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ARTICLE INFO ABSTRACT

Keywords: Payment channel networks (PCNs) are among the most promising solutions to the scalability issues in
Payment channel networks permissionless blockchains, allowing parties to pay each other off-chain through a path of payment channels
Virtual channels (PCs). However, the cost of routing transactions is proportional to the number of intermediaries since each
Optimization

charges a fee. Analogous to other networks, malicious intermediaries on the path can lead to security/privacy
threats. Virtual channels (VCs), i.e., bridges over PC paths, mitigate the above PCN issues: Intermediaries
participate only in the VC setup but in no future VC payments. However, creating a VC has a cost that must
be paid out of the bridged PCs’ balance. Currently, we are missing guidelines on how/where to set up VCs.
Ideally, VCs should minimize transaction costs while mitigating security and privacy threats from on-path
adversaries.

In this work, we address for the first time the VC setup problem, formalizing it as an optimization problem.
We present an integer linear program (ILP) computing the globally optimal VC setup strategy in terms of
cost, security, and privacy. We accompany this expensive ILP with a fast, greedy algorithm. Our model and
algorithms can be used with any on-path adversary whose strategy can be expressed as a set of corrupted nodes.
We evaluate the greedy algorithm over a snapshot of the Lightning Network (LN), the largest Bitcoin-based
PCN. Our results confirm that the greedy strategy minimizes costs while protecting against security and privacy
threats and may serve the LN community as guidelines for VC deployment.

Security
Privacy

1. Introduction are gaining traction. In this approach, Alice and Bob can create a PC
between them with a single on-chain transaction that transfers their
Permissionless cryptocurrencies face severe scalability challenges, coins into an escrow (or multi-signature) controlled by both of them
as they rely on a set of mutually untrusted users located across the
world to maintain a distributed and publicly verifiable transaction
ledger. The transaction throughput today is limited to tens of trans-
actions per second at best, while transactions can take up to 60 min to
be confirmed.
Payment channels (PC) have emerged as one of the most promising representing the last authenticated distribution of coins.
scalability solutions, and instances such as the Lightning Network [2]

with the additional guarantee that they can get refunded at a mutually
agreed-upon time. After that, Alice and Bob can pay each other off-
chain by exchanging authenticated copies of the updated balances in
the escrow. Finally, the PC is closed with an on-chain transaction
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PCs can be linked to form a network, also called a payment channel
network (PCN), where any two users can perform a payment if they are
connected by a path of PCs. The payment in the PC between Alice and
the first intermediary is forwarded along the intermediary PCs until it
reaches Bob. A key challenge in this approach is then to ensure that
the balance updates of all PCs in the path are atomic to prevent any
intermediary (i.e., Ingrid) from trivially stealing the money by denying
forwarding it.

State-of-the-art techniques to construct atomic multi-hop payments
[3-9] require that intermediaries are involved in every single pay-
ment. This approach brings several disadvantages: (i) reduction of the
payment reliability (e.g., Ingrid may simply be offline or crash); (ii)
increase in the payment latency since additional PCs are required; (iii)
high payment costs as each intermediary charges a fee per transaction
for providing the routing service; and (iv) possible leakage of sensitive
information to the intermediaries, which opens the door to a number
of security and privacy issues, such as route hijacking [10], wormhole
attacks [3] or user anonymity [5], just to name a few.

Recently, the concept of virtual channels (VCs) [11-14] has been
proposed to improve upon the aforementioned drawbacks of PCs. A
VC can be seen as a bridge over two PCs. For instance, assume that
Alice and Bob have a PC with an intermediary, Ingrid. In order to set
up a VC, Ingrid must collaborate and coordinate with Alice and Bob
to lock coins in their corresponding PCs in order to use those coins to
build a VC directly between Alice and Bob. This approach brings the
following benefits: (i) Alice and Bob can pay each other “as if they had
a PC between them”, that is, without the involvement of Ingrid; (ii)
payment latency is reduced to one hop; (iii) payment fees charged by
the intermediaries for their routing service are avoided; and (iv) the
details of every single payment are not revealed to possibly malicious
or curious intermediaries. Note that intermediaries still charge fees for
the coordination service when establishing the virtual channel.

A crucial question, not yet addressed in the literature, is what strat-
egy should users follow to open VCs while optimizing the cost-effectiveness,
as well as on-path security and privacy benefits provided by VC networks?
This is an optimization problem, given that the funding to be locked,
and thus the number of VCs a party can establish, is limited by the
number of underlying PCs and the amount of coins that are locked on
them. To ensure on-path security and privacy we provide a modular
framework for preventing attacks. Our algorithms aim to optimally by-
pass adversarial nodes by constructing virtual channels over them. We
demonstrate how our framework functions through three exemplary
well-studied attacks in the literature. Note that, while several existing
works have studied from a game theoretic perspective how a PCN
should evolve based on the fee optimization goal of the users [15-17],
none of them considered virtual channels, nor on-path security and
privacy goals.

We make the following contributions. First, we address the VC
setup problem, formalizing it as an optimization problem of three
distinct goals: (i) cost-effectiveness of the transactions (i.e., fees) while
providing (ii) security and (iii) privacy guarantees against on-path ad-
versaries, and prove that the optimization problem is NP-hard. On-path
adversaries account for a significant share of attacks in the PCN-
related literature: e.g., they may aim to perform denial-of-service and
wormbhole attacks, or to harm value privacy and relationship anonymity
properties, among many others [3,5,10,18-21]. Such attacks have been
shown to potentially have a severe impact in practice [22]. On-path
adversaries can do damage depending on the attack that they are
carrying out. In this work, we provide a general framework for mitigat-
ing attacks of on-path adversaries and study three exemplary attacks.
Specifically, our algorithms take as input the set of nodes that honest
nodes aim to neutralize as high-value targets for an adaptive adversary.
The adversary selects nodes based on a cost-benefit trade-off, maximiz-
ing their impact within a given budget. The honest nodes counter this
by preemptively bypassing the most profitable nodes for the adversary.
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The derivation of this set by the honest nodes is orthogonal to our solu-
tions. To demonstrate our approach, we focus on adversarial strategies
that affect the largest fraction of payments [22-25] and analyze their
impact on value privacy, relationship anonymity, and the wormhole
attack. Note that our approach is general and allows for any adversarial
strategy. While we assume an adaptive adversary selecting nodes based
on a cost-benefit trade-off, our framework can also accommodate static
corruption strategies, where the adversary pre-selects nodes according
to any other metric.

Second, we analytically show a synergy between the different VC
optimization objectives. In particular, we prove that minimizing trans-
action fees by the appropriate use of VCs also prevents attacks from
on-path adversaries, such as those against value privacy and relation-
ship anonymity, or wormhole attacks. In practice, this implies that
users can set up their VCs following a single strategy to minimize their
transaction costs, and as a side benefit, they will be secure against on-
path adversaries. We demonstrate the latter for the three exemplary
on-path attacks on security and privacy in study.

Third, and motivated by the uncovered synergy between the ob-
jectives, we describe concrete approaches to devise fee optimization
strategies which mitigate on-path security and privacy attacks (and
specifically value privacy, relationship anonymity, and wormhole at-
tacks). In particular, we present both an efficient approach (based on a
greedy routing algorithm) to optimize the cost-effectiveness, security,
and privacy of PCNs using VCs, and a rigorous and exact approach
based on integer linear programming (ILP), which is computationally
intractable (we also propose how to reduce the running time of the ILP).
The network topology of PCNs such as the Lightning Network is known
publicly. In our exact ILP-based approach, we additionally assume that
all transactions we want to route are known globally, in order to find
the globally optimal solution. Our greedy algorithm, on the other hand,
can be applied locally, using only the information of individual nodes.

Finally, we evaluate our greedy optimization approach on a recent
snapshot of the Lightning Network (LN). We show that our transac-
tion cost minimization strategy is efficient and effective, and indeed
subsumes the strategies to optimize for on-path security and privacy.
We find that depending on how many payments two endpoints plan
to conduct via the virtual channel, the routing cost can be reduced
significantly, for example, to about half compared to a normal payment
for two consecutive payments, or to about 3% for 50 consecutive
payments. In addition to this cost reduction, other users can utilize
these virtual channels to route their payments through a potentially
cheaper path.

To summarize, for the first time, we present both an analytical and
an empirical study of the impact of using VCs in (current) PCNs in
terms of cost-effectiveness of the transactions as well as security and
privacy guarantees. The results of this work motivate the deployment
of VCs and we hope that they can encourage the PCN community and
developers to include VCs within current PCNs software and make them
accessible to the PCN users.

Paper organization. This is the extended version of the IFIP NETWORK-
ING 2024 conference paper Aumayr et al. [1]. We introduce back-
ground knowledge on PCNs in Section 2 and present our model and
problem formulation in Section 3. We present our algorithms in Sec-
tion 4 (exact) and 5 (greedy), and evaluate the greedy algorithm in
Section 6.

2. Background and problem overview

Payment channel networks (PCNs). A PCN [5] is a directed graph G :=
(¥, €). Nodes V represent users and edges {e; ;,¢;;} C £ represent PCs
between users. The weight on a directed edge denotes the amount of
remaining coins that can be forwarded on that direction. For every
pair of edges {e; ;,e;,}, users v; and v; can exchange any part of their
balance freely. Moreover, each directed edge e, ; between users v; and
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Fig. 1. Comparison between PCN and VCN.

v; is associated with two non-negative numbers, the base fee f;, and
the proportional fee p;, that together determine the fees that each user
charges for forwarding the payments. For a forwarded amount a via
e, v; charges fee(e; ;,v;) = f; + p; - «. We denote a PC {e; ;. ¢;,;} with
the tuple (PC<zJi,vj>’ Bi» Bjs fis [} i bj), where By, ., is the initial balance
of each node upon channel creation.

The success of a payment between two users depends on the ca-
pacity available in the path connecting the sender s to the receiver r.
Assume that s wants to pay « coins to r and that they are connected
through a path s - u; —» ... - u, — r. The fees charged for every
node in the path depend on the forwarded amount. That is, v, charges
fe;e,, = funt1+Ppue1-@ and in general v; charges fee; = fj’j+1+pj,j+1-(.(x+
> ki1 feep), for j =1,...,n (each node forwards « and the forwarding
fees of the remaining nodes in the path). Such a payment is successful if
(i) s starts the payment with a value o* := a + Z;’zl fee; and (ii) every
edge on the path has a balance of at least a], where o] := a*— ;_:11 fee;
(the initial payment value « minus the fees charged by the previous
users in the path), e; ;,; = (u;,u;4), and u,,; = r. If the payment is
successful, the balance of every edge e; ;; on the path from s to r is
decreased by o, while the balance of every edge e, ; is increased by

/

a..
i

PCN challenges. For successful payments, intermediaries must actively
participate and must not disturb them, either actively (e.g., dropping
it) or passively (e.g., being offline). Thus, PCN payments suffer from
the following drawbacks:

Reliability: If intermediaries are offline or do not forward the pay-
ment (e.g., the red user in Fig. 1), the payment fails.

Latency: The time to process a payment is directly proportional to
the number of intermediate users. E.g., the latency of the payment
shown in Fig. 1 (latency section) could be reduced if a shorter path
between nodes 1 and 5 existed.

Cost: The payment cost is proportional to the number of intermedi-
ate users, since each charges a routing fee.

Privacy: Each intermediary learns sensitive information. Recent
work [5,26] has shown that intermediaries can learn details about who
pays what to whom in the currently deployed Lightning Network. While
alternative payment mechanisms that hide (some of) the information
required in such payment exist, e.g., [3,4], they have not been adopted
yet and still protect only some sensitive information but not other
(e.g., the payment amount) and also do not decrease routing fees.

Virtual channels (VCs). Bypassing intermediaries can mitigate these
drawbacks. One could build a new PC, but this requires an expensive
on-chain transaction and additional funds. Instead, a VC can be created
off-chain between two users, say Alice and Bob, who have a PC with a
common intermediary, say Ingrid. Using a 3-party protocol, the users
can block coins in the underlying PCs and move them into the VC be-
tween Alice and Bob. After that, Alice and Bob can perform arbitrarily
many payments without involving Ingrid. The amount of VCs that can
be created are thus limited by the balances of the underlying PCs. Yet,
it is interesting to deploy VCs as they provide several advantages over
PCNs.

Reliability: Payments are carried out without involving the interme-
diary user, who cannot thus disturb it either actively (e.g., dropping it)
or passively (e.g., being offline). In Fig. 1, the malicious node 3 does
not participate in the payment between 1 and 5 as it is omitted by the
VC between 2 and 4.

Latency: VCs lead to shorter paths. Since there are fewer intermedi-
ate users, the latency of the overall payment is reduced. In the running
example, the latency is reduced from 3 to 1 intermediaries, assuming
that two VCs have been created.

Cost: Assume, for simplicity, that users charge the same fees for
forwarding a payment through a PC and a VC. In such a case, as with
latency, the fact that VCs lead to shorter paths, can also help to reduce
the overall payment cost in terms of fees. In Fig. 1, the transaction cost
using VCs is reduced to the fee charged by the only intermediary that
is involved, avoiding thus the fees charged by nodes 2 and 4.

Privacy: The fact that fewer intermediaries are participating in the
payment improves the privacy of the overall payment. And although
intermediaries are part of the 3-party creation of the VC and thus learn
who are the two VC endpoints, they no longer see the amounts of the
individual payments routed through the VC. For instance, in Fig. 1, the
malicious node 2 would learn that there exists a VC between nodes 1
and 3 as it needs to help them to set the channel up, but afterwards the
node 2 does not learn when a VC is used.

VCs in practice. Despite the advantages provided by VCs, we currently
lack a comprehensive analysis leading to a set of guidelines to help the
users decide when to open VCs, with what neighbors, and under what
circumstances. Ideally, a user would like to open a VC with every other
user in the network. Unfortunately, this is not possible since each user
has a limited budget, i.e., the amount of coins available on her PCs
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Fig. 2. Operations in a VPCN. v, and v, share the VC establishing fee f,.

which need to be locked to create a VC. In this state of affairs, the
following questions arise: how should a user choose which neighbor to
open a VC with? how many payments are required to amortize the cost
of opening a VC? what strategy should a user follow to maximize the
security and privacy gains against on-path adversaries when opening
VGCs?

3. Modeling virtual payment channel networks

We introduce a more formal model of virtual payment channel
networks (VPCNs). We will then discuss the security and privacy threats
by on-path adversaries, define the studied optimization goal on VPCNs,
and show its NP-hardness.

Definition 1 (VPCN). A virtual payment channel network, VPCN, is
defined as a graph G := (V, £) where V denotes the set of users in the
network and £ := &, U &, denotes the set of channels. In particular,
&, denotes the set of payment channels, and £, denotes the set of
VCs. Each payment channel is defined by a tuple (pc(y, 0.y, 1. B2, /1
fa2, Py, P2), where PCu, 09) denotes a payment channel identifier, f;¢/; 5

denotes the current balance of the node v;¢1 ), fi(12) is the base fee
and p,e(; ,, the fee rate (proportional to the amount paid) charged to
use this channel in each direction, respectively. Analogously, a VC is
defined by a tuple (Uc<ul,uz)’ﬂl’ﬁ2’ f1. f2. P15 P2, f), Where f, denotes
the VC establishment fee.

A VPCN is defined with respect to a blockchain B that stores publicly
accessible entries of the form (v, f"~"¢i") where v denotes an address
of the underlying blockchain and f°"~¢"4" denotes its on-chain balance.
For readability, we hereby use B[v] to denote the on-chain balance of
v in B. A VPCN exposes the operations expressed in Fig. 2.

Security and privacy for on-path adversaries. On-path adversaries may
cause a diverse set of attacks in PCNs [3,5,10,18-21] and with sig-
nificant impact [22]. We employ VCs to defend against on-path ad-
versaries, by bypassing corrupted nodes (cf. Fig. 1). We chose to
investigate three representative attacks: value privacy, relationship
anonymity, and wormhole attacks [3,5]. We chose these attacks be-
cause they are well studied in the literature and note that our ap-
proach directly generalizes to other on-path adversarial attacks, such
as denial-of-service attacks [10], which we later show in Section 5.4.
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Optimal adversarial strategy. We assume that the adversary has a budget
B for corrupting nodes and selects which nodes to attack using a
deterministic function based on 3, public information about the PCN,
and the countermeasures deployed by honest nodes. Honest nodes do
not know B or the exact set of corrupted nodes X but assume a worst-
case scenario, where an adaptive adversary corrupts the most profitable
nodes after countermeasures, i.e., opening VCs, have been deployed. To
minimize the adversary’s impact, the best strategy for honest nodes is to
preemptively bypass the high-value targets X, which is the set of nodes
that would be most profitable for the adversary to corrupt in the absence
of countermeasures. The honest nodes estimate 53 (e.g., as a fraction of
the total PCN capacity) to inform their selection of X.

We compute X by identifying the nodes that an adversary would
optimally corrupt, choosing those that maximize the fraction of affected
payments within a fixed budget, based on prior work [22-25]. For
more details, see Countermeasures in Section 6. Honest nodes apply
countermeasures by opening VCs to bypass the nodes in X, denying
the adversary access to their most profitable targets. This improves
security and privacy against on-path attacks while reducing the adver-
sary’s overall effectiveness. Notably, establishing a direct VC between
two end-users eliminates on-path attacks regardless of the adversarial
strategy.

Our approach is modular: different adversarial strategies can be
incorporated into the computation of X without modifying the frame-
work. Our algorithms take X as input, ensuring flexibility in adapting
to various adversarial models.

On-path attacks. For a path s—u,—---—u,—r the attacks on value privacy,
on relationship anonymity, and the wormhole attack are defined as
follows.

» Value privacy [5]: PCN payments ensure that the transaction
amount remains private to off-path corrupted users if there are
only honest users along the path. This means, that if there are
on-path corrupted users, value privacy does not hold anymore, as
they can simply see the value and leak it to users not on the path.
Preventing this attack: For all segments u; — x; — x, — - — X, — u;

J

of the path from s to r, where u;, u ; are not corrupted and Xps

p=1,...,¢ are corrupted, build a virtual channel from v; to u B

Relationship anonymity [5]: If an adversary controls two corrupted
users u; and u,, they can distinguish who is paying to whom.
Preventing this attack: If u;— x| —x, — -+ —x, —u; is a segment of the
path from s to r, where u;,u; are not corrupted, x,, p = 1,...,7
are corrupted and y; € {s,r} Vu; € {s,r}. If both s and r are part
of such a segment, take one segment (there can be at most two)
and build a virtual channel from «; to u;.

Wormbhole attack [3]: In PCN payments, an adversary can prevent
honest users from finalizing payments and effectively steal their
fees. For this, the adversary needs to control corrupted nodes on
both sides of one or more honest nodes along the path. Preventing

this attack: Identify all segments u;—x;—---—x,—y; ==Y, —2Z| = —
Z,—u; of the path from s to r where u;, u; and Yy p=1,....,mare
not corrupted and where Xppq=1,...,C and z,, r = 1,...,n are

corrupted. For each segment, build one of the following virtual
channels: (i) between u; — y, (ii) between y,, — u; (iii) between

Xp = 2.

Costs of VCs. Once opened, VCs can effectively reduce the fees of
payments within a VPCN, as we explained in . However, to create
a VC, the endpoints need to pay an establishment fee f,. Since VCs
are currently not used, there is no fee model in practice which we can
use. We therefore assume that f, of a VC over some path with capacity
a to be the same as users would charge for forwarding a payment of
amount « over that path. Le., node v; charges fee; = f; ;41 +pj i1 -
(a+ ZL 4l feey), for j =1,...,n. We discuss other potential fee models
in Section 7 and note that f, is modular in our model.
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Optimization goal. Our objective is to set up virtual channels such that
the cost for routing a set of transactions is minimized, and no transac-
tion is traversing a path prone to an attack. Definition 2 consolidates
our optimization goal and its hardness is proven in Theorem 1.

Definition 2 (VPCN Cost Optimization). Given a VPCN ¢, a set of
transactions 7, an estimated strategy of an on-path adversary to corrupt
nodes and the estimated budget of the adversary B for doing so, mini-
mize the cost for routing the transactions in 7, such that no transaction
is traversing a path that is prone to a given attack. If the estimation of
the adversary’s budget is B = 0 our goal is to minimize the routing fees.
Theorem 1. The VPCN cost optimization problem is NP-hard.

Proof. We reduce an instance of the (NP-complete) minimum-length
disjoint paths (MLDP) problem [27] to an instance of our VPCN prob-
lem. Consider an instance of the MLDP problem, i.e., an arbitrary
directed graph G = (V, E) such that weight;u,v) = 1, for all (u,v) € E,
and two source destination pairs (s;,d;) and (s,,d,) (two pairs are
enough to render the problem NP-complete [27]).

We now build an instance of the VPCN problem. We define G’ =
(V,E U E"), where E' = {(x,y) | (y,x) € E A (x,y) &€ E}, such that
weightg(x,y) = 1 +¢€, e = 1/|E|, if (x,y) € E and weightg (x,y) = 0 if
(x,y) € E'. Thus, for every pair of nodes x, y in G’ either {(x,y), (y,x)} €
G’ or x and y are not adjacent. The payment channels are hence
defined as all the pairs of nodes x,y in G’ such that {(x, ), (y,x)} € G,
with capacity weightg (x,y) + weightg (v, x), base fee equal to £ and
proportional fee equal to 0. We consider the set of transactions, in
the form of (source, destination, amount), to be {(s;,d;, 1), (sp,d,, 1}.
We also, assume that creating virtual channels is not possible, as the
problem only becomes harder by including them. We set c,,, the target
percentage of successful transactions, to 1 (all should be executed).

A solution to the VPCN problem gives the minimum cost payment
path for the two transactions. This set of payment paths in G’ is using
only edges that appear in G, as we set the capacity of the extra edges
to zero and since the edge weights can accommodate for only one
payment path, it does so with minimum length in G and also the
paths are edge disjoint (the capacity suffices for only one transaction).
Therefore a solution of the VPCN problem (payment paths) is exactly
a solution of the minimum-length disjoint paths problem. []

4. Exact algorithm

We present an exact solution to the VPCN cost optimization problem
(Definition 2) by modeling it as an Integer Linear Program (ILP). Our
first challenge is to define the objective function to be optimized. We
have three objectives: (a) minimize routing fees, (b) minimize virtual
channel creation costs, and (¢) maximize successful transactions (either
in number or in volume). We will define the objective function using
items (a) and (b), and form the ILP as a minimization problem. Item
(c) will be converted to a constraint (this is common in multi-objective
optimization), requiring that the success ratio is above a threshold
given in the input. Thus, different threshold values might yield different
solutions.

The second challenge is to define the invariants that a solution
should respect and, based on them, specify the ILP’s variables and
constraints. We identify the following invariants: (i) at most one path
is used for routing a transaction, (ii) the transaction success ratio
should be above the given percentage, (iii) capacities of payment and
virtual channels are respected, (iv) a VC between i, j over k should be
bidirectional, (v) a VC is constructed if and only if it is used for routing
a transaction or for constructing a higher-order VC, (vi) payment paths
prone to attacks of on-path adversaries are not selected in the ILP
solution. From a geometric point of view, the constraints define a set
(polytope) of feasible solutions and an ILP solver outputs a feasible
solution (if any) within this set that produces the minimum value for
the objective function, i.e. the function that expresses objectives (a) and
(b) as a linear combination of the variables. We will now define the ILP
formally.
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Input. The input needed to define the ILP is a PCN (as defined in
Section 2) including all the payment channels and their attributes, a set
of T transactions 7 = {transaction, = (s, d,,trans,)},c(; 1), i-€., (source,
destination, amount), a constant ¢,, € [0,1] indicating the required
minimum success or volume ratio, i.e., if ¢,, = 1 all transactions must
be executed, and the set X of estimated (by the honest nodes) set of
corrupted nodes.

Let ch;;.base_fee (f; in Definition 1) and chy;.prop_fee (p; in Defini-
tion 1) denote the base and proportional forwarding fee of a payment
(chy; = pc;;) or a virtual channel (ch;; = UC,{;, where k is the intermedi-
ary node), and pc;;.capacity denotes the payment channel (PC) capacity
(p; in Definition 1). We set the virtual channel (VC) fees to be equal to
those of the underlying initial payment channel, i.e., the fees of vc}‘j
match those of pc; if vcf; is built over pc;.

Since a virtual channel Ucikj can be constructed over any combination
of two adjacent payment or virtual channels ch;, and chy;, we assume
a recursive structure of VCs and bound the levels of recursion by the
input parameter w. Level-0 virtual channels are constructed over two
adjacent payment channels. Level-m virtual channels, 0 < m < w, are
constructed over a level-(m—1) virtual channel and an adjacent payment
or virtual channel of level at most m — 1. The VPCN that we provide as
part of the ILP input will be a fusion of all PCs and all possible VCs, such
that the ILP solver can decide which VCs to utilize. To distinguish which
VCs were used for payment paths or enforced for bypassing corrupted
nodes, we formally define the input VPCN as a directed graph over the
set of all nodes V' and two sets of edges (channels): Ep- (PCs) and Ey
(all possible VCs).

We define each edge (channel) in E, . by the triple (i, j, id), where
i,j are the endpoints and id is a unique edge identifier. The edge id
will allow us to distinguish two level-m (m> 0) VCs Ucikj between i and
j over k built over different VCs, e.g. ”CZJ- and uclgj. We define Ep. =
{(i,j,(i,j)) | pe;; exists}. We then define Ey ¢ as the union of all possible
VCs for each level 0 to w. We define EI‘}C = {(i,j,chy.idochy;.id) |
chy = (i.k,id) A chy; = (k,j,id") A chy,chy; € Epc}, where o is a
function that joins two ids to a unique new id, e.g. idoid’ = (id,id’).
For 1 <m < w, E$C = {(i,j,chy.idochy;.id) | chy = (i,k,id) A chy; =

(k,j,id") A chy,chy; € Epe U (U0 E] L) A {chy,chyy 0 ERcl # ).
For example, the edge id can be a breakdown of all edges (channels)
building it: the id of a PC between i, is (i, j), the id of a level-0 VC
between i, j over k is ((i, k), (k, j)), and the id of a level-m VC consisting
of two channels ch, and ch,, is {ch,.id, ch,.id), where m < w.

The recursion depth w can make E,. and hence the ILP size
exponential. For example, for w = 0, we need to consider (9((;)) = O(n?)
paths of size 2 for constructing all possible level-0 VCs. However, when
considering w = O(n), the size of E; . becomes exponential, as it is
proportional to O(Y;_, (;)) = O2").

Constants, variables, and macros. We will use three sets of integer
variables. The first set includes binary variables that indicate that
transaction, is routed via path P (pathp(trans,)), the second set indicates
the capacity of a virtual channel (Ucikj.capacity), and the third set
indicates whether a virtual channel exists (exists_uc;‘j).

Let P(s,,d;) be a list of all the paths from a sender s, to a re-
ceiver d, for transaction, in the graph (V, Ep- U Ey ). The variable
pathp(trans,) € {0,1} indicates whether transaction, is routed through
path P € P(s,,d,). This set of variables is exponential on the num-
ber of nodes, but our goal here is to design an exact solution to
an NP-complete problem, thus this is expected. The exact solution is
necessary step before designing fast exact solution implementations
or approximations (e.g. ILP relaxations and rounding rules). For a
channel ch;; and transaction,, we define the macro used(ch;;,t) =
Zpep(xpd,)pathP(trans,) - In(ch;;, P), where In(ch;;, P) is a constant
indicating whether ch;; € P. When ch;; is used by a payment route for
transaction,, then used(ch,;,t) is 1 (only one path is used for transaction,
due to constraint C1), and otherwise, it is 0. Let routing_fee(t, P, ch;;),
ch; € {pc[j,vc’.’j.} be the routing fees charged to channel ch;; € P
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for transaction,. We note that routing_fee(t, P,ch; j) is computed as in
Section 2 if ch;; € P and is zero otherwise. Let routing cost.p, =
Z;T=1 ZPEP(S,,d,) routing_fee(t, P, ch;;) - pathp(trans,) be the routing fees
that are charged for the transactions that traverse channel ch;; €
{pcij, vc‘.kj }. )

Paths including nodes in &, i.e., estimated to be corrupted, should
not be used for routing payments, thus we exclude those paths from
UZ;IP(St,d,). For instance, for value privacy, we exclude every path P
such that x € P, for all x € &. Thus, all remaining input paths can be
safely selected by the ILP solver.

We denote the capacity of a virtual channel ”Cik/ € Eyc with
Ucikj.capacit y. We define the virtual channel creation cost as Uc:‘j_
:‘j . vc‘.kj.base_fee + Uc,.kj‘prop_fee . Uc:‘j.capacity,
where exists_vck is a binary variable indicating if Ucikj exists. If vci"j is
used for routing transactions (exists_vcfj =1A Uc:‘j.capacity > 0), then
the creation cost is Uc!‘j.base_fee + Ucf‘j .prop_fee - vc,.kj.capacity. Due to
constraint CS, if vcf; is not used in a payment path, exists_vcf; = 0 and
because vc[.kj.creation_cost appears in the objective function, which we
want to minimize, Uc:‘j.capacity will be reduced to 0 in any minimal
solution. Thus vc{‘j.
path.

creation_cost = exists_vc

creation_cost = 0 when uc["/. is not used in a payment

Objective. The objective is to minimize routing and virtual channel

creation costs: min Y, routing_costy. +y (routing_costvcf/ +

peij€Epc L'Clkj €Eyc

vc,.kj_creation_cost).

Constraints. We define five constraints that collectively express the
invariants:
(C1) At most one path can be used for routing a transaction:
2 pep(s,.d,) Pathp(trans,) < 1,

Vi e [1,T].
(C2) The percentage of successful transactions or transacted volume
should be at least ¢,. € [0,1]. To define this constraint we first define
the following sum ), PEP(s,.dy) pathp(trans,) that is 1 when a transaction
is successful (only one path routes the transaction) and 0 otherwise
(no path is selected). Note that this sum is binary due to C1. We then
express the constraint as follows: Y'_ trans,- ¥, Pep(s,.dy Pathp(trans,) >
Cor Z,T:] trans,, where ¢, is the success volume ratio. In case ¢, is the
minimum percentage of successful transactions, this constraint becomes
the following: ZLI 2 pep(s, d,) Pathp(trans) > ¢, T.
(C3) Virtual and payment channel capacities should be respected. The
load on each channel is the sum of routing costs, transaction amounts,
as well as the VC creation costs and capacities for higher order VCs
in Ey that use the channel (we denote those with vc{x = »(ch‘- i»)s
where « is any channel between j and x in E that can form uc{x). Thus
for every ch;; € E = Epc U Ey¢ we require that routing_cost., +

trans_amount(ch,»j)+ ZM{' .creation_cost+vc{x.capacity)
i

J
L (vc
EEvcive, =(chjj»)* " Tix

< chyj.capacity where trans_amount(ch;;) = Zthl trans, - used(ch;;,1).
If possible by the capacities, C2 forces the ILP solver to set some
pathp(trans,) variables to 1, i.e., some paths are selected for routing
transactions and thus the 0 solution (no successful transaction) is
prohibited for the inputs where a feasible solution exists. Moreover,
if a VC is in a path selected by the ILP solution for routing a payment,
then the routing cost and the transaction amount that are charged to
this VC’s capacity are positive, and thus the VC capacity is positive
and lower bounded by this amount. Since VC capacities are part of
the objective function, any minimal solution will assign the minimal
VC capacity for routing transactions or creating higher order VCs.
Similarly, VC capacity will be 0 for VCs that are not used.

(C4) A VC between nodes i, j over k must exist in both directions (i, k, j)
and (j, k,i): exists_vc:‘j = exisls_vc’.‘,.

(C5) A VC exists, only if it is used for routing a transaction or to
construct a VC of higher recursive order: exists_vc,."j < 2;1 used (vci"j, 1+

. ¢ . k 1 T k
Zvcf,erec(uc,f‘/) exists_vcl, and exists_ve;, > THEl (Z;:| used (v, )+
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Fig. 3. Average execution time to number of nodes, with 5 transactions. On the left we show the execution time for the Gurobi Solver and on the right the execution time for
building the ILP model. Both show exponential growth and the solver started to crash for some graphs with 15 nodes.

i ¢ ky i ¢
) I — ok exists veg, ), where rec(ve;;) includes all vej € Eyc that

are built over vck. The first inequality enforces exists_vck = 0 if the
VC is not used and the second one enforces exists_ucf‘j = 1 if the VC
is used. Note that, exists_vc,."j appears in vcl."j.creation_cost as a factor of
vc:‘j .base_f ee, making the VC creation cost calculation accurate. We give

an example run of the ILP in Section 4.1.

Output. We can determine all created VCs by checking exists_vci"j and
if transaction, is successful by the value of Zpep(s,,d,)P“thP(’m”St) €
{0,1}.

Computational complexity. The ILP has exponentially many variables
and constraints (asymptotically) since it needs to decide which subset
of all paths minimizes the objective. We implemented the ILP using
Python and Gurobi [28]. We were able to run it with at most 15
nodes, 30 channels, and 5 transactions (cf. Section 4.2 and Fig. 3). One
way to make the ILP solution computation more tractable is to restrict
w = O(1) (VC recursion bound) and to limit the number of possible
payment paths per transaction to be polynomially many. While this
restriction can allow us to run the exact algorithm for larger networks,
it limits the creation of VCs for distant nodes.

4.1. ILP example

We apply the ILP to the example graph of Fig. 4 with the same
input. In this example we also assume that the capacities are enough for
routing all transactions and opening the VCs shown in the figure (V' C,,
V C,, V' C3), it is possible to build level-0 and level-1 VCs, the minimum
success volume ratio is 1, and that X = { H, }. We first remove from the
ILP input all paths containing H,. The ILP will output V' C,, VC,, VC; as
the paths used for A-to-B, B-to-C, and A-to-C transactions, respectively.
These payment paths are the cheapest ones for the corresponding
transactions and it is possible to build them given the underlying PC
capacities. Note that any other path would be longer and more costly
due to linear routing fees.

We now check how all constraints are respected. According to C1,
only the payment paths V' C,, VC,, V' C; will be used (pathp(trans,) = 1
only for those paths and 0 for all others). C2 will be satisfied since all
transactions are successful. C3 is satisfied because we assumed there
are enough capacities to build all three VCs and route all transactions.
In fact, since the VC capacities are minimized in the objective function,
they will be just enough to route the input transactions. C4 will force
VC,, VC,, VC; exist in both directions. The first inequality of C5 will
force all VCs in Ey ¢ \ {V'C|,VC,,V C;} to not exist since the right side
of the inequality will be 0, while the second inequality will force V' C|,
V C,, VC; to exist since the right side of the inequality will be a positive
value in (0, 1].

4.2. ILP experiments

We implemented the ILP with Gurobi [28] and experimented with
the size of the graphs it can solve. The github repository of our

implementation and experimental evaluation can be found in [29]. We
experimented both with random graphs and with a custom heuristic
that produces random graphs that resemble the Lightning Network,
i.e. graphs with dense core and sparse boundary. To compute the latter,
we extracted the probability distribution of the percentage of nodes to
which a node is connected to, i.e. d;/N, where d; is the degree of node
i and N is the number of nodes in the Lightning Network snapshot
we used. Then, given the size of the new (smaller) graph, say k, we
sampled k values uniformly at random from that distribution. We fixed
the sample graph edges to nodes ratio to 2:1, and when needed we
added some more edges randomly from the leaf nodes to maintain the
desired characteristics of the LN. Both for random graphs and for the
graphs computed with our heuristic, we computed each case by running
each experiments 25 times and taking the average value. We show our
findings in Fig. 3.

As expected due to the NP-hardness of the studied problem, the
execution time grows exponentially with the number of nodes. The
maximum number of nodes for which the execution was terminating
was 15. While this small number of nodes is expected and far smaller
than the current size of the Lightning Network, the exact algorithm can
still be useful for small sub-networks. One such example can be a sub-
network of Lightning Network’s highly connected (hub) nodes. Those
nodes are vital in transaction routing within a PCN [30] and across
PCNs [31].

5. An efficient greedy algorithm

In the following, we present an efficient greedy algorithm with
low running time while ensuring high-quality channel allocations (see
also the upcoming evaluation in Section 6). Before investigating our
overarching optimization goal of Section 3, where we aim to prevent
any attacks by on-path adversaries and minimize routing fees, our
algorithm will optimize for the following goals individually: preventing

(i) relationship anonymity attacks,
(ii) wormbhole attacks,
(iii) value privacy attacks, and
(iv) minimizing routing fees

Our greedy algorithm is given as input the PCN, the payments that
are to be carried out, and the optimization goal, which can be one of
the optimization goals (i)-(iv). Each payment consists of a sender, a
receiver, some value and the number of times this payment is carried
out (repetition). The algorithm will iterate over the list of payments
and for each payment, try to find the cheapest path(s) in terms of fees
using Dijkstra’s algorithm with enough capacity to route it (abstracted
as generate paths). Then, the algorithm will compute which nodes to
bypass (abstracted as compute_nodes_to_bypass) in order to prevent on-
path adversary attacks (optimization goals (i)—(iii)) or to minimize
routing fees (optimization goal (iv)). Finally, the algorithm constructs
virtual channels to bypass these nodes and conducts the payments



L. Aumayr et al.

(abstracted as construct vcs and conduct payments). This algorithm can
be applied locally, by individual nodes who do not know about any
payments other than their own. We give a high-level pseudocode of
this approach in Algorithm 1.

Algorithm 1 High level greedy algorithm

1: function GreEDY_vc_ALGORITHM(pcn, payments, optimization_goal)

2 for (sender, receiver, value, repetition) in payments do

3 //find cheapest path(s) with capacity to route each repeat payment

4: paths < generate_paths(pcn, sender, receiver, value, repetition)

5 for (path, amount) in paths do

6 //Compute the nodes which to bypass, based on optimiza-
tion_goal

7 nodes_byp. « compute_nodes_to_bypass(path, optimization_goal)
8: //Build virtual channels over these nodes

9 (pcn, new_path) « construct_ves(pen, path, nodes_byp., amount)
10: //Conduct payments and update channel balances

11: pen < conduct_payments(pcn, new_path, amount)

While we will present concrete pseudocode for implementing the
function compute nodes_to_bypass to achieve each optimization goal
(i)-(iv) in Algorithms 5-8 in Section 5.3, we give a short outline here.
For relationship anonymity, it is sufficient to greedily bypass corrupted
nodes adjacent to either the sender or the receiver, along short paths.
To prevent the wormhole attack, corrupted nodes need to be bypassed
such that there are no honest nodes encased by corrupted nodes. For
value privacy, all corrupted nodes need to be bypassed.

Regarding fee optimization, we recall that the fee for opening a VC
of capacity « is the same as routing a payment of amount « via that
path. In our model, this means that it is cheaper to create a VC between
sender and receiver, as soon as we carry out a payment on a path more
than once. In Section 5.4, we show that there is a synergy between
these goals and that opening VCs is beneficial to all goals. Our greedy
algorithm runs efficiently on commodity hardware, as we show now.

5.1. Runtime analysis of greedy algorithm

Our greedy algorithm is efficient enough, such that we can run
the experiments we conduct in Section 6 on a Lightning Network
snapshot on commodity hardware. Dijkstra’s algorithm has a runtime
of O(|E| + |V]log|V]). We need to run Dijkstra’s algorithm to find
the shortest path for each payment because the PCN topology and the
channel capacity change after each payment and VC construction, and
the payment amount is different. Additionally, for each payment, we
need to traverse each edge to (temporarily) remove edges that do not
have enough capacity to route each payment. Finally, identifying which
nodes to bypass, creating the VC, and routing the payment are all linear
in the number of nodes on the payment path. Thus, if T’ is the number
of all payments and D the network diameter when considering only
PCs (and a bound to the maximum length of a payment path), the total
complexity of Algorithm 1 is O(T - (|E| + |V |log |V| + D)).

5.2. Example

To demonstrate our approach, we find the solutions of both the ILP,
i.e., the optimal solution computed by an integer linear program (cf.
Section 4), and the greedy algorithm on a small example graph. The
graph is shown in Fig. 4 and consists of two hub-like nodes H; and
H,, and four client nodes A, B, C and D. We say that each channel
charges a base fee of 1, a proportional fee of 0.001, and has a capacity
of 10k, distributed evenly among both users. The transactions that are
executed have all values of 10; there are three transactions from A to C,
one transaction from A to B, and one transaction from B to C. Further,
we assume that H, is a malicious node. We chose this graph because it
resembles the hub-and-spoke topology of the Lightning Network [32].
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VCs

Fig. 4. Results of the ILP and greedy algorithms run on a small sample graph.

The transaction values and fees are chosen for readability: In the fees
below, the integer part of the number shows the sum of the base fees,
and the fractional part is the sum of the proportional fees.

In Fig. 4, we show the VCs constructed by the greedy approach in
color and note that they are the same as in the ILP (optimal solution).
The optimal solution is to build a virtual channel VC, of capacity 40
between A and B, another virtual channel VC, of capacity 40 between
B and C, and finally a third virtual channel VC; of capacity 30 between
A and C. Finally, these VCs are used for routing the transactions. The
total cost on fees is 3.11, which comes from three times the base fee of 1
(which is 3) and three times the proportional fee (twice for capacity 40,
once for capacity 30), which is around .11 for creating the VCs. Then, all
sender-receiver pairs are directly connected, so there are no additional
routing fees.

In the greedy approach, the same VCs are constructed. Since this
algorithm greedily creates the best VCs for each sender-receiver pair
individually, VC, does not have enough capacity and has to be con-
structed twice. This incurs an extra base fee of value 1. Since the overall
VC capacity does not change, the proportional fee of .11 remains,
totaling 4.11 in fees.

Finally, if we look at the fees of routing these payments without any
s, the total amount spent on fees is 11.11. Since we now need to route
the payment from A to C three times over the path, the intermediaries
charge a base fee each time, resulting in 9 coins alone. Furthermore,
the payments without VCs are prone to value privacy attacks by H,.

5.3. Algorithms

In this section, we give pseudocode definitions for the algorithms
used to conduct our empirical evaluation. Algorithm 2 describes the
algorithm for computing the cost ratio for preventing attacks. Algo-
rithm 4 describes the algorithm for computing the cost ratio for the
goal of optimizing fees. Algorithm 3 is the subprocedure to compute
the corrupted nodes.

Further, we present the algorithms that return the sets of nodes
that need to be bypassed to prevent value privacy attacks (Algorithm
5), relationship anonymity attacks (Algorithm 6), wormhole attacks
(Algorithm 7) and to optimize fees (Algorithm 8).

5.4. Synergy among objectives

From the definitions of the three different attacks and the strategies
of how to prevent them, it becomes apparent that there are syner-
gies among the objectives and some strategies entail others. More
concretely, preventing value privacy attacks also prevents attacks on
relationship anonymity and wormhole attacks. Furthermore, following
our fee optimization algorithm also prevents all three security and
privacy attacks (see Section 6).

On a high level, for a given path p, let V(p), R(p), W (p), F(p) be one
out of potentially multiple sets of nodes that are at least required to be
bypassed for preventing value privacy attacks, relationship anonymity
attacks, and wormhole attacks, as well as for optimizing the fees,
respectively. That is, if these nodes or a superset of them are bypassed,
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Algorithm 2 Compute cost ratio of bypassing corrupted nodes

Algorithm 4 Compute cost ratio for saving fees

1: function compute_cost_raTIO(pen, adv_budget, val range, n, repeti-
tion)
2: penve « copy(pen) //Copy the PCN graph for the VC
simulation
3: ¢ < compute_corrupted_nodes(pcn, adv_budget) //compute the
most profitable corrupted nodes to a given adversary budget
4: payments « generate_payments(pcn, val range, n, repetition)
//generates n random payments with a random value in val_range
in a PCN graph
5 establish_cost_vc < 0
6 route_cost_vc « 0
7: unsuccessful_ve « 0
8 route_cost_pcn « 0
9: unsuccessful_pcn « 0
10: for (path, value, repetition) in payments do

11: cost, new_path « bypass_corrupted_nodes(c, path, value,
repetition, pcn_vc)

12: establish_cost_vc < establish_cost_vc + cost

13: for i < 0;i < repetition ;i + + do

14: success, fees ve « conduct payment(pcn_ve, new_path,
value) //executes the payment over the given path

15: if success then

16: route_cost_vc « route_cost_vc + fees_vc

17: else

18: unsuccessful_pcn « unsuccessful_pen + 1

19: success, fees_pcn « conduct_payment(pcn, path, value)
//executes the payment over the given path

20: if success then

21: route_cost_pcn « route_cost_pcn + fees_pcn

22: else

23: unsuccessful_pcn « unsuccessful_pen + 1

24: return establish_cost_vc + route_cost_vc

route_cost_pen

Algorithm 3 Compute corrupted nodes

1: function compuTE_CORRUPTED_NODES(pcn, adv_budget)
2: payments « generate_payments(pcn, val range, n, repetition)
//generates n random payments

3: node_map<node,int> < {}

4: for (path, value, repetition) in payments do

5: for node in path do

6: node_map[node] « node_map[node]+1

7: cost_benefit_ map<node,int> « {}

8: for node in node_map.keys() do

9: cost_benefit_ map[node] « m%
10: corrupted_nodes « []
11: for (node,cost) in cost_benefit map.sort_by_value(desc) do
12: if adv_budget > cost(node) then
13: corrupted_nodes « corrupted_nodes.append(node)
14: adv_budget < adv_budget - cost(node)
15: return corrupted_nodes

the corresponding attack is prevented. We define these sets formally
as the return values of Algorithm in Section 5.3. Since V(p), F(p)
contain (at least) all adversarial nodes, optimizing for these objectives
also prevents any other attack relying on on-path adversaries, such as
denial-of-service attacks [10].

Theorem 2.
W (p).

For any path p, F(p) 2 V(p) 2 R(p) and F(p) 2 V(p) 2

1: function compuTE_cost_RATIO(pCR, Val range, n, repetition)

2: penve < copy(pen) //Copy the PCN graph for the VC
simulation

3: payments « generate_payments(pcn, val range, n, repetition)
//generates n random payments with a random value in val_range
in a PCN graph

4: establish_cost_vc < 0
5: route_cost_vc « 0
6: unsuccessful_ve « 0
7: route_cost_pcn « 0
8: unsuccessful_pcn < 0
9: for (path, value, repetition) in payments do
10: cost, new_path « open_profitable_vcs(c, path, value, repeti-
tion, pcn_vc)
11: establish_cost_vc « establish_cost_vc + cost
12: for i < 0;i < repetition ;i + + do
13: success, fees_ve < conduct_payment(pcn_ve, new_path,
value) //executes the payment over the given path
14: if success then
15: route_cost_vc « route_cost_vc + fees_vc
16: else
17: unsuccessful_pcn « unsuccessful_pcn + 1
18: success, fees_pcn « conduct_payment(pcn, path, value)
//executes the payment over the given path
19: if success then
20: route_cost_pcn « route_cost_pcn + fees_pcn
21: else
22: unsuccessful_pcn « unsuccessful pen + 1
23: return establish_cost_vc + route_cost_vc

route_cost_pcn

Algorithm 5 Generating set of nodes to bypass for preventing VP

1: function compute_ypass_Nobes_VP(path, corrupted_nodes)
2 nodes_vp_path « {}

3 for node in path do

4: if node in corrupted_nodes then

5: nodes_vp_path « nodes_vp_path U {node}

6.

return nodes_vp_path

Algorithm 6 Generating set of nodes to bypass for preventing RA

1: function computE_Byrass_NopEs_RA(path, corrupted_nodes)

2: Let nodes_ra_path]l be the set of connected nodes in cor-
rupted_nodes adjacent to the sender path[0]
3: Let nodes_ra_pathr be the set of connected nodes in cor-

rupted_nodes adjacent to the receiver path[length(path)-1]

4: if length(nodes_ra_path_1) < length(nodes_ra_path_r) then
5: return nodes_ra_path_l
6: return nodes_ra_path_r

Proof. From the definitions of Algorithms 5-8, we observe the fol-
lowing. V(p) is the set containing all corrupted nodes on the path p.
Intuitively, if it is not, then there is a corrupted node left on the path
which is not bypassed, thus value privacy attacks are not prevented.
The two sets R(p) and W (p) do not have any honest nodes by definition
(honest nodes do not need to be bypassed). R(p) and W (p) contain thus
only malicious nodes, but they do not contain all the malicious nodes
of path p. Consider for example path s —¢; —h; —c; —hy —c3 —r (¢;
representing corrupted and A; honest nodes), where ¢, is in V(p), but
not in R(p). It follows that V' (p) 2 R(p) and V (p) 2 W (p).
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Algorithm 7 Generating set of nodes to bypass for preventing WH

1: function compute_pyrass_Nobes WH(path, corrupted_nodes)
2: nodes_wh_path « {}

3: for while there exist honest nodes in path that is surrounded by
corrupted nodes do
4: Let hon_nodes be one of these honest nodes surrounded by
corrupted nodes
5: Let wh_] be the set of connected nodes in corrupted_nodes
adjacent to the left of hon_nodes
6: Let wh_r be the set of connected nodes in corrupted_nodes
adjacent to the right of hon_nodes
7: if length(wh_l) < length(wh_r) then
8: Remove wh_I from path
9: Add wh_] to nodes_wh_path
10: else
11: Remove wh_r from path
12: Add wh_r to nodes_wh_path
> Note that one could also bypass hon_nodes, but we do
not for simplicity here
13: return nodes_wh_path

Algorithm 8 Generating set of nodes to bypass for optimizing fees

1: function optivize_rees(path, corrupted_nodes)

2: nodes_fees_path « path

3: Remove first and last element from nodes_fees_path
4: return nodes_fees_path

It remains to show that F(p) 2 V(p). For this, we merely observe
that the set F(p) contains every node on the path p, which includes
every corrupted node, which is V(p). [

6. Empirical evaluation

We conducted extensive simulations to shed light on the optimized
deployment of virtual channels, as well as to study the performance of
our greedy algorithm (Section 5).

6.1. Input data preparation and methodology

Graph model and data. Recalling our model in Section 3, let ¢ :=
(P, & = €,UE,) be our VPCN graph with V the set of nodes, &, the set of
PCs and &, (initially @) the set of PCs. We conduct our experiments on a
snapshot of the Lightning Network (LN) from March 4, 2021 [33]. The
(largest connected component of the) graph contains 33k channels and
8k nodes that are part of at least one channel. For each channel, we read
the capacity, the base, and the relative fee. The total network capacity
is 1,167.4 BTC, the average base fee is 3,165 msat (millisatoshi), the
average relative fee rate is 32,417 millionth of the satoshis transferred
(one BTC is 100M satoshis). Due to the nature of PCNs the individual
balance of each user remains private, a common limitation for works
investigating PCNs. We assume that each channel capacity is initially
evenly distributed between both nodes.

Payments. For payments we sample r_pay = 100 random sender—
receiver pairs in the graph and uniform payment amounts val € [1,10]
satoshis, modeling a micro-payment setting as the average channel
capacity is 2.6M satoshis.

Constructing VCs. We create VCs on top of the PCN, both for direct
payments between endpoints and for routing other payments through
the VCs. Users can charge fees (i) for establishing the VC if they are
intermediaries or (ii) for routing payments through the VC if they are
endpoints. There exists no fee model for VCs in practice. Therefore, we
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interpret the base fee as what a hop charges for actively participating
in the protocol, and the fee rate as what a hop charges for locking
up « coins, i.e., the opportunity cost of that node. We model the
establishment fee of a VC with capacity a to be the same as routing
a payment of a coins via that path (see Section 3). Our solution is
modular, other fee models can be used, and we discuss other possible
fee models in Section 7. If a VC is established, its routing fee is set to
the fee of the initiating endpoint’s underlying channel.

Countermeasures. Honest nodes assume there is an attacker with an es-
timated budget who corrupts nodes according to an estimated strategy.
In particular, as discussed in Section 3, we model an adaptive adversary
who selects nodes with the best cost-benefit ratio after observing
the honest nodes’ countermeasures. The honest nodes preemptively
identify a set X of high-value target nodes, representing those that
would be most profitable for the adversary to corrupt in the absence
of countermeasures. We formally define how X is computed. In order
to corrupt a node v € V, we say an attacker needs to spend the
money that this node v € ¥ has locked up in its neighboring channels,
i.e., capacity_locked(v) = ZweV\(u)(Pcmw)'ﬂl)'

The assumption that an attacker corrupts nodes that are most bene-
ficial to it, while being cheap to place, is based on previous works [22—
25]. We parameterize the estimated adversary budget adv_budget as
a percentage of the total capacity in all edges of ¢. The absolute
adversary capacity is adv_capacity := adv_bud get-total_network_capacity.
To choose the best-placed nodes, the adversary computes random
payment paths and selects those nodes that appear most often on these
paths. Note that no payment is actually carried out, only the paths
are computed to find the most used nodes. Let P be a list of num_pay
(e.g., 500) randomly chosen payment paths (i.e., paths of connected
edges) in G. For every node v € V, we let occ(v) be the number of their
occurrence in P. We define the following cost-benefit ratio for every
node v as follows: cost_bene fit(v) := mpﬂﬂy‘iﬁt%"g’;ﬂi TR

Let [ be a list of every node v € V sorted by their cost-benefit ratio
in descending order. We determine the list of all corrupted nodes &
iterating over / and adding those for which the following condition
holds after adding them: Y, s(capacity_locked(n)) < adv_budget

Repeating payments needed for VCs to be cost efficient. If a VC is used
only once, it will never cost fewer fees than routing a payment directly
through the underlying PCs. Therefore, we investigate the effect of
conducting our r_pay payments multiple times.

Measuring fees, security and privacy. The cost of routing the r_pay
payments through the PCN without PCs is denoted as route_pcn. The
cost of establishing the PCs to prevent a certain type of attack is denoted
as establish_vc. The routing cost when using the PCs is route_vc. We are
interested in how the following ratio progresses as we increase the num-
ber of times that payments are repeated: fee_ratio := W

We further measure how many payment paths are prone to a certain
attack, with and without the VCs.

6.2. Results

We first study the effect that opening VCs while optimizing for
each individual goal has on the other goals and on the fees. We fix
an adversary budget and corrupt the nodes according to our corrup-
tion model. For each payment, we then use VCs (i) to optimize for
security or privacy by preventing one of these attacks completely if
that payment path is prone to that attack or (ii) to optimize for fees,
both according to the algorithms outlined in Section 5. Finally, we
measure the impact this has on the two other attacks as well as on the
fees. The full algorithm pseudocode can be found in Algorithms 5-8 in
Section 5.3.

In our experiment, we investigate value privacy, relationship
anonymity, and wormhole attacks. For these experiments we need to
choose an adversary budget that results in meaningful security threats
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Paths prone to (PCN; VC)
Optimizing # VC Avg VC length | VP attacks | RA atk. | WH atk.
VP 126 3.1 97; 0 21; 0 35; 0
RA 21 3.6 97; 84 21; 0 35; 28
WH 33 2.2 97; 97 21; 13 35; 0
Fees 100 5.6 97; 0 21; 0 35; 0

Fig. 6. How many paths are prone to different attacks when optimizing for different goals for an adversary budget of 0.05.

from all these attacks. By meaningful we mean that some of our paths
(not 0 and not all of them) are susceptible to each of the three different
attacks. For this, we need to compute the percentage of paths that are
prone to which attack for different adversary budgets. We expand on
this in Section 6.3 and end up choosing 1, 2 and 5%.

Q1: How does preventing one attack affect the money spent on
fees? We first measure the cost of routing payments through the PCN
without VCs as a baseline. Then, we construct VCs, optimizing for
value privacy, relationship anonymity, and wormhole attacks. After
constructing the VCs, we measure the cost again. We measure the ratio
according to our definition in Section 6.1. The VCs are constructed
according to the corrupted nodes on the payment paths. Since these
paths are randomly chosen and thus different for every run, we conduct
each experiment 100 times and compute the average, with the results
shown in Fig. 5. We observe that for all three budgets, the cost ratio
starts out around 1 for one payment. As the number of repeating
payments goes up, the cost ratio decreases because the VCs are more
effective. Additionally, the more nodes are corrupted and need to
be bypassed, the more VCs are constructed and the better this ratio
becomes. For relationship anonymity, this ratio goes down to 0.88, for
wormhole attack to 0.95, for value privacy to 0.68.

We observe that bypassing nodes to prevent each attack has a
positive effect on the fee ratio if the payments are repeated more than
once. The best effect can be seen in preventing value privacy attacks.
Also, the ratio goes down more steeply for the first 10 payments,
afterwards the effect is more flat.

Q2: How does optimizing for fees affect the money spent on fees?
Similar to when optimizing for security and privacy goals, we observe
a steep decline in the ratio of money spent for fees when constructing
VCs to the money spent for fees if we do not construct VCs. The decline
slows down later. This ratio halves if there are 2 sequential payments
and continues to drop to 0.04 for 50, after which it is almost flat.
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Q3: How do the different optimization strategies affect security
and privacy? We already compared the effect of the strategies op-
timizing the different goals on the fees. Now we want to evaluate
the effect that they have on the security and privacy goals. For this,
we measure how many of our payment paths are prone to each of
the different attacks. Then we construct the VCs optimizing each goal
and measure how many paths are prone then. In Fig. 6 we show for
each optimization strategy, (i) how many VCs are constructed, (ii)
the average length of each VC, and (iii) for each attack type two
values x;y, where x is the percentage of paths prone to the attack
before building VCs and y is the percentage of paths prone to the
attack after building VCs. We notice that optimizing for value privacy
also prevents the attacks on relationship anonymity and the wormhole
attack. Furthermore, optimizing for fees prevents all three attacks we
investigate. These results are in line with Section 5.4.

6.3. Computing the percentage of prone paths for different adversary bud-
gets

We choose different adversary budgets ranging from 0.01% to 80%
of the PCN capacity and check, how many of our payments are prone
to the different attacks. We plot our results in Fig. 7. We observe that
value privacy attack is the cheapest, only 0.1% yields more than half
of the payments being prone. Note that an adversary budget of 0.1%
of the total capacity is still significant and requires in our data the
staking of roughly 1.2 BTC. Achieving the wormhole attack is more
expensive and the effectiveness peaks at around 5% (58.4 BTC in our
data) as adversary budget, before going down again. Recall that in a
wormbhole attack, the adversary surrounds honest intermediaries on a
payment path with two corrupted nodes and then steals their fees. The
effectiveness of this attack decreases when the adversary’s budget is too
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high because the attack requires honest nodes between corrupted nodes
to extract fees. If too many nodes are corrupted, there are fewer honest
intermediaries left on payment paths, limiting the adversary’s ability
to steal fees. The most expensive attack to mount for our corruption
strategy is relationship anonymity. Only after 10% adversary budget it
affects more paths than wormhole attack.

Note that an adversary can use its corrupted nodes to carry out any
or all of these attacks. Note that there might exist other strategies for
corrupting nodes that are more effective for relationship anonymity and
wormbhole attacks (cf. [22]). From these results we choose 1, 2 and 5
percent as the adversary budget we want to investigate further, as with
these budgets there are some (and not all) paths that are prone to each
of the attacks and to be able to compare them more easily.

7. Discussion

Fair establishment fee model for intermediaries. VCs are not used yet in
practice, and thus, we do not know how fees are going to be charged. In
Section 6, we assumed that the fee of opening a VC with some capacity
a is the same as routing the payment of the same value through this
path. Of course, other establishment fee models are possible.

First, in order to be fair to both the endpoints and intermediaries,
VCs should have a limited lifespan. Remember that VCs require in-
termediaries to lock up some funds that they cannot use for other
payments for which they would otherwise be able to charge fees. Note
that this is different to PCs, where it is not problematic for two users
to lock up their funds potentially indefinitely, as they do it only for
their own funds. In other words, the fees that the intermediaries receive
have to be proportionate to the time for which the money is locked up,
i.e., the lifespan of a VC. Since channel capacities are finite, this implies
that the lifespan is also finite.

The way we previously modeled fees is that VC creation fees are
independent of the lifespan of a channel. In fact, one could argue that
the fees for routing payments should then also be dependent on the
collateral timeout, which, in practice, it is not. However, it is hard to
model this in our experiments, as due to the nature of the PCN, it is
unknown how many payments are processed in which time frames. For
this reason, we chose our simplified fee model.

In order for VCs to still be profitable in this fairer fee model, one
would have to find a number k of payment repetitions (for each of our n
payments), a lifetime of the VC ¢, the base fee f, the fee p proportional
to the amount and a fee v that is proportional to the lifetime and
the capacity of the VC, such that the inequality Y, (3, (f + a - p)) >
Y,(f+k-a-p+k-a-v-1) holds.
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This simplifies to the following: (k —1)- f > k- a - v -t. We note
that this inequality is not exact, as the forwarded amount gets smaller
when intermediaries already deduct fees. Nonetheless, the investigation
of this or other fee models is interesting future work.

Utilizing bidirectionality of VCs. The greedy algorithms create virtual
channels with transactions in one direction in mind. This means that on
a path where several transactions are executed, the capacity is chosen
as the sum of the amount of these transactions. In reality, the capacity
can be lower if there are transactions in the other direction in the same
time frame. Since we do not model any timing as mentioned above, we
also do not capture this.

A practical scenario where this is useful might be where two pay-
ment providers route a substantial amount of payments through a hub
back and forth. Note that the sum of all their payments can be very
large, but since they send it back and forth the capacity of the virtual
channel can be smaller.

Adversaries agreeing to open VCs. One could argue that an adversary
trying to conduct an on-path attack would not agree to create a VC be-
cause the adversary would hinder its own attack capabilities. However,
refusal to participate in creating a VC will be noticed by the sender.
Thus, a sender concerned with security and privacy can always prevent
such an attack by finding an alternative path.

Blocking capacity with VC. If a VC is used only sparsely, then it might
block the capacity of the underlying payment channels. Thus, it should
either be used for routing many payments or be open only for a short
amount of time.

VC routing fee. Similar to the establishment fee, it is unclear what fee
the users of a virtual channel will charge in practice for letting other
users route their payments through the virtual channel. In this work,
we assume this fee to be the same as fees that are charged for one of
the underlying channels.

Privacy of VC creation. Following our strategies, we aim to prevent the
on-chain privacy attacks on value privacy and relationship anonymity
for payments. However, since opening or closing a virtual channel is
an operation in which potentially corrupted intermediaries participate,
some information might be leaked while opening or closing a virtual
channel.

We assume that VCs are used in the same way as payment channels,
e.g., for routing payments through them. To make other users aware of
accepting payment being routed through channels, channels need to
be announced publicly. Therefore, we disregard privacy concerns for
VC opening/closing and instead assume that endpoints and capacity of
VCs are announced publicly, thereby already leaking the information
on endpoints and capacity. However, it is important to note that the
leakage from VC setup is significantly less fine-grained than the direct
exposure of payment details: while an adversary may learn that a
VC has been established, it does not reveal when or how frequently
payments occur within it. Future research could explore techniques to
further mitigate privacy leakage during VC setup while maintaining
routing functionality.

Using VCs for routing. In our evaluation of the greedy algorithm, we
consider the payments that are repeated once or multiple times and
conclude that if payments are conducted more than once along a path,
opening a direct VC is the best strategy. However, for payments that
are conducted only once, the VCs that were created in this fashion can
be used for having shorter paths, which means having fewer fees and
being less at risk for attacks due to having fewer intermediaries.

Adversarial budget and repeated VC-opening. Our model assumes an
adversary with a fixed budget that is fully deployed at once. However,
a more sophisticated analysis could consider a multi-round setting,
where the adversary distributes its budget dynamically as honest nodes
open new virtual channels (VCs). A promising future direction is to
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formalize this as a VC-opening game in a repeated, round-based setting,
where both honest nodes and the adversary iteratively adjust their
actions. While our work provides a step towards understanding these
interactions, developing a model for a multi-round VC-opening setting,
with adaptive strategies, and the adversary optimally distributing its
budget over time remains an open challenge for future research.

Real-world adversaries and deployment challenges. Real-world deploy-
ment introduces challenges such as network congestion, fluctuating
liquidity, and limited user adoption. These can be modeled by non-
bypassable nodes (low adoption) and edges with payment limits (con-
gestion, fluctuating liquidity). Additionally, real-world adversaries may
exhibit long-term strategic behavior, try to manipulate routing, perform
probing [34] or other side-channel attacks not captured in our model.
Exploring VC-opening strategies under such constraints and adversarial
models remains an important direction for future research.

8. Related work

Over the last years, significant research efforts have been devoted
to the design and analysis of efficient and secure payment channel
networks [35-37]. Motivated by topology-based attacks [38], the pos-
sibility of route hijacking [10] as well as vulnerabilities, e.g., related
to the privacy [18,19,23] and anonymity of PCN users [39,40], to
just name a few examples, much existing literature revolves around
network connectivity [38], the payment routing system [5,10], as well
as privacy aspects, e.g., of route discovery [18,30].

To ensure anonymity, payment-channel networks usually rely on
privacy-enhancing cryptographic schemes (e.g., onion routing) to im-
plement the 2-phase commit payment operation. PrivPay [41], Silen-
tWhispers [42], Fulgor/Rayo [5], AMHL [3] provide privacy-preserving
multi-hop payment protocols which come with formal guarantees.
SpeedyMurmurs [43] formalizes and addresses concrete notions of pri-
vacy in the context of payment routing. SpiderNetwork [44] improves
the effectiveness of source routing in a dynamic PCN by favoring
routes that minimize the balance difference using on-chain rebalancing.
A privacy-preserving approach to discovering low-cost routes was
recently presented by Pietrzak et al. [30]. Blitz [4] is a 1-phase payment
scheme, which, similar to AMHL, provides security against wormhole
attacks [3]. None of the payment-based approaches, however, hide the
value of the payment to intermediaries or decrease routing fees.

Therefore, an intriguing approach to improving the security and
efficiency of payment channel networks is the use of virtual channels.
These have been introduced by Dziembowski et al. [11] to overcome
the requirement that intermediaries along a channel route need to be
online (a concern also considered in [45,46]) and explicitly confirm all
mediated transactions. Recent work has extended the deployment scope
of virtual channels, introducing efficient protocols that are compatible
with Bitcoin and other popular cryptocurrencies [12-14].

While existing literature on virtual channels revolved around pro-
tocol design aspects, to the best of our knowledge, our paper is the
first to investigate the problem of optimizing the allocation of virtual
channels in order to improve the security and efficiency of PCNs. In
parallel work [47], Khamis and Rottenstreich studied how to amortize
the creation of new channels through reduced routing costs, however,
without accounting for security aspects.

9. Conclusion

Motivated by the potential benefits of virtual channels to reduce
transaction fee costs as well as to improve security and privacy guar-
antees in PCNs, we presented a first systematic study of the virtual
channel setup problem. We have shown that the problem can be
formulated as an optimization problem and proved that the problem is
NP-hard. We presented a fast greedy algorithm and using simulations
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on the Lightning Network, we confirmed the benefits of our optimiza-
tion approach. We also modeled the VPCN cost optimization problem
as an integer linear program (ILP) for obtaining exact solutions.

We believe that our work opens several interesting avenues for
future research, such as studying different fee models, the effect of tim-
ing, i.e., adding time frames in which transactions are to be executed,
VC lifetimes, and more dynamic adversarial strategies. In particular,
further exploration is needed on how an adversary can optimally adapt
to the countermeasures proposed in this work and how honest nodes
can refine their defenses accordingly.
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