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Kurzfassung
WiFi-basiertes Person-Centric Sensing (PCS) bietet eine visuelle Privatsphäre wahren-
de Alternative zu optischen Verfahren durch passive, kontaktlose Überwachung über
bestehende drahtlose Infrastruktur. Aufgrund der geringen Kosten, der diskreten Inte-
gration und der Wanddurchdringung eignet sich WiFi-basiertes PCS besonders für die
großflächige Überwachung von Innenräumen. Die praktische Umsetzung wird jedoch
durch fehlende öffentliche Datensätze, begrenzte Reichweite geeigneter WiFi-Hardware,
ineffiziente Inferenz auf eingebetteten Geräten, mangelnde Generalisierbarkeit sowie die
schwer interpretierbare Natur von WiFi-Signalen erschwert.

Zur Behebung des Datenmangels werden fünf öffentlich verfügbare Channel State Informa-
tion (CSI)-Datensätze bereitgestellt: TOA, Wallhack1.8k, HALOC, 3DO und WiFiCam.
Als Evaluierungsgrundlage addressieren diese spezifische Herausforderungen in Langstre-
ckenüberwachung, Domänengeneralisierung und multimodaler Translation.

Darauf aufbauend wird gezeigt, dass gerichtete handelsübliche WiFi-Hardware Lang-
streckenüberwachung ermöglicht. Experimente bestätigen Präsenzdetektion, Aktivitäts-
erkennung und Lokalisierung über bis zu 20 Meter und mehrere Räume mit einem
Single-Link-Setup und belegen somit die Effektivität des vorgestellten Ansatzes.

Mit WiFlexFormer wird eine kompakte Transformer-Architektur vorgestellt, optimiert für
die spektralen und temporalen Eigenschaften von CSI. Mit nur ≈ 50 Tsd. Parametern und
≈ 10 ms Inferenzzeit auf Embedded-Hardware übertrifft WiFlexFormer deutlich größere
generische Vision-Architekturen als auch spezialisierte RF-Architekturen in Effizienz bei
ähnlicher oder besserer Genauigkeit.

Zur Verbesserung der Generalisierbarkeit werden Datenaugmentierung und Preprocessing-
Techniken untersucht, die robuste Modelle ohne Zugriff auf die Zieldomäne ermöglichen.
Darauf aufbauend kombiniert das DATTA-Framework Domain-Adversarial Training,
Test-Time Adaptation, zufälliges Weight Resetting und gezielte Datenaugmentierung.
DATTA ermöglicht Echtzeitanpassung an dynamische Domänen und erreicht dabei
State-of-the-Art-Generaliserungsfähigkeit von WiFi-basierten PCS-Modellen.

Abschließend wird mit WiFiCam ein neuer Ansatz zur Synthese von RGB-Bildern
aus WiFi CSI in Through-Wall-Szenarien vorgestellt. WiFiCam rekonstruiert kohärente,
visuell aussagekräftige Bilder und ermöglicht damit eine kamerafreie visuelle Überwachung.
Gleichzeitig wird die Interpretierbarkeit von CSI für nachgelagerte Aufgaben verbessert.
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Abstract
WiFi-based Person-Centric Sensing (PCS) offers a visual privacy-preserving alternative
to optical methods by enabling passive, contactless monitoring through existing wireless
infrastructure. Its low cost, unobtrusive nature, and wall-penetrating capability make it
well suited for large-scale indoor monitoring applications. However, practical deployment
remains constrained by data scarcity, limited sensing range of consumer off-the-shelf
(COTS) hardware, computational inefficiencies, poor cross-domain generalization, and
the abstract, non-intuitive nature of WiFi signals.
To address the data scarcity, five publicly available WiFi Channel State Information
(CSI)-based PCS datasets are contributed: TOA, Wallhack1.8k, HALOC, 3DO, and
WiFiCam. Each dataset targets distinct challenges in long-range and through-wall
sensing, domain generalization, and crossmodal translation.
Building on this foundation, it is demonstrated that directional sensing with low-cost
COTS WiFi systems enables long-range through-wall PCS. Experiments confirm robust
presence detection, activity recognition, and localization up to 20 meters and across
multiple rooms with a single-link setup, validating the effectiveness of the proposed
directional sensing approach in complex indoor environments.
To support real-time inference under resource constraints, WiFlexFormer, a lightweight
Transformer architecture tailored to the temporal and spectral characteristics of WiFi
CSI, is introduced. With only ≈ 50k parameters, it achieves inference latencies of ≈ 10 ms
on embedded hardware while matching or surpassing the performance of significantly
larger generic vision and RF-specific architectures.
To improve robustness across domains, data augmentation and preprocessing strategies
that enhance generalization without target-domain access are investigated. Building on
these insights, the Domain-Adversarial Test-Time Adaptation (DATTA) framework is
proposed. DATTA leverages domain-adversarial training, test-time adaptation, random
weight resetting, and data augmentation to enable robust, real-time adaptation to domain
shifts, achieving state-of-the-art cross-domain generalization performance.
Lastly, the thesis presents the first approach to synthesize RGB images from WiFi CSI in
through-wall scenarios. The WiFiCam architecture, based on a multimodal variational
autoencoder, reconstructs coherent, semantically meaningful images, enabling camera-free
visual monitoring and improving the interpretability of CSI for downstream tasks.
These contributions address core limitations in data, hardware, efficiency, generalization,
and interpretability, advancing WiFi-based PCS toward scalable real-world deployment.
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CHAPTER 1
Introduction

WiFi represents a promising modality for Person-Centric Sensing (PCS), providing visual
privacy-preserving, contactless, and unobtrusive monitoring suitable for large-scale indoor
environments. However, practical adoption remains challenging due to a lack of publicly
available datasets, limited availability of suitable sensing hardware, inefficient deep
learning architectures for real-time processing, and poor cross-domain generalization
of models. Beyond addressing these limitations, this thesis explores the potential of
WiFi-based PCS and its capabilities in challenging long-range and through-wall scenarios,
showcasing its viability as a robust alternative to traditional sensing modalities.

1.1 Motivation
PCS involves the use of wearable and contactless sensors to monitor the activities, be-
haviors, and interactions of individuals with their surroundings [1, 2]. Wearable sensors
are physically attached to the body, capturing data such as motion and physiological
signals [3]. In contrast, contactless sensors capture this information remotely by analyzing
environmental interactions [3]. The fundamental challenge in PCS lies in extracting
meaningful insights from sensor data to understand human behavior and context. This
understanding enables a wide range of applications, including healthcare domains such
as active assisted living and vital signs monitoring, as well as infrastructure and safety
contexts like smart environments, security, human-robot interaction, and autonomous
driving [1]. To realize these applications, several core sensing tasks must be effectively
addressed, including presence detection, human activity recognition (HAR), and localiza-
tion or tracking tasks that can be supported by both wearable and contactless sensing
modalities. This thesis focuses on these fundamental PCS tasks due to their critical
role in enabling practical applications. By capturing and analyzing motion patterns,
postural changes, and activity context, these tasks support diverse use cases such as
health monitoring [4, 5], rehabilitation [6], home automation [7], hazard detection [8, 9],
workplace safety assessment [10], or emergency response optimization [11].
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1. Introduction

Optical modalities, particularly RGB cameras, historically dominate PCS because of their
accessibility, high information density, and compatibility with deep learning frameworks [3,
12]. The development of Convolutional Neural Networks (CNNs), such as AlexNet in
2012 [13, 14], has revolutionized computer vision, enabling automated feature extraction
from visual data. Cameras provide rich, fine-grained information on human appearance,
posture, and motion, making them suitable for tasks like person detection [15], semantic
segmentation [16], pose estimation [17], and activity recognition [18]. Additionally,
their ever decreasing cost and widespread availability have solidified their position as a
convenient and effective data source in PCS research and development.

Despite these advantages, optical modalities pose significant challenges in privacy-sensitive
settings. Cameras inherently capture identifiable features such as color and texture [19].
In environments like homes and healthcare facilities, their presence can create a sense of
surveillance, leading to discomfort and rejection [20]. This perceived privacy violation
persists even when the systems aim to provide critical services such as medical emergency
detection, as the mere presence of an imaging device can be perceived as invasive [21].
Attempts to mitigate these concerns with depth or thermal cameras [22, 23] have had
limited success. While these alternative modalities can enhance visual privacy by reducing
feature fidelity, they still facilitate person identification [24, 25, 26] and evoke psychological
responses associated with surveillance due to their camera-like appearance [20]. Surveys
on technology acceptance in privacy-sensitive contexts consistently highlight that camera-
based systems rank among the least preferred technologies for both public and private
monitoring [20, 27, 28]. This stark contrast between the capabilities of state-of-the-art
PCS systems and user acceptance highlights a potential misalignment in the design of
privacy-sensitive sensing technologies.

To address the privacy challenges and user rejection associated with optical modalities, a
range of non-visual sensing modalities have been explored for PCS [1]. These include
mechanical, electric, electromagnetic, acoustic, and environmental sensors, each varying in
their privacy protection, range, system complexity, and cost. However, a viable alternative
to cameras must be both privacy-preserving and contactless. Wearable sensors, while
effective, are impractical due to discomfort, movement restrictions, frequent recharging,
and user forgetfulness [23]. These drawbacks are particularly significant in emergency
situations involving individuals suffering from cognitive impairments like dementia who
might forget to wear or use the device [23].

This requirement for both contactless operation and visual privacy protection narrows
the set of viable alternatives to acoustic, environmental, and electromagnetic modalities.
Acoustic sensors have been explored due to their ability to infer human activity without
capturing visual data. Acoustic sensors operating in the audible spectrum (20 Hz to
20 kHz) can be leveraged to passively monitor ambient sound patterns facilitating the
recognition of human activities but raise privacy concerns due to their potential to
capture speech, which is perceived as highly intrusive [29, 3]. Ultrasonic sensors actively
emit inaudible sound waves (>20 kHz) to detect reflections, mitigating speech-related
privacy issues but suffering from range limitations and environmental interference [30,
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3]. Moreover, surface acoustic sensors such as accelerometers and geophones detect
vibrations caused by human activity [31]. Although privacy-preserving, their effectiveness
is constrained by structural dependencies and limited range.

Environmental sensors (e.g., air temperature, pressure, or humidity, etc.), have also
been explored for PCS due to their inherent privacy-preserving nature. These sensors
can be used to infer human activity indirectly by detecting disturbances in ambient
conditions [32]. While cost-effective and non-intrusive, they provide low information
density and limited range, making them unsuitable for fine-grained PCS in larger spaces
without data fusion with other sensing modalities.

Finally, electromagnetic sensing approaches, such as radar and WiFi, have garnered
significant attention for their ability to enable contactless, unobtrusive monitoring of
human behavior without capturing visual data [33]. Radar sensors leverage the Doppler
effect by emitting radio frequency (RF) signals and analyzing their reflections to detect
motion, micro-gestures, and activity patterns [34]. While radar offers robust privacy
protection, range and coverage in indoor environments is more limited compared to
WiFi [35]. Additionally, radar systems are constrained by high hardware costs and
the complexity of signal processing, which make them less suitable for large-scale or
consumer-level PCS applications [35].

WiFi-based sensing represents a potential paradigm shift in PCS by leveraging the
ubiquitous WiFi signals already present in most indoor environments [36]. These systems
analyze variations in signal properties, such as amplitude and phase, to infer human
activities [37], locations [38], and even physiological parameters [39]. Unlike radar,
which requires specialized hardware and is limited by higher costs and shorter range in
indoor environments [35], WiFi-based enables long-range and multi-room monitoring [40].
Standard consumer off-the-shelf (COTS) WiFi devices can monitor entire buildings [41]
while maintaining low costs and minimal system complexity, making them particularly
well-suited for scalable and privacy-sensitive applications.

WiFi can address the limitations of both optical and alternative non-visual modalities.
Unlike cameras, WiFi signals do not capture any visual information such as color or
texture, inherently preserving the visual privacy of users. In comparison to acoustic and
environmental sensors, WiFi offers superior range, higher information density, and the
ability to penetrate walls for seamless multi-room coverage [40]. Its accessibility, driven
by the widespread deployment of WiFi infrastructure, positions WiFi-based PCS as a
potential alternative to traditional optical approaches, particularly in privacy-sensitive
domains like healthcare, assisted living, and smart environments. By offering a non-
invasive, cost-effective, and widely accessible solution, WiFi-based sensing aligns with user
preferences and technological demands, making it an ideal candidate for next-generation
PCS applications.

Despite its advantages, several challenges currently limit the broader adoption of WiFi-
based PCS. The availability of suitable COTS hardware remains limited, as only a
small subset of devices support the capture of Channel State Information (CSI) [42],
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1. Introduction

a requirement for modern WiFi-based PCS. Additionally, there is a lack of publicly
available datasets, especially for scenarios such as through-wall sensing, which hinders the
development and evaluation of systems tailored for these applications [43, 44]. Another
key challenge is the need for efficient deep learning architectures that can leverage the
unique characteristics of WiFi signals while enabling real-time on-device inference on
the edge [45, 46]. A further limitation is the poor cross-domain generalization of models
trained on WiFi signals, due to the inherent sensitivity of CSI to domain variations [47],
as well as the limited interpretability of WiFi signals, which hinders transparency and
constrains their use in semantically meaningful or human-in-the-loop applications.

1.2 Research Questions and Contributions
This thesis is guided by four central research questions, reflecting the current limitations
of WiFi-based PCS, including the restricted availability of suitable low-cost COTS WiFi
systems, the need for efficient deep learning architectures that operate under resource
constraints, the poor generalization of models across varying domains, and the limited
interpretability of WiFi signals for downstream use. Each question targets a specific
aspect of these limitations and serves as the foundation for the technical contributions
presented in subsequent chapters.

RQ I: How can long-range PCS be achieved with COTS WiFi systems while
minimizing complexity and cost? This research question examines the feasibility of
implementing cost-effective PCS in partitioned indoor environments using minimal COTS
WiFi infrastructure. While WiFi signals naturally propagate through walls and across
entire buildings, conventional COTS WiFi devices are designed for communication rather
than sensing. Consequently, default configurations employ omnidirectional antennas
that prioritize connection stability over spatial selectivity, creating substantial challenges
for through-wall PCS due to signal attenuation and multipath distortion. Moreover, a
naive distributed sensing approach would involve the deployment of numerous devices
throughout a building, leading to high system complexity through increased infrastructure
requirements, coordination overhead, and total system cost. To address these limitations,
the potential of minimal single-link configurations, consisting of just one transmitter
and one receiver, is examined, focusing on whether the PCS capabilities of COTS WiFi
systems can be enhanced through a directional sensing approach.

RQ II: How can deep learning architectures be designed to efficiently process
WiFi CSI for real-time PCS on low-power edge devices, while accounting for
the unique characteristics of WiFi signals? This research question addresses the
challenge of deploying PCS on resource-constrained edge devices. Certain applications
require real-time on-device inference at the edge to avoid the transmission of sensitive data
and to meet the low-latency requirements of responsive PCS systems. However, deploying
on low-power edge devices presents significant challenges due to strict constraints in
computation, memory, and energy consumption. Generic deep learning architectures
from computer vision and natural language processing domains are unoptimized for
CSI processing because they either introduce excessive parameter counts or impose
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inappropriate inductive biases, such as translation equivariance, that conflict with the
non-shift-invariant structure of CSI. Effective architectures for CSI processing must
therefore balance accuracy with compactness to enable real-time inference under edge
constraints while explicitly exploiting the unique properties of WiFi signals, including
multipath propagation, temporal correlations, and amplitude-phase relationships. The
central challenge lies in identifying architectural principles and components that leverage
these domain-specific characteristics while maintaining lightweight design suitable for
practical deployment on resource-constrained devices.

RQ III: How can WiFi-based PCS models be made robust to real-world
domain variations? This research question addresses the generalization challenge in
WiFi-based PCS where models must maintain performance across different domains,
each characterized by a unique combination of environmental, hardware, and operational
conditions that collectively shape WiFi signal propagation and sensing characteristics.
Domain variations encompass environmental factors such as different room layouts,
furniture arrangements, and building materials; hardware variations including different
WiFi chipsets and antenna configurations; temporal changes encompassing daily activity
patterns and seasonal variations; and demographic diversity spanning different body types
and movement patterns. These domain-specific conditions create distinct CSI signatures
and signal patterns, causing substantial performance degradation when models trained
in one domain encounter the unfamiliar signal characteristics of an unseen domain.
To address this challenge, domain-invariant feature learning and domain adaptation
techniques are explored to enable robust WiFi-based PCS across diverse deployment
scenarios.

RQ IV: How can WiFi signals be made more interpretable for human
understanding or downstream use? This research question explores the challenge of
transforming abstract WiFi CSI into intuitive representations that humans can readily
understand and interpret. While CSI contains rich information about environmental
changes and human activities, its high-dimensional, complex nature makes it difficult
for humans to directly comprehend or analyze, limiting both system transparency and
practical applicability. The key challenge involves determining whether WiFi CSI can
be translated into more familiar and interpretable modalities that preserve spatial
and temporal information about human activities while making the underlying sensing
processes transparent to users. Such transformation approaches not only enable intuitive
interpretation of WiFi sensing results but also open new application possibilities for
visual privacy-preserving monitoring and facilitate downstream tasks that benefit from
more accessible data representations. The central challenge involves developing methods
that can bridge the semantic gap between raw CSI patterns and human-interpretable
representations while maintaining the fidelity of the original sensing information.
The contributions presented are based on eight publications that collectively advance
WiFi-based PCS by addressing key limitations in data, hardware, and algorithmic
processing while exploring novel applications that extend the state of the art. The
contributions include the collection of specialized datasets to benchmark core PCS tasks,
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Research Area RQ Contributions

Datasets ∀ TOA [40], Wallhack1.8k [48], HALOC [49], 3DO [50],
WiFiCam [51]

WiFi Systems /
PCS Feasibility I

Development and evaluation of a series of ESP32-based
WiFi systems [40, 52, 49] using passive reflectors and
external directional antennas, verifying the feasibility of
long-range through-wall presence detection, HAR, and
localization with low-cost COTS WiFi devices.

Efficient
Architectures II

Proposal of WiFlexFormer [53], a highly efficient
Transformer-based architecture tailored to the unique
characteristics of CSI, enabling real-time WiFi-based PCS
on edge devices.

Cross-Domain
Generalization III

Systematic evaluation of data augmentation [48] and
preprocessing methods [50], and introduction of
DATTA [54], a domain-adversarial test-time adaptation
framework for robust WiFi-based PCS under domain shifts.

Interpretability /
Novel Applications IV

Proposal of the first method for synthesizing RGB images
from through-wall WiFi CSI [51], enabling visual
monitoring without cameras and enhancing interpretability
for downstream tasks.

Table 1.1: Relation between research areas, research questions and contributions.

novel WiFi system designs for long-range and through-wall sensing, feasibility studies, the
development of an efficient architecture for real-time processing of WiFi CSI, and novel
frameworks for improving cross-domain generalization. The relation between research
areas, research questions and the contributions made are illustrated in Table 1.1. A
detailed summary of each contribution follows below.

1.2.1 WiFi System Design & Feasibility of Long-Range and
Through-Wall PCS

WiFi System Designs To address the hardware-related aspects of RQ I, a series of
novel WiFi systems are developed based on the Espressif ESP32 microcontroller platform,
which enables low-cost, standalone CSI capture in a compact form factor. The novelty of
these systems lies in their ability to achieve directional sensing, which is not supported by
the ESP32’s default omnidirectional antenna. Directionality improves spatial selectivity
and signal quality by focusing transmission and reception toward the sensing target,
thereby enhancing robustness and range, especially in through-wall sensing scenarios.
The first system, introduced in [40], integrates the ESP32-S3 with a custom biquad
antenna to enable directional sensing. In a follow-up work [52], two complementary
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1.2. Research Questions and Contributions

approaches are investigated: the use of custom passive reflectors with the built-in
antenna, and design optimizations to the biquad antenna via refined reflector geometries.
Finally, [49] incorporates a commercial panel antenna for improved directionality. All
system designs are publicly available, providing a reproducible platform for evaluating
long-range, through-wall WiFi-based PCS.

Feasibility of Long-Range and Through-Wall PCS Complementing the system
development, a series of experiments is conducted to evaluate whether the proposed
low-cost, single-link COTS WiFi systems are capable of supporting long-range and
through-wall PCS scenarios, as targeted in RQ I. In [40], presence detection and HAR
are successfully performed across five rooms and a distance of 20 m. Building on this
setup, [52] further demonstrates reliable HAR under similar through-wall conditions.
Finally, [49] shows that the same class of hardware can also enable long-range localization
in a line-of-sight (LOS) scenario. These experiments confirm that low-cost, COTS WiFi
systems, when equipped with directional sensing, can facilitate person-centric sensing
over substantial spatial scales.

Datasets In addition to the proposed WiFi systems and feasibility studies, the following
publicly available datasets are contributed, each recorded using one or more of the
proposed WiFi systems. These datasets serve to verify systems functionality and to
empirically evaluate the feasibility of long-range through-wall PCS under controlled and
repeatable conditions.

• The Through-Wall Office Activities (TOA) dataset [40] is designed to evaluate
presence detection and HAR performance in LOS and through-wall scenarios,
serving as a foundation for assessing the sensing capabilities of the proposed WiFi
systems.

• Recorded in the same environment as TOA, the Wallhack1.8k dataset [52] extends
this work by incorporating data from two additional WiFi systems, enabling the
evaluation of cross-system and cross-scenario generalization in HAR tasks.

• The HAllway LOCalization (HALOC) dataset [49] contains WiFi packet sequences
synchronized with 3D trajectory data, supporting the benchmarking of WiFi
fingerprint-based localization over large indoor areas.

Publications:

• Julian Strohmayer and Martin Kampel. Wifi csi-based long-range through-
wall human activity recognition with the esp32. In International Conference on
Computer Vision Systems (ICVS), pages 41–50. Springer, 2023,
doi: https://doi.org/10.1007/978-3-031-44137-0_4.

• Julian Strohmayer and Martin Kampel. Directional antenna systems for long-
range through-wall human activity recognition. In 2024 IEEE International Con-
ference on Image Processing (ICIP), pages 3594–3599, 2024,
doi: https://doi.org/10.1109/ICIP51287.2024.10647666.
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1. Introduction

• Julian Strohmayer and Martin Kampel. Wifi CSI-based long-range person
localization using directional antennas. In The Second Tiny Papers Track at ICLR
2024, 2024, doi: https://openreview.net/forum?id=AOJFcEh5Eb.

1.2.2 Efficient Architectures for the Processing of CSI
Real-time WiFi-based PCS on edge devices requires a careful balance between inference
speed, memory footprint, and accuracy. Addressing RQ II, it is investigated how deep
learning architectures can be designed to meet these constraints while accounting for
the unique characteristics of WiFi CSI. Existing models tailored to RF/WiFi signals are
overly complex, resulting in high parameter counts with limited performance gains [55],
while CNN-based approaches impose translational-equivariance priors that are misaligned
with the non-shift-invariant structure of CSI [46].

In this context, WiFlexFormer [53] is introduced as a highly efficient Transformer-based
architecture that naturally captures the global spectral and temporal dependencies of WiFi
CSI. Comprehensive evaluations show that WiFlexFormer performs competitively with
both state-of-the-art RF/WiFi-specific and generic vision architectures, while requiring
only ≈ 50k parameters (a reduction by three orders of magnitude) and achieving an
inference time of ≈ 10 ms on a low-power single-board computer. These results make
WiFlexFormer particularly well-suited for scalable, on-device, real-time WiFi-based PCS.

Publications:

• Julian Strohmayer, Matthias Wödlinger, and Martin Kampel. Wiflexformer:
Efficient wifi-based person-centric sensing. arXiv preprint arXiv:2411.04224, 2024,
doi: https://doi.org/10.48550/arXiv.2411.04224.

1.2.3 Cross-Domain Generalization
Robustness to domain shifts is a critical challenge in deploying WiFi-based PCS in
real-world settings. Addressing RQ III, it is investigated how models can be made robust
to domain variations arising from changes in the environment, sensing scenario, and
hardware. To this end, a series of studies evaluate strategies for improving cross-domain
generalization in the context of HAR and localization tasks.

In [48], the effectiveness of data augmentation techniques is systematically assessed using
the Wallhack1.8k dataset to improve generalization across scenarios (LOS vs. through-
wall) and WiFi systems. Complementing this, [50] explores a range of preprocessing
methods, including CSI feature extraction, scaling, and dimensionality reduction, on
the 3DO dataset, which captures static, dynamic, and temporal domain variations.
Finally, [54] introduces Domain-Adversarial Test-Time Adaptation (DATTA), a novel
framework which integrates domain-adversarial training with test-time adaptation to facil-
itate rapid adaptation to unseen or changing WiFi domains while mitigating catastrophic
forgetting. On public benchmarks, DATTA outperforms state-of-the-art models by up to
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1.2. Research Questions and Contributions

8.1 percentage points in F1-score, while maintaining real-time inference capabilities on
edge hardware.

Datasets To support the study of cross-domain generalization, the following publicly
available datasets are contributed, each capturing complementary sources of domain
variability. These datasets are used to benchmark model performance under changes in
environment, sensing scenario, and WiFi system configuration.

• The previously introduced Wallhack1.8k dataset [48] is used to assess the effec-
tiveness of data augmentation techniques for improving cross-scenario (LOS vs.
through-wall) and cross-system generalization in HAR tasks.

• The 3-Days Office (3DO) dataset [50] provides WiFi packets with both activity
and 3D trajectory labels, serving as a benchmark for evaluating cross-domain
generalization in through-wall scenarios across static, dynamic, and temporal
domain variations.

Publications:

• Julian Strohmayer and Martin Kampel. Data augmentation techniques for
cross-domain wifi csi-based human activity recognition. In IFIP International
Conference on Artificial Intelligence Applications and Innovations (AIAI), pages
42–56. Springer, 2024, doi: https://doi.org/10.1007/978-3-031-63211-2_4.

• Julian Strohmayer and Martin Kampel. On the generalization of wifi-based
person-centric sensing in through-wall scenarios. In Pattern Recognition, pages
194–211, Cham, 2025. Springer Nature Switzerland, doi: https://doi.org/10.1007/978-
3-031-78354-8_13.

• Julian Strohmayer, Rafael Sterzinger, Matthias Wödlinger, and Martin Kampel.
Datta: Domain-adversarial test-time adaptation for cross-domain wifi-based human
activity recognition. arXiv preprint arXiv:2411.13284, 2024,
doi: https://doi.org/10.48550/arXiv.2411.13284.

1.2.4 CSI-based Through-Wall Imaging

To explore how WiFi signals can be made more interpretable for human understanding
and downstream use, as posed in RQ IV, the WiFiCam architecture, a novel approach
for synthesizing RGB images directly from WiFi CSI captured in through-wall scenarios,
is introduced [51]. The proposed method leverages a multimodal Variational Autoencoder
(VAE) adapted for joint processing of CSI and visual data, enabling the reconstruction
of images from WiFi signals during inference. This approach opens new application
possibilities such as through-wall visual monitoring without cameras, offering a privacy-
preserving alternative for indoor sensing. Additionally, by translating CSI into an
interpretable visual representation, it facilitates downstream tasks that traditionally
depend on vision-based data, such as semantic labeling of CSI time series.
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1. Introduction

Datasets To support research on CSI interpretability and enable supervised learning
for image synthesis, the WiFiCam dataset is introduced. It is the first to link WiFi CSI
with synchronized RGB images in a through-wall scenario and provides the ground truth
necessary for training and evaluating generative models for visual reconstruction from
WiFi signals.

• The WiFiCam dataset [51] links WiFi packet data with synchronized images in a
through-wall setting, enabling visual reconstruction from CSI.

Publications:

• Julian Strohmayer, Rafael Sterzinger, Christian Stippel, and Martin Kampel.
Through-wall imaging based on wifi channel state information. In 2024 IEEE
International Conference on Image Processing (ICIP), pages 4000–4006, 2024, doi:
https://doi.org/10.1109/ICIP51287.2024.10647775.

Collectively, these contributions advance WiFi-based PCS by addressing key challenges,
such as robust on-device sensing in dynamic environments, and by enabling new ap-
plication paradigms like through-wall visual monitoring without conventional cameras.
Through reproducible COTS WiFi system designs, publicly available datasets, and
tailored deep learning architectures for WiFi CSI processing, this work establishes a
strong foundation for future research and real-world deployment of WiFi-based PCS
technologies.

1.3 Thesis Structure

The remainder of this thesis is organized into seven chapters that build upon one another
to address the challenges of WiFi-based PCS. Chapter 2 introduces the core technical
concepts underlying WiFi-based PCS, including wireless communication principles, CSI
representation, and sensing mechanisms. Chapter 3 surveys the evolution of WiFi-based
PCS, focusing on deep learning methods for CSI processing (RQ II), cross-domain
generalization (RQ III), and imaging (RQ IV). It highlights current limitations and
motivates the need for new systems, datasets, and methods. Chapter 4 presents novel
WiFi systems designed for long-range through-wall PCS (RQ I), reducing deployment
complexity while enabling robust sensing. Chapter 5 introduces five specialized datasets
(TOA, Wallhack1.8k, HALOC, 3DO, and WiFiCam) captured with the proposed systems.
Each dataset targets specific challenges in long-range, cross-domain, and multimodal
settings. Chapter 6 details the methodological contributions related to the four research
questions: feasibility of long-range through-wall sensing (RQ I), efficient architectures
for CSI processing (RQ II), techniques for cross-domain generalization (RQ III), and
CSI-based imaging (RQ IV). Chapter 7 reflects on broader implications, discussing open
research problems, dual-use potential, and future directions. Chapter 8 concludes with a
summary of contributions and their significance for advancing WiFi-based PCS.
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1.3. Thesis Structure

Note: This thesis incorporates material of the previously published works [40, 48, 49, 50,
51, 52, 53, 54]. Portions of the original text are reproduced verbatim to retain technical
precision and specificity, while other parts are revised for coherence and consistency.
Figures from the original publications, with, and without modifications are included
(modified figures are marked by a † symbol).
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CHAPTER 2
Prerequisites

This chapter provides the technical foundations for understanding WiFi-based PCS. It
begins with an overview of the IEEE 802.11 protocol family, emphasizing the role of
Orthogonal Frequency-Division Multiplexing (OFDM) in enabling fine-grained wireless
channel measurements. It then introduces the two primary signal metrics used in PCS
(Received Signal Strength Indicator (RSSI) and CSI) and presents a mathematical model
of CSI in the frequency domain. This is followed by a discussion of feature extraction
techniques, covering amplitude, phase, and derivative representations. The chapter
concludes by outlining the physical sensing principle of WiFi-based PCS and defining
the sensing scenarios considered.

2.1 WiFi
The term WiFi refers to a family of networking protocols for wireless local area networks
(WLANs) defined by the IEEE 802.11 standards, which specify the physical and medium
access control layers for wireless local area networks [56]. The 802.11 family continuously
evolves, with each amendment introducing enhancements in throughput and reliability.
OFDM, introduced in 802.11a, enables parallel transmission over a set of sub-channels
(subcarriers) and underpins modern CSI extraction techniques [57]. Multiple-Input
Multiple-Output (MIMO), standardized in 802.11n, allows the use of multiple antennas
to transmit and receive simultaneous data streams, further increasing throughput and
spectral efficiency [58]. As a result, recent amendments, such as 802.11ax (WiFi 6),
support theoretical link rates up to 9.6 Gbit/s [59].

Although these advances primarily target high-throughput applications such as video
streaming on mobile devices, WiFi-based PCS fundamentally repurposes the wireless
communication channel as a sensing medium. Instead of transmitting user data, it
leverages the protocol’s physical-layer feedback, such as the RSSI or CSI, to capture
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domain-dependent signal variations [60, 47]. These metrics, extracted through the con-
trolled transmission of dummy packets without payload, reveal characteristic propagation
patterns that encode information about human presence, movement, or activity [40].
In doing so, WiFi is effectively misused as a passive sensor, enabling contactless PCS
without modifying the underlying protocol.

2.1.1 Received Signal Strength Indicator
The RSSI quantifies the power level of a received radio signal (such as WiFi) at the
receiver’s antenna [61]. This signal consists of multiple components arriving via different
paths (multipath), resulting in time delays, varying attenuation, and phase shifts. RSSI
provides a single scalar metric representing the combined power of these components.
The instantaneous complex baseband voltage V at the receiver input, resulting from the
superposition of these multipath components, can be represented as:

V =
N�
i=1
∥Vi∥e−jθi (2.1)

where ∥Vi∥ is the amplitude and θi is the phase of the i-th multipath component, and
N is the total number of significant multipath components. The instantaneous power
is proportional to the squared magnitude of this voltage, Pinst ∝ ∥V ∥2. However, RSSI
typically represents the average power received over a defined short period (e.g., during a
packet preamble). This average power, measured in milliwatts (mW), is then converted to
the logarithmic dBm scale (decibels relative to 1 milliwatt) using the standard formula:

RSSI (in dBm) = 10 log10

�
Pavg
1 mW

�
(2.2)

where Pavg is the average received power in milliwatts.

Although RSSI is leveraged extensively in early WiFi-based PCS research [62], its
inherent limitation lies in its aggregated nature: it provides only a single measure of
signal power over the entire WiFi channel, lacking the fine-grained information required
for sophisticated PCS tasks [63]. This lack of detail, combined with its limited robustness
even in static environments [62], has led to the adoption of CSI in modern WiFi-based
PCS approaches, which offers higher information density and environmental stability [64].

2.1.2 Channel State Information
As fittingly put by Yang et al. [62]: "In a conceptual sense, channel response is to
RSSI what a rainbow (color spectrum) is to a sunbeam, where components of different
wavelengths are separated." While RSSI aggregates the signal power across the entire
WiFi channel into a single scalar value, CSI provides a fine-grained decomposition of
the wireless channel, describing how individual frequency components are affected by
the propagation environment. Introduced with the IEEE 802.11n standard [58], CSI
captures the frequency-selective channel response by estimating the complex amplitude
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30 20 10 0 10 20 30
Subcarrier Index / Frequency

Data Subcarriers Pilot Subcarriers Null Subcarriers

Figure 2.1: OFDM subcarrier layout in the frequency domain of a WiFi 802.11n channel.

attenuation and phase shift, experienced by each OFDM subcarrier during transmission.
These estimates are derived at the receiver by comparing known reference symbols (pilots)
to the received signal and are used for channel equalization. The resulting CSI matrix
encodes detailed information about the multipath characteristics of the environment,
capturing subtle temporal and spatial variations caused, for example, by human motion.
These variations manifest as distinctive perturbations in the CSI over time, which can be
linked to specific activities through appropriate signal processing or learning-based models,
thereby enabling PCS [65, 60]. The resolution and structure of CSI are determined by
the underlying OFDM modulation scheme used in WiFi.

Orthogonal Frequency-Division Multiplexing OFDM is a modulation scheme
used in WiFi protocols, which splits the frequency band of a channel into multiple
overlapping frequency sub-bands (subcarriers) over which data is transmitted in parallel
for increased bandwidth. In the frequency domain, OFDM signals are modeled as
sinc(f) = sin(f)

f functions and can be transformed into the time domain through Inverse
Fast Fourier Transform (IFFT). The shape properties of the sinc function allow the
orthogonal placement of subcarriers, such that the peak of a given subcarrier aligns
with the zero-crossings of all other subcarriers. Thus, when computing the sum of all
subcarriers, function peaks are retained [45, 66].

A standard 2.4 GHz 802.11n WiFi channel occupies a 20 MHz-wide band, centered on
a channel carrier frequency. In Europe, the 2.4 GHz band allows 13 channels, ranging
from a channel carrier frequency of 2.412 to 2.472 GHz (5 MHz steps) [67]. Channel 1 for
example, is centered on a carrier frequency of 2.412 GHz and occupies the 20 MHz-wide
frequency band ranging from 2.402 to 2.422 GHz. As illustrated in Figure 2.1, following
the OFDM scheme, the 20 MHz-wide channel is further subdivided into 64 312.5 kHz-wide
subcarriers. The set of subcarriers comprises the DC subcarrier, centered on the channel
carrier frequency, 52 data subcarriers used for the transmission of encoded data, 7 guard
subcarriers (4 guard + 3 null) on the channel borders which mitigate interference between
adjacent channels, and 4 pilot subcarriers [68]. Pilot subcarriers serve as a corrective
measure for multipath effects. As a result of OFDM, each subcarrier occupies a different
carrier frequency within the channel bandwidth and thus experiences different frequency
selective amplitude fading effects i.e., the constructive/destructive interference caused by
signals propagating over multiple paths of varying length differs between subcarriers. Pilot
subcarriers allow, through the transmission of OFDM symbols known by transmitter and
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receiver, for the correction of these multipath effects through subcarrier equalization [66].
While Figure 2.1 serves as a good general example to demonstrate the OFDM subcarrier
layout, it should be noted that the specific numbers and types of subcarriers can vary
depending on the underlying WiFi standard and transmission mode employed (e.g.,
802.11n 20 MHz non-HT mode only supports 48 data subcarriers).

Mathematical Model The frequency-selective nature of multipath propagation, cap-
tured by CSI across multiple subcarriers, can be formally described using a mathematical
scattering model. This model expresses how the transmitted signal is modified by the
environment before reaching the receiver. Following the notation in [45], the received
signal y is modeled as y = Hx + η, where x is the transmitted signal vector, η ∼ N (µ,Σ)
is a Gaussian noise vector, and H is a complex matrix holding the Channel Frequency
Response (CFR) of each subcarrier i, expressed in polar form as hi = Amejϕi , where Ai

and ϕi denote amplitude and phase, respectively. These can be computed from the real
R(hi) and imaginary I(hi) parts of the complex CFR as:

Ai =
�
((I(hi))2 + (R(hi))2 (2.3) ϕi = atan2(I(hi),R(hi)) (2.4)

CSI lives in the frequency domain and can thus be converted to the time domain using
IFFT as given in Equation 2.5, where Ht is the Channel Impulse Response (CIR) at
time t. Transformation back to the frequency domain is performed using Fast Fourier
Transform (FFT), as given in Equation 2.6.

Ht =
N−1�
m=0

hme−j2πnm/N (2.5) hm =
N−1�
m=0

Hte
−j2πnm/N (2.6)

2.1.3 Feature Extraction
As human activities extend over time periods exceeding the time required to transmit a
single WiFi packet, WiFi-based PCS approaches consider the CSI of a set of subcarriers
S over a certain number of WiFi packets w as input, resulting in a S × w CSI matrix
H[t] of the form:

H[t] =


h1[t− w + 1] h1[t− w + 2] · · · h1[t]
h2[t− w + 1] h2[t− w + 2] · · · h2[t]

...
... . . . ...

hS [t− w + 1] hS [t− w + 2] · · · hS [t]

 , (2.7)

where t is the time of extraction (or the package index). While the raw CSI H[t] is able
to effectively capture person-centric information, it is rarely used for neural network
training without prepossessing. The reason for this is that, as of August 2025, deep
learning frameworks such as PyTorch or TensorFlow do not support complex-valued
inputs [69]. This limitation can be circumvented by separating the real and imaginary
parts of the CSI into two real-valued channels, which can then be processed. Moreover,
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(a) CSI amplitude time series (b) CSI phase time series

Figure 2.2: Examples of (a) CSI amplitude A[t] and (b) phase matrices P [t] captured in
a PCS scenario and visualized as spectrograms. The spectrograms show the amplitude
and phase of 52 L-LTF subcarriers (802.11n 20MHz HT mode) over a time interval of
approximately 1.5 seconds (150 WiFi packets). The visible temporal variations in both
quantities are induced by a person walking between the transmitter and receiver. [50]

seminal approaches leveraging Complex-Valued Neural Network (CVNN) [70] for direct
processing of CSI exist [46]. However, considering the added architecture complexity
and the associated computational overhead, their superiority over the real-valued neural
networks in WiFi-based PCS applications remain to be demonstrated. For now, real-
valued features remain the de facto standard in WiFi-based PCS, as they are directly
compatible with conventional deep learning frameworks. Amplitude and phase are the
most fundamental and widely used representations among CSI features, as they are
easy to extract without pre-processing and effectively capture person-centric information,
thereby enabling a broad range of applications [45].

Amplitude The amplitude is the absolute value of the CSI and can be extracted from
H[t], as described in Equation 2.3, resulting in the amplitude matrix A[t]:

A[t] =


A1[t− w + 1] A1[t− w + 2] · · · A1[t]
A2[t− w + 1] A2[t− w + 2] · · · A2[t]

...
... . . . ...

AS [t− w + 1] AS [t− w + 2] · · · AS [t]

 (2.8)

A visual representation of A[t], illustrating human movement-induced amplitude varia-
tions, is shown in Figure 2.2a. CSI amplitude is the most used feature in WiFi-based PCS
literature as it can be efficiently extracted and is more robust than CSI phase [71, 45].

Phase The phase (or angle) of the CSI can be extracted using Equation 2.4, resulting
in the phase matrix P[t]. A visual representation of human movement-induced phase
shifts is provided in Figure 2.2b.

P[t] =


ϕ1[t− w + 1] ϕ1[t− w + 2] · · · ϕ1[t]
ϕ2[t− w + 1] ϕ2[t− w + 2] · · · ϕ2[t]

...
... . . . ...

ϕS [t− w + 1] ϕS [t− w + 2] · · · ϕS [t]

 , (2.9)
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Figure 2.3: CSI amplitude spectrograms of a person walking and a person walking
while simultaneously waving their arms, showing distinctive patterns caused by these
activities. [48] †
While the phase can capture useful information, it often performs worse than amplitude
due to noise factors, such as Carrier Frequency Offset (CFO) and Sampling Frequency
Offset (SFO), which can be particularly difficult to mitigate in single-link systems [45].
Derivative Features In addition to amplitude and phase, alternative features are
proposed to capture temporal and spectral dynamics in CSI data. One such feature
is the first-order difference, which emphasizes short-term variations by computing the
temporal derivative of the amplitude or phase across consecutive packets [39, 72]. Another
feature is the Doppler Frequency Shift (DFS), which quantifies frequency changes induced
by human motion and is particularly informative for assessing movement speed and
direction [46]. Spectral representations are also explored. The Power Spectral Density
(PSD) characterizes the distribution of signal power across frequencies, enabling activity
recognition based on signal energy patterns [73]. Similarly, the Magnitude Spectrum
(MS) is obtained by applying an FFT to the CSI time series and reflects the strength of
each frequency component [55]. Lastly, the Body-Coordinate Velocity Profile (BVP) is
proposed as a cross-domain robust feature [74]. It estimates the subject’s velocity in body
coordinates based on multi-link CSI measurements. While theoretically environment-
independent, BVP extraction requires a multi-receiver setup and is shown to underperform
DFS in practice under domain shifts [75].

2.2 PCS Working Principle
WiFi-based PCS leverages the sensitivity of WiFi signals to environmental changes,
particularly those caused by human presence and motion [76]. When a person moves
through the environment between a WiFi transmitter and receiver, as illustrated in
Figure 2.4a, their body alters the propagation of wireless signals by introducing attenua-
tion, scattering, and phase shifts across the multipath components. These interactions
cause characteristic variations in the CSI, particularly in the amplitude and phase of the
received subcarrier signals. As a result, the presence, location, or activity of a person
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RXTX  LOS Path 

NLOS Path

(a) LOS and NLOS scenarios

RXTX  TW Path 

(b) TW scenario

Figure 2.4: Overview of PCS sensing scenarios: line-of-sight (LOS), non-line-of-sight
(NLOS), and through-wall (TW). TX and RX indicate transmitter and receiver locations,
respectively.

manifests as distinct spatiotemporal patterns in the CSI [71, 62]. For instance, walking
induces rhythmic fluctuations in amplitude and phase, while more complex activities,
such as arm-waving, generate higher-frequency perturbations [48]. These patterns can
be captured over time as spectrograms and used to differentiate between activities. Fig-
ure 2.3 illustrates this principle by comparing the CSI amplitude patterns of two activities:
walking and walking with arm-waving. The visual distinction between these patterns
underscores the discriminative power of CSI features. By learning to associate such CSI
patterns with corresponding underlying physical behaviors, machine learning models
can be trained to perform PCS tasks such as presence detection, activity recognition,
pose-estimation or localization. The ability to infer human behavior without relying on
visual information forms the foundation of WiFi-based PCS.

2.3 Sensing Scenarios
WiFi-based PCS relies on the analysis of signal perturbations induced by human presence
and activity within the propagation path of a WiFi link. Depending on how the
transmitted signal interacts with the environment and the human body, different sensing
scenarios arise, namely line-of-sight (LOS), non-line-of-sight (NLOS), and through-wall
(TW), as illustrated in Figure 2.4. These scenarios are defined by the characteristics of
the dominant signal propagation paths between the transmitter and receiver.

In LOS scenarios, the direct propagation path between transmitter and receiver remains
unobstructed by physical structures, but is intersected by the human body. This allows
the signal to interact directly with the person, making body-induced attenuation and
phase shifts the dominant source of variation in the received CSI. As a result, LOS
scenarios yield highly characteristic signal patterns.

In contrast, NLOS scenarios occur when the direct path is obstructed by non-structural
elements such as furniture or partial occlusions by room layout. In these cases, the WiFi
signal reaches the receiver primarily through secondary reflections and diffraction paths
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involving the walls, floor, ceiling, or surrounding objects. While the human body still
influences the multipath components, the signal is now a mixture of person-centric and
environmental reflections, complicating the extraction of person-centric features.
TW scenarios represent the most challenging condition, where one or more solid structural
walls entirely block the direct path between transmitter and receiver. The signal must
penetrate the wall material and undergo multiple scattering and attenuation processes
before reaching the receiver. These effects drastically reduce signal strength and alter
propagation characteristics, making it significantly harder to isolate human-induced
variations. Despite these difficulties, TW scenarios are of particular interest, as they
enable remote sensing of human behavior across room boundaries, offering an important
advantage for unobtrusive, scalable indoor monitoring over optical modalities.
These scenario definitions serve as a framework for experimental design, dataset develop-
ment, and evaluation of model robustness under varying propagation conditions.

Summary
RSSI provides only a coarse representation of signal strength, lacking the temporal and
spectral resolution needed to capture the fine-grained variations introduced by human
motion. CSI, in contrast, offers a frequency-selective view of the wireless channel that
reflects multipath effects induced by human activity. Its higher information density
enables learning-based models to extract subtle spatiotemporal patterns, supporting a
broad range of sensing tasks. Consequently, all methods proposed herein operate on CSI,
which serves as the principal signal representation throughout.
To enable learning on CSI data, real-valued features are extracted. Amplitude and phase
are fundamental, with amplitude being directly derived from raw CSI without requiring
preprocessing or calibration, and exhibiting lower susceptibility to noise than phase. Its
simplicity and compatibility with standard deep learning frameworks make it particularly
suitable for real-time PCS on embedded devices. Derivative features such as temporal
differences, Doppler shifts, and spectral transforms emphasize motion-specific signatures
but introduce additional computational overhead. This trade-off between efficiency and
expressiveness informs the architectural considerations explored in RQ II.
CSI characteristics vary significantly across sensing scenarios. LOS, NLOS, and TW
scenarios exhibit distinct propagation behaviors, with TW scenarios experiencing stronger
attenuation and scattering due to structural obstructions. Enabling long-range PCS
under such conditions requires system designs tailored to these conditions, as addressed
in RQ I. Moreover, the substantial signal differences across scenarios can hinder model
generalization, motivating investigations into cross-scenario generalization RQ III.
Human motion induces structured variations in CSI over time, visible in the amplitude
and phase across subcarriers. These patterns encode information that learning-based
models can associate with presence, activity, or location. However, their abstract and
non-visual nature limits human interpretability, motivating methods that translate CSI
into semantically meaningful or visual representations, as explored in RQ IV.
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CHAPTER 3
Related Work

This chapter surveys prior work on WiFi-based PCS with a focus on approaches that utilize
COTS WiFi devices, specifically commercially available consumer equipment rather than
custom research hardware or software-defined radios. It provides a structured overview of
the methodological foundations, particularly those relevant to the contributions presented
in Chapter 6. By limiting the scope to device-free indoor sensing with COTS WiFi
devices, the survey reflects the practical constraints and application goals of this thesis.

The survey is organized both chronologically and thematically. It begins by outlining early
feasibility studies prior to 2015, which rely on RSSI and traditional or classical machine
learning methods to demonstrate the potential of WiFi-based PCS. The subsequent focus
lies on approaches from 2015 onward, exploiting CSI and deep learning methods to extract
fine-grained information from wireless signals. This recent body of work is grouped into
three main categories. The first addresses deep learning architectures tailored to CSI,
exploring how network design choices affect performance and computational efficiency, an
aspect closely tied to the processing of CSI on embedded systems (RQ II). The second
covers strategies for achieving robustness under domain shifts, such as environmental
variation, and user diversity. These works inform the development of generalizable
models that maintain performance across deployment settings (RQ III). The third
category encompasses WiFi-based imaging methods, including pose estimation and WiFi-
to-image translation, which aim to derive dense, interpretable representations from CSI
data (RQ IV). Together, these three categories reflect core methodological challenges
examined, such as the efficient processing of CSI, cross-domain generalization, and
interpretability

3.1 Early Work
Early work on WiFi-based PCS initially leverages RSSI measurements for indoor localiza-
tion and motion detection, laying the foundation for more refined CSI-based approaches
that later extend the application scope to HAR [62, 77]. Table 3.1 summarizes these
seminal contributions.
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Work Year Description
Bahl and Padmanabhan [78] 2000 First demonstration of RSSI-based localization.
Halperin et al. [79] 2011 Enabling of CSI-capturing on COTS WiFi devices.
Koshba et al. [80] 2012 First demonstration of RSSI-based motion detection.
Wu et al. [81] 2012 First demonstration of CSI-based localization.
Xiao et al. [82] 2012 First demonstration of CSI-based motion detection.
Sigg et al. [83] 2013 First demonstration of RSSI-based HAR.
Wang et al. [84] 2014 First demonstration of CSI-based HAR.

Table 3.1: Overview of early seminal works on WiFi-based PCS.

RSSI-based Sensing The RADAR system introduced by Bahl and Padmanabhan [78]
is a cornerstone in WiFi-based PCS, demonstrating the first use of RSSI measurements
for indoor localization using COTS WiFi devices. By combining empirical signal strength
fingerprints with radio propagation models, RADAR enables real-time user tracking with
a median localization error of 2–3 meters, thereby establishing the feasibility of location-
aware applications over existing WiFi networks. Subsequent work during the first decade,
exemplified by the HORUS system [85, 86], focuses on refining RSSI-based localization,
achieving room-level accuracy in controlled environments. As a precursor to HAR, Kosba
et al. [80] demonstrate RSSI-based motion detection with their RASID system, which
employs statistical anomaly detection on RSSI measurements to identify human motion
without requiring individuals to carry devices. Building on these approaches, Sigg et
al. [83] explore RSSI fluctuations for HAR, extracting multiple statistical features to
classify activities such as lying, standing, walking, and crawling.

CSI Capture on COTS WiFi Devices A major turning point occurs in 2011 with
the release of the Linux 802.11n CSI Tool [79], which enables the capture of CSI from
COTS WiFi devices (specifically, the Intel WiFi Link 5300 network interface card (NIC)).
This breakthrough catalyzes the shift from coarse RSSI-based techniques to more precise
CSI-based approaches [62, 77], and despite the discontinuation of the Intel WiFi Link
5300, the tool remains widely used in WiFi-based PCS research [87].

CSI-based Sensing Leveraging the Linux 802.11n CSI Tool, Wu et al. [81] demonstrate
the first CSI-based localization system, FILA, achieving sub-meter accuracy. Around the
same time, Sen et al. [88] introduce PinLoc, a CSI fingerprint-based indoor localization
system. However, both systems require users to carry WiFi-enabled target devices.
The evolution continues with Xiao et al. [82], who present FIMD, the first device-free
system to detect fine-grained human motion by capturing subtle variations in CSI data.
This advancement marks a significant step toward more practical, device-free sensing.
Finally, Wang et al. [84] introduce E-eyes, the first CSI-based system for HAR in a
home environment. In an offline phase, E-eyes builds a CSI amplitude location-activity
profile database using existing WiFi devices. At test time, it recognizes activities by
matching measured profiles to those in the reference database. To overcome generalization
issues inherent in domain-dependent CSI profiles, Wang et al. [89] later propose CARM,
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a CSI-based HAR system that employs PCA-based denoising and a Discrete Wavelet
Transform for velocity feature extraction, achieving higher robustness in cross-domain
scenarios.

Collectively, these seminal works lay the foundation for WiFi-based PCS, marking a
transition from early RSSI-based localization and motion detection to sophisticated
CSI-based systems capable of precise localization and fine-grained activity recognition.

3.2 State of the Art
Modern WiFi-based PCS research builds on early feasibility studies by leveraging CSI
and deep learning to extract fine-grained spatiotemporal information from wireless signals.
The following works, all based on COTS WiFi hardware, address key methodological
challenges related to the efficient processing of CSI, cross-domain generalization, and the
derivation of interpretable representations.

3.2.1 Deep Learning Architectures for WiFi-based PCS
Early WiFi-based PCS relies on traditional signal processing and statistical machine
learning, but recent advancements shift toward deep learning, enabling effective feature
extraction directly from CSI [77, 90]. Deep learning architectures for WiFi-based PCS
primarily fall into three categories: CNN-based, Recurrent Neural Network (RNN)-based,
and Transformer-based methods, each tailored to leverage the unique spatiotemporal char-
acteristics of CSI data. Table 3.2 summarizes the discussed WiFi-based PCS architectures,
highlighting their applications and core contributions.

CNN-based Architectures CNN architectures [99, 13] are widely adopted for WiFi-
based PCS due to their capability to effectively learn spatial or frequency-domain patterns
from WiFi CSI spectrograms. Zhao et al. [91] introduce RF-Pose, the first CNN-based
method mapping RF signals to 2D human skeleton keypoints, achieving through-wall
pose estimation by training with paired image data. Similarly, Wang et al. [94] present
Person-in-WiFi, a CNN-based approach for simultaneous person segmentation and 2D
pose estimation from CSI using two WiFi routers, matching the performance of vision-
based methods. For HAR applications, Ding et al. [55] develop RF-Net, employing
a dual-stream CNN to extract complementary time- and frequency-domain features,
combined with a meta-learning module for rapid domain adaptation in few-shot scenarios.
Zhang et al.’s CrossSense[92] leverages a CNN-based mixture-of-experts framework
to handle large-scale variability across multiple sites and activities, improving cross-
domain performance. Additionally, Yang et al. [46] propose SLNet, introducing a novel
Spectrogram Enhancement Network (SEN) and a specialized complex-valued polarized
CNN architecture to improve spectrogram quality and feature extraction robustness,
achieving high accuracy in HAR tasks across diverse environments.

RNN-based Architectures RNN architectures [100], particularly Long Short-Term
Memory (LSTM) networks [101], are also explored due to their capability to capture
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Work Year Appl. Method Summary

Yousefi et al. [65] 2017 HAR RNN
(LSTM)

Proposes an LSTM-based architecture capturing
temporal dependencies in CSI for human activity
recognition.

Zhao et al. [91] 2018 L,P CNN
Introduces RF-Pose, the first CNN system for
through-wall 2D human pose estimation using
WiFi signals.

Zhang et al. [92] 2018 HAR CNN
Proposes CrossSense, a CNN-based
mixture-of-experts architecture enhancing
cross-domain generalization in HAR.

Chen et al. [93] 2019 HAR RNN
(ABLSTM)

Introduces attention-augmented bidirectional
LSTM (ABLSTM) to improve discrimination of
similar human activities.

Wang et al. [94] 2019 L,P,I CNN
Proposes Person-in-WiFi, the first CNN-based
system to jointly estimate human silhouettes and
poses from CSI using COTS WiFi hardware.

Jiang et al. [95] 2020 P CNN+RNN
(LSTM)

Introduces WiPose, a CNN-LSTM system for
single-person 3D human pose estimation guided
by skeletal constraints.

Ding et al. [55] 2020 HAR CNN
Proposes RF-Net, a dual-stream CNN combined
with meta-learning for CSI-based HAR across
domains.

Zhang et al. [74] 2022 HAR CNN+RNN
(GRU)

Proposes Widar3.0, a CNN-GRU framework for
robust gesture recognition using multi-link CSI
data.

Yang et al. [96] 2023 HAR Transformer
Introduces WiTransformer, applying a
Transformer architecture to improve gesture
recognition using CSI data.

Yang et al. [46] 2023 HAR CVNN
Proposes SLNet, a complex-valued CNN designed
specifically for direct feature extraction from raw
CSI data.

Luo et al. [97] 2024 HAR Transformer
Evaluates the performance of ViTs on CSI data,
highlighting their capabilities and limitations in
HAR tasks.

Yan et al. [98] 2024 P Transformer
Introduces Person-in-WiFi 3D, a multi-person 3D
pose estimation system leveraging Transformer
architectures and multi-view CSI.

Table 3.2: Overview of discussed deep learning architectures in WiFi-based PCS. Abbre-
viations: HAR = human activity recognition, L = localization, P = pose estimation, I =
imaging.

temporal dependencies in sequential CSI data. Yousefi et al. [65] pioneer the use of LSTMs
for HAR, demonstrating improved temporal modeling and recognition performance
compared to traditional classifiers. Chen et al. [93] further advance this approach
by proposing an attention-augmented bi-directional LSTM (ABLSTM), improving the
discrimination of activities with subtle temporal distinctions. Integrating CNN and RNN
components, Jiang et al. [95] propose WiPose, a hybrid CNN-LSTM framework combining
CSI and velocity profiles to perform accurate single-person 3D pose estimation. Similarly,
the Widar3.0 system [74] employs a CNN backbone for spatial feature extraction followed
by a single-layer Gated Recurrent Unit (GRU) network [102] for temporal modeling,
effectively capturing short-term temporal dependencies for gesture recognition tasks.

Transformer-based Architectures Transformer [103] architectures recently demon-
strate superior performance due to their ability to capture global dependencies within
CSI data using self-attention mechanisms. Li et al.’s [104] two-stream Transformer model,
THAT, captures both time-over-frequency and frequency-over-time dependencies through
a multi-scale convolutional self-attention mechanism, outperforming prior CNN and RNN-
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based models for HAR. Following this success, Yang et al. [96] introduce WiTransformer,
a purely Transformer-based architecture adapted specifically for WiFi-based gesture
recognition tasks. Luo et al. [97] evaluate Vision Transformers (ViTs) [105] for HAR
using CSI spectrograms but highlight that naive implementations can lead to overfitting
due to irrelevant visual features in CSI data [98]. Addressing multi-person 3D pose
estimation, Yan et al.[98] present Person-in-WiFi 3D, employing a Transformer-based
detection head inspired by DETR [106], achieving robust multi-person 3D pose estimation
from CSI data with sub-decimeter accuracy.

3.2.2 Cross-Domain Generalization
Cross-domain generalization remains a challenge for WiFi-based PCS, as variations in
environments, user populations, and hardware degrade model performance in unseen
settings. Recent research addresses this through multiple complementary approaches,
including domain-invariant feature extraction, virtual sample generation, transfer and few-
shot learning, and big data-driven training strategies [47]. These methods aim either to
reduce sensitivity to domain-specific variations, synthesize or augment data representing
new conditions, or efficiently adapt existing knowledge to novel scenarios, thus enabling
robust deployment across diverse and dynamic real-world domains. Tables 3.3 and 3.4
summarize the discussed works on cross-domain generalization in WiFi-based PCS,
highlighting their applications, approach, and core contributions.

Domain-Invariant Feature Extraction Robust cross-domain generalization in WiFi-
based PCS relies on extracting features resilient to variations caused by changing envi-
ronments, hardware, and other domain-specific noise sources. Raw CSI amplitude and
phase measurements are inherently sensitive to such shifts, motivating the development
of alternative representations. One approach leverages temporal dynamics rather than
absolute signal values: first-order difference features from consecutive amplitude [39] or
phase measurements [72] emphasize motion-induced changes, effectively reducing static
environmental influences. Similarly, transforming CSI signals into the frequency domain
via PSD [73] exploits frequency characteristics unique to human motion, filtering out
static and slowly varying noise. The BVP, introduced by Widar3.0 [107, 74], lever-
ages physical invariances in human-induced Doppler shifts by aggregating CSI across
multiple WiFi links, effectively suppressing multipath interference. Although robust,
BVP’s reliance on multiple spatially-arranged WiFi links limits practical deployment.
Complementary approaches utilize signal decomposition and dimensionality reduction
techniques to isolate activity-related information from environmental noise. FFT-based
band-pass filtering, for example, isolates the human activity frequency range (0–80 Hz),
effectively eliminating domain-specific interference [115, 116].

Dimensionality reduction methods like Principal Component Analysis (PCA), Indepen-
dent Component Analysis (ICA), and Uniform Manifold Approximation and Projection
(UMAP) also show promise [50]. PCA reduces the dimensionality of CSI data while
eliminating noisy OFDM subcarriers by focusing on axes of maximal variance [45]. ICA
separates multivariate CSI signals into independent source signals, enhancing robustness
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Work Year Appl. Approach Summary

Ding et al. [72] 2018 HAR,
MD DFE

Proposes using CSI phase difference between
antennas to reliably capture human motion and
suppress static interference.

Zhang et al. [92] 2018 HAR VSG, TFL,
BDA

Introduces a mixture-of-experts CNN architecture
and CSI augmentation to enhance cross-site
generalization for gesture and gait recognition.

Jiang et al. [71] 2018 HAR TFL
Applies domain-adversarial training (DAT) to learn
domain-invariant CSI features across diverse
environments.

Zheng et al. [107] 2019 HAR DFE, BDA
Introduces Body-coordinate Velocity Profile (BVP),
a CSI-based representation invariant to
environment, enabling robust gesture recognition.

Bai et al. [108] 2019 HAR TFL
Proposes WiDrive, employing transfer learning
(HMM-GMM) for in-car activity recognition from
limited labeled data.

Wang et al. [109] 2019 HAR BDA
Utilizes multiple spatially distributed WiFi links to
robustly monitor respiration across diverse sleeping
positions.

Jiang et al. [95] 2020 P TFL
Integrates human kinematics with CNN-LSTM
architecture, predicting realistic 3D poses from
WiFi signals.

Zeng et al. [110] 2020 HAR DFE Applies ICA for blind source separation, improving
CSI robustness for multi-person scenarios.

Sheng et al. [111] 2020 HAR TFL Proposes test-time fine-tuning of a CNN-BiLSTM
architecture for efficient domain adaptation in HAR.

Hu et al. [112] 2021 HAR TFL
Introduces DSEN (Deep Similarity Evaluation
Networks) for few-shot CSI-based gesture
recognition.

Kang et al. [113] 2021 HAR TFL
Proposes a multi-source domain adversarial network
with attention-driven feature disentanglement for
robust gesture recognition across environments and
subjects.

Zhang et al. [74] 2022 HAR DFE, BDA
Proposes Widar3.0, leveraging body-coordinate
velocity profiles from multiple WiFi links to
robustly capture gestures.

Wu et al. [114] 2021 L BDA
Proposes WiTraj, utilizing multiple WiFi links for
reliable trajectory estimation regardless of posture
and orientation.

Table 3.3: Overview of discussed works on cross-domain generalization in WiFi-based
PCS. Abbreviations: DFE = Domain-invariant Feature Extraction, VSG = Virtual
Sample Generation, TFL = Transfer/Few-Shot Learning, BDA = Big Data Approaches,
HAR = Human Activity Recognition, MD = Motion Detection, L = Localization, P =
Pose Estimation.

especially in multi-person scenarios [110]. Non-linear approaches, such as UMAP, main-
tain local and global data structures, further facilitating the extraction of robust CSI
representations for localization and HAR tasks [117].

Complementing signal processing methods, system-level approaches like UniFi[118] and
AirFi[119] leverage adversarial and multi-domain training to directly enforce learning
domain-invariant features. These methods encourage stability of feature representations
across domains but typically require extensive and diverse training datasets to adequately
capture domain variability.

Virtual Sample Generation Virtual sample generation addresses cross-domain gen-
eralization by synthesizing diverse, physically plausible CSI patterns, helping models
become robust to domain shifts. Simple yet effective approaches include controlled
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noise injection and subcarrier-level dropout, mimicking channel noise and hardware
variability [120]. More sophisticated techniques involve targeted augmentations; Serbetci
et al. [121] introduce CSI augmentations inspired by physical propagation models, such
as phase and amplitude shifts, improving cross-environment localization. Remarkably,
using augmented samples equivalent to only 10% of original data matches full-dataset
accuracy, demonstrating the efficiency of meaningful augmentation [121].

Generative modeling further enriches training data by capturing intricate domain varia-
tions. CrossSense [92] employs generative models to synthesize CSI samples representative
of unseen environments, substantially improving cross-domain gesture recognition perfor-
mance. Similarly, Variational Autoencoders (VAEs) [122, 123] and Generative Adversarial
Networks (GANs) [124] effectively generate synthetic CSI data reflective of diverse envi-
ronments.

Additionally, general augmentation methods, including noise injection, subcarrier dropout,
and MixUp [125, 126], successfully simulate environmental and hardware variability, fur-
ther enhancing model robustness [125, 120]. Despite these successes, purely synthetic
augmentations might fail to fully replicate complex real-world domain variations, necessi-
tating integration with complementary adaptation approaches for optimal performance.

Transfer and Few-Shot Learning Transfer learning enhances cross-domain gener-
alization by leveraging knowledge from source domains, adapting efficiently to target
domains with minimal or no labeled data. Such methods typically employ either parameter
transfer, fine-tuning pre-trained models on limited target data, or feature representation
transfer, learning shared embeddings across domains. Parameter-transfer methods like
WiDrive [108], CNN-RNN, and ANN architectures [111, 92] selectively update model
parameters, reducing retraining effort. Feature-representation methods, notably Domain-
Adversarial Neural Networks (DANN) [132, 133, 71], enforce domain invariance via
adversarial training. Kang et al. [113] further enhance this with a multi-source adversar-
ial framework, aligning features across multiple environments and orientations, while Hao
et al. [127] employ correlation alignment (CORAL) loss for unsupervised adaptation.

Few-shot learning approaches achieve even stronger adaptability from limited data by
explicitly comparing similarities across domains. RFNet-based methods like Zhao et al.’s
KNN-MMD [129] combine metric learning with Maximum Mean Discrepancy (MMD),
yielding robust few-shot performance. CrossSense [92] integrates generative modeling
with a mixture-of-experts architecture to synthesize CSI samples for unseen environments,
supporting effective few-shot gesture recognition. Further contributions include Deep
Similarity Evaluation Networks (DSENs) [112], attention-based Matching Networks
(MatNets) [134, 135], Siamese Networks [136], and Prototypical Networks [137, 138],
all leveraging metric-learning principles for robust generalization from minimal data.
Collectively, transfer and few-shot learning advance rapid deployment and adaptation of
WiFi-based PCS across diverse domains.
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Work Year Appl. Approach Summary
Li et al. [124] 2021 HAR VSG Proposes GAN-based data augmentation (CrossGR)

for robust gesture recognition from CSI.

Chen et al. [123] 2022 L VSG, TFL
Proposes Fidora, employing a VAE for data
augmentation and a domain-adaptive classifier for
localization.

Hao et al. [127] 2022 HAR TFL
Proposes Wi-CAL using CORAL loss for
unsupervised domain adaptation, aligning CSI
feature covariances across domains.

Zhang et al. [128] 2022 HAR BDA
Introduces HandGest, leveraging multiple WiFi
links to derive robust, location- and
orientation-independent gesture features.

Shi et al. [116] 2022 HAR DFE, BDA
Applies AFEE filtering to suppress environmental
noise in CSI and used Matching Networks for
one-shot HAR across environments.

Zhang et al. [74] 2022 HAR DFE, BDA
Proposes Widar3.0 utilizing body-coordinate
velocity profiles (BVP) for environment-agnostic
gesture recognition.

Lee et al. [125] 2023 HAR VSG Introduces MixUp augmentation for CSI amplitude,
enhancing long-term generalization of HAR models.

Serbetci et
al. [121] 2023 L VSG

Proposes physically motivated CSI augmentations,
for improved cross-domain localization performance
with minimal real data.

Ali et al. [39] 2023 HAR DFE
Utilizes first-order CSI amplitude differences to
robustly capture vital signs, reducing static
interference.

Stahlke et
al. [117] 2023 L DFE Applies UMAP dimensionality reduction for

improved CSI-based indoor localization.

Wang et al. [119] 2024 HAR DFE, BDA
Proposes AirFi, an adversarial training framework
learning environment-invariant CSI features from
diverse domains.

Liu et al. [118] 2024 HAR DFE, BDA
Proposes UniFi, learning domain-invariant features
using CSI data aggregated from multiple WiFi
receivers.

Zhao et al. [129] 2024 HAR TFL
Applies metric learning combined with Maximum
Mean Discrepancy (MMD) for robust few-shot
HAR.

Zhao et al. [130] 2024 HAR TFL, BDA
Introduces CrossFi, a Siamese network using
attention-based similarity for one-shot and
zero-shot HAR adaptation.

Zheng et al. [131] 2025 HAR BDA
Proposes AdaWiFi, using federated feature fusion
from multiple WiFi APs for collaborative,
environment-agnostic sensing without centralized
data sharing.

Table 3.4: Overview of discussed works on cross-domain generalization in WiFi-based
PCS. Abbreviations: DFE = Domain-invariant Feature Extraction, VSG = Virtual
Sample Generation, TFL = Transfer/Few-Shot Learning, BDA = Big Data Approaches,
HAR = Human Activity Recognition, L = Localization.

Big Data Approaches Big data approaches enhance cross-domain generalization
by training on datasets covering diverse environments, user populations, and device
configurations. These methods inherently expose models to greater environmental
variability, reducing susceptibility to domain shifts. However, large-scale CSI data
collection is labor-intensive, and publicly available datasets remain limited, often leading
models to overfit specific conditions [130]. To address this, collaborative multi-link
systems are explored: Widar3.0 [74] leverages multiple WiFi links to construct a body-
coordinate velocity profile (BVP), effectively capturing human-centric motion while
reducing domain-dependent multipath effects. Similarly, HandGest [128] utilizes spatial
diversity from multiple WiFi links to derive orientation-invariant gesture features, while

28



3.2. State of the Art

WiSDAR [109] employs spatially separated links to reliably monitor respiration across
varying positions. Additionally, WiTraj [114] leverages multiple receivers positioned
at different viewing angles, ensuring reliable velocity measurements regardless of user
posture, orientation, or walking direction.

Recent approaches like AirFi [119] and AFEE-MatNet [116] leverage large-scale multi-
environment training to directly learn domain-invariant representations. Although
these big data approaches enhance robustness through extensive data diversity, they
introduce practical challenges related to complex hardware configurations, high costs,
and substantial deployment and maintenance overhead, limiting broader real-world
applicability.

3.2.3 WiFi-based Imaging
WiFi-based imaging is a sensing paradigm that aims to reconstruct visual representations
of humans and objects directly from WiFi CSI. Originally motivated by works on human
pose estimation, which infer sparse representations (e.g., 2D or 3D keypoints) from
CSI, recent works advance toward synthesizing dense visual representations, such as
human segmentation masks, RGB images, and depth maps. Leveraging deep learning
architectures, including CNNs, Transformers, GANs, and teacher-student models trained
via cross-modal supervision, these works progressively narrow the fidelity gap between
WiFi and optical imaging, revealing WiFi’s surprising potential as a visual privacy-
preserving alternative to optical cameras. Table 3.5 summarizes key works in WiFi-based
imaging, highlighting their output modalities, methods, and contributions.

Human Pose Estimation WiFi-based imaging originates from works on human
pose estimation aiming to infer sparse 2D/3D body keypoints from WiFi CSI. Zhao et
al. [91] introduce RF-Pose, a pioneering system for TW 2D human skeleton estimation.
RF-Pose employs cross-modal supervision from RGB images, demonstrating for the
first time accurate WiFi-based pose estimation without human-labeled wireless data.
Building on this concept, Wang et al. [94] propose Person-in-WiFi, a multi-task CNN
architecture that simultaneously predicts human skeletons and binary segmentation
masks from CSI. This work notably achieves camera-like accuracy using only COTS
WiFi hardware. Subsequent developments continue expanding the fidelity and complexity
of WiFi-based pose estimation. Yang et al. [143] introduce MetaFi, utilizing a CNN
with custom convolutional and residual layers to infer accurate 2D keypoints suitable
for avatar animation in virtual environments. The enhanced successor, MetaFi++ [144],
incorporates a Transformer-based backbone, further increasing pose estimation robustness
and accuracy, reflecting the broader trend toward advanced vision-inspired architectures.
Addressing the challenge of reconstructing plausible 3D human poses, Jiang et al. [95]
propose WiPose, a hybrid CNN-LSTM architecture embedding biomechanical constraints
to ensure realistic and physically consistent 3D skeleton predictions. Advancing this
further, Yan et al. [98] introduce Person-in-WiFi 3D, a Transformer-based multi-view
architecture enabling multi-person 3D pose estimation using spatially distributed WiFi
transceivers. This study validates the viability of WiFi-based multi-subject 3D pose
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Work Year Output
Modalities Method Key Contributions

Zhao et al. [91] 2018 2D pose CNN
(teacher-student)

Demonstrates TW human pose estimation
using WiFi CSI.

Wang et al. [94] 2019 2D pose,
binary mask CNN

Introduces Person-in-WiFi: simultaneous
segmentation and 2D pose estimation
from commodity WiFi.

Li et al. [139] 2020 semantic
mask cGAN

Proposes WiSIA, for semantic mask
generation for multiple humans and
objects from WiFi CSI.

Kefayati et al. [140] 2020 RGB CNN
(encoder–decoder)

Proposes WiFi-to-video synthesis (Wi2Vi),
introducing novel augmentation for
robustness.

Jiang et al. [95] 2020 3D pose CNN+RNN
(LSTM)

Proposes WiPose for 3D human pose
estimation using skeletal constraints from
CSI.

Kato et al. [141] 2021 RGB GAN
Proposes CSI2Image, a GAN-based
WiFi-to-image synthesis method,
introducing an object-detection evaluation
metric.

Geng et al. [142] 2022 2D pose
(dense)

CNN
Proposes DensePose from WiFi, a dense
pose estimation method utilizing WiFi
signals, producing detailed UV maps of
humans.

Yang et al. [143] 2022 2D pose CNN Proposes MetaFi, a CNN-based 2D pose
estimation method for avatar animation.

Zhou et al. [144] 2023 2D pose Transformer
Proposes MetaFi++ for improved
WiFi-to-pose estimation utilizing a
Transformer.

Chen et al. [145] 2023 binary mask CNN
(encoder–decoder)

Introduces Wi-Seg for binary human
segmentation using WiFi CSI.

Yan et al. [98] 2024 3D pose Transformer
Proposes Person-in-WiFi 3D, a
WiFi-based multi-person 3D pose
estimation method with
Transformer-based fusion.

Wang et al. [146] 2024 3D mesh CNN+RNN
(GRU)

Proposes MultiMesh, a WiFi-based
multi-person 3D mesh reconstruction
method using CNN-GRU with a SMPL
model.

Cao et al. [147] 2025 depth VAE
(teacher-student)

Proposes Wi-Depth, for reliable depth
reconstruction from WiFi CSI via
multi-task learning, utilizing a VAE-based
architecture.

Table 3.5: Overview of discussed works on WiFi-based imaging.
imaging with accuracy comparable to vision and radar modalities. Recently, Wang et
al. [146] expand beyond skeletons to detailed human meshes with MultiMesh, leveraging
a CNN-GRU architecture to predict parameters of a parametric SMPL body model [148]
directly from CSI-derived angle-of-arrival images. Pushing pose estimation to even finer
granularity, Geng et al. [142] introduce DensePose from WiFi, mapping CSI signals to
dense UV correspondence maps assigning every pixel on the human body to canonical
3D surface coordinates. By adapting state-of-the-art dense pose estimation methods
from computer vision to WiFi signals, this work achieves detailed human pose and shape
estimation entirely from WiFi signals, advancing WiFi’s ability to perform complex,
fine-grained human imaging tasks.

WiFi-to-Image Synthesis Inspired by advancements in pose estimation, WiFi-based
imaging methods explore the direct synthesis of dense visual representations, including
RGB images, segmentation masks, and depth images, from raw CSI. These approaches
frame WiFi sensing as an image-to-image translation task, synthesizing meaningful visual
content directly from WiFi signals. Kefayati et al. [140] pioneer this direction with
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Wi2Vi, demonstrating the feasibility of synthesizing RGB video frames solely from WiFi
CSI through an autoencoder architecture supervised by synchronized camera footage
during training. They introduce specialized data augmentation strategies to mitigate
real-world CSI variability, opening a new frontier for dynamic WiFi-to-image mapping.
Extending this direction, Kato et al. [141] develop CSI2Image, a GAN-based framework
enhancing the visual realism of WiFi-generated RGB images. This work uniquely employs
an object detection model as a semantic evaluation metric, validating the information
content and correctness of synthesized images. Parallel efforts explore synthesizing
semantic segmentation masks. Li et al. [139] propose WiSIA, employing a conditional
GAN architecture to simultaneously detect, segment, and identify multiple humans and
objects in semantic masks generated purely from CSI data. Similarly, Chen et al. [145]
introduce Wi-Seg, using a CNN-based encoder-decoder to effectively map CSI signals
to accurate binary human segmentation masks, directly extracting person silhouettes
without visual data at inference time. Moreover, previous pose estimation works, such as
Person-in-WiFi [94], also produce binary human masks as intermediate outputs, further
underscoring CSI’s capacity to support semantic image representations. Extending WiFi
imaging into full 3D scene understanding, Cao et al. [147] propose Wi-Depth, a novel
teacher-student VAE architecture. By decomposing depth imaging into shape, depth, and
positional estimation sub-tasks, Wi-Depth produces coherent and accurate depth maps
of human subjects from CSI alone, introducing the first reliable depth reconstruction
method via WiFi signals.

WiFi-based imaging steadily advances from pose estimation to dense visual reconstruction
using increasingly capable deep learning models. Results indicate that semantically
meaningful visual information can be inferred from CSI, enabling visual downstream
tasks while preserving visual privacy. Although WiFi-to-image synthesis remains a niche
area with fewer contributions than pose estimation, recent successes highlight its potential
and motivate continued research.

Summary
Recent advances in WiFi-based PCS demonstrate the effectiveness of deep learning
architectures tailored to the unique properties of CSI. Convolutional, recurrent, and
attention-based architectures each contribute distinct capabilities for processing spatial,
temporal, and spatiotemporal information, enabling efficient inference and improved
performance on complex tasks, an essential step toward real-time PCS on embedded
devices (RQ II). At the same time, generalizing across environments, hardware setups,
and users remains a central challenge. Existing approaches address this through data
augmentation, domain-invariant feature learning, adaptive learning strategies, and curated
multi-domain datasets, with recent trends showing promise in test-time adaptation
techniques (RQ III). Finally, WiFi-based imaging methods increasingly succeed at
extracting semantically meaningful and visually interpretable representations from CSI,
evolving from pose estimation to dense image synthesis. These developments reflect
growing progress toward the interpretability of WiFi signals and their use in PCS
applications beyond traditional recognition tasks (RQ IV).
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CHAPTER 4
Systems

A WiFi system consists of wireless transceivers that transmit and receive signals according
to standardized WiFi protocols and are primarily composed of a WiFi chipset, firmware,
and antenna(s) [149]. The WiFi chipset handles the modulation, demodulation, and digital
processing of signals, while the firmware controls hardware operations and communication
protocols [149]. The antenna is responsible for radiating and capturing electromagnetic
waves [150].

In the context of WiFi-based PCS, the choice of WiFi system dictates sensing performance
and applicability. Different WiFi transceivers operate at distinct frequency bands (e.g.,
2.4 GHz, 5 GHz, and recently 6 GHz), influencing signal propagation characteristics
in spatially confined environments and sensing resolution. Additionally, the number of
supported subcarriers directly affects the granularity of CSI measurements. Transceivers
can range from single-antenna setups with low subcarrier count to MIMO configurations
with high subcarrier count, enabling fine-grained spatial sensing. The option to use
integrated or external antennas further affects the sensing range, coverage, and accuracy.
Finally, practical considerations such as the physical size, cost, and ease of deployment
often determine which WiFi transceiver suitable for a given PCS application scenario [150].

In light of these considerations, this chapter surveys existing and introduces novel WiFi
systems, with a focus on enabling long-range TW PCS using low-cost COTS hardware,
thereby addressing the system-level challenges posed in RQ I and informing the design
constraints relevant to efficient CSI processing explored in RQ II.

4.1 Existing Solutions
Although WiFi devices are ubiquitous in everyday environments, only a limited subset
of hardware-software combinations supports CSI extraction [42]. For most applications,
capturing CSI is irrelevant, as WiFi primarily serves high-throughput wireless data
transmission. Consequently, standard WiFi firmware and drivers do not expose CSI to
end-users, limiting its accessibility for sensing applications. To overcome this restriction,
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CSI Tool Supported Devices
Linux 802.11n CSI Tool [79] Intel Wireless Link 5300 NIC
Atheros CSI Tool [151] Atheros AR9k NICs
PicoScenes CSI Tool [152] 802.11ac/ax NICs

Nexmon CSI Tool [153] Raspberry Pi 3B+/4B, Google
Nexus 5/6P, Asus RT-AC86U

AX-CSI Tool [154] 802.11ax routers
Espressif CSI Tool1, ESP32 CSI Tool [155],
Wi-ESP CSI Tool [156] Espressif ESP32 (all variants)

Table 4.1: Overview of existing CSI-capturing tools and supported COTS WiFi devices.

researchers propose custom tools involving modifications to firmware and device drivers,
enabling CSI extraction from selected COTS WiFi devices such as network interface
cards (NICs), routers, single-board computers, smartphones, and microcontrollers. These
tools vary in their supported hardware and WiFi standards, offering researchers and
practitioners a range of options tailored to specific needs. An overview of existing
solutions is summarized in Table 4.1.

Linux CSI Tool Introduced by Halperin et al. in 2011, the Linux 802.11n CSI Tool [79]
lays the foundation for modern CSI-based sensing by enabling CSI extraction on COTS
WiFi devices. It specifically supports the now-legendary Intel Wireless Link 5300 NIC,
which remains one of the most widely used WiFi systems in research. This tool allows
for the collection of CSI data across 30 subcarriers per antenna pair. The Intel Wireless
Link 5300 supports up to three transceiving antennas (3×3 MIMO), resulting in a total
of 90 subcarriers captured per device.

Atheros CSI Tool Recognizing the need for broader hardware compatibility, Xie et
al. develop the Atheros CSI Tool [151], extending CSI extraction capabilities to Atheros
AR9k series NICs, including models such as AR9580, AR9590, AR9344, and QCA9558.
The tool supports capturing up to 56 (52 usable) subcarriers at a 20 MHz bandwidth
and 114 (108 usable) subcarriers at a 40 MHz bandwidth, providing improved resolution
over its predecessors.

PicoScenes CSI Tool Developed by Jiang et al., the PicoScenes CSI Tool [152]
represents a significant advancement in CSI extraction, supporting modern WiFi NICs
up to the IEEE 802.11ax standard, such as the Intel WiFi 6E AX210, Intel WiFi 6
AX200, and Qualcomm Atheros AR9300. Notably, it maintains backward compatibility
with older NICs like the Intel Wireless Link 5300.

Nexmon CSI Tool Gringoli et al. introduce the Nexmon CSI Tool [153], enabling CSI
extraction on modern Broadcom and Cypress WiFi chips. This tool supports up to four
transceiving antennas (4×4 MIMO), accommodating bandwidths up to 80 MHz in both
the 2.4 GHz and 5 GHz bands. It supports a variety of device classes such as smartphones

1Espressif CSI Tool, https://github.com/espressif/esp-csi, accessed: 26.03.2025
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(Google Nexus 5 and Nexus 6P), single-board computers (Raspberry Pi 3B+/4B), and
routers such as the Asus RT-AC86U. Prior CSI extraction tools mainly target NICs,
limiting practical applicability due to dependence on external computing hardware. By
enabling standalone CSI capture on mobile and embedded devices, the Nexmon CSI
Tool expands practical WiFi-based sensing applications and facilitates broader real-world
deployments.

AX-CSI Tool In 2021, Gringoli et al. present the AX-CSI Tool [154], marking a
milestone as the first system capable of extracting CSI from IEEE 802.11ax COTS
WiFi devices equipped with the Broadcom 43684 WiFi chipset. This tool supports
CSI extraction with bandwidths up to 160 MHz and configurations up to 4×4 MIMO,
providing high-resolution channel information. Its introduction opens new avenues for
research and development in high-throughput WiFi sensing applications.

ESP32 CSI Tools The ESP32 microcontroller series (ESP32 and ESP32-S/C/P/H)
has become a popular platform for compact, low-cost WiFi sensing, motivating the
development of multiple external CSI extraction tools supporting IEEE 802.11 b/g/n
standards. Initially, Hernandez and Bulut introduce the ESP32 CSI Tool in 2020 [155],
providing researchers with the first accessible means to collect CSI on ESP32 devices.
Around the same time, Atif et al. present the Wi-ESP CSI Tool [156], a lightweight
framework offering similar capabilities. Building upon these foundational efforts, in
2021, Espressif Systems, the manufacturer of the ESP32, integrates native CSI capturing
directly into their Espressif IoT Development Framework (ESP-IDF) through the official
Espressif CSI Tool1. Given its official support and seamless integration within Espressif’s
development ecosystem, this tool emerges as the default choice for current ESP32-based
WiFi sensing applications. In accordance with the IEEE 802.11n standard, the tool
supports extracting 56 (52 usable) and 114 (108 usable) subcarriers in 20 MHz and 40
MHz WiFi channels, respectively.

4.1.1 CSI-Capturing Devices Comparison
NICs, including the Intel Wireless Link 5300 (Linux CSI Tool), Atheros AR9k (Atheros
CSI Tool), and modern 802.11ax NICs (PicoScenes CSI Tool), are widely used in research
settings. They support MIMO configurations (e.g., 3×3 MIMO for Intel Wireless Link
5300, 4×4 for newer NICs) and allow the use of external antennas. However, they require a
host device (e.g., a laptop with a mini PCIe slot), making them bulky and costly, limiting
standalone deployment. The PicoScenes CSI Tool offers the broadest compatibility,
supporting both legacy and WiFi 6 (802.11ax) NICs, but remains dependent on external
computing hardware.

The Nexmon CSI Tool enables CSI capture on smartphones (Google Nexus 5/6P),
Raspberry Pi (3B+/4B), and routers (e.g., Asus RT-AC86U). Unlike NICs, smartphones
and Raspberry Pi offer standalone CSI capture, but smartphones lack MIMO and external
antenna support, while current Raspberry Pi variants have become expensive (>$50).
Routers, while supporting up to 4×4 MIMO and external antennas, require a separate
host device for data extraction. The AX-CSI Tool (Broadcom 43684) supports 160 MHz-

35



4. Systems

wide channels and 4×4 MIMO, offering the highest-resolution CSI capture. However,
like NICs, it lacks standalone functionality and requires an external host, making it
unsuitable for compact, embedded applications.

Compared to these platforms, the ESP32 series stands out for its cost-efficiency, compact
form factor, and native support for standalone CSI capture. Although it supports
only single-antenna CSI extraction and operates solely in the 2.4 GHz band (IEEE
802.11b/g/n), these constraints are offset by its ability to integrate external antennas
and deploy multiple nodes in parallel. The platform’s low power requirements and
official firmware support make it a highly practical option for embedded WiFi-based PCS
systems.

4.1.2 The ESP32 Microcontroller Series

ESP32-S3-WROOM-1

ESP32-S3-WROOM-1U

Figure 4.1: ESP32-S3-
WROOM-1/1U modules with
integrated PIFA or I-PEX
MHF I antenna connector.

The ESP32 microcontroller series by Espressif Systems
is prevalent in embedded and IoT applications, ow-
ing to its low cost (under USD 10), compact size
(25.5 mm × 18 mm), and integrated wireless connectiv-
ity [42, 157]. Current versions feature a dual-core Tensil-
ica Xtensa LX7 processor (up to 240 MHz) with 520 KiB
SRAM, supporting IEEE 802.11b/g/n WiFi and Blue-
tooth 5 (Low Energy). Peripherals include GPIOs, ADCs,
DACs, UARTs, SPI, and I2C. The series expands into four
variants: ESP32-S adds security features and USB OTG;
ESP32-C uses a RISC-V core and supports Bluetooth
5.0; ESP32-P offers extended memory and interfaces; and
ESP32-H targets ultra-low-power applications.

Native CSI extraction is supported via the official Espres-
sif CSI Tool, integrated into the ESP-IDF framework,
simplifying development and enabling direct access to CSI
without firmware modification. While limited to single-
antenna CSI capture and 2.4 GHz operation, the platform
supports flexible antenna configurations. For instance,
the ESP32-S3-WROOM-1 2 module includes a built-in
Printed Inverted-F Antenna (PIFA)3, whereas the ESP32-
S3-WROOM-1U 2 offers an I-PEX MHF I connector for
external antennas (see Figure 4.1), enabling directional or
high-gain setups advantageous in long-range or TW sens-
ing scenarios. Its low power consumption and standalone
operation make it particularly well-suited for distributed,
low-cost WiFi-based PCS at the edge [158].

2ESP32-S3-WROOM-1/1U, https://www.espressif.com/sites/default/files/documentation/esp32-s3-
wroom-1_wroom-1u_datasheet_en.pdf, accessed: 26.03.2025

3ESP32 PIFA, https://www.ti.com/lit/an/swra117d/swra117d.pdf, accessed: 26.03.2025
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4.2 Proposed Systems
Among available solutions for CSI extraction from COTS WiFi devices, the ESP32 micro-
controller series stands out for its unique combination of low cost, compact form factor,
and integrated wireless connectivity [42]. Consequently, the WiFi systems presented lever-
age the ESP32 for PCS. While prior research demonstrates its feasibility for WiFi-based
PCS, existing works typically employ the ESP32 in its default configuration, relying
on the built-in PIFA [45, 159, 157]. Due to its low gain (≈ 2 dBi) and omnidirectional
radiation pattern, the PIFA proves unsuitable for long-range or TW scenarios where high
signal strength and directional stability are critical. Although a number of works explore
the use of passive reflectors [160] or external antennas (specifically omnidirectional rod
antennas) [161, 162, 163] to mitigate this shortcoming, these efforts remain limited to
short-range scenarios.

Despite being highly cost-effective, the ESP32’s potential can be expanded by extending
its sensing range. If a single device could monitor multiple rooms, floors, or even entire
buildings, the cost per unit area would be further reduced. The majority of WiFi-based
PCS systems use a point-to-point transmitter-receiver configuration with the monitored
area positioned between them [164, 161, 165]. Directing energy toward this region,
rather than radiating uniformly, can substantially enhance forward signal strength and
stability in the presence of obstacles. This makes directional sensing a natural fit for
long-range and TW scenarios. However, this approach remains largely unexplored in
prior ESP32-based PCS work.

To explore the feasibility of long-range TW PCS with COTS WiFi devices (RQ I), two
directional sensing methods are investigated: the integration of passive reflectors with
the standard PIFA and the utilization of external directional antennas. The development
follows an iterative design process, where insights from each system inform the next,
leading to progressive improvements in signal quality, sensing performance, and hardware
integration. The systems are referred to as system A, B, C0, C1, C2, and D. This naming
convention is used throughout this and the following chapters whenever referring to a
specific system. The proposed systems are presented in chronological order, detailing their
design rationale, implementation, and the lessons learned throughout their development.

4.2.1 System A
System A, first introduced in the seminal work on pairing the ESP32-S3 with exter-
nal directional antennas for long-range TW HAR [40], marks the initial step in the
development of the WiFi systems proposed. It is based on the ESP32-S3-DevKitC-14,
featuring the ESP32-S3-WROOM-1 module5 (see Figure 4.2a). Although the built-in
PIFA of this module provides basic WiFi connectivity, preliminary short-range tests
indicate insufficient gain (≈ 2 dBi) and poor stability, making it an unsuitable choice for
a WiFi system targeting challenging long-range and TW sensing scenarios. To overcome

4ESP32-S3-DevKitC-1, https://docs.espressif.com/, accessed: 26.03.2025
5ESP32-S3-WROOM-1, https://www.espressif.com/, accessed: 26.03.2025
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(a) ESP32-S3-DevKitC-1 (b) custom directional biquad antenna (c) System A
Figure 4.2: Overview of the initial system prototype for long-range TW PCS. (a) ESP32-
S3-DevKitC-1 development board with built-in PIFA and SMA connector attached, (b)
2.4 GHz directional biquad antenna, and (c) system A, antenna with ESP32-S3-DevKitC-
1 attached. [40]

these limitations, system A employs an external antenna solution. Specifically, an SMA
connector is soldered directly to the ESP32-S3-WROOM-1 module’s PIFA trace, as
shown in Figure 4.2a, allowing easy connection of external antennas. Two antennas
operating at 2.4 GHz are evaluated: a commercial 8 dBi omnidirectional dipole antenna
and a custom directional biquad antenna (Figure 4.2b), chosen due to its higher gain
(≈ 10-12 dBi) and narrower beamwidth (≈ 70◦)) [166]6.

Antenna gain, measured in decibels relative to an isotropic antenna (dBi), quantifies
how effectively an antenna directs electromagnetic radiation in a particular direction
compared to an idealized antenna radiating equally in all directions (i.e., 0 dB gain).
Higher dBi values thus correspond to more concentrated directional energy, improving
range, signal quality and reducing interference, while sacrificing some omnidirectional
coverage.

The custom directional biquad antenna used in system A is constructed from readily
available materials and consists of two primary elements: a plane reflector and a radiating
element. The reflector is made from a 123 mm×123 mm sheet of 0.2 mm-thick copper.
Its radiating element employs a vertically polarized biquad design, constructed from
2.5 mm2 solid core copper wire, shaped into a biquad loop with an edge length of 30.5 mm,
corresponding to a 1

4 wavelength at 2.448 GHz (IEEE 802.11b central carrier frequency).
The radiating element is mounted at a spacing of 15.25 mm (1

8 wavelength) in front
of the reflector using a central soldered copper tube. A short length of low-loss, 50 Ω
impedance coaxial cable connects the radiating element through the copper tube to the
ESP32-S3-WROOM-1 via the SMA connector (see Figure 4.2c).

To verify the feasibility of long-range, TW PCS, the two antenna configurations are
6Biquad antenna construction, https://martybugs.net/wireless/biquad/, accessed: 26.03.2025
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tested in a challenging HAR scenario covering a distance of 18.5 m. The test environment
spans five rooms, separated by four 25 cm-thick brick walls. In a point-to-point setup,
transmitter and receiver units, each equipped with identical antennas, are placed at
opposite ends of the test environment. The TW signal strength is evaluated by measuring
the mean RSSI over 1,000 WiFi packets. Results clearly indicate the directional biquad
antenna’s superior performance, achieving an RSSI of -67 dBm, significantly outperforming
the omnidirectional dipole antenna with an RSSI of -79 dBm (i.e., the biquad antenna
achieves 15.85× higher signal power). For reference, the built-in PIFA fails entirely
to establish a stable connection in this challenging scenario. Based on these results,
the directional biquad antenna is selected for system A. Beyond its superior signal
strength, this antenna also reduces external noise, a notable challenge for omnidirectional
antennas [160]. Its 70◦ beamwidth facilitates comprehensive room coverage in most PCS
scenarios while maintaining constraints on the recording environment. Moreover, it aligns
closely with typical camera fields of view, allowing for easy integration and providing a
sense of the antenna beam’s coverage area.

4.2.2 System B
System B, proposed in follow-up work on long-range TW HAR [52], builds upon the
foundation laid by system A. The design of system B addresses specific shortcomings
identified in the initial system, particularly focusing on enhanced robustness, ease of
manufacturing, improved antenna performance, and integrated on-device inference capa-
bilities. Like its predecessor, system B combines the ESP32-S3-DevKitC-1 development
board, featuring the ESP32-S3-WROOM-1 module, with a custom 2.4 GHz directional
biquad antenna. However, notable improvements are introduced to both antenna design
and mechanical robustness (Figure 4.3).

First, to simplify the antenna manufacturing process and improve structural integrity, the
original copper-sheet reflector used in systemA is replaced with blank printed circuit board
(PCB) material, consisting of a single-sided copper layer (35 µm thickness). This change
enhances planarity and ease of handling, reducing deformation risks associated with copper
sheets. Additionally, side lips, measuring 30 mm in depth, are introduced to the reflector’s
edges, while retaining its original 123 mm×123 mm dimensions. Although optional, these
side lips reduce side-lobe radiation and external noise from lateral directions, resulting in
an approximate 2 dBi gain improvement compared to the original flat reflector design [166].
Furthermore, they facilitate co-planar system configurations by preventing unintended
direct LOS communication between transmitter and receiver [160].

The antenna’s radiating element retains the biquad geometry from system A: a vertically
polarized loop of 2.5 mm2 solid-core copper wire with 30.5 mm edge lengths (1

4 wavelength).
The element is attached to the reflector by a centrally soldered copper tube, ensuring
a 15.25 mm (1

8 wavelength) reflector-to-element spacing. Connection to the ESP32-S3-
WROOM-1 module remains unchanged, using an SMA connector soldered directly to the
PIFA trace via a short segment of low-loss coaxial cable.

39



4. Systems

(a) System B (frontside) (b) System B (backside)

Figure 4.3: Overview of system B, showing: (a) the improved biquad antenna geometry
with side lips, and (b) the internal electronic components, comprising ESP32-S3-DevKitC-
1 development board and Nvidia Jetson Orin Nano developer kit. [52]

To further improve robustness against mechanical deformation, system B incorporates
a custom 3D-printed enclosure, which rigidly secures the antenna and protects its
components during handling and transportation. Two additional 15 mm nylon standoffs
between the reflector and radiating element ensure consistent geometry, maintaining the
1
8 -wavelength spacing (Figure 4.3a).

Another advancement of system B is its expanded computational capabilities. As
illustrated in Figure 4.3b, the enclosure provides mounting points not only for the ESP32-
S3-DevKitC-1 but also for an Nvidia Jetson Orin Nano developer kit7, a powerful and
compact single-board computer enabling real-time on-device inference for WiFi-based
PCS RQ II. This integration expands the system’s autonomy, eliminating the need for
external computational resources. For reproducibility, CAD models of all 3D-printed
components of system B are publicly available8.

4.2.3 Systems C0−2

A notable drawback identified in systems A and B is the irreversible modification of the
ESP32-S3-WROOM-1’s built-in PIFA required to connect external antennas. Scraping,
cutting, and soldering an SMA connector directly to the antenna traces permanently
disables the original antenna. For applications where preserving the PIFAS’s functionality
is desirable, reflector-based solutions offer a practical alternative. Reflectors can effectively
shape the PIFA’s radiation pattern, increasing forward gain and directionality without
physically altering the module. Motivated by this concept, two reflector-based systems

7Nvidia Jetson Orin Nano Developer Kit, https://nvdam.widen.net/s/zkfqjmtds2/jetson-orin-
datasheet-nano-developer-kit-3575392-r2, accessed: 26.03.2025

8System B CAD models, https://zenodo.org/records/15147388, accessed: 26.03.2025
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(a) System C0 (b) System C1 (c) System C2
Figure 4.4: Overview of systems C0−2, showing: (a) system C0, the baseline system relying
solely on the ESP32-S3’s built-in PIFA, (b) system C1, PIFA with a plane reflector, and
(c) system C2, PIFA with a 90◦ corner reflector. [52]

(C1 and C2) are developed and evaluated alongside a baseline system (C0) and compared
to system B in a long-range TW HAR scenario [52].

System C0 (PIFA Baseline) As a baseline, system C0 employs an unmodified
ESP32-S3-DevKitC-1 board, utilizing the built-in omnidirectional PIFA of the ESP32-
S3-WROOM-1 module. To facilitate consistent and reproducible measurements, a simple
3D-printed frame is developed, securing the ESP32-S3-WROOM-1 module in an upright
position to ensure unrestricted radial emission in the horizontal plane (Figure 4.4a).

System C1 (PIFA with Plane Reflector) To enhance forward gain and limit
backside interference without physical modifications to the PIFA, system C1 employs
a plane reflector (Figure 4.4b). This reflector is constructed from a 123 mm×123 mm
copper sheet with a thickness of 0.2 mm, rigidly mounted behind the PIFA using a
custom 3D-printed carrier. The reflector is placed 30.5 mm (1

4 wavelength) behind the
PIFA, ensuring a total phase shift of 360° (180° due to round-trip propagation and 180°
from reflection), thereby producing constructive forward interference. This configuration
reduces noise from directions behind the antenna and increases forward signal strength
without modifying or destroying the PIFA.

System C2 (PIFA with 90◦ Corner Reflector) Building upon system C1, system
C2 incorporates a 90◦ corner reflector to further focus the antenna’s radiation pattern
and narrow its beamwidth (Figure 4.4c). The reflector consists of two 123×123 mm
copper sheets, each 0.2 mm thick, joined at a 90◦ angle using conductive copper tape
and secured by a custom 3D-printed frame. Similar to system C1, the spacing between
the reflector center and the PIFA is maintained at 30.5 mm (1

4 wavelength), creating
directional gain enhancement while limiting backside and lateral interference. CAD
models for all 3D-printed components used in systems C0−2 are publicly available9.

9Systems C0−2 CAD models, https://zenodo.org/records/15147388, accessed: 26.03.2025
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Figure 4.5: Comparison of line-of-sight (LOS) and through-wall (TW) signal strength
(RSSI) between systems B, C0, C1, and C2, over a distance of 18 m and five rooms. In the
TW scenario, black vertical lines mark the position of walls between rooms. [52] †

Signal Strength Evaluation To evaluate the performance of systems C0−2 and identify
viable solutions for long-range TW PCS, RSSI measurements are conducted in both LOS
and TW scenarios, spanning distances up to 18 meters across five rooms separated by
25 cm-thick brick walls (Figure 4.5). Each measurement averages the RSSI over 1,000
WiFi packets at 1-meter intervals.

In the LOS scenario, all reflector-based systems outperform the baseline system C0, clearly
demonstrating the directional gain provided by the reflectors. System C1 (plane reflector)
consistently surpasses system C2 (corner reflector), likely due to the more uniform reflector
spacing in the planar geometry, whereas the corner reflector introduces spacing variations
that may cause partial destructive interference. Future investigations into parabolic
reflectors might resolve this limitation.

In the TW scenario, involving multiple walls, the systems exhibit similar relative per-
formance. System C1 maintains robust connectivity, with RSSI dropping from -19 dBm
(1 m) to -72 dBm (18 m), while the baseline system deteriorates significantly from
-36 dBm to -84 dBm, resulting in unstable connectivity and frequent packet loss at
long distances. Overall, reflector-based systems achieve a performance improvement
in challenging propagation environments without physical modifications to the PIFA,
offering a viable alternative to externally connected directional antennas.

However, ultimately, system B, with its dedicated biquad antenna, outperforms all
reflector-based configurations in both LOS (-12 dBm at 1 m to -33 dBm at 18 m) and
TW (-14 dBm at 1 m to -68 dBm at 18 m) scenarios, reinforcing the benefit of directly
employing external directional antennas for robust, long-range WiFi-based PCS. However,
systems C1 and C2 remain valuable in scenarios demanding preservation of the PIFA’s
functionality.
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ESP32-S3

Jetson Orin

APA-M25

Figure 4.6: Overview of system D, showing internal components comprising ESP32-S3-
DevKitC-1 module, ALFA Network APA-M25 directional panel antenna, and Nvidia
Jetson Orin Nano developer kit. [49]

4.2.4 System D
Building upon insights from previous systems, system D, proposed in [49], aims at
enhancing reproducibility, robustness, and practical applicability by exclusively employing
COTS components. Earlier designs, such as Systems A and B, rely on manually modified
ESP32-S3-WROOM-1 modules and custom antennas, resulting in limited scalability and
reproducibility. System D resolves these issues by using standardized hardware while
retaining the directional gain essential for long-range TW sensing.

At the core of system D (see Figure 4.6) is the ESP32-S3-DevKitC-1U10, featuring
the ESP32-S3-WROOM-1U11 module. As shown in Figure 4.1, unlike the ESP32-
S3-WROOM-1 variant used in prior systems, this module includes an I-PEX MHF I
antenna connector, bypassing the built-in PIFA antenna and enabling straightforward
attachment of external antennas without manual modifications. System D integrates
a COTS directional antenna, the ALFA Network APA-M25 12, a dual-band (2.4 GHz
and 5 GHz) panel antenna priced around USD 20. It offers a gain of 8 dBi at 2.4 GHz
and a horizontal beamwidth of approximately 66◦, similar in performance to the custom
biquad antenna in system B (gain of 10–12 dBi, beamwidth 70◦). The APA-M25 antenna
provides comparable sensing capabilities in a robust, compact, and mass-produced form
factor, greatly enhancing reproducibility and ease of deployment.

Furthermore, like system B, system D integrates an Nvidia Jetson Orin Nano devleopment
10ESP32-S3-DevKitC-1U, https://docs.espressif.com/, accessed: 26.03.2025
11ESP32-S3-WROOM-1U Datasheet, https://www.espressif.com/, accessed: 26.03.2025
12ALFA APA-M25 antenna, https://www.alfa.com.tw/products/apa-m25, accessed: 26.03.2025
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kit within a compact housing (Figure 4.6), enabling real-time, on-device inference. The
electronic components, including the ESP32-S3-DevKitC-1U, Jetson Orin Nano, and
directional antenna, are securely enclosed within a rigid, compact, and easily replicable
3D-printed housing. This housing is approximately half the size of system B, improving
portability and practical deployment. System D’s modular design facilitates versatile
antenna configurations. By substituting the ESP32-S3-DevKitC-1U with the ESP32-
S3-DevKitC-1, which is a drop-in replacement, one could revert to the built-in PIFA if
required. Moreover, alternative external antennas can easily be connected via the I-PEX
MHF I connector to accommodate different use cases or experimental scenarios. Due
to its dual-band support (2.4 GHz and 5 GHz), the ALFA APA-M25 antenna opens
potential avenues for future ESP32 hardware revisions that support advanced WiFi
standards beyond IEEE 802.11b/g/n, such as IEEE 802.11ac (WiFi 5), further extending
the versatility of system D. The CAD models of all 3D-printed components of system D
are publicly available13.

To evaluate the practical signal strength of system D, a LOS experiment comparing its
RSSI performance against system B is conducted across a distance of 25 meters. Both
systems show similar performance at short ranges (1–10 m). Between 10–15 m, system B
slightly outperforms system D, which aligns with expectations given its higher theoretical
antenna gain of approximately 10–12 dBi [166], compared to the 8 dBi gain of system D’s
COTS antenna. However, at greater distances (15–25 m), system D demonstrates superior
signal stability, slightly outperforming system B. This result highlights that despite
its lower nominal gain, the COTS directional antenna in system D achieves practically
equivalent or even better long-range performance compared to the custom-built biquad
antenna of system B. Given its additional advantages, including compactness, flexibility,
ease of replication, and exclusive use of COTS components, system D ultimately offers
the most balanced trade-off among all WiFi-based PCS systems introduced, making it
highly attractive for practical deployments.

4.2.5 WiFi System Setup and CSI Capturing
All proposed systems are deployed in a point-to-point configuration, consisting of a single
transmitter and a single receiver with their antennas oriented toward one another. The
monitored environment lies between the two devices, ensuring optimal coverage of the
sensing area. Although the hardware is identical on both ends, the devices are configured
to perform distinct roles: the transmitter continuously emits WiFi packets at a fixed rate
of 100 Hz (corresponding to a 10 ms packet interval), while the receiver captures them and
extracts the corresponding CSI. This rate is chosen specifically to support the recognition
of macroscopic human activities such as walking, sitting, and standing. Research shows
that these activities contain frequency components up to 80 Hz [37, 116], motivating the
use of a conservative 100 Hz rate in most WiFi-based HAR studies [45]. Although higher
sending rates can improve temporal resolution, as required in tasks like WiFi-based
hand gesture recognition, where rates often exceed 1000 Hz [167, 168, 169], the added

13System D CAD models, https://zenodo.org/records/10715595, accessed: 26.03.2025
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benefits are typically offset by increased packet loss and computational demands [45] in
macroscopic activity recognition. Communication between the nodes is facilitated by
Espressif’s ESP-NOW14, a lightweight wireless communication standard that operates
independently of existing WiFi infrastructure. CSI extraction is performed at the receiver
using a modified version of the official Espressif CSI Tool integrated into the ESP-IDF
framework. This standardized setup is used for all experiments conducted.

4.2.6 Limitations
A central goal of RQ I is enabling long-range TW PCS, which aligns with the use of
the 2.4 GHz band supported by the ESP32 family. Since the signal power loss in free
space is proportional to the square of the carrier frequency, the 2.4 GHz band has a
range advantage over higher-frequency bands (i.e., 5 GHz and above) [170]. In addition,
higher-frequency bands are shown to suffer from greater penetration loss through dense
building materials. While the difference is negligible for light materials such as drywall,
denser materials like glass (≈ 1.2 dB ↑), wood (≈ 3.3 dB ↑), concrete (≈ 3.6 dB ↑),
or brick (≈ 10.2 dB ↑) introduce significantly more attenuation at 5 GHz [170, 171].
This trend intensifies at 6 GHz and beyond, where signals are easily blocked by walls
and obstacles [172, 173, 171], limiting the effective sensing range and practical utility of
systems that rely on higher-frequency bands in TW scenarios.

While the 2.4 GHz band offers favorable propagation characteristics, it is more congested
than newer bands, increasing susceptibility to interference. It also supports only up to
40 MHz bandwidth, resulting in a lower subcarrier count compared to 80 or 160 MHz
configurations available in 5 GHz and 6 GHz systems. Although higher subcarrier density
is shown to improve performance in LOS scenarios [174], it also increases computational
overhead, which may be undesirable for real-time inference on edge devices (RQ II).

In line with RQ I, which emphasizes minimal system cost and complexity, the proposed
systems adopt a Single Input Single Output (SISO) / single-link configuration. This choice
is partly imposed by the ESP32’s limitation to a single transmit antenna. While Multiple
Input Single Output (MISO) or multi-link setups could enhance spatial diversity and
feature robustness [74, 109], they incur increased system cost, complexity, synchronization
requirements, and computational overhead. Furthermore, the use of phase-based features
is limited in SISO systems due to challenges in correcting CFO and SFO. Although
multi-link systems can address this via complex conjugate multiplication [175], prior work
indicates that effectively eliminating phase noise remains difficult and that the utility of
phase features is limited in practice, with the result that most works rely on amplitude
features for WiFi-based PCS [45].

The proposed systems are explicitly designed for long-range, TW PCS, with an emphasis
on minimal system cost and complexity. These design constraints introduce potential
limitations, such as lower spectral resolution and reduced spatial diversity, which may
restrict the use of advanced features and impact performance in short-range or LOS
scenarios. Nevertheless, these trade-offs are well-aligned with the objectives of RQ I.

14ESP-NOW, https://docs.espressif.com, accessed: 26.03.2025
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Summary
Directional sensing with low-cost COTS WiFi hardware shows potential for enabling long-
range TW PCS by improving signal strength and stability under challenging propagation
conditions while minimizing system complexity, thereby addressing the constraints posed
in RQ I. The proposed systems, based on the ESP32 platform, leverage either directional
antennas or passive reflectors to increase forward signal gain. Reflector-based systems
preserve the internal PIFA and offer a low-cost, non-invasive solution, whereas systems
using external antennas achieve consistently higher signal quality. Evaluation of signal
strength confirms the effectiveness of the proposed directional sensing approach, with
external antenna configurations demonstrating superior performance. The proposed
systems are used to collect the datasets presented in Chapter 5 and define the hardware
constraints for the real-time, embedded CSI processing approaches explored in Chapter 6,
thereby informing the design objectives of RQ II.
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CHAPTER 5
Datasets

This chapter provides an overview of influential publicly available WiFi PCS datasets,
highlighting their characteristics, applications, and contributions to the field. Following
this review, the chapter introduces five new datasets, designed specifically for WiFi-based
presence detection, HAR, localization, and imaging tasks (RQ IV). These novel datasets
address challenging scenarios such as long-range and TW sensing (RQ I), in addition
to standard LOS conditions. Furthermore, the datasets enable the evaluation of cross-
domain generalization capabilities (RQ III). Each dataset is described in detail, covering
data characteristics, recording environments, and employed WiFi systems.

5.1 Public Datasets
Over the past decade, indoor WiFi-based PCS research has evolved from early single-
environment CSI datasets to extensive, diverse datasets that support fine-grained HAR,
gesture recognition, pose estimation, and localization. Early datasets such as Stan-
WiFi [176] and SignFi [177] establish initial benchmarks for CSI-based HAR and gesture
recognition using Intel Wireless Link 5300 NICs. Later, WiAR [178] expands application
scopes by incorporating joint activity recognition and indoor localization across multiple
environments. The Widar3.0 [74] dataset marks a milestone through its multi-receiver
setup and scale for enabling cross-domain gesture recognition. Person-in-WiFi [94] fur-
ther advances the field with fine-grained 2D pose estimation and segmentation, while
Schäfer et al.[180] demonstrate that COTS 802.11ac hardware with Nexmon firmware
yields high-resolution CSI for fine-grained HAR. Baha et al.[179] introduce a dataset
explicitly exploring LOS and NLOS CSI variations, featuring activities from multiple
subjects to facilitate robust HAR. RF-Net [55] further diversifies research directions by
providing a dataset tailored for meta-learning applications, enabling effective one-shot
HAR across new, unseen indoor environments. In 2022, OPERAnet [181] combines
CSI with additional RF and vision-based modalities to evaluate HAR and localization
techniques comprehensively. More recently, NTU-Fi [43] and WiFi-80 MHz [182] improve
sensing fidelity by increasing subcarrier resolution and integrating data from diverse
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Dataset Year Description

StanWiFi [176] 2017
HAR dataset featuring 6 activities captured from 6 subjects in a
controlled lab environment using the Intel Wireless Link 5300 via the
Linux 802.11n CSI Tool at 5 GHz.

SignFi [177] 2018
Dataset for sign language recognition with 276 sign gestures and video
supervision, acquired using the Intel Wireless Link 5300 with the Linux
802.11n CSI Tool.

WiAR [178] 2019
HAR dataset featuring 16 activities by 10 subjects across 3
environments, captured with the Intel Wireless Link 5300 via the Linux
802.11n CSI Tool on both 2.4 GHz and 5 GHz channels at
approximately 100 Hz.

Person-in-WiFi [94] 2019
Dataset for 2D pose estimation and human segmentation, collected over
16 indoor scenes using the Intel Wireless Link 5300 with the Linux
802.11n CSI Tool and synchronized RGB annotations.

Baha et al. [179] 2020
HAR dataset comprising 5 activities performed by 30 subjects across
LOS and NLOS indoor environments, captured using Intel 5300 NICs at
2.4 GHz with a sampling rate of 320 Hz.

RF-NET [55] 2020 Dataset for one-shot HAR, featuring 6 activities collected across
multiple indoor environments to support meta-learning approaches.

Schäfer et al. [180] 2021
HAR dataset acquired using Asus RT-AC86U routers running Nexmon
firmware on 802.11ac 80 MHz channels; captures 256 subcarriers to
demonstrate sensing on routers, smartphones, and IoT devices.

Widar3.0 [74] 2022
Dataset for gesture recognition and localization, featuring 22 gestures
from 17 users across 8 locations and 75 domains; captured at high
sampling rates (1000 Hz) using the Intel Wireless Link 5300 via the
Linux 802.11n CSI Tool.

OPERAnet [181] 2022
Multimodal dataset for HAR and localization combining CSI with
additional RF modalities (Passive WiFi Radar via SDR and UWB) and
Kinect vision; includes 8 hours of annotated measurements from 6
subjects performing 6 daily activities across 2 rooms.

NTU-Fi [43] 2023
High-resolution HAR and gait dataset using Atheros AR9k NICs with
the Atheros CSI Tool; offers 114 subcarriers per antenna over a 40 MHz
channel, collected from 20 subjects in a single lab at 1000 Hz.

WiFi-80 MHz [182] 2023
Multi-environment dataset for HAR, person identification, and people
counting, captured from Netgear APs with Nexmon on 802.11ac (80
MHz) channels featuring 256 subcarriers (242 usable) from 10 subjects
across 7 indoor settings.

MM-Fi [183] 2023
Multimodal dataset for HAR and gesture recognition using the Intel
Wireless Link 5300 with the Linux 802.11n CSI Tool; notable for
increased subject diversity and environmental variability, with
additional modalities such as RGB, depth, LiDAR, and radar.

Person-in-WiFi 3D [98] 2024
Multi-person 3D pose dataset using the Intel Wireless Link 5300 via the
Linux 802.11n CSI Tool; captures 3D keypoints for up to 3 persons at
300 Hz over 30 subcarriers, with Kinect-synchronized ground truth.

WiMANS [44] 2024 Multimodal, multi-person dataset for HAR, localization, and pose
estimation, collected using a TP-Link N750 with the Atheros CSI Tool.

Table 5.1: Overview of large-scale public WiFi-based PCS datasets.

environments. The latest advances include Person-in-WiFi 3D [98], which achieves
multi-person 3D pose estimation using multi-static setups, as well as MM-Fi [183] and
WiMANS [44], which further enhance dataset scale, subject diversity, and multimodal
annotations. Together, these datasets demonstrate clear improvements in scale, resolution,
and application breadth, progressing from basic HAR in controlled settings to robust,
multi-person sensing across diverse indoor domains. A summary of the datasets discussed
in this section is provided in Table 5.1. Furthermore, an overview of additional small- to
mid-sized WiFi datasets can be found in the comprehensive survey by Wang et al. [184].

48



5.2. Proposed Datasets

Dataset Year Application Scenario Labels #Packets

TOA [40] 2023 HAR, PD LOS, TW CSI, activity, room 316,862
Wallhack1.8k [48] 2024 HAR, G LOS, TW CSI, activity 500,093
HALOC [49] 2024 L LOS CSI, 3D traj. 118,679
WiFiCam [51] 2024 I TW CSI, RGB image 57,103
3DO [50] 2025 HAR, L, G TW CSI, activity, 3D traj. 1,292,727

Table 5.2: Overview of proposed datasets. Applications and scenarios are abbreviated as
human activity recognition (HAR), presence detection (PD), localization (L), imaging
(I), cross-domain generalization (G), line-of-sight (LOS), and through-wall (TW).

5.2 Proposed Datasets
Existing publicly available WiFi-based PCS datasets predominantly focus on short-
range, LOS scenarios recorded using NIC-based WiFi systems (Intel or Atheros), thereby
neglecting challenging yet economically beneficial long-range and TW scenarios [43, 44].
Recently, the ESP32 microcontroller has emerged as a promising and cost-effective
alternative for WiFi-based PCS, but public datasets based on the ESP32 remain severely
underrepresented, with only a handful of peer-reviewed datasets becoming available [185,
186, 187]. Furthermore, existing datasets either omit TW scenarios completely or provide
limited short-range examples [179, 185], restricting the assessment of WiFi sensing under
realistic long-range and TW conditions.

To address these critical research gaps five datasets specifically designed to validate the
ESP32’s feasibility for long-range and TW sensing scenarios are collected, advancing
the field beyond current benchmarks. An overview of the proposed datasets is provide
in Table 5.2. The Through-Wall Office Activities (TOA) and Wallhack1.8k datasets
allow controlled direct comparisons of LOS versus TW performance, while Wallhack1.8k
further enables evaluation of cross-system generalization between different ESP32-based
WiFi systems. The 3-Days Office (3DO) dataset explicitly isolates static, dynamic,
and temporal environmental variations, facilitating focused research into cross-domain
generalization. Furthermore, the proposed datasets offer unique label combinations
previously unavailable in public WiFi datasets, such as TW CSI paired with synchronized
RGB video (WiFiCam dataset), TW CSI combined with 3D trajectories and activity
labels (3DO), and long-range LOS CSI with precise 3D trajectory labels (HAllway
LOCalization (HALOC)). Collectively, these datasets enrich the existing WiFi dataset
landscape, enabling targeted exploration of economically advantageous long-range and
TW WiFi-based PCS scenarios.

5.2.1 Through-Wall Office Activities Dataset
The Through-Wall Office Activities (TOA) dataset, introduced in [40], is created to
evaluate the feasibility of long-range WiFi-based PCS (presence detection and HAR)
using ESP32 microcontrollers. Specifically, it demonstrates that a modified ESP32-based
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Figure 5.1: Recording environment of the TOA and Wallhack1.8k datasets, showing the
transmitter and receiver placement in LOS and through-wall (TW) scenarios. Transmitter
(TX), receiver (RX), and camera (C). [52] †

system employing directional high-gain antennas (system A) reliably supports challenging
TW scenarios over distances that significantly exceed the typical capabilities of a standard
ESP32 with a built-in PIFA.

The dataset is recorded in a carefully structured office environment featuring an 18-meter-
long hallway flanked by five uniformly sized office rooms (approximately 3.5 m × 6.0
m each), as depicted in Figure 5.1. The rooms, separated by 25 cm-thick brick walls,
introduce substantial attenuation and multipath effects, creating challenging propagation
conditions. This controlled layout allows direct comparison between LOS and TW
scenarios at identical transmitter-receiver distances, an aspect not provided by any other
public dataset. Such direct comparisons facilitate a deeper understanding of signal
propagation and model robustness to TW interference.

In the LOS scenario (Figure 5.1, top), the transmitter and receiver are positioned facing
each other at opposite ends of the hallway, separated by 18 meters. In the TW scenario
(bottom), the devices are similarly aligned but placed outside rooms 5 and 1, respectively,
again separated by 18 meters, with signals traversing four brick walls. In both scenarios,
antenna alignment is optimized by micro-adjusting the position of the receiver to achieve
the maximum RSSI. To facilitate precise temporal trimming of CSI packets, RGB cameras
synchronized with the receiver are placed in the hallway (LOS scenario) and within each
of the five rooms (TW scenario).

Data collection involves a subject performing two distinct activities, walking and walking
combined with arm-waving, for two minutes each within five activity zones (AZ 1–AZ
5, 1.5 m radius), located at 1.8 m, 5.4 m, 9.4 m, 13.0 m, and 16.6 m distances from
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the receiver (see Figure 5.1). Additionally, five minutes of background signal (no person
present) are recorded per scenario. Raw CSI packets undergo preprocessing, where a
Hampel filter [188] removes signal outliers from the CSI amplitude data. The cleaned data
is then segmented into 400-packet windows (≈ 4-second intervals at a 100 Hz sampling
rate), creating 776 labeled time-frequency amplitude spectrograms (52 L-LTF subcarriers
× 400 packets) from an original total of 316,862 WiFi packets. Each spectrogram is
annotated with two labels: activity class (0: no presence, 1: walking, 2: walking +
arm-waving) and presence detection indicating the corresponding room ID (0–5).

The TOA dataset enables direct cross-scenario evaluations, providing the first publicly
available benchmark specifically designed for ESP32-based long-range TW sensing. The
dataset is publicly available on Zenodo1.

5.2.2 Wallhack1.8k Dataset

The Wallhack1.8k dataset, introduced in [48], extends the TOA dataset by introducing
two distinct WiFi systems, thus enabling the evaluation of cross-system and cross-
scenario (LOS ↔ TW) generalization in WiFi-based HAR. The dataset is initially
created to investigate image-based data augmentation techniques aimed at enhancing
model robustness across different environmental and hardware conditions. Additionally,
Wallhack1.8k serves as a benchmark in [52] for designing and evaluating systems B and
C0−2 in long-range LOS and TW sensing scenarios.

Wallhack1.8k shares the exact recording environment, transmitter-receiver placements,
and data collection procedures of the TOA dataset (see Figure 5.1 and the TOA dataset
description). The primary innovation of Wallhack1.8k lies in the introduction of two
new WiFi systems: system B (biquad antenna) and system C1 (PIFA with plane re-
flector). Because of the identical experimental setup and data acquisition procedures,
the Wallhack1.8k and TOA datasets together uniquely enable direct comparisons across
three distinct ESP32-based WiFi systems (A, B, and C1), supporting comprehensive
cross-system evaluations.

The Wallhack1.8k dataset comprises a total of 1,806 time-frequency amplitude spectro-
grams, derived from the CSI of 500,093 WiFi packets. The data is systematically divided
into four subsets, representing each combination of WiFi system (B or C1) and scenario
(LOS or TW). Each spectrogram and WiFi packet is labeled with activity classes 0: no
presence, 1: walking, 2: walking + arm-waving.

Wallhack1.8k fills an important gap by explicitly supporting the evaluation of cross-system
generalization in controlled long-range LOS and TW scenarios, an aspect not addressed
by existing public WiFi datasets. The dataset, including raw WiFi packet sequences,
derived spectrograms, and labels, is publicly available on Zenodo2.

1TOA Dataset, https://zenodo.org/record/8021099, accessed: 15.04.2025
2Wallhack1.8k Dataset, https://zenodo.org/records/15147388, accessed: 15.04.2025
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Figure 5.2: (a) HALOC experimental setup showing the point-to-point transmitter-
receiver arrangement in the recording environment, with the recording area highlighted
in green and the approximate shape of walking trajectories (dotted line). (b) Walking
trajectory of the test sequence (black). Transmitter (TX), receiver (RX), and camera
(C). [49] †
5.2.3 Hallway Localization Dataset
The HAllway LOCalization (HALOC) dataset, introduced in [49], is created to investigate
the feasibility of using ESP32-based WiFi systems for long-range indoor localization
tasks. Specifically, the dataset is employed to demonstrate that system D (ESP32-S3-
DevKitC-1U + ALFA APA-M25 antenna) reliably captures person-centric information
necessary for accurate single-person localization at significantly greater distances than
systems relying on the ESP32’s PIFA.

Data collection takes place in a long indoor hallway environment, illustrated in Figure 5.2.
The experimental setup consists of a point-to-point arrangement of transmitter and
receiver devices placed 24 m apart, ensuring full horizontal beam coverage of a central
recording area measuring approximately 2.6 m × 20 m. Such an extended and structured
environment provides unique conditions for evaluating long-range localization, going
beyond the short-range scenarios typically covered by existing public WiFi datasets.

The dataset comprises CSI measurements and synchronized 3D location trajectories of
a single participant. Data collection involves the subject performing multiple walking
sequences (six in total, each lasting 4–5 minutes) within the defined recording area.
During these sequences, the person moves in a zig-zag trajectory, systematically covering
the entire sensing area, as depicted in Figure 5.2. Concurrently, WiFi packets are captured
at a rate of 100 Hz using system D, while a chest-mounted camera simultaneously records
egocentric video for ground-truth trajectory estimation. The 3D walking trajectories are
estimated from the videos with ORB-SLAM3 [189] at 30 Hz, then upsampled to 100 Hz
by piecewise-linear interpolation of the original 3D coordinates and uniform resampling
to match the WiFi packet sending rate. An example of an extracted walking trajectory
appears in Figure 5.2b (black line).
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Figure 5.3: 3DO recording environment layout over three consecutive days: (a) fixed
layout on days 1 and 2, and (b) layout on day 3, featuring static environmental variations
due to furniture rearrangement. Transmitter (TX), receiver (RX), and camera (C). [50]

In total, the dataset contains 118,679 raw WiFi packets accompanied by per-packet
absolute 3D locations expressed in meters relative to the transmitter position. The data
is explicitly divided into training (4 sequences), validation (1 sequence), and test (1
sequence) sets, facilitating reproducible experiments and benchmarking of regression
models.

HALOC uniquely extends existing WiFi localization datasets by providing a long-range
LOS scenario with detailed absolute 3D trajectory annotations. As such, it serves as
the first publicly available ESP32-based dataset of its kind, enabling targeted research
into long-range localization methods using cost-effective WiFi hardware. The dataset is
publicly available on Zenodo3.

5.2.4 3-Days Office Dataset
The 3-Days Office (3DO) dataset, introduced in [50], provides a foundation for investi-
gating model robustness and cross-domain generalization in WiFi-based person-centric
sensing. Specifically, it represents the first publicly available dataset explicitly designed to
isolate and systematically label static, dynamic, and temporal environmental variations
within a realistic TW scenario. This setup allows researchers to study how these distinct
variations affect WiFi-based HAR and localization models, addressing a critical yet
underexplored topic.

The dataset is recorded using system D operating with a 100 Hz packet-sending rate.
Figure 5.3a illustrates the recording environment, which consists of a central furnished
office room (6 m × 5 m) where activities take place, flanked by two adjacent rooms
housing the WiFi transmitter and receiver. The transmitter and receiver are arranged in

3HALOC Dataset, https://zenodo.org/records/10715595, accessed: 15.04.2025
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a point-to-point configuration separated by 7.2 m, with two plasterboard walls (each 10
cm thick) introducing TW signal propagation challenges.

A unique characteristic of the 3DO dataset is the explicit isolation of static environmental
variations over three consecutive recording days. On the first two days (Figure 5.3a), the
room layout remains constant, allowing analyses of only dynamic (variations in activity
execution) and temporal (time-induced signal drift) changes between days. On day
three, furniture and smaller items within the central room are rearranged (Figure 5.3b),
introducing controlled static environmental changes. Throughout the entire experiment,
the positions of the transmitter, receiver, and activity area (4 m × 2.5 m) remain fixed
to ensure consistent conditions for evaluating domain shifts.

Five repeated sequences per activity class, walking, sitting, and lying, are recorded each
day, yielding a total of 42 sequences (3 sequences are excluded due to corruption). Each
sequence lasts five minutes. During these activities, the subject moves freely within the
activity area while performing specific tasks: walking involves continuous movement
avoiding furniture, sitting involves alternating between two chairs with random limb
movements, and lying simulates a fall scenario with sliding and struggling motions. In
addition to the activity sequences, one ten-minute sequence of no presence is recorded
for each day, resulting in a total of 45 sequences comprising the 3DO dataset.

To capture ground-truth trajectories, an egocentric camera mounted on the subject’s
chest is used. As with the HALOC dataset, videos are subsequently processed using
ORB-SLAM3 [189] to obtain accurate 3D trajectories at 30 Hz, which are then linearly
up-sampled to 100 Hz to match the packet sending rate. Activity labels (0: no presence,
1: walking, 2: sitting, 3: lying) are manually annotated from video frames using visual
cues. The resulting dataset contains 1,292,727 raw WiFi packets, each annotated with
synchronized activity class labels and corresponding 3D location data.

Due to its explicit separation of static, dynamic, and temporal variations in a TW
scenario, the 3DO dataset serves as a unique benchmark to study and improve model
generalization. Researchers can directly train models using data from day one and
evaluate them on days two and three, thereby quantifying robustness to domain shifts
induced by temporal and static environmental variations. The 3DO dataset is publicly
available on Zenodo4, supporting further advancements in WiFi-based PCS research.

5.2.5 WiFiCam Dataset
The WiFiCam dataset, introduced in [51], represents the first publicly available dataset
specifically designed for synthesizing RGB images directly from CSI captured in a
TW scenario. It is originally created to demonstrate and validate a novel multimodal
VAE-based approach for CSI-based TW imaging.

Data is recorded in a 3.8 m × 5.3 m office environment, as shown in Figure 5.4. A
single-room TW scenario is set up, with the transmitter and receiver placed outside

43DO Dataset, https://zenodo.org/records/10925351, accessed: 15.04.2025
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Figure 5.4: WiFiCam dataset experimental setup for through-wall imaging, showing the
arrangement of transmitter, receiver, and camera in the office recording environment.
Transmitter (TX), receiver (RX), and camera (C). [51]

opposite walls of the room, facing each other. The system used is system D, which
transmits WiFi packets at a fixed rate of 100 Hz. An RGB camera positioned inside
the room captures images at a resolution of 640 × 480 pixels and a frame rate of 30 Hz,
synchronized with the WiFi packet collection.

During data collection, a subject continuously performs walking activities within a
predefined recording area inside the room over a duration of ten minutes. Raw data
synchronization is achieved by connecting both the receiver and the camera to a notebook
that concurrently logs WiFi packets and RGB frames with timestamps. For accurate
modality alignment, each WiFi packet is paired with the closest RGB frame based on
timestamp proximity, resulting in approximately three WiFi packets per image. The
dataset consists of 57,413 raw WiFi packets and 18,261 synchronized RGB images. Unlike
other datasets discussed here, WiFiCam does not provide explicit activity or trajectory
annotations, focusing instead on the raw image–CSI pairing. This focus makes the dataset
particularly suitable for tasks such as direct CSI-to-image synthesis, cross-modal learning,
and visual HAR from TW CSI data. The dataset is publicly available on Zenodo5.

5.2.6 Temporal Resolution
All proposed datasets are captured at a fixed packet sending rate of 100 Hz (corresponding
to a 10 ms packet interval). However, the packet sampling rate, i.e., the actual frequency
of packet arrivals at the receiver, can vary due to time-varying transmission delays and
packet loss. To assess this, Figure 5.5 presents the distribution of sampling intervals
between consecutive packets across the datasets listed in Table 5.2. The distributions
are tightly centered around the nominal interval of 10 ms. Moreover, the global median
sampling interval across all datasets (comprising approximately 2.3 million packets) is
9.999 ms, corresponding to an effective sampling rate of 100.01 Hz. This consistency across
LOS and TW scenarios, varied environments, different WiFi systems, and transmitter-

5WiFiCam Dataset, https://zenodo.org/records/11554280, accessed: 15.04.2025
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Figure 5.5: Probability density of packet sampling intervals between consecutive WiFi
packets ∆t for the proposed datasets listed in Table 5.2.

receiver distances, confirms that the packet sampling rate remains stable under domain
variations.

Summary
The proposed datasets extend WiFi-based PCS to underexplored but practically important
scenarios such as long-range and TW sensing. Captured with the proposed systems,
they introduce novel combinations of modalities, scenarios, and labels for tasks including
presence detection, HAR, localization, and image synthesis. By capturing domain
variations across hardware, environments, and time, they enable systematic evaluation of
cross-domain generalization, addressing the challenges in RQ I, RQ III, and RQ IV.
They further define the sensing conditions and data characteristics that guide the design
and evaluation of embedded, real-time CSI processing methods in Chapter 6, informing
the contributions related to RQ II.
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CHAPTER 6
Methodology

This chapter presents the methodological contributions, addressing key challenges in
enabling practical and robust WiFi-based PCS. It begins with feasibility studies that
evaluate the long-range and TW sensing capabilities of the WiFi systems proposed.
Building on these results, the chapter introduces methods for the efficient processing of CSI,
explores strategies to improve model robustness under domain shift, and concludes with
an investigation of CSI-based TW imaging. Together, these works form a methodological
framework for advancing CSI-based PCS across diverse sensing tasks and domains.

6.1 Feasibility of Long-Range and Through-Wall PCS
RQ I explores how long-range TW PCS can be realized using low-cost, COTS WiFi
hardware, aiming to minimize complexity and deployment cost. Current PCS methods
predominantly target short-range LOS scenarios, limiting their scalability and practical
applicability in real-world environments, especially when signals must traverse walls or
span considerable distances. To overcome these challenges, a methodology that enhances
the widely available and cost-effective ESP32-S3 microcontroller with directional sensing
capabilities is proposed. By designing optimized WiFi systems, PCS capabilities are
extended to challenging long-range and TW domains. Comprehensive evaluations using
TOA, Wallhack1.8k, and HALOC datasets empirically verify the feasibility and robustness
of the proposed methodology for PCS tasks such as presence detection, HAR [40, 52],
and person localization [49].

6.1.1 Evaluation Methodology
To systematically verify the feasibility of long-range and TW PCS using the proposed
WiFi systems, comprehensive evaluations are conducted across three core person-centric
sensing tasks: presence detection, HAR, and localization. Specifically, evaluations focus
on four optimized WiFi systems (A, B, C1, and D), all of which enhance the cost-effective
ESP32-S3 microcontroller with directional sensing capabilities. Each system addresses
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inherent hardware constraints, such as limited range and sensitivity, by integrating either
custom directional antennas or passive reflector solutions.

Evaluations leverage the systematically collected datasets, TOA, Wallhack1.8k, and
HALOC, to ensure coverage of a variety of sensing scenarios. Specifically, presence
detection and HAR tasks are evaluated using subsets extracted from the TOA dataset
(System A) and the Wallhack1.8k dataset (Systems B and C1). Both datasets feature
structured environments explicitly designed for direct comparisons of LOS and TW
performance, spanning distances of up to 18 meters and including signal propagation
through multiple walls. The HALOC dataset (System D) complements these evaluations
by providing data for assessing localization capabilities over a 20-meter LOS hallway
scenario.

To maintain consistency, reproducibility, and comparability of results, all evaluations
employ standard CNNs based on the lightweight and efficient EfficientNetV2 architec-
ture [190]. EfficientNetV2 is designed to achieve high classification accuracy while using
fewer computational resources and training faster than previous, standard CNN architec-
tures such as ResNet [191]. The evaluations leverage amplitude-based CSI spectrograms
due to their robustness to noise and signal instability.

Data For the assessment of presence detection and HAR performance, CSI amplitude
spectrogram subsets are extracted from the TOA and Wallhack1.8k datasets as detailed
in Table 6.1.

The TOA dataset is divided into four subsets: T_PLA and T_PTA for presence detec-
tion, and T_ALA and T_ATA for HAR, in LOS and TW scenarios respectively. The
Wallhack1.8k dataset is divided into eight subsets: W_PLB, W_PTB, W_PLC1 , and
W_PTC1 for presence detection, and W_ALB, W_ATB, W_ALC1 , and W_ATC1 for HAR.
Subsets follow the naming convention X_YZW , where X denotes the dataset (T: TOA,
W: Wallhack1.8k), Y indicates the task (P: presence detection, A: HAR), Z indicates the
scenario (L: LOS, T : TW), and W indicates the system (A, B, or C1). All subsets are
further partitioned into training, validation, and test splits at an 8:1:1 ratio.

For evaluating the feasibility of long-range localization, the HALOC dataset, recorded
with System D, is employed using its predefined training, validation, and test splits,
consisting of four training sequences, one validation sequence, and one test sequence.

6.1.2 Presence Detection
The presence detection task involves classifying the spatial location of a person based
on patterns in CSI amplitude spectrograms. It is formulated as a 6-class classification
problem, where the classes correspond to discrete spatial zones, including five room
locations and a background class representing no presence. This task is evaluated on
both LOS and TW scenarios over an 18-meter range, using the TOA and Wallhack1.8k
datasets. In the TW scenario (T_PTA, W_PTB, W_PTC1), the person is located in one
of five adjacent rooms, while in the LOS scenario (T_PLA, W_PLB, W_PLC1), presence
is detected at hallway segments aligned with those room positions.
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Dataset Task Scenario System Rooms Classes Sampling Interval Samples
T_PLA PD LOS A 1 6 ≈ 4 s (400 packets) 392
T_PTA PD TW A 5 6 ≈ 4 s (400 packets) 384
T_ALA HAR LOS A 1 3 ≈ 4 s (400 packets) 392
T_ATA HAR TW A 5 3 ≈ 4 s (400 packets) 384
W_PLB PD LOS B 1 6 ≈ 4 s (400 packets) 458
W_PLC1 PD LOS C1 1 6 ≈ 4 s (400 packets) 461
W_PTB PD TW B 5 6 ≈ 4 s (400 packets) 450
W_PTC1 PD TW C1 5 6 ≈ 4 s (400 packets) 437
W_ALB HAR LOS B 1 3 ≈ 4 s (400 packets) 458
W_ALC1 HAR LOS C1 1 3 ≈ 4 s (400 packets) 461
W_ATB HAR TW B 5 3 ≈ 4 s (400 packets) 450
W_ATC1 HAR TW C1 5 3 ≈ 4 s (400 packets) 437

Table 6.1: TOA and Wallhack1.8k subsets for assessing presence detection and HAR
performance in LOS and TW scenarios.
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Figure 6.1: LOS and TW presence detection accuracy on TOA and Wallhack1.8k valida-
tion subsets, measured across ten independent training runs with random initialization,
spanning 400 epochs. [40, 52] †
Model Training Presence detection models based on the EfficientNetV2 small archi-
tecture are trained using the TOA and Wallhack1.8k subsets described in Table 6.1. All
models are trained from scratch for 400 epochs using the Adam optimizer, a learning
rate of 1× 10−4, and a batch size of 16. A balanced sampler is employed to address class
imbalance within training sets. Data augmentation consists of random circular shifts
applied to CSI amplitude spectrograms along the temporal axis. Each model configura-
tion undergoes ten independent training runs with random initialization, and evaluation
metrics, including precision, recall, F1-score, and classification accuracy (ACC), are
reported as means and standard deviations across these runs on their respective test
subsets. Model names follow the convention PZW , where Z denotes the scenario (L:
LOS, T : TW), and W indicates the system (A, B, or C1).

Figure 6.1 shows training progress for presence detection models trained on the TOA and
Wallhack1.8k datasets in LOS and TW scenarios. LOS models (left) (i.e., PLA, PLB, PLC1)
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Model Testset Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
PLA T_PLA 98.67 ±1.8 98.61 ±1.9 98.64 ±1.8 98.46 ±2.1
PTA T_PTA 98.14 ±1.6 97.72 ±2.2 97.93 ±1.9 97.89 ±2.0

PLB W_PLB 97.67 ±1.9 97.30 ±2.4 97.48 ±2.1 97.83 ±1.9
PLC1 W_PLC1 99.00 ±1.6 98.69 ±1.9 98.85 ±1.7 98.91 ±1.5
PTB W_PTB 96.84 ±2.1 97.60 ±1.5 97.22 ±1.8 96.89 ±2.3
PTC1 W_PTC1 98.44 ±2.1 98.32 ±2.2 98.38 ±2.1 98.64 ±1.8

Table 6.2: Performance of LOS and TW presence detection models on TOA (PLA, PTA)
and Wallhack1.8k (PLB, PLC1 , PTB, PTC1) datasets, reported as mean and standard
deviation across ten independent training runs with random initialization.

demonstrate rapid convergence, reaching near-optimal accuracy within approximately 30
epochs. Conversely, TW models (right) (i.e., PTA, PTB, PTC1) exhibit slower convergence,
requiring up to approximately 120 epochs to reach stable, high accuracy. Ultimately
all models achieve consistent validation accuracy, highlighting their ability to effectively
learn from the underlying data.

Results Table 6.2 summarizes the performance of presence detection models on the
TOA and Wallhack1.8k test subsets. On the TOA dataset, models trained with system A
data achieve consistently high accuracy in both LOS and TW scenarios, with model PLA
slightly outperforming PTA (98.46% vs. 97.89%). These results indicate that system A
effectively captures PCI, maintaining high reliability even in challenging TW scenarios.

On Wallhack1.8k, models using system C1 data (i.e., PLC1 and PTC1) consistently out-
perform their system B counterparts (i.e., PLB, PTB). In the LOS scenario, accuracy
for system C1 reaches 98.91%, compared to 97.83% for system B. Similarly, in the TW
scenario, system C1 achieves an accuracy of 98.64%, while system B achieves 96.89%.
Notably, the accuracy drop from LOS to TW is smaller for system C1 (0.27 percentage
points) compared to system B (0.94 percentage points). Although a performance gap
between systems B and C1 is measurable, it remains modest, making a definitive statement
about system superiority difficult due to minor dataset variations.

Overall, the high performance across all three evaluated systems (A, B, and C1), with
mean accuracies of 98.40% in LOS scenarios and 97.80% in TW scenarios, demonstrates
their capability to reliably capture PCI in long-range TW sensing settings, effectively
supporting presence detection tasks.

6.1.3 Human Activity Recognition
The HAR task shares the same physical environment and propagation settings as presence
detection but focuses on identifying the type of activity being performed. It is defined
as a 3-class classification problem, distinguishing between no presence, walking, and
walking + arm-waving. Evaluation is conducted under both LOS and TW conditions
using the same TOA and Wallhack1.8k subsets (T_ALA, T_ATA, W_ALB, W_ATB,
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Figure 6.2: LOS and TW HAR accuracy on TOA and Wallhack1.8k validation subsets,
measured across ten independent training runs with random initialization, spanning 400
epochs. [40, 52] †

W_ALC1, W_ATC1). This task aims to benchmark a systems’ ability to capture coarse
and fine-grained human motion patterns in the CSI.

Model Training The training procedure for HAR models mirrors that of the presence
detection task. All models are based on the EfficientNetV2 small architecture and
trained from scratch for 400 epochs using the Adam optimizer with a learning rate of
1 × 10−4 and a batch size of 16. A balanced sampler eliminates class imbalance, and
spectrograms are augmented through random circular shifts along the temporal axis.
Each model is trained ten times with random initialization, and the evaluation metrics,
precision, recall, F1-score, and classification accuracy (ACC), are reported as means
and standard deviations across the corresponding test subsets. HAR models follow the
naming convention AZW , where Z denotes the scenario (L: LOS, T : TW) and W refers
to the system (A, B, or C1).

Figure 6.2 shows the training behavior of HAR models trained on the TOA and Wall-
hack1.8k datasets across LOS (i.e., ALA, ALB, ALC1) and TW (i.e., ATA, ATB, ATC1)
scenarios. In the LOS scenario, models converge after approximately 200 epochs, with
final validation accuracies plateauing near 90%. This slower and less stable convergence,
compared to the presence detection task, highlights the increased difficulty of distin-
guishing between activities. In the TW scenario, models require the full 400 epochs to
converge, with increased run-to-run variance and early divergence in performance across
systems, which persists throughout training and highlights the increased difficulty of
HAR in the presence of multi-wall signal attenuation and multipath effects.

Results Table 6.3 presents the performance of HAR models trained on the TOA
and Wallhack1.8k datasets. On TOA, system A achieves 97.43% accuracy in the LOS
scenario (ALA) and 88.16% in the TW scenario (ATA), indicating a substantially larger
performance gap than observed in the presence detection task. This suggests that the
HAR task, which requires distinguishing between more subtle motion patterns, is more
sensitive to signal degradation under TW conditions. Notably, the TW model exhibits
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Model Testset Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
ALA T_ALA 97.80 ±0.9 98.04 ±0.9 97.92 ±0.9 97.43 ±1.1
ATA T_ATA 90.94 ±3.8 87.92 ±4.3 89.39 ±4.0 88.16 ±4.6

ALB W_ALB 89.98 ±2.5 89.05 ±2.2 89.51 ±2.3 89.35 ±2.3
ALC1 W_ALC1 91.12 ±3.9 90.42 ±4.0 90.77 ±4.0 90.22 ±4.3
ATB W_ATB 92.81 ±3.3 91.20 ±3.9 91.99 ±3.5 92.00 ±3.5
ATC1 W_ATC1 86.56 ±5.0 86.18 ±4.9 86.37 ±4.9 86.82 ±4.7

Table 6.3: Performance of LOS and TW HAR models on TOA (AL, ATA) and Wall-
hack1.8k (ALB, ALC1 , ATB, ATC1) datasets, reported as mean and standard deviation
across ten independent training runs with random initialization.

higher run-to-run variance (±4.6 percentage points), occasionally reaching LOS-level
performance.

On the Wallhack1.8k dataset, both systems B and C1 perform similarly in the LOS
scenario. The model trained on data from system C1 (ALC1) achieves a slightly higher
accuracy of 90.22% compared to 89.35% for system B (ALB). This outcome is somewhat
counterintuitive, as amplitude spectrograms captured by system B exhibit more pro-
nounced signal variations in response to human activities in the LOS path, as shown in
Figure 6.3. It is hypothesized that while system B may produce higher-magnitude signal
fluctuations, the relative structure of activity-induced patterns remains similar across both
systems. Consequently, models trained on data from system C1 can achieve comparable
performance without necessarily benefiting from stronger amplitude variations.

In the TW scenario (the scenario these systems were designed for), however, system B
clearly outperforms system C1. The model ATB achieves 92.00% accuracy, compared to
86.82% for ATC1 . This performance gap aligns with the diverging validation behavior
observed during training and reflects system B’s enhanced ability to capture activity-
relevant signal variations under severe attenuation and multipath conditions introduced
by walls.

Taken together, the results confirm that all three systems (A, B, and C1) are capable of
reliably capturing person-centric information relevant for HAR in long-range scenarios.
Furthermore, with mean accuracies of 92.33% in LOS and 88.99% in TW scenarios,
these systems demonstrate practical feasibility for HAR applications in challenging
environments.

6.1.4 Localization
The localization task, presented by the HALOC dataset, aims to evaluate the feasibility of
long-range person localization using CSI amplitude spectrograms (i.e., fingerprint-based
indoor localization). Specifically, it is formulated as a regression problem, where the goal
is to predict the 3D coordinates of a walking person relative to the receiver. Recordings
are conducted in a 2.6 m × 20 m indoor hallway environment using system D.
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Figure 6.3: LOS CSI amplitude spectrograms from the Wallhack1.8k dataset of the
classes no presence, walking, and walking + arm-waving, captured with systems B and C1
at a distance of approximately 9.4 m (corresponding to the center of room 3 in the TW
scenario). The amplitude spectrograms show the amplitudes of 52 L-LTF subcarriers
over a time interval of ≈ 4 seconds (400 WiFi packets). Highlighted areas (dotted lines)
show the varying signal characteristics between systems. [48] †

Model Training To assess localization performance, an EfficientNetV2 small regression
model is trained on the HALOC dataset using the original split of four training, one
validation, and one test sequence. The model takes as input amplitude spectrograms
of size 52 × 351, constructed from 52 L-LTF subcarriers over 351 WiFi packets (≈
3.51 seconds), which is identified as the optimal width through hyperparameter search.
Training is conducted for 200 epochs using the AdamW optimizer with a learning rate
and weight decay of 1 × 10−3. A cosine annealing scheduler adjusts the learning rate
over time. Data augmentation includes random channel-wise amplitude perturbations
(±0.2), pixel-wise dropout (p = 0.2), and column-wise dropout (p = 0.2) with channel
mean replacement. Model selection is based on the best validation Root Mean Squared
Error (RMSE), and evaluation is performed on the held-out test sequence.

Results The trained model achieves an RMSE of 0.197 m on the HALOC test sequence,
confirming its ability to predict 3D locations with high spatial precision. As illustrated in
Figure 6.4, the predicted positions (colored) closely follow the actual walking trajectory
(black), accurately capturing both linear motion and directional changes. These results
highlight the viability of system D for long-range localization, offering a low-cost and
deployable solution for continuous person tracking in indoor environments.
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Figure 6.4: Walking trajectory of the test sequence (black) and locations predicted by
the regression model (colored). Transmitter (TX) and receiver (RX). [49]

6.1.5 Discussion
The conducted evaluation explicitly validates that low-cost, single-link COTS WiFi
systems equipped with directional sensing effectively overcome inherent range and sen-
sitivity limitations of default omnidirectional configurations, thereby addressing RQ I.
All evaluated WiFi systems (A, B, C1, and D) demonstrate robust long-range TW PCS
performance across presence detection, HAR, and localization tasks, achieving reliable
sensing with minimal complexity and cost.

For presence detection, systems A, B, and C1 exhibit consistently high accuracy on
the TOA and Wallhack1.8k datasets. Specifically, mean accuracies of 98.40% in LOS
scenarios and 97.80% in TW scenarios are achieved, covering distances up to 18 meters
and penetrating four 25 cm-thick brick walls. These results strongly support the feasibility
of long-range TW presence detection using the proposed directional WiFi systems.

The HAR task, which involves distinguishing subtle human movements, also shows strong
performance, albeit somewhat reduced due to its increased complexity. Mean accuracies
across the TOA and Wallhack1.8k datasets reach approximately 92.33% in LOS scenarios
and around 89.99% in TW scenarios. Despite inherent signal degradation and multipath
effects in TW scenarios, the proposed systems maintain robust sensing capabilities.

Finally, the localization capability demonstrated by system D further emphasizes the
practicality of the approach. Evaluated on the HALOC dataset in a 20-meter LOS
hallway scenario, system D achieves precise indoor tracking with a test RMSE of 0.197 m.
The high fidelity of the predicted trajectories underscores the effectiveness of directional
sensing for precise person localization over significant spatial scales.
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6.2 Efficient Architectures for the Processing of CSI
RQ II addresses the challenge of designing efficient deep learning architectures capable of
processing WiFi CSI in real-time on low-power edge devices while capturing CSI’s unique
temporal and spectral characteristics. Practical PCS deployments, especially in privacy-
aware smart environments and healthcare applications, necessitate continuous real-time
inference directly on resource-constrained embedded hardware [192]. However, traditional
CSI-based sensing often relies on generic vision architectures such as CNNs [191, 190]
that, despite their adaptability and strong feature extraction capabilities [177, 74, 71],
incur substantial computational overhead due to their high parameter count and have
translational-equivariance priors that are misaligned with the non-shift-invariant nature of
CSI [46]. On the other hand, existing architectures tailored to the processing of RF/WiFi
data [46, 55] rely on computationally-intensive preprocessing steps such as PCA and STFT,
rendering them unsuitable for real-time inference on edge devices. Recently, Transformer-
based architectures have demonstrated potential for WiFi sensing tasks by effectively
modeling long-range temporal dependencies in CSI data [104, 96]. For example, the
two-stream Transformer approach (THAT ) [104] separately captures time-over-subcarrier
and subcarrier-over-time relationships. However, this and similar architectures often
incorporate multi-stream or multi-stage pipelines, increasing complexity, parameter count,
and inference latency. Therefore, despite their theoretical advantages, existing specialized
Transformer models remain impractical for real-time PCS deployments at the edge.

To address RQ II, WiFlexFormer [53], a novel Transformer-based architecture explicitly
designed to achieve real-time CSI-based PCS on low-power embedded devices is introduced.
Unlike previous architectures, WiFlexFormer features a streamlined, parameter-efficient
structure specifically tailored to exploit the intrinsic temporal and spectral characteristics
of WiFi CSI. Consequently, it achieves exceptionally low parameter count (≈ 50k) and
inference latency (≈ 10 milliseconds on an Nvidia Jetson Orin Nano, as integrated in
System D) without sacrificing competitive HAR performance. Comprehensive evaluations
on public datasets, such as Widar3.0 [74] and 3DO, demonstrate that WiFlexFormer
matches or surpasses the performance of generic vision and state-of-the-art architectures
tailored to RF/WiFi data, yet with up to three orders of magnitude fewer parameters
and faster inference. Thus, WiFlexFormer represents a critical advancement in enabling
scalable, practical, and real-time deployable WiFi-based PCS solutions, laying the
groundwork for further exploration of efficient model architectures suitable for widespread
edge deployment.

6.2.1 WiFlexFormer
The WiFlexFormer architecture, illustrated in Figure 6.5a, comprises an initial stem
module followed by a Transformer encoder. This design is motivated by the unique
characteristics of WiFi CSI. In the proposed approach, the stem module is specifically
tailored to CSI-based features, performing dimensionality reduction on the input and
enabling the use of a compact, BERT-like Transformer architecture that achieves robust
performance with a low parameter count. Transformer encoders can capture long-
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Figure 6.5: (a) The proposed WiFlexFormer architecture. Convolution parameters are
denoted as: [input channels ⇒ number of filters, kernel size]. The final linear layer has
32 input features and c output features, the number of classes. Only the output at the
position of the class token is used for the prediction, the remaining positions are discarded.
(b) Widar3.0 recording setup featuring a single transmitter and six receivers. [53]

range dependencies and global context [103], yet their extension to CSI-based feature
learning is not straightforward. WiFlexFormer introduces a novel BERT-like design
with a class token, a strategy not previously proposed for CSI, which distinguishes it
from other methods that merely employ standard Transformer layers. Furthermore,
the WiFlexFormer does not rely on CSI preprocessing and consists solely of efficient,
well-supported operations, ensuring compatibility with resource-constrained platforms
while matching or exceeding the performance of larger RF-specific and generic vision
architectures. The PyTorch implementation of WiFlexFormer is publicly available1.

Input Features WiFlexFormer expects generic real-valued input features in the shape
[B, C, F , T ], where B, C, F , and T correspond to the batch, channel, frequency, and
time dimensions, respectively. This allows for the processing of common WiFi features

1WiFlexFormer, https://github.com/StrohmayerJ/WiFlexFormer, accessed: 15.04.2025
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such as CSI, DFS, amplitude, phase, and their derivations. To handle complex-valued
inputs like CSI, real and imaginary parts are separated and stored in two real-valued
channels, as proposed in [46]. This results in an input tensor shape of [B, 2, F , T ].
For unprocessed inputs such as CSI or amplitude, the dimensionality of F corresponds
to the number of subcarriers, while for features resulting from STFT, such as DFS, F
corresponds to the number of frequency bins.

Stem The stem of WiFlexFormer is designed to handle various input features and
perform initial feature extraction and dimensionality reduction. It consists of two main
components: a 2D stem for multi-channel inputs and a 1D stem for further processing.
For inputs with multiple channels (C > 1), such as DFS features where each subcarrier
generates a 2D spectrogram, a 2D stem comprising two convolutional layers with kernel
size (1, 3) is applied. The first convolutional layer maintains the number of input channels
while the second reduces it to 1. Both use GELU activation functions.

Following the 2D stem (or directly for single-channel inputs like amplitude features), a
1D stem consisting of two blocks, each containing a 1D convolutional layer (kernel size
3, 32 filters), batch normalization, GELU activation, and dropout (rate 0.1), is applied.
This 1D stem reduces the frequency dimension from its input size to a fixed dimension of
32.

This flexible architecture allows WiFlexFormer to handle various input types: amplitude
features [B, 1, F, T ] (F is the number of subcarriers) and DFS features [B, C, F, T ] (C
is the number of subcarriers, F is the number of frequency bins). The stem’s design
replaces heuristic preprocessing steps, providing an end-to-end learnable approach for
feature extraction and noise reduction. The temporal receptive field of 5 in the 1D stem
helps accumulate information from adjacent positions, enhancing the model’s ability to
handle noisy inputs.

Positional Encoding and Class Token To encode the temporal dimension, a Gaus-
sian positional encoding is applied to the stem’s output, following the method described
in [104]. The resulting encoded features are combined with a class token before being
input into a four-layer Transformer encoder. This token serves as an aggregator of global
information, and its output will be used for the final classification. The use of a class
token rather than direct feature aggregation, as in [104], prevents blurring temporal
relationships.

Encoder Each layer of the encoder contains 16 attention heads and a feedforward
dimension of 64. The final prediction is generated by processing the class token output
through a linear classification head. WiFlexFormer can be trained end-to-end and remains
relatively lightweight, containing only ≈ 50k parameters (depending on the input shape).
Furthermore, it is designed to work directly with CSI amplitude features and, therefore,
does not rely on complicated or slow feature extraction methods.
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6.2.2 Evaluation Setup
The WiFi-based PCS capabilities of WiFlexFormer are evaluated on two publicly available
datasets. These datasets encompass a variety of systems, transmitter-receiver configu-
rations, and recording environments and include both micro- and macroscopic human
activities. Additionally, the evaluation covers diverse scenarios, such as LOS and TW
sensing. Given that cross-domain generalization remains a significant challenge in WiFi-
based sensing [47], our evaluation is structured to measure performance in both in-domain
and cross-domain contexts. To provide a comprehensive assessment, WiFlexFormer is
compared against a range of state-of-the-art vision architectures, as well as architectures
specifically designed for processing RF signals, such as WiFi. The evaluation metrics
include both HAR performance and inference speed. Finally, to optimize inference speed,
various subcarrier sub-sampling strategies using amplitude and DFS features are explored.
DFS features are investigated alongside amplitude features since they are a popular choice
among existing methods [46, 55] and due to their potential robustness to environmental
variations. However, DFS features require more computational resources for extraction.

Data The 3DO dataset is specifically designed to enable controlled studies of model
generalization in TW HAR scenarios by isolating environmental variation. It captures
three macroscopic activities (walking, sitting, and lying) performed by a single participant
over three consecutive days. By holding the participant constant, 3DO removes inter-
subject variability and focuses solely on dynamic, static, and temporal domain shifts
introduced across days. The WiFi transceivers (system D) remain fixed throughout,
operating in a static TW scenario. Day 1 establishes a static in-domain baseline. Day 2
introduces dynamic variation through altered activity execution and natural hardware
drift. Day 3 adds static environmental variation by rearranging furniture in the sensing
space, resulting in a challenging test domain involving all three sources of domain shift.
This design allows for the evaluation of generalization under controlled domain shifts,
complementing the cross-subject variability assessed with Widar3.0-G6.

The Widar3.0 WiFi PCS dataset [74] features CSI recordings of 22 human hand gestures
performed by 16 participants in three different indoor environments. Since not all 22
gestures are consistently performed in all three environments, a subset of Widar3.0,
referred to as Widar3.0-G6 [75], is often utilized instead of the full dataset. This subset
includes 6 gestures that are performed across all three environments by 15 users, resulting
in a total of 11,250 hand gesture samples. The recording setup, shown in Figure 6.5b,
consists of one 5.825 GHz WiFi transmitter (TX) and six receivers (RXn), each equipped
with an Intel WiFi Link 5300 wireless NIC that has three antennas. The CSI of 90
subcarriers (3 antennas × 30 subcarriers) is collected at each receiver using the Linux
CSI Tool [193], utilizing a packet sending rate of 1,000 Hz.

The 3DO dataset, although based on a single participant, is intentionally chosen to isolate
environmental variations from inter-person variability. This controlled setting allows
assessing the model’s ability to generalize to dynamic and static environmental changes.
Complementing this, the Widar3.0-G6 offers cross-subject and cross-receiver evaluation,
ensuring that the evaluation captures both controlled and real-world variability.
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Model Training WiFlexFormer is compared against standard vision architectures
and specialized architectures for the processing of RF signals such as WiFi. The vision
architectures include EfficientNetV2s[190], ResNet18 [191], and ShuffleNetV2x0.5 [194],
while the RF-specific architectures include RF-Net[55], which uses a dual-path architec-
ture processing DFS features in both time and frequency domains with attention-based
temporal mechanisms; SLNet[46], which combines neural network-based super-resolution
spectrogram enhancement with polarized convolution for DFS feature processing; and
THAT [104], which employs a two-stream (time-over-frequency and frequency-over-time)
architecture capturing amplitude-based features with convolution-augmented transform-
ers.

For model training, 3DO and Widar3.0-G6 datasets are utilized, employing both CSI
amplitude and DFS features. For the 3DO dataset, a 3:1:1 split on day 1 data is performed
for training, validation, and testing to evaluate in-domain performance. Data from days
2 and 3 are reserved for testing cross-domain generalization under dynamic and static
environmental variations, respectively. CSI of the 52 L-LTF subcarriers is used, with
samples extracted over a window of 351 WiFi packets (≈ 3.51 seconds at a 100 Hz packet
sending rate) a duration determined empirically through hyperparameter search.

The Widar3.0-G6 dataset is employed to assess cross-receiver generalization. It is split
into two subsets: one containing data from receivers RX1−3, used for training with an
8:2 training-validation split, and the other from receivers RX4−6, reserved for testing. To
align with the single-link nature of the 3DO dataset, only the CSI from antenna 1 at
each receiver is used, resulting in a selection of 30 subcarriers. Temporal sub-sampling is
performed at 100 Hz, with the sampling window length set to 369 packets based on the
longest sample length post-sub-sampling, while shorter samples are zero-padded to this
length.

Both amplitude and DFS features are extracted from CSI data. DFS features are
computed on a per-subcarrier basis using STFT with a Gaussian window and a segment
and FFT length of 125 WiFi packets. A frequency band-pass filter from -60 Hz to 60
Hz, as proposed in [46], is applied, resulting in 121 frequency bins. The input shapes
for amplitude features are [B, 1, 52, 351] for the 3DO dataset and [B, 1, 30, 369] for
the Widar3.0-G6 dataset. For DFS features, the input shapes are [B, 52, 121, 351] and
[B, 30, 121, 369] for the 3DO and Widar3.0-G6 datasets, respectively. Furthermore, for
SLNet, real and imaginary parts of the complex-valued DFS features are stored separately
in an additional dimension. The remaining models are fed with the absolute value of the
computed DFS features.

For the HAR task, each architecture and feature configuration is trained from scratch
in three independent runs with different random seeds, over 10 epochs. The AdamW
optimizer [195] with a learning rate of 1× 10−3 and a weight decay of 1× 10−3 is used,
optimizing for cross-entropy loss. To address class imbalances in the datasets, a balanced
random sampler is employed. Training is conducted with a batch size of 32, and no data
augmentation is applied, allowing the evaluation of stand-alone generalization capabilities
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Inference Time [ms]
Model Amplitude DFS
RF-Net [55] - 427.20 ±13.
SLNet [46] - 322.31 ±7.3
EfficientNetV2s [190] 67.72 ±0.6 68.66 ±0.8
THAT [104] 37.87 ±0.5 -
ShuffleNetV2x0.5 [194] 22.16 ±0.6 22.59 ±0.5
ResNet18 [191] 9.67 ±0.2 12.01 ±0.4
WiFlexFormer [proposed] 9.26 ±0.2 11.06 ±0.6

Table 6.4: Inference time comparison between models for amplitude and DFS features.
Inference time is reported as the mean inference time over 1,000 iterations (excluding
100 warm-up iterations) on an Nvidia Jetson Orin Nano using a batch size of 1.

of each architecture. For each run, the best model, with respect to validation loss, is
selected for evaluation on the test sets.

6.2.3 Results
Model performance is measured using standard metrics such as recall, precision, F1-score,
and accuracy (ACC), computed on the test datasets for each model. To account for
variability between runs, the mean and standard deviation of these metrics across three
independent training runs are reported, providing a more robust performance measure.

Inference Time To provide context for the HAR performance results, the inference
times of all models are first evaluated, reflecting their parameter count and computational
efficiency. Inference time is measured using amplitude and DFS features on an Nvidia
Jetson Orin Nano single-board computer with 8 GB of VRAM. A batch size of 1 is used,
resulting in input shapes of [1, 1, 52, 351] and [1, 52, 121, 351] for amplitude and DFS
features, respectively. For each configuration, 100 warm-up iterations are performed
preceding the measurement of the mean inference time over 1,000 iterations. The results,
presented in Table 6.4, show that WiFlexFormer achieves the lowest inference times for
both feature types, with a mean inference times of 9.26 ms for amplitude features and
11.06 ms for DFS features. The second-fastest model, ResNet18, achieves mean inference
times of 9.67 ms for amplitude features and 12.01 ms for DFS features. In comparison,
specialized models such as RF-Net (427.20 ms for DFS), SLNet (322.31 ms for DFS), and
THAT (37.87 ms for amplitude) exhibit significantly higher inference times due to their
larger parameter counts. These findings demonstrate that WiFlexFormer provides more
efficient inference across both feature types, making it particularly suitable for real-time
edge applications where low latency is essential.

HAR Performance on 3DO Table 6.5 presents the in- and cross-domain HAR
performance for all models on the 3DO dataset using amplitude features. Day 1 represents
in-domain performance, while days 2 and 3 reflect cross-domain performance under
dynamic and static environmental variations, respectively.
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Model Params D Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
EfficientNetV2s [190] 20.18 M 1 96.64 ±0.2 98.70 ±0.2 97.66 ±0.2 99.11 ±0.1
ResNet18 [191] 11.17 M 1 97.98 ±0.3 99.19 ±0.1 98.58 ±0.2 99.38 ±0.1
THAT [104] 7.96 M 1 97.90 ±0.6 98.01 ±0.6 97.95 ±0.6 98.01 ±0.6
ShuffleNetV2x0.5 [194] 0.34 M 1 96.51 ±0.3 99.03 ±0.1 97.75 ±0.2 99.36 ±0.1
WiFlexFormer [proposed] 0.05 M 1 97.45 ±1.0 98.43 ±0.6 97.94 ±0.8 98.41 ±0.7

EfficientNetV2s [190] 20.18 M 2 77.31 ±1.4 79.79 ±2.1 78.53 ±1.7 80.01 ±2.2
ResNet18 [191] 11.17 M 2 78.79 ±0.3 82.85 ±0.3 80.77 ±0.3 83.07 ±0.3
THAT [104] 7.96 M 2 87.88 ±2.7 88.01 ±2.8 87.95 ±2.8 88.03 ±2.8
ShuffleNetV2x0.5 [194] 0.34 M 2 77.91 ±1.9 80.19 ±2.5 79.03 ±2.2 80.25 ±2.5
WiFlexFormer [proposed] 0.05 M 2 83.37 ±3.1 85.16 ±3.5 84.26 ±3.3 85.26 ±3.6

EfficientNetV2s [190] 20.18 M 3 75.27 ±1.5 77.77 ±2.4 76.49 ±1.9 78.44 ±2.3
ResNet18 [191] 11.17 M 3 76.55 ±0.8 77.94 ±1.1 77.24 ±0.9 78.70 ±1.1
THAT [104] 7.96 M 3 75.60 ±0.3 75.60 ±0.3 75.60 ±0.3 75.61 ±0.3
ShuffleNetV2x0.5 [194] 0.34 M 3 70.20 ±4.4 70.02 ±5.9 70.10 ±5.2 70.49 ±5.9
WiFlexFormer [proposed] 0.05 M 3 85.74 ±2.4 86.47 ±2.9 86.10 ±2.7 86.98 ±2.9

Table 6.5: In- and cross-domain activity recognition performance on the 3DO dataset
using amplitude features. Column D indicates the day of data collection. All models
are trained on day 1 data with a 3:1:1 training-validation-test split. Amplitude features
from all 52 subcarriers are used as input. Results are presented as mean and standard
deviation across three independent runs with random initialization.

For in-domain performance (day 1), all models perform similarly, with vision-based
models such as ResNet18 and ShuffleNetV2x0.5 slightly outperforming specialized models.
However, WiFlexFormer achieves a competitive accuracy of 98.41%, outperforming the
specialized model THAT, while using only a fraction of the parameters (0.05 M vs. 7.96
M).

In the cross-domain evaluation on day 2, which introduces dynamic variations, Wi-
FlexFormer demonstrates strong generalization capabilities, achieving 85.26% accuracy,
second only to THAT at 88.03%. In contrast, vision-based models show a noticeable
drop in accuracy, with ResNet18 reaching only 83.07%.

On day 3, which adds the challenge of static environmental variation, WiFlexFormer
outperforms all other models with an accuracy of 86.98%, highlighting its robustness
in challenging cross-domain scenarios. Notably, THAT experiences a significant drop
in accuracy to 75.61%, while vision-based models like ResNet18 struggle to maintain
performance, achieving only 78.70%.

Overall, considering both in-domain and cross-domain performance, WiFlexFormer, using
amplitude features, emerges as the best-performing model, offering superior generalization
at a dramatically lower parameter count (0.05 M) compared to models like EfficientNetV2s
(20.18 M) and ResNet18 (11.17 M), making it highly efficient for real-world WiFi-based
HAR applications.
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Model Params D Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
RF-Net [55] 349.57 M 1 87.46 ±0.9 88.18 ±1.0 87.82 ±1.0 88.19 ±1.0
SLNet [46] 146.27 M 1 85.04 ±4.8 87.53 ±4.3 86.27 ±4.6 87.50 ±4.3
EfficientNetV2s [190] 20.19 M 1 97.33 ±0.1 97.66 ±0.0 97.50 ±0.1 97.67 ±0.0
ResNet18 [191] 11.33 M 1 94.60 ±0.9 94.94 ±1.0 94.77 ±0.9 94.92 ±1.0
ShuffleNetV2x0.5 [194] 0.36 M 1 97.24 ±0.5 97.50 ±0.4 97.37 ±0.5 97.48 ±0.4
WiFlexFormer [proposed] 0.06 M 1 85.49 ±1.4 92.70 ±0.4 88.95 ±0.9 92.83 ±0.4

RF-Net [55] 349.57 M 2 62.62 ±2.1 62.89 ±2.1 62.75 ±2.1 62.89 ±2.1
SLNet [46] 146.27 M 2 62.94 ±12. 63.84 ±12. 63.39 ±12. 63.87 ±12.
EfficientNetV2s [190] 20.19 M 2 86.42 ±3.4 86.58 ±3.3 86.50 ±3.4 86.58 ±3.3
ResNet18 [191] 11.33 M 2 75.03 ±0.0 75.15 ±0.1 75.09 ±0.1 75.16 ±0.1
ShuffleNetV2x0.5 [194] 0.36 M 2 71.11 ±1.2 71.20 ±1.2 71.15 ±1.2 71.21 ±1.2
WiFlexFormer [proposed] 0.06 M 2 75.59 ±1.4 79.77 ±1.4 77.62 ±1.4 79.91 ±1.4

RF-Net [55] 349.57 M 3 59.69 ±1.6 59.57 ±1.6 59.63 ±1.6 59.58 ±1.6
SLNet [46] 146.27 M 3 75.53 ±7.2 76.88 ±7.8 76.20 ±7.5 76.91 ±7.8
EfficientNetV2s [190] 20.19 M 3 73.26 ±4.4 73.61 ±4.5 73.44 ±4.5 73.62 ±4.5
ResNet18 [191] 11.33 M 3 69.26 ±6.9 69.30 ±7.1 69.28 ±7.0 69.30 ±7.1
ShuffleNetV2x0.5 [194] 0.36 M 3 71.35 ±3.4 71.47 ±3.5 71.41 ±3.5 71.47 ±3.5
WiFlexFormer [proposed] 0.06 M 3 71.10 ±2.3 73.85 ±3.1 72.45 ±2.7 74.18 ±3.2

Table 6.6: In- and cross-domain activity recognition performance on the 3DO dataset
using DFS features. Column D indicates the day of data collection. All models are
trained on day 1 data with a 3:1:1 training-validation-test split. Amplitude features
from all 52 subcarriers are used as input. Results are presented as mean and standard
deviation across three independent runs with random initialization.

Table 6.6 shows the in- and cross-domain HAR performance for all models on the 3DO
dataset using DFS features. While WiFlexFormer is outperformed by larger vision
models such as EfficientNetV2s and ShuffleNetV2x0.5, this is expected due to their high
parameter count, which allows them to make better use of the dense DFS features across
all subcarriers. In contrast, WiFlexFormer prioritizes strong feature compression in its
design to remain computationally efficient, which limits its ability to leverage the full
richness of DFS data. Despite this, WiFlexFormer delivers a competitive in-domain
accuracy of 92.83%.

In cross-domain evaluations, especially on day 2, WiFlexFormer demonstrates reasonable
generalization, achieving 79.91% accuracy, outperforming larger models such as ResNet18
and ShuffleNetV2x0.5, and coming close to EfficientNetV2s. On day 3, which introduces
static environmental variations, WiFlexFormer continues to show stability, with an
accuracy of 74.18%, higher than ResNet18 and comparable to other models, while SLNet
and EfficientNetV2s exhibit a larger drop in performance.

One notable observation is the high run-to-run variance exhibited by the larger models,
such as SLNet, across all days, indicating instability during training, especially when faced
with out-of-distribution samples. In contrast, WiFlexFormer consistently shows lower
variance, suggesting that its low parameter count may provide a natural regularization
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Model Params Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
EfficientNetV2s [190] 20.18 M 52.26 ±2.0 52.08 ±0.5 52.16 ±1.2 51.98 ±0.5
ResNet18 [191] 11.17 M 51.26 ±2.1 51.50 ±1.9 51.38 ±2.0 51.38 ±1.8
THAT [104] 8.48 M 50.60 ±1.3 49.96 ±0.6 50.26 ±0.6 49.84 ±0.6
ShuffleNetV2x0.5 [194] 0.35 M 52.26 ±0.6 51.89 ±0.8 52.07 ±0.7 51.74 ±0.8
WiFlexFormer [proposed] 0.04 M 49.29 ±0.3 49.59 ±0.4 49.44 ±0.4 49.38 ±0.4

Table 6.7: Cross-receiver gesture recognition performance on the Widar3.0-G6 dataset
using amplitude features. All models are trained on data from receivers 1-3 with an
8:2 training-validation split and tested on receivers 4-6. Amplitude features from all 30
subcarriers are used as input. Results are presented as mean and standard deviation
across three independent runs with random initialization.

effect, leading to more stable training and performance across different domains.

Interestingly, none of the models, including the high-parameter models, are able to fully
leverage DFS features for HAR, as the overall performance with DFS is notably lower
than with amplitude features. This suggests that DFS features may not be optimal for
this TW sensing scenario. The complex signal scattering and the highly noisy phase
information involved in DFS computation likely contribute to the lower performance.

From an efficiency perspective, this outcome is promising: amplitude features, which
have a lower dimensionality and do not require computationally expensive preprocessing,
outperform DFS features requiring computationally expensive preprocessing, such as
STFT, across all models. For WiFlexFormer, this is particularly advantageous, as it
achieves better HAR performance with simpler, faster-to-process amplitude features,
making it an ideal solution for WiFi-based real-time sensing applications.

HAR Performance on Widar3.0-G6 Table 6.7 presents the cross-receiver gesture
recognition performance using amplitude features on the Widar3.0-G6 dataset. Overall,
all models perform similarly, with EfficientNetV2s achieving the highest accuracy of
51.98%. Vision-based models generally outperform specialized models such as THAT and
WiFlexFormer, but the performance differences remain small. For instance, WiFlexFormer
trails EfficientNetV2s by only 2.6% accuracy, despite the latter having a 500x larger
parameter count, demonstrating that WiFlexFormer offers competitive accuracy with a
much smaller model.

The results using DFS features, as shown in Table 6.8, tell a similar story. EfficientNetV2s
again achieves the highest accuracy with 51.34%, outperforming specialized models like
RF-Net (48.11%) and SLNet (50.63%). WiFlexFormer delivers a competitive accuracy
of 49.72%, trailing EfficientNetV2s by only 1.62%. Notably, WiFlexFormer outperforms
RF-Net by 1.61% and comes close to SLNet, despite their significantly larger parameter
counts.

Overall, the performance across models on the Widar3.0-G6 dataset is quite close,
consequently, there is no significant advantage in using DFS features over amplitude

73



6. Methodology

Model Params Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
RF-Net [55] 120.58 M 48.90 ±1.2 48.11 ±0.4 48.49 ±0.5 48.11 ±0.4
SLNet [46] 88.88 M 50.63 ±0.5 50.76 ±0.1 50.70 ±0.2 50.63 ±0.0
EfficientNetV2s [190] 20.19 M 49.87 ±0.0 51.52 ±0.2 50.68 ±0.1 51.34 ±0.2
ResNet18 [191] 11.26 M 49.92 ±0.3 51.00 ±0.3 50.45 ±0.3 50.84 ±0.2
ShuffleNetV2x0.5 [194] 0.35 M 49.76 ±0.5 50.13 ±0.4 49.94 ±0.4 50.08 ±0.4
WiFlexFormer [proposed] 0.05 M 49.36 ±0.8 49.82 ±0.2 49.59 ±0.5 49.72 ±0.1

Table 6.8: Cross-receiver gesture recognition performance on the Widar3.0-G6 dataset
using DFS features. All models are trained on data from receivers 1-3 with an 8:2
training-validation split and tested on receivers 4-6. Amplitude features from all 30
subcarriers are used as input. Results are presented as mean and standard deviation
across three independent runs with random initialization.

features in terms of cross-receiver generalization. Given that amplitude features require
no computationally expensive preprocessing or parameter tuning, they remain a more
efficient option for cross-domain generalization tasks.

Subcarrier Selection Prior work on subcarrier selection primarily focuses on LOS
scenarios, leaving open questions about their performance in more challenging signal
propagation conditions. Evaluations on the 3DO dataset [50] indicate that insights from
LOS conditions may not easily translate to TW scenarios. To address this gap, subcar-
rier sub-sampling strategies that reduce computational complexity while maintaining
model accuracy in a TW scenario are explored. Processing CSI-based features from all
subcarriers incurs high computational costs, particularly for DFS features, which require
per-subcarrier STFT preprocessing.

As shown in [75], considering all subcarriers is neither efficient nor necessary given
the high correlation among them. To reduce computational overhead while preserving
accuracy, several subcarrier sub-sampling methods, including random sampling, band-
restricted random sampling, uniform sampling, and projection-based sampling via PCA,
are evaluated. The results for amplitude and DFS features, presented in Figures 6.6a
and 6.6b, report mean accuracy and standard deviation across days 1–3, capturing both
in-domain and cross-domain HAR performance.

For amplitude features, the highest accuracy is achieved using all subcarriers (None).
Although uniform sampling of every 4th subcarrier (U4) and band-restricted sampling
using eight bands with four subcarriers per band (B8-4) yield comparable results, the
reduction in preprocessing and inference time for amplitude features is negligible, making
sub-sampling unnecessary. For DFS features, the best accuracy is also obtained using all
subcarriers, which is to be expected. However, subcarrier sub-sampling strategies, such
as uniform sampling of every 2nd subcarrier (U2) or band-restricted sub-sampling with
four bands and four subcarriers per band (B4-4), achieve similar accuracy while reducing
the number of STFT computations to half and one-fourth, respectively. These strategies
are a potential way to further reduce inference time, especially when using DFS features.
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Figure 6.6: Comparative analysis of subcarrier selection strategies for (a) amplitude
features, and (b) DFS features using the 3DO dataset. Strategies include: (1)
None: use of all subcarriers; (2) Rn: random selection of n subcarriers; (3) Un: uniform
selection of every nth subcarrier; (4) Bn-m: division into n subcarrier bands with random
selection of m subcarriers from each band; and (5) PCn: selection of the first n principal
components. [53]

6.2.4 Discussion
The evaluation results of WiFlexFormer confirm its suitability for real-time PCS on low-
power edge devices, addressing the core aspects of RQ II. The architecture’s lightweight
design, with only ≈ 50k parameters, achieves inference times of ≈ 10 milliseconds on an
Nvidia Jetson Orin Nano. This significant reduction in computational complexity relative
to traditional CNN-based [190, 191, 194] and specialized RF/WiFi architectures [55, 104,
46], renders WiFlexFormer uniquely suitable for embedded contexts requiring real-time
inference, such as gesture recognition or continuous health monitoring applications [45].

The compact and computationally efficient nature of WiFlexFormer also naturally sup-
ports advanced deployment strategies, such as test-time training [196] or adaptation [54].
The architecture’s rapid inference capability facilitates quick, online fine-tuning to adapt
to new domains and dynamic environmental conditions, critical in scenarios like smart
homes where environmental contexts frequently change. Furthermore, Although this eval-
uation primarily benchmarks relative performance, there remains considerable potential
to further enhance the accuracy of WiFlexFormer, pre-training, data augmentation strate-
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gies [48, 50], or ensemble methods [197] (feasible due to the low parameter count). These
strategies, could enhance accuracy and and cross-domain generalization performance
without substantially increasing inference latency.

Lastly, the systematic exploration of subcarrier sub-sampling techniques identifies ad-
ditional pathways to reduce computational overhead. Specifically, uniform and band-
restricted random sub-sampling demonstrate potential for further complexity reduction,
highlighting additional optimizations for resource-constrained edge deployments. Collec-
tively, these results establish WiFlexFormer as a robust and highly efficient architecture
that precisely meets the demands outlined in RQ II, thereby advancing practical, scalable,
and real-time CSI-based person-centric sensing systems.
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6.3 Cross-Domain Generalization

While recent advances in WiFi-based PCS demonstrate strong performance in controlled
environments, deploying these systems effectively in real-world scenarios remains chal-
lenging due to limited cross-domain generalization. Even minor environmental changes,
differences in hardware setups, or variations in user behaviors can introduce significant
shifts in CSI distributions, leading to substantial performance degradation when models
are deployed in previously unseen domains [47]. Such domain sensitivity severely re-
stricts the scalability, robustness, and practical deployment of existing WiFi-based PCS
approaches, highlighting the necessity of addressing domain variations explicitly.

Unlike optical sensing methods, which benefit from established benchmarks and stan-
dardized evaluation procedures for assessing generalization, WiFi-based sensing lacks
equivalent systematic methodologies and dedicated public datasets. Consequently, strate-
gies specifically designed to enhance model robustness across different scenarios, system
configurations, and environmental conditions are required. RQ III addresses this chal-
lenge by exploring how WiFi-based PCS models can achieve robustness against real-world
domain variations, thus enabling practical, scalable, and reliable deployments.

To comprehensively address the challenges posed by domain variability, three comple-
mentary works are presented, each contributing uniquely toward answering RQ III:

The first work [48], discussed in Section 6.3.1, investigates data-centric approaches,
specifically assessing the effectiveness of image-based data augmentation techniques for
enhancing generalization. Leveraging the Wallhack1.8k dataset, it systematically evaluates
virtual sample generation strategies for two critical and underexplored generalization
problems: cross-scenario (LOS versus TW) and cross-system (system C1 versus system
B) generalization.

Building upon this evaluation, the second work [50], discussed in Section 6.3.2, adopts
a controlled TW sensing scenario using the 3DO dataset. It systematically analyzes a
variety of preprocessing techniques, including feature selection, feature scaling, dimen-
sionality reduction, and data augmentation, to quantify their effectiveness in mitigating
environmental and temporal domain shifts in TW scenarios. This structured evalua-
tion provides detailed insights into the relative strengths and limitations of different
generalization techniques.

Finally, the third work [54], discussed in Section 6.3.3, contributes Domain-Adversarial
Test-Time Adaptation (DATTA), a novel framework that integrates domain-adversarial
training and test-time adaptation. By combining these methods, DATTA explicitly
targets domain-invariant feature learning during training while adapting dynamically at
inference, effectively bridging the gap between offline training and real-world deployment
conditions, where new target-domain samples are typically unavailable beforehand.
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6.3.1 Data Augmentation for Cross-System and Cross-Scenario
Generalization

Robust cross-domain generalization remains a critical challenge in WiFi-based PCS.
Existing generalization approaches include domain-invariant feature extraction, transfer
learning, domain adaptation, big data, and virtual sample generation [47]. Among these,
virtual sample generation is appealing due to its simplicity, computational efficiency,
and independence from target-domain data [121]. For instance, prior studies employ
noise injection and dropout-based methods to simulate realistic perturbations [120, 49],
or leverage generative models such as VAEs and GANs for richer but computationally
intensive data synthesis [122, 123, 124]. However, most existing works either require
access to both source and target domains, which is impractical in real-world scenarios, or
do not explicitly address the unique challenges posed by cross-scenario (LOS vs. TW) or
cross-system (hardware variation) generalization [47].

Addressing this critical research gap, the underlying work [48], systematically explores
simple yet effective image-based augmentation strategies tailored explicitly for CSI
amplitude spectrograms. Leveraging the Wallhack1.8k dataset, designed to enable
controlled comparisons across scenarios (LOS and TW) and distinct WiFi systems
(system C1 and B), an ablation study is conducted to assess how individual augmentation
techniques and their combinations influence model robustness to domain variations. By
quantifying the impact of each technique, this study provides a practical foundation for
developing simple domain-agnostic augmentation strategies for CSI data, thus addressing
the real-world applicability concerns highlighted by RQ III.

CSI Data Augmentations

Motivated by the effectiveness of common image-based data augmentation techniques for
enhancing a model’s robustness to domain variations [198], this evaluation systematically
investigates their effectiveness when applied directly to CSI amplitude spectrograms.
Specifically, the augmentations randomCircularRotation, randomResizedCrop, rando-
mAmplitude, and randomContrast, defined in the following, are evaluated individually
and in combination, aiming to assess their impact on cross-scenario and cross-system
generalization. Each augmentation targets specific characteristics of CSI data, simulating
realistic temporal or amplitude variations on a subcarrier and channel-level, known to
occur in practice [125]. Augmentation are applied probabilistically (p = 0.5) to maintain
data diversity without overwhelming the original training signals.

randomCircularRotation Treating the spectrogram as a 2D time-frequency array,
circular rotations along the time axis shift the array elements along the positive time
direction, with elements going beyond the array’s boundary wrapping around to the
opposite side, becoming the first element. A random number of circular rotations
n ∼ U(1, w), with w = 400 being the spectrogram width, is applied to the spectrogram.

randomResizedCrop For this augmentation, the spectrogram is either cropped along
the time axis and stretched back to its original width w or compressed along the time
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axis and re-scaled to w. Both the crop and the compression factor are randomly sampled
from U(w2 , w). The cropping and re-scaling of the spectrogram correspond to a slowdown
in time, while the compression and re-scaling correspond to a speed-up, resulting in new
samples with activities being carried out at varying speeds.

randomAmplitude As observed in [125], CSI amplitude can vary significantly even
in static environments and system settings. To replicate this behavior, the amplitude
of spectrograms is scaled randomly on a per-channel basis. The magnitude of the
augmentation factor is randomly sampled from U(0.75, 1.25).

randomContrast Furthermore, it is also found that CSI amplitude variation occurs
differently depending on the subcarrier index [125]. Following the approach of the
randomContrast augmentation, this behavior is replicated by randomly scaling the
contrast of spectrograms on a per-subcarrier basis. The magnitude of the augmentation
factor is randomly sampled from U(0.75, 1.25).

Evaluation Setup

To evaluate the impact of data augmentation techniques on cross-scenario (LOS ⇆ TW)
and cross-system (C1 ⇆ B) generalization performance, an ablation study is performed.
The study begins with a baseline model trained without any augmentation. Subsequently,
separate models are trained with individual augmentation strategies, and the resulting
changes in accuracy are measured. Augmentations that yield performance improvements
over the baseline are then combined to train a final model, which is also evaluated in
comparison to the baseline configuration.

Data The evaluation utilizes the Wallhack1.8k dataset to systematically evaluate
model generalization across heterogeneous scenarios and WiFi systems. The dataset
captures three human activities (no presence, walking, walking + arm-waving) in both
LOS and TW signal propagation scenarios using two distinct WiFi systems: C1 and B.
To facilitate a structured evaluation, the established HAR subset (W_ALB, W_ALC1 ,
W_ATB, W_ATC1), detailed in Table 6.1, are utilized for training and testing.

The Wallhack1.8k dataset is particularly well-suited for studying cross-domain general-
ization. As illustrated in Figure 6.7, the amplitude spectrograms reveal clear differences
in CSI signal characteristics across scenarios and systems. LOS recordings with system
B, for example, exhibit strongly pronounced activity-induced amplitude variations due to
LOS path obstruction, while these effects are diminished in TW scenarios and less visible
in recordings from system C1. These signal variations present meaningful generalization
challenges, making Wallhack1.8k an ideal testbed for evaluating the impact of data
augmentation on model robustness under domain shifts.

Model Training To evaluate cross-scenario and cross-system generalization, the exper-
iments rely on the EfficientNetV2 small architecture [190], a lightweight feature extractor
commonly used for classification tasks. All models are trained from scratch to eliminate
any influence from prior knowledge, such as pre-training on ImageNet. The input to each
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(b) TW scenario

Figure 6.7: Visual comparison of signal characteristics between scenarios and systems
(B and C1) on the Wallhack1.8k dataset. Highlighted areas (dotted rectangle) show the
varying signal characteristics between scenarios and systems. [48] †

model consists of CSI amplitude spectrograms constructed from 52 L-LTF subcarriers
over 400 consecutive WiFi packets, corresponding to ≈ 4-second intervals. Training is
conducted for 400 epochs using the Adam optimizer with a learning rate of 1×10−4 and a
batch size of 16. To address class imbalance, a balanced random sampler is applied. Each
configuration is independently trained ten times with random initialization, retaining the
model instance that achieves the highest validation accuracy in each run. Final results
are reported as the mean and standard deviation of classification accuracies across the
ten selected models.

Results
Cross-Scenario Generalization (LOS ⇆ TW) Table 6.9 summarizes the results of
the ablation study conducted using data collected with system C1. In the LOS → TW
direction, a baseline accuracy of 37.5% is achieved. Among the individual data aug-
mentation strategies, randomCircularRotation and randomResizedCrop contribute to
noticeable accuracy improvements, increasing accuracy by 6.1 and 12.0 percentage points,
respectively. However, when both augmentations are applied in combination, the model’s
accuracy decreases slightly by 1.1 percentage points relative to the baseline, indicating a
potentially conflicting interaction between the two augmentations.

In contrast, the reverse direction (TW → LOS) yields a substantially higher baseline
accuracy of 65.0%, suggesting that generalization from TW to LOS is more tractable
than the inverse. In this setting, only the randomAmplitude augmentation produces a
measurable gain, improving accuracy by 1.1 percentage points. Other augmentations
fail to yield further improvement, highlighting the asymmetric nature of generalization
between these signal propagation scenarios.
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Augmentation LOS → TW change TW → LOS change
none (baseline) 37.5 ±5.3 - 65.0 ±5.5 -
randomCircularRotation 43.6 ±9.8 +6.1 61.3 ±6.4 -3.7
randomResizedCrop 49.5 ±11.4 +12.0 54.8 ±8.4 -10.2
randomAmplitude 34.1 ±7.5 -3.4 66.1 ±4.8 +1.1
randomContrast 32.5 ±3.2 -5.0 63.9 ±5.9 -1.1
combined 36.4 ±7.1 -1.1 66.1 ±4.8 +1.1

Table 6.9: Cross-scenario generalization performance of HAR models, trained on ampli-
tude spectrograms collected with system C1 (mean±std accuracy over ten runs). X → Y
indicates model training on data from scenario X and testing on data from scenario Y.

Augmentation LOS → TW change TW → LOS change
none (baseline) 36.4 ±5.1 - 53.0 ±10.1 -
randomCircularRotation 39.6 ±9.6 +3.2 69.6 ±3.2 +16.6
randomResizedCrop 41.8 ±7.4 +5.4 63.3 ±6.9 +10.3
randomAmplitude 41.1 ±5.2 +4.7 61.7 ±6.2 +8.7
randomContrast 40.2 ±5.3 +3.8 57.0 ±8.1 +4.0
combined 58.9 ±7.7 +22.5 68.7 ±2.9 +15.7

Table 6.10: Cross-scenario generalization performance of HAR models (accuracy), trained
on amplitude spectrograms collected with system B (mean±std accuracy over ten runs).
X → Y indicates model training on data from scenario X and testing on data from
scenario Y.

Ablation results for system B, reported in Table 6.10, follow similar trends but exhibit
distinct performance dynamics. When generalizing from LOS to TW, the baseline model
achieves an accuracy of 36.4%. All individual augmentation strategies lead to modest
accuracy improvements, and combining all augmentations results in a notable gain of
22.5 percentage points over the baseline. This indicates a strong cumulative effect of the
applied augmentations in this challenging direction.

In the reverse direction (TW → LOS), all augmentation techniques continue to yield
positive impacts. Notably, the randomCircularRotation augmentation stands out, in-
creasing accuracy by 16.6 percentage points. However, combining all augmentations in
this setting does not provide additional benefit. Instead, the model achieves a slightly
reduced improvement of 15.7 percentage points over the baseline. This outcome reflects
the observation made for system C1, where augmentation combinations do not necessarily
yield additive gains and may introduce interference between augmentations.

Cross-System Generalization (C1 ⇆ B) Table 6.11 summarizes the ablation study
results for cross-system generalization in the LOS scenario. When models trained on data
from system C1 are tested on system B (C1 → B), all applied data augmentations lead to
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Augmentation C1 → B change B → C1 change
none (baseline) 36.1 ±6.0 - 35.2 ±4.7 -
randomCircularRotation 48.7 ±13.5 +12.6 38.9 ±2.5 +3.7
randomResizedCrop 38.7 ±6.7 +2.6 36.5 ±3.0 +1.3
randomAmplitude 36.5 ±4.1 +0.4 35.2 ±4.9 0.0
randomContrast 36.5 ±4.8 +0.4 32.4 ±3.9 -2.8
combined 57.2 ±15.7 +21.1 50.7 ±11.8 +18.5

Table 6.11: Cross-system generalization performance of HAR models, trained on LOS
amplitude spectrograms (mean±std accuracy over ten runs). X → Y indicates model
training on data from system X and testing on data from system Y.

Augmentation C1 → B change B → C1 change
none (baseline) 34.7 ±6.5 - 30.0 ±3.9 -
randomCircularRotation 39.6 ±6.8 +4.9 34.5 ±5.7 +4.5
randomResizedCrop 39.3 ±3.2 +4.3 31.4 ±10.5 +1.4
randomAmplitude 36.4 ±6.1 +1.7 33.0 ±4.8 +3.0
randomContrast 33.8 ±6.6 -0.9 33.6 ±4.4 +3.6
combined 39.6 ±8.2 +4.9 52.3 ±13.8 +22.3

Table 6.12: Cross-system generalization performance of HAR models, trained on TW
amplitude spectrograms (mean±std accuracy over ten runs). X → Y indicates model
training on data from system X and testing on data from system Y.

improvements over the baseline accuracy of 36.1%. Among them, randomCircularRotation
yields the largest increase, enhancing performance by 12.6 percentage points. Furthermore,
combining all augmentations results in a substantial improvement of 21.1 percentage
points compared to the baseline, indicating a strong cumulative benefit.

In the reverse direction (B → C1), a similar trend is observable. While individual
augmentations produce moderate gains in accuracy, the combined application of all
augmentation techniques leads to a pronounced improvement of 18.5 percentage points
over the baseline. These results suggest that, in LOS scenarios, data augmentation
strategies can consistently enhance cross-system generalization in both directions.

Table 6.12 presents the corresponding results for the TW scenario. When transferring
from system C1 to system B, most augmentation techniques yield improvements over the
baseline accuracy of 34.7%, with the exception of randomContrast. However, combining
the beneficial augmentations does not produce a cumulative gain; the overall accuracy
improvement remains at 4.9 percentage points, matching the result obtained using
randomCircularRotation alone. This finding indicates limited complementarity among
the augmentations in this direction.
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A clearer and more consistent improvement is observed in the opposite direction (B → C1).
All individual augmentation strategies result in moderate accuracy increases relative to
the baseline of 30.0%, and their combination leads to a substantial improvement of 22.3
percentage points. These results confirm that, especially in the TW setting, carefully
selected data augmentation strategies can enhance model robustness across heterogeneous
hardware systems.

Discussion

The conducted evaluation reveals notable asymmetries in cross-domain generalization.
Specifically, models consistently exhibit higher baseline accuracy and better generalization
when transitioning from TW to LOS scenarios compared to the reverse. This phenomenon
is evidenced by baseline accuracies notably above random chance (65.0% and 53.0%) in
the TW-to-LOS generalization for systems C1 and B, respectively. A likely explanation is
that TW scenarios inherently contain richer propagation variability, enabling models to
generalize more effectively toward less complex LOS environments.

Moreover, system-specific differences emerge clearly. System B, characterized by higher-
sensitivity directional antennas and gain, shows more favorable responsiveness to data
augmentations, indicating a narrower domain gap between LOS and TW conditions
compared to system C1. This result underscores the importance of hardware characteristics
in determining model robustness to environmental variations.

In the cross-system evaluations, domain gaps are smaller in LOS scenarios, as indicated
by similar baseline accuracies and consistent augmentation-induced improvements across
systems. In contrast, significant asymmetry arises in TW scenarios, where models
trained on system B data generalize substantially better to system C1 than vice versa
(improvements of 22.3 vs. 4.9 percentage points). This pattern suggests indicates greater
difficulty in adapting models trained on system C1 to more sensitive or higher-fidelity
CSI captured by system B.
Overall, these results highlight that achieving effective cross-scenario and cross-system
generalization in WiFi-based PCS through data augmentation requires carefully selecting
and combining domain-appropriate augmentation techniques. While no single technique
universally enhances robustness, specific augmentation combinations improve performance
in targeted cross-domain shifts. In regard to RQ III, this evaluation provides clear
evidence that carefully chosen, lightweight data augmentation methods represent a
promising, practically feasible approach for improving domain robustness in WiFi-based
PCS deployments without requiring prior access to target-domain data.
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6.3.2 Mitigating Environmental and Temporal Domain Shifts in
Through-Wall Scenarios

Real-world deployment of WiFi-based PCS systems faces significant challenges due to
subtle yet impactful domain shifts, including dynamic variations in human behavior,
static environmental changes (e.g., rearranged furniture), and temporal fluctuations
arising from environmental or hardware instabilities [125]. While domain shifts due
to hardware differences or scenario transitions (e.g., LOS to TW) are addressed via
data augmentation techniques in [48], environmental and temporal domain shifts remain
less understood and more difficult to model explicitly, as they occur unpredictably
and are challenging to replicate experimentally. Particularly in TW sensing scenarios,
where signal propagation is heavily affected by attenuation and multipath interference
from intervening structures [199], such subtle shifts can substantially degrade model
performance. Although recent efforts address the cross-domain generalization dynamics
of WiFi-based PCS models, most studies focus on LOS or same-room conditions [47],
leaving TW generalization severely underexplored.

Addressing this critical gap, [50] systematically evaluates the effectiveness of preprocessing
techniques, namely, feature extraction, feature scaling, dimensionality reduction, and
data augmentation, in mitigating environmental and temporal domain shifts explicitly
within TW scenarios. Leveraging the 3DO dataset (see Section 5.2.4), which captures
synchronized CSI and 3D trajectory data over three consecutive days with controlled
static, dynamic, and temporal domain variations, this evaluation isolates specific domain
shifts relevant to practical PCS deployments. By evaluating these techniques across both
HAR and localization tasks, this study complements [48], and contributes to RQ III
by identifying preprocessing techniques which can further enhance model robustness to
subtle yet realistic domain shifts in real-world TW scenarios.

Methods

This study considers a range of techniques aimed at improving model generalization in TW
scenarios. The analysis begins with a comparison of CSI-based feature representations,
including amplitude, phase, first-order differences, and PSD, to determine which features
most effectively support model robustness. Subsequently, feature scaling approaches
such as max-min scaling and z-normalization are examined, followed by dimensionality
reduction techniques including PCA, ICA, and UMAP. Finally, the evaluation includes
perturbation-based data augmentation methods applied to CSI amplitude spectrograms
in the image domain. Each method is described in more detail in the following sections.

CSI Feature Extraction In the domain of WiFi-based PCS, the primary features
extracted from CSI are the amplitude and phase. As domain shifts impact these features
directly, models trained on such data may face generalization problems across unseen
domains. To address this, first-order difference (temporal difference) features based on
amplitude or phase are proposed in [39, 72], capturing the change between consecutive
time steps (WiFi packets) rather than absolute values, thus potentially enhancing domain
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generalization. First-order difference features are defined as follows:

h∆[t] = h[t]− h[t− 1]. (6.1)

Applying Equation 6.1 to the CSI time series h within the CSI matrix, defined in
Equation 2.7, yields the first-order difference time series h∆, from which H∆[t], and
subsequently the first-order difference amplitude A∆[t] and phase matrices P∆[t], can be
extracted.

Power Spectral Density (PSD) [73] offers another alternative for feature extraction. Unlike
time-domain features, PSD quantifies the signal’s power distribution over frequency,
emphasizing periodic components such as repetitive motion patterns while attenuating
high-frequency noise and low-frequency drifts. By applying the FFT to a time window of
CSI measurements, it captures the dominant frequency components caused by human
activities, which are typically less sensitive to static environmental variations. The PSD
is computed for each subcarrier across a window size w, resulting in the PSD matrix
PSD[t]:

hPSD[t] =
|FFT(h[t])|2

w
. (6.2)

Feature Scaling Two standard feature scaling techniques for improving model robust-
ness in CSI-based sensing tasks are considered: max-min scaling and z-normalization.
Max-min scaling, also known as min-max normalization, transforms input features to a
fixed range, typically between 0 and 1, by subtracting the minimum value and dividing by
the feature range. This normalization ensures that all input features contribute equally
during learning and can support improved convergence in gradient-based optimization.
In the context of CSI, max-min scaling is applied to the feature matrix F [t] as defined in
Equation 6.3, where minF and maxF denote the minimum and maximum values in F ,
respectively:

F [t]′ = F [t]−minF
maxF −minF

(6.3)

Z-normalization, also referred to as standardization, scales features to have zero mean
and unit variance by subtracting the mean and dividing by the standard deviation. This
technique is particularly effective for models sensitive to input variance and for algorithms
assuming normally distributed data. Z-normalization is applied to the feature matrix F [t]
as shown in Equation 6.4, where µF and σF represent the mean and standard deviation
of the feature matrix:

F [t]′ = F [t]− µF
σF

(6.4)

Dimensionality Reduction Dimensionality reduction techniques such as PCA [200],
ICA [201], and UMAP [202] are foundational across various disciplines, primarily for
their capacity to distill complex datasets into a more manageable form. For WiFi-based
PCS, these dimensionality reduction techniques offer promising strategies for dealing
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with high-dimensional CSI data and eliminating subcarriers-specific noise, potentially
enhancing model performance and generalization.

PCA compresses data by projecting them onto a new coordinate system defined by
principal components, which are directions of maximum variance. This approach not only
reduces the dimensionality but also manages to eliminate noisy OFDM subcarriers [45],
thereby enhancing model performance. ICA distinguishes itself by separating multivariate
signals into independent non-Gaussian components. This is especially beneficial in multi-
person scenarios within WiFi-based sensing, where it helps identify original signal sources
from complex mixtures (blind source separation problem) [110]. UMAP, on the other hand,
offers a non-linear approach to dimensionality reduction, effectively maintaining both the
local and global structure of high-dimensional data. This method is valuable for exploring
complex patterns within data, facilitating insights into intricate relationships that linear
techniques like PCA might overlook. Applied to WiFi-based indoor localization, UMAP
shows potential in enhancing model performance [203, 117].

Data Augmentation To improve model generalization in TW scenarios, four random
perturbation-based data augmentation techniques are considered: random magnitude,
circular rotation along the time axis, horizontal flipping, and dropout. These methods
are intended to address the challenge of temporal variability in CSI signals, which may
result from hardware drift or environmental changes and are known to impair model
robustness [125]. The random magnitude augmentation introduces a global scaling factor
s to the feature matrix F [t], simulating noise variations that may occur over time. As
defined in Equation 6.5, s is drawn from a uniform distribution, and x controls the
perturbation range:

F [t]′ = F [t]s, with s ∼ U(1− x, 1 + x) (6.5)

Circular rotation applies a temporal shift to the entries in F [t], rotating the sequence
along the time axis. This augmentation alters the alignment of temporal activity patterns
without modifying their internal structure, thereby promoting invariance to temporal
shifts.

Horizontal flipping reverses the order of packets in F [t], generating temporally inverted
spectrograms. Analogous to left-right flips in image classification, this transformation
increases dataset diversity by simulating mirrored activity sequences.

Dropout is implemented at both the subcarrier and packet levels. Unlike conventional
dropout, where elements are zeroed, this variant replaces dropped elements with the
global feature mean µF to preserve the overall signal structure while introducing localized
noise [49]. The transformation is defined in Equation 6.6, where M [t] is a binary dropout
mask sampled from a Bernoulli distribution, and ¬M [t] is its complement. The Hadamard
product is denoted by ⊙:

F [t]′ = Dµ(F [t], p) = F [t]⊙M [t] + ¬M [t]µF (6.6)

86



6.3. Cross-Domain Generalization

(a) walking (b) sitting (c) lying

Figure 6.8: Day 1 examples of the activity classes walking, sitting, and lying. [50]

Subcarrier-wise dropout samples each element of M [t] independently, while packet-wise
dropout assigns a single binary value to each column of M [t]. Both variants aim to mimic
noise on the subcarrier- or packet-level.

Evaluation Setup

To systematically evaluate the effectiveness of methods for enhancing model generalization
under environmental and temporal domain shifts, an ablation study is conducted focusing
on two key WiFi-based PCS tasks: 3D person localization and HAR. Both tasks are
jointly addressed by adapting the EfficientNetV2 small architecture [190], extending it
with an additional regression head to predict the spatial coordinates of the monitored
individual alongside activity classification.

The evaluation is conducted in two distinct phases. Initially, the study assesses the
generalization performance of various CSI features introduced previously: raw amplitude
and phase, first-order amplitude and phase differences, and PSD. The best-performing
CSI representation is subsequently selected as a baseline for further optimization. In
the second phase, the baseline undergoes additional processing steps, including feature
scaling, dimensionality reduction, and targeted data augmentations, aiming to further
enhance model robustness against domain shifts.

Data The evaluation is conducted using the 3DO dataset (introduced in Section 5.2.4),
which captures synchronized WiFi CSI and ground truth labels for HAR and localization
in a controlled TW scenario situated in an office environment. The dataset is collected
using System D in a fixed point-to-point transmitter-receiver configuration spanning two
interior walls. Designed to analyze model generalization under real-world variability, the
3DO dataset includes three consecutive days of recordings that isolate static, dynamic,
and temporal domain shifts. Static variation is introduced on day 3 by rearranging
furniture and objects, dynamic variation arises from differing activity executions, and
temporal effects occur naturally over time due to changes in environmental conditions or
WiFi system behavior [125]. The HAR task is formulated as a three-class classification
problem involving the activities walking, sitting, and lying, with visual examples shown
in Figure 6.8. The localization task is framed as a regression problem for predicting the
subject’s 3D coordinates. To assess model robustness under domain shift, training is
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performed exclusively on data from day 1, which serves as the baseline condition without
domain shifts. An 8:2 split is used for training and validation. Testing is conducted on
the data from days 2 and 3, allowing evaluation under dynamic, temporal, and static
variations, respectively.

Model Training Model training leverages data exclusively from day 1, representing
a controlled baseline environment free from domain shifts. This data is partitioned
into training and validation subsets following an 8:2 ratio, ensuring a representative
distribution of activities (walking, sitting, and lying). A balanced random sampler
is applied to mitigate class imbalance within the dataset. The modified dual-task
architecture is optimized using AdamW [195], combined with a cosine annealing learning
rate scheduler [204]. The joint training objective combines Mean Squared Error (MSE)
for regression and Cross-Entropy (CE) for classification, formulated as:

L = MSE + αCE, (6.7)

where the hyperparameter α balances task contributions. A systematic hyperparameter
search is conducted, identifying α = 0.4, learning rate 1× 10−3, batch size b = 32, and
window size w = 351 (≈ 3.51 seconds at a 100 Hz packet sending rate) as optimal. For
each evaluated configuration, three independent training runs of 25 epochs each are
performed, with the best-performing model selected based on validation loss. Model
generalization performance is then evaluated on data from days 2 and 3, representing
distinct static, dynamic, and temporal domain shifts.

Metrics Final results are reported using metrics appropriate for each task: RMSE for
localization, along with precision, recall, F1-score, and classification accuracy (ACC) for
HAR. Results are summarized as mean and standard deviation across the independent
runs, providing a clear measure of consistency and reliability for each method under
consideration.

Results

CSI Feature Extraction Table 6.13 compares the generalization performance of
various CSI features: amplitude (A), phase (P), first-order differences (A∆, P∆), and
power spectral density (PSD). Across all feature types, models exhibit performance
degradation on days 2 and 3 compared to the day-1 baseline, underscoring the challenge
posed by dynamic, static, and temporal domain shifts inherent in the 3DO dataset.

Notably, amplitude features (A) demonstrate superior robustness, consistently yielding
the lowest localization errors (RMSE) and highest classification accuracy (ACC) on both
days 2 and 3. Specifically, compared to phase features (P), amplitude reduces localization
errors by 33.75% and 4.94% on days 2 and 3, respectively, while improving classification
accuracy by 34.39 percentage points on day 2 and 13.80 percentage points on day 3.
This highlights the relative sensitivity of phase-based features to TW scenarios, where
multipath effects and environmental noise influence phase stability.
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Model Day RMSE [m] ↓ Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
A 1 (val.) 0.364 ±0.00 97.81 ±0.49 99.12 ±0.10 98.46 ±0.23 99.55 ±0.11
P 1 (val.) 0.512 ±0.02 74.34 ±8.16 91.66 ±2.93 81.96 ±6.24 91.50 ±2.92
A∆ 1 (val.) 0.596 ±0.02 79.71 ±5.39 92.50 ±2.03 85.58 ±3.98 93.03 ±1.99
P∆ 1 (val.) 0.708 ±0.01 62.48 ±1.32 80.18 ±1.84 70.22 ±1.16 80.23 ±1.70
PSD 1 (val.) 0.415 ±0.01 92.81 ±0.76 97.56 ±0.39 95.13 ±0.56 97.97 ±0.47

A 2 (test) 0.587 ±0.02 79.38 ±2.59 82.94 ±3.22 81.12 ±2.89 83.36 ±3.21
P 2 (test) 0.886 ±0.03 46.33 ±4.45 48.78 ±2.50 47.49 ±3.50 48.97 ±2.63
A∆ 2 (test) 0.689 ±0.02 63.35 ±2.79 67.81 ±2.50 65.51 ±2.66 68.18 ±2.53
P∆ 2 (test) 0.948 ±0.02 38.73 ±3.30 40.46 ±1.36 39.55 ±2.32 40.73 ±1.39
PSD 2 (test) 0.588 ±0.01 76.46 ±0.87 80.11 ±1.47 78.24 ±1.15 80.57 ±1.50

A 3 (test) 0.904 ±0.01 77.52 ±2.87 80.63 ±4.67 79.04 ±3.71 81.16 ±4.57
P 3 (test) 0.951 ±0.02 64.74 ±3.56 66.81 ±6.62 65.72 ±5.04 67.36 ±6.55
A∆ 3 (test) 0.972 ±0.03 71.35 ±0.07 76.92 ±0.30 74.03 ±0.14 77.64 ±0.30
P∆ 3 (test) 0.962 ±0.03 64.06 ±1.71 73.81 ±2.50 68.58 ±1.93 74.27 ±2.44
PSD 3 (test) 0.939 ±0.01 67.97 ±0.46 71.69 ±0.37 69.78 ±0.36 72.21 ±0.24

Table 6.13: Generalization performance of models trained on amplitude (A), phase (P),
first-order difference of amplitude (A∆), first-order difference of phase (P∆), and PSD
features (PSD). All models are trained on day 1 data, representing the baseline, and
tested on days 2 and 3. Metrics are presented as the mean and standard deviation across
three independent training runs.

PSD features also demonstrate competitive generalization performance, closely following
amplitude with only marginally higher RMSE and slightly lower ACC on both test days.
Interestingly, first-order difference features (A∆ and P∆), although theoretically less
sensitive to environmental variations [39, 72], do not outperform raw amplitude features.
Particularly, P∆ performs the weakest among all features, affirming observations made
in prior LOS studies [45].

Overall, these results emphasize the efficacy and robustness of amplitude features (A) for
TW scenarios, as they offer the best compromise between generalization performance and
computational efficiency. Consequently, amplitude features are selected as the baseline
for subsequent evaluations involving feature scaling, dimensionality reduction, and data
augmentation techniques.

Feature Scaling Table 6.14 presents the performance of models trained using two
feature scaling strategies: max-min scaling (Amm) and z-normalization (Az), both applied
to amplitude features. Compared to the baseline model trained on raw amplitude (A),
max-min scaling yields consistent improvements in both localization and classification
performance across days 2 and 3. Z-normalization also improves localization performance
relative to the baseline but shows a slight reduction in classification accuracy on both
test days.
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Model Day RMSE [m] ↓ Precision ↑ Recall ↑ F1-Score ↑ ACC ↑
A (baseline) 1 (val.) 0.364 ±0.00 97.81 ±0.49 99.12 ±0.10 98.46 ±0.23 99.55 ±0.11
Amm 1 (val.) 0.363 ±0.01 97.41 ±0.28 98.70 ±0.20 98.05 ±0.23 99.26 ±0.24
Az 1 (val.) 0.356 ±0.01 98.04 ±0.17 98.71 ±0.10 98.37 ±0.06 99.45 ±0.05
APCA_42 1 (val.) 0.360 ±0.01 97.58 ±0.16 98.60 ±0.15 98.08 ±0.06 99.49 ±0.04
AICA_24 1 (val.) 0.770 ±0.28 64.54 ±25.4 69.18 ±25.6 66.73 ±25.4 69.33 ±25.4
AUMAP_48 1 (val.) 0.467 ±0.01 93.54 ±1.14 97.78 ±0.33 95.61 ±0.76 98.19 ±0.19
AAUG 1 (val.) 0.347 ±0.00 97.92 ±0.76 98.93 ±0.21 98.42 ±0.48 99.32 ±0.20
AmmAUG 1 (val.) 0.350 ±0.01 97.70 ±0.36 98.86 ±0.18 98.27 ±0.23 99.25 ±0.11
AzAUG 1 (val.) 0.343 ±0.00 97.91 ±0.11 98.82 ±0.06 98.37 ±0.08 99.33 ±0.14

A (baseline) 2 (test) 0.587 ±0.02 79.38 ±2.59 82.94 ±3.22 81.12 ±2.89 83.36 ±3.21
Amm 2 (test) 0.542 ±0.06 80.48 ±3.45 83.19 ±3.58 81.81 ±3.52 83.54 ±3.65
Az 2 (test) 0.573 ±0.02 78.53 ±0.82 82.77 ±2.03 80.59 ±1.34 83.10 ±2.04
APCA_42 2 (test) 0.601 ±0.05 76.46 ±1.84 80.72 ±2.82 78.53 ±2.30 81.07 ±2.88
AICA_24 2 (test) 0.796 ±0.16 61.79 ±12.8 65.13 ±13.8 63.42 ±13.3 65.40 ±14.0
AUMAP_48 2 (test) 0.720 ±0.02 72.23 ±1.44 72.06 ±2.10 72.14 ±1.77 72.23 ±2.11
AAUG 2 (test) 0.500 ±0.02 82.20 ±1.46 86.23 ±1.37 84.17 ±1.42 86.52 ±1.38
AmmAUG 2 (test) 0.503 ±0.01 84.22 ±0.19 87.60 ±0.72 85.88 ±0.44 88.00 ±0.75
AzAUG 2 (test) 0.527 ±0.02 82.80 ±1.91 86.18 ±2.21 84.45 ±2.05 86.51 ±2.22

A (baseline) 3 (test) 0.904 ±0.01 77.52 ±2.87 80.63 ±4.67 79.04 ±3.71 81.16 ±4.57
Amm 3 (test) 0.887 ±0.01 81.91 ±7.59 83.31 ±8.15 82.60 ±7.86 83.89 ±8.07
Az 3 (test) 0.896 ±0.01 77.67 ±2.19 80.00 ±2.36 78.82 ±2.24 80.69 ±2.29
APCA_42 3 (test) 0.948 ±0.02 66.18 ±6.89 68.32 ±8.07 67.23 ±7.46 68.89 ±8.01
AICA_24 3 (test) 1.012 ±0.04 52.99 ±15.6 53.46 ±15.5 53.19 ±15.5 53.83 ±15.8
AUMAP_48 3 (test) 0.913 ±0.01 74.56 ±2.36 79.24 ±1.78 76.83 ±2.09 79.91 ±1.72
AAUG 3 (test) 0.871 ±0.00 77.93 ±4.00 79.68 ±3.74 78.79 ±3.84 80.31 ±3.64
AmmAUG 3 (test) 0.872 ±0.02 79.71 ±1.97 82.10 ±2.75 80.88 ±2.35 82.76 ±2.76
AzAUG 3 (test) 0.880 ±0.02 79.94 ±2.05 82.02 ±1.82 80.97 ±1.93 82.61 ±1.86

Table 6.14: Effects on model generalization performance of max-min scaling (A),
z-normalization (Az), PCA (APCA_42), ICA (AICA_24), UMAP (AUMAP_48), data
augmentation AAUG, max-min scaling with data augmentation (AmmAUG) and z-
normalization with data augmentation (AzAUG). All models are trained on day 1 data,
and tested on days 2 and 3. Metrics are presented as the mean and standard deviation
across three independent training runs.

While max-min scaling leads to marginally better generalization than z-normalization
in most scenarios, the performance gap between the two methods remains small. These
results suggest that both scaling techniques can support generalization under environ-
mental and temporal domain shifts, though neither clearly outperforms the other across
all metrics. Given the limited difference, performance variability across training runs
may account for the observed fluctuations.
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6.3. Cross-Domain Generalization

Figure 6.9: Comparison of dimensionality reduction techniques on day 1 data, showing
a) PCA, b) ICA, and c) UMAP projections down to three dimensions (visualizing 0.5%
of day 1 samples). It can be seen that neither PCA nor ICA effectively separates activity
clusters. In contrast, UMAP distinguishes most samples associated with the walking
activity from the combined cluster of sitting and lying activities.

Dimensionality Reduction The performance of models trained on amplitude features
subjected to dimensionality reduction using PCA (APCA_d), ICA (AICA_d), and UMAP
(AUMAP_d) is detailed in Table 6.14. The number d in the model names signifies the
reduced dimensionality, which was optimized through a hyperparameter search within
the range d ∈ {2, 3, 4, ..., 52}, utilizing day 1 validation data to determine the optimal
value for each method. This search identifies an optimal dimensionality of 42 for PCA,
24 for ICA, and 48 for UMAP.

The evaluation of dimensionality reduction techniques shows that none of the applied
methods enhances performance metrics beyond the baseline. PCA and UMAP demon-
strate comparable performance levels, with PCA having a slight edge on day 2 and UMAP
on day 3. In contrast, ICA leads to significant performance degradation, with a reduction
in accuracy of 21.55% on day 2 and 33.67% on day 3 relative to the baseline. Figure 6.9
illustrates the three-dimensional projections of day 1 data using PCA, ICA, and UMAP,
showcasing UMAP’s ability to distinguish walking samples from the conjoined clusters of
sitting and lying more effectively than PCA and ICA. Despite this advantage in data
visualization, UMAP does not lead to better localization and classification performance
compared to PCA on the validation set. UMAP’s emphasis on preserving local structures
for visualization might lead to a loss of predictive information, in contrast to PCA’s
approach of retaining global variance, which could be more relevant for certain predictive
tasks. While some studies have reported improved model performance in WiFi-based
PCS tasks with these methods [160, 117], the obtained results indicate that these findings
do not translate to TW scenarios.
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Data Augmentation The evaluation of data augmentation techniques on amplitude
features includes random amplitude perturbations, dropout, circular rotation, and hori-
zontal flipping, aiming to improve model robustness and generalization in TW scenarios.
Optimal parameters for each technique are determined through a comprehensive hyperpa-
rameter search. The analysis reveals that random amplitude perturbations and dropout
generally do not yield consistent improvements over the baseline model performance
on days 2 and 3. The limited effectiveness of these augmentations is attributed to
the temporal stability of the WiFi system used, as indicated by stable CSI amplitude
statistics across all days (day 1: 12.90 ±2.33, day 2: 12.90 ±2.27, day 3: 12.77 ±2.55).
Consequently, such perturbations diverge from the inherent data distribution, resulting
in degraded test performance. Nevertheless, a WiFi system experiencing less temporal
stability could potentially benefit from these augmentations.

Conversely, random circular rotations and horizontal flipping demonstrate substantial
improvements in both RMSE and ACC. As presented in Table 6.14, applying circular
rotations with a magnitude of ±12.5% (±43 samples), referred to as AAUG, achieves the
highest improvement, reducing RMSE by 14.82% on day 2 and 3.65% on day 3. In terms
of classification accuracy, circular rotations at ±12.5% result in an increase of 3.98% on
day 2, while rotations at ±6.25% achieve the highest ACC improvement of 2.24% on
day 3. These findings suggest the optimal rotation magnitude might be dataset-specific,
indicating the necessity of tuning this parameter carefully.

To explore potential additive effects, circular rotations at ±12.5% are combined with
horizontal flipping. This combined augmentation results in RMSE reductions of 14.31%
on day 2 and 2.10% on day 3. However, classification performance shows mixed results:
a 3.42% increase in accuracy on day 2 but a slight decrease of 1.66% on day 3 compared
to circular rotation alone. These outcomes highlight the complex interactions between
augmentation techniques, suggesting that combining multiple augmentations does not
always guarantee improved performance.

Finally, combining circular rotations at ±12.5% with max-min scaling (AmmAUG) and z-
normalization (AzAUG) shows distinct performance patterns. Max-min scaling combined
with circular rotations maintains stable localization performance while achieving the
highest classification scores on day 2, with F1 and ACC reaching 85.88% and 88.00%,
respectively. On day 3, AmmAUG provides noticeable improvements over the baseline,
though it does not surpass max-min scaling alone (Amm) in classification performance.
These results suggest that the effectiveness of feature scaling methods may be context-
dependent when paired with specific augmentation techniques.

Discussion

The presented evaluation demonstrates that plain CSI amplitude features consistently
achieve superior generalization performance under environmental and temporal domain
shifts in TW scenarios. This finding aligns with previous observations in LOS contexts [45],
suggesting amplitude-based representations as inherently robust to subtle domain varia-
tions. The evaluation further highlights that simple feature scaling techniques (max-min
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scaling and z-normalization) and straightforward temporal augmentations (random circu-
lar rotations and horizontal flipping) yield notable performance improvements without
introducing significant computational overhead or complexity.

In contrast, dimensionality reduction techniques, such as PCA, ICA, and UMAP, do
not enhance performance in the evaluated TW settings. This result marks a clear
divergence from their known effectiveness in LOS environments [45], indicating that TW
scenarios possess distinct propagation characteristics that render standard dimensionality
reduction strategies less effective. Consequently, this highlights an important avenue for
future research, namely the development of dimensionality reduction techniques explicitly
tailored to the unique constraints and signal dynamics inherent in TW environments.

While the current study provides foundational insights, future work should expand
the scope of evaluation to a broader variety of domain variations, including diverse
antenna configurations, different transmitter-receiver placements, and subject diversity in
physiological characteristics. Additionally, combining amplitude features with other types
of CSI information, such as phase or derivative features, may offer further generalization
improvements, as indicated by prior research [104]. Evaluating these combinations
alongside alternative preprocessing methods across additional publicly available datasets
will be crucial to validating the generalizability of the observed results beyond the specific
experimental conditions employed here.

Overall, these findings advance the understanding of generalization in WiFi-based PCS,
particularly under complex TW conditions. With respect to RQ III, this study identifies
practical and computationally efficient preprocessing techniques that enhance the cross-
domain generalization capabilities of WiFi-based PCS models at the training stage.
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6.3.3 Domain-Adversarial Test-Time Adaptation
Preprocessing techniques such as data augmentation, feature scaling, and dimensionality
reduction are simple ways to improving model robustness to known domain shifts [48, 50].
To address domain variability more effectively, prior research explores Domain-Adversarial
Training (DAT)[132], which utilizes adversarial feature alignment techniques to extract
domain-invariant representations. DAT-based architectures demonstrate success in
reducing model sensitivity to source-specific domain characteristics, thereby improving
cross-domain generalization [133, 71, 205]. However, these approaches are fundamentally
limited to static adaptation and do not accommodate the rapid domain variations
frequently encountered during real-world deployments. In practice, environments evolve
continuously, i.e., objects move, signal characteristics change, and user behavior varies
over time, causing the underlying distribution of CSI to drift in ways that static methods
cannot anticipate or correct. This constraint makes models highly vulnerable to test-time
domain shifts, particularly in WiFi-based PCS, where signal propagation is inherently
unstable due to the dynamic nature of human behavior.

To address this challenge, adaptive strategies are required that not only generalize
across domains during training but also adjust to evolving CSI distributions at test
time. To this end, Test-Time Training (TTT) methods propose continuous adaptation
by updating model weights during inference using auxiliary self-supervised tasks [196,
206, 207, 208]. While powerful, TTT requires substantial architectural modifications
and training complexity. In contrast, Test-Time Adaptation (TTA) methods adapt pre-
trained models during inference without altering the training procedure, offering a more
streamlined and computationally efficient solution [209, 210, 211]. Despite their success in
computer vision domains, TTA approaches remain underexplored in WiFi-based sensing
contexts.

Motivated by these observations, the proposed Domain-Adversarial Test-Time Adaptation
(DATTA) framework [54] integrates the complementary strengths of DAT and TTA
specifically for WiFi-based PCS. DATTA leverages DAT to learn robust, domain-invariant
features during initial training, and subsequently applies TTA for real-time adaptation
to evolving CSI distributions at test time. To maintain adaptation stability and prevent
catastrophic forgetting during prolonged test-time adaptation, DATTA incorporates a
random weight-resetting mechanism, periodically restoring model weights toward their
original domain-invariant state [210]. Additionally, DATTA builds upon the efficient
WiFlexFormer architecture [53], ensuring low computational overhead and real-time
inference suitable for embedded edge deployment. By combining these components,
DATTA addresses RQ III, offering robust adaptation to complex, unpredictable domain
shifts that go beyond static preprocessing techniques previously discussed.

DATTA Framework
The proposed DATTA framework combines DAT with TTA to enable robust cross-domain
generalization in WiFi-based PCS. Through DAT, the model learns domain-invariant
features by leveraging data from diverse domains, achieving offline adaptation to varied
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Figure 6.10: Overview of the domain-adversarial training approach used in DATTA. [54]

data characteristics. The DAT architecture builds on the adversarial structure for
domain-invariant feature learning outlined in [71], with a WiFlexFormer-based central
feature extractor [53] to ensure efficient, real-time PCS. To further enhance cross-domain
generalization, a specialized augmentation module, tailored to the unique properties
of WiFi CSI, is incorporated. Despite DAT’s effectiveness, residual domain shifts can
still occur at test time due to environmental changes that lead to distribution shifts
in data. To account for these shifts as well, the TTA framework from [209] is adapted
for WiFi-based PCS to align the feature distributions of target and source domains in
real-time at test time. Additionally, random weight resetting [212] is leveraged to prevent
catastrophic forgetting of learned domain invariance during prolonged domain shifts,
ensuring sustained model stability. A PyTorch implementation of DATTA is publicly
available2.

Domain-Adversarial Training Figure 6.10 illustrates the DAT architecture used in
DATTA, consisting of the Feature Extractor, Activity Recognizer, and Domain Discrim-
inator. The feature extractor processes CSI amplitude data to learn domain-invariant
features by generating representations that are informative for activity recognition while
disregarding domain-specific aspects. During training, the extracted features are fed to
the activity recognizer and domain discriminator. The domain discriminator enforces
domain invariance by applying an adversarial loss, pushing the feature extractor to
produce features that are indistinguishable across domains. After training, the domain
discriminator is discarded, leaving a model optimized for cross-domain sensing.

Model Input/Output: The DAT architecture takes CSI amplitude spectrograms s ∈ S
as input, each associated with an activity label a ∈ A and a domain label d ∈ D, where
A and D represent the sets of activities and domains, respectively. The output is the
predicted activity label ã ∈ A.
Augmentation Module: Before feature extraction, raw CSI amplitude spectrograms
are processed by the augmentation module, which applies a set of realistic random
augmentations to increase data variability. Among these augmentations are amplitude
perturbations, circular rotations along the temporal axis, as well as pixel- and row-wise
dropout with mean replacement [50].

Feature Extractor : The feature extractor is based on the WiFlexFormer [53] architecture
which is chosen due to its lightweight design and simplicity. It consists of a convolutional

2DATTA, https://github.com/StrohmayerJ/DATTA, accessed: 15.04.2025
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stem followed by Gaussian positional encoding and a transformer encoder with class
token and a linear classification layer. Its architecture is designed for both, amplitude and
DFS features, however, experiments are conducted in the amplitude mode to minimize
the parameter count and inference time. The resulting model is comparatively small with
only ≈ 40k parameters.

Activity Recognizer : The activity recognizer, acting as the classification head, consists of
two linear layers with a ReLU activation function in between and |A| output channels.
It takes the class token embeddings c as input and outputs the predicted activity
probabilities â. Its loss La, the main training objective, is the cross-entropy between the
predicted and true activities:

La = −
|A|�
k=1

ak log(âk). (6.8)

Domain Discriminator : The domain discriminator architecture mirrors the activity
recognizer with two linear layers with a ReLU activation function in between and |D|
output channels. It takes the class token embeddings c as input and outputs a prediction
over domains. The domain loss Ld is then computed using the cross-entropy between the
predicted domain probabilities d̂ and the true domain labels d:

Ld = −
|D|�
k=1

dk log(d̂k). (6.9)

Furthermore, to facilitate efficient training without having to freeze model weights
alternately, a GRL is utilized. As shown in Figure 6.10, during the forward pass, the
GRL acts as an identity function, allowing the features to flow unchanged to the domain
discriminator. However, during backpropagation, it multiplies the gradients ∇θL(s) by
−λ to reverse them, thus, returning −λ∇θL(s) to the feature extractor:

Forward Pass: GRL(s) = s, (6.10)
Backward Pass: GRL(s) = −λ∇θL(s), (6.11)

where λ is a scaling parameter that controls the strength of the adversarial signal. By
reversing the gradients, the feature extractor is encouraged to produce features that are
indistinguishable across domains, thus learning domain-invariant representations.

To perform DAT without overwhelming the feature extractor in the early phase of training,
dynamic scaling of λ is performed as follows:

λ =
 2
1 + e−10p − 1

�
γ, (6.12)

where p ∈ [0, 1] represents the training progress and γ is a scaling parameter to control
the adversarial signal strength. This allows the feature extractor to focus on learning
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robust features for the primary task of activity recognition in the beginning and, by
gradually increasing the strength of the adversarial signal, enables a smooth transition
to domain-invariant feature learning.

Domain-Adversarial Loss: The loss function in the DAT architecture leverages adversarial
training to balance activity recognition and domain-invariant feature learning while
penalizing overconfidence in a specific class through a confidence control mechanism.
This is achieved by combining task-specific (La) and domain-specific (Ld) losses with the
axillary loss Lc, representing the Confidence Control Constraint (CCC) from [71]. Lc
penalizes predictions that are overly certain by adding a penalty for class probabilities
approaching 0 or 1. Here, âik represents the predicted probability for activity class k ∈ A
of the i-th sample, ensuring that each class prediction is regularized:

Lc = −
|A|�
k=1

log(âik) + log(1− âik). (6.13)

Combined with task- and domain-specific losses, the final domain-adversarial loss function
minimized during DAT is given by:

L = La + αLd + βLc, (6.14)

where α and β are weighting parameters, used for controlling the strengths of the
adversarial signal and the CCC, respectively.

Test-Time Adaptation While DAT is effective in learning domain-invariant features,
substantial domain shifts still lead to a drop in performance during test time. In order
to reduce the impact of such domain shifts, TTA is employed, allowing off-the-shelf pre-
trained models to adapt online to new target domains without requiring additional labeled
data. Building upon the framework proposed by Lin et al. [209], TTA is adopted from RGB
video to CSI amplitude spectrograms to further enhance the generalization of DAT during
test time by performing feature distribution alignment, i.e., aligning source statistics of the
model with online estimates of the target statistics. Additionally, to prevent overfitting
to the target distribution during prolonged adaptation, i.e., catastrophic forgetting [212],
random weight resetting is implemented, following the approach proposed by Wang et
al. [210]. Specifically, a subset of model weights is reverted to their original source values
to keep them closer to the domain-invariant feature space learned with DAT.

Feature Map Alignment: To address the distribution shift, the statistics of feature maps
are aligned, i.e., matching the means and variances of training and test CSI amplitude
spectrograms. Let ϕl(s; θ) represent the feature map of the l-th layer of network ϕ,
computed for a spectrogram s with parameters θ. Each feature map is a matrix of
dimensions (tl, fl), where tl and fl correspond to the time steps (WiFi packets) and
frequency bins (subcarriers), respectively.

Computing the mean of the l-th layer features for a dataset S across the time dimension
results in a mean vector of size fl, which can be expressed as:
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µl(S; θ) = Es∈SEt∈[1,tl]
�
ϕl(x; θ)[t]

�
, (6.15)

and the variance of the l-th layer features is given by:

σ2
l (S; θ) = Es∈SEt∈[1,tl]

�
(ϕl(x; θ)[t]− µl(S; θ))2

�
. (6.16)

For the remainder of this work, the mean and variance computed on the training
set are denoted with µ̄l and σ̄2

l . When training data is unavailable, these statistics
can be estimated from batch norm layers as well, though with a small decrease in
performance [209].

At test time, updates are performed iteratively, adjusting the discrepancy between the
test statistics of a batch B of selected layers L with those computed during training:

LTTA =
�
l∈L
||µl(B; θ)− µ̄l||2 + ||σ2

l (B; θ)− σ̄2
l ||2. (6.17)

In the conducted experiments, optimal results are obtained by selecting L to contain only
the first out of four transformer encoder layers that compose the WiFlexFormer encoder.

Given the low inference time of WiFlexFormer, TTA is performed for the most realistic
application scenario: online, on data received in a stream. Hence, |B| = 1 is chosen and
target statistics are continuously evaluated using exponential moving averages instead
of repeatedly computing statistics for the constantly growing test set. In other words,
given the CSI amplitude spectrogram si, received in iteration i, the mean and variance
estimates are updated as follows:

µ̂
(i)
l = α · µl(si; θ) + (1− α) · µ̂(i−1)

l , (6.18)

σ̂
2(i)
l = α · σ2

l (si; θ) + (1− α) · σ̂2(i−1)
l , (6.19)

where 1−α denotes the momentum. As a starting point, the source statistics are selected,
i.e., µ

(0)
l = µ̄l and σ

2(0)
l = σ̄2

l . Without modifications to Equation 6.17 and with no
extensive recomputation necessary, LTTA is computed using these estimates instead.

Weight Resetting In order to avoid catastrophic forgetting, in each iteration, a
subset of the current weights is reset to their original values from θ̄, the source models’s
parameters. Specifically, consider the weights of layer l in iteration i, denoted as θ

(i)
l . To

randomly reset these, a Boolean mask ml is defined with dim(θ(i)
l ) = dim(ml), where

each element of the mask is sampled from a Bernoulli distribution with reset rate p. The
updated parameter vector θ

(i)
l is then:

θ
(i)
l = ml ⊙ θ̄l + (1−ml)⊙ θ

(i)
l , (6.20)

where ⊙ denotes element-wise multiplication.
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Comparison to TTT and Other TTA Methods Unlike TTT, TTA requires no
changes to the architecture, making it suitable for off-the-shelf models. Additionally,
inference with TTA is arguably faster than with TTT, as TTT often involves a computa-
tionally expensive reconstruction task as the secondary objective [208, 213]. Compared
to other TTA approaches that align features by adjusting only the running statistics of
normalization layers [214, 211], the proposed method updates the entire parameter vector
θ up to the highest layer in L, offering greater flexibility during adaptation compared
to the others. However, this can also be problematic since continuously adapting entire
parameter vectors will unlearn the learned domain-invariant feature transformation even-
tually. To overcome this, weight resetting is employed, allowing the model to retain its
original form. With this approach, while TTA does increase inference time compared
to the original WiFlexFormer, practical deployment in real-time applications remains
feasible.

Evaluation Setup
DATTA’s effectiveness is evaluated through a detailed ablation study of its components,
including the augmentation module, loss function elements, and discriminator input in
DAT, as well as random weight resetting in TTA to assess its impact on model stability.
Experiments are based on publicly available data adapted for DAT and TTA. Additional,
the inference time on edge hardware is measured to assess the computational impact of
TTA and weight resetting on real-time performance, addressing practical deployment
feasibility.

Data Widar3.0-G6 Dataset: The Widar3.0 [74] WiFi HAR dataset features CSI
recordings of 22 human hand gestures performed by 16 participants in three different
indoor environments. Since not all 22 gestures are consistently performed in all three
environments, a subset of Widar3.0, referred to as Widar3.0-G6 [75], is often utilized
instead of the full dataset. This subset includes 6 hand gestures (push and pull, sweep,
clap, slide, draw circle and draw zigzag) that are performed across all three environments
by 16 users, resulting in a total of 68,246 hand gesture samples. The recording setup,
shown in Figure 6.5b, consists of one 5.825 GHz WiFi transmitter (TX) and six receivers
(RXn), each equipped with an Intel WiFi Link 5300 wireless NIC that has three antennas.
The CSI of 90 subcarriers (3 antennas × 30 subcarriers) is collected at each receiver
using the Linux CSI Tool [193], utilizing a packet sending rate of 1,000 Hz.

Widar3.0-G6D Dataset: To evaluate cross-domain generalization, the Widar3.0-G6 dataset
is preprocessed by extracting CSI from 30 subcarriers of the first antenna at each receiver
and applying temporal sub-sampling to 100 Hz for improved computational efficiency.
Only samples between 120 and 220 WiFi packets (≈ 1.2–2.2 seconds) are retained, with
shorter samples zero-padded to standardize length. Amplitude features are then extracted
and normalized using min-max scaling. The resulting Widar3.0-G6D dataset comprises
58,648 samples and is split into two disjoint subsets based on unique room-participant
combinations (domains): a training subset with 7 domains (2 environments, 7 persons)
and a test subset with 9 domains (1 environment, 9 persons), as shown in Table 6.15.
For reproducibility, a Python script to generate the Widar3.0-G6D dataset is provided2.
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Subset Activities Environments Persons Domains Samples
Train 6 2 7 7 19,586
Val 6 2 7 7 4,896
ValTTA 6 1 9 9 3,417
Test 6 1 9 9 30,749
Total 6 3 16 16 58,648

Table 6.15: Overview of the distribution of activities, environments, participants, domains,
and activity samples across the Widar3.0-G6D subsets used for training, validation, and
testing.

Model Training Four model configurations are evaluated to assess the impact of
DATTA and its components: the baseline WiFlexFormer (W ), its TTA variant (WTTA),
the DAT model (WDAT), and the final DATTA model (WDATTA). All model backbones
are trained on Train, validated on Val, with TTA hyperparameters tuned on ValTTA,
and tested on the shuffled dataset Test, if not stated otherwise. Note that shuffling Test
poses an extreme case of high-frequency domain shifts.

The baseline W uses the vanilla WiFlexFormer architecture without DAT or TTA. WDAT
incorporates DAT with loss weights α = 0.3, β = 0.2, and GRL-scaling γ = 8. Adding
TTA to W and WDAT produces WTTA and WDATTA, allowing the model’s first layer
to adapt during inference. The complete DATTA framework, WDATTA, is tuned using
Bayesian and grid search. For all models using TTA, random weight resetting with
p = 1× 10−4 is evaluated to enhance stability. The augmentation module’s effectiveness
is further assessed by training each model with and without augmentations.

Results

Augmentation Module The first component in the DAT pipeline to be evaluated is
the augmentation module. Inspecting Table 6.16, which depicts all cross-domain HAR
results, reveals the critical role of data augmentation for handling cross-domain varia-
tions. Comparing the baseline model W with and without augmentation, a substantial
improvement in F1-Score, from 40.62% to 49.32%, can be observed.

Its impact is even more pronounced in WDAT, the DAT model: without augmentation,
WDAT achieves an F1-Score of only 42.02%, reflecting poor generalization and significant
overfitting to domain-specific features. Hence, augmentation is crucial for DAT as without
it, the model overfits early and fails to learn domain-invariant features at later stages of
training when the adversarial signal strength is increased. However, with augmentation,
WDAT attains an F1-Score of 65.66%, showing that sufficient data variability is essential
to facilitating domain-invariant feature learning.

Confidence Control Constraint Next, the impact of the CCC is assessed, which
is designed to prevent overconfidence in specific class predictions to encourage a more
balanced feature representation across classes. By discouraging extreme confidence in
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Model Data
Augmentation

Weight
Resetting

ACC ↑ F1-Score ↑

W (baseline) - 38.69 ±3.17 40.62 ±2.93
✓ 47.75 ±4.31 49.32 ±4.45

WTTA
- - 42.76 ±4.21 44.89 ±3.93
✓ - 51.70 ±4.40 53.20 ±4.26

WDAT
- 39.54 ±2.80 42.02 ±2.62
✓ 64.53 ±1.87 65.66 ±1.85

WDATTA

- - 45.26 ±5.83 48.23 ±5.11
✓ - 65.90 ±1.53 67.29 ±1.43
✓ ✓ 66.92 ±1.54 68.13 ±1.45

Table 6.16: Cross-domain HAR performance on the Widar3.0-G6D dataset averaged
over three runs, comparing models trained with conventional training (W ), test-time
adaptation (WTTA), domain-adversarial training (WDAT), and the proposed combined
approach, domain-adversarial test-time adaptation (WDATTA).

Model CCC ACC ↑ F1-Score ↑
WDAT - 62.81 ± 1.09 63.81 ± 1.09
WDAT ✓ 64.53 ± 1.87 65.66 ± 1.85

WDATTA - 65.62 ± 1.08 66.78 ± 1.08
WDATTA ✓ 66.92 ± 1.54 68.13 ± 1.45

Table 6.17: Ablation study on the Confidence Control Constraint (CCC), weighted with
β = 0.2.

particular classes, CCC helps stabilize training, making the model more adaptable to
unseen domains. By means of a hyperparameter search, the optimal CCC weight β = 0.2
is identified and to evaluate its effectiveness, an ablation study comparing models trained
with and without CCC (i.e., β = 0) is conducted. Observing the results, given in Table
6.17, shows that including a CCC improves performance in both the WDAT and WDATTA
models. For WDAT, enabling CCC leads to an increase in F1-Score from 63.81% to 65.66%,
and for WDATTA, from 65.62% to 68.13%, reinforcing that CCC enhances cross-domain
generalization.

Random Weight Resetting Following this, the impact of random weight resetting
during TTA is evaluated which is introduced to prevent catastrophic forgetting. The
results, given in Table 6.16, indicate that random weight resetting promotes cross-domain
generalization, however only when the model is domain-invariant to some degree, as
achieved through DAT with data augmentation.

For WDATTA with augmentation, enabling random weight resetting boosts the F1-Score
to 68.13%, up from 67.29% without resetting, achieving the highest performance within
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Figure 6.11: TTA performance across continuous test domain sequences. From top to
bottom: (1) ascending domain order (D0 to D8), (2) descending domain order (D8 to
D0), and (3) alternating domain order with prolonged domains D0 and D2. Depicted
are F1-Scores computed with a rolling window of 100 samples for DATTA models with
weight resetting (WDATTA+R, blue), without weight resetting (WDATTA, green), and the
baseline DAT model without TTA (WDAT, black). [54]

our model set. However, in other cases, it has limited or even negative effects. For
instance, applying weight resetting to WDATTA without augmentation or to WTTA leads
to reduced performance. It is hypothesized that this is due to the weights of the base
model W and WDAT without augmentation not being sufficiently domain-invariant yet,
causing weight resets to revert beneficial adaptations during TTA. In contrast, WDATTA,
trained with augmentation, and thus exhibiting stronger domain invariance, allows weight
resetting to maintain proximity to this invariant space during TTA. Consequently, it
prevents drifting due to over-adaptation to specific test domains, avoiding catastrophic
forgetting and stabilizing performance across diverse domains.

Cross-Domain Adaptation Moving forward, Figure 6.11 illustrates the performance
of three models: DATTA with weight resetting (WDATTA+R), DATTA without weight
resetting (WDATTA), and DAT without TTA as the baseline (WDAT), across three domain
sequences to evaluate adaptability and resilience to domain shifts.
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Figure 6.12: Comparison of class distributions between the mean distribution of domains
0–7 and the highly skewed distribution of domain 8.
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Figure 6.13: Comparison of feature spaces for domains D1–D7, D0, and D8, highlighting
the low intra-class cohesion and poor separability of D8 samples.
In the first experiment (top plot), where domains are processed one after another (D0
to D8) to simulate smooth and realistic domain shifts, TTA consistently improves in
performance across domains, showing effective incremental adaptation except for the
last domain, D8, where it experiences a significant drop. On closer analysis, it is found
that D8 has a highly skewed class distribution (with class 1 containing only 8 samples,
approximately 0.3% of the total ≈ 2,700 samples in D8) and substantially different data
statistics compared to the other domains, as shown in Figure 6.12. While these factors
may hinder adaptability, it is hypothesized that mislabeled activities are the primary
cause of poor performance, potentially compounded by the steady, linear decline in
accuracy, which suggests systematic misclassification. To investigate this, PCA analysis
is conducted. As shown in Figure 6.13, domain D8 (right) diverges considerably from
the nominal feature space defined by domains D1–D7 (left), exhibiting low intra-class
cohesion and poor class separability, indicating high label noise and ambiguity. In
contrast, a well-behaved domain such as D0 (middle) demonstrates clear and consistent
clusters of activities. These factors explain the accuracy drop in D8 due to systematic
misclassification. However, TTA effectively adapts to other domains, confirming its
capability to overcome participant-induced domain gaps.

In the second experiment (middle plot), domains are processed in reversed order (D8
to D0) to test the ability to recover from domains with stark differences in underlying
data statistics. After finishing adaptation to the ill-posed domain, D8, TTA quickly
recovers and exceeds baseline performance, demonstrating its resilience in recovering
from challenging domains.
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Model ACC ↑ F1-Score ↑
W +ViTTA [209] 47.76 ±4.33 49.54 ±4.43
W +DAT [71] 61.87 ±1.39 63.16 ±1.55
WTTA +DAT [71] 64.48 ±1.58 65.87 ±1.41
WDAT +ViTTA [209] 64.37 ±2.05 65.60 ±1.94

W +DAT [71]+ViTTA [209] 61.66 ±0.81 63.04 ±0.92
WDATTA 66.92 ±1.54 68.13 ±1.45

Table 6.18: SotA comparison against DAT [71] and ViTTA [209]. (W and WTTA) + DAT
use the discriminator input c ⊕ â, (W and WTTA) + ViTTA, employ the ℓ1-loss, and
initialize targets with zero, with slightly tuned hyperparameters. Note that all models
are trained with augmentation, and WDATTA additionally uses weight resetting.

The third experiment (bottom plot) assesses resilience to catastrophic forgetting by
alternating between domains D0 and D2, simulating antagonistic domain shifts. As
shown previously, D2 (like D8) negatively affects performance, unlike other domains. This
configuration thus represents a challenging setting. Here, WDATTA+R maintains stable
performance across shifts, showcasing robustness in retaining learned features. Conversely,
WDATTA shows continual performance degradation, and gradual loss of domain invariance,
highlighting the effectiveness of weight resetting to prevent catastrophic forgetting.

Overall, both WDATTA+R and WDATTA significantly outperform the baseline WDAT,
confirming TTA’s effectiveness in enhancing cross-domain generalization. Additionally,
WDATTA+R outperforms WDATTA across experiments, validating the role of random weight
resetting in preventing performance degradation under repeated, prolonged domain shifts.

State of the Art Comparison To compare the proposed DATTA, with existing SotA
methods, it is evaluated against the default DAT model as proposed in [71] and the
video-based TTA variant in [209]. As this represents the first port of this video-based
TTA variant to the WiFi domain, all parameters are retained to align as closely as
possible with the original work, tuning only the most crucial ones: the layers for statistic
alignment (choosing the first layer instead of the last two) and the learning rate (1×10−6).

Shown in Table 6.18 are the results of this SotA evaluation; note that all variants were
trained using the proposed data augmentation module. When combining ViTTA [209]
with W or WDAT, the F1-Score stays almost unchanged (+0.4%/−0.1%), indicating that
employing the method as-is has no benefit. Consequently, evaluating it against the pro-
posed TTA variants, namely WTTA and WDATTA without weight resetting, performance
is worse (49.54% versus 52.2% and 67.29%), suggesting that adopting ViTTA to the WiFi
domain is not straightforward, requiring changes in the loss function, target initialization,
and extensive parameter tuning.

Similarly, when combining DAT [71] with W or WTTA, performance is significantly
improved over W , though it remains below the proposed DAT variants (63.16% vs.
65.66% and 67.29%), i.e., WDAT and WDATTA. Here, the key difference is the input to the
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Inference Time [ms]
Model Parameters Weight

Resetting
RTX 2070 Jetson Orin Nano

W 40.80 k 1.98 ±0.21 9.24 ±0.25
WDAT 41.97 k 2.05 ±0.23 10.30 ±0.18

WTTA
40.80 k - 9.86 ±1.42 56.73 ±1.29
40.80 k ✓ 19.52 ±2.27 111.39 ±3.93

WDATTA
41.97 k - 10.05 ±1.40 57.63 ±1.31
41.97 k ✓ 20.21 ±2.05 115.39 ±3.76

Table 6.19: Inference time comparison for the base model W , TTA model WTTA, DAT
model WDAT, and DATTA model WDATTA. Column R indicates the use of random
weight resetting. Mean inference time is reported over 1,000 iterations (after 100 warm-
up iterations) with batch size 1 on an Nvidia RTX 2070 GPU and a Jetson Orin Nano
single-board computer.

discriminator: class token embeddings c concatenated with ([71]) and without (proposed)
activity logits â. It is hypothesized that this is due to â inherently including domain
information, namely priors over activities, e.g., lying being more likely performed in the
bedroom than in the office. Hence, by including â, the activity recognizer is penalized
for learning these priors, making predictions less accurate.

In a final evaluation, both SotA methods are combined naively (W+DAT+ViTTA)
and compared against DATTA WDATTA: as before, the impact of ViTTA is negligible,
resulting in an improvement over the SotA by 8.1%.

Inference Time Table 6.19 compares the inference times for the baseline model W ,
WDAT, WTTA, and WDATTA on both an Nvidia RTX 2070 GPU and an Nvidia Jetson
Orin Nano single-board computer. On the RTX 2070, W achieves the fastest inference
time at 1.98 ms per sample, with a minor increase to 2.05 ms for WDAT due to the DAT
component. Models incorporating TTA show a notable rise in inference time due to
additional adaptation steps, with WTTA reaching 9.86 ms and WDATTA reaching 10.05
ms, a ≈ 5x increase over the baseline. With random weight resetting, inference time
increases further to approximately 19.52 ms for WTTA and 20.21 ms for WDATTA, roughly
a 10x increase.

Switching from the RTX 2070 to the Jetson Orin Nano incurs an additional ≈ 5x increase
in inference time across models, with WDATTA achieving around 115.39 ms per sample
with weight resetting. However, this latency remains sufficient for HAR, achieving ≈
9 frames per second. Although weight resetting adds to inference time, it significantly
improves model stability by preventing catastrophic forgetting, which is crucial for
sustained performance across domain shifts. Notably, the underlying TTA code is not
optimized for speed, and further optimizations are likely to reduce adaptation time.
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Discussion

The conducted evaluation validates the effectiveness of DATTA in enhancing cross-domain
generalization for WiFi-based PCS. By integrating DAT and TTA, DATTA achieves
substantial improvements over existing state-of-the-art methods, with an 8.1% increase in
F1-Score on the HAR task, notably outperforming both standalone DAT and traditional
TTA approaches adapted from the video domain. The augmentation module, utilizing the
effective preprocessing techniques from [50], facilitates DAT, emphasizing its essential role
in enabling domain-invariant feature learning. Without effective augmentation, models
quickly overfit to domain-specific features, limiting their adaptability.

The employed random weight-resetting mechanism further improves model robustness
by effectively mitigating catastrophic forgetting during prolonged adaptation periods.
This method stabilizes adaptation performance across diverse and challenging domain
sequences, as demonstrated by its resilience to extreme domain shifts (e.g., domain D8,
characterized by severe class imbalance and label noise). The effectiveness of random
weight resetting depends on initial domain invariance, underscoring the importance of a
robust base model established via DAT with augmentation.

Experiments evaluating incremental and antagonistic domain sequences confirm the
practical advantage of DATTA over baseline methods. Notably, in scenarios involving
alternating domain shifts, weight resetting preserves performance stability, whereas
DATTA without resetting experiences steady performance degradation. This outcome
emphasizes the critical role of periodic weight resets in maintaining stable domain
invariance.

In terms of computational efficiency, DATTA, through the integration of WiFlex-
Former [53], achieves inference latency suitable for real-time edge deployments. Despite
additional computation from TTA and weight resetting mechanisms, DATTA achieves
inference times of ≈ 10 ms per sample on an Nvidia RTX 2070 GPU and ≈ 115 ms
per sample on the Nvidia Jetson Orin Nano single board computer, translating to ≈ 9
frames per second (RQ II). These latencies remain sufficient for practical localization and
HAR scenarios, especially considering further potential optimizations in the adaptation
implementation.

Overall, DATTA effectively addresses the limitations of previous static preprocessing
approaches, responding to RQ III by demonstrating robust, real-time adaptability to
domain shifts at test time. Its combination of DAT, TTA, targeted augmentations,
and random weight resetting constitutes a comprehensive framework that advances
the feasibility of practical, domain-invariant WiFi-based PCS deployments in complex,
real-world scenarios.
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6.4 CSI-based Through-Wall Imaging
Despite advances in model robustness and generalization, a limitation of WiFi-based PCS
remains its lack of visual interpretability. Unlike optical sensing modalities [215], CSI
encodes signal propagation characteristics in an abstract format that offers little intuitive
insight into human activities or environmental context. This limitation constrains the
usability of WiFi sensing in applications where visual understanding is critical, such as
security monitoring, or human behavior analysis.

To address this challenge, researchers have begun exploring methods to synthesize dense
visual representations directly from WiFi signals. Early work primarily focuses on
semantic segmentation and pose estimation. Techniques such as WiSIA[139] and Wi-
Seg[145] employ conditional GANs or encoder-decoder architectures to extract masks or
silhouettes from CSI. Other efforts, including Person-in-WiFi[94] and DensePose-from-
WiFi[142], estimate human poses from WiFi signals, though typically constrained to
intra-room scenarios. More recent approaches extend these capabilities to richer outputs:
Wi2Vi[140] and CSI2Image[141] aim to generate RGB video frames using autoencoders
or GANs, and Wi-Depth [147] reconstructs depth maps for 3D scene understanding.
However, these methods either assume LOS conditions or limit output to semantic
representations, leaving the problem of CSI-to-image translation in TW settings largely
unexplored.

This gap is addressed by introducing the first approach for directly synthesizing RGB im-
ages from WiFi CSI captured in TW scenarios [51]. Drawing inspiration from multimodal
learning frameworks used in brain decoding [216], the method employs a generalized mul-
timodal VAE [217] tailored to crossmodal translation from CSI amplitude spectrograms
to RGB images. This architecture enables aligned generation of visual representations
from abstract WiFi signals, facilitating human interpretability and unlocking image-based
downstream tasks such as activity annotation or visual inspection beyond visual line of
sight, an without the violation of visual privacy [20].

By leveraging WiFi’s penetrative properties in combination with generative modeling,
this approach expands the interpretability and application scope of WiFi-based PCS.
In the context of RQ IV, it represents a key contribution toward making CSI semanti-
cally meaningful and visually intuitive, laying the foundation for more accessible and
trustworthy real-world deployments.
6.4.1 WiFiCam Architecture
Figure 6.14 provides an overview of the proposed architecture for synthesizing images
from TW WiFi CSI, including both the training and inference stages. The approach
relies on the MoPoE-VAE [217], a multimodal variational autoencoder designed to learn
a posterior distribution over a joint latent variable z ∈ RD conditioned on both CSI and
image modalities. A corresponding decoder reconstructs images from sampled latent
vectors derived from this joint distribution. A PyTorch implementation of the proposed
architecture is publicly available3.

3WiFiCam, https://github.com/StrohmayerJ/wificam, accessed: 15.04.2025
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Figure 6.14: Proposed WiFiCam architecture for WiFi CSI-based image synthesis. [51]

Given a set of samples of images X :=
�
Xi

�N
i=1, each paired with a fixed time interval

of WiFi packets (the central packet determines the corresponding image), i.e., Xi =�
Xi
I , Xi

W

�
, the aim is to maximize the log-likelihood of the data at hand:

log pθ(X) = log pθ
��
Xi�N

i=1
�

(6.21)

Within VAEs, this is achieved by maximizing a lower bound to this objective, the so-
called evidence lower bound. For a given sample Xi, this lower bound on the marginal
log-likelihood takes on the following form:

L(θ, ϕ;Xi) := Eqϕ(z|Xi)
�
log

�
pθ(Xi|z)�	− βDKL

�
qϕ(z|Xi)||pθ(z)

�
, (6.22)

where DKL denotes the Kullback-Leibler divergence [218] between the approximated
posterior and the assumed, in our case, Gaussian prior, and β being an additional
weight parameter (see Higgins et al. [219]), which promotes disentanglement of the
latent variable z, in the case that β > 1. During inference, when image data is missing,
i.e., Xi

W := Xi \ �
Xi
I

�
, a valid lower bound is still to be obtained on the joint probability

log pθ(Xi). However, when using L(θ, ϕ;Xi
W ), it only yields a lower bound on log pθ(Xi

W ).
Hence, to obtain a correct lower bound on the joint probability, the following adapted
lower bound is used:

LW (θ, ϕW ;Xi) := Eq̃ϕW
(z|Xi

W )
�
log

�
pθ(Xi|z)�	− βDKL

�
q̃ϕW

(z|Xi
W )||pθ(z)

�
. (6.23)

In the general naive case with M different modalities, approximating a lower bound of
the joint probability in any case of missing modalities requires the optimization of 2M
different models, one for each subset contained within the powerset, posing a drastic
scalability issue. Compared to prior literature, Sutter et al. [217] circumvent this by
modeling the joint posterior approximation as a so-called Mixture of Products of Experts
(MoPoE), combining Product of Experts (PoE) [220] and Mixture of Experts (MoE) [221]
through abstract mean functions [222], to enable efficient retrieval of the joint posterior
for all subsets. A detailed description of this original approach can be found in [217].
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While the task at hand involves only two modalities (WiFi CSI and images) and focuses
exclusively on reconstructing images from WiFi CSI, the methodology is designed to
remain extensible to additional modalities in future work. To this end, the framework
retains the multimodal structure of MoPoE-VAE. However, custom variational autoen-
coders are introduced for inference from WiFi CSI, and the loss function is adapted to
disregard image sequence decoding, as it is not required in the current setting.

Image Reconstruction

Given the stark difference of modalities, two architectural different models are required
for learning the unimodal posterior distributions qϕI

(z|Xi
I) and qϕW

(z|Xi
W ):

Image VAE For the encoding and decoding of images, convolutional and transpose-
convolutional layers are employed, respectively. Additionally, each of these layers is
followed with batch normalization and a Leaky ReLU activation. Before inferring the
distribution parameters of the latent variable z given images using the encoder, the
input is rescaled from a resolution of 640 × 480 down to 128 × 128 pixels in order to
reduce computational complexity and apply normalization using per-channel means and
standard deviations. Next, six consecutive convolutional blocks increase the channel size
from three (RGB) to 512, followed by a simple Multi-Layer Perceptron (MLP) to map
from the flattened output of the convolutions to the unimodal distribution parameters.
Decoding is performed by taking a latent vector z and reversing the process using
transpose-convolutions.

CSI VAE The CSI VAE first extracts amplitude information from the raw WiFi CSI
and applies a MLP to embed each sample in a sequence, producing a more expressive
feature representation. To handle the temporal dimension, several aggregation strategies
are considered: uniform feature weighting, Gaussian feature weighting, and concatenation,
where the sequence is flattened without further modification. These aggregation methods
are evaluated through an ablation study. Following aggregation, a second MLP estimates
the unimodal distribution parameters for the WiFi CSI. Reconstruction of the CSI from
the latent variable z is omitted, as it is not required for the task at hand.

During training, the unimodal distribution parameters predicted by the two VAEs are
first combined into subsets using the PoW approach and then aggregated across the
powerset using a MoE formulation. Given the predicted parameters µ, σ ∈ RD, a latent
vector z is sampled using the reparameterization trick: z = µ + σ ⊙ ϵ, where ϵ ∼ N (0, 1).
At inference time, only the mode of the approximated posterior distribution produced by
the CSI VAE is used for reconstruction, specifically the predicted mean.

Aggregation Options In the CSI VAE, several aggregation strategies are evaluated
to identify the most informative representation for predicting an image corresponding
to the central WiFi packet in a given sequence. Let X̃W ∈ RL×H denote the embedded
WiFi CSI amplitudes after the first encoder MLP, where L is the sequence length and
H the hidden dimension. One baseline approach applies a uniform weighing, assigning
equal importance to all packets and thereby disregarding packet order or the prominence
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of the central packet. To emphasize temporal structure, a Gaussian weighing centered
at the middle of the sequence is considered, using µ = σ = L/2 to prioritize packets
near the center and reduce permutation invariance. Both of these aggregation strategies
may result in temporal instability, such as flickering between frames. To address this,
a third strategy based on concatenation is introduced, in which packet features are
left unaggregated to preserve full permutation sensitivity. Depending on the chosen
aggregation method, the input to the second encoder MLP lies either in RH (for weighed
approaches) or RLH (for concatenation).

Temporal Encoding A final adjustment to the architecture addresses the issue of
temporal instability through the use of temporal encoding. Although concatenation helps
reduce abrupt changes between consecutive frames, minor jittering artifacts may still
persist. To further mitigate this, sinusoidal temporal encoding is introduced, following a
strategy similar to that used in NeRF [223]. This approach augments the input features
with explicit time information. For a given timestamp t and a set of frequencies L, the
temporal encoding is defined as:

T (t, F ) =
�
sin

20πt

3L

�
, cos

20πt

3L

�
, . . . , sin

2F−1πt

3L

�
, cos

2F−1πt

3L

��
. (6.24)

In this formulation, the timestamp t is scaled by three times the window size L to
incorporate contextual timing information from before and after the current window.
When applying temporal encoding, the encoded time features are concatenated with
the image or WiFi features produced by the CNN or MLP, respectively. This combined
feature vector is then passed through the corresponding MLP to predict the distribution
parameters, as illustrated in Figure 6.14.

6.4.2 Evaluation Setup
To assess the relationship between reconstruction fidelity and architectural design choices,
an ablation study evaluating both quantitative metrics and qualitative image characteris-
tics across different model configurations, is conducted.

Data The evaluation of the proposed TW image synthesis approach relies on the
WiFiCam dataset (see Section 5.2.5), which is specifically designed to enable the di-
rect translation of WiFi CSI into RGB images in a TW scenario. Unlike traditional
person-centric datasets that include explicit activity or trajectory labels, WiFiCam fo-
cuses on temporally aligned CSI–image pairs, making it well-suited for studying visual
interpretability and image synthesis from CSI in realistic indoor sensing conditions.
The dataset is recorded in a furnished office room measuring 3.8 m × 5.3 m, with a
point-to-point WiFi setup based on system D placed outside opposite walls to establish
a single-room TW configuration. An RGB camera placed inside the room captures 640
× 480 images at 30 Hz while WiFi packets are transmitted at 100 Hz. Synchronization is
performed via timestamps, resulting in approximately three WiFi packets per image.

The dataset comprises 57,413 WiFi packets and 18,261 RGB images collected during a
ten-minute sequence of continuous walking. Data cleaning removes samples at the start
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Model PSNR ↑ SSIM ↑ RMSE ↓ FID ↓
UW 20.03 ±.05 0.734 ±.00 8.02 ±.04 142.95 ±2.4
GW 20.02 ±.07 0.734 ±.00 8.00 ±.05 141.00 ±5.0
C 20.39 ±.05 0.748 ±.00 7.83 ±.05 127.33 ±4.7
C+T 20.39 ±.04 0.749 ±.00 7.80 ±.02 125.62 ±3.2

Table 6.20: Quantitative ablation study results for the aggregation options uniform weigh-
ing (UW), Gaussian weighing (GW), concatenation (C), and concatenation with temporal
encoding (C+T). The metrics reported represent the mean and standard deviation across
ten independent training runs.

and end of the recording that do not correspond to the target activity. For training,
validation, and testing, the dataset is split at an 8:1:1 ratio. CSI amplitude spectrograms
are constructed using the magnitudes of 52 L-LTF subcarriers over a 151-packet window
(≈ 1.5 seconds), and each spectrogram is paired with the RGB image closest in time
to the center packet. This forms the input-output pairs used for model training and
evaluation.

Model Training Models are trained using the proposed WiFiCam architecture for
CSI-based image synthesis, incorporating the following architectural variants: uniform
weighing, Gaussian weighing, concatenation, and concatenation with temporal encoding.

A hyperparameter search is performed using the concatenation with temporal encoding con-
figuration on the validation subset to identify optimal training parameters. The search ex-
plores batch sizes b ∈ {16, 32, 64, 128, 256, 512}, window sizes L ∈ {51, 101, 151, 201, 251, 301},
and KL divergence weights β ∈ {1, 2, 4, 6}. The optimal values found are b = 32, L = 151,
and β = 1, and these settings are subsequently used across all model variants.

For each WiFi packet, amplitudes of the 52 L-LTF subcarriers are extracted from the CSI
matrix and used to construct 52× L spectrograms as input to the CSI VAE. Raw RGB
images are resized to 128× 128 pixels and normalized using per-channel dataset statistics.
All models are trained using the Adam optimizer with a learning rate of 1× 10−3. Each
configuration is trained independently ten times for 50 epochs, and the model achieving
the lowest validation loss is selected for evaluation on the test subset.

Metrics To evaluate image reconstruction fidelity, the assessment employs widely used
metrics from compression and generative modeling literature, including Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Root Mean Squared
Error (RMSE), and Fréchet Inception Distance (FID)[224].

6.4.3 Results
Quantitative Results Table 6.20 presents the quantitative results of the ablation
study, comparing MoPoE-VAE variants using uniform weighing, Gaussian weighing,
concatenation, and concatenation with temporal encoding. Evaluation is based on PSNR,
SSIM, RMSE, and FID, averaged across ten independent training runs. Among the
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(a) ground truth (b) UW (c) GW (d) C (e) C+T

Figure 6.15: Comparison of reconstruction fidelity between MoPoE-VAE models employ-
ing the aggregation options (b) uniform weighing (UW), (c) Gaussian weighing (GW),
(d) concatenation (C), and (e) concatenation with temporal encoding (C+T). This visual
comparison highlights the improvements in image clarity and reduction of artifacts. [51]

configurations, uniform weighing and Gaussian weighing yield the weakest performance,
characterized by lower PSNR and SSIM values and elevated RMSE and FID scores.

Introducing concatenation leads to notable improvements across all metrics, indicating
that preserving temporal order enhances the model’s ability to reconstruct images more
accurately. This is further supported by qualitative improvements, including enhanced
sharpness and perceptual fidelity. The concatenation with temporal encoding configuration
surpasses all other variants, yielding marginally higher PSNR and SSIM, along with
lower RMSE and FID values compared to concatenation. In particular, the improved
FID score suggests reduced perceptual distance and enhanced image quality.

Although the addition of temporal encoding produces only subtle quantitative gains, it
contributes to improved frame coherence and visual sharpness. Overall, the results indicate
that while concatenation with temporal encoding offers the strongest reconstruction
performance, qualitative assessment remains essential for a complete evaluation, especially
when differences in numerical metrics are modest.

Qualitative Results The qualitative analysis supports the quantitative findings pre-
sented earlier. Figure 6.15 illustrates how different aggregation strategies affect image
reconstruction fidelity. The uniform weighing model (Figure 6.15b) produces noticeably
blurred images, consistent with its lower PSNR and higher RMSE values reported in
Table 6.20. This outcome is attributed to a lack of temporal focus, which appears to
diminish perceptual clarity. The Gaussian weighing model (Figure 6.15c) exhibits a slight
visual improvement despite comparable quantitative metrics, likely due to the increased
weighting of central WiFi packets, those temporally closest to the target image, which
contribute more prominently to the reconstruction.

In Figure 6.15d, the concatenation model further improves reconstruction quality. By
preserving full temporal resolution through feature concatenation, the model learns
to emphasize relevant signal patterns, resulting in sharper images and more coherent
frame-to-frame transitions. These improvements are also reflected in Figure 6.16, where
the reduction of spatiotemporal discontinuities is evident. Although concatenation
outperforms both uniform weighing and gaussian weighing quantitatively, minor artifacts
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Figure 6.16: Example showing the elimination of spatiotemporal discontinuities in a
sequence of 100 test images with high 1-SSIM, highlighted in red, through the aggre-
gation option concatenation. From top to bottom, the rows show Gaussian weighing,
concatenation, and ground truth, respectively. [51] †
and temporal jitter remain visible in video sequences, consistent with the marginal
differences observed in FID scores.

The best results are achieved by the concatenation with temporal encoding model (Fig-
ure 6.15e). The addition of cyclic temporal encoding further reduces jitter, enhances
frame consistency, and lowers perceptual distance as reflected in FID. Reconstructed
video sequences3 further illustrate these improvements by highlighting the temporal
stability achieved by each configuration.

Overall, the qualitative findings confirm that the proposed method enables effective
TW visual monitoring using WiFi CSI. The ability to reconstruct coherent and visually
meaningful images without conventional cameras highlights the feasibility of this approach
and its potential for image-based downstream tasks. This work represents a significant
advancement in improving the interpretability of WiFi CSI and offers a solid foundation
for further exploration in CSI-to-image translation.
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6.4.4 Discussion
This work demonstrates the feasibility of synthesizing person-centric RGB images from
WiFi CSI captured in TW scenarios, marking the first approach to enable visual monitor-
ing across walls using WiFi alone. An extensive ablation study evaluates several WiFiCam
architecture variants and reveals that temporal feature concatenation, combined with
cyclic temporal encoding, yields the most consistent and perceptually accurate image
reconstructions. This configuration outperforms alternatives in both quantitative metrics
and qualitative visual fidelity, producing sharper, temporally coherent frames suitable for
image- and video-based downstream tasks.

By directly translating abstract CSI amplitude spectrograms into intuitive visual repre-
sentations, the proposed approach improves the interpretability of WiFi-based sensing.
It bridges the semantic gap between RF signals and human-understandable imagery,
making WiFi sensing more accessible and practically useful in scenarios such as TW
security monitoring or visual activity annotation, domains where conventional camera
systems are often intrusive or unfeasible.

In relation to RQ IV, this work provides a key advancement in making CSI interpretable
by design, rather than relying solely on performance metrics or latent activations. It
shows that CSI can not only support predictive tasks but also enable generative, human-
interpretable outputs that enrich the usability and transparency of WiFi-based PCS
systems.

While the WiFiCam model (i.e., MoPoE-VAE+C+T) achieves strong results, its gen-
eralization to unseen domains or subjects remains unexplored. The domain adaptation
techniques introduced earlier, particularly the DATTA framework (see Section 6.3.3), offer
promising pathways to enhance robustness by enabling domain-invariant representation
learning and domain-adaptation at test time without requiring labeled data.

Looking forward, the inherently multimodal design of the proposed WiFiCam architecture
opens opportunities to integrate additional sensing modalities such as radar, acoustic
signals, or structural vibration data, to complement WiFi and enhance performance in
degraded or ambiguous conditions. These extensions could further expand the applica-
bility of TW image synthesis in complex real-world settings, establishing a robust and
interpretable alternative to conventional visual systems.
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Summary
This chapter presents a unified methodology to enable practical, robust, and interpretable
WiFi-based PCS across long-range and TW sensing scenarios. It addresses the core
challenges identified in RQ I–IV through four complementary contributions.

First, to address RQ I, the chapter demonstrates that single-link directional antenna
systems based on low-cost COTS WiFi devices enable reliable long-range and TW PCS
in partitioned indoor environments. The proposed systems demonstrate robust presence
detection, HAR, and localization performance across distances up to 20 meters and
multiple walls, offering a scalable alternative to conventional short-range solutions while
minimizing system complexity and cost.

Second, to addressRQ II, the chapter introducesWiFlexFormer, a lightweight Transformer-
based architecture optimized for real-time inference on edge devices. With only ≈ 50k
parameters and ≈ 10 ms inference latency, WiFlexFormer maintains competitive HAR
performance while supporting advanced adaptation strategies such as test-time training
and subcarrier sub-sampling, enabling efficient CSI processing in embedded environments.

Third, in response to RQ III, the chapter systematically investigates algorithmic strate-
gies to improve cross-domain generalization. Data augmentation and preprocessing
techniques are shown to improve model generalization across hardware, scenario, en-
vironmental, and temporal variations without requiring access to target-domain data.
Furthermore, the proposed DATTA framework introduces a novel integration of domain-
adversarial training and test-time adaptation, enabling real-time domain adaptation
on the edge at test time. This approach outperforms prior methods and provides a
scalable foundation for domain-invariant WiFi-based PCS in dynamic, unpredictable
environments.

Finally, to address RQ IV, the chapter presents the first approach to synthesize RGB
images directly from WiFi CSI in TW settings. By leveraging a multimodal VAE
with temporal encoding, the proposed method enables coherent, interpretable visual
reconstructions from RF signals, bridging the semantic gap between CSI and human-
readable imagery. This represents a major step toward interpretable and camera-free
monitoring applications and opens new opportunities for image-based downstream tasks.
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CHAPTER 7
Discussion

This chapter examines the broader implications, limitations, and future directions of
WiFi-based PCS. While recent advances improve sensing capabilities through novel
system designs, datasets, and methodologies, achieving scalable and practical adoption
still requires addressing persistent challenges in cross-domain generalization, dataset
availability, multi-person interference, and dual-use concerns. Further progress may
result from the development of specialized communication protocols, the integration of
complementary sensing modalities, and the expansion of application domains.

7.1 Current Limitations
Despite recent advancements, WiFi-based PCS still faces significant barriers to widespread
practical adoption, particularly regarding cross-domain generalization, dataset availability,
and multi-person interference.

Cross-Domain Generalization While substantial progress exists toward improving
cross-domain generalization in WiFi-based PCS, it remains one of the most persistent
challenges. Due to the inherent sensitivity of CSI to domain variations, including
changes in physical environment, hardware configuration, or user physiology, model
performance tends to deteriorate in unseen domains [47]. To address this, recent research
explores a variety of strategies including domain-invariant feature extraction, physics-
informed data augmentation, transfer and few-shot learning, and large-scale multi-domain
training [47]. These approaches aim to either suppress domain-specific artifacts or improve
model adaptability across diverse conditions. Despite notable gains, no existing method
consistently generalizes across the full range of real-world deployment scenarios. Static
models still require fine-tuning or retraining when faced with even minor domain shifts,
highlighting the fragility of existing solutions and the need for complementary, dynamic
strategies to improve robustness [207, 209]. However, achieving truly domain-agnostic
performance remains an open problem. A promising path forward may lie in the creation of
large-scale datasets that comprehensively capture real-world domain variability, coupled
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with domain-invariant feature learning and dynamic test-time adaptation methods,
exemplified by DATTA [54].

Data Scarcity and Standardization Limited availability of diverse and standardized
WiFi datasets substantially constrains the evaluation and improvement of PCS models.
Acquiring extensive, annotated WiFi datasets involves complex setups, human partici-
pants, and resource-intensive labeling procedures, often dependent on additional visual
modalities. Recent datasets partially mitigate these issues by increasing environmental
variability [183, 44], yet current benchmarks remain insufficient to represent the full
complexity of real-world conditions [77]. Additionally, the limited hardware support
for CSI extraction further restricts research and deployment efforts [42]. Establishing
standardized data collection protocols and promoting broader hardware compatibility
are essential steps toward robust and generalizable PCS systems.

Signal Interference in Multi-Person Scenarios Research on WiFi-based PCS
typically targets single-user scenarios [125], but practical deployments can involve multiple
individuals interacting simultaneously within the same environment. Such scenarios
complicate PCS tasks, as person-specific perturbations are mixed up in the WiFi signal,
causing interference and making signal isolation challenging. Consequently, existing
PCS approaches tailored to single-user scenarios perform poorly under multi-person
conditions. While methods employing blind source separation, such as ICA in systems
like MultiSense [110], provide partial solutions, comprehensive approaches to robustly
handle general multi-person sensing without relying on complex MIMO setups [98] remain
to be developed. Although emerging multi-person datasets such as WiMANS [44] are
valuable resources, methodological advancements in blind source separation needed to
fully address this limitation.

7.2 Dual-Use Potential
The possibility of non-consensual monitoring using WiFi signals is illustrated by recent
studies demonstrating passive sensing from outside a building. Hernandez and Bulut [160],
for example, show that occupancy and movement direction can be detected through walls
using low-cost COTS WiFi devices. Through a co-planar arrangement of transmitter
and receiver devices on the exterior of a building and statistical CSI aggregation, their
system enables presence detection without physical access. Abedi and Vasisht’s Wi-
Peep [225] further demonstrates that a flying drone equipped with a low-cost WiFi
transceiver can localize WiFi-enabled devices, such as smartphones, inside a building.
Since mobile phones are typically carried by individuals, this approach indirectly enables
localization of persons from outside the premises. These examples highlight the feasibility
of passive, infrastructure-free WiFi sensing for adversarial purposes, motivating the
need for safeguards. These could come in the form of privacy-by-design strategies
such as CSI randomization at the physical or medium access control layers which can
introduce unpredictable perturbations in the signal to prevent unauthorized systems
from extracting stable CSI [226]. This technique preserves connectivity for intended
devices while degrading the CSI’s utility for passive eavesdroppers, effectively obfuscating
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activity-related signal patterns without affecting communication quality. Furthermore,
hardware-based privacy measures like intelligent reflective surfaces [227] dynamically
control electromagnetic wave propagation, effectively enabling targeted privacy zoning
(e.g., for bedrooms or bathrooms) without disabling WiFi connectivity.

7.3 On the Future of Wireless Sensing
While the potential of WiFi-based PCS is evident, its full scope remains largely unexplored.
Future progress may be driven by new communication protocols optimized for PCS,
integration with complementary modalities for more accurate and interpretable inference,
and deployment in diverse application domains where scalability, privacy, and cost are
critical.
Novel WiFi Standards Emerging wireless communication standards offer new oppor-
tunities for extending the capabilities of WiFi-based PCS. For example, IEEE 802.11ah
(WiFi HaLow)1, designed for long-range, low-power data transmission, operates in sub-
GHz frequency bands (863-870 MHz in Europe), enabling improved penetration of
building materials and coverage of larger indoor areas. These characteristics make it a
promising candidate for wide-area PCS deployments, such as whole- or cross-building
PCS, using minimal infrastructure. Looking further ahead, there is significant potential
in the development of wireless communication protocols tailored to the requirements of
PCS. Unlike general-purpose standards, such protocols could be designed to maximize
sensitivity to human-induced signal perturbations, increase information density, and
support richer spatiotemporal resolution, thereby enhancing the versatility and accuracy
of PCS systems across diverse applications. The IEEE 802.11bf Task Group2 explicitly
aims to develop such an amendment, proposing PCS-oriented modifications to the IEEE
802.11 family of standards. The 802.11bf amendment, expected to become operational
by the end of 2025, defines enhancements to the medium and access control and physical
layers, facilitating capabilities such as explicit signaling of sensing functionality, structured
sensing measurements, and standardized feedback protocols [228].

6G Integrated Sensing and Communication Looking beyond WiFi-centric stan-
dards, the forthcoming sixth-generation (6G) mobile networks are expected to integrate
native sensing and communication (ISAC) capabilities, enabled by ultra-wide bandwidths
and sub-THz operation [229]. These capabilities promise unprecedented spatial resolution
and multi-user tracking in LOS conditions, unlocking new possibilities for high-precision,
privacy-aware PCS in complex environments such as smart city infrastructures [230].
In smart buildings, ISAC could support camera-free presence detection, fall detection,
and occupancy-aware automation, contributing to both energy efficiency and occupant
safety [231]. In healthcare, continuous and contactless monitoring of vital signs and
mobility patterns could facilitate early risk detection, longitudinal health assessment, and
rehabilitation support [232, 233]. Human–computer interaction stands to benefit from
fine-grained gesture, pose, and even emotion recognition for immersive, privacy-preserving

1IEEE 802.11ah, https://www.wi-fi.org/discover-wi-fi/wi-fi-certified-halow, Accessed: 24.07.2025
2IEEE 802.11bf, https://www.ieee802.org/11/Reports/tgbf_update.htm, Accessed: 24.07.2025
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interfaces [234]. Safety systems may leverage ISAC to locate individuals through smoke,
fog, or occlusion, where optical sensors such as LiDAR and depth cameras fail [235, 236].
Industrial and logistics settings could use joint sensing and communication for zone-based
worker safety, contactless robot collaboration, and real-time asset localization [237]. In
public and commercial spaces, ISAC may enable population analytics, personalized
services, and queue estimation while safeguarding user anonymity [238]. Across these
domains, 6G ISAC envisions a new class of ambient, camera-free intelligence that fuses
connectivity with awareness. Notably, recent WiFi-based systems have already demon-
strated the feasibility of many such applications using COTS hardware and narrowband
sensing, providing a practical foundation upon which future ISAC systems can build.

Multimodal Sensing Multimodal sensing, i.e., the fusion of WiFi CSI with com-
plementary sensor modalities (images, radar, sound, etc.), offers another direction for
advancing WiFi-based PCS [239]. Each modality captures different aspects of human
behavior, and their integration can help overcome the individual limitations of unimodal
systems [215]. For example, WiFi-based sensing preserves visual privacy and possesses
wall-penetration capabilities, but on the other hand lacks spatial resolution and semantic
richness. In contrast, vision-based systems offer high spatial and contextual resolution
but are limited by LOS, lighting, and privacy constraints. Assuming the violation of
visual privacy is not an issue, fusing these modalities could yield more accurate, robust,
and interpretable representations of person-centric information, especially in complex
multi-person, or TW sensing scenarios.

Beyond performance gains, multimodal sensing can simplify annotation and labeling by
leveraging modalities with well-established ground truth extraction methods, such as
vision. Furthermore, it facilitates the learning of cross-modal representations that transfer
person-centric semantics to otherwise opaque RF signals (such as CSI), as explored in [51].
In addition to demonstrating promising results for vision-based inference from CSI, the
study shows that translating between visual and RF representations can also enhance
the interpretability of CSI, highlighting the potential of vision to contextualize and
semantically enrich RF-based sensing for downstream tasks. Recent datasets, such
as MM-Fi [183], further illustrate the growing interest in multimodal PCS, providing
benchmarks that enable joint training and evaluation across modalities. The availability
of such datasets enables PCS systems to utilize hybrid architectures that can intelligently
integrate complementary sensing modalities, offering not only improved performance but
also more transparent and trustworthy inferences.

Application Scope The versatility of WiFi-based sensing opens largely untapped
opportunities for integration into existing wireless infrastructure, setting the stage for
pervasive, unobtrusive monitoring across a broad spectrum of domains. While current re-
search focuses primarily on home and healthcare scenarios [42, 240, 4], future applications
are poised to extend far beyond, addressing challenges in domains where conventional
sensing solutions are limited by cost, scalability, or privacy concerns. In environmental
contexts, WiFi signals could support smart agriculture through crop monitoring [241, 242]
and enable scalable livestock and wildlife tracking [243]. Similar methods may facili-
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tate fault detection and safety analytics in industrial settings by capturing vibration
patterns and worker-machine interactions [10]. In automotive applications, in-cabin
sensing using WiFi could provide non-intrusive monitoring of driver alertness and passen-
ger well-being [244, 161, 245]. Smart environments may benefit from occupancy-aware
building management systems that leverage ambient WiFi signals for real-time energy
optimization [246, 247], while public infrastructure could integrate WiFi-based anomaly
detection for early warning of hazards such as fire or smoke [8, 9]. Finally, the penetrative
nature of WiFi signals holds promise for public safety and disaster response, where
future systems may enable the detection of survivors in obstructed environments during
emergency operations [11].

WiFi-based PCS holds the potential to become an ubiquitous, privacy-aware alternative
to traditional sensing technologies. While current systems face challenges related to
generalization, scalability, and ethical deployment, ongoing advancements in wireless
protocols, multimodal fusion, and adaptive learning pave the way toward robust, inter-
pretable, and unobtrusive sensing. As these capabilities mature, WiFi-based PCS may
transform everyday environments into intelligent spaces that sense and respond to human
behavior, seamlessly, securely, and at scale.
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CHAPTER 8
Conclusion

WiFi-based PCS has emerged as a promising alternative to traditional optical modalities
by enabling passive, device-free monitoring through existing wireless infrastructure.
Leveraging intrinsic properties such as cost-efficiency, unobtrusiveness, and the ability
to penetrate building materials, WiFi-based PCS is particularly suited to large-scale
indoor monitoring applications. Despite these appealing attributes, widespread practical
adoption remains constrained by critical challenges, notably the scarcity of public datasets,
limited effective sensing range of COTS WiFi systems, computational inefficiencies that
hinder on-device real-time inference, poor cross-domain generalization, and the absence of
intuitive, visually interpretable data representations, which restrict downstream usability.

To address the scarcity of publicly available datasets and provide a robust foundation for
experimentation, five CSI-based PCS datasets were contributed: TOA, Wallhack1.8k,
HALOC, 3DO, and WiFiCam. Each dataset was designed to address distinct evaluation
requirements, including long-range and TW sensing, cross-scenario and cross-system
variation, environmental and temporal domain shifts, and synchronized multimodal data
for image synthesis.

Leveraging this infrastructure, remaining limitations were addressed through four core
contributions, each grounded in extensive empirical evaluation and directly aligned with
the central research questions.

To address RQ I, the feasibility of long-range TW PCS using low-cost COTS WiFi
systems was established through comprehensive experiments leveraging the proposed
systems and datasets. Evaluations of systems A, B, and C1 on the TOA and Wallhack1.8k
datasets demonstrated consistently high presence detection accuracy exceeding 98% across
both LOS and TW scenarios. For the HAR task, average accuracies of 92.33% in LOS
and 88.99% in TW conditions were achieved, with system B notably outperforming C1
under challenging TW conditions. Additionally, system D achieved sub-meter localization
accuracy (0.197 m RMSE) over a 20-meter LOS corridor using CSI amplitude features,

123



8. Conclusion

validating its suitability for long-range indoor tracking. Importantly, these results were
obtained using a standard CNN backbone not explicitly tailored to CSI, suggesting
that significantly higher performance may be achievable with advanced architectures
tailored to the characteristics of WiFi CSI. This motivates the development of dedicated
architectures, such as the WiFlexFormer presented subsequently.

To answer RQ II, addressing the requirement of computational efficiency in real-world
PCS deployments, WiFlexFormer, a lightweight Transformer-based architecture tailored
to the efficient processing of WiFi CSI, was introduced. Unlike generic vision or RF-
specific architectures, WiFlexFormer was tailored to exploit the temporal and spectral
characteristics of CSI, achieving competitive HAR performance with only ≈ 50k parame-
ters. Extensive evaluations demonstrated that it enables real-time inference on embedded
platforms such as the Nvidia Jetson Orin Nano, reaching latencies of ≈ 10 ms, three
orders of magnitude smaller in model size than many existing baselines. Its compact
design not only supports real-time PCS but also opens the door for complementary,
dynamic adaptation to domain shifts at test time without sacrificing computational con-
straints. By bridging the gap between sensing capability and edge deployment feasibility,
WiFlexFormer represents a key enabling step for practical and scalable WiFi-based PCS.

In response to RQ III, the critical and persistent challenge of poor cross-domain gen-
eralization, a key obstacle preventing the reliable deployment of WiFi-based PCS in
real-world environments, was addressed. Models trained in a single domain often suffer
significant performance degradation when applied to unseen settings due to the high
sensitivity to changes in environment, hardware, or subject morphologies. To address this
issue, multiple strategies were explored, including data augmentation, feature selection,
feature scaling, and dimensionality reduction. Experiments using the Wallhack1.8k and
3DO datasets revealed that while some of these methods, particularly amplitude-based
features and temporal augmentations, improve robustness, they remain insufficient for
generalization across complex, real-world domain shifts. To overcome these limitations,
DATTA, a novel framework that integrates domain-invariant feature learning during
training with dynamic adaptation at test time, was introduced. Leveraging the proposed
lightweight WiFlexFormer backbone, DATTA demonstrated substantial gains over base-
line and state-of-the-art approaches, achieving up to 8.1% improvements in F1-score while
enabling real-time inference on edge devices such as the Nvidia Jetson Orin Nano. These
findings highlight that robust generalization requires not only static domain-invariant
modeling, but also dynamic, context-aware adaptation strategies.

Finally, to address RQ IV, a novel approach for enabling TW visual monitoring without
the use of conventional cameras by directly synthesizing RGB images from WiFi CSI, was
proposed. Representing the first demonstration of image synthesis from CSI captured in
a TW scenario, this work expands the functional scope of WiFi-based sensing toward
intuitive visual monitoring applications. The proposed method leverages a multimodal
VAE architecture jointly adapted to CSI amplitude spectrograms and RGB images,
enabling the reconstruction of semantically meaningful images solely from CSI at test time.
By exploiting WiFi’s intrinsic wall-penetrating capability, the approach offers a visual
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privacy-preserving alternative to optical systems for monitoring indoor environments
across room boundaries. Experimental results on the WiFiCam dataset confirmed
the technical viability of this approach, while also opening the door to visually-driven
downstream tasks such as activity labeling and behavioral analysis. This contribution
marks a significant advancement in the application space of WiFi-based PCS, highlighting
the potential for intuitive and camera-free visual monitoring using WiFi signals.
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