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Abstract—Supply Chain Management (SCM) plays a vital
role in business operations, necessitating careful designing and
planning. Emerging technologies, such as the Internet of Things
(IoT), facilitate real-time, event-driven monitoring of supply
chain performance. However, integrating IoT into SCM presents
significant challenges for system architects, particularly in vali-
dating requirements due to the diversity of IoT technologies and
communication frameworks. Model-Based Systems Engineering
(MBSE) offers a structured approach to system design by
providing models and views, along with tools that automate
essential processes. In this paper, we propose an MBSE-based
approach for requirements validation in event-driven supply
chain management. Additionally, we introduce tool support to
enhance usability. An architectural overview demonstrates how
system designers can customize the tool to meet their specific
requirements. Our approach is designed for system architects,
supporting iterative modeling until the requirements are vali-
dated as illustrated through a sample case study.

Index Terms—Supply-Chain Management, Internet of Things,
Event-Driven, Model-Based Systems Engineering

I. INTRODUCTION

Supply Chain Management (SCM) is essential for efficient
business operations [1]], [3]. Advancements in technology,
particularly the Internet of Things (IoT), enable real-time,
event-driven monitoring of supply chain performance, such
as detecting and reporting facility malfunctions [11f], [14].
However, the adoption of IoT in SCM remains challenging, as
system designers must navigate a diverse range of technologies
and acquire expertise in their implementation and integration.

A very important challenge is requirements validation, when
using the diverse landscape of IoT technologies, frameworks,
patterns and standards. For example, there are many different
patterns of event-driven communication, e.g., using messaging
with MQTT brokers [13[], gateways [3], or the publish sub-
scribe pattern [[17]]. Each of these design choices comes with
specific requirements, which can be sometime contradicting. It
is upon the architects to ensure that the system model fulfills
the requirements.

Established methodologies, such as Model-Based Systems
Engineering (MBSE) [6]], are instrumental in optimizing the
design process by introducing structured abstractions through
models and views. These abstractions help system designers
manage complexity, improve traceability, and maintain con-
sistency throughout the development lifecycle. Additionally,
supporting tools enhance the efficiency and accessibility of

MBSE by automating various tasks, reducing manual work-
load, and minimizing errors.

In order to illustrate, artifact generators can automatically
create documentation and provide insights into the results of
automated requirements validation. This automation not only
accelerates development but also supports iterative refinement
and validation, ensuring that system requirements are met.
MBSE, when combined with appropriate tool support, offers
a comprehensive framework for tackling the challenges asso-
ciated with modern system design and integration. Thus, we
set out to answer the following research questions:

RQ1: How can MBSE assist the requirement validation of
event-driven supply-chain management systems?

RQ2: What is the architecture of tool support that facilitates
requirements validation of event-driven supply chains?

The main contributions of this paper are as follows. We
introduce an MBSE-based approach specifically designed for
requirements validation in event-driven supply chain man-
agement systems. To achieve this, we define metadata that
describe these systems, serving as tags within Systems Mod-
eling Language (SysML) 2.(ﬂ model instances. Our framework
automatically transforms these instances into graph represen-
tations and stores them in a Neo4;j databas We then perform
graph-based validation to verify requirements and detect any
violations. Additionally, we present a prototype tool that
supports the practical application of our approach, available
as an online artifacﬂ To further illustrate the adaptability of
our framework, we provide architectural insights into our tool,
demonstrating how system designers can customize and extend
it to meet their specific requirements.

II. STATE OF THE ART

Adama et al. [2] argue that the digital transformation
is reshaping supply-chain management, improving efficiency
through technologies like Al, big data, and blockchain. This
paper examines its economic impact, highlighting shifts from
traditional models to digital ecosystems to understand stake-
holder interactions. Like our study, it enhances visibility,

Thttps://www.omg.org/spec/SysML/2.0/Betal
Zhttps://neodj.com
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tracking, and agility, while automation optimizes resources and
reduces disruptions. The authors indicate that challenges like
system integration and trends such as IoT technologies must
be considered, which is the focus of our paper.

Abdul-Azeez et al. [1] mention that optimizing SCM is
crucial for improving efficiency, reducing costs, and enhancing
customer satisfaction. They streamline SCM by integrating
procurement, manufacturing, logistics, and inventory manage-
ment into SAP S/4HANA, an enterprise-resource-planning
suite. It leverages real-time data, advanced analytics, and
automation to improve visibility, decision-making, and agility.
The key features of their suite, e.g., predictive analytics and
IoT integration, optimize demand forecasting, inventory, and
logistics. Likewise, Ikevuje et al. [10] explore how IoT and
data analytics improve supply chain efficiency, reduce costs,
and enhance performance. They address challenges like poor
visibility, inventory issues, delays, and risk management. Key
recommendations include investing in IoT infrastructure, en-
suring data security, and promoting collaboration. The findings
emphasize IoT and data analytics in creating resilient and agile
supply chains. Unlike our study, these papers do not provide
a model-based systems engineering approach to abstract the
system design and generate code automatically.

Goli et al. [9] argue that supply-chain network design is
crucial in today’s competitive landscape, with transportation
costs rising relative to manufacturing companies’ income. Both
strategic and tactical decisions are key in shaping effective
supply chains. This research presents a flexible and sustainable
IoT-based supply chain with integrated logistics, involving
suppliers, producers, distribution centers, customers, and re-
pair/disassembly centers. Flexibility is achieved by allowing
direct shipments to customers from distribution centers or
manufacturing plants, with an IoT system managing both
direct and indirect deliveries. A mixed-integer linear program-
ming model is used to represent the problem. However, a
learning curve is required to use their approach. In our study,
we provide a simplification via MBSE and prototypical tool
support to make our approach easy to use. In the following,
we list the related studies focusing on MBSE.

Vogel-Heuser et al. [[19] highlight how the properties and
environmental dependencies of industrial systems influence
automated production performance. These properties, often in
supplier documents like manuals or catalogs, are represented
using SysML profiles and disciplinary views, supported by a
metamodel for clarity. To address the static nature of profiles,
they employ business-process-modeling notation to showcase

SysML’s dynamic workflow benefits. Earlier, Vogel-Heuser et
al. [18] introduced SysML for Automation (SysML-AT), a tai-
lored SysML profile for MBSE in manufacturing automation.
It integrates functional and non-functional requirements, soft-
ware, and hardware, enabling automated software generation
for run-time environments. A prototype tool embeds adapted
SysML parametric diagrams into industrial software develop-
ment, allowing in-model debugging. Case studies and usability
tests validate its effectiveness for MBSE in manufacturing.

De Saqui-Sannes et al. [7]] explore the evolution of Systems
Engineering from document-centric to model-centric MBSE
approaches. While earlier works outline MBSE’s benefits and
limitations, this paper focuses on providing industry profes-
sionals with criteria for selecting MBSE languages, tools, and
methods, expanding beyond common techniques like SysML.
Kharatyan et al. [12] discuss the impact of digitization on
technical systems, such as autonomous driving, emphasizing
the challenges posed by increased complexity and intercon-
nectivity. They advocate for MBSE approaches to address
these challenges, stressing the need to incorporate security
considerations early in system design to ensure reliability.

Cederbladh et al. [[6] indicate that there’s been a shift
from document-based to model-based development in systems
engineering due to increased complexity and the need for
digital workflows. They propose that MBSE is essential,
providing early models for analysis and automated tasks.
However, there’s no common approach for early Verification
and Validation (V&V) of system behavior in MBSE. They
performed a systematic literature review with 149 of 701
relevant publications on early V&V in MBSE. Their findings
show early V&V aims to ensure design quality before imple-
mentation, with SysML as the standard language. The authors
conclude that V&V solutions vary, often targeting functional
properties and being context-specific, with common issues in
readiness, simplifications, and tool integration.

Kharatyan et al. [12] highlight the growing integration
of information and communication technologies in technical
systems due to digitization, which offers benefits like au-
tonomous driving but also presents development challenges. To
tackle these challenges, MBSE approaches are used to manage
the increasing complexity and interconnectivity of products.
However, ensuring the reliability of future systems necessitates
the early consideration of security aspects. Like our study,
the above-mentioned works provide a system model and an
approach to support the system design. However, we focus on
the interplay of MBSE and IoT, as well as their benefits in
SCM. This integrated view is lacking in the literature, also
providing support for requirement validation.

III. APPROACH DETAILS

Approach Overview This section introduces our MBSE
approach. The MBSE workflow [[15]] is outlined in Fig. [I] Uti-
lizing SysML 2.0’s textual representatiotﬂ we define metadata
for the IoT-based supply-chain management. These metadata
are used as tags when creating a Model Instance. These
instances are transformed into graphs and stored in a Neo4j
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Fig. 2: Metadata of Event-Driven Supply Chain Management

databaseﬂ A Model Validator verifies that system requirements
are met. Once validated, the models are sent to an Artifact
Generator to produce artifacts such as code, test cases, or doc-
umentation. The only additional task for architects or system
designers is to tag system components with our predefined
metadata definitions in SysML 2.0. Our methodology auto-
matically converts the system model to graph representations,
validates requirements using graph-based methods, creates a
graph visualization, and highlights any system components
that violate requirements.

I package Meta_SupplyChain {

def
def
def

def

SupplyChainNode;

Demand :> SupplyChainNode;
Capacity :> SupplyChainNode;
Costs :> SupplyChainNode;

metadata
metadata
5 metadata
6 metadata

de
de
de
def
def
def

Hh

Infrastructure;

Edge :> Infrastructure;

Cloud :> Infrastructure;
IoTDevice :> Infrastructure;
Gateway :> Infrastructure;
MessageBroker :> Infrastructure;

8 metadata
9 metadata
metadata
metadata
12 metadata
13 metadata

h

enum def UserRole;

metadata def User :> Infrasructure {

17 import Meta_SupplyChain::UserRole::
attribute Role : UserRole;}

*7

20 metadata def Communication;
21 metadata def Asynch :> Communication;
metadata def Synch :> Communication;

Listing 1: Excerpt of Metadata Definitions in SysML 2.0

Metadata Our metadata definitions for the supply chain
optimization using IoT systems are presented in Fig. 2] A
System under Test includes Supply Chain Nodes, Infrastructure
and Communication. A supply chain node represents a location
with supply and demand. These nodes have Capacity of
production and Demand with associated Costs. Infrastructure
represent the underlying IoT system and users. An Execution
Environment models either virtual or physical environments,
e.g., virtual machines, containers, or bare-metal servers. These
environments have Software and Hardware components. The
IoT system consists of Edge, Cloud, Message Broker [13]],

Device Gateway, loT Device nodes, and User with Role for au-
thentication. These node communicate using different patterns
of Communication. These best-practices are Data Streaming,
Synchronous, and Asynchronous, which can be Event-Driven,
Messaging [5]l, or Publish Subscribe [17]. Listing [I] provides
a snippet of our metadata.

Supply-Chain Model We model supply chain nodes with
specific characteristics, i.e., locations with capacity of pro-
duction, demands for finished products, and associated costs.
The associated costs for each location are, e.g., manufacturing
costs for different products, and freight costs for shipping and
transport. Listing 2] shows a snippet of the event-driven SCM
model. We have defined a composite part location that contains
subparts. We model multiple [oT devices, e.g., manufacturing
and transportation. These devices send monitoring data to a
gateway. The gateway sends the data via a message broker to
the edge and cloud services for analytics.

I package SupplyChainModel ({
2 import Meta_SupplyChain::x*;
def demand {@Demand;}
def supply {Q@Capacity;}
def cost {@Cost;}

part
part
part

part location {@SupplyChainNode;
part demand;
part supply;
part cost;

}

// IoT Infrastructure

part MQTT {Q@MessageBroker;}
part CloudService {@Cloud;}
part EdgeService {@Edge;}
part IoTGateway {@Gateway;}
part Device {@IoTDevice;}
part UserRole {QUser;}

16

-
; }
Listing 2: Supply-Chain Model in SysML 2.0

Graph Representation of Model Instances System de-
signers simply need to import our metadata definitions into
a SysML 2.0 textual representation and tag their system
components accordingly. Once the system components are
tagged, we convert the system model into a graph. This graph



representation reflects the components-and-connectors view of
the system [4]]. Section |V|offers an illustrative sample case.

Graph-Based Validation of Requirements We traverse
the graph representation of model instances for requirements
validation. To illustrate our approach, we provide algorithms
to validate three requirements as a proof-of-concept. The first
requirement we check is event-driven communication [[16]] for
the IoT infrastructure. For this requirement, we check all paths
of the converted system graph to make sure that all commu-
nications go through message brokers, i.e., communication is
asynchronous. Our approach indicates a violation of system
requirements, if there exists a path that the requests can be
passed between system parts synchronously without going
through a message broker. Algorithm [I] presents our validation
of this requirement.

Algorithm 1: Graph-Based Requirement Validation:
IoT Communication must be event-driven.

Input: G < Graph(IoT Model)
violation < false
foreach path in G do
if path does not include a MessageBroker then

violation < true
break
end
end
return violation

The second requirement that we validate is exclusion of
specific supply-chain nodes. In order to clarify, there exists
many scenarios, where there is fault in a supply-chain node,
or the manufacturing costs of a specific node has risen due to
shortage of supplies. Moreover, IoT devices, e.g., transporta-
tion monitoring devices, can indicate a surge in transportation
costs for a specific supply-chain node. It is very common
for these scenarios to exclude a specific supply-chain node
in a specific path. Designers analyse alternative routes to
meet demands. Algorithm [2] gives our requirements validation
regarding this scenario. In Section [[V] we provide further
details on prototypical implementation of our algorithms.

Algorithm 2: Graph-Based Requirement Validation:
Exclusion of a specific supply-chain node

Input: G < Graph(SCM Model)
Input: ExzcludedNode, StartNode, EndN ode

violation < false
foreach path in G do

if path.startNode == StartNode AND
path.endNode == EndNode then
if path includes ExcludedNode then
violation < true
break
end
end

end
return violation

The third requirement validated by our approach is au-
thentication. Namely, gateways must authenticate all requests
coming from users. Algorithm [3| presents our algorithm for
role-based authentication [[16].

Algorithm 3: Graph-Based Requirement Validation:
Requests must be authenticated.

Input: G < Graph(IoT Model)
Input: User

violation < false
foreach path in G do
if path.startNode == User then
if path does not include Gateway with authentication then

violation < true
break
end
end
end
return violation

Artifact Generation After validating the models, our ap-
proach generates a visualization of the system graph along
with information about any requirement violations. This step
allows system architects to verify that the converted graph ac-
curately represents the system model, ensuring the information
provided is correct. Our approach identifies the specific system
parts that violate requirements. If the graph is found to be
inaccurate, architects or system designers can tag their system
components again and rerun the process. Additionally, the
metadata definitions can be extended to better meet the needs
of different systems. Section [V|shows our artifact generation.

IV. TooL SUPPORT

We provide a prototype tool to demonstrate our approach,
accessible as an online artifact in our study?l To minimize the
learning curve, we use a simplified syntax based on Systems
Modeling Language (SysML) 2.(ﬂ The tool supports SysML
2.0 concepts such as Parts, Connections, and Metadata. In
this context, Parts represent any system entities, such as hosts,
hardware, software, configurations, and artifacts. Connections
define links between these entities, while tags are used to label
parts and connections, facilitating artifact generation.

The architecture of our tool is illustrated in Fig.|3| The fron-
tend is built using Reac while the backend is implemented
as a RESTful AP]E] in Python. We used the Model-View-
Controller (MVC) pattern [8]] with Server-Sent-Events (SSE)
[21] to keep frontend views updated. The publish-subscribe
model [17] is implemented with Redisﬂ for SSE. The backend
API gateway publishes data, and the frontend subscribes to
topics for rendering. This setup supports real-time frontend

4https://reactjs.org
Shttps://restfulapi.net
Shttps://redis.io
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Fig. 3: Tool Architecture Diagram

updates. Visualizations are created with PlantUMLﬂ and the
database is managed with MongoDBﬂ

The system model is converted into multiple JSON files
and loaded into a Neo4j graph database. We query the graph
database using Cypherﬂ Finally, our algorithms in Section
check the results of the queries for requirements validations.
The Artifact Generator provides a visualization of the con-
verted graph and gives information on the exact parts that
violate the requirements. We use the Docker technologyﬂ

package SampleCase {
import SupplyChainModel: :x;

1

3

4 // Supply-Chain Nodes
5 part startNode :> location;
6 part middleNode :> location;
7 part endNode :> location;

9 // IoT Infrastructure

10 part broker :> MQTT;

1 part cloud :> CloudService;

12 part edge :> EdgeService;

13 part gateway :> IoTGateway;

14 part admin :> UserRole {Role=Adminj;}}

16 connect startNode to excludedNode;
17 connect excludedNode to endNode;

19 connection {Q@Asynch;} connect Admin to gateway;
20 connection {Q@Asynch;} connect gateway to MQTT;
21 connection {Q@Asynch;} connect MQTT to edge;
2 connection {Q@Asynch;} connect edge to cloud;

Listing 3: SysML 2.0 Model of the Sample Case

V. DISCUSSION

We model an illustrative sample case and study different
scenarios of the supply-chain management. Listing [2] showed
the supply-chain model. The following scenario highlights
the importance of the IoT infrastructure and the model-based

7https://plantuml.com
Shttps://www.mongodb.com
9https://www.docker.com

systems engineering. The MBSE end-to-end approach allows
the IoT system to inform of any infrastructure changes as early
as possible. Having this information can help decision makers
to adapt to the changes rapidly and optimize the supply chain
to meet performance requirements.

Our approach is tailored for system designers during an
early stages of design, i.e., system architecting. We support
iterative modeling until the requirements are validated. This
approach is illustrated in the following sections.

Ilustrative sample case We model an event-driven SCM
system with a central broker in SysML 2.0, where IoT devices,
edge and cloud services are modeled. The data of the devices
are passed to the edge and cloud services. Listing [3] shows the
tagged model instance, and Fig. [ presents the converted graph
of the sample case. We have a simple model of three supply-
chain nodes. For better readability, we named them according
to their position in the supply-chain model, i.e., startNode,

name=cloud
tag=Cloud

name=edge
tag=Edge

name=broker
tag=MessageBroker

name=gateway
tag=Gateway

name=admin
tag=User

authentication=

Fig. 4: Converted Graph of the Sample Case


https://plantuml.com
https://www.mongodb.com
https://www.docker.com

Failed the requirements of the event-driven communiaction:
edge -> cloud ,

Failed the requirements of the exclusion node:
startNode -> middleNode -> endNode

Failed the requirements of the authentication:

cloud -> edge
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Fig. 5: Results regarding Failed Requirements

middleNode, and endNode. Next, we study a scenario to
exclude the middleNode in the supply chain.

Results Fig. |5|shows the results of our framework regarding
the sample case. Our approach informs about the paths that
violate the event-driven communication. We can see that even
though the connection between edge and cloud services is
tagged as asynchronous, but it does not go through a message
broker. We can see that our approach informs about a violation
on this supply-chain path marked yellow in the system graph.
Regarding the authentication requirement, we did not set the
authentication in the gateway to true.

Following the information of our approach, we update the
system model so that the edge service communicates with
the cloud service via the MQTT. Moreover, we model au-
thentication in the gateway. Fig. [6] shows our updated design,
and Fig. [7] shows the results of our framework regarding the
updated graph. We see that we passed the requirements of
event-driven communication and the authentication.

name=cloud
tag=Cloud

name=startNode
tag=SupplyChainNode

name=edge

name=middleNode

=brok
HeE S Ret tag=SupplyChainNode

tag=MessageBroker

name=gateway ¥
tag=Gateway

name=endNode

name=admin L
tag=SupplyChainNode

tag=User

authentication= g8

Fig. 6: Updated Graph of the Sample Case

Passed the requirements of the event-driven communiaction.
Failed the requirements of the exclusion node:

startNode -> middleNode -> endNode
Passed the requirements of the authentication.

Fig. 7: Results regarding the Updated Graph

Finally, we connect the startNode and the endNode of the
supply chain directly as shown by Fig. B The results of

our framework is shown in Fig. 0] passing all requirements.
The recommendations of our approach helps the architects to
update the system design early in the process.

name=cloud
tag=Cloud

name=startNode
tag=SupplyChainNode

name=edge
tag=Edge

name=middleNode
tag=SupplyChainNode

name=broker
tag=MessageBroker

name=gateway ¥
tag=Gateway

name=endNode
tag=SupplyChainNode

name=admin
tag=User

authentication= 48

Fig. 8: Updated Supply Chain

Passed the requirements of the event-driven communiaction.
Passed the requirements of the exclusion node.

Passed the requirements of the authentication.

Fig. 9: Results regarding the Passed Requirements

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to automatically
validate requirements of the event-driven supply-chain man-
agement. Moreover, we generate artifacts that inform about
the violation report. Our study was motivated based on a
stakeholder-analysis of industrial automation firms that high-
lighted the necessity for a cost-effective, all-encompassing
approach in this domain. Supply chain management is crucial
in business [I]], [3]l. The new technologies, such as IoT help
the efficiency of SCM.

We set out to answer how can MBSE assist the requirement
validation of event-driven supply-chain management systems
(RQ1), and what the architecture of tool support that facili-
tates requirements validation of event-driven supply chains is
(RQ2). For RQ1, we proposed a metamodel representing the
event-driven SCM. Based on this metamodel, we proposed a
model-based systems engineering approach using the textual
representation of SysML 2.0. For RQ2, we implemented
a prototypical tool that is available in our online artifacﬂ
This tool implements our concepts and converts the system
models into graphs. We perform a graph-based validation
of requirements and inform the system architects in case
of violation. We provided support for three requirements as
a proof-of-concept. This paper defines the backbone of our
approach and we aim to provide a comprehensive framework
in the future work.
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