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Abstract
Strongly interacting Fermi gases constitute a very challenging and interesting area within
many-body physics and have received a tremendous amount of theoretical and experi-
mental attention. Especially in the last decade, when it became possible to probe low-
dimensional, ultracold atomic gases experimentally, many new approaches were devel-
oped to understand the physics of reduced dimensionality.
In this work, we set out to characterize the ground-state of interacting Fermi gases in one
and two spatial dimensions. We calculate quantities across a wide range of interaction
strengths and particle numbers, in order to characterize the crossover from few- to many-
body physics. Although numerous methods exist to treat aspects of the one-dimensional
(1D) case analytically, there currently is no known method to extract results from two-
dimensional (2D) systems in such a way. We therefore need to address this problem
numerically and choose to treat the problem by means of Quantum Monte Carlo (QMC)
methods. Specifically, we calculate quantities on the lattice, using an auxiliary field de-
composition, closely related to methods typically used in lattice-QCD calculations.
In the first part of this work, we introduce the physics of Fermi gases. Furthermore, we
provide an overview of the necessary knowledge and definitions needed to understand this
work. In the second chapter, the concept of stochastic integration is introduced. Starting
at the basics of Monte Carlo integration, we arrive at the specific algorithms used in this
work. Subsequently, we present results for the ground-state of 1D and 2D systems in
chapters 3 and 4, respectively. We focus on equal-time density matrices as well as en-
ergetics in both cases. Finally, we conclude our work in the last chapter and point out
possibilities to extend our research in the future.



Kurzfassung
Stark wechselwirkende Fermi-Gase verkörpern einen sehr anspruchsvollen und interes-
santen Teilbereich der Vielteilchenphysik. Aufgrund der vielfältigen Effekte haben diese
Systeme enorme Aufmerksamkeit erhalten, sowohl theoretisch also auch experimentell.
Durch die Weiterentwicklung experimenteller Techniken in den letzten zehn Jahren wurde
es möglich, niedrigdimensionale Systeme zu untersuchen. Im Zuge dessen wurden viele
neue Konzepte und Methoden entwickelt um die Physik hinter der reduzierten Dimen-
sionalität zu verstehen.
Diese Arbeit beschreibt den Grundzustand wechselwirkender Fermi-Gase in ein und zwei
räum- lichen Dimensionen. Wir führen Berechnungen für schwach bis stark gekop-
pelte Systeme durch und untersuchen zudem den Übergang von Wenig- zu Vielteilchen-
physik. Während für den eindimensionalen Fall Methoden existieren, die es erlauben,
Resultate analytisch zu berechnen, gibt es für zweidimensionale Systeme bis dato keine
Möglichkeit, solche Berechnungen durchzufürhen. Aus diesem Grund sind wir an eine
numerische Herangehensweise gebunden, welche in unserem Fall mit Quanten-Monte-
Carlo (QMC) Methoden durchgeführt wird. Im Speziellen berechnen wir physikalische
Größen auf einem Gitter und benützen eine Aufteilung der auftretenden Integrale mittels
Hilfsfelder - eine Technik die aus Gitter-QCD Berechnungen bekannt ist.
Im ersten Teil dieser Arbeit werden wir in die Fermi-Gase einführen und deren einzi-
gartige Eigenschaften diskutieren. Außerdem geben wir einen Überblick über die nötige
Theorie, um die ge- zeigten Resultate zu verstehen. Im zweiten Kapitel wird das Konzept
der stochastischen Integration beschrieben, beginnend mit grundlegenden Konzepten der
Monte-Carlo Integration bis hin zu den speziellen Algorithmen, welche für diese Ar-
beit angewendet wurden. Nach dem theoretischen Teil zeigen wir Ergebnisse für den
Grundzustand von 1D- und 2D-Systemen in den Kapiteln drei und vier. Wir präsentieren
Einteilchen-Dichtematrizen und Impulsverteilungen für beide Fälle, außerdem Zweiteilchen-
Dichtematrizen für eindimensionale Systeme. Für den zweidimensionalen Fall wird überdies
die Grundzustands- und Wechselwirkungsenergie behandelt. Abschließend geben wir
eine Zusammenfassung über die vorliegende Arbeit und diskutieren Möglichkeiten zur
weiteren Behandlung fermionischer Systeme.
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Chapter 1

Introduction & general formalism

“ In eighteenth-century Newtonian mechanics, the three-body problem
was insoluble. With the birth of general relativity around 1910 and
quantum electrodynamics in 1930, the two- and one-body problems
became insoluble. And within modern quantum field theory, the prob-
lem of zero bodies (vacuum) is insoluble. So, if we are out after exact
solutions, no bodies at all is already too many!

Gerald E. Brown, [1].”Whenever we set out to explore the physics of real world phenomena, we encounter the
many-body problem. It is inherent to any system that is composed by a large number
of interacting particles. For example, electrons in a solid are repelled by each other via
the Coulomb force, thus their motion can strongly depend on the motion of the other
electrons in the system. Another example is the hadronization, that is the process of the
formation of composite particles (hadrons) from quarks and gluons. Moreover, hadrons
can form bound states (nuclei) by interacting through the residual strong-force, constitut-
ing another non-trivial few-body problem. Last but not least, we mention the experimental
progress on cold atomic gases, featuring subtle many-body effects such as Bose-Einstein
condensation, superfluidity and transitions to Mott insulating states.
Evidently, the many-body problem is a central challenge on the way to understand the rich
variety of effects observed in nature and experiments. The quite pessimistic initial quote
from G.E. Brown captures the “problematic” aspect very well, stating that at the present
time no method is available to describe many interacting particles exactly. Therefore, one
is bound to find approximate approaches in order to calculate physical quantities for a
given system.
Naturally, the easiest “approximation” is to ignore the interaction between particles and
study the dynamics of the system, as if they moved freely. The neglection of electron-
electron interaction, for instance, has led to the Drude model, which was proposed by
P. Drude [2] to explain transport properties in metals. Surprisingly, in spite of the crude
theoretical description, some of the predictions made by this model are in very good
agreement with experiments. However, it is not always a good approximation to neglect
the interaction between particles and therefore further analysis, including the correlation
between particles, has to be done.

1
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A way to account for the effect of particle interaction on physical quantities, is to consider
it as a perturbation to the noninteracting system. One may introduce a perturbation se-
ries in an arbitrary but small parameter, quantifying the discrepancy between the exactly
solvable model and the interacting one. Whenever the perturbative series converges once
can try to expand it up to the desired accuracy and hence, obtain results for any quantity
of interest. Although perturbative methods have been very successful to describe many-
body physics, the approach is only applicable in the weakly interacting regime, where the
screened Coloumb interaction modifies the behaviour of the system only in a controlled
way. This is the case for Fermi liquid metallic systems, whose low energy properties
are given by a renormalization of those of noninteracting electrons. These renormalized
properties can be captured - to a large extent - by perturbation theory. However, materials
with partly filled d- or f-orbitals, for example, are subject to strong correlations between
electrons and therefore require a more sophisticated treatment.
Another way to reduce the complexity of the many-body problem is to rewrite it as a one-
body problem in an effective molecular field, generated by the surrounding constituents
of the system. The effective potential, in which the remaining single particle is embedded,
can be computed in several ways and methods based on this technique are categorized as
mean-field approaches. Beyond the pure mean-field theory a very successful aproach is
the density functional theory (DFT) [3, 4], which describes physical systems as a func-
tional of the local electronic density. The density is not assumed to be uniform and needs
to be determined as a function of the spatial coordinates in order to express the corre-
sponding terms of the Hamiltonian. Thus, the problem of solving a differential equation
for 3N degrees of freedom is reduced to an easier one, depending only on three spatial
coordinates. This approach has been the workhorse of solid-state physics for a long time
and is extremely successful in describing most materials. Effects originating from strong
electronic correlations, however, are still elusive within these methods due to the approx-
imations made for the DFT functionals.
A great improvement in the characterization of strongly correlated materials was achieved
by means of dynamical mean-field theory (DMFT) [5,6]. The approximation made within
this method is to assume that the self-energy is a purely local quantity i.e. momentum-
independent, which is exact in the limit of infinite dimensions [7]. This problem is then
mapped to a so-called impurity problem, which can be solved by various numerical ap-
proaches. Despite the complete neglection of non-local correlations, DMFT has been
applied to many materials with great success, for instance, in describing the Mott metal-
insulator transition [8, 9].
The great variety and success of the discussed methods might suggest that mean-field ap-
proaches are the solution so long sought for. In the present work, however, we want to
investigate the behaviour of strongly coupled fermions in reduced dimensions, where spa-
tial fluctuations beyond mean-field become increasingly important. Although theoretical
studies have been conducted in the early days of many-body theory, the difficulty of their
experimental realization somehow limited their impact. Only when it became possible to
manipulate cold atomic gases in an effective and controllable way, the theoretical explo-
ration of low-dimensional systems started to gain attention again. Roughly twenty years
ago, it became possible to prepare atomic gases at low enough temperatures, such that it
is possible to observe Bose-Einstein condensation (BEC) [10–12]. These first advances
stimulated an enormous amount of further experimental progress within the field of ultra-
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cold quantum gases, which finally led to the realization of quasi-one-dimensional config-
urations in highly elongated traps as well as quasi-two-dimensional systems in pancake-
shaped potentials. The observation of superfluidity in these configurations stiumlated
heavy numerical calculations, in order to understand the pairing-mechanism involved in
the process. Very recent studies especially focus on two-dimensional configurations, since
it is believed that high-temperature unconventional superconductivity is a many-body ef-
fect triggered by the reduced dimensionality.
It is the enhanced influence of thermal and quantum fluctuations, which greatly limits
the accuracy of mean-field approaches in one and two spatial dimensions. Therefore,
alternative methods to describe the physics of these configurations have to be devised.
Indeed, several one-dimensional models can even be treated in an exact fashion, although
heavy mathematical analysis is often required. Among the exactly solvable models, we
find the 1D Hubbard model [13], which becomes intractable in higher dimensions. Un-
fortunately, this is not an exception. In fact, no two-dimensional many-body model is
generally treatable analytically (with the exception of the famous 2D Ising model solved
by L. Onsager [14]), which limits the theoretical study of strongly correlated fermionic
systems to numerical calculations away from mean-field approaches.
In this work, we investigate many-body physics at zero temperature by applying a Quan-
tum Monte Carlo (QMC) method to fermionic systems on a spacetime lattice. While we
should recall that not every QMC calculation is performed without further approximation
we want to emphasize here that the specific approach chosen in this work is in priciple
exact, up to stochasic uncertainties, reducible by improved statistics of the calculations.

1.1 Fermionic systems & the lattice

Systems consisting of large numbers of fermions, commonly referred to as Fermi gases,
are a frequently observed phenomenon in nature. In the thermal equilibrium, their en-
ergy distribution is dictated by the Pauli exclusion principle which is a manifestation of
Fermi-Dirac statistics. Pauli states that, unlike bosons, two fermions cannot occupy the
same quantum state. This implies that even at zero temperature, i.e. the ground-state,
some fermions are in energetically higher states than others. Therefore, in contrary to a
classical ideal gas, a residual finite pressure remains in such a quantum gas at T = 0.
This explains, for instance, the stability of neutron stars against the gravitational pull of
its mass.
In this work we explore essential properties of the ground-state of interacting Fermi gases.
Especially we focus on dilute Fermi systems characterized by a low particle-density. Ap-
proriate models can be chosen, such that the constraint

r0 � k−1
F (1.1)

is fulfilled, where r0 defines the effective range of the interparticle potential and kF de-
notes the Fermi wavevector, which is a measure for the density of the system. In this
case, where the interparticle spacing is much larger than the interaction range, three- and
higher-body scattering effects may be neglected. This allows us to accurately model such
a gas of fermions by a small number of parameters describing the physics of two-body
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collisions with s-wave scattering. It can be shown, in fact, that the dynamics of such
systems does not depend on the exact form of the interaction as long the above constraint
is not violated. The interaction between fermions in this regime is thus fully determined
by the associated s-wave scattering length aS and, together with the Fermi wavevector,
it is the only physical parameter entering the calculation in homogenuous systems: The
physics in homogenuous dilute Fermi gases is therefore completely described by the di-
mensionless quantity (kFaS)−1.
Such systems have been the target of many theoretical studies in recent years, ranging
from one to three spatial dimensions across many interaction strengths and system sizes.
In most cases however, the calculations have been performed in the so-called thermody-
namic limit (TL), which is achieved by taking the particle numberN →∞ and the volume
V → ∞ at a constant particle density n = N/V . While these calculations provide an
important connection to macroscopic observables in classical statistical mechanics, it is
often interesting to investigate few-body effects, for example in light nuclei, consisting
of a small number of nucleons. Furthermore, within a technique called the virial expan-
sion [15] the behaviour of many-body systems can be linked under certain conditions to
the correspoding few-body physics. Specifically, it has been shown that two-component
Fermi gases can effectively be expressed by solutions of the two- and three-body prob-
lem, at least above a certain cutoff temperature [16,17]. By approaching the ground-state,
however, where the Fermi gas becomes increasingly degenerate, this technique does not
yield accurate results any more and higher-order contributions are needed to explain the
physics.
These considerations explain why the few-body regime of strongly interacting fermions
is very interesting to study. We chose to tackle this problem via QMC-methods, as in-
troduced in the next chapter. We work in the canonical ensemble with the temperature
fixed to T = 0, whereas the particle content and the volume of the system are varied to
characterize the crossover from few to many particles. The Hamiltonian for the systems
in d dimensions reads as

Ĥ =
∫
ddx

− ∑
s=↑,↓

ψ̂†s(~x)~
2∇2

2m ψ̂s(~x) + g n̂↑(~x)n̂↓(~x)
, (1.2)

where ψ̂†s(~x) and ψ̂s(~x) are fermionic creation- and anihilation operators, respectively.
Further, the density-operator n̂s is defined by n̂s ≡ ψ̂†s(~x)ψ̂s(~x) and m denotes the mass
of the particles.
It is pointed out earlier, that we perform our calculations on a spatial lattice. Therefore,
we rewrite the integral in the above expression into a sum over all lattice sites i:

Ĥ = `d
∑
i

− ∑
s=↑,↓

ψ̂†s,i
~2∇2

2m ψ̂s,i + g n̂↑,in̂↓,i

, (1.3)

where the spatial dependence of the occuring operator is denoted by the subscript i and
the factor `d denotes the volume element originating from the lattice spacing `.
Specifically, we place the system on a lattice with sides L, corresponding to a linear grid
in one dimension and a square lattice in two dimensions. Thus, the reciprocal lattice,
i.e. momentum space, is also discrete with a lattice spacing of ~ 2π/L. Therefore, two
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momentum cutoffs are introduced at low and high momenta, respectively. The former is
called infrared (IR) cutoff and originates from the finite size of the lattice

~Λ0 = ~
2π
L
, (1.4)

while the latter ultraviolet (UV) cutoff is a consequence of the lattice spacing

~kc = ~
π

`
. (1.5)

The kinetic energy term T̂ in Eq. (1.3) may now be written in momentum space, as

T̂ = `−d
∑
k

∑
s=↑,↓

~2k2

2m n̂s,k, (1.6)

where n̂s,k denotes the density-operator in momentum space and the sum is over all dis-
crete momenta k. Hereafter, we will omit any factor of `±d, corresponding to the specific
choice of units ` = 1.
Evidently, discretization errors affect any discrete lattice calculation. Therefore, the IR-
cutoff needs to be controlled by the choice of a sufficiently small lattice spacing while the
the UV-cutoff sets a lower bound for the size of the grid. The latter effect can be further
mitigated by the use of a quadratic dispersion relation in momentum space

εk = ~2k2

2m , (1.7)

which is defined for momenta smaller than the UV-cutoff. This distinguishes our model
from the Hubbard model, where typically a discrete derivative in real space is used, lead-
ing to a dispersion law of the form

εk ≈
d∑
i=1

cos(ki`) (1.8)

The drawback of the “exact” dispersion relation in Eq. (1.7) is the necessity to switch
between real and momentum space via fast Fourier tranform (FFT).
This discussion about the calculation on a lattice merely covers the basic aspects one
needs to consider. Of course, effects caused by discretizing the calculation need to be ex-
tensively studied. A detailed discussion of the so-called discrete variable representation
(DVR), which represents the basis of our lattice approach, as well as associated discretiza-
tion errors can be found in Refs. [18,19]. Furthermore, an overview of our method in three
dimensions is provided in Ref. [20].

1.2 Partition functions & observables

In order to characterize the zero temperature behaviour of a system we need to compute
expectation values of observables. In a thermodynamically stable many-body system
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these expectation values are defined as

〈O〉 = 〈Ω| Ô |Ω〉 . (1.9)

Here, |Ω〉 denotes the ground-state wavefunction, which is not a-priori known for inter-
acting systems. One way to obtain |Ω〉 is to assume an inital state |Ωo〉, called a trial
wavefunction, and project to the true ground-state of the system:

|Ω〉 = lim
β→∞

Û(β, 0) |Ω0〉, (1.10)

with the definition of the imaginary time evolution operator Û

Û(τ ′, τ) ≡ e−(τ ′−τ)Ĥ . (1.11)

The convergence to the ground-state is guaranteed as long as the initial guess state |Ω0〉
has a nonvanishing projection to |Ω〉. In this work, we take the trial wavefunction to be of
the form of a Slater determinant in order to account for the antisymmetric nature of the
fermion wavefunction. The Slater determinant is constructed from single-particle orbitals
{φk}, which in the case of periodic boundary conditions correspond to plane waves with
momentum k. We note that this is not the only possible trial wavefunction and in fact,
faster convergence can be achieved for some coupling strengths with an improved choice
of the guess state, as discussed in the following chapter.
The expectation value of an arbitrary operator at finite imaginary time β can be written as

Oβ ≡
〈Ω0| Û(β, β/2)ÔÛ(β/2, 0) |Ω0〉

〈Ω0| Û(β, 0) |Ω0〉
, (1.12)

and it converges to the ground-state expectation value in the limit of infinite β:

〈O〉 = lim
β→∞

Oβ. (1.13)

The denominator in Eq. (1.12) defines the partition Function

Z ≡ 〈Ω0| Û(β, 0) |Ω0〉 , (1.14)

which we can use to obtain observables through insertion of a source term. Therefore, we
rewrite the Hamiltonian to

Ĥ → Ĥ + ηO, (1.15)

where η is the coupling strength for an arbitrary operator Ô of our system. To obtain the
expectation value, we simply take the derivative at vanishing coupling and normalize with
Z:

〈O〉 = 1
Z
∂Z
∂η

∣∣∣∣∣
η=0

= ∂ lnZ
∂η

∣∣∣∣∣
η=0

. (1.16)
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Specifically for the ground-state energy, we can write

E ≡ 〈H〉 = −∂ lnZ
∂β

. (1.17)

So far, we have discussed the general formalism to obtain any observable of interest. The
remaining problem is the actual evaluation of these expresseion which boils down to the
determination of the partition function. From Eq. 1.2, we identify the kinetic energy as

T̂ = −
∑
i

∑
s=↑,↓

ψ̂†s,i
~2∇2

2m ψ̂s,i (1.18)

and the potential energy term as

V̂ =
∑
i

n̂↑,in̂↓,i. (1.19)

It is obvious that the former is a one-body operator which is diagonal in momentum space.
The potential energy is represented by a two-body operator, which marks a difficulty in
our calculation, since V̂ is not trivially diagonalizable in any basis. To deal with this in-
stance we introcude the auxiliary field quantum Monte Carlo (AFQMC) formalism, which
is described in Chap. 2.

1.3 Density matrices & momentum distribution

To fully describe a many-body system it is essential to study the correlation between
particles at different spatial coordinates. In this work we focus on density matrices at
equal imaginary times as well as the associated momentum distribution. A discussion
on general properties of density matrices is omitted at this point, instead it is referred to
Ref. [21] for a thorough introduction.
Our main observable of interest is the one-body density matrix, defined as

ρ1(~x, ~x′) ≡ 〈ψ†s(~x)ψs(~x′)〉 (1.20)

It can be interpreted as the anihilation of a particle at the spatial coordinate ~x′ and an
simultanuous insertion of an identical particle at ~x. Because we limit ourselves to the
study of unpolarized systems, i.e. an equal number of fermions in every spin-flavour, the
density matrices for different species coincide:

〈ψ†↑(~x)ψ↑(~x′)〉 = 〈ψ†↓(~x)ψ↓(~x′)〉. (1.21)

To compute the above expectation value we can introduce a source term according to Eq.
(1.15) and write

〈ψ†s(~x)ψs(~x′)〉 = ∂

∂η
〈Ω|eηψ

†
s(~x)ψs(~x′)|Ω〉

∣∣∣∣∣
η=0

. (1.22)
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Figure 1.1: Representation of spatial one-body correlations (left) and on-site two-body
correlations (right).

This form is used in the next section to derive a suitable expression for our QMC approach.
Further, the one-body density matrix is connected to the momentum distribution via

nk =
∫
ddx ddx′ ρ1(~x, ~x′)eik(x−x′), (1.23)

where d corresponds to the dimension. Additionally, we compute the zero-size pair den-
sity matrix, defined as

ρ2(~x, ~x′) ≡ 〈ψ†↑(~x)ψ↑(~x′)ψ†↓(~x)ψ↓(~x′)〉, (1.24)

which encodes information about closely bound pairs consisting of two particles of oppo-
site spin on the same lattice site. Similarly to the one-body density matrix, we can imagine
a simultanous anihilation and creation of a fermionic pair at ~x′ and ~x, respectively. Such
correlations are schematically depicted in Fig. 1.1.

1.4 The contact parameter

The physics of dilute Fermi gases with short range interactions can be described by uni-
versal relations, since it is largely determined by the s-wave scattering length. The first
derivation of such relations was done by Shina Tan in a series of papers [22–24] roughly
a decade ago and are known as the Tan-relations. The quantity occurring in all of these
relations is called the contact parameter and constitues a central property of such systems.
The contact can be interpreted as a measure of the number of fermion pairs of different
spin which are separated by a small distance and therefore provides information about the
short-range behaviour of the system.
To study its behaviour, one usually works with the contact density C, defined as

C =
∫
ddx C(~x), (1.25)
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which is an intensive quantity and typically computed in the literature. We will exploit
two different relations to extract values for the contact. Firstly, we consider the large
momentum decay of the momentum distribution, which is connected to the contact via

lim
~k→∞

nk = C

~k4
, (1.26)

and is valid for both spin species, as shown by Tan. Therefore, we need to compute
the momentum distribution and perform a fit to the tail of the distribution, as shown in
chapters 3 and 4 for 1D and 2D systems, respectively. Secondly, we use an adiabatic
relation which connects the contact and the change of the total energy of the system with
respect to the inverse scattering length:

C ∝ ∂E

∂a−1 . (1.27)

This quantity is connected to the particle interaction at constant particle number via the
Feynman-Hellman relation

∂E

∂g
= 〈V̂ 〉N, (1.28)

where the bare-coupling g depends on the s-wave scattering length a0 from Eq. 1.27. We
can exploit Eq. 1.28 as a second way to extract values for the contact.
The above relations show the importance of the contact parameter. Further euqations
containing the contact involve a pressure relation, virial theorems and C also connected
to inelastic two-body losses. An extensive review of the contact and further Tan-relations
can be found in Ref. [25].





Chapter 2

Stochastic integration

In the introduction, we have discussed a way to extract observables from the partition
functions of unpolarized Fermi gases at zero temperature, as shown in Eq. (1.16). We
are, however, still confronted with the task of evaluating these expressions, which is the
challenging part of this work. Specifically, in order to be able to diagonalize the in-
teraction operator V̂ we discretize imaginary time and perform a Hubbard-Stratonovich
decomposition of the interaction, following the standard route of auxiliary-field quantum
Monte Carlo (AFQMC) approaches. The price we have to pay is the occurence of high-
dimensional path integrals over the introduced auxiliary fields. As these integrals cannot
be solved analytically, this limits our possibilities to a stochastic approach. In this section
we will show methods to solve such integrals as well as techniques to improve the quality
of the estimates.

2.1 Basic ideas of Monte Carlo integration

In the previous chapter, we have shown how to obtain observables by taking expectation
values using the partition function in a specific way. Expectation values are a statistical
concept and take the generic form:

〈A〉 =
∫
D d~x A(~x)p(~x)∫
D d~x p(~x) . (2.1)

Here, the probability distribution function p(x) has to be non-negative on the integration
domain D but not necessarily normalized via

∫
D d~x p(x) = 1. The integration variable ~x

is written in vector notation to indicate the validity for any dimension. In the following,
however, we will limit ourselves to the one-dimensional notation.
One is able to evaluate such integrals for known probability distributions, e.g. a Gaus-
sian, analytically. For arbitrary or even unknown distributions one is in general not able
to solve the above expression exactly and is therefore limited to a numerical evaluation.
A straightforward approach would be to slice the integration domain into segments of
length ∆xi, calculate the area of these slices by Ai = f(xi)∆xi and sum them in order to
get a value for the integral up to discretization errors. Although this simple deterministic
strategy can be refined in many ways a serious dimensionality problem remains: In order
to integrate over a d-dimensional domain one needs to discretize every dimension sepa-
rately, leading to heavy computational effort since the total number of integration points

11
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grows exponentially in d. Thus, for high-dimensional integrals such as the path integrals
emerging from the AFQMC approach, one still needs to find an appropriate way to ob-
tain a solution. One possibility is to estimate the value of the integral via a stochastic
approach such as Monte Carlo integration, which typically become the preferred method
for a number of dimensions greater than 5.
There are many strategies and algorithms how this can be done for a vast variety of mod-
els. Therefore, we will only present here an introduction to the specific approach of this
work. A very thorough treatment can be found in Ref. [26].

2.1.1 Simple sampling strategies

Let us assume that we want to stochastically estimate an integral of the form (2.1). A
straightforward way, termed the crude method, is to sample N randomly selected points
xi of the integration domain and calculate the weighted mean by

〈A〉MC =
V
N

∑N
i A(xi)p(xi)

V
N

∑N
i p(xi)

, (2.2)

which will play the part of the Monte Carlo estimate 〈A〉MC for now. Here, V denotes the
volume of the integration domain. This estimate is connected to the real value of A via

〈A〉 = 〈A〉MC +O
( 1
Nα

)
, (2.3)

where one still needs to specify the exponent α of N in the scaling of the uncertainty. For
this, we assume a uniform probability distribution with

p(x) = 1
V

(2.4)

which is trivially normalized to 1. Therefore, expression (2.2) simplifies to

〈A〉MC = 1
N

N∑
i

A(xi). (2.5)

In order to get an estimate for the error, one can exploit the central limit theorem. In one
of its many variants it can be formulated as following: For a sequence of independent and
identically distributed random variables the error ε = 〈A〉MC−〈A〉 of the estimate follows
a normal distribution with variance σ2

MC:
√
Nε→ N(0, σ2

MC). (2.6)

If we now define the variance of the Monte Carlo estimate as

σ2
MC = 〈A2〉MC − 〈A〉2MC, (2.7)
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we can identify

σ2
ε = σ2

MC

N
(2.8)

and therefore have determined the exponent from expression (2.3) to be α = 1
2 in the

uniformly distributed case. In principle, such a calculation can be done for any given
distribution it is in general not so straightforward to see and is therefore omitted at this
point. We further note that this is just an estimate for the real error, since the error of the
Monte Carlo estimate might not follow a Gaussian distribution due to systematic effects.
Assuming that this is the case for the moment we can see the poor scaling of such a cal-
culation: In order to incerase the accuracy by one decimal place one needs to obtain 100
times as many samples as before. Clearly, this will eventually limit the achievable pre-
cision and one needs to exploit more sophisticated strategies to achieve lower errors at a
comparable number of samples. Such methods are discussed in the upcoming sections.

2.1.2 Importance sampling

A first approach to reduce the variance in Monte Carlo calculations besides increasing
the statistics is to sample the random configurations in a more favorable way. To do so,
we want to draw the random variables from an arbitrary distribution g(x) unlike before,
where we assumed the probability distribution p(x) to be uniform. If g(x) is chosen ap-
propriately, we can diminish the amount of samples drawn from regions which are not
significant to the value of the integral, hence the name Importance Sampling. Quantita-
tively, we need to reweight the probability distribution as:

〈A〉 =
∫
D dxA(x)p(x)∫
D dxp(x) = 〈A〉 =

∫
D dx

A(x)p(x)
g(x) g(x)∫

D dx
p(x)
g(x)g(x)

(2.9)

which corresponds to the absorption of the weight g(x) into the random numbers. This
changes the variance, which now reads

σ2
ε = 1

N
σMC

(
Ap

g

)
(2.10)

where the notation σMC(Ap
g

) indicates the dependence on the reweighted distribution. It
can be shown that the optimal choice for the new probability distribution is given by

g(x) = |A(x)p(x)|∫
D dx|A(x)p(x)| (2.11)

This minimum in the variance corresponds to the probability distribution that follows the
functional A(x)p(x) as closely as possible.
Unfortunately, this method has a major drawback in many cases: for the generation of
random numbers according to a desired probabilty distribution g(x), we need to know the
inverse of the cumulative distribution function G(x). This becomes especially problem-
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Figure 2.1: Calculation of π as an example for hit-or-miss sampling.

atic for QMC calculations, where we use the partition function Z as the weight. Comput-
ing Z and inverting it constitutes a very challenging problem and therefore would result
in an equally heavy or even heavier numerical workload, if possible at all. For this reason,
we need to introduce methods to overcome these difficulties, which is done in the next
sections.

2.1.3 Rejection sampling

An algorithm to sample an arbitrary distribution function without having to compute the
cumulative distribution is provided by rejection sampling. This concept is the basis of the
Metroplis algorithm discussed below.
Assume that sampling the target distribution function p(x) is very difficult. The main
idea behind rejection sampling is to use a proposal distribution g(x) which fulfills the
constraint

p(x) < Mg(x) (2.12)

and is easier to sample than p(x). Here, M denotes a non-negative but finite constant.
As a first step, we sample a random point xi according to the proposal distribution. Next,
we uniformly draw a value u from the interval [0, 1] and accept the value if it fulfills the
constraint

u <
g(x)
Mp(x) , (2.13)

i.e. we only accept values that fall below the target distribution and therefore sample
according to p(x).
A simple, yet very prominent example of rejection sampling is the calculation of π, as
depicted in Fig. 2.1: Following the strategy described above, one counts how many of the
corresponding coordinates in the xy-plane fall below the curve. This allows us to estimate
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π by calculating

π ≈ 4Nh

N
, (2.14)

where N is the total number of random coordinates and Nh counts the ones that hit the
target.
This method constitutes an improvement to the previously discussed concepts, but still
suffers from a dimensionality problem. To generalize our example, we now want to cal-
culate the volume of a hyper-sphere in d-dimensions. The largest contribution to its value
for large d originates from the vicinity of the surface which, when sampling uniformly
along the “radius”, leads to a large amount of rejects, thus an increased numerical effort.

2.1.4 Markov chains, detailed balance & ergodicity
In order to describe a stochastic process, e.g. a random walk in some configuration space
C, it is sometimes sufficient to consider only the current configuration to calculate the
future state of the system. This corresponds to a loss of memory for earlier configurations
and such a sequence of random variables is called a Markov chain. We can model such
a random walk as jumps from a configuration x to a configuration x′, with the transition
probability t(x → x′). Then the probability to find the system in the state x, when it
previously was in the state x′, is given by

p(x|x′) = t(x→ x′)p(x′). (2.15)

This sequence is designed to asymptotically reach the probability distribution p(x) if the
detailed balance constraint is satisfied, that is

t(x′ → x)p(x) = t(x→ x′)p(x′), (2.16)

which corresponds to the reversibility of the chosen path. Furthermore, the principle of
ergodicity should also be fulfilled, meaning that every state can be reached with a finite
number of jumps. In other words, if the system is ergodic no region of the configuration
space will be neglected. Then, the Monte Carlo average 〈A〉MC converges to the true
expectation value 〈A〉 of the desired observable:

lim
N→∞

〈A〉MC → 〈A〉. (2.17)

2.1.5 Metropolis algorithm
Although a state from the configuration space C might have a complicated structure it is
in principle straightforward to construct a random sample from scratch. Computationally,
on the other hand, the creation of a single state implies many operations, accumulating to
a significant computation time when the process is iterated for every new configuration. In
order to keep the numerical effort at a minimum, one can exploit the properties of Markov
chains and combine it with the rejection sampling strategy discussed above, which is
the main idea behind the Metropolis algorithm [27, 28]. Starting out from a randomly
generated state, one may proceed by updating the configuration, e.g. by changing the local
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value of an auxiliary field introduced in Sec. 2.2, and accept it with a certain probability
depending on the current state of the system.
In order to compute the value of an observable O, again a number of N samples have to
be selected according to the desired distribution function. Then we can calculate

〈O〉MC = 1
N

∑
N

O(Σ) (2.18)

where Σ denotes a state from the configuration space C. We assume that such a state
collects every possible variable available in the system. The remaining problem is to
produce the states Σ according to the desired probability distribution p(Σ).
In practice, one starts out with an inital state Σ and picks out a number of M random
variables, e.g. values of spatial auxiliary fields, for which the numerical value will be
altered. An updated state Σ′ is obtained by this updated process and the probability to
accept this new configuration is given by

p = min
(

1, p[Σ
′]

p[Σ]

)
. (2.19)

The above expression states that the new configuration is accepted if it is more probable
than the old one or accepted with a certain probability if it is less likely. This corresponds
to a random walk in configuration space where we use the intermediate steps as samples
to obtain an expectation value for the desired observable. The configurations created by
this procedure follow the desired probability distribution p(Σ) in the limit of N →∞.
The benefit from this approach is that we do not have to build a new state for every sample
but rather update a number of variables and use the existing structure to save computation
time. Of course, one has to be very careful upon performing such random walks, since the
finite number of local updates evidently limits the distance one can move in configuration
space. In the limit of only one local update, in fact, it could be very hard to move away
from a local minimum, i.e. ergodicity might be violated, which would result in a bias of
the obtained estimate. Hence, for all calculations the choice of the sweep-size M needs
to be done carefully in order to get accurate results.

2.2 Quantum Monte Carlo

After the introduction of basic concepts of Monte Carlo integration, we will now focus
on the way to evaluate the expressions previously obtained in Sec. (1.2). We will, how-
ever, limit ourselves to consider the specific problem of interest in this work. For a more
sophisticated treatment of lattice quantum Monte Carlo methods see Refs. [30, 31].
We start here by recalling the definition of the expectation value of an operator at finite
imaginary time from Eq. (1.12):

Oβ = 〈Ω0| Û(β, β/2)ÔÛ(β/2, 0) |Ω0〉
〈Ω0| Û(β, 0) |Ω0〉

, (2.20)
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where |Ω0〉 denotes the initial Slater-determinant as introduced in Sec. 1.2 and the evolu-
tion operator Û(τ, τ ′) is defined as

Û(τ, τ ′) ≡ e−(τ−τ ′)Ĥ . (2.21)

The Hamiltonian Ĥ of the system is given by

Ĥ = T̂ + gV̂ . (2.22)

The kinetic and interaction parts T̂ and V̂ of Ĥ are in general non-commuting, which
makes a simultaneous diagonalization a priori impossible. There exist, however, numer-
ous strategies in order to deal with the computation of the evolution operator Û and hence,
the dynamics of the system. One way to do so is to discretize the imaginary time into small
slices according to a Suzuki-Trotter-decomposition

Û(τ + ∆τ, τ) = e−∆τ T̂2 e−∆τV̂ e−∆τ T̂2 +O(∆τ 3) (2.23)

which corresponds to an approximation of the evolution operator whose error diminishes
with decreasing discretization length

∆τ = β

Nτ

. (2.24)

Details on the derivation of the above expression are shown in App. C. Here we sim-
ply note that methods were devised recently, which overcome the systematic effect of
such a time-discretization. Such methods are often referred to as continuous-time QMC
(CTQMC) methods, see e.g. Ref. [29]. We will, however, work with a discretized time
since we utilize the hybrid Monte Carlo (HMC) approach which is not yet adapted for a
continuous time variable.
Although we have split the Hamiltonian into the kinetic and interaction part, we still have
to deal with the problem that we cannot diagonalize the two-body interaction operator V̂ .
To overcome this difficulty we introduce auxiliary fields σ, which decouple the particles
of different flavour:

e−∆τV̂ =
∫
C
Dσ(~x) e−∆τV̂↑,σe−∆τV̂↓,σ . (2.25)

This is called a Hubbard-Stratonovich transformation and constitutes the basis of a class
of methods called auxiliary-field QMC (AFQMC). In the above expression, Vs,σ are one-
body operators which depend on the Hubbard-Stratonovich field σ(x) and

∫
C Dσ(~x) is

a sum over all possible configurations at a specific time-slice τ . Further, we notice that
the path-integral over all possible auxiliary fields could be done in a discrete way, as a
consequence of Fermi-statistics. We will, for reasons discussed below, use the continuous
notation and refer to App. D for the exact expressions, as well as for further details about
the decomposition of the interaction.
The above decomposition of the interaction allows us to compute the partition function
and observables at the cost of evaluating the introduced path integrals. In other words:
instead of solving one very complicated many-body problem, we reduce it to a large
number of one-body problems in the presence of an external field. The occurring integrals



18 CHAPTER 2: STOCHASTIC INTEGRATION

are extremely high-dimensional, since we introduce one spatial auxiliary variable per
temporal lattice site. In order to evaluate these integrals, we will use the Hybrid Monte
Carlo (HMC) algorithm which will be introduced in Sec. 2.2.2.

2.2.1 Partition function & observables
With the decomposition of the interaction introduced in the previous section, we are now
able to expand the expressions for the partition function as obtained in Sec. (1.2) as

Z ≡ 〈Ω0| Û(β, 0) |Ω0〉 =
∫
C
Dσ(~x, t) P [σ] (2.26)

where we again used the schematic notation of the integral. We note that the integration
now also covers the temporal extent of the lattice. The integrand is the probability measure
defined by

P [σ] ≡ 〈Ω0| Ûσ(β, 0) |Ω0〉 (2.27)

with

Ûσ(τ + ∆τ, τ) = e−∆τ T̂2 e−∆τV̂↑,σe−∆τV̂↓,σe−∆τ T̂2 . (2.28)

Rewriting Eq. (2.27) in terms of the single-particle wavefunctions {φk} yields

P [σ] = (det [Mσ(β)])2 , (2.29)

where

[Mσ(β)]ij ≡ 〈i| Ûσ(β, 0) |j〉 (2.30)

is the single-particle representation matrix of the product operator Ûσ(β, 0). The square
in Eq. (2.29) originiates from the fact that we consider two distinguishable but otherwise
identical species of fermions. This ensures the non-negativity of the integration measure
and therefore avoids an otherwise occuring sign-problem, as it will be descussed more
extensively below.
In the same way, we can rewrite the expression for an arbitrary operator. Eq. (1.12) then
becomes

Oβ = 1
Z

∫
C
Dσ(~x, t) P [σ]O[σ] (2.31)

and we identify

O[σ] = 〈Ω0| Ûσ(β, β/2)ÔÛσ(β/2, 0) |Ω0〉
〈Ω0| Ûσ(β, 0) |Ω0〉

(2.32)

as the contribution to the operator O for a specific value of the auxiliary field σ. As we
are working at finite β, the expectation values in the true ground-state of the system is
only obtained by an extrapolation to infinite imaginary time according to Eq. (1.13).
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Ground-state energy

For the ground-state energy, we can differentiate the partition function with respect to β

Eβ = −∂ lnZ
∂β

= − 1
Z
∂Z
∂β

(2.33)

and rewrite it in terms of the single-particle matrix representation Mσ(β):

Eβ = − 1∫
C Dσ det [Mσ(β)]2

∂

∂β

∫
C
Dσ det [Mσ(β)]2. (2.34)

Using the relation

ln detA = Tr lnA (2.35)

for arbitrary matrices A and perfom the differentiation, we can further rewrite Eq. (2.34)
to

Eβ = − 2∫
C Dσ det [Mσ(β)]2

∫
C
Dσ det [Mσ(β)]2 Tr∂ lnMσ(β)

∂β
. (2.36)

SinceMσ(β) depends on the auxiliary fields, which in turn depend on the time-discretization,
we need to perform the differentiation in τ and get

Eβ = − 2
Nτ

1∫
C Dσ det [Mσ(β)]2

∫
C
Dσ det [Mσ(β)]2 Tr

[
M−1

σ (β)∂Mσ(β)
∂τ

]
, (2.37)

Finally, we can absorb the prefactor 1/Z into the probability measure and obtain a nor-
malized estimator for the ground-state energy:

Eβ = − 2
Nτ

∫
C
Dσ P̃ [σ] Tr

[
M−1

σ (β)∂Mσ(β)
∂τ

]
(2.38)

with

P̃ [σ] = det [Mσ(β)]2∫
C Dσ det [Mσ(β)]2 . (2.39)

The form of this expression allows us to sample the ground-state energy stochastically.
Additionally, it is straightforward to see that the differential operator in Eq. (2.34) sepa-
rates the contributions from the kinetic and the interaction part of the Hamiltonian. There-
fore, we obtain expectation values not only for the total energy of the system, but also sep-
arately for its constituents. This allows us to calculate further quantites, e.g. the contact
parameter, as introduced in Sec 1.4.

Density matrices

We will now compute the estimator for the one-particle density matrix, closely following
the derivation given in Ref. [21]. The one-body density matrix for a specific auxiliary
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field configuration is given by

ρ1,σ(x, x′) = 〈ψ†(x)ψ(x′)〉σ. (2.40)

Here and in the following, the spin-index was omitted for a more compact notation. To
obtain the observable, we again need to perform a path integral over all auxiliary field
configurations σ:

ρ1(x, x′) =
∫
C
Dσ P [σ] ρ1,σ(x, x′). (2.41)

Rewriting Eq. 2.40 with a source term and taking the derivative according to Eq. 1.16
yields

ρ1,σ(x, x′) = ∂

∂η
ln 〈Ω0| Ûσ(β, β/2) eηψ†A(x,x′)ψ Ûσ(β/2, 0) |Ω0〉

∣∣∣∣∣
η=0

(2.42)

where A(x, x′) can be written as |x〉 〈x′|. Now we can exploit some properties of Slater
determinants which are derived in Ref. [21]. Since our Hamiltonian was rewritten such
that only single-partilce operators occur, we are able to use the fact that the application
of an exponential of a single-particle operator on a Slater determinant again results in a
Slater determinant. Further, the contraction of two Slater determinants can be written as
a determinant of the evolved waves

φ1,σ(β) ≡
N/2∏
i=1

φσ,i(β) ≡
N/2∏
i=1

Ûσ(β) |i〉 (2.43)

where |i〉 is a single-particle state. Applying these properties gives

ρ1,σ(x, x′) = ∂

∂η
ln det

[
φ†σ(β/2) eηA(x,x′) φσ(β/2)

] ∣∣∣∣∣
η=0

. (2.44)

Now we can again rewrite this expression via Eq. 2.35

ρ1,σ(x, x′) = ∂

∂η
Tr ln

[
φ†σ(β/2) eηA(x,x′) φσ(β/2)

] ∣∣∣∣∣
η=0

. (2.45)

Applying the differential operator yields

ρ1,σ(x, x′) = Tr
[
M−1

σ (β)φ†σ(β/2)A(x, x′)φσ(β/2)
]

(2.46)

and finally we use the cyclic property of the trace to write

ρ1,σ(x, x′) =
N/2∑
i,j=1

φ∗σ,i(β/2, x) [M−1
σ (β)]ij φσ,j(β/2, x′), (2.47)

whith the definition

φσ,i(β, x) ≡ 〈x| Ûσ(β) |i〉 . (2.48)
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Figure 2.2: Schematic movement in the configuration spaces Cσ and Cπ as performed by
the HMC-algorithm. The left panel shows the propagation of the Hubbard-Stratonovich
fields σ while on the right the evolution of the introduced momentum field π is depicted.
Solid lines represent on-shell propagation from σn(πn) at time tn to σn+1(πn+1) at tn+1,
whereas the dashed lines indicate a discontinuous jump between energy shells. The latter
only occur in the momentum fields, due to resampling at every new configuration of σ.

Eq. 2.47 can now be used to sample the one-body density matrix for particles with equal
spin. Since we performed a HS-transformation, the operators for different spin-species
decouple and we can simply write the zero-size pair-correlation as a product of the corre-
sponding single-particle density matrices:

ρ2,σ(x, x′) =
∫
C
Dσ P [σ] ρ1,σ,↑(x, x′)ρ1,σ,↓(x, x′) =

∫
C
Dσ P [σ] [ρ1,σ(x, x′)]2. (2.49)

2.2.2 Hybrid Monte Carlo

As discussed earlier, the computationally expensive creation of many random samples
from the configuration state is avoided by introducing the Metropolis algorithm. For a
very complicated structure of the phase-space, however, the efficiency of such methods,
often referred to as Deterministic Monte Carlo (DMC), suffers from a very low accep-
tance rate. The obvious solution is to reduce the sweep-size, i.e. to reduce the number
of random local updates. While this raises the acceptance rate, the correlation between
subsequent samples increases, leading to a bias in the computed expectation values. The
competition of sweep-size reduction at a sufficient decorrelation between the samples
have the consequence of a minimal computational cost for a useful configuration, limit-
ing the efficiency of such methods.
A way to reduce the cost for a full sweep is given by the Hybrid Monte Carlo (HMC)
algorithm, introduced in Ref. [32]. Unlike in DMC, where updates of states are done lo-
cally, in HMC an update is done globally, affecting the entire configuration at each point
on the spacetime lattice. The resulting states are then accepted or rejected according to
the Metropolis algorithm. The global update is done by introducing molecular dynamics
(MD) as shown in the following.
As a first step towards the HMC algorithm, we expand the probability measure from Eq.
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(2.26) with a Gaussian-distributed momentum field π:

P [σ, π] = e−
∑

n,τ

π2
n,τ
2 P [σ] (2.50)

The path-integral then becomes

Z =
∫
DσDπ P [σ, π]. (2.51)

The sum in Eq. (2.50) is over all spacetime lattice sites and therefore traces out any de-
gree of freedom of this fictitious field. The resulting multiplicative factor is constant, thus,
does not change the dynamics of the problem. Hence, the probability measures defined in
Eq. (2.27) and Eq. (2.50) are physically equivalent.
Thus far, it might seem counter-intuitive to expand the integration measure by further de-
grees of freedom, which makes sampling even more complicated. The advantage of this,
however, can be understood by inspecting the definition of a corresponding Hamiltonian

HMD =
∑
n,τ

π2
n,τ

2 − lnP [σ] ≡
∑
n,τ

π2
n,τ

2 + Seff[σ], (2.52)

where Seff is an effective action. The introduced integration measure can then be written
as

P [σ, π] = e−HMD (2.53)

allowing us to treat the problem with the classical equations of motion, which allow for a
straightforward to integration:

d

dtMD
σn,τ = πn,τ (2.54a)

d

dtMD
πn,τ = −δSeff[σ]

δσn,τ
(2.54b)

The timescale tMD for the MD-calculation is purely fictitious allowing us to tweak the
parameters such that both accuracy and performance are optimized. For a sufficiently
long trajectory in tMD, a fully updated configuration is generated. Although many meth-
ods exist to integrate the above equations of motion, which are typically very accurate,
there are numerical errors. For this reason we need to verify if the new, globally updated
states correspond to the desired probability distribution, i.e. perform a rejection-check
according to the Metropolis algorithm. The accuracy of the integrators leads to very high
acceptance rates, often in the region of 99%. In order to move between energy shells, we
randomize the introduced momentum-field at the begin of a new MD-evolution, corre-
sponding to a sampling of the π-integral in Eq. (2.51). The random walk in configuration
space is schematically depicted in Fig. 2.2. Additionally, a flow-diagram which contains
an overview of the implemented HMC-method is provided in Fig. 2.3.
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2.2.3 The negative sign problem
To conclude this chapter, we will now discuss the problem of a negative sign in the prob-
ability measure, which is inherent to QMC simulations of fermions. Part of the reason for
the so-called negative sign problem is the Grassmann-nature of fermionic fields, which
fulfill anticommutator relations. Unlike in the bosonic case, where the commutation
of creation- and annihilation operators always yields a positive sign, the corresponding
fermionic anticommutator relations produce an oscillating sign. A straightforward way to
overcome this issue is to include the sign in the calculated observable (p(x) = s(x)|p(x)|)
and then sample the absolute value of the weights:

〈A〉MC =
∑
xA(x)p(x)∑

x p(x) =
∑
xA(x)|p(x)|s(x)/∑x |p(x)|∑

x |p(x)|s(x)/∑x |p(x)| ≡ 〈As〉MC

〈s〉MC
(2.55)

Although reweighting enables the use of Monte Carlo methods the associated statistical
error of the expectation value scales exponentially with increasing particle number due to
the cancellation of the mean sign 〈s〉. This leads to an exponential increase in computation
time to achieve reasonably small errors. In many models it is possible to overcome this
issue by an appropriate choice of parameters, e.g. half-filled (i.e. particle-hole symmetric)
Hubbard model or unpolarized Fermi gases. This, however, limits the explorable physics
greatly and raises the need for a general solution for this problem which is, in fact, NP-
hard [33] and therefore unlikely to be solved.
To demonstrate the sign-problem in our formalism, we write the general form of Eq.
(2.29), lifting the assumption of equally populated spin-species:

P [σ] =
∏
s

detMσ,s(β) (2.56)

where the product includes all spin flavours s. As mentioned above, P [σ] will stay positive
for an even number of species with equal population and attractive interaction. For an
unequal population of the spin states the matrices do not coincide and we can not simply
take the square of the determinant any more. Furthermore, for repulsive interactions, the
matrix contains imaginary elements, which could yield negative contributions even in the
unpolarized system. In such cases the measure is not guaranteed to be non-negative and
therefore Eq. 2.56 does not provide a good probability distribution. A possible extension
is to introduce an imaginary imbalance followed by an analytic continuation in order to
explore a larger region of the associated phase-diagram, as e.g. done in Ref. [34].
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Figure 2.3: Flow Diagram of the discussed QMC method. A random field configuration is
created and globally updated by means of Molecular Dynamics. If the generated interme-
diate step is accepted corresponding observables are calculated. This process is iterated
until a sufficient number of MC-steps is reached. Finally, the MC-average is computed.



Chapter 3

The one-dimensional Fermi gas

In this section we discuss the physics of a nonrelativistic, one-dimensional (1D) Fermi
gas on a lattice at zero temperature. Although the Bethe ansatz technique provides a
way to solve this problem, we choose to use Monte Carlo methods to investigate this
system. In fact, while the first approach is restricted to one-dimensional calculations with
no external potential, the latter does not face this limitation. Moreover, the presented
calculations are not only interesting for themselves, but they also provide a benchmark
for subsequent studies in higher dimensions, as discussed in the next chapter.
In particular, we focus on systems represented by a one-dimensional box with periodic
boundary conditions (i.e. a ring) for an equal number of spin-up and -down fermions to
avoid sign problems. To characterize the response of the system, we calculate the one-
and two-particle density matrices at equal imaginary times. Furthermore, we compare
momentum distributions for a wide range of attractive couplings, from which we extract
the contact parameter and perform a comparison to previous results, wherever possible.
Finally, we will analyze systematic errors mostly originating from the finite lattice size
and effective inverse temperature of the system.

As mentioned in the introduction, low dimensional systems exhibit a fundamentally dif-
ferent behaviour as compared to their more familiar counterparts in three dimensions. The
modified behaviour becomes evident especially in 1D systems, where the Fermi surface
reduces to two points located at ±kF (see Fig. 3.1), with kF being the Fermi momen-
tum. Moreover, the available phase-space for 1D systems is so limited that the concept of
Fermi liquids is no longer applicable due to effects like the Peierls-instability and spin-
charge separation. The elementary excitations in 1D can no longer be interpreted as
quasi-particles, but are rather represented by collective oscillations (i.e. density waves),
which display a radically different behaviour than noninteracting, renormalized fermions
(i.e. Landau quasi-particles).
Although our world is clearly three-dimensional, it is for such a fundamentally different

behaviour that 1D systems are interesting to investigate. Moreover, there are important
experiments and devices, where the electronic motion is effectively confined to 1D. One
very prominent example is the carbon nanotube, which is believed to have many industrial
applications. More importantly, there has been recent experimental progress in confining
ensembles of ultracold atoms to effectively one dimension [37]. The interparticle interac-
tion is then controlled via so-called Feshbach-resonances [36], resulting in the possibility
to study 1D systems ranging from strongly repulsive to strongly attractive interaction.

25
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Figure 3.1: Momentum space for 1D- and 2D-systems with discrete momentum states. In
the 1D case (left), the Fermi surface consists only of the two points at k = ±kF whereas
in 2D systems (right) the fermi surface is continuous, in this case collapsing to a circle
with radius kF .

Theoretically, a variety of methods is available to deal with interacting fermions in 1D. It
is possible, for example, to apply a perturbative approach with the limitation of weakly
interacting systems only. A thorough overview can be found in Ref. [35].
Another, more general approach, is the concept of bosonization, which especially is used
for so-called Tomonaga-Luttinger liquids (TLL) [38, 39], but not limited to such systems.
The main idea behind it is to use bosonic operators to describe fermions, assuming the
equivalence between noninteracting bosons and interacting fermions. The TLL picture
describes the low energy physics of such systems via parameters similar to the Landau
parameters in Fermi liquids. There are, however, systems with non-Luttinger behaviour,
requiring more sophisticated approaches.
Probably the most successful approach to obtain exact solutions for one dimensional sys-
tems is based on the Bethe ansatz [40]. Its foundation is the choice of a particular form for
the 1D wavefunction suitable to obtain the energy eigenspectrum. Although many models
can be solved exactly by exploiting this procedure, they are restricted to systems without
an external trapping potential [41]. Furthermore, the resulting expressions tend to be very
complicated and often require heavy mathematical analysis in addition to extract physical
quantities. In any case, after the initial success of solving the 1D Heisenberg spin chain,
the approach was used to deal with several systems. A review, linking these advances also
to experimental progress, can be found in [42].
Despite the availability of several established methods, we have chosen to tackle this
problem numerically, by means of the QMC-algorithms discussed in the previous chap-
ter. The reasons are several: first of all, this approach is very general and is not restricted
to systems without external potential or zero temperature calculations, like most of the
exact methods. Moreover, this approach allows us to exploit established results from the
literature as a reliable benchmark and therefore justifies a latter application of the method
in more challenging systems, such as higher dimensional models.
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In the following, we will introduce the model with its associated scales, discuss results
for systems in the ground state and draw a compare to results from the literature, where
available.
In 1D we consider the Hamiltonian

Ĥ = −
∑
k

∑
s=↑,↓

~2k2

2m n̂s,k + g
∑
i

n̂↑,in̂↓,i (3.1)

where the first sum ranges over all occupied momentum states k and the latter sums over
all lattice sites i. Although our QMC approach is not limited by these contraints, we will
restrict ourselves to unpolarized systems with two particle species, represented by the use
of a periodic boundary condition and an equal number of particles N/2 in every flavour,
respectively. Furthermore we focus on systems without an external trapping potential.
Corresponding numerical results relying on the same method for harmonically trapped
models, polarized systems, and problems with imaginary chemical potential and mass
imbalance can be found in Refs. [44–46].

3.1 Units, scales & dimensions

As typical for ultracold atomic systems, we work in units such that ~ = m = kB = 1,
where m is the mass of the fermions. With these atomic units and the fact that we work
in 1D, the coupling g in Eq. (3.1) is connected to the 1D s-wave scattering length a0 via

g = 2
a0
, (3.2)

with the dimension of an inverse length. In order to obtain a dimensionless quantity to
describe the physics, we define consistently with the literature,

γ = g

n
, (3.3)

where n = N/L denotes the particle density. In the following, we provide results for
multiple values of γ ranging from the weakly attractive region at γ = 0.2 well into the
strongly interacting regime up to γ = 4.0.
In practice, besides particle number N and the bare coupling g, the effective inverse tem-
perature β and the box-size Nx need to be specified. Although an extrapolation to infinite
β needs to be performed to extrapolate to the true ground state, we rely on previously
used values for β for which the observables of interest are converged [43]. This allows
us to limit the calculations to a few values of β for which we can peform an average to
extract the converged result.
We also note, that energies and momenta will be expressed in units of the Fermi energy εF
and the Fermi wavevector kF in order to present dimensionless quantities. The definitions
read as

εF = 1
2k

2
F (3.4)
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and

kF = π

2
N

L
, (3.5)

respectively. The definition of the Fermi wavevector is dependent on the dimension and
this expression is only valid in 1D.
The lattice-spacing for all subsequent results is set to ` = 1 so that the length of the box is
given by L = `Nx, withNx being the number of lattice sites. As discussed in the previous
section, we discretize the imaginary time intoNτ timesteps via a Suzuki-Trotter decompo-
sition. After a thorough investigation of time-discretization effects, we found it sufficient
to set the temporal lattice spacing to ∆τ = 0.05. In the following, we present results
obtained by calculating 5× 104 auxiliary-field configurations and considering every tenth
state in order to arrive at 5000 decorrelated samples. This allows us to reach sufficiently
small errorbars in the order of 1%− 2%.

3.2 Equal-time density matrices
In the following, we will discuss the one- and two-particle density matrices at equal imag-
inary time for unpolarized systems. The use of periodic boundary conditions and the
absence of external potentials imply spatial translational invariance of the investigated
systems. Therefore, we consider ρn(r) with r ≡ |x − x′| being the spatial distance. Fur-
thermore, we present the data as a function of kFr, in order to eliminate the density scale
set by kF. The dimensionless quantity kFr can be interpreted as a measure for the inter-
particle distances, up to a normalization factor.

3.2.1 One-body correlations
Here we discuss our results for the one-body density matrix ρ1(x, x′) which is defined as

ρ1(x, x′) = 〈Ω| ψ̂†↑(x)ψ̂↑(x′) |Ω〉 = 〈Ω| ψ̂†↓(x)ψ̂↓(x′) |Ω〉 (3.6)

where ψ̂†(x) and ψ̂(x) denote fermionic creation and anihilation operators and |Ω〉 is the
projected ground-state, as introduced in Chap. 1.
In Fig. 3.2 we show ρ1(kFr) for N = 4, 8, 12 and 16 unpolarized fermions on a 1D lattice
with Nx = 80 sites. In the weakly interacting regime, at γ = 0.2, the curves only slightly
deviate from the noninteracting curve derived in App. B. The oscillations are a direct
consequence of the existence of a Fermi surface, which in 1D corresponds to two points
at ±kF. Although the oscillations tend to flatten with increasing coupling they stil prevail
even at strong coupling, indicating that the feature of the Fermi surface is not entirely lost
in this regime. This is further affirmed by the study of the momentum distribution shown
further below.
With increasing coupling the curves tend to be moderately more local, suggesting the
pairing of fermions. In the limit of infinite attractive interaction the form of the density
matrix approaches a delta distribution in the continuum. On the lattice, however, the form
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Figure 3.2: The connected points show the single-particle density matrix ρ1(kFr) normal-
ized by ρ1(0) as a function of kFr for several couplings γ = 0.2, 1.0, 2.0, 3.0, 4.0 and for
the particle numbers N = 4, 8, 12, 16 at fixed system size of Nx = 80.



30 CHAPTER 3: THE ONE-DIMENSIONAL FERMI GAS

of this curve deviates from the delta peak due to the introduced UV-cutoff set by the lattice
spacing.
As mentioned, the curves corresponding to weakly coupled systems very closely resemble
the form sin(x)/x as it is expected for noniteracting fermions in the continuum. There-
fore, we use the expression

ρ1(kFr) ≈
N

2 e
−akFr

sin (kFr)
kFr

(3.7)

to perform a fit to the data. The fit parameter a is used to interpolate across the coupling
strength and is motivated by a similar analysis in 2D. As the coupling increases, it is
expected that the functional form in the above expression becomes increasingly influenced
by the exponential factor which in the limit of a → ∞ shows the anticipated delta peak.
Values for a representative system with N = 12 particles are provided in Tab. 3.1.

γ a σ(a)
0.2 0.05 0.006
1.0 0.061 0.006
2.0 0.111 0.004
3.0 0.224 0.008
4.0 0.316 0.011

Table 3.1: Fit parameter a obtained by fitting Eq. (3.7) to the N = 12 data of Fig. 3.2, as
a function of the dimensionless coupling γ. The rightmost column contains the standard
deviation for the fit parameter. These values of a exemplify the typical numbers obtained
across all particle numbers.

3.2.2 On-site pair correlation
Additionally to the one-body density matrices we will now discuss our results for the
on-site two-body density matrix, i.e. the correlation of zero-size pairs of spin-up and
spin-down fermions. The general definition reads

ρ2(x, x′) = 〈Ω| ψ̂†↑(x)ψ̂↑(x′)ψ̂†↓(x)ψ̂↓(x′) |Ω〉 , (3.8)

describing the insertion of a fermion pair at x and the annihilation of the same pair at
x′. In unpolarized systems the computation of this quantity simplifies greatly since the
on-site two body density matrix is given by the square of the one-body quantity after the
introduction of the auxiliary fields:

ρ2(x, x′) =
∫
C
Dσ P [σ] [ρ1(x, x′, σ)]2 (3.9)

Results for ρ2(kF r) are shown in Fig. 3.3, again for the particle numbers N = 4, 8, 12, 16
and across couplings from γ = 0.2 to 4.0. With increasing interaction strength the



3.2. Equal-time density matrices 31

0.0

0.2

0.4

0.6

0.8

1.0

 0  0.5  1  1.5  2  2.5  3

N = 4

ρ
2
(r

)/
ρ

2
(0

)

kF r

 0  1  2  3  4  5  6

N = 8

kF r

γ = 4.0
γ = 3.0
γ = 2.0
γ = 1.0
γ = 0.2

0.0

0.2

0.4

0.6

0.8

1.0

 0  1  2  3  4  5  6  7  8  9

N = 12

ρ
2
(r

)/
ρ

2
(0

)

kF r

 0  2  4  6  8  10  12

N = 16

kF r

Figure 3.3: Two-body density matrix ρ2(kF r) normalized by ρ2(0) as a function of kF r for
several couplings γ = 0.2, 1.0, 2.0, 3.0, 4.0 and for the particle numbers N = 4, 8, 12, 16
at fixed system size of Nx = 80.
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fermions get more tightly bound annd form stable composite bosons. It can be seen
that these bosons interact repulsively by the slightly more delocalized shape of the curves
with increasing interaction. This agrees well with the observations in Ref. [47], which
state that the ground-state of strongly attractive fermions can be described by a so-called
super Tonks-Girardeau gas (STG).
As apparent from the plots, the results are subject to significantly higher noise, since this
is amplified by taking the square of the observable. In principle, one could use higher
statistics in order to reduce the statistical error and obtain smoother curves. Here, how-
ever, the main interest was to calculate one-body correlations, for which sufficiently small
errorbars can be achieved with a similar effort.

3.3 Momentum distribution

In this section we discuss our results for the single-particle momentum distribution nk
defined as

nk = lim
k→k′

∫ L

0
dx dx′ρ1(x, x′)ei(kx+k′x′) (3.10)

where ρ1(x, x′) denotes the single-particle density matrix, as defined in Eq. 3.6. Since
we are working on a 1D lattice in real space, the corresponding allowed values for the
momenta are discretized to kj = 2πj/L.
In Fig. 3.4, our results for systems of N = 4, 8, 12 and 16 particles at a fixed lattice with
Nx = 80 sites are shown. Further, we investigate the weakly interacting regime starting
at γ = 0.2 and move progressively to the strongly attractive region up to γ = 4.0. In
the limit of the noninteracting case the momentum distribution features a discontiuous
drop at k = kF which is still clearly visible for the weakly coupled curves. States with
momenta k > kF are occupied for increased couplings, however, the curves still feature
a relatively sharp drop above the Fermi wavevector. Although the concept of a Fermi
surface does not apply in 1D, the effect is similar to higher dimensions: below a certain
value of k states are mostly occupied whereas states with higher momenta a much less
likely. Moreover, we observe that this structure is altered only moderately and the Fermi
wavevector still provides the scale in the strongly coupled regime. This shows that even
in the strongly coupled systems, fermion pairing predominantly includes states in the
vicinity of the Fermi points.
As mentioned before, the allowed values for the momentum are discretized here, and the
amount of momentum states below the Fermi surface is proportional to the number of
particles in the system. This limits the resolution of low-density systems (N = 4) and we
therefore can not fully characterize the smoothing in the vicinity of the fermi vector, as it
would be possible with continuous or analytic approaches.

3.4 Contact parameter

We will now present our results for the contact parameter C, which is a measure of the
fermion-pairing in the system. It can be shown analytically [22], that the high-momentum
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Figure 3.4: Momentum distribution nk as a function of |k|/kF for Nx = 80 lattice sites
and particle numbers N = 4, 8, 12, 16. The inset shows the asymptotic behaviour in a
log-log scale, solid curves represent a linear fit used to extract the contact paramter.
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tail of the momentum distribution obeys the law

nk ≈
C

k4 . (3.11)

Considering Eq. (3.11), we can extract C by applying a fit of the form nk = bx4 to
the high momentum part of the momentum distributions obtained earlier. To avoid a
systematic underestimation originating from the plateau at values |k| < kF , we typically
consider the region |k|/kF & 2.0 for the fits, which is remarkably close to the value used
in studies for 3D systems [48]. In principle there should not be any further constraints
on the momentum tail but, as evident from the insets of Fig. 3.4, the asymptotic part
of the momentum tail is subject to heavy noise due to lattice artifacts. Therefore, we
need to chop off this part of the decay at |k|/kF ≈ 8.0 in order to stabilize the fitting
procedure. In Fig. 3.5 we show the contact density as a function of the dimensionless
coupling γ. We see a rising contact density as the attractive coupling increases, which
reflects the expectation to find more tightly bound pairs in strongly interacting systems.
Furthermore, C is compared to results calculated in an earlier study using the Feynman-
Hellman relation discussed in Sec. 1.4. In general, we observe a good agreement between
the methods, although our result differs slightly in the strongest coupled case. This, again,
is an effect originating from the fact that we work on the lattice, which especially becomes
problematic in the strongly coupled regime due to the achievable resolution for tightly
bound pairs.
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3.5 Finite volume effects
A very important point to consider in numerical calculations is the finiteness of the ob-
servable systems. Although the infinite volume can be mimicked - to a certain extent -
by the use of periodic boundary conditions, one still needs to perform extrapolations to
obtain the desired physical quantity. In Fig. 3.6 we show this effect in the momentum
distribution for two representative systems of N = 16 particles. As apparent from Fig.
3.6, there is no noticable finite volume effect for systems with γ set to 0.2, representing
the free case up to a very small deviation. In the strongly interacting regime on the other
hand, the finite volume effect is more pronounced, yet straightforward to control. Start-
ing out at Nx = 20, gradually higher volumes were taken into account until a sufficient
convergence at a system size of Nx = 80 was achieved.
Evidently, the momentum distribution is not the only quantity influenced by finite size ef-
fects. Other computed quantities, such as the density matrices, however, feature the very
same type of convergence and, hence, will not be considered separately at this point.

3.6 Finite imaginary time
As mentioned in the beginning, we evaluate expectation values up to a finite value of the
imaginary time, which would correspond to a finite effective inverse temperature. Since
our approach exploits an inital guess state (in our case taken to be a Slater-determinant)
and projects to the ground state, we need to make sure that the obtained results are fully
converged to the limit β → ∞. In Fig. 3.7 we show this effect for two systems in the
weakly and strongly interacting regime. In order to minimize computational effort, the
lower bound of βεF was chosen to be 0.65, as motivated by results for the ground state
energy from Ref. [43]. Again, as expected, the (almost) free case at γ = 0.2 shows no
dependence on β and is converged almost immediately, whereas strongly interacting sys-
tems need longer projection times to be converged to the approriate limit. As depicted in
Fig. 3.7, we find a reasonable convergence for βεF = 2.5 in the latter case and therefore
we use this value throughout this work.
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Chapter 4

The two-dimensional Fermi gas

In a similar fashion as for the 1D case, we will now analyze the ground-state of nonrel-
ativistic, two-dimensional (2D) Fermi gases on a lattice. In particular, we focus on the
crossover from Bardeen-Cooper-Schrieffer (BCS) pairing in the weakly coupled regime
to Bose-Einstein condensation (BEC) on the strongly interacting side.
As discussed before, 1D models can be treated effectively by numerical means and some-
times are even solvable analytically. On the other hand, mean-field theory can accurately
capture results for many aspects of the physics in three- or even higher-dimensional sys-
tems, because the effect of correlations beyond mean-field diminishes with increasing di-
mension. Two-dimensional systems represent, thus, the challening middleground between
“accessible” dimensions: the observed effects are often strongly influenced by both ther-
mal and quantum fluctuations. This raises the need for very careful numerical calcula-
tions for strongly correlated fermions in a 2D confinement.
As in the previous sections, we focus on unpolarized systems in the dilute limit with peri-
odic boundary conditions. We characterize the system via the one-particle density matrix
at equal imaginary times. Moreover, we present equations of state for the total and in-
teraction energies in the crossover from few- to many-body systems. Again, finite size
effects need to be investigated to ensure the validity of the obtained results and to justify
an extrapolation the continuum limit (CL).

Parts of the following discussion and results have been already published in the APS Jour-
nal “Physical Review A”: 93, 033639 (2016) (see Ref. [49]).

Recently, it became possible to realize two-dimensional Fermi gases experimentally in
a controllable and precise way [50, 51]. These advances make it possible to understand
several fundamental aspects of the few- and many body physics generic to 2D quantum
mechanics, which exhibits many exciting effects.
A central phenomenon of interest is the fermion pairing, because it is responsible for su-
perconducting and superfluid behaviour. The stability of the superfluid phase is correlated
with the robustness of the fermion pairs, which is determined, in turn, by the interaction
strength, i.e. the s-wave scattering length. As opposed to 3D, two-body bound states al-
ways are present in 2D systems, even for arbitrarily small interaction strenghts. Strictly
speaking, pair condensation can only occur at T = 0, as dictated by the Mermin-Wagner
theorem [52–54], which states that continuous symmetries in 2D systems cannot be spon-
taneously broken at finite temperature (with sufficiently short-ranged interactions). Nev-
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ertheless, a superfluid phase can actually be observed below a critical temperature Tc,
where the system ungergoes a Berezinskii-Kosterlitz-Thouless (BKT) transition [55–57].
The great interest in such systems is especially motivated by the belief that unconventional
high-temperature superconductivity in cuprates is essentially a 2D effect [58]. Therefore,
a lot of experimental effort has been put forward to find materials with a strong pairing
mechanism. The formal description of 2D Fermi gases, however, is mostly limited to nu-
merical studies, since analytic tools to treat this problem are very scarce at this time [59].
For the earliest theoretical investigaion of the crossover from BCS to BCS pairing, mean-
field methods were used [60,61]. Such an approch is problematic, since in 2D systems ob-
servables are highly influenced by quantum- and thermal fluctuations. The former could
be captured, as for ther local part, by means of DMFT calculations [62, 63] although the
predominant (spatial) part of the fluctuations was still neglected. In the last decade, how-
ever, progress was achieved to include spatial correlations beyond DMFT in 2D by means
of cluster [64–66] and diagrammatic [67–73] extensions of DMFT. So far, their appli-
cation was mostly restricted to the case of repulsive interactions and finite temperature.
Thus, for 2D systems, the most widespread treatement is usally based on Monte Carlo
schemes. In particular, studies based on the diffusion Monte Carlo method improved the
poor accuracy of the mean-field estimates for the ground-state energy and also computed
the contact parameter [74]. This approach [75], as well as auxiliary field Monte Carlo
methods [76], was used to further characterize the ground-state of polarized and spin-
imbalanced systems. Moreover, energies and contact at finite temperature as well as the
the BKT-transition point have been explored [77–79].
Thus, some light has been shed on the ground-state of 2D Fermi systems. However, most
of this calculations were done at high particle numbers, i.e. in the “many-body” regime.
Hence, much less information about the behaviour at low particle numbers and the con-
vergence to the thermodynamic limit is available. It is the purpose of the work presented
in this chapter, to fill this gap.
Since we are considering dilute gases, the interaction can be modeled as a zero-range
potential. Therefore, our Hamiltonian can be written as

Ĥ = T̂ + gV̂ , (4.1)

where

T̂ = − ~2

2m
∑
s

∑
~k

ψ̂†
s,~k
ψ̂s,~k (4.2)

constitutes the kinetic term and the potential part is given by

V̂ =
∑
i

n̂↑,in̂↓,i. (4.3)

where the lattice spacing ` was set to 1. The index s denotes spin-species, ranging over
the values s =↑ and s =↓ with an equal number of N/2 particles per flavour. Further, ψ̂†s,i
and ψ̂s,i are fermionic creation- and anihilation operators at lattice site i, respectively. As
usual, n̂s,i = ψ̂†s,iψ̂s,i denotes the associated particle density. In the following, we compute
many essential properties to describe the crossover between few- and many-body physics
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in such systems.

4.1 Units, scales & dimensions

As in the 1D calculations, we present all our results in dimensionless quantities. Energies
are therefore rescaled with the energy of the noninteracting gas on the lattice

EFG = 1
2NεF (4.4)

whith particle number N and Fermi energy εF. The definition of the latter reads the same
as in 1D

εF = 1
2k

2
F = πn (4.5)

whereas the occuring Fermi wavevector differs from the expression in 1D and is given in
2D by

kF =
√

2πn =
√

2π N
L2 . (4.6)

By setting the units ~ = m = kB = 1, as already done in the one-dimensional case,
we notice that the bare coupling g in Eq. (4.1) becomes dimensionless. Thus, no dimen-
sionful parameters enter the dynamics of the system, making it classically scale invariant.
This invariance, however, is broken by quantum fluctuations, resulting in a non-zero bind-
ing energy of the two-body problem, which we can use as a physical scaling parameter
instead. Since the bare coupling is a direct input to the calculation, we need to provide a
mapping between g and the associated binding energy εB of the two-body problem. It is
therefore necessary, to numerically compute εB as a function of g. Furthermore, in order
to investigate systematic grid-size effects, the calculation of εB has to be performed for
each lattice size separately. We found, however, that for the two-body problem these ef-
fects are negligible implying that the binding-energy on the lattice solely depends on the
bare coupling g.
For the sake of conciseness, the dimensionless coupling η is introduced, defined as

η ≡ 1
2 ln

(2εF
εB

)
. (4.7)

This definition is consistent with the literature and η is constructed such that the BCS-
regime is approached with a large positive value of η. Large negative values of η mark the
BEC area, where the binding-energy dominates the scale. In Fig. 4.1, the map between η,
i.e. the binding energy, and the bare coupling is shown across the BCS-BEC crossover.
It is apparent that an increase of the system size favors lower bare couplings. Although
larger systems take a longer computation time, the lowered value of g allows us to use
a more coarse time-discretization length ∆τ , which, in turn, lowers the numerical effort.
The opposite effect takes place for systems with the particle content, which correlates
with a higher value of g. Therefore, the numerical effort increases significantly, since
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Figure 4.1: Bare coupling g as a function of the dimensionless coupling η for a particle
number of N = 4 and N = 40. Higher particle numbers correspond to increased values
of g at the same coupling η, whereas the increase of the lattice size Nx shows an opposite
trend.

the computation time already scales linearly with N . This has the implication that such
calculations are limited to dilute systems.
The lattice properties are unchanged with respect to the 1D calculations presented in the
previous chapter, aside from the fact that the calculation now scales with N2

x due to the
increased dimensions. The time-discretization has been extensively studied due to the
exponential increase of the bare coupling with decreasing η. Systems with a coupling of
roughly η ≈ 0.5 or higher are treatable with a temporal spacing of ∆τ = 0.05, where
the exact cutoff in η depends on the system size and particle content. Calculations for
systems with a value of 0.5 < η < −2.0 can be performed with ∆τ = 0.01 within a
reasonable computational time. In principle, even stronger couplings are tractable with a
finer timestep, with the effect of an exponential increase of computational effort. To char-
acterize the BCS-BEC crossover, we found it sufficient to calculate results for couplings
in the interval η ∈ [−2.0, 3.0] and therefore limit ourselves to a time-discretization length
of ∆τ = 0.01− 0.05.
The number of samples was fixed to 500, where again every tenth accepted configuration
in the Markov-sequence was considered as a decorrelated sample, as done in 1D. This
allows us to calculate quantities up to a uncertainty of roughly 5%, yielding an accept-
able estimate for the energies, momentum distributions and density matrices, which are
computed for the first time in the 2D few- to many-body crossover.



4.2. Energetics of the ground state 43

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  5  10  15  20  25  30  35  40

E
/E

F
G

, 
v
/E

F
G

β

<EN>
<VN>

Figure 4.2: Decay as a function of β of the total and interaction energies (in units of EFG)
for N = 20 particles on a 28 × 28 lattice, coupled with η = 1.0. The interaction energy
〈V 〉 takes slightly longer to decay to a plateau.

4.2 Energetics of the ground state

In this section, we present results for an equation of state (EOS) of the system, connecting
the number of particles with the total and interaction energies of the ground-state. In
particular, we characterize the BCS-BEC crossover for several particle numbers, starting
in the few-body case at N = 4 particles ranging well into the many-body regime up to
N = 40 particles extrapolated to an infinite lattice size. In the latter case, our results
are within reasonable agreement with erlier studies carried out in the thermodynamic limt
[74].

4.2.1 Extrapolations

Unlike in the 1D case, where useful parameter values for the convergence of observables
are available, there is hardly any prior information accessible for 2D systems [77]. For
this reason, the exploration of the parameter space proved to be very challenging due to
the extended computational effort as compared to 1D calculations. Since the EOS only
considers the dependence on the particle number N for various couplings η, we need to
eliminate all other scales, namely the large time β and the volume V = N2

x .
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Large effective inverse temperature

First, we need to make sure that the results are converged to the true ground state by taking
the limit

〈O〉 = lim
β→∞

〈O(β)〉. (4.8)

Carrying out calculations at increasing imaginary times β, we can perform a fit of the
form

E(β) ≈ E0 + aebβ, (4.9)

as motivated by the derivation in App. A. In Fig. 4.2 we show the typical convergence
behaviour of the total and interaction energies for a representative system of N = 20
particles at a 28 × 28 lattice coupled with η = 1.0. At very low effective inverse tem-
perature the data slightly deviates from the proposed form in (4.9). After a certain value
of β, strongly depending on the system parameters, the neglected effects in the derivation
vanish and the computed data decays as expected. In the BCS-BEC crossover region at
around η = 0.5, this extrapolation requires the computation of data up to significantly
larger β due to a slow decay. This reflects the use of a Slater-determinant as the initial
guess-state, which is the best choice, close to the noninteracting case. The stronger the
interaction, the more the actual ground-state wavefunction will deviate from such a trial
state. This explains the slower decay. In principle, this effect could be minimized by a
better choice of the initial guess-state, e.g. by a coupling dependent interpolation between
a BCS and a Jastrow-Slater (JS) trial wavefunction [80]. The use of a trial wavefunction
which is not in the form of a determinant, however, greatly changes the method intro-
duced in Sec. 2.2 since e.g. the probability measure cannot be expressed as a determinant
in such a case. Furthermore, at very high couplings in the region η ≤ −1.0, the interac-
tion is strong enough to overcome this issue and favors a fast decay to the ground-state.
For this reasons, we found it sufficient to use a Slater determinant as our noninteracting
guess state for a first characterization of such systems.
Fig. 4.4 additionally shows the decay of the interaction energy for the same system.
Although this follows the same functional form as the total energy, we note a slower con-
vergence in imaginary time. As a result, the extraction of the converged values becomes
more challenging which is reflected by slightly larger errors for the obtained values.

Infinite volume

With the data extrapolated to the ground-state (β →∞), we can now eliminate the volume
scale by another extrapolation. Therefore, we need to look at the data as a function of the
inverse volume (V −1 = N−2

x ) and perform a fit of the form

E(V −1) = a+ bV −1. (4.10)

The value at vanishing inverse volume represents the extrapolated result in the infinite
volume limit, i.e. the dilute limit at constant particle number. The fit parameter a then
corresponds to the value in this limit. In Fig. 4.3, curves for representative calculations in
the BCS and BEC regimes are shown.
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4.2.2 Equation of state

After extrapolating the lattice results to the appropriate limits, we now discuss these quan-
tities as a function of the remaining parameters of interest. In the following, we show how
the ground-state and interaction energies are behaving with increasing particle content
starting in the few-body regime at N = 4. Gradually increasing the particle number up to
a value of N = 40 displays a convergence to the many-body limit across all investigated
couplings.

Ground-state energy

Fig. 4.4 displays the computed ground-state energy as a function of particle number. To
show the molecular structure of the fermions, the binding energy εB is used as a scale in
the BEC limit. In the weakly interacting BCS regime, we show the results in units of the
energy of the noninteracting system EFG.
To compare these results with the literature, values from Ref. [76] are shown at a value
of N = 50. Strictly speaking, the values correspond to infinite particle number since
the thermodynamic limit is reached by taking N → ∞ and V → ∞ at constant density
n = N/V . We formally approach this limit by taking the dilute limit for each particle
number separately and present these values as a function of N . As evident from Fig 4.4,
the few-body results converge to the TL at a particle content of N ≈ 24, consistent with
observations in Ref. [74] and even at lower particle numbers for very strongly coupled
systems. The values for the highest populated systems show very good agreement with
the TL results, indicating that we have reached the many-body regime.
In addition to the interacting results, a curve for the noninteracting system (η = ∞) on
the lattice is shown. The structure of this curve resembles the oscillations of the lowest
coupled systems, which originate from so-called closed-shell (CS) effects, discussed more
extensive below.
Curves for the strongly interacting regime are shown in the bottom panel, where we see
a clear dominance of the binding-energy. This indicates that tightly bound pairs form im-
mediately upon turning on the interaction.
More importantly, the curves corresponding to the BCS-BEC transition region, at η = 0.5
and η = 1.0, still show covergence in the particle number. The calculation for these pa-
rameters becomes numerically very challenging, due to the choice of the initial guess state
|Ωo〉. As mentioned above, these values could in principle be refined by a more suitable
choice of the initial wavefunction, which would lower the numerical effort significantly,
allowing a determination of observables at even higher particle numbers within a reason-
able computational time.
The numerical results plotted in Fig. 4.4 are provided in Tab. 4.1.

Interaction energy

To further characterize the properties of the ground-state, specifically its short-range be-
haviour, we present the expectation of the potential part V̂ of the Hamiltonian, denoted as
〈V̂ 〉N at fixed particle number N . As shown in Sec. 1.4 we can use the Feynman-Hellman
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η
N -1.5 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 ∞
4 -37(2) -12.8(3) -3.4(7) 0.6(2) 1.34(7) 1.30(2) 1.34(1) 1.45(3) π/2
8 -43.0(3) -13.8(4) -4.66(5) -0.6(2) 0.64(4) 0.80(3) 0.96(1) 1.03(2) 3π/8

12 -41(2) -14.7(3) -5.0(2) -1.4(2) 0.3(1) 0.61(2) 0.80(3) 0.89(1) 4π/12
16 -40.6(2) -15.0(3) -4.70(4) -1.65(9) 0.1(1) 0.52(2) 0.74(1) 0.80(0) 5π/16
20 -39(1) -15.2(4) -4.72(6) -1.65(9) -0.0(1) 0.53(2) 0.74(1) 0.80(1) 8π/25
24 -38.0(8) -15.1(2) -4.9(1) -1.69(9) -0.15(4) 0.59(1) 0.78(0) 0.84(1) 4π/12
28 -37.6(3) -15.3(2) -4.91(8) -1.79(4) -0.25(5) 0.58(2) 0.77(1) 0.86(1) 33π/98
32 -38(1) -14.9(3) -4.99(1) -1.70(8) -0.31(4) 0.52(3) 0.78(1) 0.86(1) 43π/128
36 -38.5(6) -14.6(1) -5.01(7) -1.6(1) -0.38(3) 0.48(3) 0.75(1) 0.82(0) 53π/162
40 -39.8(9) -15.2(2) -5.00(9) -1.58(4) -0.40(2) 0.40(3) 0.70(0) 0.80(1) 63π/200

Table 4.1: Ground-state energy E on the lattice, in units of the continuum noninteracting
energy EFG = NεF/2 of the N -particle system, as a function of N and the dimensionless
coupling η. (Reproduced from Ref. [49])

relation to write

〈V̂ 〉N = ∂E

∂g

∣∣∣∣∣
N=const

. (4.11)

This relation is connected to the contact, which fulfills an adiabatic theorem [81] and is
therefore proportional to the change in the ground-state energy with respect to the s-wave
scattering length a0 at fixed particle content:

C ∝ ∂E

∂ ln(kFa0)

∣∣∣∣∣
N=const

. (4.12)

The scattering-length controls the behaviour of the system via the UV-lattice cutoff and
the bare coupling g. Since the former is held constant, we only need to consider the effect
of g in the derivative. Rewriting Eq. (4.12) to

∂E

∂ ln(kFa0)

∣∣∣∣∣
N=const

= ∂E

∂g

∂g

∂ ln(kFa0)

∣∣∣∣∣
N=const

= 〈V 〉N
∂g

∂ ln(kFa0)

∣∣∣∣∣
N=const

(4.13)

yields a form which splits into two parts. The second factor in Eq. (4.13) only depends
on two-body physics, since we used the binding-energy, i.e. the scattering length, to fix
the desired value of g while the first factor contains valuable information about the short-
ranged behaviour of the ground-state mandy-body problem.
In Fig. 4.5, results for 〈V̂ 〉N are shown as a function of particle number and coupling.
Again, the results are scaled with EFG so that the values effectively represent the interac-
tion energy per particle. As expected, 〈V̂ 〉N increases greatly with the interaction strength,
suggesting more tightly bound pairs as η approaches the BEC-limit. Further, we note con-
vergence to a plateau as the particle content increases, which is especially evident for the
weakly coupled systems under consideration.
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η
N -1.5 -1.0 -0.5 0.0 0.5 1.0 2.0 3.0 ∞
4 -39(2) -19.7(6) -7.0(7) -1(1) -0.1(2) -0.34(5) -0.50(1) -0.6(2) -1/(2π)
8 -28(2) -15(1.5) -7.9(7) -2.7(5) -0.86(9) -0.55(9) -0.41(1) -0.5(1) -1/(2π)

12 -21(2) -14.1(9) -7.8(3) -4.0(1) -1.47(4) -0.59(1) -0.42(4) -0.44(7) -1/(2π)
16 -17.7(1) -12.2(5) -6.8(1) -3.9(1) -1.2(2) -0.58(1) -0.38(2) -0.43(2) -1/(2π)
20 -16(1) -11.7(6) -6.8(3) -3.8(1) -1.44(8) -0.59(4) -0.41(2) -0.52(6) -1/(2π)
24 -14.0(9) -10.4(6) -6.4(3) -3.8(1) -1.55(1) -0.60(1) -0.41(1) -0.50(5) -1/(2π)
28 -12.5(9) -9.5(6) -6.0(4) -3.6(2) -1.67(3) -0.64(1) -0.44(1) -0.48(5) -1/(2π)
32 -11.4(9) -8.5(6) -5.6(3) -3.4(1) -1.68(1) -0.69(4) -0.41(1) -0.46(4) -1/(2π)
36 -11.5(1) -8.4(6) -5.6(3) -3.3(1) -1.65(1) -0.68(3) -0.40(2) -0.45(4) -1/(2π)
40 -10.5(9) -8.0(6) -5.4(3) -3.1(1) -1.59(2) -0.71(3) -0.41(2) -0.43(3) -1/(2π)

Table 4.2: Ground-state interaction 〈V̂ 〉N, in units of the energy of the noninteracting gas
EFG, as a function of N and the dimensionless coupling η. (Reproduced from Ref. [49])

The numerical values for 〈V̂ 〉N are presented in Tab. 4.2.

Shell effects

As mentioned before, in Fig. 4.4 we observe mild oscillations in the ground-state energy
for weakly coupled systems. This is a direct consequence of the Pauli exclusion principle,
which can be demonstrated by considering the noninteracting Fermi gas. The single-
particle states in this case reduce to plain waves with momentum

~k = ~kx + ~ky. (4.14)

Within an isotropic lattice, i.e. the lattice spacing does not depend on the direction, it is
obvious, that multiple combinations of kx and ky, yielding the same energy contribution
E~k = ~k2

2 , exist. In order to populate the system with N/2 particles in every spin-flavour,
gradually higher energy levels up to the Fermi energy, are occupied. For some values of
N , states which preserve the square symmetry in ~k-space occur, corresponding also to a
total momentum of

~K =
∑
|~k|<|~kF |

~k = 0. (4.15)

These configurations correspond to the full occupation of all available degenerate energy
levels, i.e. the full occupation of energy shells comparable to a full shell of atomic orbitals
in the ground-state (noble gases). The first few closed-shell configurations are pictured in
Fig. 4.6, which in 2D occur at the “magic” particle numbers N = 2, 10, 18, 26, 42, · · · for
unpolarized systems. The energy for the noninteracting gas is shown in Fig. 4.4, labeled
as η = ∞. We notice, that at particle numbers corresponding to fully occupied shells,
the energy per particle features local minima. Strictly speaking, these configurations exist
only in the noninteracting case, since states with higher momentum contribute immedi-
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Figure 4.5: Expectation value of the density-density operator V̂ for N = 4,8,12,...,40
fermions, in units of the ground-state energy of the noninteracting gas, for several values
of the dimensionless coupling η = −1.5,−1.0, . . . , 3.0, along with the noninteracting
case η →∞. The solid black line shows −1/(2π), which is the result in the noninteract-
ing limit. (Reproduced from Ref. [49])

ately upon switching on the interaction. Nevertheless, for weakly bound systems in the
BCS-regime, the remnants of the closed-shells are still visible in the EOS. For increas-
ing interaction strength, however, this effect gets washed out entirely, as also observed in
Ref. [75]. The lack of oscillations in the BEC-region is not surprising, since the structure
of the wavefunction changes drastically and single-particle states are no longer eigenstates
of the Hamiltonian.

4.3 Momentum distribution

In this section, we discuss our results for the momentum distribution nk, which in 2D is
defined as

nk =
∫ L

0
d~x d~x′ρ1(~x, ~x′)ei~k(~x−~x′). (4.16)

The momentum distribution is experimentally accessible and typically measured in ultracold-
atoms experiments [84, 85]. Although such studies are necessarily conducted at finite
temperature they are comparable, at least qualitatively, with the ground-state, which con-
stitutes the limit for the lowest temperatures.
In Fig. 4.7, we show nk for couplings across the entire BCS-BEC crossover with particle
numbers N = 12, 24 and 36. While reasonable convergence was achieved for a 28 × 28
lattice for 12 particles, the grid size was increased to 32 × 32 for the latter cases. Ad-
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Figure 4.6: Lowest fully occupied energy shells at N = 2, 10 and 18.

ditionally, the curve for noninteracting Fermi gases, i.e. a step function with a drop at
|~k| = |~kF |, is shown. All results are shown as a function of |~k|/|~kF |.
As expected, the weakly interacting curves in the BCS regime feature a relatively sharp
drop, showing only minor modifications in the region |k| ≈ |kF| with respect to the non-
interacting case. This indicates, that only particles near the Fermi surface participiate in
the formation of pairs. Increasing the coupling leads to a broadening of the distribution,
most pronounced in the strongly coupled BEC region, where the momentum distribution
loses its features of a drop almost entirely. The wavefunction includes many ~k-values,
leading to a more localized form in real-space. In this limit, we no longer observe a Fermi
surface, suggesting the formation of molecule-like bound pairs, i.e. composite bosons. A
qualitatively similar trend for n(εK) with increasing interaction is found in Ref. [83] for
the case of 2D Hubbard model wirh repulsive interaction in the high density limit of half-
filling. In this study, the formation of bosonic bound pairs can be mapped to the formation
of localized magnetic moments.
As the particle number increases, the effect of the interaction becomes smoother such that
the momentum distribution “decays” slower with increasing coupling.
Additionally, the insets in Fig. 4.7 show the momentum distribution on a log-log scale,
featuring the asymptotic behaviour as k approaches∞. In the lowest populated systems,
nk takes on values below 10−6 which are subject to numerical inaccuracies in the weakest
coupled cases. In principle, higher statistics could solve these problems. Fortunately, as
coupling and particle density increase, these numerical issues vanish. In analogy to the
1D case, we perform a fit of the form

nk ≈
a

|~k|4
(4.17)

to the tail of the distribution, where we cut off the values at |~k|/|~kF | ≈ 1.8− 2.2, depend-
ing on the system size. The fitted functions are shown as solid lines in the insets of Fig.
4.7 and show very good agreement with the computed data.

4.3.1 Extrapolation to infinite β
The results discussed in the above, are extrapolated to infinite effective inverse tempera-
ture. Since no analytic form for the behaviour of the momentum distribution is known in
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polarized fermions with grid sizes of 28 × 28 for 12 particles and 32 × 32 otherwise.
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behaviour.
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unpolarized fermions on a 32× 32 lattice and at fixed dimensionless coupling η = −0.5.
The black points corresponding to the extrapolated values in the ground-state.

the interacting case, we have chosen a Gaussian fit to catch the asymptotic behaviour. The
extrapolation is shown in Fig. 4.8. We see, that for the convergence to the ground-state,
values of β ≈ 8.0 are needed, especially in the region |~k| < |~kF |. As mentioned before,
the rate of convergence could be improved by the use of improved trial states for the inital
wavefunction as done in Refs. [75, 76].

4.4 One-body density matrix

Here, we present results for the one-body, equal-time density matrix ρ1(kF r) for spin
unpolarized fermions, defined as

ρ1(~x, ~x′) = 〈Ω| ψ̂†↑(~x)ψ̂↑(~x′) |Ω〉 = 〈Ω| ψ̂†↓(~x)ψ̂↓(~x′) |Ω〉 . (4.18)

The definition coincides with the one 1D, except for the fact that we now have to consider
the vector-character of the coordinates.
Results for systems with a particle number of N = 12, 24 and 36 across the BCS-BEC
crossover are presented. Again, we plotted the results for a 28× 28 lattice in the first case
and used a 32 × 32 grid otherwise. To eliminate the scale set by the density, we present
our results as a function of kF r. Due to the use of periodic boundary conditions, the
investigated systems become translationally invariant. This allows us to use the distance

r = |~x− ~x′| (4.19)
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Figure 4.9: Single-particle density matrix ρ1 as a function of kF r for N = 12, 24, 36
unpolarized fermions with grid sizes of 28 × 28 for 12 particles and 32 × 32 otherwise.
The solid black line corresponds to the limit η →∞, i.e. the noninteracting case.



4.4. One-body density matrix 55

η a mean absolute deviation
−2.0 0.45(3) 0.001
−1.5 0.44(3) 0.002
−1.0 0.42(3) 0.004
−0.5 0.27(6) 0.03
0.0 0.11(4) 0.02
0.5 0.06(4) 0.02
1.0 0.05(7) 0.02
2.0 0.0(1) 0.02
3.0 0.0(1) 0.02

Table 4.3: Fit parameter a obtained by fitting Eq. (4.20) to the N = 36 data of Fig. 4.9,
as a function of the dimensionless coupling η. Similar trends in a have been obtained for
systems with a different number of particles, i.e. beyond the data of Fig. 4.9. (Reproduced
from Ref. [49])

instead of considering results for every lattice point separately. Furthermore, we present
the density matrix normalized to the respective value ρ(r = 0) with the associated cou-
plings.
By looking at Fig. 4.9, we observe the occurence of statistical noise for long-range corre-
lations. To smoothen the curve, a three-point moving average was performed.
Since the single-particle density matrix is connected with the momentum distribution via
Eq. (4.16), we can draw similar conclusions as discussed above. In the weakly inter-
acting regime, the curves only slightly deviate from the noninteracting result, derived in
App. B. As the coupling grows, the density matrix shows strong localization of particles
with an exponential form for the highest coupling computed. This agrees well with the
expectation in the infinitely attractive case, where one would expect the correlations to
be a δ-distribution located at r = 0, as the composite-bosons would collapse in the same
quantum-state.
The oscillations, associated with the existence of a well defined Fermi surface, become
weaker with increasing interaction, until they vanish completely at the onset of the BEC
phase around η = −0.5. This is another indication for the formation of tightly bound
pairs, as it is expected in this limit and is in contrary to 1D systems, where the oscillations
prevailed even in the highest coupled cases.
We can interpret the square of the inverse particle density n−

1
2 as the mean partricle spac-

ing. Now we can think of the x-axis in Fig. 4.9 as a measure of how many average
distances fit into the system. Although the curves for different particle contents coincide
with this renormalization, the scale is extended for systems with higher density, therefore
featuring more oscillations in the BCS limit.

Finally, in order to encode the short-ranged behaviour of the response, fits to the shown
data were performed. The transition from the noninteracting case to the strongly coupled
regime can be described by the introduction of a dimensionless parameter a, as

ρ1(kFr) ≈ 2e−apBr
J1(kFr)
kFr

, (4.20)
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which describes the interpolation between the two limits. The second factor in Eq. (4.20)
corresponds to the noninteracting result in the continuum limit, as derived in App. B. The
Bessel function originates from the fact, that only states up to the Fermi wavevector are
occupied in the noninteracting case. The first factor is motivated by the deeply bound
state shown in Fig. 4.9. In this limit, correlations are expected to decay with the inverse
binding momentum pB. For nonzero interactions states with k > kF are occupied and in
the limit of infinite attraction, the momentum distribution approaches a constant, which
corresonds to a delta peak for the correlation. Therefore, it is expected that for increasing
coupling the form of the correlation is dicated by an increasing value of a. Numerical
values, which underpin this behaviour, are provided in Tab. 4.3.



Chapter 5

Summary and Outlook

“ I call our world Flatland, not because we call it so, but to make its
nature clearer to you, my happy readers, who are privileged to live in
Space.

Edwin A. Abbott, [86].”Since our world is three-dimensional, naturally most of the experimental and theoretical
effort was put forward to explain and investigate such materials and effects. Nevertheless,
configurations exist where the motion of particles is confined effectively to lower dimen-
sions and therefore behaviour generic to the reduced dimensionality is observed. Specif-
ically, in solid-state physics, where the dynamics of the system is largely influenced by
the motions of electrons, the explanation of these effects corresponds to the solution of a
many-body problem. While in three-dimensions mean-field approaches yield reasonable
results in several cases, lower dimensions are heavily influenced by quantum and thermal
fluctuations, making mean-field approaches inapplicable and raising the need for more de-
tailed calculations. In this work we have characterized the ground-state of systems with
low dimensionality by the means of an auxiliary-field quantum Monte Carlo approach.
Although exact methods for the solution of one-dimensional Fermi gases exist, we have
presented numerical results to describe the zero temperature behaviour. Specifically, we
investigated the one- and two-body equal-time correlations for a broad range of couplings,
showing a moderately increased particle localization for growing interaction strength. In
order to further learn about the energetic structure in such systems, we investigated the
momentum distribution across many particle numbers to show the effects of strong cor-
relations on the “Fermi surface”, which in 1D is constituted by two points. While the 1D
results are of intrinsic interest, they were also used to benchmark our method for more
challenging calculations carried out in two dimensions.
For the two-dimensional case, we set out to characterize the crossover from few- to many-
body physics in the ground-state across a great range of interaction strengths. Typcially
these systems are treated in the thermodynamic limit, neglecting the effects of few-body
physics. To the best of our knowledge, the results presented in this work constitute the
first determination of the few- to many-body crossover in two dimensions. We computed
the equation of state for the ground-state energy, connecting the energy per particle to the
particle content and showing the convergence to the thermodynamic limit, as calculated
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in previous studies. Similarly, we provided such an equation of state for the interaction
energy aming at learning about the short-ranged behaviour of these systems. We observe
a domination of the dimer binding-energy in the strongly coupled regime, showing a clear
hallmark of the formation of tightly bound pairs, i.e. composite bosons. This is further
underpinned by the study of the momentum distribution as well as one-body correlations,
which show an exponential form in the BEC limit as expected for a deeply bound molec-
ular state.
In conclusion, we have provided a thorough study of the ground-state of one- and two-
dimensional unpolarized Fermi gases on the lattice. Although the ovservables studied in
this work already clearly show the effects of pairing in the BCS-BEC crossover a complete
characterization of the system requires further studies. Several other quantities still need
to be investigated, such as the condensate fraction, pair-momentum distribution, dynamic
response functions etc. In order to fully characterize the phase-diagram of interacting
Fermi gases in the ground-state, it would be also interesting to study the dependence on
mass- and spin-imbalance as well as the influence of external trapping potentials. Com-
bined with the extension to finite temperatures, the need for different approaches such as
e.g. cluster and diagrammatic extensions of DMFT arises, with the goal to eventually nail
down completely the peculiar behaviour of Fermi systems in reduced dimensions.
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ii APPENDIX

A Ground state energy

In this appendix we provide a derivation for the decay of the interacting ground-state
energy in imaginary time. In order to extract the ground-state energy, we can use the
resulting functional form and apply a fit to the data.
The total energy at imaginary time β is given by

E(β) = 〈Ω(β)| Ĥ |Ω(β)〉
〈Ω(β)|Ω(β)〉 , (A.1)

where Ĥ is the Hamiltonian of the system and |Ω(β)〉 denotes the projected state at fixed
β. It is connected to the initial state |Ω0〉 via

|Ω(β)〉 = e−βĤ |Ω(0)〉 ≡ e−βĤ |Ω0〉 , (A.2)

so that the energy reads

E(β) = 〈Ω0| e−βĤĤe−βĤ |Ω0〉
〈Ω0|e−2βĤ |Ω0〉

(A.3)

An expansion of |Ω0〉 in occupation number basis states |n〉

|Ω0〉 =
∑
n

cn |n〉 (A.4)

and insertion into the above expression yields:

E(β) =
∑
nm cnc

∗
m 〈m| e−βĤĤe−βĤ |n〉∑

nm cnc∗m 〈m| e−2βĤ |n〉
. (A.5)

Applying the operators

E(β) =
∑
nm cnc

∗
mEne

−β(En+Em) 〈m|n〉∑
nm cnc∗me

−2βEn 〈m|n〉
(A.6)

and exploiting the orthonormality property of the basis states 〈n|m〉 = δmn results in:

E(β) =
∑∞
n=0 |cn|2Ene−2βEn∑∞
n=0 |cn|2e−2βEn

(A.7)

Further, we can separate the dominating factor in the sum, namely the ground-state energy,
and rewrite the expression as

E(β) = E0|c0|2 +∑∞
n=1 |cn|2Ene−2β(En−E0)

|c0|2 +∑∞
n=1 |cn|2e−2β(En−E0) . (A.8)
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We can now assume that the factor xn ≡ e−β(En−E0) is small and hence perform an
expansion

f(~x) = f(~x)|~x=0 +
∞∑
n=1

∂f(~x)
∂xn

∣∣∣∣∣
xn=0

xn +
∑
nm

O(xnxm) (A.9)

which results to

E(β) = E0 +
∞∑
n=0

(En − E0) |cn|
2

|c0|2
e−β(En−E0) +

∑
nm

O
(
e−β(Em−E0)e−β(En−E0)

)
. (A.10)

Again, we can assume that the sum is dominated by the first term and write the approxi-
mate form

E(β) ≈ E0 + (E1 − E0) |c1|2

|c0|2
e−β(E1−E0). (A.11)

This form in general allows the calculation of the ground and first excited energies. Nev-
ertheless, one has to be careful upon performing the fits, since the first excited energy
is very sensitive to the decay constant, which is often hard to obtain within small error
margin.

B Noninteracting one-body density matrix

Here we want to derive the noninteracting density matrices for 1D and 2D systems at zero
temperature. The derivation is very similar in both cases and only differs in the evaluation
of the occuring integrals.
Following the definition given in Sec. (1.3), we can write ρ1(x, x′) as

ρ1(~x, ~x′) = 〈Ω0| ψ̂†(~x′)ψ̂(~x) |Ω0〉 . (B.1)

With the vacuum state |0〉 we can write the noninteracting ground state:

ρ1(~x, ~x′) = 〈0|
∏

|~k|<|~kF |

â†~kψ̂
†(~x′)ψ̂(~x)

∏
|~k′|<|~kF |

â†~k′ |0〉 . (B.2)

Equivalently, in momentum-space we write

ρ1(~x, ~x′) = 〈0|
∏

|~k|<|~kF |

â†~k

∑
~q~q′
φ∗~q′(~x′)φ~q(~x)â†~q′ â~q

∏
|~k|′<|~kF |

â†~k′ |0〉 . (B.3)

After some anticommutator-arithmetic, we finally arrive at the sum

ρ1(~x, ~x′) =
∑
|~k|<|~kF |

φ∗~k(~x
′)φ~k(~x). (B.4)
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B.1 One dimension

In 1D we can approximate the above sum with an integral considering the correction
factor L/2π to account for the volume:

ρ1(x, x′) ≈ L

2π

∫ kF

−kF
dk φ∗k(x′)φk(x). (B.5)

In free system, represented by the use of periodic boundary conditions, the single-particle
contributions are given by plane waves. Therefore the integrand can be explicitly written
and the integral becomes

ρ1(|x− x′|) = L

2π

∫ kF

−kF
dk eik(x′−x). (B.6)

We are able to evaluate this integral to

ρ1(kF r) = 2
|x′ − x|

sin (kF |x′ − x|) (B.7)

and use |x′ − x| = r to obtain the final form as

ρ1(kF r) = N

2
sin (kF r)
kF r

. (B.8)

B.2 Two dimensions

In the 2D case the sum can be approximated by

ρ1(~x, ~x′) ≈
(
L

2π

)2 ∫
|~k|<|~kF |

d2k φ∗~k(x
′)φ~k(x). (B.9)

The evaluation of this expression is more subtle since we have to consider the vector
character of the integral kernel. We need to rewrite the integral to

ρ1(r) =
(
L

2π

)2 ∫ kF

0
dk
[
k
∫ 2π

0
dϕ eikr cosϕ

]
. (B.10)

where we used r = |~x′ − ~x|. The inner integral corresponds to a representation of Bessel
functions Jn(x) of order n, up to a normalization. We get

ρ1(r) = L2

2π

∫ kF

0
dk kJ0(kr) (B.11)

which leaves with the evaluation of the k-integral. By using the properties of Bessel
functions, and integrating by parts, we arrive at the final form

ρ1(r) = N
J1(kF r)
kF r

. (B.12)
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C Suzuki-Trotter decomposition

In many problems of numerical physics we encounter the problem of evaluating an expo-
nential operator as e.g. in the partition function introduced in Sec. (1.2)

Z = Tr[e−βĤ ] = Tr[e−β(T̂+V̂ )], (C.1)

where T̂ and V̂ correspond to the kinetic and interaction part of the Hamiltonian, respec-
tively. These two operators do not commute in general, which makes the use of the simple
form

e−β(T̂+V̂ ) = e−βT̂ e−βV̂ (C.2)

impossible. In fact, by expanding these two exponential operators, we can calculate the
error if we use Eq. (C.2) as an approximation:

e−β(T+V ) = I − β(T + V ) + β2

2 (T + V )2 +O(β3) (C.3a)

= I − β(T + V ) + β2

2 (T 2 + TV + V T + V 2) +O(β3) (C.3b)

e−βT e−βV =
(
I − βT + β2

2 T
2 +O(β3)

)(
I − βV + β2

2 V
2 +O(β3)

)
(C.4a)

= I − β(T + V ) + β2

2 (T 2 + 2TV + V 2) +O(β3) (C.4b)

Comparing these two expressions, we note that in the latter T always occurs before V ,
whereas switched terms occur in the former case. Carrying out the calculation, we obtain

e−βT e−βV = e−β(T+V )+β2
2 [T,V ]+O(β3) (C.5)

which corresponds to the well known Trotter-formula [87]

e−βT e−βV = e−β(T+V )+O(β2). (C.6)

In order to keep the approximation error at a minimum, the expansion parameter β should
be as small as possible. Introducing the Trotter-number n, we can discretize the expansion
parameter β into slices

(
e
β
n
T e

β
n
V
)n

= ex(T+V )+O β
2
n (C.7)

for which the correction term vanishes in the limit n → ∞. Although this is already
a form one could use computationally, it would be more feasible if the correction term
vanishes faster than O(β2

n
). In order to do this, we can wite the general form of such a

decomposition, as done in Ref. [88]:

e−β(T+V ) = e−βp1T e−βp2V · · · e−βpmV +O(βm+1). (C.8)
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The simplest improvement is obtained by the expansion to the order of m = 2 followed
by equating the coefficients. We get

e−β(T+V ) = e−
β
2 T e−βV e−

β
2 T +O(β3), (C.9)

which is the approximation we use in this work.

D Hubbard-Stratonovich transformation

The Hubbard-Stratonovich (HS) transformation [89, 90] is based on the expression

e
1
2A

2 =
√

2π
∫
dσ e−

1
2σ

2−σA, (D.1)

where A is an arbitrary quantum-mechanical operator and σ constitutes a newly introcud-
ced auxiliary field. It allows us to rewrite the Hamiltonian from Eq. (2.23) to a more suit-
able expression, containing only one-body operators, diagonalizable in real-space. The
operator of interest is given by the exponential

e−∆τV̂ = e−∆τg
∑

i
n↑,in↓,i =

∏
i

e−∆τgn↑,in↓,i , (D.2)

where the summation (product) streches over all lattice sites i and the density at a lattice
site xi is written as ns,i. Further, we define

V̂i ≡ g n↑,in↓,i (D.3)

and write

e−∆τV̂ =
∏
i

e−∆τV̂i . (D.4)

In order for Eq. (D.1) to be of use, we need to rewrite the interaction into a quadratic
form. Therefore we write

n↑n↓ = −1
2(n↑ − n↓)2 + 1

2(n↑ + n↓), (D.5)

which holds since the value of the fermionic density is either zero or one. Inserting Eq.
(D.5) into Eq. (D.3) yields

e−∆τV̂i = e−
∆τg

2 (n↑,i+n↓,i) e
1
2 [√τg(n↑,i−n↓,i)]2 . (D.6)

The first factor in this expression is already in the desired one-body form, whereas the
square in the second factor produces quadratic density terms. We can use Eq. (D.1) and
rewrite it to

e−∆τV̂i =
√

2π
∫
dσi e

− 1
2σ

2
i e−

∆τg
2 (n↑,i+n↓,i) e

√
τg(n↑,i−n↓,i)σi . (D.7)



D. Hubbard-Stratonovich transformation vii

Now, any occuring density operator only occurs linearly, which we can diagonalize sepa-
rately in real-space. We further rewrite the above expression to separate the contributions
from different spin-species to

e−∆τV̂i =
√

2π
∫
dσi e

− 1
4σ

2
i−(∆τg

2 −
√
τgσi)n↑,i e−

1
4σ

2
i−(∆τg

2 +√τgσi)n↓,i (D.8)

and with

V̂↑,i = e−
1
4σ

2
i−(∆τg

2 −
√
τgσi)n↑,i (D.9a)

V̂↓,i = e−
1
4σ

2
i−(∆τg

2 +√τgσi)n↓,i , (D.9b)

we arrive at

e−∆τV̂i =
√

2π
∫
dσi e

V̂↑,i eV̂↓,i . (D.10)

Finally, we collect the factors of every lattice site into one integral and obtain

e−∆τV̂ = (2π)
Ndx
2

∫
Dσ e−∆τV̂↑,σ e−∆τV̂↓,σ , (D.11)

where Nd
x is the number of lattice sites and the integration variable is written as as

Dσ =
∏
i

dσi. (D.12)

Eq. (D.11) corresponds to the interaction operator at a given time-slice. To produce the
full interaction operator, one needs to combine such an integration for every step in the
temporal latiice, as introduced in Sec. 2.2.
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