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ABSTRACT Due to the inherent complexity of modern polymer extrusion lines caused by nonlinear,
dynamic behavior with numerous influential factors, disturbances lead to higher scrap rates and downtimes.
Unfortunately, conventional approaches to address this challenge rely on independent models and local
control loops, neglecting the multistage characteristic of extrusion lines and therefore, cannot obtain a global
optimum. Consequently, we propose a predictive control design based on a nonlinear and autoregressive
multi-task learningmodel covering the entire extrusion line including local control loops and essential quality
measurements. Training on an extended prediction horizon successfully addresses accumulating prediction
errors and measurement noise. Due to its capability to predict state trajectories for up to 60 minutes, the
proposed methodology enables effective model predictive control. Additionally, using an efficient method
for adaptive error compensation based on previous error trajectories increases robustness substantially
while the hierarchical control architecture supports global optimization and efficient local control loops.
The proposed control design is validated on two polymer extrusion lines. The results show that changing
operating points and optimizing process states, such as melt temperature, can be reliably achieved in spite of
process disturbances. In comparison to baseline production periods, dominant oscillations are successfully
damped by 62 %, reference values are closely followed and process variations are reduced by 41 %
to 63 % improving product quality notably. A comparative analysis of disturbance rejection capabilities
shows superior results while empirical analyses of stability and runtime further improve its closed-loop
applicability. As a consequence, the proposed methodology for predictive control allows to steer extrusion
processes accurately, address upcoming issues in advance and generally leads to more efficient processes.

INDEX TERMS Model predictive control, multistage production, multi-task learning, polymer extrusion,
time series forecast.

I. INTRODUCTION
Polymer extrusion is one of the core process steps for a
variety of production lines ranging from injection molding
to a continuous production of profiles, pipes and plastic
bottles. With regard to pipe production, modern extrusion
lines consist of several process steps directly connected to
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the extruder, such as calibration, cooling, cutting and often
specialized post processing [1]. Numerous influential factors
at the extruder as well as upstream (material supply) and
downstream lead to a complex nonlinear process [2], [3]
with long transport delays [4], [5]. These factors include
but are not limited to ambient conditions, variations in the
feed, machine wear and oscillations in cooling systems.
Consequently, the conditions and the behavior of the entire
extrusion line are determining the resulting product quality of
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polymer pipes requiring an end-to-end perspective for global
optimization [6], [7].

To estimate the pressure in extrusion processes, shallow
and deep neural networks are trained on experimental data
to model the static dependencies on process settings, signals
and recipes [8], [9]. Similarly, Tan et al. relied on deep
neural networks to estimate the melt index as main quality
indicator for polypropylene extrusion based on inputs from
the extruder, gear pump and die [10]. Akram et al. focused
on the same process to evaluate different machine learning
methods to predict melt temperature and pressure showing
that light gradient boosting machine and gradient boosting
regression are well suited for the task [11]. In addition to
that, Trifkovic et al. analyzed several process identification
methods to model the dynamics of a twin screw extruder to
predict motor load, melt temperature and pressure [12].
However, these static and dynamic approaches only

consider the extruder itself while neglecting the resulting
product quality. To address this point, Alhindawi and
Altarazi investigated different machine learning algorithms
to estimate the tensile strength of extrusion-blown high
density polyethylene films based on features from the process
and material [13]. Comparatively, Mulrennan et al. used
tree-based algorithms to estimate the yield stress of extruded
polyactide sheets to implement a soft sensor for real-time
feedback [3]. Apart from mechanical properties, Garcia et al.
as well as Bovo et al. showed that dimensional quality charac-
teristics (diameter, wall thickness) can be reliably estimated
with support vector machines (SVM) while Hartner et al.
demonstrated that semi-supervised learning based on mass
conservation can improve quality predictions in spite of data
scarcity [14], [15], [16]. To predict the resulting product
quality based on process parameters and material properties,
Polychronopoulos et al. investigated three machine learning
algorithms (random forest, XGBoost, support vector regres-
sion) and found that trial and error efforts for process
optimization can be effectively reduced by utilizing model
predictions [17]. Similarly, Takada et al. used random forest
regression to predict and subsequently optimize the impact
strength of polyphenylene sulfide blends based on process
settings and material properties in high speed twin screw
extrusion [18]. To take influential factors along the extrusion
line into account and improve process yield, Jun et al. relied
on a recurrent neural network (RNN) for quality predictions
considering ambient conditions (temperature, humidity) and
cooling water temperatures in addition to signals from the
extruder itself [7].
Due to accumulating effects along multistage production

lines, the specific process structure provides an important
source of information for predictive models [19]. For this
purpose, Ismail et al. relied on the cascade quality prediction
method (CQPM) with individual sub-models separately
trained to represent each production stage and improve
quality predictions [20]. In addition to that, multi-task
learning (MTL) allows to jointly train models for all outputs

simultaneously within one end-to-end model, where the
inputs and outputs are sequentially injected into and extracted
from the model in accordance to their position and known
causal dependencies in discrete and continuous production
systems [21], [22], [23]. Furthermore, Hartner et al. extended
the MTL approach to implement autoregressive end-to-end
models based on physics-informed state propagation reliably
capturing the dynamic and nonlinear behavior of entire
extrusion lines. Training on an extended forecasting horizon
allowed to predict the trajectory of relevant process states for
a prolonged period of 60 to 120 minutes [24].
Nonetheless, optimizing an entire extrusion line requires

an elaborate control design to steer the process and address
upcoming disturbances effectively. Conventional methods
of process control, such as proportional-integral-derivative
(PID) control, fuzzy logic control (FLC) or extremum seeking
control, are used to stabilize and optimize the extruder in
terms of temperature, energy consumption and pressure [25],
[26], [27], [28], [29]. While interesting results are achieved
and hybrid approaches based on particle swarm optimization,
fuzzy rules and PID control allow to address certain
limitations [30], they cannot integrate future trajectories and
still represent a reactive approach. On the other hand, model
predictive control (MPC) allows to address this limitation
while requiring an accurate process model. For this purpose,
Grimard et al. designed a nonlinear MPC based on partial
differential equations derived from mass and energy balance
to control the extrusion output and the active pharmaceu-
tical ingredient concentration in drug manufacturing [31].
Similarly, Celga et al. derived an analytical model for a
reactive extrusion system and used a MPC to control the
die pressure and throughput [32]. Additionally, Schwarzinger
and Schlacher proposed a hierarchical control design with a
MPC based on the heat transfer equation to control the melt
temperature [33].
In contrast to MPCs based on analytical models, data-

driven methods allow to model the dynamics based on actual
measurements from the system. In this regard, Trifkovic et al.
identified an autoregressive model with exogenous inputs
(ARX) based on experimental data to control melt temper-
ature and motor load in a twin-screw extruder for thermo-
plastic vulcanizate applications [34]. Moreover, Jiang et al.
employed two control loops consisting of individual MPCs
based on controlled autoregressive integratedmoving average
(CARIMA) structures to steer barrel temperatures and the
melt pressure as proxy variable for product quality [4]. Apart
from extrusion processes, Wu et al. relied on a RNN to model
the nonlinear dynamics of chemical processes as the basis for
a MPC. To account for known causal dependencies, the RNN
was decoupled to represent the process structure [35], similar
to aforementioned MTL methods.

In contrast to conventional MPC approaches based on
forward models of the dynamics, Aschemann et al. and
Lukas et al. relied on inverse models (neural networks) and
process measurements to control rubber extrusion lines but
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FIGURE 1. General setup of pipe extrusion processes with cooling and conditioning steps as well as a directly connected drawing section for bi-oriented
PVC pipes (top view).

FIGURE 2. Setup of the bi-oriented PVC production line with gravimetric
dosing system, extruder, adapter, die head, cooling zones and subsequent
drawing section (left to right).

neglected the end-to-end dynamics of the process [36], [37].
Correspondingly, Adesanya et al. relied on an inverse model
implemented as neural network and trained via the Levenberg
Marquardt algorithm to predict suitable process parameters
based on targeted quality characteristics in cable extrusion
lines [38].

However, none of the existing work bridges the gap
between end-to-end models and predictive control to
steer entire extrusion lines for global optimization while
accounting for downstream product quality characteristics.
Additionally, conventional control approaches, static soft
sensors and inverse models either completely neglect the
multistage characteristics or the process dynamics, substan-
tially limiting their applicability for global optimization. As a
consequence, we propose to capture the nonlinear dynamic
process behavior of extrusion lines with an autoregressive
MTL model allowing to incorporate known causalities via
physics-informed state propagation. The resulting model is
used as the core of a nonlinear MPC that optimizes important
state variables (e.g. melt temperature) and quality outputs
(e.g. diameter) simultaneously in an end-to-end manner.
Existing control loops along the production line are integrated
in the MTL model so that relevant set points are updated as

needed. To improve robustness of the resulting model and
MPC design, an adaptive error compensation is proposed
allowing to address changes in the dynamics or surroundings
of the extrusion line. As a result, the main contributions of
this work and advantages of the proposed methodology are:

• Physics-informed state propagation through autoregres-
sive MTL to enforce causal dependencies and capture
the end-to-end process dynamics.

• Training on an extended forecasting horizon to increase
regularization, minimize accumulating prediction errors
and improve robustness against measurement noise.

• End-to-end optimization of extrusion lines via MPC to
enable closed-loop control and improve product quality
while minimizing material and energy consumption.

• Hierarchical control design to support global opti-
mization while distributing computational efforts and
allowing fast responses to disturbances.

• Adaptive error compensation to efficiently address
drifting process behavior improving the robustness of
the control design.

• Validation on two actual polymer extrusion lines and
empirical analyses of runtime and stability to ensure
industrial applicability.

The remaining part of this paper is structured as fol-
lows. Section II describes the main process steps of two
extrusion lines used for validation purposes. Section III
elaborates on the proposed methodology and control design.
Section IV provides an overview of the experimental setup.
Section V and VI contain simulation and experimental
results. Section VII includes a discussion of the results, lim-
itations and future research directions whereas Section VIII
concludes this paper.

II. PROCESS DESCRIPTION
Two PVC pipe extrusion lines are used for developing and
validating the methodology of nonlinear MPC based on an
autoregressive end-to-end MTL model. On the one hand,
a continuous bi-oriented PVC (OPVC) production line with
nine cooling and conditioning steps, one drawing section
for pipe stretching and several inline quality measurements
produces pipes with a diameter between 110 and 400mm (see
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FIGURE 3. Setup of the conventional extrusion line (electro pipes) with
feeding system, extruder, die head and cooling zones (left to right).

Fig. 1 and Fig. 2). In total, the OPVC line is approximately
55 m long with a lead time of 15 to 100 minutes frommaterial
input to the pipe cutter at the end of the line depending on
the pipe dimension. The resulting pipes are characterized
by oriented polymer chains in axial and circumferential
direction, achieved through stretching the diameter and
length, which results in improvedmechanical properties, such
as tensile strength and impact resistance.

On the other hand, a conventional extrusion line with three
cooling and conditioning steps produces pipes used in electro
installations with diameters between 16 and 21 mm (see
Fig. 3). This electro line measures 25 m in length with a
lead time of approximately 1 minute from material input
to the pipe cutter. The conceptional setup of both lines is
depicted in Fig. 1, whereas both use a twin-screw extruder
which produces a melt that is pushed through a die head to
form the initial (preform) pipe. In the case of the OPVC line,
an additional post-processing step is built into the line which
stretches the pipe in diameter and length. Furthermore, the
two lines differ in terms of their material feeding system.
While the OPVC line includes a gravimetric system with
a dedicated feeding screw, the electro line relies purely
on gravitational feeding introducing additional variations in
material supply.

In both lines, influential factors, such as fluctuating
properties of rawmaterials, ambient temperature and a strong
temperature dependency of PVC lead to complex processes
with dynamic, nonlinear behavior with transport delays [1],
[5]. From a control perspective, all process components,
for instance heating, cooling or stretching zones, have their
own set points and local control loops which influence the
dynamic behavior from this stage onward. These existing
control loops are implemented as PID or on-off controller.
Numerous sensors are placed along the extrusion lines and
measure process states as well as quality metrics (e.g. wall
thickness and diameter). As a result, set points, local control
loops and process states must be considered in an end-to-end

FIGURE 4. Overview of the main methodological steps to implement the
proposed control design.

MPC design leading to a hierarchical architecture where the
MPC determines the set points of existing controllers.

III. METHODOLOGY
The proposed methodology relies on an autoregressive
MTL model of the entire extrusion line, an adaptive error
compensation to increase robustness and a hierarchical MPC
design for process optimization. The main methodological
steps are summarized in Fig. 4 and described in this section.

A. END-TO-END MTL MODEL
To model the dynamic behavior of extrusion processes,
an autoregressive MTL approach is employed [24]. For this
purpose, known dependencies due to expert knowledge and
physics, such as the effect of heating zones on the melt
temperature and the propagating impact of melt temperature
on the resulting wall thickness and diameter, are used to
derive a causality graph of the system. This results in a model
architecture representing the main sections of the process as
exemplarily shown in Fig 5 (left) for three process sections of
the OPVC line (Fig. 1). The resulting end-to-end model F(·)
(see Fig 5, right) relies on nu system inputs u = [u1, . . . , unu ]
and nx states x = [x1, . . . , xnx ] to predict the next time step of
xwhile utilizing lagged values of order lu and lx respectively:

x̂(t + 1) = F(u(t), . . . ,u(t − lu), x(t), . . . , x(t − lx)). (1)

Recursively feeding back x̂(t + 1) into F(·) allows to forecast
the trajectory of system states (e.g. melt temperature or
pipe diameter) for an arbitrary horizon h. Each state is
individually modeled and often depends on upstream states
which are propagated through the model architecture as
depicted by f2(·) and f3(·) allowing to represent physical
dependencies along the extrusion line and to train all
state-models simultaneously in accordance with the MTL
approach.

Each state-model fi(·) covers the dynamic behavior of
nxi ≥ 1 states considered in the model-specific state vector
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FIGURE 5. Proposed methodology to model extrusions lines from an end-to-end perspective based on (nonlinear) autoregressive state-models fi and
adaptive error compensation gi while enforcing causal dependencies via physics-informed state propagation.

xi representing a subset of all process states x. To predict
the trajectory of the state vector x̂i the state-model relies on
lagged values of this state vector xi, relevant inputs ui and
propagated states from other upstream state-models x̃i:

x̂i(t + 1) = fi(xi,ui, x̃i) (2)

The input orders for lagged values of xi, ui and x̃i are
represented by one scalar li and two state-model specific
vectors – lui and lx̃i – individually defined for each state-
model fi. Combining all input orders on a process level leads
to a vector of orders lf ,

lf = [l1, . . . , lnf ] ∈ Nnf , (3)

and two adjacency matrices – Au, Ax̃ – containing the
orders of exogenous u and propagated x̃ inputs respectively
determining the causality graph of the system:

Au =

 lu1,1 . . . lu1,nf
... lup,i

...

lunu ,1 . . . lunu ,nf

 ∈ Nnu×nf , (4)

Ax̃ =

 lx̃1,1 . . . lx̃1,nf
... lx̃p,i

...

lx̃nx ,1 . . . lx̃nx ,nf

 ∈ Nnx×nf . (5)

For each state-model fi an individual model structure is
selected, ranging from linear ARX models with αj,k , βj,k and
γj,k as parameters:

x̂i,j(t + 1) = fi(·) =

nui∑
j=1

lui,j∑
k=0

αj,k ui,j(t − k)

+

nx̃i∑
j=1

lx̃i,j∑
k=0

βj,k x̃i,j(t − k)

+

nxi∑
j=1

li∑
k=0

γj,k xi,j(t − k), (6)

where nui , nx̃i , nxi denote the number of exogenous,
propagated and endogenous inputs for each state-model fi(·)

respectively to nonlinear ARX (NARX) models of arbitrary
complexity:

x̂i(t + 1) = fi(xi(t), . . . , xi(t − li),

ui(t), . . . ,ui(t − lui ),

x̃i(t), . . . , x̃i(t − lx̃i )). (7)

Essentially, all state-models – linear and nonlinear – are
implemented as neural network and integrated into one end-
to-end process model covering the entire extrusion line. This
allows to use focused model structures while considering
physical dependencies via state propagation. Additionally,
training all state-models simultaneously improves robustness
due to a strong regularization and mitigates the effect of
spurious correlations. Importantly, transport delays in the
system are not learned by the MTL model but explicitly
considered in the state-models. For this purpose, delays are
identified based on the relative position and production speed
as well as a nonlinear impulse response estimation [5].
To train the overall process model with all its state-models,

a three-dimensional forecasting tensor T̂ ∈ Rnt×nx×ht is
created by recursively predicting the state trajectory of all
nx states over the train horizon ht for nt time instances
in the training set. The resulting forecasting tensor is
compared to the ground truth of actual process measurements
T ∈ Rnt×nx×ht to calculate the prediction error E of the
process model over the trajectory of length ht :

E = T − T̂ ∈ Rnt×nx×ht . (8)

Consequently, the prediction error E includes propagated
errors in space (between state-models) and time (along the
trajectory) and is used to calculate the mean squared error
(MSE) over the entire error tensor:

MSE(E) =
1

ntnxht

nt∑
j=1

nx∑
i=1

ht∑
k=1

E2
j,i,k . (9)

Based on this MSE a gradient descent algorithm optimizes
the parameters θ of the process model (weights and biases of
the neural networks) via backpropagating gradients through
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space (model architecture) and time effectively minimizing
the prediction error:

θ∗
= argmin

θ

MSE(E). (10)

Notably, θ contains all parameters of the process model
including αj,k , βj,k and γj,k for linear state-models. However,
due to its modular architecture, the parameters of linear
ARX models might be identified in advance via the
computationally efficient least squares algorithm. As shown
by Hartner et al., using autoregressive MTL to model entire
extrusion lines allows to capture the dynamic behavior and
to accurately predict the trajectory of process states for a
prolonged period of 60 to 120 minutes [24].

B. ADAPTIVE ERROR COMPENSATION
To increase the robustness of the resulting process model F(·)
with optimized parameters θ , an efficient and adaptive error
compensation is employed extending the applicability of the
model in spite of drifting changes in extrusion lines caused
by machine wear and ambient conditions. For each forecast
at t0 the matrix of past errors Ei is calculated as a subset of
the three-dimensional error tensor E based on the available
ground truth T and past predictions T̂:

Ei = E:t0,i,: = T:t0,i,: − T̂:t0,i,: . (11)

From the resulting error matrix ne most recent error
trajectories e−a are extracted as conceptionally shown in
Fig. 6. The shifted values of past forecasting errors are
used to form the error trajectories e−a ∈ Rhp over the
entire prediction horizon hp. These trajectories are then used
as basis to fit a polynomial function gi(k) of order op as
depicted in Fig. 6b, effectively constituting a nonparametric
approximation of the residual dynamics. To prioritize most
recent error trajectories (e.g. e−1 over e−3) a linearly
decreasing weight is applied during fitting the polynomial
function.

As shown in Fig. 5 (bottom), the resulting polynomial
functions gi(k) are used as adaptive offset for each forecasted
state in the process model:

x̂gi(t + k) = x̂i(t + k) + gi(k). (12)

As a result, drifting behavior in actual extrusion lines are
adaptively addressed, increasing the robustness of the process
model and prolonging its applicability as long as the main
dynamics (captured by the process model F) remains intact
and the error trajectories are stationary within the considered
time frame.

C. CONTROLLER DESIGN
A nonlinear, hierarchical MPC is proposed which uses
the autoregressive MTL model extended with adaptive
error compensation for process predictions to optimize
the operation of entire extrusion lines. In this regard, the
MPC represents a global control loop focusing on strategic
objectives (process efficiency and product quality) while

adjusting the relevant set points uc of existing controllers
(PID, on-off) used to steer individual process components
locally and independently, such as heating or cooling zones.
For this purpose, reference values w are defined for nc
system states in x where nc ≤ nx . To steer the selected
number of states, relevant system inputs uc of length
nuc ≤ nu are identified via a sensitivity analysis [24] or expert
knowledge. Other states and inputs which are not selected for
the optimization procedure but are included in the process
model are left unchanged by the MPC. Due to its hierarchical
and distributed characteristics, the proposed MPC approach
allows to distribute resources and enables fast responses by
local control loops while the overall process is steered and
optimized by the global MPC.

To identify optimal set point changes in uc, the process
model F(u, x) is recursively applied to predict the trajectory
of all states over the prediction horizon hp. Additionally,
an adaptive offset based on past error trajectories is used
to compensate for drifting behaviors in the extrusion line.
The resulting state trajectories x̂gi(t + k) are compared to
the corresponding reference value wi and combined with a
penalty term for set point changes to form the loss function L
for process optimization:

L(uc) =

hp∑
k=1

nw∑
i=1

[wi − x̂gi(t + k)]2 +

hc∑
k=1

nuc∑
i=1

[λ1uci(t + k)]2,

(13)

which is used by the MPC to steer the process effectively.
To ensure efficient control sequences, a penalty term is added
for each set point change,

1uci(t + k) = uci(t + k − 1) − uci(t + k)), (14)

in considered system inputs uc over the control horizon
hc ≤ hp and scaled via the penalty factor λ. The resulting
loss function is used in an iterative optimization procedure to
determine the optimal set points Uc over hc:

U∗
c = argmin

Uc
L(Uc), (15)

subject to

ucimin ≤ uci ≤ ucimax , (16)

where the lower ucimin and upper boundaries ucimax for each
set point uci in uc are enforced as hard constraints and each
column vector in Uc represents the values of all relevant set
points uc at time t + k:

Uc =

uc(t + 1) . . . uc(t + hc)

 ∈ Rnuc×hc (17)

To solve this nonlinear minimization problem iteratively,
the trust region reflective (TRR) algorithm is used due to its
native consideration of parameter constraints [39] ensuring
safety and feasibility provided that the chosen input con-
straints are not mutually exclusive. Additionally, to increase
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FIGURE 6. Conceptional example for an error matrix Ei (left) with selected error trajectories (green, orange, blue) and the resulting polynomial function
gi (k) fitted on these trajectories for a prediction horizon of hp = 120 (right).

the conservativeness of the optimization procedure, the
constraints can be narrowed or the penalty factor λ increased.
While the optimal set points in uc are identified over the
entire control horizon hc, only the values at the first time
step uc(t + 1) are applied to the process. The procedure of
identifying and applying optimal set points is then repeatedly
performed at each sampling instance to steer the process
accordingly and enable closed-loop optimization.

IV. EXPERIMENTAL SETUP
For developing and validating the proposed methodology
of nonlinear MPC, two extrusion lines are used – a large
diameter line for bi-oriented PVC pipes (OPVC) and a small
diameter line for pipes used in electrical installations (see
Fig. 2 and Fig. 3). For the OPVC line two autoregressive
MTL models were trained and used for the MPC validation
(see Tab. 1). On the one hand, a model (OPVC-1) solely
focused on the extruder as first part of an extrusion line was
trained with nu = 4 and nx = 5 system inputs and states
respectively where 4 heating zones with local control loops
as well as the resulting melt temperature are considered. The
OPVC-1 process model with its inner structure based on the
causality graph of the extruder requires nf = 5 state-models
and 3353 parameters. On the other hand, a second model
(OPVC-2) covers the entire extrusion line in an end-to-end
manner relying on nu = 24 inputs and nx = 29 states
to capture and forecast the nonlinear system dynamics with
nf = 15 state-models and 13987 parameters. Consequently,
the OPVC-2 model extends the OPVC-1 model and includes
causal dependencies along the extrusion line, for instance the
effect of melt temperature on wall thickness and diameter
or the impact of intermediate heating zones on the drawing
process. Additionally, to ease the training procedure, a known
day and night oscillation was explicitly included as sinusoidal

TABLE 1. Process models used for validation.

signal with a period of 24 hours. The train horizon ht was
experimentally selected as 16 and 32 for training the OPVC-1
and OPVC-2 process model. For the electro line, a process
model with nu = 5 inputs and nx = 9 states was used
where the inner structure consists of nf = 9 state-models (see
Tab. 1) allowing to forecast the trajectory of relevant heating
zones, throughput, melt temperature and pressure. Similar
to the OPVC-1 model, the causal dependencies include the
effect of the heating zones on the melt temperature while
also considering varying screw speeds and the impact on
throughput and pressure. In total 2233 parameters were
optimized during the training procedure based on a train
horizon of ht = 16.

All models (OPVC-1, OPVC-2, ELECTRO) were trained
on data collected over a production period of approximately
14 days sampled at an interval of 1 minute. Additionally,
the leaky rectified linear unit was used to represent the
nonlinearity of the system while the Adam [40] gradient
descent algorithm with a cosine learning rate [41] and a
batch size of 512 was used to optimize the weights of the
models. For this purpose the initial learning rate of 10−3 was
iteratively lowered to 10−5 over 500 epochs. Additionally,
the data was normalized via min-max scaling to improve the
convergence during training.

While validating the MPC on the extrusion lines, adaptive
error compensation was used for the OPVC-2 and ELECTRO
models. The polynomial function gi(k) for approximating
the error trajectory is of order op = 10 and fitted on
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FIGURE 7. Comparative analysis of disturbance rejection capabilities (red area) based on impulse disturbances (+1.8 ◦C at t = 100, −3.6 ◦C at t = 200)
applied to the melt temperature while different control approaches are active (a-d).

ne = 10 most recent trajectories. Due to its restricted
scope, the error compensation is not required for the OPVC-
1 model. The prediction and control horizon were defined
as hp = 60 and hc = 1 respectively for all process models
while the boundaries for uc are equal to the minimum and
maximum values encountered in the training data which
ensures feasibility and safety. Moreover, the penalty factor
for set point changes was defined as λ = 0.5.

The number (nuc , nw) and type of manipulated as well as
controlled variables were chosen to allow a broad range of
experiments. The OPVC-1 model is used to manipulate two
heating zones in the extruder to control the melt temperature.
While the OPVC-2 model captures the entire extrusion line to
forecast the trajectory, it is only used to control the diameter
as main quality characteristic via the air pressure at the
drawing process (see Fig. 1). The ELECTRO model relies
on two heating zones and the screw speed as manipulated
variables to optimize the melt temperature and throughput
simultaneously.

V. SIMULATION RESULTS
To investigate important properties of the proposed control
design, a comparative analysis of the disturbance rejection
capabilities, an empirical stability analysis and a runtime
analysis are conducted and described in this section.

A. ANALYSIS OF DISTURBANCE REJECTION
During normal production periods a controller is usually
operated as compensator to address disturbances in the extru-
sion line and keep the systemwithin its tolerances. Therefore,
the capabilities to reject disturbances are investigated for the
proposed control design in comparison to alternative control
approaches. For this purpose, the OPVC-1 processmodel (see
Tab. 1) is used to iteratively simulate the extrusion process
while Gaussian noise is added to all states at each simulation
step. A signal-to-noise ratio (SNR) of 10 is used to generate
the additive noise based on the standard deviation measured
for each process state.
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The simulated melt temperature at the extruder outlet
of the OPVC line is mainly influenced by four heating
zones which are individually regulated via simple on-off
controllers. Consequently, the set points for the heating zones
must be adjusted by a global controller to keep the melt
temperature within the tolerance of ± 0.1 %. For testing
purposes, two impulse disturbances with a magnitude of
+1.8 ◦C and−3.6 ◦C (20% and 40% of the melt temperature
range) are applied to the melt temperature at t = 100 and t =

200 respectively (see Fig. 7). These disturbances represent
actual scenarios often encountered in polymer extrusion,
such as issues in the feeding system, fluctuating degrees of
moisture in the powder or mechanical issues in the extruder.

To evaluate the proposed control design, the prediction
and control horizon of the nonlinear MPC are defined as
hp = hc = 15 while the OPVC-1 model is used to predict
the state trajectories based on the simulated data with added
noise. Additionally, three alternative control approaches are
investigated. First, the current setup of the OPVC line is
used as baseline, where all heating zones are individually
steered by on-off controllers without any global control
loop. Second, a conventional PID controller (Kp = 0.5,
Kd = 1) is implemented where the melt temperature
represents the output regulated by adjusting the temperature
set point of the last heating zone in the extruder. Third,
a linear-quadratic-integral (LQI) controller is employed as an
alternativemodel-based approach. The underlying state space
model is derived from the OPVC-1 model via linearization
around the operating point. The set points of all four heating
zones are used as system inputs to steer the melt temperature
while the weights of the cost matrices are selected to ensure
that the inputs remain feasible.

The results of the comparative analysis are shown in
Fig. 7 where the simulated melt temperature with added
noise is represented by the blue line and the gray area
shows the 0.1 % error band around the reference value of
194.8 ◦C. The recovery time is defined as settling time
after an impulse disturbance occurs and is highlighted as
red area. As depicted in Fig. 7a, without any additional
global control loop, the melt temperature oscillates around
the reference value and occasionally violates the tolerances.
After an impulse disturbance occurs the system requires 30 to
36 minutes to recover. Using a PID controller (Fig. 7b)
to steer the melt temperature reduces the recovery time to
23-27 minutes while damping the system oscillations in
general. Similarly, implementing a LQI controller reduces
the system oscillations while efficiently addressing smaller
disturbances as shown in Fig. 7c at t = 100 (recovery
time of 16 minutes). However, large disturbances lead to
notably longer recovery times (28 minutes) with significant
overshoots caused by nonlinearities outside the normal
operating range. In contrast to that, relying on a nonlinear
MPC based on an autoregressive MTL model allows to
significantly reduce the recovery time to 8-11 minutes
while keeping the melt temperature close to the reference
value during normal periods as demonstrated in Fig. 7d.

Additionally, while this comparative analysis only focused
on the extruder outlet, the proposed methodology based on
an end-to-end process model allows to automatically adjust
downstream process components (e.g. cooling or drawing
sections) to compensate for disturbances ensuring overall
process efficiency.

B. EMPIRICAL STABILITY ANALYSIS
To evaluate the empirical stability of the proposed control
design, a Monte Carlo simulation with 100 repetitions
is performed. While the reference value for the melt
temperature remains at 194.8 ◦C, each repetition starts with
randomized initial conditions where system inputs and states
are drawn uniformly from the range of feasible values. During
the simulation based on the OPVC-1 model, Gaussian noise
with a SNR of 10 is added to all states in each simulation step.
As shown in Fig. 8 for all 100 melt temperature trajectories,
the closed-loop MPC with a prediction and control horizon
of hp = hc = 15 reaches the reference value within the 0.1 %
error band for all repetitions after 15-20 minutes. Even in rare
cases where the melt temperature drops below 190 ◦C due to
extreme initial conditions, the MPC is able to stabilize the
system successfully.

FIGURE 8. Empirical stability analysis based on a Monte Carlo simulation
with 100 repetitions and randomized initial conditions.

C. EMPIRICAL RUNTIME ANALYSIS
To ensure the proposed control approach is applicable
for online usage in actual production lines, the expected
runtime of each component (individual prediction, error
compensation, optimization) is empirically analyzed in this
section. For this purpose, the main drivers for prediction and
optimization time (model complexity, prediction horizon) are
investigated based on the OPVC-1 and OPVC-2 models with
3353 and 13987 parameters respectively (see Tab. 1). Since
the adaptive error compensation method is computationally
independent from the preceding process model, the number
of considered past error trajectories ne is analyzed instead.
All measurements were repeated 100 times and performed
on a notebook with Windows 11, 32 GB memory and an i7
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FIGURE 9. Median runtime including the 95 % confidence interval for
computing the adaptive error compensation offsets over an increasing
prediction horizon hp and two levels of considered error trajectories ne.

1365U CPU. Additionally, Python 3.10.13 with TensorFlow
2.9.1, NumPy 1.23.4 and SciPy 1.13.1 was used for the
implementation.

As shown in Fig. 9 for computing the adaptive error
compensation offset, the median computation time increases
steadily with the prediction horizon hp, while the number
of considered past error trajectories ne has less influence on
the runtime. The results for hp = 1 are not included in this
analysis because the error matrix Ei does not contain any
trajectories in this case.

Similarly, the results for individual predictions (see
Fig. 10) and full control steps (see Fig. 11) show a
strong dependence on the prediction horizon hp. Moreover,
the model complexity significantly influences the median
runtime. In this regard, a control step includes the iterative
optimization procedure (repeated state predictions) to iden-
tify new process inputs to minimize the cost function. Even
though the error compensation offset must be computed once
per control step for all relevant states separately, the overall
runtime (max. 1 millisecond per state, see Fig. 9) is negligible
in comparison to the control step runtime (>1 seconds).

The results of the empirical runtime analysis show, that
considering a sampling interval of 1 minute, the median
runtime of 5-6 seconds for one full control step is sufficient
to ensure its online applicability in actual extrusion lines.

VI. EXPERIMENTAL RESULTS
In addition to the simulation results, the effectiveness of the
proposed methodology is industrially validated in the context
of process optimization and changing operating points. For
this purpose, both extrusion lines are used to demonstrate the
general applicability in extrusion processes.

A. SMALL DIAMETER ELECTRO LINE
To investigate the capabilities of the proposed approach for
extrusion lines in general, a conventional electro line is
used since it contains the basic process steps often found in

FIGURE 10. Median runtime including the 95 % confidence interval for
predicting state trajectories based on two process models over an
increasing prediction horizon hp.

FIGURE 11. Median runtime including the 95 % confidence interval for a
full control step (iterative optimization to identify process inputs) based
on two process models over an increasing prediction horizon hp.

extrusion processes. The aforementioned ELECTRO model
is employed as nonlinear autoregressive model by the MPC
to steer the process in a closed-loop manner. As shown by
the examples in Fig. 12, the MPC with an update interval
of 1 minute (equal to the sampling interval) ensures that
the melt temperature closely follows the reference values
(dotted lines) which are repeatedly changed by the operator.
To control the melt temperature three relevant set points (two
heating zones and the screw speed) are used as uc by the
MPC while the lower and upper boundaries are defined as
minimum and maximum values encountered in the training
data.

The vertical dashed lines indicate an arbitrary point in
time where the prediction of the state trajectory starts
for demonstration purposes, whereas the actual forecast is
iteratively performed as receding horizon in closed-loop
control. Even though the actual melt temperature signal is
obscured by short-term fluctuations and noise, the underlying
model accurately captures the main trend due to its strong
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FIGURE 12. Examples of closed-loop control via the proposed MPC based on MTL predictions (orange line) for repeatedly changing the reference
value of the melt temperature in the electro pipe production line.

FIGURE 13. Examples of closed-loop control (green area) via the proposed MPC for simultaneously optimizing melt temperature (left) and
throughput (right).

regularization enforced by the MTL approach as well as the
extended forecasting horizon during the training process.

To analyze the effectiveness of the MPC approach when
multiple process states are simultaneously controlled, the
ELECTRO model was used to steer melt temperature and
throughput via manipulating the same set points uc as before.
As shown in Fig. 13, the MPC was switched on twice with
different reference values for the melt temperature while the
throughput was kept on the same level (dotted lines).

The period between the closed-loop modes represents
normal production without any interference. In this period
of normal production the melt temperature stabilizes itself
between 193.5 ◦C and 194 ◦C. However, the throughput
changes significantly due to the system dynamics showing
the need for a global control loop. Interestingly, increasing
the throughput again for the second period of closed-loop
control (around t = 9920) requires that the screw speed
is raised inducing more energy into the extruder barrel.
Normally, that would lead to an increase in melt temperature
as well. Nevertheless, due to the MPC it is possible to

reduce the melt temperature to a lower reference value
(192.5 ◦C) via manipulating the set points of the heating
zones accordingly. As a result, the melt temperature and
throughput closely follow the reference values allowing a
counterintuitive control of the main process states, while
the short-term fluctuations around the target throughput
are mainly caused by measurement delays and technical
constraints in the existing screw speed controller.

To determine the effect of the proposed MPC on process
oscillations, the power spectral density of the melt tempera-
ture is analyzed through a periodogram. For this purpose, the
signal is sampled at an interval of 5 instead of 60 seconds
allowing improved insights into the signal. Additionally,
since some dominant oscillations in the extruder system
are expected to last several minutes, the spectral density is
shown in bins related to period length in seconds instead of
frequency in Hz. As depicted in Fig. 14a, the baseline signal
captured during normal production shows multiple dominant
oscillations, most notably with a period of 45 minutes and
30 seconds. After enabling closed-loop control (Fig. 14b)
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FIGURE 14. Periodogram of the melt temperature in the electro pipe production line during normal operating conditions without any global control
loop (baseline, left) and closed-loop mode via the proposed MPC (right).

FIGURE 15. Examples of closed-loop control (human-in-the-loop) via the proposed MPC based on MTL predictions (orange line) for repeatedly
changing the reference value of the melt temperature in the bi-oriented pipe production line.

with the proposed MPC, the 45 minute oscillation, represent-
ing a limit cycle of the system, is significantly damped by
62 % from 29 to 11 K 2s while the 30 seconds oscillation is
almost entirely removed showing that process oscillations are
effectively addressed.

B. LARGE DIAMETER OPVC LINE
Due to the setup of the OPVC line, an automated control loop
cannot be implemented directly, however, a human-in-the-
loop approach is a viable option to analyze the effectiveness
of the proposed MPC solution. The human operator blindly
executes set point changes without interference guaranteeing
unbiased results. Nevertheless, to ensure that long-term tests
over several hours can be performed, the update interval
of corresponding set points is defined as 10 to 15 minutes
(instead of the sampling interval of 1 minute). Additionally,
to show the advantage of a long prediction horizon hp = 60

multiple tests are conducted for the pipe diameter, where the
set points are changed only once by the operator.

Due to its significant impact on the entire extrusion line,
the extruder is investigated first based on the OPVC-1 model.
For this purpose, the last two heating zones in the extruder
are defined as relevant inputs uc for controlling the melt tem-
perature measured at the extruder outlet via a thermocouple
sensor. As shown in Fig. 15 (left), the reference value for
the melt temperature was set to 196.5 ◦C at t = 7260 and
recommended set point changes were immediately applied
by the operator leading to a sharp increase in the melt
temperature. Even though the overshoot was not captured by
the forecast of the MTL model at t = 7260, the settling
time was accurately predicted and the process settled at the
reference value of 196.5 ◦C. Additionally, the step response
at t = 7359 in Fig. 15 (right) shows a similar result. However,
the process settles faster at the new reference value of 195 ◦C
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FIGURE 16. Examples of closed-loop control (human-in-the-loop) via the proposed MPC based on MTL predictions (orange line) for repeatedly changing
the reference value of the resulting pipe diameter in the bi-oriented pipe production line.

FIGURE 17. Baseline of 15 hours of normal production (without model-based recommendations) where the operator manually adjusts the air pressure of
the stretching unit (left) to steer the outer diameter (right) based on experience alone.

and the overall trajectory of themelt temperature is accurately
predicted by the OPVC-1 model starting from t = 7330.
In addition to the melt temperature, the OPVC-2 model

is used to change operating points of the resulting outer
diameter while considering the dynamic behavior of the
entire extrusion line. For this purpose, the air pressure at
the drawing mandrel (see Fig. 1) is used as relevant system
input uc while the penalty factor for set point changes is
defined as λ = 0.5. As shown by repeatedly performed
step tests of the outer diameter in Fig. 16, the reference
values are closely followed due to accurate predictions of
the trajectory. Furthermore, due to a strong regularization
implicitly enforced during training the model via the MTL
approach over an extended forecasting horizon, the effect of
noisy measurements is mitigated. As depicted in Fig. 16, the
reference values were changed by the operator in an ad hoc

manner, therefore, the transport delays in the system cannot
be avoided.

To evaluate the effectiveness of the proposed methodology
in comparison to a baseline, a normal production period of
15 hours is shown in Fig. 17. On the left side, the actual
air pressure at the drawing mandrel is depicted, which is
regularly changed by the operator to adjust the outer diameter
of the resulting product (right). The reference value for the
diameter was 110.15 as indicated by the dotted line in Fig. 17
(right). In this period, the operator tried to optimize the
diameter five times (dashed lines) while it is difficult to
determine a proper value of the air pressure on experience
alone without any model-based recommendation. This often
results in an over- or underestimation of the effect of set
point changes (air pressure) leading to long periods, where
the actual diameter is far from the targeted reference value.
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TABLE 2. Estimated process improvements with regard to variance, and
95 % production tolerances for different cutoff periods in minutes in
comparison to the baseline.

FIGURE 18. Estimated improvements in terms of reduced diameter
variations due to removed oscillations with a period of 1 hour or more
based on the proposed control design.

This becomes evident when the periods from t = 46 to
t = 65 and t = 793 to t = 799 are considered, where the
operator changed the set point again after the initial change
did not show the expected result. As a consequence, based on
the results in Fig. 16, significant improvements are expected
due to human-in-the-loop and closed-loop control facilitated
by the proposed nonlinear MPC.

To calculate an estimate of expected process improve-
ments, it is assumed that oscillations with a period longer
than a certain threshold are reliably removed by the MPC.
For simulation purposes, a high-pass filter is applied to the
original diameter signal to remove oscillations which are
below a certain cutoff frequency, as shown in Fig. 18 with
a threshold period of 1 hour (1/3600 Hz). As a result, a large
portion of diameter deviations is removed and the product
quality is substantially improved. Depending on the specific
organizational and technical implementation (human-in-the-
loop or closed-loop), the proposed MPC removes or damps
oscillations with shorter or longer periods (cutoff frequency
is increased or decreased) leading to narrower or wider toler-
ances respectively. Consequently, a range of cutoff periods
is investigated in Tab. 2 showing the impact on diameter
variance and therefore, on the achievable 95 % production
tolerance as a measure of process variation. As clearly
demonstrated by cutoff periods ≥ 60 minutes, removing
slow oscillations already leads to significant improvements,
reducing the process variation by 41 % to 49 % when
compared to the baseline production. Implementing a fully

FIGURE 19. Comparison of actual error trajectories (blue) and associated
compensation functions (orange) averaged over several days of
production for the pipe diameter.

automated closed-loop control is also expected to remove
and damp oscillations with shorter periods, thus reducing the
process variation by up to 63 % when a cutoff period of
15 minutes is assumed. As a result, significant improvements
in terms of process optimization, material consumption and
product quality are expected when the proposed method of
nonlinear MPC is employed for polymer extrusion lines.

C. EFFECT OF ADAPTIVE ERROR COMPENSATION
To assess the effect of the proposed method for adaptive
error compensation, the actual error trajectory (blue) and
associated adaptive compensation function gi(k) (orange)
are averaged over several days of production and shown in
Fig. 19 for the diameter as target variable. As depicted, the
actual mean error trajectory increases in the first 10 minutes
(k = 10) of forecasting, drops sharply afterwards and
settles at approximately−0.028. Since the averaged results of
the polynomial compensation function (orange line), which
is adaptively fitted onto the most recent error trajectories,
align well with the actual mean trajectory (blue line), the
forecasting error can be significantly reduced. Consequently,
the model robustness is increased and drifting behavior in the
extrusion line is effectively addressed.

Additionally, Fig. 20 includes an arbitrary example at
time t from the underlying production run. As illustrated, the
ne = 10 most recent error trajectories (dashed lines) from
t−1 to t−ne are used to fit the coefficients of the polynomial
compensation function gi(k) (solid black line). Consequently,
the main pattern of the uncompensated future error trajectory
at t (solid red line) is captured well allowing to decrease the
resulting forecasting error while enforcing a sufficient degree
of regularization.

VII. DISCUSSION
The complexity of polymer extrusion lines with its sensitivity
to ambient conditions and material inputs as well as the
nonlinear and complex dynamic behavior with long transport
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FIGURE 20. Example of the resulting adaptive error compensation
function (black) fitted on ne = 10 past error trajectories (gray dashed) in
comparison with the actual future error trajectory (red).

delays requires an end-to-end perspective for predictive
control to globally optimize the process. Since existing works
in this domain either focus on optimizing individual process
sections or neglect the dynamic behavior, a methodology
for global optimization based on autoregressive MTL and
nonlinear MPC is proposed in this work.

As shown by the results with two actual extrusion
lines, where process oscillations and step responses were
investigated, the underlying predictive models capture the
nonlinear dynamics well and allow to accurately forecast
state trajectories. Due to a strong regularization implicitly
enforced due to training the MTL model on an extended
forecasting horizon, the effect of noisy measurements and
short-term process fluctuations are mitigated. Additionally,
the robustness against process drifts, caused by machine
wear and unmeasured external factors, is reliably improved
via an adaptive error compensation based on past error
trajectories. As a consequence, multiple process states can be
simultaneously optimized while counterintuitive objectives
can be achieved as demonstrated by several step response
tests. Importantly, local control loops are naturally built into
the autoregressive MTL model allowing to rely on existing
controllers in a hierarchical control design. Furthermore,
investigating the periodogram of closed-loop control revealed
that dominant oscillations are successfully damped leading to
an optimized process behavior. Analyzing the capabilities to
reject impulse disturbances showed that the proposed control
design outperforms alternative control approaches in terms
of rejection time and maximum overshoot. The investigated
empirical runtime with regard to model complexity and
prediction horizon demonstrated that the nonlinearMPCwith
a median runtime of 5-6 seconds per control step is suitable
for online application in extrusion processes.

The proposed methodology relies on an autoregressive
MTL process model [24], builds on the ideas of CPQM [19],
[20] and other end-to-end modeling approaches [21], [22],
[23] and uses its forecasting capabilities for MPC in

continuous extrusion processes. In contrast to analytical
models for MPC [31], [32], [33] and conventional PID and
fuzzy logic control [25], [26], [27], [28], [29], a data-driven
approach based on a causality graph of the system allows
to depend on actual measurements to model and control the
process dynamics. As shown by the results of the OPVC
line, the methodology in this work extends the ideas of data-
driven MPC [4], [34], [35] to the entire extrusion line and
offers a modular framework to model any process based
on individual state-models jointly trained on an extended
horizon. Due to its generic setup, the idea of using causal
dependencies to generate a structuredmodel architecture with
individual dynamic state-models that are used for process
control within the MPC framework is process agnostic.
Therefore, the proposed approach is equally applicable to
continuous processes with multistage characteristics outside
the polymer extrusion domain where traditional control
approaches fail to consider the end-to-end process dynamics.
Examples include but are not limited to food processing or
pulp and paper production, provided that the knowledge of
causal dependencies and sufficient data with adequate quality
are available.

Nevertheless, certain limitations and aspects must be
considered. First, measurement delays and other technical
constraints in the electro line, particular in the material
feeding and screw speed control system, limit the possibilities
of predictive control leading to short-term fluctuations when
steering the throughput. Second, since the reference values
are set by the operator in an ad hoc manner, the transport
delays cannot be addressed by the MPC. However, the
delays are explicitly built into the MTL models, hence, it is
possible to consider them when upcoming reference changes
are known in advance. Third, due to the technical setup
of the OPVC line, automatically changing set points via a
global control loop is not possible. Therefore, a human-in-
the-loop approach was chosen for validation purposes where
the operator blindly executes the recommendations by the
MPC restricting the update interval to 10 to 15 minutes.
Consequently, further improvements are expected when
the MPC is fully enabled for closed-loop control. Fourth,
while relying on a causality graph improves the model
robustness in general, incorrect causal assumptions lead to an
increased bias or variance of the process model, thus limiting
the applicability to processes where the dependencies are
known in advance. Lastly, several design choices (model
structures, MPC and error compensation parameters, etc.)
must be experimentally made when employing the proposed
methodology requiring an iterative validation procedure to
ensure proper configurations are used.

To further improve the methodology, multiple directions
of future work can be identified. On the one hand, other
optimization methods, for instance heuristic or genetic opti-
mization algorithmsmight improve the quality of closed-loop
control and should be evaluated in the future. On the other
hand, other approaches for adaptive error compensation,
such as an autoregressive moving average model, might
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improve the robustness of the model against process drifts
even further. Moreover, while open-loop process stability
and the empirical stability analysis are strong indicators
for closed-loop stability, a full proof was not provided yet
and must be addressed in future work. Even though the
computational efficiency (median runtime of 5-6 seconds)
is certainly sufficient for a sampling interval of 60 seconds,
other approaches, such as reinforcement learning [42], [43]
and imitation learning [44], [45], allow to significantly
reduce the runtime and represent future research directions.
Similarly, the proposed methodology might be extended
by event-triggered aspects to extend its applicability in
domains with restricted communication and computation
resources [46].Moreover, the underlying autoregressiveMTL
model can be used for other applications in the context of
process optimization, such as fault detection and soft sensing,
which represents future work.

VIII. CONCLUSION
Due to the complexity and associated challenges of modern
extrusion lines, existing approaches focusing on local con-
trollers or static models are insufficient for global process
optimization. To address this research gap, a methodology of
nonlinear model predictive control was proposed in this work
relying on the idea of autoregressive multi-task learning on an
extended forecasting horizon. Additionally, known physical
dependencies and expert knowledge are built into the process
model through a causality graph of the system allowing
to predict the future state trajectory for up to 60 minutes.
Combined with an adaptive error compensation based on
a polynomial function representing the most recent error
trajectories, the process model can be used robustly for global
optimization of multiple states simultaneously.

As shown by the experimental results on two actual
extrusion lines, the state trajectories are accurately forecasted
allowing to steer the process to closely follow the reference
values. Moreover, analyzing the frequency spectrum after
enabling closed-loop control revealed that the dominant natu-
ral oscillations in the system are effectively addressed by the
proposed approach. In addition to that, comparing the results
with normal production, supervised by a human operator,
over an extended period showed significant potential when
autoregressive end-to-end models are used for nonlinear
model predictive control in extrusion lines.

Furthermore, the analysis of disturbance rejection capa-
bilities showed that the proposed control design produces
superior results when compared to alternative control
approaches. The empirical stability analysis based on aMonte
Carlo simulation with randomized initial conditions provided
a strong indication for closed-loop stability of the nonlinear
MPC. Apart from this, an empirical runtime analysis verified
its applicability for online process control in terms of com-
putational requirements. Nevertheless, to further improve the
proposed methodology, limitations and promising research
directions were discussed to facilitate future work.
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