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Kurzfassung

Die Einführung von Machine Learning in Bereichen wie Gesundheitswesen, Biometrie
und industrieller Automatisierung wirft Bedenken hinsichtlich des Datenschutzes auf.
Secure Multi-Party Computation (SMPC) bietet einen interessanten Ansatz, der daten-
schutzwahrende Berechnungen auf sensiblen Daten ermöglicht. Diese Arbeit untersucht
die Praxistauglichkeit von SMPC-basierter Machine-Learning-Inferenz, indem SMPC-
Frameworks evaluiert, neuronale Netzwerkarchitekturen benchmarkt und zwei Fallstudien
implementiert werden. Zunächst werden drei SMPC-Frameworks analysiert und mitein-
ander verglichen. Auf Grundlage dieses Vergleichs wird SecretFlow-SPU aufgrund seiner
benutzerfreundlichen Unterstützung für weitere Experimente ausgewählt. Als Nächstes
wird ein systematischer Benchmark dreier unterschiedlicher neuronaler Netzwerkarchi-
tekturen durchgeführt, um den Inferenz-Overhead sowie den Zusammenhang zwischen
der Anzahl der Parameter und der Schichten, der diesen Overhead beeinflusst, zu un-
tersuchen. Abschließend werden zwei SMPC-Anwendungsfälle vorgestellt: zum einen
eine datenschutzwahrende Gesichtsverifikation und zum anderen eine sichere Energie-
verbrauchsprognose für Industrieroboter. Beide Fallstudien zeigen, dass SMPC einen
erheblichen Inferenz-Overhead einführt, insbesondere bei der Gesichtsverifikation, die
größere Modelle für gute Ergebnisse erfordert. Gleichzeitig zeigt sich jedoch, dass Modelle,
die für ressourcenbeschränkte Geräte optimiert sind, auch im SMPC-Kontext deutlich
profitieren. Darüber hinaus wurde der Einfluss von Netzwerkbedingungen wie Latenz
und Paketverlust untersucht.
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Abstract

The adoption of machine learning in domains such as healthcare, biometrics and industrial
automation raises concerns around data privacy. Secure Multi-Party Computation offers
an interesting approach that enables privacy-preserving computation on sensitive data.
This thesis investigates the practicality of SMPC-based machine learning inference, by
evaluating SMPC frameworks, benchmarking neural network architectures and imple-
menting two case studies. Firstly three SMPC frameworks were reviewed and compared.
Based on this comparison Secretflow-SPU is selected for further experimentation due
to its user-friendly support. Second, a systematic benchmark of three different neural
network architectures is conducted, to show the inference overhead and the relationship
between the number of parameters and layers that influences this overhead. Finally, two
SMPC use cases are presented. One is a privacy-preserving face verification and the
second is a secure energy prediction for industrial robots. Both case studies show that
SMPC introduces a significant inference overhead, especially for face verification that
requires a more larger models to perform well. But it also shows that using models that
are optimized for resource-constrained devices benefits significantly in SMPC as well.
In addition the effect of network conditions such as network delay and packet loss was
examined as well.
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CHAPTER 1
Introduction

The rapid advancement of machine learning technologies has revolutionized numerous
aspects of our daily lives, from healthcare diagnostics to financial services, forecasting
services, as well as personal assistants and chatbots like ChatGPT, etc. These systems
range from very simple to sophisticated, the more sophisticated ones requiring large
amounts of data to properly improve. A big portion of the valuable data comes from a
highly sensitive source. Medical records that could advance diagnostic capabilities, bio-
metric data that could enhance security systems, and proprietary companies’ information
all fall into this category of sensitive yet valuable information.
Traditional machine learning approaches present organizations with a seemingly binary
choice: either work with raw data and accept the associated privacy risks, or implement
privacy measures that often significantly degrade the utility of the data and the resulting
models. The techniques range from data preprocessing in the form of privacy-preserving
data publishing, synthetic data, to different secure computation techniques. This dilemma
has become particularly acute in fields such as healthcare, where the potential benefits
of advanced machine learning models must be carefully balanced against strict privacy
requirements. Similarly, in industrial applications, companies often hesitate to leverage
machine learning fully due to concerns about protecting proprietary data and trade
secrets.
Secure Multi-Party Computation (SMPC) is a promising solution to this problem. Nu-
merous frameworks and optimization strategies have been developed and tested in recent
years, showing promising results that can be applicable in various fields. As most of the
recent solutions focus mainly on optimization of inference of Large Language Models,
these optimization strategies have not been applied to other fields. Particularly, the
domains of Robotics and Biometrics present compelling yet unexplored use cases for
SMPC implementation. Biometrics represents a classical Machine Learning problem of
computer vision, and this field is especially relevant due to its inherent need to process
highly sensitive personal identifiers, while robotics applications represent a problem of
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1. Introduction

time series analysis and often involve proprietary motion planning and control algorithms
that could potentially require privacy-preserving computation. Concrete use-case studies
of SMPC in these fields would serve as practical reference architectures for computer
vision and time series analysis, lowering the barrier to entry for domain experts from
these fields considering privacy-preserving approaches. This thesis aims to show the
maturity of SMPC on these two representative use cases. By demonstrating real-world
performance metrics and implementation strategies specific to robotics and biometrics ap-
plications, this research aims to bridge the gap between theoretical SMPC capabilities and
domain-specific requirements, potentially accelerating the adoption of privacy-preserving
techniques in these communities.

1.1 Research Questions
The main research question this thesis aims to answer is "To what extent can current
SMPC frameworks effectively enable privacy-preserving machine learning inference across
different application domains while maintaining acceptable performance and accuracy?".
To help answer this question, three distinct specific research questions have been laid out.

1. What are the key architectural differences, security guarantees, and practical
implementation considerations across the current SMPC frameworks for machine
learning?

2. How do different neural network configurations affect the inference time under
SMPC?

3. How effectively can an SMPC framework be implemented in privacy-sensitive appli-
cations compared to their non-encrypted implementation through two representative
case studies within biometrics and robotics?

By answering these three questions, an informed answer can be made about the main
research question.

1.2 Approaches to privacy
In addressing privacy concerns in machine learning, two primary approaches have emerged:
privacy-preserving data publishing and privacy-preserving computation. Each approach
offers distinct strategies for protecting sensitive information.

1.2.1 Privacy-Preserving Data Publishing
Privacy-preserving data publishing (PPDP) focuses on transforming raw data into
privacy-protected versions before releasing or sharing them. The fundamental principle
behind PPDP is to modify the original dataset in ways that obscure individual identities
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1.2. Approaches to privacy

or sensitive attributes while preserving statistical properties necessary for meaningful
analysis. Key techniques in this domain include:

• k-anonymity: This technique ensures that each record in a dataset is indistin-
guishable from at least k − 1 other records with respect to certain quasi-identifier
attributes[1]. Through generalization, k-anonymity reduces the granularity of data
representation, thereby preventing the unique identification of individuals.

• Differential Privacy: Unlike k-anonymity, differential privacy[2] provides formal
mathematical guarantees about the privacy risk of participating in a dataset. It
functions by adding calibrated noise to query results or data transformations,
ensuring that the presence or absence of any single individual has a limited impact
on the output. The privacy guarantee is controlled by a parameter ϵ, where smaller
values indicate stronger privacy protection.

• Synthetic Data Generation: This approach involves creating artificial datasets
that maintain the statistical properties and relationships of the original data
without containing actual records from real individuals[3]. Advanced methods
leverage generative models, such as Generative Adversarial Networks or Variational
Autoencoders, to produce synthetic records that still maintain complex patterns
while eliminating the direct privacy risks associated with real data.

While PPDP techniques offer advantages in terms of one-time processing and compatibility
with existing analysis tools, they often involve irrevocable transformations of data that
may reduce utility for certain applications when high precision is required.

1.2.2 Privacy-Preserving Computation
Privacy-preserving computation (PPC) takes a different approach by protecting data
during the computation process rather than modifying the data itself. These techniques
enable computations on sensitive data while ensuring that neither the input data nor
intermediate results are exposed to unauthorized parties. Key methodologies in this
domain include:

• Secure Multi-Party Computation (SMPC): SMPC protocols allow multiple
parties to jointly compute functions over their private inputs without revealing
those inputs to other participants [4]. Through cryptographic techniques such
as secret sharing, SMPC enables collaborative computation while maintaining
the confidentiality of each party’s data. SMPC typically introduces significant
computational overhead compared to non-secure processing.

• Homomorphic Encryption (HE): HE schemes enable computations to be per-
formed directly on encrypted data without prior decryption [5]. The results of these
computations, when decrypted, match the results that would have been obtained by
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performing the same operations on the unencrypted data. While fully homomorphic
encryption supports arbitrary computations, practical implementations often use
partially homomorphic schemes that support specific operations (such as addition
or multiplication) to improve efficiency.

Privacy-preserving computation techniques offer the advantage of maintaining data in
its original form, potentially preserving more utility than data publishing approaches.
However, they typically produce more computational and communicational overhead.

1.2.3 Privacy-preserving machine learning
There has been a substantial amount of work done on privacy-preserving machine learning
in recent years.

In [6], a privacy-preserving machine learning technique based on SMPC was proposed
that trains on genomic data from different stakeholders who consider the data sensitive
without revealing anything to the participating parties except the final trained model.

In [7], an attempt at speeding up the transformer inference is proposed. In order to
mitigate the exponentiation bottleneck in transformers, a different variant is employed,
which replaces the sigmoid function with ReLU activations, which represents a more
SMPC-friendly non-linearity. Along with an approximation technique for attention
matrices in transformers, the attention layer can be processed in a faster time. The
results show that for the translation task of an output sequence of length 64, the
computation takes 19 minutes in the LAN environment.

In [8], a framework MPCFormer is proposed for fast Transformer model inference. The
main contributions lie in two approximations of GeLU and softmax activation functions
and a later Knowledge Distillation process that transforms knowledge from the full model
to the approximated one, enabling aggressive approximations in the first step, while
preserving the quality of the original models after approximations.

In [9], a framework PUMA is proposed to enable fast and secure Transformer model
inference. The core of the design lies in an accurate approximation of GeLU and softmax
functions, which normally significantly bottleneck the inference speed of models. Another
contribution is a new Embedding and LayerNorm layer SMPC protocols that keep the
desired functionality intact. PUMA claims to have a two times faster inference speed
than the state-of-the-art and can evaluate LLaMA-7B in around 5 minutes to generate 1
token. PUMA internally uses the Secretflow-SPU framework.

1.3 Methodology
The methodology of this thesis is threefold. Firstly, a review of three distinct SMPC
frameworks will be made. Their architectures and supported protocols will be examined,
as well as their implementation details and documentation. An examination of their
maturity as well as usage in other projects will be highlighted as well.
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Secondly, an evaluation of three different neural network architectures will be made,
with different configurations regarding their width and height. The inference time under
SMPC will be evaluated.

Thirdly, an implementation and evaluation of one of the selected frameworks will be
performed on two use-case studies, which highlight two different and widely used areas
of Machine Learning, namely computer vision and time-series analysis. The ease of
integration, benchmarks, and other problems during the development will be highlighted
as well.

This thesis is structured as follows. In Chapter 2, a preliminary knowledge needed for
understanding the basic concepts discussed in this thesis will be presented. In Chapter 3,
a comparison and analysis of three popular SMPC frameworks is made, helping answer
the first research question. In Chapter 4, generic network benchmarks will be conducted,
helping answer the second research question. In Chapter 5, two use-case studies are
presented that help answer the third research question. The thesis concludes in Chapter 6.
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CHAPTER 2
Preliminaries

In this chapter, the two most important concepts for this thesis will be presented. First,
an introduction to Secure Multi-Party Computation will be stated, followed by an
introduction to deep neural networks.

2.1 Secure Multi-Party Computation
Secure Multi-Party Computation (SMPC) is a collection of cryptographic techniques
that enable multiple parties to jointly compute a function over their private data without
revealing that data to one another [10]. The goal is to achieve the same result of the
function as if all data had been pooled together and processed by a trusted central party,
but without ever needing to rely on such a trusted party. Formally, SMPC considers
a scenario in which n parties P1, P2, ..., Pn each hold a private input xi. The goal is to
compute the function 2.1, such that the result y is revealed to the predetermined party
or parties and nothing else is exposed.

y ← f(x1, x2, ..., xn) (2.1)

2.1.1 Security models
The role of SMPC protocols is to ensure the privacy and integrity of the underlying
computation. Therefore, the protocols are often described based on the security model
they support.

Most often, this security is described based on the adversary types of the corrupted
parties. Generally, these are divided into three categories:

• Semi-honest adversaries (sometimes called Honest-but-curious) are corrupted
nodes that correctly follow the computation. Their only goal is to obtain the
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2. Preliminaries

information about the computation, like inputs or intermediate results from other
parties. These parties can collude with each other,

• Malicious adversaries do not follow the protocol and often can act against the
protocol to disrupt the privacy and integrity of the computation,

• Covert adversaries do not have to follow protocol and can switch between being
malicious or semi-honest, based on the potential gains of each respective mode.

Another possible description of the security model is the number of adversaries relative
to the overall party size. These are divided into two categories:

• Honest-majority setting assumes that more than half of the party members are
honest and not corrupted,

• Dishonest-majority setting assumes that half or more of the party members are
corrupted.

Based on the adversary type, different security requirements are needed. For semi-
honest adversary type, privacy and correctness are required from the SMPC protocol.
The privacy aspect requires that each party learns nothing about the computation
of other parties apart from the final output. The correctness aspect requires that
the computation results in the correct output if the honest parties are computing the
protocol correctly, regardless of the eavesdropping of the semi-honest adversaries. For
malicious adversary type requires privacy, correctness, and additionally robustness
and verifiability. The robustness aspect requires that the computation protocol behaves
uninterrupted despite possible efforts from malicious adversaries to change the outcome
or disrupt the computation. The verifiability aspect ensures that the malicious activity
is detected and that measures are taken against it. For covert adversary, a correct
balance between efficiency and robustness must be met. A requirement needed for this
type is accountability, which ensures that the covert parties can be detected with high
probability. Another requirement that can be used is fairness, which ensures that no
party can obtain the output before others.

2.1.2 Secret-sharing
Secret-sharing is a cryptographic technique that is a very important building block of
SMPC applications. It splits a secret value into n shares that are then distributed to
n parties, in such a way that only a predetermined number of parties are required to
successfully reconstruct the original secret. These shares can then be computed by allowing
addition and multiplication, with some operations requiring further communication
between the parties. Two of the most important operations that can be used to implement
further complex operations are addition and multiplication of two numbers. For the
addition of two shares xi and yi, where i represents the share of the node i, each node needs
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2.2. Neural networks

to locally compute xi + yi. This operation is the simplest one as it does not require any
inter-node communication. The multiplication is a more complex operation and its exact
algorithm is dependent on the underlying protocol that is used (e.g, Beaver triples [11]
are used in Crypten [12]). In general, it requires inter-node communication, making it a
more expensive computation than addition, as it is influenced by network complications,
like delay, loss, and bandwidth. For machine learning purposes, two different types of
shares will be discussed, namely arithmetic and binary secret shares. Arithmetic secret
shares [12] represent values as elements of a finite ring, e.g.. Z/QZ for some large integer
Q. A value x is shared among n parties by splitting it into additive shares [x]p such that
x = ∑︁

p∈P [x]p modQ. This type of sharing is suitable for the computation of arithmetic
operations such as multiplication and addition, which translates to usefulness in neural
network operations like matrix multiplication, convolutions, and other linear operations.
Binary secret sharing is, on the other hand, based on the field Z/2Z (a ring with two
binary values) and operates on the individual bits of values. Each bit is split into binary
shares so that their XOR (Exclusive OR logical operation) reconstructs the original bit.
Binary secret shares are inefficient in terms of arithmetic operations, but are suitable for
operations like comparisons, which in the machine learning context are used for activation
functions like ReLU.

2.2 Neural networks
A neural network is a mathematical model that can learn and approximate different
complex systems. The main theoretical foundation to learn these complex systems is
the universal approximation theorem, which states that, given non-linear activation, a
network consisting of a single hidden layer can, with enough neurons, approximate any
continuous function in Rn [13]. In reality, neural networks are split into shallow and deep
ones. The shallow neural networks consist of one or two hidden layers, while deep neural
networks contain several hidden layers and are often more sophisticated. There are two
main components of neural networks, which are layers and activation functions.

• Layers are the main building blocks of neural networks. They contain learnable
parameters that, during training, are shifted to approximate the output as close as
possible. These layers can range from very simple linear layers that compute a dot
product between weights and inputs, more complex convolutions that interact with
neighboring inputs and produce an output, to long short-term memory (LSTM)
layers that take into consideration the order and time of the inputs and produce
the output. These layers can be stacked in an arbitrary order to approximate more
and more complex functions,

• Activation functions are another main building block of neural networks. They
introduce non-linearity to the network, making it more complex and therefore able
to approximate more complex relations. Some common activation functions are,
for example, ReLU, which has the following definition: ReLU(x) = max(0, x) or
softmax function: softmax(x) = 1

1+e−x .

9



2. Preliminaries

2.2.1 Relevant architectures
Several foundational neural network architectures have been developed over the years in
various domains. In this section, two architectures are going to be presented that are
relevant for this thesis.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are most often used in computer vision applications.
They use convolutional layers to recognize patterns such as edges and shapes. CNNs
typically consist of convolutional, pooling, and fully connected layers.

Convolutional layers use a set of learnable kernels on the input data. The output is
then computed using the equation described in 2.2.

S(i, j) =
M−1∑︂
m=0

N−1∑︂
n=0

X(i+m, j + n) · K(m,n) + b. (2.2)

Here:

• S(i, j) is the output feature map at position (i, j),

• X is the input matrix, e.g. image or previous layer’s output,

• K is the kernel,

• M × N is the size of the kernel,

• · is the convolution operation,

• b is the bias, which is a learnable parameter.

Pooling layers downsample the outputs of the convolutions and prevent overfitting of
the network. The most common pooling layer is the max-pool layer and is described as
follows:

P (i, j) = max
0≤m<M,0≤n<N

X(i · s+m, j · s+ n).

Where:

• P (i, j) is the output at position (i, j),

• X is the input feature map,

• M × N is the size of the pooling window,

10



2.2. Neural networks

Figure 2.1: LeNet-5 architecture. Taken from https://github.com/d2l-ai/
d2l-en

• s is the stride, i.e., how far the window moves each step.

Besides convolutional and pooling layers, the CNNs usually utilize linear layers at the end
to produce the final classification or regression. Some notable architectures for CNNs are
LeNet [14], AlexNet [15] or ResNet [16]. An example CNN architecture can be seen on
Fig. 2.1. Here, the network is supposed to identify the digit shown in the picture, and it
does so with convolutions (C1, C3) as well as pooling layers (S2, S4). The representation
of the picture is then processed using linear layers to finally output the probabilities for
each digit, where the biggest probability represents the final classification.

Long Short-Term Memory networks

Long Short-Term Memory networks (LSTMs) [17] fall under the broader category of
Recurrent Neural Networks (RNNs). In general, RNNs are designed for processing
sequential data like time series or natural language. Unlike classical networks like Linear
or CNNs, they have hidden states that contain information from previous time-steps.
Traditional RNNs suffer from a problem called vanishing or exploding gradients, which
hinder them from realistically learning longer sequences or relationships in sequential
data. One of the solutions for this problem is LSTM. These networks introduce gating
mechanisms to better manage information flow over time. LSTMs maintain a memory
cell that holds a state, which is capable of holding information across longer sequences.
The three gates that regulate the state are: the input gate, forget gate, and output gate.
Their role in the LSTM can be described as follows:

• Input gate: Determines how much new information should be added to the cell in
the current time stamp, from the current input as well as the hidden state from
the previous step.

• Forget gate: Determines what information should be removed from the previous
cell state.

11
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2. Preliminaries

• Output gate: Determines what information should be put as the output of the
current cell based on the current input, as well as the output of the cell in the
previous timestamp.

This concludes the summary of all the important building blocks needed for this thesis.
In the next chapter, the first research question will be analyzed and answered.

12



CHAPTER 3
Framework analysis

There is a wide range of SMPC frameworks available, developed for different purposes
and with varying levels of maturity. Examples include TF-Encrypted 1, MPyC 2 and
Falcon [18].

To choose frameworks for comparative study, the following inclusion criteria were applied:

• Open-source: The framework must be freely available with open code,

• Active development: The framework should be actively maintained at least within
the last two years,

• Connection to Machine Learning: The framework should support machine learning
models from the most popular frameworks (Tensorflow, PyTorch, Jax)

Based on these criteria, three different prominent SMPC frameworks will be compared,
namely Crypten, MP-SPDZ, and Secretflow-SPU. Each framework will be examined across
multiple key dimensions - security models, supported ML operations/architectures, ease of
integration, documentation and community, development activity, and real-world adoption.
At the end, the findings will be summarized in a comparison matrix. The comparison
will draw from each framework’s respective literature and documentation [12, 19, 20].

3.1 Secretflow-SPU
Secretflow-SPU [20] is a general-purpose Privacy-preserving Machine Learning (ppML)
framework designed to make the development of ML models in SMPC easier for ML

1https://github.com/tf-encrypted/tf-encrypted
2https://github.com/lschoe/mpyc
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3. Framework analysis

researchers. It consists of a frontend compiler that provides developers with a Python
API and a backend runtime. The frontend accepts an ML program and compiles it into
an intermediate representation called Privacy-preserving high-level operations (pphlo).
The backend then consumes the pphlo and executes it on a virtual device that consists
of multiple interconnected nodes that implement a configurable MPC protocol. The
overview of the architecture can be seen in Figure 3.1.

Figure 3.1: SPU architecture. Taken from [20].

The compilation of the ML program into intermediate representation is inspired by
other non-MPC ML compilers like Google’s XLA 3. The purpose of them is to simplify
the development of ML models from different frameworks on different hardware. XLA
uses High-level operation (HLO) as an intermediate representation to represent the
computational graph of the ML model. This code is further optimized for the underlying
hardware and finally compiled into machine code to be run on CPU, GPU, or TPU.
SPU uses this approach as well in its design. It leverages the XLA to produce the HLO
representation, applies further compilation to mark the privacy and data type of the
computational graph, and produces the pphlo representation. Listing 3.1 shows a Python
code that describes an addition function. On lines 4-6, the add function is defined, on
lines 8-9, two tensors are defined with shape 3 and data type of jnp.float32, and finally
on line 10, the result of the add operation is stored in tensor z.

3https://github.com/openxla/xla
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Listing 3.1: Addition function in Jax
1 import jax
2 from jax import numpy as jnp
3
4 @jax . j i t
5 def add (x , y ) :
6 return jnp . add (x , y )
7
8 x = jnp . array ( [ 1 , 2 , 3 ] , dtype=jnp . f l o a t 3 2 )
9 y = jnp . array ( [ 4 , 5 , 6 ] , dtype=jnp . f l o a t 3 2 )

10 z = add (x , y )

This add function with the concrete inputs can be compiled into the HLO representation
as can be seen on Listing 3.2.

Listing 3.2: HLO representation of the addition function
1 func . func pub l i c @main(%arg0 : tensor <3xf32 >, %arg1 : tensor

<3xf32 >) −> ( tensor <3xf32 >) {
2 %0 = s t ab l e h l o . add %arg0 , %arg1 : tensor <3xf32>
3 return %0 : tensor <3xf32>
4 }

This HLO representation is then further processed by SPU and compiled into PPHLO
representation, as can be seen on Listing 3.3.

Listing 3.3: PPHLO representation of the addition function
1 func . func @main(%arg0 : tensor <3x ! pphlo . s e c r e t <f32 >>, %arg1 :

tensor <3x ! pphlo . s e c r e t <f32>>) −> tensor <3x ! pphlo . s e c r e t
<f32>> {

2 %0 = pphlo . add %arg0 , %arg1 : tensor <3x ! pphlo . s e c r e t <f32>>
3 return %0 : tensor <3x ! pphlo . s e c r e t <f32>>
4 }

Further SMPC-related optimizations are made, and the output is consumed by the
backend runtime implementing a specific SMPC protocol. This creates a clear separation
between ML development and SMPC development. The ML developer is only required to
use a framework that supports XLA compilation to develop its models in SMPC, while,
on the other hand, the SMPC developer is only required to develop SMPC primitives for
the operations defined in pphlo.

SPU runs user-written programs, secret-sharing a predetermined number of input data
and all intermediate results. In an ML context, SPU protects both user inputs as well
as model weights, where the user can also specify whether one of them should be used
in plaintext form to speed up the computation process. As SPU is a protocol-agnostic
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framework, the specific threat model and number of parties are dictated by the underlying
MPC protocol used during the computation. As of right now, SPU implements the
following protocols:

• ABY3 [21], a honest-majority semi-honest three party protocol

• SPDZ2k [22], a semi-honest n-party protocol,

• Cheetah [23], a semi-honest two party protocol.

In theory, the SPU frontend should accept any machine learning program that can be
compiled using XLA into HLO representation. Because of its younger nature, currently
only programs written in a popular framework JAX [24] by Google are fully supported,
with other frameworks like PyTorch4 and Tensorflow5 having experimental support.
Creating a machine learning program for SPU is straightforward and requires minimal
changes from a plaintext JAX version. An example of an SPU program can be seen
in Listing 3.4. Python decorator @ppd.device("SPU") is used to specify which function
should be computed using SMPC. In this case, it is a compare function that returns the
element-wise maximum number between two vectors. The decorators @ppd.device("P1")
and @ppd.device("P2") are used to specify that both parties’ inputs should be secret-
shared and therefore kept private during computation. This example can be extended to
ML usage as well, where the SMPC function could be an inference of the model, and the
two private inputs would be the input features and model weights.

Listing 3.4: SPU function that calculates maximum between two vectors
1 import j s on
2 from jax import numpy as jnp
3 from spu . u t i l s import d i s t r i b u t e d as ppd
4
5 with open( ’ c on f i g . j son ’ , ’ r ’ ) as f :
6 conf = j son . load ( f )
7 ppd . i n i t ( conf [ ’ nodes ’ ] , conf [ ’ d ev i c e s ’ ] )
8
9 @ppd . dev i c e ( "SPU" )

10 def calc_max (x , y ) :
11 return jnp .maximum(x , y )
12
13 x = jnp . array ( [ 1 , 2 , 3 ] )
14 y = jnp . array ( [ 4 , 5 , 6 ] )
15 x_s = ppd . dev i c e ( "P1" ) (lambda x : x ) ( x )
16 y_s = ppd . dev i c e ( "P2" ) (lambda x : x ) ( y )

4https://github.com/pytorch/pytorch
5https://github.com/tensorflow/tensorflow
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17 z_s = calc_max (x_s , y_s )
18 z = ppd . get ( z_s )

SPU is part of a larger Secretflow environment 6, which aims to be used as a production
suite for privacy-preserving machine learning and data science. That being said, SPU
so far has only been used in scientific papers, mainly aiming to lower and optimize the
inference times of transformer models like PUMA [9] or Ditto [25]. The source repository
receives periodical commits, and a new version is released around two times a year.

3.2 Crypten
Crypten is an SMPC PyTorch-based library, supporting a range of tensor operations,
geared towards machine learning. It uses a tensor abstraction via Cryptensor, behaving
similarly to a PyTorch tensor. The Cryptensor supports element-wise arithmetic, com-
parisons, matrix multiplications, convolution, and others in a secret-sharing form. As
with PyTorch, Crypten implements automatic differentiation, enabling model training
in encrypted form. Automatic differentiation is a set of algorithms that allows the
calculation of a programmed numerical function. It is an important feature for any
deep learning framework as it effectively enables training of the network via the back-
propagation algorithm. There are two ways to implement a neural network in Crypten.
One is to implement the network in PyTorch and use the Crypten API to translate
it into a secret-shared model. Another one is to directly use Crypten’s model neural
network package, which contains widely used layers like fully-connected linear layers or
convolutional layers, and a wide variety of activation functions like ReLU or Softmax.
An example of a CrypTen program can be seen in Listing 3.5 taken from GitHub. On
lines 1–3, the main module and other important submodules are imported from Crypten.
On line 8, a decorator is used specifying the number of parties used for this SMPC
computation. On line 11, a pretrained model is loaded from one of the parties. This
party then provides the pretrained parameters of the model for the computation. On
line 15, Crypten requires an initialization of the model with some dummy input. This
input is only required to have the same shape as the input of the actual data that would
be used with this model. On line 16, the model is encrypted, with one party again being
the source. On lines 19–21, a similar process is made by the second party, but now with
the data that would be used for the inference. Here, the data do not have to be explicitly
encrypted compared to the model. On lines 24–25, the model is evaluated in an SMPC
setting with the secret-shared data. On line 28, the results are revealed to both parties,
and accuracy is computed.

Listing 3.5: Crypten function to evaluate a private model on some private data.
1 import crypten
2 import crypten .mpc as mpc
3 import crypten . communicator as comm

6https://www.secretflow.org.cn/en/
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4
5 l a b e l s = torch . load ( ’ /tmp/bob_test_labe ls . pth ’ ) . long ( )
6 count = 100
7
8 @mpc. run_mult iprocess ( wor ld_size=2)
9 def encrypt_model_and_data ( ) :

10 # Load pre−t ra ined model to A l i ce
11 model = crypten . load_from_party ( ’ models /

tutor ia l4_a l i c e_mode l . pth ’ , s r c=ALICE)
12
13 # Encrypt model from Al i ce
14 dummy_input = torch . empty ( ( 1 , 784) )
15 private_model = crypten . nn . from_pytorch (model ,

dummy_input)
16 private_model . encrypt ( s r c=ALICE)
17
18 # Load data to Bob
19 data_enc = crypten . load_from_party ( ’ /tmp/bob_test . pth ’ ,

s r c=BOB)
20 data_enc2 = data_enc [ : count ]
21 data_f la t t en = data_enc2 . f l a t t e n ( start_dim=1)
22
23 # C l a s s i f y the encrypted data
24 private_model . eval ( )
25 output_enc = private_model ( data_f la t t en )
26
27 # Compute the accuracy
28 output = output_enc . get_plain_text ( )
29 accuracy = compute_accuracy ( output , l a b e l s [ : count ] )
30 crypten . print ( " Accuracy : ␣ { 0 : . 4 f } " . format ( accuracy . item

( ) ) )
31
32 encrypt_model_and_data ( )

Crypten assumes a semi-honest adversary model. All parties are assumed to follow the
computation correctly, but may try to learn additional information. An arbitrary number
of parties are supported. Unlike SPU, Crypten does not rely on an underlying SMPC
protocol but rather implements its own. At the core of CrypTen’s secure computation
are two secret-sharing schemes: arithmetic secret sharing and binary secret sharing.
Arithmetic secret sharing is well-suited for linear operations like matrix multiplications
and convolutions, while binary secret sharing is necessary for functions such as comparisons
and ReLU activations. Efficient conversions between the two types of sharing (A2B and
B2A) are implemented.
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Crypten has not been used in any production setting so far, staying only in the academic
space for benchmarking and potential improvements of inference time of transformer
architectures. One such example is the Centaur [26] paper, which aims to improve the
inference time by introducing inference with plaintext weights that are permuted to
disallow brute-force model stealing, as well as doing activation functions in plaintext.
The development of the network has recently stopped, and the repository was deprecated.

3.3 MP-SPDZ

MP-SPDZ [19] is a fork of SPDZ-2 that extends the original framework to include 34
different variants of secure multi-party computation (MPC) protocols. These protocols
cover a wide spectrum of security models, including semi-honest, dishonest, covert, honest
majority, and dishonest majority settings. The broad protocol support allows MP-SPDZ
to serve as a flexible platform for experimenting with and comparing different MPC
approaches within a single framework. An important feature of MP-SPDZ is its high-level
programming interface, which is based on Python. This interface works uniformly across
all supported protocol variants, making it easier to develop MPC applications without
needing to adapt their code for each protocol. The system is designed primarily for
benchmarking different MPC protocols in a consistent, universal way. While machine
learning is supported in MP-SPDZ, the framework is intended for a wider range of MPC
use cases. Programs in MP-SPDZ run on a custom virtual machine (VM). The compiler
translates the high-level Python code provided by the user into MPC-specific bytecode,
which the virtual machine then executes.

The core part of MP-SPDZ is its virtual machine, originally introduced with SPDZ-2.
Unlike standard processors, the MP-SPDZ VM is designed around the communication-
heavy nature of MPC. The main characteristic of the MP-SPDZ virtual machine is that
instructions involving communication take an unrestricted number of arguments, which
minimizes the number of communication rounds and introduces parallelism. This is an
important property especially for SMPC workflows, because compared to a traditional
instruction set, where instructions have a different complexity between each other (i.e.,
instructions can vary based on how many clock cycles they require), instructions in
SMPC also have a qualitative difference, because, e.g.. addition can be done locally by
one node compared to multiplication, which requires inter-node communication as stated
in Section 2.1.2.

MP-SPDZ, as a framework, belongs to one of the most mature frameworks, when it comes
to academic research, being used to study, implement, and benchmark various SMPC
protocols [27, 28]. The source repository is supported by a large number of contributors,
and its documentation is extensive. But as of right now, MP-SPDZ only seems to be
used in academic and research fields to further study SMPC and its protocols, and has
not yet been used in a production setting.

19



3. Framework analysis

3.4 Conclusion
In summary, Secretflow-SPU, Crypten, and MP-SPDZ each address secure multi-party
computation differently, making them suitable for different scenarios. Secretflow-SPU
offers a protocol-agnostic design centered on machine learning, with a compilation-
based workflow that relies on intermediate representation. It supports a few well-known
protocols and aims to make SMPC development seamless for ML researchers. Crypten
focuses on tight integration with PyTorch in a semi-honest setting. MP-SPDZ also
offers a protocol-agnostic design via compilation into an intermediate representation
and supports a wide range of protocols, covering 34 variants across various adversary
models, and is particularly strong as a benchmarking and experimental platform. The
summarisation of the results is provided in Table 3.1.

Table 3.1: Qualitative comparison of Secretflow-SPU, Crypten, and MP-SPDZ.

Feature / Framework Secretflow-SPU Crypten MP-SPDZ
Security Models Protocol-dependent Semi-honest Protocol-dependent
Primary Focus Privacy-preserving

ML, primarily for
XLA-coded work-
flows

Privacy-preserving
ML with PyTorch
integration

Benchmarking multi-
ple MPC protocols

Protocol Support ABY3, SPDZ2k,
Cheetah

Built-in custom pro-
tocol

34 protocol variants

Ease of Integration Python API, XLA-
compatible ML
frameworks

PyTorch-like API,
with support to im-
port already existing
PyTorch models

Python API

Development Scope ML-centric ML-centric Broad MPC use cases
including ML

Execution Model Compiles to pphlo,
executed on virtual
devices

Direct encrypted ten-
sor ops

Compiles to MPC
bytecode for VM exe-
cution

Although all of these networks could be used for further benchmarking, the SPU framework
was selected. This is mainly due to the ease of implementation, as dealing with SPU
in terms of machine learning means dealing with the Jax machine learning framework,
which is well documented. In the next chapter, a generic benchmark on a few machine
learning architectures will be conducted to assess the performance impact based on size
and depth of the network.
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CHAPTER 4
Benchmarks of generic models

In this chapter, three different neural network architectures are going to be benchmarked,
namely Multi-layer perceptron (MLP), Convolutional Neural Network (CNN), and Long
Short-term Memory network (LSTM), under plaintext and SMPC setting to establish a
baseline comparison of their performance and understand the computational overhead
introduced by privacy-preserving inference. All the benchmarks will be done using the
Secretflow-SPU framework.

4.1 Network Configurations
Each architecture type was tested with multiple configurations, varying the depth (number
of layers) and width (units per layer) while exploring different model sizes in terms of
parameters. For MLP and CNN, four different parameter sizes and for LSTM, three
different sizes were tested, and for each parameter size fixed, four different variations of
depth and width of the network were tested.

For MLP, the range of sizes is from 1000 parameters to 1000000 parameters. Each MLP
configuration consists of ReLU activation functions after each layer. Configuration details
can be seen in Table 4.1. The input tensor tested for MLP is of shape (1, 10).

Number of parameters Width × Depth
1000 100 × 1 28 × 2 20 × 3 17 × 4
10000 1000 × 1 95 × 2 70 × 3 56 × 4
500000 50000 × 1 702 × 2 498 × 3 407 × 4
1000000 10000 × 1 995 × 2 705 × 3 575 × 4

Table 4.1: MLP configurations. Each row corresponds to a configuration with approxi-
mately the same number of network parameters.
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For CNN, the parameter range is from 60000 parameters, which roughly equals the
parameter size of the LeNet network, to 25000000 parameters, which is roughly equal to
the size of the ResNet50 network. Each CNN consists of convolutional layers followed by
a max-pooling layer and a ReLU activation. The addition of a max-pooling layer is due
to it being a very common operation used in convolutional networks. The configurations
can be seen in Table 4.2. The input tensor tested for CNN is of shape (1, 112, 112, 3).

Number of parameters Width × Depth
60000 25 × 12 17 × 24 14 × 36 12 × 50

1000000 100 × 12 70 × 24 56 × 36 48 × 50
15000000 389 × 12 270 × 24 218 × 36 185 × 50
25000000 500 × 12 350 × 24 280 × 36 240 × 50

Table 4.2: CNN configurations. Each row corresponds to a configuration with approxi-
mately the same number of network parameters.

For LSTM networks, the parameter range is from 500 parameters to 5000. LSTM does
not contain ReLU activations as opposed to the other two network types, due to the fact
that LSTM already contains activation functions sigmoid and tanh. The configurations
can be seen in Table 4.3. The input tensor tested for LSTM is of shape (1, 1, 14).

Number of parameters Width × Depth
500 6 × 1 4 × 3 3 × 6 2 × 10
1000 10 × 1 6 × 3 4 × 6 3 × 10
5000 29 × 1 14 × 3 10 × 6 8 × 10

Table 4.3: LSTM configurations. Each row corresponds to a configuration with approxi-
mately the same number of network parameters.

4.2 Results
All benchmarks are done on an Intel Xeon W-2245 CPU, 126 GB of RAM, using Ubuntu
24.04 and Python 3.10.14. The SPU framework was used, utilizing ABY3 underlying
protocol with three computing nodes and two provider nodes, one for the input features
and the other for trained model parameters. All tests are done in the localhost network.
Each network was tested on 100 iterations, with random inputs taken from a normal
distribution.

Impact of different network configurations was first tested on the MLP network shown
in Figure 4.1. In Figure 4.1a, the relationship between the number of parameters and
inference time is shown. Each line represents a different number of layers present in the
network. It can be observed that networks with two or more layers behave very similarly.
The exception comes with a one-layer MLP network that exhibits a larger increase with
the rising number of parameters, but also a sharp decrease for a million-parameter,
one-layer MLP. For plaintext inference in Figure 4.1c we can see that the number of
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(a) Impact of number of parameters on infer-
ence time under SMPC, with fixed number
of layers in the network.

(b) Impact of number of layers on inference
time under SMPC, with fixed number of
parameters in the network.

(c) Impact of number of parameters on in-
ference time in plaintext, with fixed number
of layers in the network.

(d) Impact of number of layers on inference
time in plaintext, with fixed number of pa-
rameters in the network.

Figure 4.1: Two tested configurations on the MLP network.

parameters does not affect the inference time in this parameter range and is mostly
affected by the increasing number of layers as can be seen in Figure 4.1d. In Figure 4.1b,
it can be observed that both networks with one thousand parameters and ten thousand
parameters behave similarly, even with an increased number of layers. For a million-
parameter network, the inference time is large with one layer, but falls and stabilizes
with more added layers. An inverted pattern can be observed for a million-parameter
network, where with one layer, the inference time is lower but rises and stabilizes after
adding more layers. Overall it can be observed that the inference reacts differently to
number of parameters or layers depending if the inference is done in plaintext or SMPC.

The second tested network was the CNN network shown in Figure 4.2. In Figure 4.2a,
an almost linear relationship can be observed between the number of parameters and the
inference time for all numbers of layers. This follows a similar pattern shown for plaintext
inference of the same setting on Figure 4.2c, except for 12-layer network, which follows
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(a) Impact of number of parameters on infer-
ence time under SMPC, with fixed number
of layers in the network.

(b) Impact of number of layers on inference
time under SMPC, with fixed number of
parameters in the network.

(c) Impact of number of parameters on in-
ference time in plaintext, with fixed number
of layers in the network.

(d) Impact of number of layers on inference
time in plaintext, with fixed number of pa-
rameters in the network.

Figure 4.2: Two tested configurations on the CNN network.

a linear relationship with a much smaller slope than the other networks. Interestingly,
networks with fewer layers perform worse with a higher number of parameters in SMPC,
in contrast to plaintext inference. This phenomenon can also be observed in Figure 4.2b,
where networks with a higher number of parameters have a downward tendency with
increased number of layers, compared to smaller networks, which appear to have a
constant time when comparing number of layers and inference time. This behaviour
is very different when comparing the plaintext inference on Figure 4.2d. Here, the
relationship steadily increases the inference time when more layers are added to the
network. For comparison, these Figures also contain two optimized and specialized
networks, MobileFaceNet (MBF) and ResNet50 (R50). The MBF contains around 1
million parameters, with about twelve layers, while R50 contains around 25 million
parameters and 50 layers. This shows the importance of network optimization and how
it can affect the performance, compared to a generic Convolutional neural network.
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(a) Impact of number of parameters on infer-
ence time under SMPC, with fixed number
of layers in the network.

(b) Impact of number of layers on inference
time under SMPC, with fixed number of
parameters in the network.

(c) Impact of number of parameters on in-
ference time in plaintext, with fixed number
of layers in the network.

(d) Impact of number of layers on inference
time in plaintext, with fixed number of pa-
rameters in the network.

Figure 4.3: Two tested configurations on the LSTM network.

The last tested network structure was LSTM, which can be seen in Figure 4.3. In
Figure 4.3a, it can be observed that the relationship between the number of parameters and
inference time is constant across all the tested layers. This is an interesting observation,
when compared to the other two networks, where increasing the number of parameters
meant increasing the inference time. Similar pattern can be observed for plaintext
inference as well as seen in Figure 4.3c. In Figure 4.3b, a linear relationship can be
observed between the number of layers and the inference time, across all numbers of
parameters. Once again, this is an interesting observation compared to the other two
types of networks, where the increase in the number of layers did not necessarily increase
the inference time. Again very similar pattern can be observed for plaintext inference as
well, as seen in Figure 4.3d.

25



4. Benchmarks of generic models

4.3 Conclusion
In this chapter, multiple configurations were tested on three different neural network
architectures, namely MLP, CNN, and LSTM. MLP and CNN networks behave similarly,
where the increase in the number of parameters generally meant an increase in the
inference time, while the increase in the number of layers did not affect the inference
time, with some exceptions. Interestingly, this relationship is seemingly flipped for LSTM
networks. Here, the observation can be made that the number of layers linearly affects
the inference time, while the parameter count does not affect the inference time itself,
at least in the tested range. In the next chapter, two general use case studies will be
presented in two specific machine learning scenarios, namely computer vision and time
series analysis.
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Use-case Studies

In this chapter, two different traditional machine learning applications will be transformed
for an SMPC setting, namely computer vision and time-series analysis. These two
applications will be tested based on two use case studies: Face recognition application
and Energy Prediction for Industrial Robots. The framework of choice is Secretflow-SPU.

Since Secretflow-SPU fully supports only Jax-based [24] models, both use cases require
an additional conversion step to make the models compatible with the framework. This
posed a practical challenge as the original implementation of some models was available
in other frameworks (PyTorch for Face verification use-case and Matlab for Robotics
use-case). To address this, models were either rewritten in the Jax framework or directly
developed in it from scratch.

5.1 Generic use-case model
In general, for both use-cases considered in this work, the generic inference model can be
visualised as shown in Figure 5.1. Machine learning model inference can be described
as a function of two inputs: the input features and the trained model parameters. This
setup translates into three parties: the input owner (User), the model owner (Weights),
and the SMPC cluster, which in this case consists of three nodes.

For the inference of a single feature, the process is as follows. The user and the model owner
both secret-share their respective inputs into the function. The shares are distributed
according to the protocol to each of the nodes in the SMPC cluster. The distribution is
performed by the input owners themselves, so no third party is required to redistribute
them. Once the inputs are distributed, the nodes perform the SMPC computation, which
corresponds to the forward pass of the model.

After the computation is completed, each node sends its shares of the result back to the
user. The user then locally reconstructs the correct output from the shares received.
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If the SMPC cluster serves the same model to multiple users, it can retain its shares
of the weights. This way, the distribution from the model’s owner does not need to be
repeated for each new inference request, improving efficiency. In contrast, if the model is
open-source, the weights can also be sent in plaintext form. This significantly speeds up
the process, at the cost of revealing the model weights to other parties.

Figure 5.1: Base SMPC use-case for Machine learning inference; 1. User input and
Weights input providers secret-share their respective inputs and send them to the SMPC
cluster; 2. SMPC cluster does the forward pass of the network; 3. SMPC cluster sends
back the secret-shared output to the user, which is then locally reconstructed to get the
proper output.

5.2 Privacy-preserving Face Verification
Face verification is a biometric technology that verifies individuals by analyzing their
facial features and comparing them with an existing database to find a match. This
process is typically done by extracting vector embeddings from the face image, which
are fixed-size numerical vectors that represent the face. Face verification systems offer
convenience and wide applicability in areas like security, surveillance, and user access
control, but are inherently very privacy sensitive as they directly process the user’s face.

5.2.1 Motivation
Facial verification and recognition technologies have witnessed a massive growth and
adoption across multiple sectors such as border control, staff management, and personal
devices. The most powerful facial verification systems use machine learning models,
which result in high accuracy and efficiency. However, despite its benefits, the technology
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itself raises security and privacy concerns. Unlike traditional authentication methods like
passwords, facial biometrics are immutable features and therefore cannot be changed after
a security breach or theft. Another concern is that, compared to other features used for
biometric verification, like fingerprints, facial data can be taken covertly, without consent.
To mitigate these risks, privacy-preserving machine learning can help mitigate these
concerns by enabling secure and private biometric verification. This process can further
help and deepen the trust of the public in the usage of facial verification technologies.

State-of-the-art models for face verification rely on large CNNs [29][30][31]. While very
powerful, the complexity can hinder the inference time of the networks when the inference
is performed under an SMPC setting. This is due to the fact that operations like
multiplication or activation functions in SMPC incur significant time overhead, because
computational nodes require inter-node communication to complete these operations in a
secure and private way. To tackle the complexity of these larger CNNs, a range of neural
networks have been proposed to work on smaller, less resource-heavy devices like mobile
phones or embedded devices. While SMPC is not directly tied to such devices, it is still a
very resource-demanding process and can greatly benefit from the usage of such networks.
Networks like MobileNetV1 [32], ShuffleNet [33], or MobileNetV2 [34] have been developed
for general visual recognition tasks. This family of networks achieves computational
efficiency and reduces the number of parameters and operations compared to standard
CNNs. However, these architectures are optimized for general object classification and do
not perform well on the more specialized task of face verification. Due to these limitations,
a new family of mobile networks specifically designed for face verification and recognition
has emerged, including architectures such as MobileFaceNet [35] and GhostFaceNet [36].

In this section, two Convolutional neural networks will be presented, one smaller but
highly optimized network for face verification and the other a bigger, more general
network, to determine whether the benefits gained in plaintext inference speed can be
translated to inference speed under SMPC.

5.2.2 ResNet
ResNet [16] is a CNN architecture that mitigates the problem arising from training very
deep neural networks. It is a widely used structure.

Model architecture

The main contribution ResNet brings to the CNN family of neural networks is the
introduction of Residual layers. These are shown in Figure 5.2.

The idea behind residual layers is that multiple stacked non-linear layers can approximate
some complex function H(x), where x is the input to the first layer. By the same
hypothesis, then it is possible for stacked layers to also approximate some function
F(x) := H(x) − x. The original function to approximate then becomes F(x) + x.
Both functions are approximately the same, but the ease of learning one is not. This
phenomenon is still not fully understood, but the experiments show the increased
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capability of such a network to learn [16]. In the case of ResNet, the latter function
becomes easier to train when it comes to deep (50-layer) stacked networks. ResNet
implements this mapping by the use of shortcut connections. The input x is processed
by the residual layer, and after that, it is summed up with the input again, continuing
further into the network. Some ResNet variants (like ResNet-50) also make use of
bottleneck layers. These layers first reduce the dimension of the features, then perform
traditional convolution, and finally restore the dimensions. This reduces the computational
complexity to train very deep networks.

Figure 5.2: Visualisation of the residual layer used in ResNet. Taken from [16]

Configuration

The ResNet variant that was used is ResNet50, which consists of 50 layers. The model
contains roughly 25.6 million parameters. The model was trained on the MS1MV3
dataset [37]. It contains 5179510 face images and 93431 labels. The images were cropped
to the resolution 112 × 112 pixels, with three color channels.

5.2.3 MobileFaceNet
MobileFaceNet [38] is a CNN architecture that is specifically designed for high-accuracy
real-time face verification on resource-constrained devices. It contains fewer than 1 million
parameters.

Model architecture

The main building block utilised in MobileFaceNet is the residual bottleneck layer
introduced in MobileNetV2 [34]. This layer consists of three important techniques used
in resource-constrained convolutional neural networks, namely Depthwise Separable
Convolutions, Linear Bottlenecks, and Inverted Residuals.

Depthwise Separable Convolutions serve as a drop-in replacement for traditional
convolutional layers, greatly reducing the amount of computations. Traditional convo-
lutional layers take an input tensor Ti of size hi × wi × di and apply a convolutional
kernel K ∈ Rk×k×di×dj producing an output tensor Tj . The computational cost is
hi · wi · di · dj · k · k. In contrast, Depthwise separable convolution is composed of
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two convolutional layers: a depthwise convolution and a pointwise convolution. The
depthwise convolution applies a single kernel Ki ∈ Rk·k for each input channel of the
tensor Ti, producing the same number of output channels as the input. The pointwise
convolution then takes this output and applies a kernel K ∈ R1×1×di×dj , resulting in a
tensor Tj . The output is identical to traditional convolution, but the computation cost is
hi · wi · di(k2 + dj). In a case of MobileNetV2 and MobileFaceNet, where kernel size of
k = 3 is used, this results in a computational cost 8 to 9 times smaller than that of a
standard convolution with only a small reduction in accuracy.

Linear Bottlenecks are bottleneck layers that use linear activation. Bottleneck layers
serve as compression, reducing the size of their input. Usually, after applying the
bottleneck, the output is again expanded. This results in a smaller computational cost in
contrast to applying an expansive convolution at once. Using linear activation on the
results of the bottleneck provided better experimental results according to [34]. Activation
functions are still used after the expansion.

Inverted Residuals are a modification of residual blocks introduced in ResNet [16].
The difference between traditional residual blocks and inverted residuals is visualised in
Fig. 5.3. In a normal residual block, the full input goes through the bottleneck, which is
again expanded and summed up with the original input into the block. The inverted
block does the opposite. It assumes that all the information needed for the task is
already present in the bottleneck, and therefore, it uses a skip connection to sum up the
"compressed" input.

Figure 5.3: Comparison of residual block and inverted residual. Taken from [34]

In addition to the residual bottleneck layers, MobileFaceNet also introduces a Global
depthwise convolution layer instead of the Global average pooling layer that MobileNetV2
uses. This layer consists of a depthwise convolution with a kernel size that is equal to
the input size with zero padding and a stride equaling 1. The input of the layer is a
tensor F with size w × h × d and the output is a tensor J with size 1 × 1 × d. This
layer from experiments achieves significantly better results on LFW and AgeDB datasets
compared to the network that uses a Global average pooling layer. Another change
from MobileNetV2 is the usage of PReLU (Parametric Rectified Linear Unit) activation
function instead of the original ReLU6 function. From the experiments, this proved to
be a better-performing activation for face verification purposes.
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Configuration

MobileFaceNet architecture used in this chapter consists of roughly 1 million parameters
and was trained on Casia-WebFace dataset [39]. The dataset consists of 494414 face
images of 10575 real identities collected from the web. As with Resnet, the images were
cropped to 112 × 112 pixels with three color channels.

5.2.4 Evaluation
Qualitative results

In this section, the qualitative results of the two studied models will be presented. The
accuracy of both ResNet50 and Mobilefacenet was assessed on the Labeled Faces in the
Wild (LFW) dataset [40]. LFW is a widely used benchmark for face verification and face
recognition. It consists of 13,233 images of 5,749 people, where 1,680 of the people have
two or more distinct photos in the dataset.

Both ResNet50 and Mobilefacenet are available as open-source pretrained models from
the InsightFace 1 repository, which provides implementation and weights for a wide range
of state-of-the-art face recognition models. These models were used in plaintext inference
to show their qualitative performance. The results presented are also taken from the
InsightFace repository. The benchmark is conducted in a way where a model is appended
with a face classifier that predicts the label presented in the image. This results in an
accuracy metric. The backbone of that model (which is the model without the classifier,
that just returns face embeddings) can be used then for verification purposes.

Table 5.1 shows the accuracy results of both models on the LFW dataset. ResNet50
achieves an accuracy of 99.73%. Mobilefacenet, on the other hand, achieves an accuracy
of 99.45%, which is lower, but considering the significantly smaller size of Mobilefacenet,
this highlights the possibility of a smaller, more mobile architecture to achieve comparable
performance as their bigger, slower counterparts.

Model Accuracy [%]
ResNet50 99.73

Mobilefacenet 99.45

Table 5.1: Face verification accuracy of ResNet50 and MobileFaceNet on the LFW
dataset.

Quantitative results

In this section, the two models presented above will be evaluated based on their quanti-
tative performance in plaintext form and SMPC form. The metric under analysis will be
the inference time of pre-trained networks. The effect of other network complications,
such as network delay or packet loss, will be analysed as well. All benchmarks are done

1https://github.com/deepinsight/insightface
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on an Intel Xeon W-2245 CPU, 126 GB of RAM, using Ubuntu 24.04 and Python 3.10.14.
The SPU framework was used, utilizing ABY3 underlying protocol with three computing
nodes and two provider nodes, one for the input features and the other for trained model
parameters. ABY3 is the protocol that’s recommended for usage by the SPU developers.
All tests are done in the localhost network.

Table 5.2 shows the inference times of both ResNet50 and MobileFaceNet when executed
on both plaintext and encrypted data. The results show the substantial added overhead
to both models that was introduced by encrypted inference. More specifically, the
inference time of ResNet50 increases from 0.2741 seconds in the plaintext inference to
41.0637 seconds when doing inference under SMPC. A similar pattern can be observed
for MobileFaceNet, where inference time rises from 0.2851 seconds in plaintext to 24.6422
under SMPC. Both architectures receive significant inference penalty under SMPC, but
MobileFaceNet achieves lower inference times than ResNet50, both in plaintext and
SMPC settings. This is caused by MobileFaceNets’ efficiency and lightweight architecture
that translates even more drastically in an encrypted domain, suggesting that small
networks are much more suitable for privacy-preserving deployment but still fairly distant
from real-world usage due to the substantial increase in inference time.

ResNet50 MobileFaceNet
Time plaintext [s] Time encrypted [s] Time plaintext [s] Time encrypted [s]
0.2741 ± 0.0349 41.0637 ± 0.3600 0.2851 ± 0.0202 24.6422 ± 0.2144

Table 5.2: Inference time for both ResNet50 and MobileFaceNet in encrypted and
plaintext domains. Inference time is for one sample.

Table 5.3 shows the effect of an optimization technique, where the inputs of the network
are kept private but the model weights remain unencrypted. This introduces a trade-
off in privacy and performance, where the inference is substantially decreased, while
the model weights can be leaked to an adversary. This does not pose a problem for
machine learning models, where the pre-trained weights are open-source, but it can be
problematic for parties where the trained model falls under their proprietary intellectual
property. The decrease with this optimization is more substantial for ResNet50, where
encrypted inference is decreased from 41.0637 seconds to 26.2798 seconds, compared to
MobileFaceNet’s decrease from 24.6422 seconds to 17.0413 seconds. This is likely due to
the substantial difference in the architecture of both models.

Model Time encrypted [s]
ResNet50 26.2798 ± 0.2632

MobileFaceNet 17.0413 ± 0.1844

Table 5.3: Inference time for both ResNet50 and MobileFaceNet in the encrypted domain
with model weights kept in plaintext. Inference time is for one sample.
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(a) Impact of added delay on inference time
(b) Impact of added packet loss on inference
time

Figure 5.4: Impact of network complications on inference time

Deployment considerations

The effects of network delay and packet loss on inference have also been analyzed, as
these factors are critical to consider, particularly for SMPC inference, which depends
heavily on inter-node communication for certain operations. Both network delay and
packet loss were simulated on localhost using the Unix tc utility. As shown in Figure 5.4,
network delay increases inference time linearly across all models. However, ResNet50
exhibits a much steeper slope. A similar trend is observed with packet loss, but with the
relationship exhibiting non-linear properties. That said, extreme packet loss scenarios
are not the main focus of this work, as they represent severe communication failures
rather than typical real-world conditions.

5.3 Privacy-Preserving Energy Prediction for Industrial
Robots

This section explores the implementation of a privacy-preserving framework for predicting
energy consumption in industrial robots based on their trajectory using SMPC [41]. This
use case demonstrates the feasibility of using ppML on a time-series problem.

5.3.1 Motivation
The rising focus on energy efficiency in manufacturing processes is largely motivated by
escalating operational expenses and stricter environmental regulations. Since industrial
production systems require substantial energy, energy modeling plays a vital role in
improving resource efficiency. Within these systems, industrial robots stand out due to
their broad use and considerable energy consumption in automated operations. Developing
models for such systems, particularly with deep learning techniques, can demand large
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volumes of data and significant computational power. These models can offer substantial
benefits to the industry, but their deployment often requires sharing sensitive intellectual
property, such as neural network parameters of robot trajectory data. This creates
challenges in collaborative settings where multiple stakeholders, like manufacturers and
cloud service providers, must cooperate without disclosing proprietary information. At
the same time, the industrial sector has seen rapid growth in machine learning adoption,
with applications spanning predictive maintenance to process optimization. As these
models become more advanced, their increasing computational demands have driven a
shift towards cloud-based solutions typically managed by external providers. While this
transition offers considerable computational advantages, it also raises significant privacy
and security concerns for industrial stakeholders. Due to this fact, Privacy-preserving
machine learning (ppML) has the potential to serve as a safeguard to address these
concerns.

5.3.2 Data acquisition and preprocessing
The robot trajectory was generated from a seven-axis collaborative industrial robot (KUKA
LBR iiwa R800). This robot is equipped with electrical actuators in each of its joints,
which allow it to move. The actuators convert electrical energy into mechanical torque
to rotate each axis, and the total energy consumption of the robot is therefore directly
influenced by the commanded joint motions.

Two different approaches were used during generation to ensure different levels of com-
plexity were captured:

• Limited Space Random – Random target positions are selected within a restricted
part of the robot’s reachable workspace.

• All Space Random – Random robot joint configurations are generated across the
full range of the robot’s configuration space. Only physically valid configurations
are used, meaning those that do not cause collisions or violate mechanical limits.

The capture contains robot axis angles θ(t) as well as consumed active electrical power
p(t). All recordings are made with a sampling frequency of ∆T = 40ms. To model the
expected electrical power that would be used by the system, three different input features
are used, namely the robot axis angles θ as well as two additional and optional derived
features, angle velocity θ̇ and angle acceleration θ̈. These are obtained using equations 5.1
and 5.2.

θ̇(t) ≈ θ(t+∆T ) − θ(t − ∆T )
2∆T

(5.1)

θ̈(t) ≈ θ(t+∆T ) − 2θ(t) + θ(t − ∆T )
(∆T )2 (5.2)
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For the preprocessing of the features, the electrical power p(t) is normalized using the
formula 5.3, where poffset = 155 and pscale = 166 are chosen empirically based on the
training data.

pnorm(t) = (p(t) − poffset)/pscale (5.3)

The input features are scaled by factors θscale = 3, θ̇scale = 1.6, θ̈scale = 13.

5.3.3 Model training and evaluation
Three separate model architectures were designed: dense models, LSTM models, and
LSTM models combined with convolutional layers. Both the dense and LSTM models are
capable of handling a variable number of input features. The first network uses only the
normalized seven-axis angles as input. The second network includes both the normalized
axis angles and normalized angular velocities, resulting in a 14-dimensional input. The
third network incorporates all 21 constructed features as input.

The dense models are composed of four linear layers with ReLU activation. They take
input in the format (b, f), where b represents the batch size and f the number of features
at a single timestamp. The LSTM architecture starts with a sequence input layer,
followed by an LSTM layer with 10 hidden units, and then a four-layer dense network
without activation functions. Its final layer is a one-dimensional output layer. This
network expects input in the format (b, t, f), where b is the batch size, t the number of
timestamps, and f the number of features. Using this setup, three networks were created
that differ only in input dimensionality. Notably, the datasets for both LSTM and dense
models are the same; only the input arrays are reshaped to fit the required format for
each architecture before training and evaluation.

The LSTM model with a convolutional layer for feature extraction is designed to automat-
ically derive features from the data without any prior knowledge of the system. Notably,
the derivative of a signal can be obtained by convolving the signal with a suitable filter
kernel. Commonly used filter kernels include the first- and second-order derivatives of a
Gaussian function g(t) (5.4 and 5.5) [42].

d

dt
f(t) ≈ f(t) ·

(︃
d

dt
g(t)

)︃
(5.4)

d2

dt2
f(t) ≈ f(t) ·

(︄
d2

dt2
g(t)

)︄
(5.5)

When the kernel width is reduced to L = 3, convolving these kernels with a signal is
equivalent to computing the first and second finite differences as described in 5.1 and 5.2
for ∆T = 1. Therefore, a convolutional layer with multiple filter kernels of width 3 placed
before the LSTM layer can, in principle, achieve the same performance as networks using
manually extracted features. In this architecture, input features are organized in the
format (b, L, f), where b is the batch size, f is the number of individual features, and
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L is the kernel width. The datasets remain unchanged but are reshaped so that the
CNN always receives L timestamps, with appropriate padding applied at the sequence
boundaries.

The LSTM and CNN with LSTM models were originally implemented in MATLAB.
As SPU requires JAX models, the implementation of these two architectures had to be
manually rewritten.

The number of trainable parameters of all developed models and their variants is shown
in Table 5.4. LSTM and dense networks are employed with varying input features. The
inputs consist of either only the angular values θ, angular values together with angular
velocities θ, θ̇, or all features including angular accelerations θ, θ̇, θ̈. For the LSTM with
a convolutional layer, two networks were trained using three kernels with kernel widths
of L = 3 and L = 5. This configuration uses only the angular values θ as input.

Architecture #Input features #Parameters
LSTM 7 903
LSTM 14 1183
LSTM 21 1463
MLP 7 2625
MLP 14 3073
MLP 21 3521

CNN+LSTM (L=3) 7 1475
CNN+LSTM (L=5) 7 1481

Table 5.4: Number of trainable parameters for different network configurations.

For training and evaluation of the models, the dataset was split into training, testing,
and validation sets with a ratio of approximately 74:14:12 (248 training samples, 47
test samples, and 42 validation samples from a total of 337 samples). The training
configuration is displayed on Table 5.5.

Max nr. of Epochs 2000
Batch size 12

Initial learning rate 0.02

Table 5.5: Training configuration.

The loss function used was the Mean Squared Error loss function 5.6, where B is the
batch size, yk are the logits from the last layer of the network, and ŷk are the labels. The
optimizer used was the Adam optimizer [43] with a piecewise constant schedule learning
rate that scales the initial learning rate by 0.9 after the hundredth epoch. Early stopping
was also implemented, where the training would stop after the loss would not change by
0.0001 compared to the previous epoch.
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MSE = 1
B

B∑︂
k=1

(yk − ŷk)2 (5.6)

For the quality assessment of the models, the metrics Mean Absolute Error (MAE)
Eq. 5.7, Root Mean Squared Error (RMSE) Eq. 5.8, and Mean Absolute Percentage
Error (MAPE) Eq. 5.9 were utilized.

MAE = 1
N

N∑︂
k=1

|yk − yk̂| (5.7)

RMSE =

⌜⃓⃓⎷ 1
N

N∑︂
k=1

(yk − yk̂)2 (5.8)

MAPE = 100
N

N∑︂
k=1

|yk − yk̂|
|yk| (5.9)

An attempt was also made to train the networks directly under SMPC. However, even
for relatively small architectures, the computational and communication overhead proved
to be prohibitive: completing a single training epoch required an impractically long time.
For this reason, the scope of SMPC evaluation in this work was limited to the inference
stage, while all model training was carried out in plaintext. This reflects a broader
limitation of current SMPC frameworks, where training remains largely impractical, but
inference can already be realistically applied in constrained settings.

5.3.4 Privacy-Preserving Collaborative Energy Prediction
Regarding testing privacy-preserving inference of the developed models, several different
strategies were utilized. The first was a pure SMPC strategy in which both the trained
model weights and the testing input features were secretly shared with the SMPC cluster,
and the results were sent back and reconstructed by the input owner, as visualized in
Figure 5.5.

Another strategy involves an optimization presented in [26]. The model weights are
kept public, but are permuted before the inference with predetermined permutation
matrices. Combined with the permutation of the inputs, this results in a mathematically
correct forward pass of the network, while at the same time the permutation disables
the honest-but-curious adversary from extracting meaningful data from the exposed
weights without knowing the permutation matrices. The only option the attacker has is
to brute-force the correct model weights, which is computationally very expensive.

The last strategy used is the evaluation of activation functions in plaintext. Activation
functions in SMPC have a much larger impact on the inference time compared to plaintext
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Figure 5.5: High-level overview of the basic SMPC workflow

inference [44]. One of the options to mitigate this effect is to simplify the activation
functions, which often results in a decreased utility of the model. This can be mitigated
by using techniques such as Knowledge Distillation (KD). In the case of the activation
functions used in this use case, they already belong to a class of very simple activations.
To further simplify them would mean a very drastic decrease in the model’s utility.
Another option is to evaluate the activations in plaintext, meaning the intermediate
results would be sent back to the input owner, where they will be reconstructed. The
input owner will then perform the activation and secret-share the results back to the
cluster. This process will be repeated until the last activation is performed.

5.3.5 Evaluation
In this section, the evaluation of the developed models is discussed. First, the qualitative
performance of the models is presented, followed by the performance impact of using
SMPC and various optimization methods. The model naming convention in the tables
below indicates the network architecture and input configuration. Three network types
were tested: Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and
CNN-LSTM hybrid. The suffix ’-Nf’ denotes the number of input features used: 7
features (-Nf7), 14 features (-Nf14), or 21 features (-Nf21). For the CNN-LSTM models,
’k3’ indicates three parallel kernel filters, each processing one set of the original 7 features,
while ’L3’ and ’L5’ specify kernel sizes of 3 and 5, respectively. Thus, for example,
’mlpNf21’ represents an MLP with 21 input features, while ’cnn-k3L5’ represents a
CNN-LSTM with three kernels of size 5.

Models quality evaluation

Metrics calculated on the testing dataset are presented in Table 5.6. The results show
that using manually derived features is beneficial in terms of predictive quality of the
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model. Using all input features θ, θ̇ and θ̈ (-Nf21) had the lowest error rates. The most
interesting outcome is from the MLP model, which achieves the best overall results.
This comes from the fact that they have the largest amount of trainable parameters and
therefore are able to capture the largest amount of information from the dataset. The
temporal aspect of the dataset from the results does not seem to contain much additional
information for the LSTM model to improve its performance over the MLP model. The
results also show the viability of the CNN to automatically extract the additional features
without additional preprocessing.

Name MAE [W] RMSE [W] MAPE [%]
mlpNf21 3.279 5.127 1.800
lstmNf21 3.558 5.548 1.943
cnn-k3L5 3.595 5.719 1.958
lstmNf14 3.676 6.659 2.033
cnn-k3L3 4.341 7.417 2.299
mlpNf14 5.446 9.427 2.950
lstmNf7 10.041 13.850 5.540
mlpNf7 16.368 21.343 9.111

Table 5.6: Comparison of metrics for tested model structures

Models evaluation under SMPC

The trained models are evaluated using inference time under SMPC and inference time
in plaintext form as the main metric. All benchmarks are done on an Intel Xeon W-2245
CPU, 126 GB of RAM, using Ubuntu 24.04 and Python 3.10.14. The SPU framework was
used, utilizing ABY3 underlying protocol with three computing nodes and two provider
nodes, one for the input features and the other for trained model parameters. All tests
are done in the localhost network. Table 5.7 illustrates the performance measurements.
From the results, a few conclusions about the inference in SMPC can be made.

• The number of input features (7, 14, or 21) does not significantly influence the
inference speed in the SMPC domain,

• The architecture of the neural network (LSTM, Dense or combination of CNN and
LSTM) has the biggest influence on the inference speed,

• The number of trainable parameters does not directly correlate with the inference
times.

Analyzing performance-privacy tradeoff

The impact on inference times of the two proposed strategies in Section 5.3.4 is analyzed
as well. The model chosen under analysis was the mlpNf21 due to its best qualitative
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Model SMPC [s] Plaintext [s]
lstmNf7 0.5624 ± 0.0037 0.1799 ± 0.0049
lstmNf14 0.5618 ± 0.0036 0.1746 ± 0.0048
lstmNf21 0.5624 ± 0.0037 0.1766 ± 0.0046
cnn-k3L5 0.5731 ± 0.0026 0.1827 ± 0.0047
cnn-k3L3 0.5728 ± 0.0023 0.1834 ± 0.0049
mlpNf7 0.1577 ± 0.0003 0.0248 ± 0.0001
mlpNf14 0.1536 ± 0.0003 0.0249 ± 0.0001
mlpNf21 0.1537 ± 0.0002 0.0249 ± 0.0001

Table 5.7: Comparison of inference time for all models in both SMPC and plaintext form.
For SMPC inference, both model weights and inputs are secret shared.

results, fastest SMPC inference times, and simplest architecture. The inference times of
the two different strategies can be seen in Table 5.8.

Optimization used SMPC [s] Plaintext [s]
Activation functions in plaintext 0.156 0.024
Permutation of weights 0.065 0.022

Table 5.8: Impact of different optimization attempts on mlpNf21

The evaluation of activation functions in plaintext form resulted in slightly worse inference
times. This stems from the fact that the time required for collecting shares, reconstructing,
and then again resharing the outputs multiple times is computationally more expensive
than just an evaluation purely in the SMPC domain. This optimization can prove useful
for more complex models with less frequent activation functions.

The strategy of permuting the weights and inputs and keeping the weights revealed to
all parties shows significant speedup over purely SMPC implementation. This outcome is
expected as SMPC computation on a revealed input significantly reduces the commu-
nication and computation overhead. The disadvantage of this approach is the limited
applicability to some network architectures, e.g., CNN layers cannot be permuted this
way.

Deployment considerations

As with the previous use case, the impact of network delay and packet loss was examined.
The results can be seen in Figure 5.6. From the figure, the effect of network delay linearly
increases the inference time for all models, but the LSTM and LSTM with a convolutional
layer are more affected. It can also be observed that both LSTM and LSTM with a
convolutional layer have almost the same increase, which hints at the fact that the LSTM
affects this metric the most. Similarly, for packet loss, the relationship is almost linear,
with some nonlinearities visible for higher packet loss, more prevalent for models using
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(a) Impact of added delay on inference time
(b) Impact of added packet loss on inference
time

Figure 5.6: Impact of network complications on inference time

LSTM. However, such high packet loss does not mirror typical real-world conditions and
would rather be a sign of severe communication issues on the network.

5.4 Conclusion
In this chapter, a use-case study was made on two different traditional Machine learning
applications and the effect of SMPC on their inference time. In the first part, a face
verification case study was examined, exploring two different models, namely ResNet50
and MobileFaceNet. Both models report high accuracy, but also suffer a slowdown on
privacy-preserving inference. MobileFaceNet, due to its lightweight design, is much less
affected, making it more suitable for inference usage with SMPC. Although not really
competitive with plaintext inference, it provides important insights into studying small,
mobile-friendly models and their performance in SMPC. The second part of the chapter,
a privacy-preserving energy prediction model for robotics, was studied. Here, several
models were developed, including an LSTM model with and without CNN attachment
and a purely dense model. Here, the best performing model was the dense one with 21
input features, both in terms of accuracy metrics as well as inference time metrics in
SMPC. The SMPC inference times for these dense models can be comparable to the
times of plaintext LSTM models.
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CHAPTER 6
Conclusion

This thesis set out to answer the main research question: “To what extent can current
SMPC frameworks effectively enable privacy-preserving machine learning inference across
different application domains while maintaining acceptable performance and accuracy?”
To address this, the work was divided into three parts: a review of existing frameworks,
benchmarking of generic deep neural networks, and use-case studies in different application
domains.

The first part of the study evaluated three state-of-the-art SMPC frameworks: MP-SPDZ,
CrypTen, and SecretFlow-SPU. The analysis demonstrated that each framework has
inherent design trade-offs and is best suited for different contexts. MP-SPDZ provides a
versatile platform for benchmarking and academic exploration of diverse SMPC protocols.
CrypTen, while conceptually useful, is no longer recommended due to its deprecation.
SecretFlow-SPU, on the other hand, stands out as a more user-friendly solution, making
it the most promising candidate for real-world adoption at present.

The second part of the thesis benchmarked three generic neural networks, with varying
sizes and depths. MLP and CNN architectures showed expected parameter-dependent
scaling, with inference time increasing roughly linearly with model size. On the other
hand, LSTM networks showed a different behavior, where the increase in inference time is
mostly driven by the network depth. This shows that translation from plaintext to SMPC
inference is not the same across architectures. The results also showed the importance
of model optimization, which is even more prevalent in the SMPC setting, shown on
examples such as ResNet50 and MobileFaceNet.

The third part of the thesis involved two case studies, one in robotics and another in
biometrics, to evaluate the practical feasibility of SMPC implementations in real-world
scenarios. The results highlighted a clear distinction between application domains. In the
biometric case study (face verification), the complexity of the required models introduced
large computational and communication overheads, even when optimizations such as
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model weight revelation were applied. This indicates that current SMPC technology is
not yet suitable for such highly complex domains, particularly under realistic network
conditions with latency and delays. By contrast, the robotics use case proved significantly
more suited to SMPC deployment. The models in this domain were comparatively
lightweight, and as a result, the additional overhead introduced by SMPC was manageable.
Furthermore, optimizations such as weight permutation reduced inference times even
further, strengthening the case for realistic adoption in such settings.

These findings provide an answer to the main research question. Current SMPC frame-
works can, under certain conditions, enable privacy-preserving machine learning without
severely compromising performance or accuracy. However, their effectiveness is highly
dependent on the application domain and the complexity of the models employed, as
well as the concrete structure of the model employed. For domains requiring large-scale,
high-complexity models, such as biometrics, the current generation of SMPC frameworks
remains impractical for real-world deployment. On the other hand, for applications that
rely on less complex models, such as robotic energy consumption prediction, SMPC is
already a feasible and promising solution.

In summary, while SMPC is not yet a universal solution for privacy-preserving machine
learning, it shows strong potential for adoption in specific domains with manageable
model complexity. Continued research into protocol efficiency, model optimization, and
pipeline integration will be crucial to extending its applicability to more demanding use
cases in the future.

Future work would entail a benchmark of additional neural network models for added
insights, as well as the implementation of additional case studies in different areas.
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Overview of Generative AI Tools
Used

Generative AI was only used as an assistive tool for this thesis. ChatGPT and Claude
helped to proofread the thesis as well as rewrite some parts to be more expressive and
academic. No knowledge and/or ideas were generated and the Generative AI only worked
with my own text or my own written notes. ChatGPT was also used to translate required
parts into German. Generative AI was also used for some parts of the code writing but
only as the starting point and was carefully reviewed and further improved by me.
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