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Kurzfassung

In dieser Arbeit untersuchen wir den Phasenschub bei Lauetransmission in einer Silizium-
Perfektkristallplatte im Detail. Diese ’Laue Phase’ wurde bei zwei Wellenlängen, nahe
der Bragg-Bedingung, mit einem Neutroneninterferometer gemessen. Insbesondere kon-
nten wir die Empfindlichkeit der Laue Phase bezüglich der Justage des Monochromators
zum Interferometer (Rocking Winkel) und der Strahldivergenz nachweisen. Die be-
merkenswerte Phasensteigung von 5.5◦ [(220) Bragg peak] und 11.5◦ [(440) Bragg peak]
pro 0.001 Bogensekunden vom Bragg-Winkel, konnte erreicht werden. Die Analyse der
Ergebnisse erfolgte mit einer Software, die hier ebenfalls präsentiert wird.
Weiters, werden die Fertigungsschritte des weltweit grössten Perfektkristall- Neutronen-
interferometers vorgestellt (30 x 12 cm2). Ausgehend von einem sehr speziellen Design
zur Verbesserung der Winkelauflösung, wurde die Kristallorientierung, das Schneiden
und Schleifen, sowie das Ätzen durchgeführt. Die ersten Testmessungen am ILL zeigten
bereits einen Interferenzeffekt. Schließlich werden mögliche Anwendungen angesprochen,
in denen die grossen Strahlflächen von Interesse sind, z.B. Messungen von Schwerkraft-
induzierten Phaseneffekten und hochauflösende Winkelmessungen.
Zusätzlich erfolgte die Durchführung eines weiteren Interferometer-Experiments. Mit
einer Vakuumkammer untersuchen wir die so genannte ’Chamäleon’ Phase. Sie ist ein
Kandidat für die Dunkle Energie. Mit dieser Methode ergibt sich, dass die Chamäleonfeld-
Kopplungskonstante β kleiner sein muss als 1.9 · 107. Dieser Grenzwert ist um mehr als
eine Größenordnung besser als der momentan angegebene Wert von 5.8 · 108.
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Abstract

In this study, we investigate the phase shift induced by Laue transmission in a perfect
silicon (Si) crystal blade in detail. This ’Laue phase’ was measured at two wavelengths
in the vicinity of the Bragg condition within a neutron interferometer. In particular, the
sensitivity of the Laue phase to the alignment of the monochromator and interferometer
(rocking angle) and beam divergence has been verified. However, the influence of fun-
damental quantities, such as the neutron-electron scattering length on the Laue phase
is rather small. The fascinating steep phase slope of 5.5◦ [(220) Bragg peak] and 11.5◦

[(440) Bragg peak] per 0.001 arcsec deviation from the Bragg angle has been achieved.
The results are analyzed using an upgraded calculation tool.
Furthermore, the fabrication stages of the world’s largest crystal interferometer are pre-
sented (30 x 12 cm2). Starting from a very special design for increasing the angular res-
olution, the crystal orientation, cutting, fine grinding, and etching have been performed.
First test measurements at the ILL show the expected interference effect. Finally, possi-
ble applications are discussed where the large area enclosed by the interfering beams can
be of great value, e.g. measurements of gravity induced phase effects and high angular
resolution experiments.
A further interferometric experiment has been performed as well. With a vacuum cham-
ber, we investigate the so called ’chameleon’ phase. It is a candidate for dark energy. We
found with our method, that the chameleon field coupling constant β must be smaller
than 1.9·107. This limit is more than one order better than the current value of 5.8·108.
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1. Introduction

Throughout this work, thermal neutrons (n) have been used for interferometry. Some
properties of the neutrons are listed in tab. 1.1. The lifetime (β decay1) of the free neu-
tron is 14 min and 47(2) sec, and it can be influenced via the gravity, weak, strong, and
electromagnetic interaction. Some wavelength ranges are listed as well. The existence of
the neutron was predicted by Ernest Rutherford (1920) and experimentally discovered
by James Chadwick (1932), which led to nuclear power production (1942) and to nuclear
weapons (1945).

Table 1.1.: Properties of the free neutron. E = mn · v2/2 is the kinetic energy of the
neutron with group velocity v.

Mass mn = 1.67492716(13) · 10−27 kg
Spin s = ~/2 (fermion)

Lifetime 887(2) s
Baryon 1 up, 2 down quarks

Compton wavelength λC = h/(mnc) = 1.319695(20) · 10−6 nm
De Broglie wavelength λ = h/(mnv)

Ultracold n E < 0.2 meV, λ > 2 nm
Cold n E < 2 meV, λ = 2000 . . . 640 pm

Thermal n E < 100 meV, λ = 640 . . . 90 pm
Epithermal n E < 1 eV, λ = 90 . . . 28 pm

A Mach-Zehnder type interferometer (IFM) has been used. Due to the difficult alignment
of the beam splitter/mirrors/analyzer, the blades are cut from a single crystal Si ingot,
fig. 1.1.

Figure 1.1.: Mach-Zehnder interferometer principle (left) and a 6 blade neutron interfer-
ometer (right), (1). . .(6) blades/sample.

1n→ p+ + e−+ ν̄e (proton mass mp = 1.672621777(74) ·10−27 kg, electron mass me = 9.10938291(40) ·
10−31, antineutrino ν̄e (mass: ’KATRIN’ experiment))
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Like for x-ray interferometers, the interaction of the neutron wave within the IFM is
described by the dynamical theory of diffraction [1]. The phase shift of a material in the
interferometer is given by [2]:

φ = −λNbD (1.1)

with the number of nuclei per unit volume N , the coherent scattering length b and
the sample thickness D. Diffraction from the lattice planes of a perfect single crystal
allow coherent splitting of an incident neutron beam, according to Bragg’s law (William
Lawrence Bragg 1912):

λ = 2dL · sin θB (1.2)

with dL, the spacing between the planes in the atomic lattice.

Chap. 2 is dedicated to the Laue phase, where a large 6-blade Si perfect crystal inter-
ferometer with precisely oriented lattice planes was used; the planes are perpendicular
to the lamella surfaces within 13.5 arcsec (′′). The IFM is shown in fig. 1.2, together
with the sample. As sample serves a lamella of the interferometer, because it is already

Figure 1.2.: Laue phase measurement principle: neutron interferometer with a prism to
deflect (δθ) the beam in front of the sample (1).

perfectly aligned. The phase change versus a small beam deviation, close to the Bragg
condition is the ’Laue phase’. First measurements to this phase are presented in [4].
They offer in principle the possibility of extracting fundamental quantities such as the
neutron-electron scattering length, gravitational short-range interactions and the Debye-
Waller factor [5], [6]. For this purpose, it is necessary to improve the accuracy of the
phase measurement - and consider all systematic phase effects in the analysis. Reference
[4] left several open questions concerning the influence of different parameters, there-
fore this work presents a more systematic investigation of the Laue phase. Important
parameters are the type of monochromator, its mosaicity, rocking position (alignment
angle between monochromator and interferometer) and IFM geometry. As experimental
improvements, an aluminum box for temperature stabilization of the interferometer has
been installed, the number of measurements have been increased and the angular range
of the beam deflection has been further enlarged. We compare the experiment with
theoretical calculations of the Laue phase. All these calculations are performed using an
upgraded simulation tool, using less free parameters and more calculation possibilities;
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a detailed description of the software ’IFMSIM’ is provided in [7]. Previous publications
related to the Laue phase are [1], [4], [5], [8], [9], [10], [11], [12]. Our results are pub-
lished in the journal ’Acta Crystallographica Section A: Foundations of Crystallography’
[13].

In chap. 3 the preparation of a new IFM, the world’s largest Si perfect-crystal neutron
interferometer is described (fig. 1.3). To reduce disturbances, a thick basis for such
a large interferometer is of interest. The non-trivial fabrication steps are performed
together with our co-operation partner at the ’Physikalisch-Technische- Bundesanstalt’
(PTB in Germany). Possible applications will be for instance the gravity induced phase
experiment ’COW’ [14] and high angular resolution measurement, where the Laue phase
can be used to detect very small beam deflections [15]. For this, a large area of the
enclosed interfering beams as well as thick sample lamellas are necessary.

Figure 1.3.: New IFM (left) together with the first Si perfect crystal IFM (right).

In chap. 4 an astrophysical application for neutron interferometry is given [16]. A
theoretical scalar field (chameleons) describing the dark energy is discussed and a mea-
surement in a vacuum cell is performed (fig. 1.4). This cell serves as a sample in the
IFM, a phase shift due to the chameleon field is predicted at low pressure. Dark energy is
introduced to explain the observations that the universe is expanding at an accelerating
rate. The universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark
energy [18]. The results are published in ’Physical Letters B’ [19]2.

2The article is also available at ’ArXiv: 1502.06023 (2015)’.
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Figure 1.4.: Chameleon experiment: neutron interferometer with vacuum chamber. The
theoretically predicted phase profile between the chamber walls is shown as
well.

All measurements were performed at the instrument S18 at ILL Grenoble fig. 1.5, 1.6.
The institute was founded 1967 by France and Germany and is named after Max von
Laue (German, crystal structure from x-ray diffraction) and Paul Langevin (French,
neutron moderation).

Figure 1.5.: Neutron guide hall at ILL. (1) Neutron guide from the reactor, (2) vacuum
pump for the neutron guide, (3) S18 measuring hut, (4) S18 control room.
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Figure 1.6.: Neutron guide hall at ILL. Picture from [20].
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2. Laue phase

2.1. Theoretical

2.1.1. Dynamical diffraction theory

The dynamical diffraction theory describes the behavior of neutrons passing through a
periodic potential, like the interferometer blades [2], [3], [21], [22]. A detailed description
for x-rays, where the absorption is not negligible is given in [1], [23], [24]. Furthermore,
the electron case can be found in [25], [26].

Within this theory, the neutron wave function ψ is calculated inside the crystal by solving
the stationary Schroedinger equation:(

− ~2

2mn
∆ + V (~r)

)
ψ(~r) = Eψ(~r) (2.1)

With the boundary conditions of continuity on the crystal surface, this leads to a equa-
tion of the allowed wave vectors inside the crystal (’dispersion surfaces’).
The reduced Planck constant ~ = 1.05457 · 10−34 Js, ∆ is the Laplace operator, mn

represents the neutron mass (tab. 1.1), E = ~2K2/(2mn) its energy, and ~r represents
the spatial vector ( ~K is the wave vector, K is the wave number inside the crystal).
A Bloch ansatz for

ψ(~r) = ei
~K~r
∑
H

uHe
i ~H~r (2.2)

is used, as well as the Fermi pseudo potential:

V (~r) =
2π~2b
mn

∑
i

δ(~r − ~ri) (2.3)

Here, ~H is the reciprocal lattice vector, uH the amplitude, and ~ri is the position of the
nucleus; the scattering length b describes the scattering power of a particular isotope.
Inserting eq. 2.2 and eq. 2.3 in eq. 2.1, leads to a system of equations, where an one-
and two-beam approximation can be used. In case the crystal is oriented with respect
to the incident beam, so that more reflections are excited simultaneously, then this is
called the ’multiple-beam case’1.

1In general this would be the case in our setup for the Si (220) reflection and the exact θB = 45◦ angle,
where the (-220) and (040) reflections are due the Bragg’s law simultaneously excited [27]. However,
these diffracted intensities are by three orders of magnitude lower as compared to the intensity of the
(220) because these reflections are in the dispersive arrangement with respect to the perfect crystal
monochromator.
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2. Laue phase

In the case of the one beam approximation, the phase shifter is described (this is
equivalent to the model of index of refraction). The beam angle is far off the Bragg
condition or the sample is non-crystalline. The incident wave is for instance given by a

plane wave: ei
~k~r where ~k is the wave vector outside the sample (k = |~k| = 2π/λ). The

wave number inside the crystal K0 is given by:

K0 = k ·
√

1− V0/E ≈ k ·
(

1− V0
2E

)
(2.4)

with the mean crystal potential (characterizing the medium) V0 = 2π~2Nb/mn, which
is significantly smaller than the energy of the incoming neutrons. N representing the
atomic number density, which is: 8/a3 = 4.9939669 · 1022 cm−3 for Si. The lattice
constant a for Si is 5.431020504(89) · 10−10 m at 22.5◦C [28]. Similar to light optics, the
index of refraction for such a potential is given by:

n =
K0

k
≈ 1− λ2Nb

2π
(2.5)

In the case of the two beam approximation of the dynamical diffraction theory,
the IFM blade (the Si single crystal) with the beam approximately satisfying the Bragg
condition is described. Additional to the transmitted beam, a reflected beam is observed.

The reflected wave is given by: r · ei~kH~r where r is the reflection amplitude and ~kH
the wave vector of the reflected beam. The reflected wave vector inside the crystal is
~KH = ~K0 + ~H. The transmission and reflection amplitudes of the lattice planes for the
neutron wave function behind a crystal are given by [11]:

t(η) = exp

[
− iA0(1 + ε̄)−AH · η)

](
cos(AH

√
1 + η2(1 + ε))

+
iη√

1 + η2
sin
[
AH
√

1 + η2(1 + ε)
])

(2.6)

r(η) = exp

[
− iA0(1 + ε̄) + iAH · η + iz0ηk|VH |/(E cos θB)

]
·

√
VH
V−H

−i√
1 + η2

sin
[
AH
√

1 + η2(1 + ε)
]

(2.7)

where ε̄ = ε(1 + |VH |2/V 2
0 )/2, ε = |VH |/(2E cos2 θB), z0 the position of the crystal blade

and:

η = 2 sin θB[sin θB − sin(θB − δθ)] · E/|VH | (2.8)

As our study concerns only very small angles, η is then equal to the usually used y-
parameter:

y = −δθ · sin(2θB) · E/|VH | (2.9)

8



2. Laue phase

D represents the thickness of the crystal, A0 = DkV0/(2E cos θB) and:

AH = πD/∆H

∆H =
π

2dL( ~H)Nb( ~H)e−W ( ~H) tan θB

Here, δθ is the beam deviation from the Bragg angle θB = 45◦, VH = π~2N
4mn

b( ~H)F ( ~H)

is the crystal potential, and ∆H denotes the Pendelloesung length2, with dL( ~H) =
a/
√
h2 + k2 + l2 the lattice plane distance (h,k,l are the Miller indices), and W repre-

senting the Debye-Waller factor (chap. 2.4.8). The absolute value of the momentum
transfer is given by H = 2π/dL, and F( ~H) is the structure factor3. Note that b is here
the atomic scattering length, which includes the constant bN and adds momentum trans-
fer dependent the neutron-electron scattering length (chap. 2.4.8).

The Bragg reflected beam shows a Lorentzian-shaped peak with rapid oscillations (ver-
sus y), which are due to the interference of two internal wave fields with slightly different
wave vectors. This ’Pendelloesung oscillations’ depend on the ratio of the crystal thick-
ness and the Pendelloesung length.

An average over these oscillations yields:

< IH(y) >=
1

2(1 + y2)
(2.10)

and

< I0(y) >=
1

2

(
1 +

y2

1 + y2

)
(2.11)

The average reflected intensity falls to half its maximum value when the y-parameter is
unity (Darwin width):

∆θ1/2 =
λ2NF ( ~H)b( ~H)

8π sin 2θB
(2.12)

The Darwin width therefore describes the angular acceptance of a crystal.

2According to the dynamical theory of diffraction, the Pendelloesung length describes the period length
of the wave field oscillation within the crystal [31].

3For Si: F = 8 (sum of the Miller indices is divisible by 4), F = 4 ± i4 (Miller indices all odd) and F
= 0 (all other cases).

9



2. Laue phase

Laue vs. Bragg geometry: depending whether the reflected beam leaves on the front
or back surface of the blade, one distinguishes between the Laue and Bragg geometry, as
illustrated in fig. 2.1. The lattice planes are parallel (Laue) or perpendicular (Bragg) to
the surface normal, as we consider here the ’symmetric Laue case’, the lattice planes are
oriented exactly parallel to the crystal surface normal. The blades of the interferometer
are cut in Laue geometry.

Figure 2.1.: (A) Laue geometry, lattice planes parallel to the surface normal (dashed
dotted line), (B) Bragg geometry, lattice planes perpendicular to the surface
normal. (1) Incident neutron beam, (2) transmitted beam, (3) reflected
beam. θB is the Bragg angle, eq. 1.2 .

10



2. Laue phase

2.1.2. Laue transmission phase

The interferometer blades are cut in Laue geometry, therefore we will call the phase in
the transmitted beam ’Laue transmission phase’ or short ’Laue phase’, as introduced in
[4]. Note that in Ref. [11] the name ’diffractive phase’ and in Ref. [5] ’dynamical phase’
is used.
In the following, the properties of the phase are given, first with a plane wave as incident
beam and secondly as a superposition of plane waves, creating a spherical wave. The
Laue phase is antisymmetric with respect to the very small (0.1 arcsec) crystal rotation
angle δθ. The extreme angular sensitivity and the non-linearity in the y-parameter are
important, since they constitute the main difference to the phase shift induced by a non-
crystalline material or a perfect-crystal far off any Bragg condition. Close to θB, the
angular dependence of the phase is determined by the crystal thickness and the lattice
plane distance.

Plane Wave

The argument4 of the transmission factor in eq. 2.6 gives the Laue phase of the neutron
beam in forward direction φ(η) = arg[t(η)]. An analytical expression of this phase for a
monochromatic plane wave in a perfect crystal blade is [4]:

φLaue(η) = −A0(1 + ε̄)−AHη

+ arctan

[
η√

1 + η2
tan[AH

√
1 + η2(1 + ε)]

]
(2.13)

As mentioned before, we use only small angles where η is equal to y.

The non-linearity of the phase in the y-parameter is described by the arctan term (or
equivalently cos[AH

√
1 + y2] + iy

1+y2
sin[AH

√
1 + y2] in eq. 2.6). These structures are

related to the before mentioned Pendelloesung oscillations, therefore we will call this
phase nonlinearities ’Pendelloesung plateaus’. An important point is, that the sensitivity
to fundamental parameters, such as the scattering length, is enhanced here. This can
be seen in eq. 2.13, the phase plateaus are at the poles of the tangent function, small
changes in its argument AH

√
1 + y2 = (2n+ 1)π/2 show an enhanced sensitivity to the

phase.
The Laue phase for this plane wave case will be compared with the spherical theory
later, see fig. 2.3.

An approximation in the limit |y| → ∞ is given in [36] :

φLaue;approx(y) = φLaue;approx(0)−AH(y ±
√

1 + y2) (2.14)

The plus (minus) sign corresponding to positive (negative) y.

Closely around the Bragg condition, the Laue phase can be approximated for thick
crystals by [15]:

φLaue(y) ≈ φLaue(0)− y ·AH +O(y3) (2.15)

φLaue(δθ) ≈ φLaue(0) + δθ · πD/dL +O(δθ3) (2.16)

so just depending on the ratio between crystal thickness and lattice plane distance.

4The ’argument’ means the angle between a complex number with the positive real axis.
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2. Laue phase

Spherical theory

Note that in eq. 2.13 the phase is calculated using just a plane wave, our calculations5

however consider a coherent superposition of many plane waves [7], [11]. This
creates a localized beam, it is a coherent wave packet with the divergence σα with a
point source at ~r0 in the direction α0. The wave function in real space is given by a
Fourier transform of the wave function in momentum space:

ψ(~r) =
1

2π

∫
d2kei

~k(~r−~r0)ψ(~k) =
k0
2π

∫ π

−π
dαgα(α)ei

~k0(~r−~r0) (2.17)

where in the momentum space and with polar coordinates the wave function is ψ(k, α) =
δ(k−k0)gα(α). As a simplification, the calculations are monochromatic6 and our ’spheri-
cal’ beam is rather a two-dimensional beam with a representation in polar coordinates.

As an angular distribution one can use a Gaussian function:

gα =
1√

2πσ2α
· exp

(
− (α− α0)

2

2σ2α

)
, (2.18)

a square function:
gα = θ(α− σα)− θ(α+ σα), (2.19)

where θ is the Heaviside step function. Furthermore, our calculation program has been
extended to use a Bragg function as angular distribution:

gy = 1 for |y| < 1 and 1−
√

1− y−2 for |y| > 1. (2.20)

The whole interferometer is a combination of crystal-blades, where the calculated
transmitted and reflected beams after a blade is used as incident wave on the following
blade. This is shown in fig. 2.2, all possible beams after the individual beam splitters
are visible, the beam between blade (3) and (4) is blocked in order to yield a one-loop
interferometer. The absolute square of the interfering wave function - integrated over
the beam profile, yields the total intensity, which is measured in the experiment. The
phase between the two beam paths is determined from an interferogram; which is the
intensity at (O) versus different values of an additional phase factor in one beam path.

5All the calculations are performed with the software ’IFMSIM’ in chap. A.1.
6The calculation with only one wavelength leads to a much smaller beam divergence than the typical

experimental 0.25. . .0.5 degree.
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2. Laue phase

Figure 2.2.: Combination of beam splitters in Laue geometry (fig. 2.1) to yield an in-
terferometer. (i) Incident neutron beam, (t) transmitted beam, (r) reflected
beam for the first beam splitter (1). This (r) and (t) beams are used as
incident beams for the following beam splitters (2)(3), and so on. (3) and
(4) are used as sample blades (single-crystals). The outgoing beams of the
last beam splitter (6) are denoted by (O) and (H).

Phase averaging by the beam divergence: the average phase factor from a distribu-
tion of phase shifts P(φ) within this beam divergence is given by: < eiφ >=

∫
dφP (φ)eiφ,

which can be rewritten for a narrow distribution with the average phase shift
< φ > =

∫
φP (φ)dφ and the mean fluctuation < δφ2 > = < φ2 > − < φ >2

as well as < φ2 > =
∫
φ2P (φ)dφ to:

< eiφ >= ei<φ>
∫
dφP (φ)ei(φ−<φ>) ≈ ei<φ>−<δφ2>/2 (2.21)

where e−<δφ
2>/2 describes the reduction of the visibility (or contrast). Further reasons

for a reduction, besides this phase distribution within the beam divergence, are an
interferometer defocusing (non-ideal geometry) or asymmetric beam-path intensities7.

With the interferometer and this beam, we can now calculate the phase change due to
a small beam deflection in front of blade 3 (Laue phase, fig. 1.2). The measurement
principle of the Laue phase is given later in chap. 2.2.2 in detail.

A calculation of the Laue phase for an interferometer with 3 mm thick blades is
depicted in fig. 2.3 for a spherical and a plane wave, respectively. It shows a decrease of
the phase slope for the spherical wave as compared to the plane wave, due to the phase
averaging within the beam divergence. Note the Pendelloesung plateaus.
The crystal thickness of the sample blades has a large influence on the phase slope as well.
The calculation for the 3 mm ideal interferometer and one with 15 mm sample blades,
increases the slope around the Bragg condition, from approximately 6 to 30◦/0.001′′

as depicted in fig. 2.4. For the thicker crystal the plateaus come closer to the center,
however the contrast drops faster.

7Rotating a Laue crystal inside an interferometer changes the beam path’s intensity as well.
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2. Laue phase

Figure 2.3.: Laue phase calculation with a plane wave and a spherical wave. The 4
circles mark the first pairs of Pendelloesung plateaus. The phase slope
around δθ =0′′ is 10◦/0.001′′ (plane wave) or 6◦/0.001′′ (spherical wave),
respectively. Parameters: crystal thickness: 3 mm, θB = 45◦, (220) case.

Figure 2.4.: (left) Increase of the angular sensitivity by thicker samples. (right) Decreas-
ing width of the contrast curve with thicker samples; (220) case.
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2. Laue phase

So far the phase slope was calculated for only two different sample thicknesses; in fig.
2.5 the phase slope8 is calculated now for several sample thicknesses (blade 3 and 4 are
3 mm ± 25 µm). Additionally, the thickness change of only one of the sample blades
(3 or 4) is given as well. The corresponding contrast decreases with the geometry error
(thickness difference between blade 3 and 4) and reaches half of its value at about 20
µm. Of course the contrast remains constant if both sample blades change the thickness
simultaneously.

Figure 2.5.: (top) Phase slope vs. thickness deviation of blade 3 only, 4 only, or 3&4.
(bottom) Corresponding contrast from (top). Parameters: ideal interferom-
eter (IFM) with 3 mm thick blades, spherical wave, (220) case.

8The phases are obtained in every case from a blade 3 rotation.

15



2. Laue phase

2.2. Experimental

In the following an overview of the experimental components and their alignment is given.
All measurements were carried out at instrument S18 at ILL Grenoble. The neutrons are
produced in the high-flux reactor with a thermal power of 58.3 MW (1.5·1015 neutrons
per second per cm2) [20]. The beam, leaving the evacuated supermirror neutron guide
H25 after the monochromator has an neutron flux of about 1.4·104 neutrons per s·cm2.

2.2.1. Experimental setup

An overview of the experimental setup for the Laue phase experiment is depicted in fig.
2.6. The perfect crystal Si monochromator is placed in the neutron guide behind the
shutter9 (1), the Bragg angle of it is (45± 0.25)◦ in order to extract the neutrons from
the neutron guide to the experimental area. In front of the aperture are Si prisms for the
(220) or (440) wavelength selection (2). The perfect crystal Si interferometer is placed
in the aluminum box (3). To reduce vibrations, the interferometer and monochromator
are mounted on the optical table (A), which is isolated by springs from the other part
of the bench (B). To move the sample in the interferometer a robot (C) is used, the
former not being connected to (A) because of the vibrations. The neutrons are counted
at detectors, which are indicated by (O) and (H) in the picture. In the following the
components along the beam path are described and details to their alignment are given
in chap. A.5.

Figure 2.6.: Overview of the Laue phase experiment. (1) Monochromator/neutron guide
/shutter, (2) aperture and 6 Si prisms, (3) interferometer/Al box, (A)(B)
optical bench/vibration reduced table, (C) robot to move the sample, (O)(H)
neutron detectors.

9Depending on the Bragg angle, two out of 10 lead blocks are lifted by a compressed air system.
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2. Laue phase

Monochromator: the monochromator is placed in the neutron guide. This Si crystal
reflects neutrons obeying the Bragg condition for a certain wavelength/direction distri-
bution to our experiment. It is mounted on a rotatable slide to choose the Bragg peak
and adjust the beam position (fig. 2.7).

Wavelength selection: the beam then passes six 140◦ Si prisms for a separation of
the higher order reflections (fig. 2.7)10, in order to compare the Laue phase at different
wavelengths. Without the prisms the intensity is higher and the peak is asymmetric due
to the peak overlap. The measured intensity ratio of the peaks (220):(440):(660) are
1:0.35:0.04. The separation with the prisms of the (220) and (440) Bragg peak amounts
to 13′′, for the (440) and (660) Bragg peak 2.34′′. It can be determined by performing a
rocking curve, where the rocking angle describes the rotation of the IFM in the x-y plane
relative to the incident beam (fig. 2.7, 2.11). The separation values can be calculated
with eq. 2.22 [29], where βi = 140◦, λ is the wavelength, N = 4.9939669 · 1022 cm−3 the
number of nuclei per unit volume for Si and bN = 4.1507(2) fm its nuclear scattering
length.

δ(λ) = λ2
6∑
i=1

NbN
π

tan
βi
2

(2.22)

The results are: 12.56′′ (220)-(440), 2.26′′ (440)-(660) and 0.81′′ (660)-(880).

Figure 2.7.: (left) Sketch of the neutron beam (1), monochromator crystal (2), and slides
to adjust its orientation (3). . .(6). (right) Rocking curve with and without
Si prisms. The (440) is 13′′ separated from the (220) Bragg peak. The phase
measurements will be performed exactly at each peak maximum. (bottom)
The 6 Si prisms are placed after the monochromator.

10For the separation of the (220) and (440) Bragg peak, 2 prisms would be sufficient.
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2. Laue phase

The aperture: is mounted after the prisms, it is made of cadmium11. The rectangular
beam window can be chosen up to 26 x 26 mm2, for our experiment we use 5 x 5 mm2

to ensure that the beam fits through all components with sufficient intensity during the
measurements. Typical value of the counted neutrons are visible in fig. 2.7, e.g. for the
(220) Bragg peak at the interferometer output O: 160 neutrons per s·cm2.

Interferometer with sample

The six blade Si perfect-crystal interferometer is described in chap. A.4. Its size is very
large (length: 23.5 cm, width: 10 cm), so that it is possible to insert bulky components
such as prisms and beam stops (fig. 2.8). It is placed on 10. . .20 layers of papers on
a 2 kg flat Al disk with 40 cm in diameter (B). Piezo: the disk can be rotated by a
piezo-electric device (±0.18′′, Burleigh Instruments: Inchworm Motor IW-701). Drifts
of up to 4′′/hour can occur if the piezo control stays activated, therefore the rocking
position (chap. 2.4.5) requires to be continuously checked and the control system needs
to be deactivated after read out12.

Figure 2.8.: Experimental setup. (A) Interferometer (23.5 x 10 cm2), (B) IFM support,
(C) temperature sensor, (D) rotatable prism holding device, (E) Al box, (1)
interferometer blade 1 (beam splitter), (2) phase shifter: Si 3 mm thick, (3)
Al prism for beam deflection in front of interferometer blade 3 (4), Cd for
beam absorption (5), (6) interferometer blade 6 (beam recombination).

Behind the aperture, the neutron beam (n) enters the Al box and is split in two beams
at interferometer blade 1 (1). Phase shifter: a D = 3 mm thick Si phase shifter (2) is
used to obtain the interference pattern. The tab. 2.1 lists the measured phase shifter
thicknesses at the positions depicted in fig. 2.9. The relation of the phase shifter angle13

and the thickness difference in the two beams is given in the following eq. [2]:

∆D(angle)/D =

(
1

cos θB + angle
− 1

cos θB − angle

)
(2.23)

11Note that Cd is toxic (gloves). It has a high absorption cross section for thermal neutrons.
12Press ’stop’ in the motor section of the S18 control program after the piezo selection, chap. A.3.
13The angle of the phase shifter, when it is parallel to the interferometer lamella, is subtracted.
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A typical interferogram consists of about 24 points, separated by 0.06◦ (220) and 0.12◦

(440) steps, respectively. The measurement time is about 30 s/point. The intensity I is
normalized to the O+H detector signal; afterwards, a least squares fit (eq. 2.24) gives the
parameters A (intensity offset), B (amplitude), C·∆D (known phase from phase shifter
rotation) and φ (unknown phase).

I(∆D) = A+B · sin(C ·∆D + φ) (2.24)

The fringe visibility V follows from the largest (Imax) and smallest (Imin) measured
intensity values of the interferogram:

V =
Imin − Imax
Imin + Imax

(2.25)

Figure 2.9.: Phase shifter made of Si (10.2 x 3 x 0.3 cm3). (1). . .(6) Positions of the
phase shifter where the thickness measurements were performed (see tab.
2.1). After the interferometer blade 1, the two neutron beams (n) pass
through the phase shifter, approximately at the indicated position.

Table 2.1.: Measured phase shifter thicknesses D at the positions shown in fig. 2.9 (with
a micrometer caliper).

position: 1 2 3
D / mm: 3.033(3) 3.016(1) 2.991(2)

position: 4 5 6
D / mm: 3.034(3) 2.991(3) 2.936(1)

AlMgSi0.5 prisms: are used due to their excellent homogeneity for a beam deflection
in front of interferometer blade 3. Two pairs of prisms are used to avoid a defocusing
of the interferometer and to compensate the phase shift in the other beam path. Both
prism pairs are mounted on a rotatable prism holding device. The correlation of this
beam deflection with the rotation angle α of the prisms is [5]:

δθ = δ · sinα (2.26)

δ = 2(1− n)
sinβ

cosβ + cos 2ε
(2.27)

n = 1− λ2NbN
2π

The angle β of the prisms is 25◦ and ε, the deviation from the symmetric prism mounting,
is 12.5◦ (fig. 2.11). The alignment of several prism angles is discussed in chap. 2.4.6. λ
is the wavelength and NbN = 2.08 · 1010 cm−2, the scattering length density [2].
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2. Laue phase

In principle three interferometer loops are selectable in this interferometer type, which
are shown in fig. 2.2. A beam stop made of cadmium is placed between the inter-
ferometer’s blades (3) and (4), to use the big loop only. The beam is recombined at
the interferometer blade 6, the two exiting beams O and H are counted in the detectors
(O,H).

Detectors

The neutrons are absorbed in the detector gas and produce an electrical signal. The
used 3He detectors are cylindrical with a diameter of 5 cm and a length of 10 cm and
operate with a voltage of about 1.5 kV and an efficiency of ≈ 98% (XERAM).
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2. Laue phase

2.2.2. Measurement principle

Before we discuss the Laue phase measurement in the next chapter, its measurement
principle will be presented here in detail. In general, a phase within an interferometer is
measured by recording the output intensity in the O detector versus the rotation angle
of an auxiliary phase shifter. A Mach-Zehnder type interferometer together with the
sinusoidal interferogram is depicted in fig. 2.10(a), 2.10(b). The principle of measuring
the Laue phase is illustrated in fig. 2.10(c), 2.10(d) with a ’rotating’ sample, where the
rotation angle is denoted by δθ. The sample is a perfect Si crystal like the interferometer
blades. The additional blade in the second beam compensates for the refractive phase
of the sample at δθ = 0′′. For each δθ a complete interferogram is taken. The phase
change of the interferogram due to the small sample rotation is the ’Laue phase’. The
tilt of the interferometer versus the monochromator (ρ-axis angle) is adjusted in order
to yield the rocking curve with the smallest width (chap. A.5).

Figure 2.10.: (a) Sketch of a Mach-Zehnder interferometer with a phase shifter inter-
secting the two beam paths. (b) Typical interferogram in the output O:
the intensity is recorded versus the phase shifter rotation. The phase and
fringe visibility is derived from this sinusoidal intensity modulation. (c)
Neutron interferometer with rotating sample (the phase shifter is here not
shown). (d) Top view of the sample with the δθ angle: (1) transmitted
beam, (2) diffracted beam, (3) beam stop.
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As the rotation of the IFM blade 3 is impossible, we manage a rotation of the beam
instead by a pair of aluminum prisms. A scheme of the experiment is given in fig. 2.11
and a photography is provided in fig. 2.8. There, the second prism avoids a defocusing
of the interferometer and the second pair of prisms compensates the phase shift in the
other beam path. This beam deflection is controlled via a rotation α around the beam
axis of the prisms. The correlation between the beam deflection and the rotation angle
α of the prisms, as well as the used wavelength is given in eq. 2.26. In our upgraded
setup, a range of α = ±15◦, is experimentally accessible, which accounts for the (220)
wavelength to δθ = ±0.06 arcsec and ±0.015 arcsec for the (440) wavelength. Compared
to previous measurements [4], a new prism holding device was constructed, in order to
realize this larger beam deflections14. Due to unavoidable intrinsic interferometer phase
drifts, a commonly used ’IN-OUT’ measurement process is used to obtain the phase
values. IN and OUT denote two different rotation angles of the prisms within the beam.
The phase at an IN position δθ is always subtracted by the phase value at δθ=0′′ (OUT
position) for each phase shifter position in an interferogram.

Figure 2.11.: (a) Top view of the experiment (the phase shifter is here not shown). The
incident wave is split at blade (1) and passes through the sample blades (3),
(4) and prisms - which rotate around the y-axis (α). After recombination
in blade (6), the interferogram in the transmitted beam (O) is recorded.
(b) Prism side view and mounting angle ε = 12.5◦ (β = 25◦).

14Note that the sample volume is slightly different, where the beam passes due to the beam deflection.
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2.3. Measurements and Calculations

In the last chapter we discussed the setup and the measurement principle, now the results
of our measurement at ILL are presented. As mentioned in the introduction, this study
follows the previous measurements in [4] and [30], with the aim to improve the accuracy
of the phase measurement and extend the angular range δθ of our sample rotation in
order to extract fundamental quantities, discussed later in chap. 2.4.8. Therefore, as the
main experimental improvement, an aluminum box for temperature stabilization of the
interferometer has been installed. Details together with its active heating and cooling
possibilities are described in chap. A.5. During these measurements we paid attention to
further alignment parameters, like the rocking angle, ρ-axis and prism mounting; their
influences on the Laue phase are investigated later (chap. 2.4). The planned comparison
measurement at NIST (National Institute of Standards and Technology), with a different
setup was not possible due to limited time; in particular a mosaic crystal monochromator
is available there. Unfortunately, a lot of time consuming interferograms can not be used,
due to visibility problems with large interferometers.
The measurements are compared with numerical calculations as described in chap. 2.1.2.
The parameters in our calculation program IFMSIM are:

• Bragg monochromator curve with Darwin width=1 and

• the IFM geometries: ’real I’ and ’ideal’; its exact values are listed in chap. A.4.

The use of the Bragg monochromator curve is a main improvement compared to the cal-
culations in [4], because it describes the physical monochromator function. Its influence
will be discussed in chap. 2.4.3.
In order to compare the Laue phase at two wavelengths, two Bragg peaks from the silicon
monochromator have been chosen: (220) and (440).

2.3.1. (220) case

Fig. 2.12 shows the Laue phase, contrast and intensity for the (220) Bragg peak; each
measurement-point represents an average value of about 10 single measurements. This
experimental values were taken with the setup alignment from March 2013, where the
visibility conditions were the best and therefore the Laue phase error bars are minimized.
In the (220) case, the wavelength is about 2.72 Å. The neutron beam deflection is
performed in front of blade 3 with Al prisms and its beam deflection range is about
±0.06′′. For this deflection, a prism rotation angle of α = ±14◦ is necessary at this
wavelength. This range is larger than in [4], where δθ = ±0.04′′ (α = ±10◦). This is
important in order to study the influences of several parameters on the Laue phase at a
wide δθ range, in particular for higher order reflections. The beam deflection depends
on λ2 c.f. eq. 2.27.

Phase:

Note that the Laue phase formula in eq. 2.13 describes the Laue phase with only one
plane wave, whereas our calculations consider a coherent superposition of many plane
waves (spherical wave). Important for the understanding of the phase and contrast
behavior is the averaging over all of this plane-wave components. Therefore, the phase
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slope becomes about 1/3 smaller than for a single plane wave; however, it still constitutes
a very fascinating steep phase slope. In particular, the slope of the phase curve in
the vicinity of the exact Bragg condition, amounts to 5.5◦/0.001 arcsec and is well in
agreement with the calculation, fig. 2.12 (top). The slope calculated with a plane
wave would be steeper with 8◦/0.001 arcsec. Two non-linearities in the phase curve
(’Pendelloesung plateaus’) can be identified at each side in the vicinity of the Bragg
position. Their δθ positions are: 1st : ±(0.02 . . . 0.03)′′ and 2nd : ±(0.04 . . . 0.05)′′ (tab.
2.11). These structures are related to oscillations resulting from the interference of two
internal wave fields with slightly different wave vectors [31]. They appear exactly at
the minima of the transmitted intensity and are described by the arcus tangents in eq.
2.13. The change of the phase will be evaluated at this positions, there the sensitivity
to fundamental parameters like the scattering length is enhanced. The influence of
several other parameters, like the exact interferometer geometry is discussed in chap.
2.4. Important is the result, how accurate the Laue phase can be measured. The error
bars of the phase values are about ±9◦ for the first plateaus and ±15◦ for the seconds
and will be compared later with the influence of several parameters. These values are
obtained from the difference IN(δθ) minus OUT(δθ=0′′) according to the measurement
procedure, in order to avoid arbitrary phase drifts. Note that the phase accuracy is
obtained from an average of ≈10 single measurements.

Contrast:

Besides the phase, the fringe visibility (contrast) of an interferogram (fig. 2.10) is con-
sidered as well. The diminishing of the interference pattern with increasing δθ is shown
in fig. 2.12 (middle). Due to the low contrast, measurements at δθ > 0.02 arcsec be-
come increasingly challenging. The contrast reduction is mainly caused by a distinct
phase distribution within the divergence of the incoming beam. Asymmetric beam-path
intensities reduce the fringe visibility as well [2]:

V ∝
√
IbeamIIbeamII

IbeamI + IbeamII
(2.28)

This asymmetry results from the blade 3 rotation during the measurement, the beam
path I and II are marked in fig. 2.2. The measured curve results from a relative mea-
surement of IN(δθ) / OUT(δθ=0′′), therefore the contrast is 1 at δθ=0′′ in fig. 2.12
(middle). The average of all OUT measurements is 14% (absolute contrast at O)15. This
constitutes the challenging conditions for large neutron interferometry. For comparison:
smaller IFMs (length ≈ 15 cm) usually work at visibility values >60%. The Pendelloe-
sung plateaus in the contrast curve are also visible, their positions are the same as for
the phase curve.

Intensity:

The measured intensity in fig. 2.12 (bottom) results as well from the IN(δθ) / OUT(δθ=0′′)
measurement procedure. It shows a marked decrease near Bragg due to a diffracted beam
which exits the sample as well. Interesting are the intensity oscillations, where the min-
ima position fits with the Pendelloesung plateaus of the phase and contrast. This can be
clearly seen in both the measured and calculated data and acknowledges the reliability
of the calculation program IFMSIM.

15Maximal 20%, the best observed value during all our measurements is 35%.
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Figure 2.12.: Measured (EXP) and calculated (SIM) Laue phase (top), contrast (middle),
and intensity (bottom) of the (220) O beam, EXP shifted by δθ=0.0035′′.
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The measured values of the phase, contrast, intensity are shifted all together in δθ to be
centered around δθ = 0′′, this shift in the diagrams is discussed below.

2.3.2. (440) case

Fig. 2.14 shows the Laue phase, contrast and intensity for the (440) Bragg peak, the
wavelength is about 1.34 Å. The measurements were taken with different setup align-
ments from July 2012 and August 2012, due to limited measurement time. Each point in
the plot represents an average value of about 5 single measurements. The realizable δθ
range is smaller, due to the wavelength dependence in eq. 2.26. It amounts to ±0.015′′

(α = ±14◦)16. Only one pair of Pendelloesung plateaus is within this range, for higher
reflections only the slope of the Laue phase can be measured with this prism configu-
ration. The δθ positions of the plateaus for the phase and contrast are the same, and
fit with the minima of the intensity. Their δθ values are about half of the (220) case:
1st : ±(0.01 . . . 0.015)′′ and the 2nd would be at ±(0.02 . . . 0.025)′′. The measurement
and the calculations are again in good agreement.

Phase: the slope of the phase curve in fig. 2.14 (top) near the exact Bragg condition
amounts to 11.5◦/0.001 arcsec. It is steeper (about the double) than in the (220) case,
hence it constitutes an extremely sensitive phase versus angle correlation [15]. The slope
is now well in agreement with the calculation, and improves previous measurements
[4] (tab. 2.2). There the mismatch is suspected due to a misalignment of the rocking
angle. This is confirmed by our measurements in chap. 2.4.5. The feasible measurement
accuracy of the Laue phase for this wavelength is represented by the error bars in the
first plateaus, which is about ±12◦. Contrast: the relative fringe visibility is shown in
fig. 2.14 (middle), the average of all OUT measurements is 16% (absolute contrast). As
in the (220) case, the visibility decreases fast with δθ (phase mismatch). The different
size of the error bars stems from different numbers of individual measurements per
point. Intensity: the intensity oscillation around δθ = 0′′, with its minima at the
Pendelloesung plateaus, like in the (220) case is again visible in fig. 2.14 (bottom).

2.3.3. Measured δθ-shift

The measured values in all diagrams are centered around the δθ = 0′′ position17; the
calculated values are not shifted. This shift is illustrated in fig. 2.13 for the intensity
curve. Such a δθ-shift was already observed in [4], [30]; several reasons are discussed
like:

• if the lattice planes would not be orthogonal to the lamella surface,

• imperfect interferometer geometry,

• crystal strains, and

• the Coriolis forces - which was favored as explanation18.

16It is wider than in [4]: ±0.01′′ (α = ±10◦).
17The phase offset at δθ = 0′′ for the δθ = 0.0035′′ shift is 33◦.
18In future studies this force can be implemented in IFMSIM.
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Figure 2.13.: Illustration of the δθ-shift. The zero position of the prisms is aligned with
a water level, however the measured values are not centered at δθ = 0′′.

In our study an additional small contribution to this δθ-shift has been found in chap.
2.4.5, caused by a deviation from the exact rocking angle in combination with the non-
ideal interferometer geometry19. Furthermore, IFMSIM has been extended with the
possibility to calculate with prisms; different alignment errors which can rise such a δθ-
shift will be investigated later in chap. 2.4.6. We found that a shift would be possibly
due to a relative rotation between first and second prism, however this should not be
the case in our setup.
The shift values from our measurement as well as the old ones are summarized in tab.
2.2. Additional to the measured Laue phase and contrast shifts we listed the intensity
shifts as well. Within its maximal error limits, the shifts are approximately in agreement
with the previous measurement in [4]. The (440) contrast shift value is about the half
of (220). The contrast maximum can be influenced by the different rocking position,
which is indicated by the smaller phase slope value in [4]. The values are obtained with
a Gauss-fit around the maximum in the contrast and intensity curve. The zero position
of the prisms defines δθ = 0′′ and it is aligned with a water level. The maximal prism
rotation error is about α = 0.1◦, which is 0.0004′′ (220) / 0.0001′′ (440).

Table 2.2.: Measured contrast (contr.), intensity (int.), and phase shift as well as the
phase slope. A different slope value, between the two (440) measurements,
indicate a different rocking position.

measurement contr. shift / ′′ int. shift / ′′ phase shift / ′′ slope / ◦ per 0.001′′

(220) -0.006(3) -0.0035(20) +0.002(4) 5.5
(220) [4] -0.0080(4) - -0.008 6.0

(440) -0.0025(30) +0.0035(10) +0.0015(40) 11.5
(440) [4] -0.0045(3) - -0.0045 8.5

19About δθ =0.001′′ up to 0.003′′, for a rocking angle deviation of 0.18′′ to 0.9′′ (real I geometry, (220)).
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Summary

Summarizing the measurement at the two Bragg peaks, the smaller wavelength yields a
higher phase slope; however, the achievable beam deflection range is reduced. For the
used large neutron interferometer, the absolute contrast average over all measurements
at δθ = 0′′ was about 15%, this is a very challenging condition. However, the expected
large slope of phase shift per misset angle as well as the Pendellosung plateaus are clearly
evident in the data. The resulting measured relationships and the calculations are in
good agreement. However, whether the accuracy of the measurements is sufficient will
be discussed in chap. 2.4.8, in order the determine parameters like the scattering length.
For a measurement with higher order reflections, a better rocking angle rotation device
and a higher angular stability of the whole setup is necessary, because the FWHM of
(660) is about 0.5′′ and for (880) it is just 0.25′′, while the rocking angle accuracy is
0.18′′. Deviations from the exact rocking position will change the phase strongly, see
chap. 2.4.5.
In the next chapters, the influence of varying different parameters will be discussed and
the change of the Laue phase will be evaluated, particularly at the plateau positions.
Additionally, another method to measure the phase, will be introduced in chap. 2.5.
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Figure 2.14.: Measured and calculated Laue phase (top), contrast (middle), and intensity
(bottom) of the (440) O beam.
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2.4. Systematic effects on the Laue phase

In the previous chapter the accuracy of the Laue phase measurement of our setup has
been demonstrated. Here we want to figure out which parameter has an influence on the
Laue phase and compare it with our measurement accuracy. Such parameters addresses
e.g. the experimental alignment of the components, the used interferometer geometry,
wavelength etc. Possible phase changes are evaluated at specific δθ-values (where the
Pendelloesung plateaus are located) and the phase slope is obtained in the vicinity of
δθ = 0′′. The contrast and intensity behavior is taken into account as well.
Especially for a reliable measurement of fundamental quantities the behavior of the
system has to be known; therefore, in particular the following parameters are investigated
in the next sections in detail:

• geometry (e.g. blade thickness)

• temperature

• monochromator function

• beam divergence and ρ-axis angle (fig. 2.10)

• rocking position

• Al prisms

• wavelength

• fundamental parameters (e.g. scattering length bne)

Another parameter is the roll of the whole optical bench, its rotation axis is parallel to
the interferometer’s length direction20. During all measurements the roll of the optical
bench is adjusted within 0.001. . .0.01◦ to the zero position21. This roll simply changes
the situation in the gravity field, the arising COW phase22 is subtracted due to the
IN-OUT measurement procedure (chap. 2.2.2).
Fig. 2.15 shows measurements of the Laue phase and contrast, at a roll of 0.063◦23 and
0◦. The phase and contrast have indeed the same behavior for this two roll angles. Every
point at 0.063◦ represents an average value of about 5 to 6 single measurements. The
values at 0◦ are taken from chap. 2.3.

20Note that the roll of the bench does not change the rocking curve (the monochromator is tilted as
well).

21This zero position is the horizontal bench position, approximately orientated with a water level.
22A roll of 0.063◦ yields a COW phase of: 67◦ (220), 34◦ (440), 22◦ (660) [14].
23Note that this roll is negligible as compared to the zero point of the Al prisms (chap. 2.4.6).
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Figure 2.15.: Laue phase (top) and contrast (bottom) at different roll of the optical
bench. The EXP values are shifted by δθ = 0.035′′ according to chap. 2.3.
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2.4.1. Interferometer geometry

In general, the design of the interferometer is based upon the characteristics of the used
sample, which results in the use of this large IFM. With ’interferometer geometry’ we
basically mean the blade thicknesses and the blade distances. The detailed geometry
in the µm-range depends on the preparation possibilities. Therefore, the IFM in the
experiment has a geometry, which deviates slightly from the intended ideal values. The
geometry can be measured and will be denoted as ’real’. Hence, the geometry can be
different for the particular position where the beam traverses the interferometer blades.
This non-ideal geometry constitutes a complex system, creating a special phase distri-
bution within the beam. The Laue phase, as an average of this distribution is studied
in this chapter as a function of the blade thickness. This is important for the question,
how accurate the geometry has to be known, to measure fundamental parameters at a
prescribed precision. In general, an ideal interferometer includes identical IFM blade
thicknesses and equal distances between the blades, however the sample blades 3 and 4
are allowed to have a different thickness. This would lead to a change in the slope of the
Laue phase according to eq. 2.16. To enhance the angular sensitivity of the Laue phase,
our new interferometer described in chap. 3 is prepared with 15 mm thick sample blades.
The influence of the geometry on further parameters will be investigated separately in
the subsequent chapters. The geometry of the prisms is discussed in chap. 2.4.6.

Blade shapes

First we take a look at the thickness measurements over a certain region on each blade
from tab. A.3. The deviation of the thickness values from their average values are drawn
in fig. 2.16, for all lamellas. It reveals a wedge shape with a thinner blade at the IFM
basis. The deviation maxima within the scanned area and its calculated angles are listed
in tab. 2.3. Note the very small wedge angle difference of blade 3 and 4. Note, that the
Laue phase is measured in this work at blade 3 and in [30] at blade 4. Unfortunately,

Table 2.3.: IFM blade wedge shapes in ẋ and ż direction within 2.5x2.5 cm2, cf. fig.2.16.

blade no. ẋ / µm ẋ angle /◦ ż / µm ż angle /◦

1 1 0.0023 6 0.0138
2 1 0.0023 0.5 0.0011
3 0 0 2 0.0046
4 1 0.0023 1.5 0.0034
5 2.5 0.0057 3 0.0069
6 0.5 0.0011 6 0.0138

the calculation program is limited by parallel blade surfaces so far (no wedge shapes
of crystalline materials are possible). However, an estimation of its influence can be
done by inserting a non-crystalline Si wedge with an angle of 0.0138◦. This will lead
to a very small beam deviation of only 0.0012′′ (eq. 2.22). On the other hand, we will
now estimate a possible influence of such a geometry deviation only by blade thickness
changes.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.16.: Interferometer blade thickness (minus average value) d. The blade no.
1. . .6 (a). . .(f) and coordinates are indicated in fig. 2.17. The wedge values
are listed in tab. 2.3. Note that the ẋ and ż axis are in cm, while the
difference d is in mm. Position (1): ẋ=-1.25 cm, ż= 1.25 cm etc.
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Thickness change of all interferometer blades

Here we will calculate in general the influence of changing the IFM blade thicknesses. Its
effect on the Laue phase will be evaluated at the Pendelloesung plateaus. We focus on
the Laue phase versus the blade 3 rotation. The lamella thicknesses will be changed from
D=3 mm, by adding an additional contribution ∆D separately to each blade. This is
illustrated in fig. 2.17 for blade 1 only; the thickness change is in the range of ∆D = 0.1
to 10 µm (chosen according to the thickness measurement in tab. A.3).

Figure 2.17.: The interferometer blade thicknesses are 3 mm, only blade 1 is thicker:
∆D = 0.1...10 µm. The resulting Laue phase with this geometry is calcu-
lated in fig. 2.18.

Laue phase: in fig. 2.18 the Laue phase is shown for the ideal interferometer, where
all blade thicknesses are 3 mm. The modified Laue phase due to the thickness change
of each blade is drawn as well. The phase is characterized by its offset at δθ = 0′′, slope
and position of the plateaus. The offset does not change with the thickness variation in
blade 1 and 6, however a thickness change of the blades in the left beam path (blade
3, 5) shifts the offset in positive - right path (blade 2, 4) in negative direction. This
offset is simply a result of additional material in one beam path, described by eq. 1.1.
Due to our IN-OUT measurement method this offset is subtracted in the experiment.
The phase slope results from averaging a distinct phase distribution within the beam, it
changes stronger with thickness deviations of blade 2, 5 and 6, than thickness changes of
the other blades. The largest influence on the curve shape, due to the thickness change
appears for blade 6. For the blade 3 thickness variation, the 1st plateaus are very flat.
The change of the Laue phase is enumerated in tab. 2.4 for the first two plateaus.
Concerning the determination of fundamental parameters employing Laue phase mea-
surements, we obtain the important result that the geometry of the interferometer blades,
have to be known with an accuracy below 1 µm24, exactly where the neutron beam passes.

24This would mean a change of our hitherto used measuring method at Rauch company, chap. A.4.
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Figure 2.18.: Blade thickness influence on the Laue phase. Only one blade deviates 1
µm or 10 µm from 3 mm. The phase curve is characterized by its offset at
δθ = 0′′, the slope and the position of the plateaus. Parameters: blade 3
rotation, (220). Note that the phase is plotted mod 2π (except blade 6).
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Table 2.4.: Blade thickness influence on the Laue phase. Evaluated at specific δθ values:
1st and 2nd plateaus. The stated values are phase O changes, relative to the
ideal IFM geometry (all blades 3 mm thick). The phase at δθ = 0′′ in fig.
2.18 is subtracted.

blade no. phase change /◦ phase change /◦

+ thickness change 1st plateaus 2nd plateaus

blade 1 + 0.1 µm 0.04 0.07
blade 1 + 1 µm 0.4 0.7
blade 1 + 5 µm 1.4 10.6
blade 1 + 10 µm 13 34

blade 2 + 0.1 µm 0.11 0.11
blade 2 + 1 µm 0.85 0.85
blade 2 + 5 µm 6.2 12.2
blade 2 + 10 µm 34 60

blade 3 + 0.1 µm 0.04 0.09
blade 3 + 1 µm 0.4 0.9
blade 3 + 5 µm 3.2 5
blade 3 + 10 µm 10 10

blade 4 + 0.1 µm 0.06 0.07
blade 4 + 1 µm 0.7 0.7
blade 4 + 5 µm 2 3
blade 4 + 10 µm 3.2 5

blade 5 + 0.1 µm 0.12 0.12
blade 5 + 1 µm 0.85 0.85
blade 5 + 5 µm 6.18 12.2
blade 5 + 10 µm 30 60

blade 6 + 0.1 µm 0.07 0.15
blade 6 + 1 µm 1.09 1.8
blade 6 + 5 µm 13.65 18.62
blade 6 + 10 µm 90 90
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The contrast curve in fig. 2.19 is characterized by its height value at δθ = 0′′, curve
shape and symmetry around δθ = 0′′. The largest height reduction and shape change
is due to the thickness variation in blade 6 and 1. Note the similar behavior of blade 3
and 4, but like in the phase the 1st plateaus are smeared out. Referring to chap. 2.3.3,
note that the increasing blade thickness in one beam path can not shift the peak in δθ.

Figure 2.19.: Blade thickness influence on the contrast. Only one blade deviates 1 µm
or 10 µm. The contrast curve is characterized by its height value, curve
shape and symmetry around δθ = 0′′. Same parameters as in fig. 2.18.
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The geometries ’ideal’, ’real I’, and ’real II’

So far we changed only an individual blade thickness, now a specific combination of
different blades with simultaneous thickness changes will be performed. This specific
thickness values are given by our interferometer geometries. We use basically three
different geometries: an ideal interferometer with 3 mm thick blades and two measured
geometries, where ’real I’ and ’real II’ are from two different measurements at two
different positions on the interferometer blades. The position is chosen approximately
according the area where the neutron beam passes the IFM blades. We will determine
which measuring geometry is more suitable.
The fringe visibility at δθ = 0′′ is significantly higher for the ideal than for the real
interferometer geometry, due to equal blade thicknesses in both IFM paths. The real I
geometry does not show large thickness deviation of a single blade (tab. A.2), while in
the real II geometry - the blade 2 deviates about 2. . .4 µm from the other lamellas. The
Laue phases are calculated with these geometries and their phase differences are shown
in fig. 2.20. The influence of these geometries is in the range of up to 10◦.

Figure 2.20.: Difference of the Laue phase with geometry real I, II, ideal.

Phase versus rocking angle

The phase versus the rocking-angle reveals a fascinating dependence on the geometry25

(this is not the Laue phase !). This strong phase change can be understood with the
different type of phase averaging if the rocking position changes; the specific geometry
plays an important role, therefore we used the phase versus the rocking angle to deter-
mine our interferometer geometry, whether real I or real II is more suitable. Fig. 2.21
shows this phase for the calculated geometries ’ideal’, ’real I’, and ’real II’, and compare
it with measurements. In the measurement procedure, at every phase shifter position,
the rocking angle is changed two times. In detail, the phase difference is measured be-
tween the rocking angle -0.9 and 0.9 arcsec for (220) and between -0.36 and 0.36 arcsec

25Personal communication H. Lemmel
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for the (440) Bragg peak. Therefore, the points at rocking angle -0.9 and -0.36 arcsec
are arbitrary in height and hence shifted to the calculated values of real I. The measured
points represent an average value of 41 (220) and 32 (440) single measurements. As a
result, the ’real I’ geometry is favored for both wavelength, therefore it will be used in
the following chapters. This is probably because the thickness measurement in real II is
done at a higher position than where the neutron beam passes the interferometer.

Figure 2.21.: Rocking phase of the real I, II and ideal geometry; (top) for the (220) and
(bottom) for the (440) Bragg peak. If all blades would be equally thick,
this phase would be zero. The measured values favor the ’real I’ geometry.
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2.4.2. Temperature

First correlations between the interferometer phase and the temperature changes on a
small neutron perfect-crystal interferometer have been demonstrated in [32]. Therefore,
the temperature is recorded and can be changed during our measurements with the
larger interferometer. The possibilities of the used temperature setup are presented in
chap. A.5. In the following, the temperature of the interferometer and its surrounding
is investigated. In order to improve the contrast and therefore enhance the accuracy of
the phase measurements.

Rocking: a series of rocking curves is compared with the interferometer’s temperature
within 9 days. The rocking curve is the intensity versus a rotation of the interferometer
in the horizontal plane, according to fig. 2.34 (no prism rotation). The development of
the intensity maximum and the FWHM of this rocking curve is depicted in fig. 2.22.
Additionally, its peak maximum positions are given in fig. 2.35. The measurement time
per point in the rocking curve is here 6 seconds. A clear correlation might not be visible
for this sensor position (laterally, basis right).

Figure 2.22.: Rocking curve and interferometer temperature. (left) Intensity maximum,
(right) FWHM, for the peak maximum positions see fig. 2.35.

Phase and contrast of the empty interferometer: we record the interferometer’s
intrinsic phase/contrast, and compare it first with the temperature of the monochroma-
tor and then with the temperature of the interferometer itself. The phase and contrast
are measured with the phase sifter rotation and without a sample, typical values of such
an interferogram are listed in chap. 2.2.1. The monochromator temperature can not be
controlled, it changes due to an insufficient isolation from the neutron guide hall. This
temperature is compared with the phase/contrast in fig. 2.23 within 48 h. The sensor
for the monochromator is an integrated-circuit temperature sensor26 with an accuracy
of about ±(10...20) mK. The interferometer temperature (at its basis) is in the first 24
h decreasing from 23.77◦C to 23.68◦C and in the second half constant at 23.674(1)◦C,
there the contrast is significantly higher. For the stability of the intrinsic phase however,
no difference between the first and the second 24 hours is observable.

26LM35 Precision Centigrade Temperature Sensor from National Semiconductor.
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Figure 2.23.: Measured phase (left) and contrast (right) of the empty interferometer,
compared with the monochromator temperature within 48 h.

Several parameters have been varied:

• use of the heating mat (around the Al box/below the stage) or the Al box only

• mounting the Peltier elements on the box wall or on the lid

• with/without air circulation in the box (compressed air flow or slit on the box
top/bottom)

• set temperature of the control loop (higher/lower than outside the box, following
monochromator)

• temperature differences: box center - wall, box center - monochromator, box center
- outside the box, vertical difference in the box center

• two additional boxes in the Al box, closely around the interferometer

All this measures did not lead to a reproducible contrast control; most likely, the vis-
ibility reductions are due to small temperature gradients at the interferometer blades.
Furthermore, the temperature of the monochromator has to be taken into account as
well, therefore a stabilization of the whole experimental room would be necessary27

[33]. However, in fig. 2.24 we found a correlation of the IFM temperature and the
contrast/phase within 14 hours. The sensor position is placed on the base of blade 2.

For a 1 mK temperature change of the interferometer, the phase changes about 7◦. The
contrast varies from 10% to 35%. Note the larger time scale in the rocking peak position
diagram.

Laue phase, contrast and intensity: in fig. 2.25 the Laue phase, contrast and inten-
sity measurements are shown for two different interferometer temperatures: 22.5(3)◦C
and 23.15(5)◦C. The phase, contrast and intensity behavior do not change28. Every
point at 23.15(5)◦C represents an average value of about 7. . .9 single measurements.
The values at 22.5(3)◦C are taken from chap. 2.3.

27An active temperature control of the monochromator would be interesting.
28For a small contribution from the Debye-Waller factor to the scattering length, see chap. 2.4.8.
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Figure 2.24.: IFM temperature and phase (top left), contrast (top right), inten-
sity (bottom left) and rocking peak maximum position (bottom right).
The monochromator temperature during this time remains constant at
23.05(5)◦C.
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Figure 2.25.: Laue phase (top), contrast (middle) and intensity (bottom) for different
absolute interferometer temperatures; (220) Bragg peak. The EXP values
are shifted for δθ = 0.0035′′ according to chap. 2.3.
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2.4.3. Monochromator

At the monochromator a Bragg reflection directs the neutrons to the interferometer with
a certain angular divergence and wavelength distribution. The angular distribution of the
intensity within the beam divergence is of interest in this chapter, because it characterizes
different types of monochromators. In our experiments a perfect-crystal monochromator
is used, which is described in chap. 2.2. The specific alignment procedure can be
found in chap. A.5. For the calculations this monochromator is described by the Bragg
distribution function, the analytical expression is given in the following equation, where
I represents the intensity:

I = 1 |y| < 1

I = 1−
√

1− y−2 |y| > 1 (2.29)

In principle, one could also use a mosaic-crystal monochromator; which is represented
by a Gaussian reflection curve. Such a monochromator is employed at the NIST facility.
In order to study the difference resulting from this different types of monochromators, we
extended our simulation program, where additionally a square function can be chosen.
All three monochromator reflection curves (’Square’, ’Gauss’ and ’Bragg’) are shown in
fig. 2.26 (left), the y-δθ relation is given in chap. 2.1.

Figure 2.26.: (left) Comparison of Bragg, Gauss and Square monochromator functions.
(right) Calculation of the Laue phase difference (Bragg minus Gauss and
Bragg minus Square) vs. the beam deflection δθ for the (220) case and
ideal/real I geometry.

Calculations of the Laue phase can now be performed with each of this reflection curves.
The difference in the phase calculated with a Bragg monochromator minus the phase
calculated with a Gauss (Square) function is drawn in fig. 2.26 (right). It shows a
remarkable effect of the used monochromator type on the Laue phase. This phase
difference is caused by different excitations of plane wave components that are slightly
off-Bragg.
Furthermore, the phase difference depends strongly on the beam divergence σθ and will
be investigated separately. Here we use the σθ values which are determined in the next
section, from a comparison to rocking-curve measurements. The result is σθ = 1.62′′

(Gauss) and σθ = 1.8′′ (Square). In the calculations with the Bragg function the Darwin
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width equal to 1 is used. However, in IFMSIM, it is possible to change the Darwin
width of the Bragg curve and interpret it as the mosaicity of the monochromator, or the
divergence of a single wavelength29.
The evaluation of the calculations are given in tab. 2.5 in detail. The Laue phase change
in the plateaus are listed for several beam divergences.

Table 2.5.: Laue phase O change with different monochromator functions with respect
to the Bragg curve. This phases are evaluated for the (220) case and ’real I’
interferometer geometry at specific δθ values (1st and 2nd plateaus).

monochromator function phase change 1st plateaus phase change 2nd plateaus

Bragg, Darwin width = 1 0◦ 0◦

Gauss, σθ = 1.44′′ 1◦ 17◦

Gauss, σθ = 1.62′′ 7◦ 27◦

Gauss, σθ = 1.8′′ 12◦ 35◦

Square, σθ = 1.44′′ 10◦ 23◦

Square, σθ = 1.62′′ 17◦ 37◦

Square, σθ = 1.8′′ 23◦ 48◦

The contrast and intensity for the different monochromator functions are shown in fig.
2.27. It reveals a change in height of the Pendelloesung plateaus. Therefore, an imperfect
monochromator can be a possible explanation for a deviation between measurement and
calculation. The intensity and phase versus the rocking angle for all three monochro-
mator functions are compared in fig. 2.28, the measurements can not clearly favor the
Bragg curve. However, in the following calculations the Bragg function is used because
it is the physical monochromator function.

Figure 2.27.: Calculation of the contrast (left) and intensity (right) with different
monochromator functions. The measurements are taken from chap. 2.3.

29The calculations are done for a single wavelength only, since the wavelength dependence is negligible
within our wavelength distribution.
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Figure 2.28.: Calculation of the intensity (top) and phase (bottom) vs. the rocking angle
for three monochromator functions.
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2.4.4. Beam divergence

The neutron beam in our calculation consists of a superposition of plane wave compo-
nents as illustrated in fig. 2.29. Its divergence σθ is mainly determined by the crystal
monochromator.

Figure 2.29.: The neutron beam with divergence σθ is described as a coherent superposi-
tion of plane waves with a distribution of wavevector directions σθ centered
around a mean value.

As a first step, we calculate rocking curves30 with several different values of σθ. Fig.
2.30 shows these calculations for the intensity and the phase. The (left) diagram reveals
that the full width at half maximum (FWHM) of the rocking curve changes strongly. In
particular for large σθ (36′′), the width of the rocking curve is so large that the intensity
remains constant in the center. In the limit of small σθ (plane wave, [21]) the intensity
becomes double peaked for smaller values than σθ = 0.72′′ (Square), σθ = 0.86′′ (Gauss)
and Darwin width = 0.593 (Bragg). Additionally, in the (right) diagram one can see
that the rocking phase slope decreases with increasing σθ.

Figure 2.30.: Rocking intensity (left) and phase (right) with different beam divergences.
The intensity peak broadens and the rocking phase slope decreases with
increasing beam divergence. Parameters: (220) case, real I geometry, Gauss
monochromator; PW... plane wave.

30The rocking angle is illustrated in fig. 2.34.
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The question arises how the beam divergence can be manipulated in the experiment. A
possibility is the tilt of the interferometer’s lattice planes relative to the monochromator.
This increases the FWHM of the rocking curve and, thus, the effective mosaicity. This
tilt-angle is the ρ-axis angle, it is illustrated in fig. A.11. A comparison of the exper-
imental values for two different ρ-axis angles, with a calculation is given in fig. 2.31.

Figure 2.31.: Rocking curves, measurements (10 s/point) at ρ = 0◦, ρ = 0.09◦ and
calculations with different Darwin widths, (220) reflection, real I geometry.

As the rocking curve depends on the beam divergence, we can use the measured rocking
curves to determine the σθ values. This values are listed in tab. 2.6, the diagrams can
be found in chap. A.6. The calculated rocking curves have a certain FWHM and area,
which are summarized in tab. 2.7 (for ρ = 0◦ only).

Table 2.6.: Beam divergences determined from rocking curves in chap. A.6.

monochromator function ρ = 0◦ ρ = 0.09◦

Gauss σθ = 1.62(18)′′ σθ = 4.14(54)′′

Square σθ = 1.80(18)′′ σθ = 4.14(54)′′

Bragg Darwin width=1.0(2) Darwin width= 3.0(2)

Table 2.7.: Rocking curve at ρ = 0◦: FWHM and area (determined via a Gauss fit).

rocking curve FWHM area

Gauss, σθ = 1.62′′ 4.2′′ 0.237 a.u.
Square, σθ = 1.80′′ 4.17′′ 0.237 a.u.

Bragg, Darwin width=1 4.04′′ 0.251 a.u.
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If all of the FWHM values of this rocking curves are drawn as a function of σθ/Darwin
width one obtains fig. 2.32. Note that the values are normalized to the ρ = 0◦ value
of tab. 2.7. The rocking curve areas are used in chap. A.6 to scale the height of
the experimental values. Now we change from the rocking curve investigation to the

Figure 2.32.: Comparison of the beam divergence (left) with the Darwin width (right),
regarding the FWHM and area of the rocking curve for the (220) case.
(The 2 gray dash dotted lines mark the σθ/Darwin width values where the
measurements are taken, fig. 2.31).

influence of the beam divergence on the Laue phase. Fig. 2.33 compares the Laue
phase measurements for two different Darwin widths. It can clearly demonstrate a large
influence of the beam divergence on the measured as well as calculated Laue phase. The
measured values at ρ = 0.09◦ represent an average of about 3. . .9 single measurements.
The slope of the phase around δθ = 0′′ decreases with increasing Darwin width and
approaches 4.3◦/0.001 arcsec at a Darwin width > 3. A larger Darwin width means that
parts of the beam are further away from the exact Bragg condition of the interferometer
crystal, where they contribute less and less to an average phase. This leads to a constant
phase for Darwin width > 3 at each δθ and therefore a constant phase slope. This would
be the case for a mosaic-crystal monochromator at NIST. The difference in the phase
values is remarkable, the evaluation is listed in tab. 2.8. Regarding chap. 2.3, the
corresponding contrast and intensity of the ρ = 0.09◦ measurements do not show a
δθ-shift compared to ρ = 0◦.

Table 2.8.: Laue phase O change at different Darwin widths. This phases are evaluated
for the (220) case and ’real I’ interferometer geometry at specific δθ values
(1st and 2nd plateaus).

Darwin width phase change 1st plateaus phase change 2nd plateaus

1 0◦ 0◦

1.2 6◦ 30◦

3 36◦ 70◦

6 36◦ 70◦
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Figure 2.33.: (top) Laue phase, contrast (middle) and intensity (bottom) at ρ = 0◦ and
ρ = 0.09◦, respectively. All experimental values are shifted by δθ = 0.0035′′

according to chap. 2.3.
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2.4.5. Rocking position

The rocking angle is defined in fig. 2.34, due to experimental conditions, this angle
between the interferometer and the neutron beam can slightly change.

Figure 2.34.: Rocking angle: the interferometer (a) is rotated in the x-y plane with a
piezo device to perform a rocking curve, while the monochromator is fixed.

The reason for such rocking drifts are mainly temperature changes within the setup
(monochromator-interferometer-optical bench), see chap. 2.4.2; as well as drifts of the
’piezo’ rotation device. Note that the ρ-axis and the IFM support can change this posi-
tion as well. To compensate larger drifts we perform rocking curves and correct for this
position. The positions of the rocking curve peak within 8 days are shown in fig. 2.35
(left). The (220) rocking FWHM is about 3.6′′, drifts of > 1 arcsec are visible, therefore
this position has to be corrected very often during the phase measurement.
In this chapter the effect of the angular drift will be studied by considering different
rocking positions for the phase measurements. In fig. 2.35 (right) the investigated posi-
tions on the rocking curve are indicated. These positions have been used to demonstrate
the change in the Laue phase. The position 0 is at the peak maximum (rocking an-
gle = 0′′) and the positions ±B are where the intensity has its half value at ±1.8′′

(±0.0005◦). Further positions between this values are defined as well: pos. ±A at ±0.9′′

(±0.00025◦).

Figure 2.35.: (left) Peak maximum position of the rocking curve vs. time; the temper-
ature of the IFM basis is given as well. (right) Definition of the rocking
positions. Pos. 0: rocking angle = 0′′, pos. ±B : ±1.8′′. (220) Bragg peak.
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One can now perform several Laue phase measurements, each with a different rocking
angle alignment. The results are shown in fig. 2.36 with the measured and calculated
phases at the defined rocking positions31. The measured values in pos. ±B representing
an average of about 5. . .8 single measurements. The slope of the phase around δθ = 0′′

decreases from 5.5◦/ 0.001 arcsec at pos. 0 to 3◦/ 0.001 arcsec at pos. ±B. The phase
change with the rocking-angle variation can be understood with the different phase
averaging if the rocking position changes. At this 1.8′′ separated rocking positions one
can demonstrate that the difference in the phase values is very large (50. . .75◦); however
in order to yield the Laue phase uncertainty regarding our rocking angle device, we
repeat the above phase measurement at the rocking position 0.18′′. The Laue phase
changes at additionally rocking positions are summarized in tab. 2.9 as well; the listed
phase changes are evaluated relative to the rocking position 0. We see that our rocking
angle rotation device yields an error of up to 6 degrees in the Laue phase. Also the
interferometer’s geometry has an influence which increases with larger δθ.
The corresponding contrast curves are given in fig. 2.37. Note that its peak maximum
is not at δθ = 0′′, a Gauss fit close to the peak maximum gives a δθ-shift of about
±0.0059′′. The intensity is shifted as well, as depicted in fig. 2.38. This results from the
combination of the rocking deviation and the defocusing due to the different thick blades
in the real interferometer geometry. This can be seen in the intensity diagram, where
this situation is also calculated for the ideal geometry. In our measurement in chap. 2.3
the rocking position is corrected several times yielding only a small contribution to the
δθ-shift discussed in chap. 2.3.3.
Further influences like the beam divergence and monochromator function on the contrast,
as well as a calculation of the phase slope for every rocking position can be found in
chap. A.7.

Table 2.9.: Laue phase O change from different rocking positions with respect to pos. 0.
Evaluated for the ’real I’ interferometer geometry at specific δθ values (1st

and 2nd plateaus).

rocking position phase change 1st plateaus phase change 2nd plateaus

pos. 0 (220) 0◦ 0◦

±0.18′′ (220) 1◦ 6◦

pos. ±A (220) 30◦ 65◦

pos. ±B (220) 50◦ 75◦

pos. 0 (440) 0◦ 0◦

±0.18′′ (440) 15 . . . 30◦ 30 . . . 40◦

31The rocking sign of the piezo in the experiment is inversely (consistently with fig. 2.21).
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Figure 2.36.: Laue phase at different rocking positions. Measured values (EXP) are
compared with calculations (SIM): (left) pos. +B and pos. 0, (right)
pos. -B and pos. 0. The slope is strongly depending on the rocking
angle. Parameters: (220) Bragg peak, all experimental values are shifted
by δθ = 0.0035′′ according to chap. 2.3.

Figure 2.37.: Contrast behavior at different rocking positions. (left) Pos. +B is com-
pared to pos. 0, (right) pos. -B and pos. 0. The calculated contrast
maximum position is located at δθ = ±0.0059′′ and depends on the rock-
ing angle.

Figure 2.38.: Intensity behavior at different rocking positions. (left) Pos. +B, (right)
pos. -B. A δθ-shift of ±0.0021′′ is visible only for the real I geometry.
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2.4.6. Al prisms

The Laue phase is measured very close to the Bragg condition, this small angle δθ
constitutes a technical challenge for the sample rotation, therefore the neutron beam
in front of the blade is deviated with an Al prism. This small beam deviation study
can also be interesting for a split perfect crystal interferometer, which does not exist for
neutrons so far [30], [34].
For the compensation of the interferometer’s defocusing and the resulting phase shift,
two prism pairs are used in our experiment. This four prisms are mounted together on
a prism holding device to make a rotation in the x-z plane possible (fig. 2.11).
Basic parameters like the used material, prism alignment and pair design are discussed
in [30], here we extended IFMSIM for the calculation with prisms. Several parameters
will be investigated for a possible influence on the Laue phase, intensity, and contrast32.
But first we have to show that the prism α-rotation is equivalent to the blade rotation
(eq. 2.26). Our calculations with IFMSIM show in fig. 2.39 that this is indeed identical.
Also the contrast and intensity behavior is the same.

Figure 2.39.: Equivalence of blade and prism rotation for the Laue phase ((220) Bragg
peak, Darwin width=1, real I geometry).

Also to mention is that the sign of δθ changes if the first prism points downwards instead
of upwards (fig. 2.40), or blade 4 instead of blade 3 rotates.

32We will also look for additional contributions to the δθ-shift mentioned in chap. 2.3.3.
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The prism holding device

The rotation of all four prisms together is performed with the help of the prism holding
device. Here we will investigate if a change of the collectively mounted prisms has a
significant influence on the Laue phase.

Forward tilt of the prism holding device slopephd: fig. 2.40 defines the tilt angle
of both prism pairs in the neutron beam direction.

Figure 2.40.: Definition of the slopephd angle. Both prism pairs are tilted in the y-z
plane.

The measurements at slopephd = 0◦ and 0.5◦ do not show a difference on the Laue phase
within the error bars (fig. 2.41). Also the contrast and intensity behavior do not change.
The difference between the calculation at slopephd = 0◦ and 0.5◦ is given in fig. 2.41,
the Laue phase changes up to 1◦. Hence, for a precise Laue phase measurement (< 0.1◦)
the slopephd angle must be known within 0.01◦, with our prism holding device this can
not be realized, therefore a maximal phase error of 1◦ arises here.

Rotation of the prism holding device rphd: the mounting of the prism holding
device with a rotation offset in the x-y plane is depicted in fig. 2.42. Measurements at
rphd = 0◦ and 1◦ do not show a difference on the Laue phase within the error bars (fig.
2.43). Also the contrast and intensity behavior do not change. In fig. 2.43 the difference
between the calculation for rphd = 0◦ and 1◦ is given. Hence, the rphd angle must be
known within 0.01◦ for an exact Laue phase measurement (< 0.1◦). This is not possible
either, therefore a maximal phase error of 1◦ arises here as well.

Pivot of the prism holding device for the α-rotation: due to the use of a different
prism holding device compared to [4], the pivot of the prism α-rotation has been changed.
This point of rotation is the same for all four prisms (fig. 2.44). Therefore IFMSIM was
extended to make a pivot change possible. If there would be just one prism in the
interferometer (prism 1), then a change of the x and z-component of the pivot leads to
a change of the Laue phase, but this is compensated by the following prism (prism 2)
behind the sample blade (both prisms have the same pivot). Hence, the calculation does
not show an influence on the Laue phase, intensity, and contrast for four prisms if the
point of rotation is changed in x, y or z direction.
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Figure 2.41.: (top) Laue phase measurement with a tilted prism holding device (mea-
surement at slopephd = 0◦ and 0.5◦, the calculation is given only for 0◦).
The difference between the phases at the 2 angels is within the error (about
±(5...10)◦). (bottom) Laue phase calculation at slopephd = 0.01◦ and 0.5◦,
the difference to slopephd = 0◦ is shown. Therefore the prisms have to be
aligned to 0.01◦. Parameters: (220) Bragg peak, Darwin width=1, real I
geometry, EXP are shifted by δθ = 0.0035′′ according to chap. 2.3.
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Figure 2.42.: rphd angle: both prism pairs (1) and (2) are rotated in the x-y plane.

Figure 2.43.: (top) Laue phase measurement with a prism rotation offset at rphd = 0◦

and 1◦. The difference between the phases at the 2 angels is within the
error (about ±5◦). (bottom) Laue phase calculation at rphd = 0◦ and 1◦.
The difference is up to 2◦, therefore the prisms have to be aligned within
0.01◦. Same Parameters as in fig. 2.41.
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Figure 2.44.: Prism pair 1 (prism 1/2) and prism pair 2 (prism 3/4) rotate together
around an axes parallel to y. This pivot (a) can be different in height z (b).
(c) Length of prism pair: distance between two prisms comprising a pair,
(d) distance between the pairs. (1). . .(4) Shift of each prism in x-direction.

Geometry of the prisms

The last chapter dealt with a collective change of all prisms together, here we will
investigate whether the geometry of the individual prisms or their mounting on the
prism holding device have a significant influence on the Laue phase.

Distance between the prism pairs: the distance between the prism pairs does not
change the Laue phase (fig. 2.44). A shift in x-direction33 of only one of the four prisms
(1). . .(4) with the same common point of rotation shifts the Laue phase34, but vanishes
if the following prism of each pair (2/4) also shifts in x-direction.

Distance between two prisms comprising a prism pair: the length of the pairs is
also marked in fig. 2.44, as calculations are restricted to two dimensions in IFMSIM, no
influence on the length of the prism pair in beam I or II is visible, but in the experiment
the prism pairs have to be the same length due to defocusing of the interferometer. If
there would be only one prism in the interferometer (prism 1), its y-position has an
influence on the shape and slope of the phase, but this is compensated by the following
prism (prism 2).

Prism apex angle β: the influence on the Laue phase by a deviation ∆β of only one
prism angle from the nominal angle β = 25◦ is given in fig. 2.45 for ∆β = 0.01◦ and
0.001◦. The front prisms (prism 1 or 3 or its combination) show a decreasing phase
in positive δθ direction, while the back prisms (prism 2 or 4 or its combination) invert
the sign of the slope. Furthermore, if both prisms in pair 1 deviate simultaneously by
∆β = 0.01◦/0.1◦ the Laue phase changes by ∆φLaue = 0.1◦/1◦. Other combinations
(prism 2 and 3 or 1 and 4) of simultaneous prisms apex angle changes, results in an
asymmetric phase behavior (fig. 2.45). On the other hand, a simultaneous change of all
prism angles together of β = 0.01◦ changes the Laue phase only up to 0.1◦.

33Note the IFMSIM parameter ’beam.center=1’ can causes a x-deviation.
34This shift is irrelevant for the used ’IN-OUT measurement’.
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The conclusion is that the prism fabrication has an important influence on the Laue
phase, each of the angles has to be accurate by at least 0.0005◦ for an exact Laue phase
measurement (< 0.1◦). A prism geometry measurement in Ref. [30] shows that the apex
angle’s accuracy is around 0.01◦ for each prism. Therefore a phase error of maximal
4◦ arises here. The intensity and contrast show an influence for deviations larger than
∆β = 1◦ (fig. 2.46).

Figure 2.45.: Laue phase calculations with different prism apex angles. The phase differ-
ence with respect to the Laue phase for the case where all prisms are 25◦

is shown. (left) Only one of the 4 prisms has 24.99◦ (or 24.999◦). (right)
Only 2 prisms at diagonal positions have 24.99◦ (or 24.999◦).

Figure 2.46.: Intensity (left) and contrast (right) calculations with different prism angles.
The prism angles are 25◦ except for a single one which then has 24◦.

Prism pairs not parallel, rotation around y-axis: this prism misalignment ad-
dresses a mounting of one of the prism pairs with an α-offset. The Laue phase, contrast
and intensity curve will be shifted by a certain δθ value (fig. 2.47). If pair 1 has an
offset of 0.1◦/1◦, the Laue phase changes up to 2◦/20◦. Each prism pair is cut from
a single piece of Al, but if it is twisted (only one prism would be rotated against the
others35) this changes the Laue phase according to fig. 2.48. The prism rotation offsets
of individual prisms (left) and combinations of prisms results in an asymmetric phase

35The pairs are mounted on the prism holding device with a screw, where strains are possible.
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change (right). To match with the δθ centered Laue phase the pairs have to be parallel
within < 0.01◦ and the individual prisms < 0.001◦.

Figure 2.47.: Influence on the Laue phase due to an α-offset of 1◦ between the prism
pairs. The inset shows the difference to the exact mounting (α-offset=0).

Figure 2.48.: Laue phase with different additional α-rotation offsets. (left) Only prism 1
or 2 have an offset. (right) Only prism 1 and 4 (or 2 and 3) have an offset.

The intensity and contrast do not deviate at this offset values, but fig. 2.49 shows the
asymmetric intensity and contrast for a large offset. This diagrams are interesting re-
garding the δθ-shift from chap. 2.3, in particular the curve shape resembles the measured
curves in fig. 2.12 (smaller contrast width, difference in intensity peak heights left and
right from δθ = 0′′); however such a large geometry error does not occur in our prism
pairs.
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Figure 2.49.: Intensity (left) and contrast (right) calculations for an additional α-rotation
offset of only prism 1.

Prism misalignment, rotation around the x-axis: similar to the slopephd angle
for all prisms, here the individual36 prisms are tilted (fig. 2.40). The influence of a
change of only one prism slope from the nominal angle (0◦) of all other prisms on the
Laue phase is given in fig. 2.50. The front prisms (only prism 1 or 3 or its combination)
shows a decreasing phase in positive δθ direction, while the back prisms (prism 2 or 4
or its combination) invert the sign of the slope. If both prism slopes in pair 1 change
by 1◦/0.1◦, the Laue phase then changes by φLaue = 2◦/0.2◦. In our case the alignment
accuracy between the two prism pairs is less than 0.1◦, which is sufficient for a Laue
phase measurement accuracy less than 0.1◦. Other combinations of prisms (prism 2 and
3 or 1 and 4) result in an asymmetric phase behavior as shown in fig. 2.50.

Figure 2.50.: Laue phase calculation with different prism slope angles. The difference
with respect to the Laue phase for the case where all slopes are 0◦ is shown.
(left) Only one prism (prism 1 or 2) has a different slope angle alignment.
(right) Only prisms at diagonal positions have simultaneously a different
slope angle.

36Each prism pair is cut from one single Al piece, only a deformation due to the mounting screw can
change this angle.
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Hence, the prism alignment has an important influence on the Laue phase. The intensity
and contrast curve only show an influence at large (5◦) individual prism slope deviations.

Prism misalignment, rotation around the z-axis: similar to the rphd angle for all
prisms (fig. 2.42), here the individual37 prisms are rotated. If both prisms in pair 1
are rotated by 1◦/0.1◦ the Laue phase changes by 2◦/0.2◦. Fig. 2.51 shows the Laue
phase if only one prism would be rotated. If this rotation is performed by one of the
front prisms (prism 1 or 3) then an increasing slope in positive direction arises, while the
back prisms (prism 2 or 4) invert the sign of the slope. Other combinations of prisms
(prism 2 and 3 or 1 and 4) result in an asymmetric phase behavior. For an accurate
Laue phase measurement (< 0.1◦), the prism pairs have to be parallel within 0.05◦. In
the experiment a phase error arises here of about 1◦. The intensity and contrast show
an influence at large deviations of around 5◦.

Figure 2.51.: Laue phase calculations with individually rotated prisms (similar to rphd).
The difference with respect to the Laue phase for the case where all prisms
have 0◦ is shown. (left) Only a single prism (prism 1 or 2) is rotated.
(right) Only prisms at diagonal positions are rotated.

Summary

In this chapter the following prism parameters were investigated for a possible influence
on the Laue phase, intensity, and contrast:

• a tilt of the prism holding device in forward direction (slopephd, fig. 2.40)

• a rotation of the prism holding device in the x-y plane (rphd, fig. 2.42)

• the pivot of all prisms for the ’α-rotation’ (fig. 2.44)

• the geometry of the individual prisms

Tab. 2.10 lists prism parameters with an influence on the Laue phase. This phase change
is evaluated at the Pendelloesung plateaus. For an accurate Laue phase measurement
(∆φLaue < 0.1◦) with this setup, the prism holding device (phd) angles must be known

37The two prism pairs are mounted separately on the prism holding device.
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with an accuracy of around 0.01◦, which is not possible in our setup and a phase error
of approximately 1 degree arises for this phd-angles. In our experiment two individual
prisms (prism n) are cut from a single Al block, therefore an alignment has to be per-
formed only between the prism pairs, within about rpair =0.05◦. As in the experiment
this angle is rpair =0.1...0.5 degrees, a phase error of about ∆φLaue = 1◦ results.

Table 2.10.: Due to the change of prism parameters, the Laue phase varies at specific δθ
values (1st and 2nd plateau); phd... prism holding device (all prisms), prism
n... individual prisms.

parameter mismatch 1st plateaus 2nd plateaus

slopephd 0.5◦ 0.75◦ 1◦

slopeprism n 0.01◦ 0.4◦ 0.7◦

rphd 1◦ 1◦ 2◦

rprism n 0.01◦ 0.4◦ 0.7◦

apex angleprism n 0.001◦ 0.2◦ 0.4◦
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2.4.7. Wavelength

Next we investigate the influence of the wavelength on the Laue phase. Changes be-
tween different Bragg peaks as well as wavelength changes within one Bragg peak are
considered. The wavelength is selected with a monochromator and six silicon prisms,
as explained in chap. 2.2.1. Note that a new monochromator adjustment changes the
wavelength slightly: θB = (45 ± 0.25)◦. This uncertainty in the Bragg angle is equal
to a wavelength of ∆λadjust = ±0.012 Å for the (220) case and ∆λadjust = ±0.006 Å
for the (440) case. The wavelength distribution at S18 is of the order ∆λdistr/λ ≈
10−3 . . . 10−2.

Measurement of the wavelength

For general information concerning the wavelength measurement in neutron interferom-
etry see [37]. There, the angle between dispersive (lattice planes of two crystals are not
parallel) and non-dispersive (lattice planes parallel) interferometer positions is measured,
which is twice the Bragg angle. Here we will test diffraction gratings in front of the inter-
ferometer. The gratings are just mounted on the aperture, therefore this method is very
simple to handle. Two diffraction gratings with 16 µm and 17 µm spacing, respectively,
have been used (fig. 2.52).

Figure 2.52.: Photography of the used phase diffraction grating with g=16 µm spacing
(left) and the absorption diffraction grating with g=17 µm spacing (right).

In order to measure the diffraction peaks produced by this gratings, the interferometer
is rotated around the Bragg condition (rocking curve, fig. 2.34). A comparison of the
rocking curve without and with the grating is given in fig. 2.53 (left). For both Bragg
reflections (220) and (440) the first order diffraction peaks produced by the grating are
visible. To obtain narrow peaks for the determination of their maximum positions, the
transmitted beam after blade 1 is blocked.
The measurements are repeated with the 17 µm grating and a longer counting time per
point. The result is given in fig. 2.53 (right). Only in the (440) case the diffraction
peaks are visible.
The positions of the individual intensity peaks are determined by 5 Gauss-curve fits
as shown in fig. 2.54. The rocking angle = 0′′ is now centered where the (440) peak
maximum without the grating is located. From the peak-positions one can determine
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the wavelengths with the equation [38]:

λ = g
sinφn′

n′
(2.30)

The new diffraction maxima due to the presence of the grating, are located now at the
angles φn′ , where n′ represents the diffraction order.

Figure 2.53.: Rocking curve without and with 16 µm diffraction grating in front of the
IFM (left). Rocking curve with 16 µm and 17 µm grating (right).

Figure 2.54.: Detail of the (440) Bragg peak from fig. 2.53 (right) with fits to a Gaussian
(to determine the peak-positions).

The result is (1.35±0.04) Å for (440). This value can be used to calculate the wavelengths
of the other reflections: 2.71 Å for (220), 0.90 Å for (660), and 0.68 Å for (880).
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Laue phase

The Laue phase changes its behavior with the wavelength or order of reflection, according
to eq. 2.13. A direct comparison of the phase, calculated with the (220) to (660) Bragg
peaks is shown in fig. 2.55, the different phase slopes are visible. The positions of the
plateaus move closer to δθ = 0′′, their positions are listed in tab. 2.11 and scale with
the order of reflection38.

Figure 2.55.: Laue phase for different Bragg peaks. Calculated with the Bragg monochro-
mator function, Darwin width = 1 and real I geometry.

Table 2.11.: Pendelloesung plateau positions in arcsec for several Bragg peaks.

Bragg peak calculated λ /Å 1st plateaus 2nd plateaus

(220) 2.72 ± (0.02 . . . 0.03) ± (0.04 . . . 0.05)
(440) 1.36 ± (0.01 . . . 0.015) ± (0.02 . . . 0.025)
(660) 0.91 ± (0.006 . . . 0.009) ± (0.013 . . . 0.016)
(880) 0.68 ± (0.0045 . . . 0.008) ± (0.013 . . . 0.016)

The Laue phase is calculated for different wavelengths. The corresponding values at
the first and second Pendelloesung plateaus are summarized in tab. 2.12. ∆λ = 0.03
Å is approximately the accuracy of the wavelength determination from the diffraction
grating measurement. Additionally, calculations with ∆λ = 0.00001 Å are listed as well.
With the diffraction grating measurement accuracy, it yields a change of the phase of

38For our prism setup two (220) / one (440) pairs of plateaus at each side of δθ = 0′′ are visible.
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about 1◦ for the 1st and 6◦ for the 2nd plateaus (220). Hence, for an exact Laue phase
measurement with our setup, the wavelength has to be known very accurately.

Table 2.12.: Laue phase O change due to a wavelength uncertainty of 0.03 Å and 0.00001
Å for several Bragg peaks. Those phases are evaluated for ’real I’ geometry
(Darwin width = 1) at specific δθ values (1st and 2nd plateaus).

Bragg peak λ /Å 1st plateaus 2nd plateaus

(220) 2.71551 0◦ 0◦

-0.03 1◦ 6◦

-0.00001 0.02◦ 0.05◦

(440) 1.35776 0◦ 0◦

-0.03 9◦ 36◦

-0.00001 0.05◦ 0.05◦

(660) 0.90517 0◦ 0◦

-0.03 5.2◦ 20.5◦

-0.00001 0.03◦ 0.11◦

(880) 0.67888 0◦ 0◦

-0.03 19.4◦ 277◦

-0.00001 0.16◦ 2.14◦
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2.4.8. Scattering length

The neutron is assumed to be electrically neutral, but has an internal charge structure
because it consists of quarks. This results in an electrical influence on neutron-scattering
experiments, an overview of this and further interactions are given in [39]. The scattering
length b is of fundamental interest in areas like astro and nuclear physics. It describes
the interaction of the neutron with an atom. In this chapter we study the influence of
the scattering length on the Laue phase. The main question concerns the possibility of
extracting fundamental quantities such as the neutron-electron scattering length [2], [5],
[36], [40]. For this purpose, it is necessary to consider all systematic phase effects from
the last sections.
Eq. 2.3139 shows the atomic scattering length in detail, with the precisely known nu-
clear scattering length bnuc and the momentum-dependent electrostatic neutron-electron
scattering contribution [5],

batom = bnuc + Z · (1− f(~q)) · bne (2.31)

where the proton number is Z = 14 for Si and f(~q) = 1/
√

1 + 3(~q/q0)2 is the atomic

form factor, ~q is the momentum transfer of the scattered neutron ~q = 2~k · sin θB, and
q0 = 0.19 · Z1/3 nm, tab. 2.13.

Table 2.13.: Bragg peak, wavelength, momentum, atomic form factor.

Bragg peak λ/Å q/Å−1 f(q)

(220) 2.7155 3.2722 0.6285
(440) 1.3578 6.5445 0.3746
(660) 0.9052 9.8167 0.2601
(880) 0.6789 13.0889 0.1980

While the nuclear part bnuc = 4.1507(2) fm is well known [50], for the neutron-electron
part different measured values exist:

• Garching/Argonne: bne = −0.00131(3) fm

• Dubna: bne = −0.00159(4) fm

For the input in IFMSIM, the ratio bne/bnuc is needed:

• Garching/Argonne: bne/bnuc = −0.000316

• Dubna: bne/bnuc = −0.000383

References are summarized in [40]. The total scattering length eq. 2.31 with these two
bne values is depicted in fig. 2.56 as a function of the wavelength. In the inset, the
difference between these two curves is shown, which increases with smaller λ.

39Note the sign after bnuc, - in [40].
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Figure 2.56.: Atomic scattering length with 2 different values of bne. The inset shows
the difference, which is increasing with the order of reflection.

As the scattering length is part of the Laue phase formula eq. 2.13, the influence of
b on the Laue phase is investigated in this chapter. In the following, calculations are
performed with the rounded Garching/Argonne and Dubna ratios bne/bnuc =-0.0003 and
-0.0004. With each of these values a Laue phase is calculated. The difference of the Laue
phases ∆φ results therefore from the two different bne values. In fig. 2.57 ∆φ is given
for the ideal interferometer as a function of the sample thickness (blade 3 and 4). The
sample thickness change, relative to 3 mm is depicted. One can see that with a sample
thickness of about 3 mm ± 20 µm the phase sensitivity can be doubled.
The results for the interferometer with the ’real’ geometry are listed in tab. A.6. . .
A.11. The calculations are performed for different Bragg peaks and for all Pendelloesung
plateaus (prism rotation up to α = 90◦). In comparison to the reached phase accuracy
from the different parameters in the last sections, one can say conclusively that this
effect is too small for this method, even if the contrast in the measurements reaches the
theoretical maximal value.
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2. Laue phase

Figure 2.57.: Scattering length bne influence on the Laue phase. The sample thickness
varies from the 3 mm ideal interferometer, Bragg peak (220). Evaluated
at the 1st and 2nd plateaus.

Scattering length bG

A proposal by Greene [6] extends eq. 2.31 with an additional short range gravity term
fG(~q) · bG, whereas fG(~q) = 1/(1 + (~qλG)2), and λG is the effective range of gravitational
interactions. Important is the different wavelength behavior, to distinguish between the
two contributions from bne and bG. However the influence on the Laue phase would be
expected smaller than that of bne.

Debye-Waller factor

Another influence on the scattering length is caused by the temperature T, described
by the Debye-Waller factor: batom · exp−~q

2·kBT/Mω2
, where a harmonic oscillation of the

atoms with mass M and frequency ω is assumed, kB = 1.3806488(13) · 10−23 J/K. The
uncertainty of the Laue phase created by the Debye-Waller factor is about two times
larger than that from bne, and increases with the order of reflection [30].
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2.5. Relative Laue method

The disadvantage of the Laue phase measurement-method in the last chapter is the
fast decrease of the contrast with increasing beam deflection. To maintain the contrast,
another method is investigated here [4]. Fig. 2.58 gives an idea40 of this ’relative Laue
phase’, where the phase is obtained from a rotation of blade 3 followed by an independent
rotation of blade 4. However the relative Laue phase is a result of a simultaneous blade
rotation (one blade rotates with an additional offset angle relative to the other blade).
The rotation of the second blade should compensate some of the arising phase change
due to the other blade rotation, which causes the contrast reduction. Therefore a larger
δθ range is in principle possible.

Figure 2.58.: Relative Laue phase measurement principle. Calculation of the Laue phase
for blade 3 rotation only and blade 4 rotation only. The blade 4 rotation
is shifted with a constant offset ∆α. The arrow shows the difference at a
specific δθ − the relative Laue phase in principle.

As the blade rotation is equal to the beam deflection with prisms, the necessary setup
modification is shown in fig. 2.59, both prisms are now deflecting the beam in front of
the blades 3 and 4 respectively (one prism pair rotates with α+ ∆α).

Figure 2.59.: Both prism pairs are mounted over the blades 3 and 4. The blade 4 rotation
has a constant offset ∆α .

40Note that the phase difference here is different from the relative Laue phase, due to a changing
geometry when the other sample rotates simultaneously.
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2. Laue phase

Offset value ∆α: the question arises, which optimal offset value should be selected. In
fig. 2.60 the influence on different offset angles is given. One can see the phase for ∆α =
1◦, 2◦, and zero offset. For a better comparison, for each phase value the corresponding
value at δθ = 0′′ is subtracted. The phase change is stronger with increasing offset,
however the corresponding contrast decreases with increasing ∆α (about 50 % for ∆α =
5◦). Because the second rotating blade compensate less and less of the arising phase
distribution. So for the measurement, an optimal ∆α value of about 1◦ has been used.
Note that with this relative Laue method, the contrast remains over the δθ range except
of the small asymmetry in δθ, which is caused by the imperfect IFM geometry.

Figure 2.60.: Different offset values ∆α. (left) Calculated relative Laue phase (minus
phase at δθ = 0′′) and contrast (right). The increasing phase change with
increasing offset, faces a decreasing contrast. Parameters: (220) Bragg
peak, real I geometry.

Monochromator and beam divergence: fig. 2.61 depicts the relative Laue phase
with different monochromator functions and beam divergences. The influence is smaller
than in the last method (chap. 2.4.3: Bragg minus Gauss monochromator function: the
phase difference is about 0.4◦; chap. 2.4.4: Darwin width 1 minus 3: up to ∆φLaue =
1.2◦).

Figure 2.61.: Influence of the monochromator (left) and beam divergence (right) on the
relative Laue phase. Same parameters as in fig. 2.60 and ∆α = 1◦.

The influence of the interferometer’s geometry on this phase is given in fig. 2.64 and 2.65.
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2.5.1. Scattering length

The influence of the scattering length on the relative Laue phase is shown for different
interferometer geometries in fig. 2.62, and for different offset angles in fig. 2.63. The
phase difference between bne/bnuc =-0.0003 and -0.0004 yields about 0.1◦. The geometry
and ∆α do not significantly change this value. The monochromator function and beam
divergence have a negligible influence on this difference, too. Concerning the scattering
length, this method does not show a better sensitivity than in chap. 2.4.8.

Figure 2.62.: Calculation of the influence of the interferometer’s geometry on the ’rel-
ative Laue phase difference’. The phase difference occurring for assumed
values bne/bnuc =-0.0003 and -0.0004 is shown. Note the larger δθ range.
Parameters: (220) Bragg, Darwin width 1, blade 4 plus 1 degree offset.

Figure 2.63.: Influence of the offset angle on the ’relative Laue phase difference’. Same
parameters as in fig. 2.62 and real I interferometer geometry.
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2. Laue phase

2.5.2. Measurement with the relative Laue method

(220) case

In fig. 2.64 the calculated phase, contrast and intensity of this setup is compared with
the measurements for the (220) Bragg peak. The measured values are averages of about
3 to 14 interferograms (and 40 at δθ = 0.03667′′). The measurement of the phase (IN-
OUT41) does not show a good agreement with the calculations, a remeasurement was
not possible due to limited time. The monochromator and beam divergence modify
the phase but can not explain this large deviation (fig. 2.61). The influence of the
different interferometer geometries is also shown in the graphs, which can not explain
the deviation. Note also that the δθ axis is not shifted here as in chap. 2.3. An important
observation is that the contrast indeed does not decrease with δθ.

(440) case

In fig. 2.65 the calculated phase, contrast and intensity of this setup is compared with
measurements for the (440) Bragg peak. The measured values are averages of about 5
to 8 interferograms. Note that the ∆α = 1.1◦ offset is the same as in the (220) case,
therefore the δθ beam deviation is different. Here for the (440) Bragg peak it is also
demonstrated, that the contrast is not decreasing with increasing beam deflection.

Summary

With this method [30] it was possible to show that the contrast remains, while in the
method in chap. 2.3 the contrast decreases with increasing beam deflection. Unfortu-
nately, the influence of the scattering length is smaller than in chap. 2.4.8. In general
the sensitivity to parameters like monochromator function and beam divergence is lower.
A more accurate measurement of the relative Laue phase, needs more time due to chal-
lenging contrast conditions, for large interferometers on the S18 instrument.

41Phase at each α (IN) minus phase at α = 0◦ (OUT).
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2. Laue phase

Figure 2.64.: Relative Laue phase, contrast, and intensity for the (220) Bragg peak
(∆α = 1.1◦).
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2. Laue phase

Figure 2.65.: Relative Laue phase, contrast, and intensity for the (440) Bragg peak
(∆α = 1.1◦).
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3. Preparation of a new interferometer

Our further planed neutron-experiments require a larger area enclosed by the interfering
beams and a different sample blade, than the interferometer used so far in the last
chapter. Moreover, the perturbations due to crystal bending could be reduced with a
thicker basis. Therefore, within this work a new neutron interferometer is fabricated
with our co-operation partner at the ’Physikalisch- Technische- Bundesanstalt’ (PTB)1.
The non-trivial preparation steps of the world’s largest perfect-crystal interferometer
are documented in this chapter. The possible applications, where the large area of
the enclosed interfering beams can be of great value, are e.g. measurements of gravity
induced phase effects (COW) and high angular resolution experiments. For this, a thicker
sample is necessary to enhance the Laue phase slope.

3.1. Dimensions and key parameters

Fig. 3.1 shows the planed dimensions for this new interferometer. A minimum space
is required for the phase shifter and the rotation range of the prisms, in particular the
full length of our prism pairs, must fit into the second loop. The width of the IFM
and therefore the beam separation, is limited by the ingot diameter (6 inch). The path
length, beam separation and enclosed beam area are exceeding the dimensions of hitherto
prepared interferometer crystals.

The key parameters are:

• very large dimensions: length 30 cm, path length 30 cm, largest interferometer

• large beam separation 6 cm: smaller tilt for COW experiments (reduce crystal
bending)

• thick basis2 3.5 cm: to reduce disturbances

• small bottom contact surface 1.5 x 30 cm2: to reduce contact strains

• large areas of the enclosed interfering beams: 3 different loops (50 cm2, 100 cm2,
150 cm2) for COW measurements

• thick middle blades 1.5 cm: for high angular resolution experiments

The height of the lamellas is 2 cm, in the original version 4 cm.

1U.Kuetgens et al., Bundesalle 100, 38116 Braunschweig, Div. 4.33 x-ray Optics
2In the original version 5.1 cm, see chap. 3.3.
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3. Preparation of a new interferometer

Figure 3.1.: Dimensions of the new interferometer (in mm). The lamella thickness is 3
mm and 15 mm. The design is optimized for the measurement purpose,
space for the used prisms and phase shifter.

3.2. Preparation steps

The different stages of the machining of this crystal interferometer are presented in
the following. Especially important is an accurate crystal orientation to the symmetric
Laue-case as well as correct blade distances and thicknesses to yield a focused IFM.
Furthermore, the damaged surface of the perfect-crystal during the cutting has to be
removed with acid. Additionally a model of the interferometer has been produced3.

3.2.1. Silicon perfect crystal ingot

A crystal with less carbon and oxygen impurities and a lattice orientation, where the
neutrons can travel along the ingot axis, is necessary. The parameters4 of the chosen 6
inch Si ingot (fig. 3.2) are listed in tab. 3.1.

3The IFM model is made of wood by Harald Huber (2013).
4According to Silchem Handelsgesellschaft mbH, Himmelfahrtsgasse 41, D-09599 Freiberg
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3. Preparation of a new interferometer

Figure 3.2.: Silicon perfect crystal ingot before cutting at PTB.

Table 3.1.: Parameters of the Float-zone grown Si ingot (type n/phosporus).

diameter 15.4 cm orientation (100)
length 40.8 cm carbon concentration < 2 · 1016 At/cm2

weight 17.81 kg oxygen concentration < 1 · 1016 At/cm2

resistivity > 2000 Ohm cm costs 14796 e

3.2.2. Cutting

We start the work on the Si ingot at the PTB with the length reduction from 40.8 cm
to the interferometer length plus additional 3 mm, which is removed afterwards by an
oriented grinding. The mounting of the crystal in the cutting-, grinding and orientation
-machines is performed with a metal support, where the crystal sticks with a brown glue
(Crystal band 590 from KAGER GmbH). The gluing and ungluing process is done in an
oven at 150◦C for 4 hours. In fig. 3.3 the further stages of the cutting are presented. A
cut along the ingot axis removes the material above the lamellas (fig. 3.3(a)). Then a
small basis area on the other side is created, the left and right ingot curve is removed as
well. After four parallel cuts (fig. 3.3(b)), the wire saw removes the material between the
lamella pairs (fig. 3.3(c)). Then, the lamellas are cut out with an additional thickness
of 2 mm (fig. 3.3(d)), which is removed afterwards by the grinding process. The not-
used material between these cuts is removed again with the wire saw. The cutting of
the ingot is done with machines from ’Meyer Burger’, with an 1.5 mm thick bronze
bonded diamond wheel (D126, 1500 r/min, forward speed 5 mm/min) and a 0.3 mm
thick diamond coated wire saw (wire tension 20 N, forward speed 0.381 mm/min). For
the cooling and removing of the Si dust during the cutting process, water with 5%
Grindex 10 (Blasa) oil is used.
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3. Preparation of a new interferometer

(a) (b)

(c) (d)

Figure 3.3.: Cutting stages of the new interferometer. (a) Lengthwise cut of the ingot,
(b) lamella pair (c) diamond coated wire saw, (d) lamella cutting.

3.2.3. Orientation

The lamella surfaces have to be perpendicular to the lattice planes within about 30 arc-
sec (symmetric Laue case, fig. 2.1), in order to yield a Laue phase accuracy of about
1◦ for δθ > 0.1′′ [30]. The correct orientation of the cutting and grinding process at
every preparation step is performed with a x-ray diffractometer and an autocollimator
(NIKON 6BLED), as depicted in fig. 3.4. The interferometer is placed on a rotatable
table with a special metal holder. The radiation which comes from a silver source (1 x 1
mm2, θB = 16.9378◦, (440) Bragg peak), is detected at 4 positions of the interferometer
(every 90◦), if it is exactly orientated5. The second step is the mounting of an auxiliary
mirror. It is aligned parallel to the cutting surface with an autocollimator. A similar
autocollimator is at the cutting machine, where the interferometer can be aligned with
the auxiliary mirror.

5The table has to be adjusted that the peak does not vanish during the rotation (fix detector position).
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Figure 3.4.: Orientation of the crystal with a x-ray diffractometer at PTB. (1) Ag x-ray
source, (2) detector, (3) rotatable table with the interferometer, the insets
show a magnification of 3 as well as an additional rotation of 3 to 90◦. (4)
Autocollimator, optical method to determine the lattice plane surface angle.
(5) Leaded glass for radiation protection. Accuracy of the diffractometer:
±0.2′′, autocollimator: ±1′′.

3.2.4. Grinding

The final blade thickness is obtained by the grinding process after the cutting. Also
the surface-quality of the lamellas improved. The grinding is performed with the same
machine from ’Meyer Burger’, with a 9 mm thick bronze bonded diamond wheel (D126,
1500 r/min, forward speed 5 mm/min). First, only one surface of each blade is grinded.
After the thickness-control, the second surface of the blades is grinded. The deviation of
surface to lattice planes is 53.07′′ (compare chap. 3.2.3), measured with a non-contact
sensor ’MG70 Mikro-Epsilon optoNCDT 2401’. Fig. 3.5 compares the surface of the
cutted and the grinded blade 5 (neutron exiting side).

After grinding the metal support is separated from the interferometer in the oven as
described above. The remainings of the clue can be removed with methanol6, after-
wards the quality of the geometry was measured in Vienna. Tab. A.12 lists the blade
thicknesses, measured at Rauch company. Due to this large thickness differences, this
interferometer would be defocused (e.g. 29.5 µm between blade 2 and 6, at position 4).

6CH4O is toxic, documentation of the used amount is required.
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3. Preparation of a new interferometer

Figure 3.5.: Surface of the cutted (top) and grinded (bottom) interferometer lamella.

A fine-grinding at Rauch company was performed7. For this process, the interferometer
is clued with ’Vinnapas(R)B 60’ (at 145◦C for 4 hours) at a glas plate mounded at a
steel plate (fig. 3.6). This clue can easily be removed with acetone.

Figure 3.6.: Interferometer cluing. (1) Oven, (2) IFM, (3) clue after heating, (4) glas
plate, (5) steel plate. The inset shows the clue powder before heating.

The subsequent geometrical measurement gives a better result, as listed in tab. A.13
(blade thicknesses) and tab. A.14 (blade distances). Input of this geometry values in
IFMSIM results in a maximal visibility of about 70%.

7Only 18 mm (from the top) of the 20 mm blades are grinded.
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3. Preparation of a new interferometer

Figure 3.7.: Interferometer after grinding, with blade numbers.

3.2.5. Etching

The etching of the interferometer is done by our own, at the Institute of Atomic and
Subatomic Physics in Vienna. With hydrofluoric and nitric acid (1:608 of HF 40% and
HNO3 65%9) the damaged perfect crystal structure (due to cutting and grinding) is
removed. The etching depth is 20. . .30 µm depending on the grinding process. Equation
3.1 describes the oxidation of the silicon surface by the nitric acid. This is removed with
the hydrofluoric acid:

3Si+ 4HNO3 → 4NO + 3SiO2 + 2H2O (3.1)

SiO2 + 4HF → SiF4 + 2H2O (3.2)

Preparation of the laboratory, interferometer and the laboratory worker:

For the etching process a clean10 lab with an acid fume cupboard is required, fig. 3.10.
Fig. 3.10(b) shows the etching reservoirs within a water vessel for cooling and a vessel
with distilled water for the interferometer after etching. Furthermore, graduated jugs
for mixing the acids and an additional acid supply during etching is needed. A fleece for
acid accidents is prepared as well.

The cleaning of the lamella surface influences the etching process significantly. It is
performed with a cosmetic tissue soaked in distilled water first, then in acetone. After-
wards, the interferometer is placed in an acetone bad for some hours. Before and after
etching, the interferometer has to be weighed with a precision balance, to determine the
mass loss ∆m . The remove of the acetone before weighing is done with nitrogen (fig.
3.10(a)). Cloth gloves are used every time the interferometer is touched.

For the worker acid-resistant gloves and apron, face protection, lab coat, proper shoes,
and an assistant is necessary. The first aid kit11 contains Hexafluorine (skin and eye
rinsing solution) and Calciumgluconat 10% 10 ml ampulla (fig. 3.10(c)). The vapor of

8The relative concentration is an empirical value from our institute.
9p. A. (pro analysi), the degree of purity is very high.

10For cleaning of the lab and vessels Extran neutral or Dekon neutral is used.
11First aid: remove contaminated clothing (gloves!). Eye/skin acid contact: within 60 sec. flush with

Hexafluorine (or water until then). Emergency shower is in the lab. Austria: call 144 or 112.
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the acids is not allowed to be inhaled (pulmonary oedema).

Etching time:

Based on intended 25 µm etching depth and an etching rate of v = 0.3 µm/min12, it
takes t = ∆D/v = 83 min for etching. The calculated mass loss is with the interfer-
ometer surface of 873 cm2 ∆m = ∆D · O · ρ = 5.1 g. Where the Si density is ρ =
2.336 g/cm3. The mass of the interferometer before etching is 2247.24 g. During the
etching the interferometer has to be moved, this is necessary to bring fresh acid to the
interferometer’s surface, as well as to reduce bubbles in the acid which can disturb the
etching process. HF has to be added about every 10 minutes (according to the removed
Si mass). The calculation of the amount is given by:

∆HF ≈ 20ml/g ·∆m(g) (3.3)

The weight after etching (26.11.2014) is 2242.06 g (∆m = 5.18 g) and the true etching
depth yields very accurate:

∆D =
∆m

ρ ·O
= 25.4µm (3.4)

The true etching rate is therefore with 86 min etching time: v = 0.295 µm/min. 10 liters
of HNO3 and 170 ml HF acid, as well as 100 ml HF every 10 min have been used. The
etched surface is depicted in 3.8.

Figure 3.8.: Surface of the etched interferometer lamella from fig. 3.5.

3.2.6. Final geometry

Finally, after the 25.4 µm etching, the geometry is calculated from tab. A.13. The
results are presented in fig.3.9.

12The etching rate is about v =0.30 . . . 0.34 µm/min depending on the amount of acid bubbles on the
surface and the IFM moving (every several min).
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Figure 3.9.: Final blade thicknesses after 25.4 µm etching of the new interferometer (in
mm). The blade no. are shown in fig. 3.7.

(a) (b)

(c)

Figure 3.10.: Interferometer etching. (a): (1) Vessel with acetone for IFM cleaning (39 x
17 x 24 cm3), (2) holder to remove the IFM from the vessels, (3) nitrogen
to dry the IFM before weighing, (4) mg balance. (b): (1) Fume cupboard,
(2) cooling vessel with water for (3) PE etching vessel, (4) 100 ml cup for
additional acid, (5) vessel filled with distilled water, before/after etching.
(c): (1) HNO3, (2) bottles for the acid after etching, (3) water is on during
the process, (4) first aid kit, (5) acid absorption fleece.
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3.3. Original version

In the original planned version of the interferometer, there are two additional features.
A thicker basis to reduce disturbances and step like cut middle blades for high angular
resolution experiments as well as three loops for COW measurements (15 mm and 3 mm
thick lamellas, see fig. 3.11).

Figure 3.11.: Dimensions of the new interferometer, original version with thicker basis
and step like middle blades.

Unfortunately, during the preparation one of the blades is broken due to a programming
mistake in the cutting machine at PTB (fig. 3.12). That is the reason for the use of
the smaller part of the Si ingot for the interferometer. The remaining Si pieces can be
used to cut a single-loop interferometer with a thick basis or a two-loop IFM with a thin
basis13 and a long phase shifter (12 x 2 x 0.3 cm3) from the block between the lamella
pairs (only one cut is needed).

13Depending on the test measurement of the produced IFM.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12.: Cutting of the new interferometer at PTB (original version). (a) Basis cut
3 mm, (b) orientation process, (c) grinding of the top surface, (d)(e) from
this block the parallel interferometer lamellas are cutted. (f) Destroyed
first loop, the new IFM is now cut from the other part of the Si ingot (fig.
3.3(a)).
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3.4. Testing the new interferometer

With our new prepared interferometer, test measurements have been performed at ILL
S18 in Grenoble. Before we measure the fringe visibility in order to demonstrate that
an interference is possible with such a large IFM, rocking curves have been performed
to give information about the crystal.

Rocking curves

The O and H-beam rocking curves are depicted in fig. 3.13. The aperture is 2 x 1 cm2

and two 140◦ Si prisms for the (220) and (440) Bragg peak separation have been used.
This Si prisms are mounted in a way that their apex points to left or right in neutron
direction. No phase shifter is placed in the beams and only the beam between blade 3
and 4 is blocked with Cd. The following results are obtained:

• The Si ingot is of sufficient quality: the (220) FWHM for the O-beam yields a
good result of about 2.7′′ (3.6′′ for the IFM in chap. A.4)14; the H-beam is wider:
3.6′′.

• The separation between the (220) and (440) Bragg peak amounts to 4.5′′ (right)
and 3.3′′ (left) (eq. 2.22).

• The measured intensity ratio of the peaks (220):(440) is 1:0.32 (O-beam, prisms
pointing right).

Figure 3.13.: Rocking curve of the new interferometer (O and H detector signal). With
two 140◦ Si prisms, pointing in n-direction left or right. The (220) and
(440) Bragg peaks are larger separated with the prisms pointing right.

14The ρ-axis is optimized in both cases, to the smallest FWHM, chap. A.5.
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The rocking curve measurement has been repeated with a higher measurement time,
where the transmitted beam after blade 1 is now blocked with Cd. The result is depicted
in fig. 3.14 for the (220) Bragg peak. Compared to the calculation, the H-peak maximum
is shifted relative to the O-peak, which indicates crystal strains.

Figure 3.14.: Rocking curve of the new interferometer, for the (220) case. (top) Calcu-
lation and (bottom) experiment: FWHM: 3.6′′ (O-beam), 2.9′′ (H-beam),
the H beam is smaller and shifted right compared to the calculation.
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Visibility measurements

For the contrast measurements different supports have been tested, the highest observed
contrast is 5%. Fig. 3.15 shows the intensity versus the thickness difference in the two
beam path (interferogram), which is due to a rotating 5 mm thick aluminum phase
shifter. The measurement time is 20 s/point, 24 points with a step size of about 0.03◦

have been used. The reason for this low contrast is probably due to the reduced basis
thickness and contact strains from the crystal support. Therefore, a perfect-crystal
interferometer of this size needs a thicker basis than 3.5 cm. However, due to limited
measurement time, the crystal needs further tests with better temperature conditions
and further different supports should be tested. Especially, the whole crystal can float in
a high-density liquid like Natrium-polywolframat15. Also, a position-dependent neutron
camera can be used, giving information about strains in the crystal (Moire patterns).

Figure 3.15.: Interferogram of the new IFM. (top) O-beam with 3% and (bottom) H-
beam with 5% fringe visibility. The intensity in O is larger than in H, this
indicates crystal strains.

15Can be removed completely from the silicon.
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Another new and very promising application for large-crystal neutron interferometry
with slow neutrons was recently proposed in [17]. With this method we search for phase
shifts associated with the so called ’chameleons’, these hypothetical particles are a promi-
nent candidate for the dark energy. Chameleons describe the accelerating expansion of
the universe with a particular dynamical dark energy model instead of Einstein’s cos-
mological constant. Dark energy is of special interest, because it represents the largest
energy contribution in the universe (68.3%), while the rest is dark matter (26.8%) and
ordinary matter (4.9%) [18].

4.1. Theoretical

Khoury and Weltman [41] were the first who proposed the chameleon model. A detailed
introduction to the chameleon model with associated preliminaries is given e.g. in the
master thesis of H. A. Winther [42] and in [43]. The chameleon field couples to matter
and generates a fifth-force with an effective range inversely proportional to its effective
mass. This mass is similar to the color change of the chameleon reptile, the particles
are able to adjust their mass to its environment. In dense environments the force of
the chameleon field is screened, but free non-relativistic neutrons are not subject to
the chameleon screening mechanism. Therefore, neutron interferometry can be used to
measure phase shifts arising from chameleons. The density of the environment can be
controlled with a vacuum chamber, which is placed as a sample in the interferometer.
The chameleon potential Veff (ϕ) can be given by a Ratra-Peebles model, the first two
terms in eq. 4.1 [44] describe the self interaction, the last term is the coupling to matter
with density ρ (β is a dimensionless coupling constant).

Veff (ϕ) = Λ4 +
Λ4+n

ϕn
+
β · ϕ · ρ~3c3

MPl
(4.1)

Λ ≈ 2.4 · 10−12 GeV is the dark energy value, n > 0 is the Ratra-Peebles index, MPl =√
c/(8πG) = 4.341 · 10−9 kg the reduced Planck mass. The second derivative (by ϕ) of

the potential correlates to the mentioned density-dependent mass M:

M(ρ)2 = V ′′eff (ϕ(ρ)) = n(n+ 1)
Λ4+n

ϕn+2(ρ)
(4.2)

The chameleon field ϕ for vacuum is written in eq. 4.3 [47]. This is the field between one
pair of parallel chamber walls with infinite length (1D chameleon field), separated by the
distance 2R; x is the normal distance of a point away from the cell wall (-R > x > R).
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ϕ(x) = Λ(RΛ)2/(n+2)

(
n+ 2

2
√

2
(1− (x/R)2)

)2/(n+2)

(4.3)

Note that the field profile is independent from β, it is illustrated in fig. 4.1 for several
wall distances 2R.

Figure 4.1.: Chameleon profile in a vacuum between 2 walls. Calculated for several wall
distances 2R =1, 4, and 9.4 cm (-R > x > R), with n =1 and 6, according
to eq. 4.3.

In our neutron interferometry method, this chameleon field inside a vacuum chamber
causes in the middle of the chamber a larger phase shift than on the edge (near matter).
This phase shift is given by eq. 4.41 with k = 2π/λ, and the potential due to the
chameleon field for the neutron is βϕmn/MPl.

φ = − m2
nβ

k~2MPl

∫ R

−R
ϕ(x)dx (4.4)

If the pressure in the chamber rises, the phase will decrease at a specific pressure for
each β, according to eq. 4.5 for He [17].

φ =
m2
nβ

k~2MPl

√
2(ϕ0/Λ)n/2+2Kn

(
βρ

MPlΛ3
(ϕ0/Λ)(n+1)/n

)
(4.5)

1Note that we use SI units here, in ’natural units’, c, h and ε0 are set to 1.
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with

Kn(α′) =

∫ 1

0

u1+n/2√
1− un + nα′un(u− 1)

du

βρ

MPlΛ3
= 23 · 10−9β

P

1 mbar

With our vacuum chamber geometry (see chap. 4.2) an approximation of the chameleon
phase for different β and n is depicted in fig. 4.3 (personal communication G. Pignol)2.
The phase will decrease at a pressure around 10−4 . . . 10−2 mbar, a measurement of
the phase in a sufficient pressure range can therefore exclude a certain β and n. The
chameleon to matter coupling is excluded so far with a different method to β > 1010

[45] and recently to β > 5.8 · 108 [46]. According to [17], with neutron interferometry
it would be possible to exclude β = 107 . . . 109, depending on the chamber size and the
measured phase accuracy. This exclusions are plotted together with n in fig. 4.2. The
dashed lines are calculated in [16], also the fifth-forth limit is shown in the plot, taken
from [17].

Figure 4.2.: β-n exclusion plot. From [45] β > 1010 is excluded. The zone below, down
to about β > 108 is expected to be excluded via neutron interferometry.
The dashed lines are sensitivities calculated in [16]. Picture from [17].

2The correct numerical calculation with the used beam width and its positions are in chap. 4.3.
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Figure 4.3.: Chameleon phase (approximation) for the chamber in fig. 4.6 with β = 107

and β = 108 for n = 1, 2, 4 (picture: personal communication G. Pignol).
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4.2. Experimental

The main part in this experiment is a large-crystal neutron interferometer, where a vac-
uum sample fits in. The challenges are to move the vacuum chamber within the IFM,
to evacuate it and to fill it with helium (He).
An overview of the whole experimental setup is depicted in fig. 4.4. The vacuum sys-
tem (1). . .(4), evacuates the chamber (5). The Si-crystal interferometer (6) is discussed
below. In front of the aperture (4 mm wide and 6 mm high) are two 140◦ Si prisms
for the 2.72 Å wavelength selection (7). To reduce vibrations, the interferometer and
monochromator is mounted on the optical bench (A). To move the chamber within the
interferometer, a robot (B) is used, because of vibrations it is not connected to (A). Also
the frame (C) where the pump (3) and a temperature shielding (D) is mounted, is not
connected to (A). The neutron detectors are (O) and (H); the Bragg angle is (45±0.25)◦.

Figure 4.4.: Overview of the chameleon experiment. (1) Tube to the fore vacuum pump
(outside to experimental area), (2) ventilating valve, (3) turbo molecular
pump, (4) He inlet with motor, (5) chamber, (6) interferometer, (7) 4 x 6
mm2 aperture and 2 Si prisms, (A) vibration reduced bench, (B) robot to
move the sample (5), (C) frame, (D) plastics for temperature shielding (no
neutron influence), (O)(H) neutron detectors.
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Interferometer

A picture of the used interferometer is given in fig. 4.5, it consists of 4 blades (3 mm
thick) with enough space between (118 mm, beam separation: 48 mm) for the chamber
(94 + 2 · 8 mm). The 4 x 6 mm2 neutron beam after the aperture fall on the beam
splitter (1). The interferograms are performed with a 3 mm thick phase flag of sapphire
(2) or Si. For the measurements the chamber can be moved through the interferometer
(X-direction) and can be evacuated and filled with He.

Figure 4.5.: (A) Interferometer (213 x 103 mm2), (B) chamber (210 x 110 x 70 mm3), (1)
interferometer blade 1 (3 mm thick), (2) phase shifter sapphire 3 mm and Si
3 mm thick (3) small paper to optimize the contrast, (4) ρ-axis motor, tilts
the IFM to the smallest rocking curve, (5) temperature sensors, (6) vacuum
connection.

Chamber

The sample in the neutron interferometer is the chamber in fig. 4.6. Its dimensions are
relevant for the measured chameleon phase. Part (A) and (B) are filled with air, both
are connected to the environment with a hole on the top (width 65 mm, height 40 mm,
depth 94 mm). Part (V) (width 40 mm, height 40 mm, depth 94 mm) with the sealing
ring (1) can be evacuated and filled with He gas with the 5 mm hole (2). The figure
shows the chamber from inside, in front and on the back side a 8 mm thick Al wall is
mounted with screws e.g. (3), the neutrons pass through this two aluminum (Al) walls
during the experiment.
In order to control the beam position relative to the chamber (X, Y and Z direction),
the whole chamber is mounted on a device (robot). The exact wall positions between
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the chamber parts (A), (V), (B) relative to the neutron beams are of interest, they can
be determined with an intensity scan shown in fig. 4.7.

Figure 4.6.: Al chamber system without outer walls. (A)(B) Air chambers (65 x 94 x 40
mm3), (V) vacuum chamber (40 x 94 x 40 mm3, wall thickness to (A)/(B)
is 8 mm). (1) Vacuum sealing ring, (2) connection to the vacuum system
and He-inlet (Ø5 mm hole), (3) screw hole for mounting Al walls.

Figure 4.7.: Determination of the chamber wall positions, by moving the chamber
through the IFM in X-direction. The X-positons of the chamber part (V)
(left, middle, right) are: 177, 191 and 205 mm (beam II only) and 224, 238
and 252 mm (for beam I).

In detail, this is done either with the IFM beam I or II separately. The beam II is fully
out of the wall (with 1 mm distance3) and inside the chamber (V) at 177 mm and 205
mm, the chamber center is then at 191 mm. The determined positions for beam I are:
224, 238 and 252 mm. An illustration of this positions, relative to the interferometer is
given in fig. 4.8.

3Note that the originally 4 mm wide beam is broader behind the IFM blades.
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Figure 4.8.: Chamber positions relative to the interferometer beams. The chamber moves
in X-direction through the interferometer, e.g. at X = 191 mm beam II is
in the middle of (V) and beam I in the middle of (A).

Vacuum system

A sketch of the vacuum system is shown in fig. 4.9. The necessary vacuum is created
by a fore vacuum pump (scroll pump, max. 10−2 mbar) and a turbo molecular pump
(TMP, 10−4 mbar). Additional He can be inserted into the chamber until the maximum
pressure for the TMP is reached. The value of the pressure gauge (’Pfeiffer PCR 280’)
needs a correction factor for the use of He instead of air (0.8).

Figure 4.9.: Vacuum system. (TMP) Turbo Molecular Pump, (V1) fore vacuum pump
valve, (V2)(V4) TMP valve, (V3) bypass valve (start pumping/TMP out),
(V5) venting valve, (He) helium inlet, (p) pressure.
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4.3. Measurement

Our experiments are based on [17], we investigate here three different methods to measure
the chameleon phase. First, with a fixed position of the chamber, at different He pressure
values. Secondly, the phase is determined for several chamber positions. The third
method records the phase between two chamber positions, for a larger pressure range.

4.3.1. Method I: phase vs. pressure (at fixed chamber position)

The chamber is fixed at a position, where the beam II passes the middle of the vacuum
chamber (X=191 mm, fig. 4.8). Then the phase shift is measured with an interferogram
at four pressure values. The pressure is increased by filling helium into the chamber.
The pressure values are (corrected for He):

• p1 = (2.51± 0.25) · 10−4 mbar

• p2 = (7.7± 1) · 10−4 mbar

• p3 = (30.6± 5) · 10−4 mbar

• p4 = (119.2± 50) · 10−4 mbar

In detail, the measurement procedure have to be corrected for an arbitrary, temperature
dependent interferometer phase. Therefore, the interferograms at each pressure are not
taken one after another. Instead they are performed parallel: at each position of the
phase shifter, the intensity is measured simultaneously at 4 pressure values according
to fig. 4.10. In the experiment 41 phase shifter positions have been used, each position
corresponds to a point on the sine interferogram (compare chap. 2.2.1).

Figure 4.10.: Measurement principle of the chameleon phase with method I. At each
phase shifter position (1), (2) and (3), the pressure p is changed 4 times.

These 4 phase values, each at a different pressure are comparable, but not its absolute
value because of this arbitrary interferometer phase. The phase difference is given rela-
tive to the phase at the highest pressure in fig. 4.11, hence this value has no phase error
bar. Additionally, the measurements are compared with theoretical values. These are
numerical calculations for our specific chamber geometry and beam position; performed
by G. Pignol. The chameleon field would lead to a pressure-dependent phase shift, the
open parameters: coupling constant β and n can be restricted by the measurement. This
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Figure 4.11.: Chameleon phase vs. He pressure. Numerical values (personal communica-
tion G. Pignol), EXP: average value of 4 single measurements, ’expected’:
without chameleon field.

will be done later together with method III. A rerun of the measurement with nitrogen
was because of the limited time not possible.

100



4. Chameleons

4.3.2. Method II: phase vs. chamber position

As we see in fig. 4.1 the chameleon field depends on the distance from the chamber
walls. While in method I the vacuum chamber position is fixed, we investigate here the
phase for several X-positions.
This measurement procedure has to be corrected for the arbitrary phase shift as well.
Therefore, parallel to the interferograms taken at a certain X-position (’IN’), always an
interferogram at X=205 mm is performed (’OUT’, fig. 4.8). This is sketched in fig. 4.12
for only 2 phase shifter points (out of 21), all points together constitutes an IN and an
OUT interferogram.

Figure 4.12.: Measurement principle of the chameleon phase with method II. At each
phase shifter position (1,2), the X-position of the chamber is changed 2
times. This sequence is repeated for every X-point.

The results of the measurements are given in fig. 4.13. Surprisingly this phase difference
is not zero (or symmetric along the chamber) and reaches 40◦ on one side of the chamber
(V). A remeasurement at a higher pressure, yields the same result.

Figure 4.13.: IN minus OUT phase vs. chamber position. IN: chamber at a X-position,
where beam II hits (V), OUT : X= 205 mm. Each point is an average of
about 10 single measurements.
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The origin of this phase is not obvious, however in chap. A.10 we found a possible expla-
nation by measuring the chamber wall thicknesses. It reveals a special shape resulting
in such a phase4. Note that this phase does not effect the result from method I due to
the not changing chamber-position.

4.3.3. Method III: phase (between 2 chamber pos.) vs. p

The phase difference from the last method can be extended to a wide range of pressure
values. The phase due to the chamber walls is assumed to be constant, a phase change
with pressure would then indicate a chameleon field. The advantage compared to method
I is that a larger pressure range is now available due to technical reasons5.
Fig. 4.14 shows the measurement principle of method III in detail, for one phase shifter
point only. For the complete measurement the phase shifter position is changed 21 times,
this sequence is then repeated for all pressure values.

Figure 4.14.: Measurement principle of the chameleon phase with method III. The first
phase shifter position is shown (1), where the pressure p is constant and
the chamber position is changed 3 times (IN1, IN2, OUT). This sequence
is repeated for all phase shifter points and then for all pressure values.

The results of the measurement is plotted in fig. 4.15 for the phase differences at IN1-
OUT and IN2-OUT. Each point is an average of about 10 single measurements. The
linear fit yields for the intercept (17.4 ± 0.5)◦ and (36.9 ± 0.5)◦ respectively, this is the
offset phase from the chamber wall.
A comparison of the measured with the theoretical values is shown in fig. 4.16, the offset
is now subtracted. The theoretical values are numerical calculations for our chamber
geometry and beam position (performed by G. Pignol). Note that the He phase shift in
this pressure range is negligible (< 0.001◦). The final result of method I and III together
is that the chameleon field can be exclude coupling constants β > 1.9 · 107 with n = 1
(at 95% C.L, personal communication Pignol6). For n = 2, 3, 4 we yield β > 5.8 · 107,
2.0 · 108, and 4.8 · 108 respectively. Hence, the neutron interferometry is very sensitive,
resulting in a new limit for β.

4Unfortunately, the screw holes of our walls have been drilled after the surfaces had been polished
5The pressure can be changed now between interferograms and not during the interferograms, in the

higher pressure range the TMP must be removed, chap. 4.2.
6For certain values of β their probabilities p(β) are calculated by comparing the calculated phase shifts

with the measured phase shifts. The limit of β with 95% confidence level is determined by numerically
solving:

∫ βlimit

0
p(β)dβ = 95% [19].
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Figure 4.15.: Phase difference between two chamber positions IN-OUT, over a large pres-
sure range. IN1 (X = 177 mm), IN2 (X = 191 mm), OUT (X = 205 mm).

Summary

With a large-crystal neutron interferometer we searched for phase shifts arising from
hypothetical ’chameleon’ particles, a prominent candidate for the dark energy. The
interferometer must be large, in order to host a vacuum chamber as a sample. The
phase shift depend on the beam position within a vacuum chamber as well as on the
pressure. This leads to three different measurement methods, which have been performed
here. Method II only addresses the phase shift versus the position, unfortunately the
chamber wall thickness was not exactly homogenous. However method I and III were
performed on a small and large pressure range, where we found no pressure dependence
on the phase. We can therefore exclude the chameleon model down to a specific coupling
constant β. If the chameleon particles exist, its β value must be smaller than 1.9 · 107,
which is a better limit than the current value found by the qBOUNCE collaboration
(β > 5.8 · 108 in [46]).
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Figure 4.16.: Phase difference between 2 chamber positions vs. He pressure. Calculated
for different β (n = 1) and without chameleon theory (’expected’). (top)
Phase between IN2-OUT, (bottom) IN2-IN1.
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Laue Phase

In this study, a large neutron interferometer was used to measure the phase shift of a
perfect silicon crystal, in the vicinity of the Bragg condition (Laue phase). The rotation
range of this crystal is δθ = ±0.06 arcsec for (220) and δθ = ±0.015 arcsec for the (440)
case. Distinct phase sensitivities of 5.5◦ (220) and 11.5◦ (440) per 0.001 arcsec deviation
from the Bragg angle were achieved. Additional factors that affect this phase were iden-
tified and systematically investigated. With the setup used, two pairs of Pendellösung
plateaus for the (220) case and one pair for the (440) case were identified. These plateaus
are regions with increased sensitivity to fundamental parameters. The Laue phase was
measured with an accuracy of ±9◦ (1st plateaus) and ±15◦ (2nd plateaus). An additional
temperature shielding of the whole monochromator - interferometer setup (is currently
planed at S18), as well as a more accurate rocking device would be necessary, in order
to increase the phase accuracy. The parameters that affects the Laue phase in the first
and second plateaus are summarized in tab. 5.1, the prisms and their alignment angles
are also important. A very fundamental parameter is the neutron-electron scattering
length [5], it describes the scattering interaction of the neutron with an electron. Here
contradicting values exists; however we found that the experimental sensitivity of this
method is not sufficient.

Table 5.1.: Change of the Laue phase at the positions of the 1st and 2nd plateau respec-
tively, for the relevant parameter variations. Calculation for the (220) Bragg
monochromator, Darwin width = 1 and real I geometry.

parameter variation 1st plateaus 2nd plateaus

IFM geometry ideal-real I 4.7◦ 10.9◦

Monochromator Bragg-Gauss 7◦ 27◦

Darwin width 1/1.2 6◦ 30◦

Rocking angle 0.18′′ 1.5◦ 6◦

Wavelength 0.03 Å 1◦ 6◦

bne (440) 0.0003 fm 0.3◦ (0.6◦)
bne (220) 0.0003 fm 0.2◦ 0.45◦

prism angle β 0.001◦ 0.2◦ 0.4◦

prism angle slopephd 0.5◦ 0.75◦ 1◦

prism angle rphd 1◦ 1◦ 2◦

To overcome the contrast reduction with increasing beam deflection, one can select a
relative measurement technique at the cost of reduced phase sensitivity.
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New interferometer

Within this work, the worldwide largest perfect-crystal neutron interferometer was fab-
ricated. The additionally 15 mm thick sample blades can be used for a high angular
resolution measurement. The large area of the enclosed interfering beams can be of
great value for measurements of gravity induced phase effects (COW). The preparation
steps of this interferometer are given. The oriented cutting was performed essential
in co-operation with the Physikalisch- Technische Bundesanstalt in Braunschweig. The
grinding and geometry measurement at the company ’Rauch Ges.m.b.H.’ in Vienna. The
interferometer was etched with hydrofluoric and nitric acid (25.4 µm) at the Institute
of Atomic and Subatomic Physics in Vienna. The test measurement at the ’Institut
Laue-Langevin’ in Grenoble demonstrated that an interferogram can be obtained with
such a large interferometer.

Chameleons

By use of the neutron interferometric technique, we investigated a candidate for dark
energy, the ’chameleon’ model. These hypothetical particles are able to adjust their
mass to its environment, resulting in a position, as well as a pressure dependent phase
shift within the vacuum chamber. This leads to different experimental methods, which
are investigated here. With our measurement we did not see a hint of the existence of
chameleon particles; however, the chameleon field coupling constant β can be excluded
to 1.9 · 107, which is a better limit than the current value found by the qBOUNCE
collaboration (β > 5.8 · 108 in [46]).
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A.1. IFMSIM

The software IFMSIM from H. Lemmel calculates the neutron behavior within a perfect
crystal interferometer with samples (phase shifters, wedges, absorbers, Laue crystals)
[7]. The geometry of all interferometer blades and samples can be freely defined, also
multi-loop-interferometers are possible. The incident beam can be defined by its angle,
width and divergence (monoenergetic coherent wave packet). The calculation process of
the wave function is given in chap. 2.1.2. In fig. A.1 the user interface of IFMSIM is
depicted with the used 6 blade interferometer and the neutron path in the x-y plane.
For instance a rocking curve can be performed by a rotation of the incident beam or a
simultaneous rotation of all IFM blades. The commands are listed in tab. A.1.

Figure A.1.: IFMSIM: (a) input of the interferometer geometry, samples and beam spec-
ification. (b) Graphical representation of the input in the x-y plane. The
incident wave is split at blade (1) and passes through the blades/prisms (2).

Program extensions

IFMSIM performs the calculation with parallel front and back surface of each Laue
crystal blade, lattice planes are normal to the surfaces (symmetric Laue type crystals),
and no surface roughness or waviness is considered (the resulting visibility of interference
is therefore an upper limit). The wavelength used in the calculations is monochromatic
(in the experiment is always a certain wavelength distribution, which is coupled to the
beam divergence due to Bragg reflection on the monochromator, σθ is here smaller than
the usual value of 0.25 . . . 0.5◦).
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Table A.1.: IFMSIM commands; angles in degrees. Further information are given in the
manual [7].

object commands

interferometer ’blade1.thickness=3’, ’bladeangle=45’, ’blade1.front
/ back.pt’, blade1.front / back.end1/2’

beam topology ’beam3.topology=1r2r4t6r,1r2r4t6t,1t3t5r6r,1t3t5r6t’
interferogram ’batch.action=ifgTTRR+RRTT’
type of monochromator ’beam1/2/3.type= gauss/square/bragg’
Bragg peak ’reflex=2,2,0’
beam divergence ’beam1/2.sigtheta= 0.00045’,’beam3.darwinwidth= 1’
wavelength ’beam.angle=-90’
rocking position e.g. pos.+B ’beam3.rotation=0.0005’
scattering length bne/bnuc ’bneoverbnuc=-0.000316/-0.000383’
blade rotation ’blade3/4.rotation’

prism α-rotation ’blade7/8/9/10.rollangle’
pivot of prism α-rotation ’blade7/8/9/10.rollaxis.pt=x,y,z’
slopephd ’blade7/8/9/10.angle’ (12.5=̂90◦ n-prism surface)
rphd ’blade7/8/9/10.rollaxis0. angle’ (90 is rphd = 0◦)
prism apex angle β ’blade7/8/9/10.wedge angle’

Recently updates are:

• Bragg monochromator curve, eq. 2.20

• possibility to calculate additionally all 4 prisms and show the equivalence of prism
rotation and blade rotation (chap. 2.4.6).

• additional rotation to change the prisms pivot (fig. A.2)

• increase the step size of the calculation loop, create a ’.dat’ output file to record
the used parameters

Further extensions would be:

• 3D: gravity

• coriolis force

• wedge shaped and non-parallel Laue crystals

• extract the values from the beam-profile calculation in an output file, and create
diagrams for the batch-processes
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Figure A.2.: IFMSIM prism rotation 1 (top) and rotation 2 (bottom).
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A.2. Data analysis script for Igor Pro

For the data treatment, the program ’Igor Pro’ from ’WaveMetrics’ is used. A special
neutron interferometry data analysis script, written by Hartmut Lemmel is used [52], its
user interface is depicted in fig. A.3.

Figure A.3.: Igor panel (H. Lemmel). (1) Choose a data set, (2) load a file (.inf), which
lists the data set files, (3) mark this files with IN or OUT according the mea-
surement procedure (chap. 2.3). (4) For the calculations, input the Bragg
angle, phase shifter thickness and its parallel (to IFM blade) position. (5)
Sine fit function for the interferogram (chap. 2.2.1), its period can be given
from another measurement; (6) defines the direction of the phase shifter
and shows it in degree or converted in path length difference. (7) Load/fit
individual files (.dat) from the data set, (8) plot this files (interferograms).
(9) Calculate intensity, phase and contrast of different file/combinations.
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A.3. Labview control program

At the instrument S18 all the motors and encoders are controlled via Labview. The
program interface (main.vi) is depicted in fig. A.4.

Figure A.4.: S18 Labview control program. (1) Motor selection (also to read out its po-
sition), (2) limits for motors (software and hardware), (3) activate motor to
a target position or an increment, (4) activate motors with a remote con-
trol, (5) ’rocking curve’ window with start value, increment, no. of points,
and counting time/point, (6) starts the rocking curve, (7) subprograms, (8)
automatic measurement procedure can be programed, (9) manual neutron
counts per time for all detectors.

As motor (1) one can select for instance: ’phase shifter’, two ’detectors O, H’, three
’robots X,Y,Z’, three ’elevator left, right, central’ (optical table), ’coarse rotation’, and
’piezo’ (chap. 2.4.5). The monochromator motors however are controlled in the password
secured area ’monochromator’ (7). Further subprograms e.g. are the ’piezo manual
control’ to adjust the Bragg angle of the interferometer or ’niveau chart’ for the horizontal
position of the optical bench (chap. 2.4). Not all subprograms are listed, like the ’raster
scan’ (chap. A.5) or the recently updated ’Temperature PID Control.vi’ (chap. A.5), as
well as the program to save the temperature sensor values.
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A.4. Interferometer

The used three-loop neutron interferometer (IFM) with its dimensions are given in fig.
A.5. The preparation steps from a 4 inch perfect Si crystal ingot are described in [30].
The length is 23.5 cm, the beam separation is 5 cm, all 6 blades are about 3 mm thick
and the full enclosed beam area is 100 cm2. The lamella height is 5 cm, the basis height
3.4 cm, and the bottom contact surface is 4.8 x 23.5 cm2. The lattice planes are precisely
oriented, perpendicular to the lamella surfaces (13.5′′).

Figure A.5.: Used interferometer for the Laue phase measurement. (1). . .(6) Six 0.3 cm
thick blades, length 23.5 cm, path length: 25 cm, beam areas: (45 cm2, 55
cm2, 100 cm2). The black values without arrows are the normal distances
between the blades. The blade points for the IFMSIM input are indicated
as well. The inset shows the related 3D picture.

After cutting and etching the blade geometry varies a little from the planned values.
Tab. A.2 gives an overview of the used geometries in the calculation program. In our
case ’ideal’ means that only all blade thicknesses are 3 mm, while in general an ideal
interferometer is independent of the sample blade thickness.

Table A.2.: Blade thickness in mm, of different interferometer geometries used in IFM-
SIM. The blade no. are shown in fig. A.5

blade no. ideal real I real II

1 3 2.941 2.9371
2 3 2.938 2.9337
3 3 2.939 2.9359
4 3 2.939 2.9367
5 3 2.942 2.9379
6 3 2.942 2.9377
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Calculation of the real I geometry

The real I geometry is calculated after a 10.25 µm etching process on 05.12.2008 and a
geometry measurement on 19.08.2008. In this geometry the deviation of the individual
blade thickness is of up to 4 µm from each other. The sample blade 3 and 4 are equal
thick. The calculated values for the IFMSIM input are given in fig. A.5 (blade length:
38 mm and 52 mm). The measurements in chap. 2.4.1 of the phase versus rocking angle
favors the real I geometry over real II.

Geometry measurement, real II geometry

The real II geometry is taken from a measurement with the ’MITUTOYO Strato-Apex
9106’ CNC machine at ’Gerhard Rauch Ges.m.b.H.’1 on 26.06.2013. This coordinate
measuring machine has a ruby sensor sphere, which touches the surface with 10 grams,
see fig. A.6 (left). The thickness of the blades are measured at several points in an area
at half blade height. The points are 1.25 cm separated from each other, its positions on
the blades and the incident neutron beam are depicted in fig. A.6 (right).

Figure A.6.: Interferometer geometry measurement. (left) Coordinate measuring ma-
chine Strato-Apex 9106, the inset shows the ruby sensor sphere (picture
from Mitutoyo manual). (right) The blade thickness is taken at a 25 x 25
mm2 area on the blade surface.

Tab. A.3 shows the result of this measurement with an accuracy of 0.9 µm. The largest
deviation at the same height is: position (1). . .(3) 7.8 µm, (4). . .(6) 6.1 µm, and (7). . .(9)
4.8 µm. The overall largest deviation is 8.5 µm. The distances between the blades (at
position 5) are shown as well in tab. A.4 . The deviation of the blade pairs 1 - 2, 3 - 4,
and 5 - 6 is 1.1 µm, 2.7 µm, and 3.8 µm from each other.

1Eitnergasse 9, 1230 Wien
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Table A.3.: Measurement of the interferometer blade thicknesses. Taken at 12.5 mm
separated 3 x 3 points on the blade surface (fig. A.6). Values in mm,
accuracy 2 x 0.9 µm. The blade no. are depicted in fig. A.5. A graphical
representation is given in fig. 2.16. The largest thickness difference is 8.5
µm (blade 6-1, blade 2-9).

position blade 1 blade 2 blade 3 blade 4 blade 5 blade 6

1 2.9395 2.9345 2.9366 2.9379 2.9382 2.9413
2 2.9400 2.9340 2.9367 2.9375 2.9395 2.9411
3 2.9405 2.9335 2.9368 2.9371 2.9408 2.9409
4 2.9366 2.9342 2.9358 2.9371 2.9366 2.9379

5 (average) 2.9371 2.9337 2.9359 2.9367 2.9379 2.9377
6 2.9376 2.9331 2.9360 2.9363 2.9392 2.9375
7 2.9337 2.9338 2.9350 2.9363 2.9350 2.9345
8 2.9342 2.9333 2.9351 2.9359 2.9363 2.9343
9 2.9347 2.9328 2.9352 2.9355 2.9376 2.9341

Table A.4.: Measurement of the distances between the interferometer blades. The devi-
ation of the blade pairs 1 - 2, 3 - 4, and 5 - 6 is 1.1 µm, 2.7 µm, and 3.8 µm
from each other. The blade no. are shown in fig. A.5.

between blades normal distance / mm

1 - 2 33.0696
2 - 3 27.5406
3 - 4 33.0658
4 - 5 40.4055
5 - 6 33.0669

The calculated IFMSIM values are: ’blade1.front.pt=-14.19135,117.5’, ’blade2.front.
pt=36.81875,117.5’, ’blade3.front.pt=-14.19135,23.299’, ’blade4.front.pt=36.81875,23.299’,
’blade5.front.pt=-42.59565,-117.5’, ’blade6.front.pt=8.41445,-117.5’.
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A.5. Temperature setup

During our measurements the temperature is recorded and can be changed, in order
to yield an optimal contrast. The temperature of the guide hall varies during day and
night about two-three degrees, the concrete walls of the experiment room are damping
this temperature oscillation. Also the temperature of the monochromator within the
neutron guide can be recorded (fig. A.7 left). For neutron interferometry this are not
optimal conditions, for instance in [33] an Al skin around the IFM was tested, here we
build a box around the interferometer (fig. A.7 right). The box is made of Al, its walls
are 60 x 45 x 0.6 cm3. The bottom of the box is standing without an extra wall directly
on the optical bench, on the top is a lid made of plastic, it can be easily removed for
sample manipulations. The temperature change without the box is ±0.01◦C and in the
box center ±0.002◦C within 1 h.

Figure A.7.: (left) Rough temperature conditions at S18 within several days. (right)
Temperature box (1) with plastic lid (2), temperature sensor (3), and 2
Peltier elements on each box wall (4).

Additionally to the Al box itself, two different temperature control mechanisms can be
used: heating mat and Peltier elements.
The heating mat is arranged around the box and below the optical bench (BARTEC
Duennbettheizung, 210 x 45 cm2 with 150 W/m2). The current can be changed with
a dimmer (Phase-angle dimmer NS80 and NS68K, 2200 W) and a PID control loop in
the S18 Labview control program (chap. A.3). It creates a control voltage at the PC
output/dimmer input of 0...10 V. The PID values with the sensor on the IFM basis are:
P=2246.6, I=5.95, D=1.19.
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The mat is restricted to heading only, an alternative active stabilization system is im-
plemented as well. It consists of eight Peltier elements (PE) for cooling and heating
(two are placed at each box wall), arranged as depicted in fig. A.8 and a temperature
controller for the control loop. On the 40 x 40 mm2 Peltier elements2 (max. ± 2...6 A)
are heat sinks sticking. The temperature controller LFI-3751 (PID control loop, <0.002
K temperature stability, max. ±5 A, 40 W) can be connected to the S18 Labview control
system. Its possible to save the temperature values in the measuring files and change
the set temperature for the control loop as well as current limits, PID values and sensor
calibration data [35]. The PID Autotune process yields P=100, I=0.4, D=100. With
this setup a heating of 2.5◦C and a cooling of 0.1◦C is possible. The current limit is
set to -4/+0.8 A. The temperature sensors are NTC thermistors (Wavelength Electron-

Figure A.8.: (left) Overview temperature controller, front panel, picture from [35].
(middle) Connection of 8 PE. (right) PE with heat sink.

ics TCS-605, ±1 mK), which can be placed freely. The resistance R is changing with
temperature T/K according to the Steinhart-Hart eq. [51]:

1

T
= A+B · ln(R) + C · (ln(R))3 (A.1)

The coefficients A, B and C are calculated by entering three temperature/resistance data
pairs3. The setup is extended with additional temperature sensors PT1000 (platinum
resistor, ±1...2 mK), due to the limitation of only two sensors on the LFI-3751. The
sensor electronics (PT1000 Messumformer module, output: 0...10 V, Hygrosens Instru-
ments G.m.b.H) are implemented and connected to the S18 Labview control system. A
measurement for the active and non-active control is given within 10 hours in fig. A.9.
The sensor is placed on the inner side of the box wall. If the Peltier element control is
switched off, the temperature increases about 0.04◦C within this time. If the PE control
is switched on, the temperature is stable within ±0.005 ◦C4.

2TEC (thermoelectric cooler) from Quick-Ohm Kuepper & Co. G.m.b.H
3TSC-605: A: 10◦C, 9.950 kΩ; B: 20◦C, 6.245 kΩ; C: 30◦C, 4.028 kΩ
4In both cases the temperature of the experimental room changes about 0.1◦.
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Figure A.9.: Temperature with/without active PE control within 10 h.
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Alignment

Due to other experiments at S18 our setup has to be build up and adjusted for every mea-
surement run. The alignment of a large interferometer with all its components, described
in chap. 2.2.1 is time consuming. It begins with the adjustment of the monochroma-
tor Bragg angle, for this, the optical bench has to be moved to the correct position,
as depicted in fig. A.105. The monochromator crystal can be rotated and moved with
motors in several directions until the beam, aperture and detector are in position. The
reproduceability of the Bragg angle between the different measurement runs is about
(45± 0.25)◦.

Figure A.10.: Bragg angle alignment. (A) The whole optical bench and frame can be
moved to change the take off angle, (1) shutter, (2) interferometer table;
n is the neutron beam.

The height of the interferometer table (2) and its support has to be chosen in order that
the neutrons are able to pass through the interferometer blades at the preferred area.
The angle of the interferometer relative to the beam is then adjusted to the correct
Bragg angle (rocking angle). The ρ-axis angle (tilt of the interferometer versus the
monochromator) is changed to the smallest rocking curve (fig. A.11, 2.10). With the ρ
lever arm of 16.3 cm the ρ angle amounts to 0.07◦ (0.2 mm) and 0.14◦ (0.4 mm). The
peak maximum position (Gauss fit) is 0.0007◦ (0.2 mm) and 0.0019◦ (0.4 mm) separated
from the ρ = 0 mm position. The six fore-prisms are placed in front of the aperture.
Then the phase shifter is mounted in the interferometer, parallel to the lamella, as
shown in fig. A.12. Mechanical switches should prevent damages of the interferometer,
if motors would not stop. Fig. A.13 shows for example the phase shifter limit switches.
The optical bench with all this components is moved in horizontal position with motors.
With the ’raster scan’, the beam position is changed at different x-z positions (small
aperture size), in order to optimize the intensity, phase and contrast.

5Due to radiation protection reasons this procedure needs permission from the ILL.
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Figure A.11.: ρ-axis angle, (left) (1) ρ-axis motor (PI M-235 linear actuator, Push/Pull
Load 120 N, min. incremental motion to 0.1 µm), (2) tilt of the empty
interferometer table, (3) aperture. (right) Rocking curves at different ρ-
axis angles. FWHM = 0.00098◦ (0 mm), 0.00112◦ (0.2 mm) and 0.00203◦

(0.4 mm). Aperture: 26 x 26 mm2, (220) Bragg peak.

In case of low contrast due to crystal strains, the support has to be changed (see fig.
A.12), e.g. position change of a small piece of paper below the IFM, as well as vibrations
and temperature influences have to be taken into account. Now the Al prisms can be
placed into the interferometer, a maximal rotation angle of the prisms within the beam
must be possible6. The detectors have to be in a horizontal position and its windows
should be as small as possible. The neutron flux (O+H detector) with all components
(interferometer, fore-prisms, 5 x 5 mm2 aperture) reduces finally to ≈400 n/s·cm2 as
listed in tab. A.5. The optimal alignment is characterized by maximal contrast and
intensity. Unfortunately, the complete alignment procedure costs a lot of time, and
reduces the effective measurement time immense.

Table A.5.: Typical neutron flux during the alignment at S18.

Neutron flux /s·cm2 (O+H detector)

In the reactor core 1.5·1015

In the beam guide 3.5·109

Direct beam from monochromator, θB = 45◦ 14000

IFM, without fore prisms 1000
IFM, fore prisms (220) 400
IFM, fore prisms (440) 200

6The prisms are not mounted on the vibration reduced bench, a damage of the IFM can happen very
easily.
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Figure A.12.: (left) Si fore prism mounting (a) in front of the aperture (b); the IFM is
placed in the Al box (c). (right) IFM (1) with mounted phase shifter (2),
IFM support (3): 10. . .20 layers of paper to optimize the contrast.

Figure A.13.: Phase shifter limit switches (1) below the interferometer table (2) do pre-
vent accidents. The phase shifter is mounted on this metal ring (3) its
rotation is performed by the motor (4).
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A.6. Determination of σθ with rocking curves

Here we consider the empty interferometer without the Al prisms. We perform rocking
curves, where we record the intensity as well as the phase versus the rocking angle (fig.
2.34). Due to a strong dependence of this curves on the beam divergence σθ we use
measured rocking curves for a determination of σθ. For a comparison of the calculated
and measured rocking curves, the height of the peaks are scaled with its areas, see chap.
2.4.4. The determined σθ values are smaller than the typically beam divergence in the
experiment σθ = 900′′, because no wavelength distribution (monochromatic) is included
in our calculations. The influence of the geometry on the rocking curve intensity is small
but strong for the phase.

σθ for ρ-axis angle 0◦

The intensity versus the rocking angle is given for Gauss, Square and Bragg in fig.
A.14. The best match with the measured data amounts to σθ = 1.62(18)′′ (Gauss),
σθ = 1.80(18)′′ (Square) and Darwin width = 1 (Bragg). The phase versus the rocking
angle is given for all three monochromator functions in fig. A.15. The phase shows a
strong influence on the interferometer’s geometry as well (chap. 2.4.1). For the ideal
interferometer this rocking phase is zero for all beam divergences. The obtained σθ
values from the phase are in agreement with the σθ obtained from the intensity.

σθ for ρ-axis angle 0.09◦

Additional, σθ for a different ρ value (the rocking curve is two times wider) is determined
in fig. A.16 for Gauss, Square and Bragg. The best match are about three times the
value at ρ = 0◦: σθ = 4.14(54)′′ and Darwin width = 3.0(2).

σθ for different Bragg peaks

The determination of the beam divergence is repeated for the (440) and (660) Bragg
peak (for the Gauss monochromator function). A 50 s/point measurement yields σθ =
0.32(10)′′ and σθ = 0.34(20)′′, respectively.
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Figure A.14.: Determination of the beam divergence (monochromatic) from the rocking
intensity. Gauss 1.62(18)′′ (top), Square 1.80(18)′′ (middle) and Bragg
Darwin width = 1 . . . 1.2 (bottom). Parameters: (220) case, real I geome-
try, experimental values (EXP): 60 s/point.
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Figure A.15.: Determination of the beam divergence (monochromatic) from the rocking
phase. Gauss 1.62(18)′′ (top), Square 1.80(18)′′ (middle) and Bragg Dar-
win width = 1 . . . 1.2 (bottom). Same parameters as in fig. A.14. The
measurements are taken from chap. 2.4.1.
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Figure A.16.: Determination of the beam divergence (monochromatic) from the rocking
intensity for ρ = 0.09◦. Gauss 4.14(54)′′ (top), Square 4.14(54)′′ (middle)
and Bragg Darwin width = 3.0(2) (bottom). Same parameters as in fig.
A.14, EXP: 10 s/point.
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A.7. Rocking position, further influences

Further influences on the contrast behavior at a rocking angle deviation are discussed in
the following (chap. 2.4.5). Geometry: a comparison of the different geometries is given
in fig. A.17 (left). The measurement favors the ’real I’ IFM geometry in agreement with
fig. 2.21. Furthermore, as already mentioned, the IFM with ideal geometry does not show
a δθ-shift of the contrast peak maximum (at a rocking angle deviation). Additionally, the
phase slope (around δθ = 0′′) are calculated for all possible rocking positions in fig. A.17
(right). It does not show a strong sensitivity to the IFM geometry and rocking angle
within pos. ±A. Beam divergence: a comparison of the different Darwin widths for
rocking pos. -B is given in fig. A.18 (left). The shift is decreasing with increasing Darwin
width. The measurement of the contrast and phase (not shown) is within a Darwin width
of 1. . .1.2. Monochromator function: a comparison of the different monochromator
functions for rocking pos. -B is given in fig. A.18 (right). The measurements favors the
Bragg curve (chap. 2.4.3).

Figure A.17.: (left) Contrast behavior at rocking pos. -B, for different IFM geometries.
The measurement favors the ’real I’ geometry. (right) Laue phase slope
for all rocking positions.

Figure A.18.: Contrast behavior at different rocking positions. Comparison of the Dar-
win width (left) and different monochromator functions (right) at pos. -B.
All experimental values are shifted by δθ = 0.0035′′ acc. to chap. 2.3.
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A.8. Scattering length tables

Here we calculate the Laue phase change ∆φ resulting from two different bne values
(chap. 2.4.8). The results for the interferometer with the ’real I’ geometry are listed in
tab. A.6 . . . A.8. To see the interferometer’s geometry influence, the results for ’real II’
geometry are in tab. A.9 . . . A.11. The calculations are performed for different Bragg
peaks. The maximal number of plateaus are from the prism rotation up to α = 90◦, but
note that the prisms range in our experiment is limited to ±15◦. Different prism apex
angle or prism material could extend the beam deflection range. The plateau positions
can also be found in tab. 2.11. In comparison to the reached phase accuracy from the
different parameters in chap. 2.4, one can say conclusive that this effect is too small for
this method, even if the contrast in the measurements reaches the theoretical maximal
value. The achieved phase accuracies in the experiment are: ±9◦ (1st plateaus) and
±15◦ (2nd plateaus), for the (220) case according to chap. 2.3.
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Table A.6.: Laue phase change ∆φ due to bne uncertainty. For several Pendelloesung
plateaus, Bragg peak (220) and real I geometry; α is the rotation angle of
the 25◦ prisms.

plateau plateau α/◦ contrast/% contrast/% O-beam
no. at δθ/′′ (220) SIM EXP (max. 20%) ∆φ/◦

±1st 0.025 6.1 34 6.8 0.20
±2nd 0.045 11.0 16 3.2 0.45
±3rd 0.062 15.1 9 1.8 1.00
±4th 0.081 20.1 4 0.8 1.80
±5th 0.100 25.1 2 0.4 3.00
±6th 0.123 31.3 1.6 0.3 3.50
±7th 0.158 41.9 2 0.4 1.70
±8th 0.231 78.2 3 0.6 3.50

Table A.7.: Laue phase change ∆φ due to bne uncertainty. For several Pendelloesung
plateaus, Bragg peak (440) and real I geometry; α is the rotation angle of
the 25◦ prisms.

plateau plateau α/◦ contrast/% contrast/% O-beam
no. at δθ/′′ (440) SIM EXP (max. 20%) ∆φ/◦

±1st 0.012 11.2 32 6.4 0.3
±2nd 0.023 22.4 18 3.6 0.6
±3rd 0.035 35.8 8 1.6 2.5

Table A.8.: Laue phase change ∆φ due to bne uncertainty. For several Pendelloesung
plateaus, Bragg peak (660) and real I geometry; α is the rotation angle of
the 25◦ prisms.

plateau plateau α/◦ contrast/% contrast/% O-beam
no. at δθ/′′ (660) SIM EXP (max. 20%) ∆φ/◦

±1st 0.008 16.8 37 7.4 1.0
±2nd 0.015 33.9 18 3.6 3.0
±3rd 0.021 52.0 5 1.0 4.7
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Table A.9.: Laue phase change ∆φ due to bne uncertainty. For several Pendelloesung
plateaus, Bragg peak (220) and real II geometry; α is the rotation angle of
the 25◦ prisms.

plateau plateau α/◦ contrast/% contrast/% O-beam
no. at δθ/′′ (220) SIM EXP (max. 20%) ∆φ/◦

±1st 0.025 6.1 36 7.2 0.1
±2nd 0.045 11.0 15 3.0 0.05
±3rd 0.062 15.1 11 2.2 1.7
±4th 0.081 20.1 2.0 0.4 4.3
±5th 0.123 31.3 0.5 0.4 4.4
±6th 0.154 40.7 3.0 0.1 15
±7th 0.175 47.9 0.8 0.6 6

Table A.10.: Laue phase change ∆φ due to bne uncertainty. For several Pendelloesung
plateaus, Bragg peak (440) and real II geometry; α is the rotation angle of
the 25◦ prisms.

plateau plateau α/◦ contrast/% contrast/% O-beam
no. at δθ/′′ (440) SIM EXP (max. 20%) ∆φ/◦

±1st 0.012 11.2 32 6.4 0.2
±2nd 0.023 22.4 17 3.4 0.1
±3rd 0.035 35.8 7.5 1.5 7.0

Table A.11.: Laue phase change ∆φ due to bne uncertainty. For several Pendelloesung
plateaus, Bragg peak (660) and real II geometry; α is the rotation angle of
the 25◦ prisms.

plateau plateau α/◦ contrast/% contrast/% O-beam
no. at δθ/′′ (660) SIM EXP (max. 20%) ∆φ/◦

±1st 0.008 16.8 34 6.8 1
±2nd 0.015 33.9 20 4.0 2
±3rd 0.021 52.0 0.7 0.1 16
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A.9. New interferometer: geometry measurement

Within this work a new neutron interferometer is fabricated with our co-operation part-
ner at the ’Physikalisch- Technische- Bundesanstalt’ (PTB), chap. 3. After grinding the
quality of the geometry was measured at Rauch company in Vienna. Tab. A.12 lists the
blade thicknesses. Due to this large thickness differences, this interferometer would be
defocused (e.g. 29.5 µm between blade 2 and 6, at position 4). Therefore, a fine-grinding
at Rauch company was performed7. The subsequent geometrical measurement gives a
better result, as listed in tab. A.13 (blade thicknesses) and tab. A.14 (blade distances).
Input of this geometry values in IFMSIM results in a maximal visibility of about 70%.

7Only 18 mm (from the top) of the 20 mm blades are grinded.
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Table A.12.: Interferometer geometry measurement, after grinding at PTB 24.10.2014.
The blade thicknesses (in mm) are taken at 3 x 3 points on the blade surface,
similar to fig. A.6 but the separation in length is 12 mm and in height 5
mm. The blade no. are shown in fig. 3.7.

position blade 1 blade 2 blade 3 blade 4 blade 5 blade 6

1 3.0892 3.0784 15.0864 15.1024 3.1055 3.1018
2 3.0932 3.0811 15.0899 15.1012 3.0988 3.1009
3 3.0970 3.0834 15.0918 15.0990 3.0984 3.1018
4 3.0904 3.0792 15.0866 15.1024 3.0994 3.1087
5 3.0900 3.0794 15.0883 15.0999 3.0994 3.1046
6 3.0941 3.0812 15.0937 15.0956 3.1000 3.1032
7 3.0948 3.0822 15.0901 15.1009 3.1002 3.1097
8 3.0923 3.0810 15.0914 15.0974 3.1018 3.1092
9 3.0894 3.0788 15.0924 15.0979 3.1040 3.1071

Table A.13.: Interferometer geometry measurement, after grinding at Rauch company
07.11.2014. Parameters: see tab. A.12.

position blade 1 blade 2 blade 3 blade 4 blade 5 blade 6

1 3.0349 3.0369 15.0475 15.0476 3.0362 3.0377
2 3.0353 3.0371 15.0486 15.0479 3.0368 3.0373
3 3.0357 3.0381 15.0481 15.0481 3.0367 3.0374
4 3.0350 3.0370 15.0486 15.0483 3.0366 3.0372
5 3.0350 3.0377 15.0480 15.0485 3.0364 3.0366
6 3.0346 3.0386 15.0488 15.0479 3.0368 3.0375
7 3.0348 3.0370 15.0489 15.0485 3.0361 3.0367
8 3.0349 3.0381 15.0486 15.0483 3.0361 3.0365
9 3.0339 3.0377 15.0482 15.0477 3.0356 3.0362

Table A.14.: Interferometer geometry measurement (07.11.2014): blade distances.

between blades normal distance / mm

1 - 2 37.9692
5 - 6 37.9642
1 - 5 181.6626
2 - 6 181.6563
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A.10. Chameleon method II: wall thickness

The measured phase in fig. 4.13 behaves like an additional Al material of up to 12 µm
in one beam. Fig. A.19 shows the obtained phase from Al in either beam I or II versus
the thickness. The wall thicknesses have been measured along the x-axis (fig. A.20).
The thickness change of each wall is given in fig. A.21. The neutron beam pass through
both walls, therefore the sum of this two walls are shown in fig. A.22.

Figure A.19.: Phase vs. Al thickness in only one interferometer path. The measured
phase of up to 40◦ is equal to 12 µm additional Al between the robot
X-positions 177 mm and 205 mm.

Figure A.20.: Principle of the chamber wall thickness measurement. (1) One of the two
chamber walls at a specific x-position. (2) Springs pressing the sensors on
the sample.

The total thickness difference is in the range of 10 µm (between X=177 mm and 205
mm), and can therefore explain the measured phase in chap. A.10.
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Figure A.21.: Measurement of the thickness profile of the outer chamber walls. The
neutron beam pass through the right (fig. 4.5) wall first at a height of 22
. . .28 mm (6 mm high aperture).

Figure A.22.: Sum of the thickness-change of both chamber walls.
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