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1 Introduction 
 

The development and applications of composite materials and structural elements 
composed of composite materials have been very rapid in the last decades [1]. Even 
20 years ago, engineers recognized composite as a deluxe material which had 
limited usage in special cases. Nowadays all industrial companies are trying to 
develop their products by using composite materials. The motivations behind these 
developments are the significant progress that has been made in material science 
and technology of the composite and is required for high performance materials not 
only in aircrafts and aerospace structures, but also in the development of very 
powerful experimental equipment and numerical methods and the availability of 
efficient computers [1].  

The most significant factor in composite research and application is weight saving in 
comparison to structures of conventional materials such as steel, alloys, etc. 
However, to only have the density, stiffness and strength of the material in mind when 
thinking of composites means to have a very narrow view of the possibilities of 
materials such as fiber-reinforced plastics because they may often score higher than 
conventional materials such as metals not only due to their mechanical properties. 
Fiber reinforced plastics are extremely corrosion-resistant and have interesting 
electromagnetic properties. In consequence they are used for chemical plants and for 
structures which require non-magnetic materials. Further carbon fiber reinforced 
epoxy is used in medical applications because they are transparent to X-rays [1]. 

In applications outside of the aerospace or aircraft industry, cost competitiveness with 
conventional materials becomes important. More recently requirements such as 
quality assurance, predictability of the structure behavior over its life time, recycling, 
etc. have also become significant [1]. 

 Applications of polymer matrix composites range from the aerospace industry to the 
industry of sports goods. The military aircraft industry has mainly led the field in the 
use of polymer composites when compared to commercial airlines which have used 
composites, because of safety concerns more restrictively and frequently limited to 
secondary structural elements. Automotive applications, sporting goods, medical 
devices and many other commercial applications are examples of the application of 
polymer matrix composites. Also applications in civil engineering are now on the way 
but it will take some time to achieve their wide use since there are a lot of prescribed 
conditions to guarantee the reliability of structures. But it is clear that over the last 
decades considerable advances have been made in the use of composite material in 
construction and building industries and this trend will continue [1]. 

With the development of composite materials a new material design becomes 
possible that will allow an optimal material composition in connection with the 



  

 

2 

 

structural design. A useful and correct application of composite materials requires a 
close interaction of different engineering disciplines such as structural design and 
analysis, material science, mechanics of materials, process engineering, etc. In 
summary, the main topics of composite material research and technology are [1]: 

- Investigation of all characteristics of the constituent and composite materials 
- Material design and optimization for the given working condition 
- Development of analytical modelling and solution methods for determining 

material and structure behavior 
- Development of experimental methods for material characteristics, stress and 

deformation states, failure criteria 
- Modeling and analysis of creep, damage and life prediction 
- Development of new and efficient fabrication and recycling procedures among 

others [1] 

The 3rd topic is studied by mechanical engineers whose specialty is finite element 
analysis. As theoretical calculations is normally a complicated and time consuming 
process, the finite element method has been used in the vast area of mechanical 
engineering for simulating, analyzing and optimizing the structures. By considering 
that composite materials have more complicated structures than normal materials 
such as steel, the necessarily of applying the Finite Element Method (FEM) is felt 
even more than before. Because of this reason many famous FEM software 
producers add the composite module to their new released products. 

 A critical requirement for simulating a structure composed of a composite material is 
applying the useful techniques. In this project some methods for simulating the 
composite material are presented to achieve this goal. In the first step all these 
methods including theoretical and FEM methods are introduced. For the theoretical 
part, the calculation procedure has been described, and for the FEM part, the 
procedure of modeling has been described. In the second step these methods are 
used for analyzing simple examples and all obtained results are compared to each 
other to distinguish the precision and quality of each method. In fact with this 
comparison the field of usage of each method will be clear. Considering the vast 
application of composite material in industry, two practical examples have been 
presented in the last section of this project to show the usage of these methods at the 
industrial level. It would be useful to know that these examples which are simulated 
and analyzed by using FEM methods have been produced and tested in industrial 
companies.  
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2 Theoretical and FEM Methods 
 

2.1 Composite Material 

Before getting started with composite calculation, it would be useful to first talk about 
materials and how are they classified. 

A composite material is a structural material which consists of two or more combined 
components mixed at the macroscopic scale but not dissolved in each other. One 
component is called fiber or reinforcing phase. It is positioned in another component 
that is called matrix. The reinforcing phase material could also be particles or flakes 
instead of fibers and the matrix phase material is normally continuous. An example of 
the composite system is the epoxy matrix reinforced with carbon fibers which is used 
in the current project.  

Structural materials are categorized in three main groups based on their material 
properties: 

• Metals 
• Ceramics 
• Polymers 

The unique structural properties of composite materials separate them from other 
structural materials; therefore they should be classified in a separate group. 

The first property of a material is homogeneity. A material is called homogeneous 
when its properties are the same in every point and independent to the location. With 
this definition, inhomogeneous or quasi homogeneous materials are those with 
different properties in different locations. In other words an inhomogeneous body has 
material properties that are a function of position on the body. Note that 
inhomogeneity appears at the macroscopic scale, therefore all material is considered 
homogenous at the microscopic level. For example consider a steel beam. In a 
normal situation the steel beam is a homogeneous material but if the beam is heated 
up from one side the temperature of each point of the beam will change. Since the 
elasticity modulus depends on temperature, it will be different in each point of the 
beam and this means the steel beam is no longer homogeneous. For composite 
material inhomogeneity appears more or less at the micromechanics scale, because 
in one lamina, the properties of one point in the matrix is quite different from one point 
in the fiber. But at the macro mechanics scale, the average mechanical properties of 
one lamina are considered, and the lamina is homogeneous in macro mechanics 
analysis. [1,2] 
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 The second property of a material is isotropicity. If the properties of the material in 
one point are the same in all directions, it is called an isotropic material and if not, it is 
called anisotropic. As an example steel is an isotropic material because its elasticity 
modulus is the same in all directions. But most composites are anisotropic because 
stiffness in fiber direction is quite different from stiffness perpendicular to fiber 
direction. Anisotropic groups of materials consist of monoclinic, orthotropic and 
transversely isotropic materials and their difference is based on their planes of 
symmetry and independence parameters of stiffness matrix which will be described in 
Hooke’s law section [1, 2]. 

It is important to mention that homogeneity and isotropicity are two complete different 
material properties and should not be mixed up. For instance material can be 
isotropic but not homogeneous. This can be described with the steel beam example. 
The heated beam is inhomogeneous because the steel young modulus is different in 
each position of the beam, but the beam is still isotropic since the material properties 
of each point are the same in all directions. 

There are two definitions for components of composite structure. These two 
components are lamina and laminate which are used at the macro mechanics scale 
formulations and also for FEM simulation. A lamina (also called a ply or layer) is a 
single flat layer of unidirectional fibers arranged in a matrix (depends on composite 
model fibers could also be woven). A laminate is a stack of plies of composites. Each 
layer can be laid at various orientations and can be made up of different material 
systems [2]. 

2.2 Hooke’s Law 

Hooke’s law is a general equation for relating the stress vector to the strain vector 
with the stiffness matrix (k); parameters of the stiffness matrix come from material 
properties. Composite structures could be assumed elastic with linear behavior, but 
considering them isotropic is not a correct assumption. Hooke’s law should be 
extended into the matrix form for composite material; in fact this format is also used in 
the Finite Element Method. In FEM numerical formulation the matrix format of 
Hooke’s law is used for calculating stress and strain of meshed elements. The 
formulation shown below is the general state seen, and by having the properties of 
the lamina, unknown parameters in the stiffness matrix could be reduced [1,2]. 

1 111 12 13 14 15 16

2 221 22 23 24 25 26

3 331 32 33 34 35 36

41 42 43 44 45 4623 23

51 52 53 54 55 5631 31

61 62 63 64 65 6612 12

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

σ ε
σ ε
σ ε
τ γ
τ γ
τ γ

    
    
    
    

=    
    
    
    

        

     2-1 
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This 6 6×  matrix with 36 parameters is called the stiffness matrix[ ]C , and by 

reversing the equation the new matrix which is the reverse of the stiffness matrix will 

appear and is called the flexibility matrix [ ]S  as illustrated below: 

1 111 12 13 14 15 16

2 221 22 23 24 25 26

3 331 32 33 34 35 36

41 42 43 44 45 4623 23

51 52 53 54 55 5631 31

61 62 63 64 65 6612 12

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

S S S S S S

ε σ
ε σ
ε σ
γ τ
γ τ
γ τ

    
    
    
    

=    
    
    
    

        

     2-2 

As the matrix [ ]C  is symmetric ( ij jiC C= ), the independent constants are reduced 

from 36 to 21. The Flexibility matrix [ ]S also follows this rule and has 21 independent 

constants. This type of material with 21 elastic constants is called anisotropic material 
and calculating the result is possible when all these 21 elastic constants are 
available. In addition some materials have a symmetric behavior; hence elastic 
properties are equal in the direction of symmetry. This symmetrical behavior 
decreases the number of independent constants by relating them to each other or 
making some of them zero [2]. 

In case of one material symmetry plane, the material is called Monoclinic and the 
independence constants in stiffness matrix are reduced to 13 like below [2]: 

11 12 13 16

21 22 23 26

31 32 33 36

44 45

54 55

61 62 63 66

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

C C C C

C C C C

C C C C

C C

C C

C C C C

 
 
 
 
 
 
 
 
  

       2-3 

In case of three mutually perpendicular planes of material symmetry, we have the 
orthotropic material and 9 independent constants will be the result [2]: 

11 12 13

21 22 23

31 32 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 
 
 
 
 
  

       2-4 
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As defined in section 2.1, when all surfaces which are passing from one point in 
material are symmetry elastic surfaces, the material is isotropic. The independent 
constants are reduced to only 2 as shown in 2-5 equation [2]. 

11 12 12

12 11 12

12 12 11

11 12

11 12

11 12

0 0 0

0 0 0

0 0 0

0 0 0 0 0
2

0 0 0 0 0
2

0 0 0 0 0
2

C C C

C C C

C C C

C C

C C

C C

 
 
 
 
 − 
 
 −
 
 
 −
 
 

     2-5 

The stiffness matrix [ ]C  is defined for a lamina that is made by the fiber and the 

matrix and has mostly one symmetry surface or more. The matrix [ ]C  parameters 

(material properties) are calculated by mechanical constants of the lamina; therefore 
each stiffness matrix exhibits the properties of one lamina. Usually a composite 
structure is made of a stack of layup known as laminate and each lamina may have 
different orientations or mechanical constants. Consequently the laminate 
formulations should also be established. 

2.3 Laminate Calculation 

In this chapter two theoretical laminate calculations and one FEM method are 
introduced. The output of the first method (Classical laminate theory) is used as the 
input for the FEM software simulation and they create the average method. The 
second method results (Strain and stress with ABD matrix) could be compared with 
the third method (FEM simulation results) and of course the average method. These 
methods are used for analyzing the composite structure. 

2.3.1  Classical Laminate Theory 

The classical laminate theory (CLT) is a basic method for obtaining the stress and 
strain of multi-ply inhomogeneous laminate lay-ups for all of the orthotropic composite 
laminates. The procedure used in this method considers all ply mechanical constants 
and their orientation angles. First all local coordinate systems should be reoriented 
into the global coordinate system. Then plies are added together by considering each 
ply thickness and each ply mechanical constants (if the material properties of the 
lamina are different). The result of this process is an average mechanical constant for 
the whole laminate. 

It should be noted that this method provides a good estimation of stress and strain 
according to tension stress. However the CLT method also considers twists, and 
bends that arise when coplanar forces are applied to non-orthotropic laminate lay-ups 
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and treats the laminate as a plane and considers coplanar stresses and deformations 
only. This simplification affects the precision of the result in the CLT method.  
 
These two assumptions are also taken into account for the CTL method calculation: 

• In this method the smallest element is a ply (known as lamina), as mentioned 
in section 2-1 a ply consists of the fiber and the matrix which have different 
mechanical constants, and here the average mechanical constant of the ply is 
used as an input. With this action the ply is “homogenized”. 

• For the calculation on the laminate, it is considered that all plies are 
completely stacked and fixed to each other. [All of the formulations of this 
section are based on reference 3] 

What is necessary as an input for calculation is mechanical constants of plies; these 
constants can be found in composite standards or factory product details (based on 
rules of a mixture of the fiber and the matrix): 

• 1E :   Elasticity modulus of ply in fibers direction 

• 2E :   Elasticity modulus of ply transverse to fibers direction 

• 12G :  Shear modulus of ply 

• ν :     Poison ratio of ply 

The first step is to calculate the plies rigidity matrix [ ]k
Q (k is the number of plies), for 

orthotropic plies in the ply coordinate system [ ]k
Q defined as follow:  

[ ]

1 12 2

2 22 2
12 12

1 1
21 12

12 2 2
21 22

2 22 2
12 1233

1 1

12

0
1 1

0

0 0
1 10 0

0 0

k

E E
E E

E E
Q Q

E E
Q Q Q

E E
Q E E

G

ν

ν ν

ν

ν ν

⋅ 
 

− ⋅ − ⋅ 
  
 ⋅ = =   
 − ⋅ − ⋅    
 
 
  

    2-6 

The second step is to transform the rigidity matrix of each ply from the local 
coordinate system of ply (PlyCS) to the global coordinate system of the laminate 
(LamCS).  

[ ] [ ] [ ] [ ], ,

T

LamCS k k PlyCS k k
Q T Q T= ⋅ ⋅        2-7 

The transformer matrix [ ]k
T  in equation 2-7 is defined as follow: 
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[ ]
2 2

2 2

2 2

cos sin 2sin cos

T sin cos 2sin cos

sin cos sin cos cos sin
k

 
 = − 
 − − 

      2-8 

And the transverse of the transformer matrix [ ]T

k
T  is: 

[ ]
2 2

2 2

2 2

cos sin sin cos

T sin cos sin cos

2sin cos 2sin cos cos sin

T

k

 −
 =  
 − − 

      2-9 

The angle is positive when the one axis of the ply coordinate system is rotated 
positively (counterclockwise, CCW) toward the one axis of laminate coordinate 
system.  

The third step is to calculate the stiffness matrix of the laminate[ ]A , which is the sum 

of all transformed plies rigidity and the influence of the ply thickness: 

[ ] [ ] ,
.k

LamCS k
k lam

t
A Q

t
=∑                   2-10 

The forth step is to invert the stiffness matrix of the laminate [ ]A  for getting to the 

flexibility matrix of the laminate[ ]a : 

[ ] [ ] 1
a A

−=                      2-11 

The mechanical constants of the laminate are obtained from elements of the flexibility 
matrix: [3] 

[ ]
11 12 13

21 22 23

31 32 33

a a a

a a a a

a a a

 
 =  
                      

2-12

  

• ,
11

1
x LamE

a
=  

• ,
22

1
y LamE

a
=                    2-13 

• ,
33

1
xy LamG

a
=   

• 21
, ,

11
xy Lam yx Lam

a

a
ν ν −= =   
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The process for calculating the stress and strain can be found in the “handbook of 
composite.2003 chapter 1 by Herbert Funke” [3], in this project the mechanical 
constants are not used for calculating the stress and strain, but are used as an input 
for FEM software which will be described as the “average method” in chapter 3 and 4. 

2.3.2  Stress_Strain relation with ABD matrix for a laminate  

This method known as the ABD method calculates the strain and curvature of the 
laminate at the middle surface in macro mechanic analysis. The forces and moments 
are inputs for the ABD equation and the ABD matrix should be obtained from the 
laminate properties. The result of the equation will give the strain and curvature of the 
laminate. In this section the theory behind the ABD matrix and its equation will be 
described. Following the calculation procedure we will gain some knowledge about 
the ABD matrix and final equation parameters, and also how they can be used. This 
method is considered as the basic theoretical method in this project. [All of the 
formulations of this section are based on reference 2]  

2.3.2.1 Strain equation 

In this section the equations will be developed for a plate under in-plane loads such 
as shear and axial forces, and bending and twisting moments (figure 2-1). The basic 
equations are borrowed from the classical laminate theory (CLT), but they will be 
developed to have a precise result for the behavior of a laminate under shear force 
and bending or twisting moments. Here are some assumptions for this method: 
 

• Each lamina is elastic, orthotropic and homogeneous. 
• A line straight and perpendicular to the middle surface remains straight and 

perpendicular to the middle surface during deformation. 
• The laminate is thin and is loaded just in its plane. 
• Displacements are small throughout the laminate and continuous. 
• It is assumed that no slip occurs between the lamina surfaces [2]. 

 

Figure 2-1: Forces and moments on a laminate 
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Figure 2-2: displacement of middle surface and curvature 

 

In figure 2-2 the section of a plate is shown. The coordinate system center is placed 
on mid plane (Z=0). Consider 0 0 0, v ,u w  as the mid-plane displacements in x, y, z 

directions, respectively displacements at any point in x, y, z directions are , v,u w . At 

any point except at the mid-plane, displacements in the x–y plane are dependent on 
the axial location of the point and the slope of the laminate mid-plane with the x and y 
directions. So it can be written: 
 

0u u zα= −  (For small anglessinα α∼ )                  2-14 

0w

x
α ∂=

∂
                     2-15 

So the u displacement in x direction will be: 

0
0

w
u u z

x

∂= −
∂

                    2-16 

In the same way a cross section in the y–z plane is considered and it will lead to the 
displacement in the y direction: 

0
0

w
v v z

y

∂= −
∂

                    2-17 

 
Using the definition of strain in x-y and 2-16 and 2-17 we have: 
 

2
0 0

2x

u wu
z

x x x
ε ∂ ∂∂= = −

∂ ∂ ∂
                2-18-1 

 
2

0 0
2y

v wv
z

y y y
ε ∂ ∂∂= = −

∂ ∂ ∂
                2-18-2 

 



  

 

11 

 

2
0 0 02xy

u v wu v
z

y x y x x y
γ ∂ ∂ ∂∂ ∂= + = + −

∂ ∂ ∂ ∂ ∂ ∂
               2-18-3 

 

The strain-displacement equations can be written in the matrix form (2-18-1 to 3) like: 

2
00

2

2
0 0

2

2
0 0 02

x

y

xy

wu
xx

v w
z

y y

u v w
y x x y

ε
ε
γ

   ∂∂ −   ∂∂    
  ∂ ∂   = + −     ∂ ∂     

     ∂ ∂ ∂+ −   ∂ ∂ ∂ ∂    

                 2-19 

The strain of the mid-surface in equation 2-19 is: 

0

0

0 0

0

0 0

x

y

xy

u

x
v

y

u v

y x

ε
ε
γ

 ∂
 

∂  
 ∂  =   ∂   

   ∂ ∂+ ∂ ∂ 

                    2-20 

And curvature of mid-surface is: 

2
0

2

2
0

2

2
02

x

y

xy

w

x

w

y

w

x y

κ
κ
κ

 ∂− 
∂  

 ∂   = −   ∂   
   ∂− 

∂ ∂  

                    2-21 

Hence the strain of the laminate can be written like equation 2-22: 

0

0

0

x x x

y y y

xy xy xy

z

ε ε κ
ε ε κ
γ γ κ

    
    = +     

     
    

                  2-22 

The equation 2-22 makes a linear relation between the strains and the curvatures of 
the laminate. This equation also proves that strains are independent of the x and y 
coordinates. 
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2.3.2.2 The forces and moments vectors related to strains and curvatures 

If the strains at any point along the laminate thickness are known, equation 2-23 can 
be written as follows: 

11 12 16

12 22 26

16 26 66

x x

y y

xy xy

Q Q Q

Q Q Q

Q Q Q

σ ε
σ ε
τ γ

    
    =    
    

                      

2-23 

The reduced transformed stiffness matrix Q    is related to the ply of the laminate 

which the point is positioned on. Substituting equation 2-23 in equation 2-22 will give: 

0
11 12 16 11 12 16

0
12 22 26 12 22 26

0
16 26 66 16 26 66

x x x

y y y

xy xy xy

Q Q Q Q Q Q

Q Q Q z Q Q Q

Q Q Q Q Q Q

σ ε κ
σ ε κ
τ γ κ

       
       = +       
       

                      

2-24 

Although the strains and the curvature in equation 2-22 are unknown, equation 2-24 
gives the stresses in each layer based on these unknowns. Therefore the stresses in 
each lamina can be integrated through the laminate thickness to give resultant forces 
and moments. By having the forces and moments, the strains and curvature at mid-
surface of the laminate can also be calculated as will be described below: 
 
The thickness of the whole laminate is considered (h) and the plies number is (n), as 
illustrated in figure 2-3.  

Figure 2-3: positions of plies in a laminate 

 

1

n

k
k

h t
=

=∑                        2-25 

In equation 2-17 the thickness of the laminate h is the sum of all the plies thicknesses 
tk  (k from 1 to n). The mid-surface position in z direction is h/2 and the upper and 
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lower surfaces of kth layer position in z direction have been defined below in 

equations 2-26 and 2-27 ( 2,..., 1)k n= − . 

1

1
12

k

k

h
h t

−

− = − +∑  Upper surface                 2-26 

12

k

k

h
h t= − +∑  Lower surface                  2-27 

Integrating the whole plies stresses gives the forces per length (N) in the x-y surface, 
and in the same way, integrating the whole plies stresses multiply to thickness 
parameter Z gives the moments per length (M) as shown below: 

2

2

h

x x
h

N dzσ
−

= ∫  ; Normal force per unit length             2-28-1 

2

2

h

y y
h

N dzσ
−

= ∫  ; Norma force per unit length             2-28-2 

2

2

h

xy xy
h

N dzτ
−

= ∫  ; Shear force per unit length             2-28-3 

2

2

h

x x
h

M zdzσ
−

= ∫ ; Bending moment per unit length            2-28-4 

2

2

h

y y
h

M zdzσ
−

= ∫ ; Bending moment per unit length           2-28-5 

2

2

h

xy xy
h

M zdzτ
−

= ∫ ; Twisting moment per unit length           2-28-6 

The 2-28 equations can be written in the matrix form like: 

2

2

hx x

y y
h

xy xy

N

N dz

N

σ
σ
τ−

   
   =   
   
   

∫                 2-29-1 
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2

2

hx x

y y
h

xy xy

M

M zdz

M

σ
σ
τ−

   
   =   
   
   

∫                 2-29-2 

And considering the whole thickness of the laminate (see equation 2-25) will give: 

1
1

k

k

x xhn

y y
k h

xy xy k

N

N dz

N

σ
σ
τ−

=

   
   =   
   
   

∑ ∫                2-30-1 

1
1

k

k

x xhn

y y
k h

xy xy k

M

M zdz

M

σ
σ
τ−

=

   
   =   
   
   

∑ ∫                  2-30-2 

Now to create a relation between the strains and stresses, it is necessary to insert 
equation 2-30 into equation 2-24, which gives: 

1 1

0
11 12 16 11 12 16

0
12 22 26 12 22 26

1 10
16 26 66 16 26 66

k k

k k

x x xh hn n

y y y
k kh h

xy xy xyk k

N Q Q Q Q Q Q

N Q Q Q dz Q Q Q zdz

N Q Q Q Q Q Q

ε κ
ε κ
γ κ− −

= =

       
       = +       
       

       

∑ ∑∫ ∫        2-31-1 

1 1

0
11 12 16 11 12 16

0 2
12 22 26 12 22 26

1 10
16 26 66 16 26 66

k k

k k

x x xh hn n

y y y
k kh h

xy xy xyk k

M Q Q Q Q Q Q

M Q Q Q zdz Q Q Q z dz

M Q Q Q Q Q Q

ε κ
ε κ
γ κ− −

= =

       
       = +       
       

       

∑ ∑∫ ∫    2-31-2 

As mentioned in section 2-3-2-1 the strains and curvatures of the mid-surface are 

independent of the Z axis. Also the reduced transformed stiffness matrixes Q    are 

constant for each ply, hence they could get out of integrations. Equation 2-31 can 
then be rewritten as: 

1 1

0
11 12 16 11 12 16

0
12 22 26 12 22 26

1 10
16 26 66 16 26 66

k k

k k

x x xh hn n

y y y
k kh h

xy xy xyk k

N Q Q Q Q Q Q

N Q Q Q dz Q Q Q zdz

N Q Q Q Q Q Q

ε κ
ε κ
γ κ− −

= =

         
         = +          
          

         

∑ ∑∫ ∫       

2-32-1 

1 1

0
11 12 16 11 12 16

0 2
12 22 26 12 22 26

1 10
16 26 66 16 26 66

k k

k k

x x xh hn n

y y y
k kh h

xy xy xyk k

M Q Q Q Q Q Q

M Q Q Q zdz Q Q Q z dz

M Q Q Q Q Q Q

ε κ
ε κ
γ κ− −

= =

         
         = +          
          

         

∑ ∑∫ ∫     
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2-32-2 

Knowing that: 

1

1( )
k

k

h

k k

h

dz h h
−

−= −∫   

1

2 2
1

1
( )

2

k

k

h

k k

h

zdz h h
−

−= −∫  

1

2 3 3
1

1
( )

3

k

k

h

k k

h

z dz h h
−

−= −∫  

And substituting in equation 2-32 will give: 

11 12 16 11 12 16

21 22 26 21 22 26

61 62 66 61 62 6

0

0

0
6

x x x

y y y

xy xy xy

A A A B B B

A A A B B B

A A A B B

N

N B

N

ε κ
ε κ
γ κ

       
       = +       
              

           2-33-1 

11 12 16 11 12 16

21 22 26 21 22 26

61 62 66 61 62 66

0

0

0

x x x

y y y

xy xy xy

B B B D D

B B B D D D

B B B D D D

M D

M

M

ε κ
ε κ
γ κ

       
       = +       
              

           2-33-2 

Which: 

( ) ( )1
1

     ; 1, 2,6 ; j 1,2,6 
n

ij ij k k
k k

A Q h h i−
=

 = − = = ∑              2-34-1 

( ) ( )2 2
1

1

1
; 1, 2,6 ; j 1    , 2

2
 , 6

n

ij ij k k
k k

B Q h h i−
=

 = − = = ∑             2-34-2 

( ) ( )3 3
1

1

1
; 1, 2,6 ; j 1    , 2

3
 , 6

n

ij ij k k
k k

D Q h h i−
=

 = − = = ∑             2-34-3 

Finally by combining equations 2-33-1 and 2-33-2 and positioning [ ]A as the 

extensional stiffness matrix, [ ]B  as the coupling stiffness matrix and [ ]D as the 

bending stiffness matrix, will simultaneously result in six linear equations and six 
unknowns, as shown below [1,2,7]: 
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0

11 12 16 11 12 16
0

21 22 26 21 22 26
0

61 62 66 61 62 66

11 12 16 11 12 16

21 22 26 21 22 26

61 62 66 61 62 66

|

|

|

|

|

|

y

xy

xx

y

xy

x
x

y

xy

N A A A B B B

N A A A B B B

N A A A B B B

M B B B D D D

M B B B D D D

M B B B D D D

ε
ε

γ

κ
κ

   
   
   
   
   − = − − − + − − −  − 
   
   
   
   

  

y

xyκ

 
 
 
 
  
 
 
 
 
 
  

  2-34 

The extensional stiffness matrix [ ]A relates the resultant in-plane forces { }N  to the 

in-plane strains{ }ε , and the bending stiffness matrix [ ]D   relates the resultant 

bending moments { }M  to the plane curvatures{ }κ . The coupling stiffness matrix 

[ ]B couples the force terms{ }N  to the mid-plane curvatures { }κ  and the moment 

terms { }M  to the mid-plane strains{ }ε  [2]. In contrast with the CLT method (2.3.1), 

the ABD method considers the bending and twisting forces or moments and because 
of that the couple strains and the curvatures are considered by the software as it is 
illustrated in figure 2-4 [4]: 

Figure 2-4: positions of plies in a laminate 

 

This method which, in this project, is called the ABD method is considered as the 
basic theoretical method for calculating the strain and the curvature of a laminate 
under applied forces or moments. Equation 2-34 is the final equation that will be used 
for the ABD method. 
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2.3.3  FEM method 

In this section the Finite Element Methods (FEM) for composite Analysis have been 
presented. These two methods are called: 

• Average method 
• Complete method 

2.3.3.1 Average method 

In the average method after modeling the entire composite section in the CAD 
software, the neutral surface or mid-surface of the composite part should be modeled 
in the FEM software. In this method this surface will just be used to analyze the 
composite part.  Therefore instead of modeling the whole plies, the average 
mechanical constant is used as an input for the composite material. These constants 
are calculated by using the CLT method (described in section 2.3.1). 

In the CLT method the material properties of each ply, which are 1 2 12 12, , ,E E G ν , are 

available. The thickness and orientation of each ply in the laminate is also given. 
After using the CLT method and calculating the matrixes, the laminate average of the 
mechanical constants , , , , ,( , , , )x Lam y Lam xy Lam xy Lam yx LamE E G ν ν=   will be obtained from the 

flexibility matrix. These constants now should be imported into the FEM software as 
the composite mechanical constants. The sum of the plies thickness (laminate 
thickness) is considered for neutral surface thickness in the FEM software. The 
forces and moments and also the boundary conditions are used similar to normal 
FEM analysis without any special change on part. 

In simple words, a surface is modeled instead of the part, and then the calculated 
average mechanical constants of all plies are located for the mechanical constants of 
the surface in the FEM software. 

2.3.3.2 Complete method 

In this method as can be seen from its name all plies are modeled ply by ply in the 
FEM software similar to real model layup. In the average method the angles of the 
plies are considered in the CLT formulation for calculating the average properties of 
the laminate. Hence in the average method there is no inputting of the ply angle. 
However at the complete simulation process, the angle of each ply is also included. 
In this project, the ply is considered as the smallest part of the laminate and in this 
method the laminate is modeled ply by ply with their angles. And the mechanical 
constants of each ply are inputted at the FEM software without any pre-calculation. 
That is why this method is called the complete method. 

The best way to have the overview of the strength and the weakness of each method 
is to use all methods available for a sample and compare their results. These 
modellings and compartments have been described in chapter 3 for two samples. 
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3 Comparing the Methods in Simple 

Samples 
 

In chapter 2, two theoretical methods (CLT, ABD) and two FEM methods (the 
average and complete method) were described. These methods could be used 
independently such as in the case of ABD or complete methods, or they could use 
each other’s data like in the CLT method which create input for the average method. 
In this chapter all these methods have been applied for two simple samples to:  

• Introduce each model in a real example  
• Compare these methods to each other 
• Realize the advantage and disadvantage of each method 

In this chapter four methods have been applied for one sample and the results have 
been compared to each other. The 3rd and 4th methods are actually the same but with 
different FEM software. The goal for using two FEM software for one method is to 
establish the precision of the FEM software. These methods are: 

• Theoretical calculations with the ABD matrix  
• CATIA FEM simulation with average elastic factors  
• CATIA FEM simulation with complete layups modeling 
• ANSYS FEM simulation with complete layup modeling  

The procedure for each method has been described in chapter 2. However, they 
have been described here again in brief. In the theoretical method, the parameters of 
the ABD matrix are calculated based on material properties and layup information. 
Then by placing the ABD matrix in Hooke’s law, the strain or curvature can be 
calculated. In the second method the average elasticity factors are calculated based 
on the quasi isotropic formulation to see how close the results of this method are to 
those that are obtained by the theory method.  The last two methods have the same 
simulation strategy, but in a different FEM software. In these methods layups are 
created on the components, and the input factors are the properties of each layer 
without simplification. The goal is to estimate the accuracy of each FEM software 
method in composite analysis. 
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3.1 Pre-knowledge about composite 

Before getting started with the samples, it is important to have prior knowledge about 
the composite.  

3.1.1  Notation 

The type of layup should also be clear, because in all methods the angle of the ply 
should be clear. For example in the CLT method the angle of each ply is converted 
from the local coordinate to the laminate coordinate system. In figure 3-1 different 
types of layups have been shown and next to each one its notation has been written. 
Each laminate has one notation which shows the angles and the type of layup [5]. 

Figure 3-1: Laminate types and their notations   

 

 

3.1.2  Mechanical constants 

The mechanical constants are used in all methods as an input for plies properties. 
The ply material is a regular epoxy-carbon unidirectional, which is a very common 
composite material in the industry. In this chapter this material is used for both 
samples with the following properties [8]: 
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Table 3-1: Mechanical constants of epoxy carbon 

Constant Amount 

 
Layer thickness (ply)  

[ ]0,25  mm  

Longitude stiffness  1E  
2  [135000 ]N mm  

Transverse stiffness 2E  
2  [9 00 ]5 N mm  

Shear stiffness  12G  
25270  [ ]N mm  

Poisson ratio 12ν  0,326  

 

3.2 Sample1: Cylinder under Pressure 

3.2.1  Introducing the Sample 

The test component is a cylindrical tube (figure 3-1) under pressure. It is useful to 
mention that the theoretical calculation for the whole part is a long and complicated 
process. Hence by considering that the normal and shear stress are constant on the 
surface of the cylinder, considering one square element on the cylinder will reduce 
the theoretical calculation to one element instead of the whole surface. This 
assumption needs some pre-calculations to get to the surface forces which are acting 
on elements from the internal pressures of the cylinder. [6,8] 

For this sample two types of layup have been applied. The first layup type is

0,  45, 45,  90, 0
S

  − and this 9 layer layup as mentioned in figure 2-2, leads to a 

symmetric orthotropic laminate layup for the composite component. The second 

layup type is [ ]2
0,  45, 45,  90−  and this 8 layer layup gives us a quasi-isotropic 

laminate. 

Figure 3-1: sample 1 cylinder under pressure 
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Figure 3-2: sections on cylinder 

  

By creating a section on the cylinder (figure 3-2 [6]), a balanced equation can be 
written to obtain the surface stresses: 
 
By considering:  

0xF∑ =  ;   
( ) ( )1 2 2 0tdy p rdyσ − =    

Then we have:   

1

pr

t
σ =            3-1  

By considering:  

0yF∑ =
 ;  

( ) ( )2
2 2 0rt p rσ π π− =

  
Then we have:  

2 2

pr

t
σ =            3-2 

Table 3-2 shows the properties of the cylinder: 

Table 3-2: layup properties of cylinder 

Properties of Cylinder 9 layer layup 8 layer layup 

Pressure (p) MPa  5  5  

Radios of cylinder (r) mm  10  10  

Thickness of cylinder (t) mm  (9 0,25) 2,25× =  (8 0,25) 2× =  

Thickness area of square element (A) mm 2 (2 2,25) 4,5× =  (2 2) 4× =  

 

By incorporating the properties of the cylinder into the formulations (3-1, 3-2), both 
types of force for the layup can be calculated: 
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For the 9 layer layup: 

1 2σ 22, 22 MPa  ;σ 11,11 MPa= =  

For 8 layer layup:  

1 2σ 25 MPa  ; σ 12,5MPa = =   

The input loadings for the theoretical method are forces (ABD method); by using 
stress formulations the forces per surface are calculated easily: 
 
For 9 layer layup:  

1,2   1,2  N tσ= ×  

1 250 ;  25N NN Nmm mm= =   

For 8 layer layup: 

1,2   1,2  N tσ= ×   

1 250 ;  25N NN Nmm mm= =  

3.2.2  Theoretical calculation with ABD matrix 

First the ABD matrix should be calculated for the cylinder based on the material and 
layup properties. Then the ABD matrix and the calculated forces for the square 
element should be placed into Hooke’s law equation. After solving the equation, 

strains ( )x y xyε ,ε ,ε  will be the output. 

 
The ABD formulation based on Hooke’s law for orthotropic material has been 
described in section 2-3-2. The formula is re-written below.  
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    3-3 

 
The ABD matrix is symmetric, and so the 3×3 submatrices (A and D) are along the 
main diagonal symmetric ( ij jiA A= and ij jiD D= ). However the B matrix is not 

guaranteed to be symmetric.  
 
The mechanical behavior of the ABD matrix has been described in figure 2-4. The 

symmetric layups are considered for this sample. The coupling stiffness matrix [ ]B
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couples the force terms{ }N  to the mid-plane curvatures { }κ  and the moment terms 

{ }M  to the mid-plane strains{ }ε . Symmetric layups make the B submatrix equal to 

zero and avoid the combination of mechanical behavior. Therefore mechanical 
behaviors will be more analyzable and comparable in all 4 methods. 

In section 3-2-1 the surface forces 1N  and 2N  ( ),x yN N  have been calculated. The 

next step is to obtain the ABD matrix for the whole laminate. Calculating the ABD 
matrix is also a long calculation process and by changing one ply property, the whole 
process should be repeated. However there are some software which calculate the 
ABD matrix for the requested layup. One of these software is eLamX21 [10]. For 
simulating the composite laminate in this software, first the mechanical constants of 
the ply should be defined. Note that for this sample the “stiffness properties” section 
is just used for calculating the ABD matrix, as has been illustrated in figure 3-3. 

Figure 3-3: Definition of mechanical constants in eLamX2 software  

  

 
The Next step is to define the layup model and angle of each ply in the layer 
properties of the software. For example the 9 layers layup is modeled in figure 3-4. 
The “new material” in the 4th column is defined in figure 3-3. In the second row the 
angle of each ply is defined. And the thickness of each ply, which could even be a 
different value, is shown in the 3rd column. The failure criterion is another option of 
the software, although for the current sample the failure criterion has not been 
applied. These criterions could be TsaiWu, Hashin, puck and etc.     

                                                           
1
 Software website link (12.01.2015): 

http://tudresden.de/die_tu_dresden/fakultaeten/fakultaet_maschinenwesen/ilr/aero/download/lami

natetheory/index_html 
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 Figure 3-4: Definition the laminate layup  

  

In the third step the ABD matrix of the layup has been calculated by the software and 
is used in the “calculation” tab of the software. In fact, the whole Hooke’s equation is 
available in this tab. With inputting the forces or moments, strains and curvatures will 
be displayed as a result in the equation. 

Figure 3-5: The ABD matrix  

  

By having vertical forces ( ),x yN N  and simulating the 9 layer layup in the eLamX2 

software, the ABD matrix can be obtained as below: 
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And for calculating the equation, the ABD matrix should be reversed (equation 3-4): 
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The strain parameters ‘ xε  and yε ’ have been obtained from the above equation for 

the 9 layer layup and the normal strain ( )ε  can be obtained as below:  

( ) ( )2 22 2 5 4 46,9 10 4,01 10 3, 267 10x yε ε ε − − −= + = × + × = ×  

Through the same procedure and by simulating the 8 layer layup in the eLamX2 
software the ABD matrix will be calculated. 
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The strain parameters ‘ xε  and yε ’ have been obtained from the above equation for 

the 8 layer layup and the normal strain ( )ε  can be obtained as described below:  

( ) ( )2 22 2 5 4 49,1 10 4,03 10 4,131 10x yε ε ε − − −= + = × + × = ×  

The results of this method are considered as the basic theoretical results and the 
strain results of the remaining three methods will be compared with the results of this 
method. This means the ABD method is the reference method in this project and the 
accuracy of each method can be obtained by comparison with the ABD method. 

The deformations of the square element appear in X and Y directions, which has 
been illustrated in the figure 3-5. 

 

Figure 3-6: Deformation the element at the ABD method  

  

 

3.2.3  CATIA FEM simulation with the average elastic factors input 

In chapter 2, in section 2.3.3.1 the average method has been introduced. It has also 
been mentioned that the CLT method (more information in 2.3.1) creates the input for 
the FEM software here. The CATIA here, is the FEM software for modeling the 

square element. First the plies rigidities [ ]k
Q  for orthotropic plies at the ply 

coordinate system should be calculated. The CLT formulations are described in 2.3.1. 
According to the equation 2-6 and table 3-1, this can be written as: 



  

 

27 

 

[ ]

1 12 2

2 22 2
12 12

11 91 1

9 912 2 2

2 22 2 9
12 12

1 1

12

0
1 1

1,36 10 3,12 10 0

0 3,12 10 9,572 10 0
1 1 0 0 5,27 10

0 0

k

E E
E E

E E

E E
Q

E E

E E

G

ν

ν ν

ν

ν ν

⋅ 
 

− ⋅ − ⋅ 
   ⋅ ⋅
 ⋅  = = ⋅ ⋅   
 − ⋅ − ⋅  ⋅  
 
 
  

  

Second the rigidities [Q]PlyCS,k of each ply are transformed from the local ply 
coordinate system (PlyCS) to the global coordinate system of the laminate (LamCS) 
in accordance with the transformation laws (equations 2-7,2-8). 

Based on the material properties (table 3-1), in the third step, the rigidity matrixes

[ ]k
Q for all layup angels, which are [0, 45,-45, 90], should be calculated. The 

transformed rigidities of all plies, weighted according to their cross sectional ratios, 
are added together to yield a homogeneous laminate rigidity. The result is the 

laminate rigidity matrix[ ]A : 

[ ] [ ] [ ] [ ] [ ]

[ ]

, ,1 ,2 ,3

,4

3 0, 25 2 0, 25 2 0, 25

2, 25 2, 25 2, 25

2 0, 25

2, 25

k
LamCS k lam lam lam

k Lam

lam

t
A Q Q Q Q

t

Q

⋅ ⋅ ⋅= ⋅ = ⋅ + ⋅ + ⋅ +

⋅ ⋅

∑
  

[ ]
10 10

10 10 6

6 10

6,668 10 1,626 10 0

1,626 10 5,263 10 1,907 10

0 1,907 10 1,841 10

A −

−

 ⋅ ⋅
 = ⋅ ⋅ − ⋅ 
 − ⋅ ⋅ 

  

In the fourth step before determining the distortions in the laminate, the invert of the 

rigidity matrix [ ]A  that is compliance matrix [ ]a  should be calculated. 

[ ]
11 12 28

12 11 27

28 27 11

1,622 10 5,012 10 5,192 10

5,012 10 2,055 10 2,129 10

5,192 10 2,129 10 5, 432 10

a

− − −

− − −

− − −

 ⋅ − ⋅ − ⋅
 = − ⋅ ⋅ ⋅ 
 − ⋅ ⋅ ⋅ 

  

The engineering constants for the laminate are obtained from elements of the 
compliance matrix (equations 2-12, 2-13): 

( )2,
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1
61652x Lam
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= =   
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( )2,
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1
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a

a
ν ν −= = =   

With the same calculation process for the 8 layer layup, the engineering constants 
can be calculated as below: 

( )2,
11

1
52493x Lam
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= =  

( )2,
22

1
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NE
mma

= =  

( )2,
33

1
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a

a
ν ν −= = =  

It should be noted that for the quasi-isotropic laminate layups (8 layer layup) x yE E=  , 

but when this method is used for the symmetric orthotropic laminate layups (9 layer 
layup) x yE E≠ . Since there is just one input for the E modulus in the average method, 

the elasticity modulus in the X direction xE  is considered as an input for the elasticity 

modulus in the 9 layer layup method.   

The engineering constants are available now for both 8 and 9 layer layups. These 
constants can be used as material properties for the CATIA model. 

The cylinder is modeled (figure 3-7) according to the geometry properties of table 3-2 
in the CATIA software. The boundary conditions are placed at the two sides of the 
cylinder (two circles marked by red color) that make a uniform deformation on the 
cylinder surface. The meshing on the surface of the cylinder should be square and 
with specific size (2mm), in this case the strains of one square element on the 
cylinder surface (2x2 mm2) will be appropriate for comparison with the theoretical 
result (figure3-8). Inside pressure and thickness (table 3-2) of the cylinder are also 
considered for the model in software. 
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Figure 3-7: cylinder with boundary condition 

 

 

Figure 3-8: cylinder square mesh (2 mm)  

 

After modeling and calculating the results in the CATIA software, the strain and stress 
of the cylinder will be available: 

Figure 3-9: Strain of the cylinder (Ɛx in the left side and Ɛy in the right side) for the 9 layer layup  
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And for the 8 layer layup this would be: 

Figure 3-10: Strain of the cylinder (Ɛx in the left side and Ɛy in the right side) for the 8 layer 
layup  

  

Although all of the strains on the surface of the cylinder have almost the same 
quantity, only one square element should be selected to establish the amounts of the 
strain. In figures 3-9 and 3-10 the elements’ strains that are located near the edges 
are quite different from the elements’ strains that are located on other positions of the 
surface. It is suggested that the element be selected from the middle of the cylinder 
surface. This selection will avoid the effect of the boundary conditions ‘which are 
located on the edges’ to the strain of the element. By selecting the element on the 
surface of the cylinder, the following amounts are obtained: 

For the 9 layer layup (using xE  as input):  

57, 75 10xε −≈ ×  And 43,23 10yε −≈ ×  so ε  will be: 2 2 43,32 10x yε ε ε −= + ≈ ×  

For the 8 layer layup: 

44, 33 10xε −≈ ×  And 41,02 10yε −≈ ×  so ε  will be: 2 2 44,446 10x yε ε ε −= + ≈ ×  

 

3.2.4  FEM simulation with complete layup modeling (CATIA, 

ANSYS) 

In chapter 2 section 2.3.3.2 the complete method has been introduced. In this method 
theoretical calculation is not necessary, because the laminate is modeled ply by ply in 
the FEM software. The cylinder is modeled with two different FEM software (CATIA, 
ANSYS) in this simulation; therefore there will be two types of result for one sample 
model. The question that comes to mind here is: why should this simulation be done 
with two FEM software? This is done because of two reasons. First if the results of 
both FEM software were nearly the same, it would prove that this method is 
acceptable. Second the comparison of the results of the two software will lead to a 
better overview over the precision of each FEM software. As these two methods have 
the same modeling procedure, they are studied together in this chapter. 
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The sample of the simulation is the same as figure 3-7 with the same properties. in 
this method all layers are modeled ply by ply on the sample surface, and the 
orthotropic composite properties of regular epoxy carbon is considered for each layer, 
which are illustrated in table 3-2. 

As the 2D properties of orthotropic material are used for the surface layup of the 
current sample, some properties of the table 3-3 ( , ,   )     yz xz yz xzG and Gν ν are not used 

for this layup.  

Table 3-3: mechanical constants for orthotropic layup 

Constant Amount 

Number of  the layers  8  9or  

Each layer thickness  [ ]0,25  mm  

Young’s Modulus in X direction 1E  2  [135000 ]N mm  

Young’s Modulus in Y direction 2E  
2  [9 00 ]5 N mm  

Young’s Modulus in Z direction 12E  2  [9 00 ]5 N mm  

Poisson ratio xyν  0,326  

Poisson ratio yzν  0, 4  

Poisson ratio xzν  0, 4  

Shear modulus xyG  
25270  [ ]N mm  

Shear modulus yzG  
23100  [ ]N mm  

Shear modulus xzG  23100  [ ]N mm  

 

The FEM model is the same as figure 3-7, but in this method after modeling, the 
laminate layup should be also built up on the model. In the CATIA each ply angle is 
represented by a color as has been illustrated in figure 3-11 (0 degree –yellow, 45 
degree–blue, -45 degree –green, 90 degree– red).  
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Figure 3-11: Composite layup in CATIA 

 

Note that the layup modeling for the 8 layer and the 9 layer layups are different, as it 
is visible in figure 3-12:  

Figure 3-12: Different between 8 layer and 9 layer layup in CATIA 

 

The ANSYS PrePost (the composite area of ANSYS for preprocessing and post 
processing of the composite layups) shows each layer by its own angle on the 
surface. In figure 3-13 all types of the ply angles have been illustrated (0,45,-45,90). 
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Figure 3-13: Composite layup angles in ANSYS PrePost 

 

The mesh size is 2 mm and the mesh type is 2nd order square similar to the average 
method. The pressure amount is also based on table 3-2, and boundary conditions 
are similar to the average method. In this technique one square element (2×2 mm2) 
on the surface of the cylinder is also selected to establish the results. There is a 
useful option in the ANSYS software which allows the user to see the finished model 
with the mesh and also the laminate thickness (figure 3-14). 

Figure 3-14: Cylinder after mesh and layup (In ANSYS software) 

 

After calculating the model with the described layups and meshes, the results will be 
ready. Same as in the two previous methods, the strain factors in X and Y directions 
should be extracted. The sample is one square element (2×2 mm2) on the surface of 
the cylinder. For CATIA models there are: 
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For the 9 layer layup (figure 3-15): 

Figure 3-15: Strain of the cylinder (Ɛx in the left side and Ɛy in the right side) for the 9 layer 
layup  

 

59, 2 10xε −≈ ×  And 43,4 10yε −≈ ×   so ε  will be: 2 2 43,52 10x yε ε ε −= + ≈ ×   

And for the 8 layer layup (figure 3-16): 

Figure 3-16: Strain of the cylinder (Ɛx in the left side and Ɛy in the right side) for the 8 layer 
layup  

 

57,19 10xε −≈ ×  And 44,41 10yε −≈ ×   so ε  will be: 2 2 44,46 10x yε ε ε −= + ≈ ×   

In the ANSYS software the process of getting to the strain is somehow easier, 
because there is an option in the software called equivalent elastic strain. By using 
this option the equivalent strain ε  will be illustrated (figure 3-17 and 3-18). 
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Figure 3-17: Equivalent elastic strain in ANSYS for 9 layer layup 

 

For the 9 layer layup (figure 3-17): 2 2 43,70 10x yε ε ε −= + ≈ ×   

Note that like the average method, in this method the sample should also be selected 
from the middle of the cylinder surface and not near the edges to avoid the influence 
of boundary conditions and have a correct sample. 

Figure 3-18: Equivalent elastic strain in ANSYS for 8 layer layup 

 

For the 8 layer layup (figure 3-18): 2 2 44,54 10x yε ε ε −= + ≈ ×    
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In the composite post processing of the FEM software, it is also possible to have a 
plot of the strain and stress for each ply separately. With this possibility the stress 
distribution at each ply of the 9 layer and 8 layer layup are established and compared 
with theoretical results to make sure about the validity of the calculations.  

The left side figures (figure 3-19, 3-20) are theoretical stress distribution values in 
each layer for the 9 layer and the 8 layer in X and Y directions (established by 
eXlam2 software). On the right side, there are the values for two FEM software is 
also in the X and Y directions. As it can be seen from the figures, both FEM software 
have a good adaptation with each other and with the theoretical stress distributions. 

 

Figure 3-19: stress distribution in each layer in X and Y directions (9 layer layup)  

 

The theoretical stress distribution figures come from eLamX2 software. Although in 
picture 3-20 the FEM figure (right side, stress in X direction) shows the maximum 
stress at the middle layer (90 degree), the theoretical figure (left side) shows the 
maximum value at 45 and -45 degree which is not correct. Hence this would be a 
mistake by the eLamX2 software in displaying the theoretical stress distribution 
figures.  
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Figure 3-20: stress distribution in each layer in X and Y directions (8 layer layup)  

 

 

3.2.5  Comparison 

Based on what has been calculated in the previous sections for all methods (3.2.2 to 
3.2.4), it is possible now to compare the results. In the table 3-4 all of the strains 
which are  

Table 3-4: Strain results for all methods 

Comparison of strain results 9 layer layup 8 layer layup 

Theoretical calculation  43, 267 10−×  
44,131 10−×  

CATIA simulation with average factors  43,32 10−×  
44, 44 10−×  

CATIA simula tion with complete layup modeling  43,52 10−×  
44, 46 10−×  

ANSYS simulation with complete layup modeling  43,70 10−×  
44,54 10−×  

 

The basic method is theoretical calculation. It is precise and trustable because it is 
based on proven formulations. Yet some questions still continue to arise. For 
example, how far can the theoretical calculation be used?  What should be done for 
complicated composite parts? How much time and energy should be used for 
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calculation of even a simple part like the sample? And the most important question is 
whether the theoretical calculation is even possible in complicated cases? The 
answer is clear and that’s why in recent years the FEM simulation is improved and 
used much more than before, and because composite material calculations are even 
more complicated, the FEM simulation is more required.  

The average method especially for the quasi isotropic layups is quiet useful and 
applicable as it is shown in this sample. It saves a lot of time and energy of 
simulation. Instead of a long layups simulation process, the average input amounts 
are just calculated. This method has even been tested and used in industry for layups 
or layups with honeycomb, and the results were quite satisfactory and passed the 
industry test results. For example the average method answer is a good compromise 
between time consumption and quality of results for quasi isotropic layups like 

[ ]0,  45, 45,  90
n

− and even for the simulations where a honeycomb exists between the 

layup. Although the average method shows better results compared to other methods 
in the current layup samples, when the force and moments have a bending and 
buckling effect, the analysis of this method is not precise anymore (will be described 
in sample 2). In fact, in the buckling analysis the position of each layer orientation is 
quiet important but the average method does not consider the position of the oriented 
layer. 

The complete layup simulation as it comes from its name is of course more precise 
and also time consuming process for the orthotropic laminates. If the layup type is 
symmetrical orthotropic or when there is a bending moment acting on a component 
and the precision of the answer is important, there will be no choice but the complete 
simulation method. But here in sample 1 there is no difference between using the 
average method or the complete method. In section 2.3.1 and 2.3.2 some 
assumptions have been introduced for calculating the “CLT” and “ABD matrix”. These 
assumptions simplify the procedure of the theoretical calculation and also neglect 
some boundaries of calculation precision. For instance in section 2.3.2.1 it has been 
mentioned that: a line straight and perpendicular to the middle surface remains 
straight and perpendicular to the middle surface during deformation. The assumption 
is not necessarily considered by the FEM calculation; therefore the complete method 
has more realistic results. This is the reason the average method shows more 
conformity with theoretical results [8].  
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3.3 Sample 2: Surface with bending moment 

3.3.1  Introducing the sample 

The test component of this sample is a square surface (100x100 mm2) with a bending 
momentum at the two side of it (figure 3-21). In contrast with previous sample, there 
will be no simplification, because the model is quite simple. The momentum amount 
on each side of the surface is 5 Nxm in the y direction. 

For this sample one type of layup is applied. The symmetric orthotropic laminate 

layup (the 9 layer layup 0,  45, 45,  90, 0
S

  − ) is considered for this sample [8]. 

Figure 3-21: sample 2 surface with momentum 

  

3.3.2  Theoretical calculation with ABD matrix 

In this sample the ABD matrix should be calculated for the surface based on the 
mechanical constants of the table 3-1. Instead of forces in this sample the momentum 
My is acted on the ages of surface and it should be placed into the Hooke’s law 

equation (2-34). After solving the equation the curvatures ( ), ,x y xyκ κ κ   will be the 

output. 

To get more familiar with the phrase curvature, it would be useful to describe the 
curvature in geometrical way. Based on the “Math world” definition2, it is natural to 
define the curvature of a straight line to be identically zero. The curvature of a circle 
of radius R should be large if R is small and small if R is large. Thus the curvature of 
a circle is defined to be the reciprocal of the radius [11]. The curvature can be defined 
as below: 

                                                           
2
 Website link : http://mathworld.wolfram.com/RadiusofCurvature.html 
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1

R
κ =              3-5 

It should be noticed that in the section 2.3.2 (equations 2-28-4 and 2-28-5) the unit of 
the bending moments in X and Y directions are moment per unit length, therefore the 
moment amount dimension should be changed to moment per length and then can 
be used in the ABD matrix. so it could be written: 

5 1000,05y
N mM m

×= =   

After having the input moment, the ABD matrix should be calculated. The eLamX2 
software is also used here for obtaining the ABD matrix. The general material 
properties of plies are the same as sample 1 and figure 3-3. 

The type of the layup should be defined in the software, for this sample the 9 layer 
layup is illustrated in figure 3-22: 

Figure 3-22: laminate layup definition for surface sample 

  

In this sample like what has been done in sample 1, the ABD matrix should also be 
calculated with the software as it illustrated in figure 3-23. 

Figure 3-23: ABD matrix for sample 2 
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After calculating the ABD matrix in the software and having the momentum My, the 
Hooke’s law equation can be rewritten for this sample. 

0 36587,8 0 | 0 0 0

0 36587,8 118414,7 0 | 0 0 0

0 0 0 41424,5 | 0 0 0

0 0 0 0 | 8650,2 15127,5 4939,3

100 0 0 0 | 15127,5 27214,2 4939,3

0 0 0 0 | 4939,3 4939,3 17168

150026,1 x

y

xy

x

y

xy

ε
ε
ε

κ
κ
κ

   
   
   
   
    −=− − − − + − − −   
   
   

−   
   
   


 
 
 
 


 
 
 
 
 

 

To obtain the curvature the equation should be reversed, so it could be written as 
below: 

6 6

6 6

5

4

07,209 10 2,227 10 0 | 0 0 0

2,227 10 9,133 10 0 | 0 0 0
0 0 0 2,414 10 | 0 0 0

0 0 0 | 0,018 0,01 0,002

0 0 0 | 0,01 0,005 0,001

0 0 0 | 0,002 0,001

0

0 0

2,71 0

0

3 1

x

y

xy

κ
κ
κ

− −

− −

−

−

   × − ×
   − × ×   
   ×
   − = −− − − + − − −   
   −   
  − − 
   − − ×  

0

100

0

 
 
 
 
 
 
 
 
− 
 
 

 

As the result for the curvature it can be written: 

4

3

3

6,82 10

4,239 10

1,024 10

x

y

xy

κ
κ
κ

−

−

−

   ×
   = − ×   

   ×   

 

These obtained curvatures are considered as the theoretical result of the ABD 
method. The ABD method is considered as the reference method also for the sample 
2 and the accuracy of each method can be obtained by comparison with the ABD 
method. 

The curvature of the square element for this sample has been illustrated in the figure 
3-24: 
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Figure 3-24: ABD matrix for sample 2 

  

 

3.3.3  CATIA FEM simulation with the average elastic factors input 

The whole calculation process of this method is similar to section 3.2.3 of the sample 
1. The material properties are also similar to the sample 1 properties. Therefore the 
rigidity matrix for this sample can be re-written as below: 

[ ]

1 12 2

2 22 2
12 12

11 91 1

9 912 2 2

2 22 2 9
12 12

1 1

12

0
1 1

1,36 10 3,12 10 0

0 3,12 10 9,572 10 0
1 1 0 0 5,27 10

0 0

k

E E
E E

E E

E E
Q

E E

E E

G

ν

ν ν

ν

ν ν

⋅ 
 

− ⋅ − ⋅ 
   ⋅ ⋅
 ⋅  = = ⋅ ⋅   
 − ⋅ − ⋅  ⋅  
 
 
  

 

Based on the material properties (table 3-1), the rigidity matrixes[ ]k
Q for all layup 

angels, which are (0, 45,-45, 90), should be calculated. The transformed rigidities of 
all plies, weighted according to their cross sectional ratios, are added together to 

yield a homogeneous laminate rigidity. The result is the laminate rigidity matrix[ ]A : 

[ ]
10 10

10 10 6

6 10

6,668 10 1,626 10 0

1,626 10 5, 263 10 1,907 10

0 1,907 10 1,841 10

A −

−

 ⋅ ⋅
 = ⋅ ⋅ − ⋅ 
 − ⋅ ⋅ 
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Before determining the distortions in the laminate, the invert of the rigidity matrix [ ]A  

that is compliance matrix [ ]a  should be calculated. 

[ ]
11 12 28

12 11 27

28 27 11

1,622 10 5,012 10 5,192 10

5,012 10 2,055 10 2,129 10

5,192 10 2,129 10 5, 432 10

a

− − −

− − −

− − −

 ⋅ − ⋅ − ⋅
 = − ⋅ ⋅ ⋅ 
 − ⋅ ⋅ ⋅ 

 

The engineering constants for the laminate are obtained from elements of the 
compliance matrix (equations 2-12, 2-13): 

( )2,
11

1
61652x Lam

NE
mma

= =   

( )2,
22

1
48660y Lam

NE
mma

= =   

( )2,
33

1
18409xy Lam

NG
mma

= =   

21
, ,

11

0,309xy Lam yx Lam

a

a
ν ν −= = =  

The engineering constants are calculated and available. Now the CATIA model 
should be created and these constant will be used as material properties for the 
CATIA model. 

The square surface of sample 2 is modeled in figure 3-25. The moments are 
positioned on two edge of the surface (5 N×m). It should be noticed that, for the 
boundary condition first the surface should have a pure bending and second the 
surface should be fixed in the way that it cannot be moved in any direction. Therefore 
three fix points are considered for the boundary condition on the middle of the 
surface. The mesh type is the normal quadrat mesh but the mesh size is important in 
this sample. As this surface model simulates the theoretical square element, the 
mesh size should be as large as possible. Therefore the mesh size is considered 25 
mm, which divides the whole surface to 16 elements and the quantity of curvature will 
be more realistic. According to the laminate layup definition in figure 3-22, the 
thickness of each ply is considered 0,25 mm and the number of layup is 9, therefore 
the thickness of the surface will be 2,25 mm. 
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Figure 3-25: Square surface with boundary conditions and moment 

  

 

Figure 3-26: Square surface with quadrat mesh 

  

After modeling and calculation the results in the CATIA software, the deformation of 
the surface will be available as it is illustrated in figure 3-27: 
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Figure 3-27: sample 2 deformation 

  

 

The maximum displacement amount is 1,05 mm on the red edges of the surface. 

In fact the factor that should be extracted in this sample is the curvature in X and Y 
directions. There is an option in the CATIA software which shows the curvature 
quantity of composite part in all directions as it is illustrated in figure 3-28. Otherwise 
the radius of deformation should be calculated and by reversing the radius, the 
curvature will be obtained. 

Therefore the curvature of surface will be: 

4

3

4,5 10

1,33 10
x

y

κ
κ

−

−

   ×
=   

− ×  
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Figure 3-28: curvature in X (upside) and Y (downside) directions 

   

 

3.3.3.1 Position of Ply 

To investigate the importance of ply position in this sample the theoretical ABD 

calculation for 90,  45, 45,  0, 0
S

  −  instead of 0,  45, 45,  90, 0
S

  −  is presented: 

After calculating the ABD matrix in the eLamX2 software and having the moment My 

(same as section 3.3.1) the Hooke’s law equation can be rewritten for this sample. 
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0 36587,8 0 | 0 0 0

0 36587,8 118414,7 0 | 0 0 0

0 0 0 41424,5 | 0 0 0

0 0 0 0 | 27378,8 15127,5 4939,3

100 0 0 0 | 15127,5 86485,6 4939,3

0 0 0 0 | 4939,3 4939,3 1716

150026,1
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   
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 
 
 
 
 
 
 
 
 
 

 

Like section 3.3.2 to obtain the curvature the equation should be reversed, so it could 
be written as below: 

6 6

6 6

5

5 6 5

6 5 6

5

7,209 10 2,227 10 0 | 0 0 0

2,227 10 9,133 10 0 | 0 0 0
0 0 0 2,414 10 | 0 0 0

0 0 0 | 4.211 10 6.785 10 1.016 10

0 0 0 | 6.785 10 1,285 10 1.745 10

0 0 0 | 1.0

0

0

16 10 1.7

x

y

xy

κ
κ
κ

− −

− −

−

− − −

− − −

−

  × − ×
  − × × 
  ×
 − = − − − + − − − 
  × − × − × 
  − × × − ×
  − × − 

6 5

0

0

100

045 10 6,167 10

0

0

− −

  
  
  
  
  −  

  
  
−  
  × ×   

 

As the result for the curvature of 90,  45, 45,  0, 0
S

  −  can be written: 

4

3

4

6,78 10

1, 285 10

1,74 10

x

y

xy

κ
κ
κ

−

−

−

   ×
   = − ×   

   ×   

 

The result which has been calculated for 0,  45, 45,  90, 0
S

  − is: 

4

3

3

6,82 10

4,239 10

1,024 10

x

y

xy

κ
κ
κ

−

−

−

   ×
   = − ×   

   ×   

 

The simple comparisons between these two results demonstrate the change on the 
quantity of curvatures by changing the position of ply (with different orientation) in 
layup. On the other hand, Reviewing the CLT formulation in section 2.3.1 and also 
the CLT calculation for sample 2 in section 3.3 reveals this fact that the CLT 

formulation output (mechanical constants) for both 0,  45, 45,  90, 0
S

  − and 

90,  45, 45,  0, 0
S

  −  are the same. As these mechanical constants are used as input 

for the FEM software, the software output (curvature) will be similar, while according 
to the ABD method the curvature quantity should be different. more detail of this 
difference will be discussed in section 3.3.5. 
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3.3.4  FEM simulation with complete layup modeling (CATIA, 

ANSYS) 

In this method as it has been described in section 3.2.4, the laminate is modeled ply 
by ply in the FEM software. The sample2 (surface) similar to sample 1 (cylinder) is 
also modeled with two different FEM software (CATIA, ANSYS) in this simulation.  

In case that all method could be compared to each other, they should have a same 
model and same mesh size. Therefore the sample model is similar to the average 
method model (figure 3-25) with the same properties; and the mesh size is 
considered 25 mm similar to the average method (figure 3-26). The layup procedure 
on the surface is ply by ply, the orthotropic composite properties of regular epoxy 
carbon are considered for each ply according to the table 3-3.  

The 9 layer layup laminate is modeled in the CATIA software, the surface after 
modeling is illustrated in the figure 3-29 (0 degree–yellow, 45 degree–blue, -45 
degree–green, 90 degree– red). 

Figure 3-29: composite layup in CATIA 

  

As it has been described in section 3.2.4, the ANSYS PrePost shows each layer by 
its own angle on the surface. In figure 3-30 all types of the ply angles have been 
illustrated (0, 45, -45, and 90). 

Figure 3-30: composite layup in ANSYS 

  

 



  

 

49 

 

The moments and boundary conditions are similar to the average method (figure 3-
25). The surface thickness after layup will be 2,25 mm (0,25mm for each ply). The 
outer edge of the red element in the figure 3-31 is considered for extracting the 
curvature of the surface. In fact the maximum curvature occurs at this place. 

Figure 3-31: surface after layup 

  

After calculating the model with the following laminate layup and mesh properties, the 
result will be accessible. The deformation of the surface in the CATIA software is 
illustrated in figure 3-32. 

Figure 3-32: surface deformation in CATIA 
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The maximum deformation amount is 2,9 mm on the red edge of the surface. And 
similar to the average method curvatures can be extracted from CATIA software as it 
shown in the figure 3-32. 

Figure 3-33: surface curvature in Y direction 

  

Therefore the curvature vector of the CATIA model can be written as below: 

4

3

3

4,69 10

3, 4 10

1, 21 10x

x

y

y

κ
κ
κ

−

−

−

   ×
   = − ×   

   ×   

 

In the ANSYS software the procedure of calculating the curvature factors is somehow 
harder, because there is no option for showing the curvature factors. Therefore in this 
case some calculations should be done first deformation should be calculated, 
second radius should be measured from the deformation in each direction, third the 
radius should be reversed until the curvature can be obtained. (Equation 3-5) 

The maximum deformation as it illustrated in figure 3-34 is 2,95 mm which also 
occurs on the outer edge of the element. It should be noticed that this amount 
expresses the total deformation. Hence the deformation which should be used for 
calculating the curvature has different amount in each direction. 
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Figure 3-34: surface deformation in ANSYS 

  

After calculating the curvature based on the deformation in each direction, the 
curvature vector of ANSYS software can be written: 

4

3

3

5,75 10

3,51 10

1, 21 10xy

x

y

κ
κ
κ

−

−

−

   ×
   = − ×   

   ×   

 

3.3.5  Comparison 

Based on what have been obtained in the previous sections (3.3.2 to 3.3.4), it is 
possible now to compare the results. In the table 3-5 all of the curvatures (four 
methods) in X and Y directions are gathered for this sample. 

Table 3-4: Strain results for all methods 

Curvature of surface In X direction In Y direction 

Theoretical calculation  46,82 10−×  
34, 239 10−− ×  

CATIA simulation with average factors  44,5 10−×  
31,33 10−− ×  

CATIA simulation with complete layup modeling  44,69 10−×  
33, 4 10−− ×  

ANSYS simulation with complete layup modeling  45,75 10−×  
33,51 10−− ×  
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In this sample (similar to the sample1) the theoretical method is also the reference 
method, and the three other methods are compared to this method in case the 
precision of each be evaluated. As it has been described in section 3.2.5, this 
difference between the theoretical and the complete methods results is also visible in 
sample 2, and that could be related to the assumption which has been made for the 
theoretical calculation in ABD matrix. 

In contrast with sample 1 where the average method had good results for both 
layups, the average method outcomes for the sample 2 are really weak and non-
acceptable. In this method the maximum deformation occurs in the middle of surface 
edges as it is illustrated in figure 2-27. But as it displayed in figure 3-35 the maximum 
deformation should be at the end of the edges. That means the shape of deformation 
and also its quantity in the average method is not correct. According to the table 3-4, 
the major curvature occurs in Y direction. By the simple comparison between the 
average method amount and the theoretical amount, it would be realized that the 
average method curvature is lower than even half of the theoretical method amount. 
Therefore when the force and moments have a bending and buckling effect, the 
position of plies will play an effective role on the precision of the result. Since in the 
average method the position of the ply is not considered (described in section 
3.3.3.1), its results are not precise enough. 

Figure 3-35: surface deformation of all four methods 

 

1-Theoretical method   2-Average method    3-Complete method (CATIA)   4-Complete method (ANSYS)   

According to the table 3-4 both complete methods (with CATIA and ANSYS) have a 
good coverage of the results in compare to the theoretical results.  After comparing 
the figures of 3-35, it would be clear that the complete method has a correct 
distribution of deformation over the surface of sample.  Hence in case that the 
bending or buckling loadings act on the composite structure, the complete layup 
simulation would be a good choice for analyzing the structure and the result will be 
more realistic. Having the stress, strain and failure data of each layer separately is 
another advantage of this method. In the post processing section of FEM software it 
is possible to check out the deformation and also stress distribution of each ply 
separately. This option is really useful for finding the failure plies, after identifying 
these plies their position could be changed or the number of plies could be increased 
to avoid the failure of the laminate.  
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With all of these benefits reaching complete simulation is not always simple, Imagine 
the layer thicknesses are less than 0.1 mm and the number of layers exceed to 100 

with the orthotropic orientation (for example[ ]45, 45
n

− ). In these cases, simulation 

with the CATIA takes lots of time and is sometimes even impossible, but there are 
some options in ANSYS that help the user simulate the model easier and faster. That 
is why the complete simulation is made for two different FEM software, to show the 
similarity of results in one method using different FEM software. However the 
possibility of simulation depends on the software facilities. In the next chapter (4-2) a 
composite spiral spring will be modeled with the complete method and these subjects 
(orthotropic orientation and software ability) will be discussed there [8]. 
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4 Application of FEM Methods in Industrial 

Projects with Composite Material 
 

In chapter 2 the theoretical and FEM methods have been introduced. After comparing 
these methods with the theoretical approach in chapter 3, it has been concluded that 
these methods are precise enough to be used in industrial projects but with some 
considerations. In this chapter FEM methods will be used in two industrial projects 
which have composite material.  

In recent years the FEM has had vast applications in all fields of mechanical 
engineering and especially in solid design. The FEM is used for simulation and 
analysis of those parts which are complicated to solve theoretically.  This saves a 
great deal of time, money and energy, because it helps designers optimize their 
design easier and faster before getting involved in the production procedure. When 
an analysis deals with composite structures, it becomes even more complicated to do 
theoretical calculations. However composite design in mechanical engineering is still 
young. Many FEM software companies like ANSYS, CATIA, ABAQUS, SIEMENS 
NX, and HAYPER WORKS have added composite simulation in their new software 
releases due to increasing composite design applications in industrial products.  

In this chapter for each FEM method one practical example has been provided to 
make each FEM method more tangible. For each method, the benefits and limitations 
have been described. All the examples used in this chapter have come from real 
models in industry and are compared with practical results. 

4.1 Average Method 

In this method as it has been described in chapter 2 section 2.3.3.1, the neutral or 
middle surface of the composite part should be modeled in the FEM software. The 
mechanical constants should be calculated from the CLT method as it has been 
described in chapter 2 (2.3.1). 

4.1.1  Exploring an Example 

For the average method one part of the internal body of a medical helicopter has 
been considered as an example, which should be replaced with the composite 
laminate layups. The goal of this project is to first have an appropriate environment 
on the internal wall of the helicopter for placing medical boxes and oxygen capsules. 
Second, it is to possibly move and replace them on different wall positions, and third, 
which is the most important part, is to evaluate how the internal body can tolerate the 
pressure of helicopter maneuvers in different axis or directions. The CATIA is used as 
the FEM software for this example. The sample parts are modeled in the environment 
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of surface design and have been illustrated in figure 4-1. Since describing the 
procedure for analyzing the entire model in this example would be too time 
consuming and unnecessary, considering only one part of the model would be 
enough. Therefore the part in figure 4-2 is considered as the selected part.  

Figure 4-1: internal wall of helicopter   

 

 

The surface bodies have been fixed to the body of the helicopter by screws and rivets 
as has been shown in image 4-1 in yellow, blue and orange colors. There are some 
parts which have been cut down since they have different types of layup compared to 
other parts in that section. As mentioned in chapter 2, in the CLT method the smallest 
part of a laminate is a ply. Here, the ply material is the epoxy carbon with long 
homogenized fiber direction, the mechanical constants of which have been shown in 
table 4-1[9]. 

Table 4-1: Mechanical constants of epoxy carbon 

Constant Amount 

1E  
2  [135000 ]N mm  

2E  
2  [9 00 ]5 N mm  

12G  
25270  [ ]N mm  

12ν  0,326  

Connection to Body 

Connection to Body 
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Figure 4-2: sample part   

 

The type of the layup should be also clear, because the CLT method use angle of 
each ply and convert it from local coordinate to laminate coordinate system. In 
chapter 3 section 3.1.1 the laminate type and their notations have been described. 

The basic layup notation for this example part is[ ]0,  45, 45,  90
n

− , but “n” which is the 

number of layup is not the same in each section of the sample as it illustrated in 
figure 4-4 and table 4-2. In some sections of the sample (for instance section B) there 
is a honeycomb which is placed between the layups. 

In table 2-4 the number of plies, notations and thickness of the laminate for each 
section of the sample shown in figure 4-4 has been presented: 

Table 4-2: part section layup notations and thicknesses 

Part 
Section 

Notation Number of plies Honeycomb 
thickness (mm) 

Thickness of plies + honeycomb 
(mm) 

, ,A D F  [ ]2
0,  45, 45,  90−  

8 layer - 2 

B  [ ]2
0,  45, 45,  90−  

8 Layer +Honeycomb 8 2+8=10 

C  [ ]4
0,  45, 45,  90−  

16 Layer+ Honeycomb 4 4+4=8 

,E G  [ ]2
0,  45, 45,  90−  

8 Layer + Honeycomb 4 2+4=6 
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Figure 4-4: Separating part to section based on their layups   

 

 

4.1.2  CLT Calculation 

According to chapter 2 section 2-3-1, the CLT formulations are available. The 
mechanical constants of plies of this sample can be obtained from table 4-1. The 
calculation is described for section B as an example. Although the calculation 
process for other sections is similar, calculation for section B because of the 
existence of honeycomb in layup would be interesting. 

In this section “k” as the number of plies is 8 and the thickness of each ply is 0,25mm 
which means: 

0, 25kt mm=  1, .,8k = …   

8 0, 25 2kt mm∑ = × =   

In section B there is a honeycomb in layup, the layup sections with the honeycomb 
have similar calculation processes to layup without honeycomb, because the quantity 
of honeycomb stiffness is neglectable, however its thickness should be considered in 

the laminate thickness ( Lamt ). 

2 8 10Lamt mm= + =  

By using equation 2-6, this can be written as: 

A 

B 

C 

D 

E 

F 

G 
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[ ]

1 12 2

2 22 2
12 12

1 1
21 12

12 2 2
21 22

2 22 2
12 1233

1 1

12

11 9

9 9

9

0
1 1

0

0 0
1 10 0

0 0

1,36 10 3,12 10 0

3,12 10 9,572 10 0

0 0 5, 27 10

k

E E
E E

E E
Q Q

E E
Q Q Q

E E
Q E E

G

ν

ν ν

ν

ν ν

⋅ 
 

− ⋅ − ⋅ 
  
 ⋅ = = =  
 − ⋅ − ⋅    
 
 
  

 × ×
 × × 
 × 

  

The layup type is [ ]2
0,  45, 45,  90− , therefore the Transformer matrix [ ]k

T  should be 

calculated for all current four degrees. The next step is to use formulation 2-7 to 

convert the rigidity matrix [ ]k
Q from the ply coordinate system to the laminate 

coordinate system. In this sample, the rigidity of the plies are the same, therefore 

[ ]k
Q  will be the same for all plies: 

For 1 0θ = :  

[ ]
2 2

2 2

1
2 2

cos sin 2sin cos 1 0 0

T sin cos 2sin cos 0 1 0

sin cos sin cos cos sin 0 0 1

   
   = − =   
   − −   

 

[ ] [ ] [ ] [ ]
11 9

9 9

,1 1 , 1
9

1,36 10 3,12 10 0

3,12 10 9,572 10 0

0 0 5, 27 10

T

LamCS PlyCS k
Q T Q T Pa

 × ×
 = ⋅ ⋅ = × × 
 × 

 

For 2 45θ = :  

[ ]
2 2

2 2

2
2 2

cos sin 2sin cos 0,5 0,5 1

T sin cos 2sin cos 0,5 0,5 1

sin cos sin cos cos sin 0,5 0,5 0

   
   = − = −   
   − − −  

 

[ ] [ ] [ ] [ ]
10 10 10

10 10 10

,2 2 , 2
10 10 10

4,323 10 3, 269 10 3,161 10

3, 269 10 4,323 10 3,161 10

3,161 10 3,161 10 3, 484 10

T

LamCS PlyCS k
Q T Q T Pa

 × × − ×
 = ⋅ ⋅ = × × − × 
 − × − × × 

 

For 3 45θ = − :  
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[ ]
2 2

2 2

3
2 2

cos sin 2sin cos 0,5 0,5 1

T sin cos 2sin cos 0,5 0,5 1

sin cos sin cos cos sin 0,5 0,5 0

  − 
   = − =   
   − − −  

 

[ ] [ ] [ ] [ ]
10 10 10

10 10 10

,3 3 , 3
10 10 10

4,323 10 3, 269 10 3,161 10

3, 269 10 4,323 10 3,161 10

3,161 10 3,161 10 3, 484 10

T

LamCS PlyCS k
Q T Q T Pa

 × × ×
 = ⋅ ⋅ = × × × 
 × × × 

 

For 4 90θ = :  

[ ]
2 2

2 2

4
2 2

cos sin 2sin cos 0 1 0

T sin cos 2sin cos 1 0 0

sin cos sin cos cos sin 0 0 1

   
   = − =   
   − − −  

 

[ ] [ ] [ ] [ ]
9 9 7

9 11 6

,4 4 , 4
7 6 9

9,572 10 3,12 10 2,504 10

3,12 10 1,36 10 7, 492 10

2,504 10 7, 492 10 5, 27 10

T

LamCS PlyCS k
Q T Q T Pa

−

−

− −

 × × − ×
 = ⋅ ⋅ = × × − × 
 − × − × × 

 

In order to obtain the laminate stiffness matrix[ ]A , it is necessary to apply equation 

2-10. It should be noted that there are two plies for each angle; therefore the number 
of plies with the same angle should be included in this calculation: 

[ ] [ ] 31 2 4
,1 ,2 ,3 ,4,

22 2 2
.k

LamCS LamCS LamCS LamCSLamCS k
k lam Lam Lam Lam Lam

t tt t t
A Q Q Q Q Q

t t t t t
= = + + +∑  

After inputting the rigidity matrices into the equation it could be written: 

[ ]
11 9 10 10 10

9 9 10 10 10

9 10 10 10

10 10

1,36 10 3,12 10 0 4,323 10 3,269 10 3,161 10
0,5 0,5

3,12 10 9,572 10 0 3,269 10 4,323 10 3,161 10
10 10

0 0 5,27 10 3,161 10 3,161 10 3,484 10

4,323 10 3,269 10 3
0,5

10

A

   × × × × − ×
   = × × + × × − × +   
   × − × − × ×   

× × 10 9 9 7

10 10 10 9 11 6

10 10 10 7 6 9

,161 10 9,572 10 3,12 10 2,504 10
0,5

3,269 10 4,323 10 3,161 10 3,12 10 1,36 10 7,492 10
10

3,161 10 3,161 10 3,484 10 2,504 10 7,492 10 5,27 10

−

−

− −

   × × × − ×
   × × × + × × − ×   
   × × × − × − × ×   

 

And the [ ]A  matrix will be: 

10 9

10 10 7

7 9

1,16 10 3,581 10 0

3,581 10 1,16 10 4,768 10

0 4,768 10 4,011 10

A Pa−

−

 × ×
 = × × − × 
 − × × 
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And the flexibility matrix [ ]a  which is the reverse of the [ ]A  matrix will be (according 

to equation 2-11): 

[ ] [ ]
11 11 27

1 11 11 26

27 26 10

9,526 10 2,94 10 3,496 10

2,94 10 9,526 10 1,133 10

3, 496 10 1,133 10 2,493 10

a A

− − −

− − − −

− − −

 × − × − ×
 = = − × × × 
 − × × × 

 

Based on equation 2-13 the laminate mechanical constants can be obtained from 
elements of the flexibility matrix: 

,
11

,
22

,
33

21
, ,

11

1
10, 498

1
10, 498

1
4,011

0,30

  

  

9

  

x Lam

y Lam

xy Lam

xy Lam yx Lam

E Gpa
a

E Gpa
a

G Gpa
a

a

a
ν ν

= =

= =

= =

−= = =

 

These constants are used as an input for mechanical constants of sample sections in 
figure 4-4. It is important to mention that in this method the thickness of each section 
should be allocated separately according to table 4-3 as 2D mechanical properties. 
After finishing all these steps, each section of the sample will have its own laminate 
thickness as well as its average mechanical constant instead of the laminate layup. 

Note that as mentioned earlier, the procedure for other layup calculations in table 4-3 
is similar to the current calculation. The only difference is that the number of same 
angle plies should also be taken into account in equation 2-10, and thereinafter the 

[ ]A  matrix should be calculated again. If a honeycomb exists in the layup, the 

thickness of it will be considered just in the laminate thickness. 

4.1.3 Load Cases, Mesh and Boundary Conditions 

A load case is the type of forces and moments acting on the model based on the 
different conditions. These conditions would be related to different accelerations, 
increasing the load by time and etc. In this model the load cases are dependent on 
the acceleration in different directions which occur by the maneuver of the helicopter 
and would vary based on required safety factors of the factory. For this analysis the 
11 load cases in all 4 flight directions have been applied. The situations for the load 
cases are considered to be where the helicopter has 16g (g is the gravity) 
acceleration forward or 20g downward. These two load cases which are the most 
critical cases are selected, because more deformation details would be visible on the 
part.  
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The forces are obtained from the acceleration which acts on the center of gravity of 
the medical boxes or capsules. These boxes are attached on the part surface and 
their weight should also be considered in the load case. In figure 4-5 medical boxes 
are shown by blue colors and their center of gravity by yellow points. As can be seen 
in figure 4-5, there are some holes embedded on the part which are used for 
attaching the medical boxes on the part wall. The virtual point tool in CATIA is applied 
to make a connection between the holes and the center of gravity in the box. 

Figure 4-5: loading positions   

 

The surface mesh type is a triangle and the element is 2nd order parabolic. There are 
two important points in the meshing procedure which should be noticed. First the 
sections which are cut down should be connected to the other parts with a mesh 
capture option. Otherwise the software considers them as separate parts and they 
should be connected manually which takes a lot of time and work. Second, all of the 
wholes on the part should be recognized by the mesh. Because these holes have two 
kinds of application, some of them are used for fixing the part to the helicopter body 
by using the rivets and screws (figure 4-1), and others are used for attaching the 
boxes to the part on the FEM software. Figure 4-6 illustrates the part after meshing 
by considering the mentioned points. 
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Figure 4-6: mesh  

 

The boundary condition is a very important part of the simulation in this sample. The 
first type, as illustrated in picture 4-1, are the holes on the part which should be 
screwed or riveted to the connection bodies. The connection bodies are connected 
with the inner side and then fixed to the outer side of the helicopter body. The second 
type of boundary condition involves connecting the parts of the sample to each other. 
The type of connection depends on the position but is mostly a rigid connection. The 
third type, are the holes which fix the part directly. These holes are mostly located on 
the edge of the part. As an example, one sample has been shown for each type in 
figure 4-7. 
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Figure 4-7: Boundary conditions 

 

4.1.4  Results 

After applying all the mentioned points in section 4.1.3 (mesh, load cases, boundary 
conditions), virtual forces in the FEM software (CATIA) and eventually calculation, the 
deformation of the part will be ready as has been illustrated in figure 4-8. 

The important result from this is the maximum deformation of the body which should 
not exceed a certain limit (20mm for this sample). It should be noted that in all normal 
load cased (the normal load cases happen when the helicopter has a normal 
maneuver), the deformation amounts are quite acceptable. These results have been 
accepted by the “Eurocopter” company and have been used in the production 
procedure. 

In figure 4-8 the two most critical maneuvers have been illustrated, although the 
deformation of the considered part is not critical, the other parts of the body have 
critical deformations. Hence after each critical maneuver the body should be changed 
due to large deformations. However, the question which comes to mind is why these 
critical situations which happen for instance during emergency landings should also 
be simulated. The answer is that if the maximum amount of deformation exceeds the 
specified limit, it will cause harm to the passengers. In Figure 4-9 the stress 
distribution of two following maneuvers are also illustrated. Studying the stress 
distribution helps the designer to apply a stiffer layup for the critical areas. 

Type 1 

Type 3 

Type 2 
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Figure 4-8: part deformations in 16 g forward and 20 g downward    
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Figure 4-9: part stress distribution in 16 g forward and 20 g downward    

 

 



  

 

66 

 

4.1.5  Advantage and disadvantage of average method 

In chapter 3 section 3.2.5 it has been described that the average method is 
considered as a fast and time saving method. If all the plies in this example had been 
modeled ply by ply, it would have taken a great deal of time. Therefore the time 
saving factor and the simplified simulation process can be considered as the 
advantages of this method. Although this method is an approximate technique, it can 
be used for many simulation projects while producing an acceptable precision of 
results if some observations are attended to. 

The CLT method (chapter 2, section 2.3.1) does not consider the position of the ply in 
the laminate layup and it only takes into account the plies with their angles and 
converts them to the coordinate system of the laminate. Also, chapter 3.3 uses 
sample 2 to describe when the main loadings are bending or twisting on the laminate, 
and points out that considering the position of the ply in the laminate is very important 
and even critical. Although in this example the bending and twisting of the loads exist, 
the main loads are compressive and tensional. That’s why the results are acceptable. 

This method can be used for the quasi-isotropic layup, but in the orthotropic laminate 
layup this method should be replaced with a more precise one, because the average 
method in this case does not work properly. For instance the mechanical constants 
(E1, E2, and G12) of the two laminates (the first one is a quasi-isotropic laminate [0, 
45, -45, 90]s and the second one is an orthotropic laminate [45,-45]n) have been 
shown in polar properties in figure 4-10 and 4-11.  

The mechanical constants of the quasi-isotropic laminate (figure 4-10) are nearly the 
same in each angle of the laminate because there is a ply in each 45 degree angle. 
But in the orthotropic laminate (figure 4-11) the amounts of the mechanical constants 
are not the same in each angle. For instance elasticity modulus has a maximum 
quantity at 45 and -45 directions and near to zero at the other directions [4]. 

Figure 4-10: quasi-isotropic constants in polar view 
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Note that the polar view for the quasi-isotropic laminate is illustrated with two types of 
curves (One with a circle and another with a curve) in figure 4-10.  The curve shows 
more detail of polar view with the maximum quantity in each 45 degree, but as it 
visible in figure 4-10 the amounts in each angle are nearly the same therefore they 
could be approximately illustrated on the circle. 

Figure 4-11: orthotropic constants in polar view 

 

Therefore in order to use the average method the type of layup should also be taken 
into account. For some orthotropic layups however, the average method cannot be a 
good solution. Figure 4-12 compares these two types of layups. It should be noted 
that the amount of E1 and E2 are the same, therefore they cannot be seen separately 
in figure 4-12. 

 Figure 4-12: orthotropic constants in polar view 
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4.2 Complete layup simulation 

In chapter 2 section 2.3.3.2 the complete method has been introduced. This method 
has been applied for 2 samples in chapter 3 and has been compared with the other 
methods. This example creates an overview of the complete method for a part with 
orthotropic laminate layup, when the average method result is not accurate. The 
assumption for this method is that the smallest part of the laminate is a ply, therefore 
in the complete method each ply should be modeled with its mechanical constants 
and of courses its orientation in the FEM software. 

4.2.1  Exploring an Example 

The example model for this section is a spring made of composite structure, which 
means that laminate layups form the body of the spring instead of the metals. The 
goal of this project is to simulate the FEM model of the spring like the real sample 
with the complete method; and in the next step study the simulation to see if it can 
cover the practical results. Although the spring is produced and tested in the factory, 
the simulation is still necessary. Different layup angles need to be applied, so that the 
best layup angles for obtaining the highest spring stiffness can be found. For this 
example ANSYS is applied as the FEM simulator and PrePost as the composite 
module for modeling the laminate layup ply by ply. 

In figure 4-13 (left side) the solid model of the spring has been illustrated. The 
procedure of modeling in the complete method is to model the neutral surface and 
accumulate the plies on the neutral surface. In figure 4-13 (right side) the surface 
design of the spring has been illustrated. For a better preview of the surfaces the 
spring has been sectioned. The spring has been modeled through three surfaces 
called the outer, middle and inner surfaces. The thickness between the outer and 
inner surfaces is filled with the composite laminate layup. The quantity of the 
thickness is about 2,16 mm. The thickness of each fiber is 0,007mm and the type of 

layup is [ ]45, 45
n

−  orthotropic layup. With a simple calculation it will be clear that 

about 308 layers are required for this layup which means the quantity of “n” in the 
notation is equal to 154. It should be noted that in a general case, the smallest part of 
the laminate is a ply, but in this example the smallest part of the laminate is a fiber, 
because the procedure for producing the spring is special. In the real model, fibers 
with the thickness of 0,007 are stacked together with a machine to create a one ply 
layer. Therefore in this special case the fibers layup are modeled in the FEM 
software. 

It has been described in chapter 2 section 2-3-2 that the ABD matrix calculates the 
entire properties of the laminate layup on the neutral surface (mid-surface). Hence for 
getting a better calculation result, the middle surface is considered as the neutral 
surface (figure 4-13 right side) while the two other surfaces should be neglected. In 
the next step, the laminate layups should be modeled on the upper and lower side of 
the neutral surface. The layup will fill the thickness between the upper and the neutral 
(middle) surfaces and the lower and neutral (middle) surfaces. The neutral surface is 
illustrated with red circles on one spine of the spring in figure 4-13. 
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Figure 4-13: spring model and spring section for layup    

 

Modeling 306 layers in the FEM software is not an ordinary simulation, therefore a 
shortcut strategy should be applied in order to have a faster and simpler simulation. 
In this example three steps have been applied for modeling the whole layup as 
shown in figure 4-14. In step 1 five ply groups on the outer side of the neutral surface 
and four ply groups on the inner side of the neutral surface have been defined. Each 
ply group in step1 consists of 17 subgroups which are illustrated in step 2 (In ANSYS 
software there is a possibility to define the number of subgroups, which helps the 
user reduce the procedure of modeling). Each subgroup is made of a stack up, in the 
stack up two fibers one in the 45 degree direction and the other in the -45 degree 
direction have been defined as shown in step3. In the “fabrics” option of ANSYS the 
thickness of each fiber should be defined as 0,007mm, therefore with a simple 
calculation it will be written as: 

Thickness of laminate: 9 17 2 0,007 2,142× × × =   

As a result the desired thickness of the laminate is obtained through using this 
shortcut strategy. In the “fabrics” option, the material of the fiber also needs to be 
defined. The Epoxy carbon unidirectional is considered as the fiber material for the 
spring. The mechanical constants of the fiber as the smallest part of the laminate are 
defined in composite material options (ANSYS material properties). In table 4-3 all 
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mechanical constants of Epoxy carbon unidirectional have been mentioned, these 
amounts are imported for fiber mechanical constants [12]. 

Figure 4-14: procedure of layup in ANSYS    

 

Table 4-3: Mechanical constants of Epoxy carbon UD  

Constant Amount 

xE  
2  [135000 ]N mm  

yE  
2  [9 00 ]5 N mm  

ZE  
2  [9 00 ]5 N mm  

XYν  0,27  

YZν  0,3  

XZν  0,27  

XYG   
2  [4 00 ]7 N mm  

YZG  
2  [3 00 ]1 N mm  

XZG  
24700 [ ]N mm  

 

 

Step 1 Step 2 Step 3 
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In this example the surface layup in two directions has been modeled. Therefore all of 
these 3 dimensional constants in table 4-3 are not necessary. However, defining the 
2D orthotropic material in the ANSYS material properties is not possible. Based on 
ANSYS help “For the orthotropic properties, the X, Y, and Z value must be specified 
for the model to solve (2-D models only use the X and Y values). Those properties 
which support isotropic or orthotropic behavior will be preceded 
by Isotropic or Orthotropic”. Hence these constants should be imported, but they are 
not necessarily considered in the solution process. 

There is an option in the material library of ANSYS where epoxy carbon can be 
considered woven instead of unidirectional. In the unidirectional style, fibers are 
positioned in one direction and in the woven style; the fibers are placed in two 
directions as is illustrated in figure 4-15. In this example both have been modeled and 
compared [13]. 

Figure 4-15: Fiber direction variation (woven left side, UD right side)    

  

4.2.2  Layup process in ANSYS 

In step 3 (figure 4-14) two plies one in the 45 degree and the other one in the -45 
degree angle have been applied. These two ply angles have been illustrated on the 
model in figure 4-16. The polar properties of one layup (orthotropic layup) and its 
thickness are shown in lower part of figure 4-16.  
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Figure 4-16: Ply angles (45° on the right side and -45°on the left side)     

  

The geometry of the spring is a tube which is spun in a spiral; therefore the angle of 
the ply should also spin on the surface of the spring and could not be linear. For this 
purpose defining a reference direction in the composite simulation is necessary. The 
reference direction defines the rout of the ply angle on the surface in the composite 
layup, as has been shown in figure 4-17 (on the left side). As can be seen, the red 
line on the spring shows the reference direction and by selecting the current line, the 
plies will lie on the neutral surface in the correct format. Ply angles are also 
considered based on the reference direction on the ply. The reference direction has 
been illustrated in figure 4-17 (right side) by yellow arrows.  
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Figure 4-17: Reference direction 

 

The next important composite layup modeling step which should be taken into 
account is the layup direction. The layup direction defines the position of the layup 
which can be upside or downside of the neutral surface. As it has been described in 
step 1 (figure 4-14), there are 5 ply groups which are modeled outside of the neutral 
surface and 4 ply groups which are modeled inside of the neutral surface. Hence a 
layup direction should be defined on the neutral surface (In ANSYS software layup 
direction can be defined in “oriented element set” option as it illustrated in figure 4-
18).  

Figure 4-18: Orientation of element in laminate layup      
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4.2.3  Load, mesh and boundary conditions 

After all composite layup modeling steps in section 4.2.2, the mesh, boundary 
conditions and loads should be applied. The mesh type is the normal square mesh 
and software will make this for all of the layups.  

The Loading acts on the spring are the step forces from 100N to 600N in six load 
steps (marked by A in figure 4-19). Forces act on above surface of spring (colored by 
red color), because a pure vertical force in y direction is required, but if the ending 
circle of the spring is applied as a force support, the resultant bending moment will 
change the deformation results.  

The fixed support is the ending circle of the lower side of spring (marked by B in 
figure 4-19). This fixed support is fixed in all directions. In case of having a pure 
vertical deformation two remote displacements on the above and below surfaces of 
the spring have been considered. Their deformation should be avoided in the x and z 
directions, as well as their rotation in these directions. This action will also avoid the 
cone deformation of the spring (marked by C and D in figure 4-19). 

Figure 4-19: layup laminate left side and force and boundary conditions right side 
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4.2.4  Results 

After considering the boundary conditions and forces it will be possible to have the 
deformations of the spring for each load step. The deformation is illustrated in six 
steps in figure 4-20. It should be noted that only the vertical deformations are 
required. 

Figure 4-20: Deformation of spring for six load steps 

 

       100N              200N                300N               400N             500N        600N   

 

Diagram 4-1: comparing the FEM deformation of spring with deformation of real deformation 
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In this example as it has been mentioned earlier, the Epoxy Carbon UD (regular) and 
the Epoxy Carbon Woven are applied as the fiber material. The deformation 
comparison between these two types of material and the practical result has been 
shown in diagram 4-1. But why does the woven fiber have a lower strength than the 
UD fiber?  

Deformation of the spring simulation with Regular material shows good adaptation 
with the practical results in diagram 4-1. There is still a difference between these two 
diagrams from step 5 to step 6 (500N to 600N). In figure 4-16 between load steps 
500 to 600, spirals start to interfere with each other which cause more deformation in 
the FEM simulation. But in the real model test this interference is not possible. There 
is a possibility to define contact between the spirals to avoid their interference, but 
this is not actually the concern of this project and therefore is not dealt with here.  

4.2.5  Optimizing the model 

In section 4.2.1 the practical example for the complete layup simulation has been 
introduced. In the next step the procedure of modeling has been described and a 
simulation with acceptable deformation results has been obtained. The goal of this 
section is to find a better stiffness for the spring and optimize the model with the 
same geometry. In this case the fiber angles on the simulation process are changed 
and the rest of the simulation stays untouched. This action will show the effect of the 
fiber orientation on the stiffness of the spring. This is the advantage of the complete 
method that the layup model could be changed and optimized without an extra 
simulation.   

Figure 4-21: Ply angles on upside [60,-60]n and on downside [30,-30]n (both two ply angles 
shown in one figure) 
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In figure 4-21 two new types of layup are introduced, the first layup type is [ ]60, 60
n

−

and the second layup type is[ ]30, 30
n

− , with “n” considered as 154, which is similar 

to the  [ ]45, 45
n

−  layup. The mechanical constants which are applied for these 

simulations are also similar to table 4-3. As it has been mentioned the layup model 
stays untouched. After applying the new fiber orientation and calculations, the 
deformations of each new optimized model will be available. By obtaining these 
deformations, they can be compared to the deformations in diagram 4-1. The 
deformations of the spring with different fiber orientations are compared in diagram 4-
2. 

Diagram 4-2: Comparing all deformations with different layup angles 

  

According to diagram 4-2 the new simulations cannot meet the required demands. 

The deformations of changed layups ([ ]60, 60
n

− ,[ ]30, 30
n

− ) are even more than 

primarily design which was [ ]45, 45
n

− layup, which means the stiffness of the new 

layups are weaker than the practical model and cannot be considered as the 
optimized layup. 

The question which may come to mind is why the [ ]45, 45
n

−  laminate has the best 

result? To investigate this question the principal stresses of the spring spirals should 
be studied. In figure 4-22 the principal stress vectors are available. The maximal 
vectors are shown with red arrows and minimum vectors with blue arrows (as the 
minimum stress vectors are quite small, they would be recognized in the zoomed part 
of figure 4-22. In this figure, spring spirals are rotated until they become parallel with 
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the X axis (global axis system) to acquire the correct angle view of the stress vectors 
acting on the spring. All principal stresses which act on the body of the spring are 
orientated in the 45 and -45 degree directions. Since the best layup should have the 
ply angles in the same orientation of the principal stresses to be able to better resist 

against the stresses and consequently have a better stiffness, the [ ]45, 45
n

−  layup is 

already the best layup for the spring. 

Figure 4-22: principal stress vectors of spring 

  

4.2.6  Advantage and disadvantage of complete method 

The complete method used in this example provides a good estimation and 
acceptable results, compared to the real model, as can be seen in diagram 4-1. In 
section 4.1.5 it has been described that the average method is not precise when the 
main loadings are the bending or twisting and when considering the position of plies 
is important in the model. In the current example the vertical force acts on top of the 
spring, but because of the spirals geometry of spring the bending momentum 
appears on the body of the spring. Thanks to the complete method, the precise 
deformation results, similar to the practical result test have been obtained, regardless 
of the bending momentum. In this example, changing the position of the plies will 
change the spring stiffness; therefore the position of the plies in this example is also 
important. By considering all of the following conditions using the complete layup 
simulation is inevitable. To prove this claim, the spring is simulated with the new 
method. 

In this method the spring is modeled in the CATIA software by using a new strategy. 
In fact this method is not purely an average method nor a complete method. 
However, it is the combination of the average method and the complete method. In 
the complete method (section 4.2.1) it has been described that 306 layups are 
required for the spring layup. The strategy of this method is modeling the 9 layer 
layup instead of the 306 layer layup and allocates the average mechanical constants 
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of each of the 34 plies to one of these 9 plies. Therefore there will be a 9 layer layup 
simulation where each new ply has the thickness of 34 plies in the real model .The 
mechanical constants of each new ply is the average mechanical constants of the 34 
plies and is calculated by the CLT method. This new layup model is illustrated in 
figure 4-23. 

Figure 4-23: New layup model for spring 

  

The boundary condition and loadings are the same as in the complete method 
(section 4.2.3). After calculating the model, the deformation results will be available. 
In figure 4-24 the spring deformation at the 3rd load step 300 N is illustrated. The 
spring at the 3rd load step is completely pressed. According to diagram 4-2 the spring 
in the practical test has a 36mm deformation at the load step 300 N. But in this 
simulation the deformation quantity of the spring is more than double that of the 
practical amount. In addition the spring deformation as is illustrated in figure 4-24 
reaches the maximum amount. Therefore the spring in this simulate cannot tolerate 
more load steps. This means that this simulation is not acceptable and its results are 
far from the complete method results. 

To realize where this huge difference between the results comes from, the layup 
simulation of this model should be analyzed. In figure 4-25 the 9 layer layup is 
presented. The red colors layups are plies with the 45 degree orientation and the 
green colors are considered for the plies with -45 degree. As it has been mentioned 
each ply in this simulation is represent with 34 plies in the complete method. These 
34 plies are alternatively 45 and -45 degree in the complete method. But in this 
simulation one ply with the thickness of 34 plies is simulated in one orientation such 
as in 45 degree. Hence instead of 153 plies in 45 degrees and 153 plies in -45 
degrees, there are 5 plies in 45 degrees and 4 plies in -45 degrees. 
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Figure 4-24: Deformation of spring at load step 300 N 

  

 

Figure 4-25: 9 layer layup  

  

Although this method considers similar thickness and plies orientation, its results are 
far more imprecise than the complete method. This example shows the importance of 
the ply position and its orientation in the orthotropic laminate layup, especially in 
cases where the laminate is under the bending and twisting loadings. 

As in the complete method, simulation is similar to the real composite part and there 
is a possibility to test and optimize the layup model with variable parameters. In other 
words, this method will provide an opportunity for the user to change the model in the 
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type of layup, ply orientation, materials and mechanical constants. These data can be 
gathered and compared and the best simulation can be applied based on the specific 
demand. 

The FEM complete layup simulation has an extra advantage option. By using this 
option each ply deformation, stress distribution, curvature and etc. can be studied 
separately. This study can find the plies which have a critical status of stress or 
strain. Accordingly the layup model can be improved or the plies orientation can be 
optimized to obtain a better model. This option is also considered as an advantage of 
the complete method. 

The time consuming process of simulating a composite laminate layup is considered 
as the disadvantage of this method. When the layup model is more complicated, 
more time is needed to find a proper simulation strategy, although this depends on 
the layup model. For instance for the orthotropic laminate layup (described in section 
4.1.5) there is no choice but the complete layup. Hence before getting involved in the 
simulation process, first the composite layup should be studied and an appropriate 
method should be selected. 
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5 Summery 
 

In this project the application of FEM in structures made of composite material has 
been studied. The strategy is to find the appropriate theoretical method for obtaining 
the strain or curvature of the composite laminate based on applied forces and 
moments. The next step is to model the composite laminate in the FEM software by 
using different methods, and comparing them to the theoretical method in order to 
see the precision of each method as well as the possibility of using them in the FEM 
composite analysis. 

First, the theoretical and FEM methods have been introduced. The first theoretical 
method is called CLT (classical laminate Theory). The CLT formulations for achieving 
the average mechanical constants of a laminate have been described. The CLT 
formulation considers the thickness and orientation of each ply or a lamina ‘which in 
this project is considered as the smallest part of the laminate’ and calculates the 

average quantity of mechanical constants ( 1 2 12, , ,E E G ν ) for the whole laminate. The 

second theoretical method is called the ABD method which uses the ABD matrix for 
calculating the strain and curvature of the laminate based on the forces and moments 
acting on the laminate. The procedure for obtaining the 6×6 ABD matrix has been 
described. After getting to the ABD matrix the application and effect of each sub 
matrix has been introduced. This method has been considered as the principle 
method in this project for calculating the laminate deformation and curvatures. The 
average method is the first FEM solution. In this method the neutral surface of the 
composite part is modeled in the FEM software. This FEM method uses the resultant 
average mechanical constants of the CLT method and uses them as an input for the 
FEM model. The complete method is the second FEM solution, in this way the 
laminate is modeled ply by ply in the FEM software. There is no simplification in 
modeling of the laminate and each ply is modeled with its own mechanical constants 
and of course its orientation. The complete method is a pure FEM solution without 
any theoretical pre-calculations. 

Second, the following proposal methods have been used for calculating two 
composite samples. After calculating and modeling all methods for each sample, the 
obtained results have been compared to each other. This comparison shows the 
advantage and disadvantage of each method and also shows the proper usage case 
for each method. The first sample is a cylindrical tube under internal pressure. To be 
able to obtain the theoretical calculation, one square element on the surface of the 
cylinder has been considered as sample 1 (The theoretical calculation for the whole 
cylinder is a long and complicated process). The result of the internal pressure is 
stress in the X and Y directions on the square element, and the stresses result is 
deformation at the X and Y directions. These deformations have first been 
established for each method and second have been compared. The laminate layup 
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types for this sample are a symmetric nine layer layup and an eight layer layup of the 
epoxy carbon material. The second sample is a square surface element under a 
bending momentum. In this sample a momentum in the Y direction is acting on the 
surface, and the bending momentum result is curvature in the X and Y directions. 
Same as sample 1 the curvatures have been calculated in all methods and the 
established results have been compared. The laminate layup type in this sample is a 
nine layer layup of the epoxy carbon material. In these two samples the complete 
method has been applied by two different FEM software (CATIA, ANSYS). The 
reason for this is to be able to view the precision of each FEM software on each 
sample. 

Third, after proving the applicability of the FEM methods and recognizing their usage 
cases, each method has been applied in a practical project. In the first example an 
internal body of the medical helicopter has been introduced and one part of it has 
been selected as an example. The average method has been selected for modeling 
this example in the FEM software. The CLT formulations for obtaining the average 
amounts of mechanical constants have been calculated. The load cases, mesh and 
boundary conditions for this part has been described. The resultant deformation of 
the part has been introduced, and the advantage and disadvantage of the average 
method has been described. The second example is a spring made of the composite 
material under vertical force. The complete method has been used for simulation and 
calculation of a spring in the FEM software. The procedure of complete layup 
modeling of the spring has been described; load, mesh and the boundary conditions 
have been introduced. After calculating the spring deformations in the FEM software, 
they have been compared with the practical results. To illustrate the other facilities of 
the full method, the optimization of the spring has been described with different layup 
angles. In the advantage and disadvantage description of the full method, for proving 
the necessity of using the complete method for the spring, it has been simulated with 
a combined method (average and complete method has been combined), and the 
results have been compared. 

The comparison of the results obtained for sample 1 using all the different methods 
illustrates that the precision of the average method is acceptable for simulating the 
composite layup. The first practical example (helicopter internal body) which has 
been modeled by using the average method is also proof of this claim. Although a 
comparison of sample 2 results have also been presented, however, in cases where 
bending and twisting are a major part of loading or where the ply position are 
important, the average results do not seem to be accurate enough and the complete 
method needs to be applied. This assertion has been proven by the second practical 
example (spring) which has been simulated by the complete method. Hence the 
strategy of simulating the composite layup in the FEM software depends on the type 
of layup and type of loading. 
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