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Abstract

Join processing remains a fundamental challenge in database systems, particularly when
intermediate results grow large. This problem is frequently encountered in analytical
queries, which aggregate data over many relations, but output only a comparably small
final result. Although the vast majority of user-generated queries are acyclic, and
the foundational result by Yannakakis provides a solution for avoiding unnecessary
computation of intermediate results in theory, structure-guided query evaluation remains
absent from standard database systems. In this thesis, we work towards closing this gap
from theory to practice.
To explore the benefits and limitations of structure-guided query processing, we introduce
a query-rewriting-based implementation of Yannakakis’ algorithm, on top of different
DBMSs. Additionally, we identify the class of zero-materialisation answerable (0MA)
queries, which can be answered efficiently without materialising join results. Experimental
evaluation shows that the rewriting approach can achieve significant speedups on hard
instances but fails to outperform in most situations. These results motivate us to frame
the problem as an algorithm selection problem – we therefore apply machine learning to
solve this problem, setting up a new data set of queries in the process, and verify that
we can reliably decide when to apply the rewriting.
Following up on these encouraging results, we go beyond the quite restrictive 0MA class,
introducing guarded and piecewise-guarded aggregate queries, allowing us to cover a wide
range of aggregate queries while avoiding materialisation. We integrate these optimisations
into the query optimiser of Spark SQL by implementing logical optimisations and a
new physical operator AggJoin. Through experimental evaluation, we show that this
implementation speeds up aggregate processing on many queries of several benchmarks
while never degrading performance. Furthermore, to cover arbitrary unguarded queries,
where materialisation cannot be fully avoided, we extend the AggJoin to the GroupAggJoin
operator, substantially reducing materialisation on these queries as well. By establishing
a new benchmark for unguarded queries, we show that this approach successfully handles
moderately unguarded queries.
Having established efficient techniques for the processing of large classes of acyclic
aggregate queries, we focus on the particularly challenging class of cyclic queries. To
apply the standard approach of using decompositions to make cyclic queries acyclic
successfully, it is clear that we require secondary optimisation objectives in addition
to minimising the width of decompositions. To address this challenge, we introduce
soft hypertree decompositions and the associated measure of soft hypertree width (shw).
By avoiding the special condition of hypertree decompositions, we gain algorithmic
flexibility while retaining the tractability of computing width-k decompositions. By
developing an end-to-end pipeline, we achieve a seamless integration of these optimisations
into DBMSs. Experimental evaluation on cyclic queries confirms that we can achieve
significant improvements in decomposition quality, which translates to performance gains
in practice.
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Kurzfassung

Die Abarbeitung von Joins ist eine der grundlegenden Herausforderungen von Datenbank-
systemen, insbesonders bei Zwischenergebnissen die groß werden. Dieses Problem tritt
besonders häufig in analytischen Abfragen auf, welche Daten über viele Relationen aggre-
gieren, aber nur ein relativ kleines Endergebnis produzieren. Obwohl die überwiegende
Mehrheit von nutzergenerierten Abfragen azyklisch ist, und uns das fundamentale Ergeb-
nis von Yannakakis eine Lösung bietet um in solchen Fällen unnötige Zwischenergebnisse
zu vermeiden, ist solch eine strukturbasierte Optimierung von Abfragen bisher nicht in
Standard-Datenbanksystemen zu finden. In dieser Dissertation arbeiten wir daran, diese
Lücke zwischen Theorie und Praxis zu schließen.

Um die Vorteile und Einschränkungen von strukturbasierter Optimierung von Abfragen
zu untersuchen, führen wir eine Implementierung von Yannakakis’ Algorithmus ein, welche
auf der Umschreibung von Abfragen basiert. Experimente zeigen, dass dieser Ansatz
die Ausführung von schwierigen Instanzen deutlich beschleunigen kann, aber in den
meisten Fällen keine Verbesserung erzielt. Zusätzlich identifizieren wir die Klasse 0MA
(zero-materialisation answerable), von Anfragen, welche vollständig ohne Materialisierung
von Zwischenergebnissen beantwortet werden kann. Diese Erkenntnisse motivieren die
Formulierung dieses Problems als Entscheidung zwischen zwei Algorithmen. Um dieses
Problem zu lösen wenden wir Machine Learning Methoden an, erstellen ein neues Datenset
von Abfragen und zeigen, dass wir erfolgreich entscheiden können, wann die Umschreibung
der Abfrage vorteilhaft ist.

Als nächstes erweitern wir die immer noch recht einschränkende Klasse 0MA, und führen
guarded und piecewise-guarded Aggregatabfragen ein, wodurch wesentlich mehr Aggre-
gatabfragen abgedeckt werden können während Materialisierung vermieden wird. Wir
integrieren dies in Spark SQL, indem wir logische Optimierungen sowie einen neuen
physischen Operator AggJoin einführen. Durch experimentelle Evaluierung bestätigen wir,
dass die Implementierung die Ausführung von vielen Aggregatabfragen von Benchmarks
beschleunigt aber nie einzelne verlangsamt. Um ebenfalls beliebige azyklische Aggre-
gatabfragen, die über die Klasse piecewise-guarded hinausgehen, wo Materialisierung
nicht vollständig vermieden werden kann, abzudecken, erweitern wir den AggJoin zum
GroupAggJoin. Dadurch kann Materialisierung erheblich reduziert werden. Durch die
Einführung eines neuen Benchmarks für solche Abfragen zeigen wir, dass unsere Methode
klare Verbesserungen erzielt.

Nachdem wir effiziente Lösungen für die meisten azyklischen Aggregatabfragen präsentiert
haben, widmen wir uns den besonders schwierigen zyklischen Abfragen. Der Standardan-
satz aus der Theorie ist, eine Zerlegung (decomposition) minimaler Width(“Weite”) der
Abfrage zu berechnen und damit die zyklische Abfrage wie eine azyklische zu lösen.
Allerdings hat sich gezeigt, dass es neben der Width weitere Optimierungsziele benötigt.
Als Lösung für dieses Problem führen wir soft hypertree decompositions (eine allgemeinere
Variante der Hypergraph-Zerlegung) ein sowie die assoziierte Width soft hypertree width
(shw). Durch die Definition erlangen wir mehr Flexibilität in der Berechnung der Zerle-
gung während das Problem k-Width Zerlegungen zu finden effizient lösbar bleibt. Durch
die Entwicklung einer end-to-end Pipeline erreichen wir die reibungslose Integration in
bestehende Systeme. Experimente auf zyklischen Benchmark-Instanzen zeigen, dass wir
wesentliche Verbesserungen in der Qualität der Zerlegungen erreichen können.
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CHAPTER 1
Introduction

In the first three sections of the introduction, we give a high-level and non-technical
motivation of the challenges addressed in this thesis. In Section 1.4, we outline the main
research questions and contributions.

This work was accomplished in collaboration with many colleagues, and resulted in
several publications. Details on the publications and the correspondence of publications
to the chapters of the thesis are provided in Section 1.4.

1.1 Large Intermediate Results in Join Queries
Join processing is a challenging task at the core of query engines, and a major factor
in overall database performance. Nevertheless, despite decades of improvements in
database systems, query engines still struggle when processing join queries in which the
intermediate results become large. This situation is particularly common in analytical
queries, which aggregate data over numerous relations, and reduce it to very few rows
in the final output. Despite the well-known result by Yannakakis [162] providing us, in
theory, with a solution for difficult acyclic queries exhibiting this problem, this approach
or adaptations have not yet found their way into mainstream database systems. Such
queries are becoming more and more common – for example, queries automatically
generated by business intelligence tools may easily reach sizes where this problem is
frequent [122]. It, therefore, should be a requirement for DBMSs today to cope with
such queries. However, as we will see, the integration of Yannakakis’ algorithm into
systems, with wide applicability, while maintaining at least the original performance over
all queries, is not straightforward.

Conjunctive Queries (CQs) correspond to SQL SELECT-FROM-WHERE expressions
with conjunctions of equality conditions, and thus constitute an important class of
queries. The traditional approach to evaluate a join query is to split it into a sequence
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1. Introduction

of two-way joins. One of the main tasks of query optimisation is then to determine the
optimal or at least a good join order. In particular, part of finding a good join order is
avoiding the costly computation of large intermediate results as far as possible. However,
typical systems rely on some combination of heuristics and optimisation procedures to
determine the join order for given queries. Hence, even for moderately large queries, the
resulting optimisation problems become too difficult to solve exactly and the quality
of the resulting join orders degrades quickly. For instance, PostgreSQL 14 by default
performs a full search for the optimal plan only up to 11 joins before falling back on
heuristic optimisation techniques. Sophisticated pruning methods and parallelisation
have been shown to push this threshold higher [110, 109], but the task still remains
fundamentally challenging. Moreover, the problem of huge intermediate results is not
restricted to the choice of a bad join order.
Yannakakis’ algorithm can be used to answer acyclic conjunctive queries (ACQs) –
an important subclass of CQs covering most practical queries – efficiently. This is
achieved by eliminating the blowup in the intermediate results, making use of the
query’s acyclic structure, and using semi-joins as opposed to joins, to eliminate dangling
tuples which do not contribute to the final output. In theory, it seems clear that this
approach is preferable to a sequence of binary joins. However, beside specialized research
prototypes [2, 130, 152, 157], this approach has not seen adoption in standard DBMSs
and query engines. Our overarching goal is, therefore, to make the evaluation of large
classes of queries, which systems currently struggle with due to large intermediate results,
feasible in mainstream DBMSs.
The first step towards this goal is to explore integrations of Yannakakis’ algorithm into
different DBMSs, and identify in which cases it proves to be beneficial to the performance.
We thus implement an external rewriting which forces the DBMS to execute the query
following Yannakakis’ algorithm. In the course of this work, we identify the class 0MA
(definitions are provided in Chapter 4), consisting of acyclic queries followed by simple
aggregations where the multiplicity of values does not matter (set-safety), such as MIN
or MAX, over single relations (guardedness). For this class of queries, the Yannakakis-
rewriting based approach provides significant improvements. Several new questions come
up, motivating the rest of the work in this thesis. Still, due to the overhead of the
rewriting, even on the very favourable 0MA class, there are cases where not even the
baseline performance is achieved. On the enumeration queries, which require the full
Yannakakis algorithm with its 3 traversals, and the materialisation of the entire output,
performance is degraded in most cases as there is no great benefit from Yannakakis’
algorithm due to the effort required to enumerate and materialise the final output in
addition to the overhead introduced by the rewriting.
Having made these observations, it would clearly be desirable to reliably identify the
cases where the Yannakakis-rewriting outperforms the standard join implementation.
We now consider an example in which a simple change in the query decides whether a
Yannakakis rewriting is beneficial or not. In the query in Figure 1.1, Yannakakis-style
evaluation is significantly faster (by a factor of ca. 30) than the original evaluation method
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1.1. Large Intermediate Results in Join Queries

SELECT MIN(c.Id)
FROM comments AS c, posts AS p, votes AS v, users AS u
WHERE u.Id = p.OwnerUserId AND u.Id = c.UserId AND

u.Id = v.UserId AND u.Views>=0 AND p.Score>=0 AND
p.Score<=28 AND p.ViewCount>=0 AND p.ViewCount<=6517
AND p.AnswerCount>=0 AND p.AnswerCount<=5 AND
p.FavoriteCount>=0 AND p.FavoriteCount<=8 AND
c.CreationDate>='2010-07-27 12:03:40' AND
p.CreationDate>='2010-07-27 11:29:20' AND
p.CreationDate<='2014-09-13 02:50:15' AND
u.CreationDate>='2010-07-27 09:38:05'

Figure 1.1: Slightly modified query 121-097 from the STATS benchmark: original
runtime on PostgreSQL (3.38s) vs. Yannakakis-style evaluation (0.11s). After changing
the filter condition to p.FavoriteCount>=8 : original runtime on PostgreSQL (0.05s) vs.
Yannakakis-style evaluation (0.09s).
of PostgreSQL. However, when we modify one of the conditions in the WHERE clause
from ≥ 0 to ≥ 8 (which, together with the ≤ 8 condition, yields = 8), then suddenly the
original evaluation method of PostgreSQL is faster.

In order to apply this version of Yannakakis-style query evaluation, we urgently need a
method that decides when to apply the optimisation technique and when to stick to the
original evaluation method of the database management system (DBMS). We therefore
aim at developing such a decision procedure. We consider general acyclic queries (which
join all relations after the semi-join-based elimination of dangling tuples), as well as 0MA
queries (which only require a bottom-up traversal of the join tree with semi-joins).

To cover a diverse set of database technologies, we study three quite different DBMSs,
namely PostgreSQL [146] (as a “classical” row-oriented relational DBMS), DuckDB [134]
(as a column-oriented, in-memory database), and Spark SQL [164] (as a database engine
specifically designed for distributed data processing in a cluster environment).

We treat the design of a decision procedure between different query evaluation techniques
as an algorithm selection problem, that we want to solve by applying Machine Learning
(ML) techniques. In recent years, ML techniques have been frequently applied to solve
database problems – above all cardinality estimation and join order optimisation (see,
e.g., the survey paper [170]). Our focus, however, is different: we are interested in the
overall runtime of query evaluation under different evaluation methods. We ultimately
aim to improve end-to-end runtimes over entire workloads, rather than local optimisations
of some specific subtask of query evaluation.

To approach this algorithm selection as a classification problem, we need to select queries
and data from benchmarks, and identify relevant features that characterize these queries.
Together with the runtimes obtained on our target DBMSs, this forms our training data.
SQL benchmarks generally aim at testing specific features of DBMSs and are relatively
small for training and testing ML models. We therefore create a new dataset by adapting
and combining several benchmarks followed by data augmentation, to achieve the variety
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1. Introduction

and size of the dataset that makes it suitable for model training.

1.2 Efficient Processing of Acyclic Aggregate Queries
The techniques introduced in Section 1.1 and later covered in Chapter 4 allow us to apply
Yannakakis’ algorithm quite reliably, whenever it is expected to yield an improvement,
for 0MA queries, and for enumeration queries. However, we also observe that on the
vast majority of enumeration queries, the query performance is degraded. Especially
in aggregate queries, where only a limited amount of information is ultimately part
of the output, it would be highly desirable to reduce or, ideally, avoid altogether the
materialisation of intermediate join results.
Several works [132, 51] investigated how variations of the same algorithmic idea also apply
to join queries with COUNT aggregates. Subsequently, these ideas were extended to more
general aggregate queries in the FAQ-framework (Functional Aggregate Queries) [91] and,
similarly, under the name AJAR (Aggregations and Joins over Annotated Relations) [90].
We offer a more detailed account of related work in Chapter 3.
However, previous works in this area have left a gap: Most approaches (such as FAQ
and AJAR mentioned above) aim at reducing (not eliminating) the number of joins
and/or the cost of computing them by applying sophisticated join techniques. But the
computation and materialisation of joins remains the dominating cost factor. On the
other hand, approaches that avoid the computation or materialisation of intermediate
join results depend on severe restrictions of the class of queries, such as Boolean queries
or 0MA queries. Indeed, as we will show in our empirical evaluation in Section 5.3, only
a small fraction of the queries in the standard benchmarks considered here satisfies these
restrictions.
Our goal is thus to identify a class of aggregate queries which can be evaluated without the
need to compute or materialise any joins and which, nevertheless, cover many practical
cases. The key to this class of queries is the notion of guardedness. More specifically,
we call a query with aggregates on top of an acyclic join query guarded if all attributes
involved in a GROUP BY clause and in any aggregate expression are contained in a single
relation, referred to as the “guard”. Here we allow any aggregate function from the ANSI
SQL standard – including statistical functions such as MEDIAN, VARIANCE, STDDEV, CORR,
etc.

Example 1.2.1. We illustrate the basic ideas with the simple query given in Figure 1.2
over the well-known TPC-H schema. The query asks for the median of the account balance
of suppliers from one of the regions ’Europe’ or ’Asia’ for parts with above average price.
The join-structure of the query is clearly acyclic as is witnessed by the join tree displayed
in Figure 1.2. Moreover the query is trivially guarded, since it has no grouping and the
aggregation is over a single attribute.
Note that the subquery is only used to realise a selection (locally) on the relation part.
After applying this selection on the part relation and also the selection on the region

4



1.2. Efficient Processing of Acyclic Aggregate Queries

SELECT MEDIAN(s_acctbal)
FROM part, partsupp, supplier,

nation, region
WHERE p_partkey = ps_partkey

AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >
(SELECT avg (p_price) FROM part)

AND r_name IN ('Europe', 'Asia')

supplier

nation

region

partsupp

part

Figure 1.2: Query over the TPC-H schema and its corresponding join tree

relation, the query can be evaluated by propagating frequencies of attribute value com-
binations rather than intermediate join results up the join tree. The MEDIAN-aggregate
can then be evaluated on the resulting relation at the root node. Indeed, suppose that we
have computed all tuples t1, . . . , tn of relation supplier together with the corresponding
frequencies c1, . . . , cn of these tuples in the full join result of the five relations. Then
we can order the values v1, . . . , vn of these tuples in ascending order and, by taking the
frequencies c1, . . . , cn into account, it is an easy task to read off the median value. This
is in sharp contrast to traditional query evaluation, which would first compute the join of
the five relations and evaluate the aggregate on the full join result. ⋄

As we will see in Section 5.3, all the queries in the STATS-CEB [76] and SNAP [102]
benchmarks are thus covered, and so is a small number of queries in the other benchmarks
studied here. However, for the most commonly used aggregate functions MIN, MAX, COUNT,
SUM, and AVG, the guardedness restriction can be significantly relaxed. We thus define
piecewise-guarded queries as queries with aggregates on top of an acyclic join query, where
the attributes in a GROUP BY clause and the attributes jointly occurring in an aggregate
expression each are contained in a single relation. That is, the GROUP BY clause and also
each aggregate expression has a guard, but all these guards may be different. It will
turn out that, with this relaxed restriction, we can cover all JOB [101] queries and a
significant number of queries in the TPC-H [150] and TPC-DS [149] benchmarks.

We will show how to realise Yannakakis-style evaluation for guarded and piecewise-guarded
queries by rewriting subtrees in the logical query plan. In this process, joins are either
replaced by semi-joins or they are immediately followed by aggregation. Importantly, in
the latter case, the number of tuples to be propagated up the join tree is the same as in the
case of semi-joins. The only extension needed is to add columns for the total frequencies
(corresponding to COUNT(*)) and for the various aggregate expressions contained in the
query. All of this can, in a very natural way, be implemented as part of the logical
optimisation step. This approach thus applies also to subqueries and automatically works
in conjunction with other optimisation techniques such as subquery decorrelation. An
additional benefit of this optimisation is that it requires no cost-based optimisation,
making it particularly attractive for systems with a limited or no cost model, such as
Spark SQL.
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1. Introduction

As a further optimisation, we introduce a new physical operator that intuitively im-
plements a semi-join that keeps track of frequencies and other aggregate values, and
which can be implemented through minimal changes to standard join algorithms (see
Section 5.2). It thus integrates smoothly in any typical SQL execution engine. We
integrate both the logical optimisation and the new physical operator into Spark SQL,
which was specifically designed to cope with complex analytical queries. The performance
gain observed in our experimental evaluation on several standard benchmarks can reach
up to one or two orders of magnitude for analytical queries involving aggregates on top of
non-trivial join or path queries. Notably, our method incurs no performance degradation
even for simple queries where the size of intermediate results never gets too big anyway.

To go even beyond piecewise-guarded queries and towards arbitrary aggregates over CQs,
where materialisation sometimes cannot be avoided, we extend the implementation and
introduce another physical operator: GroupAggJoin, which brings together grouping and
aggregation in a semi-join-like operator (see Section 5.4). This enables the propagation of
grouping attributes, and significantly reduces the amounts of materialisation required. For
the evaluation of this extension, we require a benchmark focusing on unguarded queries,
and therefore introduce a new benchmark based on the Join-Order-Benchmark [101],
from which we derive unguarded queries of various degrees of unguardedness. Results on
this benchmark are very promising, showing that this approach achieves clear speedups
on moderately-unguarded queries.

1.3 Towards Practical Solutions for Cyclic Query
Processing

Since their introduction over 25 years ago, hypertree decompositions (HDs) and hypertree
width (hw) have emerged as a cornerstone in the landscape of database research. Their
enduring relevance lies in their remarkable ability to balance theoretical elegance with
practical applicability. Hypertree width generalises α-acyclicity, a foundational concept
for the efficient evaluation of conjunctive queries (CQs) [162]. Indeed, CQs of bounded
hypertree width can be evaluated in polynomial time. Crucially, determining whether a
CQ has hw ≤ k for fixed k ≥ 1 and, if so, constructing an HD of width ≤ k can also be
achieved in polynomial time [62].

Over the decades, hypertree width has inspired the development of generalised hypertree
width (ghw) [64] and fractional hypertree width (fhw) [73], each extending the boundaries
of tractable CQ evaluation. These generalisations induce larger classes of tractable CQs.
Notably, the hierarchy

fhw(q) ≤ ghw(q) ≤ hw(q)

holds for any CQ q, with the respective width measure determining the exponent of the
polynomial bound on the query evaluation time. Consequently, practitioners naturally
gravitate towards width measures that promise the smallest possible decomposition
widths. Despite this motivation, HDs and hw retain a crucial distinction: hw is, to date,
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1.3. Towards Practical Solutions for Cyclic Query Processing

the most general width measure for which it can be decided in polynomial time [62]
if the width of a given query is below some fixed bound k. By contrast, generalised
and fractional hypertree width, while often yielding smaller width values, suffer from
computational intractability in their exact determination [64, 60]. We introduce a novel
width notion—soft hypertree width (shw) – that overcomes this trade-off by retaining
polynomial-time decidability while potentially reducing the width compared to hw.
But this is only a first step towards a larger goal. Query evaluation based on decomposition
methods works via a transformation of a given CQ with low width into an acyclic CQ by
computing “local” joins for the bags at each node of the decomposition. The acyclic CQ
is then evaluated by Yannakakis’ algorithm [162]. From a theoretical perspective, the
complexity of this approach solely depends on the width, while the actual cost of the
local joins and the size of the relations produced by these joins is ignored. To remedy
this short-coming, Scarcello et al. [136] introduced weighted HDs to incorporate costs
into HDs. More precisely, among the HDs with minimal width, they aimed at an HD
that minimises the cost of the local joins needed to transform the CQ into an acyclic
one and the cost of the (semi-)joins required by Yannakakis’ algorithm. Promising first
empirical results were obtained with this approach.
However, there is more to decomposition-based query optimisation than minimising the
width. For instance, hw = 2 means that we have to compute joins of two relations to
transform the given query into an acyclic one. Regarding width, it makes no difference if
the join is a Cartesian product of two completely unrelated relations or a comparatively
cheap join along a foreign key relationship. This phenomenon is, in fact, confirmed by
Scarcello et al. [136] when they report on decompositions with higher width but lower
cost in their experimental results. Apart from the pure join costs at individual nodes
or between neighbouring nodes in the decomposition, there may be yet other reasons
why a decomposition with slightly higher width should be preferred. For instance, in a
distributed environment, it makes a huge difference, if the required joins and semi-joins
are between relations on the same server or on different servers. In other words, apart
from incorporating costs of the joins at a node and between neighbouring nodes in the
HD, a more general approach that considers constraints and preferences is called for.
We propose a novel framework based on the notion of candidate tree decompositions
(CTDs) from [60]. A CTD is a tree decomposition (TD) whose bags have to be chosen
from a specified set of vertex sets (= the candidate bags). One can then reduce the
problem of finding a particular decomposition (in particular, generalised or fractional
hypertree decomposition) for a given CQ q to the problem of finding a CTD for an
appropriately defined set of candidate bags. In [60], this idea was used (by specifying
appropriate sets of candidate bags) to identify tractable fragments of deciding, for given
CQ q and fixed k, if ghw(H) ≤ k or fhw(H) ≤ k holds. However, as was observed in
[60], it is unclear how the idea of CTDs could be applied to hw-computation, where
parent/child relationships between nodes in a decomposition are critical.
We will overcome this problem by introducing a relaxed notion of HDs and hw, which
we will refer to as soft HDs and soft hw (shw). The crux of this approach will be a
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relaxation of the so-called “special condition” of HDs (formal definitions of all concepts
mentioned in the introduction will be given in Chapter 2): it will be restrictive enough
to guarantee a polynomial upper bound on the number of candidate bags and relaxed
enough to make the approach oblivious of any parent/child relationships of nodes in the
decomposition. We thus create a novel framework based on CTDs, that paves the way for
several improvements over the original approach based on HDs and hw, while retaining
the crucial tractability of deciding, for fixed k, if the width is ≤ k and, if so, computing
a decomposition of the desired width.
Importantly, shw constitutes an improvement in terms of the width, i.e., it is never
greater than hw and there exist CQs q with strictly smaller shw than hw. Basing our
new width notion shw on CTDs gives us a lot of computational flexibility. In particular,
in [60], a straightforward algorithm was presented for computing a CTD for a given set
of candidate bags. We will show how various types of constraints (such as disallowing
Cartesian products) and preferences (which includes the minimisation of costs functions
in [136] as an important special case) can be incorporated into the computation of CTDs
without destroying the polynomial time complexity. We emphasise that even though
our focus in this work is on soft HDs and shw, the incorporation of constraints and
preferences into the CTD computation equally applies to any other use of CTDs – such as
the above mentioned computation of generalised and fractional hypertree decomposition
in certain settings proposed in [60]. We carry out first experimental results with a
prototype implementation of our approach. In short, basing query evaluation on soft HDs
and incorporating constraints and preferences into their construction may indeed lead to
significant performance gains. Moreover, the computation of soft HDs in a bottom-up
fashion via CTDs instead of the top-down construction [54, 66] or parallel computation
of HDs [58] is in the order of milliseconds and does not create a new bottleneck.

1.4 Research Questions and Results
1.4.1 Integrating Yannakakis’ Algorithm into Systems
The results presented in this subsection, as well as the corresponding content of Chapter
4, is based on joint work with Daniela Böhm, Georg Gottlob, Matthias Lanzinger, Davide
Longo, Cem Okulmus, and Reinhard Pichler. It is mainly based on (at the time of
writing) unpublished work:

• [57] Georg Gottlob, Matthias Lanzinger, Davide Mario Longo, Cem Okulmus,
Reinhard Pichler, Alexander Selzer. Structure-Guided Query Evaluation: Towards
Bridging the Gap from Theory to Practice.

• [131] Daniela Böhm, Georg Gottlob, Matthias Lanzinger, Davide M. Longo, Cem
Okulmus, Reinhard Pichler, Alexander Selzer. Selective Use of Yannakakis’ Algo-
rithm to Improve Query Performance: Machine Learning to the Rescue.

A short version of [57] was presented at the Alberto Mendelzon Workshop:
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• [56] Georg Gottlob, Matthias Lanzinger, Davide Mario Longo, Cem Okulmus,
Reinhard Pichler, Alexander Selzer. Reaching Back to Move Forward: Using Old
Ideas to Achieve a New Level of Query optimisation (short paper). 15th Alberto
Mendelzon International Workshop on Foundations of Data Management. 2023.

As a starting point on the path towards bringing structure-guided query processing
into systems, we begin by exploring the potential and possible shortcomings of such an
approach.

Research Question I: To what extent can Yannakakis’ algorithm be inte-
grated into database systems with performance benefits?

In our first exploratory study (Chapter 4), we choose the path of implementing a SQL
rewriting system for expressing Yannakakis’ algorithm – this has the advantage of being
system-agnostic and allows us to test the approach on three very different systems:
PostgreSQL, SparkSQL, and DuckDB.

Main Result 1: We develop a lightweight rewriting based implementation
of Yannakakis’ algorithm and integrate it into 3 DBMSs.

In order to investigate the impact of the rewriting on particularly challenging join queries,
we evaluate it on a benchmark by Mancini et al. [110] over the MusicBrainz dataset [1] on
the three systems. The results show that the approach outperforms the system alone on
many hard instances but at the same time adds significant overhead to query execution,
leading to losses in performance on most simple queries.

Main Result 2: Experimental evaluation shows that the Yannakakis-style
query evaluation leads to performance gains on many hard instances but
degrades performance on most simple instances.

As the standard variant of Yannakakis’ algorithm for enumeration queries requires
two traversals of semi-joins over the join tree followed by an expensive expansion and
materialisation of the full result, we introduce the class of zero-materialisation answerable
(0MA) queries. For 0MA queries, it is only required to perform the inexpensive bottom-up
traversal of semi-joins. Experiments confirm the effectiveness of the rewriting-based
approach for 0MA queries.

Main Result 3: We identify and define the class of zero-materialisation
answerable (0MA) queries and show experimentally that instances of this
class can in general be evaluated very efficiently using Yannakakis-style query
processing.

9
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The mixed positive as well as negative results of the rewriting-based approach towards
Yannakakis-style query execution motivate us to improve on it. Since the rewriting
is highly effective on many instances but disappointing on most, we can consider the
decision whether to apply it as an algorithm selection problem. Hence, we need to be
able to predict whether the rewriting is expected to yield an improvement.

Research Question II: Is it possible to construct a reliable decision proce-
dure for deciding when to apply Yannakakis-style execution effectively?

To solve the algorithm selection problem, we apply machine learning techniques. For
effectively training the models, we however require a large-enough dataset of training
data – larger than what standard benchmarks offer. In order to obtain a sufficiently
large data set, we combine data from 5 benchmarks [101, 76, 103, 116, 80] and augment
the 219 queries from the benchmarks in order to generate 2936 0MA queries and 1741
enumeration queries in total.

Main Result 4: We introduce a new dataset and benchmark (MEAMBench)
by combining and extending several benchmarks, in order to support machine
learning tasks.

After evaluating several machine learning models on the new dataset, we conclude that a
simple decision tree classification or regression model quite effectively learns to decide
when to perform the rewriting.

Main Result 5: We present a decision procedure for reliably deciding when
to perform Yannakakis-style execution.

1.4.2 Efficient Join-Aggregate Processing
The results presented in this subsection, as well as the corresponding content of Chapter
5 is based on joint work with Matthias Lanzinger and Reinhard Pichler:

• [100] Matthias Lanzinger, Reinhard Pichler, Alexander Selzer. Avoiding Materiali-
sation for Guarded Aggregate Queries. VLDB 2025

A preliminary version of this work was also presented at the Alberto Mendelzon Workshop:

• [98] Matthias Lanzinger, Reinhard Pichler, Alexander Selzer. Avoiding Materi-
alisation for Guarded Aggregate Queries. 16th Alberto Mendelzon International
Workshop on Foundations of Data Management. 2024.
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The extension to unguarded aggregate queries is, at the time of writing, novel work.

While demonstrating the potential of Yannakakis-style query evaluation via query rewrit-
ing, and mitigating the drawbacks via a decision procedure, the previous results also
highlight a major gap which we seek to address next: Although 0MA queries can be
solved efficiently, the standard version of Yannakakis’ algorithm is not optimal for the
general class of enumeration queries and by extension also the very important class
of aggregate queries. Aggregate queries are usually expressed as an aggregation (and
possibly grouping) operation after an enumeration query. However, analytical aggregate
queries, while commonly joining a large number of tables, tend to produce relatively
few output rows. This results in a significant materialisation of intermediate results.
Clearly, there is a need to identify classes of queries broader than 0MA and go beyond
the standard version of Yannakakis’ algorithm.

Research Question III: Are there broader classes of aggregate queries for
which we can avoid materialising the intermediate join result?

Our first step towards extending the class of 0MA queries, which is restricted by the
set-safety and guardedness conditions, is to remove one of the two conditions: set-safety.
This means that we now allow arbitrary aggregate functions, removing the restriction to
only aggregate functions which are unaffected by duplicate values (such as MIN/MAX).
To enable this, we make use of an extension of Yannakakis’ algorithm for counting [132],
keeping track of tuple frequencies, which allow us to reconstruct arbitrary aggregate
functions.

Main Result 4: We identify the class of guarded aggregate queries.

Next, we significantly weaken the remaining 0MA condition: guardedness. We eliminate
the requirement for all output attributes to be present in the root node of the join tree by
propagating the results of the aggregate functions themselves up the tree. This approach
incurs minimal overhead by only adding additional columns to relations of the join tree.

Main Result 5: We extend the class of guarded aggregate queries to
piecewise-guarded aggregate queries.

Since Yannakakis-style query processing has not been adopted by mainstream DBMSs,
efficiently integrating it into existing query optimisers remains an open challenge.

Research Question IV: How can we integrate Yannakakis-style query
processing into a query optimiser with minimal to no overhead?

11
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To perform Yannakakis-like bottom-up propagation of frequencies and aggregates, we
have to extend Spark SQL’s optimiser to, first of all, detect applicable queries, i.e., logical
(sub)plans, and then rewrite these to follow the new execution strategy.

Main Result 6: We implement the logical optimisations by extending Spark
SQL’s optimiser.

Experiments show that the purely logical optimisation is effective in most situations, but
introduces some overhead due to the lack of a real semi-join-like operator and therefore
the need for joins followed by aggregation. Thus, to practically eliminate the overhead
of the optimisation, we introduce a new physical operator performing the aggregation
directly inside of the join loop: AggJoin. In accordance to Spark SQL’s standard physical
operators – SortMergeJoin, BroadcastHashJoin, and ShuffledHashJoin – 3 variants of the
AggJoin are implemented.

Main Result 7: We introduce and integrate a novel semi-join-like physical
operator combining the join and aggregation operations: AggJoin.

In order to assess both the applicability and the performance of the optimisations, we
evaluate the modified version of Spark SQL against the original version, on 5 standard
benchmarks. Results show that the optimisation achieves modest up to very significant
speedups on most queries while performance is never degraded.

Main Result 8: Experimental evaluation over 5 benchmarks shows wide
applicability of the optimisations and performance gains without noticeable
tradeoffs.

Piecewise-guarded queries already cover the majority of queries in the benchmarks we
consider here. To cover arbitrary aggregations over ACQs, the only remaining restriction
to weaken or remove is piecewise-guardedness.

Research Question V: Can we extend these techniques to go beyond
piecewise-guarded queries efficiently?

Unguarded queries – which require us to compute the enumeration of at least two different
relations’ attributes – essentially leave us with no other choice than to compute joins
and to materialise some intermediate results. We can therefore no longer avoid all
materialisation but we can make efforts to keep it minimal. A natural extension of
the approach we have considered up to now is to integrate grouping into the AggJoin
operator: in the join loop, we now perform grouping as well as aggregation. This
enables the propagation of only the unguarded attributes to the root of the tree, keeping
materialisation low.
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Main Result 9: We further extend the physical AggJoin operator to the
GroupAggJoin operator and integrate it into Spark SQL.

To the best extent of our knowledge, there are currently no benchmarks focusing on
unguarded queries. Therefore, we construct a new benchmark based on the Join-Order-
Benchmark (JOB): JOBUnguarded. We adapt the existing (piecewise-guarded) JOB
queries and, for each query, create up to 8 unguarded variants, starting from 2 unguarded
attributes up to 9.

Main Result 10: We introduce a new benchmark for unguarded queries
based on the Join-Order-Benchmark (JOB): JOBUnguarded.

Benchmarks on JOBUnguarded show that the GroupAggJoin-based implementation
outperforms Spark SQL on the vast majority of slightly-unguarded queries (2-5 un-
guarded attributes). Even on strongly unguarded queries (9 unguarded attributes), our
optimisation achieves speedups on the majority of queries and is competitive with the
standard implementation of Spark SQL.

Main Result 11: Experimental evaluation of the GroupAggJoin-based
implementation shows promising results for unguarded queries.
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1.4.3 Cyclic Join Queries – From Theory to Practice
The results presented in this subsection, as well as the corresponding content of Chapter 6
is based on joint work with Georg Gottlob, Matthias Lanzinger, Cem Okulmus, and
Reinhard Pichler:

• [97] Matthias Lanzinger, Cem Okulmus, Reinhard Pichler, Alexander Selzer, Georg
Gottlob. Soft and Constrained Hypertree Width. PODS 2025

So far, we have already shown that structure-guided, i.e., Yannakakis-style query pro-
cessing can be integrated into systems with great benefits for almost all acyclic aggregate
queries. In the final Chapter 6, we make steps towards extending these techniques to
apply to CQs in general. In preliminary experiments described briefly in Chapter 4, we
identify a major challenge in cyclic query processing: the standard approach of computing
a minimal-width decomposition in order to obtain a join tree and apply Yannakakis-style
execution fails to take into consideration the real-world costs of performing specific
joins. Standard optimisers even tend to outperform this approach despite the suboptimal
execution strategy since they are able to mitigate the problem via cost-based optimisation.

Research Question VI: How can we incorporate constraints and cost
functions into the search for optimal decompositions?

We make use of the concept of candidate tree decompositions (CTDs) from [60] – tree
decompositions whose bags have to be chosen from a set of candidate bags. It was observed
in [60], that it is unclear how the idea of CTDs could be applied to hw-computation,
where parent/child relationships between nodes in a decomposition are critical. We will
overcome this problem by introducing a relaxed notion of HDs and hw, which we will
refer to as soft HDs and soft hw (shw). The key idea behind this approach is a relaxation
of the “special condition” of HDs. While retaining the important tractability of, for
fixed k, if the width is ≤ k, computing a decomposition of the desired width, we gain
the additional flexibility of incorporating constraints and preferences (including cost
funnctions) into the computation of CTDs while retaining polynomial time complexity.

Main Result 12: We introduce a relaxation of HDs and hw: soft HDs and
soft hw (shw), offering more computational flexibility, which allows us to
incorporate contraints and preferences into the search for decompositions.

To integrate this approach into systems, we make use of the idea of the Yannakakis-
rewriting from Chapter 4, and essentially extend it to perform Yannakakis’ algorithm along
a decomposition instead of a join tree. Furthermore, to be able to set up cost functions,
we are now in need of statistical information about the query and the database, for which
the component is also extended. We implement a component for the computation of
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decompositions while considering constraints and preferences. Putting it all together,
we obtain an end-to-end pipeline allowing for the fully automated optimisation of cyclic
queries.

Main Result 13: An end-to-end system is implemented for extracting costs
from a database, to computing optimal decompositions, and performing a
Yannakakis-style rewriting.

We select cyclic queries from several benchmarks and perform experiments to test the
performance of the optimisation pipeline. The results show that both the restriction
of decompositions through constraints as well as the use of cost functions can greatly
improve the quality of decompositions.

Main Result 14: Experimental evaluation shows that this approach is
promising and that including costs and constraints into the search can be
effective to find good decompositions in practice.

1.5 Structure of the Thesis
In Chapter 2 we provide preliminary definitions and results assumed in the main chapters
of the thesis. We describe relevant related work in Chapter 3. The next chapters 4,
5, and 6 constitute the main part of the thesis. These chapters cover the main results
described in Section 1.4 in detail. We conclude the thesis in Chapter 7, summarising the
main results and looking into further open research challenges as future work.
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CHAPTER 2
Preliminaries

Conjunctive Queries and Beyond. The basic form of queries studied here are
Conjunctive Queries (CQs), which correspond to select-project-join queries in Relational
Algebra. It is convenient to consider CQs as Relational Algebra expressions of the form
Q = πU (R1 ▷◁ . . . ▷◁ Rn). Here we assume w.l.o.g., that equi-joins have been replaced by
natural joins via appropriate renaming of attributes. Moreover, we assume that selections
applying to a single relation have been pushed immediately in front of this relation and
the Ri’s are the result of these selections. The projection list U consists of attributes
occurring in the Ri’s.

To go beyond CQs, we will also consider the extension of Relational Algebra that applies
aggregates on top of ACQs and that may contain “arbitrary” selections applied to
single relations (that is, not only equality conditions, as is usually assumed for CQs [3]).
Moreover, we allow grouping, which can also take care of the projection. In other words,
we are interested in queries of the form

Q = γ[g1, . . . , gℓ, A1(a1), . . . , Am(am)]
(︁
R1 ▷◁ · · · ▷◁ Rn

)︁
(2.1)

where γ[g1, . . . , gℓ, A1(a1), . . . , Am(am)] denotes the grouping operation for attributes
g1, . . . , gℓ and aggregate expressions A1(a1), . . . , Am(am) for some (standard SQL1) ag-
gregate functions A1, . . . , Am applied to expressions a1, . . . , am. The grouping attributes
g1, . . . , gℓ are attributes occurring in the relations R1, . . . , Rn and a1, . . . , am are expres-
sions formed over the attributes from R1, . . . , Rn. A simple query of the form shown in
Equation (2.1) is given in Figure 1.1 (in SQL-syntax), together with a possible join tree
of this query.

In Chapter 5, it will be convenient to use the following notation: suppose that we want
to assign the result of a query Q of the form according to Equation (2.1) to a relation S

1i.e., ANSI standard

17



2. Preliminaries

comments

users

posts votes

Figure 2.1: Join tree for the query in Fig. 1.1

with attributes g1, . . . , gℓ, C1, . . . , Cm), such that the values of each aggregate expression
Ai(ai) is assigned to the attribute Ci, then we will write

S := γ[g1, . . . , gℓ, C1 ← A1(a1), . . . , Cm ← Am(am)](︁
R1 ▷◁ · · · ▷◁ Rn

)︁
(2.2)

Acyclic Queries. An acyclic conjunctive query (an ACQ, for short) is a CQ Q =
πU (R1 ▷◁ . . . ▷◁ Rn) that has a join tree, i.e., a rooted, labelled tree ⟨T, r, λ⟩ with root
r, such that (1) λ is a bijection that assigns to each node of T one of the relations
in {R1, . . . , Rn} and (2) λ satisfies the so-called connectedness condition, i.e., if some
attribute A occurs in both relations λ(ui) and λ(uj) for two nodes ui and uj , then A
occurs in the relation λ(u) for every node u along the path between ui and uj . Deciding
if a CQ is acyclic and, in the positive case, constructing a join tree can be done very
efficiently by the GYO-algorithm (named after the authors of [68, 163]). The join query
underlying the SQL query in Figure 1.1 can be easily seen to be acyclic. A possible join
tree is shown in Figure 2.1.

Yannakakis’ Algorithm. In [162], Yannakakis showed that ACQs can be evaluated
in time O((||D|| + ||Q(D)||) · ||Q||), i.e., linear w.r.t. the size of the input and output
data and w.r.t. the size of the query. This bound applies to both, set and bag semantics.
Let us ignore grouping, aggregation, and projection for a while and consider an ACQ Q
of the form R1 ▷◁ . . . ▷◁ Rn with join tree ⟨T, r, λ⟩. Yannakakis’ algorithm (no matter
whether we consider set or bag semantics) consists of a preparatory step followed by 3
traversals of T :

In the preparatory step we associate with each node u in the join tree T the relation λ(u).
If the CQ originally contained selection conditions on attributes of relation λ(u), then we
can now apply this selection. The 3 traversals of T consist of (1) a bottom-up traversal
of semi-joins, (2) a top-down traversal of semi-joins, and (3) a bottom-up traversal of
joins. Formally, let u be a node in T with child nodes u1, . . . , uk of u and let relations R,
Ri1 , . . . , Rik be associated with the nodes u, u1, . . . , uk at some stage of the computation.
In the 3 traversals (1), (2), and (3), respectively, they are modified as follows:
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(1) R = (((R⋉Ri1)⋉Ri2) . . . )⋉Rik ,

(2) Rij = Rij ⋉R for every j ∈ {1, . . . , k}, and
(3) R = (((R ▷◁ Ri1) ▷◁ Ri2) . . . ) ▷◁ Rik

The result of the query is the final relation associated with the root node r of T . Grouping
and the evaluation of aggregates can be carried out as post-processing after the evaluation
of the join query. In contrast, projection πU can be integrated into this algorithm by
projecting out in the second bottom-up traversal all attributes that neither occur in U
nor further up in T . Attributes neither occurring in U nor in any join condition are
projected out as part of the preparatory step.

The correctness of Yannakakis’ algorithm is seen by a closer look at the relations resulting
from each traversal of T . For a node u of T , let R denote the original relation associated
with u, i.e., λ(u) = R, and let Ri1 , . . . , Riℓ denote the relations labelling the nodes in the
subtree Tu of T rooted at u. Moreover, let R′ denote the relation resulting from each
traversal of the join tree. We again write (1), (2), (3) to denote the 3 traversals of the
join tree. Then it holds:

after (1), we have R′ = πAtt(u)(Ri1 ▷◁ . . . ▷◁ Riℓ),

after (2), we have R′ = πAtt(u)(R1 ▷◁ . . . ▷◁ Rn),

after (3), we have R′ = πAtt(Tu)(R1 ▷◁ . . . ▷◁ Rn).

Here, we write Att(u) and Att(Tu) to denote the attributes of the relation λ(u) and the
attributes occurring in any of the relations Ri1 , . . . , Riℓ labelling a node in Tu, respectively.

Hypergraphs. Hypergraphs have proved to be a useful abstraction of CQs and CSPs.
Recall that a hypergraph H is a pair (V (H), E(H)) where V (H) is called the set of vertices
and E(H) ⊆ 2V (H) is the set of (hyper)edges. Then the hypergraph H(ϕ) corresponding
to a CQ or CSP given by a logical formula ϕ has as vertices the variables occurring in ϕ.
Moreover, every collection of variables jointly occurring in an atom of ϕ forms an edge in
H(ϕ).

We write I(v) for the set {e ∈ E(H) | v ∈ e} of edges incident to vertex v. W.l.o.g., we
assume that hypergraphs have no isolated vertices, i.e., every v ∈ V (H) is in some edge.
A set of vertices U ⊆ V (H) induces the induced subhypergraph H [U ] with vertices U and
edges {e ∩ U | e ∈ E(H)} \ {∅}.
Let H be a hypergraph and let u, v be two distinct vertices in H. A path from u to v
is a sequence of vertices w1, . . . , wm in H, such that w0 = u, wm = v, and, for every
j ∈ {0, . . . ,m − 1}, the vertices wj , wj+1 jointly occur in some edge of H. Now let
S ⊆ V (H). We say that two vertices u, v are [S]-connected if they are not in S and
there is a path from u to v without any vertices of S. Two edges e, f are [S]-connected,
if there are [S]-connected vertices u ∈ e, v ∈ f . An [S]-component is a maximal set of
pairwise [S]-connected edges. For a set of edges λ ⊆ E(H), we will simply speak of
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[λ]-components in place of [⋃︁λ]-components. We note that the term “[S]-connected” is
slightly misleading, since – contrary to what one might expect – it means that the vertices
of S are actually disallowed in a path that connects two vertices or edges. However, this
terminology has been commonly used in the literature on hypertree decompositions since
their introduction in [62]. To avoid confusion, we have decided to stick to it also here.

Decompositions A tree decomposition (TD) of hypergraph H is a tuple (T,B) where
T is a tree and B : V (T ) → 2V (H) such that the following hold:

1. for every e ∈ E(H), there is a node u in T such that e ⊆ B(u),
2. and for every v ∈ V (H), {u ∈ V (T ) | v ∈ B(u)} induces a non-empty subtree of T .

The vertex sets B(u) are referred to as bags of the TD. The latter condition is referred
to as the connectedness condition. We sometimes assume that a TD is rooted. In this
case, we write Tu for u ∈ V (T ) to refer to the subtree rooted at u. For a subtree T ′ of T ,
we write B(T ′) for ⋃︁

u∈V (T ′) B(u).

A generalised hypertree decomposition (GHD) of a hypergraph H is a triple (T, λ,B), such
that (T,B) is a tree decomposition and λ : V (T ) → 2E(H) satisfies B(u) ⊆ ⋃︁

λ(u) for
every u ∈ V (T ). That is, every λ(u) is an edge cover of B(u). A hypertree decomposition
(HD) of a hypergraph H is a GHD (T, λ,B), where the tree T is rooted, and the so-called
special condition holds, i.e., for every u ∈ V (T ), we have B(Tu)∩⋃︁

λ(u) ⊆ B(u). Actually,
in the literature on (generalised) hypertree decompositions, it is more common to use χ
instead of B. Moreover, rather than explicitly stating B, χ, and λ as functions, they are
usually considered as labels – writing Bu, λu, and χu rather than B(u), χ(u), and λ(u),
and referring to them as B-, χ-, and λ-label of node u.

All these decompositions give rise to a notion of width: The width of a TD (T,B) is
defined as max({|B(u)| : u is a node in T} − 1, and the width of a (G)HD (T, λ, χ) is
defined as max({|λ(u)| : u is a node in T}. Then the treewidth tw(H), the hypertree-width
hw(H), and the generalised hypertree-width ghw(H) of a hypergraph H are defined as
the minimum width over all TDs, HDs, and GHDs, respectively, of H. The problems
of finding the tw(H), hw(H), or ghw(H) for given hypergraph H (strictly speaking, the
decision problem of deciding whether any of these width notions is ≤ k for given k)
are NP-complete [12, 67]. Deciding tw ≤ k or hw(H) ≤ k becomes tractable, if k is a
fixed constant. In contrast, deciding ghw(H) ≤ k remains NP-complete even if we fix
k = 2 [64, 60].

We note that, in the literature on tree decompositions, it is common practice to define
TDs for graphs (rather than hypergraphs) in the first place. The TDs of a hypergraph
H = (V (H), E(H)) are then defined as TDs of the so-called Gaifman graph of H, i.e.,
the graph G = (V (G), E(G)), with V (G) = V (H), such that E(G) contains an edge
between two vertices u, v if and only if u, v jointly occur in an edge in E(H). Clearly,
every edge of a hypergraph H gives rise to a clique in the Gaifman graph G. Moreover,
it is easy to verify that every clique of a graph has to be contained in some bag of a
TD. Hence, for TDs, the Gaifman graph contains all the relevant information of the
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hypergraph. In contrast, for HDs and GHDs, we additionally have to keep track of the
edges of the hypergraph, since only these are allowed to be used in the λ-labels. We
have, therefore, preferred to define also TDs directly for hypergraphs (rather than via
the Gaifman graph).
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CHAPTER 3
Related Work

In this chapter we will cover related topics most relevant for our work. We start by
covering related work in acyclic and cyclic query answering, which is of central importance
in this thesis.

Acyclic Queries The algorithm for evaluating acyclic queries, presented by Yannakakis
over 40 years ago [162], has long been central to the theory of query processing. In recent
years, this approach to query evaluation has gained renewed momentum in practice as
evidenced by several extensions and applications. Recent work has aimed at bringing
its advantages into DBMSs from the outside via SQL query rewriting [38, 154], and
similar methods such as generating Scala code expressing Yannakakis’ algorithm as Spark
RDD-operations [43].

Multiple recent works [84, 85, 155], propose extensions of Yannakakis’ algorithm for
dynamic query evaluation. Further research extends and applies Yannakakis’ algorithm
to comparisons spanning several relations [156], queries with theta-joins [85], differences
of CQs [81], and privacy preserving query processing [157]. An important feature of
Yannakakis’ algorithm is the elimination of dangling tuples (i.e., tuples that do not
contribute to the final result) via semi-joins. In a recent paper [83], a new join method
was introduced that integrates the detection and elimination of dangling tuples into the
join computation. Very recently, there has been an explosion of interest on the integration
of Yannakakis-style query evaluation into DBMSs while avoiding the overhead of several
traversals of the join tree via semi-joins and joins. Birler et al. [23] have coined the term
diamond problem to describe large intermediate results in join queries, and integrated a
Yannakakis-like approach into the compiled query engine of Umbra [121] by splitting the
join operation into “lookup” and “expand” operators. Bekkers et al. [21] perform a similar
integration into the interpreted query engine Apache DataFusion [96]. A related approach
– Predicate Transfer [161] – and specifically Robust Predicate Transfer, introduced by
Zhao et al. [169], was integrated into DuckDB.
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Decompositions An important line of research has extended the applicability of
Yannakakis-style query evaluation to “almost acyclic” queries. Here, “almost acyclic”
is formalized through various notions of decompositions such as (normal, generalized,
or fractional) hypertree decompositions [63, 6, 74]. Each of these decompositions is
associated with a notion of “width” that measures the distance from acyclicity, with
acyclic queries having a width of 1. Several works [2, 43, 130, 152], combine Yannakakis-
style query evaluation based on various types of decompositions with multiway joins and
worst-case optimal join techniques.

Aggregate Queries Aggregates are commonly used on top of join queries – especially
in data analytics. Green et al. [71] gave a new perspective on aggregate queries by
considering K-relations, i.e., relations annotated with values from some semi-ring K.
Join queries over K-relations then come down to evaluating sum-product expressions over
the underlying semi-ring. The combination of aggregate queries with Yannakakis-style
query evaluation was studied in the FAQ-framework (Functional Aggregate Queries)
[91] and, similarly, under the name AJAR (Aggregations and Joins over Annotated
Relations) [90]. A crucial problem studied in both papers is the interplay between the
ordering of a sequence of aggregate functions and (generalized or fractional) hypertree
decompositions. In both papers, the ultimate goal is an efficient, Yannankakis-style
evaluation algorithm for aggregate queries based on finding a good variable order. Similar
ideas to FAQs and AJAR queries also appear in earlier works on joins and aggregates
over factorized databases [14, 127] and on quantified conjunctive queries (QCQs) [39]. A
general framework for hybrid database and linear algebra workloads (as are typical for
machine learning applications) has recently been proposed by Shaikhha et al. [142]. It
provides a performant, unified framework for data science pipelines by introducing the
purely functional language SDQL and combining optimisation techniques from databases
(e.g., pushing aggregates past joins) and linear algebra (e.g., matrix chain ordering).

Homomorphism Counting From a logical perspective, evaluating join queries, finding
homomorphisms, and solving CSPs are equivalent problems [72]. Hence, the problem
of counting homomorphisms [44] (in particular, counting graph homomorphisms) can
be seen as a special case of aggregates on top of join queries, which has received a lot
of research interest (see, e.g., [45, 115, 26]. In [166], the problem of counting graph
homomorphisms is indeed treated as a query evaluation problem for aggregates on top of
joins. A key idea here is to push group-by and aggregation over joins in a generalized
hypertree decomposition.

Constant Delay Enumeration Yannakakis’ algorithm has received a lot of attention
in the Database Theory community in the context of identifying classes of queries
that allow for particularly efficient enumeration of query result, namely linear-time
pre-processing and constant delay. This line of research was initiated by Bagan et al. [13]
and has triggered a lot of follow-up work such as [33, 34, 35, 36, 55, 106] since then.
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Reducing the Number of Join Computations Several works have addressed the
need to compute a high number of joins in different contexts and have aimed at reducing
this number. The work by Schleich et al. [139] on LMFAO (Layered Multiple Functional
Aggregate optimisation) specifically targets machine learning applications that require the
computation of large batches of aggregate queries over the same join query. A dramatic
speed-up is achieved by decomposing aggregates into views and arranging them at nodes
in a join tree to avoid the re-computation of the same intermediate joins time and again.
In principle, the need to re-compute similar joins time and again also arises in the area of
IVM (incremental view maintenance). A revolutionary approach to IVM was proposed
by Koch et al. [94] with the DBToaster system, that avoids the re-computation of joins
in case of updates to the database by maintaining “higher-order” delta views, i.e., delta
queries (= first-order deltas), delta queries to the deltas (= second-order deltas), etc.. A
further performance gain is achieved with F-IVM (factorised IVM) [125], that groups
various aggregates together and thus reduces the number of views to be maintained.
Moreover, factorization is applied, for instance, to avoid the materialisation of Cartesian
products in views. Of course, independently of IVM, factorization [126] is a generally
applicable method to keep the query result in a compressed form and avoid its complete
materialisation.

Distributed ACQ Processing The potential of applying Yannakakis-style query
evaluation to distributed processing comes from the fact that the evaluation of ACQs lies
in the highly parallelizable class LogCFL [61]. This favorable property was later extended
to “almost acyclic” queries by establishing the LogCFL-membership also for queries with
bounded hypertree width [63]. A realization of Yannakakis’ algorithm in MapReduce [7]
further emphasized the parallelizability of Yannakakis-style query evaluation.

Spark and Spark SQL Spark, a top-level Apache project since 2014, is often regarded
as a further development of the MapReduce processing model. Spark SQL [11] provides
relational query capability within the Spark framework. Query optimisation is a primary
focus of Spark SQL, with the powerful Catalyst optimiser being an integral component
since its inception [11]. Several later works [143, 165, 86, 15, 118]) have proposed further
measures to speed up query processing in Spark SQL. The recently presented SparkSQL+

system [43] combines decompositions and worst-case optimal join techniques as well as the
optimisations for CQs with comparisons spanning several relations [156] and allows users
to experiment with different query plans. Zhang et al. [166] recently implemented specific
worst-case optimal join algorithms in combination with decomposition-based methods on
top of Spark SQL as part of a system focused specifically on subgraph counting.

Query Rewriting Optimising queries before they enter the DBMS is a different
strategy towards query optimisation that has been successfully applied in standard
DBMSs [171, 172]. Although DBMSs already perform optimisations on the execution of
the query, it has been shown that rewriting the query itself can still be highly effective.
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The WeTune [158] system goes even further, and can be used to automatically discover
rewrite rules but comes with the disadvantage of extremely long runtimes.

Machine Learning for Databases There has been growing interest in the application
of machine learning techniques to increase the performance of database systems, as can
be seen by a recent survey on this broad area [170]. We proceed to give a very brief
overview of the general topics as to how machine learning has been adapted for database
research. For a more detailed account on the rich interaction between machine learning
and databases, we refer to [170]. In this survey, the authors categorize the different
efforts of using machine learning for core database tasks into several groups. The first
group is “learning-based data configuration”. These are works that aim to utilize machine
learning for knob tuning, and view advisor and index advisor tasks [48, 167, 175, 9,
104, 148, 79, 124, 37, 140]. Related work that also falls into this category is presented
in [111, 112]. The next group is “learning-based data optimisation”. These works aim
to tackle important, computationally intractable problems such as join-order selection
and cardinality estimation of joins [119, 129, 128, 49, 52, 93, 113, 114, 78, 145, 151, 153].
Another group is “learning-based design for databases”. These works aim more specifically
at exploring the use of machine-learning in the construction of various data structures used
by modern databases, such as indexes, hashmaps, bloom filters and so on [95, 47, 160, 107].
A further group listed in the survey is “learning-based data monitoring”. As the name
suggests, these works aim to use machine learning to create systems that automate the
task of running a database and detecting and reacting to anomalies [108, 147, 75, 114, 173].
Lastly the survey mentions “learning-based database security”. This category is on how
to use ML methods to help with critical problems, such as confidentiality, data integrity
and availability [22, 42, 105, 144, 19].

Query Performance Prediction Predicting the performance of a query – usually the
runtime, or sometimes other resource requirements – is related to the problem of deciding
whether to rewrite a query. Runtime prediction has been performed by constructing cost
models based on statistical information of the data [77], on SQL queries [159], and XML
queries [173]. Further approaches use machine learning and deep learning to predict the
runtimes of single queries [168, 114, 174] or concurrent queries (workload performance
prediction) [50, 8].
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CHAPTER 4
Integrating Yannakakis’ Algorithm

into Database Systems

In this first main chapter, we begin by exploring the integration of Yannakakis’ algorithm
into systems from the outside via query-rewriting. After showing the feasibility of this
approach and identifying weaknesses, we will proceed to make it practicable. To achieve
this, we will consider the problem of applying the rewriting as an algorithm selection
problem, and subsequently develop methods for solving this problem.

In Section 4.1, we introduce the class of zero-materialisation answerable queries (0MA
queries, for short), which can be evaluated by semi-joins only. The idea of our rewriting-
based approach for combining structure-guided query evaluation with traditional DBMS
technology and the experimental results thus obtained are presented in Section 4.3. In
Section 4.4, we describe the algorithm selection problem, and we present a methodology
for solving this problem in Section 4.5. Empirical results are presented in Section 4.6.
We summarise the results of this Chapter in Section 4.7.

4.1 0MA Queries

It is well known [61] that for Boolean ACQs (i.e., queries where we are only interested
in whether the answer is non-empty), Yannakakis’ algorithm can be stopped after the
first bottom-up traversal. Indeed, if at that stage the relation associated with the root
node of the join tree is non-empty, then so is the query result. Most importantly, for
queries of this type, the most expensive part of the evaluation (i.e., the joins in the second
bottom-up traversal) can be completely omitted. The next example illustrates that such
favourable behaviour is by no means restricted to Boolean queries.
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Example 4.1.1. Consider an excerpt of a university schema with relations exams(cid,
student, grade) and courses(cid, faculty). Querying each student’s lowest grade in courses
of the Biology faculty is naturally stated in SQL as follows.

SELECT exams.student, MIN(exams.grade)
FROM exams,courses
WHERE exams.cid=courses.cid

AND courses.faculty='Biology'
GROUP BY exams.student;

Ignoring the GROUP BY clause for a while, the query involving only two relations
is trivially acyclic. In the join tree consisting of 2 nodes, we choose as root the node
labelled by the exams-relation. After the first bottom-up traversal, this relation contains
all exams-tuples that join with the courses-relation restricted to those tuples with faculty
= ’Biology’. Hence, if we now also take the GROUP BY clause into account, answering
the query is possible by only looking at the exams-relation – without the need for the
remaining two traversals of Yannakakis’ algorithm. ⋄

In this section, we want to identify a whole family of queries whose evaluation only
requires the first bottom-up traversal of Yannakakis’ algorithm. To this end, we introduce
the class of zero-materialisation answerable (0MA) queries and we will illustrate the
usefulness of this class by various examples. In particular, Boolean queries and the query
from Example 4.1.1 are contained in this class. The performance gain attainable when
answering 0MA queries will be demonstrated experimentally in Section 4.3.

Similar to the syntax for aggregation and grouping in the Extended Relational Algebra
as introduced in Chapter 2, where we would write γ[g1, . . . , gℓ, A1(a1), . . . , Am(am)] to
denote the aggregation/group by operator, we write here, with subscript notation for
better readability: γg1,...,gℓ, A1(a1),...,Am(am).

Definition 4.1.1.

• A query Q is in aggregation normal form1 if it is of the form γU (πS(Q′)), where
Q′ is a query consisting only of natural joins and selection.

• For a query Q in aggregation normal form, we say that Q is guarded, if Q′ mentions
a relation R with Att(S) ⊆ Att(R), i.e., R contains all attributes occurring in the
GROUP BY clause (aggregate or not). If this is the case, we say that R guards
query Q or, equivalently, R is a guard of Q.

• We say that a query Q = γU (πS(Q′)) is set-safe if it is equivalent to γU (δ(πS(Q′))),
i.e., duplicate elimination before the GROUP BY does not change the meaning of
the query.

1Note that the γ operator also implicitly projects to some subset of attributes. The projection πS is
thus not strictly necessary and is only added for clarity.
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• A query Q in aggregation normal form is called zero-materialisation answerable
(0MA) if it is guarded and set-safe.

As far as the notation is concerned, recall from Chapter 2 that the restriction to natural
joins and top-level projection is without loss of generality and it only serves to simplify
the notation. This is also the case in the above definition. In our examples, we may freely
lift this restriction if it is convenient. In contrast to the restricted notation of CQs in
Chapter 2, we now prefer to make selection explicit in the “inner” query Q′ – in addition
to the natural joins.

Despite the various technical constraints, 0MA queries still cover many common query
patterns. Clearly, the restriction to aggregation normal form matches the standard use
of aggregates in SELECT-FROM-WHERE-GROUP BY statements in SQL. Also the
further restrictions imposed by 0MA queries are met by many common query patterns
observed in practice. Boolean ACQs mentioned above (e.g., realised by a query of the
form SELECT 1 FROM ....) are a special case of 0MA queries, where we simply leave
out the grouping, and the projection is to the empty set of attributes.

We next verify that also the query from Example 4.1.1 is 0MA. By slightly simplifying
the subscripts (in particular, abbreviating attribute names), the query translates to the
following Relational Algebra query Q:

γstud,MIN(grad)(πstud,grad(exams ▷◁ σfaculty=′Biology′(courses)))

Clearly, query Q is zero-materialisation answerable, since relation exams (containing both
attributes student and grade) is a guard of Q and aggregation via MIN (or MAX) is
always set-safe.

We now formally prove that acyclic 0MA queries may indeed be evaluated without
the join-phase of Yannakakis’ algorithm. That is, these queries can be evaluated via
aggregate/group processing over a single relation of the database that has been reduced
by the semi-joins of the first bottom-up traversal.

Theorem 4.1.2. Let Q = γU (πS(Q′)) be a 0MA query in aggregation normal form such
that Q′ is an ACQ, and let D be an arbitrary database. Let ⟨T, r, λ⟩ be a join tree of Q′

such that the root r of T is labelled by relation R that guards Q. Let R′ be the relation
associated with node r after the first bottom-up traversal of Yannakakis’ algorithm. Then
the equality Q(D) = γU (δ(πS(R′))) holds.

Proof Sketch. After the first bottom-up traversal, all tuples in a relation associated with
a node in T actually join with all relations in the subtree below. Since R′ is the relation
at the root, every tuple r ∈ R′ extends to a result of Q′. Since Q is guarded, we have
that S is a subset of attributes in R′ and thus πS(Q′(D)) ⊇ δ(πS(R′)) and, therefore,
also δ(πS(Q′(D))) ⊇ δ(πS(R′)).

On the other hand, since R is part of Q′, which consists only of natural joins and selection,
any tuple in Q′(D) must be consistent with R. Since every tuple in Q′(D) must also be
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consistent with all other relations mentioned in Q′, it must also be consistent with R′

and, therefore, δ(πS(Q′(D))) ⊆ δ(πS(R′)) holds. Moreover, as Q is set-safe, we also have
γU (πS(Q′(D))) = γU (δ(πS(Q′(D)))) and, hence, γU (δ(πS(Q′(D)))) = γU (δ(πS(R′))).

Note that the requirement in Theorem 4.1.2 that the guard R must be the label of the
root node of a join tree of Q′ does not impose any additional restrictions apart from the
conditions that R must be a guard and Q′ must be an ACQ. Some node in the join is
guaranteed to be labelled by R, and we can always choose this particular node as the
root of the join tree.

It is important to note that set-safety is not required due to any technical issues with
bag semantics. The restriction to set-safety is only needed to identify queries whose
answer can be determined without knowing the exact multiplicity of a tuple in the answer.
As far as standard aggregate functions are concerned, this always holds for MAX and
MIN as we have seen in Example 4.1.1. In contrast, other standard aggregates, such
as SUM or COUNT are, in general, not set-safe. They nevertheless can be answered
efficiently when knowing the multiplicity of each tuple in the result of the join query Q′

(for further discussion on this, refer to Chapter 5). These aggregates may actually be used
in patterns that are set-safe, e.g., COUNT(DISTINCT . . . ) constructs in SQL. Indeed, it
is easy to see that the combination with DISTINCT can make any aggregate set-safe.
Furthermore, trivial use of γ as projection (all attributes are grouping attributes) also
covers the enumeration of distinct tuples as a set-safe operation. In practice, even more
cases may be set-safe due to constraints on the data such as, for instance, counting the
different values of an attribute with a UNIQUE constraint.

Deciding the 0MA Property. It is natural to consider the question of deciding
whether a given query is 0MA. We give a brief informal discussion of why this is not
of particular interest in our case. First, it is clear that deciding whether a query is
guarded is trivial, and only deciding the set-safe condition is of any real concern. For
the inner query Q′, the set-safety status boils down to the question if it can return
duplicate results or not, which is well understood and easy to check (recall that we
are restricting ourselves to CQs with some extensions such as GROUP BY, HAVING,
aggregates; so undecidability results for FO queries such as non-emptiness do not apply
here): if multiset input relations are allowed, then every query may possibly return
duplicate tuples; otherwise any query where some attribute is projected out can return
duplicates.

Consequently, only the semantics of the aggregate functions themselves are the important
factor for set-safety. In general, set-safety is a non-trivial property of the aggregate
functions and thus expected to be undecidable if we allow arbitrary computable functions
as aggregates. However, we are interested in the concrete behaviour of current DBMSs,
which typically only offer a small fixed vocabulary of aggregation functions. For instance,
the ANSI SQL standard specifies 28 possible aggregation functions and they are easy
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to check for set-safety case by case, without the need for a general procedure to check
set-safety of arbitrary functions.

4.1.1 More General Queries
In this section, we inspect several situations in which we are not dealing with acyclic
CQs and/or not zero-materialisation answerable queries, and where the performance gain
achieved by a short-cut in Yannakakis’ algorithm is nevertheless attainable.

Recall that we have omitted a HAVING clause from our aggregation normal form in
Definition 4.1.1. If we have a 0MA query with a HAVING clause on top of it (see, e.g.,
Example 4.1.4 below), then we can still evaluate the 0MA query without materialising
any joins and simply filter the result by the HAVING condition afterwards.

More generally, the optimisation from Theorem 4.1.2 is applicable whenever some part of
a query satisfies the 0MA condition. For instance, subqueries with the EXISTS operator
are actually Boolean queries and, as such, 0MA – provided that they are ACQs.

The following example involving a 0MA subquery is taken from the TPC-H benchmark:

Example 4.1.3. TPC-H Query 2 contains the following subquery:

SELECT MIN(ps_supplycost)
FROM partsupp, supplier, nation, region
WHERE p_partkey = ps_partkey AND ...

where p_partkey is an attribute coming from the outer query and the rest of the WHERE
clause are equi-joins and selections. This subquery is a standard example of a 0MA query,
since aggregation by MIN is always set-safe and the query is clearly guarded by partsupp.
The subquery is correlated inside the TPC-H Query 2 due to the attribute p_partkey from
the outer query, but it allows for effective decorrelation. Notably, if we consider magic
decorrelation [141], then we would change the select clause of the subquery to ps_partkey,
min(ps_supplycost), add a grouping over ps_partkey, and remove the correlated join
with p_partkey. This transformation preserves guardedness and set-safety and we could,
in this case, combine decorrelation with the efficient evaluation of the decorrelated 0MA
subquery according to Theorem 4.1.2. ⋄

Below we see a more complex TPC-H query, where optimised evaluation based on
0MA-parts is even possible twice – once for the subquery and once for the outer query.

Example 4.1.4. TPC-H Query 11 is of the following form

SELECT ps_partkey,
SUM(ps_supplycost*ps_availqty)

FROM partsupp, supplier, nation
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WHERE ps_suppkey = s_suppkey
AND s_nationkey = n_nationkey
AND n_name = 'GERMANY'

GROUP BY ps_partkey
HAVING SUM(ps_supplycost*ps_availqty) >
(SELECT SUM(ps_supplycost*ps_availqty)

* 0.0001
FROM ...)

where the omitted FROM clause of the subquery is the same as the FROM clause of the
outer query. That is, the subquery is almost the same as the outer query: we just leave
out the grouping by ps_partkey, and the sum over ps_supplycost ∗ ps_availqty is
now taken over all ps_partkey’s and is multiplied by 0.0001.

At its core, this SQL query can be evaluated via a 0MA query of the form Q = γU (πS(Q′)),
where Q′ represents the join query on the three relations, and

U = ps_partkey, ps_suppkey, ps_supplycost ∗ ps_availqty.

Note that keeping ps_suppkey in the grouping at this step is important to observe that the
essence of this query is set-safe. The result of both, the outer query and the subquery in
the HAVING clause, can be directly obtained from Q, leaving only a final filtering step.

We now analyse why Q is 0MA. While partsupp clearly guards the query, observing set-
safety requires a small but natural step beyond the technical definition above. In TPC-H,
there are constraints on the database that require that s_suppkey and n_nationkey be
keys of supplier and nation, respectively. Therefore, every tuple in partsupp can have
only one join partner in supplier, and the result has only one join partner in nation.
Furthermore, the projection on Q′ retains the key (ps_partkey, ps_suppkey) letting us
observe overall that every tuple in the result of Q′ is in fact distinct and, as a consequence,
Q is also set-safe. ⋄

We conclude this section by briefly discussing CQs to which Theorem 4.1.2 is not applicable.
That is, either acyclicity or the 0MA property is violated. In case of cyclic queries, we
may apply decomposition methods [63, 74] to turn a given CQ into an acyclic one. Since
CQs in practice tend to be acyclic or almost acyclic [25, 54], this transformation into an
ACQ is in theory feasible at the expense of a polynomial blow-up (where the degree of the
polynomial is bounded by the corresponding notion of width). Actually, the queries from
the benchmark of [110], which we use for our experimental evaluation, follow this pattern:
the vast majority of the queries are acyclic and the rest have low generalised hypertree
width (ghw). We will present first experiments with queries of low ghw (see Section 4.3.4)
and later develop more sophisticated techniques for cyclic queries in Chapter 6. We will
cover queries where the 0MA property is violated in Chapter 5, where we will also study
the prevalence of 0MA queries and more general classes in standard benchmarks.
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4.2 Realising Yannakakis’ Algorithm via Query Rewriting
Our goal is to shed light on the benefits of realising structure-guided query evaluation for
common database systems. We thus do not want to restrict ourselves to a single system
nor to a single architecture or a single query planning and execution strategy. Therefore,
we have chosen three DBMSs based on different technologies: PostgreSQL 13.4 [146]
as a “classical” row-oriented relational DBMS, DuckDB 0.4 [134] as a column-oriented,
embedded database, and Spark SQL 3.3 [164] as a database engine specifically designed
for distributed data processing in a cluster.

We have implemented a proof-of-concept system, referred to as YanRe, that works
by rewriting a query into a sequence of SQL statements, which express Yannakakis’
algorithm. This makes our approach easily portable and we can apply it to the three
chosen DBMSs with almost no change to our rewriting method (apart from some minor
differences in SQL syntax). The significant effort of a full integration into any of the three
systems (let alone, into all of them) does not seem to be justified before gathering further
information on the potential benefit of such an integration. Moreover, our rewriting-based
approach is also applicable to commercial DBMSs, where large internal modifications
are impossible, or situations where modifications are not feasible due to dependencies
on specific versions or hosting in “the cloud”. In our experiments, we compare the
performance of join queries in each DBMS with the performance of the YanRe rewriting,
executed by the same system.

The YanRe system proceeds in several steps: we first extract the CQ from the given
SQL query and transform it into a hypergraph. From this, we compute a join tree by
applying a variant of the GYO-algorithm [68, 163] described in the next section. We then
generate the SQL statements that correspond to the semi-joins and joins of Yannakakis’
algorithm. These SQL statements involve the creation of temporary tables. If the original
query contains GROUP BY and HAVING clauses or more general selections (beyond
equalities), then these can be integrated into the SQL statement referring to the root
node in the final traversal of the join tree.

The queries in the benchmark of [110] are all straightforward SELECT-PROJECT-JOIN
queries (in particular, no GROUP BY and HAVING clauses, no subqueries). We process
these queries via a simplified version of the SQL-to-CQ translation from [54], which also
provides the further translation of the CQ into a hypergraph. Recall that the hypergraph
H = (V,E) of a CQ Q is obtained by identifying the vertices in V with the variables in
Q and defining as edges in E those sets of vertices where the corresponding variables
occur jointly in an atom of Q. The join tree computation and the generation of SQL
statements are discussed below in more detail.

4.2.1 Join Tree Computation

The GYO algorithm [68, 163] for deciding whether a hypergraph (and thus the corre-
sponding query) is acyclic works by non-deterministic application of the following steps:
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Algorithm 4.1: The Flat-GYO algorithm
input :A connected α-acyclic hypergraph H
output :A join tree of H

1 J ← empty tree;
2 while H contains more than 1 edge do
3 Delete all degree 1 vertices from H;
4 for e ∈ E(H) s.t. there is no f ∈ E(H) with e ⊂ f do
5 Ce ← {c ∈ E(H) | c ⊆ e};
6 for c ∈ Ce do
7 Set label(c) as child of label(e) in J ;
8 Remove c from H;
9 end

10 end
11 end
12 return J ;

i) deleting a vertex with degree 1 (i.e., a vertex occurring in a single edge), ii) deleting an
empty edge, or iii) deleting an edge that is a subset of another edge. In Algorithm 4.1,
we choose a particular order in which the elimination steps of the GYO-algorithm are
executed. Technically, deletion of degree 1 vertices from an edge e of H may produce
a new edge that is not part of the join tree. We thus use label(e) in Algorithm 4.1 to
always refer to the name of the original edge before vertex removals. The algorithm
produces join trees with a particular property expressed in the following theorem:

Theorem 4.2.1. Let H = (V (H), E(H)) be an acyclic hypergraph and let T denote the
join tree resulting from applying Algorithm 4.1 to H. Then T has minimal depth among
all join trees of H.

Proof. The proof proceeds in three steps: (1) First, we observe that there is still some
non-determinism left in Algorithm 4.1, that depends on the order in which the edges
in the for-loop on line 4 are processed. It may happen (i) that e = e′ holds for two
edges with label(e) ̸= label(e′) and that (ii) for two distinct maximal edges e, e′, an
edge c ∈ E(H) satisfies both c ⊆ e and c ⊆ e′ on line 5. Nevertheless, the number of
iterations of the while-loop is independent of the order in which the maximal edges are
processed in the for-loop. This property follows from the easily verifiable fact that the
set of edges {ei1 , . . . , eim} resulting from an iteration of the while-loop is independent
of this non-determinism, even though (due to (i)) there may be an alternative set of
edges with different labels and (due to (ii)) also an alternative collection of parent/child
relationships may be possible.

(2) Second, if a run of Algorithm 4.1 has k iterations of the while-loop, then the join
tree constructed by this run has at most depth k (max. distance from root to leaf). This
is due to the fact that, on line 7, existing partially constructed trees may be appended
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below a new root node but no further nesting may happen here. Hence, the depth of the
partially constructed trees grows by at most 1.

(3) Finally, if there exists a join tree T of depth k, then there exists a run of Algorithm 4.1
with at most k iterations of the while loop. This property is proved by a simple induction
argument: there exists an order in which the maximal edges are processed in the for-loop,
so that all leaf nodes of T get removed on line 8 – thus decreasing the depth of T by at
least 1.

The theorem can then be proved as follows: Suppose that, for a given hypergraph H , the
minimum depth of any join tree of H is k. Then there exists a join tree T of depth k.
Hence, by (3), Algorithm 4.1 has a run with at most k iterations of the while-loop and,
therefore, by (1), any run of Algorithm 4.1 has a run with at most k iterations of the
while-loop. Thus, by (2), any run of Algorithm 4.1 produces a join tree of depth at most
k.

4.2.2 Query Plan Generation and Execution

In the next step, we create a sequence of SQL statements that express the execution of
Yannakakis’ algorithm over the join tree and reintroduce final projection and aggregation
if applicable. The overall evaluation of the query is thus split into four stages, which we
briefly describe below. We will illustrate these steps by means of the SQL query given in
the following example.

Example 4.2.2. Recall the university schema of Example 4.1.1 with relations exams(cid,
student, grade) and courses(cid, faculty). We now add the two relations tutors(student,
cid, num_semesters) and enrolled(student, program). The following query retrieves, for
each fixed pair of program and course, the lowest grade obtained in exams of the CS
faculty by any student enrolled in that program and who has been tutored for more than 1
semester in that course.

SELECT enrolled.program, exams.cid,
MIN(exams.grade)

FROM exams, courses, enrolled, tutors
WHERE exams.cid = courses.cid

AND exams.student = enrolled.student
AND exams.cid = tutors.cid
AND courses.faculty = 'ComputerScience'
AND exams.student = tutors.student
AND tutors.num_semesters > 1

GROUP BY enrolled.program, exams.cid;

The query is acyclic but not 0MA (it is not guarded). Its hypergraph and a possible join
tree are depicted in Figure 4.1, where, for the sake of readability, the names of vertices
are abbreviated to the first character. ⋄
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Figure 4.1: Hypergraph and join tree for Example 4.2.2

The Setup Stage We first rename the attributes in such a way that all equi-joins are
replaced by natural joins throughout the rest of the process. Then, from the join tree
perspective, we create one view per node, representing the relation in the join tree before
the execution of Yannakakis’ algorithm. Early projection to the attributes which are
actually used in the query (either as a join attribute or as part of the final result) as well
as applicable selections are also incorporated directly into these views. For instance, for
the query and join tree from Example 4.2.2, the leaf node for relation courses induces the
following view courses_setup:

CREATE VIEW courses_setup AS SELECT cid
FROM courses WHERE faculty='ComputerScience';

The Semi-Join Stages The views from the setup stage are used to generate SQL
statements for the semi-joins of the first bottom-up traversal and, if the query does not
satisfy the 0MA-property, also for the top-down traversal of the join tree. The result of
each semi-join is stored in an auxiliary temporary table. Semi-joins are expressed in the
standard manner via the IN operator of SQL.
To illustrate the semi-join stages, we continue our example from above. Assuming that
all views from the setup stage are named with the _setup suffix, the first semi-joins of the
bottom-up traversal are realised in SQL as follows (for clarity, the previously mentioned
renaming of attributes is not performed here):

CREATE TEMP TABLE exams_sjup AS
SELECT * FROM exams_setup WHERE
cid IN (SELECT cid from courses_setup) AND
cid, student IN (SELECT cid, student

FROM tutors_setup);

We thus create a new intermediate relation for the exams node. Importantly, the analogous
statement expressing the semi-join from the exams node into the enrolled node will now
make use of exams_sjup rather than the setup view for the exams node.

The Join Stage Finally, the temporary tables representing the relations after the
semi-join stages are combined by natural joins. The straightforward way to do this is
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either via step-wise joins along the join tree in a bottom-up manner or, alternatively, all
relations can be joined in one large statement. The latter option seems to introduce less
overhead, but for large original queries, it reintroduces the problem of planning queries
with many joins. We therefore take a middle ground and group (via a straightforward
greedy procedure) the join tree into subtrees of at most 12 nodes each and materialise
the final joins with one join query per subtree, plus a final query joining the subtrees.
Of course, for 0MA queries, no computation of joins is necessary. In this case, the join
phase simply refers to the final aggregation over the root node.

Finally, note that these stages are also amenable to parallelisation: as we follow a tree
structure, we know that the semi-joins and joins for nodes in different subtrees can be
computed independently of each other. This thread is not further followed in this work as
the host systems considered here already parallelise query execution to an extent where
further parallelisation “from the outside” does not seem particularly helpful. However,
the additional potential of parallelisation clearly deserves further study.

4.3 Performance Evaluation of Yannakakis’ Algorithm
In this section, we detail the results of our experiments, which demonstrate that structure-
guided query evaluation can indeed greatly improve performance on challenging join
queries.

4.3.1 Experimental Setup
We perform experiments using a recent benchmark by Mancini et al. [110], which consists
of 435 challenging synthetic join queries over the MusicBrainz dataset [1]. We do not
yet focus on classic benchmark datasets, such as from TPC-H or TPC-DS, later, as
they are less interesting for our purposes since their focus is not on the complexity
of evaluating queries with a large number of potentially expensive joins. In contrast,
the benchmark from [110] that we consider here contains queries with as many as 30
relations and, in many cases, the join processing (as well as planning, see [110]) is very
challenging for modern DBMSs. The queries in this benchmark were created over the
MusicBrainz dataset [1] by randomly joining tables along foreign key relationships. This
makes the generated queries similar to real-world queries and particularly interesting for
our experiments since one would normally expect classical DBMSs to perform particularly
well on this kind of queries. Moreover, the large number of generated queries protects
against the very significant variance in the evaluation of large queries. Another important
reason for choosing the queries from this benchmark is that they operate on a publicly
available dataset, which makes our results fully reproducible. This is in sharp contrast to
big join queries mentioned in other works such as [46, 122].

We will report on two types of experiments. One set of tests will be referred to as full
enumeration queries. For these, we essentially use the original queries of [110]. However,
since these queries contain no projection, we adapt the queries to project to only the join
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attributes (one attribute per equi-join equivalence class, i.e., no redundant columns) in
order to lessen the role of unimportant I/O. In a second set of experiments, we explore the
effectiveness of computing aggregate queries with the 0MA property from Definition 4.1.1.
For this purpose, we transform each query to compute a "MIN" aggregate for an attribute
that we randomly choose from those attributes that already occur in the original query.
In the following, we refer to these aggregation variants as the 0MA aggregation queries.
In both cases, the queries are always executed on the standard MusicBrainz dataset. For
all experiments in this section, we use a timeout of 20 minutes for the execution of each
query. The experiments on DuckDB and PostgreSQL are performed on a machine with
an Intel Xeon Bronze 3104 with 6 cores clocked at 1.7 GHz, and 128 GB of RAM and
running Debian 11, using the Linux kernel 5.10.0 with all data stored on an SSD. The
default settings of PostgreSQL proved unsatisfactory in our system environment. We
therefore explicitly configured PostgreSQL to use at most 8 concurrent working threads
and 200 concurrent I/O requests, which turned out to be the most suitable configuration
for our system. For DuckDB, we use all default parameters (leading to full utilisation of
all cores and concurrent disk I/O). Our experiments with Spark SQL are performed in a
cluster environment with two namenodes and 18 datanodes, with each node having two
XeonE5-2650v4 CPUs with 24 cores (48 per node) and 256 GB RAM.

In addition to reporting the results in this section, we also provide all raw data of our
experiments and instructions for reproducing them on Figshare https://figshare.com/
s/b9ba4b798760cf6af3a4. We include there only the rewritten queries, as were produced
by YanRe and detailed logs of their execution. We omit the original queries from [110]
and we hope to make the full data publicly available in the future.

4.3.2 Experimental Results
We primarily concentrate on acyclic queries from the benchmark of [110]. ACQs form
the majority of the benchmark, namely 351 out of 435. The number of relations in the
queries of this benchmark lies between 2 and 30. Further details on cyclic queries are
given in Section 4.3.4.

Table 4.1 summarises our results for the ACQs in the benchmark. The Mean, Med.
(Median), and Std. Dev. columns report statistical information for the running times
of the benchmark queries. Queries timed out (i.e., which did not terminate within 20
minutes), are counted as having running time 20 minutes. The Max column reports the
maximum running time of the queries that did not time out. The number of queries
that did not terminate within the time limit is stated in the Timeouts column. Recall,
that the Spark SQL experiments were performed on a significantly different environment
and our experiments are not intended or suited for direct comparison of times between
different baseline systems.

We see that the number of queries that execute within the time limit of 20 minutes is
significantly higher when using YanRe: in DuckDB, the use of YanRe reduces the
number of timeouts from 69 to 29 for full enumeration queries, and from 58 to no timeouts
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at all for 0MA aggregation queries. In Spark SQL, this reduction is from 87 to 29 and
from 91 to 3, respectively. Consequently, we also see an improvement of up to factor 2 in
the mean running times2. In PostgreSQL, we see a reduction from 97 to 70 timeouts
in the case of full enumeration queries, and from 91 timeouts to just 2 in the 0MA
aggregation case. Furthermore, those additional queries that terminate within the time
limit do so with a very clear margin as can be seen from the maximum times.

The low median, contrasting the much higher means, shows that at least half of the
queries are reasonably easy to solve for the baseline systems. This is expected, as the
number of relations is uniformly distributed in the queries, meaning that a fair amount
of queries are small enough for typical query planning strategies to work well. This
observation is discussed in further detail below. The split into multiple SQL statements
as well as the creation of various temporary tables as performed by YanRe naturally
leads to some overhead. This is clearly visible in the higher median execution time
with YanRe. This comes as little surprise, since the structure-guided approach is most
effective for hard cases.

Beyond the general improvement, we observe a particularly large improvement for 0MA
queries. For DuckDB + YanRe, not only are all queries solved within the 20 minute
time limit, but all are solved within only 16 seconds. In case of Spark SQL + YanRe and
PostgreSQL + YanRe, even though the mean speed-up is smaller, we still observe an
improvement by an order of magnitude as well as the elimination of almost all timeout
cases (see below for further discussion of the remaining timeouts). While we performed
minimum aggregation in our experiments, any natural 0MA version of the queries (e.g.,
counting or enumerating distinct values of some attribute) would result in essentially the
same running times in the YanRe cases. Note however, that the median times are still
slightly lower without YanRe, again demonstrating that the structure-guided approach
is particularly well suited for complementing traditional query processing strategies in
difficult cases. Ultimately, we see that the use of YanRe makes these types of queries
feasible, whereas our experiments show that none of the baseline systems tested here can
be relied upon to produce answers for such queries within a reasonable time limit.

While our results for all three systems follow the same trends, we see that PostgreSQL
performs significantly worse. In particular, the 2 timeouts for 0MA aggregation queries
with YanRe on top of PostgreSQL are surprising and merit discussion. In these two
cases, the join trees contain nodes with a large number of children. The resulting SQL
statement generated by YanRe therefore expresses many semi-joins at once. While
this is not an issue in principle, and generally works as expected, the query planner of
PostgreSQL runs into the usual problem with large queries and fails to recognize that
semi-joins are possible here. Instead, PostgreSQL chooses join operations, which leads
to a blow-up of intermediate results, same as with the original query, and consequently
PostgreSQL runs out of time. In fact, the problem that the query planner decides

2Note that assuming 20 minutes running time here generally benefits the baseline systems as they
produce significantly more timeouts and the actual time to execute those queries is often significantly
beyond 20min.
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against semi-joins and uses joins instead also appears in the full enumeration case and
occasionally also with Spark SQL. As a mitigation, one could adapt the rewriting to
perform the semi-joins one after the other in such cases. However, we refrained from
doing so since we wanted to provide a portable system that allows us to compare in a
uniform way the general feasibility of the structure-guided methods over a wider variety
of existing systems. Naturally, deeper integration of structure-guided methods into a
DBMS would immediately eliminate such problems.

0MA Aggregation Queries
Method Timeouts Max1 Mean2 Med.2 Std.Dev.2

DuckDB 58 1169.38 217.9 0.44 447.94
DuckDB+YanRe 0 15.57 2.31 1.44 2.38
PostgreSQL 91 1131.08 342.78 2.82 524.16
PostgreSQL+YanRe 2 236.75 24.74 5.83 93.73
SparkSQL 91 1082.58 365.76 25.35 518.7
SparkSQL+YanRe 3 214.04 41.12 16.14 113.24

Full Enumeration Queries
Method Timeouts Max1 Mean2 Med.2 Std.Dev.2

DuckDB 69 770.55 252.27 0.67 473.87
DuckDB+YanRe 29 801.79 121.39 2.34 335.75
PostgreSQL 97 1107.66 364.32 4.02 533.47
PostgreSQL+YanRe 70 786.31 283.2 25.71 470.2
SparkSQL 87 1164.06 358.28 23.91 513.67
SparkSQL+YanRe 29 876.74 204.11 59.45 335.47
1 Excludes timeout values.
2 Timeout treated as 1200 seconds.

Table 4.1: DuckDB, PostgreSQL, and Spark SQL with or without YanRe for ACQs over
the MusicBrainz dataset. All times are reported in seconds.

In Figure 4.2, we provide histograms of how many queries could be executed within
certain time brackets, with brackets of t ≤ 1, 1 < t ≤ 10, 10 < t ≤ 100, 100 < t ≤ 1000
seconds (represented by their upper bounds in the figure). Additionally, we also list the
number of queries that timed out (TO).
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Figure 4.2: Histograms showing how many instances were solved in each time range, with
or without YanRe, for the three systems studied.

In order to simplify the presentation, we thus ignore in total 5 runs that took between
1000 and 1200 seconds. The left column of histograms represents the baseline systems.
We see a trend of queries being either easy or very difficult for a system, with especially
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the large bracket of times between 100 and 1000 seconds being the least common (in
particular, for DuckDB and PostgreSQL). The histograms also give a better insight into
the improvements achieved through the use of YanRe. With DuckDB, we see that many
of the queries causing a timeout with the baseline system can be solved far below the
timeout threshold with YanRe, even in the full enumeration case. At the same time,
due to the overhead of YanRe, the number of queries that are solved in under a second
is significantly lower. For PostgreSQL and Spark SQL we see that the overhead and
the aforementioned issues around planners avoiding semi-join operations cause a general
trend towards slower evaluation in full enumeration queries, despite significant reduction
in timeouts.

Figure 4.3 provides a breakdown of the average time (in seconds) spent in each of the
four stages of the YanRe rewriting (excluding timeouts). We have omitted Spark SQL in
this figure, since there we have applied there a different approach of executing all stages
as one query plan.

The Setup phase consists of the creation of various views that represent the initial relations
for each node in the join tree. Surprisingly, this takes up a noticeable amount of time
in some cases (we later eliminate this overhead through the integration into Systems
in Chapter 5). In the case of full enumeration queries, we see for both, DuckDB and
PostgreSQL, that YanRe spends the most time in the join phase. It is interesting to
note that PostgreSQL also spends a lot of time in the two semi-join phases, whereas
for DuckDB, the time spent there is insignificant relative to the Join phase. As we
discussed earlier, we have seen cases where the query planner of PostgeSQL eschews the
use of semi-joins, which explains parts of this marked difference in the time distribution.
Additionally, the handling of internal tables and possible bottlenecks in their creation
are another potential factor for this discrepancy. In the 0MA aggregation case, we see
that both systems fare very similarly, with DuckDB again requiring more time for the
Setup stage. The increase in Setup time over the full enumeration case here is due to the
larger number of instances that could be solved without timeout for 0MA queries. Note
that in the 0MA case, the "Join" phase consists only of the final aggregation in the root
node, which explains the (almost) 0 time consumption.
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Figure 4.3: A breakdown of the average time in seconds spent by DuckDB and PostgreSQL
in each of the four stages of YanRe, corresponding to the 4 phases of Yannakakis’
algorithm.

YanRe Planning Time. The time required by YanRe to create the rewriting is
negligible even in our unoptimised proof-of-concept implementation. Even for the largest
queries (30 relations), the computation of hypergraphs and join trees as well as the
subsequent rewriting requires only a few milliseconds. This is magnitudes faster than
usual planning times by the host systems for complex queries and we therefore do not
provide a more detailed analysis of our planning time here. Detailed records of the
times spent by YanRe in the various phases of query execution are available in the
aforementioned repository of data and code artifacts.

4.3.3 Deeper Insight into Improvements

We see that structure-guided query evaluation can significantly improve the performance of
widely used DBMSs on difficult queries, even if all joins are along foreign key relationships.
In this section, we further illustrate the reasons for these improvements in detail.

We consider the evaluation of benchmark query 08ad (for the full enumeration case), which
is illustrated in Figure 4.4. On the left-hand side, we show the query plan (projections at
leaf nodes are omitted in the figure) as produced by DuckDB on the input query. On
the right-hand side, we show the query plan that was produced by DuckDB for the final
Join stage query in the YanRe rewriting. That is, all relations at this point have been
reduced by the two semi-join passes. To emphasise this, we refer to the reduced version
of each relation R as R′ in the right tree and mark it in blue. The size of each relation
is given in green after a #, and the times in the nodes represent total CPU time (note
that this differs strongly from wall clock time due to heavy parallelisation) spent on this
operation.
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Figure 4.4: Details of performance difference in query plans of query 08ad.
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The query produces a large number of output tuples (≈ 158 million). However, while our
rewriting still has to materialise all of these tuples (at significant computational cost), the
baseline query plan produces an even larger and more costly intermediate result with ≈
2.8 billion tuples on the way to the final output. Actually, the huge discrepancy between
the original vs. reduced relations is already seen at the leaf nodes of the two query plans:
for instance, when we look at the relations artist_credit, release, and release_group, the
reduction in size is by a factor of 123, 72, and 58, respectively.

The table at the bottom of the figure provides the wall clock times for evaluation of the
baseline using only DuckDB, as well as DuckDB+YanRe. The baseline plan on the left
required 151.9 seconds, while our approach took 42.1 seconds to execute. Notably, we
see that the significant improvement in the join phase comes at a very cheap cost: the
two semi-join phases that allowed us to avoid the blow-up required only a total of 2.4
seconds. Thus, while the query is still solvable in reasonable time in the baseline case, we
see that even such cases can be significantly improved by a structure-guided approach.

We note that this query has only 8 relations and the planning phase is therefore still
manageable in the baseline case. Specifically, PostgreSQL manages to answer the query
in 64 seconds, while only Spark SQL times out. Importantly, even if all joins follow
foreign key relationships, there can still be an enormous blow-up of intermediate results
if an evaluation strategy based solely on joins (without using semi-joins to remove
dangling tuples first) is applied. Advancements in cardinality estimation, which aim at
the computation of good join plans, are therefore inherently insufficient on these types of
challenging queries.

Indexes. Indexes have traditionally been an important factor in fast join evaluation in
DBMSs. However, when the time to evaluate a query is dominated by efforts related
to large intermediate results, indexes are of little to no help as they cannot decrease
the size of a join. This observation is also confirmed by our experiments with three
different DBMSs, which apply significantly different indexing strategies and yet yield
comparable experimental results. In PostgreSQL, it is common to maintain a large
number of explicitly specified and materialised indexes for all attributes that are deemed
important. In our experiments for PostgreSQL we use all indexes that are set in the
Musicbrainz dataset, which are effectively on all attributes over which joins are made
in our queries. In contrast, Spark SQL supports no indexes at all and DuckDB does
not allow persistent indexes (every new session requires a new creation of indexes), but
internally maintains ad-hoc index structures for commonly accessed values and attributes.
Our experiments therefore run without explicitly declared indexes on both systems3.
Despite these differences, we see consistent improvements using YanRe over all systems.
Furthermore, PostgreSQL performs worst in every measure despite the most elaborate
support of indexes among the 3 systems tested here.

3Creating all indexes in DuckDB takes over 30 minutes on our test system and it was infeasible to
add this overhead to every tested query. Additional experiments showed that explicitly creating the same
indexes in DuckDB as in PostgreSQL makes no significant difference to our measured times.
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4.3.4 Cyclic Queries

Query Ordered Eval. Time by GHD (s)
09ac 10.3 16.5 18.4 t/o t/o t/o t/o —
11ag 11.2 26.8 t/o t/o t/o t/o t/o t/o
11al 6.2 6.3 8.3 258 t/o t/o t/o t/o

Table 4.2: Run times of cyclic queries with different GHDs

To explore how a structure-guided approach to query processing generalises beyond
ACQs, we have carried out some preliminary experiments with a few cyclic queries from
the benchmark of [110], which we briefly discuss next. In Table 4.2, we show some of
these results: we have chosen 3 of the smallest cyclic queries from the benchmark (called
09ac, 11ag, and 11al). As is indicated by their names, these queries involve the join of 9
resp. 11 relations. For each of these queries, we have computed 8 different generalized
hypertree decompositions (GHDs) of width 2, which is optimal in these cases. Actually,
for 09ac, we were only able to find 7 distinct GHDs. These GHDs were constructed by
repeated execution of the decomposition tool BalancedGo [65] with randomised search
order. For each of the distinct GHDs computed in this way, we then proceed as in the
acyclic case, with the only difference being that the initial relation associated with a tree
node u may now either be a base relation or a view obtained by joining the relations
of the edge cover labelling the node of the GHD. Turning the GHDs into join trees by
carrying out the local joins at each node of the GHD and applying our YanRe system
on DuckDB, we obtained the run times (sorted in ascending order) reported in Table 4.2.
Without YanRe, the corresponding run times of DuckDB are timeout (query 09ac),
22.22s (query 11ag), and 263.87s (query 11al), respectively. For all queries, we notice a
striking discrepancy in execution times of DuckDB + YanRe depending on the chosen
GHD: in the best case, DuckDB + YanRe may be way faster than plain DuckDB, in
the worst case, DuckDB + YanRe times out.

We see in Table 4.2, that the effort of structure-guided query evaluation via GHDs can
vary heavily, depending on the chosen GHD and, in particular, on the joins required to
turn the GHD into a join tree. Importantly, even small hypergraphs can have a relatively
large number of different GHDs of minimal width. We are therefore confronted with
another optimisation problem of finding the GHD with the most efficient reduction to
the acyclic case.

We further illustrate this by taking a closer look at one of the cyclic queries thus
studied, namely query 09ac, which we recall in full in Figure 4.5. On the left-hand
side of Figure 4.6, we have the hypergraph of this query. For our purposes, only the
structure of the hypergraph is relevant and not the precise names of the attributes. For
the sake of better readability, we have therefore abbreviated the attribute names to
a,b,c,d,e,f. Moreover, attributes irrelevant to the query have been omitted altogether.
The correspondence between these abbreviations and the true attribute names is shown
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in Table 4.3. In this table, we have omitted the relations which only occur with a
single attribute in the query. The correspondence between abbreviation and true name
is obvious in these cases: artist_credit.id (abbreviated to a), release_country.release
(abbreviated to c), release_group_secondary_type_join.release_group (abbreviated to
b), and release_group_prior_type.id (abbreviated to e). Note that we have omitted
unary edges (which correspond to relations with a single (relevant) attribute) from the
hypergraph since they have no effect on the acyclicity of a query. Of course, in the
GHDs, the unary relations have to be reintroduced. However, the join with a unary
relation trivially degenerates to a semi-join. Hence, they can never lead to a blow-up of
intermediate results.

On the right-hand side of Figure 4.6, we have three of the different GHDs generated
for this query in our experiments together with the overall execution time of DuckDB
+ YanRe to answer the query. For space reasons, the labels of the nodes contain
abbreviations of relation names. The correspondence between these abbreviations and
the true relation names are shown in Table 4.4. We can observe clear structural differences
between the GHDs, with decomposition Fast branching only to at most 3 children, while
decomposition Timeout is flat and very wide. More importantly, the joins needed to turn
the GHDs into join trees are markedly different. Decomposition Timeout induces the
costly cross product between medium and release_group, while decomposition Fast avoids
such views. The third decomposition Fast-2 shows a third GHD for which execution is
even faster than for Fast. Notably, Fast-2 requires only 2 joins to turn the GHD into a
join tree – in contrast to the 5 joins needed in Fast. For reference, “plain” DuckDB (i.e.,
without the rewriting done by YanRe) times out on this query and PostgreSQL solves it
in 85 seconds.

SELECT track.recording, track.medium, medium.release,
artist_credit.id, release.release_group,

release_group.type
FROM artist_credit, recording, release_group,
release_group_secondary_type_join,
release_group_primary_type, track, release,
medium, release_country
WHERE artist_credit.id = recording.artist_credit

AND release.id = medium.release
AND artist_credit.id = release_group.artist_credit
AND track.medium = medium.id
AND release_group.id = release_group_secondary_type_join.release_group
AND release.id = release_country.release;
AND release_group.type = release_group_primary_type.id
AND artist_credit.id = track.artist_credit
AND recording.id = track.recording
AND artist_credit.id = release.artist_credit
AND release_group.id = release.release_group

Figure 4.5: Query 09ac (full enumeration)
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To summarise, our preliminary experiments with cyclic CQs show that there is clear
potential for structure-guided query answering beyond acyclic queries. But they also show
that this requires new methods for finding the “right” decompositions. Indeed, the key
observation is that a good choice of decomposition is absolutely crucial for the performance
of query evaluation. We will develop solutions for finding such decompositions in Chapter
6.
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Figure 4.6: Hypergraph and different GHDs of the cyclic query 09ac

relation plus schema true attribute names
medium(c,f) release,id
recording(a,d) artist_credit,id
release(a,b,c) artist_credit,release_group,id
release_group (a,b,e) artist_credit,id,type
track(a,d,f) artist_credit,recording,medium

Table 4.3: Abbreviations of attribute
names in query q09ac

abbreviation true relation name
ac artist_credit
m medium
r release
rc release_country
rec recording
rg release_group
rgp release_group_primary_type
rgs release_group_secondary_type_join
t track

Table 4.4: Abbreviations of relation names
in query q09ac

4.4 Query Rewriting as an Algorithm Selection Problem

We have, up to this point, introduced and evaluated the rewriting-based approach,
showing its potential for improving query execution on hard instances, but also identifying
weaknesses on simpler instances. To make this approach useful in practice, we urgently
need to find a way to apply it only whenever it improves performance. To address this
problem, we develop a decision procedure that decides when the new method should be
applied. We are thus faced with an algorithm selection problem, where we have to decide,
for every database instance and query, which query evaluation method should be applied.
In this section, we describe the steps needed to formulate the precise algorithm selection
problem. An overview of this workflow is given in Figure 4.7.
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Figure 4.7: Methodology workflow.

It consists of the following steps: We first have to create a suitable dataset that features
the required variety and size for the ML task at hand. On one hand, we thus have to (1)
select and adapt common benchmarks and select those queries to which the optimisation
technique is applicable. On the other hand, we (2) apply data augmentation to ensure
a suitable size of the dataset. We then need to (3) select DBMSs on which we want to
test the effectiveness of the new optimisation techniques. Next, we (4) rewrite the given
SQL queries into sequences of SQL commands that “force” the selected DBMSs into
a particular evaluation strategy. To prepare for the ML task, we then have to (5) do
a feature selection. That is, we want to characterise every query in terms of a feature
vector. We are then ready to (6) run the experiments, i.e., we execute all queries with
and without the optimisation and measure the times of each run. The result will be
runtimes for each query (characterised by a particular feature vector) both, when the
optimisation is applied and when it is not applied. This is then the input to the model
training step and, ultimately, to the development of a decision procedure, which will be
described in Section 4.5.

4.4.1 Benchmark Data
To construct our new dataset MEAMBench (Materialisation Explosion Augmented Meta
Benchmark), we pursue two major goals to make the dataset suitable for model training
and testing: it should be sufficiently big and diverse. To address the diversity aspect, we
collect datasets and queries from different domains, designed for different purposes, and
representing challenging cases of an explosion of intermediate results and materialisation.
Thus, as a basis, we have chosen several widely used benchmarks, which contain join
queries over several relations: (1) The JOB (Join Order Benchmark) [101], which was
introduced to study the join ordering problem, is based on the real-world IMDB dataset
and contains realistic join-aggregation queries with many joins and various filter conditions,
(2) STATS/STATS-CEB [76] is based on the Stackexchange-dataset, and contains many
join queries not following FK/PK-relationships, (3) Four different datasets (namely
cit-Patents, wiki-topcats, web-Google and com-DBLP) from SNAP (Stanford Network
Analysis Project) [103], a collection of graphs, which we combine with synthetic queries
introduced in [99], (4) LSQB (Large-Scale Subgraph Query Benchmark) [116], which was
designed to test graph databases as well as relational databases, consists of synthetic
data and hard queries based on a social network scenario, and (5) HETIONET [80]. The
latter is less known in the database world. It contains real-world queries on real-world
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data from a heterogeneous information network of biochemical data, and is part of the
new CE benchmark[40], which has, for instance, been recently used in [23] and [20].

Again, we focus on ACQs, which make up the vast majority of the queries in the base
benchmarks. Most of the queries in the chosen benchmarks are CQs with additional filter
conditions applied to single tables. These filter conditions can be taken care of by the
preparatory step; so they pose no problem. However, not all the CQs are acyclic; so we
have to eliminate the cyclic ones from further consideration. The number of (acyclic)
CQs of each dataset is given in Table 4.5.

Note that some of the queries in the benchmarks are enumeration queries and already
contain some aggregate (in particular, MIN) and satisfy the 0MA conditions. Of course,
also from the enumeration queries, we can derive 0MA queries by putting an appropriate
aggregate expression (again, in particular, with the MIN aggregate function) into the
SELECT clause of the query. We do this by randomly choosing a table occurring in
the query and one column of this table. We will see in Section 4.4.2, that it makes no
significant difference which table and attribute we choose for turning a query into 0MA
form, as we will vary the table and attribute anyway.

4.4.2 Data Augmentation
Our collection of data and queries from different benchmarks results in 219 acyclic queries,
as can be seen in Table 4.5. Since our goal is to use our new dataset MEAMBench for
training and testing ML models, this is clearly not a sufficient amount. Therefore, we
perform data augmentation, as will be detailed next.

Dataset # ACQs +filter +filter&agg +filter&enum
STATS 146 432 1876 1264
SNAP 40 40 244 120
JOB 15 45 264 135
LSQB 2 2 14 6
HETIONET 26 72 538 216
Total 219 591 2936 1741

Table 4.5: Overview of the 0MA and enumeration queries after augmentation. In total,
we get 4677 queries, consisting of 2936 0MA queries and 1741 enum queries.

For our dataset, we decided to use the following two steps for data augmentation:
"filter augmentation" (for all queries) followed by "aggregate-attribute augmentation" (for
0MA-queries) and “enumeration augmentation” (for enumeration queries), respectively.

With the filter augmentation, we want to get duplicates of all queries having filters (i.e.,
selection conditions on a single table) and then change some filters in a way that the sizes
of the resulting relations vary between these queries. If the query had only one filter,
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we change the specific value it is equal to, greater or smaller of the filter condition. For
these cases, we get twice as many queries as before. For all queries having two or more
filters we choose two filters, which we change, each at a time. Here we try to replace the
filters in a way that once the number of answer tuples gets bigger and once smaller. This
gives us triples for each of these queries.

Example 4.4.1. Consider the STATS query ‘005-024’, named q here. To illustrate the
filter augmentation, we present two possible augmentations on q. One option to augment
q is to swap the filter condition, v.BountyAmount>=0 , with a transformed one, such as
v.BountyAmount>=40, producing the query qaug1. Another option is to swap u.DownVotes=0
with u.DownVotes=10, producing qaug2.

q: SELECT MIN(u.Id)
FROM votes AS v, badges AS b, users AS u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

qaug1: SELECT MIN(u.Id)
FROM votes AS v, badges AS b, users AS u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=40 AND v.BountyAmount<=50
AND u.DownVotes=0

qaug2: SELECT MIN(u.Id)
FROM votes AS v, badges AS b, users AS u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=10

For 0MA queries, we next apply the "aggregate-attribute augmentation" to vary the table
from which we take the MIN-attribute. This is done in a way that every table occurring
in the query appears once in the MIN-expression. The column of the chosen table does
not really matter, which means we just take the first column of the table. Depending
on the number of tables involved in the query, this leads to a different number of new
queries per query.

Example 4.4.2. We give an example for the aggregate-attribute augmentation on 0MA
queries. As in Example 4.4.1, we again focus on the STATS query 005-024. For this
query, we thus create 3 versions by taking either MIN(u.Id), MIN(v.Id), or MIN(b.Id)
in the SELECT clause. This aggregate-attribute augmenation is applied to the original
queries and to the filter augmented ones alike. Hence, the original STATS query 005-024
gives rise to 9 distinct queries after the whole augmentation process.

005-024: SELECT MIN(v.Id)
FROM votes as v, badges as b, users as u
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WHERE u.Id = v.UserId AND v.UserId = b.UserId
AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-augA1: SELECT MIN(b.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

005-024-augA2: SELECT MIN(u.Id)
FROM votes as v, badges as b, users as u
WHERE u.Id = v.UserId AND v.UserId = b.UserId

AND v.BountyAmount>=0 AND v.BountyAmount<=50
AND u.DownVotes=0

In Table 4.5, we summarize the numbers of 0MA queries that we get after each step of
the augmentation. The SNAP and LSQB queries do not have filter conditions, which
means there is no filter augmentation for them.

We also take the enumeration queries, for which filter augmentation has already been
done, and apply an enumeration augmentation step. To this end, we randomly choose
two of the attributes used in join conditions and write them into the SELECT clause
of the query. This is done three times for each filter augmented query if at least three
different join attributes exist in the query. On the other hand, a query with only one join
gives rise to only a single enumeration query (with the join attributes in the SELECT
clause) in our dataset.

In summary, after applying the data augmentation step to the 0MA and enumeration
queries, we have 4677 queries in total.

4.4.3 Selection of DBMSs
We aim to evaluate the effectivity of the optimisation via Yannakakis-style query evalua-
tion on a wide range of database technologies. Therefore, we have chosen three significantly
different DBMSs, namely (1) PostgreSQL 13.4 [146] as a “classical” row-oriented relational
DBMS, (2) DuckDB 0.4 [134] as a column-oriented, embedded database, and (3) Spark
SQL 3.3 [164] as a database engine specifically designed for distributed data processing in
a cluster. These DMBSs represent a broad spectrum of architectures and characteristics
and they, therefore, give a good overview of the range of existing DBMSs.

4.4.4 Query Rewriting
For query rewriting, we again make use of the techniques described at the beginning of
the chapter, where a single SQL query is rewritten into an equivalent series of queries,
to guide DBMSs to utilise a given optimisation method. The implementation is based
on work in [24], and Scala code is partially derived from the integration into Spark SQL
described in Chapter 5.
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4.4.5 Feature Selection

We choose different kinds of features that we derive from the structure of the query itself,
from the join tree constructed in the process of rewriting the query, and from statistics
determined by PostgreSQL or DuckDB over the database. The latter kind of features is
extracted from the query optimiser’s estimates, and obtained via the EXPLAIN command.
Note that Spark SQL does not provide an EXPLAIN command. However, we will explain
below how to circumvent this shortcoming. Another challenge are features that are based
on a set, of variable length, containing numeric values. In order to reduce such a set
of values into a fixed-length list of values, we calculate, for each set, several statistics:
min, the 0.25-quantile (referred to as q25), median, the 0.75-quantile (referred to as q75),
max, and mean. In the list of features below, we use ∗ (e.g. B7*) to mark which features
consist of variable-length sets, and hence will get reduced to the mentioned collection of
6 values.

Features derived from the query. The following features are easily obtained by inspecting
the query itself:
Feature B1: is 0MA? indicates (1 or 0) if the query is 0MA,
Feature B2: number of relations,
Feature B3: number of conditions, which refers to the number of (in)equality conditions
in the WHERE clause of the query,
Feature B4: number of filters, which more specifically only counts the (in)equality
conditions occurring in the query, and
Feature B5: number of joins.

Features based on the join tree. The following features are inspired by the work in [4] on
tree decompositions:
Feature B6: depth, which is the maximal distance between the root of the used join
tree and a leaf node,
Feature B7*: container counts, which is a set of numbers, indicating for each variable
in the query the number of nodes in the join tree it occurs in. This measure indicates
how many relations are joined on the same variable, and
Feature B8*: branching degrees, which is a set of numbers, indicating for each node the
number of children it has.

These eight features (B1)-(B8*) are the shared "basic features". In addition, we can use
statistical information from the database and the estimates for the query evaluation,
though the exact features that are exposed differs between DBMSs. In case of PostgreSQL
and DuckDB, we have the EXPLAIN command at our disposal to obtain relevant further
information. For PostgreSQL, we thus select the following additional features, which we
refer to as "PSQL features":
Feature P1: estimated total cost (of the query),
Feature P2*: estimated single table rows, which stands for the estimated number of
rows for each table involved in the query after the application of the filter conditions, and
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Feature P3*: estimated join rows, the estimated number of rows of each join before the
application of the filter conditions.

The EXPLAIN command for DuckDB behaves differently. It allows us to derive a single
"DDB feature":
Feature D1*: estimated cardinalities, the estimated number of rows after each node in
the logical plan, such as filters and joins.

As SparkSQL does not perform cost-based optimisation, it also does not have any
statistical information of the data, and cannot estimate cardinalities or costs of a plan.
However, since SparkSQL also does not provide a persistent storage layer, tables are
commonly imported from another database via JDBC. This implies that, in practice, the
statistical features can easily be extracted from this database and used for the decision
whether to rewrite the query in SparkSQL. For the experiments presented in Section 4.6,
we extracted these features from PostgreSQL, hence SparkSQL will have the same feature
set as PostgreSQL.

4.4.6 Running the Queries

The whole evaluation is performed on a server with 128GB RAM, a 16-core AMD EPYC-
Milan CPU, and a 100GB SSD disk, running Ubuntu 22.04.2 LTS. After a warm-up
run, the original query, as well as the rewritten version, is evaluated five times, and then
we take the mean of those five runtimes. In total, we get 6 data points for each of the
4677 queries: each query is run against 3 DBMSs, where the query evaluation happens
once with and once without optimisation. Aggregated information on these runtimes is
provided in Section 4.6.

In addition to the six runtimes, we also add a “feature vector”, consisting of the features
described in Section 4.4.5. These provide the input to the training of ML models to be
described next.

4.5 Solving the Algorithm Selection Problem

Several decisions have to be made to solve the algorithm selection problem that results
from the steps described in the previous section. In particular, we have to (1) formulate the
concrete ML problem and then (2) select ML model types together with hyperparameters
appropriate to our context. Before we can start training and testing the models, we have
to (3) split the data (in our case the SQL queries) into training/validation/test data.
Finally, we have to (4) define selection criteria for determining the “best” model, which
will then be used as basis of our decision procedure between the original query evaluation
method of each system and a Yannakakis-style evaluation.
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4.5.1 Formulating the ML Problem

Our ultimate goal is the development of a decision procedure between two evaluation
methods for acyclic queries. Hence, we are clearly dealing with a classification problem
with 2 possible outcomes. In the sequel, we will refer to these two possible outcomes as
0 vs. 1 to denote the original evaluation method of the DBMS vs. a Yannakakis-style
evaluation (enforced by our query rewriting).

On the other hand, it also makes sense to consider a regression problem first and,
depending on the predicted value, classify a query as 0 (if the predicted value suggests
faster evaluation by the original method of the DBMS within a certain threshold) or
1 (otherwise). As the target of the regression problem, we would like to choose the
difference trewritten − toriginal, where we write trewritten and toriginal to denote the time
needed by Yannakakis-style evaluation and by the original evaluation method of the
DBMS, respectively. However, as will become clear in our presentation of the experimental
results in Section 4.6, the actual runtime values are very skewed, in the sense that their
distribution shows high variance. Hence, the difference we focus on is also highly skewed.
To get more reliable results, we therefore perform a (variant of) log-transformation as
described next: Since we may have negative values, we cannot apply the logarithm
directly. Instead, we multiply the log of the absolute values with the sign they had before.
Additionally, since we have a lot of values close to zero (which leads to very small log
values) we add 1 to the absolute values before applying the log, which is a common
method in such situations. The transformation therefore results in the following formula:
xnew = sgn(x) ∗ log(|x|+ 1). In Figure 4.8, we can see this difference function under log
transformation over the data from our experiments shown in Section 4.6.

4.5.2 Selecting Model Types

We have chosen 7 Machine Learning model types for our algorithm selection problem,
namely k-nearest neighbours (k-NN), decision tree, random forest, support vector machine
(SVM), and 3 forms of neural networks (NNs): multi-layer perceptron (MLP), hypergraph
neural network (HGNN) and a combination of the two. MLP is the “classical” deep
neural network type. Hypergraph neural networks, introduced in [53], are less known.
With their idea of representing the hypergraph structure in a vector space, HGNNs seem
well suited to capture structural aspects of conjunctive queries. Just like MLPs, also the
HGNNs produce an output vector. In our combination of the two model types, we provide
yet another neural network, which takes as input the two output vectors produced by
the MLP and the HGNN and combines them to a joint result using additional layers.

A major task after choosing these ML model types is to fix the hyperparameters. An
overview of some basic hyperparameters is shown in Table 4.6. Of course, in particular
for the 3 types of neural networks, many more hyperparameters have to be fixed.
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Model Hyperparameters
Random Forest #estimators = 100
kNN k = 5
SVM kernel = linear
MLP layers = 30-60-40-2
HGNN layers = 1-16-32-2

Table 4.6: Chosen hyperparameters.

4.5.3 Labelling and Splitting the Data
After running the 4677 queries mentioned in Section 4.4.2 on the 3 selected DBMSs
according to Section 4.4.3, we have to prepare the input data for training the ML models
of the 7 types mentioned in Section 4.5.2. Recall from Section 4.4.5 that each query is
characterised by a feature vector specific to each of the 3 DBMSs. For our supervised
learning tasks (classification and regression), we have to label each feature vector for
each of the 3 DBMSs. As explained in Section 4.5.2, we want to train our models both,
for classification and for regression. Hence, on the one hand, each feature vector gets
labelled 0 or 1 (meaning that the original evaluation of the DBMS or the Yannakakis-style
evaluation is faster; in case of a tie, we assign the label 0) for the classification task.
On the other hand, each feature vector is labelled with the difference of the runtime
of the original evaluation minus the runtime of the Yannakakis-style evaluation for the
regression task.

The labelled data can then be split into training data, validation data, and test data.
In principle, we choose a quite common ratio between these three sets by letting the
training set contain 80% of the data and the other two contain 10% each. However, to
get more accurate results, we have decided to do 10-fold cross validation. That is, we
split the 90% of the data that were chosen for training and validation in 10 different ways
in a ration 80:10 into training:validation data and, thus, repeat the training-validation
step 10 times.

4.5.4 Model Selection Criteria
In order to ultimately choose the “best” model for our decision procedure between
the original evaluation method of each DBMS and the Yannakakis-style evaluation, we
compare, for every feature vector, the predicted classification with the actual labelling.
We refer to classification 1 as “positive” and classification 0 as “negative”. This leads to
4 possible outcomes of the comparison between predicted and actual value, namely TP
(true positive) and TN (true negative) for correct classification and FP (false positive) and
FN (false negative) for misclassification. They give rise to the 3 most common metrics:
accuracy (shortened to “Acc”), which is the proportion of correct classifications, precision
(shortened to “Prec”), which is defined by TP / (TP + FP), and recall (shortened to
“Rec”), defined as TP / (TP + FN).
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Of course, the natural goal when selecting a particular model is to maximize the accuracy.
However, in our context, we consider the precision equally important. That is, we find it
particularly important to minimise false positives, i.e., in case of doubt, it is better to
stick to the original evaluation method of the DBMS rather than wrongly choosing an
alternative method.

For regression, we aim at minimising the mean squared error (MSE). But ultimately, we
also map the (predicted and actual) difference between the runtime of the original minus
Yannakakis-style evaluation to a 0 or 1 classification. Hence, we can again measure the
quality of a model in terms of accuracy, precision, and recall.

Apart from the purely quantitative assessment of a model in terms of accuracy, precision,
and recall, we also carry out a qualitative analysis. That is, for each of the misclassified
cases, we want to investigate by how much the chosen evaluation method is slower than
the optimal method. And here, we are again particularly interested in the false positive
cases. Apart from aiming at high accuracy and precision, we also want to make sure
for the false positive classifications, that the difference in the runtimes between the two
evaluation methods is rather small.

4.6 Experimental Results
In this section, we present experimental results obtained by putting the algorithm selection
method described in Sections 4.4 and 4.5 to work. We thus first evaluate in Section 4.6.1
the performance of various machine learning models on the raw dataset of query runtimes
obtained for the selected and augmented benchmarks on the chosen DBMSs. Afterwards,
in Section 4.6.4, we evaluate the performance gains by combining the best algorithm
selection model with our rewriting method for evaluating acyclic queries. In particular,
we perform experiments to answer the following key questions:

Q1 How well can machine learning methods predict whether Yannakakis-style query
evaluation is preferable over standard query execution?

Q2 Can we use these machine learning models to gain insights about the circumstances
in which Yannakakis-style query evaluation is preferable over standard query
execution?

Q3 How well does good algorithm selection performance translate to query evaluation
times on different DBMSs?

Q4 To what extent can we optimise for precision while maintaining end-to-end runtime
and accuracy?

The source code of the implementation, information on running the benchmarks and
model training, as well as the data presented here can be found in the following repository:
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https://github.com/dbai-tuw/yannakakis-rewriting. The MEAMBench dataset can be
found in the following repository: https://github.com/dbai-tuw/MEAMBench

We also note that the repositories includes various tools, such as Jupyter Notebooks,
making it easily possible to reproduce the experiments, including the training of all tested
machine learning models.

In the remainder of this section, we present our experimental results and a discussion as
to how they answer our key questions.

Algorithm Acyc. Queries
MSE MAE Acc. Prec. Rec.

Decision Tree 0.02 0.06 0.96 0.96 0.94
Random forest 0.03 0.08 0.95 0.94 0.93
k-NN 0.17 0.18 0.91 0.88 0.91
SVM 1.02 0.61 0.79 0.76 0.72
MLP 0.39 0.32 0.81 0.72 0.77
HGNN 0.74 0.48 0.71 0.57 0.85

Table 4.7: Performance of Regression Models. We show MSE and MAE for regression
models predicting the difference between the runtime of the original and the rewritten
query. Additionally, we present the accuracy and precision after converting the regression
model to a classification model by setting a threshold at a predicted time difference of 0
seconds.

4.6.1 Model Training
In a first step, we will compare the performance of various learned models in terms
of accuracy, precision, and recall. Table 4.8 compares the performance of the best
classification models (with the hyperparameters given in Table 4.6 on the 0MA queries
only, as well as on all queries (i.e., 0MA and enumeration), on the runtime data from
PostgreSQL. Decision trees and random forests, with roughly the same performance,
achieve the best accuracy, precision and recall out of all classifiers. kNN achieves the
next best performance, although significantly less at 91% accuracy compared to the
95% accuracy of the decision tree-based models. The random forest classifier has a
similar performance to the simple decision trees. Hence, its disadvantage of additional
complexity is not outweighed by a significant performance improvement. Therefore, the
simple decision tree classifier is the clear choice out of all compared.

Next, we compare the performance of the regression variants of these models, presented in
Table 4.7 and (applying the transformation described in Section 4.5.1) in Figure 4.8 on all
queries, again on the PostgreSQL runtimes. We can see that the regression performance
in terms of MSE and MAE corresponds closely to the classification performance of the
classification models, with the decision tree and random forest models again at the
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Figure 4.8: Distribution of the regression response, understood as the time difference
between rewritten runtime and original runtime for PostgreSQL, under the given log
transformation. Above we show a histogram of this distribution, using log scaling to
allow for more visual clarity.

top. However, the gap to the next best model is even larger, corresponding to a 5-8x
increase in MSE and a 2-3x increase in MAE, making the decision tree-based models
again preferable in this situation. From these results, it can be observed that we are able
to predict the runtime difference (i.e., runtime of the rewritten query minus runtime of the
original query) quite accurately. This predicted runtime difference naturally lends itself to
classification by choosing the query rewriting if and only if this difference is below 0. This
classification derived from the decision tree regression model leads to a similar (actually
slightly better by 0.5%) performance than the decision tree classification. Moreover, as
will be discussed next, classification based on the predicted runtime difference provides
additional flexibility for fine-tuning the trade-off between precision and recall. Hence, we
have chosen classification based on the decision tree regression model as basis for our
decision procedure.

Algorithm 0MA Queries Acyc. Queries
Acc. ↑ Prec. ↑ Rec. ↑ Acc. ↑ Prec. ↑ Rec. ↑

Decision Tree 0.94 0.92 0.97 0.95 0.95 0.92
Random forest 0.94 0.92 0.97 0.95 0.94 0.93
k-NN 0.91 0.91 0.90 0.91 0.88 0.91
SVM 0.85 0.85 0.84 0.84 0.82 0.77
MLP 0.87 0.89 0.86 0.85 0.84 0.77
HGNN 0.83 0.84 0.85 0.79 0.70 0.75
HGNN+MLP 0.82 0.78 0.93 0.81 0.77 0.72

Table 4.8: Performance of Machine Learn-
ing Classifiers on the PostgreSQL runtimes.
We show accuracy, precision and recall
for binary classifiers that predict whether
rewriting to Yannakakis style evaluation
leads to performance gain.

Algorithm 0MA Queries Acyc. Queries
Acc. ↑ Prec. ↑ Acc. ↑ Prec. ↑

Decision Tree 0.94 0.92 0.95 0.95
Random forest 0.94 0.92 0.95 0.94
k-NN 0.91 0.91 0.91 0.88
SVM 0.85 0.85 0.84 0.82
MLP 0.87 0.89 0.85 0.84
HGNN 0.83 0.84 0.79 0.70
HGNN+MLP 0.82 0.78 0.81 0.77

Table 4.9: Performance of Classification
Models. We show both accuracy and pre-
cision for binary classifiers that predict
whether rewriting to Yannakakis style eval-
uation leads to performance gain.
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Figure 4.9: Accuracy, precision, recall, as well as the e2e runtime over the test set, of the
regression model converted to a classifier, depending on the threshold set (decision tree
regression, PostgreSQL, all queries).

4.6.2 Fine-tuning Precision and Recall

So far we have only considered choosing a threshold of the predicted runtime difference of
the regression model at 0 (i.e., if the predicted runtime difference is below this threshold,
we choose Yannakakis-style query evaluation, and, otherwise, we opt for the original
query execution). However, we can make use of the regression model as a useful tool to
configure the trade-off between precision and recall, depending on the requirements of
the application. To simplify the presentation, we focus on one DBMS and on one model,
namely PostgreSQL and decision trees. The extension to other models and DBMSs is
straightforward and yields similar results. In Figure 4.9, we show how changing the
threshold affects the accuracy, precision and recall of the resulting classification model.
Clearly, the maximum accuracy is at the 0-threshold. The accuracy, however, continues
to be high in the direction of negative thresholds, while falling off quickly in the direction
of a positive threshold. In particular, this shows that an optimisation of precision can be
performed without sacrificing much recall.
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PostgreSQL DuckDB
Feature Gini Feature Gini
P3∗ max(est. join rows) 0.369 B1 is 0MA? 0.280
B1 is 0MA? 0.157 B7∗ mean(cont. c.) 0.206
P2∗ q75(est. sing. table rows) 0.069 D1∗ max(est. card.) 0.147
P1 est. total cost 0.053 D1∗ q25(est. card.) 0.061
P3∗ min(est. join rows) 0.051 D1∗ q75(est. card.) 0.057

Table 4.10: Most important features according to Gini coefficient of the Decision Tree
models. The features are described in Section 4.4.5

To summarize our findings on the quality of predicting when Yannakakis-style query
evaluation is better: the results from Table 4.8 and Table 4.7 that show very high levels
of accuracy, precision and recall for our chosen model of decision trees, as well as the
ability to further optimise for precision as seen in Figure 4.9 allow us to positively answer
the key question Q1. In Figure 4.9 we also get an answer for our key question Q4: by
choosing the right threshold one can achieve almost perfect precision, with only modest
reductions in accuracy and e2e runtime (which we discuss in detail in Section 4.6.4).

4.6.3 Insights from Decision Trees

Base Rewriting SMASH
0

2,000

4,000

6,000

1256
1849

3965

e2
e-
tim

e
(s
)

PostgreSQL

Base Rewriting SMASH
0

2,000

4,000

6,000

1627
2162

5841

SparkSQL

Base Rewriting SMASH
0

2,000

4,000

6,000

602

1824
2661

DuckDB

Base 0MA Base Enum Rewriting 0MA Rewriting Enum SMASH 0MA SMASH Enum

Figure 4.10: Comparison of e2e performance over the test set queries for three database
systems: PostgreSQL, Spark (via SparkSQL), and DuckDB. The full bar indicates the
runtime over all test set queries, the lower mark indicates the time for 0MA queries.

It is of particular interest that decision trees are among the top-performing models as
they are highly interpretable and can provide us with deeper insights into the features
that strongly affect the prediction. In Table 4.10, we present the Gini coefficients of
the top 5 most relevant attributes, for the PostgreSQL and the DuckDB decision tree
classifiers. Note that the feature set between the two systems is different, as explained in
Section 4.4.5, so we cannot compare the Gini coefficients of all the same features. The
Gini coefficient [32] measures the contribution of the feature to the outputs of the model.
Looking at the Gini coefficients, we see that, although the performance of the models
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trained on the PostgreSQL and DuckDB features and runtimes are very similar, the
decision trees rely on different features. In the case of DuckDB, the feature indicating
whether the query is a 0MA query has the highest importance. While the PostgreSQL
model strongly relies on the maximum join rows in the plan, DuckDB’s second-most-
important feature is the mean number of container counts, a feature extracted from the
join tree. The model for PostgreSQL, on the other hand, only use a single basic feature,
namely B1 (is 0MA?), among the most important features. This ability of decision trees
to highlight which specific features affect the prediction the most, helps us answer the
key question Q2 positively. We hope our full experimental artifacts, which include the
full decision trees, will help foster further research into using these features to improve
query engine optimisation in general.

4.6.4 Effects on Database Performance

So far, we have evaluated purely the performance of the machine learning models on
the dataset that we created for our algorithm selection problem. However, our initial
hypothesis was that machine learning based algorithm selection can solve the complex
challenge of deciding when evaluation in the style of Yannakakis’ algorithm is preferable.
We therefore now move on to evaluating the performance of the resulting full system that
uses our trained algorithm selection models to decide when to rewrite, and thus execute
queries using the predicted best query execution method.

We first need to decide which of the two models, the decision tree model or the regression
model, we pick for the experiments, since we aim to identify the best algorithm selection
mechanism. However, looking at Table 4.7, which shows the performance of the regression
model, and Table 4.8, which shows the performance of the classification model, we see
that the two are fairly comparable, with a slight advantage for the regression model.
As we also saw, the regression-based approach is especially promising for real-world
applications as it allows us to fine-tune the decision threshold. We thus choose the
regression approach with a threshold at 0 for the analysis presented in this section.

As mentioned in the introduction, we will refer to this integrated method, that decides
whether to rewrite to Yannakakis-style evaluation based on the prediction of the decision
tree model as SMASH, short for Supervised Machine-learning for Algorithm Selection
Heuristics. In this section, we will perform all experiments only on the test set queries.
No queries from these experiments were seen by the model at training time, inluding to
select the best model.

At the most fundamental level, we are interested in improving overall query answering
performance. We investigate this by analysing the end-to-end (e2e) time necessary to
answer all queries in the test set, where “end-to-end” refers to taking the time of running
all the benchmark queries and looking at it cumulatively. We note that this also includes
the time for the algorithm selection included in SMASH, which was around 2 milliseconds
end-to-end.
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We summarize our analysis in Figure 4.10, where Base refers to the baseline of executing
the queries directly in the DBMS, Rewriting refers to the time always using the rewriting
to Yannakakis-style evaluation, and SMASH refers to the use of our algorithm selection
model as described above. To study the robustness of our approach we perform these
experiments on three different DBMSs: PostgreSQL, Spark (via SparkSQL), and DuckDB.
The significant technical differences between the three systems provide us with a way to
study the performance of our method independently of specific DBMS technologies. We
report timeouts as follows: if only one of the evaluation methods (rewriting or base case)
times out, then we report in Figure 4.10 for such queries as runtime the value of the
timeout (= 100s). On the other hand, if both evaluation methods time out, we exclude
them from the comparison, since algorithm selection cannot affect anything in such a
case. Out of the 441 queries involved in the test set, there were 27 queries that timed
out for both evaluation methods on PostgreSQL, 13 queries that timed out for both
evaluation methods on SparkSQL, and 30 queries that timed out for both evaluation
methods on DuckDB.

Consistently over all systems, we can observe a large improvement over both alternatives
by using algorithm selection. Furthermore, we see that even always rewriting overall
causes significant improvements over baseline execution of all three systems tested.
However, this improvement comes from speedups specifically on queries that are hard for
traditional RDBMS execution. These large improvements offset more common minor
slowdowns using the Rewriting approach. Using SMASH we are able to get the best of
both worlds, the major speedups without the minor slower cases.

We conclude that, for our key question Q3 regarding the effect of the quality of algorithm
selection on query evaluation times, we can give a positive answer. Indeed, our algorithm
selection clearly improves the e2e query evaluation times across a number of different
queries and three different DBMSs.

To provide further insight into how e2e query evaluation performance is affected, Fig-
ure 4.11 shows the percentage of queries in which Rewriting and SMASH are slower than
Base. While the rewriting approach yields large improvements in e2e performance, it also
causes minor slowdown of queries in over half of all cases. The data illustrates clearly that
SMASH provides a convincing solution to the problem, with minor slowdowns on only
around 2% of the queries, combined with even larger improvements in e2e performance.
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Figure 4.11: Analysis of how often a query is slower than the base case when always
rewriting to Yannakakis-style execution vs. when rewriting depending on our trained
algorithm selection models (out of 441 queries in the test set).

4.6.5 The Effect of Data Augmentation.

Base Augmented
DBMS Acc. Prec. Rec. Acc. Prec. Rec.
Postgres 0.88 0.83 0.89 0.95 0.95 0.93
DuckDB 0.86 0.79 0.84 0.91 0.88 0.87
SparkSQL 0.85 0.79 0.81 0.93 0.92 0.88

Table 4.11: Ablation study comparing the performance of a model on a training set with
augmented data to one without. Values are based on the evaluation of the regression
model with a 0.5-threshold on the test set.

We explore the impact of data augmentation on model performance through a focused
ablation study, carefully examining the effectiveness of our augmentation strategies.
Specifically, we compare models trained on two distinct training sets: one encompassing
the fully augmented dataset derived from the complete MEAMBench, and another
restricted solely to base queries with all augmented data removed. Table 4.11 succinctly
summarizes this comparison, presenting accuracy, precision, and recall metrics for both
the "Base" set comprised of 0MA and enumeration queries without filter augmentation,
and the full augmented training set. Our analysis reveals that incorporating data
augmentation substantially enhances accuracy and recall, with an even more pronounced
improvement observed in precision.

4.7 Summary
In this chapter, we have studied the effectiveness of Yannakakis-style query evaluation
in common, widely used, relational DBMSs on simply structured yet large queries. We
observed that these kinds of queries can be highly challenging. On the other hand,
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structure-guided query evaluation – executed by the same DBMSs – greatly improves on
the number of such queries that are answerable in reasonable time. We introduced the
class 0MA – a class of queries which are particularly well suited for structure-guided query
processing, and we have shown that Yannakakis-style query evaluation based on query
rewriting is feasible. Nevertheless, despite this promising foundation, Yannakakis-style
evaluation is often slower than conventional two-way join trees in practice, depending on
the specific query and data characteristics. To unlock the full potential of this approach,
we framed the choice between Yannakakis-style optimisation and conventional DBMS
evaluation as an algorithm selection problem. Our decision procedure delivers substantial
performance improvements, across multiple popular RDBMSs, and demonstrates that
learning when to apply the optimisation is just as critical as the optimisation itself.
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CHAPTER 5
Efficient Join-Aggregate

Processing

In Chapter 4 we have implemented a query-rewriting based realisation of Yannakakis’
algorithm, and introduced the 0MA class of queries efficiently answerable by completely
avoiding materialisation. Now, we will extend the 0MA class to further classes of queries
covering most acyclic aggregate queries. To realise Yannakakis-style join processing
without any overhead, we will show how to integrate the optimisations into Spark SQL
by introducing logical optimisations as well as new physical operators.

We introduce our novel query optimisation techniques on logical query plans, as well
as the classes of guarded and piecewise-guarded aggregate queries, in Section 5.1. The
new physical operator AggJoin is described in Section 5.2. In Section 5.3, we report on
the experimental evaluation of the implementation over the benchmark queries. The
GroupAggJoin operator for the extension to unguarded queries, as well as the performance
evaluation on the new benchmark for unguarded queries, is presented in Section 5.4. We
summarise the results of this chapter in Section 5.5.

5.1 Guarded and Piecewise-Guarded Queries
In Chapter 4, we have introduced the definition of 0MA (zero-materialisation answerable)
queries. Recall that queries in this class, which have to satisfy the set-safety and
guardedness conditions, can be evaluated by rooting the join tree at the node labelled
by the guard and then executing the first bottom-up traversal of Yannakakis’ algorithm.
This means, that all joins are replaced by semi-joins. The grouping and aggregation can
then be evaluated by considering only the resulting relation at the root node.

However, the set-safety condition is quite restrictive in that it is only satisfied by a
few aggregate functions – primarily MIN, MAX, and COUNT DISTINCT. The vast majority of
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aggregate functions – in particular, COUNT (without DISTINCT), SUM, AVG, and the entire
collection of statistical aggregate functions provided by the ANSI SQL standard are thus
disallowed. For instance, the query in Figure 1.2 involving the MEDIAN aggregate is not
0MA.

In this section, we significantly extend the class of queries with aggregates on top of join
queries that can be evaluated without actually materialising any joins. To this end, we
will first drop the set-safety condition in Section 5.1.1 and then also introduce a relaxation
of guardedness in Section 5.1.2. To emphasize the smooth integration of our optimisations
into standard SQL execution technology, we will describe our optimisations in the form
of equivalence-preserving transformations of Relational Algebra sub-expressions, which
can be applied anywhere in the logical query plan.

5.1.1 Guarded Aggregate Queries
In order to cover all aggregate functions of the ANSI SQL standard, we now drop the set
safety condition and define the class of guarded aggregate queries as follows:

Definition 5.1.1. Let Q be a query of the form given in Equation (2.1), i.e., Q =
γ[g1, . . . , gℓ, A1(a1), . . . , Am(am)]

(︁
R1 ▷◁ · · · ▷◁ Rn

)︁
. We call Q a guarded aggregate

query (or simply, “guarded query”), if (R1 ▷◁ · · · ▷◁ Rn) is acyclic and there exists a
relation Ri (= the guard) that contains all attributes that are either part of the grouping
or occur in one of the aggregate expressions. If several relations have this property, we
arbitrarily choose one as the guard.

Note that we consider an aggregate expression COUNT(*) as trivially guarded, since it
contains no attributes at all. We will now show that, for any aggregate functions of the
ANSI SQL standard, guarded queries can be evaluated without propagating any join
results up the join tree. To this end, we revisit an extension of Yannakakis’ algorithm by
Pichler and Skritek [132] to acyclic queries with a COUNT(*) aggregate on top. We adapt
this approach to integrate it into the logical query plan of relational query processing,
and we further extend it to all other aggregate functions.

The crucial idea for evaluating a query Q of the form given in Equation (2.1) is to
propagate frequencies up the join tree rather than duplicating tuples. It is convenient
to introduce the following notation: let u denote a node in the join tree T and let Tu
denote the set of all nodes in the subtree rooted at u. Moreover, for any node u in T ,
we write R(u) to denote the relation labelling node u and we write Att(u) to denote the
list of attributes of R(u). The goal of the bottom-up propagation of frequencies is to
compute, for every node u in T , the result of the following query:

γ[Att(u), COUNT(*)]
(︃
▷◁
v∈Tu

R(v)
)︃

(5.1)

This propagation is realised by recursively constructing extended Relational Algebra
expressions Freq(u) for every node u of the join tree, such that Freq(u) gives the same
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result as the query in Equation (5.1). Hence, Freq(u) has as attributes all attributes of
R(u) plus one additional attribute (which we will denote as cu), where we store frequency
information for each tuple of R(u). If u is a leaf node of the join tree, then we initialise
the attribute cu to 1. Formally, we thus have Freq(u) = R(u) × {(1)}.
Now consider an internal node u of the join tree with child nodes u1, . . . , uk. The
extended Relational Algebra expression Freq(u) is constructed iteratively by defining
sub-expressions Freqi(u) with i ∈ {0, . . . , k}. To avoid confusion, we refer to the frequency
attribute of such a sub-expression Freqi(u) as ciu. That is, each relation Freqi(u) consists
of the same attributes Att(u) as R(u) plus the additional frequency attribute ciu. Then
we define Freqi(u) for every i ∈ {0, . . . , k} and, ultimately, Freq(u) as follows:

Freq0(u) := R(u) × {(1)}
Freqi(u) := γ[Att(u), ciu ← SUM(ci−1

u · cui)](Freqi−1(u) ▷◁ Freq(ui))
Freq(u) := ρcu←ck

u
(Freqk(u))

Intuitively, after initialising c0u to 1 in Freq0(u), the frequency values c1u, . . . , c
k
u are

obtained by grouping over the attributes Att(u) of R(u) and computing the number
of possible extensions of each tuple t ∈ R(u) to the relations labelling the nodes in
the subtrees rooted at u1, . . . , uk. By the connectedness condition of join trees, these
extensions are independent of each other, i.e., they share no attributes outside Att(u).
Moreover, the frequency attributes c1u, . . . , cku are functionally dependent on the attributes
Att(u). Hence, by distributivity, the value of cku obtained by iterated summation and
multiplication for a given tuple t of R(u) is equal to computing, for every i ∈ {1, . . . , k}
the sum si of the frequencies of all join partners of t in Freq(ui) and then computing
their product, i.e., cu = cku = Πki=1si.

In the logical query plan of query Q, we replace the sub-expression corresponding to the
join query R1 ▷◁ · · · ▷◁ Rn by Freq(r), where r is the root node of the join tree. This
root node was chosen in such a way that R(r) contains all grouping attributes g1, . . . , gℓ.
Hence, the grouping can be applied to Freq(r) in the same way as to the original join
query. Also, the set-safe aggregates (such as MIN, MAX, COUNT DISTINCT) can be applied
to Freq(r) “as usual” by simply ignoring the additional attribute cr. However, all other
(i.e., not set-safe) aggregate functions have to be replaced by variants that take the
special frequency attribute cr into account. We thus modify the aggregate functions in
expressions like COUNT(∗), COUNT(B), SUM(B), and AVG(B) so that they directly operate on
tuples with frequencies. For instance, let B be an attribute of the guard R(r) (and, hence,
also of Freq(r)). Then, in SQL-notation, we can rewrite common aggregate expressions
as follows:

• COUNT(∗) → SUM(cr)

• COUNT(B) → SUM(IF(ISNULL(B), 0, cr))

• SUM(B) → SUM(B · cr)
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• AVG(B) → SUM(B · cr)/COUNT(B)

The MEDIAN aggregate (like any other statistical function) can be evaluated by considering
Freq(r) as a compressed form of the list of all values of attribute B in each group, where the
value of the additional attribute cr indicates the number of copies of the corresponding
value of attribute B in the result of the join query R1 ▷◁ · · · ▷◁ Rn. Evaluating an
aggregate expression MEDIAN(B) or any other statistical function such as STDDEV(B) can be
easily realised for this compressed form of value list. Similarly, the evaluation of aggregate
functions on 2 attributes such as CORR(B1, B2) or aggregate expressions involving functions
on several attributes such as SUM(f(B1, . . . , Bk)) is straightforward by considering Freq(r)
as a compressed form of the list of all values of the attribute combinations B1, . . . , Bk.
Again, this crucially depends on the guardedness property, which guarantees that all
attributes used in aggregate expressions are contained in R(r).

Actually, in Spark SQL, the MEDIAN aggregate has a convenient rewriting via the
PERCENTILE function. The latter is not part of the ANSI SQL standard, but can be
found in Spark SQL. This function allows one to provide a frequency attribute, which
Spark uses to build a map of values and frequencies, sort them, and finally find the
desired percentile value by an efficient search on the sorted map. The rewriting of the
MEDIAN aggregate looks as follows:

• MEDIAN(A) → PERCENTILE(0.5, A, cr)

Example 5.1.1. Consider again the query of Figure 1.2. The logical query plan generated
by Spark SQL is shown in Figure 5.1a. There, we write σψ and σϕ to denote the
selections applied to the relations region and part, respectively. That is, ψ checks the
condition r_name IN (’Europe’, ’Asia’) and ϕ checks the condition p_price > (SELECT
avg (p_price) FROM part). The plan produced by Spark SQL including our optimisation
is shown in Figure 5.1b.

We observe that, in the unoptimised query plan, the entire join of all relations is computed
before the MEDIAN aggregate is applied. In contrast, in the optimised plan, only the
additional frequency attribute has to be propagated upwards in the plan. This propagation
of frequencies for each join is realised by 2 nodes in the plan directly above the node
realising the join: first, as part of the projection to the attributes which are used further
up in the plan, the frequency attributes of the two join operands are multiplied with each
other. Here, we use the notation cxy when frequency attributes cx and cy are combined.
In the second step, these frequency values cxy are summed up or, in case of the final
result, their median is computed, which can be further optimised by making use of the
PERCENTILE function. ⋄
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γMEDIAN(s_acctbal)

πs_acctbal

▷◁n_regionkey = r_regionkey

πs_acctbal, n_regionkey

▷◁s_nationkey = n_nationkey

πs_nationkey, s_acctbal

▷◁s_suppkey = ps_suppkey

πps_suppkey

▷◁p_partkey = ps_partkey

πp_partkey

σϕ(part)

πps_partkey, ps_suppkey

partsupp

πs_suppkey, s_nationkey, s_acctbal

supplier

πn_nationkey, n_regionkey

nation

πr_regionkey

σψ(region)

(a) Query plan generated by Spark SQL
γPERCENTILE(s_acctbal,cfinal,0.5)

πs_acctbal,cfinal←cpsp·csnr

▷◁s_suppkey = ps_suppkey

γs_suppkey, s_acctbal,SUM(csnr)

πs_suppkey, s_acctbal,csnr←cs·cnr

▷◁s_nationkey = n_nationkey

πs_suppkey, s_nationkey, s_acctbal,cs←1

supplier

γn_nationkey,SUM(cnr)

πn_nationkey,cnr←cn·cr

▷◁n_regionkey = r_regionkey

πn_nationkey, n_regionkey,cn←1

nation

πr_regionkey,cr←1

σψ(region)

γps_suppkey,SUM(cpsp)

πps_suppkey,cpsp←cps·cp

▷◁ps_partkey = p_partkey

πps_partkey, ps_suppkey,cps←1

partsupp

πp_partkey,cp←1

σϕ(part)

(b) Query plan generated by Spark SQL with rewritten ag-
gregation

Figure 5.1: Query plans for Example 5.1.1
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We conclude this subsection with an example where we display the information that has
to be propagated in the optimised evaluation of the query from Figure 1.2. Actually, it
is illustrative to first observe how the tree structure of the join tree is transformed into
the tree structure of the optimised plan. Of course, in the latter, the relations must be
at the leaf nodes, whereas, in the former, they also occur at inner nodes. Nevertheless,
the bushy optimised plan clearly reflects the join order from the join tree. That is,
first, region and nation are joined to get intermediate result-1, and part and part_supp
are joined to get intermediate result-2. The join of these two intermediate results with
the relation supplier is then split into two 2-way joins, i.e.: first joining supplier with
result-1, which is then joined with result-2. Hence, for the sake of simplicity, we will
discuss the evaluation of this query by looking at the relations at each node of the join
tree. It is then clear, what the intermediate results at the nodes of the logical plan in
Figure 5.1b look like.

supplier
N S A · · · c
n1 s1 20 · · · 30
n1 s2 40 · · · 20
n1 s4 30 · · · 1
n2 s1 10 · · · 36
n2 s2 30 · · · 24
n4 s2 20 · · · 1

nation
N R · · · c
n1 r1 · · · 3
n1 r2 · · · 2
n1 r4 · · · 1
n2 r1 · · · 3
n2 r2 · · · 2
n2 r3 · · · 1

partsupplier
S P · · · c
s1 p1 · · · 3
s1 p2 · · · 2
s1 p3 · · · 1
s2 p1 · · · 3
s2 p3 · · · 1
s3 p1 · · · 3

region
R · · · c
r1 · · · 1
r1 · · · 1
r1 · · · 1
r2 · · · 1
r2 · · · 1
r3 · · · 1

part
P · · · c
p1 · · · 1
p1 · · · 1
p1 · · · 1
p2 · · · 1
p2 · · · 1
p3 · · · 1

Figure 5.2: Evaluation of the query from Figure 1.2

Example 5.1.2. Consider again the query from Figure 1.2. Note that all joins in this
query are along foreign-key/primary-key relationships. For the sake of illustration, let
us ignore the primary keys for a while and allow multiple occurrences of values in these
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attributes. In Figure 5.2, we illustrate the evaluation of the query on a small sample
database. The tables (with attribute names of the join attributes abbreviated to single
characters) are arranged in the form of the join tree. Attributes not relevant to our
discussion are captured by “. . . ”. The original contents of the tables is shown to the left
of the “. . . ” column. In the right-most column, we display the frequency attribute c for
each tuple at the end of the entire bottom-up traversal. For instance, the Region table has
3 tuples with attribute value R = r1. Hence, all tuples in Nation with R = r1 have c = 3,
i.e., the number of possible extensions to the subtree below. The tuple with value R = r4
is deleted since it has no join partner below. In the root node, the sums of the frequency
attributes of all join partners to the left and to the right are multiplied. For instance, the
tuple with attribute values N = n1 and S = s1 has 5 possible extensions to the subtree on
the left and 6 on the right. Hence, for this tuple, we get c = 30.

For the evaluation of MEDIAN(A) we see at the root node, that the first tuple has attribute
value A = 20 and its frequency in the overall join result is c = 30. Likewise, the values
A = 40, 10, 30 occur 20, 36, and 24 times, respectively in the join result. We thus get
MEDIAN(A) = 20. ⋄

5.1.2 Piecewise-Guarded Aggregate Queries
As we will see in the experimental evaluation in Section 5.3, the class of guarded queries
covers significantly more cases from common benchmarks than 0MA. However, the
requirement of a single guard for all attributes occurring in the GROUP BY clause or in any
of the aggregate expressions is still quite restrictive. In this section, we show that for the
most commonly used aggregate functions MIN, MAX, SUM, COUNT, and AVG, we can further
extend the class of queries that can be evaluated without materialising any joins. We
thus introduce the class of piecewise-guarded aggregate queries:

Definition 5.1.2. Let Q be a query of the form given in Equation (2.1), i.e., Q =
γ[g1, . . . , gℓ, A1(a1), . . . , Am(am)]

(︁
R1 ▷◁ · · · ▷◁ Rn

)︁
. We call Q a piecewise-guarded

aggregate query (or simply, “piecewise-guarded query”), if (R1 ▷◁ · · · ▷◁ Rn) is acyclic
and there exists a relation Ri0 that contains all grouping attributes and, for every
j ∈ {1, . . . ,m}, the following conditions hold:

• If Aj ∈ {MIN, MAX, SUM, COUNT, AVG}, then there exists a relation Rij that contains
all attributes occurring in Aj(aj).

• Otherwise, i.e., Aj ̸∈ {MIN, MAX, SUM, COUNT, AVG}, then Ri0 contains all attributes
occurring in Aj(aj).

Each of these relations Ri0 and Rij is called the “guard” of the corresponding set of
attributes. We refer to Ri0 as the root guard. By slight abuse of notation, we also refer
to the nodes labelled by Ri0 and Rij as guards. If several relations could be chosen as
guard for a group of attributes, we arbitrarily choose one.
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For the evaluation of piecewise-guarded queries, we choose the node of the join tree T
corresponding to the root guard as the root node of T . The bottom-up propagation of
the frequency attribute works exactly as for guarded queries. Hence, also the evaluation
of all aggregate expressions that are guarded by the root guard is realised exactly as in
case of guarded queries. In the rest of this section, we concentrate on the evaluation of
aggregate expressions that are not guarded by the root node of the join tree and whose
aggregate function is one of MIN, MAX, SUM, COUNT, and AVG. Clearly, the evaluation of AVG
is based on SUM and COUNT. Hence, it suffices to describe the evaluation of the remaining
four aggregate functions.

Similarly to Koch et al. [94], we extend the relations by additional attributes to carry
information on aggregate expressions. Below, we describe which information has to be
propagated up the join tree in order to evaluate a single aggregate expression Aj(aj). For
the evaluation of Q, we add the frequency attribute plus all these additional attributes
to the corresponding nodes in the join tree.

Suppose that Aj(aj) is of the form Aj(fj(B̄j) with Aj ∈ {MIN, MAX, SUM, COUNT} and fj is
an arbitrary function on attributes B̄j jointly occurring in one of the relations R1, . . . , Rn.
We choose as guard of the aggregate expression Aj(aj) the node w that contains all
attributes B̄j and that is highest up in the join tree T with this property. Since we
are assuming that Aj(aj) is not guarded by the root node r of T , this means that w is
different from r. Then we add to all relations along the path from w to r an additional
attribute Aggj . Analogously to Equation (5.1), the intended meaning of Aggj for every
node u on the path between w and r is as follows:

γ[Att(u),Aggj ← Aj(fj(B̄j)]
(︁
▷◁v∈Tu(R(v))

)︁
, (5.2)

For the initialisation of Aggj , suppose that the frequency attribute of relation R(w) at
node w has already been computed as described in Section 5.1.1. Hence, in particular,
R(w) is restricted to the tuples t with positive frequency. For an arbitrary tuple t in
R(w), we write t.c, t.Aggj , and t.B̄j to denote the values of t at the frequency attribute
c, at the aggregate attribute Aggj , and at the attributes B̄j , respectively. Then we define
t.Aggj as follows:

• If Aj ∈ {MIN, MAX}, then we set t.Aggj := fj(t.B̄j).

• If Aj = COUNT, then we distinguish two cases: If fj(t.B̄j) = NULL, then we set t.Aggj
:= 0; otherwise t.Aggj := t.c.

• If Aj = SUM, then we set t.Aggj := fj(t.B̄j) ∗ t.c.

To verify that Aggj is equal to the additional attribute according to Equation (5.2), we
note that all tuples in a group defined by a value combination of the original attributes
Att(w) of R(w) (thus, corresponding to a single tuple t ∈ R(w)) coincide on the attributes
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B̄j . Hence, the MAX and MIN of fj(B̄j) over the tuples in such a group is simply the
value of fj(t.B̄j). For Aj ∈ {COUNT, SUM}, we have to take the number of tuples in each
such group into account, which corresponds to the frequency value t.c. For the COUNT
aggregate, we also have to consider the special case that fj(B̄j) = NULL, which means
that COUNT(fj(B̄j)) for the entire group is 0.

For the propagation of the additional attribute Aggj along the path from w to the root r,
consider an ancestor node u of w and let u1, . . . , uk denote the child nodes of u. W.l.o.g.,
we assume that the child node u1 is on the path from w to r. Suppose that the frequency
attribute at every child node ui of u and the attribute Aggj at node u1 have already been
computed. We are assuming that w is the highest node in the join tree that contains all
attributes B̄j . Hence, u does not contain all attributes B̄j , and, by the connectedness
conditions, neither does any of the nodes u2, . . . , uk. For an arbitrary tuple t ∈ R(u), let
{t1, . . . , tα} denote the set of all tuples in R(u1) that join with t. We compute the value
t.Aggj as follows:

• First suppose that Aj ∈ {MIN, MAX}. Then we set t.Aggj := Aj({t1.Aggj , . . . ,
tα.Aggj}).

• Now let Aj ∈ {SUM, COUNT}. For every i ∈ {2, . . . , k}, let si denote the sum
of the frequencies of all join partners of t in R(ui). Then we set t.Aggj :=(︁ ∑︁α

λ=1 tλ.Aggj [u1]
)︁ ∗ Πki=2si.

For the correctness of this propagation of attribute Aggj , recall that we are assuming
that the attributes B̄j are not fully contained in the relation R(u) and, hence, by
the connectedness condition, they cannot be fully contained in any of the child nodes
{u2, . . . , uk} either. Hence, the value combinations of B̄j in

(︁
▷◁v∈Tu(R(v)

)︁
must already

occur in
(︁
▷◁v∈Tu1

(R(v)
)︁
. The MIN or MAX of fj(B̄j) of a tuple t when grouping over the

attributes of R(u) is, therefore, simply obtained by grouping over the attributes of R(u1)
and aggregating over the join partners of t in R(u1). Similar considerations apply to
the computation of Aggj in case of COUNT and SUM. The aggregation of Aggj over the
join partners of t in u1 yields the value

(︁ ∑︁α
λ=1 tλ.Aggj

)︁
. In contrast to MIN and MAX, we

now also have to take the possible extensions of t to the relations in the subtrees of T
rooted at the nodes u2, . . . , uk into account. The number of possible extensions of t to(︁
▷◁v∈Tui

(R(v)
)︁
corresponds to the sum si of the frequencies of all join partners of t in

R(ui). Hence, by the connectedness conditions, the number of extensions of t to the
relations at all subtrees of Tu2 , . . . , Tuk

is obtained as Πki=2si.

We make an important observation concerning the size of the relations that we propagate
up the join tree T : for every node u of T , the relation Freq(u) contains precisely the tuples
of R(u) that one would get by the first bottom-up traversal of Yannakakis’ algorithm
via semi-joins, extended by the frequency attribute cu. That is, we never add tuples,
we only add one attribute to each relation. Similarly, for every aggregate expression
Aj(fj(B̄j)) that is not guarded by the root r of T , we add an attribute Aggj to all nodes
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along the path between the guard of Aj(fj(B̄j)) and the root. In other words, the data
structures that we have to materialise and propagate in the course of our evaluation of
piecewise-guarded queries is linearly bounded in the size of the data.

This property is no longer guaranteed for one of the following two extensions of the
piecewise-guarded fragment: either allowing aggregates other than MIN, MAX, SUM, COUNT,
AVG to be guarded by a relation different from the root guard or allowing aggregate
expressions Aj(fj(B̄j)) whose attributes are not guarded by a single relation. In both
cases, one has to propagate (all possible) individual values of attributes rather than
aggregated values up the join tree, which would destroy this linear bound. In Section 5.4,
we will present extensions for going beyond piecewise-guarded queries, which allows us to
cover such queries as well.

We now illustrate the evaluation of piecewise-guarded aggregate queries by extending
Example 5.1.2.

supplier
N S · · · c Agg1 Agg2
n1 s1 · · · 30 10 625
n1 s2 · · · 20 10 375
n1 s4 · · · 1 - -
n2 s1 · · · 36 5 750
n2 s2 · · · 24 5 450
n4 s2 · · · 1 - -

nation
N R · · · c Agg1
n1 r1 · · · 3 10
n1 r2 · · · 2 20
n1 r4 · · · 1 -
n2 r1 · · · 3 10
n2 r2 · · · 2 20
n2 r3 · · · 1 5

partsupplier
S P · · · c Agg2
s1 p1 · · · 3 45
s1 p2 · · · 2 50
s1 p3 · · · 1 30
s2 p1 · · · 3 45
s2 p3 · · · 1 30
s3 p1 · · · 3 45

region
R X · · · c Agg1
r1 10 · · · 1 10
r1 20 · · · 1 20
r1 15 · · · 1 15
r2 20 · · · 1 20
r2 25 · · · 1 25
r3 5 · · · 1 5

part
P Y · · · c Agg2
p1 20 · · · 1 20
p1 15 · · · 1 15
p1 10 · · · 1 10
p2 30 · · · 1 30
p2 20 · · · 1 20
p3 30 · · · 1 30

Figure 5.3: Evaluation of the query from Example 5.1.3

Example 5.1.3. Consider again the query from Figure 1.2. But now we assume that
relation Region has an additional integer attribute X and relation Part has an additional
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integer attribute Y . Finally, suppose that we want to evaluate the query “SELECT MIN(X),
SUM(Y) . . . GROUP BY N”. The query is trivially piecewise-guarded, since we have single
attributes in the GROUP BY clause and in each aggregate expression. On the other hand, it
is not guarded, since the attributes X,Y,N do not jointly occur in a common relation.

In Figure 5.2, we illustrate the evaluation of the query on a small sample database. The
tables (with attribute names of the join attributes abbreviated to single characters) are
arranged in the form of the join tree. Note that we again choose the Supplier relation as
root guard. Alternatively, we could have chosen the Nation relation, since it also contains
the grouping attribute N .

As in Figure 5.2, attributes not relevant to our discussion are captured by “. . . ”. The
original contents of the tables is shown to the left of the “. . . ” column. To the right of
the “. . . ” column, we now have the frequency attribute c plus the aggregate attributes
Agg1 and Agg2 for the evaluation of the MIN (X) and SUM (Y) aggregates as described in
Section 5.2. The Agg1 attribute (for the MIN (X) aggregate expression) is added to all
relations along the path from the node with relation Region up to the root node, while the
Agg2 attribute (for the SUM (Y) aggregate expression) is added to all relations along the
path from the node with relation Part up to the root node.

The frequency attribute c is propagated up the join tree exactly as in Example 5.1.2. For
the aggregate attributes Agg1 and Agg2, we proceed as follows: At the leaf nodes (in this
simple example, these are the highest nodes up in the tree that contain the attributes X
and Y , respectively), we initialise, Agg1 in every tuple to the value of X and Agg2 to
the value of Y . The value of Agg1 is propagated from the Region relation to its parent
node by taking, for every tuple in Nation, the MIN over all its join partners in Region.
Analogously, the value of Agg2 is propagated to the parent node by taking, for every tuple
in Partsupplier, the SUM over all its join partners in Part.

Now let us look at relation Supplier at the root node. The attribute Agg1 is propagated
from Nation to Supplier by taking, for every tuple at the parent node, the MIN over
the Agg1 values of its join partners at the child node. For instance, the Supplier-tuple
with attribute values N = n1 and S = s1 has two join partners in the Nation table; the
MIN-value of their Agg1-attributes is 10. The same holds for the tuple with N = n1 and
S = s2. On the other hand, the tuples in Supplier with N = n2 have the MIN-value 5 in
the Agg1-attribute of their join partners. As was described in Section 5.1.2, the other
child node of the (node labelled by the) Supplier relation plays no role when propagating
an aggregate attribute for a MIN or MAX aggregate expression.

This is in sharp contrast to the Agg2 attribute, where we propagate, for every tuple in the
root node, the SUM over the Agg2 values of the join partners from the right child node.
But then we also have to multiply this value by the sum over the frequency-values of all
join partners in the left child node. For instance, take the tuple with attribute values
N = n1 and S = s1 in Supplier. On the one hand, the sum over the Agg2-attributes of
its join partners in Partsupplier (i.e., the tuples with attribute value S = s1) is 125. But
then we have to multiply this value by the sum over the c-attributes of its join partners in
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Nation (i.e., the tuples with attribute value N = n1), which is 5. Hence, the Agg2-value
of the Supplier-tuple is 125 * 5 = 625. Analogously, the tuples in the Supplier relation
with attribute values (N = n1 and S = s2), (N = n2 and S = s1), and (N = n2 and
S = s2) are obtained as 75*5 = 375, 125*6 = 750, and 745*6 = 450, respectively.

For the evaluation of MIN(X) and SUM(Y) for each N -group, we then just need to aggregate
the Agg1 and Agg2 attributes for each group. That is, we have two groups n1 and n2.
There, respective values of (MIN(X), SUM(Y)) are (10, 1000) and (5, 1200), respectively. ⋄

5.1.3 Additional Optimisations for FK/PK-Relatonships

Joins are frequently performed along foreign-key/primary-key (FK/PK) relationships.
Knowledge about these relationships may actually allow us to replace joins in the
frequency-propagation optimisation by semi-joins when the joins go along an FK/PK
relationship such that the relation labelling the parent node in the join tree holds the
FK and the relation at a child node holds the PK. This is due to the fact that, in this
case, we know that every tuple of the relation at the parent node can have at most one
join partner in the relation at the child node.

In particular, suppose that in the relation at the child node, all tuples have frequency
1. This is guaranteed if the child is a leaf node in the join tree. Then the frequency
propagation from the child node to the parent node comes down to a semi-join. That
is, we have to check for each tuple in the relation at the parent node if it has a join
partner in the relation at the child node (which essentially means that it has no NULL
value in an FK-attribute). If so, the parent inherits the frequency 1 from the child node;
otherwise, we may simply discard this tuple from the relation at the parent node. Of
course, then the same consideration may be iterated also for the join with the parent of
the parent, if this is again along an FK/PK-relationship. We illustrate this additional
optimisation by revisiting Example 5.1.1.

Example 5.1.4. Consider again the query from Figure 1.2. An inspection of the join
tree in Figure 1.2 and of the TPC-H schema reveals that all joins are along FK/PK-
relationships from the relation at the parent node to the relation at the child node. We
can, therefore, be sure that all frequency attributes in our optimisation can only take the
value 1. Hence, all joins can be replaced by semi-joins. The logical query plan produced
by Spark SQL when implementing this additional optimisation is shown in Figure 5.4.
Here, for each FK/PK-relationship, the referencing relation is shown as the left child of
the ⋉-node in the query plan and the referenced relation as the right child of the ⋉-node.
The semi-join is always from the referenced relation into the referencing relation, i.e.,
from right to left. ⋄
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γMEDIAN(s_acctbal)

πs_acctbal

⋉s_suppkey = ps_suppkey

πs_suppkey, s_acctbal

⋉s_nationkey = n_nationkey

πs_suppkey, s_nationkey, s_acctbal

supplier

πn_nationkey

⋉n_regionkey = r_regionkey

πn_nationkey, n_regionkey

nation

πr_regionkey

σψ(region)

πps_suppkey

⋉ps_partkey = p_partkey

πps_partkey, ps_suppkey

partsupp

πp_partkey

σϕ(part)

Figure 5.4: Query plan generated by Spark SQL with FK/PK optimisation

The information on primary keys or, more generally, on unique attributes can be exploited
for a further optimisation: Recall from Example 5.1.1 and Figure 5.1b that, in the
optimised query plan, the multiplication of the frequency cx at the parent with the
frequency cy at the child is followed by a projection (actually, a grouping) and a summation
of the cxy values. Now suppose that the grouping attributes (i.e., the attributes to which
we project) contain an attribute or a set of attributes with unique values. Then, each
value combination of the grouping attributes occurs at most once. Hence, the summation
of the cxy values can be omitted in this case.

Finally, the information on primary keys or unique attributes can be used for yet another
optimisation: as was explained in Section 5.1, our optimisation of guarded aggregates
starts with adding frequency 1 as an additional attribute to each tuple in the relation
R labelling a node u in the join tree, i.e., the computation of the optimised Relational
Algebra expression Freq(u) starts with the initialisation Freq0(u) := R × {(1)}. Before
joining this relation Freq0(u) with the relations at the child nodes, we can group the
relation at each child node over the attribute(s) relevant further up in the query plan and
sum up the frequency values for each group. In cases where value combinations of the
grouping attributes occur frequently in such a relation, this significantly reduces the size
of one join operand and, hence, the cost of the join. But, of course, such an additional
grouping operation would cause useless effort if the grouping attributes contain a PK or
unique attribute since, in this case, each group would consist of a single tuple. In our
optimisation, we therefore apply this grouping only if no attribute with unique value is
involved in the grouping.
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5.2 Optimised Physical Operators
The optimisations presented in Section 5.1 avoid a good deal of materialisation of
intermediate results. But there are still joins needed, namely, between the relations
at a parent node and its child nodes. Only after these joins, we apply the grouping
and aggregation and thus bring the intermediate relations back to linear size (data
complexity). Similarly to Schleich et al. [139], we now combine the join computation with
aggregation into a single operation. We thus introduce a new physical operator (referred
to as AggJoin) that computes and propagates the frequency attribute c from Section 5.1.1
and the additional aggregate attributes Aggj from Section 5.1.2 in a semi-join-like style.
Below, we describe a possible join-less realisation of this operator. As a preprocessing
step (yet before the AggJoin is called), the following operations are carried out:

Every relation is extended by a frequency attribute c, and, for every tuple t in every relation
R, we initialise t.c as t.c := 1. Moreover, for every aggregate expression Aj(fj(B̄j)) that
is not guarded by the root guard, we determine the node w highest up in the join tree
that contains all attributes in fj(B̄j). Then we add an attribute Aggj to every relation
along the path from w to r. For every tuple t ∈ R(w), we initialise this attribute as
follows:

• If Aj ∈ {MIN, MAX, SUM}, then we set t.Aggj := fj(t.B̄j), i.e., we apply fj to the
values of the attributes B̄j in tuple t.

• If Aj ∈ {COUNT}, then we set t.Aggj := 1 if fj(t.B̄j) ̸= NULL, and t.Aggj := 0 if
fj(t.B̄j) = NULL.

For Aj ∈ {SUM, COUNT}, we thus deviate from the initialisation of t.Aggj at node w
described in Section 5.1.2 by leaving out the multiplication of t.Aggj with the frequency
value t.c. This multiplication by t.c has to be integrated into the AggJoin operator, which
will take care of this multiplication when it determines t.c.

Finally, if Aj ∈ {SUM, COUNT}, then we set t.Aggj := 1 for every tuple t in a relation
labelling an ancestor node u of w. The reason for this is that it will allow us to uniformly
propagate the Aggj value from one child of u and the frequency values from the other
children of u in a uniform way via multiplication.

From now on, let R and S denote relations labelling nodes uR and uS in the join tree,
such that uS is a child node of uR. We first describe the propagation of the frequency
attribute by the AggJoin for a tuple r ∈ R.

• check that r ∈ R⋉ S holds;

• define S′ := S ⋉ {r}, i.e., the tuples in S that join with r;

• define sc := ∑︁
s∈S′ s.c, i.e., the sum of the frequencies of all tuples in S that join

with r;

80



5.2. Optimised Physical Operators

• Finally, we set r.c := r.c · sc, i.e., the frequency of r is multiplied by the sum of the
frequencies of the join partners in S. Here, it makes no difference, if r.c still had
its initial value 1 or if R had already gone through calls of AggJoin with relations
at other child nodes of uR.

It is easy to verify that this new AggJoin operator does precisely the work needed to
get from Freqi−1(uR) to Freqi(uR) according to Section 5.1.1. After the initialisation, we
have r.c = 1 for all tuples in R. This corresponds to Freq0(uR). Then we successively
execute the AggJoin operator, where R = Freqi−1(uR) and S is the relation at the i-th
child node of uR. Hence, in each such call, we either delete r (if it has no join partner
in S) or we multiply the current value of r.c by the sum of the frequencies of its join
partners in S.

Let us now consider the aggregate expressions Aj(fj(B̄j)) that are not guarded by the
root guard. For the initialisation of the attribute Aggj in case of Aj ∈ {SUM, COUNT},
we proceed as with the frequency attribute: Suppose that relation R is the one, where
Aggj has to be initialised. Now, for every tuple r ∈ R, the value initially assigned to
r.Aggj ultimately has to be multiplied by r.c to arrive at the initialisation according to
Section 5.1.2. Hence, for every relation S at a child node of uR, we multiply r.Aggj with
sc = the sum of the frequencies of all tuples in S that join with r.

For the propagation of the attribute Aggj in case of Aj ∈ {MIN, MAX, SUM, COUNT}, we
distinguish two cases: First suppose that S does not contain the attribute Aggj . Then,
for every tuple r ∈ R that has at least one join partner in S, we proceed as follows: For
Aj ∈ {MIN, MAX}, we simply leave the value of r.Aggj unchanged, i.e., the Aggj attribute
is propagated to R from the relation at a different child node. For Aj ∈ {SUM, COUNT}, we
again proceed analogously to the frequency propagation, i.e., we multiply r.Aggj with the
sum of the frequencies of all tuples in S that join with r. Now suppose that S contains
the attribute Aggj . Then, for every tuple r ∈ R that has at least one join partner in
S, we proceed as follows: For Aj ∈ {MIN, MAX}, we assign to r.Aggj the minimum resp.
maximum value of s.Aggj over all tuples s ∈ S that join with r. For Aj ∈ {SUM, COUNT},
we determine the sum of the values s.Aggj over all tuples s ∈ S that join with r and
multiply the current value of r.Aggj with this sum.

The rewriting from Section 5.1 allows for a smooth integration of the AggJoin operator
into the physical query plan. For instance, we have extended Spark SQL by three
different implementations of the AggJoin operator, corresponding to the existing three
join implementations shuffled-hash join, sort-merge join, and broadcast-hash join. In
Algorithm 5.1, we sketch the realisation of the AggJoin operator based on the shuffled-hash
join. We use pseudocode notation to leave out the technical details so as not to obscure
the simplicity of the extension from join computation to semi-join-like aggregation. As in
the explanations above, we write R and S to denote pairs of relations whose nodes in the
join tree are in parent-child relationship. Moreover, the AggJoin operator is only called
after all the initialisations of additional attributes t.c and t.Aggj have been carried out
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Algorithm 5.1: Hash Join with aggregate propagation
Input: Two lists R,S of tuples with the same values of the join attributes;

List IS = {s1, . . . , sm} of indices of aggregate attributes Aggsi
present in

both S and R;
List IR = {r1, . . . , rn} of indices of aggregate attributes Aggri

present
only in R;

1 Function AggHashJoin(R,S, IS , IR)
2 sc ← 0;
3 foreach s ∈ IS do
4 if As ∈ {MIN, MAX} then vals ← init[s];
5 if As ∈ {SUM, COUNT} then vals ← 0;
6 end
7 foreach t ∈ S do
8 sc ← sc+ t.c;
9 foreach s ∈ IS do

10 if As ∈ {MIN, MAX} then vals ← As(vals, t.Aggs);
11 if As ∈ {SUM, COUNT} then vals ← vals + t.Aggs;
12 end
13 end
14 foreach t ∈ R do
15 t.c ← t.c · sc;
16 foreach s ∈ IS do
17 if As ∈ {MIN, MAX} then t.Aggs ← vals;
18 if As ∈ {SUM, COUNT} then t.Aggs ← t.Aggs · vals;
19 end
20 foreach r ∈ IR do
21 if Ar ∈ {SUM, COUNT} then t.Aggr ← t.Aggr · sc;
22 end
23 emit t;
24 end

as described above. Clearly, the hash-phase (including the partitioning by Spark SQL) is
left unchanged. Only the join-phase is affected, which we briefly discuss next:

The AggHashJoin takes as input a set of tuples from R and of tuples from S that join.
Additionally, the indices of the aggregate attributes IS (which have to be propagated
from S to R) and IR (which are only contained in R) are taken as input. In the first
step, we initialise sc (that is used to sum up the frequency values over the tuples in S)
and vals for every s ∈ Is (that is used for aggregating the attribute Aggs). An aggregate
attribute Aggs is used to propagate values for the aggregate expression As(fs(B̄s)). For
As ∈ {MIN, MAX} we assume that the (system-dependent) maximal element for this data
type in case of MIN and the minimal one in case of MAX, respectively, is stored in the
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variable init[s]. The foreach-loop over the tuples of S aggregates the frequency attribute
and all the other additional attributes. The foreach-loop over the tuples of R uses these
aggregated values from the tuples of S to update the corresponding attributes of the
tuples in R. The latter foreach-loop also has to multiply the initial value of aggregate
attributes in case of SUM and COUNT by the sum sc of the frequency attributes.

Clearly, replacing a physical join operation by the respective AggJoin variant does not
introduce any overhead (apart from the computationally cheap management of the
additional frequency and aggregate attributes). Moreover, if none of the additional
attributes is needed (e.g., if the query is 0MA), then our AggJoin operator actually
degenerates to a simple semi-join.

We now also describe the realisation of the AggJoin operator based on Spark’s sort-merge-
join. As with the AggHashJoin, we write R and S to denote pairs of relations whose
nodes in the join tree are in parent-child relationship. Moreover, we again assume that
the AggJoin operator is only called after all the initialisations of the additional attributes
t.c and t.Aggj have been carried out for every tuple t ∈ R as described in Section 5.2.
Clearly, the sort phase is left unchanged. Only the merge-phase is affected, which we
briefly discuss next:

In Algorithm 5.2, we sketch the realisation of the AggJoin operator in the style of a merge
join. Again, we use pseudocode notation to leave out the technical details. Here, we
assume that relations R and S are joined over a common attribute A. The generalization
to attributes with different names or to a join over a compound attribute is immediate.
Similarly to the AggHashJoin, also the AggMergeJoin has four input parameters: the
sorted (on the join attribute A in ascending order) relations R and S as well as the set
of indices of the aggregate attributes IS (which have to be propagated from S to R) and
the set of indices of the aggregate attributes IR (which are only contained in R).

The outer while-loop makes sure that we process all tuples of R and of S. Inside this while
loop, we first have a repeat–loop to find the first resp. next pair of join partners (i.e., the
minimal resp. next indices i and j with R[i].A = S[j].A). Next comes the initialisation
of sc and vals for every s ∈ IS exactly as for the AggHashJoin. The while-loop with the
condition R[i].A = S[j].A iterates through all join partners of R[i] in S and computes sc
and vals for every s ∈ IS exactly as in case of the AggHashJoin. In the do-while-loop, we
use these local variables sc and vals to update the frequency attribute c and all aggregate
attributes Aggj with j ∈ IS ∪ IR for all tuples R[i′] of R with i′ ≥ i and R[i].A = R[i′].A,
i.e., all tuples in R that coincide on A with R[i]. Again, this is done exactly as in case
of the AggHashJoin. That is, for every such tuple R[i′], we first update the frequency
attribute R[i′].c and the aggregate attributes R[i′].Aggs for every s ∈ IS by making use
of the local variables sc and vals. We then also update all aggregate attributes Aggr
(with aggregate function SUM or COUNT) for all attributes r ∈ IR. When the frequency
attribute c and all aggregate attributes of a tuple R[i′] have thus been updated, the tuple
R[i′] is emitted.
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Algorithm 5.2: Sort-Merge Join with aggregate propagation
Input: Two lists R,S of tuples with the same values of the join attributes;

List IS = {s1, . . . , sm} of indices of aggregate attributes Aggsi
present in

both S and R;
List IR = {r1, . . . , rn} of indices of aggregate attributes Aggri

present
only in R;

1 Function AggMergeJoin(R,S, IS , IR)
2 i, j ← 1, 1;
3 while i ≤ |R| and j ≤ |S| do
4 repeat
5 while i < |R| and R[i].A < S[j].A do
6 i ← i+ 1;
7 end
8 if R[i].A < S[j].A then return;
9 while j < |S| and R[i].A > S[j].A do

10 j ← j + 1
11 end
12 if R[i].A > S[j].A then return;
13 until R[i].A = S[j].A;
14 sc ← 0;
15 foreach s ∈ IS do
16 if As ∈ {MIN, MAX} then vals ← init[s];
17 if As ∈ {SUM, COUNT} then vals ← 0;
18 end
19 while j ≤ |S| and R[i].A = S[j].A do
20 sc ← sc+ S[j].c;
21 foreach s ∈ IS do
22 if As ∈ {MIN, MAX} then vals ← As(vals, S[j].Aggs);
23 if As ∈ {SUM, COUNT} then vals ← vals + S[j].Aggs;
24 end
25 j ← j + 1
26 end
27 do
28 R[i].c ← sc · R[i].c ;
29 foreach s ∈ IS do
30 if As ∈ {MIN, MAX} then R[i].Aggs ← As(vals, R[i].Aggs);
31 if As ∈ {SUM, COUNT} then R[i].Aggs ← R[i].Aggs · vals;
32 end
33 foreach r ∈ IR do
34 if As ∈ {SUM, COUNT} then R[i].Aggr ← R[i].Aggr · sc;
35 end
36 emit R[i];
37 i ← i+ 1;
38 while i ≤ |R| and R[i].A = R[i − 1].A;
39 end84
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The broadcast-hash join in Spark SQL sends one of the relations to every node that
contains a split of the other relation, and determines the matching tuples on each
node separately. This last step is realised by a hash join. We have implemented our
optimisation by choosing S as the relation that is sent to all nodes where a split of R is
located. Then the AggJoin operator is realised by executing the AggHashJoin between
the local split of R and the entire relation S.

Of course, it is equally straightforward to implement the AggJoin operator for join types
not supported by Spark SQL, such as the block-nested-loops join. In this case, when
considering R as the outer relation and S as the inner relation, the frequency attribute
c and the aggregate attributes Aggj of each tuple r in the current block of R can be
updated as follows: we provisionally add an sc attribute and vals attributes for every
s ∈ IS to every tuple r of the current block of R. Then relation S is traversed and, for
every tuple s ∈ S, the sc and vals attributes of each tuple in the current block of R that
joins with s is updated analogously to the while-loop with the condition R[i].A = S[j].A
in case of the sort-merge-join. When all of S has been processed, then the frequency
attribute and all aggregate attributes Aggj of every tuple in the current block of R
are updated analogously to the do-while-loop in case of the sort-merge-join. If the sc
attribute of a tuple in r ∈ R is 0 (i.e., r has no join partner in S), then we simply delete
this tuple of R.

5.3 Experimental Evaluation

5.3.1 Experimental Setup

We perform the experiments on a machine with two AMD EPYC 75F3 32-Core CPUs and
960 GB RAM. On top of this, we use a VM with 60 cores running Ubuntu 22.04.2 LTS
and Spark SQL (Version 3.5.0). For our experiments, we implement the optimisations
presented in Section 5.1 and the physical operator from Section 5.2 natively in Spark SQL
(see Figure 5.5 for an overview of the modified components). Our experimental setup is
reproducible through a docker-compose environment available at https://github.com/
dbai-tuw/spark-eval.
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Figure 5.5: Implementation of the optimisations into the Spark SQL query processing
pipeline (adapted from [70])

85

https://github.com/dbai-tuw/spark-eval
https://github.com/dbai-tuw/spark-eval


5. Efficient Join-Aggregate Processing

In order to import the benchmark databases into Spark SQL, we run a second container
with PostgreSQL 16, from where the data is fetched over JDBC. We configure Spark
with 900 GB maximum executor memory and 60 available cores. Off-heap storage (to
disk) is disabled in order to avoid performance degradation caused by unexpected use of
disk storage for intermediate results. In our experiments, we encountered some instances
where the excessive memory consumption caused the query to fail. However, these cases
exhibited such extreme performance differences that they do not impact the conclusions
drawn from our experimental evaluation. Specifically, queries where Spark SQL failed due
to requiring more than 900GB of memory are easily solved by our implementation, using
only a small fraction of the available resources. We perform experiments using a wide
range of standard benchmarks, namely the Join Order Benchmark (JOB) [101], STATS-
CEB [76], TPC-H [150], TPC-DS [149], the Large-Scale Subgraph Query Benchmark
(LSQB) [116], as well as simple graph queries evaluated on two real-world graphs from
the SNAP (Stanford Network Analysis Project [102]) dataset:

• The Join Order Benchmark (JOB) [101] is a benchmark based on the IMDB real-
world data set and a large number of realistic join-aggregation queries featuring
many joins and various filtering conditions. It was introduced to study the join
ordering problem and evaluate the performance of query optimisers.

• The STATS / STATS-CEB [76] benchmark serves a similar purpose as the JOB
benchmark but with the explicit addition of joins that do not follow FK/PK
relationships (but rather FK/FK to keep with typical usage patterns). The data is
based on anonymized content from Stack Exchange.

• TPC-H [150] and TPC-DS [149] are standard benchmarks for relational databases
that cover a wide range of complex real-world workloads. In addition, we report
performance of our running example query from Example 5.1.1 under the name
"TPC-H Ex.1". We use scale factor 200 in the generation of the TPC-H data and
scale factor 100 for TPC-DS.

• The Large-Scale Subgraph Query Benchmark (LSQB) [116] is a benchmark of 9
graph queries, designed to test the query optimiser and executor of graph databases
as well as relational databases. Its schema represents a social network scenario
with relations for, e.g., persons, posts, and comments. We generate data with scale
factor 300 for LSQB. Data generation is based on the LDBC [10] benchmark, a
synthetic benchmark which takes care to closely mirror the properties of real-life
social networks. The benchmark consists of 11 relations with various scale factors
(e.g., 10, 30, 100, 300), as well as 9 queries in various query languages (SQL, Cypher,
etc.).

• The SNAP (Stanford Network Analysis Project [102]) dataset is commonly used
to benchmark queries on graph data (e.g., [82]). Most SNAP datasets consist of a
single, directed or undirected, edge relation, such as the US patent citation dataset
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(cit-Patents), or the Google web graph (web-Google). In particular, we experiment
on the following two popular graphs of various sizes:

Graph Nodes Edges (un)directed
web-Google 875,713 5,105,039 directed
com-DBLP 317,080 1,049,866 undirected

For our experiments, we evaluate the performance of basic graph queries, namely
path queries requiring between 3 and 8 joins (i.e., between 4 and 9 edges) and
three small tree queries. For example, the path with 3 joins (path-03) over the
web-Google graph is expressed in SQL as

SELECT COUNT(*) FROM
edge e1, edge e2, edge e3, edge e4
WHERE e1.toNode = e2.fromNode
AND e2.toNode = e3.fromNode
AND e3.toNode = e4.fromNode

The tree queries can be found in the GitHub repository1. tree-01 has a depth
between 3 and 4 in total, tree-02 has depth 3 and 5 joins, and tree-03 has depth 4
and 7 joins. These queries can be viewed as counting the number of homomorphisms
from certain patterns (i.e., paths and trees in this case). This task has recently
gained popularity in graph machine learning, where the results of the queries are
injected into machine learning models (e.g., [123, 18, 87, 16]).

Benchmark # ▷◁-agg acyc pwg g 0MA
JOB 113 113 113 113 19 19

STATS-CEB 146 146 146 146 146 0
TPC-H 22 15 14 7 3 1
LSQB 9 4 2 2 2 0
SNAP 18 18 18 18 18 0

TPC-DS 99 64 63 30 15 0

Table 5.1: Summary of the applicability of our method on benchmarks. We report
the number of queries in benchmark (#), equi-join aggregate queries (▷◁-agg), acyclic
queries (acyc), piecewise-guarded queries (pwg), guarded queries (g), and 0MA queries.
Fragments proposed in this work are highlighted in blue.

5.3.2 Applicability
To enable Yannakakis-style query evaluation in the context of standard query execution
engines, we have focused on specific queries, namely guarded and piecewise-guarded
acyclic aggregate queries (cf., Section 5.1). As a first step, we therefore provide a more

1https://github.com/dbai-tuw/spark-eval/blob/main/benchmark/snap-queries/google
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detailed analysis as to how many of the queries in the studied benchmarks fit into
this class, and what factors limit further applicability. The analysis is summarized in
Table 5.1.

Despite the variety of considered benchmarks, we find that our optimisations for piecewise-
guarded queries are widely applicable through all of them. In JOB and STATS-CEB,
all queries fall into the schema of piecewise guarded-aggregation, and our method thus
applies to these benchmarks as a whole. In contrast, the 0MA fragment covers only 19
of the 259 queries in total in these two benchmarks. Our methods also apply to all the
tested basic graph queries (path or tree queries) that were tested on the SNAP dataset.

In LSQB, our approach applies to 2 of the 9 queries. But as reported in Table 5.1,
only 4 of the queries are equi-join queries with aggregation, the others contain joins on
inequalities, which requires entirely different techniques (e.g., [92]). Of the 4 equi-join
queries, 2 are not acyclic.

Our method applies to half of the equi-join aggregate queries in the TPC-DS benchmark.
The queries in the benchmark are typically highly complex, often combining multiple
subqueries and employing more elaborate SQL features. We observe that in some
instances, GuAO+ even applies to multiple subqueries in the same query. In TPC-H,
our optimisations apply to 7 out of the 15 acyclic equi-join aggregate queries in the
benchmark. Notably, TPC-H Q2 contains a 0MA subquery (with MIN aggregation) and
TPC-H Q11 contains a guarded sum aggregate subquery.

TPC-H Q2 is particularly illustrative as the subquery is correlated: the attribute
p_partkey from the outer query is used in the aggregation subquery as follows:

SELECT MIN(ps_supplycost)
... WHERE p_partkey = ps_partkey ...

The Spark SQL query planner decorrelates this subquery via typical magic decorrelation
(see [141]) – resulting in the following select statement for the decorrelated subquery.
This query is still guarded and thus 0MA. Our rewriting rules then apply naturally after
decorrelation, with no need for any special handling of these cases.

SELECT ps_partkey, MIN(ps_supplycost)
... GROUP BY ps_partkey

We recall that our method is fully integrated into the query optimisation phase. Hence,
when our optimisations are not applicable to a query, its execution is not affected.
Recognizing whether the rewriting rules are applicable is trivial and requires, in our
observations, negligible additional time in the query planning phase to perform our
rewriting (about 2ms in all of our experiments). Going forward, it is additionally possible
to pre-process queries to make them fit into the fragments where our methods are
applicable.
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5.3.3 Performance Impact of the Optimisations

The overall performance of our proposed optimisations on the applicable queries is
summarised in Table 5.2. We refer to the reference performance of Spark SQL without
any alterations as Ref. Our experiments on the SNAP graphs specifically are summarized
in Table 5.4. The fastest execution time achieved for each case is printed in boldface. The
results obtained by applications of the logical optimisations described in Section 5.1.1
for guarded queries are referred to as Guarded Aggregate optimisation (GuAO). We use
GuAO+ to refer to the further extension of our logical optimisations to piecewise-guarded
queries described in Section 5.1.2 plus the enhancement of the physical query plan using
the AggJoin operator described in Section 5.2. The speed-up achieved by GuAO+ over Ref
is explicitly stated in Table 5.2 in the column GuAO+ Speedup. For most benchmarks, we
report end-to-end (e2e) times for subsequently executing all queries of a given benchmark
where our optimisations are applicable (to the full query, or at least one subquery). In
Table 5.3 we additionally report the details for all individual TPC-H queries.

Query # joins (mean) Ref GuAO GuAO+ GuAO+ Speedup
STATS-CEB e2e 3.33 1558±7.3 97.9±6.1 64.8±7.9 24.04 x

JOB e2e 7.65 3217.84±106 - 2189.46±76 1.47 x
TPC-H e2e SF200 1.57 3757.2 - 3491.06 1.08 x
TPC-H Ex.1 SF200 4 168.4 107.5 105.11 1.60 x
LSQB Q1 SF300 9 3096±232 677±23 688±23 4.57 x
LSQB Q4 SF300 3 602±37 593±15 592±9 1.02x

TPC-DS e2e SF100 2.52 5154.5 - 5047.5 1.02 x

Table 5.2: Summary of the impact of aggregate optimisation on execution times (seconds).
Reported numbers are mean times over 5 runs of the same query with standard deviations
given after ±. “–” indicates that the query is piecewise-guarded and, therefore, the
optimisation from Section 5.1.1 for guarded queries is not applicable.

For cases where FK/PK relationships exist in the data, the columns GuAO + FK/PK
and GuAO+ + FK/PK report the performance where this information is provided to
enable the additional optimisations outlined in Section 5.1.3. The open source version
of Spark SQL (Version 3.5.0) that our implementation is based on does not support
specifying information about keys directly. We provide the necessary FK/PK-information
via Spark SQL hints in these cases.

In all experiments, we execute each query 6 times, with the first run being a warm-up run
to ensure that our measurements are not affected by initial reads of tables into memory.
We report statistics gathered from the last 5 runs and report mean query execution time
as well as the standard deviation over these runs. Finally, note that we execute the full
query, even if our optimisation applies only to a subquery. In such a case, the plan for the
subquery is optimised according to Section 5.1, and the rest of the query plan remains
unchanged.

We make two key observations with respect to the performance of our methods.
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When queries are challenging – e.g., they have many joins or the joins are not along
PK/FK pairs – then our method provides enormous potential for speed-up. In JOB, a
benchmark where suboptimal join orderings in large queries cause intermediate blow-
up, we achieve almost 50% speed-up. STATS-CEB purposefully introduces joins along
FK/FK relationships to challenge query evaluation systems with the resulting large
number of intermediate tuples. Our method automatically avoids all of these difficulties
and we see an immense 24-fold speed-up. Similarly, for the more difficult of the two
LSQB queries (Q1), we see that the large number of joins creates significant intermediate
blow-up with standard relational query evaluation. Again our method achieves a very
large improvement of about 450%. Even in the simple query from Example 1.2.1 we
observe 60% speed-up over unoptimised Spark SQL.

Query Ref GuAO GuAO+ GuAO+ Speedup # joins class
TPC-H Q2 SF200 179.4±6.5 164.2±4.7 160.6±3.7 1.12 x 3 0MA
TPC-H Q11 SF200 361.0±13.3 346.5±9.4 341.6±19.2 1.06 x 2 guarded
TPC-H Ex.1 SF200 168.4±4.4 107.5±8.9 105.11±3.9 1.6 x 4 guarded
TPC-H Q3 SF200 798.2±179 - 728.4±27 1.1 x 2 pw-guarded
TPC-H Q12 SF200 377.0±13.1 - 381.0±11.8 0.99 x 1 pw-guarded
TPC-H Q13 SF200 440.5±11.1 - 440.8±4.8 1 x 1 pw-guarded
TPC-H Q16 SF200 106.1±0.95 - 103.16±3.6 1.03 x 1 pw-guarded
TPC-H Q17 SF200 1495.0±80.5 - 1335.5±65.2 1.12 x 1 pw-guarded

Table 5.3: Detailed runtimes of the TPC-H queries, including relation count and query
type

web-Google com-DBLP
Query Spark KÙZU Neo4j GuAO GuAO+ Spark KÙZU Neo4j GuAO GuAO+

path-03 27.97±1.5 2.14±0.0 1686.68±114.3 6.90±0.6 6.08±0.65 6.32±1.1 0.297±0.0 97.80±0.7 2.35±0.5 1.59±0.12
path-04 449.14±26.9 747.15±54.4 t.o. 7.58±0.6 6.89±0.30 50.97±9.8 42.63±2.7 1725.10±81.6 2.24±0.4 1.76±0.16
path-05 o.o.m. t.o. t.o. 8.95±1.0 7.53±0.48 400.87±15.2 762.14±8.1 t.o. 2.74±0.2 2.03±0.25
path-06 o.o.m. t.o. t.o. 9.37±1.0 8.80±0.25 o.o.m. t.o. t.o. 2.98±0.2 2.18±0.14
path-07 o.o.m. t.o. t.o. 11.32±0.9 9.76±1.21 o.o.m. t.o. t.o. 3.64±0.2 2.38±0.26
path-08 o.o.m. t.o. t.o. 11.30±2.1 10.05±1.49 o.o.m. t.o. t.o. 3.75±0.4 2.53±0.30
tree-01 539.11±22.4 t.o. t.o. 7.73±1.0 6.53±1.11 25.96±4.5 99.16±0.9 t.o. 1.95±0.1 1.47±0.28
tree-02 o.o.m. t.o. t.o. 12.43±3.2 7.29±0.73 328.88±11.5 t.o. t.o. 3.02±0.7 1.69±0.16
tree-03 o.o.m. t.o. t.o. 12.21±5.6 8.16±0.66 o.o.m. t.o, t.o. 3.17±0.2 1.99±0.16

Table 5.4: Performance on SNAP graphs, compared to graph database systems

Query Ref GuAO GuAO+ GuAO+ Speedup GuAO + FK/PK GuAO+ + FK/PK
STATS-CEB e2e 1558±7.3 97.9±6.1 64.8±7.9 24.04 x 58.9±0.6 64.0±7.7
TPC-H Q11 SF200 361.0±13.3 346.5±9.4 341.6±19.2 1.06 x 350.1±11.6 344.7±13.9
TPC-H V.1 SF200 168.4±4.4 107.5±8.9 105.11±3.9 1.6 x 106.1±1.1 102.04±3.9
LSQB Q1 SF300 3096±232 677±23 688±23 4.57 x 688±41 689±35
LSQB Q4 SF300 602±37 593±15 592±9 1.02x 587±11 600±21

Table 5.5: Comparison of GuAO, GuAO+, with and without the FK/PK optimisations,
where applicable

On the other hand, we observe that especially the two TPC benchmarks contain primarily
queries where the join evaluation itself is very straightforward. In TPC-H, 4 of the 7 tested
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queries contain only a single join (see Table 5.3). In TPC-DS we observe similar patterns.
As a result, there is little to no unnecessary materialisation in many of these queries.
Our key insight here is that the experiments confirm that our method (and in particular
GuAO+) does not introduce any overhead in these cases. By not causing performance
decrease in those cases where there is no unnecessary materialisation, combined with
some gains in the few harder queries, we still see modest overall speed-ups for these
benchmarks.

With respect to basic graph queries, we see in Table 5.4 that even with significant
resources, counting short paths and small trees is effectively impossible on large graphs
with current methods. This holds for both, Spark SQL and for specialised graph database
systems. In stark contrast, GuAO and GuAO+ effectively trivialize these types of queries
even with significantly less resources than are available on our test system (the highest
observed memory usage for GuAO+ in our SNAP experiments was roughly 5GB). Since
these experiments focus on graph data, we additionally compared with specialised graph
database systems (Neo4j [120], KÙZU [89], and GraphDB [69]). The results of these
experiments are equally sobering as with standard Spark SQL, in that almost all queries
failed with timeout (set to 30 min). This is in sharp contrast to GuAO and GuAO+,
which answer these queries in a matter of a few seconds.

To evaluate the effect of FK/PK information we extended a subset of our tests from
Section 5.3, by manually providing FK/PK information, and applying the further op-
timisations from Section 5.1.3. The results for these experiments are summarised in
Table 5.5. We make two important observations from our experimental results for GuAO
+ FK/PK and GuAO+ + FK/PK. First, in the case of GuAO+, there is little to no
gain from the simplification to semi-joins. This confirms that in cases where joins follow
FK/PK relationships, the physical operators from Section 5.2 are in practical terms as
efficient as semi-joins. In a sense, this means that using GuAO+ makes it unnecessary
to be aware of FK/PK relationships on join attributes, as the execution is implicitly
optimised appropriately in this scenario anyway. Detailed analysis of the data shows that
the small performance differences, in both directions, are primarily due to the potential
additional initial grouping operations as described in Section 5.1.3. The only case where
we observe noteworthy improvement is for GuAO+FK/PK on STATS-CEB, where the
additional use of FK/PK information yields a 60% speed-up over GuAO. The potential
for improvements through FK/PK information seems highly data- and query-dependent.
Overall, we conclude that, in the context of our method, FK/PK information is less
relevant than might be expected.

In summary, our experiments paint a clear picture. In more challenging queries, our
approach offers very significant improvements. At the same time, in cases where little
unnecessary materialisation is performed, GuAO+ introduces no additional overhead and
thus exhibits no performance degradation on simpler queries.
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5.3.4 Quantifying the Reduction of Materialisation

Throughout this chapter, we have been motivated by the premise that easy to implement
logical optimisation rules for query plans can avoid a significant amount of intermediate
materialisation in aggregate queries. Moreover, with the addition of natural physical
operators, we can avoid any such materialisation altogether. However, this raises the
question of how much unnecessary materialisation actually occurs when using standard
query planning methods.

To study this question, we compare the maximum number of tuples that occur in an
intermediate table during query execution for the STATS-CEB queries. Again, we report
the mean over 5 runs (we omit error bars as the variation between runs is mostly 0 and
negligible in other cases). We note that these intermediate table sizes are naturally closely
correlated to overall memory consumption, as well as communication cost in a distributed
setting. Figure 5.6 reports the peak number of materialised tuples during query execution
for the 20 queries where standard Spark SQL materialises the most intermediate tuples.
The data clearly shows that an improvement in the order of magnitudes of materialised
tuples is often possible. In particular, we see the well documented effect of classical
relational query processing techniques, leading to substantial intermediate blow-up. The
largest relations in the dataset have in the order of 3 · 105 tuples, an enormous difference
to the observed sizes of up to 1010 intermediate tuples for Ref. The data shows that by
rewriting the logical query plans according to Section 5.1, we regularly see a reduction in
peak intermediate table size of over 2 orders of magnitude.

However, the optimised logical query plan still requires some mild materialisation between
aggregation steps, which we manage to eliminate with the physical operators described in
Section 5.2. The resulting GuAO+ system consistently reduces the number of materialised
tuples by at least 3 orders of magnitude on the reported queries in Figure 5.6. In
fact, the reported numbers for GuAO+ are always precisely the cardinality of the largest
relation in the query, as the execution using our method never introduces any new tuples
(cf. Section 5.2). That is, this number can also inherently not be improved upon. Over
the whole benchmark, we observe that the peak number of materialised tuples by GuAO+

is at least 10 times less than that of standard Spark SQL query execution in 118 out of
the 146 queries. In all other cases, the peak number of materialised tuples by Ref and
GuAO+ is exactly the same, i.e., Ref is never better.
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Figure 5.6: Comparison of the maximal number of materialised tuples in a table during
query execution for 20 queries of STATS-CEB. Y-axis in logarithmic scale (base 10).

5.4 Extension to Unguarded Queries

Our next goal is to investigate, first of all, whether it is feasible at all to extend our
optimisations beyond piecewise-guardedness with performance benefits. Additionally, we
would like to consider various “degrees” of unguardedness to determine how far we can
go efficiently.

We start by considering an example of an unguarded query based on the TPC-H schema,
similar to the query in Figure 1.2.

SELECT COUNT(*), p_brand, r_name
FROM part, partsupp, supplier,

nation, region
WHERE p_partkey = ps_partkey

AND s_suppkey = ps_suppkey
AND n_nationkey = s_nationkey
AND r_regionkey = n_regionkey
AND p_price >
(SELECT avg (p_price) FROM part)

AND r_name IN ('Europe', 'Asia')
GROUP BY p_brand, r_name

supplier

nation

region

partsupp

part

Figure 5.7: Unguarded query over the TPC-H schema and its corresponding join tree

In this example, we compute the count of rows grouped by the p_brand and r_name
attributes of two different relations part and region. Clearly, there is no way around
performing at least one join and materialising the output, as the output per definition
contains the distinct projection to p_brand and r_name over the joins of the query. However,
we can still do significantly better than performing only joins, materialising the full
enumeration, and performing the grouping and aggregation operation afterwards.
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5.4.1 Introducing the GroupAggJoin physical operator
To extend our approach for answering piecewise-guarded aggregate queries, we require a
way to propagate not only frequencies and aggregates up the join tree, but also grouping
attributes. To this end, we introduce a new physical operator: GroupAggJoin. The
GroupAggJoin operator not only performs aggregation inside the join loop but also
grouping via specified grouping attributes, outputting the grouping attributes as well as
aggregate results.

Algorithm 5.3: Hash Join with grouping and aggregate propagation
Input: A streamed tuple r from the list R and a list S of tuples with the same

values of the join attributes;
List I = {s1, . . . , sn} of indices of aggregate attributes Aggsi

;
List G = {s1, . . . , sn} of indices of grouping attributes Gsi ;

1 Function GroupAggHashJoin(r, S, I,G)
2 groups ← Map;
3 foreach s ∈ S do
4 if groups[s[G]] exists then
5 g ← groups[s[G]];
6 else
7 g ← {c : 0};
8 foreach i ∈ I do
9 if Ai ∈ {MIN, MAX} then g[i] ← init[s];

10 if Ai ∈ {SUM, COUNT} then g[i] ← 0;
11 end
12 end
13 g.c ← g.c+ s.c;
14 foreach i ∈ I do
15 if Ai ∈ {MIN, MAX} then s[Aggi] ← A(g[Aggi], s.Aggi);
16 if Ai ∈ {SUM, COUNT} then s[Aggi] ← g[Aggi] + s.Aggi;
17 end
18 end
19 foreach (k, v) ∈ groups do
20 v.c ← v.c · r.c
21 foreach i ∈ I do
22 if Ai ∈ {SUM, COUNT} then v[Aggi] ← v[Aggi] · r.c;
23 end
24 emit (r, k, v);
25 end

In Algorithm 5.3 we provide simplified pseudocode describing the hash join variant of
the GroupAggJoin. For compactness, we describe the version of the algorithm where we
iterate over individual tuples from the R relation and read the matching tuples from S in
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chunks. The key modification required for the extension to grouping is the introduction
of a map (groups), mapping the grouping keys to an aggregation buffer. After initialising
the grouping map, we iterate over the tuples s ∈ S. By s[G] we denote the projection
of the tuple s to the grouping attributes G. First, we check if a grouping buffer exists
for s[G], and if so, retrieve it, else initialise it similarly to the GroupAggJoin operator
described in Algorithm 5.1. Next, since we still need to keep track of frequencies, we
add the tuple frequency s.c to the grouping buffer’s frequency value g.c. Then, for each
aggregate attribute i ∈ I, we proceed similar to Algorithm 5.1, updating the group’s
aggregation buffer. Finally, we can iterate over the aggregation buffers. After multiplying
the frequency values by r.c, we emit the tuple r, the grouping attributes themselves (k),
and the final aggregation buffer (v).
As in the case of the AggJoin, we implement 3 types of GroupAggJoin based on Spark
SQL’s broadcast-hash-join, shuffled-hash-join, and (sort-)merge-join. Details for the
merge-join are omitted here. An extension of the pseudocode presented in Section 5.2 is
however straightforward.

5.4.2 Benchmarks for Unguarded Queries
To the extent of our knowledge, no benchmarks exist for specifically evaluating the
challenging class of unguarded queries. Therefore, we decide to introduce a new benchmark
based on the Join-Order-Benchmark(JOB) [101], which we refer to as JOBUnguarded.
We choose 33 diverse (in the number of joins) JOB queries, and, based on these construct
up to 8 new unguarded queries. The queries from the JOB benchmark do not contain
GROUP BY clauses, and are piecewise-guarded. Therefore, in order to obtain unguarded
queries, we extend the queries by GROUP BY clauses (and the corresponding output
attributes). We refer to a query with k unguarded attributes as k-unguarded. We apply
the following for constructing a k-unguarded query:

• Check whether the query contains at least k relations. In this case, proceed.

• Choose k attributes, a1, ..., ak which are

– never part of the same relation as another attribute
– not part of the filter conditions (preferably)
– not join keys (preferably)

• Add a clause GROUP BY a1, ..., ak and add a1, ..., ak to the SELECT clause.

For each JOB query, we start by constructing a 2-unguarded query, up to a 9-unguarded
query. In total, we obtain 193 unguarded queries. In Table 5.6, we provide an overview
of the number of k-unguarded queries generated.
For example, the following 3-unguarded query, 3a-unguarded-3, was derived from the
JOB query 3a with 4 relations by adding the 3 unguarded attributes mi.id, mk.id and
k.phonetic_code, from 3 different relations.
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SELECT MIN(t.title) AS movie_title,
mi.id, mk.id, k.phonetic_code

FROM keyword AS k,
movie_info AS mi,
movie_keyword AS mk,
title AS t

WHERE k.keyword LIKE '%sequel%'
AND mi.info IN ('Sweden',

'Norway',
'Germany',
'Denmark',
'Swedish',
'Denish',
'Norwegian',
'German')

AND t.production_year > 2005
AND t.id = mi.movie_id
AND t.id = mk.movie_id
AND mk.movie_id = mi.movie_id
AND k.id = mk.keyword_id

GROUP BY mi.id, mk.id, k.phonetic_code;

5.4.3 Performance Evaluation

We benchmark the extended implementation including the GroupAggJoin operator on
the JOBUnguarded benchmark. The runtime measurements are performed on a VM
with a 32-core AMD EPYC-Milan CPU with 256 GB RAM (we require less RAM
than for the previous experiments since there is no risk of running out of memory
for these queries). The benchmark environment and queries are provided at https:
//github.com/arselzer/spark-eval-groupagg. Again, we perform, both for the original
Spark SQL implementation and the optimised version, a “warm-up” run followed by 5
runs, of which we take the average.

A summary of the end-to-end runtimes including e2e speedup per group of k-unguarded
queries is given in Table 5.6. Furthermore, we show how many of the individual queries
were sped up by the optimisation (#Speedups%). It is to be noted that the total e2e
runtimes decrease since the number of queries (#queries) decreases with increasing
number of unguarded attributes (as there are fewer queries from which we can construct
unguarded variants).
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Ung. Atts #queries Ref Opt Speedup #Speedups%
2 32 755.71 597.78 1.26x 69%
3 32 759.60 586.31 1.30x 78%
4 31 746.84 593.58 1.26x 68%
5 27 690.61 550.40 1.25x 78%
6 22 537.93 484.21 1.11x 78%
7 22 559.50 583.72 0.96x 68%
8 16 351.10 325.41 1.08x 69%
9 11 248.17 232.06 1.07x 73%

Table 5.6: Comparison of the Spark SQL reference implementation vs. the optimised
version, for JOBUnguarded.

We observe clear speedups in e2e-runtime of 1.25x-1.30x between 2- and 5-unguarded
queries. The number of speedups achieved on individual queries is in all cases at least 68%.
From 6-unguarded queries on, we can observe a significant degradation in performance,
even resulting in a slight slowdown for 7-unguarded queries. Overall, however, even on
these queries the performance ranges from comparable to slightly better.

In Figure 5.8, we present the runtimes of the 2-unguarded queries in detail. We also
provide individual comparisons for 3- to 9-unguarded queries in Figures 5.9, 5.10, 5.11,
5.12, 5.13, 5.14, and 5.15.

As visible in Figure 5.8, the optimised implementation provides the greatest benefit for
hard instances. In fact, for the 15 hardest instances (sorted by reference runtime), our
implementation always outperforms plain Spark SQL.
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Figure 5.12: Queries with 6 unguarded at-
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Figure 5.14: Queries with 8 unguarded at-
tributes
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Figure 5.15: Queries with 9 unguarded at-
tributes

5.5 Summary
In this chapter, we have identified the broad classes of guarded and piecewise-guarded
queries. We have introduced several optimisations for guarded aggregate queries, enabling
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significant reductions of the need to materialise intermediate results when evaluating
analytical queries with aggregates over join or path queries. We have integrated our
optimisations into Spark SQL, which has been specifically designed as a powerful tool
to deal with complex analytical queries. Our experimental evaluation confirms that the
proposed techniques can provide significant performance improvements by avoiding costly
materialisation, especially in larger queries. Additionally, we propose the use of new
physical operators that extend semi-joins to manage frequencies and other aggregate
information with the aim to completely eliminate the computation of intermediate joins
and to facilitate straightforward integration into physical query plans. Finally, we have
extended the physical operator and the logical optimisation to handle unguarded queries.
By introducing a new benchmark for unguarded queries, we show that the approach can
handle moderately-unguarded queries effectively.
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CHAPTER 6
Cyclic Join Queries – From

Theory to Practice

With structure-guided query processing of most acyclic aggregate queries covered, we
focus on cyclic queries in this chapter. We will make steps towards bringing decomposition-
based techniques into practice by introducing a flexible approach towards the computation
of decompositions and implementing a query-processing pipeline based on it.

We revisit the notion of candidate tree decompositions from [60] in Section 6.1. In Sec-
tion 6.2, we introduce soft hypertree decompositions and soft hypertree width (shw). The
integration of preferences and constraints into soft hypertree decompositions is discussed
in Section 6.3 and the implementation of the system, including the development of cost
functions, is reported on in Section 6.4. Experimental results with these decompositions
are reported in Section 6.5. We summarise the results of this Chapter in Section 6.6.

6.1 Revisiting Candidate Tree Decompositions
In this section, we revisit the problem of constructing tree decompositions by selecting
the bags from a given set of candidate bags. This leads us to the notion of candidate tree
decompositions (CTDs) and the CandidateTD problem, which we both define next.

Definition 6.1.1. Let H be a hypergraph and let S ⊆ 2V (H) be a set of vertex sets of H
(the so-called “candidate bags”). A candidate tree decomposition (CTD) of S is a tree
decomposition (T,B) of H, such that, for every node u of T , B(u) ∈ S [60].

In the CandidateTD problem, we are given a hypergraph H and a set S ⊆ 2V (H) (= the
set of candidate bags), and we have to decide whether there exists a tree decomposition
(T,B) of H, such that, for every node u ∈ T , we have B(u) ∈ S.
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The idea of generating TDs from sets of candidate bags was heavily used in a series of
papers by Bouchitté and Todinca [27, 28, 29, 30, 31] in a quest to identify a large class of
graphs for which the treewidth (and also the so-called minimum fill-in, for details see any
of the cited papers) can be computed in polynomial time. More specifically, this class of
graphs G is characterised by having a polynomial number of minimal separators (i.e.,
subsets S of V (G), such that two vertices u, v of G are in different connected components
of the induced subgraph G[V (G)\S] but they would be in the same connected component
of G[V (G) \ S′] for every proper subset S′ ⊂ S). The key to this tractability result was
to precisely identify and compute in polynomial time the set of candidate bags via the
minimal separators and the so-called potential maximal cliques of a given graph. Ravid
et al. [135] applied these ideas to efficiently enumerate TDs under a monotonic cost
measure, such as treewidth.

It was shown in [60], that the problem of deciding whether a hypergraph has width ≤ k
for various notions of decompositions (in particular, the generalised hypertree width ghw
and the so-called fractional hypertree width fhw) can be reduced to the CandidateTD
problem by an appropriate choice of the set S of candidate bags. However, it was also
shown in [60] that some care is required as far as the form of the sought after TDs
is concerned. In particular, it was shown in [60], that, in the unrestricted form given
in Definition 6.1.1, the CandidateTD problem is NP-complete. In order to ensure
tractability, the following restriction on TDs was formally defined in [60]:

Definition 6.1.2. A rooted tree decomposition (T,B) is in component normal form
(CompNF), if for each node u ∈ V (T ), and for each child c of u, there is exactly one
[B(u)]-component Cc such that B(Tc) =

⋃︁
Cc ∪ (B(u) ∩ B(c)) [60].

Alternatively, we could define CompNF by making use of the fact that the TDs of a
hypergraph H are exactly the TDs of its Gaifmann graph G(H) (see Chapter 2). The
CompNF condition given in Definition 6.1.2 can then be rephrased as requiring that, for
a node u and child node c in a rooted TD (T,B), that the vertices in B(Tc) must not be
separated by the vertex set B(u) ∩ B(c).

It was shown in [60] that the CandidateTD problem becomes tractable if we ask for
the existence of a CTD in CompNF. We note that also the algorithms presented in the
works of Bouchitté and Todinca (see, in particular, [29, 30]) as well as in [135] implicitly
only consider TDs in CompNF. From now on, we consider the CandidateTD problem
only in this restricted form. By slight abuse of notation, we will simply refer to it as
the CandidateTD problem, with the understanding that we are only looking for CTDs
in CompNF. Gottlob et al. [60] presented a poly-time algorithm, which we recall in a
slightly adapted form in Algorithm 6.1, for deciding the CandidateTD problem.

To discuss Algorithm 6.1 in detail, we first have to define the terminology used in the
algorithm, namely the notions of a “block”, a “basis”, and what it means that a block is
“satisfied”. We call a pair (S,C) of disjoint subsets of V (H) a block if C is a maximal
set of [S]-connected vertices of H or C = ∅. We say that (S,C) is headed by S. For
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Algorithm 6.1: CompNF Candidate Tree Decomposition of S
input: Hypergraph H and a set S ⊆ 2V (H).
output: “Accept”, if there is a CompNF CTD for S

“Reject”, otherwise.
1 blocks = all blocks headed by any S ∈ S ∪ {∅}
2 foreach (S,C) ∈ blocks do
3 if C = ∅ then basis(S,C) ← ∅
4 else basis(S,C) ← ⊥ /* a block is satisfied iff its basis is not ⊥

*/
5 end
6 repeat
7 foreach (S,C) ∈ blocks that are not satisfied do
8 foreach X ∈ S \ {S} do
9 if X is a basis of (S,C) then

10 basis(S,C) ← X
11 end
12 end
13 end
14 until no blocks changed
15 if basis(∅, V (H)) ̸= ⊥ then
16 return Accept
17 end
18 return Reject

two blocks (S,C) and (X,Y ) define (X,Y ) ≤ (S,C) if X ∪ Y ⊆ S ∪ C and Y ⊆ C.
Note that the notion of a block was already introduced in the works of Bouchitté and
Todinca [27, 28, 29, 30, 31] and later used by Ravid et al. [135]. In this work (following
[60]), blocks are defined slightly more generally in the sense that Bouchitté and Todinca
only considered blocks (S,C) where S is a minimal separator of the given graph (rather
than an arbitrary, possibly even empty, subset of the vertices) and C is not allowed to be
empty.

A block (S,C) is satisfied if a CompNF TD of H[S ∪ C] exists with root bag S. If
C = ∅, satisfaction is trivial. Finally, for a block (S,C) and X ⊆ V (H) with X ̸= S, let
(X,Y1), . . . , (X,Yℓ) be all the blocks headed by X with (X,Yi) ≤ (S,C). Then we say
that X is a basis of (S,C) if the following conditions hold:

1. C ⊆ X ∪ ⋃︁ℓ
i=1 Yi.

2. For each e ∈ E(H) such that e ∩ C ̸= ∅, e ⊆ X ∪ ⋃︁ℓ
i=1 Yi.

3. For each i ∈ [ℓ], the block (X,Yi) is satisfied.
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The concepts of a block and of a basis of a block are related to a CTD (in CompNF) in
the following way: Recall from Definition 6.1.2 that if u, c are parent-child nodes in a TD,
then there is exactly one [B(u)]-component Cc such that B(Tc) =

⋃︁
Cc ∪ (B(u) ∩ B(c)).

Now consider the subtree T ′ of T that consists of the node u plus the entire subtree
Tc. Moreover, consider the block (S,C) with S = B[u] and C = ⋃︁

Cc \ B(u). Then this
block is indeed satisfied by taking as CTD of H[S ∪ C] the subtree T ′ of T (where the
bag of each node in T ′ is exactly the bag of the corresponding node in T ). The goal of
Algorithm 6.1 is to satisfy progressively larger blocks, increasing |S ∪ C|. If (∅, V (H)) is
satisfied, a CTD for H exists, as checked in Line 11.

The relationship between the notions of block, basis, and satisfaction of a block is
summarised by the following property that was proved in [60]: Let (S,C) be a block and
let X be a basis of (S,C), then (S,C) is satisfied. The proof idea of this property is as
follows: let (X,Y1), . . . , (X,Yℓ) be all the blocks headed by X with (X,Yi) ≤ (S,C). By
the third condition of a basis, the block (X,Yi) is satisfied for each i ∈ [ℓ]. Hence, there
exists a CTD (Ti, Bi) of each subhypergraph H[X ∪ Yi], such that the bag of the root is
X for all theses CTDs. We can merge all these root nodes into a single node to form
a single TD (T ′, B′) with the Ti’s as subtrees. A CTD for H[S ∪ C] is then obtained
by taking as root a node with bag S and appending the root of T ′ (with bag X) plus
the entire tree T ′. The aim of the repeat-loop in Algorithm 6.1 (Lines 5-10) is precisely
to check if we can mark yet another block (S,C) as satisfied by identifying a basis for
it. Initially, in the foreach-loop on Lines 2-4, only the blocks with empty C-part are
assigned the trivial basis ∅ and thus marked as satisfied. Finally, on Lines 11-13, the
algorithm returns “Accept” (i.e., a CTD of H exists) if the block (∅, V (H)) is marked as
satisfied via a non-empty basis. Otherwise, it returns “Reject”. The bottom-up approach
in Algorithm 6.1, constructing a CTD by combining subtrees, also appears similarly in
prior work [30, 135].

For the polynomial-time complexity of Algorithm 6.1, the crucial observation is that the
number b of blocks (S,C) is bounded by |S| ∗ |V (H)|, i.e., for each S ∈ S, there cannot
be more components C than vertices in H. As a coarse-grained upper bound on the
complexity of Algorithm 6.1, we thus get b4 ∗ ||H||, i.e., each of the 3 levels of nested
loops has at most b iterations and the cost of checking the basis-property on Line 8 can
be bounded by b times the size of (some representation of) H.

6.2 Soft Hypertree Width
So far, it is not known whether there is a set of candidate bags SH,k for a hypergraph
H such that there is a CTD for SH,k if and only if hw(H) ≤ k. However, in [58], it was
shown that there always exists a HD of minimal width such that all bags of nodes c with
parents p are of the form Bc = (⋃︁λc) ∩ (⋃︁Cp) where Cp is a [λp]-component of H. In
principle, this gives us a concrete way to enumerate a sufficient list of candidate bags.
The number of all such bags is clearly polynomial in H : there are at most |E(H)|k+1 sets
of at most k edges, and each of them cannot split H into more than |E(H)| components.
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The only point that is unclear when enumerating such a list of candidate bags, is how
to decide beforehand whether two sets of edges λc, λp are in a parent/child relationship
(and if so, which role they take). However, we observe that the parent/child roles are
irrelevant for the polynomial bound on the number of candidate bags. Hence, we may
drop this restriction and instead simply consider all such combinations induced by any
two sets of at most k edges. Concretely, this leads us to the following definitions.

Definition 6.2.1 (The set SoftH,k). For hypergraph H, we define SoftH,k as the set that
contains all sets of the form

B =
(︂⋃︂

λ1
)︂

∩
(︂⋃︂

C
)︂

(6.1)

where C is a [λ2]-component of H and λ1, λ2 are sets of at most k edges of H.

Definition 6.2.2 (Soft Hypertree Width). A soft hypertree decomposition of width
k for hypergraph H is a candidate tree decomposition for SoftH,k. The soft hypertree
width (shw) of hypergraph H is the minimal k for which there exists a soft hypertree
decomposition of H.

This measure naturally generalises the notion of hypertree width in a way that remains
tractable to check (for fixed k), but removes the need for the special condition.

Theorem 6.2.1. Let k ≥ 1. Deciding, for a given hypergraph H, whether shw(H) ≤ k
holds, is feasible in polynomial time in the size of H. The problem even lies in the highly
parallelisable class LogCFL.

Proof Sketch. In [62], it is shown that checking if hw(H) ≤ k holds for fixed k ≥ 1 is in
LogCFL. The key part of the proof is the construction of an alternating Turing machine
(ATM) that runs in Logspace and Ptime. The ATM constructs an HD in a top-down
fashion. In the existential steps, one guesses a λ-label of the next node in the HD. Given
the label λc of the current node and the label λp of its parent node, one can compute the
set of [λc]-components that lie inside a [λp]-component. In the following universal step,
the ATM has to check recursively if all these [λc]-components admit an HD of width ≤ k.

This ATM can be easily adapted to an ATM for checking if shw(H) ≤ k holds. The main
difference is, that rather than guessing the label λc of the current node (i.e., a collection
of at most k edges), we now simply guess an element from SoftH,k as the bag Bc of the
current node. The universal step is then again a recursive check for all components of Bc

that lie inside a [Bp]-component, if they admit a candidate TD of width ≤ k. The crucial
observation is that we only need Logspace to represent the bags B ∈ SoftH,k, because
every such bag is uniquely determined by the label λc and a [λp]-component. Clearly, λc
can be represented by up to k (pointers to) edges in E(H), and a [λp]-component can be
represented by up to k + 1 (pointers to) edges in E(H), i.e., up to k edges in λp plus 1
edge from the [λp]-component. Clearly, the latter uniquely identifies a component, since
no edge can be contained in 2 components.

105



6. Cyclic Join Queries – From Theory to Practice

1

2

3

45

6

7

8

a b

(a) Hypergraph H2 with ghw(H2) =
shw(H2) = 2 and hw(H2) = 3. Some edges
are coloured for visual clarity.

2, 6, 7, a, b

2, 5, 6, a, b

2, 3, 4, 5, a, b1, 2, 7, 8, a, b

(b) A soft hypertree decomposition of H2
with width 2.

Figure 6.1: (a) A hypergraph H2 and (b) its soft hypertree decomposition.

The main argument in the proof of Theorem 6.2.1 was that the ATM for checking
hw(H) ≤ k can be easily adapted to an algorithm for checking shw(H) ≤ k. Actually, the
straightforward adaptation of existing hw-algorithms to shw-algorithms is by no means
restricted to the rather theoretical ATM of [62]. The parallel algorithm log-k-decomp
from [58] performs significant additional effort to control orientation of subtrees in order
to guarantee the special condition. This is unnecessary for shw-computation, where the
orientation of subtrees is irrelevant. Instead, we may follow the philosophy of the much
simpler BalancedGo algorithm in [65] for ghw-computation. By a standard argument
(see e.g., [58, Lemma 3.14]), a CTD for SoftH,k always contains a balanced separator.
Hence, one can simply adapt BalancedGo algorithm to only consider separators in SoftH,k
to obtain another algorithm for checking shw that is suitable for parallelisation. In
Section 6.3, we will extend the CTD-framework by constraints and preferences. It will
turn out that we can thus also capture the opt-k-decomp approach from [136], that
integrates a cost function into the computation of HDs. To conclude, the key techniques
for modern decomposition algorithms are also applicable to shw-computation.

The relationship of shw(H) with hw(H) and ghw is characterised by the following result:

Theorem 6.2.2. For every hypergraph H, the relationship ghw(H) ≤ shw(H) ≤ hw(H)
holds. Moreover, there exist hypergraphs H with shw(H) < hw(H).

Proof. By [58], if hw(H) = k, then there exists a hypertree decomposition of width
k such that every bag is of the form from Equation (6.1). That is, for every HD
(T, λ, χ), we immediately get a candidate TD (T, χ) for SoftH,k. Hence, shw(H) ≤ hw(H).
Furthermore, every bag in SoftH,k is subset of a union of k edges, hence ρ(B) ≤ k for
any B from Equation (6.1). Thus, also ghw(H) ≤ shw(H). In the example below, we
will present a hypergraph H with shw(H) < hw(H).

Example 6.2.3. Let us revisit the hypergraph H2 from [6], which was presented there to
show that ghw can be strictly smaller than hw. The hypergraph is shown in Figure 6.1a.
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Figure 6.2: The hypergraph H3 (some edges omitted) with ghw(H3) = shw(H3) = 3 and
hw(H3) = 4 (adapted from [5]).

It consists of the edges {1, 8}, {3, 4}, {1, 2, a}, {4, 5, a}, {6, 7, a}, {2, 3, b}, {5, 6, b}, {7, 8, b}
and no isolated vertices. It is shown in [6] that ghw(H2) = 2 and hw(H2) = 3. We now
show that also shw(H2) = 2 holds.

A candidate tree decomposition for SoftH2,2 is shown in Figure 6.1b. Let us check
that SoftH2,2 contains all the bags in the decomposition. The bags {1, 2, 7, 8, a, b} and
{2, 3, 4, 5, a, b} are the union of 2 edges and thus clearly in the set. The bag {2, 6, 7, a, b}
is induced by λ2 = {{3, 4}, {2, 3, b}}. There is only one [λ2]-component C, which contains
all edges of E(H) \ λ2. Hence,

⋃︁
C contains all vertices in V (H) \ {3}. We thus get

the bag {2, 6, 7, a, b} as (︁ ⋃︁
λ1

)︁ ∩ (︁ ⋃︁
C

)︁
with λ1 = {{2, 3, b}, {6, 7, a}}. The remaining

bag {2, 5, 6, a, b} is obtained similarly from λ2 = {{1, 8}, {1, 2, a}} which yields a single
component C with ⋃︁

C = H(H)\{1}. We thus get the bag {2, 5, 6, a, b} as (︁ ⋃︁
λ1

)︁∩(︁ ⋃︁
C

)︁
with λ1 = {{1, 2, a}, {5, 6, b}}.

We have chosen the hypergraph H2 above, since it has been the standard (and only)
example in the literature of a hypergraph with ghw = 2 and hw = 3. It illustrates that
the relaxation to shw introduces useful new candidate bags.

We now present an example of a hypergraph with shw = 3 and hw = 4. To this
end, We consider the hypergraph H3 adapted from [5], defined as follows. Let G =
{g11, g12, g21, g22}, H = {h11, h12, h21, h22}, and V = {0, 1, 2, 3, 4, 0′, 1′, 2′, 3′, 4′}. The
vertices of H3 are the set H ∪ G ∪ V . The edges of H3 are

E(H3) ={{w, v} | w ∈ G ∪ H, v ∈ V } ∪ {{2, 4}, {2′, 4′}} ∪
{0, 0′} ∪ {{0, 1}, {1, 2}, {0, 3}, {2, 3}} ∪
{{0′, 1′}, {1′, 2′}, {0′, 3′}, {2′, 3′}} ∪
{{g11, g12, h11, h12, 4′}, {g21, g22, h21, h22, 3},
{g11, g21, h11, h21, 4}, {g12, g22, h12, h22, 3′}}
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The hypergraph is shown in Figure 6.2 with the edges {{w, v} | w ∈ G ∪ H, v ∈ V }
omitted. We have ghw(H3) = 3 and hw(H3) = 4. We now show that indeed also
shw(H3) = 3. A witnessing decomposition is given in Figure 6.3. Note that, strictly
speaking, only mw(H3) = 3 is shown in [5] and, in general, mw is only a lower bound
on ghw. However, it is easy to verify that ghw(H3) = 3 holds by inspecting the winning
strategy for 3 marshals in [5]. Moreover, the ghw-result is, of course, implicit when we
show shw(H3) = 3 next. Actually, the bags in the decomposition given in Figure 6.3
are precisely the χ-labels one would choose in a GHD of width 3. And the λ-labels are
obtained from the (non-monotone) winning strategy for 3 marshals in [5].

To prove shw(H3) = 3, it remains to verify that all the bags in Figure 6.3 are contained in
SoftH3,3. We see that G∪H are in all the bags and we, therefore, focus on the remaining
part of the bags in our discussion. For the root, this is {3, 0′, 0}. Here, the natural cover
λ1 consists of the two large horizontal edges in Figure 6.2 together with the edge {0, 0′}.
The union ⋃︁

λ1 contains the additional vertex 4′. As λ2 of Equation (6.1) we use the
same two large edges plus {4′, 2′}. As above, there is only one [λ2]-edge component,
which contains all vertices but 4′. Note that, in contrast to the previous example, 4′ in
fact has high degree, but all of the edges that touch 4′ are inside the separator.

Except for the bag G ∪ H ∪ {2, 4}, the bags always miss either vertex 4 or 4′ from the
“natural” covers, and the arguments are analogous to the ones above for the root bag. For
the remaining bag, we consider the cover λ1 consisting of the two vertical large edges plus
the additional edge {2, 4}. Thus, we have the problematic vertex 3′, which is contained
in ⋃︁

λ1 but not in the bag. Here, we observe a more complex scenario than before. As λ2
take the two large horizontal edges plus {0′, 1′}. This splits H3 into two [λ2]-components:
one with vertices G∪H ∪ {0′, 0, 1, 2, 3, 4} and another with vertices G∪H ∪ {1′, 2′, 3′, 4′}.
The intersection of ⋃︁

λ1 with the first component will produce the desired bag.

G ∪ H ∪ {3, 0′, 0}

G ∪ H ∪ {3, 0, 1}

G ∪ H ∪ {3, 1, 2}

G ∪ H ∪ {4, 2}

G ∪ H ∪ {3′, 0′, 1′}

G ∪ H ∪ {3′, 1′, 2′}

G ∪ H ∪ {3′, 2′, 4′}

Figure 6.3: A soft hypertree decomposition of H3 with width 3.

6.3 Constrained Hypertree Decompositions
Although hypertree decompositions and their generalisations have long been a central
tool in identifying the asymptotic worst-case complexity of CQ evaluation, practical
applications often demand more than simply a decomposition of low width. While
width is the only relevant factor for the typically considered complexity upper bounds,
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structural properties of the decomposition can critically influence computational efficiency
in practice.

Example 6.3.1. Consider the query q = R(w, x) ∧ S(x, y) ∧ T (y, z) ∧ U(z, w), forming
a 4-cycle. This query has multiple HDs of minimal width, but many of them are highly
problematic for practical query evaluation. Some example computations resulting from
various HDs of minimal width are illustrated below in (b)-(d).

w x

yz

R

S

T

U

(a) Graph of q

T × R

S × U

⋉

(b) D1

S ▷◁ T

R ▷◁ U

⋉

(c) D2

T × R

U S

⋉ ⋉

(d) D3

Yannakakis’ algorithm for decompositions D1 and D3 requires the computation of a
Cartesian product (by covering w, x, y, z with two disjoint edges) of size |T | · |R| and
|S| · |U |, respectively. Under common practical circumstances, the joins S ▷◁ T and
R ▷◁ U are much more efficient to compute.

Example 6.3.2. Consider the conjunctive query

q = R(v1, v2) ∧ S(v2, v4) ∧ T (v3, v4) ∧ U(v1, v3) ∧ V (v1, v5) ∧ W (v4, v6).

Assume furthermore, that we are in a distributed setting with vertical partitioning. In
particular, relations R,U, V are on one node, whereas S, T,W are on another. The query
hypergraph, together with the partitioning, is illustrated in Figure 6.5a. This query has
multiple simple HDs of minimal width, with little natural reason to prefer one over the
other. Some example computations resulting from various HDs of minimal width are
illustrated below in (b)-(c).

v2

v3 v4

v5

v6

v1
R

S

T

U

V

W

(a) The query hypergraph H.
Edge colours represent the
partition of the respective re-
lation.

R ▷◁ S

U ▷◁ T

V W

⋉

⋉ ⋉

(b) The computations for
answering the query accord-
ing to a natural HD of H.

V

R ▷◁ U

T ▷◁ S

W

⋉

⋉

⋉

(c) The computations for
answering the query accord-
ing to a different natural
HD of H.

However, in a distributed setting where we want to minimise the communication between
different nodes, we might prefer some HDs over others. In our example Figure 6.5c
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might be preferable. Here, the bottom half of the decomposition is evaluated purely on
the orange node, with only the result of (T ▷◁ S)⋉W being communicated to the other
node. On the other hand, in Figure 6.5b two of the joins are across partitions, and the
semi-join between them might add further communication depending on where it is best
to compute the joins. Since HDs as in Figure 6.5c allow for simpler distributed query
answering, some applications might only want HDs that are constrained to such HDs,
where partitions are split up over disjoint subtrees of the decomposition. Naturally the
full details of a practical scenario would require further details, e.g., whether T ▷◁ S is
expected to be very large, but this simplified setting already illustrates the fundamental
need for decompositions that follow certain constraints.

This issue is one of the simplest cases that highlights the necessity of imposing additional
structural constraints on decompositions. By integrating such constraints, we can align
decompositions more closely with practical considerations beyond worst-case complexity
guarantees. We thus initiate the study of constrained decompositions. Specifically,
for a constraint C and width measure width, we study C-width(H), the least width
over all decompositions that satisfy the constraint C. In the first place, we thus study
constrained shw. But we emphasise that the results in this section apply to any notion
of decomposition and width that can be computed via CTDs.

To guide the following presentation, we first identify various interesting examples of
constraints for a TD (T,B), that we believe might find use in applications:

Connected covers As discussed in Theorem 6.3.1, applications for query evaluation
naturally want to avoid Cartesian products in the reduction from a hypertree
decomposition to an acyclic query. This motivates the constraint ConCov, that
holds exactly for those CTDs where every bag Bu has an edge cover λu of size
|λu| ≤ k, such that the edges in λu form a connected subhypergraph.

Shallow Cyclicity The cyclicity depth of a CTD for H is the least d such that the bag
Bu of every node u at depth greater than d can be covered by a single edge of
H. The constraint ShallowCycd is satisfied by a CTD, if it has cyclicity depth at
most d. Intuitively, this constraint captures having a cyclic "core" to the query
with acyclic parts attached to it. Such structure with low cyclicity depth can be
naturally leveraged for efficient query answering by reducing the relations in the
high-width nodes through semi-joins with the attached acyclic parts.

Partition Clustering As discussed in Theorem 6.3.2, in distributed scenarios, where
relations are partitioned across the network, query evaluation using a decomposition
could benefit substantially from being able to evaluate entire subtrees of the CTD
at a single partition. We can enforce this through a constraint of the following
form: Let ρ : E(H) → Partitions label each edge of the hypergraph with a
partition. The constraint PartClust holds in a CTD (T,B), if there exists a function
f : V (T ) → Partitions such, that for every node u in T :
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Algorithm 6.2: (C,≤)-Candidate Tree Decomposition of S
...

5 repeat
6 foreach (B,C) ∈ blocks do
7 foreach X ∈ S \ {B} do
8 if X is a basis of (B,C) then
9 Dnew ← Decomp(B,C,X)

10 if Dnew |= C and (basis(B,C) = ⊥ or
Dnew < Decomp(B,C, basis(B,C)) then basis(B,C) ← X

11 end
12 end
13 end
14 until no blocks changed

...

1. Bu has a candidate cover using edges with label f(u).
2. For every p ∈ Partitions, the set of nodes u with f(u) = p induces a subtree of

T that is disjoint from the respective induced subtrees of all other partitions.

Introducing such constraints can, of course, increase the width. For example, for the
5-cycle C5, it is easy to verify that ConCov-ghw(C5) = ConCov-shw(C5) = ConCov-
hw(C5) = 3 even though hw(C5) = 2. However, in practice, adherence to such constraints
can still be beneficial. In the C5 example, the decomposition of width 2 forces a Cartesian
product in the evaluation and is likely to be infeasible even on moderately sized data. Yet,
using a ConCov decomposition of width 3 might even outperform a typical query plan
of two-way joins executed by a standard relational DBMS. Connected decompositions
of higher width are already used in certain homomorphism counting applications of
hypertree decompositions [88, 17] for large graphs where computing the cross products
for bags is prohibitive.

6.3.1 Tractable Constrained Decompositions
Here, we are interested in the question of when it is tractable to find decompositions
satisfying certain constraints. The bottom-up process of Algorithm 6.1 iteratively builds
tree-decompositions for some induced subhypergraph of H (recall that a satisfied block
(B,C) corresponds to a TD for H[B ∪ C]). We will refer to such tree decompositions as
partial tree decompositions of H.

A subtree constraint C (or, simply, a constraint) is a Boolean property of partial tree
decompositions of a given hypergraph H. We write T |= C to say that the constraint
holds true on the partial tree decomposition T . A tree decomposition (T,B) of H satisfies
C if Tu |= C for every node the partial tree decomposition induced by Tu.
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However, deciding the existence of a tree decomposition satisfying C might require
the prohibitively expensive enumeration of all possible decompositions for a given set
of candidate bags. To establish tractability for a large number of constraints, we
additionally consider total quasiorderings of partial tree decompositions (toptds)1 ≤. A
tree decomposition (T,B) is globally minimal w.r.t. ≤, if for every node u, there is no
partial tree decomposition (T ′

u, B
′) of H[B(Tu)] with (T ′

u, B
′) < (Tu, B). We note that

our notion of minimality is closely related to the notion of split-monotonicity introduced
by Ravid et al. [135] to ensure that the cost of a TD cannot increase if a subtree T ′ of
this TD is replaced by a subtree T ′′ of lower cost. Our goal here is to reduce the task
of finding decompositions that satisfy certain constraints to the task of finding globally
minimal decompositions for an appropriate toptd. To formalise when this is possible, we
introduce the following property.

Definition 6.3.1. We say that a toptd ≤ is preference complete for a subtree constraint
C if the following holds. For every hypergraph H, if there exists a CTD of H for which C
holds, then C holds for all globally minimal (w.r.t. ≤) CTDs of H.

Example 6.3.3. Consider the constraint ShallowCycd described above. We observe that
the property is in a sense monotone over subtrees of the decomposition, i.e., the shallow
cyclicity at node u cannot be lower than the maximum shallow cyclicity of the partial tree
decompositions rooted at the children of u. Hence, we obtain a decomposition with the
least shallow cyclicity if we cover the components below with their respective shallowest
partial decompositions.

If we thus consider the toptd ≤ShallowCycd
that simply orders partial tree decompositions

according to their shallow cyclicity, a globally minimum CTD for ≤ShallowCycd
will be a

CTD that achieves the least shallow cyclicity. In particular, we get that all the globally
minimum CTDs will, by definition, have the same shallow cyclicity. Hence, if any of them
satisfies ShallowCycd, then all of them do. Therefore, this toptd is preference complete
for ShallowCycd.

Subtree constraints – even with the additional condition of preference completeness –
still include a wide range of constraints. For example, all three example constraints
mentioned above are preference complete. Informally, for shallow cyclicity, those partial
TDs that become acyclic from lower depth are preferred. For partition clustering, we
prefer the root node of the partial TD to be in the same partition as one of the children
over introducing a new partition.

However, efficient search for constrained decompositions is not the only use of toptds.
Using the same algorithmic framework, one can see them as a way to order decompositions
by preference as long as the respective toptd ≤ is strongly monotone: that is, a partial
tree decomposition (T,B) is globally minimal only if, for each child c of the root, (Tc, B)
is globally minimal. A typical example for strongly monotone toptd are cost functions for

1Recall that a total quasiordering of X is a reflexive, transitive, and total relation on X2.
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the estimated cost to evaluate a database query corresponding to the respective subtree.
The cost of solving a query with a tree decomposition is made up of the costs for the
individual subqueries of the child subtrees, plus some estimated cost of combining them,
strong monotonicity is a natural simplifying assumption for this setting. For instance,
consider a quasiordering of partial subtrees ≤cost that orders partial decompositions by
such a cost estimate. In combination with the constraint ConCov, (ConCov,≤cost) forms
a preference complete subtree constraint, such that a satisfying TD is a globally minimal
cost tree decomposition where every bag has a connected edge cover of size at most
k. Thus, optimisation of tree decompositions for strongly monotone toptds is simply a
special case of preference complete subtree constraints.

Our main goal in introducing the above concepts is the general study of the complexity
of incorporating constraints into the computation of CTDs. We define the (C,≤)-
CandidateTD problem as the problem of deciding for a given hypergraph H and set S
of candidate bags whether there exists a CompNF CTD that satisfies C and is minimal
for ≤. We want to identify tractable fragments of (C,≤C)-CandidateTD. Let us call
a constraint and toptd tractable if one can decide in polynomial time w.r.t. the size of
the original hypergraph H and the set S of candidate bags both, whether C holds for a
partial tree decomposition of H, and whether (T ′, B′) <C (T,B) holds for partial tree
decompositions of H.

Theorem 6.3.4. Let C,≤ be a tractable constraint and toptd such that ≤ is preference
complete for C. Then (C,≤)-CandidateTD ∈ PTIME.

Proof Sketch. We obtain a polynomial time algorithm for (C,≤)-CandidateTD by
modifying the main loop of Algorithm 6.1 as shown in Algorithm 6.2 (everything outside
of the repeat loop remains unchanged). For a block (S,C) with basis X in Algorithm 6.2,
the basis property of every block induces a (unique) tree decomposition for S ∪ C,
denoted as Decomp(S,C,X). Where Algorithm 6.1 used dynamic programming to
simply check for a possible way to satisfy the root block (∅, V (H)). We instead use
dynamic programming to find the preferred way, that is a basis that induces a globally
minimal partial tree decomposition, to satisfy blocks. It is straightforward to verify the
correctness of Algorithm 6.2. The polynomial time upper bound follows directly from
the bound for Algorithm 6.1 and our tractability assumptions on (C,≤C).

Our analysis here brings us back to one of the initially raised benefits of soft hypertree
width: algorithmic flexibility. Our analysis, and Theorem 6.3.4 in particular, applies to
any setting where a width measure can be effectively expressed in terms of CompNF
candidate tree decompositions.

Corollary 6.3.5. Let C be a subtree constraint, let ≤ be a preference complete toptd for
C, and suppose that C,≤ are tractable. Let k be a non-negative integer. Then deciding
C-shw(H) ≤ k is feasible in polynomial time.
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Using CTDs, Gottlob et al. [60, 59] identified large fragments for which checking ghw ≤ k
or fhw ≤ k is tractable. Hence, results analogous to Theorem 6.3.5 follow immediately
also for tractable fragments of generalised and fractional hypertree decompositions.

6.3.2 Constraints in Other Approaches for Computing Decompositions

Bag-level constraints like ConCov are easy to enforce using existing combinatorial al-
gorithms such as det-k-decomp [66] and new-det-k-decomp [54], which construct an HD
top-down by combining up to k edges into λ-labels. Enforcing the ConCov is trivial in
this case. However, enforcing more global constraints like PartClust while maintaining
tractability remains unclear, as does integrating a cost function. These algorithms
critically rely on caching for pairs of a bag B and vertex set C, whether there is an HD
of H[C] rooted at B. With constraints that apply to a larger portion of the decompo-
sition, the caching mechanism no longer works. Other algorithms are also unsuitable:
log-k-decomp [58], the fastest HD algorithm in practice, applies a divide-and-conquer
strategy, splitting the hypergraph until a base case is reached, but never analyzes larger
sections of the decomposition. The HtdSMT solver by Schidler and Szeider [137, 138]
minimises HD width via SMT solving. It is unclear how to state constraints over these
encodings. Furthermore, due to the reliance on SAT/SMT solvers, the method is not
well suited for a theoretical analysis of tractable constrained decomposition methods.

The algorithm that comes closest to our algorithm for constructing a constrained de-
composition is the opt-k-decomp algorithm from [136], which constructs a “weighted HD”
of minimal cost up to a given width. The cost of an HD is defined by a function that
assigns a cost to each node and each edge in the HD. The natural cost function assigns
the cost of the join computation of the relations in λu to each node u and the cost of
the (semi-)join between the bags at a node and its parent node to the corresponding
edge. We also consider this type of cost function (and the goal to minimise the cost)
as an important special case of a preference relation in our framework. However, our
CTD-based construction of constrained decomposition allows for a greater variety of
preferences and constraints, and the simplicity of Algorithm 6.2 facilitates a straightfor-
ward complexity analysis. Moreover, opt-k-decomp has been specifically designed for HDs.
This is in contrast to our framework, which guarantees tractability for any combination of
decompositions with tractable, preference complete subtree constraints as long as the set
of candidate sets is polynomially bounded. As mentioned above, this is, for instance, the
case for the tractable fragments of generalised and fractional HDs identified in [60, 59].

6.4 Implementation
This section gives technical details on the tools that we used and implemented. It
will also detail the cost functions, which extract statistics from the database to assign
a cost estimate to a CTD, where a lower value indicates lower estimated runtime.
Our tools developed in this chapter are partially derived from the Scala code of the
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Spark SQL integration in Chapter 4. Our source code is available publicly: https:
//github.com/cem-okulmus/softhw-pods25.

6.4.1 Implementation Overview
Our system evaluates SQL queries over a database, but does so by way of first finding an
optimal decomposition, then using the decomposition to produce a rewriting - a series of
SQL queries which together produce the semantically equivalent result as the input query
– and then runs this rewriting on the target DBMS. This procedure is meant to guide the
DBMS by exploiting the structure present in the optimal decomposition. A graphical
overview of the system, which provides an end-to-end implementation of the process of
finding an optimal decomposition for a SQL query over a database, up to running the
rewritten query on the DBMS, is given in Figure 6.6. For simplicity, we assume here that
only Postgres is used.

The system consists of two major components – a Python library providing an interface
to the user, which handles the search for the best decompositions, and a Scala component
which connects to the DBMS and makes use of Apache Calcite to parse the SQL query
and extract its hypergraph structure, as well as extracting from the DBMS node cost
information (which we will detail further below) and generate the rewritings.

The Python library – referred to as QueryRewriterPython – acts as a proxy to the
DBMS, and is thus initialised like a standard DBMS connection. The library is capable
of returning not just the optimal rewriting, but can provide the top-n best rewritings. In
practice, usually, the single best rewriting would be chosen. However, retrieving the top
n rewritings comes at an insignificant extra cost and may be beneficial when the DBMS
cost estimates are unreliable. As seen in Figure 6.6, on start up QueryRewriterPython
starts QueryRewriterScala as a sub-process. QueryRewriterPython communicates with
it via RPC calls using Py4J. QueryRewriterScala obtains the JDBC connection details
from QueryRewriterPython, and connects to the DBMS using Apache Calcite, in order
to be able to access the schema information required later. The input SQL query is then
passed to QueryRewriterScala. Using Apache Calcite, and the schema information from
the database, the input SQL query is parsed and converted into a logical query plan.
After applying simple optimiser rules in order to obtain a convenient representation, the
join structure of the plan is extracted and used to construct a hypergraph. Subtrees
in the logical representation of the query, which are the inputs to joins, such as table
scans followed by projection and filters, are kept track of, and form the hyperedges of
this hypergraph. Later, when creating the rewriting, the corresponding SQL queries
for these subtrees is used in the generation of the leaf node VIEW expressions. After
retrieving the hypergraph, the QueryRewriterPython enumerates the possible covers,
i.e., hypertree nodes, whose size is based on the width parameter k. The list of nodes is
sent to the QueryRewriterScala, where the costs of each of these nodes are estimated by
running EXPLAIN statements on the database. In order to reduce the overhead, as the
number of possible nodes can quickly become large, this is done in parallel using multiple
connections to the DBMS. Similarly, the costs of the semijoins between nodes can also
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Figure 6.6: Overview of the components of the query rewriting system

be estimated. We will detail the two used cost functions in the next subsection. Once all
the cost functions have been computed, the QueryRewriterPython follows an algorithm
in the vein of Algorithm 6.2, in order to find the best or the top-n best decompositions.
Finally, the decompositions are passed to the QueryRewriterScala in order to generate
the rewritings.

6.4.2 Cost Functions
In this section, we describe the cost functions implemented which will be used for our
experiments in Section 6.5.

A Cost Function Based on DBMS-Estimates

To estimate the costs of the decompositions, we make use of Postgres’ cost estimates, as
they are internally used by the system for finding a good query plan. Postgres estimates
the costs of a query plan in abstract units based on assumptions about lower-level costs
in the system, such as disk I/O, or CPU operations. By making use of EXPLAIN
statements, it is possible to retrieve the total cost of a plan estimated by the DBMS.

When estimating the costs of bags in the decomposition, we construct the join query
corresponding to the bag, and let Postgres estimate the cost of this query in an EXPLAIN
statement.

cost(u) :=
{︄
C(πBu(R1 ▷◁ R2 ▷◁ · · · ▷◁ Rn)) if n > 1
0 if n = 1

(6.2)
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where C(q) corresponds to the costs estimated by Postgres for the query q.

To estimate the costs of a subtree, we also consider the costs of computing the bottom-
up semijoins. Because Postgres includes the costs of scanning the relations which are
semijoined, and any joins inside the bags, in the total costs, we have to subtract these
costs from the semijoin-costs. Due to noisy estimates, we have to avoid the total cost
becoming negative, and thus set a minimum cost.

cost(Tp) := cost(p) +
k∑︂
i=1

(cost(Tci) +min(C(Jp ⋉ Jci) − C(Jp) − C(Jci), 1)) (6.3)

A Cost Function Based on Actual Cardinalities

Because we observe problematic unreliability of cost estimates from the DBMS, we also
consider an idealised cost function, that is omniscient about bag sizes and uses these
to estimate cost of individual operations. This has the weakness of not taking physical
information, such as whether relations are already in memory (or even fit wholly in
memory) or specific implementation behaviour (which we surprisingly observe to be
highly relevant in our experiments). Nonetheless, we find it instructive to compare these
costs to the estimate based cost function to correct for cases where estimates are wildly
inaccurate.

First, the cost for bags. We will assume we know the cardinality of the bag (simulating a
good query planner) and combine this with the size of the relations that make up the
join. The idea is simple, to compute the join we need to at least scan every relation that
makes up the join (that is, linear effort in the size of the relations). And then we also
need to create the new relation, which takes effort linear in the size of the join result.
We thus get for a node u of a decomposition, whose bag is created by cover R1, . . . , Rn:

cost(u) :=
{︄

|Ju| + | ∑︁n
i=1 |Ri| · log |Ri| if n > 1

0 if n = 1
(6.4)

where Ju = πBu(R1 ▷◁ R2 ▷◁ · · · ▷◁ Rn), i.e., table for the node.

The cost for a subtree then builds on this, together with some estimate of how effective
the semi-joins from the subtrees will be. We will estimate this very simply, by seeing
how many non primary-key attributes of the parent appear in a subtree. The point
being that if something is a FK in the parent, we assume that every semi-join will do
nothing. If something is not a PK/FK relationship in this direction, then we assume
some multiplicative reduction in tuples for each such attribute. For every node p in a
rooted decomposition, we thus define ReduceAttrs(p) as the set containing every attribute
A in Bp, for which A appears in a subtree rooted at a child of p, where it does not come
from a relation where A is the primary key.
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With this in hand we then estimate the size of the node after the up-phase semi-joins
have reached it:

ReducedSz(u) :=

⎧⎨⎩0 if ReducedSz(c) = 0 for any child c of u
|Ju|

1+|ReduceAttrs(u)| otherwise
(6.5)

Importantly, if relation C is empty, PostgreSQL never scans U in the semi-join U ⋉ C,
to capture this define the following for nodes u.

ScanCost(u) :=
{︄
0 minc∈children(u) ReducedSz(c) = 0
|Ju| · log |Ju| otherwise

The cost for a subtree Tp rooted at p, with children c1, . . . , ck is then as follows:

cost(Tp) := cost(p) + ScanCost(p) +
k∑︂
i=1

(cost(Tci) + ReducedSz(ci) · logReducedSz(ci))

(6.6)
which corresponds to computing the bag for p, computing the subtrees for each child, and
then finally also using ReducedSz(ci) as a proxy for the cost of the semi-join p⋉ ci. From
experiments, it seems like PostgreSQL actually does the initial loop over the right-hand
side of the semi-join. So when ci is empty, it stops instantly, but when p is empty it does
a full scan of ci. This is better reflected by simply taking the reduced child size as the
cost.

6.5 Experimental Results
While the focus in this chapter is primarily on the theory of tractable decompositions of
hypergraphs, the ultimate motivation of this work is drawn from applications to database
query evaluation. We therefore include a focused experimental analysis of the practical
effect of constraints and optimisation on candidate tree decompositions. The aim of our
experiments is to gain insights into the effects of constraints and costs on candidate tree
decompositions in practical settings. We perform experiments with cyclic queries over
standard benchmarks (TPC-DS [133], LSQB [116] as well as queries over the Hetionet
Biomedical Knowledge Graph [80] from a recent cardinality estimation benchmark [23].
In all experiments, we first compute candidate tree decompositions as in Algorithm 6.2
for the candidate bags as in Definition 6.2.1, i.e., we compute constrained soft hypertree
decompositions. We then perform a Yannakakis rewriting as in Chapter 4, to execute
Yannakakis’ algorithm for these decompositions on standard relational DBMSs. Our
implementation is publicly available at https://github.com/cem-okulmus/softhw-pods25.
We note that a related analysis specifically for hypertree width was performed in the
past by Scarcello et al. [136].

Experimental Setup. The tests were run on a test server with an AMD EPYC-Milan
Processor with 16 cores, run at a max. 2GHz clock speed, with 128 GB RAM. The

118

https://github.com/cem-okulmus/softhw-pods25


6.5. Experimental Results

test data and PostgreSQL database was stored and running off of a 500GB SSD. The
operating system was Ubuntu 22.04.2 LTS, running Linux kernel with version 5.15.0-75-
generic. We executed the tests using a JupyterLab Notebook, which we make available
in https://github.com/cem-okulmus/softhw-pods25. This also includes the source code
of the Scala library that handles the tasks of parsing the input query, producing the
hypergraph and extracting costs from the target DBMS. We also include all experimental
data collected in this repository.

Benchmarks. We consider three benchmarks:

• TPC-DS [149], which is already known from the experiments in Chapter 5. For the
following experiments, we use the scaling factor 10.

• Queries already presented in [23] over the hetionet dataset [80].

• LSQB [117], which is also known from Chapter 5. We use the scaling factor 10.

Queries. Since the focus is on queries that exhibit high join costs, we opted to manu-
ally construct such challenging yet still practical examples, due to the fact that many
benchmarks, such as TPC-DS opt to focus on cases where joins are always along primary
or foreign keys, and in case of foreign keys only to join them with the respect table they
are a key of. This means that joins do not produce significantly more rows than are
present in the involved tables: to see this, we just observe that a join over a key can, by
the uniqueness condition, only find exactly one match (and by referential integrity, must
always succeed). While this scenario makes sense when users have carefully prepared
databases with a clear schema, we believe and indeed users reports suggest, that queries
with a large number of tables with very high intermediate join sizes occur in practice.
So to get any useful insights into our framework’s applicability, we forgo the default
provided queries and pick a number of handcrafted “tough” join queries, putting more
focus on their evaluation complexity and less on their semantics. A notable exception
here are the queries from Hetionet, which we directly sourced together with data from
[23], which are used as-is, since they already exhibit complex, cyclic join queries.

This is not meant to be a thorough, systematic analysis, which would involve a very large
number of cyclic queries, which are currently rare in standard benchmarks, tested across
multiple systems. That goes beyond the scope of this work, which only aims to show the
practical potential of our framework. Implementing it in a system which enables reliable,
robust performance across all kinds of queries is left as future work, once its potential
has been proven.

We choose 6 queries: qds from TPC-DS, qhto1 to qhto4 from hetionet, and qlb from LSQB.
In Table 6.1 we provide details on these queries, including their shw and other measures,
as explained in the caption.

119

https://github.com/cem-okulmus/softhw-pods25


6. Cyclic Join Queries – From Theory to Practice

Query ConCov-shw |H| SoftH,k ConCov-SoftH,k Time to produce
top-10 best TDs

qds 2 5 9 8 7.67 ms
qhto1 2 7 25 16 27.87 ms
qhto2 2 7 25 16 26.58 ms
qhto3 2 4 9 8 3.26 ms
qhto4 2 6 17 12 23.26 ms
qlb 3 6 17 15 26.42 ms

Table 6.1: For each of the 6 queries, we list its connected SoftHW, the size of its
hypergraph, the size of its soft set and the size of its connected soft set. In addition, we
report on the time it took to produce the top-10 best TDs, according to the cost measure
from Section 6.4.2.

Results. We study the effect of optimising candidate tree decompositions that adhere
to the ConCov constraint over two cost functions, choosing the TPC-DS query qds. The
first cost function is based on estimated costs of joins and semi-joins by the DBMS
(PostgreSQL) itself, the second is derived from the actual cardinalities of relations and
joins (see Section 6.4.2) for details). The results of these experiments are summarised
in Figure 6.7. These findings indicate that while certain decompositions can cut the
execution time by more than half, others can be nearly ten times slower. This stark
variation underscores the critical need for informed selection strategies when deploying
decompositions for real-world database workloads.
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Figure 6.7: Performance over the ConCov-shw 2 TPC-DS query qds, using PostgreSQL
as a backend.

A second dimension of interest is the efficacy of the cost function. A priori, we expect the
costs derived directly from the DBMS cost estimates to provide the stronger correlation
between cost and time. However, we observe that the cost estimates of the DBMS are
sometimes very unreliable, especially when it comes to cyclic queries2. Clearly, this
makes it even harder to find good decompositions, as a cost function would ideally be
based on good estimates. The comparison of cost functions in Figure 6.7 highlights

2This is not particularly surprising and remains a widely studied topic of database research (see
e.g., [41]).
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this issue. There, we use as cost function the actual cardinalities as a proxy for good
DBMS estimates. We see that the cost thus assigned to decompositions indeed neatly
corresponds to query performance, whereas the cost using DBMS estimates inversely
correlates to query performance.

To expand our analysis, we evaluated two graph queries over Hetionet. In Figure 6.8.
we report on the 10 cheapest decompositions of width 2, for the queries . On these
queries, both cost functions perform very similarly; we report costs based on DBMS
estimates here. We still see a noticeable difference between decompositions, but more
importantly, all of them are multiple times faster than the standard execution of the query
in PostgreSQL. It turns out that connected covers alone are critical. In the right-most
chart of Figure 6.8, we show the average time of executing the queries for 10 randomly
chosen decompositions of width 2 with and without the ConCov constraint enforced. We
see that the constraint alone is already sufficient to achieve significant improvements over
standard execution in relational DBMSs.
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Figure 6.8: Performance over two ConCov-shw 2 Hetionet queries (qhto1 and qhto2 ) using
PostgreSQL as a backend.

Further details on the cardinality estimates of the queries in Figure 6.8 are provided in
Figures 6.9 and 6.10. Additionally, we also report the results from qhto3 and qhto4 in Figure
6.11 and 6.12. In Figure 6.13, we provide the results for the LSQB query qlb.

Our implementation computes candidate tree decompositions closely following Algo-
rithm 6.2. We find that the set of candidate bags in real world queries is very small,
especially compared to the theoretical bounds on the set SoftH,k. The TPC-DS query
from Figure 6.7 has only 9 elements in SoftH,2 (one of which does not satisfy ConCov).
The two queries in Figure 6.8 both have 25 candidate bags, 16 of which satisfy ConCov.
Accordingly, it takes only a few milliseconds to enumerate all decompositions ranked by
cost in these examples.
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Figure 6.9: Performance over qhto over the Hetionet using PostgreSQL as a backend.
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Figure 6.10: Performance over q2hto over the Hetionet using PostgreSQL as a backend.
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Figure 6.11: Performance over q3hto over the Hetionet using PostgreSQL as a backend.
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Figure 6.12: Performance over q4hto over the Hetionet using PostgreSQL as a backend.
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Figure 6.13: Performance over qlb over the LSQB Benchmark using PostgreSQL as a
backend.

6.6 Summary
In this chapter, we have introduced the concept of soft hypertree decompositions (soft HDs)
and the associated measure of soft hypertree width (shw). Despite avoiding the special
condition of HDs, we retained the tractability of deciding whether a given CQ has width
at most k. At the same time, shw is never greater than hw and it may allow for strictly
smaller widths. Most importantly, it provides more algorithmic flexibility. Building on
the framework of candidate tree decompositions (CTDs), we have demonstrated how to
incorporate diverse constraints and preferences into the decomposition process, enabling
more specialised decompositions that take application-specific concerns beyond width
into account. We have implemented an end-to-end pipeline, enabling the use of these
techniques to rewrite queries automatically. By performing experimental evaluation, we
confirm that this approach improves the quality of decompositions and thus leads to
performance gains in practice.
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CHAPTER 7
Conclusion

In this final chapter, we summarise the main contributions of this thesis. Finally, we
discuss potential future research directions identified in the course of our work.

7.1 Summary of Contributions
We began our work in Chapter 4 by exploring the effectiveness of Yannakakis-style
query evaluation in mainstream relational DBMSs. In the course of this investigation,
we have introduced a class of queries – 0MA queries – which are particularly well
suited for structure-guided query processing. We presented a rewriting-based approach
towards Yannakakis-style query execution. Our experiments on multiple DBMSs indicated
significant potential for speeding up join processing on hard instances, while at the same
time showing that there are major hurdles towards practicability in general. Addressing
the newly identified challenge that rewriting-based Yannakakis-style query execution
delivers performance gains only in some cases but not in all cases, we framed the
choice between Yannakakis-style optimisation and conventional DBMS evaluation as an
algorithm selection problem. We developed a decision procedure, which, across multiple
popular RDBMSs, delivers substantial performance improvements.

In Chapter 5 we approached the challenge of broadening the class of queries efficiently
answerable without materialising join results while finally bringing an implementation
into the core of a query processing system. To extend the 0MA class identified in
Chapter 4 towards more practical aggregate queries, we first weakened the restrictions by
eliminating the set-safety condition, thereby introducing the class of guarded aggregate
queries. Furthermore, we extended the class even further by weakening the notion of
guardedness to piecewise-guardedness, obtaining the class of piecewise-guarded aggregate
queries. We performed an integration into the query optimiser of Spark SQL, allowing
for the efficient execution of piecewise-guarded queries. Through performance evaluation
over 5 benchmarks, we confirmed a wide applicability of the optimisations as well as
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significant performance improvements without introducing overhead. Finally, we made
significant steps towards covering arbitrary unguarded ACQs where materialisation of
intermediate results cannot be avoided completely. By introducing the new physical
operator GroupAggJoin and integrating it into the optimisation, we can avoid large
amounts of materialisation. We introduced a new benchmark for unguarded aggregate
queries and experimentally confirmed the effectiveness of this approach on unguarded
queries. After observing that Yannakakis-style query processing can be successfully
applied to vast amounts of ACQs, we shifted our attention towards the hard class of cyclic
queries in Chapter 6. We have introduced the concept of soft hypertree decompositions
(soft HDs) and the associated measure of soft hypertree width (shw). Despite avoiding
the special condition of HDs, we retained the tractability of deciding whether a given
CQ has width at most k. At the same time, shw is never greater than hw and it
may allow for strictly smaller widths. Most importantly, it provides more algorithmic
flexibility. Building on the framework of candidate tree decompositions (CTDs), we
have demonstrated how to incorporate diverse constraints and preferences into the
decomposition process, enabling more specialised decompositions that take application-
specific concerns beyond width into account. We have implemented an end-to-end pipeline
making these optimisations work seamlessly with standard DBMS. The experimental
evaluation confirms that this approach can yield significant performance gains in practice,
without introducing new computational bottlenecks.

7.2 Future Work
The work of this thesis raises several interesting future lines of research.

In our work in Chapter 5, we extended the implementation to unguarded ACQs via the
GroupAggJoin operator, which still requires us to materialise some joins. By introducing
the new benchmark JOBUnguarded, and evaluating the implementation on it, we noticed
that queries with up to ≈ 5 unguarded attributes can be reliably optimised via this
approach. However, beyond this threshold, while performance is not degraded, there is no
strong outperformance. An interesting topic for future research would be to investigate
more closely in which cases this approach is likely to outperform the baseline. This
might again lead to similar ideas as in Chapter 4, as cost estimation could help make
this decision.

Currently, unguarded aggregate expressions, such as SUM(a*b), are handled by considering
them in the same way as group by conditions, such as GROUP BY a, b. While still
performing well, this approach is not the best we could do. For aggregations over
attributes which come together at one node in the tree, there is no need to propagate
them all the way up to the root. Therefore, it would be an interesting optimisation to
perform the aggregations earlier.

Executing ACQs along a join tree as opposed to performing a sequence of binary
joins could have great benefits for distributed query processing, where data transfer
is expensive. Unfortunately, Spark SQL itself is not very effective at distributed joins.
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Possibly, Yannakakis-style execution could be integrated more effectively into other
distributed query engines or possibly parallelized implementations on a single machine.

Going beyond purely conjunctive queries, benchmarks often contain unions of conjunctive
queries, inequality conditions, or other non-equality comparisons such as range conditions.
It is an interesting topic for research to extend Yannakakis-style query execution to these
cases.

The logical next step for the implementation introduced in Chapter 6 is to better explore
cost measures and constraints. A further valuable extension would be to combine the
techniques of Chapter 6 with an implementation into a system such as the extension of
Spark SQL introduced in Chapter 5. This would remove the overhead of the external
rewriting. Furthermore, a combination with machine-learning based algorithm selection
as applied in Chapter 4 could possibly also be worthwhile.
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Overview of Generative AI Tools
Used

ChatGPT (GPT-5 and older versions) and Claude (sonnet 4.5 and older versions)
were used for LaTeX questions, table generation, minor suggestions for text rephrasing
(avoiding repetitions, suggesting synonyms, etc). Claude Code was used for data analysis,
data transformation, and for generating code to create the dataset of unguarded queries.
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