsamkeiten und Diffe-
renzen eruiert und erfasst werden. Da bei dieser Methode mehrere Fallstudien untersucht werden
und die Daten aus verschiedenen Quellen stammen, gewinnt die Analyse an Aussagekraft, da sie
nicht auf ein einzelnes Objekt beschränkt ist [29].

Grundlagen 15

2.2.2 Autonomie und Autarkie von Teams

In der englischsprachigen Literatur werden für autonome Teams häufig die Begriffe „self-directed
teams“, „self-managed work teams“ oder „cross-functional teams“ verwendet. Sie bezeichnen
Arbeitsgruppen, die einen Großteil ihrer Aufgaben eigenverantwortlich planen, durchführen und
koordinieren – mit minimaler direkter Anleitung von außen.

Unter einem autonomen Team versteht man in diesem Zusammenhang eine Arbeitsgruppe von
Personen, die für die Planung und Umsetzung technischer Aufgaben verantwortlich ist und die in
einem Produkt oder Service für interne oder externe Abnehmer resultieren [30].

Kimball Fisher konkretisiert diesen Ansatz wie folgt:

„Self-directed team (noun): A group of employees who have day-to-day responsibil-
ity for managing themselves and the work they do with a minimum of direct supervi-
sion. Members of self-directed teams typically handle job assignments, plan and
schedule work, make production- and/or service-related decisions, and take action
on problems.” ([30], S. 17)

In dieser Arbeit wird unter einem autonomen Team eine Arbeitsform verstanden, bei der Planung,
Aufgabenverteilung, Umsetzung und Qualitätskontrolle weitgehend innerhalb des Teams erfol-
gen. Entscheidungen werden gemeinsam getroffen, die Arbeitsweise wird eigenständig organi-
siert und notwendige Anpassungen im Ablauf werden innerhalb des Teams vorgenommen – etwa
bei der Einschätzung von Aufgaben, der Auswahl technischer Lösungen oder der Abstimmung
von Prioritäten.

Während sich Autonomie auf die operative Entscheidungsfreiheit innerhalb vorgegebener Rah-
menbedingungen bezieht, bezeichnet Autarkie eine weitergehende strukturelle Unabhängigkeit,
beispielsweise durch eigene Ressourcenverantwortung oder die Möglichkeit, Entscheidungen
weitgehend ohne externe Abhängigkeiten zu treffen.

In welchem Maß Autonomie und Autarkie in der Praxis realisiert werden können, ist insbesondere
in Softwaregroßprojekten durch bestimmte Rahmenbedingungen begrenzt. Faktoren wie die An-
zahl der beteiligten Personen, bestehende Schnittstellen, externe Abhängigkeiten oder zentrale
Vorgaben beeinflussen den Handlungsspielraum der Teams maßgeblich.

Grundlagen 16

2.2.3 Industrielles Großsoftwareprojekt

Ab wann ein Softwareprojekt als groß gilt hängt vom Standpunkt des Betrachters ab. Diverse
Kriterien wie Anzahl der Teilnehmer, Dauer des Projektes, Budget, technische Komplexität, Un-
sicherheiten bei Zielen, Umgebung des Projektes, externe Einflüsse, Projektstruktur und wirt-
schaftliches Risiko sind nur einige Faktoren die Projekte charakterisieren. Die Einflussfaktoren
der Komplexität auf ein Projekt werden nach dem „Task- and Orientation Model“ (TO) in zwei
große Kategorien geteilt: Komplexität der Aufgaben (Engl. „task complexity factors”) und organ-
isatorische Einflüsse (Engl. “organization complexity factors”).

Die Komplexität der Aufgaben fasst unter anderem die technischen Anforderungen hinsichtlich
Know-how, Wechselwirkungen zwischen den Aufgaben, funktionale und nicht-funktionale An-
forderungen an das System, Wechselwirkung mit der Umwelt (externe Einflüsse), Ressourcen-
verwaltung und Sicherstellung des Informationsflusses zwischen allen Stakeholdern zusammen.

Die Komplexität der Organisation beinhaltet die Anzahl der Teilnehmer mit ihren Führungsfer-
tigkeiten, technischen Know-how und koordinatorischen Fähigkeiten sowie deren Erfahrung.

Je größer ein Projekt ist, desto schwieriger wird es, die oben angeführten Faktoren miteinander in
Einklang zu bringen. Oft beinhaltet ein großes Softwareprojekt mehrere Subprojekte, die für sich
wiederum einer eigenen Planung unterliegen. Fehlen gewisse Ressourcen können Teile des Pro-
jektes an externe Firmen ausgelagert werden oder es müssen externe Personen in die Entwicklung
miteinbezogen werden.

Bei Softwaregroßprojekten muss der „versteckten Arbeitsaufwand“ (Engl. „hidden workload“)
berücksichtigt werden. Dieser ergibt sich aufgrund der zunehmenden Komplexität und Abhän-
gigkeit zwischen verschiedenen Subprojekten und Aufgaben, deren notwendigen Überarbeitung,
Koordination und Wartezeiten bis zur Fertigstellung. Um diesen versteckten Arbeitsaufwand zu
reduzieren, sind eine klare Kommunikation zwischen den Beteiligten, ausreichendes technisches
und organisatorisches Know-how, eine präzise Dokumentation der Anforderungen sowie eine
geeignete organisatorische Struktur von zentraler Bedeutung [31] [32].

In dieser Forschungsarbeit wird ein Projekt als Softwaregroßprojekt bezeichnet, wenn es folgende
Merkmale aufweist, die deutlich über den Rahmen gewöhnlicher Softwareentwicklungsprojekte
hinausgehen:

• eine hohe organisatorische Komplexität, beispielsweise durch zahlreiche Themenbereiche,

Subprojekte oder Arbeitspakete

Grundlagen 17

• eine Projektgröße mit über 80 beteiligten Personen und mehr als 5 autonomen Teams aus
unterschiedlichen fachlichen und technischen Bereichen

• eine Laufzeit von mehr als vier Jahren, typischerweise mit lang angelegten Entwicklungs-,
Wartungs- und Anpassungsphasen

• eine technisch anspruchsvolle Systemlandschaft, gekennzeichnet durch eine Vielzahl an ein-
gesetzten Frameworks, Technologien und Schnittstellen zu externen Systemen

• eine umfangreiche Codebasis mit über einer Million Zeilen Quellcode
• sowie eine hohe wirtschaftliche Relevanz, bei der ein Scheitern des Projekts mit erheblichen

finanziellen Folgen verbunden wäre – etwa durch Produktverzögerungen, Abbrüche oder
Nachbesserungskosten.

Die genauen Charakteristika zu den Projekten der einzelnen Fallstudien dieser Arbeit werden im
jeweiligen Abschnitt angeführt.

2.2.4 Skalierbare Best Practices

In der Informatik bezeichnet Skalierbarkeit die Fähigkeit eines Systems, bei zunehmender Last,
Komplexität oder Ressourcennutzung leistungsfähig zu bleiben oder entsprechend erweitert wer-
den zu können. Unterschieden wird dabei üblicherweise zwischen horizontaler Skalierbarkeit,
also der Erweiterung durch zusätzliche Ressourcen wie Server oder Instanzen, und vertikaler Ska-
lierbarkeit, bei der vorhandene Komponenten wie Prozessorleistung oder Speicher vergrößert
werden [33].

In dieser Arbeit wird der Begriff Skalierbarkeit auf bewährte Arbeitspraktiken (Best Practices)
übertragen. Eine Best Practice gilt hier dann als skalierbar, wenn sie sich nicht nur in kleineren,
selbstorganisierten Teams bewährt hat, sondern auch in komplexeren Softwaregroßprojekten lt.
Definition 2.2.3, mit längerer Laufzeit, größerer Teamanzahl und erhöhter technischer sowie or-
ganisatorischer Komplexität zur Anwendung kommt.

Die konzeptionelle Grundlage bildet die Grounded-Theory-Studie von Hoda et al., in der auf Ba-
sis von 58 Interviews in 23 Unternehmen typische Praktiken selbstorganisierter Teams in Soft-
wareprojekten untersucht wurden [24]. Von den insgesamt analysierten Projekten in Hodas Studie
hatten zwölf eine Laufzeit zwischen 1 und 12 Monaten; zwei weitere dauerten 36 bzw. 48 Monate.
Die jeweiligen Teams bestanden aus 4 bis 15 Personen. Die in diesem Rahmen identifizierten
Best Practices dienen in dieser Arbeit als Referenzmodell, um zu untersuchen, ob sich vergleich-
bare Praktiken auch in größeren und komplexeren Softwareprojektumgebungen wiederfinden.

Grundlagen 18

Die Analyse der Fallstudien erfolgt dabei nicht im Rahmen einer Grounded-Theory-Methodik,
sondern mittels thematischer Analyse nach Braun & Clarke, um zentrale Themen und wiederkeh-
rende Praktiken herauszuarbeiten. Wenn in den untersuchten Softwaregroßprojekten Praktiken
identifiziert werden, die mit denen aus der Studie von Hoda et al. übereinstimmen, gelten diese
im Sinne dieser Arbeit als skalierbar.

2.2.5 Softwareentwicklungsmethoden

Im Folgenden werden Softwareentwicklungsmethoden beschrieben, welche für das Verständnis
dieser Arbeit von Bedeutung sind. Sie werden in dieser Arbeit aufbauenden Literatur und For-
schung erwähnt oder kommen in den Fallbeispielen zum Einsatz.

2.2.5.1 Scrum

Scrum gehört zu den iterativen und inkrementellen Vorgehensmodellen in der Softwareentwick-
lung. Dieser Prozess wurde unter der Annahme entwickelt, dass Softwareentwicklung zu komplex
und unvorhersehbar ist, um vollständig im Voraus geplant werden zu können. Die vielen ver-
schiedenen technischen und fachlichen Variablen in einem Softwareprojekt müssen während der
gesamten Projektlaufzeit kontinuierlich beobachtet und bei Bedarf angepasst werden. Zu diesen
Variablen zählen unter anderem eingesetzte Technologien und Werkzeuge, Anforderungen, Qua-
lität, das Budget oder der Zeitplan. Die Abbildung 2 zeigt den Ablauf eines Scrum-Prozesses.

Im sogenannten Product Backlog befinden sich die priorisierten und aufwandsgeschätzten Anfor-
derungen für die Funktionalität des Produktes, welche bereits für Releases eingeplant sind. Diese
werden vom Product Owner verwaltet und gemeinsam mit den Teams in den Sprintplanning Mee-
tings für den nächsten Sprint zugeteilt. Ein Sprint ist ein festgelegter Zeitraum, in welchem die
zugeteilten Anforderungen entwickelt werden. Dafür wandern diese Anforderungen aus dem Pro-
duct Backlog in den Sprint Backlog. Das Entwicklungsteam ist für die Umsetzung dieser Anfor-
derungen zuständig.

Die Teams sind selbstorganisierend, verfügen über das nötige fachliche Know-how und überneh-
men die Verantwortung für die vollständige Umsetzung ihrer Aufgaben. In jeder Iteration wird
die Funktionalität des Produkts erweitert („Increment of functionality“).

Grundlagen 19

Abbildung 2: Scrum-Prozess [34]

Ein ca. 15-minütiges tägliches Meeting – das Daily Scrum – hilft bei der Überprüfung, Beobach-
tung und Adaptierung der umzusetzenden Aufgaben sowie Erkennung auftretender Probleme. Es
trägt dazu bei, die Erfolgschancen der Teams bei der Zielerreichung zu verbessern. Eine weitere
Rolle spielt der Scrum Master. Dieser trägt die Verantwortung für den Scrum-Prozess. Er ist für
die Einhaltung, die Umsetzung und die Adaptierung des Scrum-Prozesses im Projekt zuständig
sowie der Vermittlung der zugehörigen Regeln und des Ablaufs. Am Ende des Sprints wird die
neue Funktionalität demonstriert. Weiteres wird ein Sprint Review durchgeführt. In diesem wird
festgehalten was erledigt wurde und was nicht erreicht wurde, welche Probleme aufgetreten sind
und wie diese gelöst werden konnten. Diese Informationen sind wichtig für die Planung der nächs-
ten Sprints.

Nach dem Sprint Review und vor der Planung des nächsten Sprints erfolgt die Sprint Retrospek-
tive. In der Retrospektive reflektiert das Team die Zusammenarbeit im vergangenen Sprint sowie
den Einsatz von Werkzeugen und Technologien. Ziel ist es, konkrete Verbesserungen für den

Grundlagen 20

nächsten Sprint abzuleiten. Dadurch können zukünftige Sprints gezielt optimiert und bereits iden-
tifizierte Probleme proaktiv adressiert werden.

Durch die Möglichkeit Anforderungen im Product Backlog zu verwerfen, neue Anforderungen
hinzuzufügen sowie Prioritäten umzugestalten ist dieses Modell besonders flexibel [34] [35]
[36].

2.2.5.2 Extreme Programming (XP)

Wie Beck et al. im Buch „Extreme Programming Explained“ beschreiben, ist Extreme Program-
ming (XP) ein leichtgewichtiges Vorgehensmodell für kleine bis mittelgroße Teams, das insbe-
sondere bei sich rasch ändernden Anforderungen zum Einsatz kommt:

„XP is a lightweight methodology for small-to-medium sized teams developing soft-
ware in the face of vague or rapidly changing requirements.” [37]

Die Agile Alliance hat eine etwas andere Definition für Extreme Programming:

„Extreme Programming (XP) is an agile software development framework that aims
to produce higher quality software, and higher quality of life for the development
team. XP is the most specific of the agile frameworks regarding appropriate engi-
neering practices for software development.” [38]

Extreme Programming kommt bei Softwareprojekten zum Einsatz, bei denen kleinere autonome
Teams eng zusammenarbeiten und bei denen auf ständig ändernde Anforderungen schnell reagiert
werden muss.

Die wichtigsten Werte (XP-Values) sind Einfachheit (Engl. „simplicity“), Kommunikation (Engl.
„communication“), Rückmeldung (Engl. „feedback“) und Mut (Engl. „courage“) [39] [40]. Beck
et al. und die Agile Alliance fügen diesen Values noch den Punkt Respekt (Engl. „respect“) hinzu.

Neben diesen fünf zentralen Werten gibt es ein Set von 12 Kernpraktiken mit denen XP-Teams
arbeiten. Diese Praktiken werden in Abbildung 3 dargestellt. Der innerste Kreis umfasst zentrale
Programmierpraktiken wie Design Improvement, Test-driven Development, Simple Design und
Pair Programming. Der mittlere Kreis dient der Kommunikation und Koordination und Qualitäts-
steigerung der Software. Der äußerste Kreis beschreibt Praktiken für die Planung der Soft-
warezyklen und Abstimmung mit dem Kunden [39].

Grundlagen 21

Abbildung 3: Die 12 Kernpraktiken von XP [41]

XP gliedert sich insgesamt in sechs Phasen: „Exploration”, „Planning”, „Iteration to release
phase”, „Production”, „Maintenance” und die „Death Phase“.

In der ersten Phase „Exploration“ werden die Anforderungen an Design und Architektur, Tools
und an die Software gestellt. Zusätzlich werden die Anforderungen in sogenannten „User-Stories“
erfasst.

Die Phase „Planning“, auch „Planning Game“ genannt, beinhaltet die zwei Phasen „Iteration-
Planning“ und „Release-Planning“. Im Release-Planning wird evaluiert welche Anforderungen
in welchem Release umgesetzt werden. Die Auswahl erfolgt anhand von Prioritäten, Kapazität,
Risikofaktoren und Zeitschätzungen. Im Iteration-Planning werden anschließend die wichtigsten
Anforderungen zu einzelnen Iterationen für die Umsetzung zugeteilt.

In der Phase „Iteration to release phase” erfolgt die Umsetzung, das Testen und die Integration
der Anforderungen. Die „Production“-Phase liefert die entwickelten Anforderungen aus. Die
letzte Phase, „Death-Phase“, genannt kann auf zwei Arten erreicht werden: Alle Funktionalitäten
wurden erfolgreich umgesetzt oder die Umsetzung ist gescheitert.

Grundlagen 22

XP ist sehr flexibel und kann für das spezifische Projekt den Bedürfnissen angepasst und erweitert
werden [41] [42].

2.2.5.3 Wasserfall-Modell

Das Wasserfall-Modell wurde bereits im Jahre 1970 von Winston W. Royce als Softwareentwick-
lungsprozess beschrieben. Es ist ein sequenzielles Modell mit den fünf aufeinanderfolgenden Pro-
jektphasen Analyse, Design, Implementierung, Test und Instandhaltung welche in Abbildung 4
(vgl. [1]) dargestellt sind.

Abbildung 4: Das Wasserfall-Modell

Der Name des Wasserfallmodells ergibt sich aus seiner typischen Darstellung, bei der die Pro-
jektphasen als aufeinanderfolgende Stufen angeordnet sind. Es handelt sich um ein sequenzielles
Vorgehensmodell, bei dem eine Phase formal erst dann beginnt, wenn die vorhergehende voll-
ständig abgeschlossen ist. In vielen Darstellungen entsteht dadurch der Eindruck, dass Rück-
sprünge zu früheren Phasen nicht vorgesehen sind.

Tatsächlich weist Winston W. Royce in seinem ursprünglichen Artikel von 1970 [43] ausdrück-
lich darauf hin, dass Rückkopplungen zwischen den Phasen notwendig sind – insbesondere um
Risiken im Entwicklungsprozess frühzeitig zu erkennen und zu vermeiden. Er bezeichnet das
strikt sequenzielle Vorgehen als riskant, da viele Probleme erst spät im Prozess sichtbar werden.
Um Risiken zu minimieren, empfiehlt er, zentrale Entwicklungsphasen wie Design und Imple-

Analysis

Design

Development

Testing

Implementation

Maintenance

Grundlagen 23

mentierung mindestens zweimal zu durchlaufen. Iterative Elemente sind somit bereits im ur-
sprünglichen Konzept enthalten, auch wenn spätere Adaptionen diese Rückkopplungen deutlicher
hervorheben.

Die erste Projektphase ist die Analysephase. Hier werden sowohl funktionale als auch nicht-funk-
tionale Anforderungen sowie die Spezifikationen der Software definiert. Anschließend folgt die
Designphase, in der das Datenbankschema, die Softwarearchitektur, Algorithmen, Schnittstellen
sowie das grafische Design ausgearbeitet werden. In der Implementierungsphase erfolgt die Pro-
grammierung der Software. Nach der Entwicklung beginnt die Testphase, in der überprüft wird,
ob die ursprünglich definierten Anforderungen korrekt umgesetzt wurden. Ist der Test erfolgreich
abgeschlossen, erfolgt die Auslieferung der Software. Anschließend werden in der Wartungs-
phase auftretende Fehler behoben und die Qualität und Performance weiter verbessert [1].

2.2.5.4 Kanban

Kanban wurde von Microsoft und Corbis von Scrum aus weiterentwickelt. Kanban ist agil und
sehr flexibel. Das sogenannte Kanban-Board visualisiert die Arbeitsschritte der Aufgaben. Das
Board beinhaltet mehrere Spalten, deren Bezeichnungen beliebig an die Gegebenheiten des
Teams oder Projekts angepasst werden können. Ganz links befindet sich der Backlog, mit allen
geplanten Aufgaben (Tasks). Die nächste Spalte wird als WiP („Work in Progress“, deutsch „in
Arbeit“) bezeichnet. Weitere Spalten können zum Beispiel „Review“, „Test“, „Qualitätssiche-
rung“ oder „Dokumentation“ sein. Am Ende befindet sich meist eine Spalte mit dem Status „Ab-
geschlossen“.

Der Workflow geht von links nach rechts. Die umzusetzenden Tasks werden z.B. anhand von
„Post-Its“ aus dem Backlog „gepulled“ und in die Spalte „in Arbeit“ geschoben. Nach der Um-
setzung geht das Ticket weiter bis zur Spalte „Abgeschlossen“. Eine Priorisierung der Aufgaben
kann horizontal durch sogenannte „Swimlanes“ visualisiert werden. Je weiter oben sich ein Ticket
am Kanban-Board befindet, desto höher ist es priorisiert [44]. Eine vereinfachte Darstellung eines
Kanban-Boards wird in folgender Abbildung 5 dargestellt.

Backlog In Arbeit Review Test Abgeschlossen

Abbildung 5: Kanban-Board

Grundlagen 24

Kanban definiert folgende 6 Praktiken:

1. Visualisierung der Arbeit: Die Arbeitsabläufe werden visualisiert
2. Limitierung der WiP-Tickets pro Team oder Team-Mitglied: Jede Spalte darf nur

eine maximale Anzahl an Tickets enthalten
3. Management-Flow: Blockaden und Engpässe sollen erkannt und beseitigt werden.

Die sogenannte „Cycle-Time“ (Zeit pro Ticket) soll reduziert werden.
4. Regulierung/Definition von Prozessregeln
5. Feedback-Loops: Feedback innerhalb des Teams und vom Kunden werden bespro-

chen und eingearbeitet
6. Kaizen/Kontinuierliche Verbesserung [45] [46]

State of the Art 25

3 State of the Art

Die Popularität autonomer Teams stieg durch den Einsatz agiler Softwareentwicklungsmethoden
wie zum Beispiel Scrum oder Extreme Programming (XP). Bereits Fowler und Highsmith führten
2001 in ihrem Manifest für agile Entwicklung selbstständig arbeitende Teams als eines der zwölf
Hauptprinzipien an [18] [36].

Die drei fundamentalen Bedingungen für die Selbstorganisation – „Autonomy“, „Cross-fertiliza-
tion“ und „Self-transcendence“ – wurden von Nonaka und Takeuchi bereits 1986 identifiziert
[47].

Hoda, Noble und Marshall griffen diese Bedingungen in den Jahren 2009–2012 auf und entwi-
ckelten auf dieser Basis ihr Konzept der Balancing Acts. Das daraus abgeleitete Modell beschreibt
drei Ebenen: konkrete teaminterne Praktiken (Engl. „Balancing Acts“), kontextspezifische Vo-
raussetzungen (Engl. „Specific Conditions“) und organisationale Rahmenbedingungen (Engl.
„General Conditions“) – und verbindet damit konkrete Praktiken mit den zugrunde liegenden
Voraussetzungen für Selbstorganisation in agilen Teams [24] [25] [26] [48].

Die Balancing Acts von Hoda et al. definieren 13 Best Practices auf unterster Ebene (Engl. „low-
level practices“) für autonome Teams, welche auf sieben Kategorien und drei übergeordnete
Spannungsfelder (Balancing Acts) aufgeteilt sind. Diese 13 Praktiken bilden eine gute Basis für
das Arbeiten autonomer Teams, wurden jedoch nicht im Umfeld von Softwaregroßprojekten un-
tersucht.

Aktuelle Forschungsarbeiten bei Softwaregroßprojekten zeigen auf, welche zusätzlichen Heraus-
forderungen autonome Teams bewältigen müssen. Agile Frameworks im Umfeld von Software-
großprojekten wie SAFe, Scrum-at-Scale, DAD, the Spotify Model oder LeSS, wurden hinsicht-
lich Herausforderungen und Erfolgsfaktoren von Edison et al. genauer untersucht, um einen sys-
tematischen Vergleich zu ermöglichen. Für diese fünf etablierten Frameworks konnten insgesamt
31 Herausforderungen und 27 Erfolgsfaktoren identifiziert werden [14]. Diese skalierten agilen
Frameworks sind jedoch nicht die einzigen Methoden, die in Softwaregroßprojekten Anwendung
finden. Einige Softwaregroßprojekte orientieren sich an hybriden Modellen. Diese kombinieren
traditionelle Softwareentwicklungsprozesse mit agilen Ansätzen. Zu diesen gehört zum Beispiel
das Wasserfallmodell mit Scrum, auch „Scrumfall“ genannt [1].

State of the Art 26

Da diese Modelle nicht ohne projektspezifische Anpassungen eingesetzt werden können, ist es
wichtig, konkrete Umsetzungskontexte zu analysieren. Ein gutes Beispiel für eine kontextspezi-
fische Anpassung liefert die Arbeit von Kalenda et al., die Literatur zu Praktiken, Herausforde-
rungen und Erfolgsfaktoren in LeSS und SAFe analysierten und als Grundlage für eine aktionso-
rientierte Untersuchung (Engl. „action research“) bei der Firma Kentico heranzogen [49].

Neben der Frage der kontextbezogenen Anwendung rücken in der aktuellen Forschung auch
strukturelle Herausforderungen wie die Koordination autonomer Teams in den Mittelpunkt. Ein
zentrales Thema aktueller Forschung ist die erschwerte Koordination und Kommunikation zwi-
schen autonomen Teams in großen Softwareprojekten. So zeigen Berntzen et al. und Bjarnason
et al., dass Inter-Team-Koordination eine der größten Herausforderungen darstellt. Berntzen et al.
entwickelten hierzu das sogenannte TOPS-Framework, das 27 Koordinationsmechanismen in drei
Kategorien – Meetings, Roles, Tools & Artefacts – gliedert. Jeder Mechanismus wird durch eine
primäre Charakteristik (Technical, Organizational, Physical oder Social) beschrieben [6] [7].

Bjarnason et al. wiederum strukturieren die Einflussfaktoren auf Inter-Team-Kommunikation in
vier Gruppen: Awareness of others, Interaction between other teams, Attitude to others und Team
characteristics [8].

Neben Koordination und Kommunikation beschäftigen sich weitere aktuelle Forschungsarbeiten
mit den Themen Leadership, Organizational Context, Team Design und Team Processes [2] [4]
[50].

Neben den Herausforderungen der Koordination und Kommunikation autonomer Teams in Soft-
waregroßprojekten, rücken auch Fragen zur konkreten Arbeitsweise autonomer Teams zuneh-
mend in den Fokus: Warum und nach welchen Kriterien verteilen Teammitglieder Aufgaben auf
sich selbst – und inwieweit decken sich diese Entscheidungen mit den Interessen des Manage-
ments [51]?

Best Practices auf Team-Ebene wurden bislang nur selten gezielt im Kontext von Softwaregroß-
projekten untersucht. Zwar liefern große Frameworks wie SAFe oder LeSS Anhaltspunkte für die
Projektplanung, doch sind diese oft sehr abstrakt und müssen an konkrete Gegebenheiten ange-
passt werden.

Ziel dieser Arbeit ist es daher, anhand von drei Fallstudien zu analysieren, ob sich praktikable
Best Practices für autonome Teams in Softwaregroßprojekten identifizieren lassen.

State of the Art 27

Die von Hoda et al. entwickelten Balancing Acts mit ihren sieben thematischen Kategorien bieten
dafür eine strukturierte und breit gefächerte Analysegrundlage. Sie ermöglichen es, zentrale As-
pekte wie Entscheidungsfindung, Aufgabenzuteilung oder Wissensverteilung in autonomen
Teams gezielt zu untersuchen. Durch die klare Kategorisierung lassen sich gefundene Praktiken
leichter vergleichen und hinsichtlich ihrer Skalierbarkeit einordnen. Die zugehörigen Praktiken
sind in Tabelle 3 schlagwortartig den Kategorien zugeordnet; ihre detaillierte Beschreibung findet
sich in den Arbeiten „Self-Organizing Agile Teams: A Grounded Theory“ [24] und „Balancing
Acts: Walking the Agile Tightrope“ [25] sowie im Kapitel 3.2 dieser Arbeit.

3.1 Die Basis für diese Arbeit

Wie im vorherigen Kapitel angeführt, rückt das Thema „autonome Teams in Softwaregroßpro-
jekten“ zunehmend in den Fokus wissenschaftlicher Untersuchungen. Eine systematische Ana-
lyse der täglichen Arbeitsweise auf Teamebene steht jedoch noch aus – diese Lücke adressiert die
vorliegende Arbeit anhand von drei Fallbeispielen.

Eine inhaltliche und strukturierte gute Basis für die Untersuchung der Best Practices dieser Arbeit
bilden die „Self-organizing Agile Team Practices“ von Hoda et al. [25], [26]. Das Konzept der
Balancing Acts bildet den theoretischen Rahmen für die vorliegende Untersuchung. Es beschreibt
zentrale Spannungsfelder, die selbstständiges und selbstorganisiertes Arbeiten autonomer Teams
im Alltag ermöglichen und strukturieren. In dieser Arbeit werden diese Themen im Kontext von
Softwaregroßprojekten aufgegriffen und ihre Skalierbarkeit anhand empirischer Fallstudien un-
tersucht. Die Balancing Acts umfassen dabei sieben Kategorien und 13 konkrete Praktiken, die
als Grundlage für die spätere Analyse dienen.

Die Beschreibung der Balancing Acts ist wie folgt angegeben:

„The balancing acts include several low-level practices that enable self-organiza-
tion on an everyday basis.” ([24], S. 103)

Die Tabelle 2 zeigt die Unterteilung der drei Balancing Acts mit den zugehörigen sieben Katego-
rien. Zu jeder dieser Kategorien werden im nachfolgenden Kapitel 3.2 die konkreten Praktiken
beschrieben.

State of the Art 28

Balancing Freedom &
Responsibility

Balancing Crossfunctionality
& Specialization

Balancing Continuous Learn-
ing & Iteration Pressure

• Collective decision making

• Self-assignment

• Self-monitoring

• Need for specialization

• Encouraging cross-functio-

nality

• Self-evaluation

• Self-improvement

Tabelle 2: Die Übersicht der Balancing Acts

Als theoretische Grundlage für die Kategorie Self-assignment wird ergänzend das Paper „How
Agile Teams Make Self-Assignment Work: A Grounded Theory Study“ herangezogen. Die Stu-
die beschreibt, wie und warum sich Teammitglieder Aufgaben selbst zuweisen und welche Her-
ausforderungen dabei entstehen [52].

Die Abbildung 6 (vgl. [24]) zeigt die Übersicht der 13 Praktiken zu den sieben Kategorien und
den drei Balancing Acts. Die Praktiken dürfen nicht rein isoliert betrachtet werden, sondern haben
eine gegenseitige Wechselwirkung bzw. Abhängigkeiten wie die Abbildung 7 zeigt.

- Collective Estimation & Planning
- Collectively Deciding Team
 Norms & Principles Collective Decision Making
- Self-Committing to Team Goals
 Balancing Freedom
- Using Story Board &
- Taking Task Ownership Self-Assignment Responsibility

- Daily Standup Meetings
- Information Radiators Self-Monitoring

- Multiple Perspectives Need for Specialization
 Balancing Cross
- Group Programming Functionality
- Rotation &
 Encouraging Cross-Functionality Specialization

- Retrospectives Self-Evaluation

- Pair-in-Need Balancing Learning
- Learning Spike &
 Self-Improvement Iteration Pressure

Abbildung 6: Die Balancing Acts, Kategorien und Best Practices

State of the Art 29

Abbildung 7: Darstellung der Practices und deren Abhängigkeiten
(Balancing Freedom & Responsibility (BFR); Balancing Cross-Functionality & Specialization
(BCS); Balancing Continuous Learning & Iteration Pressure (BLP) [24]

Eine weitere theoretische Grundlage für die Best Practices bilden die sogenannten „ABCs of
Team Competencies“, ein Modell von Salas et al., das Teamkompetenzen in drei übergeordnete
Bereiche gliedert:

• Einstellungen (Engl. „attitudes“)
• Verhaltensweisen (Engl. „behaviors“)
• gemeinsames Wissen bzw. mentale Modelle (Engl. „cognitions“)

Die darin enthaltenen KSAs (Engl. „knowledge, skills and abilities“) gelten als zentrale Erfolgs-
faktoren für effektive Teamarbeit in komplexen Organisationsformen [53] [54].

In dieser Arbeit dienen die KSAs als konzeptionelle Grundlage, um die Ergebnisse von Hoda et
al. fundierter mit konkreten Teamkompetenzen in Verbindung zu setzen. Damit leisten sie einen
Beitrag zur Validierung und zum besseren Verständnis der zugrundeliegenden Anforderungen an
autonome Teams.

Die Zuordnung erfolgte anhand folgender Kriterien:

• Wird im Practice ein bestimmtes Verhalten oder Prozessmuster gefordert? → Behavior
• Ist eine bestimmte Einstellung oder soziale Haltung für die Practice zentral? → Attitude
• Erfordert die Best Practice gemeinsames Wissen? → Cognition

State of the Art 30

Einige KSAs können mehreren Kategorien zugeordnet werden. Ziel ist es eine sinnvolle inhaltli-
che Verknüpfung abzubilden. Die KSAs dienen in dieser Arbeit als unterstützendes Analy-
seinstrument, um die Praktiken in ihren zugrundeliegenden Teamkompetenzen besser zu verste-
hen.

Die Tabelle 4 zeigt die Zuordnung dieser KSAs zu den Kategorien nach Hoda et al. [25] [26],
basierend auf den Arbeiten von Salas et al. Für alle Kategorien konnte mindestens eine passende
KSA identifiziert werden – mit Ausnahme von Self-Improvement, welche sich primär auf indivi-
duelles Lernen und persönliche Kompetenzentwicklung bezieht, einem Aspekt, der im ABC-Mo-
dell nicht explizit berücksichtigt wird.

Die Gegenüberstellung in der Tabelle 4 verdeutlicht, dass die von Salas et al. formulierten KSAs
– publiziert 2009 und 2010 – konzeptionelle Überschneidungen mit den Balancing Acts von Hoda
et al. (entstanden 2010 und 2012) aufweisen. Dies stützt die Entscheidung, das Modell von Hoda
et al. als Grundlage für die Strukturierung der Interviewfragen in dieser Arbeit heranzuziehen.
Dass dieses Thema nach wie vor Gegenstand aktueller Forschung ist, zeigt sich am Paper „How
Agile Teams Make Self-Assignment Work: A Grounded Theory Study“ aus dem Jahr 2020.

Balancing Freedom &
Responsibility

Balancing Crossfunctio-
nality & Specialization

Balancing Continuous
Learning & Iteration

Pressure

Collective estimation and planning
(Collective decision making)
• Planning iterations
• Commit own team goals
• Estimate complexity of tasks

Multiple perspectives
(Need for specialization)
• Share and learn from

each other
• Team-members from

different roles interact
(tester, developer, …)

• No strict boundaries
→ cross-functional

• Specialized tasks be-
fore cross-functional
tasks

• Mature cross func-
tional teams are
highly cohesive and
cooperative

• Unavailability or un-
foreseen loss can be
bypassed by other
members

Self-evaluation through retro-
spectives (Self-evaluation)
• Continuous learning
• Respond to dynamic re-

quirements
• Learning over an iteration
• Pressure to deliver every

iteration (but little pres-
sure is necessary to moti-
vate for delivering goals)

Collectively deciding team norms
and principles
(Collective decision making)

Group Programming
(Encouraging Cross-func-
tionality)

Learning spike (Self-Improve-
ment)
• Exclusive time set aside

for learning

State of the Art 31

• Collective decision making for
estimation, planning, deciding
team norms, principles, self-
committing team goals (senior
management must provide an
environment)

• Direct communication
(saves time)

• Better understanding
• Good for newcomers

(support)
• Expertise in other

areas
• Flexibility to work in

different areas

• e.g. lagging behind in an
area, update knowledge

• Not all members must join
the learning spike

Self-committing to team goals
(Collective decision making)

• Freedom to set own team

goals

• Ensure to achieve this goal

Rotation (Encouraging
Cross-functionality)
• Knowledge sharing
• Keep work environ-

ment interesting be-
cause of challenging
new areas

Pair-in-need (Self-Improve-
ment)
• Solving complex tasks in

Pair-Programming

Self-assignment using storyboards
(self-assignment)
• Self-assignment of tasks (e.g.

over storyboard)
• Individual decisions
• Transparency

Taking task ownership (self-assign-
ment)
• Initiales of names or avatars as

identifier
• Responsibility for the task
• Business priority over own

technically skills or easy im-
plementation

• Avoid conflicts during self-as-
signment

• Inexperienced teams become
guidance from coaches/seniors

Self-monitoring through daily
standups and information radiators
(self-monitoring)
• Monitor progress through itera-

tion to ensure goal achieve-
ment

• … responsibility for that is
shared among all members of
the team

• Daily standup meetings for sta-
tus

• Charts like Burn down charts
help to visualize the progress

• Peer pressure (not by manager)
• Information radiators (artifacts

that radiate project infor-
mation)

Tabelle 3: Praktiken der Selbstorganisation in Teams - The Balancing Acts

State of the Art 32

 KSA ABC Kategorie(n) nach
Hoda et al.

Begründung

1 Team/Collective
Orientation

Attitude Self-assignment,
Collective decision
making

Fördert gemeinsame Zielausrich-
tung und Verantwortungsüber-
nahme bei der Aufgabenwahl und
Entscheidungsfindung

2 Team/Collective
Efficacy

Attitude Self-monitoring,
Self-evaluation

Stärkt das Vertrauen in die eigene
Leistungsfähigkeit des Teams bei
Reflexion und Anpassung

3 Psychological
Safety

Attitude Collective decision
making,
Self-monitoring

Ermöglicht offenes Feedback und
Fehlerkultur, fördert transparente
Entscheidungen

4 Team Learning
Orientation

Attitude Self-evaluation,
Self-improvement

Unterstützt kontinuierliches Lernen
und Weiterentwicklung im Team

5 Team Cohesion Attitude Collective decision ma-
king

Stärkt den sozialen Zusammenhalt
bei gemeinsamen Entscheidungen

6 Mutual Trust Attitude Self-assignment,
Self-monitoring

Vertrauen ist essenziell für selbst-
ständige Aufgabenübernahme und
gegenseitige Kontrolle

7 Team
Empowerment

Attitude Self-assignment,
Self-monitoring

Teams übernehmen Verantwortung
für eigene Prozesse und Aufgaben

8 Team Reward At-
titude

Attitude Self-evaluation Wertschätzung gemeinsamer Leis-
tungen fördert Selbstreflexion

9 Team Goal
Commitment /
Conscientiousness

Attitude Collective decision
making,
Self-monitoring

Hohe Zielbindung unterstützt ge-
meinsame Entscheidungen und
Fortschrittskontrolle

10 Mutual Perfor-
mance Monitoring

Behavior Self-monitoring Ermöglicht kontinuierliche Über-
wachung der Teamleistung

11 Adaptability Behavior Self-monitoring,
Self-assignment

Flexibilität ist zentral für selbstbe-
stimmte Aufgabenwahl und Pro-
zessanpassung

12 Backup/
Supportive
Behavior

Behavior Self-monitoring Rollenübergreifende Unterstützung
ist Teil kollektiver Selbstkontrolle

13 Implicit Coordi-
nation Strategies

Behavior Self-monitoring Nicht explizite Koordination er-
gänzt formelle Selbststeuerung

14 Shared/
Distributed Lea-
dership

Behavior Self-monitoring,
Collective decision
making

Kollektive Führung stützt Entschei-
dungsfindung und Selbstorganisa-
tion

15 Mission Analysis Behavior Self-evaluation Analyse der Aufgabenbasis bildet
Grundlage für Reflexion und Be-
wertung

16 Problem
Detection

Behavior Self-monitoring Frühe Problemidentifikation fördert
effektive Selbstbeobachtung

17 Conflict Resolu-
tion/Management

Behavior Collective decision ma-
king

Entscheidungen erfordern konstruk-
tiven Umgang mit Meinungsver-
schiedenheiten

18 Motivation of
Others

Behavior Self-assignment,
Self-monitoring

Gegenseitige Motivation unterstützt
Selbstverantwortung und Ausdauer

19 Intrateam
Feedback

Behavior Self-monitoring,
Self-evaluation

Feedback ist Schlüssel zur kontinu-
ierlichen Verbesserung

20 Task-related
Assertiveness

Behavior Collective decision ma-
king

Klarheit in der Kommunikation för-
dert effiziente Entscheidungspro-
zesse

21 Planning Behavior Self-evaluation Reflexion erfordert strukturierte
Planung von Verbesserungen

State of the Art 33

22 Coordination Behavior Self-monitoring,
Encouraging cross-
functionality

Koordination ist Grundlage für rei-
bungslosen Ablauf im interdiszipli-
nären Team

23 Team
Leadership

Behavior Self-monitoring Führungskompetenz ist zentral für
Selbststeuerung

24 Problem
Solving

Behavior Self-monitoring,
Self-evaluation

Lösungsorientierung ist Basis für
Prozessanpassung und Bewertung

25 Closed-loop Com-
munication / In-
formation Ex-
change

Behavior Self-monitoring Rückkopplungsschleifen sichern In-
formationsqualität im Team

26 Cue-Strategy
Associations

Cognition Self-monitoring Strategiewissen unterstützt situati-
onsbezogene Entscheidungen

27 Accurate
Problem Models

Cognition Self-evaluation Ein realistisches Problemverständ-
nis erleichtert Bewertung und Ab-
leitung von Maßnahmen

28 Accurate and
Shared Mental
Models

Cognition Collective decision
making,
Encouraging cross-
functionality

Geteilte mentale Modelle fördern
gemeinsame Entscheidungen und
rollenübergreifendes Arbeiten

29 Understanding of
Team Mission,
Objectives,
Norms,
Resources

Cognition Self-evaluation Verständnis der Rahmenbedingun-
gen ist Grundlage für Bewertung

30 Understanding
Multiteam Sys-
tems (MTS)
Couplings

Cognition Self-monitoring Verständnis übergreifender Abhän-
gigkeiten unterstützt übergreifende
Selbststeuerung

Tabelle 4: Zuordnung KSAs zu den Kategorien von Hoda et al.

3.2 Kategorien und Best Practices von Hoda et al.

Dieses Kapitel führt in die sieben Kategorien und zugehörigen 13 Praktiken von Hoda et al. ein.
Jede Kategorie wird mit einer kurzen Beschreibung und den zugehörigen Praktiken erläutert (vgl.
[24]).

3.2.1 Collective Decision-Making

Diese Kategorie legt den Fokus auf kollaborative Entscheidungsfindung, bei der das gesamte
Team in Planungs- und Entscheidungsprozesse eingebunden wird. Sie beinhaltet folgende Prak-
tiken: Collective Estimation & Planning, Collectively Deciding Team Norms & Principles, und
Self-Committing to Team Goals.

State of the Art 34

3.2.1.1 Collective Estimation & Planning

Teams planen Iterationen gemeinsam und schätzen die Komplexität von Aufgaben, um ein ge-
meinsames Verständnis und die Transparenz zu fördern. In der Forschung von Hoda et al. wird
Planning Poker als Methode beschrieben, bei der Teammitglieder für jede Aufgabe eine Karte
mit einer geschätzten Komplexität auswählen. Unterschiede werden diskutiert, bis ein Konsens
erreicht wird.

3.2.1.2 Collectively Deciding Team Norms & Principles

Teams diskutieren und einigen sich auf gemeinsame Normen und Prinzipien für die Zusammen-
arbeit, einschließlich Arbeitszeiten und Qualitätsrichtlinien. Das Senior Management unterstützt
diesen Prozess, indem es den Teams Entscheidungsfreiräume einräumt.

3.2.1.3 Self-Committing to Team Goals

Diese Praktik beschreibt, wie sich ein selbstorganisiertes Team gemeinsam auf ein selbst festge-
legtes Ziel für eine Iteration verpflichtet. Im Rahmen der Planung analysiert das Team die Anfor-
derungen, schätzt den Aufwand und entscheidet eigenständig, was im kommenden Zyklus realis-
tisch erreicht werden kann. Das Ziel wird also nicht von außen vorgegeben, sondern entsteht
durch gemeinsame Abstimmung innerhalb des Teams. Wichtig ist dabei, dass sich alle Teammit-
glieder aktiv hinter das vereinbarte Ziel stellen und Verantwortung für dessen Umsetzung über-
nehmen. Die Praktik betont damit sowohl die Freiheit des Teams, den Umfang selbst zu bestim-
men, als auch die gemeinsame Verantwortung, das Ziel zu erreichen.

3.2.2 Self-Assignment

Diese Kategorie betont die Autonomie der Teammitglieder bei der Auswahl und Übernahme von
Aufgaben. Sie umfasst die Praktiken: Using Story Boards und Taking Task Ownership.
Selbstzuweisung wird als zentrales Element selbstorganisierender Teams verstanden, da sie so-
wohl Verantwortungsübernahme als auch Eigenmotivation fördert. Durch die Möglichkeit, Auf-
gaben entsprechend der eigenen Fähigkeiten und Interessen auszuwählen, können Teammitglie-
der ihre Stärken gezielter einbringen, was zu höherer Produktivität und Arbeitszufriedenheit führt.

State of the Art 35

3.2.2.1 Using Story Boards

Storyboards visualisieren Aufgaben mit den Spalten "Not Assigned," "Check-Out," und "Done".
Avatare oder Initialen markieren Verantwortlichkeiten und Teammitglieder weisen sich Aufga-
ben selbst zu. Die visuelle Transparenz der Storyboards unterstützt nicht nur die Selbstzuweisung,
sondern auch die gegenseitige Abstimmung im Team. Wie Hoda et al. beschreiben, ermöglichen
diese Boards eine kollaborative Planung, fördern Diskussionen über Prioritäten und helfen, den
Überblick über die individuelle wie kollektive Arbeitsbelastung zu behalten.

3.2.2.2 Taking Task Ownership

Mitglieder übernehmen Verantwortung für Aufgaben, indem sie diese eigenständig auswählen
und abschließen. Unterstützung durch Coaches hilft insbesondere unerfahrenen Teams, passende
Aufgaben auszuwählen. Im Sinne von Ownership führen Teammitglieder ihre Aufgaben aus und
tragen Verantwortung für deren Ergebnis sowie den Projekterfolg. Aufgaben werden nicht ge-
trennt betrachtet, sondern als Beitrag zum gemeinsamen Ziel verstanden. Treten Hindernisse auf,
werden diese proaktiv adressiert oder passende Unterstützung herangezogen.

3.2.3 Self-Monitoring

Diese Kategorie zielt darauf ab, Fortschrittsüberwachung und Transparenz sicherzustellen. Sie
beinhaltet die Praktiken: Daily Standup Meetings und Information Radiators. Es wird betont, dass
selbstorganisierende Teams ihren Fortschritt kontinuierlich selbst reflektieren und anpassen müs-
sen, um ihre Ziele zu erreichen. Der Austausch im Team ersetzt hierbei klassische Kontrolle von
außen und stärkt zugleich die gegenseitige Verantwortung.

3.2.3.1 Daily Standup Meetings

Standups werden für Statusupdates eingesetzt. Jedes Teammitglied gibt ein kurzes Update dar-
über, was es am Vortag erreicht hat, was es heute plant und welche Hindernisse eventuell beste-
hen. Burndown-Charts, die verbleibende Arbeit visualisieren, helfen dem autonomen Team bei
der Fortschrittsmessung.

State of the Art 36

3.2.3.2 Information Radiators

Artefakte wie Storyboards zeigen den Fortschritt klar und sichtbar für das gesamte Team. Typi-
sche Spalten sind "Not Assigned," "Check-Out," und "Done". Solche visuell zugänglichen Dar-
stellungen fungieren als permanente Informationsquelle für alle Beteiligten. Sie unterstützen nicht
nur die Selbstüberwachung, sondern auch die teamweite Abstimmung und fördern ein gemeinsa-
mes Bewusstsein für Prioritäten und verbleibende Aufgaben.

3.2.4 Need for Specialization

Diese Kategorie widmet sich den Rollen und Perspektiven. Sie beinhaltet die Best Practice: Mul-
tiple Perspectives. Die Spezialisierung ermöglicht es Teammitgliedern ihr Fachwissen gezielt
einzubringen und komplexe Anforderungen zu bewältigen. Gleichzeitig bleibt die übergreifende
Zusammenarbeit entscheidend, um ein umfassendes Verständnis im Team zu sichern.

3.2.4.1 Multiple Perspectives

Die Teams nutzen die Vielfalt von Rollen wie Tester, Entwickler und Analysten, um gemeinsam
bessere Lösungen zu finden. Die Zusammenarbeit zwischen verschiedenen Rollen fördert den
Wissensaustausch und hilft andere Ansätze und Ideen in Lösungen miteinfließen zu lassen. Dabei
werden traditionelle Rollengrenzen bewusst aufgelöst, um einen echten Perspektivenaustausch zu
ermöglichen. Der bewusste Einbezug unterschiedlicher Sichtweisen trägt zur besseren Entschei-
dungsfindung bei und erhöht die Qualität.

3.2.5 Encouraging Cross-Functionality

Diese Kategorie fördert die Zusammenarbeit und Flexibilität im Team. Sie umfasst die Praktiken:
Group Programming und Rotation. Ziel ist es ein gemeinsames Verantwortungsbewusstsein für
das Produkt zu schaffen. Cross-Funktionalität unterstützt eine Teamstruktur, in der Mitglieder
nicht nur ihre Kernrolle ausüben, sondern flexibel auf neue Anforderungen reagieren können.

3.2.5.1 Group Programming

Offene Arbeitsumgebungen fördern den Wissensaustausch und erleichtern die (direkte) Kommu-
nikation. Neue Mitglieder profitieren von der Unterstützung durch erfahrenere Kollegen. Das ge-
meinsame Arbeiten an Aufgaben – ob in Form von Pair-Programming oder informellen Gruppen

State of the Art 37

– ermöglicht nicht nur schnellere Einarbeitung, sondern auch kontinuierliche Qualitätssicherung.
Fachwissen wird dabei nicht zentralisiert, sondern bewusst verteilt und gemeinsam weiterentwi-
ckelt.

3.2.5.2 Rotation

Regelmäßige Rotationen von Verantwortlichkeiten und auch von Teammitgliedern zu anderen
Teams und Themen erweitern die Fähigkeiten der Mitglieder und fördern die Zusammenarbeit.
Wechselnde Aufgaben und Perspektiven helfen Abhängigkeiten zu reduzieren und das Verständ-
nis zur verbessern. Rotationen stärken die Anpassungsfähigkeit des Teams und beugen Wissen-
sinseln aktiv vor.

3.2.6 Self-Evaluation

Diese Kategorie legt Wert auf Reflexion und kontinuierliche Verbesserung. Sie beinhaltet die
Best Practice: Retrospectives. Selbstorganisierende Teams benötigen regelmäßige Gelegenheiten
zur Selbstreflexion, um ihre Arbeitsprozesse kritisch zu hinterfragen.

3.2.6.1 Retrospectives

Teams reflektieren regelmäßig über ihre Arbeitsweise, um Verbesserungsmöglichkeiten zu iden-
tifizieren. Entscheidungen aus Retrospektiven werden genutzt, um Prozesse effizienter zu gestal-
ten. Retrospektiven fördern eine Kultur des Lernens, in der Fehler als Entwicklungschancen be-
trachtet werden. Sie helfen Teams, systematisch aus Erfahrung zu lernen, Verantwortlichkeiten
zu klären und das Miteinander nachhaltig zu stärken.

3.2.7 Self-Improvement

Diese Kategorie fördert die individuelle Weiterentwicklung und das Lernen im Team. Sie umfasst
die Praktiken: Pair-in-Need und Learning Spike. Selbstorganisierende Teams entwickeln sich
nicht nur durch Prozesse weiter, sondern auch durch gezieltes individuelles und kollektives Ler-
nen. Gerade in dynamischen Projektkontexten ist die Fähigkeit zur schnellen Anpassung an neue
Technologien und Methoden ein zentraler Erfolgsfaktor.

State of the Art 38

3.2.7.1 Pair-in-Need

Zwei Teammitglieder arbeiten zusammen, um spezifische Probleme zu lösen. Diese Praxis wird
bei komplexen und designintensiven Aufgaben angewandt und fördert den Wissensaustausch.
Pair-in-Need geht über klassisches Pair-Programming hinaus: Es wird situationsbezogen einge-
setzt, wenn hoher Abstimmungsbedarf oder kritische Designentscheidungen bestehen. Die Me-
thode verbessert nicht nur die Lösungsqualität, sondern ermöglicht eine direkte Weitergabe von
implizitem Wissen im konkreten Kontext.

3.2.7.2 Learning Spike

Teams nehmen sich gezielt Zeit, um neue Technologien oder Konzepte zu lernen. Ein Beispiel
beschreibt ein Team, das durch den unerwarteten Weggang seines einzigen Testers unter starkem
Iterationsdruck stand. Mithilfe eines Learning Spikes wurde entschieden, die Testprozesse zu au-
tomatisieren. Der agile Coach unterstützte das Team dabei, den Druck zu bewältigen und sich auf
neue Tools und Techniken zu konzentrieren. Mit der Unterstützung eines neuen Testers mit er-
weiterten Programmierkenntnissen konnte die Automatisierung deutlich vorangetrieben werden.

Single Case Studies 39

4 Single Case Studies

In diesem Kapitel werden die Single Case Studies beschrieben. Im Punkt 4.1 wird auf die Erstel-
lung des Fragebogens eingegangen. Im Anschluss folgen Informationen zum Aufbau des Inter-
views, Details zu den Fallbeispielen sowie der Datenanalyse und Auswertung (vgl. Punkt 1.4). In
der Single Case Study wird die Auswertung für jedes Fallbeispiel unabhängig der anderen Fall-
beispiele vorgenommen. Die Auswertung über alle drei Fallbeispiele gemeinsam befindet sich im
Kapitel 5.

4.1 Erstellung des Fragebogens

In diesem Kapitel wird die Strukturierung der Fragen für das semi-strukturierte Interview be-
schrieben (siehe Phase III in Kapitel 1.4.2). Für die Vorstrukturierung der Interviews werden die
sieben Kategorien der Balancing Acts (siehe Punkt 3.1 und 3.2) verwendet:

1. Collective decision making
2. Self-assignment
3. Self-monitoring
4. Need for specialization
5. Encouraging cross-functionality
6. Self-evaluation
7. Self-improvement

Diese Strukturierung ermöglicht eine gezielte Analyse und den Vergleich der Interviews mit den
Best Practices von Hoda et al. Ergänzend dazu erlaubt die thematische Analyse nach Braun &
Clarke [23], durch offene Fragen weitere relevante Kategorien zu identifizieren.

In den Unterkapiteln 4.1.1 bis 4.1.7 werden die sieben Hauptkategorien angeführt. Der Fokus
liegt auf inhaltlichen Beschreibungen, die zentrale Aspekte und typische Themenbereiche inner-
halb jeder Kategorie zusammenfassen.

Single Case Studies 40

4.1.1 Collective decision making

Diese Kategorie widmet sich den Praktiken: Collective estimation and planning, Collectively de-
ciding team norms and principles und Self-committing to team goals (vgl. Punkt 3.2.1). Fragen in
dieser Kategorie schließen folgende Punkte mit ein:

• Die Planung von Iterationen

• Die Abschätzung der Komplexität von Anforderungen/Aufgaben (z. B. durch Punkte-
vergabe)

• Gemeinsame Entscheidungen über Normen, Prinzipien, Regeln und Zeitmanagement

• Vorgehensweisen zur Zielerreichung

• Die Selbstverantwortung der Teammitglieder hinsichtlich ihrer Aufgaben und Ziele

4.1.2 Self-assignment

Diese Kategorie beinhaltet die Best Practices: Self-assignment using storyboards und Taking task
ownership (vgl. Punkt 3.2.2). Fragen in dieser Kategorie schließen folgende Punkte mit ein:

• Die Entscheidungsfindung bei der Auswahl von Aufgaben (z. B. anhand von Prioritäten

oder Spezialisierung)

• Die Sicherstellung von Transparenz innerhalb des Teams

• Die Selbstzuordnung von Aufgaben und Hilfsmitteln (z. B. Storyboards)

• Die Kennzeichnung der Aufgabenverantwortung

• Unterstützung bei der Auswahl und Zuteilung von Aufgaben

4.1.3 Self-monitoring

Fragen zu Self-monitoring through daily standups and information radiators (vgl. Punkt 3.2.3)
widmen sich:

• Fortschrittsverfolgung durch regelmäßige Meetings (z. B. Daily Standups)

• Nutzung von Artefakten und Tools (z. B. „Burn-down Charts“, Dashboards) zur Visualisie-
rung und Analyse des Fortschritts

• Verantwortung für die Fortschrittsbewertung innerhalb des Teams

• Soziale Kontrolle durch Teammitglieder zur Sicherstellung termingerechter Fertigstellung

Single Case Studies 41

4.1.4 Need for specialization

Fragen zu der Practice Multiple Perspectives (vgl. 3.2.4) behandeln die Punkte:

• Erfahrungsaustausch und Lernen innerhalb autonomer Teams

• Blick über die eigenen Rollen- und Projektgrenzen hinaus

• Spezialisierung der Teammitglieder und ihre Auswirkungen auf die Aufgabenverteilung

• Strategien zur Sicherstellung von Wissenstransfer und zur Vertretung bei unerwarteten Aus-
fällen

4.1.5 Encouraging cross-functionality

In diese Kategorie fallen Group programming und Rotation (vgl. Punkt 3.2.5). Hierbei werden
Fragen zu folgenden Themen gestellt:

• Wissensverteilung und Integration neuer Teammitglieder
• Förderung von direkter Kommunikation zur schnelleren Abstimmung und Problembehebung
• Förderung von Motivation und Interesse durch abwechslungsreiche Aufgaben

4.1.6 Self-evaluation

In dieser Kategorie befindet sich die Praktik Self-evaluation through retrospectives (vgl. Punkt
3.2.6):

• Lernen aus vergangenen Iterationen durch Retrospektiven
• Anpassung an dynamische Anforderungen und Veränderungen
• Selbstreflexion und Weiterbildungsmöglichkeiten innerhalb des Teams

4.1.7 Self-improvement

Die letzte Kategorie behandelt zwei spezielle Best Practices Learning spike und Pair-in-need
(vgl. Punkt 3.2.7):

• Zeit für gezielte Weiterbildung und Einarbeitung in komplexe Themen innerhalb von Iterati-

onen
• Unterstützung bei komplexen Aufgaben, die nicht allein bewältigt werden können (z. B.

durch Pair-Programming oder Expertenhilfe)

Single Case Studies 42

4.1.8 Erstellung und Aufbau des Fragebogens

Die Beobachtungen der Participant Observation aus Fallbeispiel 1 (siehe Punkt 4.4.4) bestätigen,
dass die zuvor definierten Kategorien die Arbeitsweise autonomer Teams umfassend abbilden.
Der detaillierte Fragebogen ist im Anhang dieser Arbeit ersichtlich.

Der Fragebogen beginnt mit einer Erfassung der Meta-Informationen. In den Regeln wird festge-
halten, dass das Interview unter Einwilligung des Teilnehmers digital aufgezeichnet wird, um eine
anonymisierte Transkription zu ermöglichen. Das Interview hat einen semi-strukturierten Aufbau.

Der Aufbau des Interviews gliedert sich in drei Hauptbereiche:

1. Allgemeiner Teil – Fünf Fragen zur Rolle des Teilnehmers, zur Projektart und zum -ziel, zur

Team- und Projektgröße, zur hierarchischen Struktur sowie zum eingesetzten Vorgehensmo-
dell. Diese Informationen fließen in die Fallbeispielbeschreibungen (siehe Kapitel 4.2) ein
und ermöglichen eine korrekte Zuordnung.

2. Fragen zu den sieben Kategorien der Balancing Acts – Jede Kategorie enthält zwei offene
Fragen, mit Ausnahme der ersten, die aus drei Fragen besteht. Die Fragen sind bewusst all-
gemein formuliert, um eine offene und explorative Datenerhebung zu ermöglichen und
gleichzeitig potenziellen Interviewer-Bias zu reduzieren.

3. Zusatzfrage – Sie gibt den Teilnehmern die Möglichkeit, weitere relevante Informationen
außerhalb der vorgegebenen Struktur zu teilen.

Der Erstentwurf des Fragebogens wurde während der Participant Observation im Fallbeispiel 1
entwickelt und mit einem Projektteilnehmer getestet. Auf Basis dieser Erfahrungen erfolgte an-
schließend eine Verfeinerung des Fragebogens.

4.2 Übersicht der Fallbeispiele

In diesem Kapitel wird ein Überblick über die für die Analyse herangezogenen Fallbeispiele ge-
geben. Die Fallbeispiele wurden so ausgewählt, dass sie hinsichtlich ihrer Größe miteinander ver-
gleichbar sind. Detaillierte Beschreibungen finden sich in den Kapiteln 4.4 bis 4.6.

Beim Fallbeispiel 1 wurde eine Participant Observation (siehe Punkt II. in Kapitel 1.4.2) ermög-
licht. Durch den Austausch mit den Mitarbeitern und dem Zugang zu deren Entwicklungswerk-
zeugen kann dieses Fallbeispiel detaillierter beschrieben werden als die anderen beiden Fallbei-
spiele. In den zwei Fallbeispielen 2 und 3 wurden leider keine Unterlagen zur Verfügung gestellt,

Single Case Studies 43

es konnten jedoch ausreichend beschreibende Informationen im Interview erhoben werden. Na-
mentliche Nennungen und konkrete projektspezifische Details wurden anonymisiert.

Folgende Tabelle 5 gibt eine Übersicht über die wichtigsten Daten der drei Fallbeispiele wie Pro-
jektgröße und Teamgröße in Personen, Anzahl der Teams, Dauer, Vorgehensmodell und Bereich:

Pro-
jekt-
größe

Team-
größe

Anzahl
Teams

Dauer Vorgehensmo-
dell

Bereich

Fallbeispiel 1 ~ 150 2-12 > 12 2010-laufend
(2025)

Projektweit:
Wasserfall

Gruppenintern:
 Kanban

Versiche-
rungsträger

Fallbeispiel 2 ~ 170 10-15 > 11 2014 – laufend
(2025)

Projektweit:
Scrum

Gruppenintern:
Scrum & Kanban

Autoherstel-
ler

Fallbeispiel 3 ~ 200 8-10 > 20 2006 - laufend
(2025)

Wasserfall,
Scrum & Kanban

Gesundheits-
bereich

Tabelle 5: Übersicht der drei Fallbeispiele

4.3 Interviews

Die Teilnehmer der Interviews wurden vom Ansprechpartner des jeweiligen Fallbeispiels vermit-
telt. Das Ziel ist es, verschiedene Rollen innerhalb der autonomen Teams über alle drei Fallbei-
spiele zu befragen, um deren Arbeitsweisen und Sichtweisen erheben und abgleichen zu können.
Zu jedem Fallbeispiel wurden fünf Teilnehmer interviewt. Einige Teilnehmer haben Doppelfunk-
tionen innerhalb des Teams. Die Tabelle 6 gibt eine Übersicht der Rollen für die Interviews je
nach Fallbeispiel. Die Teilnehmer im Fallbeispiel 1 werden mit T1 bis T5 angeführt, die Teilneh-
mer im Fallbeispiel 2 mit T6 bis T10 und jene im Fallbeispiel 3 mit T11 bis T15.

 Fallbeispiel 1 Fallbeispiel 2 Fallbeispiel 3

Teil-/Projektleiter T13, T14

Requirements Engineer T1 T9 T12

Deployment/Devops T7

Technischer Architekt T6, T8 T12, T15

Test/Testmanagement T4, T1 T10

Teamleiter T3, T5 T9 T11

Softwareentwickler T1, T2, T4 T8 T15

Tabelle 6: Übersicht Teilnehmer und Rollen der Interviews

Single Case Studies 44

Die Teilnehmer T1 und T2 konnten im Fallbeispiel 1 direkt am Standort des Projekts befragt
werden. Die anderen Teilnehmer (T3 bis T15) wurden per Videoanruf interviewt. Alle Interviews
wurden mit dem Einverständnis der Teilnehmer aufgenommen, damit diese für die weitere Da-
tenanalyse bereitstehen.

4.4 Single Case Study: Versicherungsträger (Fallbeispiel 1)

Beim ersten Fallbeispiel (F1) geht es um die Realisierung einer zukunftsorientierten, prozessop-
timierten Anwendung im Versicherungsbereich, welche die Geschäftsprozesse des Kerngeschäfts
dieser Institution serviceorientiert unterstützt. Mit einer geplanten Projektdauer von mehr als 10
Jahren und mit mehr als 100 internen und externen Teilnehmern sowie mehrere Institutionen, die
diese Applikation nutzen, kann dieses Projekt als Softwaregroßprojekt lt. Punkt 2.2.3 bezeichnet
werden. Die Arbeit in autonomen Teams erfolgt in einem komplexen Umfeld mit zahlreichen
voneinander abhängigen Subsystemen, zentralisierten Tools und strikten Schnittstellenvorgaben.

4.4.1 Projektziel

Nach einer mehrmonatigen Konzeptionsphase wurde festgestellt, dass die Geschäftsprozesse der
beteiligten Institutionen in acht fachliche Teilbereiche gegliedert sind – u. a. Leistungen, Schrift-
verkehr, Rechtsangelegenheiten und medizinische Belange. Zwar existieren bereits EDV-ge-
stützte Anwendungen, diese sind jedoch auf einzelne Fachbereiche beschränkt. Dadurch bestehen
für gleichartige Aufgaben unterschiedliche, fachbereichsspezifische Lösungen, was zu einer Viel-
zahl an Schnittstellen führt, um Daten synchron zu halten.

Ziel des Projekts ist die durchgängige Optimierung und Harmonisierung aller Geschäftsprozesse
durch eine integrierte Softwarelösung. Diese soll strategische, wirtschaftliche, fachliche und tech-
nische Anforderungen erfüllen und eine rollenbasierte Oberfläche mit einheitlichem Look & Feel
bereitstellen. Technisch werden zentrale Datenhaltung, einheitliche Schnittstellen und Strukturen
sowie die Reduktion von Redundanz und die Wiederverwendbarkeit von Komponenten ange-
strebt.

Die Projektorganisation (vgl. Abbildung 8) besteht aus zwei Hauptstrukturen: einer fachlich-or-
ganisatorischen Leitung und einer technischen Leitung (Farbe Gelb). Die Koordination erfolgt
über Assistenzfunktionen sowie fachliche und technische Koordinationsrollen (Farbe Blau).

Single Case Studies 45

Abbildung 8: Projektorganisationsstruktur im Fallbeispiel 1

Zur fachlich-organisatorischen Koordination zählen der Testmanager, Servicemanager, Business
Architekt, Projektorganisator, das Programm-Management, internes Controlling sowie Ansprech-
partner für die nutzenden Institutionen. Die technische Koordination erfolgt durch den Enterprise
Architekten sowie das Informationssicherheits- und Risikomanagement.

Die vier fachlichen Kernteams sind thematisch gegliedert in Basisthemen (z. B. IDM, Statistik,
E-Government), Querliegerthemen (z. B. Druck, Archiv, Scan), Kernthemen (Haupt- und Sub-
prozesse des Tagesgeschäfts) sowie Sonderthemen (z. B. Beratung, Steuern, rechtliche Belange).
Auf technischer Seite verantwortet das Team Entwicklung die Umsetzung der fachlichen Anfor-
derungen, inklusive Datenmodellierung, Service-Entwicklung, UI-Erstellung sowie Tests. Das
Team Betrieb stellt die Infrastruktur bereit, überwacht Performance und behebt technische Stö-
rungen. Die Kernteams sind in zahlreiche kleinere Teilteams mit jeweils 2 bis 12 Personen unter-
gliedert. Beispiele sind die Teams für Prozessmodellierung, Objektmodellierung, Schriftverkehr
und Servicemodellierung. Auch die technischen Teams arbeiten in autonomen Strukturen und
übernehmen sowohl fachlich-funktionale als auch generisch-technische Aufgaben wie Biblio-
theksverwaltung, Updates, Migrationen oder Security.

Die Projektrollen sind vielfältig. Zu den zentralen Rollen zählen Auftraggeber, Auftragnehmer,
Steuerungsausschuss, Projektleitung, (Kern-)Teamleitungen, Projektunterstützung, (Kern-)teams

Generaldirektion

Fachlich-organisatorische Leitung Technische Leitung

Assistenz
fachlich-organisatori-

sche
Koordination

Kernteam
Basisthemen

Kernteam
Querliegerthemen

Kernteam
Kernthemen

Kernteam
Sonderthemen

Technische
Koordination

Abteilung
Organisation

Team Betrieb Abteilung Rechen-
zentrum

Team Entwicklung
Abteilung

Software-entwick-
lung

Teamleiter, Requirements Engineer,
technischer Architekt, Tester, Entwickler

Single Case Studies 46

sowie externes Projektcontrolling. Weitere Rollen ergeben sich projektspezifisch im Verlauf.
Eine Übersicht bietet Tabelle 7:

Rolle
Pro-
jekt-
lei-

tung

Pro-
jekt-

unter-
stüt-
zung

Team
Pro-
zess-

model-
lierung

Objekt-mo-
dellierung

Service-
modellie-

rung
Schriftver-

kehr Entwicklung Betrieb

Projektleitung X

fachliche Projektleitung X

Stv. der Projektleitung X X

(Kern-)Teamleiter X X X X X X

Assistenz X

Projektorganisator X

Internes Projektcontrolling X

Programm-Management X

Business Architekt X

Enterprise Architekt X

Informationssicherheits- und
Risikomanager

 X

Testmanager X

Partnerträgeransprechpartner X

Prozessmodellierer X

Prozessablaufsteuerer X

Servicemanager X

Servicemodellierer X X

Objektmodellierer X

Fachexperte X X X X

Fachanwender X X X X

Anwendungsarchitekt X

GUI-Designer X

Database Modeler X

Business Unit- und
Life Cycle-Manager

 X

Systemintegrator X

Service-Developer X

Infrastruktur Architekt X

Infrastruktur-Manager X

Server-Verantwortlicher X

Netzwerk-Verantwortlicher X

Storage-Verantwortlicher X

Database-Verantwortlicher X

System Integrations-Manager X

Enterprise Servicebus-Ver-
antwortlicher

 X

End to End Monitoring-Man-
ager X

Operation X

Verantwortlicher CMDB X

Tabelle 7: Auszug der Rollen Fallbeispiel 1

Single Case Studies 47

An dieser Stelle sei noch erwähnt, dass es neben der Hauptinstitution noch vier weitere Einrich-
tungen gibt, welche die Applikation für sich nutzen wollen. Ein Steuerungsausschuss dient für
die strategische und dispositive Lenkung. Die Projektmitarbeiteranzahl wird mit bis zu 150 Teil-
nehmern angegeben.

4.4.2 Vorgehensmodell und Projektphasen

Das Vorgehensmodell beim Fallbeispiel 1 entspricht dem Wasserfallmodell (vgl. Punkt 2.2.5.3).
Die Phasen sind in Abbildung 9 dargestellt.

Abbildung 9: Vorgehensmodell Fallbeispiel 1

In der Phase der Anforderungsanalyse werden die Funktionalitäten sowie die notwendigen orga-
nisatorischen Voraussetzungen für den Einsatz und Betrieb definiert. Beim Systementwurf wer-
den Entscheidungen bezüglich Systemarchitektur, Schnittstellen, Komponenten und die Vorbe-
reitung für Tests getroffen. In der Systementwicklung findet die Umsetzung des Servicekatalogs
statt. Dazu gehören alle fachlichen und technischen Services, Anbindung vorhandener Systeme,
jegliche Applikationslogik, das Userinterface und die Datenablage (z.B. Datenbank). Wurden die
Anforderungen umgesetzt, folgt die Phase der Schulung. Anwender und Testpersonen werden in
die umgesetzten Features eingeführt. In der Abnahme erfolgen die Qualitätssicherung und das
Testen. Sofern diese Phase bestanden wurde, kommt die Phase der Auslieferung. Die freigegebe-
nen Komponenten werden in einem sogenannten „Releasepaket“ in die Produktionsumgebung

Anfoderungsanalyse

Systementwurf

Systementwicklung

Schulung

Abnahme

Auslieferung

Abschluss

Hotfix

Single Case Studies 48

übernommen. Die letzte Phase bildet der Abschluss, in welchem ein Abschlussbericht über das
(teil-)entwickelte Produkt durch die Projektleitung erfolgt.

4.4.3 Zeitplan

Der Masterplan des Fallbeispiels 1 sieht eine Projektdauer von 10 Jahren vor, beginnend Anfang
2010 bis Anfang 2020. Das gesamte Projekt ist in fünf Teilprojekte unterteilt, von denen einzelne
Meilensteine für die Produktivsetzung vorgesehen sind. Es gibt somit bereits während der gesam-
ten Laufzeit immer wieder Teilfunktionalitäten die freigeschalten werden. Teilprojekte die zu-
sammenhängen werden, gemeinsam vorbereitet um Synergieeffekte zu erzielen, auch wenn ge-
wisse Themen erst für spätere Teilprojekte geplant sind. Nebenbei gibt es neben der Hauptfunk-
tionalität des Kernprojekts noch weitere interne Applikationen die parallel dazu entwickelt wer-
den. Aufgrund weiterer, auch gesetzlich-bedingten Änderungen oder EU-Vorgaben läuft das Pro-
jekt auch aktuell (Stand 2025) noch weiter.

4.4.4 Participant Observation

Der Autor dieser Arbeit durfte über einen Zeitraum von mehreren Monaten eine Participant Ob-
servation (siehe Punkt II. in Kapitel 1.4.2) im Fallbeispiel 1 durchführen. Durch die persönliche
Teilnahme konnte in diesem Zeitraum ein gutes Verständnis der Arbeitsweise und des täglichen
Ablaufs der autonomen Teams in diesem Projekt erreicht werden. Neben der Beobachtung der
Arbeitsweise der autonomen Teams und der Teilnahme an Meetings, bekam der Autor den Zu-
gang zu Tools und Artefakten, wie Mockups, Anforderungsdokumente, Ticketing-System, Git-
lab, SVN, Splunk (Auswertung von Logs), Objektmodelle, xWiki, etc. Im nächsten Punkt werden
Beispiele mit Abbildungen der Artefakte angeführt.

4.4.5 Beispiele (Auswahl) der Artefakte und Beobachtungen

Bei Teams mit kleineren Themengebieten, deren Mitglieder oft vor Ort sind werden Whiteboards
mit „Post-its“ eingesetzt. Abbildung 10 zeigt ein Beispiel für ein kleineres Themengebiet, in wel-
chem ein Kanban-Board für „Cleanup“-Aufgaben erstellt wurde.

Single Case Studies 49

 Abbildung 10: Beispiel Kanban Board (Whiteboard) Fallbeispiel 1

Die Verwendung von physischen Whiteboards ist jedoch die Ausnahme. Die meisten Themenge-
biete sind sehr groß und die Teammitglieder wechseln zwischen Home-Office und Büropräsenz.
Da ein digitales Board leichter zu warten, übersichtlicher und transparenter ist, wird ein Kanban-
Board in Gitlab eingesetzt. Dieses zeigt Abbildung 11:

Abbildung 11: Beispiel Kanban Board Fallbeispiel 1 Gitlab

Der Vorteil der digitalen Version ist die bessere Dokumentation, die Möglichkeit Kommentare
und Anhänge zu den Tasks hinzuzufügen, Filtermöglichkeiten, Vergabe von zusätzlichen Labels,
eine schnellere Zuweisung usw. In den Tickets werden zum Beispiel auch die fachlichen Doku-
mente (Beschreibungen), GUI-Mockups, Objektmodelle (Datenbanktabellen, ER-Diagramme,
etc.) oder Fehler verlinkt. Die Ablage der Mockups und Beschreibungen für Services, GUI,
Batchabläufe, etc. werden in der Dokumentenverwaltungssoftware Alfresco abgelegt (siehe Ab-
bildung 12).

Single Case Studies 50

Abbildung 12: Alfresco – Beispiel Ablagestruktur nach Releases

Die Erfassung von Anforderungen und Fehlern erfolgt in der Software HPQC. Die Einteilung der
Tickets erfolgt in „leicht“, „mittelt“, „schwer“ und „kritisch“. Zu jedem Ticket gibt es eine Num-
mer, Beschreibung, Stage, Datum, Version und Verantwortlichen. Der Status des Tickets kann
„New“, „Defect Assigned“, „Rejected“, „Fixed“, „Closed”, „Reopened”, „Fachliche Analyse”,
„Test”, etc. sein.

Abbildung 13: HPQC – Ticketsystem für Anforderungen und Fehler

Single Case Studies 51

4.4.6 Einfluss der Beobachtungen auf den Fragebogen

Da der Autor die sieben Untergruppen der Balancing Acts als Basis für den Fragebogen gewählt

hat, ist es wichtig validieren zu können, ob diese Gruppen ausreichend für die Erstellung des

Fragebogens und der verbundenen Datenerhebung sind und alle Teilbereiche vollständig abde-

cken. Durch die Beobachtung und Teilnahme in dem Projekt konnte dies bestätigt werden.

4.4.7 Thematische Analyse der Interviews

Das Vorgehen der thematischen Analyse ist für alle drei Fallbeispiele gleich und wird in diesem
Kapitel anhand eines Beispiels angeführt.

Bevor die thematische Analyse nach Braun & Clarke erfolgt, werden die im Punkt 4.3 geführten
aufgenommenen Interviews transkribiert. Die Erfahrungen und Artefakte der Participant Obser-
vation des Fallbeispiels 1 konnten bei den Interviews und beim Transkribieren helfen ein besseres
Verständnis für Fachbegriffe und Vorgänge zu bekommen. Da diese Fachbegriffe und Vorgänge
auch in den anderen beiden Fallbeispielen erwähnt werden, konnte die Participant Observation
einen zusätzlichen positiven Beitrag zu dieser Phase (siehe Punkt IV. in Kapitel 1.4.2) leisten.
Die Analyse gliedert sich in zwei Schritte: Im ersten Schritt, erfolgt die Codierung aller Interviews
und die Bildung von Themen. Dieser Teil wird in den folgenden Punkten genauer beschrieben.
Im zweiten Schritt (siehe Kapitel 5) wird mit einer Multiple Case Study über die drei Fallbeispiele
nach Überschneidungen der Codes gesucht. Codes, welche sich in allen drei Fallstudien über-
schneiden werden als relevant eingestuft in das finale Ergebnis übernommen.

4.4.7.1 Code- und Themenbildung anhand eines Beispiels

Wie bereits in Kapitel 1.4.2 unter Punkt V angeführt bilden die transkribierten, semi-strukturier-
ten Interviews, die Basis für die thematische Analyse.

Die thematische Analyse ist ein iterativer Prozess, bei dem Codes von Interview zu Interview
verfeinert, umstrukturiert und angepasst werden. Dabei durchläuft die Analyse mehrere Schritte:

1. Erstellung einer Dokumentengruppe – Die transkribierten Interviews werden in

MAXQDA [55] als separate Dokumente in einer neuen Gruppe gespeichert (siehe Abbildung
14).

Single Case Studies 52

Abbildung 14: Dokumentengruppe für F1 in MAXQDA

2. Initiale Codierung – Wichtige Phrasen, Schlagwörter oder Absätze werden mit farblich ge-

kennzeichneten Codes markiert (siehe Abbildung 15).

Abbildung 15: Codierung der Interviews in MAXQDA

3. Strukturierung der Codes – Ähnliche Codes werden zu übergeordneten Themen zusam-

mengefasst. Dies geschieht auf Basis:
• der Interviewstruktur (ähnliche Fragen = ähnliche Codes),
• der Antworten mehrerer Teilnehmer (Erkennen von Redundanzen und Gemeinsamkei-

ten).

4. Zusammenführung in Themen – Codes mit inhaltlichen Überschneidungen werden zu lo-

gischen Themen gruppiert, um eine strukturierte Analyse zu ermöglichen.

Um diesen Prozess zu veranschaulichen, folgt nun ein Beispiel aus Fallbeispiel 1. Die Interview-
frage lautet:

„Wie erfolgt die Auswahl und Zuteilung von Anforderungen und Fehlern?“

Ein Teamleiter (T5) antwortet im Fallbeispiel 1:

„Prinzipiell also jedes Team hat prinzipiell die Themen, für die es verantwortlich
ist. Das heißt, jeder weiß, woran sein oder sollte wissen, woran sein Team arbeitet.

Single Case Studies 53

Die Zuteilung erfolgt durch die Abteilungsleitung oder durch die Abteilungs- Or-
ganisatoren, das heißt, dort wird entschieden, welches Team ein neues Thema be-
kommt viel oder welches Team eben einen Defect bekommt, weil der zu einem Team
dazugehört. Im Team ist die Aufteilung im Team selbst überlassen, d. h. entweder
derjenige, der sich am besten damit auskennt, im Idealfall derjenige, der es ge-
macht hat, oder halt derjenige, der gerade Zeit hat, falls eben auf Urlaub ist. Wich-
tig ist halt, dass es so ist, dass möglichst wenig liegenbleibt.“ – T5, Teamleiter

Aus dieser Antwort werden relevante Schlagwörter und Phrasen identifiziert:

1. Zuteilung durch die Abteilungsleitung
2. Zuteilung durch Organisatoren
3. Aufteilung innerhalb des Teams nach Fachwissen
4. Aufteilung nach Verfügbarkeit der Teammitglieder

Anschließend werden diese nochmals verfeinert und zusammengefasst. Die Zuteilung durch die
Abteilungsleitung oder Organisatoren wird als Leitung abstrahiert.

I. Zuteilung der Leitung an das Team
II. Zuteilung/Auswahl nach Fachwissen

III. Zuteilung/Auswahl nach Ressourcen (Verfügbarkeit)

Ein anderer Teamleiter (T3) antwortet im Fallbeispiel auf dieselbe Frage:

„Im Prinzip haben wir intern, so teamintern eine Übersicht über alle Themen und
pro Thema haben wir eine Übersicht über alle zu erledigenden Aufgaben. Und
prinzipiell hat jeder Zugriff drauf und sieht, wer was macht und kann sich dann,
auch wenn er in dem Thema selber drinnen ist, selber eine Aufgabe nehmen und
hat damit auch die Einsicht.“ – T3, Teamleiter

Daraus lassen sich folgende Codes ableiten:

IV. Auswahl durch Teammitglieder aus Task-Liste
V. Task-Fortschritt

Nun erfolgt die Zusammenführung in übergeordnete Themen:
Die Codes I bis IV beziehen sich auf verschiedene Formen der Aufgabenverteilung und werden
dem Thema „Auswahl und Zuteilung von Tasks“ zugeordnet.

Single Case Studies 54

Code V verweist auf Transparenz (alle sehen, wer woran arbeitet) und Fortschrittsmessung (Be-
arbeitung eines Tasks ist sichtbar) – er wird daher beiden Themen zugeordnet.

Nach diesem Prozess ergibt sich jene Struktur, die Tabelle 8 zeigt:

Code Thema
 I. Zuteilung der Leitung an das Team

Auswahl und Zuteilung von Tasks
 II. Zuteilung/Auswahl nach Fachwissen
III. Zuteilung/Auswahl nach Ressourcen (Verfügbarkeit)
IV. Auswahl durch Teammitglieder aus Task-Liste
 V. Task-Fortschritt Transparenz, Fortschrittsmessung

Tabelle 8: Beispieltabelle für die Code- und Themenbildung

Mit zunehmender Anzahl analysierter Aussagen verfeinern sich die Codes und Themen kontinu-
ierlich. Im Laufe des Analyseprozesses kristallisieren sich konsistente thematische Gruppen her-
aus, die anschließend als Basis für die Kategorienbildung dienen.

4.4.7.2 Ergebnis Single Case Study Fallbeispiel 1

Die thematische Analyse für Fallbeispiel 1 führt zur Identifikation von 14 übergeordneten The-
men und 66 zugehörigen Codes. Diese Ergebnisse werden aus den transkribierten Interviews ab-
geleitet und durch die iterative Codierung strukturiert. Die Tabelle 9 zeigt die Themen und Codes:

Anzahl der Interviews 5

Thema Code % # Dokumente

Taskänderungen
Validierung und Einplanung nach Dringlichkeit 20% 1
Direkt wenn nicht zu kritisch (aufgrund von Bürokratie) 80% 4

Richtlinien, Gren-
zen, Normen oder
Prinzipien

SonarQube 40% 2
Organisationsweite Richtlinien 80% 4
Checkstyle 40% 2
Zentrale Festlegung durch Spezialisten (1...n) 80% 4
Doku (Wiki/Confluence/...) 80% 4
Unit-Tests 20% 1
Review nach Checkliste 40% 2
zusätzliche Codequalitäten durch Team bzw. Teamleiter 40% 2

Meetings

Meetings bei Bedarf 40% 2
Weekly (1-2 Wochen Zyklus) 60% 3
Meetings klein halten 20% 1
Dailies 80% 4

Single Case Studies 55

Teamleiter-Meetings (Test, Architektur, etc.) 60% 3

Umgebung Vorort (Kleinbüro, ...) 80% 4
Team Events &
Belohnungen

Allgemeine Teamevents 80% 4

Komplexe Themen

Support bei lizensierter Software 20% 1
4 Augen Prinzip & Reviews 100% 5
Teamabsprache und Validierung 80% 4
Testabdeckung um Komplexität abzudecken 20% 1

Fortschrittsmes-
sung

Task-Fortschritt (Monitoring) per Board 80% 4
Agiler Prozess 20% 1
Leistungsfortschrittsbericht 80% 4
wöchentliche Meetings mit Leitung 20% 1
Ticketstatus (%, Stunden oder Status) 80% 4

Auswahl und Zu-
teilung Tasks

Leitung an Team 100% 5
Zuteilung nach Fachwissen/jenen der sich am besten aus-
kennt 60% 6

Auswahl durch Teammitglieder aus Task-Liste 100% 5

Fortbildung

Teamwechsel 40% 2
Zertifikate & Weiterbildung (aktiv) 20% 1
Zeit für Verbesserungen 20% 1
Themenwechsel 60% 3
Rollenwechsel 60% 3
Zeit Technologiewechsel & Updates 20% 1

Transparenz

Software & Ticketverwaltung 80% 4
Agiler Prozess 20% 1
Task-Fortschritt für jedes Mitglied 60% 3
Status setzen 60% 3
Direkte Kommunikation 20% 1
Dailies (Transparenz) 60% 3
Boards (Kanban od. ähnliches) 100% 5

Wissensverteilung
& Support

Code Review 100% 5
JavaDoc (Code-Kommentare) 20% 1
Dokumentation 20% 1
Taskzuteilung nach belieben 40% 2
Übergabemeetings 40% 2
Direkte Nachfrage (Sms, Telefon) 20% 1
Taskrotation 20% 1
Zuteilung an Andere bei Leerlauf 20% 1
Pair-Programming 40% 2
Full-Stack Entwicklung 20% 1
Mehrere Personen pro Thema 60% 3

Reflexion & Lern-
prozess

Retrospektive & Review 20% 1
Direkt wenn es auftritt 60% 3

Single Case Studies 56

Aufwandsschät-
zung

Schätzung über mehrere Iterationen 20% 1
Durch Teammitglieder 100% 5
Aufteilung in Subtasks 20% 1
projektspezifische Einheitenschätzung 40% 2

Kommunikation

Telefon 60% 3
direkte Kommunikation 100% 5
Ticket-Tool 40% 2
Chat 80% 4
Meetings 40% 2
E-Mail 100% 5
Wiki/Confluence/... 20% 1

Tabelle 9: Vorkommen der 66 Codes im Fallbeispiel 1

4.5 Single Case Study: Autohaus (Fallbeispiel 2)

Beim Fallbeispiel 2 handelt es sich um einen Automobilhändler der ein neues Dealer-Manage-
ment-System (DMS) implementiert. Darunter versteht man die Verwaltung von Werkstattaufträ-
gen, Käufe von Neu- und Gebrauchtwägen inklusive Datawarehouse mit Aufbereitung von Kenn-
zahlen und Statistiken. Die Software hat nicht nur viele interne Schnittstellen, sondern muss auch
mit externen Systemen wie zum Beispiel Versicherungen und Banken kommunizieren.

4.5.1 Projektziel

Das Projektziel ist die Ablöse und Neuimplementierung eines bestehenden Dealer-Management-
Systems. Aktuelle Vertragspartner in den Werkstätten und Autohäusern benutzen ein Fat-Client
System, welches mit C++ implementiert ist. Dieses soll mit einer modernen Neuentwicklung mit
Web-User Interfaces in Angular und einem verteilten System mit mehreren Applikationen, die
miteinander kommunizieren abgelöst werden. Das Ziel ist es, dass diese Applikation nicht nur
regional, sondern weltweit ausgerollt werden kann.

4.5.2 Projektorganisationsstruktur, Rollen und Teams

Die Abbildung 16 zeigt die Projektorganisationsstruktur des Fallbeispiels 2. Innerhalb des Teams
gibt es mehrere Tester und Entwickler, sowie einen Teamleiter, technischen Architekten und ei-
nen Requirements Engineer.

Single Case Studies 57

Abbildung 16: Projektorganisationsstruktur im Fallbeispiel 2

Der Product Owner gibt die Anforderungen an den Requirements Engineer weiter. Über dem
Teamleiter gibt es dann einen Projektleiter, darüber die Abteilungsleitung. Über der Abteilungs-
leitung befindet sich die Bereichsleitung und an der Spitze der Hierarchie die Führungsebene.

Die Teamgröße auf der Entwicklungsebene liegt ca. bei 10-15 Personen. Die Projektmitarbeiter-
anzahl wird mit bis zu 170 Teilnehmern angegeben.

4.5.3 Vorgehensmodell und Projektphasen

Im Fallbeispiel 2 ist als Vorgehensmodell ist organisationsweit Scrum (vgl. Punkt 2.2.5.1) mit 2-
wöchigen Sprints vorgesehen. Jeden Monat gibt es ein Release. Einige Teams haben jedoch die
Freiheit auf Kanban (vgl. Punkt 2.2.5.4) umzusteigen, wenn sie ihr Modell ausformuliert haben
und von der Abteilungsleitung abgesegnet bekommen. Der Umstieg auf Kanban wird von den
Teammitgliedern damit argumentiert, da in gewissen Teilbereichen zu häufigen Änderungen der
Prioritäten gibt und eine Fertigstellung zum geplanten Teilrelease nicht möglich ist. Ist nach vier
Wochen ein Release fertig, kommt dieser Stand auf die Qualitätssicherungsumgebung. Dort wer-
den Tests und Abnahmetests gemeinsam mit dem Kunden vorgenommen. Ist dieser Stand stabil,
wird er auf der Produktionsumgebung ausgeliefert.

4.5.4 Zeitplan

Ein genauer Zeitraum wurde von den Interviewten nicht genannt. Das Projekt läuft jedoch be-
reits mehrere Jahre und ist zum aktuellen Stand 2025 noch nicht fertiggestellt.

Entwicklungsteams (1...N)
Teamleiter, Requirements Engineer,

technischer Architekt, Tester, Entwickler

Projektleiter (1…N)

Bereichsleitung

Führungsebene

Abteilungsleitung 1

Entwicklungsteams (1...N)
Teamleiter, Requirements Engineer,

technischer Architekt, Tester, Entwickler

Projektleiter (1…N)

Abteilungsleitung N

Single Case Studies 58

4.5.5 Thematische Analyse der Interviews

Die thematische Analyse für Fallbeispiel 2 wird nach dem gleichen Vorgehen wie bei Fallbeispiel
1 durchgeführt (vgl. 4.4.7). Bereits definierte Codes und Themen aus Fallbeispiel 1 werden über-
nommen, sofern sie inhaltlich auf die neuen Interviewdaten zutreffen. Dabei wird eine einheitli-
che Benennung und Zuordnung verwendet, um die Vergleichbarkeit zwischen den Fallbeispielen
zu gewährleisten.

Tabelle 10 zeigt die spezifischen Ergebnisse der Codierung und Themenbildung für Fallbeispiel
2 mit insgesamt 13 Themen und 71 Codes:

Anzahl der Interviews 5
Thema Code % # Dokumente

Taskänderungen

fachlich über Requirements Engineer 20% 1

Validierung und Einplanung nach Dringlichkeit 80% 4

teamintern besprochen 20% 1
Direkt wenn nicht zu kritisch (aufgrund von Büro-
kratie) 60% 3

Richtlinien, Grenzen,
Normen oder Prinzipien

SonarQube 60% 3

Renovate-Bot (Gitlab) 20% 1

Checkstyle 20% 1

Definition of Done 20% 1

Zentrale Festlegung durch Spezialisten (1...n) 100% 5

technische Architektur-Meetings 20% 1

Organisationsweite Richtlinien 60% 3

Doku (Wiki/Confluence/...) 20% 1
zusätzliche Codequalitäten durch Team bzw.
Teamleiter 80% 4

Code Review 20% 1

Teamkultur Teamkultur 20% 1

Meetings

Meetings bei Bedarf 40% 2

Weekly (1-2 Wochen Zyklus) 60% 3

Dailies 80% 4

Teamleiter-Meetings (Test, Architektur, etc.) 80% 4

Protokollierung 40% 2
Team Events & Beloh-
nungen Allgemeine Teamevents 40% 2

Komplexe Themen

4 Augen Prinzip & Reviews 40% 2

Teamabsprache und Validierung 60% 3

Fortschrittsmessung

Task-Fortschritt (Monitoring) per Board 80% 4

Im Daily 80% 4

wöchentliche Meetings mit Leitung 20% 1

Ticketing-Tool 20% 1

Single Case Studies 59

Ticketstatus (%, Stunden oder Status) 80% 4

Auswahl und Zuteilung
Tasks

Leitung an Team 60% 3

Auswahl durch Teammitglieder aus Task-Liste 40% 2

Zuteilung in Meeting demokratisch 20% 1
Zuteilung nach Fachwissen/jenen der sich am bes-
ten auskennt 40% 2

Team zu Team 20% 1

priorisierte Taskliste 20% 1

Requirements durch Product Owner 20% 1

Fortbildung

Teamwechsel 20% 1

Zertifikate & Weiterbildung (aktiv) 20% 1

Zeit für Verbesserungen 40% 2

Themenwechsel 80% 4

Rollenwechsel 60% 3

Zeit Technologiewechsel & Updates 40% 2

Udemy-Kurse 20% 1

Transparenz

Software & Ticketverwaltung 80% 4

Teamübergreifende Meetings 20% 1

Task-Fortschritt für jedes Mitglied 40% 2

Status setzen 40% 2

Direkte Kommunikation 40% 2

Dailies (Transparenz) 100% 5

Sprint-Preview 20% 1

Boards (Kanban od. ähnliches) 80% 4

Wissensverteilung &
Support

Code Review 80% 4

Dokumentation 20% 1

Übergabemeetings 40% 2

Direkte Nachfrage (Sms, Telefon) 20% 1

Taskrotation 60% 3

Sprint-Review 40% 2

Pair-Programming 60% 3

Mehrere Personen pro Thema 60% 3

Reflexion & Lernprozess Retrospektive & Review 100% 5

Aufwandsschätzung

Schätzung über mehrere Iterationen 100% 5

Priorisierung von Tasks 40% 2

Durch Teammitglieder 100% 5

Aufteilung in Subtasks 20% 1

projektspezifische Einheitenschätzung 40% 2

Kommunikation

Telefon 20% 1

direkte Kommunikation 60% 3

Ticket-Tool 20% 1

Chat 100% 5

Meetings 60% 3

Single Case Studies 60

E-Mail 20% 1

Wiki/Confluence/... 60% 3

Tabelle 10: Vorkommen der 71 Codes im Fallbeispiel 2

4.6 Single Case Study: Gesundheitsbereich (Fallbeispiel 3)

Fallbeispiel 3 widmet sich der Infrastruktur im Gesundheitsbereich eines Landes, zu dem sehr
viele verschiedene Teilbereiche und Applikationen, sowohl im Software- als auch Hardwarebe-
reich gehören. Das Produkt gliedert sich in mehrere Teilprojekte. Ein Teilbereich widmet sich der
Hardware, welche als Anbindung an die Software benötigt wird. Die Teams designen nicht nur
die Hardware, sondern auch das Betriebssystem und alles, was dazu gehört. Im Bereich der Soft-
ware gibt es Teilprojekte für die mobile App-Entwicklung (Android und iOS), sowie nicht mobi-
len Anwendungen und Schnittstellen. Aufgrund der sensiblen Daten ist für dieses Projekt ein
umfangreicher Zertifizierungsprozess notwendig.

4.6.1 Projektziel

Das Projektziel ist der Zugang und Austausch von Gesundheitsinformationen von versicherten
Bürgern eines Landes. Ein elektronischer Akt eines Bürgers, welcher über Apps zugänglich ist
und über verschiedene Krankenkassen zugänglich gemacht wird. Gesundheitsrelevante Daten
können anschließend in diesem elektronischen Akt abgelegt werden. Damit sind alle wichtigen
Informationen jederzeit digitalisiert abrufbar und müssen nicht über Umwege angefordert wer-
den. Die Kontrolle dieser Daten obliegt allein dem Versicherten. Die Hardware, beinhaltet ein
Fachmodul, dass den Zugang für die Kommunikation mit den Gesundheitsdaten bzw. der dazu-
gehörigen Software zur Verfügung stellt.

4.6.2 Projektorganisationsstruktur, Rollen und Teams

Die Projektstruktur für das Fallbeispiel 3 ist aufgrund der vielen unterschiedlichen Aufgabenbe-
reiche vor allem auf horizontaler Ebene sehr breit aufgestellt. Es gibt einen Projektsponsor, sowie
die Geschäftsführung an oberster Stelle. Darunter gibt es in den Teilprojekten jeweils Projektlei-
ter. Da die Projekte sehr groß sind, liegt die Verantwortung nicht allein an einem Projektleiter,
sondern an mehreren. Es sind somit ganze Projektleitungs-Teams von bis zu zehn Leuten, welche
die Projekte führen. Es gibt viele verschiedene Bereiche wie z.B. App-Entwicklung, Identität-
und Authentifizierungslösungen, Backend, etc. In den Teilprojekten gibt es Teilprojektleiter, die
entweder Teams führen, Kundenansprachen vornehmen oder Querschnittsaspekte erfüllen wie

Single Case Studies 61

Security, Zertifizierungen oder Test. Innerhalb der Teilprojekte werden die Teams von Team-
Leads geführt, deren Mitarbeiter intern wieder bestimmten Rollen zugeteilt sind.

4.6.3 Vorgehensmodell und Projektphasen

Außen herum ist das Vorgehensmodell dieses Fallbeispiels ein Wasserfall-Modell (vgl. 2.2.5.3).
Die Deadline des nächsten Releases ist mit 01.01 des nächsten Jahres vorgegeben. Ebenfalls vor-
gegeben ist der Zeitraum für die Überprüfung und das Security Gutachten. Das Produkt muss vor
der Auslieferung von einer Zulassungsstelle freigegeben werden. Am Anfang der Entwicklung
wird die Spezifikation übergeben, die jedoch überwiegend noch nicht vollständig fertig ausdefi-
niert ist. Während der kurzen Zeit der eigentlichen Entwicklungsphase werden kleinere Zwi-
schenreleases mit Meilensteinen eingeführt. Innerhalb der Teilprojekte wird eine Kombination
aus Scrum (vgl. 2.2.5.1) und Kanban (vgl. 2.2.5.4) verwendet. Am Anfang des Projekts wird meist
Scrum verwendet, da hier ein sauberer Backlog abgearbeitet werden kann. Gegen Ende der Ent-
wicklungsphase lässt sich der Scrum-Prozess jedoch nicht mehr komplett isoliert durchführen. Es
muss nach Funktionalität und Priorität entwickelt werden, da sich die gesetzliche Deadline nicht
verschieben lässt. Daher wird im letzten Abschnitt der Entwicklung meist auf Kanban umgestie-
gen.

4.6.4 Zeitplan

Die Releases sind typischerweise aufgrund gesetzlicher Anforderungen festgelegt und werden mit
01.01 eines Jahres produktiv gesetzt. In den letzten zwei Monaten vor dem Produktivdatum un-
terliegt das Release einer sicherheitstechnischen und funktionalen Prüfung. Die großen Features
sind somit jährlich getaktet. Gelegentlich kommt es vor, dass es unter dem Jahr ein kleines Fea-
ture-Release gibt. Hotfix- und Bugfix-Releases sind quartalsmäßig vorgesehen. Die Entwicklung
ist in mehrere Phasen bzw. Ausbaustufen gegliedert. Phase 1 war im Jahr 2022 bereits abgeschlos-
sen. Im Jahr 2022 ist die Phase 2 umgesetzt worden und im Jahr 2023 ist die Phase 3 eingeplant.
Die Phase 4 folgt dann im darauffolgenden Jahr, usw.

4.6.5 Thematische Analyse der Interviews

Das Vorgehen der thematischen Analyse ist äquivalent wie im Fallbeispiel 1 (vgl. 4.4.7) und
Fallbeispiel 2 (vgl. 4.5.5). Bereits definierte Codes und Themen aus den vorherigen Fallbeispielen
werden übernommen, sofern sie inhaltlich auf die neuen Interviewdaten zutreffen. Tabelle 11
zeigt das Ergebnis mit insgesamt 14 Themen und 73 Codes:

Single Case Studies 62

Anzahl der Interviews 5
Thema Code % # Dokumente

Taskänderungen

Prozess wird beschleunigt 20% 1

Validierung und Einplanung nach Dringlichkeit 80% 4

teamintern besprochen 20% 1

Direkt wenn nicht zu kritisch (aufgrund von Bürokratie) 60% 3

Absprachen mit Management 40% 2

Richtlinien, Gren-
zen, Normen oder
Prinzipien

Definition of Done 20% 1

Zulassungsverfahren (e.g. CC-Verfahren) 60% 3

Zentrale Festlegung durch Spezialisten (1...n) 40% 2

Organisationsweite Richtlinien 80% 4

Doku (Wiki/Confluence/...) 60% 3

Review nach Checkliste 40% 2

zusätzliche Codequalitäten durch Team bzw. Teamleiter 60% 3

Code Review 40% 2
Teamkultur Teamkultur 80% 4

Meetings
Weekly (1-2 Wochen Zyklus) 60% 3

Dailies 80% 4

Teamleiter-Meetings (Test, Architektur, etc.) 20% 1

Team Events & Be-
lohnungen

Sachgeschenke 20% 1

Prämien 20% 1

Allgemeine Teamevents 60% 3

Komplexe Themen
Ressourcen auslagern, Komplexität intern behalten 20% 1

4 Augen Prinzip & Reviews 60% 3

Teamabsprache und Validierung 100% 5

Fortschrittsmessung

Zwischenreleases 20% 1

Task-Fortschritt (Monitoring) per Board 60% 3

Im Daily 60% 3

wöchentliche Meetings mit Leitung 40% 2

Tracking über Epics (mehrere Stories) 20% 1

Ticketing-Tool 60% 3

Ticketstatus (%, Stunden oder Status) 100% 5

Auswahl und Zutei-
lung Tasks

Leitung an Team 80% 4

Auswahl durch Teammitglieder aus Task-Liste 80% 4

Zuteilung in Meeting demokratisch 20% 1
Zuteilung nach Fachwissen/jenen der sich am besten
auskennt 20% 1

Team zu Team 20% 1

priorisierte Taskliste 40% 2

Fortbildung

Zertifikate & Weiterbildung (aktiv) 60% 3

Zeit für Verbesserungen 40% 2

Themenwechsel 60% 3

Rollenwechsel 60% 3

Zeit Technologiewechsel & Updates 60% 3

Single Case Studies 63

Transparenz

Software & Ticketverwaltung 80% 4

Task-Fortschritt für jedes Mitglied 40% 2

Status setzen 60% 3

Direkte Kommunikation 20% 1

Dailies (Transparenz) 100% 5

Boards (Kanban od. ähnliches) 20% 1

Wissensverteilung &
Support

Code Review 100% 5

JavaDoc (Code-Kommentare) 40% 2

Dokumentation 80% 4

Direkte Nachfrage (Sms, Telefon) 20% 1

Taskrotation 80% 4

Sprint-Review 20% 1

Zuteilung an Andere bei Leerlauf 20% 1

Pair-Programming 20% 1

Mehrere Personen pro Thema 60% 3

Liste mit Zuständigkeiten 20% 1

Reflexion & Lern-
prozess

Retrospektive & Review 80% 4

Mantras 20% 1

Aufwandsschätzung

Schätzung über mehrere Iterationen 80% 4

Durch Teammitglieder 80% 4

Aufteilung in Subtasks 20% 1

projektspezifische Einheitenschätzung 20% 1

Kommunikation

Telefon 40% 2

direkte Kommunikation 40% 2

Ticket-Tool 20% 1

Jira 100% 5

Jitsi 60% 3

Chat 80% 4

Meetings 40% 2

E-Mail 80% 4

Videokonferenzen 20% 1

Wiki/Confluence/... 80% 4

Tabelle 11: Vorkommen der 73 Codes im Fallbeispiel 3

Multiple Case Study 65

5 Multiple Case Study

In diesem Kapitel wird die Multiple Case Study beschrieben. Die Ergebnisse der Single Case
Studies aus Kapitel 4 werden zusammengeführt und auf Gemeinsamkeiten untersucht. In den fol-
genden Unterkapiteln wird auf die thematischen Überschneidungen der Codes eingegangen.

Für das finale Ergebnis werden ausschließlich jene Codes berücksichtigt, die in allen drei Fall-
beispielen vorkommen. Diese Herangehensweise stellt sicher, dass nur die am stärksten überein-
stimmenden Inhalte mit der höchsten Aussagekraft in die Analyse einfließen. Nur aus dieser ge-
meinsamen Schnittmenge werden konkrete Best Practices abgeleitet und inhaltlich ausgearbeitet.
Codes, die lediglich in ein oder zwei Fallbeispielen vorkommen, werden zwar dokumentiert, aber
nicht zu vollständigen Best Practices weiterentwickelt.

5.1 Auswertung der Multiple Case Study

Die Single Case Study (siehe Kapitel 4) zeigt die Auswertung der Themen und Codes für jedes
einzelne Fallbeispiel. Die Auswertung der Multiple Case Study vereint die Themen mit ihren
Codes über alle drei Fallbeispiele.

Da bereits bei der Single Case Study vorausschauend auf eine einheitliche Benennung der The-
men und Codes geachtet wird (siehe Punkt 4.4.7 ff.), findet nun eine Auswertung der Überschnei-
dung der Codes in zwei, bzw. in allen drei Fallbeispielen statt. Insgesamt werden folgende Über-
schneidungen in der Multiple Case Study beachtet:

I. Themen & Codes in den Fallbeispielen 1, 2 und 3 (siehe Punkt 5.2.1)
II. Themen & Codes in den Fallbeispielen 1 und 2

i. inklusive Überschneidungen mit Fallbeispiel 3 (siehe Punkt 5.2.2)
ii. exklusive Überschneidungen mit Fallbeispiel 3 (siehe Punkt 5.2.5.1)

III. Themen & Codes in den Fallbeispielen 1 und 3
i. inklusive Überschneidungen mit Fallbeispiel 2 (siehe Punkt 5.2.3)

ii. exklusive Überschneidungen mit Fallbeispiel 2 (siehe Punkt 5.2.5.2)
IV. Themen & Codes in den Fallbeispielen 2 und 3

i. inklusive Überschneidungen mit Fallbeispiel 1 (siehe Punkt 5.2.4)
ii. exklusive Überschneidungen mit Fallbeispiel 1 (siehe Punkt 5.2.5.3)

Multiple Case Study 66

Für die Analyse der statistischen Verteilung sowie der Überschneidungen von Codes und Themen
in den drei Fallbeispielen wird ein eigens entwickeltes Java-Programm verwendet. Dieses verar-
beitet die aus MAXQDA exportierten Daten automatisiert und ermöglicht eine strukturierte Aus-
wertung der thematischen Gemeinsamkeiten und Unterschiede.

5.2 Die Code Themen

Die Tabelle 12 zeigt das gesamte Codesystem mit insgesamt 813 Codes über 17 Code-Hauptthe-
men. Die Anzahl der vergebenen Codes pro Dokument ist in der Abbildung 17 in der rechten
Spalte ersichtlich. Die 17 Hauptthemen umfassen wiederum die dazugehörigen Codes und Sub-
codes.

Abbildung 17: Anzahl vergebener Codes pro Dokument

Codesystem - Themen Anzahl Gesamt

Teamkultur 6
Metadaten 92
Negativ-Codes 15
Umgebung 4
Aufwandsschätzung 62
Komplexe Themen 44
Team Events & Belohnungen 13
Reflexion & Lernprozess 21
Wissensverteilung & Support 86

Multiple Case Study 67

Kommunikation 90
Fortbildung 43
Meetings 49
Fortschrittsmessung 62
Transparenz 93
Auswahl und Zuteilung Tasks 41
Taskänderungen 26
Richtlinien, Grenzen, Normen & Prinzipien 66
Summe 813

Tabelle 12: Übersicht der Code-Themen

In den folgenden Kapiteln werden die Überschneidungen zwischen den Fallbeispielen dargestellt.
Die zwei Themen Negativ-Codes und Metadaten werden nicht in die Auswertung übernommen,
da die Metadaten rein zur Zuordnung erstellt wurden, und negative Codes nicht Teil der Best
Practices sind. Die Abbildung 18 illustriert die Schnittmengen der Codes.

Abbildung 18: Schnittmengen der Codes

5.2.1 Überschneidungen Fallbeispiel 1, 2 und Fallbeispiel 3

Die folgende Tabelle 13 listet alle Themen und Codes mit ihren Vorkommen, welche in allen drei
Fallbeispielen vorkommen (F₁ ∩ F₂ ∩ F₃). Die Spalte Vorkommen in Prozent wird in der Tabelle
gerundet dargestellt:

F1 F2

F3

Codes
(F₁ ∩ F₃) ∖ F₂

Codes
(F₁ ∩ F₂) ∖ F₃

Codes
(F₂ ∩ F₃) ∖ F₁

Codes
F₁ ∩ F₂ ∩ F₃

Multiple Case Study 68

Anzahl der Dokumente 15

Nr. Thema Code %-Vor-
kommen

Anzahl Do-
kumente

1 Transparenz

Software & Ticketverwaltung 80% 12
Task-Fortschritt für jedes Mitglied 47% 7
Status setzen 60% 9
Direkte Kommunikation 27% 4
Dailies (Transparenz) 87% 13
Boards (Kanban od. ähnliches) 67% 10

2 Kommunikation

Telefon 40% 6
direkte Kommunikation 67% 10
Ticket-Tool 27% 4
Chat 87% 13
Meetings 47% 7
E-Mail 67% 10
Wiki/Confluence/... 53% 8

3 Reflexion & Lern-
prozess

Retrospektive & Review
67% 10

4 Wissensverteilung
& Support

Code Review 93% 14
Dokumentation 40% 6
Taskrotation 53% 8
Pair-Programming 40% 6
Direkte Nachfrage (Sms, Telefon) 20% 3
Mehrere Personen pro Thema 60% 9

5 Fortbildung

Zertifikate & Weiterbildung (aktiv) 33% 5
Zeit für Verbesserungen 33% 5
Themenwechsel 67% 10
Rollenwechsel 60% 9
Zeit Technologiewechsel & Updates 40% 6

6
Richtlinien, Gren-
zen, Normen oder
Prinzipien

Doku (Wiki/Confluence/...) 53% 8
Organisationsweite Richtlinien 73% 11
Festlegung zentral durch Spezialisten (1...n) 73% 11
zusätzliche Codequalitäten durch Team bzw.
Teamleiter 60% 9

7 Meetings

Weekly (1-2 Wochen Zyklus) 60% 9
Dailies 80% 12
Teamleiter-Meetings (Test, Architektur, etc.) 53% 8

8 Fortschrittsmessung

wöchentliche Meetings mit Leitung 27% 4
Task-Fortschritt (Monitoring) per Board 73% 11
Im Daily 53% 8
Ticketstatus (%, Stunden oder Status) 87% 13

9 Auswahl und Zutei-
lung Tasks

Leitung an Team 80% 12
Zuteilung nach Fachwissen/jenen der sich am
besten auskennt 40% 6
Auswahl durch Teammitglieder aus Task-
Liste 73% 11

Multiple Case Study 69

10 Taskänderungen

Validierung und Einplanung nach Dringlich-
keit 60% 9
Direkt wenn nicht zu kritisch (aufgrund von
Bürokratie) 67% 10

11 Team Events & Be-
lohnungen

Allgemeine Teamevents
60% 9

12 Komplexe Themen
4 Augen Prinzip & Reviews 67% 10
Teamabsprache und Validierung 80% 12

13 Aufwandsschätzung

Schätzung über mehrere Iterationen 67% 10
Durch Teammitglieder 93% 14
Aufteilung in Subtasks 20% 3
projektspezifische Einheitenschätzung 33% 5

Tabelle 13: Die 48 Codes in 13 Themen in den Fallbeispielen 1, 2 und 3

5.2.2 Überschneidungen Fallbeispiel 1 und Fallbeispiel 2

Die folgende Tabelle 14 listet alle Themen und Codes mit ihren Vorkommen, welche in den bei-
den Fallbeispielen vorkommen (F₁ ∩ F₂):

Anzahl der Dokumente 10
Nr. Thema Code %-Vorkommen Anzahl Dokumente

1 Taskänderungen

Validierung und Einplanung
nach Dringlichkeit

50% 5

Direkt wenn nicht zu kritisch
(aufgrund von Bürokratie)

70% 7

2
Richtlinien, Grenzen,
Normen oder Prinzi-
pien

SonarQube 50% 5
Organisationsweite Richtlinien 70% 7
Doku (Wiki/Confluence/...) 50% 5
Checkstyle 30% 3
Festlegung zentral durch Spezi-
alisten (1...n)

90% 9

zusätzliche Codequalitäten
durch Team bzw. Teamleiter

60% 6

3 Meetings

Meetings bei Bedarf 40% 4
Weekly (1-2 Wochen Zyklus) 60% 6
Dailies 80% 8
Teamleiter-Meetings (Test, Ar-
chitektur, etc.)

70% 7

4 Team Events & Be-
lohnungen

Allgemeine Teamevents 60% 6

5 Komplexe Themen
4 Augen Prinzip & Reviews 70% 7
Teamabsprache und Validie-
rung

70% 7

6 Fortschrittsmessung

Task-Fortschritt (Monitoring)
per Board

80% 8

Im Daily 50% 5
wöchentliche Meetings mit Lei-
tung

20% 2

Multiple Case Study 70

Ticketstatus (%, Stunden oder
Status)

80% 8

7 Auswahl und Zutei-
lung Tasks

Leitung an Team 80% 8
Zuteilung nach Fachwissen/je-
nen der sich am besten auskennt

50% 5

Auswahl durch Teammitglieder
aus Task-Liste

70% 7

8 Fortbildung

Teamwechsel 30% 3
Zertifikate & Weiterbildung
(aktiv)

20% 2

Zeit für Verbesserungen 30% 3
Themenwechsel 70% 7
Rollenwechsel 60% 6
Zeit Technologiewechsel & Up-
dates

30% 3

9 Transparenz

Software & Ticketverwaltung 80% 8
Task-Fortschritt für jedes Mit-
glied

50% 5

Status setzen 50% 5
Direkte Kommunikation 30% 3
Dailies (Transparenz) 80% 8
Boards (Kanban od. ähnliches) 90% 9

10 Wissensverteilung &
Support

Code Review 90% 9
Dokumentation 20% 2
Taskrotation 40% 4
Pair-Programming 50% 5
Übergabemeetings 40% 4
Direkte Nachfrage (Sms, Tele-
fon)

20% 2

Mehrere Personen pro Thema 70% 7

11 Reflexion & Lernpro-
zess

Retrospektive & Review 60% 6

12 Aufwandsschätzung

Schätzung über mehrere Iterati-
onen

60% 6

Durch Teammitglieder 100% 10
Aufteilung in Subtasks 20% 2
projektspezifische Einheiten-
schätzung

40% 4

13 Kommunikation

direkte Kommunikation 80% 8
Ticket-Tool 30% 3
Chat 90% 9
Meetings 50% 5
Telefon 40% 4
E-Mail 60% 6
Wiki/Confluence/... 40% 4

Tabelle 14: Die 53 Codes in 13 Themen in den Fallbeispielen 1 und 2

Multiple Case Study 71

5.2.3 Überschneidungen Fallbeispiel 1 und Fallbeispiel 3

Die folgende Tabelle 15 listet alle Themen und Codes mit ihren Vorkommen, welche in den bei-
den Fallbeispielen vorkommen (F₁ ∩ F₃):

Anzahl der Dokumente 10
Nr. Thema Code %-Vorkommen Anzahl Dokumente

1 Taskänderungen

Validierung und Einplanung
nach Dringlichkeit 50% 5
Direkt wenn nicht zu kritisch
(aufgrund von Bürokratie) 70% 7

2
Richtlinien, Gren-
zen, Normen oder
Prinzipien

Doku (Wiki/Confluence/...) 70% 7
Organisationsweite Richtlinien 80% 8
Festlegung zentral durch Spezia-
listen (1...n) 60% 6
Review nach Checkliste 40% 4
zusätzliche Codequalitäten
durch Team bzw. Teamleiter 50% 5

3 Meetings

Weekly (1-2 Wochen Zyklus) 60% 6
Dailies 80% 8
Teamleiter-Meetings (Test, Ar-
chitektur, etc.) 40% 4

4 Team Events & Be-
lohnungen Allgemeine Teamevents 70% 7

5 Komplexe Themen 4 Augen Prinzip & Reviews 80% 8
Teamabsprache und Validierung 90% 9

6 Fortschrittsmessung

Im Daily 40% 4
Task-Fortschritt (Monitoring)
per Board 70% 7
wöchentliche Meetings mit Lei-
tung 30% 3
Ticketstatus (%, Stunden oder
Status) 90% 9

7 Auswahl und Zutei-
lung Tasks

Leitung an Team 90% 9
Zuteilung nach Fachwissen/je-
nen der sich am besten auskennt 40% 4
Auswahl durch Teammitglieder
aus Task-Liste 90% 9

8 Fortbildung

Zertifikate & Weiterbildung (ak-
tiv) 40% 4
Zeit für Verbesserungen 30% 3
Themenwechsel 60% 6
Rollenwechsel 60% 6
Zeit Technologiewechsel & Up-
dates 40% 4

9 Transparenz

Software & Ticketverwaltung 80% 8
Task-Fortschritt für jedes Mit-
glied 50% 5
Status setzen 60% 6
Direkte Kommunikation 20% 2

Multiple Case Study 72

Dailies (Transparenz) 80% 8
Boards (Kanban od. ähnliches) 60% 6

10 Wissensverteilung &
Support

Zuteilung an Andere bei Leer-
lauf 20% 2
Code Review 100% 10
JavaDoc (Code-Kommentare) 30% 3
Dokumentation 50% 5
Taskrotation 50% 5
Pair-Programming 30% 3
Direkte Nachfrage (Sms, Tele-
fon) 20% 2
Mehrere Personen pro Thema 60% 6

11 Reflexion & Lern-
prozess Retrospektive & Review 50% 5

12 Aufwandsschätzung

Schätzung über mehrere Iteratio-
nen 50% 5
Durch Teammitglieder 90% 9
Aufteilung in Subtasks 20% 2
projektspezifische Einheiten-
schätzung 30% 3

13 Kommunikation

Telefon 50% 5
direkte Kommunikation 70% 7
Ticket-Tool 30% 3
Chat 80% 8
Meetings 40% 4
E-Mail 90% 9
Wiki/Confluence/... 50% 5

Tabelle 15: Die 51 Codes in 13 Themen in den Fallbeispielen 1 und 3

5.2.4 Überschneidungen Fallbeispiel 2 und Fallbeispiel 3

Die folgende Tabelle 16 listet alle Themen und Codes mit ihren Vorkommen, welche in den bei-
den Fallbeispielen vorkommen (F₂ ∩ F₃):

Anzahl der Dokumente 10
Nr. Thema Code %-Vorkommen Anzahl Dokumente

1 Taskänderungen

Validierung und Einplanung
nach Dringlichkeit

80% 8

teamintern besprochen 20% 2
Direkt wenn nicht zu kritisch
(aufgrund von Bürokratie)

60% 6

2
Richtlinien, Gren-
zen, Normen oder
Prinzipien

Organisationsweite Richtlinien 70% 7
Doku (Wiki/Confluence/...) 40% 4
Definition of Done 20% 2
Festlegung zentral durch Spezia-
listen (1...n)

70% 7

Multiple Case Study 73

zusätzliche Codequalitäten durch
Team bzw. Teamleiter

70% 7

Code Review 30% 3

3 Teamkultur Teamkultur 50% 5

4
Meetings

Weekly (1-2 Wochen Zyklus) 60% 6
Dailies 80% 8
Teamleiter-Meetings (Test, Ar-
chitektur, etc.)

50% 5

Team Events & Be-
lohnungen

Allgemeine Teamevents 50% 5

5 Komplexe Themen
4 Augen Prinzip & Reviews 50% 5
Teamabsprache und Validierung 80% 8

6 Fortschrittsmessung

Im Daily 70% 7
Task-Fortschritt (Monitoring)
per Board

70% 7

wöchentliche Meetings mit Lei-
tung

30% 3

Ticketing-Tool 40% 4
Ticketstatus (%, Stunden oder
Status)

90% 9

7 Auswahl und Zutei-
lung Tasks

Leitung an Team 70% 7
Auswahl durch Teammitglieder
aus Task-Liste

60% 6

Zuteilung in Meeting demokra-
tisch

20% 2

Zuteilung nach Fachwissen/je-
nen der sich am besten auskennt

30% 3

Team zu Team 20% 2
priorisierte Taskliste 30% 3

8 Fortbildung

Zertifikate & Weiterbildung (ak-
tiv)

40% 4

Zeit für Verbesserungen 40% 4
Themenwechsel 70% 7
Rollenwechsel 60% 6
Zeit Technologiewechsel & Up-
dates

50% 5

9 Transparenz

Software & Ticketverwaltung 80% 8
Direkte Kommunikation 30% 3
Task-Fortschritt für jedes Mit-
glied

40% 4

Status setzen 60% 6
Dailies (Transparenz) 100% 10
Boards (Kanban od. ähnliches) 50% 5

10 Wissensverteilung &
Support

Code Review 90% 9
Dokumentation 50% 5
Pair-Programming 40% 4
Direkte Nachfrage (Sms, Tele-
fon)

20% 2

Taskrotation 70% 7
Sprint-Review 30% 3

Multiple Case Study 74

Mehrere Personen pro Thema 60% 6
Reflexion & Lern-
prozess

Retrospektive & Review 90% 9

11 Aufwandsschätzung

Schätzung über mehrere Iteratio-
nen

90% 9

Durch Teammitglieder 90% 9
Aufteilung in Subtasks 20% 2
projektspezifische Einheiten-
schätzung

30% 3

12 Kommunikation

Telefon 30% 3
direkte Kommunikation 50% 5
Ticket-Tool 20% 2
Chat 90% 9
Meetings 50% 5
E-Mail 50% 5
Wiki/Confluence/... 70% 7

Tabelle 16: Die 57 Codes in 12 Themen in den Fallbeispielen 2 und 3

5.2.5 Codes die nur in zwei Fallbeispielen gemeinsam existieren

Die folgenden Tabellen zeigen jene Codes, die ausschließlich in der Schnittmenge zwischen zwei
Fallbeispielen vorkommen. Es werden also alle Codes zwischen den jeweiligen Fallbeispielen
ermittelt und jene entfernt, die in allen drei Fallbeispielen gemeinsam vorkommen. Dabei ist zu
beachten, dass die Codes inhaltlich auf unterschiedlichen Abstraktionsebenen angesiedelt sind –
von allgemeinen Methoden bis hin zu konkreten Tools.

Ein Beispiel hierfür sind Begriffe wie Checkstyle oder SonarQube, die einen sehr spezifischen
Toolbezug aufweisen. Auch wenn solche Tools nicht in allen drei Fallbeispielen namentlich ge-
nannt wurden und daher nicht als gemeinsame Codes gewertet werden, kann die ihnen zugrunde
liegende übergreifende Codierung (z. B. „zusätzliche Codequalitäten durch Team bzw. Teamlei-
ter“) sehr wohl übergreifend abgedeckt sein. In solchen Fällen werden entsprechende Tools in
den Beschreibungen der Best Practices exemplarisch erwähnt, ohne dass sie als Voraussetzung
für die Anwendung gelten. Die Best Practices selbst sind grundsätzlich hersteller- und plattform-
unabhängig formuliert.

5.2.5.1 Gemeinsame Codes im Fallbeispiel 1 und im Fallbeispiel 2, die nicht im Fall-
beispiel 3 auftreten

Die folgende Tabelle 17 listet alle Codes, die ausschließlich in der Schnittmenge von Fallbeispiel
1 und Fallbeispiel 2 vorkommen, jedoch nicht im Fallbeispiel 3 enthalten sind ((F₁ ∩ F₂) ∖ F₃):

Multiple Case Study 75

Thema Code Anmerkung
Fortbildung Teamwechsel Im Fallbeispiel 3 wird kein direkter Verweis auf Team-

wechsel als Fortbildungsmaßnahme gemacht. Stattdessen
liegt der Fokus auf Rollen- und Themenwechsel.

Meetings Meetings bei Be-
darf

Im Fallbeispiel 3 gibt es keine spezifischen Hinweise auf
flexible Meetings. Der Fokus liegt eher auf regelmäßigen
und strukturierten Meetings wie Dailies.

Richtlinien, Gren-
zen, Normen oder
Prinzipien

Checkstyle Checkstyle wird im Fallbeispiel 3 nicht erwähnt. Stattdes-
sen liegt dort der Fokus auf allgemeiner Codequalität und
Richtlinien, ohne spezielle Tools zu nennen.

SonarQube Ähnlich wie bei Checkstyle wird SonarQube im Fallbei-
spiel 3 nicht erwähnt, obwohl allgemeine Qualitätskontrol-
len angesprochen werden.

Wissensverteilung &
Support

Übergabemeetings Übergabemeetings werden im Fallbeispiel 3 nicht explizit
erwähnt. Stattdessen wird dort der Wissensaustausch durch
Pair-Programming und Dokumentation hervorgehoben.

Tabelle 17: Codes (F₁ ∩ F₂) ∖∖ F₃

5.2.5.2 Gemeinsame Codes im Fallbeispiel 1 und im Fallbeispiel 3, die nicht im Fall-
beispiel 2 auftreten

Die folgende Tabelle 18 listet alle Codes, die ausschließlich in der Schnittmenge von Fallbeispiel
1 und Fallbeispiel 3 vorkommen, jedoch nicht im Fallbeispiel 2 enthalten sind ((F₁ ∩ F₃) ∖ F₂):

Thema Code Anmerkung
Wissensverteilung &
Support

Zuteilung an An-
dere bei Leerlauf

Im Fallbeispiel 2 wurde keine explizite Erwähnung von
Aufgabenübergaben bei Leerlauf gefunden. Stattdessen
liegt der Fokus auf anderen Zuteilungsmechanismen.

JavaDoc (Code-
Kommentare)

JavaDoc wird im Fallbeispiel 2 nicht ausdrücklich erwähnt.
Es könnte sein, dass es genutzt wird, aber nicht als Schwer-
punkt der Dokumentation hervorgehoben wurde.

Richtlinien, Gren-
zen, Normen oder
Prinzipien

Review nach
Checkliste

Im Fallbeispiel 2 wurde der Review-Prozess mit einer Defi-
nition of Done beschrieben, jedoch ohne spezifische Er-
wähnung von Checklisten als Strukturierungsinstrument.

Tabelle 18: Codes (F₁ ∩ F₃) ∖∖ F₂

5.2.5.3 Gemeinsame Codes im Fallbeispiel 2 und im Fallbeispiel 3, die nicht im Fall-
beispiel 1 auftreten

Die folgende Tabelle 19 listet alle Codes, die ausschließlich in der Schnittmenge von Fallbeispiel
2 und Fallbeispiel 3 vorkommen, jedoch nicht im Fallbeispiel 1 enthalten sind ((F₂ ∩ F₃) ∖ F₁):

Multiple Case Study 76

Thema Code Anmerkung
Auswahl und Zutei-
lung Tasks

Zuteilung in Mee-
ting demokratisch

Demokratische Zuteilung wird im Fallbeispiel 1 nicht be-
schrieben, wo die Zuteilung meist zentral oder selbstverant-
wortlich erfolgt.

Team zu Team Dieser Aspekt der Zusammenarbeit zwischen Teams wird
im Fallbeispiel 1 nicht angesprochen.

priorisierte Task-
liste

Priorisierung von Aufgabenlisten wird im Fallbeispiel 1
nicht hervorgehoben.

Fortschrittsmessung Ticketing-Tool Im Fallbeispiel 1 wird die Fortschrittsmessung mit LFBs
(Leistungsfortschrittsberichten) gemessen. LFBs sind
Excel-Listen.

Richtlinien, Gren-
zen, Normen oder
Prinzipien

Definition of Done Die Definition of Done wird im Fallbeispiel 1 nicht aus-
drücklich erwähnt, aber es gibt Checklisten.

Code Review Obwohl Code Reviews im Fallbeispiel 1 erwähnt werden,
fehlt der spezifische Fokus auf deren systematische Durch-
führung.

Taskänderungen teamintern bespro-
chen

Dieser Aspekt wird im Fallbeispiel 1 nicht hervorgehoben,
wo Änderungen eher zentral koordiniert werden.

Teamkultur Teamkultur Die Entwicklung einer expliziten Teamkultur wird im Fall-
beispiel 1 nicht thematisiert.

Wissensverteilung &
Support

Sprint-Review Sprint-Reviews werden im Fallbeispiel 1 nicht als zentraler
Bestandteil der Wissensverteilung hervorgehoben.

Tabelle 19: Codes (F₂ ∩ F₃) ∖∖ F₁

Ergebnisse 77

6 Ergebnisse

In diesem Kapitel werden die Ergebnisse der Multiple Case Study vorgestellt, die in Kapitel 5
beschrieben wird. Ziel der Untersuchung ist es, skalierbare Best Practices für autonome Teams in
Softwaregroßprojekten zu identifizieren und diese mit dem bestehenden Modell der Balancing
Acts von Hoda et al. zu vergleichen. Die aussagekräftigsten Ergebnisse basieren auf den Themen
und Codes, die in allen drei Fallbeispielen übereinstimmen. Tabelle 13 fasst die identifizierten
Themen und Best Practices zusammen, die in diesem Kapitel ausführlich dargestellt werden.

Zunächst werden in Kapitel 6.1 die Best Practices beschrieben, die aus den Fallstudien abgeleitet
wurden (RQ1a). Darauf aufbauend folgt in Kapitel 6.2 die Analyse ihrer Skalierbarkeit im Ab-
gleich mit dem Modell von Hoda et al. (RQ1b). In Kapitel 6.3 werden die Praktiken anschließend
thematisch in 13 Kategorien eingeordnet (RQ2), bevor in Kapitel 6.4 die Kriterien dargelegt wer-
den, anhand derer die Zuordnung der Practices zu diesen Kategorien erfolgt (RQ3).

Kapitel 6.5 bietet einen erneuten Vergleich der identifizierten Best Practices mit aktuellen wis-
senschaftlichen Erkenntnissen und Modellen aus der Literatur nach Fertigstellung der Ergebnisse
(State of the Art aus dem Jahr 2024 und 2025) und Kapitel 6.6 beschreibt die Limitationen der
Ergebnisse und gibt Hinweise auf mögliche Einflüsse und Einschränkungen der durchgeführten
Analyse.

6.1 Benennung der Best Practices aus den Codes der Hauptthe-
men

Da die ursprünglichen Codes in Tabelle (siehe Tabelle 13) stichwortartig formuliert sind, werden
diese in aussagekräftige Best Practices zusammengefasst, umbenannt und mit kurzen Beschrei-
bungen sowie Beispielen aus den Fallbeispielen der Praxis versehen. Diese Umbenennung soll
die praktische Bedeutung und bessere Beschreibung der Praktiken verdeutlichen. Die Ableitung
der Best Practices erfolgt auf Basis der codierten Interviewstellen. Dabei werden alle Textstellen,
die einem bestimmten Code zugeordnet sind, systematisch analysiert und deren Inhalte zu zusam-
menhängenden Aussagen verdichtet. Die Rückverfolgbarkeit funktioniert über die verwendete
Software MAXQDA und gewährleistet, dass jede Best Practice durch konkrete Interviewaussa-
gen belegt ist.

Ergebnisse 78

Für jedes der 13 Hauptthemen (siehe Punkt 6.3) werden spezifische Best Practices identifiziert,
die aus den 48 Codes und deren zugehörigen Interviewphrasen abgeleitet sind. Diese bieten eine
detaillierte Perspektive auf die Umsetzung der Praktiken innerhalb der Kategorien. Es ergeben
sich insgesamt 23 ausformulierte Best Practices, wobei einige in mehreren Kategorien zugeteilt
werden. Die Mehrfachzuteilung ergibt sich daraus, dass einzelne Interviewaussagen inhaltlich
mehrere Aspekte berühren und deshalb auch mehreren Codes zugewiesen werden – selbst wenn
diese unterschiedlichen Kategorien angehören. Ein Zitat kann zum Beispiel gleichzeitig auf „Wis-
sensverteilung & Support“ und „Reflexion & Lernprozess“ hinweisen. Solche inhaltlichen Über-
schneidungen werden in der Analyse durch eine gemeinsame Best Practice zusammengefasst. In
diesen Fällen wird jeweils auf die Ersterwähnung und ausführliche Beschreibung der entspre-
chenden Best Practice verwiesen, um Redundanzen zu vermeiden.

Die Titel der Best Practices werden somit bewusst allgemein gewählt, da einzelne Praktiken meh-
rere Themenbereiche gleichzeitig abdecken. Ziel ist es, inhaltliche Überschneidungen konsistent
unter einem übergeordneten Namen zusammenzufassen und Wiederholungen in der Beschrei-
bung zu vermeiden.

Am Ende des Am Ende dieses Kapitels zeigt die Tabelle 24 eine Gesamtübersicht über alle Best
Practices mit ihren zugehörigen Kategorien und einer Kurzbeschreibung der kategorienspezifi-
schen Umsetzung. Die in diesem Kapitel beschriebenen Best Practices stellen die Antwort auf die
Forschungsfrage RQ1a dar: „Welche Praktiken lassen sich in Softwaregroßprojekten zur Unter-
stützung autonomer Teams identifizieren?“ und bilden zugleich die Grundlage für die Beantwor-
tung der Forschungsfrage RQ1b in 6.2.

In einigen Best-Practice-Beschreibungen werden konkrete Tools wie Jira oder SonarQube bei-
spielhaft erwähnt, um die praktische Umsetzung zu veranschaulichen (vgl. Kapitel 5.2.5). Diese
Nennungen dienen ausschließlich der Illustration typischer Anwendungsszenarien. Die Best Prac-
tices selbst sind bewusst hersteller- und plattformunabhängig formuliert und orientieren sich an
übergreifenden Methoden und Prinzipien.

6.1.1 Transparenz

Die Codes „Software & Ticketverwaltung“, „Task-Fortschritt für jedes Mitglied“, „Status set-
zen“, „Direkte Kommunikation“, „Dailies (Transparenz)“ und „Boards (Kanban oder ähnliches)“
werden zu folgenden Best Practices ausformuliert:

Ergebnisse 79

6.1.1.1 Toolunterstützter Workflow

Der Einsatz von Software-Tools spielt eine zentrale Rolle in agilen Teams, um Aufgaben zu ver-
walten, den Fortschritt zu verfolgen und Wissen zu sichern. Die eingesetzten Systeme decken
dabei mehrere zentrale Bereiche gleichzeitig ab: Transparenz, Kommunikation, Wissensvertei-
lung & Support sowie Fortschrittsmessung. Informationen werden digital zentral gespeichert, Ar-
beitsprozesse dokumentiert und teamübergreifend koordiniert. Der gezielte, integrierte Einsatz
dieser digitalen Werkzeuge unterstützt agile Teams dabei, ihre täglichen Arbeitsprozesse trans-
parent und effizient zu gestalten. Insbesondere in Daily Meetings nutzen die Teams die Tools
aktiv, um den aktuellen Arbeitsstand sichtbar zu machen, Blocker zu erkennen und die nächsten
Schritte abzustimmen. Die Toolnutzung ist dadurch nicht rein unterstützend, sondern integraler
Bestandteil der täglichen Teamkoordination. Insbesondere in verteilten Projekten dienen die
Tools als zentrale Schnittstellen zur Koordination, Dokumentation und Wissenssicherung.

Für die transparente Ticketverwaltung und Statusverfolgung setzen die Teams unterschiedliche
Tools ein. Im Fallbeispiel 1 erfolgt die Aufgabenverwaltung hauptsächlich über GitLab-Boards,
die als digitale Kanban-Systeme genutzt werden. Dort werden Aufgaben in verschiedene Status
eingeteilt, typischerweise „Backlog“, „In Bearbeitung“, „In Review“ und „Abgeschlossen“, um
jederzeit den Bearbeitungsstand nachvollziehen zu können. Kleinere Teams setzen zusätzlich auf
physische Whiteboards, um ihre Workflows sichtbar zu machen. HPQC („HP Quality Center“)
dient im Fallbeispiel 1 zudem als übergreifendes Requirements- und Defect-Management-Tool,
in dem Aufgaben kategorisiert und mit Status versehen werden. In den Fallbeispielen 2 und 3
kommt dagegen Jira als zentrales Ticket- und Sprint-Management-Tool zum Einsatz. Die Teams
nutzen dort ebenfalls Kanban- und Sprint-Boards mit standardisierten Statuskategorien. In eini-
gen Teams von Fallbeispiel 2 wird ergänzend noch GitLab verwendet, wobei langfristig eine
vollständige Umstellung auf Jira geplant ist. Zur Visualisierung der Verantwortlichkeiten werden
häufig Avatare oder Initialen eingesetzt, während Labels zusätzliche Informationen wie Priorität,
Blocker oder Themenzugehörigkeit markieren.

„Wir verwenden jetzt teamintern Großteils Gitlab für die Boards und ansonsten er-
weitert HPQC Requirements und Defects.“ – T3, Teamleiter

„Wir haben eigentlich immer Jira verwendet. Wir waren quasi die Vorreiter, wir
haben auch immer Gitlab verwendet. Und es wird jetzt quasi umgestellt. Es sollen -
alle eigentlich Jira und Gitlab werden, wenn es geht. Aber es ist stark gesplittet,
einfach historisch bedingt haben die anderen Teams z.B. das RTC von IBM, das Ra-
tional Team Concert im Einsatz und haben Gerrit und manche Bit Bucket. Und ja,

Ergebnisse 80

manche haben Gitlab. Sehr, sehr unterschiedliche Dinge. Aber es soll quasi alles
zusammengeführt werden.“ – T6, Technischer Architekt

Neben der Verwaltung von Aufgaben spielen auch die Dokumentation und Wissenssicherung
eine zentrale Rolle. Im Fallbeispiel 1 werden relevante Informationen in HPQC und internen Wi-
kis gespeichert, darunter technische Dokumentationen, Architekturübersichten und Meeting-Pro-
tokolle. Im Fallbeispiel 2 und 3 hingegen nutzen die Teams Confluence, um Sprint-Reviews, Best
Practices und technische Anleitungen zu dokumentieren. Besonders im Fallbeispiel 3 werden Jira
und Confluence kombiniert genutzt, um API-Abstimmungen, How-To-Guides und Release-
Übersichten zentral bereitzustellen. Die enge Verzahnung dieser Tools mit der Ticketverwaltung
erleichtert es, Änderungen und Entscheidungen schnell nachzuvollziehen.

Auch die Fortschrittsmessung erfolgt über diese Systeme. Im Fallbeispiel 1 nutzen einige Teams
GitLab-Dashboards, während andere auf manuelle Leistungsfortschrittsberichte zurückgreifen.
Im Fallbeispiel 2 werden die Zeiterfassung und Aufwandsschätzungen direkt in Jira pro Ticket
hinterlegt, sodass der Arbeitsaufwand messbar bleibt. Im Fallbeispiel 3 werden Sprint-Fortschritte
regelmäßig in Jira und Confluence dokumentiert, um eine durchgehende Nachverfolgbarkeit zu
gewährleisten.

Durch die Kombination von Ticket-Systemen, Dokumentationsplattformen und Dashboards ha-
ben die Teams jederzeit Zugriff auf alle wichtigen Informationen. Das erleichtert die Abstimmung
in Meetings, hilft neuen Teammitgliedern beim schnellen Einarbeiten und macht Probleme früh-
zeitig sichtbar.

Der gezielte Einsatz dieser Tools kann dazu beitragen, Aufgaben klar zu strukturieren, Abhän-
gigkeiten sichtbar zu machen und die standortübergreifende Zusammenarbeit zu unterstützen. Bei
angemessener Nutzung fördern sie Transparenz, erleichtern die Kommunikation sowie den Wis-
sensaustausch und ermöglichen eine genaue Fortschrittskontrolle.

Ein zusätzlicher Vorteil digitaler Tools liegt in der Möglichkeit zur gezielten Suche, Filterung
und Kategorisierung von Aufgaben und Informationen. Der gezielte Einsatz solcher Tools stellt
daher eine bewährte Best Practice dar. Die folgende Übersicht in Tabelle 20 fasst die wichtigsten
funktionalen Anforderungen zusammen, die ein entsprechendes Toolset für agile Teams erfüllen
soll:

Funktion Unterstützte Aspekte
Aufgabenverwaltung Task-Zuweisung, Kanban-/Sprint-Boards, Statusverfolgung
Transparenz & Fortschrittsmessung Dashboards, Zeiterfassung, Sprint-Tracking
Kommunikation Verlinkung mit Meetings und Dokumentation,

Ergebnisse 81

Kommentarfunktionen

Wissensverteilung & Dokumentation Ablage von technischen Dokumentationen, How-Tos,
Sprint-Reviews, Architekturübersichten

Support für verteilte Teams Standortübergreifender Zugriff, gemeinsame Plattform für
alle Rollen

Kategorisierung & Nachvollziehbarkeit Verlinkung von Aufgaben, Entscheidungen und Dokumen-
ten

Such- und Filterfunktionen Möglichkeit der Suche und Filterung nach Aufgaben, Status,
Kategorien oder Textinhalten

Tabelle 20: Übersicht der Funktionalitäten für den toolunterstützten Workflow

Die tägliche Umsetzung kann wie folgt zusammengefasst werden:

• Daily Start:

Teammitglieder aktualisieren den Aufgabenstatus im Board (z. B. auf „In Bearbeitung“).
• Daily Meeting:

Das Team geht gemeinsam das Sprint- oder Kanban-Board durch, diskutiert Blocker und ko-
ordiniert nächste Schritte

• Während des Tages:
Kommentare, Umbuchungen und ergänzende Dokumentation erfolgen direkt im Tool (z.B.
Jira, GitLab oder Confluence).

• Abschluss:
Aufgaben werden abgeschlossen, Fortschritt dokumentiert, Review-Notizen ergänzt oder
Zeitaufwände eingetragen.

6.1.1.2 Regelmäßige synchrone Abstimmung im Team

Regelmäßige Meetings sind essenziell für die Teamkoordination, um den Arbeitsstand abzuglei-
chen, Abhängigkeiten zu klären und Probleme frühzeitig zu identifizieren. Sie fördern Transpa-
renz, effektive Kommunikation und eine strukturierte Zusammenarbeit. In den Fallbeispielen
werden verschiedene Meeting-Formate genutzt, die sich in Frequenz und Fokus unterscheiden.

In allen drei Fallbeispielen gibt es tägliche Abstimmungsrunden in Form von Dailies, in denen
Teammitglieder ihre aktuellen Aufgaben, Fortschritte und Blockaden berichten. Diese Meetings
dauern in der Regel 15 Minuten, können aber in Ausnahmefällen länger sein. Im Fallbeispiel 2
und 3 werden Jira- oder GitLab-Boards genutzt, um den Status von Tickets („Backlog“, „In Be-
arbeitung“, „In Review“, „Abgeschlossen“) direkt während der Besprechung zu aktualisieren. Im
Fallbeispiel 3 wird zusätzlich die aktive Sprint-Ansicht in Jira genutzt, um den aktuellen Arbeits-
stand während des Stand-ups transparent zu machen. Falls Diskussionen den Rahmen sprengen,
werden sie nach dem Meeting separat weitergeführt.

Ergebnisse 82

„Genau also bei Jira über das Sprint-Board. Dort kann man sehen, wer welches
Ticket gerade bearbeitet. Also im Normallfall funktioniert es eigentlich ganz okay.
Wir haben auch ein Dayli und was man Dayli macht, ist eigentlich mehr ein Repor-
ting. Das heißt, wir gehen genau eben dieses Sprint-Board durch und jeder erzählt,
wann er /sie gerade arbeitet und ob es da irgendwelche Probleme gibt. Und irgend-
welche dringenden Themen werden halt auch im Dayli besprochen. Aber ansonsten
ist es eher mehr so, dass es bleibt bei 15 Minuten also bisschen ge-time-boxed. Im
Normalfall bleibt es bei 15 Minuten.“- T6, Technischer Architekt

Die Abstimmungen sind eng mit den Bereichen Transparenz und Fortschrittsverfolgung ver-
knüpft. Besonders in den Fallbeispielen 2 und 3 werden während der Dailies Statusupdates direkt
in Jira oder GitLab gesetzt, um den Arbeitsstand nachvollziehbar zu halten. Im Fallbeispiel 1 und
3 werden wichtige Entscheidungen in Confluence oder internen Wikis dokumentiert, damit auch
nicht anwesende Teammitglieder darauf zugreifen können.

Durch die regelmäßige Abstimmung wird sichergestellt, dass alle Teammitglieder stets über den
aktuellen Stand informiert sind, Abhängigkeiten frühzeitig erkannt werden und relevante Infor-
mationen dokumentiert bleiben. Der Einsatz digitaler Tools wie Jira, GitLab und Confluence un-
terstützen diesen Prozess und verknüpfen Abstimmungen mit der Aufgabenverfolgung.

Die spezifischen Zielsetzungen und Abgrenzungen von Dailies, Weeklies und rollenspezifischen
Teamleiter-Meetings sind in Tabelle 23 zusammengefasst.

6.1.1.3 Wöchentliche Abstimmung zwischen Teams

Neben den Dailies, die sich auf die tägliche Abstimmung innerhalb eines Teams konzentrieren
und vor allem den aktuellen Arbeitsfortschritt betreffen, gibt es regelmäßige wöchentliche Mee-
tings (Engl. „Weeklies“), die eine teamübergreifende Koordination ermöglichen. Während Dail-
ies primär operative Abstimmungen sind, dienen Weeklies der längerfristigen Planung und der
Synchronisation zwischen autonomen Teams mit gemeinsamen Schnittstellen.
Im Fallbeispiel 1 sind wöchentliche Meetings etabliert, um Fortschritte mit anderen Teams abzu-
gleichen und Abhängigkeiten frühzeitig zu erkennen. Diese Meetings sind vor allem für Team-
leiter oder Vertreter mehrerer Teams gedacht, um wichtige Themen gemeinsam zu besprechen
und Informationen zwischen den beteiligten Teams und Themen sicherzustellen.

Ergebnisse 83

Im Fallbeispiel 2 sind Weeklies fester Bestandteil der Projektorganisation. Neben den Entwick-
lern nehmen auch Requirements Engineers, Tester oder technische Architekten teil. Diese Mee-
tings dienen nicht nur der Synchronisation zwischen Teams, sondern auch der übergreifenden
Abstimmung über priorisierte Aufgaben und strategische Entscheidungen. Darüber hinaus gibt es
spezialisierte Meetings, wie etwa Architektur- oder Test-Meetings, die im regelmäßigen Turnus
stattfinden.

„Ja, natürlich gibt es Meetings, die nach oben Informationen weitergeben. Die
Teamleads reden natürlich miteinander, […]“ – T6, Technischer Architekt

Im Fallbeispiel 3 gibt es Weeklies für die Abstimmung mit Projektleitern sowie für das Release-
und Test-Management. Diese Meetings haben neben dem Statusabgleich auch die Funktion, Prob-
leme frühzeitig zu identifizieren und gegebenenfalls Eskalationen anzustoßen, wenn Abhängig-
keiten zwischen Teams nicht geklärt werden können. Es gibt zudem spezialisierte Meetings mit
Teamleitern oder Key-Personen, die strategische Themen diskutieren.

„Also, wir haben wöchentliche Tickets durchsprachen mit PM, Release-Manage-
ments und Test-Management und da besprechen wir einfach neue Tickets und be-
werten diese.“ – T11, Teamleiter

Weeklies sind eine bewährte Praxis, um Transparenz über Teamgrenzen hinweg sicherzustellen
und den Informationsfluss zwischen Teams und weiteren relevanten Akteuren zu gewährleisten.
Während Dailies sich auf den laufenden Entwicklungsprozess fokussieren, ermöglichen Weeklies
eine übergreifende Planung und eine bessere Abstimmung zwischen verschiedenen Fachberei-
chen. Entscheidend ist, dass diese Meetings strukturiert durchgeführt und die Ergebnisse doku-
mentiert werden, um die Nachvollziehbarkeit der Abstimmungen zu gewährleisten. Im Unter-
schied zu den rollenspezifischen Teamleiter-Meetings (siehe Punkt 6.1.7.3), die der fachlichen
Koordination innerhalb definierter Rollen dienen, liegt der Fokus der Weeklies auf der operativen
Synchronisation zwischen mehreren Teams.

Die spezifischen Zielsetzungen und Abgrenzungen von Dailies, Weeklies und rollenspezifischen
Teamleiter-Meetings sind in Tabelle 23 zusammengefasst.

6.1.1.4 Standardisierte Protokollierung und Dokumentation

Eine strukturierte Dokumentation von Meeting-Ergebnissen, Entscheidungen und Verantwort-
lichkeiten ist essenziell, um Transparenz und Nachvollziehbarkeit in den Teams sicherzustellen.

Ergebnisse 84

In den untersuchten Fallbeispielen werden unterschiedliche Methoden genutzt, um sicherzustel-
len, dass alle relevanten Informationen festgehalten und zugänglich sind.

Im Fallbeispiel 1 erfolgt die Dokumentation größtenteils in internen Wikis, in denen technische
Entscheidungen, Sprint-Ergebnisse und Architektur-Überlegungen erfasst werden. In den Fall-
beispielen 2 und 3 setzen Teams primär auf das Programm Confluence, um Meeting-Protokolle,
Best Practices und Guidelines zu hinterlegen. Besonders im Fallbeispiel 3 wird dies systematisch
genutzt, sodass alle Teammitglieder auch nachträglich auf Informationen zugreifen können.

Ein wichtiger Bestandteil dieser Praxis ist die Definition of Ready und Definition of Done, die
insbesondere in den Fallbeispielen 2 und 3 festgelegt wurden, um klare Kriterien für die Arbeits-
organisation zu definieren. Im Fallbeispiel 1 gibt es vergleichbare Strukturen zur Qualitätssiche-
rung, etwa in Form einer Review-Checkliste. Diese Definitionen helfen dabei, Missverständnisse
über den Fertigstellungsgrad von Aufgaben zu vermeiden und sicherzustellen, dass alle Beteilig-
ten ein gemeinsames Verständnis von Anforderungen und Qualitätssicherung haben.

„[…] dass man einfach mal drüber schaut über anderen Code, nach einer bestimm-
ten Checkliste und dann schaut ob das passt und dann halt Review macht.“ – T3,
Teamleiter

„Wir haben jetzt intern auch eine Definition of Done gemacht, dass stimmt schon,
wo drinnensteht eine Userstory muss auch die Testautomatisierung, soweit - soweit
als möglich abgedeckt sein. Sie muss getestet sein auf welcher Instanz das sein muss
oder so - das haben wir Team intern gemacht“- T10, Tester

„… es soll natürlich und es wird auch so gut wie alles in Confluence dokumentiert.
Meeting -Protokolle, technische Themen, How-To's und On-Boarding, Verfügbar-
keiten - wird alles in Confluence gemacht.“ – T11, Teamleiter

Durch die einheitliche Protokollierung und Dokumentation bleibt der Informationsfluss konsis-
tent, Verantwortlichkeiten sind nachvollziehbar und auch neue Teammitglieder können sich
schnell einarbeiten. Dies verbessert nicht nur die Transparenz im Team, sondern erleichtert auch
die langfristige Planung und Entscheidungsfindung. Darüber hinaus leisten definierte Abschluss-
kriterien wie eine Definition of Done oder strukturierte Review-Checklisten einen wichtigen Bei-
trag zur Qualitätssicherung, da sie gemeinsame Fertigstellungskriterien schaffen und sicherstel-
len, dass Aufgaben nicht nur abgeschlossen, sondern auch überprüft und freigegeben wurden.

Ergebnisse 85

6.1.2 Kommunikation

Die Codes „Telefon“, „direkte Kommunikation“, „Ticket-Tool“, „Chat“, „Meetings“, „E-Mail“,
und „Wiki/Confluence/...“ werden zu folgenden Best Practices ausformuliert:

6.1.2.1 Effiziente Abstimmung durch direkte Kommunikation

Direkte Kommunikation ist ein essenzieller Bestandteil der Zusammenarbeit in den Teams. Sie
ermöglicht eine schnelle und effiziente Abstimmung innerhalb und außerhalb des Teams, beson-
ders bei dringenden oder komplexen Themen. Je nach Situation werden verschiedene Kommuni-
kationskanäle genutzt, um Abstimmungen so direkt und effizient wie möglich zu gestalten.

Innerhalb der Teams ist Face-to-Face-Kommunikation oft die bevorzugte Methode, vor allem
wenn die Teammitglieder im selben Raum arbeiten. Im Fallbeispiel 1 wird betont, dass direkte
Abstimmungen bevorzugt werden, da dies oft schneller ist als formalisierte Meetings. Auch im
Fallbeispiel 2 und 3 wird verstärkt auf digitale Kommunikationsmittel wie Chat-Tools oder Tele-
fonate zurückgegriffen.

Telefonate sind in allen Fallbeispielen ein wichtiges Mittel, insbesondere wenn schnelle Klärun-
gen erforderlich sind oder der Austausch über Chats nicht ausreicht. Im Fallbeispiel 1 ist telefo-
nische Abstimmung seltener, da viele Teammitglieder physisch nah beieinandersitzen. Im Fall-
beispiel 2 und 3 hingegen wird Telefon häufig genutzt, insbesondere für Abstimmungen mit an-
deren Teams oder externen Fachabteilungen.

Neben der Face-to-Face- und Telefonkommunikation sind Chat-Tools ein zentraler Kommunika-
tionskanal, da sie sowohl spontane Abstimmungen ermöglichen als auch für die spätere Nachver-
folgung von Informationen genutzt werden können. Im Fallbeispiel 1 werden die Programme Ro-
cket.Chat, Cisco Jabber und Lotus Notes eingesetzt, während im Fallbeispiel 2 und 3 primär
Microsoft Teams, Rocket.Chat und Jitsi verwendet werden. Diese Tools bieten den Vorteil, dass
Nachrichten und Diskussionen nachvollziehbar bleiben und Teammitglieder auch später darauf
zugreifen können. In bestimmten Fällen – etwa bei der Klärung technischer Details – wird auch
Screensharing über Tools wie Jitsi oder MS Teams genutzt, um Inhalte gemeinsam durchzugehen
und Missverständnisse zu vermeiden.
E-Mail wird ebenfalls genutzt, insbesondere für formellere Kommunikation oder wenn es wichtig
ist, eine schriftliche Dokumentation von Absprachen zu haben. Im Fallbeispiel 3 wird erwähnt,
dass Chat für die meisten internen Abstimmungen genutzt wird, während E-Mail vor allem bei
wichtigen Themen oder Eskalationen verwendet wird. Ein weiterer wichtiger Aspekt der direkten
Kommunikation ist der schnelle Austausch bei Problemen oder Unsicherheiten. Im Fallbeispiel 3

Ergebnisse 86

wird beschrieben, dass Entwickler, wenn ein Ticket zu aufwendig wird oder zu viele Kommentare
erfordert, einfach den direkten Austausch suchen – entweder über Chat, einen Anruf oder ein
kurzfristiges Meeting.

Neben der täglichen Abstimmung ist direkte Kommunikation auch ein essenzieller Bestandteil
der Wissensverteilung und des Supports innerhalb der Teams. Im Fallbeispiel 1 wird betont, dass
Teammitglieder ihr Wissen aktiv weitergeben und neue Kollegen durch direkte Gespräche oder
kurze Abstimmungen eingearbeitet werden. In den Fallbeispielen 2 und 3 findet ein intensiver
Austausch über technische Fragen ebenfalls häufig über direkte Kommunikation statt, da dies
schneller und effektiver ist als das Nachlesen von Dokumentationen.

Direkte Kommunikation wird damit nicht nur für den Alltag in agilen Teams, sondern auch als
wichtiges Mittel zur schnellen Problemlösung, Wissenstransfer und Abstimmung über Teamgren-
zen hinweg genutzt. Die folgende Tabelle 21 zeigt eine Übersicht der eingesetzten Kommunika-
tionswerkzeuge der autonomen Teams mit Vor- und Nachteilen und Beispiele für ihren Einsatz:

Kommunikati-
onsmittel

Zweck / Einsatzbe-
reich Vorteil Nachteil Beispielhafte Verwen-

dung im Team
Face-to-Face Spontane Abstim-

mungen im Büro,
schnelle Klärung

Persönlich, direkt,
schnell

Nicht doku-
mentiert, nur
bei physi-
scher Nähe
möglich

Rückfrage zu einem
Ticket, informelle Ein-
arbeitung

Telefon Klärung dringender
oder komplexer
Fragen, auch re-
mote

Schnell, direkt,
auch über Distanz

Keine
schriftliche
Nachver-
folgbarkeit

Abstimmung mit Kol-
legen im Homeoffice,
externe Teams bzw.
Projektteilnehmer

Chat Alltagstauglich für
Rückfragen, Koor-
dination, Gruppen-
kommunikation

Schriftlich,
schnell, Teilen
von Links/Anhän-
gen möglich

Gefahr von
Kontextver-
lust oder un-
strukturierter
Kommuni-
kation

Rückfragen im Team,
Klärung offener
Punkte, Gruppenab-
sprachen

E-Mail Formelle Kommu-
nikation, dokumen-
tierte Weitergabe
von Infos

Nachvollziehbar,
gut dokumentiert,
Verteilerfähig,
Anhänge/Links
möglich

Kann in E-
Mail-Flut
untergehen,
Gefahr, dass
sich niemand
direkt ange-
sprochen
fühlt

Weiterleitung von Ent-
scheidungen, Ankündi-
gungen, Abstimmung
mit Leitung oder Fach-
abteilungen

Videocall mit
Screensharing

Gemeinsames
Durchgehen techni-
scher oder visueller
Themen

Visualisierung,
direkte Rückspra-
che, Screensha-
ring möglich

Höherer Ko-
ordinations-
aufwand,
nicht immer
dokumen-
tiert

Gemeinsame Analyse
eines Problems, Pair
Debugging

Tabelle 21: Kommunikationsmittel autonomer Teams

Ergebnisse 87

6.1.2.2 Toolunterstützter Workflow

Die Best Practice „Toolunterstützter Workflow” wird bereits im Punkt 6.1.1.1 beschrieben und
deckt auch einen Teil der Kategorie „Kommunikation“ ab.

6.1.2.3 Regelmäßig synchrone Abstimmung im Team

Die Best Practice „Regelmäßige synchrone Abstimmung im Team” wird bereits im Punkt 6.1.1.2
beschrieben und deckt auch einen Teil der Kategorie „Kommunikation“ ab.

6.1.3 Reflexion & Lernprozess

Der Code „Retrospektive & Review“ wird zu folgenden Best Practices ausformuliert:

6.1.3.1 Regelmäßige Reflexion und Feedbackschleifen

Retrospektiven sind ein zentrales Instrument in agilen Teams, um kontinuierliche Verbesserungen
voranzutreiben. Sie ermöglichen es, Erfahrungen aus abgeschlossenen Sprints zu reflektieren,
Probleme zu identifizieren und gezielte Maßnahmen zur Optimierung der Arbeitsweise zu entwi-
ckeln. In den untersuchten Fallbeispielen kommen Retrospektiven regelmäßig zum Einsatz, je-
doch mit unterschiedlichen Ansätzen und Herausforderungen.

Im Fallbeispiel 1 werden Retrospektiven zwar durchgeführt, es fehlt jedoch manchmal an der
konsequenten Umsetzung der erarbeiteten Maßnahmen. Teams besprechen Probleme und Ver-
besserungspotenziale, aber die Umsetzung der geplanten Änderungen ist nicht immer durchgän-
gig gewährleistet. In den Fallbeispielen 2 und 3 hingegen sind Retrospektiven fester Bestandteil
des Entwicklungsprozesses und werden aktiv genutzt, um nach jedem Sprint konkrete Verbesse-
rungsmaßnahmen abzuleiten.

Besonders im Fallbeispiel 3 haben Teams eine strukturierte Herangehensweise entwickelt, indem
„Mantras“ in Confluence dokumentiert werden. Diese langfristigen Leitlinien basieren auf den
Erkenntnissen aus Retrospektiven und helfen, wiederkehrende Herausforderungen gezielt anzu-
gehen. Zusätzlich werden konkrete Actions für den nächsten Sprint definiert, um sicherzustellen,
dass Verbesserungsvorschläge nicht nur diskutiert, sondern auch umgesetzt werden.

Ergebnisse 88

Neben klassischen Sprint-Retrospektiven gibt es im Fallbeispiel 2 auch technische Reviews, bei
denen Entwickler alle zwei Wochen gemeinsam Code-Qualitätsthemen wie SonarQube-Defects
oder Architekturentscheidungen analysieren. Dadurch entstehen regelmäßige Feedbackeinheiten,
die nicht nur die Entwicklungsprozesse optimieren, sondern auch als Wissenstransfer innerhalb
der Teams dienen.

Durch die regelmäßige Reflexion und strukturierte Dokumentation stellen Teams sicher, dass sie
aus vergangenen Fehlern lernen, ihre Prozesse kontinuierlich verbessern und nachhaltige Verän-
derungen etablieren. Retrospektiven tragen somit nicht nur zur Prozessoptimierung, sondern auch
zur langfristigen Teamkultur und Produktivitätssteigerung bei.

6.1.3.2 Pair-Programming, 4-Augen-Prinzip und Reviews

Code-Reviews sind ein essenzieller Bestandteil der Qualitätssicherung und Wissensverteilung in
Softwareentwicklungsprojekten. Besonders in Softwaregroßprojekten mit mehreren Teams sor-
gen strukturierte Review-Prozesse dafür, dass Fehler frühzeitig erkannt, Best Practices etabliert
und Wissen über Teamgrenzen hinweg geteilt wird. Eine zentrale Praxis in den Fallbeispielen ist
das 4-Augen-Prinzip, das sowohl bei teaminternen als auch teamübergreifenden Reviews ange-
wendet wird.

Im Fallbeispiel 1 ist das 4-Augen-Prinzip nicht immer verpflichtend, wird aber in vielen Teams
genutzt, um sicherzustellen, dass komplexere Änderungen von einer zweiten Person überprüft
werden. Gerade bei größeren Tasks wird oft vor dem Commit eine Review durch eine andere
Person durchgeführt, um mögliche Probleme frühzeitig zu erkennen. Im Fallbeispiel 2 sind Re-
views über Merge-Requests fester Bestandteil des Entwicklungsprozesses. Im Fallbeispiel 3 ist
das Prinzip weiter formalisiert – es gibt eine klare Vorgabe, dass kein Entwickler seinen eigenen
Code freigeben darf, sondern dieser immer von einem anderen Teammitglied überprüft werden
muss. Jede Änderung muss durch eine zweite Person geprüft werden, bevor sie in den Master-
Branch übernommen wird.

Neben teaminternen Reviews sind in den Fallbeispielen 2 und 3 auch teamübergreifende Reviews
notwendig, insbesondere wenn mehrere Teams an einer gemeinsamen Codebasis arbeiten. Im
Fallbeispiel 2 gibt es beispielsweise Module, die unter der Verantwortung eines bestimmten
Teams stehen. Änderungen daran müssen erst von diesem Team geprüft und freigegeben werden.
Ähnlich ist es im Fallbeispiel 3, wo teamübergreifende Code-Reviews sicherstellen, dass gemein-
same Standards eingehalten und unerwartete Seiteneffekte vermieden werden.

Ergebnisse 89

Zusätzlich zur klassischen Code-Review-Praxis kommen in den Fallbeispielen Pair-Program-
ming, Screen-Sharing und Review-Meetings zum Einsatz. Besonders im Fallbeispiel 1 werden
Reviews oft informell während der Entwicklung durchgeführt, indem sich Entwickler zu komple-
xen Themen direkt abstimmen oder gemeinsam an einem Code-Abschnitt arbeiten. Im Fallbei-
spiel 2 wird beschrieben, dass Review-Prozesse nicht nur zur Fehlererkennung, sondern auch als
Möglichkeit genutzt werden, alternative Lösungswege zu diskutieren und voneinander zu lernen.

Neben der Qualitätssicherung trägt das 4-Augen-Prinzip auch dazu bei, komplexe Aufgabenbe-
reiche besser zu lösen. In den Fallbeispielen 2 und 3 werden besonders schwierige oder technisch
anspruchsvolle Änderungen oft in Pair-Programming-Sessions oder durch intensive Reviews be-
arbeitet, um verschiedene Perspektiven einzubeziehen und Lösungen effizienter zu entwickeln.
Im Fallbeispiel 3 ist es üblich, dass sich zwei Entwickler gemeinsam eine komplexe Implemen-
tierung ansehen, bevor der Code weitergeführt wird. Dadurch werden Fehlentscheidungen ver-
mieden, Architekturanforderungen gezielt berücksichtigt und alternative Lösungswege systema-
tisch diskutiert.

„Also für die ganz komplexen Sachen versuchen wir uns vorher in drei, vier, fünf
Leuten vielleicht nochmal zusammen zu reden, die sich mit dem Thema halbwegs
auskennen, um zu evaluieren, wie wir das umsetzen können. Ansonsten, wenn’s nur
etwas komplexer ist, dann geht's Richtung Pair-Programming.“ – T3, Teamleiter

„Also Pair-Programming ist eine Option - wird primär eingesetzt, wenn jemand sich
natürlich überhaupt nicht auskennt in einem Thema aber da halt hineinkommen
möchte. Also vor allem Neuzugängen im Team. Dann wird es eher eingesetzt.“ – T6,
Technischer Architekt

Die übergreifende Best Practice ist der gezielte Einsatz von 4-Augen-Konstellationen – sei es als
Pair-Programming, formelle Reviews oder spontane gemeinsame Problemanalyse. Diese Arbeits-
weise vereint mehrere Ziele gleichzeitig: Sie sichert Qualität, fördert Wissensaustausch, erleich-
tert Einarbeitung, stärkt gemeinsame Verantwortung und ermöglicht kontinuierliches Lernen im
Team.

6.1.4 Wissensverteilung & Support

Die Codes „Code Review“, „Dokumentation“, „Pair-Programming“, „Taskrotation“, „Direkte
Nachfrage (Sms, Telefon)“ und „Mehrere Personen pro Thema“ werden zu folgenden Best Prac-
tices ausformuliert:

Ergebnisse 90

6.1.4.1 Pair-Programming, 4-Augen-Prinzip und Reviews

Die Best Practice „Pair-Programming, 4-Augen-Prinzip und Reviews” wird bereits im Punkt
6.1.3.2 beschrieben und deckt auch einen Teil der Kategorie „Wissensverteilung & Support“ ab.

6.1.4.2 Toolunterstützter Workflow

Die Best Practice „Toolunterstützter Workflow” wird bereits im Punkt 6.1.1.1 beschrieben und
deckt auch einen Teil der Kategorie „Wissensverteilung & Support“ ab.

6.1.4.3 Effiziente Abstimmung durch direkte Kommunikation

Die Best Practice „Effiziente Abstimmung durch direkte Kommunikation” wird bereits im Punkt
6.1.2.1 beschrieben und deckt auch einen Teil der Kategorie „Wissensverteilung & Support“ ab.

6.1.4.4 Mehrere Themenverantwortliche zur Wissensverteilung

Um sicherzustellen, dass Wissen nicht nur bei einzelnen Spezialisten konzentriert ist, setzen die
Teams in den Fallbeispielen darauf, dass mehrere Personen für ein Themengebiet verantwortlich
sind. Diese Strategie hilft, Wissensinseln zu vermeiden, die Teamflexibilität zu erhöhen und si-
cherzustellen, dass Aufgaben auch bei Abwesenheiten oder Personalwechseln problemlos weiter-
geführt werden können.

In allen drei Fallbeispielen gibt es bewusste Maßnahmen zur Verteilung von Verantwortlichkei-
ten. Im Fallbeispiel 1 ist dies zwar das erklärte Ziel, jedoch wird es in den Teams unterschiedlich
konsequent umgesetzt. Im Fallbeispiel 2 werden zentrale Themen gezielt auf mehrere Personen
aufgeteilt, sodass immer mindestens eine zweite Person mit dem Gebiet vertraut ist. Im Fallbei-
spiel 3 ist die Wissensteilung stark in die tägliche Zusammenarbeit integriert – Teammitglieder
stimmen sich regelmäßig ab und tauschen Informationen aus, um sicherzustellen, dass nicht nur
Einzelne über entscheidende Details Bescheid wissen.

„Jetzt ist es so wir versuchen natürlich, soweit es geht, zumindest zwei Personen pro
Thema zu haben, die sich auskennen.“ – T6, Technischer Architekt

Ein bewährtes Mittel zur Wissensverteilung ist die gezielte Rotation von Aufgaben (Task-Rota-
tion), die in den Fallbeispielen in unterschiedlicher Intensität genutzt wird. Im Fallbeispiel 1 wer-
den Aufgaben so verteilt, dass Teammitglieder verschiedene Bereiche kennenlernen und nicht nur

Ergebnisse 91

an einem einzigen Themengebiet arbeiten. Im Fallbeispiel 2 übernehmen Entwickler gezielt auch
Aufgaben außerhalb ihrer bisherigen Spezialisierung, um sich in neue Bereiche einzuarbeiten. Im
Fallbeispiel 3 wird eine Mischung aus Spezialisierung und Rotation praktiziert: Während einige
Teammitglieder feste Schwerpunkte haben, wird darauf geachtet, dass sie auch an anderen The-
men mitarbeiten.

„Ich - ich denke, man versucht es halt, dass man halt die Themen auch durchmischt.
Das halt jemand mal ein Ticket her nimmt […] er sich natürlich beschäftigt hat mit
diesem Teil oder Komponente, dass man es so quasi rotiert, […]. Aber ich denke,
das ist einer der wenigen Möglichkeiten, dass man versucht, keine Wissensinseln
aufzubauen, indem man halt einfach jedem jedes Ticket gibt, auch wenn es mal län-
ger dauert ein bisschen.“ – T11, Teamleiter

Ein typisches Beispiel für diese Praxis ist die Übernahme von Unit-Tests oder funktionalen Er-
weiterungen an bestehenden Features. Im Fallbeispiel 3 wird explizit darauf geachtet, dass keine
Person allein für ein Thema zuständig ist.

In allen drei Fallbeispielen zeigt sich als bewährte Best Practice die gezielte Kombination aus
Mehrfachbesetzung von Themengebieten und rotierender Verteilung der Aufgaben. Durch die
bewusste Verteilung der Arbeit wird sichergestellt, dass Teams nicht von einzelnen Schlüsselper-
sonen abhängig sind und neue Teammitglieder schrittweise in unterschiedliche Themen eingear-
beitet werden können. Diese Vorgehensweise ermöglicht eine nachhaltige Wissensverteilung, re-
duziert das Risiko von Wissensinseln und erhöht zugleich die Flexibilität und Weiterentwick-
lungsmöglichkeiten innerhalb des Teams.

Diese Praktik unterscheidet sich vom gezielten Themenwechsel (siehe Punkt 6.1.5.2), da der Fo-
kus hier auf der parallelen Verantwortlichkeit mehrerer Teammitglieder pro Thema liegt – unab-
hängig von individuellen Weiterentwicklungswünschen.

6.1.5 Fortbildung

Die folgenden Best Practices leiten sich aus den Codes „Zertifikate & Weiterbildung (aktiv)“,
„Zeit für Verbesserungen“, „Themenwechsel“, „Rollenwechsel“ und „Zeit für Technologiewech-
sel & Updates“ ab. Tabelle 22 gibt einen kompakten Überblick über die Unterschiede zwischen
diesen Best Practices und zeigt deren jeweilige Schwerpunkte, Umsetzung und Ziele auf.

Ergebnisse 92

6.1.5.1 Weiterbildung durch Eigeninitiative und Teamförderung

In allen drei Fallbeispielen besteht grundsätzlich die Möglichkeit zur individuellen Weiterbil-
dung, etwa durch Schulungen, Zertifikate oder die Beschäftigung mit neuen Technologien. In
keinem der drei Fallbeispiele gibt es eine klar geplante oder abgestimmte Vorgehensweise für
Fortbildungsmaßnahmen. Stattdessen hängt die tatsächliche Umsetzung stark von der Eigeniniti-
ative der Mitarbeitenden ab. Wer sich aktiv um eine Weiterbildung bemüht, erhält meist Unter-
stützung durch die Teamleitung, sei es durch zeitliche Freiräume, formale Genehmigung oder der
Kostenübernahme.

Im Fallbeispiel 1 gibt es keine festen Programme oder zentralen Angebote. Mitarbeitende müssen
von sich aus den Wunsch zur Weiterbildung einbringen. Zertifizierungen wie Scrum Master oder
sicherheitsbezogene Schulungen sind grundsätzlich möglich, müssen aber selbst vorgeschlagen
und organisiert werden.

„Aber man muss halt pro-aktiv agieren, also es ist nicht so dass ein Organisator
herkommt und sagt: Du jetzt schau dir mal diese oder jene Technologie an und schau
ob es da Verbesserungsmöglichkeiten gibt, sondern - z.B. in Java, wenn du ein Zer-
tifikat machen willst dann musst halt du nachfragen, aktiv.“ – T2, Softwareentwick-
ler

Auch im Fallbeispiel 2 ist ebenfalls eine Weiterbildung möglich, aber mit organisatorischen Hür-
den verbunden. Für eigenständige Lernphasen muss zunächst ein formales Analyse-Ticket erstellt
werden, das dann in die Projektplanung aufgenommen werden kann. In der Praxis ist es daher
häufig nur dann realistisch, wenn es im Rahmen bestehender Aufgaben geschieht oder zeitliche
Freiräume zufällig entstehen.

Fallbeispiel 3 zeigt die offenste Herangehensweise: Hier wird Weiterbildung aktiv unterstützt,
sofern sie für die Projektarbeit relevant ist. Es gibt regelmäßige Reflexionsgespräche zu Karrie-
rewünschen, Zeitfenster zur individuellen Erkundung technischer Themen sowie konkrete Schu-
lungen etwa im Bereich IT-Security. Auch formale Zertifizierungen werden ermöglicht, wenn sie
zur Weiterentwicklung beitragen.

„Das ist in der Regel schon so, dass jeder Entwickler auch ein Zeitfenster hat, wo er
sich weiterbilden kann.“ – T12, Technischer Architekt

Eine zentrale Herausforderung in allen drei Fällen ist es, Lernen mit den laufenden Projektver-
pflichtungen zu vereinbaren. Dennoch zeigt sich als bewährte Praxis in allen drei Fallbeispielen:

Ergebnisse 93

Weiterbildung der Mitglieder wird gefördert, wenn sie aus Eigeninitiative angestoßen wird und
in sich mit dem Projektablauf vereinbaren lässt.

Eine vergleichende Übersicht der Praktiken zur Fortbildung ist in Tabelle 22 dargestellt.

6.1.5.2 Themenwechsel zur individuellen Weiterentwicklung

Themenwechsel werden in den untersuchten Teams gefördert, um Wissen breiter zu streuen und
Mitarbeitenden die Möglichkeit zu geben, sich fachlich weiterzuentwickeln. Der Wechsel wird
meist von den Teammitgliedern selbst angestoßen. Gleichzeitig profitiert auch das Team davon,
da eine breitere Verteilung von Kompetenzen dazu beiträgt, Wissensinseln zu vermeiden und
Ausfälle besser abzufangen. Im Unterschied zu Punkt 6.1.4.4 steht hier die individuelle Motiva-
tion zum Themenwechsel im Vordergrund, die mit Unterstützung des Teams realisiert wird.

Im Fallbeispiel 1 gibt es keine festgelegte Rotation, aber wer Interesse an einem neuen Thema
hat, kann sich aktiv dafür einsetzen. Häufig beginnt der Wechsel mit kleineren Aufgaben, bevor
ein vollständiger Übergang erfolgt. Unterstützung aus dem Team ist in der Regel gegeben, sofern
es mit den Projektzielen vereinbar ist.

„Wenn man wirklich was anderes machen will dann muss man sagen man will in ein
anderes Teilprojekt, man muss selber aktiv sein.“ - T1, Requirements Engineer, Tes-
ter und Softwareentwickler

Im Fallbeispiel 2 ist der Themenwechsel strukturierter möglich. Teammitglieder können sich ge-
zielt in neue Bereiche einarbeiten, insbesondere wenn dadurch Wissensverteilung gefördert oder
Engpässe vermieden werden. Die Abstimmung erfolgt mit dem Teamleiter und den zuständigen
Kolleginnen, um einen reibungslosen Übergang zu gewährleisten.
Im Fallbeispiel 3 sind Themenwechsel flexibel gestaltet und basieren auf der Initiative der Team-
mitglieder. Wer sich für ein neues Gebiet interessiert, bringt dies in Meetings oder Gesprächen
ein und übernimmt nach und nach entsprechende Aufgaben. Der Wechsel erfolgt schrittweise und
in Abstimmung mit dem Team, sodass Wissen gezielt aufgebaut und integriert werden kann.

„Ich hätte das eher damit beantwortet, dass wenn jemand woanders hinwill, dann
sagt er es und dann schaut man, dass man eine Lösung findet.“ - T14, Projektleiter

Ergebnisse 94

Themenwechsel sind in allen untersuchten Teams möglich – entweder wenn sie von Mitarbeiten-
den eigeninitiativ angestoßen werden oder wenn sie aus projektfachlicher Sicht sinnvoll erschei-
nen. Als etablierte Praxis hat sich gezeigt, dass Wechselwünsche offen kommuniziert, schritt-
weise umgesetzt und vom Team aktiv begleitet werden. Auf diese Weise lässt sich individuelles
Interesse mit den Anforderungen des Projekts verbinden – zum Nutzen sowohl der persönlichen
Entwicklung als auch der nachhaltigen Wissensverteilung im Team. Eine vergleichende Über-
sicht der zur Fortbildung ist in Tabelle 22 dargestellt.

6.1.5.3 Rollenwechsel zur Entwicklung individueller Fähigkeiten

Rollenwechsel innerhalb eines Projekts bieten Teammitgliedern die Möglichkeit, neue Kompe-
tenzen zu entwickeln und ihre Einsatzfähigkeit im Team zu erweitern. Während Themenwechsel
innerhalb der bestehenden Rolle stattfinden, geht ein Rollenwechsel mit einer veränderten Ver-
antwortung einher, beispielsweise der Wechsel von der Entwicklung zum Test oder vom Backend
zu DevOps-Themen. Besonders in autonomen Teams bringt dies den Vorteil, dass Teammitglie-
der flexibel mehrere Rollen übernehmen oder bei Engpässen in anderen Bereichen aushelfen kön-
nen, wodurch Wissen besser verteilt und Abhängigkeiten reduziert werden. In den untersuchten
Fallbeispielen zeigt sich, dass Rollenwechsel grundsätzlich möglich sind, aber meist von den Mit-
arbeitenden selbst angestoßen werden und von den jeweiligen Anforderungen im Team abhängen.

Im Fallbeispiel 1 gibt es keine festgelegte Regelung für Rollenwechsel, aber Teammitglieder kön-
nen in neue Rollen hineinwachsen, sofern dies sinnvoll erscheint. Meist erfolgt dies schrittweise,
indem zunächst Aufgaben aus der neuen Rolle übernommen werden, bevor ein vollständiger
Wechsel stattfindet. Wenn beispielsweise ein Entwickler Interesse am Testen zeigt, kann er erste
Testfälle erstellen und sich in Abstimmung mit dem Teamleiter tiefer in das Thema einarbeiten.

„Also es gibt für die internen Entwickler schon die Möglichkeit, dass sie sich Abtei-
lungsmäßig versetzen lassen. Das kann dann auch sein, dass ein Kollege von der
Softwareentwicklung in den Test Bereich wechselt und ab dann aber wirklich nur
noch testet.“ – T5, Teamleiter

Im Fallbeispiel 2 wird Rollenwechsel aktiver unterstützt, insbesondere wenn dies zur besseren
Verteilung von Wissen und Verantwortlichkeiten beiträgt. Viele Teammitglieder haben über die
Zeit ihre Schwerpunkte erweitert, um neue Fähigkeiten aufzubauen und das Team flexibler auf-
zustellen. Der Wechsel erfolgt hier oft in Absprache mit dem Team und richtet sich danach, wo
Unterstützung gebraucht wird.

Ergebnisse 95

Im Fallbeispiel 3 gibt es ebenfalls keine festen Vorgaben, aber eine Offenheit für Rollenwechsel,
wenn dies von den Teammitgliedern gewünscht wird. Wer sich für einen Wechsel interessiert,
bringt dies meist in Meetings zur Sprache und übernimmt nach und nach Aufgaben aus der neuen
Rolle. Der Übergang erfolgt schrittweise, wobei das Team unterstützt und Wissen aktiv weiter-
gegeben wird.

„Selbstverständlich. Wenn Teammitglieder gerne wo anders hinwollen, dann kön-
nen sie es kommunizieren und es wird nach Möglichkeit berücksichtigt.“ – T15, tech-
nischer Architekt und Softwareentwickler

Rollenwechsel sind eine bewährte Praxis, um Fachwissen innerhalb des Teams zu erweitern und
die individuelle Entwicklung der Mitarbeitenden zu fördern. In der Praxis zeigt sich jedoch, dass
Rollenwechsel in den meisten Teams nicht systematisch gesteuert, sondern vor allem durch die
Eigeninitiative der Mitarbeitenden angestoßen werden. Während in einzelnen Fällen gezielte
Wechsel stattfinden, beruhen die Übergänge überwiegend auf persönlichem Interesse und situa-
tiven Bedürfnissen im Team. Entscheidend ist, dass ausreichend Unterstützung geboten wird, da-
mit der Wechsel reibungslos gelingt und langfristig zur Teamstabilität beiträgt.

Kriterium 6.1.5.1 Weiterbildung durch
Eigeninitiative und Teamför-
derung

6.1.5.2 Themenwechsel
zur individuellen Wei-
terentwicklung

6.1.5.3 Rollenwechsel zur
Entwicklung individuel-
ler Fähigkeiten

Fokus Gezielte Schulungen, Zertifi-
zierungen und Zeit für techno-
logische Erprobung

Übernahme neuer The-
mengebiete innerhalb des
Projekts zur Kompetenz-
entwicklung

Wechsel in eine neue fach-
liche Rolle, z. B. Entwick-
ler zu Tester, Backend zu
DevOps

Umset-
zungsform

Teilnahme an Kursen, Zertifi-
katen, interne Schulungen,
technologische Tests in Lern-
phasen

Mitarbeitende überneh-
men neue Themen
schrittweise und in Ab-
stimmung mit dem Team

Schrittweise Einarbeitung
in neue Rollen, oft abhän-
gig von Bedarf oder per-
sönlichem Interesse

Beteiligte Teammitglieder, Teamleiter,
externe Schulungsanbieter

Teammitglieder, Team-
leiter, Fachverantwortli-
che

Teammitglieder, Teamlei-
ter, Projektleitung

Ziel Fachliche Weiterentwicklung,
Sicherstellung technologischer
Kompetenz, Innovationsförde-
rung

Wissensverteilung, Fle-
xibilität erhöhen, Ver-
meidung von Wissensin-
seln

Erweiterung der Fähigkei-
ten, Reduktion von Abhän-
gigkeiten, Flexibilität im
Team verbessern

Tabelle 22: Unterscheidung der Praktiken für die Fortbildung

6.1.6 Richtlinien, Grenzen, Normen und Prinzipien

Folgende Best Practices ergeben sich aus den Codes „Doku (Wiki/Confluence/...)“, „Organisati-
onsweite Richtlinien“, „Festlegung zentral durch Spezialisten (1...n)“ und „zusätzliche Codequa-
litäten durch Team bzw. Teamleiter“:

Ergebnisse 96

6.1.6.1 Dokumentation und Festlegung von Richtlinien und Prozessen

In Softwaregroßprojekten mit vielen autonomen Teams ist eine klare Dokumentation von Ent-
wicklungsrichtlinien essenziell, um einheitliche Standards sicherzustellen und die Zusammenar-
beit zwischen Teams zu erleichtern. Ohne zentrale Vorgaben würden sich unterschiedliche Her-
angehensweisen entwickeln, was zu Inkonsistenzen in Architektur, Code-Qualität und Entwick-
lungsprozessen führen könnte. In allen drei Fallbeispielen existieren etablierte Strukturen, die
gewährleisten, dass technische und organisatorische Vorgaben definiert, dokumentiert und für
alle Beteiligten zugänglich sind. Diese Richtlinien werden nicht von einzelnen Teams autonom
festgelegt, sondern durch spezialisierte Rollen oder koordinierende Einheiten betreut. Im Fallbei-
spiel 1 existiert ein entwicklungsinternes Wiki, in dem Architekturentscheidungen, Coding-Gui-
delines und Tool-Vorgaben dokumentiert sind. Die Verantwortung für deren Festlegung liegt bei
technischen Architekten sowie einem Software-Entscheidungsgremium (SEG), das zentrale Stan-
dards vorgibt.

„Also grundsätzlich gibt es in dem Projekt einen technischen Architekten, der dafür
zuständig wäre, übergreifend für, für alle Entwickler Richtlinien, Entwicklungsvor-
gehen, Richtlinien, Prinzipien, Architektur, Entscheidungen, Tools usw. vorzugeben
und eigentlich auch zu schauen, dass das dann entsprechend umgesetzt wird.“ – T4,
Softwareentwickler und Tester

Im Fallbeispiel 2 arbeiten die Teams auf Basis organisationsweiter technischer Vorgaben, die
projektübergreifend gelten und zentral dokumentiert sind. Diese beinhalten unter anderem Richt-
linien zur grafischen Oberfläche, Konventionen für Schnittstellendefinitionen sowie die Nutzung
definierter Werkzeuge. Die Informationen werden beispielsweise im unternehmensweiten Con-
fluence-Wiki dokumentiert und in Meetings sowie Architekturabsprachen weiterentwickelt.

„Es gibt aber natürlich auch die grafische Oberfläche. Da gibt es eine Vorgabe, die
ist aber global für die Gesamtheit damit das halt von allen Teams richtig umgesetzt
wird.“ – T10, Tester

Im Fallbeispiel 3 gelten unternehmensweit verbindliche Sicherheits- und Qualitätsvorgaben, die
für alle Teams und Projekte verpflichtend einzuhalten sind. So müssen beispielsweise sämtliche
eingesetzten Entwicklungswerkzeuge vor ihrem Einsatz sicherheitstechnisch geprüft und offiziell
freigegeben werden.

„[…] dieser Prozess ist ziemlich nah dran an dem, was da auf diesen Ticket Check-
listen drinnen steht. Also dass man sagt, bevor was umgesetzt wird, muss es sicher-
heitstechnisch angeschaut worden sein und dann in der Umsetzung darf es nur mit

Ergebnisse 97

bestimmten Tools verwendet werden. Alle Entwicklungswerkzeuge müssen Security
geprüft sein und freigegeben worden sein.“ – T14, Projektleiter

Die konsequente Kombination aus klar zugewiesenen Verantwortlichkeiten und systematisch ge-
pflegter Dokumentation hat sich in allen drei Fallbeispielen als effektive Best Practice erwiesen.
Sie sorgt dafür, dass zentrale Richtlinien nicht nur formal existieren, sondern im Entwicklungs-
alltag aktiv genutzt und fortlaufend weiterentwickelt werden. Gleichzeitig bleibt Raum für team-
spezifische Ergänzungen, wodurch sowohl Einheitlichkeit als auch Flexibilität in großen Projek-
ten gewährleistet werden. Dies erleichtert die Zusammenarbeit zwischen Teams, verbessert die
Einarbeitung neuer Mitglieder und trägt maßgeblich zur Erhaltung der Softwarequalität bei.

6.1.6.2 Teamspezifische Erweiterungen von Qualitätsstandards

Neben zentral definierten Richtlinien haben viele Teams in den Fallbeispielen eigene zusätzliche
Qualitätsanforderungen entwickelt, die über die allgemeinen Vorgaben hinausgehen. Diese team-
spezifischen Standards ergänzen die organisationweiten Coding-Guidelines und helfen dabei, die
Code-Qualität langfristig zu verbessern.

Im Fallbeispiel 1 setzen einige Teams gezielt auf Zusatzanforderungen für Testabdeckung und
Code-Qualität. Teamleiter können zusätzliche Qualitätsrichtlinien durchsetzen und deren Einhal-
tung kontrollieren, um sicherzustellen, dass einheitliche Standards eingehalten werden. Dies be-
trifft insbesondere Anforderungen an die Test Coverage, die als Maß für die Qualität neuer Im-
plementierungen dient.

„Und ansonsten haben die Teamleiter sag ich mal noch die Freiheit, dass der zu-
sätzliche Codequalitäten erzwingen können und überprüfen, dass sie auch eingehal-
ten werden, wie zum Beispiel Test Coverage und so Sachen.“ – T3, Teamleiter

Im Fallbeispiel 2 wird beschrieben, dass bestimmte Code-Standards flexibel auf Teamebene fest-
gelegt werden können, solange sie den organisationsweiten Vorgaben nicht widersprechen. Ent-
wickler haben die Möglichkeit, spezifische Guidelines für Code-Reviews oder Modulstrukturen
zu definieren, die an ihre Arbeitsweise angepasst sind. Im Fallbeispiel 3 sind Checklisten für
Entwicklungsprozesse ein etabliertes Vorgehen, um sicherzustellen, dass alle wichtigen Quali-
tätskriterien eingehalten werden. Diese Listen enthalten Vorgaben zu Code-Reviews, Testanfor-
derungen und Dokumentationspflichten, die geprüft werden müssen, bevor eine Aufgabe als
„Done“ markiert wird. Der Einsatz solcher Checklisten sorgt dafür, dass auch weniger erfahrene
Teammitglieder einen klaren Leitfaden für qualitativ hochwertigen Code haben.

Ergebnisse 98

Ein konkretes Beispiel für eine dokumentierte und gelebte Richtlinie ist in den Fallbeispielen 2
und 3 die Definition of Done. Sie legt verbindlich fest, wann eine Aufgabe als abgeschlossen gilt,
und umfasst Kriterien wie Testabdeckung, Sicherheitsanforderungen oder Reviewpflicht. Neben
ihrer Funktion als Qualitätsstandard spielt sie – wie bereits in Kapitel 6.1.1.4 im Kontext transpa-
renter Dokumentation beschrieben – auch eine zentrale Rolle für die Nachvollziehbarkeit im
Team.

„Wir haben auch noch eine Definition of Ready bzw. eine Definition of done - die
haben wir uns auch selber angelegt im Confluence. Und sonstige Richtlinien leben
halt in der Knowledge-World, wie es bei […] heißt. Es ist auch nichts weiter als ein
eigener Confluence-Bereich.“ – T9, Teamleiter und Requirements Engineer

„Wir haben jetzt intern auch eine Definition of Done gemacht, dass stimmt schon,
wo drinnen steht eine Userstory muss auch die Testautomatisierung, soweit - soweit
als möglich abgedeckt sein. Sie muss getestet sein auf welcher Instanz das sein muss
oder so - das haben wir Team intern gemacht.“ – T10, Tester

„[…] gibt es ein paar Checks bevor es gebaut wird. Dann wird es gebaut und dann
gibt es einige Checks dafür - wann ist es Done? Typische Definition of Done […]“
– T14, Projektleiter

Zusätzlich setzen viele Teams in den untersuchten Fallbeispielen auf automatisierte Tools wie
zum Beispiel SonarQube oder Checkstyle, um Verstöße gegen die definierten Standards frühzei-
tig zu erkennen. Diese Tools analysieren den Code auf Fehlermuster, Formatierungsabweichun-
gen und strukturelle Probleme und geben Entwicklern direktes Feedback.

„Ansonsten haben wir bei uns intern SonarQube, zur Verwendung von dynamischer
Code Analyse und auch Checkstyle, wobei wir als Team selbst sehr autonom in un-
serer Umsetzung sind. Das heißt, bei uns, bei uns setzen sich die Kollegen vom Ent-
wicklungsteam in regelmäßigen Abständen zusammen und gehen die Sonar-Issues
durch […]“ – T9, Teamleiter und Requirements Engineer

Die Kombination aus zentralen Vorgaben und teamspezifischen Erweiterungen stellt eine gelebte
Best Practice dar, die in allen drei Fallbeispielen fest verankert ist. Autonome Teams nutzen sys-
tematisch zusätzliche Qualitätsrichtlinien, strukturierte Checklisten sowie automatisierte Tools
wie SonarQube oder Checkstyle, um die Einhaltung definierter Standards sicherzustellen und ei-
gene Anforderungen flexibel zu ergänzen. Dieses Zusammenspiel erlaubt es den Teams, die

Ergebnisse 99

Code-Qualität kontinuierlich zu verbessern und an ihre spezifischen Kontexte anzupassen – ohne
dabei die übergreifende Konsistenz im Gesamtprojekt zu gefährden.

6.1.7 Meetings

Die folgenden Best Practices leiten sich aus den Codes „Weekly (1-2 Wochen Zyklus)“, „Dailies“
und „Teamleiter-Meetings (Test, Architektur, etc.)“ ab. In der Tabelle 23 gibt einen kompakten
Überblick über die Unterschiede zwischen diesen drei Meeting-Typen und zeigt deren jeweilige
Schwerpunkte, Teilnehmer und Ziele auf.

6.1.7.1 Regelmäßige synchrone Abstimmung im Team

Die Best Practice „Regelmäßige synchrone Abstimmung im Team” wird bereits im Punkt 6.1.1.2
beschrieben und deckt auch einen Teil der Kategorie „Meetings“ ab.

6.1.7.2 Wöchentliche Abstimmung zwischen Teams

Die Best Practice „Wöchentliche Abstimmung zwischen Teams” wird bereits im Punkt 6.1.1.3
beschrieben und deckt auch einen Teil der Kategorie „Meetings“ ab.

6.1.7.3 Rollenspezifische Teamleiter-Meetings zur fachlichen Koordination

Neben den regelmäßigen Abstimmungen innerhalb der Teams (Dailies) und der teamübergreifen-
den Koordination in den Weeklies gibt es in den untersuchten Fallbeispielen rollenspezifische
Teamleiter-Meetings, die der gezielten Abstimmung zwischen Verantwortlichen für bestimmte
Fachbereiche dienen. Diese Meetings sind darauf ausgerichtet, technische, organisatorische oder
strategische Themen innerhalb spezifischer Rollen zu besprechen und teamübergreifende Heraus-
forderungen effizient zu koordinieren.

Im Fallbeispiel 1 gibt es seit etwa einem Jahr wöchentliche Meetings der Teamleiter, bei denen
zentrale Themen besprochen und der Status ausgetauscht wird. Diese Treffen dienen vor allem
dazu, übergreifende Herausforderungen zu identifizieren und Entscheidungen auf einer höheren
Ebene zu treffen. In diesen Meetings sind neben den Teamleitern auch Personen mit weiterfüh-
renden Entscheidungsbefugnissen beteiligt, sodass Eskalationen direkt adressiert werden können.

Ergebnisse 100

Im Fallbeispiel 2 finden spezialisierte Meetings für unterschiedliche Fachbereiche statt. Techni-
sche Architekten treffen sich regelmäßig, um Architekturentscheidungen abzustimmen, während
es separate Meetings für Testthemen und Requirements Engineering gibt. Diese Meetings ermög-
lichen eine gezielte Abstimmung innerhalb der jeweiligen Rollen und sorgen für eine klare Struk-
tur bei der Entscheidungsfindung zu spezifischen Fachthemen.

„Ja, natürlich gibt es Meetings, die nach oben Informationen weitergeben. Die
Teamleads reden natürlich miteinander, es gibt dann auch Test Meetings, wo dann
halt immer wieder auch die - die aufgetretenen Probleme besprochen werden, die
technischen Architekten treffen sich alle zwei Wochen. Ja, die Requirement-Engine-
ers haben auch ihre Runde.“ – T6, Technischer Architekt

Im Fallbeispiel 3 gibt es wöchentliche Meetings mit der Projektleitung, Release- und Test-Ma-
nagement, in denen offene Tickets priorisiert und bewertet werden. Zusätzlich stimmen sich
Teamleiter regelmäßig mit Fachabteilungen ab, um technische und organisatorische Fragen zu
klären. Diese Meetings sind essenziell, um Abhängigkeiten zwischen Teams frühzeitig zu erken-
nen und eine strukturierte Zusammenarbeit sicherzustellen.

Rollenspezifische Teamleiter-Meetings helfen dabei, den fachlichen Austausch gezielt zu orga-
nisieren und Wissen innerhalb der Teams strukturiert weiterzugeben. Während Dailies und
Weeklies vor allem den aktuellen Arbeitsstand und teamübergreifende Abstimmungen behandeln,
bieten diese Meetings eine Möglichkeit für detaillierte technische und methodische Diskussionen.
So können Entscheidungen innerhalb einzelner Fachbereiche fundiert getroffen werden.
Die spezifischen Zielsetzungen und Abgrenzungen von Dailies, Weeklies und rollenspezifischen
Teamleiter-Meetings sind in Tabelle 23 zusammengefasst.

Kriterium 6.1.7.1 Regelmäßige
synchrone Abstim-
mung im Team

6.1.7.2 Wöchentliche Ab-
stimmung zwischen Teams

6.1.7.3 Rollenspezifische
Teamleiter-Meetings zur
fachlichen Koordination

Fokus Kurzfristige Abstim-
mung zum aktuellen
Stand und Blockaden

Teamübergreifende Abstim-
mung zu laufenden Themen
und Abhängigkeiten

Fachliche, technische oder or-
ganisatorische Abstimmung
innerhalb spezifischer Rollen

Teilneh-
mer

Alle Teammitglieder Vertreter mehrerer Teams,
oft Entwickler, Tester, Re-
quirements Engineers, teil-
weise Product Owner

Teamleiter, technische Archi-
tekten, Test- oder Fachbe-
reichsverantwortliche

Frequenz Täglich Wöchentlich Wöchentlich oder nach Bedarf
Scope Innerhalb eines Teams Zwischen mehreren Teams Rollen- bzw. fachbereichs-

übergreifend
Typische
Themen

Welche Aufgaben sind
in Bearbeitung? Gibt es
Hindernisse oder Klä-
rungsbedarf?

Welche Schnittstellen oder
Abhängigkeiten gibt es?
Welche teamübergreifenden
Probleme müssen gelöst
werden?

Architekturentscheidungen,
Teststrategien, Priorisierung
von Aufgaben innerhalb eines
Fachbereichs

Ergebnisse 101

Tabelle 23: Die verschiedenen Arten von Meetings

6.1.8 Fortschrittsmessung

Die Codes „Im Daily“, „wöchentliche Meetings mit Leitung“ und „Ticketstatus (%, Stunden oder
Status)“ werden zu folgenden Best Practices ausformuliert:

6.1.8.1 Regelmäßige Fortschrittsbesprechungen

Während tägliche Abstimmungen (siehe Punkt 6.1.1.2) vorrangig der kurzfristigen Koordination
innerhalb der Teams dienen, fokussieren sich die hier beschriebenen Fortschrittsbesprechungen
auf eine übergreifende und strategische Bewertung des Projektfortschritts. Ziel ist es, Abweichun-
gen vom Plan zu erkennen, Maßnahmen einzuleiten und eine fundierte Entscheidungsgrundlage
für die weitere Projektsteuerung zu schaffen.

Im Fallbeispiel 1 gibt es wöchentliche Leistungsfortschrittsberichte, die im Rahmen von Bespre-
chungen genutzt werden, um den aktuellen Status zu bewerten. Dabei wird eine prozentuale Ein-
schätzung des Fortschritts vorgenommen, um größere Themenblöcke zu erfassen. Zusätzlich wer-
den Abweichungen vom geplanten Verlauf besprochen und Maßnahmen zur Anpassung definiert.

Im Fallbeispiel 2 findet die Fortschrittskontrolle hauptsächlich über Sprint-Meetings statt. Hier
werden abgeschlossene, laufende und anstehende Aufgaben besprochen, wobei Anforderungen
regelmäßig überprüft und priorisiert werden. Tägliche Stand-up-Meetings (Dailies) ergänzen die-
sen Prozess, indem sie eine kurzfristige Fortschrittsbewertung innerhalb der Teams ermöglichen
(siehe Punkt 6.1.1.2). Änderungen oder Verzögerungen werden in diesen Meetings transparent
gemacht, sodass frühzeitig Gegenmaßnahmen eingeleitet werden können.
Im Fallbeispiel 3 erfolgt die Fortschrittsüberprüfung sowohl in wöchentlichen Meetings mit der
Projektleitung als auch in teaminternen Abstimmungen. Neben der Diskussion offener Aufgaben
liegt der Fokus auf der Bewertung technischer Implementierungen und potenzieller Risiken. In
diesen Meetings werden zudem teamübergreifende Abhängigkeiten besprochen, um sicherzustel-
len, dass alle relevanten Stakeholder informiert sind und notwendige Entscheidungen zeitnah ge-
troffen werden.

Besprechungen des Fortschritts werden in allen drei Fallbeispielen durch den Einsatz von Tools
wie Jira oder Kanban-Boards unterstützt. Dort werden Statusinformationen bereitgestellt und eine
Grundlage für die Diskussionen geschaffen. Im Unterschied zu täglichen Dailies oder reiner Tool-
Transparenz dienen diese Meetings jedoch nicht nur der Statusmeldung, sondern ermöglichen

Ergebnisse 102

eine übergreifende, strukturierte Bewertung des Projektfortschritts. Sie bieten Raum, um Abwei-
chungen vom Plan frühzeitig zu erkennen, Maßnahmen zur Kurskorrektur abzuleiten und die Zu-
sammenarbeit im Team sowie mit der Projektleitung aktiv zu steuern.

6.1.8.2 Toolunterstützter Workflow

Die Best Practice „Toolunterstützter Workflow” wird bereits im Punkt 6.1.1.1 beschrieben und
deckt auch einen Teil der Kategorie „Fortschrittsmessung“ ab.

6.1.9 Auswahl & Zuteilung von Tasks

Die Codes „Leitung an Team“ und „Auswahl durch Teammitglieder aus Task-Liste“, „Zuteilung
nach Fachwissen/jenen der sich am besten auskennt“ werden zu folgenden Best Practices ausfor-
muliert:

6.1.9.1 Koordinierten Aufgabenverteilung für kritische und spezialisierte Aufgaben

In autonomen Teams erfolgt die Vergabe der Aufgaben in der Regel flexibel. Es gibt jedoch be-
stimmte Situationen, in denen eine gezielte Zuweisung von Aufgaben sinnvoll ist, insbesondere
bei sicherheitskritischen Themen, komplexen Anforderungen oder dringenden Fehlerbehebun-
gen. In diesen Fällen übernimmt eine koordinierende Rolle, wie der Teamleiter oder ein Fachex-
perte, die Verantwortung, sicherzustellen, dass die Aufgaben an die am besten geeigneten Team-
mitglieder vergeben werden.

Im Fallbeispiel 1 gibt es eine weitgehend freie Aufgabenwahl, jedoch wird darauf geachtet, dass
kritische Aufgaben gezielt zugewiesen werden. Der Teamleiter unterstützt dabei, den Überblick
über anstehende Arbeiten zu behalten und bei Bedarf Aufgaben gezielt zu verteilen, um sicher-
zustellen, dass wichtige Meilensteine eingehalten werden.

Im Fallbeispiel 2 werden Anforderungen über Jira verwaltet und in Meetings priorisiert. Während
reguläre Aufgaben von den Teammitgliedern selbst ausgewählt werden, gibt es Fälle, in denen
Teamleiter oder Projektverantwortliche gezielt Aufgaben zuweisen, etwa wenn spezielle Exper-
tise erforderlich ist oder ein dringender Bug behoben werden muss.

Im Fallbeispiel 3 erfolgt die Aufgabenvergabe hauptsächlich über Sprint-Meetings. Das Team
entscheidet gemeinsam, wer welche Aufgaben übernimmt, jedoch gibt es bei hochkomplexen

Ergebnisse 103

oder sicherheitskritischen Anforderungen feste Vorgaben, welche Rollen für die Umsetzung ver-
antwortlich sind.

„Die Zuteilung funktioniert dann so, dass […] die Teamleads diese Defects zuge-
wiesen bekommen und dann für die weitere Verteilung in den Teams zuständig sind.
Teilweise ist es aber auch so, wenn man weiß, dass eine bestimmte Person ganz
sicher für das zuständig ist, dass die direkt diesen Defect zugeteilt bekommt. […]
Die Auswahl erfolgt grundsätzlich danach, wer sich mit einem Thema auskennt oder
wer gerade Zeit hat, sich etwas anzuschauen.“ – T4, Softwareentwickler und Tester

Diese Form der koordinierten Aufgabenverteilung hilft dabei, wichtige Aufgaben zuverlässig zu
bearbeiten, ohne dass es durch unklare Zuständigkeiten zu Verzögerungen kommt. In allen drei
Fallbeispielen zeigt sich als gemeinsame Praxis, dass Teamleiter oder fachlich zuständige Perso-
nen bei sicherheitskritischen, komplexen oder besonders dringenden Aufgaben gezielt eingreifen.
So wird sichergestellt, dass die Aufgaben von den am besten geeigneten Teammitgliedern über-
nommen werden – ohne grundsätzlich die Selbstorganisation des Teams einzuschränken.

6.1.9.2 Förderung von Eigenverantwortung durch selbstbestimmte Aufgabenwahl

In autonomen Teams ist es wichtig, dass Teammitglieder selbst entscheiden können, welche Auf-
gaben sie übernehmen. Dies stärkt nicht nur die Eigenverantwortung, sondern sorgt auch für eine
gleichmäßige Verteilung der Arbeit und ermöglicht es den Teammitgliedern, sich gemäß ihren
Interessen und Stärken einzubringen. In den untersuchten Fallbeispielen erfolgt die Selbstzuwei-
sung von Aufgaben über verschiedene Mechanismen, die sicherstellen, dass der Arbeitsfluss nicht
gestört wird und alle wichtigen Aufgaben bearbeitet werden.
Im Fallbeispiel 1 wird die Aufgabenwahl weitgehend durch das Team selbst gesteuert. Teammit-
glieder entnehmen ihre Aufgaben aus einer Kanban-Liste oder einem Aufgaben-Board, wobei sie
sich an ihrer aktuellen Verfügbarkeit oder ihrem Fachwissen orientieren. Die Zuteilung erfolgt
oft informell oder wird in Meetings gemeinsam abgestimmt, um sicherzustellen, dass sich die
Arbeitslast gleichmäßig verteilt.

Im Fallbeispiel 2 gibt es eine priorisierte Kanban-Liste, aus der sich Teammitglieder Aufgaben
nehmen. Die Auswahl erfolgt individuell, wobei Defects und besonders kritische Anforderungen
priorisiert und teilweise vom Product Owner oder Teamleiter gesteuert werden. Gleichzeitig wird
darauf geachtet, dass sich Entwickler nicht nur auf ein Spezialgebiet konzentrieren, sondern auch
unterschiedliche Aufgaben übernehmen, um Wissensinseln zu vermeiden.

Ergebnisse 104

„Als selbstorganisiertes Team haben wir ein Kanban-Board und jeder, der Arbeit
braucht, der nimmt sich was von diesem Board.“ – T8, Technischer Architekt und
Softwareentwickler

Im Fallbeispiel 3 basiert die Selbstzuweisung der Aufgaben ebenfalls auf einer sichtbaren Aufga-
benliste oder einem Board, wobei es keine festen Regeln gibt, wie diese übernommen werden.
Manche Aufgaben werden in Meetings demokratisch verteilt, während sich Teammitglieder in
anderen Fällen selbstständig Aufgaben zuweisen, die ihrer Expertise entsprechen oder gerade von
niemand anderem bearbeitet werden. Besonders bei teamübergreifenden oder komplexen Themen
stimmen sich die Beteiligten vorher ab, um sicherzustellen, dass alle relevanten Aspekte berück-
sichtigt werden.

„Das Team nimmt sich dann eben beim Planning aus dem Backlog die Tickets, sor-
tiert nach Priorität und setzt diese dann um.“ – T11, Teamleiter

Unabhängig von den individuellen Ausprägungen zeigt sich in allen drei Fallbeispielen ein ge-
meinsames Grundprinzip:

• Aufgaben sind für alle Teammitglieder sichtbar, entweder in einem Kanban-Board, einer To-

do-Liste oder einem digitalen Tool wie Jira.
• Die Teammitglieder wählen Aufgaben eigenständig aus diesem Pool aus, wobei Fachwissen,

Verfügbarkeit und Dringlichkeit eine Rolle spielen.
• Es gibt Mechanismen zur Abstimmung innerhalb der Teams, um sicherzustellen, dass keine

Aufgaben übersehen werden und die Verteilung ausgeglichen bleibt.

Die selbstbestimmte Aufgabenwahl stellt sich in den untersuchten Fallbeispielen als bewährte
Praxis dar, bei der Teammitglieder Aufgaben aus einem sichtbaren, priorisierten Aufgabenpool
eigenständig auswählen. Diese Vorgehensweise fördert die Eigenverantwortung und erlaubt eine
flexible Anpassung an individuelle Stärken und Verfügbarkeiten. Voraussetzung ist eine transpa-
rente Aufgabenübersicht – etwa in Form von Kanban-Boards – ergänzt durch regelmäßige Team-
absprachen, um eine gleichmäßige Verteilung sicherzustellen. Die Aufgaben werden mit Avata-
ren oder Kürzeln gekennzeichnet, dadurch wird gekennzeichnet wer die Verantwortung für die
Umsetzung übernommen hat. Im Unterschied zur koordinierten Aufgabenvergabe bei kritischen
oder sicherheitsrelevanten Themen (siehe Punkt 6.1.9.1), bei der eine verantwortliche Person eine
Erstzuweisung vornimmt, basiert diese Praktik auf freiwilliger Übernahme. Auch hier können
Abstimmungen erfolgen, jedoch steht die eigenverantwortliche Wahl im Vordergrund.

Ergebnisse 105

6.1.10 Taskänderungen

Die Codes „Validierung und Einplanung nach Dringlichkeit“ und „Direkt, wenn nicht zu kritisch
(aufgrund von Bürokratie)“ werden zu folgenden Best Practices ausformuliert:

6.1.10.1 Strukturierte Validierung und Priorisierung von Aufgabenänderungen

Fachliche und technische Änderungen sind fester Bestandteil der Entwicklungsarbeit und müssen
effizient validiert, priorisiert und eingeplant werden. In allen drei Fallbeispielen wird bei jeder
Änderung geprüft, ob sie noch im aktuellen Entwicklungszyklus berücksichtigt werden kann oder
ob eine spätere Umsetzung sinnvoller ist. Kritische Anforderungen werden bevorzugt behandelt,
während weniger dringliche Änderungen als Change Requests für spätere Releases dokumentiert
werden.

Fachliche Änderungen werden in der Regel durch Product Owner oder Requirement Engineers
angestoßen. Im Fallbeispiel 1 übernimmt der Teamleiter die Bewertung und entscheidet gemein-
sam mit dem Product Owner, ob eine Änderung direkt umgesetzt werden kann oder auf einen
späteren Zeitpunkt verschoben wird. Im Fallbeispiel 2 erfolgt die Priorisierung durch den Product
Owner in Rücksprache mit dem Team. Der Requirement Engineer analysiert die Anforderungen
und speist sie in das Backlog ein. Die Einplanung erfolgt abhängig von der Dringlichkeit und vom
vorhandenen Kapazitätsrahmen. Im Fallbeispiel 3 ist aufgrund der gesetzlichen Vorgaben beson-
ders wichtig, ob Änderungen noch innerhalb des vorgesehenen Release-Zyklus möglich sind. Bei
kurzfristigen Anforderungen wird geprüft, ob eine Umsetzung rechtzeitig erfolgen kann, oder ob
gemeinsam mit den Stakeholdern eine Nachlieferung vereinbart werden muss.

Technische Änderungen gehen häufig direkt von den Entwicklern aus, etwa bei Refactorings,
Bugfixes oder Performance-Optimierungen. Im Fallbeispiel 1 werden diese zunächst im Team
besprochen und bei Bedarf mit dem Teamleiter oder einem Architekturverantwortlichen abge-
stimmt. Bei umfangreicheren Änderungen wird zusätzlich das Software-Entscheidungsgremium
(SEG) einbezogen. Im Fallbeispiel 2 liegt die Verantwortung für technische Bewertungen beim
technischen Architekten. Änderungen, die Auswirkungen auf mehrere Komponenten haben, wer-
den in Architektur-Meetings besprochen und abgestimmt. Im Fallbeispiel 3 erfolgt die technische
Bewertung teamintern, wobei größere Änderungen mit der Projektleitung koordiniert und ent-
sprechend der Release-Planung priorisiert werden.

„Wenn es jetzt natürlich auch andere Teams betrifft, muss man dort natürlich auch
ein bisschen anfragen, und wenn es noch größer ist dann wird es bei dem technischen

Ergebnisse 106

Architekten einmal Anklang finden […] Fachlich - wird das meist über die Require-
ment-Engineers gespielt. Dass die dann eine Entscheidung treffen können oder nicht
- aber wenn es da auch noch einmal nach oben gehen muss dann liegt es am Product
Owner ob das eine gültige Entscheidung ist oder nicht.“ – T10, Tester

„Wenn noch keine Entwicklung angefangen wurde, dann wird es halt eben adaptiert
und neu geschätzt. […] Dann macht man einfach eine neue Story und eine neue An-
forderung und man arbeitet additiv damit.“ – T9, Teamleiter und Requirements En-
gineer

In allen drei Fallbeispielen hat sich eine strukturierte Prüfung von Änderungsanforderungen etab-
liert, die fachliche und technische Aspekte gleichermaßen berücksichtigt. Die gemeinsame Best
Practice besteht darin, jede Änderung anhand folgender Kriterien zu bewerten und einzuplanen:

• Dringlichkeit: Muss die Änderung sofort umgesetzt werden (z. B. aufgrund gesetzlicher Vor-

gaben oder kritischer Fehler)?
• Machbarkeit: Ist die Umsetzung im aktuellen Entwicklungszyklus realistisch und technisch

möglich?
• Abstimmung: Ist eine Rücksprache mit dem Product Owner, dem Architekten oder der Pro-

jektleitung erforderlich?
• Verantwortung: Wer im Team verfügt über das nötige Wissen zur Umsetzung?
• Einplanung oder Verschiebung: Kann die Änderung direkt eingeplant werden, oder muss

sie als Change Request dokumentiert und später berücksichtigt werden?

6.1.10.2 Schnelle Umsetzung unkritischer Änderungen zur Vermeidung bürokrati-
scher Hürden

Nicht jede Änderung muss aufwendig validiert oder umfassend abgestimmt werden. In allen drei
Fallbeispielen zeigt sich, dass kleinere Änderungen – wie einfache Bugfixes, UI-Korrekturen oder
nicht-kritische Codeanpassungen – direkt durch die Entwickler umgesetzt werden können, sofern
sie keine weitreichenden Auswirkungen auf andere Komponenten oder Teams haben.

Im Fallbeispiel 1 dürfen solche Änderungen ohne formale Freigabe umgesetzt werden, solange
sie klar dokumentiert und technisch isoliert sind. Bei Unsicherheiten erfolgt eine kurze Abstim-
mung mit dem Teamleiter. Im Fallbeispiel 2 entnehmen Entwickler Aufgaben aus einem priori-
sierten Backlog oder Kanban-Board. Kleinere Änderungen werden eigenverantwortlich bearbei-
tet, während Änderungen mit potenziellen Seiteneffekten mit dem technischen Architekten oder

Ergebnisse 107

anderen Teams abgestimmt werden. Im Fallbeispiel 3 besteht eine definierte Grenze: Änderun-
gen, die keine Auswirkungen auf Release-Termine oder regulatorische Vorgaben haben, können
direkt umgesetzt werden, während größere Anpassungen über die Projektleitung koordiniert wer-
den.

„Ja, es kommt natürlich auf den Umfang an, wie groß die Änderung ist. Wenn es
eine Kleinigkeit ist, dann macht man es einfach…“ – T8, Technischer Architekt und
Softwareentwickler

In der Praxis erfolgt die Umsetzung durch jene Person, die entweder die Änderung vorgeschlagen
hat oder sich fachlich am besten mit dem betroffenen Bereich auskennt. Auch kleinere Änderun-
gen werden über Tools wie Jira oder GitLab dokumentiert, um Nachvollziehbarkeit zu gewähr-
leisten und sicherzustellen, dass andere Teammitglieder über den aktuellen Stand informiert blei-
ben.
Die gemeinsame Best Practice besteht darin, unkritische Änderungen gezielt und effizient umzu-
setzen, um die Eigenverantwortung im Team zu fördern und den Arbeitsfluss nicht zu verlangsa-
men. Vor der Umsetzung sollten folgende Punkte geprüft werden:

• Komplexität: Handelt es sich um eine isolierte, klar überschaubare Änderung ohne tiefere

Abhängigkeiten?
• Auswirkungen: Gibt es technische oder organisatorische Seiteneffekte auf andere Kompo-

nenten oder Teams?
• Abstimmung: Reicht eine eigenverantwortliche Umsetzung, oder ist eine kurze Rücksprache

mit Teamleitung oder Architekturverantwortlichen sinnvoll?
• Dokumentation: Ist sichergestellt, dass die Änderung im Ticket- oder Dokumentationssys-

tem erfasst wird?
• Zuständigkeit: Übernimmt die Änderung die fachlich passendste Person im Team?

6.1.11 Team Events & Belohnungen

Der Code „Allgemeine Teamevents“ wird zu folgendem Best Practice ausformuliert:

6.1.11.1 Förderung des Teamzusammenhalts durch Teamevents

Regelmäßige gemeinsame Aktivitäten außerhalb des Arbeitskontexts tragen wesentlich zum so-
zialen Zusammenhalt in agilen Teams bei. Teamevents wie gemeinsames Essen, Spieleabende,

Ergebnisse 108

sportliche Ausflüge oder saisonale Feiern schaffen eine informelle Umgebung, in der sich Team-
mitglieder persönlich näherkommen und Beziehungen über die fachliche Zusammenarbeit hinaus
aufbauen können.

In allen drei Fallbeispielen werden solche Aktivitäten als positiver Beitrag zur Teamkultur be-
schrieben. Im Fallbeispiel 1 werden Teamevents organisiert, um Austausch und Zusammenhalt
zu stärken – etwa gemeinsame Abendessen oder Freizeitaktivitäten nach Projektphasen. Im Fall-
beispiel 2 entstehen viele Aktivitäten aus dem Team heraus, darunter gemeinsame Mittagessen
oder informelle Treffen, die den Zusammenhalt im Alltag fördern. Auch im Fallbeispiel 3 wird
beschrieben, dass Teamevents gezielt eingesetzt werden, um die Motivation zu stärken und den
respektvollen Umgang im Team zu fördern. Die Projektleitung unterstützt diese Initiativen und
schafft bewusst Raum für informellen Austausch.

Solche Veranstaltungen erleichtern besonders neuen Teammitgliedern die Integration und helfen,
Barrieren abzubauen. In einem ungezwungenen Rahmen fällt es leichter, Vertrauen aufzubauen,
sich offen auszutauschen und gemeinsame Werte zu entwickeln – Aspekte, die sich positiv auf
die spätere Zusammenarbeit im Projekt auswirken.

Teamevents können dabei nicht nur auf einzelne Entwicklungsteams begrenzt sein, sondern auch
teamübergreifend organisiert werden – etwa für mehrere autonome Teams innerhalb eines größe-
ren Projekts. Dies stärkt das Verständnis über Teamgrenzen hinweg und unterstützt den übergrei-
fenden Zusammenhalt in der Organisation. Wichtig ist dabei, dass die Kosten solcher Veranstal-
tungen in der Regel vom Arbeitgeber getragen werden. Eine klare Kostenübernahme zeigt Wert-
schätzung, fördert die Beteiligung und vermeidet soziale Hürden für die Teilnahme.

In der Praxis haben sich folgende Ansätze bewährt:

• Regelmäßigkeit: Teamevents sollten fest in der Teamkultur verankert sein und über das Jahr

verteilt stattfinden.
• Vielfalt: Unterschiedliche Formate – von kleinen spontanen Treffen bis hin zu größeren Aus-

flügen – berücksichtigen verschiedene Interessen.
• Freiwilligkeit: Die Teilnahme erfolgt ohne Erwartungsdruck, um eine lockere und authenti-

sche Atmosphäre zu gewährleisten.
• Unterstützung durch das Management: Eine positive Haltung der Projektleitung und die

Übernahme der Kosten fördern Eigeninitiative und Beteiligung der Teams.

Ergebnisse 109

6.1.12 Komplexe Themen

Die Codes „4-Augen-Prinzip & Reviews“ und „Teamabsprache und Validierung“ werden zu fol-
genden Best Practices ausformuliert:

6.1.12.1 Pair-Programming, 4-Augen-Prinzip und Reviews

Die Best Practice „Pair-Programming, 4-Augen-Prinzip und Reviews“ wird bereits im Punkt
6.1.3.2 beschrieben und deckt auch einen Teil der Kategorie „Komplexe Themen“ ab.

6.1.12.2 Strukturierte Teamabstimmung und Validierung bei komplexen Aufgaben

Bei komplexen Aufgaben greifen die Teams in den Fallbeispielen auf gezielte Abstimmungen
zurück. Ziel ist es, fachliche und technische Fragen frühzeitig zu klären, Risiken zu minimieren
und tragfähige Lösungen zu entwickeln. In allen drei Fallbeispielen zeigt sich ein gemeinsames
Vorgehen, auch wenn es in der Ausprägung unterschiedlich ist.

Im Fallbeispiel 1 landen komplexere Themen meist zuerst beim Teamleiter oder einer erfahrenen
Person im Team. Es erfolgt eine erste Einschätzung, ob die Aufgabe intern geklärt werden kann
oder ob weitere Abstimmungen nötig sind. Bei Bedarf werden eigene Runden einberufen, in de-
nen mehrere Personen ihre Perspektiven einbringen. Dabei wird Wert daraufgelegt, die Umset-
zung nicht vorschnell zu starten, sondern vorab relevante Fragen gemeinsam zu klären.

Im Fallbeispiel 2 zeigt sich ein ähnlicher Ablauf. Themen mit größerer Tragweite werden oft
zunächst in kleiner Runde vorbereitet – etwa in Fokusgruppen oder technischen Abstimmungen
– bevor sie im gesamten Team besprochen und entschieden werden. Besonders bei teamübergrei-
fenden oder architekturrelevanten Themen werden technische Ansprechpartner und Architekten
frühzeitig eingebunden.

Im Fallbeispiel 3 ist dieses Vorgehen besonders strukturiert. Komplexe Themen werden vorab
von erfahrenen Entwicklern vorbereitet und in übersichtlicher Form aufbereitet. Das kann Skiz-
zen, erste Lösungsentwürfe oder eine strukturierte Analyse beinhalten. Anschließend wird das
Thema dem Team vorgestellt und gemeinsam diskutiert. Wenn intern nicht genug Know-how
vorhanden ist, wird gezielt externe Expertise eingebunden. Der Umgang mit komplexen Themen
wird dabei als bewusst gemeinsamer Prozess verstanden – man bringt die richtigen Leute zusam-
men, prüft verschiedene Optionen und trifft dann die bestmögliche Entscheidung.

Ergebnisse 110

Insgesamt zeigt sich, dass solche Themen nicht isoliert bearbeitet werden. Stattdessen wird im
Vorfeld geklärt, wer eingebunden werden muss, wie die Entscheidung vorbereitet wird und wer
die Umsetzung übernimmt. In der Praxis haben sich folgende Punkte bewährt:

• Komplexe Themen werden gezielt vorbereitet, meist durch erfahrene Personen oder kleinere

Gruppen.
• Fachliche und technische Fragen werden im Team strukturiert besprochen.
• Bei Bedarf werden andere Rollen wie Architekten, Product Owner oder externe Experten

eingebunden.
• Die Umsetzung übernimmt die Person, die fachlich am besten zum Thema passt.
• Entscheidungen werden gemeinsam getroffen und nachvollziehbar dokumentiert.

6.1.13 Aufwandsschätzung

Die Codes „Schätzung über mehrere Iterationen“, „Durch Teammitglieder“, „Aufteilung in Sub-
tasks“ und „Projektspezifische Einheitenschätzung“ werden zu folgenden Best Practices ausfor-
muliert:

6.1.13.1 Iterative Verfeinerung der Schätzungen durch das gesamte Team

In allen drei Fallbeispielen werden Aufwände nicht einmalig geschätzt, sondern über den Projekt-
verlauf hinweg iterativ verfeinert. Ziel ist es, durch gewonnene Erfahrungswerte die Planungs-
genauigkeit schrittweise zu verbessern und realistischere Prognosen zu ermöglichen.

Im Fallbeispiel 1 erfolgt die Aufwandsschätzung pragmatisch und basiert meist auf Schätzungen
in Personentagen. Die Einschätzungen werden gemeinsam im Team vorgenommen – in der Regel
von den Teammitgliedern selbst, wobei der Teamleiter die Verantwortung für die Nachvollzieh-
barkeit und Korrektheit übernimmt. Bei spezifischen Aufgaben kann auch in kleineren Gruppen
geschätzt werden.

Im Fallbeispiel 2 finden Estimation-Meetings statt, in denen technische Experten wie Require-
ments Engineers oder Architekten gemeinsam mit den Entwicklern Aufwände abschätzen. Je
nach Thema wird der Prozess durch kleinere Fokusgruppen unterstützt – etwa für bestimmte
Technologien oder Komponenten. Die Schätzwerte basieren auf Erfahrungswerten und werden
im Projektverlauf bei Bedarf überarbeitet, um die Genauigkeit zu erhöhen.

Ergebnisse 111

Im Fallbeispiel 3 kommt Planning Poker zum Einsatz. Die Teammitglieder geben unabhängig
voneinander ihre Einschätzung in Story Points ab. Bei größeren Abweichungen wird im Team
diskutiert, bis ein Konsens gefunden ist. Durch diesen Austausch, aber auch durch den Vergleich
mit abgeschlossenen Stories, verbessert sich die Genauigkeit im Laufe der Zeit. Zusätzlich ergibt
sich daraus ein klareres Bild zur Team-Velocity – also der Anzahl an Story Points, die pro Itera-
tion realistisch umgesetzt werden können.

„… die Teams und die Teamleader diese Aufwandsschätzungen durchführen und
auch mit den einzelnen Entwicklern genauer abstimmen, wie viel Aufwand das be-
deutet oder was eigentlich zu tun ist. […] grundsätzlich wird das schon - von also
aus Entwicklungssicht von den zuständigen Entwicklern oder deren zuständigen
Lead gemacht. […] sodass in Summe dann halt eine gemeinsame Schätzung raus-
kommt.“ – T4, Softwareentwickler und Tester

„Die Estimations machen wir im Team. [...] Wir haben unsere Storys im Backlog
und machen einfach Planning Poker. [...] Wir schätzen die Komplexität.“ – T11,
Teamleiter

Die gemeinsame Best Practice lässt sich wie folgt zusammenfassen:

• Aufwände werden gemeinsam im Team geschätzt – je nach Organisationsvorgabe in Stunden,

oder Story Points.
• Die Schätzungen basieren auf Erfahrungswerten und werden regelmäßig nach Iterationen

oder neuen Erkenntnissen angepasst.
• Bei komplexen Themen übernehmen kleinere Fokusgruppen mit spezifischem Fachwissen

die Einschätzung.
• Methoden wie Planning Poker fördern Diskussion, Perspektivenabgleich und gemeinsame

Lernprozesse.
• Die iterative Verfeinerung der Werte erhöht die Planungsgenauigkeit im Projektverlauf.

6.1.13.2 Aufteilung in Subtasks zur besseren Planung

Die strukturierte Aufteilung größerer Aufgaben in kleinere Einheiten ist ein bewährter Bestandteil
der Aufwandsschätzung und Planung. In allen drei Fallbeispielen wird diese Vorgehensweise an-
gewendet, um Schätzungen zu erleichtern, die Umsetzung klarer zu machen und den Fortschritt
besser nachverfolgen zu können.

Ergebnisse 112

Im Fallbeispiel 1 werden größere Aufgaben in Teilaufgaben zerlegt, bevor sie geschätzt und ein-
geplant werden. Die Aufteilung erfolgt mit dem Ziel, besser planen und kontrollieren zu können,
ob der Umfang realistisch ist. Diese Vorgehensweise wird im Team durchgeführt und hilft dabei,
eine bessere Einschätzung für einzelne Entwicklungsschritte zu erhalten.

Im Fallbeispiel 2 werden Anforderungen vom Requirements Engineering Team so vorbereitet,
dass sie in kleinere Bestandteile aufgeteilt und dann geschätzt werden können. Die Zerlegung
erfolgt vor der eigentlichen Aufwandsschätzung und unterstützt die Diskussion und Abgrenzung
der Themen im Team. Dabei wird betont, dass eine gute Vorbereitung notwendig ist, um eine
sinnvolle Einschätzung durch die Teammitglieder zu ermöglichen.

Im Fallbeispiel 3 werden größere Stories regelmäßig in kleinere Aufgaben zerlegt. Diese Auftei-
lung erfolgt entweder direkt durch das Team oder wird durch das Requirements Engineering vor-
bereitet. Die aufgeteilten Bestandteile werden dann im Estimation-Meeting besprochen und ge-
schätzt. Es wird bewusst darauf geachtet, dass Anforderungen erst dann geschätzt werden, wenn
sie ausreichend verfeinert und verständlich sind.

Die gemeinsame Best Practice aus den Fallbeispielen lässt sich wie folgt zusammenfassen:

• Größere Aufgaben oder Stories werden vor der Schätzung in kleinere Bestandteile zerlegt.
• Die Vorbereitung wird durch Teammitglieder vorgenommen, erfolgt jedoch in enger Abstim-

mung mit dem Requirements Engineering.
• Die aufgeteilten Bestandteile werden im Team diskutiert und gemeinsam geschätzt.

Die Zerlegung hilft, Missverständnisse zu vermeiden und die Aufgaben klarer zu strukturie-
ren.

Nr. Kapitel Best Practice Kategorie
Kategoriespe-
zifische Um-
setzung

Kurzbeschreibung

1 6.1.1.1 Toolunter-
stützter Work-
flow

Transpa-
renz

Nutzung digi-
taler Kanban-
Boards (z. B.
Jira, GitLab)
mit Status wie
„In Bearbei-
tung“ oder
„Done“.

Die Tickets werden in digitalen
Tools wie Jira oder GitLab auf
Boards verwaltet, um den Bear-
beitungsstand über klar definierte
Status transparent darzustellen.
Der gesamte Workflow bleibt
nachvollziehbar und zugänglich.

2 6.1.2.2 Kommuni-
kation

Kommentar-
funktionen in
Jira/GitLab,
Verknüpfung
mit Meetings.

In Tools wie Jira oder GitLab
können Teammitglieder Kom-
mentare zu Tickets hinterlassen,
um aktuelle Probleme, offene
Fragen oder wichtige Abspra-

Ergebnisse 113

chen zu dokumentieren und di-
rekt im Kontext zu kommunizie-
ren.

3 6.1.4.2 Wissens-
verteilung
& Support

Regelmäßige
Dokumentation
in Wikis (In-
halte, Rollen,
Standards, Ent-
scheidungen)

Confluence oder Wikis ermögli-
chen das gezielte Nachlesen von
technischen Dokumentationen,
API-Beschreibungen oder An-
sprechpersonen – hilfreich bei
Supportfällen oder zur Einarbei-
tung neuer Mitglieder.

4 6.1.8.2 Fort-
schritts-
messung

Sprintfort-
schritt über
Dashboards
und Zeiterfas-
sung in Tools
wie Jira.

Fortschrittsanzeigen in Dash-
boards, Boards oder über Zeiter-
fassung erlauben eine objektive
Statusbewertung des Arbeitsfort-
schritts innerhalb eines Sprints
oder Releases. So lassen sich
frühzeitig Abweichungen erken-
nen.

5 6.1.1.2 Regelmäßige
synchrone Ab-
stimmung im
Team

Transpa-
renz

Dailies mit
kurzer Status-
meldung, Ab-
gleich von
Aufgaben und
Blockaden.

Tägliche, meist 15-minütige Dai-
lies ermöglichen den schnellen
Abgleich des Arbeitsstands, die
Erkennung von Blockern und die
gemeinsame Sicht auf den Pro-
jektstatus. Zudem ist ersichtlich,
welche Person welche Aufgabe
bearbeitet.

6 6.1.2.3 Kommuni-
kation

Kurze tägliche
Teammeetings
für gegenseiti-
gen Abgleich.

Im Daily berichten Teammitglie-
der in kurzen Runden über Fort-
schritt und Probleme. So wird ge-
genseitiges Verständnis gefördert
und Informationslücken werden
minimiert.

7 6.1.7.1 Meetings Tägliche Dail-
ies, meist als
15-minütige
Kurzmeetings,
zur Abstim-
mung des Ar-
beitsstands und
zur Identifika-
tion von Blo-
ckern direkt
am Kanban-
oder Sprint-
Board.

Dailies dienen als fixes, kurzes
Format zur Abstimmung des ak-
tuellen Stands im Team. Sie un-
terstützen Transparenz und regel-
mäßige Synchronisation bei lau-
fender Arbeit.

8 6.1.1.3 Wöchentliche
Abstimmung
zwischen
Teams

Transpa-
renz

Wöchentliche
Abstimmung
mit Vertretern
mehrerer
Teams zu Ab-
hängigkeiten,
Problemen und
Release-Pla-
nung. Doku-
mentation er-
folgt z. B. in
Confluence.

Ermöglicht teamübergreifende
Transparenz über Fortschritte,
Abhängigkeiten und Probleme.
Teilnehmende Teams erhalten
ein gemeinsames Bild über of-
fene Themen und geplante Um-
setzungen.

9 6.1.7.2 Meetings Koordination
technischer

Regelmäßige strukturierte Koor-
dinationsrunden zwischen Teams

Ergebnisse 114

Schnittstellen,
Priorisierung
von Tickets
und Beteili-
gung von Ar-
chitektur-,
Test- und Pro-
jektverantwort-
lichen im
Weekly-For-
mat.

zur Abstimmung technischer
Schnittstellen, Priorisierung von
Aufgaben und Release-Manage-
ment. Entscheidungen und Zu-
ständigkeiten werden dokumen-
tiert.

10 6.1.1.4 Standardisierte
Protokollie-
rung und Do-
kumentation

Transpa-
renz

Nutzung struk-
turierter Vorla-
gen und der
Definition of
Done/Ready
zur Nachvoll-
ziehbarkeit.

Dokumentation von Entscheidun-
gen, Reviews und Aufgabenstan-
dards (z. B. Definition of Done)
sichert Wissen im Team, erleich-
tert Einarbeitung und schafft
Verbindlichkeit für die Umset-
zung.

11 6.1.2.1 Effiziente Ab-
stimmung
durch direkte
Kommunika-
tion

Kommuni-
kation

Verwendung
von Face-to-
Face, Chat, Te-
lefon und
Screen-Sha-
ring.

Durch direkte Gespräche, Chat
oder Anrufe kann schnell und
flexibel auf Rückfragen oder
Probleme reagiert werden – ohne
den Umweg über formelle Doku-
mentation.

12 6.1.4.3 Wissens-
verteilung
& Support

Direkter Aus-
tausch bei
Rückfragen
oder Einarbei-
tung neuer
Kollegen.

Die Praxis fördert unmittelbaren
Wissenstransfer.

13 6.1.3.1 Regelmäßige
Reflexion und
Feedback-
schleifen

Reflexion
& Lernpro-
zess

Sprint-Retro-
spektiven zur
Reflexion

Sprint-Retrospektiven zur Refle-
xion von Arbeitsweisen sowie er-
gänzende technische Reviews zur
kontinuierlichen Verbesserung
der Codequalität. Erkenntnisse
werden dokumentiert und fließen
in zukünftige Iterationen ein.

14 6.1.3.2 Pair-Program-
ming, 4-Au-
gen-Prinzip
und Reviews

Reflexion
& Lernpro-
zess

Review-For-
mate wie das
4-Augen-Prin-
zip bieten
strukturierte
Möglichkeiten
zur Reflexion
über die Quali-
tät und Ange-
messenheit von
Lösungen und
fördern den
kontinuierli-
chen Lernpro-
zess im Team.

Regelmäßige Code-Reviews för-
dern konstruktives Feedback, er-
möglichen eine kritische Refle-
xion der Codequalität und stär-
ken die gemeinsame Verantwor-
tung im Team.

15 6.1.4.1 Wissens-
verteilung
& Support

Pair-Program-
ming und Re-
views fördern
den Wissens-
transfer und
helfen neuen

Pair-Programming und struktu-
rierte Reviews erleichtern die
Einarbeitung, fördern kontinuier-
lichen Wissenstransfer und ver-
hindern Wissensinseln im Team.

Ergebnisse 115

Teammitglie-
dern bei der
schnellen Ein-
arbeitung.

16 6.1.12.1 Komplexe
Themen

Komplexe
Themen wer-
den gemeinsam
analysiert und
gelöst – etwa
durch gemein-
sames Debug-
ging, struktu-
rierte Abstim-
mungen oder
Pair-Program-
ming, wodurch
tragfähige Lö-
sungen entste-
hen.

Bei besonders anspruchsvollen
Aufgaben werden durch gemein-
sames Debugging, fachliche Ab-
stimmungen oder Pair-Program-
ming fundierte Lösungen ge-
meinsam erarbeitet.

17 6.1.4.4 Mehrere The-
menverant-
wortliche zur
Wissensvertei-
lung

Wissens-
verteilung
& Support

Jedem Thema
werden min-
destens zwei
Personen zuge-
wiesen

Für jedes zentrale Thema sind
bewusst mehrere Teammitglieder
verantwortlich, um Wissensin-
seln zu vermeiden und die Aus-
fallssicherheit sowie Flexibilität
bei der Bearbeitung zu erhöhen.

18 6.1.5.1 Weiterbildung
durch Eigen-
initiative und
Teamförde-
rung

Fortbil-
dung

Zeitfenster für
Weiterbildung
auf Eigeninitia-
tive. Teils mit
Zertifikaten
oder Lernauf-
gaben.

Teammitglieder stoßen Fortbil-
dung eigenständig an. Unterstüt-
zung erfolgt durch Teamleiter
z. B. über Lernzeit, Zertifikats-
kosten oder individuelle Techno-
logieerprobung. Lernen erfolgt
projektintegriert und praxisnah.

19 6.1.5.2 Themenwech-
sel zur indivi-
duellen Wei-
terentwicklung

Fortbil-
dung

Entwickler
wechseln auf
Initiative in
neue Fachbe-
reiche, oft
schrittweise
durch kleinere
Aufgaben.

Teammitglieder wechseln eigen-
initiativ in neue Themenbereiche,
um Wissen zu verbreitern und
neue Fähigkeiten aufzubauen.
Wechsel erfolgen schrittweise
und in Abstimmung mit dem
Team.

20 6.1.5.3 Rollenwechsel
zur Entwick-
lung individu-
eller Fähigkei-
ten

Fortbil-
dung

Ein schrittwei-
ser Rollen-
wechsel, z. B.
vom Entwick-
ler zum Tester
oder Require-
ments Engi-
neer.

Der Wechsel in andere fachliche
Rollen – z. B. von Entwicklung
zu Test – ermöglicht flexible
Teamaufstellung und individuelle
Weiterentwicklung. Die Über-
gabe erfolgt meist schrittweise.

21 6.1.6.1 Dokumenta-
tion und Fest-
legung von
Richtlinien
und Prozessen

Richtli-
nien, Gren-
zen, Nor-
men und
Prinzipien

Globale Richt-
linien werden
durch Archi-
tekten oder
Gremien er-
stellt und do-
kumentiert.

Verbindliche technische Vorga-
ben wie Architekturprinzipien
und Coding-Standards werden
systemweit definiert und in Wi-
kis dokumentiert. Die Umsetzung
wird von technischen Architek-
ten und Teamleitern begleitet,
um Konsistenz über alle Teams
hinweg sicherzustellen.

Ergebnisse 116

22 6.1.6.2 Teamspezifi-
sche Erweite-
rungen von
Qualitätsstan-
dards

Richtli-
nien, Gren-
zen, Nor-
men und
Prinzipien

Zusätzliche
Teamrichtli-
nien wie
Checklisten,
Vorgaben zur
Testabdeckung
oder Definition
of Done über
das Standardni-
veau hinaus.

Teams ergänzen zentrale Richtli-
nien durch eigene Qualitätsstan-
dards wie Checklisten oder Defi-
nition of Done. Tools wie So-
narQube oder Checkstyle unter-
stützen die automatisierte Einhal-
tung.

23 6.1.7.3 Rollenspezifi-
sche Teamlei-
ter-Meetings
zur fachlichen
Koordination

Meetings Architekten,
Tester, etc. tau-
schen sich re-
gelmäßig in
Rollenrunden
aus.

Rollenspezifische Teamleiter-
Meetings ermöglichen fachliche,
technische oder organisatorische
Abstimmungen über Teamgren-
zen hinweg und unterstützen
z. B. Architektur- oder Testent-
scheidungen.

24 6.1.8.1 Regelmäßige
Fortschrittsbe-
sprechungen

Fort-
schritts-
messung

Wöchentliche
Statusmeetings
z.B. mit der
Projektleitung

Wöchentliche Meetings der
Teamleader mit der Projektlei-
tung zur strukturierten Bewer-
tung des Projektfortschritts, um
Abweichungen frühzeitig zu er-
kennen und Maßnahmen zu koor-
dinieren.

25 6.1.9.1 Koordinierte
Aufgabenver-
teilung für kri-
tische und spe-
zialisierte
Aufgaben

Auswahl &
Zuteilung
von Tasks

Teamleiter
weisen sicher-
heitskritische
oder komplexe
Aufgaben ge-
zielt zu.

Bei kritischen Aufgaben erfolgt
eine Erstzuweisung durch Team-
leitung oder Fachverantwortliche
an die geeignetsten Personen,
wobei die grundsätzliche Selbst-
organisation erhalten bleibt.

26 6.1.9.2 Förderung von
Eigenverant-
wortung durch
selbstbe-
stimmte Auf-
gabenwahl

Auswahl &
Zuteilung
von Tasks

Aufgabenwahl
aus Kanban-
Board nach In-
teresse, Wissen
und Kapazität.

Teammitglieder wählen eigen-
ständig Aufgaben aus einem pri-
orisierten Aufgabenpool oder di-
gitalen Board aus, wodurch Mo-
tivation, Verantwortungsbe-
wusstsein und fachliche Passung
gestärkt werden.

27 6.1.10.1 Strukturierte
Validierung
und Priorisie-
rung von Auf-
gabenänderun-
gen

Task-Än-
derungen

Abstimmung
mit PO oder
Architekt je
nach Dring-
lichkeit und
Aufwand.

Kleine technische Änderungen
wie Bugfixes, UI-Verbesserun-
gen oder Typos können direkt
umgesetzt werden, sofern sie iso-
liert sind und keine Abstimmung
mit anderen Teams erfordern.
Dies beschleunigt den Workflow
und reduziert bürokratischen
Aufwand.

28 6.1.10.2 Schnelle Um-
setzung unkri-
tischer Ände-
rungen zur
Vermeidung
bürokratischer
Hürden

Task-Än-
derungen

Kleine Ände-
rungen direkt
durch Entwick-
ler, dokumen-
tiert im Ticket-
Tool.

Kleine technische Änderungen
wie Bugfixes können direkt um-
gesetzt werden, sofern sie isoliert
sind und keine Abstimmung mit
anderen Teams erfordern. Dies
beschleunigt den Workflow und
reduziert bürokratischen Auf-
wand.

29 6.1.11.1 Förderung des
Teamzusam-
menhalts
durch Teame-
vents

Team
Events &
Belohnun-
gen

Regelmäßige
Events (Mit-
tagessen,
Spieleabende),

Gemeinsame Teamevents wie
Ausflüge, Feiern oder Mittages-
sen stärken Vertrauen und Moti-
vation. Die Events erleichtern

Ergebnisse 117

teilweise team-
übergreifend.

neue Kontakte, fördern Integra-
tion und Teambindung.

30 6.1.12.2 Strukturierte
Teamabstim-
mung und Va-
lidierung bei
komplexen
Aufgaben

Komplexe
Themen

Vorabklärung
in kleinen
Gruppen, oft
mit Skizzen
oder Voranaly-
sen.

Bei komplexen Aufgaben stim-
men sich erfahrene Teammitglie-
der gezielt ab. Technische Ent-
würfe werden vorbereitet und ge-
meinsam diskutiert. Falls erfor-
derlich, werden externe Experten
eingebunden.

31 6.1.13.1 Iterative Ver-
feinerung der
Schätzungen
durch das ge-
samte Team

Aufwands-
schätzung

Planning Poker
oder Meetings
mit Team zur
Aufwands-
schätzung und
Justierung pro
Sprint.

Aufwände werden im Team ge-
meinsam geschätzt – z. B. über
Planning Poker. Bei größeren
Abweichungen wird diskutiert,
bis ein Konsens entsteht. Die
Schätzungen werden nach Iterati-
onen überprüft und verfeinert.

32 6.1.13.2 Aufteilung in
Subtasks zur
besseren Pla-
nung

Aufwands-
schätzung

Große Tasks
werden vor
dem Sprint zer-
legt und ein-
zeln geschätzt.

Komplexere Aufgaben werden in
kleinere, besser plan- und schätz-
bare Einheiten aufgeteilt, um
Missverständnisse zu vermeiden
und eine detaillierte Umsetzungs-
vorbereitung zu ermöglichen.

Tabelle 24: Auflistung aller gefundenen Best Practices

6.2 Analyse skalierbarer Best Practices

In diesem Kapitel wird untersucht, welche der identifizierten Best Practices aus den drei Fallbei-
spielen Gemeinsamkeiten mit jenen von Hoda et al. aufweisen und somit skalierbar sind. Skalier-
bar im Sinne dieser Arbeit bedeutet, dass eine Praktik, die in kleinen, selbstorganisierten Teams
erfolgreich angewendet wird, auch in größeren, komplexeren Projektkontexten mit mehreren
Teams, Rollen und Koordinierungsebenen nachweislich beobachtet und wirksam eingesetzt wer-
den kann. Die Analyse der Skalierbarkeit ermöglicht es, etablierte Prinzipien aus kleineren agilen
Teams gezielt auf groß angelegte Softwareprojekte zu übertragen und liefert damit evidenzba-
sierte Handlungsempfehlungen für die Organisation komplexer Entwicklungsstrukturen.

Die Bewertung der Skalierbarkeit erfolgt auf Grundlage eines systematischen inhaltlichen Ver-
gleichs: Dabei werden konkrete Praktiken aus den Fallstudien (siehe Kapitel 6.1) mit den von
Hoda et al. beschriebenen Praktiken (siehe Kapitel 3.2) abgeglichen. Als Übereinstimmung gilt
eine inhaltliche Entsprechung der Zielsetzung, des praktischen Vorgehens und des Kontexts der
Anwendung. Grundlage sind kodierte Interviewsegmente, aus denen in Kapitel 6.1 Best Practices
abgeleitet wurden. Eine Übereinstimmung wird dann als Beleg für Skalierbarkeit gewertet, wenn
sich zeigt, dass dieselbe Praktik auch unter den komplexeren Bedingungen eines Softwaregroß-
projekts mit vergleichbarem Zweck und Wirkung umgesetzt wird.

Ergebnisse 118

Ziel ist die Beantwortung der Forschungsfrage RQ1b: „Welche Praktiken für autonome Teams
sind auch für große Softwareprojekte skalierbar?“ Insgesamt wurden die 13 Praktiken aus sieben
Kategorien von Hoda et al. analysiert. Neun dieser Praktiken zeigen inhaltliche Entsprechungen
zu Praktiken in den Fallbeispielen und werden in den Abschnitten 6.2.1 bis 6.2.9 beschrieben.
Kapitel 6.2.10 behandelt die Praktiken, bei denen keine Übereinstimmung festgestellt werden
konnte. Eine vollständige Übersicht mit den Zuordnungen zu Kategorien und Skalierbarkeit fin-
det sich in Tabelle 25 am Ende dieses Kapitels.

6.2.1 Übereinstimmendes Practice 1: Collective Estimation & Planning

Diese Praktik gehört zu der Kategorie „Collective Decision-Making“ (siehe Kapitel 3.2.1) von
Hoda et al. Diese Praktik beschreibt den Prozess, bei dem Teams Aufgaben gemeinsam schätzen
und Iterationen planen. Schätzungen werden im Team durchgeführt, um ein gemeinsames Ver-
ständnis der Aufgaben und ihrer Komplexität zu erreichen. Ein Beispiel für ein solches Practice
ist die Methode Planning Poker, die sowohl in Hodas Forschung als auch in den Fallbeispielen
explizit erwähnt wird. Planning Poker erlaubt es den Teammitgliedern, die Komplexität von Auf-
gaben zu bewerten, Diskrepanzen in den Einschätzungen aufzudecken und diese durch Diskussi-
onen aufzulösen.

Übereinstimmung mit: „Iterative Verfeinerung der Schätzungen durch das gesamte Team“
(siehe Punkt 6.1.13.1).

Begründung: Teambasierte Schätzungen sind in beiden Kontexten ein zentrales Element. Plan-
ning Poker wird dabei als Beispiel einer spezifischen Praktik hervorgehoben, welche sowohl
Transparenz als auch ein gemeinsames Verständnis in der Bewertung von Aufgaben fördert.
Teams können durch diesen Ansatz realistische Schätzungen abgeben, um Aufgaben einzuplanen.

6.2.2 Übereinstimmendes Practice 2: Daily Standup Meetings

Diese Praktik gehört zur Kategorie Self-Monitoring (siehe Kapitel 3.2.3) von Hoda et al. Daily
Standup Meetings bieten eine Plattform, um Fortschritte, Hindernisse und die Tagesplanung ab-
zustimmen. Diese Meetings finden täglich statt und ermöglichen es, alle Teammitglieder auf den
gleichen Stand zu bringen. Jedes Teammitglied berichtet, was es am Vortag erreicht hat, was für
den aktuellen Tag geplant ist und ob es Hindernisse gibt.

Übereinstimmung mit: „Regelmäßige synchrone Abstimmung im Team“ (siehe Punkt 6.1.1.2).

Ergebnisse 119

Begründung: Daily Standups sind in beiden Kontexten ein essenzielles Werkzeug, um die Trans-
parenz und Synchronisation im Team zu gewährleisten. Durch ihre regelmäßige und strukturierte
Durchführung wird sichergestellt, dass alle Teammitglieder auf dem gleichen Stand sind und
Probleme frühzeitig identifiziert werden können. Diese Meetings fördern die interne Abstimmung
und dienen als Grundlage für weiterführende Diskussionen, die gegebenenfalls in separaten Mee-
tings vertieft werden.

6.2.3 Übereinstimmendes Practice 3: Information Radiators

Diese Praktik aus der Kategorie „Self-Monitoring“ (siehe Kapitel 3.2.3) beschreibt die Visuali-
sierung des Projektfortschritts für alle sichtbaren Artefakte. Information Radiators – etwa Kan-
ban-Boards oder Storyboards – dienen nicht nur der Selbstüberwachung des Teams, sondern auch
der teamweiten Synchronisation. In der Forschung von Hoda et al. wird beschrieben, wie Teams
Spalten wie „Not Assigned“, „Check-Out“, und „Done“ verwenden, um den Fortschritt zu struk-
turieren. Diese Spalten zeigen auch, wer an welchen Aufgaben arbeitet, häufig gekennzeichnet
durch Avatare oder Initialen. Burndown-Charts ergänzen die Visualisierung, indem sie den ver-
bleibenden Arbeitsaufwand auf Iterationsebene darstellen.

In den drei Fallbeispielen kommen ähnliche Tools wie z.B. Jira zum Einsatz, die Kanban-Boards
und Fortschrittscharts bieten. Diese helfen, Aufgaben zu verfolgen und Engpässe frühzeitig zu
erkennen. Die visuelle Darstellung unterstützt sowohl die Transparenz als auch die kontinuierli-
che Nachvollziehbarkeit innerhalb des Teams.

Übereinstimmung mit: „Toolunterstützter Workflow“ (siehe Punkt 6.1.1.1).

Begründung: Die Übereinstimmung ergibt sich aus der gemeinsamen Zielsetzung, Transparenz
über den Fortschritt und die Verantwortlichkeiten im Team zu schaffen. Sowohl Hoda et al. als
auch die Fallbeispiele betonen die Bedeutung visueller Werkzeuge zur Unterstützung der Zusam-
menarbeit und der kontinuierlichen Fortschrittsüberwachung.

6.2.4 Übereinstimmendes Practice 4: Using Story Board

Diese Praktik gehört zur Kategorie „Self-Assignment“ (siehe Kapitel 3.2.2) von Hoda et al. Sto-
ryboards, auch bekannt als Scrum-Boards, strukturieren die Aufgabenverteilung innerhalb eines
Teams visuell und fördern die Selbstzuweisung und Priorisierung. Sie enthalten User Stories und
deren technische Unteraufgaben, die das Team in einer Iteration umsetzen möchte. Diese Aufga-
ben werden auf kleinen Zetteln oder Post-its dargestellt und typischerweise in drei Spalten – „Not

Ergebnisse 120

Assigned“, „Check-Out“ und „Done“ – organisiert. Die Spaltenstruktur unterstützt nicht nur die
Visualisierung des Bearbeitungsstandes, sondern erleichtert auch die teaminterne Koordination
von Aufgaben und Zuständigkeiten.

In den Fallbeispielen wird eine ähnliche Nutzung von Storyboards beschrieben. Digitale Tools
wie z.B. Jira dienen als zentrale Plattformen, die neben der Visualisierung von Aufgaben auch
Funktionen zur Fortschrittsmessung bieten. Sie ermöglichen die automatische Verknüpfung von
Aufgabenstatus mit Verantwortlichkeiten und unterstützen so die Nachverfolgbarkeit.

Übereinstimmung mit: „Toolunterstützter Workflow“ (siehe Punkt 6.1.1.1).

Begründung: In beiden Kontexten wird betont, wie wichtig die Sichtbarkeit des Arbeitsfort-
schritts für die Teamkoordination ist. Storyboards und digitale Tools fördern Transparenz und
erleichtern die Nachverfolgung von Aufgaben.

6.2.5 Übereinstimmendes Practice 5: Taking Task Ownership

Ebenfalls aus der Kategorie „Self-Assignment“ (siehe Kapitel 3.2.2) beschreibt diese Praktik, wie
Teammitglieder Aufgaben eigenständig übernehmen und so aktiv Verantwortung für deren Um-
setzung tragen. In der Forschung von Hoda et al. wird beschrieben, wie Teammitglieder Aufgaben
am Storyboard übernehmen, indem sie Post-its von „Not Assigned“ nach „Check-Out“ verschie-
ben und damit die Verantwortung für die Umsetzung signalisieren. Diese Selbstzuweisung wird
oft durch Initialen oder Avatare sichtbar gemacht. Darüber hinaus zeigt Hoda, dass die Motivation
zur Aufgabenübernahme nicht in der Einfachheit der Aufgabe liegt, sondern im angestrebten ge-
schäftlichen Nutzen (Engl. „Business Value“). Daraus ergibt sich häufig, dass Teammitglieder
Aufgaben außerhalb ihres gewohnten Fachgebiets übernehmen – was gezielt zur Förderung von
Cross-Funktionalität beiträgt.

In den Fallbeispielen erfolgt die Selbstzuweisung ebenfalls durch das Team, wobei die Auswahl
auf Basis von Priorität, Verfügbarkeit und individuellem Interesse erfolgt. Dabei wird darauf ge-
achtet, dass sich Teammitglieder nicht ausschließlich auf ihr Spezialgebiet konzentrieren, sondern
gezielt auch fachfremde Aufgaben übernehmen, um Wissensinseln zu vermeiden und Weiterent-
wicklung zu ermöglichen. Die Aufgaben sind für alle sichtbar, meist über ein Kanban-Board oder
eine priorisierte Liste. Die Zuweisungen erfolgen über Avatare oder Initialen. Die Teams achten
bewusst auf eine sinnvolle Aufgabenverteilung, oft auch mit kollegialer Abstimmung, um Über-
lastung zu vermeiden und Lernchancen zu schaffen.

Ergebnisse 121

Übereinstimmung mit: „Förderung von Eigenverantwortung durch selbstbestimmte Aufgaben-
wahl“ (siehe Punkt 6.1.9.2).

Begründung: Die Teams übernehmen bewusst Aufgaben mit hohem Nutzen für das Projekt –
auch außerhalb der eigenen Komfortzone. Damit wird nicht nur Eigenverantwortung gestärkt,
sondern auch die funktionale Breite innerhalb des Teams gefördert. Die Übernahme von Aufga-
ben erfolgt nicht zufällig oder automatisiert, sondern ist das Ergebnis eines aktiven Entschei-
dungsprozesses, der Eigenverantwortung, Projektprioritäten und persönliche Weiterentwicklung
miteinander verbindet. Abbildung 19 zeigt wie Aufgaben übernommen und visualisiert werden:
Links eine Darstellung aus Hoda et al. (vgl. [24], S. 113), rechts ein Beispiel aus den untersuchten
Fallstudien.

Abbildung 19: Vergleich Taking Task Ownership

6.2.6 Übereinstimmendes Practice 6: Group Programming

Diese Praktik gehört zur Kategorie „Encouraging Cross-Functionality“ (siehe Kapitel 3.2.5) von
Hoda et al. Group Programming fördert die Zusammenarbeit im Team, indem Entwickler ge-
meinsam an Aufgaben arbeiten. Diese Praxis ermöglicht nicht nur den Wissensaustausch, sondern
erleichtert auch die Einarbeitung neuer Teammitglieder. Teams nutzen dabei offene Arbeitsum-
gebungen, die eine direkte Kommunikation und gemeinsame Problemlösung fördern. Laut Hoda
et al. schaffen offene Arbeitsbereiche ohne Trennwände oder separate Büros eine Umgebung, in
der Tester und Entwickler effektiv zusammenarbeiten und gegenseitig von ihren Perspektiven
profitieren können. Diese direkte Kommunikation spart Zeit und stärkt den Teamzusammenhalt.

In den Fallbeispielen zeigt sich diese Praxis durch verschiedene Formen der engen Zusammenar-
beit: Bei komplexen Problemstellungen oder Unsicherheiten setzen sich Entwickler gezielt zu-
sammen, um Aufgaben gemeinsam zu bearbeiten (Pair-Programming). Gleichzeitig wird durch
das etablierte Vier-Augen-Prinzip sichergestellt, dass kein Code ohne Review durch eine zweite

Ergebnisse 122

Person in das System übernommen wird. Diese gemeinsame Arbeit unterstützt sowohl die Qua-
litätssicherung als auch den kontinuierlichen Wissensaustausch im Team.

Übereinstimmung mit: „Pair-Programming, 4-Augen-Prinzip und Reviews“ (siehe Punkt
6.1.3.2).

Begründung: Beide Ansätze fördern den Wissensaustausch und die Zusammenarbeit. In den
Fallbeispielen wird Pair-Programming häufig genutzt, um neue Teammitglieder einzuarbeiten,
Wissen zwischen Teammitglieder auszutauschen oder komplexe Probleme zu lösen. Auch Hoda
et al. beschreibt, dass Group Programming den Wissensaustausch und die Einarbeitung neuer
Mitglieder fördert.

6.2.7 Übereinstimmendes Practice 7: Learning Spike

Diese Praktik gehört zur Kategorie „Self-Improvement“ (siehe Kapitel 3.2.7) von Hoda et al. Ein
Learning Spike bietet Teams gezielt Zeit, um neue Technologien oder Methoden zu erlernen.
Diese Praxis wird besonders dann angewandt, wenn das Team vor neuen Herausforderungen
steht, die spezifisches Wissen erfordern. Während der Learning Spike teilweise die Iterationsge-
schwindigkeit reduziert, ermöglicht er den Teammitgliedern, sich in neuen Technologien weiter-
zuentwickeln und langfristig effizienter zu arbeiten.

In den Fallbeispielen wird ebenfalls betont, wie wichtig es ist, Zeit für die Einführung neuer Tech-
nologien und Verbesserungen bereitzustellen. Häufig entstehen diese Initiativen jedoch nicht
durch formale Planung, sondern werden eigenverantwortlich von Teammitgliedern angestoßen –
etwa um neue Tools zu evaluieren oder automatisierte Abläufe zu verbessern.

Übereinstimmung mit: „Weiterbildung durch Eigeninitiative und Teamförderung“ (siehe Punkt
6.1.5.1).

Begründung: Learning Spikes bzw. die Zeit für Verbesserungen und Technologiewechsel helfen
autonomen Teams, Wissenslücken zu schließen und langfristig effizienter zu arbeiten. Die Mög-
lichkeit, gezielt Zeit für neue Technologien und Weiterentwicklungen (zum Beispiel bei automa-
tisierten Abläufen im Bereich Testen oder DevOps) bereitzustellen, macht diese Praktik sowohl
in kleinen als auch in großen Projekten skalierbar.

Ergebnisse 123

6.2.8 Übereinstimmendes Practice 8: Pair-in-Need

Diese Praktik gehört zur Kategorie „Self-Improvement“ (siehe Kapitel 3.2.7) von Hoda et al. Pair-
in-Need beschreibt die Zusammenarbeit zweier Teammitglieder bei der Lösung komplexer Auf-
gaben. Diese Praxis wird insbesondere bei herausfordernden oder designintensiven Themen ein-
gesetzt. Laut Hoda et al. wird Pair-in-Need auf Basis von Bedarf angewandt, beispielsweise bei
unvorhersehbaren oder komplexen Aufgaben. Diese Zusammenarbeit fördert den Wissensaus-
tausch und ermöglicht es weniger erfahrenen Teammitgliedern, durch Mentoring von erfahrene-
ren Kollegen zu lernen. Zusätzlich trägt diese Praxis dazu bei, Herausforderungen gemeinsam zu
meistern und gleichzeitig den Iterationszielen näherzukommen.

In den Fallbeispielen zeigt sich ein ähnlicher Ansatz. Hier wird das 4-Augen-Prinzip genutzt, um
sicherzustellen, dass komplexe Themen sorgfältig überprüft und bearbeitet werden. Pair-Pro-
gramming dient als Werkzeug, um Wissen zu teilen und die Qualität der Ergebnisse zu sichern.

Übereinstimmung mit: „Pair-Programming, 4-Augen-Prinzip und Reviews“ (siehe Punkt
6.1.3.2).

Begründung: Sowohl bei Hoda et al. als auch in den Fallbeispielen zeigt sich, dass bei besonders
schwierigen oder unklaren Aufgaben gezielte Zusammenarbeit im Team besonders hilfreich ist.
Die Praktik „Pair-in-Need“ beschreibt eine situationsabhängige Unterstützung – zum Beispiel,
wenn ein Entwickler bei einer Aufgabe nicht weiterkommt und sich gezielt mit einem Kollegen
oder einer Kollegin abspricht, um gemeinsam eine Lösung zu erarbeiten. Dadurch kann Wissen
direkt weitergegeben, Probleme schneller gelöst und die Qualität verbessert werden. In den Fall-
beispielen zeigen sich ähnliche Muster, etwa durch Pair-Programming oder das 4-Augen-Prinzip.
Diese Art der Zusammenarbeit ist flexibel einsetzbar und funktioniert sowohl in kleinen als auch
in großen Projekten.

6.2.9 Übereinstimmendes Practice 9: Retrospectives

Diese Praktik gehört zur Kategorie „Self-Evaluation“ (siehe Kapitel 3.2.6) von Hoda et al. Ret-
rospektiven finden am Ende jeder Iteration statt und dienen dazu, gemeinsam zu reflektieren, was
gut lief, was verbessert werden kann, und konkrete Maßnahmen für zukünftige Iterationen abzu-
leiten. Hoda beschreibt, dass Retrospektiven ein essenzielles Werkzeug für die Selbstbewertung
und die kontinuierliche Verbesserung der Teamarbeit sind. Diese Praxis fördert eine offene Kom-
munikation über Stärken und Schwächen des Teams und ermöglicht eine gezielte Weiterentwick-
lung.

Ergebnisse 124

In den Fallbeispielen werden Retrospektiven unterschiedlich angewandt. Im Fallbeispiel 1 finden
Retrospektiven zwar regelmäßig statt, es fehlt jedoch manchmal an der konsequenten Umsetzung
der Maßnahmen. Im Fallbeispiel 2 und 3 hingegen werden Retrospektiven als effektives Instru-
ment genutzt, um gezielte Maßnahmen für den nächsten Sprint abzuleiten.

Übereinstimmung mit: „Regelmäßige Reflexion und Feedbackschleifen“ (siehe Punkt 6.1.3.1).

Begründung: Sowohl Hoda et al. als auch die Fallbeispiele betonen die Bedeutung von Retro-
spektiven für die kontinuierliche Verbesserung und die Anpassungsfähigkeit von Teams. Retro-
spektiven ermöglichen es, Probleme zu identifizieren und Verbesserungen einzuplanen. Die Pra-
xis ist skalierbar und wird sowohl in kleinen autonomen Teams als auch in großen Projekten
erfolgreich angewandt. Durch die regelmäßige Reflexion können Teams langfristig ihre Arbeits-
weise optimieren und ihre Ziele effizienter erreichen.

6.2.10 Nicht skalierbare Best Practices

Die folgenden Praktiken von Hoda et al. finden keine Zuordnungen in den Best Practices der
Fallbeispiele. Die folgenden Unterpunkte listen diese Praktiken mit einer Begründung, warum
diese nicht skalierbar sind:

6.2.10.1 Multiple Perspectives

Diese Praktik aus der Kategorie „Need for Specialization“ (siehe Kapitel 3.2.4), hebt die Zusam-
menarbeit verschiedener Rollen innerhalb eines Teams hervor, um Perspektiven zu vereinen und
bessere Lösungen zu entwickeln. Hodas Forschung zeigt, dass Selbstorganisation in Agile-Teams
dazu beiträgt, formale Rollengrenzen aufzuweichen. Entwickler helfen bei Bedarf Testern, Tester
lernen die Perspektiven von Entwicklern kennen, und alle Teammitglieder profitieren von einem
interdisziplinären Austausch. Die Zusammenarbeit führt zu einem Lernumfeld, welches sowohl
die Wissensverteilung als auch die Resilienz des Teams fördert.

In den Fallbeispielen steht jedoch die klare Rollenzuordnung im Vordergrund, wobei die Zusam-
menarbeit zwischen den Rollen hauptsächlich in spezifischen Kontexten wie Reviews oder Ab-
stimmungen stattfindet. In den Fallbeispielen haben einige Teammitglieder jedoch mehrfach Rol-
len inne, die spezifisch auf die jeweiligen Projektanforderungen zugeschnitten sind. Diese Mehr-
fachrollen unterscheiden sich jedoch von der Praxis, wie sie bei Hoda beschrieben wird.

Ergebnisse 125

Grund für die fehlende Übereinstimmung: Während Hoda eine bewusste Aufweichung strikter
Rollentrennungen beschreibt, um durch aktive Zusammenarbeit von Entwicklern, Testern und
anderen Spezialisten bessere Lösungen zu erzielen, ergibt sich in den Fallbeispielen ein anderes
Bild. Dort sind die Rollen in der Regel klar abgegrenzt und obwohl es natürlich Abstimmungen
zwischen ihnen gibt, wurde keine systematische, gemeinsame Bearbeitung von Aufgaben über
Rollengrenzen hinweg beobachtet oder erwähnt. In manchen Fällen übernehmen Personen zwar
mehrere Rollen – etwa als Entwickler und Architekt – doch diese Mehrfachrollen ersetzen nicht
den gezielten Perspektivenaustausch, wie er im Practice „Multiple Perspectives“ vorgesehen ist.

6.2.10.2 Self-Committing to Team Goals

In der Kategorie „Collective Decision-Making“ (siehe Kapitel 3.2.1) aus Hodas Forschung wird
beschrieben, wie Teams sich selbst zu Iterationszielen verpflichten und diese durch gemeinsame
Absprachen festlegen. Kunden liefern Projektanforderungen in Form von User Stories, die das
Team analysiert, in Aufgaben unterteilt und basierend auf seiner Kapazität plant. Die Teams ge-
nießen dabei die Freiheit, den Entwicklungsumfang einer Iteration selbst zu definieren, und fühlen
sich gleichzeitig verantwortlich, das festgelegte Ziel durch gemeinschaftliches Engagement zu
erreichen.

In den Fallbeispielen hingegen erfolgt die Aufgabenplanung überwiegend durch zentrale Rollen
oder Abstimmungen mit Stakeholdern, ohne dass eine teamweite Selbstverpflichtung deutlich er-
kennbar ist.

Grund für die fehlende Übereinstimmung: In den Fallbeispielen beteiligen sich die Teams ak-
tiv an der Aufwandsschätzung und an der iterativen Planung einzelner Aufgaben. Die inhaltlichen
Ziele einer Iteration – also was konkret umgesetzt werden soll – werden jedoch überwiegend
durch zentrale Rollen oder in Abstimmung mit Stakeholdern vorgegeben. Damit fehlt die in Ho-
das Best Practice beschriebene zentrale Selbstverpflichtung auf ein selbst gesetztes Ziel. Zudem
wirken in Softwaregroßprojekten zusätzliche Einschränkungen auf die Zielautonomie: Schnitt-
stellen zu anderen Teams, gemeinsame Releasezyklen und koordinationsbedingte Abhängigkei-
ten reduzieren die Freiheit, Iterationsziele vollständig unabhängig zu definieren. Diese strukturel-
len Rahmenbedingungen erschweren ein kollektives Commitment, wie es in selbstorganisierten
Kleinteams möglich ist, und verhindern damit eine vollständige Entsprechung zum Practice „Self-
Committing to Team Goals“ im Sinne von Hoda.

Ergebnisse 126

6.2.10.3 Collectively Deciding Team Norms & Principles

Diese Praktik aus der Kategorie „Collective Decision-Making“ (siehe Punkt 3.2.1.2 in Kapitel
3.2.1), wird die gemeinsame Festlegung von Arbeitsnormen von Hoda beschrieben. Die Teams
einigen sich auf organisatorische Prinzipien wie Arbeitszeiten, Fehlertoleranzen und Entwick-
lungsrichtlinien, die die Zusammenarbeit und Zielerreichung fördern. Dieser Prozess wird als in-
tegraler Bestandteil der Teamkultur angesehen.

In den Fallbeispielen zeigt sich ein anderer Ansatz. Hier werden technische Standards und Richt-
linien teils durch das Team ergänzt, beispielsweise durch Checklisten oder Review-Prozesse. Je-
doch fehlt eine umfassende teamweite Festlegung auf organisatorische Normen, wie sie bei Hoda
beschrieben wird.

Grund für die fehlende Übereinstimmung: In den Fallbeispielen werden technische Standards
und Richtlinien teils durch das Team ergänzt, z. B. durch Checklisten oder Review-Prozesse.
Jedoch fehlt eine teamweite Festlegung auf organisatorische Normen, wie Arbeitszeiten oder De-
fekttoleranz, die Hoda beschreibt. Der Fokus liegt stärker auf technischen Vorgaben durch Archi-
tekten oder Teamleiter.

6.2.10.4 Rotation

Die Best Practice Rotation aus der Kategorie „Encouraging Cross-Functionality“ (siehe Kapitel
3.2.5) beschreibt den regelmäßigen Wechsel von Verantwortlichkeiten über Teamgrenzen hin-
weg, um die Wissensbasis zu erweitern und neue Fähigkeiten zu entwickeln. In der Forschung
von Hoda et al. wird Rotation als strategisches Mittel beschrieben, um Wissen durch direkte Kom-
munikation zu teilen.

In den Fallbeispielen gibt es gewisse Ähnlichkeiten, wie z. B. die Möglichkeit von Themen- oder
Rollenwechseln (siehe Kapitel 6.1.5.2 und 6.1.5.3). Diese basieren jedoch auf individueller Initi-
ative und werden nicht als routinemäßiges Practice innerhalb der Teams umgesetzt.

Grund für die fehlende Übereinstimmung: Das von Hoda et al. beschriebene Konzept der Ro-
tation umfasst einen gezielten, strukturierten und regelmäßig praktizierten Wechsel von Aufgaben
und Verantwortlichkeiten über Teamgrenzen hinweg. In den Fallbeispielen hingegen liegt der
Schwerpunkt auf der teaminternen Zusammenarbeit. Rollen- oder Themenwechsel erfolgen dort
lediglich bei Bedarf – etwa, wenn personelle Engpässe entstehen oder individuelle Interessen be-

Ergebnisse 127

stehen. Solche Wechsel werden situativ angestoßen, jedoch nicht als kontinuierliche oder strate-
gisch geplante Maßnahme zur Wissensverbreitung etabliert. Eine Rotation im Sinne von Hoda
konnte daher nicht beobachtet werden.

Kapitel-
nummer
(Hoda et
al.)

Best Practice
(Hoda et al.)

Matched Best Practice Kapitel-
nummer

Kommentar

3.2.1.1 Collective Estimation &
Planning

Iterative Verfeinerung der
Schätzungen durch das ge-
samte Team

6.1.13.1

3.2.1.2 Collectively Deciding
Team Norms & Princi-
ples

 Kein Match –
siehe Kapitel
6.2.10.3

3.2.1.3 Self-Committing to
Team Goals

 Kein Match –
siehe Kapitel
6.2.10.2

3.2.2.1 Using Story Board Toolunterstützter Workflow 6.1.1.1
3.2.2.2 Taking Task Ownership Förderung von Eigenverant-

wortung durch selbstbe-
stimmte Aufgabenwahl

6.1.9.2

3.2.3.1 Daily Standup
Meetings

Regelmäßige synchrone Ab-
stimmung im Team

6.1.1.2

3.2.3.2 Information Radiators Toolunterstützter Workflow 6.1.1.1
3.2.4.1 Multiple Perspectives Kein Match –

siehe Kapitel
6.2.10.1

3.2.5.1 Group Programming Pair-Programming, 4-Au-
gen-Prinzip und Reviews

6.1.3.2

3.2.5.2 Rotation Kein Match –
siehe Kapitel
6.2.10.4

3.2.6.1 Retrospectives Regelmäßige Reflexion und
Feedbackschleifen

6.1.3.1

3.2.7.1 Pair-in-Need Pair-Programming, 4-Au-
gen-Prinzip und Reviews

6.1.3.2

3.2.7.2 Learning Spike Weiterbildung durch Eigen-
initiative und Teamförde-
rung

6.1.5.1

Tabelle 25: Übersicht skalierbarer Best Practices

6.3 Zusammenfassung der Themen als Kategorien

Die übergreifende thematische Analyse der drei Fallstudien identifiziert als Ergebnis 13 Haupt-
themen (siehe Kapitel 5.2.1), die aus Tabelle 13 abgeleitet sind. Die Tabelle ist das Ergebnis einer
Überschneidung aller Themen und Codes, welche in allen drei Fallbeispielen gemeinsam auftre-
ten. Die Themen werden in den folgenden Punkten beschrieben und als Kategorien übernommen.
Eine Kategorie ist eine Sammlung mehrerer Praktiken, deren Kriterien für eine Zuordnung im

Ergebnisse 128

Punkt 6.4 beschrieben sind. Die in diesem Kapitel beschriebenen Kategorien fassen mehrere Prak-
tiken zusammen, die gemeinsam darauf abzielen, die jeweiligen thematischen Schwerpunkte ef-
fektiv zu unterstützen und zu verbessern. Jede einzelne Praxis innerhalb dieser Kategorien trägt
aktiv zur Erreichung der dargestellten Ziele bei und ermöglicht eine gezielte Optimierung der
Teamarbeit in Softwaregroßprojekten. Dieses Kapitel liefert die Antwort auf die Forschungsfrage
RQ2: „In welche Kategorien können die identifizierten Praktiken unterteilt werden?“.

6.3.1 Transparenz

Transparenz ist eine grundlegende Voraussetzung für eine effektive Zusammenarbeit in autono-
men Teams. Durch Praktiken wie Kanban-Boards, Ticket-Systeme (z. B. Jira) und tägliche Ab-
stimmungen (Dailies) werden Informationen zu Aufgaben, Fortschritt und auftretenden Proble-
men kontinuierlich sichtbar gemacht. Dadurch erhalten alle Teammitglieder transparente Einsicht
in den aktuellen Stand der Arbeit, was Abstimmungen erleichtert, Entscheidungsprozesse be-
schleunigt und potenzielle Engpässe frühzeitig sichtbar macht.

6.3.2 Kommunikation

Eine klare und effektive Kommunikation ist notwendig für den Erfolg autonomer Teams. Sie
umfasst formelle als auch informelle Interaktionsformen, die sicherstellen, dass alle Teammit-
glieder auf dem gleichen Informationsstand sind. Dazu zählen direkte Gespräche, Meetings, Te-
lefonate, Chat-Tools und Dokumentationsplattformen. Während Meetings strukturierte Diskussi-
onen ermöglichen, fokussiert sich diese Kategorie auf spontane Abstimmungen, schnelle Rück-
fragen und informelle Austauschformate, die den reibungslosen Ablauf von Arbeitsprozessen un-
terstützen.

Abgrenzung zur Kategorie Meetings (6.3.7):
Meetings sind eine organisierte und geplante Form der Kommunikation, die regelmäßig zu fixen
Zeiten stattfindet oder bedarfsabhängig geplant wird. Die allgemeine Kommunikation hingegen
umfasst dynamische und oft ad-hoc stattfindende Abstimmungen, die für den laufenden Arbeits-
prozess essenziell sind. Während Meetings eher der strategischen oder tiefergehenden Diskussion
dienen, zielt Kommunikation auf den kontinuierlichen und informellen Austausch im Tagesge-
schäft ab.

Ergebnisse 129

6.3.3 Reflexion & Lernprozess

Regelmäßige Reflexionen, wie Retrospektiven oder Reviews, sind wichtige geplante Einheiten
für autonome Teams, um sich zu verbessern. Sie ermöglichen es positive als auch negative Er-
fahrungen zu analysieren und den zukünftigen Workflow zu optimieren.

6.3.4 Wissensverteilung und Support

Autonome Teams profitieren stark von einer gleichmäßigen Verteilung des Wissens. Maßnahmen
wie Pair-Programming, Code Reviews und Dokumentation von Entscheidungen und Umsetzun-
gen fördern die Vermeidung von personenbezogenem Wissen („Single Point of Failure“). Diese
Praktiken helfen auch, Risiken wie zum Beispiel den Ausfall einzelner Mitglieder zu minimieren.

6.3.5 Fortbildung

Die Möglichkeit zur Fortbildung und Entwicklung ist wichtig für Mitglieder autonomer Teams,
damit sich diese ihren Interessen widmen können. Zeitfenster für technologische Experimente,
der Erwerb von Zertifikaten und gezielte Weiterbildungsmaßnahmen fördern nicht nur die indi-
viduellen Kompetenzen, sondern stärken auch die Innovationsfähigkeit des gesamten Teams.

6.3.6 Richtlinien, Grenzen, Normen und Prinzipien

Autonome Teams folgen klar definierten Standards, die oft durch technische Architekten oder
Teamleiter vorgegeben werden. Diese Richtlinien gewährleisten Einheitlichkeit, Codequalität
und eine bessere Zusammenarbeit. In Softwaregroßprojekten werden diese Richtlinien meist über
alle Teams hinweg, projektweit von einem technischen Architekten vorgegeben. Tools wie zum
Beispiel Checkstyle oder SonarQube unterstützen die Einhaltung dieser Standards und machen
Vorgaben für alle transparent und nachvollziehbar. Trotzdem ist es wichtig, dass das autonome
Team selbst eine Teamkultur bilden und Standards für sich definieren und verfeinern kann.

6.3.7 Meetings

Meetings wie Dailies, Weeklies oder spezifische Teamleiter-Meetings sind unerlässlich für den
Informationsaustausch und die Koordination – sowohl innerhalb autonomer Teams als auch team-
übergreifend. Sie fördern Transparenz, ermöglichen eine kontinuierliche Abstimmung und helfen
dabei, Herausforderungen frühzeitig zu identifizieren und zu lösen, bevor sie sich zu größeren
Problemen ausweiten.

Ergebnisse 130

Meetings sind im Gegensatz zur alltäglichen Kommunikation gezielt geplante und strukturierte
Treffen. Sie helfen den autonomen Teams, sich regelmäßig über den Fortschritt, sowie mögliche
Probleme und wichtige Entscheidungen abzustimmen.

6.3.8 Fortschrittsmessung

Autonome Teams setzen gezielt messbare Indikatoren und Tools zur Aufgabenverwaltung ein,
um sowohl den Status einzelner Tasks als auch den Gesamtfortschritt des Projekts kontinuierlich
sichtbar zu machen. Regelmäßige Auswertungen dieser Indikatoren ermöglichen es den Teams,
realistische Prognosen zu erstellen, zeitliche Abweichungen frühzeitig zu erkennen und notwen-
dige Anpassungen schnell umzusetzen. Durch diese kontinuierliche Fortschrittsüberwachung
können Risiken reduziert, Ressourcen optimal genutzt und Projektergebnisse zuverlässig erreicht
werden.

6.3.9 Auswahl und Zuteilung von Tasks

Die Aufgabenverteilung in autonomen Teams erfolgt entweder durch zentrale Koordination (z. B.
durch den Teamleiter) oder durch Selbstzuweisung der Mitglieder. Dabei wird auf Transparenz
und klare Nachverfolgbarkeit geachtet. Die Zuteilung orientiert sich häufig an den Kompetenzen,
der zeitlichen Verfügbarkeit und den Interessen der Teammitglieder. Gleichzeitig bleibt die Au-
tonomie jedes Einzelnen gewahrt, sich Aufgaben eigenverantwortlich zu nehmen oder im gegen-
seitigen Einvernehmen umzuschichten.

6.3.10 Taskänderungen

Dynamische Änderungen, sowohl technischer als auch fachlicher Natur, werden in autonomen
Teams validiert, priorisiert und transparent kommuniziert. Während fachliche Änderungen häufig
Abstimmungen mit Stakeholdern erfordern, können kleinere technische Anpassungen, wie klei-
nere Bugfixes oder Optimierungen, flexibel und ohne großen Aufwand von den autonomen
Teams sofort umgesetzt werden.

6.3.11 Team Events & Belohnungen

Allgemeine Teamevents wie gemeinsames Essen oder Outdoor-Aktivitäten stärken den sozialen
Zusammenhalt und fördern das gegenseitige Vertrauen innerhalb autonomer Teams. Solche Ver-
anstaltungen bieten eine Möglichkeit, Erfolge zu feiern und neue Mitglieder besser zu integrieren.

Ergebnisse 131

6.3.12 Komplexe Themen

Bei der Bearbeitung komplexer Themen ziehen autonome Teams häufig Expertenmeinungen
heran oder nutzen Praktiken wie Pair-Programming. Als Erstes werden Experten innerhalb des
Teams herangezogen. Sollte das Know-how nicht vorhanden sein, wird auf externe Experten zu-
rückgegriffen. Dies stellt sicher, dass auch schwierige Herausforderungen effizient bewältigt wer-
den können. Regelmäßige Abstimmungen fördern dabei den Wissensaustausch und die Qualität
der Ergebnisse.

6.3.13 Aufwandsschätzung

Aufwands- und Komplexitätsschätzungen erfolgen in autonomen Teams häufig kollaborativ.
Praktiken wie Planning Poker mit Story Points helfen, die Ressourcenplanung zu optimieren und
realistische Zeitpläne zu erstellen. Die Einbindung aller Mitglieder bei Schätzungen erhöht die
Genauigkeit und Akzeptanz der Ergebnisse.

6.4 Kriterien für die 13 Kategorien

Dieser Abschnitt beantwortet die Forschungsfrage RQ3: „Auf Basis welcher Kriterien kann eine
Kategorisierung stattfinden?“ (vgl. Punkt 1.3) und ergänzt die bisherigen Ausführungen der vor-
herigen Kapitel 6.1 bis 6.3, indem die Kriterien für die Zuordnung der identifizierten Best Prac-
tices zu den 13 Hauptkategorien beschrieben werden.

Kriterien für eine Zuordnung von Best Practices zu einer Kategorie umfassen verschiedene As-
pekte:

• Inhaltliche Relevanz:

Der Inhalt des Best Practices trägt zu der Zielsetzung und Wirkung dieser Kategorie bei.
• Ableitung aus Codes der thematischen Analyse:

Die Zuordnung basiert auf spezifischen Codes der thematischen Analyse nach Braun &
Clarke der drei Fallbeispiele und dem Kontext der Interviews. Die Häufigkeit der Codes für
Praktiken und das Vorkommen über alle drei Fallbeispiele stützen eine Zuordnung. Dabei
wurde geprüft, wie oft bestimmte Begriffe in den kodierten Segmenten der Interviews auftra-
ten und in welchen Zusammenhängen sie erwähnt wurden. Diese Methode stellt sicher, dass
die Praktiken nicht nur theoretisch, sondern auch empirisch fundiert den Kategorien zugeord-
net werden.

• Konsistenz innerhalb der Kategorie:

Ergebnisse 132

Best Practices dieser Kategorie ergänzen sich gegenseitig und ergeben ein konsistentes Bild
und stehen nicht im Widerspruch zueinander.

6.4.1 Kriterien der Kategorie „Transparenz“

Die Transparenz (siehe Punkt 6.3.1) beschreibt die Nachvollziehbarkeit und Sichtbarkeit von In-
formationen, Prozessen und Fortschritten innerhalb eines autonomen Teams. Praktiken in dieser
Kategorie tragen inhaltlich dazu bei, dass ein transparenter Zugang zu Informationen gewährleis-
tet wird. Sie basieren auf den Codes der thematischen Analyse (z. B. „Software & Ticketverwal-
tung“, „Dailies (Transparenz)“) und fördern Offenheit in Kommunikation und Dokumentation.
Praktiken innerhalb der Kategorie ergänzen sich, indem sie unterschiedliche Aspekte der Trans-
parenz abdecken, wie die Nutzung von Tools, regelmäßige Besprechungen und die Einbindung
mehrerer Personen pro Thema. Kriterien, die erfüllt sein müssen:

• Offene Kommunikation: Eine offene Kommunikation der Teammitglieder muss möglich

sein, um Fortschritte und Herausforderungen zu teilen.
• Toolunterstützte Nachvollziehbarkeit von Aufgaben und Fortschritten: Tools zur Nach-

vollziehbarkeit von Aufgaben und Prozessen müssen eingesetzt werden. (z.B. „Toolunter-
stützter Workflow“, siehe Punkt 6.1.1.1)

• Nachvollziehbare und standardisierte Dokumentation: Entscheidungen und deren Gründe
müssen für alle zugänglich dokumentiert sein. (z.B. „Standardisierte Protokollierung und Do-
kumentation“, siehe Punkt 6.1.1.4)

• Regelmäßige Abstimmungen: Regelmäßige Besprechungen mit Teammitgliedern müssen
Transparenz über Fortschritte und Hindernisse schaffen. (z.B. „Regelmäßige synchrone Ab-
stimmung im Team“, siehe Punkt 6.1.1.2)

• Einbindung mehrerer Personen: Mehrere Personen sollen über ein Thema Bescheid wissen.

6.4.2 Kriterien der Kategorie „Kommunikation“

Kommunikation umfasst den zielgerichteten Austausch von Informationen, um eine reibungslose
Zusammenarbeit zu gewährleisten. Dies kann durch persönliche Gespräche, digitale Tools oder
dokumentierten Austausch erreicht werden. Kriterien für die Zuordnung sind wie folgt:

• Direkte Kommunikation fördern: Einfache und direkte Kommunikationswege, wie durch

physische Nähe in Büros oder digitale Tools, sind essenziell für schnelle Abstimmungen. (z.B.
„Effiziente Abstimmung durch direkte Kommunikation“, siehe Punkt 6.1.2.1)

Ergebnisse 133

• Verfügbarkeit von Kommunikationsmittel: Telefon, Chats und Videokonferenzen ermög-
lichen effektiven Austausch, insbesondere in verteilten Teams.

• Zentrale Dokumentation: Tool wie Wikis gewährleisten, dass Informationen langfristig zu-
gänglich bleiben und Entscheidungen nachvollzogen werden können. (z.B. „Toolunterstützter
Workflow“, siehe Punkt 6.1.2.2)

6.4.3 Kriterien der Kategorie „Reflexion & Lernprozess“

Reflexion beschreibt die Fähigkeit eines Teams, regelmäßig die eigene Arbeit zu analysieren und
Verbesserungen abzuleiten.

• Geplante Reflexion: Praktiken, die regelmäßigen Retrospektiven oder Reviews als Bestand-

teil des Workflows integrieren. (z.B. „Regelmäßige Reflexion und Feedbackschleifen“, siehe
Punkt 6.1.3.1)

• Lernorientierung: Praktiken, die darauf abzielen, aus Erfahrungen zu lernen und den Work-
flow zu optimieren.

6.4.4 Kriterien der Kategorie „Wissensverteilung & Support“

Wissensverteilung umfasst die Vermeidung von Wissensinseln und die Förderung des Wis-
sensaustauschs innerhalb des Teams.

• Vermeidung von Wissensinseln und Förderung von Wissensaustausch: Praktiken, die si-

cherstellen, dass Wissen innerhalb des Teams geteilt wird. (z.B. Mehrere Themenverantwort-
liche zur Wissensverteilung“, siehe Punkt 6.1.4.4 / „Pair-Programming, 4-Augen-Prinzip und
Reviews“, siehe Punkt 6.1.4.1)

• Unterstützung bei Engpässen: Praktiken, die sicherstellen, dass bei Abwesenheit von Team-
mitgliedern keine Wissenslücken entstehen.

6.4.5 Kriterien der Kategorie „Fortbildung“

Fortbildung umfasst Maßnahmen zur kontinuierlichen Weiterentwicklung von Teammitgliedern,
um individuelle Kompetenzen zu stärken und die Innovationsfähigkeit des Teams zu fördern. Die
Kriterien für die Zuordnung sind:

Ergebnisse 134

• Förderung individueller Entwicklung: Praktiken müssen gezielt darauf abzielen, die Fähig-
keiten und Kompetenzen der Teammitglieder zu erweitern, z. B. durch Weiterbildung, Schu-
lungen oder Zertifikate. (z.B. „Weiterbildung durch Eigeninitiative und Teamförderung“,
siehe Punkt 6.1.5.1)

• Anpassung an technologische Veränderungen: Praktiken sollten Zeitfenster für Experi-
mente oder den Umgang mit neuen Technologien und Versionen ermöglichen. Sie sollen
Teammitgliedern ermöglichen zwischen Themen und Zuständigkeiten innerhalb oder außer-
halb des Teams zu rotieren. (z.B. „Themenwechsel zur individuellen Weiterentwicklung“,
siehe Punkt 6.1.5.2 / „Rollenwechsel zur Entwicklung individueller Fähigkeiten“, siehe Punkt
6.1.5.3)

6.4.6 Kriterien der Kategorie „Richtlinien, Grenzen, Normen und Prinzi-
pien“

Diese Kategorie umfasst klar definierte Standards und Vorgaben, die eine einheitliche Arbeits-
weise im Team und projektübergreifend sicherstellen. Sie fördern Konsistenz, Qualität und Zu-
sammenarbeit. Kriterien für die Zuordnung sind:

• Definition technischer und organisatorischer Qualitätsrichtlinien: Praktiken müssen zur

Definition und Einhaltung von technischen, organisatorischen oder projektübergreifenden
Richtlinien beitragen, z. B. durch Coding-Standards oder Architekturvorgaben. (z.B. „Doku-
mentation und Festlegung von Richtlinien und Prozessen“, siehe Punkt 6.1.6.1)

• Transparenz der Vorgaben: Standards und Normen müssen dokumentiert und für alle Team-
mitglieder zugänglich sein, z. B. in Confluence oder ähnlichen Plattformen.

• Erweiterung teamindividueller Qualitätsrichtlinien: Praktiken müssen sicherstellen, dass
Teams ihre spezifischen Normen ergänzen und anpassen können, ohne den Rahmen der pro-
jektweiten Richtlinien zu verlassen. (z.B. „Teamspezifische Erweiterungen von Qualitätsstan-
dards“, siehe Punkt 6.1.6.2)

6.4.7 Kriterien der Kategorie „Meetings“

Meetings sind essentielle Instrumente zur Abstimmung, Koordination und Entscheidungsfindung
innerhalb und zwischen Teams. Sie dienen der Sicherstellung von Transparenz, der Lösung von
Herausforderungen und der Planung von Aufgaben. Die Kriterien für die Zuordnung sind:

Ergebnisse 135

• Strukturierte, regelmäßige Durchführung: Meetings müssen klar strukturiert sein, um ef-
fektiv zu sein, z. B. durch festgelegte Agenden, Zeitrahmen und Protokollierung. (z.B. „Re-
gelmäßige synchrone Abstimmung im Team“, siehe Punkt 6.1.7.1 / „Wöchentliche Abstim-
mung zwischen Teams“, siehe Punkt 6.1.7.2)

• Zielgerichtete Kommunikation: Meetings müssen dazu beitragen, Herausforderungen zu
identifizieren und Lösungen gemeinsam zu entwickeln, ohne dabei die Effizienz zu beein-
trächtigen.

6.4.8 Kriterien der Kategorie „Fortschrittsmessung“

Fortschrittsmessung umfasst die Erfassung und Darstellung des Fortschritts auf Aufgaben- und
Projektebene, um Transparenz und Planbarkeit zu gewährleisten. Die Kriterien für die Zuordnung
sind:

• Messbarkeit der Fortschritte: Praktiken müssen klare Indikatoren definieren, um Fort-

schritte auf Aufgaben- und Projektebene nachvollziehbar zu machen, z. B. durch Ticketstatus
oder Prozentangaben.

• Dokumentation von Fortschritten: Fortschritte müssen erfasst und für alle Teammitglieder
sichtbar dokumentiert werden, z. B. in Tools wie Jira oder auf Kanban-Boards. (z.B. „Toolun-
terstützter Workflow“, siehe Punkt 6.1.8.2)

• Regelmäßige Evaluierung: Praktiken müssen Fortschritte regelmäßig überprüfen, z. B. durch
Meetings oder Dashboards, um frühzeitig Risiken oder Verzögerungen zu erkennen. (z.B.
„Regelmäßige Fortschrittsbesprechungen“, siehe Punkt 6.1.8.1 / „Toolunterstützter Work-
flow“, siehe Punkt 6.1.8.2)

6.4.9 Kriterien der Kategorie „Auswahl und Zuteilung von Tasks“

Diese Kategorie beschreibt, wie Aufgaben in autonomen Teams verteilt werden, sei es durch
zentrale Koordination oder durch Selbstzuweisung der Teammitglieder. Ziel ist es, Transparenz
und Effizienz bei der Verteilung der Aufgaben zu gewährleisten. Die Kriterien für die Zuordnung:

• Transparenz der Zuteilung: Praktiken müssen sicherstellen, dass die Vergabe der Aufgaben

für alle Teammitglieder nachvollziehbar ist, z. B. durch die Verwendung von Tools wie Jira.
• Berücksichtigung individueller Kompetenzen: Praktiken müssen die Fähigkeiten, Interes-

sen und Kapazitäten der Teammitglieder berücksichtigen, um Aufgaben optimal zuzuteilen.
• Flexibilität in der Zuteilung: Praktiken sollen sowohl eine zentrale Zuteilung als auch eine

individuelle Zuteilung der Aufgaben ermöglichen. (z.B. „Koordinierten Aufgabenverteilung

Ergebnisse 136

für kritische und spezialisierte Aufgaben“, siehe Punkt 6.1.9.1 / „Förderung von Eigenverant-
wortung durch selbstbestimmte Aufgabenwahl“, siehe Punkt 6.1.9.2)

6.4.10 Kriterien der Kategorie „Task-Änderungen“

Diese Kategorie beschreibt den Umgang mit dynamischen Änderungen von Aufgaben, sei es
durch fachliche oder technische Anforderungen. Ziel ist es, flexibel und effizient auf Änderungen
zu reagieren, ohne den Projektfluss zu beeinträchtigen. Die Kriterien für die Zuordnung sind:
• Strukturierte Validierung: Praktiken bewerten und priorisieren Änderungen um eine Ein-

planung und effiziente Umsetzung zu ermöglichen. (z.B. „Strukturierte Validierung und Prio-
risierung von Aufgabenänderungen“, siehe Punkt 6.1.10.1)

• Schnelle Umsetzung unkritischer Aufgabenänderungen: Praktiken sollten sicherstellen,
dass kleinere Änderungen flexibel und ohne unnötige Bürokratie umgesetzt werden können.
(z.B. „Schnelle Umsetzung unkritischer Änderungen zur Vermeidung bürokratischer Hürden“,
siehe Punkt 6.1.10.2)

6.4.11 Kriterien der Kategorie „Team Events & Belohnungen“

Diese Kategorie umfasst Maßnahmen, die den sozialen Zusammenhalt im Team stärken und die
Motivation der Teammitglieder fördern, z. B. durch gemeinsame Aktivitäten oder die Anerken-
nung von Leistungen. Die Kriterien für die Zuordnung sind:

• Förderung des Teamzusammenhalts: Praktiken sollten darauf abzielen, das Vertrauen und

die Zusammenarbeit im Team zu stärken, etwa durch informelle oder soziale Aktivitäten. (z.B.
„Förderung des Teamzusammenhalts durch Teamevents“, siehe Punkt 6.1.11.1)

• Anerkennung von Leistungen: Praktiken müssen sicherstellen, dass die Leistungen der
Teammitglieder wertgeschätzt und gewürdigt werden.

• Integration neuer Mitglieder: Praktiken sollten neue Teammitglieder in das Team integrie-
ren und die Zusammenarbeit fördern.

6.4.12 Kriterien der Kategorie „Komplexe Themen“

Diese Kategorie beschreibt den Umgang mit anspruchsvollen Aufgaben, die eine vertiefte Zu-
sammenarbeit und Expertise erfordern, um eine Lösung zu erzielen. Kriterien für die Zuordnung
sind:

Ergebnisse 137

• Einbindung von Expertise: Praktiken müssen sicherstellen, dass bei komplexen Themen re-
levante Fachkenntnisse hinzugezogen werden, sei es durch interne oder externe Experten.
(z.B. „Strukturierte Teamabstimmung und Validierung bei komplexen Aufgaben“, siehe Punkt
6.1.12.2)

• Förderung der Zusammenarbeit: Praktiken sollten darauf abzielen, die gemeinsame Bear-
beitung von Aufgaben zu unterstützen, z. B. durch Pair-Programming oder spezialisierte Ab-
stimmungen sowie Reviews für Kontrolle und Validierung der Umsetzung. (z.B. „Pair-Pro-
gramming, 4-Augen-Prinzip und Reviews“, siehe Punkt 6.1.12.1)

• Strukturierte Problemlösung: Praktiken müssen klare Prozesse für die Analyse und Lösung
komplexer Fragestellungen etablieren.

6.4.13 Kriterien der Kategorie „Aufwandsschätzung“

Die Aufwandsschätzung beschreibt die Prozesse zur Bewertung und Schätzung des Arbeitsauf-
wands für Aufgaben. Ziel ist es, realistische Zeitpläne und Ressourcenzuweisungen zu ermögli-
chen. Die Kriterien für die Zuordnung sind:

• Kollaborative Schätzung: Praktiken müssen sicherstellen, dass die Schätzung des Arbeits-

aufwands im Team gemeinsam und transparent durchgeführt wird. (z.B. „Iterative Verfeine-
rung der Schätzungen durch das gesamte Team“, siehe Punkt 6.1.13.1)

• Einsatz etablierter Schätzmethoden: Praktiken sollten Techniken wie Planning Poker oder
die Aufteilung in Subtasks verwenden, um den Schätzprozess zu strukturieren und einen ein-
heitlichen Prozess zu etablieren. (z.B. „Aufteilung in Subtasks zur besseren Planung“, siehe
Punkt 6.1.13.2)

• Berücksichtigung von Erfahrungswerten: Praktiken sollten auf vorhandenen Erfahrungs-
werten der Teammitglieder basieren, um realistische Vorhersagen zu ermöglichen.

6.5 Aktualisierter Abgleich der Ergebnisse im State of the Art
2024/2025

In diesem Kapitel werden die Ergebnisse dieser Arbeit nochmals aus einer übergeordneten Per-
spektive betrachtet, indem sie mit zentralen Erkenntnissen aktueller Forschung aus den Jahren
2024 und 2025 verglichen werden. Ziel ist es, die in den Fallbeispielen identifizierten skalierbaren
Best Practices in Beziehung zu neueren theoretischen Ansätzen zur agilen Organisationsentwick-
lung zu setzen und deren Anschlussfähigkeit an den aktuellen Forschungsstand zu überprüfen.

Ergebnisse 138

Der Fachartikel „Scaling or growing agile? Proposing a manifesto for agile organization devel-
opment“ von Bremer et al. (2025) [56] beschreibt ein reales Beispiel einer agilen Skalierungsini-
tiative bei Zenseact, bei dem der Übergang von einer stark auf Teamautonomie und informelle
Strukturen ausgerichteten Arbeitsweise hin zu einem SAFe-inspirierten Rahmen zu Spannungen
und Zielkonflikten führt. Die dort entwickelten Prinzipien für eine „agile Organisationsentwick-
lung“ bieten eine interessante Vergleichsbasis zu den in dieser Arbeit identifizierten Best Prac-
tices, da sie konkrete Herausforderungen und Lösungsansätze aus einem organisatorisch umfang-
reichen Projektkontext adressieren.

Die folgende Tabelle 26 stellt die fünf Prinzipien aus dem vorgeschlagenen „Manifest für agile
Organisationsentwicklung“ den jeweils zugeordneten Best Practices aus Kapitel 6.1 gegenüber
[56].

Prinzip
(Bremer et al.,
2025)

Zentrale Inhalte Passende Best Practices aus Ka-
pitel 6.1

Einordnung

1. Depart from the
inseparability of
freedom and re-
sponsibility

(Selbstorganisation
braucht klare Ver-
antwortlichkeiten –
sonst bleiben Auf-
gaben liegen oder
werden top-down
vergeben.
Lösung: direkte Ab-
stimmung und
Transparenz

6.1.9.2 Förderung von Eigenver-
antwortung durch selbstbestimmte
Aufgabenwahl
6.1.1.1 Toolunterstützter Work-
flow
6.1.10.1Strukturierte Validierung
und Priorisierung von Aufgaben-
änderungen
6.1.2.1 Effiziente Abstimmung
durch direkte Kommunikation

Es wurden mehrere
passende Praktiken
gefunden

2. Nurture an en-
vironment for
people to thrive
and share

Aufbau einer Kultur
des Vertrauens, der
Offenheit und der
geteilten Verant-
wortung

6.1.11.1 Förderung des Teamzu-
sammenhalts durch Teamevents
6.1.2.1 Effiziente Abstimmung
durch direkte Kommunikation

Teilweise passend –
soziales Klima wird
gefördert, jedoch
ohne Vorrang vor
Projektzielen.

3. Develop people
through practical
experience

Lernen durch prak-
tische Zusammen-
arbeit statt Theorie

6.1.13.1 Iterative Verfeinerung
der Schätzungen durch das ge-
samte Team
6.1.12.2 Strukturierte Teamab-
stimmung und Validierung bei
komplexen Aufgaben
6.1.3.2 Pair-Programming, 4-Au-
gen-Prinzip und Reviews

Starke Übereinstim-
mung, da Lernen
durch Teamarbeit in
allen Fallbeispielen
umgesetzt wird

4. Handle com-
plexity with
simplicity

Fokus auf einfache
Werkzeuge und
Prinzipien

6.1.1.1 Toolunterstützter Work-
flow
6.1.13.2 Aufteilung in Subtasks
zur besseren Planung

Passend im Sinne
schlanker Prozesse
und klarer Aufgaben-
zerlegung

5. Grow the or-
ganization at its
own tempo of
trust

Organisationen sol-
len sich im eigenen
Tempo entwickeln
– nicht durch be-
schleunigtes Skalie-
ren; Vertrauen als
Grundlage

Kein direkter Bezug
– dieses Prinzip zielt
auf strategisches Or-
ganisationswachstum
und ist daher außer-
halb des empirischen
Fokus dieser Arbeit

Tabelle 26: Beziehung der Principles von Bremer et al. mit den Ergebnissen

Ergebnisse 139

Der Fachartikel „Investigating Communities of Practice in Large-Scale Agile Software Develop-
ment: An Interview Study“ von Tobisch et al. [57] untersucht die Rolle sogenannter Communities
of Practice (CoPs) in groß angelegten agilen Entwicklungsumgebungen. CoPs sind freiwillige,
rollenübergreifende Zusammenschlüsse von Mitarbeitenden mit geteiltem fachlichem Interesse.
Sie dienen dem Wissensaustausch, der kollaborativen Weiterentwicklung sowie der Etablierung
informeller Standards und Praktiken. Die Studie basiert auf 39 Interviews aus 18 Organisationen,
die Frameworks wie SAFe, LeSS oder das Spotify-Modell einsetzen.

Die Autoren zeigen, dass Communities of Practice (CoPs) auf vielfältige Weise zur agilen Trans-
formation beitragen – insbesondere durch Stärkung der Eigenverantwortung, gezielten Wissen-
saustausch, teamübergreifende Abstimmung und informelle Koordination. Diese Wirkungen
überschneiden sich mit mehreren der in dieser Arbeit identifizierten Best Practices aus Kapitel
6.1. Die Tabelle 27 zeigt, in welchen Bereichen sich diese Gemeinsamkeiten konkret manifestie-
ren – etwa im Hinblick auf Empowerment, Wissensverteilung oder organisationsweites Align-
ment.

CoP-Ziel (nach
Tobisch et al.)

Relevante Best Practices aus
Kapitel 6.1

Begründung / Bezug und Abgrenzung

Fostering Em-
powerment

6.1.9.2 Förderung von Eigen-
verantwortung durch selbstbe-
stimmte Aufgabenwahl

Beide fördern Eigenverantwortung. Die Best
Practice bezieht sich auf selbstständige Aufga-
benwahl im Teamkontext. CoPs schaffen über-
geordnete Strukturen, in denen Mitarbeitende
sich freiwillig einbringen, Verantwortung über-
nehmen und durch Austausch mit Gleichgesinn-
ten fachlich weiterentwickeln können. Die Best
Practice kann als Umsetzung innerhalb eines
solchen CoP-Verständnisses gesehen werden.

Promoting Know-
ledge Sharing

6.1.4.1 Pair-Programming, 4-
Augen-Prinzip und Reviews
6.1.4.4 Mehrere Themenver-
antwortliche zur Wissensver-
teilung

Beide Praktiken fördern kontinuierlichen Wis-
sensaustausch im Alltag. CoPs bieten dafür ei-
nen strukturellen Rahmen auf übergeordneter
Ebene, z. B. durch thematische Gruppen. Die
genannten Praktiken setzen diesen Austausch
direkt im Arbeitsprozess um.

Distributing In-
formation

6.1.1.1 Toolunterstützter
Workflow
6.1.1.4 Standardisierte Proto-
kollierung und Dokumentation

CoPs dienen in der Studie u. a. dazu, Informati-
onen rollen- oder themenspezifisch weiterzuge-
ben und transparent zu machen. Die Best Prac-
tices adressieren dies durch systematische Do-
kumentation, Tool-Nutzung und Statusverfol-
gung im Alltag und fördern den transparenten
Zugang zu diesen Informationen.

Fostering People
Development

6.1.5.1 Weiterbildung durch
Eigeninitiative und Teamför-
derung
6.1.3.2 Pair-Programming, 4-
Augen-Prinzip und Reviews

Die CoPs ermöglichen fachliches Wachstum
durch Austausch und Vernetzung. Die Best
Practices setzen dies durch gezielte Weiterbil-
dung, Zertifizierungen und kollaborative For-
mate um. Pair-Programming und Reviews sind
Beispiele für die Umsetzung innerhalb des
Teams.

Promoting Colla-
boration

6.1.2.1 Effiziente Abstim-
mung durch direkte Kommu-
nikation

CoPs fördern Zusammenarbeit über Teams und
Rollen hinweg. Die Best Practices fokussieren

Ergebnisse 140

6.1.12.2 Strukturierte Teamab-
stimmung und Validierung bei
komplexen Aufgaben

auf die Abstimmung mit Teilnehmern innerhalb
und außerhalb des autonomen Teams.

Aligning Across
the Organization

6.1.7.2 Wöchentliche Abstim-
mung zwischen Teams
6.1.7.3 Rollenspezifische
Teamleiter-Meetings zur fach-
lichen Koordination

Beide Ansätze dienen der organisationsweiten
Abstimmung. Die Best Practices setzen den
Austausch über verschiedene Teams und Berei-
che über regelmäßige Meetings um.

Supporting the
Agile Transfor-
mation

6.1.5.1 Weiterbildung durch
Eigeninitiative und Teamför-
derung

CoPs können laut Studie gezielt zur Veranke-
rung agiler Prinzipien beitragen. Die genannte
Best Practice schafft dafür operative Freiräume
und Lernmöglichkeiten, z. B. bei Einführung
neuer Technologien oder Methoden, Umsetzun-
gen für Zertifikate (z.B. Scrum Master, etc.)

Tabelle 27: Beziehung von CoPs und den Best Practices

6.6 Validität und Limitationen

In diesem Kapitel werden die zentralen methodischen und inhaltlichen Einschränkungen der vor-
liegenden Fallstudienforschung reflektiert. Dafür werden im Kapitel 6.6.1 die vier Validitätskri-
terien nach Yin [19] herangezogen. Anschließend wird im Kapitel 6.6.2 erklärt, inwieweit die
Ergebnisse auf andere Projekte übertragbar sind und welche Grenzen dabei zu beachten sind. Ziel
ist es, die Aussagekraft und die Einschränkungen der Erkenntnisse offen darzustellen.

6.6.1 Methodische Validität

Die Qualität qualitativer Fallstudien lässt sich nach Yin anhand von vier zentralen Validitätskri-
terien beurteilen: Konstruktvalidität, interne Validität, externe Validität und Reliabilität [19].
Diese ermöglichen eine strukturierte Einschätzung der methodischen Fundierung sowie mögli-
cher Einschränkungen der Studie.

• Konstruktvalidität (Engl. „Construct Validity“)

Dieses Kriterium prüft, ob die theoretischen Konzepte, die untersucht werden sollen – wie
z. B. Selbstorganisation oder Best Practices – auch wirklich korrekt und verständlich im For-
schungsprozess erfasst wurden.

In dieser Arbeit wurde darauf geachtet, dass alle zentralen Begriffe klar definiert und in den
Interviews einheitlich verwendet wurden. Durch semi-strukturierte Interviews mit offenen
Fragen konnten individuelle Sichtweisen eingebracht werden, ohne die Befragten in eine be-
stimmte Richtung zu lenken (Vermeidung von Bias). Zusätzlich wurden weitere Datenquel-
len wie Task-Boards, Dokumente und Beobachtungen herangezogen (Triangulation), um
Aussagen zu überprüfen und zu ergänzen.

Ergebnisse 141

Einschränkung: Begriffe könnten – abhängig von Rolle, Projektkontext, Erfahrungsniveau
oder konkreter Umsetzung – unterschiedlich verstanden oder gewichtet worden sein.

• Interne Validität (Engl. „Internal Validity“)
Dieses Kriterium bewertet, ob die Schlussfolgerungen inhaltlich plausibel aus den erhobenen
Daten abgeleitet wurden.

Auch wenn keine Ursache-Wirkung-Beziehungen im engeren Sinn untersucht wurden, wurde
bei der Analyse darauf geachtet, wiederkehrende Muster zu erkennen und alternative Deu-
tungen in die Interpretation einzubeziehen. Um Unklarheiten im Gespräch zu vermeiden,
wurden bei Bedarf verständnissichernde Rückfragen gestellt, insbesondere wenn Begriffe
oder Kontexte uneindeutig waren.

Einschränkung: Abweichende Aussagen wurden zwar in den Transkripten erfasst, jedoch
im Rahmen der Ergebnisdarstellung nicht gesondert ausgewertet. Zudem bleibt qualitative
Analyse grundsätzlich interpretationsabhängig, eine vollständige Neutralität ist nicht mög-
lich.

• Externe Validität (Engl. „External Validity“)

Die externe Validität betrifft die Frage, ob die Ergebnisse auf andere, vergleichbare Kontexte
übertragbar sind.

In dieser Arbeit wurden drei Softwaregroßprojekte untersucht, die hinsichtlich Teamgröße,
Arbeitsweise (z. B. Scrum, Kanban), technischer Infrastruktur und Organisationsstruktur ähn-
lich aufgebaut sind. Die Interviews folgten einem gemeinsamen, thematisch abgestimmten
Leitfaden, wodurch inhaltlich vergleichbare Aussagen erhoben werden konnten. Die daraus
entwickelten Best Practices erscheinen unter vergleichbaren Bedingungen übertragbar und
bieten eine praxisnahe Orientierung für ähnlich aufgebaute Softwaregroßprojekte.

Einschränkung: Für deutlich abweichende Kontexte – etwa kleinere Organisationen, andere
Branchen oder klassische Entwicklungsmethoden – ist eine direkte Übernahme nicht immer
möglich. Einige der abgeleiteten Best Practices zeigen jedoch Skalierungspotenzial und könn-
ten mit entsprechender Anpassung auch in kleineren oder anders strukturierten Projekten
wirksam sein.

Ergebnisse 142

• Reliabilität (Engl. „Reliability“)
Das methodische Vorgehen – von der Datenerhebung bis zur Analyse – wurde vollständig
dokumentiert. Die Interviews wurden transkribiert, mithilfe von MAXQDA softwaregestützt
codiert und nach dem etablierten Verfahren der thematischen Analyse ausgewertet. Alle Ar-
beitsschritte wurden konsistent auf alle drei Fälle angewendet, wodurch ein hohes Maß an
Nachvollziehbarkeit gewährleistet ist.
Einschränkung: Qualitative Forschung ist grundsätzlich durch subjektive Deutungen ge-
prägt. Auch bei sorgfältiger Durchführung lässt sich eine vollständige Wiederholbarkeit
durch andere Forschende nicht garantieren – wohl aber eine methodische Nachvollziehbar-
keit.

6.6.2 Ergebnisbezogene Limitationen und Übertragbarkeit

Die Ergebnisse dieser Arbeit basieren auf der qualitativen Analyse von drei Fallstudien in unter-
schiedlich ausgerichteten, aber strukturell vergleichbaren Softwaregroßprojekten. Dabei wurden
ausschließlich jene Themen und Codes der thematischen Analyse weiterverwendet, die in allen
drei Fällen übereinstimmend identifiziert wurden. Dies stärkt die Relevanz der daraus abgeleite-
ten Best Practices, schränkt jedoch die Breite potenzieller Erkenntnisse ein – etwa solche, die nur
in einem oder zwei Fällen aufgetreten sind.

Die Auswahl der Themen basiert auf offenen semistrukturierten Interviewfragen, wodurch sich
die Tiefe und Perspektive der Antworten stark an der Wahrnehmung der Interviewpartner orien-
tiert. Es ist daher möglich, dass einzelne relevante Aspekte nicht benannt oder im Gesprächsver-
lauf nicht ausführlich angesprochen wurden. Ergänzende Artefakte und Beobachtungen aus der
Participant Observation konnten dies nur teilweise kompensieren.

Zudem wurde eine begrenzte Anzahl an Projekten und Teamkonstellationen betrachtet. Die tat-
sächliche Wirksamkeit und Durchführbarkeit der Praktiken in der Praxis, hängt stets von konkre-
ten Faktoren wie Unternehmenskultur, Teamdynamik, Rollenverständnis oder technologischem
Reifegrad ab. Eine pauschale Übertragbarkeit kann daher nicht angenommen werden.

In den Fallstudien wurde eine breite Rollendiversität berücksichtigt. Allerdings wurde pro Fall-
beispiel meist nur eine Person je Rolle befragt, teils mit Mehrfachrollen. Dadurch konnten unter-
schiedliche Perspektiven abgebildet, aber keine Tiefe innerhalb einzelner Rollenprofile im jewei-
ligen Projektkontext erreicht werden. Eine erweiterte Stichprobe könnte zusätzliche Einsichten
und potenzielle Rollenkontraste innerhalb eines Teams ermöglichen.

Ergebnisse 143

Die gewählte Methodik – insbesondere die thematische Analyse nach Braun & Clarke – ermög-
licht eine strukturierte, theoriebasierte Auswertung qualitativer Daten. Dennoch bleibt ein Rest
an Subjektivität in der Interpretation bestehen.

Zusammenfassung und Ausblick 145

7 Zusammenfassung und Ausblick

Diese Arbeit befasste sich mit der Frage, welche Praktiken für autonome Teams auch in industri-
ellen Softwaregroßprojekten funktionieren und sich skalieren lassen. Ziel war es, aus realen Pro-
jekten konkrete Best Practices zu identifizieren, diese systematisch zu kategorisieren und Krite-
rien für ihre Einordnung zu entwickeln.

Als Grundlage wurde der aktuelle Stand der Forschung zu autonomen Teams analysiert. Die Ka-
tegorien und Praktiken von Hoda et al. wurden als strukturierender Ausgangspunkt gewählt. Ihre
sieben Kategorien aus den Balancing Acts sind klar abgegrenzt und decken zentrale Bereiche wie
Entscheidungsfindung, Verteilung von Aufgaben, Fortschrittsüberwachung und Wissensvertei-
lung ab. Diese Struktur diente sowohl der Entwicklung des Interviewleitfadens als auch dem spä-
teren Vergleich mit den empirischen Ergebnissen.

Zur Datenerhebung wurden drei Fallbeispiele aus unterschiedlichen Branchen untersucht:

• Fallbeispiel 1 – Versicherungsträger (inkl. Participant Observation)
• Fallbeispiel 2 – Autohaus
• Fallbeispiel 3 – Gesundheitsbereich

In jedem Fallbeispiel wurden fünf semistrukturierte Interviews mit Teammitgliedern aus ver-
schiedenen Rollen durchgeführt. Dazu zählten Entwickler, Architekten, Requirements Engineers,
Teamleiter und Projektleiter. Die Interviews erfolgten in semi-strukturierter Form, wurden auf-
gezeichnet, transkribiert und anschließend in MAXQDA, einer Analysesoftware, kodiert. Die Co-
dierung erfolgte in mehreren Schritten und bezog sich direkt auf konkrete Aussagen und deren
Kontexte.

Im Rahmen der Participant Observation im Fallbeispiel 1 wurden zusätzlich projektinterne Arte-
fakte wie Kanban-Boards, Ticket-Systeme oder Dokumentationen analysiert, um die Aussagen
aus den Interviews besser einordnen zu können. Diese ergänzende Perspektive war in den beiden
anderen Fallbeispielen nicht möglich, da dort kein Zugang zu den Systemen bestand.

Zusammenfassung und Ausblick 146

Die Auswertung erfolgte nach der thematischen Analyse nach Braun & Clarke. Zunächst wurden
aus den codierten Passagen Themen abgeleitet und anschließend zu 13 übergeordneten Katego-
rien zusammengefasst, die zentrale Aspekte der Teamarbeit in großen Softwareprojekten abbil-
den. Beispiele dafür sind Transparenz, Kommunikation, Meetings, Wissensverteilung oder Auf-
wandsschätzung.

Aus den codierten Inhalten wurden insgesamt 23 konkrete Best Practices abgeleitet. Für das finale
Ergebnis wurden ausschließlich jene Themen und Codes berücksichtigt, die in allen drei Fallbei-
spielen vorkamen. Diese gemeinsame Schnittmenge wurde bewusst gewählt, um nur solche Prak-
tiken zu berücksichtigen, die eine möglichst hohe Aussagekraft und Relevanz besitzen. Kodie-
rungen die nur in einem oder zwei Fallbeispielen vorkamen, wurden zwar dokumentiert, aber
nicht weiter analysiert. Diese könnten jedoch in zukünftigen Arbeiten berücksichtigt werden.

Ein selbst entwickeltes Java-Programm unterstützte die Auswertung der Codes, indem es Über-
schneidungen, Segmenthäufigkeiten und Zuweisungen zu Kategorien automatisiert analysierte.
Damit konnte die Analyse systematischer und nachvollziehbarer durchgeführt werden.

Die drei Forschungsfragen wurden wie folgt beantwortet:

RQ1a – Welche Praktiken lassen sich in Softwaregroßprojekten zur Unterstützung autono-
mer Teams identifizieren?
Es wurden 23 praxistaugliche Best Practices identifiziert, die zentrale Handlungsfelder autonomer
Teamarbeit in Softwaregroßprojekten abdecken.

RQ1b – Welche Praktiken für autonome Teams sind auch für große Softwareprojekte ska-
lierbar?
Neun der von Hoda et al. beschriebenen Best Practices konnten in den Fallstudien inhaltlich be-
stätigt werden. Sie wurden jeweils durch eine kontextbezogene Best Practice in den Software-
großprojekten abgebildet und gelten somit als skalierbar.

RQ2 – In welche Kategorien können die identifizierten Praktiken unterteilt werden?
Die 23 Best Practices wurden 13 thematischen Kategorien zugeordnet, die zentrale Aspekte der
Zusammenarbeit in autonomen Teams abbilden. Mehrere Praktiken wirken bereichsübergreifend
und lassen sich mehreren Kategorien gleichzeitig zuordnen.

RQ3 – Auf Basis welcher Kriterien kann eine Kategorisierung stattfinden?
Die Kategorisierung der Best Practices basiert auf ihrer inhaltlichen Relevanz für die jeweilige
Kategorie, auf der empirischen Ableitung aus den Codes der thematischen Analyse sowie auf der

Zusammenfassung und Ausblick 147

thematischen Konsistenz innerhalb der Kategorien. Entscheidend war, ob eine Best Practice zur
Zielsetzung und Wirkung einer Kategorie beiträgt, ob sie durch codierte Interviewaussagen in-
haltlich gestützt wird, und ob sie sich in das Gesamtbild der jeweiligen Kategorie sinnvoll einfügt,
ohne inhaltliche Widersprüche zu erzeugen.

7.1 Ausblick und zukünftige Forschung

Ausgehend von den vorliegenden Ergebnissen ergeben sich mehrere relevante Ansätze für wei-
terführende Forschung und praktische Anwendung.

• Erprobung und langfristige Evaluierung in realen Projekten:

Die als skalierbar identifizierten Best Practices könnten gezielt in neuen Projekten eingesetzt
werden, um ihre Alltagstauglichkeit in Bezug auf Teamgröße, Rollenverteilung und organi-
satorisches Umfeld zu überprüfen. Ergänzend dazu ließe sich ihre nachhaltige Wirksamkeit
im Rahmen von Langzeitstudien über mehrere Projektzyklen hinweg beobachten und evalu-
ieren. Auf diese Weise könnten sowohl kurzfristige Anpassungsbedarfe als auch langfristige
Effekte identifiziert werden.

• Quantitative Validierung:

Auf Grundlage der 23 identifizierten Praktiken könnten standardisierte Umfragen entwickelt
werden, um deren Verbreitung, Relevanz und Wirksamkeit in unterschiedlichen Projektkon-
texten empirisch zu erfassen.

• Vertiefung der Analyse nicht skalierbarer Praktiken:

Einige der in Kapitel 6.2.10 als nicht skalierbar klassifizierten Praktiken könnten in zukünf-
tigen Studien nochmals gezielt untersucht werden. So zum Beispiel beim Best Practice „Mul-
tiple Perspectives“ (siehe Punkt 6.2.10.1) denkbar, da durch Mehrfachrollen zwar funktionale
Überschneidungen existieren, der aktive Perspektivenaustausch jedoch nicht explizit benannt
wurde.

• Untersuchung fallstudien-spezifischer oder neuer Praktiken:

Themen und Codes, die nur in zwei der untersuchten Fallbeispiele auftraten, wurden in Ka-
pitel 5.2.5 dokumentiert, aber nicht in das finale Kategoriensystem überführt. Für diese Codes
erfolgte keine Ableitung konkreter Best Practices, da sie nicht in allen drei Fallbeispielen
beobachtet wurden. Zukünftige Arbeiten könnten gezielt an diesen Schlagwörtern und Co-
dierungen ansetzen – etwa durch vertiefende Interviews mit weiteren Teammitgliedern der
bereits untersuchten Organisationen oder durch zusätzliche Fallstudien. Auf diese Weise ließe

Zusammenfassung und Ausblick 148

sich klären, ob bestimmte Themen lediglich kontextbedingt nicht erwähnt wurden oder ob sie
tatsächlich projektspezifisch sind.

• Übertragung auf kleinere Softwareprojekte:
Einige der neu identifizierten Praktiken könnten auch in kleineren autonomen Teams einge-
setzt werden, um im Gegenzug zu prüfen, ob sie auch in kleinen Softwareprojekten funktio-
nieren.

• Integration von KI-Werkzeugen:

Mit Blick auf aktuelle Entwicklungen in der Softwarebranche stellt sich die Frage, inwiefern
KI-basierte Tools die Umsetzung bestimmter Best Practices unterstützen oder verbessern
können – etwa in den Bereichen Dokumentation, Wissensverteilung oder Review-Prozesse.
Erste Ansätze dazu finden sich bereits in der Literatur (vgl. [58]).

Die in dieser Arbeit gewonnenen Ergebnisse können als fundierte Grundlage für weiterführende
Forschung dienen und Unternehmen erste Anhaltspunkte bieten, wie autonome Teams auch in
komplexen Softwareprojekten gezielt gefördert und begleitet werden können.

Abbildungsverzeichnis i

Abbildungsverzeichnis

Abbildung 1: Illustration – Methodik ... 11
Abbildung 2: Scrum-Prozess [34] ... 19
Abbildung 3: Die 12 Kernpraktiken von XP [41] ... 21
Abbildung 4: Das Wasserfall-Modell ... 22
Abbildung 5: Kanban-Board ... 23
Abbildung 6: Die Balancing Acts, Kategorien und Best Practices ... 28
Abbildung 7: Darstellung der Practices und deren Abhängigkeiten ... 29
Abbildung 8: Projektorganisationsstruktur im Fallbeispiel 1 ... 45
Abbildung 9: Vorgehensmodell Fallbeispiel 1 ... 47
Abbildung 10: Beispiel Kanban Board (Whiteboard) Fallbeispiel 1 .. 49
Abbildung 11: Beispiel Kanban Board Fallbeispiel 1 Gitlab .. 49
Abbildung 12: Alfresco – Beispiel Ablagestruktur nach Releases ... 50
Abbildung 13: HPQC – Ticketsystem für Anforderungen und Fehler 50
Abbildung 14: Dokumentengruppe für F1 in MAXQDA ... 52
Abbildung 15: Codierung der Interviews in MAXQDA ... 52
Abbildung 16: Projektorganisationsstruktur im Fallbeispiel 2 ... 57
Abbildung 17: Anzahl vergebener Codes pro Dokument ... 66
Abbildung 18: Schnittmengen der Codes ... 67
Abbildung 19: Vergleich Taking Task Ownership ... 121
Abbildung 20: Übersicht Methodik ... viii

file:///C:/Users/ms082/Desktop/DA/Diplomarbeit%20%5b16.06.2025%5d.docx%23_Toc200978686

Tabellenverzeichnis ii

Tabellenverzeichnis

Tabelle 1: Prozess der Fallstudienforschung nach Runeson & Höst... 6
Tabelle 2: Die Übersicht der Balancing Acts .. 28
Tabelle 3: Praktiken der Selbstorganisation in Teams - The Balancing Acts 31
Tabelle 4: Zuordnung KSAs zu den Kategorien von Hoda et al. .. 33
Tabelle 5: Übersicht der drei Fallbeispiele ... 43
Tabelle 6: Übersicht Teilnehmer und Rollen der Interviews .. 43
Tabelle 7: Auszug der Rollen Fallbeispiel 1 ... 46
Tabelle 8: Beispieltabelle für die Code- und Themenbildung .. 54
Tabelle 9: Vorkommen der 66 Codes im Fallbeispiel 1 .. 56
Tabelle 10: Vorkommen der 71 Codes im Fallbeispiel 2.. 60
Tabelle 11: Vorkommen der 73 Codes im Fallbeispiel 3.. 63
Tabelle 12: Übersicht der Code-Themen .. 67
Tabelle 13: Die 48 Codes in 13 Themen in den Fallbeispielen 1, 2 und 3 69
Tabelle 14: Die 53 Codes in 13 Themen in den Fallbeispielen 1 und 2...................................... 70
Tabelle 15: Die 51 Codes in 13 Themen in den Fallbeispielen 1 und 3...................................... 72
Tabelle 16: Die 57 Codes in 12 Themen in den Fallbeispielen 2 und 3...................................... 74
Tabelle 17: Codes (F₁ ∩ F₂) ∖ F₃ ... 75
Tabelle 18: Codes (F₁ ∩ F₃) ∖ F₂ ... 75
Tabelle 19: Codes (F₂ ∩ F₃) ∖ F₁ ... 76
Tabelle 20: Übersicht der Funktionalitäten für den toolunterstützten Workflow 81
Tabelle 21: Kommunikationsmittel autonomer Teams ... 86
Tabelle 22: Unterscheidung der Praktiken für die Fortbildung ... 95
Tabelle 23: Die verschiedenen Arten von Meetings ... 101
Tabelle 24: Auflistung aller gefundenen Best Practices ... 112
Tabelle 25: Übersicht skalierbarer Best Practices ... 127
Tabelle 26: Beziehung der Principles von Bremer et al. mit den Ergebnissen 138
Tabelle 27: Beziehung von CoPs und den Best Practices ... 140
Tabelle 28: Übersicht verwendeter Hilfsmittel ... vii

Literaturverzeichnis iii

Literaturverzeichnis

[1] S. S. Maidin und N. Yahya, „The Waterfall Model with Agile Scrum as the Hybrid Agile
Model for the Software Engineering Team,“ Yogyakarta Indonesia, IEEE, 2022.

[2] N. B. Moe, V. Stray und R. Hoda, „Trends and Updated Research Agenda for Autonomous
Agile Teams: A Summary of the Second International Workshop at XP2019,“ in Agile
Processes in Software Engineering and Extreme Programming -- Workshops, Springer
International Publishing, 2019, pp. 13-19.

[3] K. Dikert, M. Paasivaara und C. Lassenius, „Challenges and success factors for large-scale
agile transformations: A systematic literature review,“ Journal of Systems and Software,
2016, pp. 87-108.

[4] N. B. Moe und V. Stray, „A Decade of Research on Autonomous Agile Teams: A Summary
of the Third International Workshop,“ Trondheim, Norway, Springer, 2020.

[5] N. B. Moe, D. Bjørn, V. Stray, L. S. Karlsen und S. Schjødt-Osmo, „Team Autonomy in
Large-Scale Agile,“ 2019.

[6] M. Berntzen, R. Hoda, N. B. Moe und V. Stray, „A Taxonomy of Inter-Team Coordination
Mechanisms in Large-Scale Agile,“ IEEE, 2022.

[7] S. M. Sablis, „Team-external coordination in large-scale software development projects,“
Trondheim Norway, Journal of Software: Evolution and Process, 2020.

[8] E. Bjarnason, B. G. Bern und L. Svedberg, „Inter-team communication in large-scale
co-located software engineering: a case study,“ Springer, 2022.

[14] H. Edison, X. Wang und K. Conboy, „Comparing Methods for Large-Scale Agile Software
Development: A Systematic Literature Review,“ IEEE, 2022.

[16] S. Rahim, E. Chowdhury, D. Nandi, M. Rahman und S. Hakim, „ScrumFall: A Hybrid
Software Process Model,“ International Journal of Information Technology and Computer
Science (IJITCS), 2018, pp. 41-48.

[17] „Estimation of software quality parameters for hybrid agile process model,“ Springer SN
Applied Sciences, 2021, pp. 1-11.

[18] M. Fowler und J. Highsmith, „The Agile Manifesto,“ Agile Alliance, 2001.

[19] R. K. Yin, „Case Study Research and Applications: Design and Methods,“ 6 Hrsg., I. SAGE
Publications, Hrsg., 2017.

Anhang iv

[20] P. Runeson und M. Höst, „Guidelines for conducting and reporting case study research in
software engineering,“ in Empirical Softw. Engg., 14 Hrsg., 2009, p. 131–164.

[21] K. W. Grümer, Techniken der Datensammlung 2, 1 Hrsg., Bd. 32, Wiesbaden:
Vieweg+Teubner Verlag, 1974.

[22] W. Chauncey, „Interview Techniques for UX Practitioners,“ Boston, Morgan Kaufmann,
2014, pp. 23-41.

[23] V. Braun und V. Clarke, Using thematic analysis in psychology. Qualitative Research in
Psychology, 2006, pp. 77-101.

[24] R. Hoda, „Self-Organizing Agile Teams: A Grounded Theory,“ Victoria University of
Wellington, 2011.

[25] R. Hoda, J. Noble und S. Marshall, „Balancing Acts: Walking the Agile Tightrope,“ ACM,
Cape Town, South Africa, 2010.

[26] R. Hoda, J. Noble und S. Marshall, „Developing a grounded theory to explain the practices
of self-organizing Agile teams,“ Springer Sciencd+Business Media, 2012.

[27] M. Dr. Morner, Organisation der Innovation im Konzern, Springer Fachmedien Wiesbaden,
1997, p. 143ff..

[28] J. W. Cresswell, „Qualitative Inquiry & Research Design - Choosing Among Five
Approaches,“ 3 Hrsg., Thousend Oaks, California, SAGE Publications Inc., 2013, p. 97.

[29] J. Gustaffson, „Single case studies vs. multiple case studies: A comparative study,“
Halmstad University Sweden, 2017.

[30] K. Fisher, „Leading Self-Directed Work Teams: A Guide to Developing New Team
Leadership Skills,“ Mcgraw Hill Book Co, 2000, p. 17.

[31] L. Yunbo, L. Lan, W. Hongli, L. Yun und S. Qian, „Measurement model of project
complexity for large-scale,“ in International Journal of Project Management, Bd. 33,
Shanghai, Elsevier Ltd. APM and IPMA, 2015, pp. 610-622.

[32] D. Baccarini, „The concept of project complexity - a review,“ in International Journal of
Project Management, Bd. 14, Perth, Australia, Elsevier Science Ltd and IPMA, 1996, pp.
201-204.

[33] J. Pokorny, „NoSQL databases: a step to database scalability in web environment,“ in
International Journal of Web Information Systems, 9 Hrsg., Bd. 1, Charles University,
Praha, Czech Republic, 2013, pp. 69-82.

[35] V. Mahnic und S. Drnovscek, „Agile Software Project Management with Scrum,“
University of Ljubljana, Slovenia, 2005.

[36] R. Dräther, H. Koschek und C. Sahling, „Scrum-kurz & gut 3. Auflage,“ O'Reilly, 2023, p.
22ff..

Anhang v

[37] K. Beck und C. Andres, „Extreme Programming Explained,“ 2. Edition Hrsg., Addison-
Wesley Professional, 2004.

[39] L. Lindstrom und R. Jeffries, „Extreme Programming and Agile Software Development
Methodologies,“ in Information Systems Management, 2004, p. 43ff.

[42] „Extreme Programming Vs Scrum: A Comparison Of Agile Models.,“ International Journal
of Technology, Innovation and Management (IJTIM) Vol.2, Issue.2, 2022, pp. 80-96.

[44] E. Weflen, C. A. MacKenzie und I. V. Rivero, „An influence diagram approach to
automating lead time estimation in Agile Kanban project management,“ in Expert Systems
with Applications 187, 2022.

[45] E. Mircea, „Project Management using Agile Frameworks,“ Academy of Economic
Studies. Economy Informatics Vol. 19, 2019, p. 34 ff..

[47] H. Takeuchi und I. Nonaka, The New New Product Development Game, Harvard Business
School, 1986.

[48] R. Hoda, J. Noble und S. Marshall, „Organizing Self-Organizing Teams,“ ACM, Cape
Town, South Africa, 2010.

[49] M. Kalenda, P. Hyna und B. Rossi, „Scaling Agile in Large Organizations: Practices,
Challenges and Success Factors,“ Journal of Software: Evolution and Process, 2018.

[50] V. Stray, N. B. Moe und R. Hoda, „Autonomous Agile Teams: Challenges and Future
Directions for Research,“ Porto, Portugal, Association for Computing Machinery, 2018.

[51] Z. Masood, R. Hoda und K. Blincoe, „What Drives and Sustains Self-Assignment in Agile
Teams,“ IEEE Transactions on Software Engineering, 2022, pp. 3626-3639.

[52] Z. Masood, R. Hoda und K. Blincoe, „How agile teams make self-assignment work: a
grounded theory study,“ Empirical Software Engineering 25, 2020.

[53] M. G. Rothstein und R. J. Burke, Self-Management and Leadership Development,
Cheltenham, UK • Northampton, MA, USA: Edward Elgar Publishing Limited, 2010, p.
271ff..

[54] E. Salas, M. A. Rosen, S. C. Burke und G. F. Goodwin, „The wisdom of collectives in
organizations: An update of the teamwork competencies.,“ New York, Routledge/Taylor &
Francis Group, 2009, pp. 39-79.

[56] C. Bremer, A. R. Eklund und M. Elmquist, „Scaling or growing agile? Proposing a
manifesto for agile organization development,“ Journal of Organization Design, pp. 23-24,
2025.

[57] F. Tobisch, J. Schmidt und F. Matthes, „Investigating Communities of Practice in Large-
Scale Agile Software Development: An Interview Study,“ in Agile Processes in Software
Engineering and Extreme Programming, Munich, Germany, Springer, 2024, pp. 3-19.

Anhang vi

Weblinks

[9] „SAFe,“ [Online]. Available: https://framework.scaledagile.com/. [Zugriff am 24 03 2025].

[10] „less,“ [Online]. Available: https://less.works/. [Zugriff am 18 04 2025].

[11] „scrum@scale,“ [Online]. Available: https://www.scrumatscale.com/. [Zugriff am 18 04
2025].

[12] „Disciplined Agile® Delivery,“ [Online]. Available: https://www.pmi.org/disciplined-ag-
ile. [Zugriff am 18 04 2025].

[13] „Atlassian,“ [Online]. Available: https://www.atlassian.com/agile/agile-at-scale/spotify.
[Zugriff am 18 04 2025].

[15] „Monash University,“ [Online]. Available: https://research.monash.edu/en/persons/rash-
ina-hoda/publications. [Zugriff am 01 04 2025].

[34] „scrumalliance,“ [Online]. Available: https://www.scrumalliance.org/about-scrum. [Zu-
griff am 18 05 2025].

[38] „Agile Alliance,“ [Online]. Available: https://www.agilealliance.org/glossary/xp/. [Zugriff
am 18 05 2025]

[40] „extremeprogramming.org,“ [Online]. Available: http://www.extremeprogram-
ming.org/values.html. [Zugriff am 18 05 2025].

[41] [Online]. Available: https://www.c-sharpcorner.com/article/12-core-practices-in-xp/. [Zu-
griff am 15 1 2025].

[43] [Online]. Available: https://www.praxisframework.org/files/royce1970.pdf. [Zugriff am 05
05 2025].

[46] „ionos.at,“ [Online]. Available: https://www.ionos.at/digitalguide/websites/web-entwick-
lung/kanban/. [Zugriff am 18 05 2025].

[55] „MAXQDA,“ [Online]. Available: https://www.maxqda.com/. [Zugriff am 18 05 2025].

[58] R. Dagley, „ITProToday,“ 15 01 2025. [Online]. Available: https://www.itproto-
day.com/software-development/software-development-trends-and-predictions-2025-from-
industry-insiders. [Zugriff am 24 03 2025].

Anhang vii

Anhang

Übersicht verwendeter Hilfsmittel

Tool Version / Datum Verwendungsbereich Beispielhafte
Eingaben
(Prompts)

Verwendung
ohne substanzi-
elle Änderun-
gen?

ChatGPT
(OpenAI)

GPT-4,
Jan–März 2025

Hilfe bei Formulierung
und Strukturvorschlä-
gen von Kapiteltexten
bei 6.1.

„Reformuliere
diese Beschrei-
bung für diese
Praktik basierend
auf folgenden
Text…“

Nein – alle Texte
wurden überarbei-
tet und angepasst.

GPT-4,
 März 2025

Tabelle 26 und Tabelle
27

„Erstelle aus dem
Cop Zielen …
und relevanten
Best Practices …
wobei die Zuord-
nung wie folgt
aussieht … eine
Tabelle.“

Begründungen
bzw. Einordnung
und Formatierung
adaptiert.

GPT-4,
Jan–März 2025

Konsistenzprüfung von
Kapitelnummern und
Bezeichnungen

„Überprüfe ob
alle Themen/Ka-
tegorien in Kapi-
tel 6 mit demsel-
ben Wortlaut kon-
sistent verwendet
wurden“.

Nein, wurde zur
Überprüfung glei-
cher Formulierun-
gen zwecks Kon-
sistenz verwen-
det.

GPT-4,
März 2025

Kurzfassung/Abstract „Erstelle einen
Vorschlag für die
Kurzfassung ba-
sierend auf dem
Inhalt dieser Ar-
beit“.

Nein, Textvor-
schlag wurde
adaptiert und ge-
ändert.

Tabelle 28: Übersicht verwendeter Hilfsmittel

Anhang viii

Übersicht Methodik mit den dazugehörigen Kapiteln

State of the Art Fallstudie

Softwaregroßprojekte

Fallbeispiel 3
(Kapitel 4.6)

Fallbeispiel 2
(Kapitel 4.5)

5
Inter-
views

Fallbeispiel 1
(Kapitel 4.4)

Partici-
pant

Obser-

5
Inter-
views

5
Inter-
views

S.C.S.
Them. Ana-

lyse

S.C.S.
Them. Ana-

lyse

S.C.S.
Them. Ana-

lyse

Multiple Case Study (Kapitel 5)

23 Praktiken
(Kapitel 6.1)

13 Katego-
rien

(Kapitel 6.3)

9 skalierbare Praktiken

(Kapitel 6.2)

3 Balancing Acts

RQ1b

7 Kategorien

13 Praktiken

Abgleich

1.4.2 II.

1.4.2 III.

1.4.2 V.

1.4.2
VI.

1.4.2 I.

Arte-
fakte

1.4.2 IV.

Kleine
Softwareprojekte

Hoda et al.
(Kapitel 3.1 & 3.2)

RQ1a

Codes/Themen

Kriterien
(Kapitel 6.4)

Abbildung 20: Übersicht Methodik

RQ3 RQ2

Anhang ix

Interviewleitfaden

Allgemeine Information

Datum:
Teilnehmer:

Thema: Arbeitsweise autonomer Teams in Softwaregroßprojekten.
Ziel dieses Interviews ist es die Arbeitsweise autonomer Teams in Softwaregroßprojekten zu er-
fassen.

Regeln

• Das Interview wird per Aufnahmegerät und der Einwilligung des Interviewteilnehmers auf-

genommen damit der Interviewer nicht alle Informationen während des Interviews schriftlich
festhalten muss und eine leichtere Auswertung ermöglicht wird.

• Der Interviewte Teilnehmer darf jederzeit auch relevante Themen diskutieren die nicht un-
mittelbar durch die Interviewfragen abgedeckt sind.

Interview-Fragen

Allgemeines:
1. Was ist das Ziel des Projektes und welchem Thema sind Sie zugeteilt?

2. Welche Rolle und welchem Verantwortungsbereich sind Sie zugeteilt?

3. Wie viele Teilnehmer gibt es in dem Projekt und in Ihrem autonomen Team?

4. Wie sieht die Projekt- und Hierarchie-Struktur aus?

(Releasezyklen, Teilprojekte und Hierarchie)

5. Erklären Sie den eingesetzten Softwareentwicklungsprozess und dessen Anwendung?

(Traditionelles oder agiles Vorgehensmodell)

Kategorie 1: Collective decision making
6. Wie und von wem werden Komplexität- und Aufwandsschätzungen von Aufgaben ge-

macht?

7. Wie und von wem werden Richtlinien und Prinzipien für die Umsetzung festgelegt?
8. Wie wird auf dynamische Änderungen bei Anforderungen fachlicher oder technischer Hin-

sicht umgegangen?

Anhang x

Kategorie 2: Self-assignment
9. Wie erfolgen die Auswahl und Zuteilung von Anforderungen und Fehlern?

10. Wie wird die Transparenz für alle Teammitglieder gewährleistet?

Kategorie 3: Self-monitoring
11. Wie und von wem erfolgt die Fortschrittsmessung der Aufgaben?
12. Gibt es Meetings um den Fortschritt anderen Teilnehmern/Teams zu kommunizieren und

Probleme rechtzeitig zu erkennen und zu beheben?

Kategorie 4: Need for specialization
13. Besteht die Möglichkeit der individuellen Fortbildung innerhalb des Teams?

14. Besteht die Möglichkeit der individuellen über die Teamgrenzen hinaus?

(Andere Themengebiete, Rollenwechsel)

Kategorie 5: Encouraging cross-functionality
15. Wie erfolgt die Kommunikation innerhalb und außerhalb ihres autonomen Teams?

16. Wie erfolgt die Wissensverteilung innerhalb des Teams?

(Wissensverteilung, Spezialisierung und Support, Umgang mit Ausfällen)

Kategorie 6: Self-evaluation
17. Besteht zwischen den Iterationen eine Reflexion der individuellen und gesamten Teamleis-

tung (Lernprozess)?

18. Gibt es einen Ansporn für gute Team- oder Individualleistungen?

Kategorie 7: Self-improvement
19. Gibt es Praktiken die eingesetzt werden um komplexe Aufgabengebiete zu bewältigen?
20. Wird den Teammitgliedern die Möglichkeit geboten neue Themengebiete zu erforschen

oder zu vertiefen? (Fortbildungen, Kurse, etc.)

Zusatz:
21. Gibt es noch relevante Punkte welcher nicht durch die oben angeführten Interviewfragen

abgedeckt wurde und der für das Arbeiten als autonomes Team für Sie wichtig ist?

		2025-10-07T14:45:31+0200
	Signature Box
	Martin Schliefellner
	Signature

		2025-10-07T14:46:34+0200
	Signature Box
	Martin Schliefellner
	Signature

