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 A B S T R A C T

Payment channel networks (PCNs) are among the most promising solutions to the scalability issues in 
permissionless blockchains, allowing parties to pay each other off-chain through a path of payment channels 
(PCs). However, the cost of routing transactions is proportional to the number of intermediaries since each 
charges a fee. Analogous to other networks, malicious intermediaries on the path can lead to security/privacy 
threats. Virtual channels (VCs), i.e., bridges over PC paths, mitigate the above PCN issues: Intermediaries 
participate only in the VC setup but in no future VC payments. However, creating a VC has a cost that must 
be paid out of the bridged PCs’ balance. Currently, we are missing guidelines on how/where to set up VCs. 
Ideally, VCs should minimize transaction costs while mitigating security and privacy threats from on-path 
adversaries.

In this work, we address for the first time the VC setup problem, formalizing it as an optimization problem. 
We present an integer linear program (ILP) computing the globally optimal VC setup strategy in terms of 
cost, security, and privacy. We accompany this expensive ILP with a fast, greedy algorithm. Our model and 
algorithms can be used with any on-path adversary whose strategy can be expressed as a set of corrupted nodes. 
We evaluate the greedy algorithm over a snapshot of the Lightning Network (LN), the largest Bitcoin-based 
PCN. Our results confirm that the greedy strategy minimizes costs while protecting against security and privacy 
threats and may serve the LN community as guidelines for VC deployment.
1. Introduction

Permissionless cryptocurrencies face severe scalability challenges, 
as they rely on a set of mutually untrusted users located across the 
world to maintain a distributed and publicly verifiable transaction 
ledger. The transaction throughput today is limited to tens of trans-
actions per second at best, while transactions can take up to 60 min to 
be confirmed.

Payment channels (PC) have emerged as one of the most promising 
scalability solutions, and instances such as the Lightning Network [2] 
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are gaining traction. In this approach, Alice and Bob can create a PC 
between them with a single on-chain transaction that transfers their 
coins into an escrow (or multi-signature) controlled by both of them 
with the additional guarantee that they can get refunded at a mutually 
agreed-upon time. After that, Alice and Bob can pay each other off-
chain by exchanging authenticated copies of the updated balances in 
the escrow. Finally, the PC is closed with an on-chain transaction 
representing the last authenticated distribution of coins.
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PCs can be linked to form a network, also called a payment channel 
network (PCN), where any two users can perform a payment if they are 
connected by a path of PCs. The payment in the PC between Alice and 
the first intermediary is forwarded along the intermediary PCs until it 
reaches Bob. A key challenge in this approach is then to ensure that 
the balance updates of all PCs in the path are atomic to prevent any 
intermediary (i.e., Ingrid) from trivially stealing the money by denying 
forwarding it.

State-of-the-art techniques to construct atomic multi-hop payments
[3–9] require that intermediaries are involved in every single pay-
ment. This approach brings several disadvantages: (i) reduction of the 
payment reliability (e.g., Ingrid may simply be offline or crash); (ii) 
increase in the payment latency since additional PCs are required; (iii) 
high payment costs as each intermediary charges a fee per transaction 
for providing the routing service; and (iv) possible leakage of sensitive 
information to the intermediaries, which opens the door to a number 
of security and privacy issues, such as route hijacking [10], wormhole 
attacks [3] or user anonymity [5], just to name a few.

Recently, the concept of virtual channels (VCs) [11–14] has been 
proposed to improve upon the aforementioned drawbacks of PCs. A 
VC can be seen as a bridge over two PCs. For instance, assume that 
Alice and Bob have a PC with an intermediary, Ingrid. In order to set 
up a VC, Ingrid must collaborate and coordinate with Alice and Bob 
to lock coins in their corresponding PCs in order to use those coins to 
build a VC directly between Alice and Bob. This approach brings the 
following benefits: (i) Alice and Bob can pay each other ‘‘as if they had 
a PC between them’’, that is, without the involvement of Ingrid; (ii) 
payment latency is reduced to one hop; (iii) payment fees charged by 
the intermediaries for their routing service are avoided; and (iv) the 
details of every single payment are not revealed to possibly malicious 
or curious intermediaries. Note that intermediaries still charge fees for 
the coordination service when establishing the virtual channel.

A crucial question, not yet addressed in the literature, is what strat-
egy should users follow to open VCs while optimizing the cost-effectiveness, 
as well as on-path security and privacy benefits provided by VC networks?
This is an optimization problem, given that the funding to be locked, 
and thus the number of VCs a party can establish, is limited by the 
number of underlying PCs and the amount of coins that are locked on 
them. To ensure on-path security and privacy we provide a modular 
framework for preventing attacks. Our algorithms aim to optimally by-
pass adversarial nodes by constructing virtual channels over them. We 
demonstrate how our framework functions through three exemplary 
well-studied attacks in the literature. Note that, while several existing 
works have studied from a game theoretic perspective how a PCN 
should evolve based on the fee optimization goal of the users [15–17], 
none of them considered virtual channels, nor on-path security and 
privacy goals.

We make the following contributions. First, we address the VC 
setup problem, formalizing it as an optimization problem of three 
distinct goals: (i) cost-effectiveness of the transactions (i.e., fees) while 
providing (ii) security and (iii) privacy guarantees against on-path ad-
versaries, and prove that the optimization problem is NP-hard. On-path 
adversaries account for a significant share of attacks in the PCN-
related literature: e.g., they may aim to perform denial-of-service and 
wormhole attacks, or to harm value privacy and relationship anonymity 
properties, among many others [3,5,10,18–21]. Such attacks have been 
shown to potentially have a severe impact in practice [22]. On-path 
adversaries can do damage depending on the attack that they are 
carrying out. In this work, we provide a general framework for mitigat-
ing attacks of on-path adversaries and study three exemplary attacks. 
Specifically, our algorithms take as input the set of nodes that honest 
nodes aim to neutralize as high-value targets for an adaptive adversary. 
The adversary selects nodes based on a cost–benefit trade-off, maximiz-
ing their impact within a given budget. The honest nodes counter this 
by preemptively bypassing the most profitable nodes for the adversary. 
2 
The derivation of this set by the honest nodes is orthogonal to our solu-
tions. To demonstrate our approach, we focus on adversarial strategies 
that affect the largest fraction of payments [22–25] and analyze their 
impact on value privacy, relationship anonymity, and the wormhole 
attack. Note that our approach is general and allows for any adversarial 
strategy. While we assume an adaptive adversary selecting nodes based 
on a cost–benefit trade-off, our framework can also accommodate static 
corruption strategies, where the adversary pre-selects nodes according 
to any other metric.

Second, we analytically show a synergy between the different VC 
optimization objectives. In particular, we prove that minimizing trans-
action fees by the appropriate use of VCs also prevents attacks from 
on-path adversaries, such as those against value privacy and relation-
ship anonymity, or wormhole attacks. In practice, this implies that 
users can set up their VCs following a single strategy to minimize their 
transaction costs, and as a side benefit, they will be secure against on-
path adversaries. We demonstrate the latter for the three exemplary 
on-path attacks on security and privacy in study.

Third, and motivated by the uncovered synergy between the ob-
jectives, we describe concrete approaches to devise fee optimization 
strategies which mitigate on-path security and privacy attacks (and 
specifically value privacy, relationship anonymity, and wormhole at-
tacks). In particular, we present both an efficient approach (based on a 
greedy routing algorithm) to optimize the cost-effectiveness, security, 
and privacy of PCNs using VCs, and a rigorous and exact approach 
based on integer linear programming (ILP), which is computationally 
intractable (we also propose how to reduce the running time of the ILP). 
The network topology of PCNs such as the Lightning Network is known 
publicly. In our exact ILP-based approach, we additionally assume that 
all transactions we want to route are known globally, in order to find 
the globally optimal solution. Our greedy algorithm, on the other hand, 
can be applied locally, using only the information of individual nodes.

Finally, we evaluate our greedy optimization approach on a recent 
snapshot of the Lightning Network (LN). We show that our transac-
tion cost minimization strategy is efficient and effective, and indeed 
subsumes the strategies to optimize for on-path security and privacy. 
We find that depending on how many payments two endpoints plan 
to conduct via the virtual channel, the routing cost can be reduced 
significantly, for example, to about half compared to a normal payment 
for two consecutive payments, or to about 3% for 50 consecutive 
payments. In addition to this cost reduction, other users can utilize 
these virtual channels to route their payments through a potentially 
cheaper path.

To summarize, for the first time, we present both an analytical and 
an empirical study of the impact of using VCs in (current) PCNs in 
terms of cost-effectiveness of the transactions as well as security and 
privacy guarantees. The results of this work motivate the deployment 
of VCs and we hope that they can encourage the PCN community and 
developers to include VCs within current PCNs software and make them 
accessible to the PCN users.
Paper organization. This is the extended version of the IFIP NETWORK-
ING 2024 conference paper Aumayr et al. [1]. We introduce back-
ground knowledge on PCNs in Section 2 and present our model and 
problem formulation in Section 3. We present our algorithms in Sec-
tion 4 (exact) and 5 (greedy), and evaluate the greedy algorithm in 
Section 6.

2. Background and problem overview

Payment channel networks (PCNs). A PCN [5] is a directed graph  ∶=
( , ). Nodes  represent users and edges {𝑒𝑖,𝑗 , 𝑒𝑗,𝑖} ⊂  represent PCs 
between users. The weight on a directed edge denotes the amount of 
remaining coins that can be forwarded on that direction. For every 
pair of edges {𝑒𝑖,𝑗 , 𝑒𝑗,𝑖}, users 𝑣𝑖 and 𝑣𝑗 can exchange any part of their 
balance freely. Moreover, each directed edge 𝑒  between users 𝑣  and 
𝑖,𝑗 𝑖
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Fig. 1. Comparison between PCN and VCN.
𝑣𝑗 is associated with two non-negative numbers, the base fee 𝑓𝑖, and 
the proportional fee 𝑝𝑖, that together determine the fees that each user 
charges for forwarding the payments. For a forwarded amount 𝛼 via 
𝑒𝑖,𝑗 , 𝑣𝑖 charges 𝑓𝑒𝑒(𝑒𝑖,𝑗 , 𝑣𝑖) = 𝑓𝑖 + 𝑝𝑖 ⋅ 𝛼. We denote a PC {𝑒𝑖,𝑗 , 𝑒𝑗,𝑖} with 
the tuple (𝑝𝑐

⟨𝑣𝑖 ,𝑣𝑗 ⟩, 𝛽𝑖, 𝛽𝑗 , 𝑓𝑖, 𝑓𝑗 , 𝑝𝑖, 𝑝𝑗), where 𝛽𝑘∈{𝑖,𝑗} is the initial balance 
of each node upon channel creation.

The success of a payment between two users depends on the ca-
pacity available in the path connecting the sender 𝑠 to the receiver 𝑟. 
Assume that 𝑠 wants to pay 𝛼 coins to 𝑟 and that they are connected 
through a path 𝑠 → 𝑢1 → … → 𝑢𝑛 → 𝑟. The fees charged for every 
node in the path depend on the forwarded amount. That is, 𝑣𝑛 charges 
𝑓𝑒𝑒𝑛 = 𝑓𝑛,𝑛+1+𝑝𝑛,𝑛+1⋅𝛼 and in general 𝑣𝑗 charges 𝑓𝑒𝑒𝑗 = 𝑓𝑗,𝑗+1+𝑝𝑗,𝑗+1⋅(𝛼+
∑𝑛

𝑘=𝑗+1 𝑓𝑒𝑒𝑘), for 𝑗 = 1,… , 𝑛 (each node forwards 𝛼 and the forwarding 
fees of the remaining nodes in the path). Such a payment is successful if 
(i) 𝑠 starts the payment with a value 𝛼∗ ∶= 𝛼 +

∑𝑛
𝑗=1 𝑓𝑒𝑒𝑗 and (ii) every 

edge on the path has a balance of at least 𝛼′𝑖 , where 𝛼′𝑖 ∶= 𝛼∗−
∑𝑖−1

𝑗=1 𝑓𝑒𝑒𝑗
(the initial payment value 𝛼 minus the fees charged by the previous 
users in the path), 𝑒𝑗,𝑗+1 = (𝑢𝑗 , 𝑢𝑗+1), and 𝑢𝑛+1 = 𝑟. If the payment is 
successful, the balance of every edge 𝑒𝑗,𝑗+1 on the path from 𝑠 to 𝑟 is 
decreased by 𝛼′𝑖 , while the balance of every edge 𝑒𝑗+1,𝑗 is increased by 
𝛼′𝑖 .

PCN challenges. For successful payments, intermediaries must actively 
participate and must not disturb them, either actively (e.g., dropping 
it) or passively (e.g., being offline). Thus, PCN payments suffer from 
the following drawbacks:

Reliability: If intermediaries are offline or do not forward the pay-
ment (e.g., the red user in Fig.  1), the payment fails.

Latency: The time to process a payment is directly proportional to 
the number of intermediate users. E.g., the latency of the payment 
shown in Fig.  1 (latency section) could be reduced if a shorter path 
between nodes 1 and 5 existed.

Cost: The payment cost is proportional to the number of intermedi-
ate users, since each charges a routing fee.

Privacy: Each intermediary learns sensitive information. Recent 
work [5,26] has shown that intermediaries can learn details about who 
pays what to whom in the currently deployed Lightning Network. While 
alternative payment mechanisms that hide (some of) the information 
required in such payment exist, e.g., [3,4], they have not been adopted 
yet and still protect only some sensitive information but not other 
(e.g., the payment amount) and also do not decrease routing fees.
3 
Virtual channels (VCs). Bypassing intermediaries can mitigate these 
drawbacks. One could build a new PC, but this requires an expensive 
on-chain transaction and additional funds. Instead, a VC can be created 
off-chain between two users, say Alice and Bob, who have a PC with a 
common intermediary, say Ingrid. Using a 3-party protocol, the users 
can block coins in the underlying PCs and move them into the VC be-
tween Alice and Bob. After that, Alice and Bob can perform arbitrarily 
many payments without involving Ingrid. The amount of VCs that can 
be created are thus limited by the balances of the underlying PCs. Yet, 
it is interesting to deploy VCs as they provide several advantages over 
PCNs.

Reliability: Payments are carried out without involving the interme-
diary user, who cannot thus disturb it either actively (e.g., dropping it) 
or passively (e.g., being offline). In Fig.  1, the malicious node 3 does 
not participate in the payment between 1 and 5 as it is omitted by the 
VC between 2 and 4.

Latency: VCs lead to shorter paths. Since there are fewer intermedi-
ate users, the latency of the overall payment is reduced. In the running 
example, the latency is reduced from 3 to 1 intermediaries, assuming 
that two VCs have been created.

Cost: Assume, for simplicity, that users charge the same fees for 
forwarding a payment through a PC and a VC. In such a case, as with 
latency, the fact that VCs lead to shorter paths, can also help to reduce 
the overall payment cost in terms of fees. In Fig.  1, the transaction cost 
using VCs is reduced to the fee charged by the only intermediary that 
is involved, avoiding thus the fees charged by nodes 2 and 4.

Privacy: The fact that fewer intermediaries are participating in the 
payment improves the privacy of the overall payment. And although 
intermediaries are part of the 3-party creation of the VC and thus learn 
who are the two VC endpoints, they no longer see the amounts of the 
individual payments routed through the VC. For instance, in Fig.  1, the 
malicious node 2 would learn that there exists a VC between nodes 1
and 3 as it needs to help them to set the channel up, but afterwards the 
node 2 does not learn when a VC is used.
VCs in practice. Despite the advantages provided by VCs, we currently 
lack a comprehensive analysis leading to a set of guidelines to help the 
users decide when to open VCs, with what neighbors, and under what 
circumstances. Ideally, a user would like to open a VC with every other 
user in the network. Unfortunately, this is not possible since each user 
has a limited budget, i.e., the amount of coins available on her PCs 
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Fig. 2. Operations in a VPCN. 𝑣1 and 𝑣2 share the VC establishing fee 𝑓𝑒.
which need to be locked to create a VC. In this state of affairs, the 
following questions arise: how should a user choose which neighbor to 
open a VC with? how many payments are required to amortize the cost 
of opening a VC? what strategy should a user follow to maximize the 
security and privacy gains against on-path adversaries when opening 
VCs?

3. Modeling virtual payment channel networks

We introduce a more formal model of virtual payment channel 
networks (VPCNs). We will then discuss the security and privacy threats 
by on-path adversaries, define the studied optimization goal on VPCNs, 
and show its NP-hardness.

Definition 1 (VPCN).  A virtual payment channel network, VPCN, is 
defined as a graph  ∶= ( , ) where  denotes the set of users in the 
network and  ∶= 𝑝 ∪ 𝑣 denotes the set of channels. In particular, 
𝑝 denotes the set of payment channels, and 𝑣 denotes the set of 
VCs. Each payment channel is defined by a tuple (𝑝𝑐

⟨𝑣1 ,𝑣2⟩, 𝛽1, 𝛽2, 𝑓1, 
𝑓 , 𝑝 , 𝑝 ), where 𝑝𝑐  denotes a payment channel identifier, 𝛽
2 1 2 ⟨𝑣1 ,𝑣2⟩ 𝑖∈{1,2}

4 
denotes the current balance of the node 𝑣𝑖∈{1,2}, 𝑓𝑖∈{1,2} is the base fee 
and 𝑝𝑖∈{1,2} the fee rate (proportional to the amount paid) charged to 
use this channel in each direction, respectively. Analogously, a VC is 
defined by a tuple (𝑣𝑐

⟨𝑣1 ,𝑣2⟩, 𝛽1, 𝛽2, 𝑓1, 𝑓2, 𝑝1, 𝑝2, 𝑓𝑒), where 𝑓𝑒 denotes 
the VC establishment fee.

A VPCN is defined with respect to a blockchain B that stores publicly 
accessible entries of the form (𝑣, 𝛽𝑜𝑛−𝑐ℎ𝑎𝑖𝑛) where 𝑣 denotes an address 
of the underlying blockchain and 𝛽𝑜𝑛−𝑐ℎ𝑎𝑖𝑛 denotes its on-chain balance. 
For readability, we hereby use B[𝑣] to denote the on-chain balance of 
𝑣 in B. A VPCN exposes the operations expressed in Fig.  2.

Security and privacy for on-path adversaries. On-path adversaries may 
cause a diverse set of attacks in PCNs [3,5,10,18–21] and with sig-
nificant impact [22]. We employ VCs to defend against on-path ad-
versaries, by bypassing corrupted nodes (cf. Fig.  1). We chose to 
investigate three representative attacks: value privacy, relationship 
anonymity, and wormhole attacks [3,5]. We chose these attacks be-
cause they are well studied in the literature and note that our ap-
proach directly generalizes to other on-path adversarial attacks, such 
as denial-of-service attacks [10], which we later show in Section 5.4.
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Optimal adversarial strategy. We assume that the adversary has a budget 
 for corrupting nodes and selects which nodes to attack using a 
deterministic function based on , public information about the PCN, 
and the countermeasures deployed by honest nodes. Honest nodes do 
not know  or the exact set of corrupted nodes  but assume a worst-
case scenario, where an adaptive adversary corrupts the most profitable 
nodes after countermeasures, i.e., opening VCs, have been deployed. To 
minimize the adversary’s impact, the best strategy for honest nodes is to 
preemptively bypass the high-value targets ̃ , which is the set of nodes 
that would be most profitable for the adversary to corrupt in the absence 
of countermeasures. The honest nodes estimate  (e.g., as a fraction of 
the total PCN capacity) to inform their selection of ̃ . 

We compute ̃ by identifying the nodes that an adversary would 
optimally corrupt, choosing those that maximize the fraction of affected 
payments within a fixed budget, based on prior work [22–25]. For 
more details, see Countermeasures in Section 6. Honest nodes apply 
countermeasures by opening VCs to bypass the nodes in ̃ , denying 
the adversary access to their most profitable targets. This improves 
security and privacy against on-path attacks while reducing the adver-
sary’s overall effectiveness. Notably, establishing a direct VC between 
two end-users eliminates on-path attacks regardless of the adversarial 
strategy. 

Our approach is modular: different adversarial strategies can be 
incorporated into the computation of ̃ without modifying the frame-
work. Our algorithms take ̃ as input, ensuring flexibility in adapting 
to various adversarial models. 
On-path attacks. For a path 𝑠−𝑢1−⋯−𝑢𝑛−𝑟 the attacks on value privacy, 
on relationship anonymity, and the wormhole attack are defined as 
follows.

• Value privacy [5]: PCN payments ensure that the transaction 
amount remains private to off-path corrupted users if there are 
only honest users along the path. This means, that if there are 
on-path corrupted users, value privacy does not hold anymore, as 
they can simply see the value and leak it to users not on the path.
Preventing this attack: For all segments 𝑢𝑖 − 𝑥1 − 𝑥2 −⋯ − 𝑥𝓁 − 𝑢𝑗
of the path from 𝑠 to 𝑟, where 𝑢𝑖, 𝑢𝑗 are not corrupted and 𝑥𝑝, 
𝑝 = 1,… ,𝓁 are corrupted, build a virtual channel from 𝑢𝑖 to 𝑢𝑗 .

• Relationship anonymity [5]: If an adversary controls two corrupted 
users 𝑢1 and 𝑢𝑛, they can distinguish who is paying to whom.
Preventing this attack: If 𝑢𝑖−𝑥1−𝑥2−⋯−𝑥𝓁−𝑢𝑗 is a segment of the 
path from 𝑠 to 𝑟, where 𝑢𝑖, 𝑢𝑗 are not corrupted, 𝑥𝑝, 𝑝 = 1,… ,𝓁
are corrupted and 𝑢𝑖 ∈ {𝑠, 𝑟} ∨ 𝑢𝑗 ∈ {𝑠, 𝑟}. If both 𝑠 and 𝑟 are part 
of such a segment, take one segment (there can be at most two) 
and build a virtual channel from 𝑢𝑖 to 𝑢𝑗 .

• Wormhole attack [3]: In PCN payments, an adversary can prevent 
honest users from finalizing payments and effectively steal their 
fees. For this, the adversary needs to control corrupted nodes on 
both sides of one or more honest nodes along the path. Preventing 
this attack: Identify all segments 𝑢𝑖−𝑥1−⋯−𝑥𝓁−𝑦1−⋯−𝑦𝑚−𝑧1−⋯−
𝑧𝑛 − 𝑢𝑗 of the path from 𝑠 to 𝑟 where 𝑢𝑖, 𝑢𝑗 and 𝑦𝑝, 𝑝 = 1,… , 𝑚 are 
not corrupted and where 𝑥𝑞 , 𝑞 = 1,… ,𝓁 and 𝑧𝑟, 𝑟 = 1,… , 𝑛 are 
corrupted. For each segment, build one of the following virtual 
channels: (i) between 𝑢𝑖 − 𝑦1 (ii) between 𝑦𝑚 − 𝑢𝑗 (iii) between 
𝑥𝓁 − 𝑧1.

Costs of VCs. Once opened, VCs can effectively reduce the fees of 
payments within a VPCN, as we explained in  . However, to create 
a VC, the endpoints need to pay an establishment fee 𝑓𝑒. Since VCs 
are currently not used, there is no fee model in practice which we can 
use. We therefore assume that 𝑓𝑒 of a VC over some path with capacity 
𝛼 to be the same as users would charge for forwarding a payment of 
amount 𝛼 over that path. I.e., node 𝑣𝑗 charges 𝑓𝑒𝑒𝑗 = 𝑓𝑗,𝑗+1 + 𝑝𝑗,𝑗+1 ⋅
(𝛼+

∑𝑛
𝑘=𝑗+1 𝑓𝑒𝑒𝑘), for 𝑗 = 1,… , 𝑛. We discuss other potential fee models 

in  Section 7 and note that 𝑓  is modular in our model.
𝑒

5 
Optimization goal. Our objective is to set up virtual channels such that 
the cost for routing a set of transactions is minimized, and no transac-
tion is traversing a path prone to an attack. Definition  2 consolidates 
our optimization goal and its hardness is proven in Theorem  1.

Definition 2 (VPCN Cost Optimization).  Given a VPCN , a set of 
transactions  , an estimated strategy of an on-path adversary to corrupt 
nodes and the estimated budget of the adversary  for doing so, mini-
mize the cost for routing the transactions in  , such that no transaction 
is traversing a path that is prone to a given attack. If the estimation of 
the adversary’s budget is  = 0 our goal is to minimize the routing fees.

Theorem 1.  The VPCN cost optimization problem is NP-hard.

Proof.  We reduce an instance of the (NP-complete) minimum-length 
disjoint paths (MLDP) problem [27] to an instance of our VPCN prob-
lem. Consider an instance of the MLDP problem, i.e., an arbitrary 
directed graph 𝐺 = (𝑉 ,𝐸) such that 𝑤𝑒𝑖𝑔ℎ𝑡𝐺(𝑢, 𝑣) = 1, for all (𝑢, 𝑣) ∈ 𝐸, 
and two source destination pairs (𝑠1, 𝑑1) and (𝑠2, 𝑑2) (two pairs are 
enough to render the problem NP-complete [27]).

We now build an instance of the VPCN problem. We define 𝐺′ =
(𝑉 ,𝐸 ∪ 𝐸′), where 𝐸′ = {(𝑥, 𝑦) ∣ (𝑦, 𝑥) ∈ 𝐸 ∧ (𝑥, 𝑦) ∉ 𝐸}, such that 
𝑤𝑒𝑖𝑔ℎ𝑡𝐺′ (𝑥, 𝑦) = 1 + 𝜀, 𝜀 = 1∕|𝐸|, if (𝑥, 𝑦) ∈ 𝐸 and 𝑤𝑒𝑖𝑔ℎ𝑡𝐺′ (𝑥, 𝑦) = 0 if 
(𝑥, 𝑦) ∈ 𝐸′. Thus, for every pair of nodes 𝑥, 𝑦 in 𝐺′ either {(𝑥, 𝑦), (𝑦, 𝑥)} ∈
𝐺′ or 𝑥 and 𝑦 are not adjacent. The payment channels are hence 
defined as all the pairs of nodes 𝑥, 𝑦 in 𝐺′ such that {(𝑥, 𝑦), (𝑦, 𝑥)} ∈ 𝐺′, 
with capacity 𝑤𝑒𝑖𝑔ℎ𝑡𝐺′ (𝑥, 𝑦) + 𝑤𝑒𝑖𝑔ℎ𝑡𝐺′ (𝑦, 𝑥), base fee equal to 𝜀 and 
proportional fee equal to 0. We consider the set of transactions, in 
the form of (source, destination, amount), to be {(𝑠1, 𝑑1, 1), (𝑠2, 𝑑2, 1)}. 
We also, assume that creating virtual channels is not possible, as the 
problem only becomes harder by including them. We set 𝑐𝑡𝑟, the target 
percentage of successful transactions, to 1 (all should be executed).

A solution to the VPCN problem gives the minimum cost payment 
path for the two transactions. This set of payment paths in 𝐺′ is using 
only edges that appear in 𝐺, as we set the capacity of the extra edges 
to zero and since the edge weights can accommodate for only one 
payment path, it does so with minimum length in 𝐺 and also the 
paths are edge disjoint (the capacity suffices for only one transaction). 
Therefore a solution of the VPCN problem (payment paths) is exactly 
a solution of the minimum-length disjoint paths problem. □

4. Exact algorithm

We present an exact solution to the VPCN cost optimization problem 
(Definition  2) by modeling it as an Integer Linear Program (ILP). Our 
first challenge is to define the objective function to be optimized. We 
have three objectives: (a) minimize routing fees, (b) minimize virtual 
channel creation costs, and (c) maximize successful transactions (either 
in number or in volume). We will define the objective function using 
items (a) and (b), and form the ILP as a minimization problem. Item 
(c) will be converted to a constraint (this is common in multi-objective 
optimization), requiring that the success ratio is above a threshold 
given in the input. Thus, different threshold values might yield different 
solutions.

The second challenge is to define the invariants that a solution 
should respect and, based on them, specify the ILP’s variables and 
constraints. We identify the following invariants: (i) at most one path 
is used for routing a transaction, (ii) the transaction success ratio 
should be above the given percentage, (iii) capacities of payment and 
virtual channels are respected, (iv) a VC between 𝑖, 𝑗 over 𝑘 should be 
bidirectional, (v) a VC is constructed if and only if it is used for routing 
a transaction or for constructing a higher-order VC, (vi) payment paths 
prone to attacks of on-path adversaries are not selected in the ILP 
solution. From a geometric point of view, the constraints define a set 
(polytope) of feasible solutions and an ILP solver outputs a feasible 
solution (if any) within this set that produces the minimum value for 
the objective function, i.e. the function that expresses objectives (a) and 
(b) as a linear combination of the variables. We will now define the ILP 
formally.
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Input. The input needed to define the ILP is a PCN (as defined in 
Section 2) including all the payment channels and their attributes, a set 
of 𝑇  transactions  = {𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡 = (𝑠𝑡, 𝑑𝑡, 𝑡𝑟𝑎𝑛𝑠𝑡)}𝑡∈[1,𝑇 ], i.e., (source, 
destination, amount), a constant 𝑐𝑡𝑟 ∈ [0, 1] indicating the required 
minimum success or volume ratio, i.e., if 𝑐𝑡𝑟 = 1 all transactions must 
be executed, and the set ̃ of estimated (by the honest nodes) set of 
corrupted nodes.

Let 𝑐ℎ𝑖𝑗 .𝑏𝑎𝑠𝑒_𝑓𝑒𝑒 (𝑓𝑖 in Definition  1) and 𝑐ℎ𝑖𝑗 .𝑝𝑟𝑜𝑝_𝑓𝑒𝑒 (𝑝𝑖 in Defini-
tion  1) denote the base and proportional forwarding fee of a payment 
(𝑐ℎ𝑖𝑗 = 𝑝𝑐𝑖𝑗) or a virtual channel (𝑐ℎ𝑖𝑗 = 𝑣𝑐𝑘𝑖𝑗 , where 𝑘 is the intermedi-
ary node), and 𝑝𝑐𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 denotes the payment channel (PC) capacity 
(𝛽𝑖 in Definition  1). We set the virtual channel (VC) fees to be equal to 
those of the underlying initial payment channel, i.e., the fees of 𝑣𝑐𝑘𝑖𝑗
match those of 𝑝𝑐𝑖𝑘 if 𝑣𝑐𝑘𝑖𝑗 is built over 𝑝𝑐𝑖𝑘.

Since a virtual channel 𝑣𝑐𝑘𝑖𝑗 can be constructed over any combination 
of two adjacent payment or virtual channels 𝑐ℎ𝑖𝑘 and 𝑐ℎ𝑘𝑗 , we assume 
a recursive structure of VCs and bound the levels of recursion by the 
input parameter 𝑤. Level-0 virtual channels are constructed over two 
adjacent payment channels. Level-𝑚 virtual channels, 0 < 𝑚 ≤ 𝑤, are 
constructed over a level-(𝑚−1) virtual channel and an adjacent payment 
or virtual channel of level at most 𝑚− 1. The VPCN that we provide as 
part of the ILP input will be a fusion of all PCs and all possible VCs, such 
that the ILP solver can decide which VCs to utilize. To distinguish which 
VCs were used for payment paths or enforced for bypassing corrupted 
nodes, we formally define the input VPCN as a directed graph over the 
set of all nodes 𝑉  and two sets of edges (channels): 𝐸𝑃𝐶 (PCs) and 𝐸𝑉 𝐶
(all possible VCs).

We define each edge (channel) in 𝐸𝑉 𝐶 by the triple (𝑖, 𝑗, 𝑖𝑑), where 
𝑖, 𝑗 are the endpoints and 𝑖𝑑 is a unique edge identifier. The edge id 
will allow us to distinguish two level-𝑚 (𝑚> 0) VCs 𝑣𝑐𝑘𝑖𝑗 between 𝑖 and 
𝑗 over 𝑘 built over different VCs, e.g. 𝑣𝑐𝑢𝑘𝑗 and 𝑣𝑐𝑣𝑘𝑗 . We define 𝐸𝑃𝐶 =
{(𝑖, 𝑗, ⟨𝑖, 𝑗⟩) ∣ 𝑝𝑐𝑖𝑗 exists}. We then define 𝐸𝑉 𝐶 as the union of all possible 
VCs for each level 0 to 𝑤. We define 𝐸0

𝑉 𝐶 = {(𝑖, 𝑗, 𝑐ℎ𝑖𝑘.𝑖𝑑◦𝑐ℎ𝑘𝑗 .𝑖𝑑) ∣
𝑐ℎ𝑖𝑘 = (𝑖, 𝑘, 𝑖𝑑) ∧ 𝑐ℎ𝑘𝑗 = (𝑘, 𝑗, 𝑖𝑑′) ∧ 𝑐ℎ𝑖𝑘, 𝑐ℎ𝑘𝑗 ∈ 𝐸𝑃𝐶}, where ◦ is a 
function that joins two ids to a unique new id, e.g. 𝑖𝑑◦𝑖𝑑′ = ⟨𝑖𝑑, 𝑖𝑑′⟩. 
For 1 ≤ 𝑚 ≤ 𝑤, 𝐸𝑚

𝑉 𝐶 = {(𝑖, 𝑗, 𝑐ℎ𝑖𝑘.𝑖𝑑◦𝑐ℎ𝑘𝑗 .𝑖𝑑) ∣ 𝑐ℎ𝑖𝑘 = (𝑖, 𝑘, 𝑖𝑑) ∧ 𝑐ℎ𝑘𝑗 =
(𝑘, 𝑗, 𝑖𝑑′) ∧ 𝑐ℎ𝑖𝑘, 𝑐ℎ𝑘𝑗 ∈ 𝐸𝑃𝐶 ∪ (∪𝑚−1

𝓁=0𝐸
𝓁
𝑉 𝐶 ) ∧ {𝑐ℎ𝑖𝑘, 𝑐ℎ𝑘𝑗} ∩ 𝐸𝑚−1

𝑉 𝐶 ≠ ∅}. 
For example, the edge id can be a breakdown of all edges (channels) 
building it: the id of a PC between 𝑖, 𝑗 is ⟨𝑖, 𝑗⟩, the id of a level-0 VC 
between 𝑖, 𝑗 over 𝑘 is ⟨⟨𝑖, 𝑘⟩, ⟨𝑘, 𝑗⟩⟩, and the id of a level-𝑚 VC consisting 
of two channels 𝑐ℎ𝑥 and 𝑐ℎ𝑦 is ⟨𝑐ℎ𝑥.𝑖𝑑, 𝑐ℎ𝑦.𝑖𝑑⟩, where 𝑚 ≤ 𝑤.

The recursion depth 𝑤 can make 𝐸𝑉 𝐶 and hence the ILP size 
exponential. For example, for 𝑤 = 0, we need to consider ((𝑛2

)

) = (𝑛2)
paths of size 2 for constructing all possible level-0 VCs. However, when 
considering 𝑤 = 𝛩(𝑛), the size of 𝐸𝑉 𝐶 becomes exponential, as it is 
proportional to (∑𝑛

𝑘=2
(𝑛
𝑘

)

) = (2𝑛).

Constants, variables, and macros. We will use three sets of integer 
variables. The first set includes binary variables that indicate that 
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡 is routed via path 𝑃  (𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡)), the second set indicates 
the capacity of a virtual channel (𝑣𝑐𝑘𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦), and the third set 
indicates whether a virtual channel exists (𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗).

Let (𝑠𝑡, 𝑑𝑡) be a list of all the paths from a sender 𝑠𝑡 to a re-
ceiver 𝑑𝑡 for 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡 in the graph (𝑉 ,𝐸𝑃𝐶 ∪ 𝐸𝑉 𝐶 ). The variable 
𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) ∈ {0, 1} indicates whether 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡 is routed through 
path 𝑃 ∈ (𝑠𝑡, 𝑑𝑡). This set of variables is exponential on the num-
ber of nodes, but our goal here is to design an exact solution to 
an NP-complete problem, thus this is expected. The exact solution is 
necessary step before designing fast exact solution implementations 
or approximations (e.g. ILP relaxations and rounding rules). For a 
channel 𝑐ℎ𝑖𝑗 and 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡, we define the macro 𝑢𝑠𝑒𝑑(𝑐ℎ𝑖𝑗 , 𝑡) =
∑

𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) ⋅ 𝐼𝑛(𝑐ℎ𝑖𝑗 , 𝑃 ), where 𝐼𝑛(𝑐ℎ𝑖𝑗 , 𝑃 ) is a constant 
indicating whether 𝑐ℎ𝑖𝑗 ∈ 𝑃 . When 𝑐ℎ𝑖𝑗 is used by a payment route for 
𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡, then 𝑢𝑠𝑒𝑑(𝑐ℎ𝑖𝑗 , 𝑡) is 1 (only one path is used for 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡
due to constraint C1), and otherwise, it is 0. Let 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑓𝑒𝑒(𝑡, 𝑃 , 𝑐ℎ𝑖𝑗 ), 
𝑐ℎ ∈ {𝑝𝑐 , 𝑣𝑐𝑘 } be the routing fees charged to channel 𝑐ℎ ∈ 𝑃
𝑖𝑗 𝑖𝑗 𝑖𝑗 𝑖𝑗

6 
for 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡. We note that 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑓𝑒𝑒(𝑡, 𝑃 , 𝑐ℎ𝑖𝑗) is computed as in 
Section 2 if 𝑐ℎ𝑖𝑗 ∈ 𝑃  and is zero otherwise. Let 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑠𝑡𝑐ℎ𝑖𝑗 =
∑𝑇

𝑡=1
∑

𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑓𝑒𝑒(𝑡, 𝑃 , 𝑐ℎ𝑖𝑗 ) ⋅ 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) be the routing fees 
that are charged for the transactions that traverse channel 𝑐ℎ𝑖𝑗 ∈
{𝑝𝑐𝑖𝑗 , 𝑣𝑐𝑘𝑖𝑗}.

Paths including nodes in ̃ , i.e., estimated to be corrupted, should 
not be used for routing payments, thus we exclude those paths from 
∪𝑇
𝑡=1(𝑠𝑡, 𝑑𝑡). For instance, for value privacy, we exclude every path 𝑃
such that 𝑥 ∈ 𝑃 , for all 𝑥 ∈ ̃ . Thus, all remaining input paths can be 
safely selected by the ILP solver.

We denote the capacity of a virtual channel 𝑣𝑐𝑘𝑖𝑗 ∈ 𝐸𝑉 𝐶 with 
𝑣𝑐𝑘𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦. We define the virtual channel creation cost as 𝑣𝑐𝑘𝑖𝑗 _
𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡 = 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 ⋅ 𝑣𝑐𝑘𝑖𝑗 .𝑏𝑎𝑠𝑒_𝑓𝑒𝑒 + 𝑣𝑐𝑘𝑖𝑗 .𝑝𝑟𝑜𝑝_𝑓𝑒𝑒 ⋅ 𝑣𝑐𝑘𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 
where 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 is a binary variable indicating if 𝑣𝑐𝑘𝑖𝑗 exists. If 𝑣𝑐𝑘𝑖𝑗 is 
used for routing transactions (𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 = 1 ∧ 𝑣𝑐𝑘𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 > 0), then 
the creation cost is 𝑣𝑐𝑘𝑖𝑗 .𝑏𝑎𝑠𝑒_𝑓𝑒𝑒 + 𝑣𝑐𝑘𝑖𝑗 .𝑝𝑟𝑜𝑝_𝑓𝑒𝑒 ⋅ 𝑣𝑐

𝑘
𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦. Due to 

constraint C5, if 𝑣𝑐𝑘𝑖𝑗 is not used in a payment path, 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 = 0 and 
because 𝑣𝑐𝑘𝑖𝑗 .𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡 appears in the objective function, which we 
want to minimize, 𝑣𝑐𝑘𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 will be reduced to 0 in any minimal 
solution. Thus 𝑣𝑐𝑘𝑖𝑗 .𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡 = 0 when 𝑣𝑐𝑘𝑖𝑗 is not used in a payment 
path.

Objective. The objective is to minimize routing and virtual channel 
creation costs: min

∑

𝑝𝑐𝑖𝑗∈𝐸𝑃𝐶
𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑠𝑡𝑝𝑐𝑖𝑗 +

∑

𝑣𝑐𝑘𝑖𝑗∈𝐸𝑉 𝐶
(𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑠𝑡𝑣𝑐𝑘𝑖𝑗 +

𝑣𝑐𝑘𝑖𝑗 _𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡).

Constraints. We define five constraints that collectively express the 
invariants:
(C1) At most one path can be used for routing a transaction:
∑

𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) ≤ 1,
∀𝑡 ∈ [1, 𝑇 ].

(C2) The percentage of successful transactions or transacted volume 
should be at least 𝑐𝑡𝑟 ∈ [0, 1]. To define this constraint we first define 
the following sum ∑𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) that is 1 when a transaction 
is successful (only one path routes the transaction) and 0 otherwise 
(no path is selected). Note that this sum is binary due to C1. We then 
express the constraint as follows: ∑𝑇

𝑡=1 𝑡𝑟𝑎𝑛𝑠𝑡 ⋅
∑

𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) ≥
𝑐𝑡𝑟

∑𝑇
𝑡=1 𝑡𝑟𝑎𝑛𝑠𝑡, where 𝑐𝑡𝑟 is the success volume ratio. In case 𝑐𝑡𝑟 is the 

minimum percentage of successful transactions, this constraint becomes 
the following: ∑𝑇

𝑡=1
∑

𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) ≥ 𝑐𝑡𝑟𝑇 .
(C3) Virtual and payment channel capacities should be respected. The 
load on each channel is the sum of routing costs, transaction amounts, 
as well as the VC creation costs and capacities for higher order VCs 
in 𝐸𝑉 𝐶 that use the channel (we denote those with 𝑣𝑐𝑗𝑖𝑥 = (𝑐ℎ𝑖𝑗 , ∙), 
where ∙ is any channel between 𝑗 and 𝑥 in 𝐸 that can form 𝑣𝑐𝑗𝑖𝑥). Thus 
for every 𝑐ℎ𝑖𝑗 ∈ 𝐸 = 𝐸𝑃𝐶 ∪ 𝐸𝑉 𝐶 we require that 𝑟𝑜𝑢𝑡𝑖𝑛𝑔_𝑐𝑜𝑠𝑡𝑐ℎ𝑖𝑗 +
𝑡𝑟𝑎𝑛𝑠_𝑎𝑚𝑜𝑢𝑛𝑡(𝑐ℎ𝑖𝑗 )+

∑

𝑣𝑐𝑗𝑖𝑥∈𝐸𝑉 𝐶∶𝑣𝑐
𝑗
𝑖𝑥=(𝑐ℎ𝑖𝑗 ,∙)

(𝑣𝑐𝑗𝑖𝑥.𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡+𝑣𝑐
𝑗
𝑖𝑥.𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

≤ 𝑐ℎ𝑖𝑗 .𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 where 𝑡𝑟𝑎𝑛𝑠_𝑎𝑚𝑜𝑢𝑛𝑡(𝑐ℎ𝑖𝑗 ) =
∑𝑇

𝑡=1 𝑡𝑟𝑎𝑛𝑠𝑡 ⋅ 𝑢𝑠𝑒𝑑(𝑐ℎ𝑖𝑗 , 𝑡). 
If possible by the capacities, C2 forces the ILP solver to set some 
𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) variables to 1, i.e., some paths are selected for routing 
transactions and thus the 0 solution (no successful transaction) is 
prohibited for the inputs where a feasible solution exists. Moreover, 
if a VC is in a path selected by the ILP solution for routing a payment, 
then the routing cost and the transaction amount that are charged to 
this VC’s capacity are positive, and thus the VC capacity is positive 
and lower bounded by this amount. Since VC capacities are part of 
the objective function, any minimal solution will assign the minimal 
VC capacity for routing transactions or creating higher order VCs. 
Similarly, VC capacity will be 0 for VCs that are not used.
(C4) A VC between nodes 𝑖, 𝑗 over 𝑘 must exist in both directions (𝑖, 𝑘, 𝑗)
and (𝑗, 𝑘, 𝑖): 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 = 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑗𝑖
(C5) A VC exists, only if it is used for routing a transaction or to 
construct a VC of higher recursive order: 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 ≤

∑𝑇
𝑡=1 𝑢𝑠𝑒𝑑(𝑣𝑐

𝑘
𝑖𝑗 , 𝑡)+

∑

𝓁 𝑘 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝓁  and 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘 ≥ 1
(

∑𝑇 𝑢𝑠𝑒𝑑(𝑣𝑐𝑘 , 𝑡)+
𝑣𝑐𝑠𝑟∈𝑟𝑒𝑐(𝑣𝑐𝑖𝑗 ) 𝑠𝑟 𝑖𝑗 𝑇+|𝐸𝑉 𝐶 | 𝑡=1 𝑖𝑗
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Fig. 3. Average execution time to number of nodes, with 5 transactions. On the left we show the execution time for the Gurobi Solver and on the right the execution time for 
building the ILP model. Both show exponential growth and the solver started to crash for some graphs with 15 nodes.
∑

𝑣𝑐𝓁𝑠𝑟∈𝑟𝑒𝑐(𝑣𝑐𝑘𝑖𝑗 )
𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝓁𝑠𝑟

)

, where 𝑟𝑒𝑐(𝑣𝑐𝑘𝑖𝑗 ) includes all 𝑣𝑐𝓁𝑠𝑟 ∈ 𝐸𝑉 𝐶 that 
are built over 𝑣𝑐𝑘𝑖𝑗 . The first inequality enforces 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 = 0 if the 
VC is not used and the second one enforces 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 = 1 if the VC 
is used. Note that, 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 appears in 𝑣𝑐𝑘𝑖𝑗 .𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛_𝑐𝑜𝑠𝑡 as a factor of 
𝑣𝑐𝑘𝑖𝑗 .𝑏𝑎𝑠𝑒_𝑓𝑒𝑒, making the VC creation cost calculation accurate. We give 
an example run of the ILP in Section 4.1.
Output. We can determine all created VCs by checking 𝑒𝑥𝑖𝑠𝑡𝑠_𝑣𝑐𝑘𝑖𝑗 and 
if 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑡 is successful by the value of 

∑

𝑃∈(𝑠𝑡 ,𝑑𝑡) 𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) ∈
{0, 1}.

Computational complexity. The ILP has exponentially many variables 
and constraints (asymptotically) since it needs to decide which subset 
of all paths minimizes the objective. We implemented the ILP using 
Python and Gurobi [28]. We were able to run it with at most 15 
nodes, 30 channels, and 5 transactions (cf. Section 4.2 and Fig.  3). One 
way to make the ILP solution computation more tractable is to restrict 
𝑤 = (1) (VC recursion bound) and to limit the number of possible 
payment paths per transaction to be polynomially many. While this 
restriction can allow us to run the exact algorithm for larger networks, 
it limits the creation of VCs for distant nodes.

4.1. ILP example

We apply the ILP to the example graph of Fig.  4 with the same 
input. In this example we also assume that the capacities are enough for 
routing all transactions and opening the VCs shown in the figure (𝑉 𝐶1, 
𝑉 𝐶2, 𝑉 𝐶3), it is possible to build level-0 and level-1 VCs, the minimum 
success volume ratio is 1, and that ̃ = {𝐻1}. We first remove from the 
ILP input all paths containing 𝐻1. The ILP will output 𝑉 𝐶1, 𝑉 𝐶2, 𝑉 𝐶3 as 
the paths used for A-to-B, B-to-C, and A-to-C transactions, respectively. 
These payment paths are the cheapest ones for the corresponding 
transactions and it is possible to build them given the underlying PC 
capacities. Note that any other path would be longer and more costly 
due to linear routing fees.

We now check how all constraints are respected. According to C1, 
only the payment paths 𝑉 𝐶1, 𝑉 𝐶2, 𝑉 𝐶3 will be used (𝑝𝑎𝑡ℎ𝑃 (𝑡𝑟𝑎𝑛𝑠𝑡) = 1
only for those paths and 0 for all others). C2 will be satisfied since all 
transactions are successful. C3 is satisfied because we assumed there 
are enough capacities to build all three VCs and route all transactions. 
In fact, since the VC capacities are minimized in the objective function, 
they will be just enough to route the input transactions. C4 will force 
𝑉 𝐶1, 𝑉 𝐶2, 𝑉 𝐶3 exist in both directions. The first inequality of C5 will 
force all VCs in 𝐸𝑉 𝐶 ⧵ {𝑉 𝐶1, 𝑉 𝐶2, 𝑉 𝐶3} to not exist since the right side 
of the inequality will be 0, while the second inequality will force 𝑉 𝐶1, 
𝑉 𝐶2, 𝑉 𝐶3 to exist since the right side of the inequality will be a positive 
value in (0, 1].

4.2. ILP experiments

We implemented the ILP with Gurobi [28] and experimented with 
the size of the graphs it can solve. The github repository of our 
7 
implementation and experimental evaluation can be found in [29]. We 
experimented both with random graphs and with a custom heuristic 
that produces random graphs that resemble the Lightning Network, 
i.e. graphs with dense core and sparse boundary. To compute the latter, 
we extracted the probability distribution of the percentage of nodes to 
which a node is connected to, i.e. 𝑑𝑖∕𝑁 , where 𝑑𝑖 is the degree of node 
𝑖 and 𝑁 is the number of nodes in the Lightning Network snapshot 
we used. Then, given the size of the new (smaller) graph, say 𝑘, we 
sampled 𝑘 values uniformly at random from that distribution. We fixed 
the sample graph edges to nodes ratio to 2:1, and when needed we 
added some more edges randomly from the leaf nodes to maintain the 
desired characteristics of the LN. Both for random graphs and for the 
graphs computed with our heuristic, we computed each case by running 
each experiments 25 times and taking the average value. We show our 
findings in Fig.  3.

As expected due to the NP-hardness of the studied problem, the 
execution time grows exponentially with the number of nodes. The 
maximum number of nodes for which the execution was terminating 
was 15. While this small number of nodes is expected and far smaller 
than the current size of the Lightning Network, the exact algorithm can 
still be useful for small sub-networks. One such example can be a sub-
network of Lightning Network’s highly connected (hub) nodes. Those 
nodes are vital in transaction routing within a PCN [30] and across 
PCNs [31].

5. An efficient greedy algorithm

In the following, we present an efficient greedy algorithm with 
low running time while ensuring high-quality channel allocations (see 
also the upcoming evaluation in Section 6). Before investigating our 
overarching optimization goal of Section 3, where we aim to prevent 
any attacks by on-path adversaries and minimize routing fees, our 
algorithm will optimize for the following goals individually: preventing

(i) relationship anonymity attacks,
(ii) wormhole attacks,
(iii) value privacy attacks, and
(iv) minimizing routing fees

.
Our greedy algorithm is given as input the PCN, the payments that 

are to be carried out, and the optimization goal, which can be one of 
the optimization goals (i)–(iv). Each payment consists of a sender, a
receiver, some value and the number of times this payment is carried 
out (repetition). The algorithm will iterate over the list of payments 
and for each payment, try to find the cheapest path(s) in terms of fees 
using Dijkstra’s algorithm with enough capacity to route it (abstracted 
as generate_paths). Then, the algorithm will compute which nodes to 
bypass (abstracted as compute_nodes_to_bypass) in order to prevent on-
path adversary attacks (optimization goals (i)–(iii)) or to minimize 
routing fees (optimization goal (iv)). Finally, the algorithm constructs 
virtual channels to bypass these nodes and conducts the payments 
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(abstracted as construct_vcs and conduct_payments). This algorithm can 
be applied locally, by individual nodes who do not know about any 
payments other than their own. We give a high-level pseudocode of 
this approach in Algorithm 1.

Algorithm 1 High level greedy algorithm

1: function greedy_vc_algorithm(pcn, payments, optimization_goal)
2:  for (sender, receiver, value, repetition) in payments do
3:  //find cheapest path(s) with capacity to route each repeat payment
4:  paths ← generate_paths(pcn, sender, receiver, value, repetition)
5:  for (path, amount) in paths do
6:  //Compute the nodes which to bypass, based on optimiza-

tion_goal
7:  nodes_byp. ← compute_nodes_to_bypass(path, optimization_goal)
8:  //Build virtual channels over these nodes
9:  (pcn, new_path) ← construct_vcs(pcn, path, nodes_byp., amount)
10:  //Conduct payments and update channel balances
11:  pcn ← conduct_payments(pcn, new_path, amount)

While we will present concrete pseudocode for implementing the 
function compute_nodes_to_bypass to achieve each optimization goal 
(i)–(iv) in Algorithms 5–8 in Section 5.3, we give a short outline here. 
For relationship anonymity, it is sufficient to greedily bypass corrupted 
nodes adjacent to either the sender or the receiver, along short paths. 
To prevent the wormhole attack, corrupted nodes need to be bypassed 
such that there are no honest nodes encased by corrupted nodes. For 
value privacy, all corrupted nodes need to be bypassed.

Regarding fee optimization, we recall that the fee for opening a VC 
of capacity 𝛼 is the same as routing a payment of amount 𝛼 via that 
path. In our model, this means that it is cheaper to create a VC between 
sender and receiver, as soon as we carry out a payment on a path more 
than once. In Section 5.4, we show that there is a synergy between 
these goals and that opening VCs is beneficial to all goals. Our greedy 
algorithm runs efficiently on commodity hardware, as we show now.

5.1. Runtime analysis of greedy algorithm

Our greedy algorithm is efficient enough, such that we can run 
the experiments we conduct in Section 6 on a Lightning Network 
snapshot on commodity hardware. Dijkstra’s algorithm has a runtime 
of 𝛩(|𝐸| + |𝑉 | log |𝑉 |). We need to run Dijkstra’s algorithm to find 
the shortest path for each payment because the PCN topology and the 
channel capacity change after each payment and VC construction, and 
the payment amount is different. Additionally, for each payment, we 
need to traverse each edge to (temporarily) remove edges that do not 
have enough capacity to route each payment. Finally, identifying which 
nodes to bypass, creating the VC, and routing the payment are all linear 
in the number of nodes on the payment path. Thus, if 𝑇  is the number 
of all payments and 𝐷 the network diameter when considering only 
PCs (and a bound to the maximum length of a payment path), the total 
complexity of Algorithm 1 is 𝛩(𝑇 ⋅ (|𝐸| + |𝑉 | log |𝑉 | +𝐷)).

5.2. Example

To demonstrate our approach, we find the solutions of both the ILP, 
i.e., the optimal solution computed by an integer linear program (cf. 
Section 4), and the greedy algorithm on a small example graph. The 
graph is shown in Fig.  4 and consists of two hub-like nodes 𝐻1 and 
𝐻2, and four client nodes 𝐴, 𝐵, 𝐶 and 𝐷. We say that each channel 
charges a base fee of 1, a proportional fee of 0.001, and has a capacity 
of 10k, distributed evenly among both users. The transactions that are 
executed have all values of 10; there are three transactions from 𝐴 to 𝐶, 
one transaction from 𝐴 to 𝐵, and one transaction from 𝐵 to 𝐶. Further, 
we assume that 𝐻1 is a malicious node. We chose this graph because it 
resembles the hub-and-spoke topology of the Lightning Network [32]. 
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Fig. 4. Results of the ILP and greedy algorithms run on a small sample graph.

The transaction values and fees are chosen for readability: In the fees 
below, the integer part of the number shows the sum of the base fees, 
and the fractional part is the sum of the proportional fees.

In Fig.  4, we show the VCs constructed by the greedy approach in 
color and note that they are the same as in the ILP (optimal solution). 
The optimal solution is to build a virtual channel VC1 of capacity 40
between 𝐴 and 𝐵, another virtual channel VC2 of capacity 40 between 
𝐵 and 𝐶, and finally a third virtual channel VC3 of capacity 30 between 
𝐴 and 𝐶. Finally, these VCs are used for routing the transactions. The 
total cost on fees is 3.11, which comes from three times the base fee of 1
(which is 3) and three times the proportional fee (twice for capacity 40, 
once for capacity 30), which is around .11 for creating the VCs. Then, all 
sender–receiver pairs are directly connected, so there are no additional 
routing fees.

In the greedy approach, the same VCs are constructed. Since this 
algorithm greedily creates the best VCs for each sender–receiver pair 
individually, VC1 does not have enough capacity and has to be con-
structed twice. This incurs an extra base fee of value 1. Since the overall 
VC capacity does not change, the proportional fee of .11 remains, 
totaling 4.11 in fees.

Finally, if we look at the fees of routing these payments without any 
s, the total amount spent on fees is 11.11. Since we now need to route 
the payment from 𝐴 to 𝐶 three times over the path, the intermediaries 
charge a base fee each time, resulting in 9 coins alone. Furthermore, 
the payments without VCs are prone to value privacy attacks by 𝐻1.

5.3. Algorithms

In this section, we give pseudocode definitions for the algorithms 
used to conduct our empirical evaluation. Algorithm 2 describes the 
algorithm for computing the cost ratio for preventing attacks. Algo-
rithm 4 describes the algorithm for computing the cost ratio for the 
goal of optimizing fees. Algorithm 3 is the subprocedure to compute 
the corrupted nodes.

Further, we present the algorithms that return the sets of nodes 
that need to be bypassed to prevent value privacy attacks (Algorithm 
5), relationship anonymity attacks (Algorithm 6), wormhole attacks 
(Algorithm 7) and to optimize fees (Algorithm 8).

5.4. Synergy among objectives

From the definitions of the three different attacks and the strategies 
of how to prevent them, it becomes apparent that there are syner-
gies among the objectives and some strategies entail others. More 
concretely, preventing value privacy attacks also prevents attacks on 
relationship anonymity and wormhole attacks. Furthermore, following 
our fee optimization algorithm also prevents all three security and 
privacy attacks (see Section 6).

On a high level, for a given path 𝑝, let 𝑉 (𝑝), 𝑅(𝑝),𝑊 (𝑝), 𝐹 (𝑝) be one 
out of potentially multiple sets of nodes that are at least required to be 
bypassed for preventing value privacy attacks, relationship anonymity 
attacks, and wormhole attacks, as well as for optimizing the fees, 
respectively. That is, if these nodes or a superset of them are bypassed, 
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Algorithm 2 Compute cost ratio of bypassing corrupted nodes

1: function compute_cost_ratio(pcn, adv_budget, val_range, n, repeti-
tion)

2:  pcn_vc ← copy(pcn) //Copy the PCN graph for the VC 
simulation

3:  c ← compute_corrupted_nodes(pcn, adv_budget) //compute the 
most profitable corrupted nodes to a given adversary budget

4:  payments ← generate_payments(pcn, val_range, n, repetition) 
//generates n random payments with a random value in val_range 
in a PCN graph

5:  establish_cost_vc ← 0
6:  route_cost_vc ← 0
7:  unsuccessful_vc ← 0
8:  route_cost_pcn ← 0
9:  unsuccessful_pcn ← 0
10:  for (path, value, repetition) in payments do
11:  cost, new_path ← bypass_corrupted_nodes(c, path, value, 

repetition, pcn_vc)
12:  establish_cost_vc ← establish_cost_vc + cost
13:  for 𝑖 ← 0; 𝑖 < repetition ; 𝑖 + + do
14:  success, fees_vc ← conduct_payment(pcn_vc, new_path, 

value) //executes the payment over the given path
15:  if success then
16:  route_cost_vc ← route_cost_vc + fees_vc
17:  else
18:  unsuccessful_pcn ← unsuccessful_pcn + 1
19:  success, fees_pcn ← conduct_payment(pcn, path, value) 

//executes the payment over the given path
20:  if success then
21:  route_cost_pcn ← route_cost_pcn + fees_pcn
22:  else
23:  unsuccessful_pcn ← unsuccessful_pcn + 1
24:  return establish_cost_vc + route_cost_vcroute_cost_pcn

Algorithm 3 Compute corrupted nodes

1: function compute_corrupted_nodes(pcn, adv_budget)
2:  payments ← generate_payments(pcn, val_range, n, repetition) 
//generates n random payments

3:  node_map<node,int> ← {}
4:  for (path, value, repetition) in payments do
5:  for node in path do
6:  node_map[node] ← node_map[node]+1
7:  cost_benefit_map<node,int> ← {}
8:  for node in node_map.keys() do
9:  cost_benefit_map[node] ← (node_map[node]/n)

(cost(node)/adv_budget)

10:  corrupted_nodes ← []
11:  for (node,cost) in cost_benefit_map.sort_by_value(desc) do
12:  if adv_budget ≥ cost(node) then
13:  corrupted_nodes ← corrupted_nodes.append(node)
14:  adv_budget ← adv_budget - cost(node)
15:  return corrupted_nodes

the corresponding attack is prevented. We define these sets formally 
as the return values of Algorithm  in Section 5.3. Since 𝑉 (𝑝), 𝐹 (𝑝)
contain (at least) all adversarial nodes, optimizing for these objectives 
also prevents any other attack relying on on-path adversaries, such as 
denial-of-service attacks [10].

Theorem 2.  For any path p, 𝐹 (𝑝) ⊇ 𝑉 (𝑝) ⊇ 𝑅(𝑝) and 𝐹 (𝑝) ⊇ 𝑉 (𝑝) ⊇
𝑊 (𝑝).
9 
Algorithm 4 Compute cost ratio for saving fees

1: function compute_cost_ratio(pcn, val_range, n, repetition)
2:  pcn_vc ← copy(pcn) //Copy the PCN graph for the VC 
simulation

3:  payments ← generate_payments(pcn, val_range, n, repetition) 
//generates n random payments with a random value in val_range 
in a PCN graph

4:  establish_cost_vc ← 0
5:  route_cost_vc ← 0
6:  unsuccessful_vc ← 0
7:  route_cost_pcn ← 0
8:  unsuccessful_pcn ← 0
9:  for (path, value, repetition) in payments do
10:  cost, new_path ← open_profitable_vcs(c, path, value, repeti-

tion, pcn_vc)
11:  establish_cost_vc ← establish_cost_vc + cost
12:  for 𝑖 ← 0; 𝑖 < repetition ; 𝑖 + + do
13:  success, fees_vc ← conduct_payment(pcn_vc, new_path, 

value) //executes the payment over the given path
14:  if success then
15:  route_cost_vc ← route_cost_vc + fees_vc
16:  else
17:  unsuccessful_pcn ← unsuccessful_pcn + 1
18:  success, fees_pcn ← conduct_payment(pcn, path, value) 

//executes the payment over the given path
19:  if success then
20:  route_cost_pcn ← route_cost_pcn + fees_pcn
21:  else
22:  unsuccessful_pcn ← unsuccessful_pcn + 1
23:  return establish_cost_vc + route_cost_vcroute_cost_pcn

Algorithm 5 Generating set of nodes to bypass for preventing VP

1: function compute_bypass_nodes_VP(path, corrupted_nodes)
2:  nodes_vp_path ← {}
3:  for node in path do
4:  if node in corrupted_nodes then
5:  nodes_vp_path ← nodes_vp_path ∪ {node}
6:  return nodes_vp_path

Algorithm 6 Generating set of nodes to bypass for preventing RA

1: function compute_bypass_nodes_RA(path, corrupted_nodes)
2:  Let nodes_ra_path_l be the set of connected nodes in cor-
rupted_nodes adjacent to the sender path[0]

3:  Let nodes_ra_path_r be the set of connected nodes in cor-
rupted_nodes adjacent to the receiver path[length(path)-1]

4:  if length(nodes_ra_path_l) < length(nodes_ra_path_r) then
5:  return nodes_ra_path_l
6:  return nodes_ra_path_r

Proof. From the definitions of Algorithms 5–8, we observe the fol-
lowing. 𝑉 (𝑝) is the set containing all corrupted nodes on the path 𝑝. 
Intuitively, if it is not, then there is a corrupted node left on the path 
which is not bypassed, thus value privacy attacks are not prevented. 
The two sets 𝑅(𝑝) and 𝑊 (𝑝) do not have any honest nodes by definition 
(honest nodes do not need to be bypassed). 𝑅(𝑝) and 𝑊 (𝑝) contain thus 
only malicious nodes, but they do not contain all the malicious nodes 
of path 𝑝. Consider for example path 𝑠 − 𝑐1 − ℎ1 − 𝑐2 − ℎ2 − 𝑐3 − 𝑟 (𝑐𝑖
representing corrupted and ℎ𝑖 honest nodes), where 𝑐2 is in 𝑉 (𝑝), but 
not in 𝑅(𝑝). It follows that 𝑉 (𝑝) ⊇ 𝑅(𝑝) and 𝑉 (𝑝) ⊇ 𝑊 (𝑝).
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Algorithm 7 Generating set of nodes to bypass for preventing WH

1: function compute_bypass_nodes_WH(path, corrupted_nodes)
2:  nodes_wh_path ← {}
3:  for while there exist honest nodes in path that is surrounded by 
corrupted nodes do

4:  Let hon_nodes be one of these honest nodes surrounded by 
corrupted nodes

5:  Let wh_l be the set of connected nodes in corrupted_nodes 
adjacent to the left of hon_nodes

6:  Let wh_r be the set of connected nodes in corrupted_nodes 
adjacent to the right of hon_nodes

7:  if length(wh_l) < length(wh_r) then
8:  Remove wh_l from path
9:  Add wh_l to nodes_wh_path
10:  else
11:  Remove wh_r from path
12:  Add wh_r to nodes_wh_path

 ⊳ Note that one could also bypass hon_nodes, but we do 
not for simplicity here

13:  return nodes_wh_path

Algorithm 8 Generating set of nodes to bypass for optimizing fees

1: function optimize_fees(path, corrupted_nodes)
2:  nodes_fees_path ← path
3:  Remove first and last element from nodes_fees_path
4:  return nodes_fees_path

It remains to show that 𝐹 (𝑝) ⊇ 𝑉 (𝑝). For this, we merely observe 
that the set 𝐹 (𝑝) contains every node on the path 𝑝, which includes 
every corrupted node, which is 𝑉 (𝑝). □

6. Empirical evaluation

We conducted extensive simulations to shed light on the optimized 
deployment of virtual channels, as well as to study the performance of 
our greedy algorithm (Section 5).

6.1. Input data preparation and methodology

Graph model and data. Recalling our model in  Section 3, let  ∶=
( ,  ∶= 𝑝∪𝑣) be our VPCN graph with  the set of nodes, 𝑝 the set of 
PCs and 𝑣 (initially ∅) the set of PCs. We conduct our experiments on a 
snapshot of the Lightning Network (LN) from March 4, 2021 [33]. The 
(largest connected component of the) graph contains 33k channels and 
8k nodes that are part of at least one channel. For each channel, we read 
the capacity, the base, and the relative fee. The total network capacity 
is 1,167.4 BTC, the average base fee is 3,165 msat (millisatoshi), the 
average relative fee rate is 32,417 millionth of the satoshis transferred 
(one BTC is 100M satoshis). Due to the nature of PCNs the individual 
balance of each user remains private, a common limitation for works 
investigating PCNs. We assume that each channel capacity is initially 
evenly distributed between both nodes.
Payments. For payments we sample 𝑟_𝑝𝑎𝑦 = 100 random sender–
receiver pairs in the graph and uniform payment amounts 𝑣𝑎𝑙 ∈ [1, 10]
satoshis, modeling a micro-payment setting as the average channel 
capacity is 2.6M satoshis.
Constructing VCs. We create VCs on top of the PCN, both for direct 
payments between endpoints and for routing other payments through 
the VCs. Users can charge fees (i) for establishing the VC if they are 
intermediaries or (ii) for routing payments through the VC if they are 
endpoints. There exists no fee model for VCs in practice. Therefore, we 
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interpret the base fee as what a hop charges for actively participating 
in the protocol, and the fee rate as what a hop charges for locking 
up 𝛼 coins, i.e., the opportunity cost of that node. We model the 
establishment fee of a VC with capacity 𝛼 to be the same as routing 
a payment of 𝛼 coins via that path (see Section 3). Our solution is 
modular, other fee models can be used, and we discuss other possible 
fee models in Section 7. If a VC is established, its routing fee is set to 
the fee of the initiating endpoint’s underlying channel.
Countermeasures. Honest nodes assume there is an attacker with an es-
timated budget who corrupts nodes according to an estimated strategy. 
In particular, as discussed in Section 3, we model an adaptive adversary 
who selects nodes with the best cost–benefit ratio after observing 
the honest nodes’ countermeasures. The honest nodes preemptively 
identify a set ̃ of high-value target nodes, representing those that 
would be most profitable for the adversary to corrupt in the absence 
of countermeasures. We formally define how ̃ is computed. In order 
to corrupt a node 𝑣 ∈  , we say an attacker needs to spend the 
money that this node 𝑣 ∈  has locked up in its neighboring channels, 
i.e., 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑐𝑘𝑒𝑑(𝑣) ∶= ∑

𝑤∈⧵{𝑣}(𝑝𝑐⟨𝑣,𝑤⟩

.𝛽1).
The assumption that an attacker corrupts nodes that are most bene-

ficial to it, while being cheap to place, is based on previous works [22–
25]. We parameterize the estimated adversary budget 𝑎𝑑𝑣_𝑏𝑢𝑑𝑔𝑒𝑡 as 
a percentage of the total capacity in all edges of . The absolute 
adversary capacity is 𝑎𝑑𝑣_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∶= 𝑎𝑑𝑣_𝑏𝑢𝑑𝑔𝑒𝑡⋅𝑡𝑜𝑡𝑎𝑙_𝑛𝑒𝑡𝑤𝑜𝑟𝑘_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦. 
To choose the best-placed nodes, the adversary computes random 
payment paths and selects those nodes that appear most often on these 
paths. Note that no payment is actually carried out, only the paths 
are computed to find the most used nodes. Let 𝑃  be a list of 𝑛𝑢𝑚_𝑝𝑎𝑦
(e.g., 500) randomly chosen payment paths (i.e., paths of connected 
edges) in . For every node 𝑣 ∈  , we let 𝑜𝑐𝑐(𝑣) be the number of their 
occurrence in 𝑃 . We define the following cost–benefit ratio for every 
node 𝑣 as follows: 𝑐𝑜𝑠𝑡_𝑏𝑒𝑛𝑒𝑓𝑖𝑡(𝑣) ∶= 𝑜𝑐𝑐(𝑣)∕𝑛𝑢𝑚_𝑝𝑎𝑦

𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑐𝑘𝑒𝑑(𝑣)∕𝑎𝑑𝑣_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 .
Let 𝑙 be a list of every node 𝑣 ∈  sorted by their cost–benefit ratio 

in descending order. We determine the list of all corrupted nodes ̃
iterating over 𝑙 and adding those for which the following condition 
holds after adding them: ∑𝑛∈̃ (𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦_𝑙𝑜𝑐𝑘𝑒𝑑(𝑛)) ≤ 𝑎𝑑𝑣_𝑏𝑢𝑑𝑔𝑒𝑡

Repeating payments needed for VCs to be cost efficient. If a VC is used 
only once, it will never cost fewer fees than routing a payment directly 
through the underlying PCs. Therefore, we investigate the effect of 
conducting our 𝑟_𝑝𝑎𝑦 payments multiple times.
Measuring fees, security and privacy. The cost of routing the 𝑟_𝑝𝑎𝑦
payments through the PCN without PCs is denoted as 𝑟𝑜𝑢𝑡𝑒_𝑝𝑐𝑛. The 
cost of establishing the PCs to prevent a certain type of attack is denoted 
as 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ_𝑣𝑐. The routing cost when using the PCs is 𝑟𝑜𝑢𝑡𝑒_𝑣𝑐. We are 
interested in how the following ratio progresses as we increase the num-
ber of times that payments are repeated: 𝑓𝑒𝑒_𝑟𝑎𝑡𝑖𝑜 ∶= 𝑒𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ_𝑣𝑐+𝑟𝑜𝑢𝑡𝑒_𝑣𝑐

𝑟𝑜𝑢𝑡𝑒_𝑝𝑐𝑛 . 
We further measure how many payment paths are prone to a certain 
attack, with and without the VCs.

6.2. Results

We first study the effect that opening VCs while optimizing for 
each individual goal has on the other goals and on the fees. We fix 
an adversary budget and corrupt the nodes according to our corrup-
tion model. For each payment, we then use VCs (i) to optimize for 
security or privacy by preventing one of these attacks completely if 
that payment path is prone to that attack or (ii) to optimize for fees, 
both according to the algorithms outlined in Section 5. Finally, we 
measure the impact this has on the two other attacks as well as on the 
fees. The full algorithm pseudocode can be found in Algorithms 5–8 in 
Section 5.3.

In our experiment, we investigate value privacy, relationship
anonymity, and wormhole attacks. For these experiments we need to 
choose an adversary budget that results in meaningful security threats 
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Fig. 5. Optimizing for value privacy (top left), relationship anonymity (top right), wormhole attack (bottom left), and fees (bottom right)
Fig. 6. How many paths are prone to different attacks when optimizing for different goals for an adversary budget of 0.05.
from all these attacks. By meaningful we mean that some of our paths 
(not 0 and not all of them) are susceptible to each of the three different 
attacks. For this, we need to compute the percentage of paths that are 
prone to which attack for different adversary budgets. We expand on 
this in Section 6.3 and end up choosing 1, 2 and 5%.
Q1: How does preventing one attack affect the money spent on 
fees? We first measure the cost of routing payments through the PCN 
without VCs as a baseline. Then, we construct VCs, optimizing for 
value privacy, relationship anonymity, and wormhole attacks. After 
constructing the VCs, we measure the cost again. We measure the ratio 
according to our definition in Section 6.1. The VCs are constructed 
according to the corrupted nodes on the payment paths. Since these 
paths are randomly chosen and thus different for every run, we conduct 
each experiment 100 times and compute the average, with the results 
shown in Fig.  5. We observe that for all three budgets, the cost ratio 
starts out around 1 for one payment. As the number of repeating 
payments goes up, the cost ratio decreases because the VCs are more 
effective. Additionally, the more nodes are corrupted and need to 
be bypassed, the more VCs are constructed and the better this ratio 
becomes. For relationship anonymity, this ratio goes down to 0.88, for 
wormhole attack to 0.95, for value privacy to 0.68.

We observe that bypassing nodes to prevent each attack has a 
positive effect on the fee ratio if the payments are repeated more than 
once. The best effect can be seen in preventing value privacy attacks. 
Also, the ratio goes down more steeply for the first 10 payments, 
afterwards the effect is more flat.
Q2: How does optimizing for fees affect the money spent on fees?
Similar to when optimizing for security and privacy goals, we observe 
a steep decline in the ratio of money spent for fees when constructing 
VCs to the money spent for fees if we do not construct VCs. The decline 
slows down later. This ratio halves if there are 2 sequential payments 
and continues to drop to 0.04 for 50, after which it is almost flat.
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Q3: How do the different optimization strategies affect security 
and privacy? We already compared the effect of the strategies op-
timizing the different goals on the fees. Now we want to evaluate 
the effect that they have on the security and privacy goals. For this, 
we measure how many of our payment paths are prone to each of 
the different attacks. Then we construct the VCs optimizing each goal 
and measure how many paths are prone then. In Fig.  6 we show for 
each optimization strategy, (i) how many VCs are constructed, (ii) 
the average length of each VC, and (iii) for each attack type two 
values 𝑥; 𝑦, where 𝑥 is the percentage of paths prone to the attack 
before building VCs and 𝑦 is the percentage of paths prone to the 
attack after building VCs. We notice that optimizing for value privacy 
also prevents the attacks on relationship anonymity and the wormhole 
attack. Furthermore, optimizing for fees prevents all three attacks we 
investigate. These results are in line with Section 5.4.

6.3. Computing the percentage of prone paths for different adversary bud-
gets

We choose different adversary budgets ranging from 0.01% to 80% 
of the PCN capacity and check, how many of our payments are prone 
to the different attacks. We plot our results in Fig.  7. We observe that 
value privacy attack is the cheapest, only 0.1% yields more than half 
of the payments being prone. Note that an adversary budget of 0.1% 
of the total capacity is still significant and requires in our data the 
staking of roughly 1.2 BTC. Achieving the wormhole attack is more 
expensive and the effectiveness peaks at around 5% (58.4 BTC in our 
data) as adversary budget, before going down again. Recall that in a 
wormhole attack, the adversary surrounds honest intermediaries on a 
payment path with two corrupted nodes and then steals their fees. The 
effectiveness of this attack decreases when the adversary’s budget is too 
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Fig. 7. Number of prone paths.

high because the attack requires honest nodes between corrupted nodes 
to extract fees. If too many nodes are corrupted, there are fewer honest 
intermediaries left on payment paths, limiting the adversary’s ability 
to steal fees. The most expensive attack to mount for our corruption 
strategy is relationship anonymity. Only after 10% adversary budget it 
affects more paths than wormhole attack.

Note that an adversary can use its corrupted nodes to carry out any 
or all of these attacks. Note that there might exist other strategies for 
corrupting nodes that are more effective for relationship anonymity and 
wormhole attacks (cf. [22]). From these results we choose 1, 2 and 5
percent as the adversary budget we want to investigate further, as with 
these budgets there are some (and not all) paths that are prone to each 
of the attacks and to be able to compare them more easily.

7. Discussion

Fair establishment fee model for intermediaries. VCs are not used yet in 
practice, and thus, we do not know how fees are going to be charged. In 
Section 6, we assumed that the fee of opening a VC with some capacity 
𝛼 is the same as routing the payment of the same value through this 
path. Of course, other establishment fee models are possible.

First, in order to be fair to both the endpoints and intermediaries, 
VCs should have a limited lifespan. Remember that VCs require in-
termediaries to lock up some funds that they cannot use for other 
payments for which they would otherwise be able to charge fees. Note 
that this is different to PCs, where it is not problematic for two users 
to lock up their funds potentially indefinitely, as they do it only for 
their own funds. In other words, the fees that the intermediaries receive 
have to be proportionate to the time for which the money is locked up, 
i.e., the lifespan of a VC. Since channel capacities are finite, this implies 
that the lifespan is also finite.

The way we previously modeled fees is that VC creation fees are 
independent of the lifespan of a channel. In fact, one could argue that 
the fees for routing payments should then also be dependent on the 
collateral timeout, which, in practice, it is not. However, it is hard to 
model this in our experiments, as due to the nature of the PCN, it is 
unknown how many payments are processed in which time frames. For 
this reason, we chose our simplified fee model.

In order for VCs to still be profitable in this fairer fee model, one 
would have to find a number 𝑘 of payment repetitions (for each of our 𝑛
payments), a lifetime of the VC 𝑡, the base fee 𝑓 , the fee 𝑝 proportional 
to the amount and a fee 𝑣 that is proportional to the lifetime and 
the capacity of the VC, such that the inequality ∑𝑛(

∑

𝑘(𝑓 + 𝛼 ⋅ 𝑝)) ≥
∑

(𝑓 + 𝑘 ⋅ 𝛼 ⋅ 𝑝 + 𝑘 ⋅ 𝛼 ⋅ 𝑣 ⋅ 𝑡) holds.
𝑛

12 
This simplifies to the following: (𝑘 − 1) ⋅ 𝑓 ≥ 𝑘 ⋅ 𝛼 ⋅ 𝑣 ⋅ 𝑡. We note 
that this inequality is not exact, as the forwarded amount gets smaller 
when intermediaries already deduct fees. Nonetheless, the investigation 
of this or other fee models is interesting future work.
Utilizing bidirectionality of VCs. The greedy algorithms create virtual 
channels with transactions in one direction in mind. This means that on 
a path where several transactions are executed, the capacity is chosen 
as the sum of the amount of these transactions. In reality, the capacity 
can be lower if there are transactions in the other direction in the same 
time frame. Since we do not model any timing as mentioned above, we 
also do not capture this.

A practical scenario where this is useful might be where two pay-
ment providers route a substantial amount of payments through a hub 
back and forth. Note that the sum of all their payments can be very 
large, but since they send it back and forth the capacity of the virtual 
channel can be smaller.
Adversaries agreeing to open VCs. One could argue that an adversary 
trying to conduct an on-path attack would not agree to create a VC be-
cause the adversary would hinder its own attack capabilities. However, 
refusal to participate in creating a VC will be noticed by the sender. 
Thus, a sender concerned with security and privacy can always prevent 
such an attack by finding an alternative path.
Blocking capacity with VC. If a VC is used only sparsely, then it might 
block the capacity of the underlying payment channels. Thus, it should 
either be used for routing many payments or be open only for a short 
amount of time.
VC routing fee. Similar to the establishment fee, it is unclear what fee 
the users of a virtual channel will charge in practice for letting other 
users route their payments through the virtual channel. In this work, 
we assume this fee to be the same as fees that are charged for one of 
the underlying channels.
Privacy of VC creation. Following our strategies, we aim to prevent the 
on-chain privacy attacks on value privacy and relationship anonymity 
for payments. However, since opening or closing a virtual channel is 
an operation in which potentially corrupted intermediaries participate, 
some information might be leaked while opening or closing a virtual 
channel.

We assume that VCs are used in the same way as payment channels, 
e.g., for routing payments through them. To make other users aware of 
accepting payment being routed through channels, channels need to 
be announced publicly. Therefore, we disregard privacy concerns for 
VC opening/closing and instead assume that endpoints and capacity of 
VCs are announced publicly, thereby already leaking the information 
on endpoints and capacity. However, it is important to note that the 
leakage from VC setup is significantly less fine-grained than the direct 
exposure of payment details: while an adversary may learn that a 
VC has been established, it does not reveal when or how frequently 
payments occur within it. Future research could explore techniques to 
further mitigate privacy leakage during VC setup while maintaining 
routing functionality.
Using VCs for routing. In our evaluation of the greedy algorithm, we 
consider the payments that are repeated once or multiple times and 
conclude that if payments are conducted more than once along a path, 
opening a direct VC is the best strategy. However, for payments that 
are conducted only once, the VCs that were created in this fashion can 
be used for having shorter paths, which means having fewer fees and 
being less at risk for attacks due to having fewer intermediaries.
Adversarial budget and repeated VC-opening. Our model assumes an 
adversary with a fixed budget that is fully deployed at once. However, 
a more sophisticated analysis could consider a multi-round setting, 
where the adversary distributes its budget dynamically as honest nodes 
open new virtual channels (VCs). A promising future direction is to 
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formalize this as a VC-opening game in a repeated, round-based setting, 
where both honest nodes and the adversary iteratively adjust their 
actions. While our work provides a step towards understanding these 
interactions, developing a model for a multi-round VC-opening setting, 
with adaptive strategies, and the adversary optimally distributing its 
budget over time remains an open challenge for future research.
Real-world adversaries and deployment challenges. Real-world deploy-
ment introduces challenges such as network congestion, fluctuating 
liquidity, and limited user adoption. These can be modeled by non-
bypassable nodes (low adoption) and edges with payment limits (con-
gestion, fluctuating liquidity). Additionally, real-world adversaries may 
exhibit long-term strategic behavior, try to manipulate routing, perform 
probing [34] or other side-channel attacks not captured in our model. 
Exploring VC-opening strategies under such constraints and adversarial 
models remains an important direction for future research.

8. Related work

Over the last years, significant research efforts have been devoted 
to the design and analysis of efficient and secure payment channel 
networks [35–37]. Motivated by topology-based attacks [38], the pos-
sibility of route hijacking [10] as well as vulnerabilities, e.g., related 
to the privacy [18,19,23] and anonymity of PCN users [39,40], to 
just name a few examples, much existing literature revolves around 
network connectivity [38], the payment routing system [5,10], as well 
as privacy aspects, e.g., of route discovery [18,30].

To ensure anonymity, payment-channel networks usually rely on 
privacy-enhancing cryptographic schemes (e.g., onion routing) to im-
plement the 2-phase commit payment operation. PrivPay [41], Silen-
tWhispers [42], Fulgor/Rayo [5], AMHL [3] provide privacy-preserving 
multi-hop payment protocols which come with formal guarantees. 
SpeedyMurmurs [43] formalizes and addresses concrete notions of pri-
vacy in the context of payment routing. SpiderNetwork [44] improves 
the effectiveness of source routing in a dynamic PCN by favoring 
routes that minimize the balance difference using on-chain rebalancing. 
A privacy-preserving approach to discovering low-cost routes was 
recently presented by Pietrzak et al. [30]. Blitz [4] is a 1-phase payment 
scheme, which, similar to AMHL, provides security against wormhole 
attacks [3]. None of the payment-based approaches, however, hide the 
value of the payment to intermediaries or decrease routing fees.

Therefore, an intriguing approach to improving the security and 
efficiency of payment channel networks is the use of virtual channels. 
These have been introduced by Dziembowski et al. [11] to overcome 
the requirement that intermediaries along a channel route need to be 
online (a concern also considered in [45,46]) and explicitly confirm all 
mediated transactions. Recent work has extended the deployment scope 
of virtual channels, introducing efficient protocols that are compatible 
with Bitcoin and other popular cryptocurrencies [12–14].

While existing literature on virtual channels revolved around pro-
tocol design aspects, to the best of our knowledge, our paper is the 
first to investigate the problem of optimizing the allocation of virtual 
channels in order to improve the security and efficiency of PCNs. In 
parallel work [47], Khamis and Rottenstreich studied how to amortize 
the creation of new channels through reduced routing costs, however, 
without accounting for security aspects.

9. Conclusion

Motivated by the potential benefits of virtual channels to reduce 
transaction fee costs as well as to improve security and privacy guar-
antees in PCNs, we presented a first systematic study of the virtual 
channel setup problem. We have shown that the problem can be 
formulated as an optimization problem and proved that the problem is 
NP-hard. We presented a fast greedy algorithm and using simulations 
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on the Lightning Network, we confirmed the benefits of our optimiza-
tion approach. We also modeled the VPCN cost optimization problem 
as an integer linear program (ILP) for obtaining exact solutions.

We believe that our work opens several interesting avenues for 
future research, such as studying different fee models, the effect of tim-
ing, i.e., adding time frames in which transactions are to be executed, 
VC lifetimes, and more dynamic adversarial strategies. In particular, 
further exploration is needed on how an adversary can optimally adapt 
to the countermeasures proposed in this work and how honest nodes 
can refine their defenses accordingly.
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