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Kurzfassung

Die heutige Welt ist von der Verfügbarkeit großer Datenmengen und den Technologien,
mit Hilfe derer diese Daten verarbeitet werden, geprägt. Diese Entwicklung hat zwar
die Wirtschaft merklich angekurbelt, gleichzeitig aber auch die Notwendigkeit für Da-
tensicherheit erhöht. Sobald sensible und persönliche Daten verarbeitet werden, müssen
entsprechende Datensicherheitsmechanismen eingesetzt werden, um unbefugte Daten-
weitergabe zu verhindern, die sich negativ auf Einzelpersonen auswirken könnte. Bei
persönlichen Gesundheitsdaten handelt es sich um hochsensible Daten, deren Weitergabe
streng kontrolliert werden muss, um die Privatsphäre der betroffenen Personen zu wahren.
Die Einführung vernetzter Systeme wie beispielsweise elektronischer Gesundheitsakten
hat den Zugriff auf und die Verarbeitung von entscheidenden Informationen erleichtert,
was auch zu einer Verbesserung der allgemeinen Gesundheitsversorgung geführt hat.
Mit der Vereinfachung des Zugriffs auf kritische Daten ist jedoch auch die Angst vor
Datenmissbrauch durch Unbefugte gewachsen. Die unkontrollierte Weitergabe persönli-
cher Gesundheitsdaten führt in vielen Fällen zu Diskriminierung und Belästigung der
betroffenen Personen. Daher sollten die bestehenden Rechtsvorschriften durch technische
Maßnahmen ergänzt werden. Da persönliche Gesundheitsdaten aber auch eine wertvolle
Informationsquelle für Forschungszwecke sind und Patienten meist mit der Weiterga-
be ihrer Daten für die Sekundärnutzung durch Dritte einverstanden sind, solange ihre
Privatsphäre dabei gewahrt wird, muss das Gleichgewicht zwischen der Wahrung der
Privatsphäre der Patienten und der Nutzbarkeit ihrer Daten für die Forschung gefunden
werden.

Diese Dissertation untersucht Pseudonymisierung als eine Methode, um dieses Gleich-
gewicht zwischen Privatsphäre der Patienten und Nutzbarkeit der Daten zu wahren. Die
auf Pseudonymisierung basierende Sicherheitsarchitektur gewährleistet, dass die Gesund-
heitsdaten der Patienten pseudonymisiert gespeichert werden, was die Sekundärnutzung
der Daten ermöglicht, während die Privatsphäre der Patienten gewahrt wird. Da Pseud-
onymisierung ein umkehrbarer Prozess ist, können vertrauenswürdige Gesundheitsdienst-
leister für die primäre Gesundheitsversorgung Zugang zu den nicht-pseudonymisierten
Originaldaten erhalten. Diese Form des autorisierten Datenzugriffs wird ausschließlich
von den Patienten als Dateneigentümern gesteuert. Demnach unterstützt die Pseudonymi-
sierungsarchitektur sowohl die vom Patienten gesteuerte Primärdatennutzung sowie die
Sekundärdatennutzung unter Wahrung der Privatsphäre der Patienten. Darüber hinaus
untersucht die Dissertation auch die Pseudonymisierung für die alleinige Sekundärdaten-
nutzung einschließlich der damit verbundenen notwendigen Schritte für die Umwandlung
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von bestehenden archivierten Gesundheitsdaten in eine für die Sekundärdatennutzung
für Forschungszwecke geeignete Form, während wiederum die Privatsphäre der Patienten
gewahrt wird.



Abstract

Today’s world is characterized by the availability of large amounts of data and the
technologies to process them. This has been a significant boost to today’s economy, but
has also increased the need for data security. Whenever sensitive and personal data is
involved, adequate data protection mechanisms must be installed to prevent unauthorized
data disclosure which results in adverse consequences for individuals. Personal health
data is a particular, usually highly sensitive type of data, which is why its disclosure must
be tightly controlled in order to protect the privacy of individuals. The introduction
of interconnected systems like electronic health records has made it easier to acquire
and process vital information and has thus improved general health care, though the
facilitated access to critical data has also increased the fear of data abuse by unauthorized
parties. More often than not, unregulated disclosure of personal health data leads to
discrimination or harassment of the affected individuals. Thus, existing legal regulations
should be supplemented by technical means. However, personal health data is also an
important source of information for research purposes, and patients usually agree to
this form of beneficial data disclosure to third parties for secondary use, as long as their
privacy is preserved. Thus, it is necessary to keep the balance between the patients’
privacy and the usability of their health data for research purposes.

In this thesis, pseudonymization is investigated as a method to keep this balance
between privacy and data usability. The security architecture based on pseudonymization
ensures that the patients’ health data is stored in a pseudonymized state, which enables
privacy-preserving secondary use. Since pseudonymization is a reversible process, access
to the original de-pseudonymized data can be granted to trusted health care providers
for direct primary care. This form of authorized data access is controlled exclusively by
the patients who are acting as owners of their data. Therefore, this pseudonymization ar-
chitecture supports the concurrent patient-controlled primary use and privacy-preserving
secondary use of health data. Furthermore, the thesis also investigates pseudonymization
in a scenario purely for secondary use including the necessary steps to convert existing
archived health data into a form suitable for privacy-preserving processing for research
purposes.
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CHAPTER 1
Introduction

1.1 Motivation
Data security is one of the key words in today’s data centric world. Each day, enormous
amounts of sensitive data are created and thus must be protected adequately. Large
scale data intrusion incidents such as the Heartland or the Sony incidents [53] clearly
demonstrate the need for adequate data security. In 2014, Sony once again was the target
of an attack which was even more dramatic than the 2011 incident as it demonstrated
the existence of critical vulnerabilities and bad practices such as the existence of folders
actually named ’passwords’. The stolen data included sensitive internal documents such
as unreleased scripts, but also very personal employee-specific data such as information
about the medical conditions of employees and their family members [96]. Financial
institutions are also high-profile targets for hackers, as demonstrated by the attack on
JPMorgan Chase, also in 2014 [104]. In data security, the notion of privacy is usually
associated with confidentiality of data. But in a broader sense, information privacy is
defined as "the claim of individuals, groups or institutions to determine for themselves
when, how, and to what extend information about them is communicated to others"
[124], or in other words, to whom sensitive data is disclosed.

Unregulated disclosure of sensitive information such as credit card information, bank
accounts or user profiles of social networks may result in considerable adverse effects for
the persons involved when exploited by criminal parties. Furthermore, in times where
even the average non-criminal citizen is under surveillance by governments and their
intelligence services using clandestine surveillance programs or more overt approaches
such as data retention, the need for privacy of individuals is clearly evident. Thus,
although privacy is declared as a human right in article 8 of the European Convention
on Human Rights [34] and the processing or transfer of personal data is also legally
regulated by the European Union with Directive 95/46/EC [44], there is a clear need for
supplementing these legal acts with robust technical solutions. These technical solutions
are necessary because legal regulations can be amended or overridden when deemed
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necessary with severe consequences as demonstrated in the reduction of civil rights by
the introduction of the USA Patriot Act [114]. The introduction of more or less legally
compliant practices such as the before mentioned unconditional data retention and other
surveillance operations has proven that legal regulations are less effective than expected
and that they were often plainly ignored by governmental institutions.

Apart from everyday life, a particular domain where privacy plays a large role is
health care. The introduction of information and communication technologies into health
care has considerably increased the quality of health services. The ability of processing
or acquiring the necessary critical information is vital for health practitioners to make
the correct decisions concerning treatment plans and therefore saving patients’ lives.
Interconnected systems like electronic health records (EHRs) were introduced to create a
common standard for data storage and especially data exchange of critical information
and therefore have the potential to further improve the quality of patient treatment.
The Austrian ELGA (Elektronische Gesundheitsakte) [42] initiative and the German
EGK (Elektronische Gesundheitskarte) [27] [49] both aim at facilitating the exchange of
specific patient-related data between health care providers for that purpose. However,
the large amounts of data produced by hospital information systems increase the chance
of data abuse by unauthorized parties which might lead to discrimination or harassment:
Organizations like insurance companies or employers are highly interested in gathering
health-related information on potential customers or employees, and the disclosure of
information such as a history of substance abuse or an HIV infection to health insurers
or employers could result in denied health insurance coverage or denied job offers. The
introduction of the ELGA and the EGK has created the fear of becoming a ’transparent
patient’ in many persons who are afraid of an unregulated and uncontrolled exchange of
sensitive health information. This fear is very well understandable given the numerous
documented cases of health information abuse. Furthermore, people do not necessarily
need to suffer from a particular illness to experience discrimination. Even the pure
predisposition of a certain disease could be sufficient to lead to discriminating situations.
This form of genetic discrimination [75] was so wide-spread in the United States that the
US government had to react by introducing the Genetic Information Nondiscrimination
Act (GINA) which was signed in 2008 [115].

Thus, the discussion of privacy is actually one of the fundamental issues in health
care today. The disclosure of health-related data is therefore subject of several data
protection acts such as the GINA or the Health Insurance Portability and Accountability
Act (HIPAA) [116] issued by the United States Department of Health and Human
Services in 1996. Furthermore, technical solutions such as data encryption, which is very
common in areas like the banking sector, are also increasingly applied in health care data
management to protect sensitive data.

1.2 Problem statement

As beneficial as legal acts such as the HIPAA are in general, these regulations are
counterproductive when it comes to beneficial disclosure of health information in the
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form of secondary use [78]. Advances in medical techniques are largely the results of
empirical studies where the researchers require access to extensive and accurate medical
data of patients to back their data-driven research methods. Access to patient data is
also necessary when trying to identify possible candidates for clinical studies, which is
very time-consuming and thus costly [25]. In general, patients do often agree to make
their medical data available and participate in clinical studies, but they express concerns
that personal information could be used for marketing and insurance purposes [126],
that it could be disclosed to employers and family members [3], or that it could be
disclosed due to common security incidents [105]. Thus, it must be ensured that the
patients’ privacy is preserved even in secondary use, which requires a trade-off between
the patients’ requirements for privacy and the society’s need for improving overall health
care.

A technique often mentioned to solve this problem is anonymization during which all
identifying data elements are removed in order to make it impossible to reidentify the
corresponding individual. In such a scenario, health data would be anonymized before
being disclosed to researchers. However, there are several drawbacks with this approach:
Anonymization always leads to loss of data accuracy and thus data expressiveness.
For example, apart from removing direct identifiers such as names, the well-known
anonymization approach of k-anonymity [108] applies generalization and suppression
techniques on person-identifying (quasi)identifiers (i.e. elements that are not identifying
on their own but are identifying when combined, like the home address or age) to divide
patients into equivalence groups including individuals that share the same quasi-identifiers
and thus cannot be distinguished from each other. Furthermore, anonymization is an
irreversible process and, thus, the original data cannot be restored without access to the
original data source, which can be problematic when patients need to be reidentified for,
e.g., the selection process of a clinical trial.

A similar approach to anonymization is pseudonymization where the identifying data
elements are not completely removed but replaced by pseudonyms. These pseudonyms
allow for reidentification of the patients under strictly controlled circumstances. This
reversibility effectively circumvents the limitations of anonymization, which renders
pseudonymization a superior approach compared to anonymization in this case. Several
pseudonymization approaches have been proposed (cf. Section 2.4), but they regard
pseudonymization as a mechanism to solely create unlinked medical data records, mainly
for secondary use. Other security properties such as access control are usually regarded
as being out-of-scope and handled externally by a security infrastructure with separate
authentication and authorization controls.

1.3 Research question

This thesis investigates how pseudonymization can be applied to meet general security
requirements such as authentication and authorization. In many cases, a trusted third
party is required that acts as central pseudonymization service provider and thus controls
access to research data. Furthermore, the approaches are limited to database records only
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(k-anonymity), i.e. structured data. Images in the Digital Imaging and Communications
in Medicine (DICOM) [77] format were investigated, but the wide-spread Health Level 7
Clinical Document Architecture (HL7 CDA) [57] is often neglected. The focus of this
thesis is therefore the investigation of pseudonymization as a holistic security architecture
supporting the medical document standard HL7 CDA. In particular, the thesis aims to
answer the following research questions:

• Can pseudonymization be used as a holistic security architecture controlling au-
thentication, authorization, and data access to sensitive data?

• How does pseudonymization fare in a real-world scenario with unstructured source
data? What are the preconditions for successful pseudonymization?

The main contribution of this thesis is twofold: First, a pseudonymization approach
is developed that acts as security architecture for sensitive health data, but should also
be applicable to any sensitive data record. We propose to apply cryptographic means to
create and protect pseudonyms and rely on pseudonyms as access identifiers, thus creating
an access control mechanism based on pseudonym knowledge. This pseudonymization
approach therefore has to implement secure storage and retrieval techniques.

Second, the pseudonymization approach is extended to be applied to standardized
medical data in the form of HL7 CDA documents. HL7 CDA documents are XML-based
and specifically designed to be interoperable among different systems to facilitate data
exchange and automated processing. Therefore, the documents are perfectly suited for
automated large-scale screening for research activities. Usually anonymization techniques
are used in this case, but as already stated, anonymization is irreversible by design which
is a considerable disadvantage here. In many cases, the corresponding patients need
to be contacted (as further information is required) and thus need to be reidentified.
The unstructured nature of many (source) documents such as medical discharge papers
also poses a difficulty, which requires that the necessary information first needs to be
extracted and converted into HL7 CDA documents in a privacy-preserving way.

1.4 Structure of the thesis
The thesis is structured as follows: In Chapter 2, a general overview of privacy and
privacy-enhancing technologies is given. Section 2.1 introduces the term information
privacy and sets it into context with security. Section 2.2 defines privacy-enhancing
technologies (PETs) and 2.3 defines their properties which are organized into a taxonomy
with seven dimensions. Section 2.4 introduces pseudonymization as a privacy-enhancing
technology, identifies its properties, and lists related work. In Chapter 3, PERiMETER,
a holistic Pseudonymization and pERsonal METadata EncRyption methodology for
the concurrent primary and secondary use of health data, is presented. Section 3.1
identifies the requirements with respect to existing pseudonymization approaches and
discusses the PET properties of PERiMETER. Section 3.2 describes PERiMETER’s
core concepts, query mechanisms, and extensions to the core concepts like data integrity
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verification. Section 3.3 then describes different application scenarios, followed by
a discussion of implementation details and an analysis of the methodology’s privacy
assurance in Section 3.4. In Chapter 4, MEDSEC, a system for the creation of MEDical
records for SECondary use, is presented. Section 4.1 describes the overall requirements
and lists related work. Section 4.2 describes MEDSEC’s core phases and modules. Section
4.3 provides implementation details and evaluation results of the methodology’s accuracy.
And Chapter 5 completes this thesis with a summary of the results (Section 5.1), revisited
research questions (Section 5.2), a summary of the benefits (Section 5.3), and a discussion
of limitations and future research directions (Section 5.4).

This thesis is based on the following peer-reviewed publications:

• Johannes Heurix, Peter Zimmermann1, Thomas Neubauer, Stefan Fenz: A taxon-
omy for privacy enhancing technologies, Computers & Security, Vol. 53, pp. 1-17,
2015

• Thomas Neubauer, Johannes Heurix: A methodology for the pseudonymization
of medical data, International Journal of Medical Informatics, Vol. 80, No. 3, pp.
190-204, 2011

• Johannes Heurix, Michael Karlinger, Michael Schrefl, Thomas Neubauer: A hybrid
approach integrating encryption and pseudonymization for protecting electronic
health records, Proceedings of the 8th IASTED International Conference on Biomed-
ical Engineering, pp. 117-124, 2011

• Johannes Heurix, Michael Karlinger, Thomas Neubauer: Pseudonymization with
metadata encryption for privacy-preserving searchable documents, Proceedings of
the 45th Hawaii International Conference on System Science (HICSS), pp. 3011-
3020, 2012

• (invited follow-up journal publication) Johannes Heurix, Michael Karlinger, Thomas
Nebauer: PERiMETER - Pseudonymization and pERsonal METadata EncRyption
for privacy-preserving searchable documents, Health Systems, Vol. 1, No. 1, pp.
46-57, 2012

• Johannes Heurix, Antonio Rella, Stefan Fenz, Thomas Neubauer: Automated
Transformation of Semi-Structured Text Elements, Proceedings of the 2012 Americas
Conference on Information Systems (AMCIS), pp. 1-11, 2012

• (invited follow-up journal publication) Johannes Heurix, Antonio Rella, Stefan
Fenz, Thomas Neubauer: A rule-based transformation system for converting semi-
structured medical documents, Health and Technologies, Vol. 3, No. 1, pp 51-63,
2013

1Based on concepts introduced in this paper, Peter Zimmermann has written his master’s thesis with
the title ’A Survey and Taxonomy on Privacy Enhancing Technologies’ which was co-advised by the
author of this dissertation.
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• Stefan Fenz, Johannes Heurix, Thomas Neubauer, Antonio Rella: De-identification
of unstructured paper-based health records for privacy-preserving secondary use,
Journal of Medical Engineering & Technology, Vol. 38, No. 5, pp. 260-268, 2014

• Johannes Heurix, Stefan Fenz, Antonio Rella, Thomas Neubauer: Recognition
and pseudonymisation of medical records for secondary use, Medical & Biomedical
Engineering & Computing, Vol. 54, No. 2, pp. 371-383, 2016
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CHAPTER 2
Pseudonymization as a

privacy-enhancing technology

In this chapter, an overall introduction to (information) privacy and privacy-enhancing
technologies is given and several privacy-related terms are introduced. Then, pseudonymiza-
tion is characterized as privacy-enhancing technology and related work is described. The
content of this chapter has been published in the following publication:

• Johannes Heurix, Peter Zimmermann1, Thomas Neubauer, Stefan Fenz: A taxon-
omy for privacy enhancing technologies, Computers & Security, Vol. 53, pp. 1-17,
2015

2.1 Privacy and security

Privacy is usually something which is deemed as highly important to everybody, yet it
is surprisingly difficult to define. Historically, the famous phrase of the right "to be let
alone" dates back to 1834, originated in the ruling on copyright in the case Wheaton v.
Peters by the U.S. Supreme Court [117]. Later, in his dissent of the U.S. Supreme Court’s
decision in the case Olmstead v. United States in 1928, associate justice Louis Brandeis
argued that "the right to be let alone" is "the most comprehensive of rights, and the
most valued by civilized men" [118]. Privacy has also been recognized as a fundamental
human right in article 12 of the United Nations Universal Declaration of Human Rights
of 1948 [112] as well as in article 8 of the European Convention on Human Rights of 1987
[34]. Furthermore, numerous international and national legal acts were introduced to
enforce privacy, such as the Privacy Act of 1974 in the United States [113], the European

1Based on concepts introduced in this paper, Peter Zimmermann has written his master’s thesis with
the title ’A Survey and Taxonomy on Privacy Enhancing Technologies’ which was co-advised by the
author of this dissertation.
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Directive 95/46/EC of 1995 [44], as well as individual national implementations like the
Austrian Data Protection Act (DSG2000) of 2000 [90].

(Information) Privacy is closely related to (information) security. Security is usually
described as the composite of the attributes confidentiality, integrity, and availability [84]:
Confidentiality refers to the prevention of particular assets being accessed by unauthorized
parties. This also includes the pure knowledge of the assets’ existence. Integrity ensures
that the assets are only modified by authorized parties and that unauthorized tampering
can be detected. Availability is the attribute which determines the accessibility of assets
to authorized parties at appropriate times. There are other aspects that are related
to these security attributes such as reliability (correct continuity), safety (absence of
adverse consequences), and maintainability (how easily modifications and repairs can be
conducted), forming the concept of dependability [8] (Figure 2.1).

Figure 2.1: Dependability and security [8]

Privacy is often perceived as part of security, in particular as an aspect of confiden-
tiality. Privacy mainly deals with the following three aspects [84]: First, the core of the
privacy discussion is always the affected subject, i.e. the individual, group, company, or
organization that is the target of privacy-related issues. Second, it is not the affected
subject itself but sensitive data and information about this subject which is privacy-
critical. The knowledge of the existence of an individual in general or a company is
usually not privacy-compromising, as is publicly available and non-critical information
such as a company name or a company’s business area. However, sensitive information
combined with the data subject is privacy-compromising. For example, the knowledge of
the existence of a particular medical condition on its own is considered publicly available
information, but the knowledge that a particular individual suffers from this medical
condition is usually regarded as privacy-critical. The same is true for incidents such as
security breaches: While it is common knowledge that these incidents happen, companies
will surely be very cautious and reluctant when disclosing to the general public that they
suffered from a security breach. This leads to the third aspect of privacy, namely the
controlled disclosure of sensitive data, i.e. to control who is allowed (trusted) to have
knowledge of critical information about the affected subject.

In his taxonomy, Solove [107] investigates privacy from a legal point of view by
identifying privacy problems and defines four principal groups of activities which may
create privacy policies. As shown in Figure 2.2, the center of this model is again the data
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subject which is the individual that is affected by privacy-compromising activities. Other
entities such as other people, businesses, and the government collect information about
the data subject, process the information, and disseminate the information. Furthermore,
these other entities may directly ’invade’ the data subject’s life. This results in the
following groups of potentially privacy-compromising activities: (i) information collection,
(ii) information processing, (iii) information dissemination, and (iv) invasion.

Figure 2.2: Groups of activities that affect privacy [107]

Information collection refers to activities with the goal of gathering information about
a particular data subject. This includes passive activities like surveillance where a data
subject is either watched, listened to, or being recorded, as well as active activities
like interrogations where the data subject is more directly approached in the form of
questioning. Information processing involves activities that combine several data pieces
about a data subject (aggregation), link information to a data subject (identification), or
use information for purposes other than the original purpose for which the information
was actually collected without the data subject’s consent (secondary use). Information
can also be processed with little regard to security-related issues (insecurity) or without
informing the data subject about the information collection and processing activities
(exclusion). The third group of activities is related to transferring personal information to
others. This includes the violation of confidentiality (breach of confidentiality), passing
on truthful information (disclosure) or false or misleading information (distortion) about
the data subject to others, increasing the possibility to access the information (increased
accessibility), and the threat of disclosing personal information (blackmail). In the final
group, activities that are directly targeted at the data subject are collected such as
invasive activities that interfere with the data subject’s tranquility or solitude (intrusion)
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as well as the direct invasion into the data subject’s decisions regarding private affairs by
the government (decisional interference).

Rezgui et al. [91] describe eight dimensions of (Web) privacy which have to be
considered in order to preserve privacy: Information collection ensures that a data
subject’s private information is only collected with the subject’s explicit consent and not
without his/her knowledge. Information usage defines for which purposes the private
information is used. Information storage defines how and for how long private information
is stored. Information disclosure controls how and to whom private information is
disclosed. Information security refers to the existence of common security policies and
mechanisms that guarantee the security of information. Access control states who may
have access to which information under which conditions. Monitoring ensures that each
movement of sensitive information (input/output) is traced and maintained. And finally,
policy changes could be introduced but must not be done retroactively so that previously
collected sensitive information is not subject to the new (less-protective) policies.

2.2 Privacy-enhancing technologies

Privacy can be enforced in multiple ways: On the one hand, privacy can be regulated
by law, such as [113], [44], [90]. However, laws can become outdated over time and
loopholes and ambiguities may arise, which is especially true for the information privacy
sector where technologies and methods of data use change rapidly. Thus, laws need to
be amended to match the current situation but not necessarily to the benefit of the
individual. Every introduction or modification of existing legal regulations is closely
followed by numerous interest groups and lobbies that try to exert their influence to
render the outcome more favorable to their clients, usually governmental institutions,
commercial enterprises, or other influential organizations. Or legal regulations can more
directly be amended or overridden by more pressing concerns, leading to ad hoc legislation,
as already mentioned in the previous section (cf. [114]).

On the other hand, privacy can be controlled by organizational measures such as
privacy policies commercial companies usually rely on. These policies dictate how to
deal with privacy-critical actions and issues such as the disclosure of sensitive personal
information about customers. But it has been shown that there are certain issues with
privacy policies [106], be it that they are inaccurately defined, contain errors, or simply
do not exist. Another issue is that policies were often installed only after a certain
(security) incident as a quick response measure, after the damage was already done. As
security policies and their use have evolved over the course of time, privacy policies
are usually defined and enforced more proactively these days. Even so, organizational
methods such as privacy policies suffer from the same shortcoming as regulations by law,
namely that these can be modified if they prove to be too restrictive and compromising to
business operations. This is especially true for companies whose core business case is that
of handling and processing personal data of customers, such as Google and Facebook,
companies that have a long history of controversial privacy-related practices. Even if
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organizational privacy policies are bulletproof today, one has to trust the corresponding
company that these policies will not change in the future to the detriment of customers.

Given these limitations of legal and organizational measures, it is clear that they
have to be supplemented with more robust, i.e. technical means. If their foundations
(e.g., cryptographic algorithms and their implementations) are proved to be sound,
technical measures are dependable tools that ensure that information is collected and
processed in a privacy-preserving way. Due to the close relationship of privacy and
security, privacy measures are in general already integrated with generic information
security-enforcing technical solutions, or privacy preservation is the positive ’side effect’
of security measures. So-called privacy-enhancing technologies or PETs (cf. [48]) are
technical means specifically targeted at preserving and enhancing privacy. With privacy-
enhancing technologies, security aspects like confidentiality, integrity, and availability
are still applicable, but extended with attributes that reflect the focus on privacy. In
a collaborative work [83], some key privacy-specific aspects are described as follows:
From an attacker’s perspective, anonymity (Figure 2.3) is defined as the property of
an individual not to be sufficiently identifiable by an attacker within a particular set
of individuals, the anonymity set. The opposite is denoted as identifiability. Here the
authors emphasize the word ’sufficiently’ which allows anonymity to be quantifiable (cf.
[99]). Furthermore, it is obvious that an individual (or subject) can only be anonymous
within a set of individuals that have the same role. For example, considering senders
and receivers of messages, an anonymous sender can only be anonymous within a set of
senders, but not within receivers. Since this anonymity set may underlie various changes
over time (as anonymity depends on the context of the individual), the authors also define
the term anonymity delta which measures the difference in an individual’s anonymity
due to various observations by an attacker that change the attacker’s knowledge of the
context. As anonymity can never increase, the delta is always negative.

Another concept defined in [83] is Unlinkability which further specifies the relationship
of entities (e.g., individuals, messages) within a defined system that cannot be distin-
guished by an attacker, or in other words, an attacker cannot identify whether these
entities are related to each other. In contrast to this, linkability refers to the fact that an
attacker is able to sufficiently distinguish if the entities are related to each other. Again,
a delta measures the changes of these properties due to observations of the attacker.
Anonymity can be described in terms of unlinkability if the relationships between entities
of different types are taken into consideration. Going back to the example of senders and
receivers, sender anonymity is achieved when different messages of the particular sender
cannot be linked to the sender. A more fundamental property is undetectability which
states that an attacker cannot sufficiently decide on whether a particular entity actually
exists or not. Unobservability (Figure 2.4) combines anonymity and undetectability such
that an entity is unobservable when it is undetectable against all subjects not involved
in it and when the subject(s) which is (are) involved in the entity is (are) anonymous
against other subject(s) involved in that entity.

Finally, pseudonymity refers to the usage of pseudonyms as identifiers where a
pseudonym is an identifier of a subject which is not the subject’s real name. Pseudonymity
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Figure 2.3: Anonymity sets within the a sender/recipient-sets [83]

Figure 2.4: Unobservability sets [83]
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also incorporates aspects concerning the creation and use of pseudonyms, also including
the controlled disclosure of a pseudonym holder’s real identity by so-called identity brokers.
Pseudonyms can be assigned to individuals or can be related to groups of individuals.
Pseudonyms might also be transferable, depending on the application scenario (a more
detailed analysis of the pseudonymity property can be found in the following section).

Figure 2.5: Pseudonymity sets [83]

In the following section, common properties of privacy-enhancing technologies are
discussed.

2.3 Properties of privacy-enhancing technologies

In the last decade, numerous PETs were proposed that are targeted at different aspects
of privacy including network traffic anonymization (e.g., TOR [40]), identity management
(e.g., IDEMIX [24]), or anonymous data storage (e.g., Free Haven [39]), just to name
a few, all with the ultimate goal of protecting the individual’s privacy but based on
different building blocks such as cryptographic primitives or separation of information.
Since privacy is a many-faceted concept, reflected by the different application areas of
PETs, categorizing PETs is a non-trivial task. Still, there are several common properties
of PETs which can be used to classify them. We have identified a set of PET properties
and collected them under seven dimensions (Figure 2.6), ultimately creating a taxonomy:

Scenario The Scenario dimension defines the primary untrusted actor and potential
attacker in a privacy-sensitive information exchange operation.
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Figure 2.6: Dimensions of information privacy-enhancing technologies

Aspect The Aspect dimension defines which privacy aspect is addressed by the PET.

Aim The Aim dimension defines the PET’s aim or means of privacy.

Foundation The Foundation dimension defines the underlying security model and
strength of the PET.

Data The Data dimension defines the type of data that is addressed by the PET.

Trusted Third Party The Trusted Third Party dimension defines the necessity of a
trusted third party and its involvement in a PET.

Reversibility And finally, the Reversibility dimension defines if and under which cir-
cumstances a PET operation is reversible.

For the remainder of this chapter, we use the notions of service or data consumers and
service or data providers to distinguish actors in a client-server interaction scenario: A
service consumer is a client who requests a particular service from a server acting as the
corresponding service provider. This service may cover operations such as the execution
of query operations of outsourced databases or the provision of authentication services. In
this context, especially when data-at-rest is considered, there must be a clear distinction
between the data owner, data originator, and service consumer. To distinguish between
data owner and data originator, we define the data owner as the entity responsible for
storing and processing a piece of data (e.g., database owner), whereas the data originator
is the data subject (e.g., personal information about a person stored in a database). The
service consumer in turn is an entity requesting data about the data originator. This
definition indicates that the data originator does not necessarily need to be the data
owner or service consumer, depending on the data usage scenario.

2.3.1 Scenario

The first dimension Scenario (Figure 2.7) describes the primary actors of a protocol
or privacy-critical scenario and categorizes them from the trust perspective (cf. [70]).
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Figure 2.7: Scenario dimension

In the Untrusted Client scenario, the service consumer is regarded as untrusted and
as a potential attacker. Since the main goal of attackers of privacy-relevant services
is to acquire more information from sensitive elements than intended, we apply the
honest-but-curious model as our primary attacker model (cf. [52]), a model which is
used especially in the analysis of secure multi-party computation. In this model, the
adversary follows the protocol faithfully but tries to find out more information than
intended by analyzing the information flows. Analogously, the untrusted instance is
actually semi-trusted (though we stick to the untrusted notion for clarity reasons). A
typical attacker of this type is a user who tries to find out the identities of a particular
person in an anonymized database. The classic k-anonymity [99] approach and two
well-known extensions l-diversity [69] and t-closeness [66] deal with this kind of attacker.
K-anonymity aims to provide indistinguishability of individuals whose data is stored in a
database by grouping them to equivalence lists with common quasi-identifiers through
generalization and suppression techniques as follows: At first, the quasi-identifiers are
determined which are person-identifying properties that are not identifying on their own
but in combination. For example, the postcode of an address is not identifying on its own,
but it is in combination with the street name and house number. Then the quasi-identifiers
of each person are generalized so that multiple persons share the same quasi-identifiers
(e.g., removing the least-significant numbers of a postcode). If quasi-identifiers are too
specific so that applying generalization would result in a disproportionate loss of data
accuracy, the elements can also simply be removed (suppression). The result is a set
of multiple groups whose members share the same quasi-identifiers but have different
so-called sensitive attributes (e.g., illness). The extensions of the basic k-anonymity
approach specifically consider background knowledge and the distribution of sensitive
attributes to prevent certain statistical attacks. The overall goal is to grant untrusted
users access to the anonymized databases (for, e.g., research purposes) without disclosing
the identities of the data originators. Without further background knowledge than
provided in the k-anonymized database, an attacker is not able to unambiguously identify
a certain person within the database, apart from the fact that the person is present in
this database and part of a certain equivalence group. Due to the equivalence group
containing multiple manifestations of the sensitive attribute, it cannot be unambiguously
assigned to a particular person.

A malicious adversary by contrast is expected to act arbitrarily. In certain cases,
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the honest-but-curious model is not sufficient for ensuring privacy, especially when
authentication is required. In this case, PETs need to be supplemented with additional
security measures (e.g., public-key authentication). In both cases, the focus of an attack
obviously lies on the content of the service the server provides, not the server’s identity.

The Untrusted Server scenario describes the case of a service provider that aims
to gain more information about the service consumers than necessary. This usually
relates to the identity of the service consumers, leading to techniques such as anonymous
communication which can be realized by relying on intermediate proxies between a sender
and a receiver responsible for masking the sender’s identity (cf. [28]). The main issue
with anonymous communication is to ensure or verify the rights of a particular service
consumer. This problem can be solved by using some form of anonymous authentication
in the form of pseudonyms (cf. [48]) or other forms of anonymous credentials (cf. [22])
that enable the authentication of a particular service consumer (i.e. verify his/her service
consumption rights) without disclosing his/her actual identity. Apart from the service
consumer’s identity, a server could also be interested in the data the service consumer is
requesting. In the case of a data service provider, the straightforward solution for this
issue is client-side encryption before uploading records to the server. The difficulty here
is to support efficient querying over the encrypted data, which can be solved by applying
specific cryptographic algorithms (e.g., [16]). Another potentially sensitive element is the
access pattern of data of service consumers.

Private information retrieval (PIR) [31] protects the privacy of the querying user from
the database server so that the server cannot identify the piece of data that the user is
interested in. Apart from the trivial solution of copying the whole database content as
the result set of a query to the client, two general approaches exist with different security
models: The first approach requires multiple servers (n ≥ 2) where the data is replicated
and which are queried and then return the query results. The combined results are then
processed at the client without the server having knowledge of the actual piece of data
the data consumer is interested in. The underlying algorithms can rely on techniques
such as secret sharing [102] to make sure that servers do not gain unintended information.
In this form, PIR provides perfect or information-theoretical security, as long as the
databases are non-colluding. When only a single server is involved, only computational
security is possible. Single PIR solutions rely on hard mathematical problems [65] to
hide the desired data from the server.

The Mutual scenario refers to a scenario where both actors cannot trust each other.
This is usually the case when there is no clear distinction between service provider and
service consumer or when a set of equal actors intends to achieve a common goal without
revealing too much to each other. Mutual is also used for typical communication scenarios
of equal partners (Alice and Bob), who do not fully trust each other. For example, in
oblivious transfer [87] a secret is transmitted between a sender and a receiver without
the sender knowing what the receiver has actually received. In the original proposal, the
receiver gets the correct message with a probability of 1/2. This has been generalized to
1-out-of-2 oblivious transfer where the sender sends two messages and the receiver gets
only one, but the sender does not know which one and the receiver has no knowledge
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of the other message’s content [45], and later to 1-out-of-n oblivious transfer with n
possible messages [18]. So the goal of oblivious transfer is to provide indistinguishability
of the selected message, while the actual message content is kept unmodified. Oblivious
transfer protocols share certain properties with single database PIR, such as the reliance
on number-theoretic problems and the property of hiding the behavior of the receiver
(selected piece of data). In fact, it has been shown that there is a direct relation between
single database PIR and oblivious transfer [35].

The last scenario External refers to an external agent as primary threat to the
primary actors’ privacy. This usually is the case for communication protocols where
the communication partners use PETs to protect themselves from an external adversary
such as an eavesdropper intercepting encrypted messages (Alice, Bob, and Eve) or an
adversary coercing the communication participants to decrypt certain messages. The aim
of deniable encryption is the ability to deny the knowledge of the secret key and thus the
plaintext data [26]. In the original proposal, the focus lies on public key-based sender-
deniable encryption schemes, where receiver-deniable and sender-and-receiver-deniable
schemes can be constructed from the purely sender-deniable scheme by adding XOR
operations. The foundation of the scheme revolves around the selection of an element
(from a predefined domain) by the sender either truly randomly or from a pseudo-random
distribution, where the receiver is able to distinguish between these two cases, while
an attacker cannot. Shared-key deniable encryption can be realized by using an OTP
or creating fake messages in advance. Receiver-deniability requires interaction, while
for sender-and-receiver deniability, the protocol requires the involvement of multiple
intermediaries where at least one of them must remain uncoerced. In [81], a bi-deniable
protocol that allows both sender and receiver to be simultaneously coercible without the
need for trusted third parties was proposed.

2.3.2 Aspect

Figure 2.8: Aspect dimension

The Aspect (Figure 2.8) dimension covers the general target of the PET (cf. [48])
and distinguishes between Identity, Content, and Behavior. Here, the privacy aspects
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that were already mentioned in the previous section are categorized in more detail and
logically supplement the Scenario dimension.

Identity is the primary aspect of privacy and refers to hiding or masking the identity
of involved persons. This includes ’active’ actors such as service consumers requesting a
certain service from a service provider while hiding/masking their identities as well as
’passive’ users whose data is stored or processed by the service provider and requested by
third parties as data consumers. While in general the first type of identity protection
can be enforced more easily (ultimately by choosing not to consume a particular service),
the latter requires that (i) either the data stored about the data originators, which is
made available to service consumers, is modified in a privacy-preserving way or (ii) this
data is already stored following the principles of data minimization. Identity protection
can be enforced by either Anonymity or Pseudonymity.

Anonymity refers to being not identifiable within a particular set of entities. In
k-anonymity [99], an individual cannot be unambiguously identified within the corre-
sponding equivalence group. If an attacker concludes that a particular individual is part
of an equivalence group by matching the generalized quasi-identifiers, the attacker can
identify the correct entry for the sensitive attribute only with a probability of i/k, where
i is the number of the different entries for the sensitive attribute within this equivalence
group and k the number of members within the group (with i < k and usually k > 1). In
general, anonymity within stored data requires the diligent identification and removal of
person-identifying elements such as names and addresses. Here, the problem is to find
out which elements actually are identifying. Names are no-brainers, but what about the
age? There is no general answer to this question since it depends strongly on the context,
i.e. how many individuals are present in a data set, what kind of information is stored
about them, and the domain the data records are used in. For example, the HIPAA
Privacy Rule [116] defines the Safe Harbor de-identification method for creating data sets
open for disclosure which dictates to remove a fixed set of 18 so-called Protected Health
Information (PHI) including names, phone numbers, and email addresses. Although this
seems to effectively counter the risk of reidentification, there are still some issues with
this approach. On the one hand, removing elements from a data set will obviously reduce
the data set’s expressiveness due to data loss. On the other hand, removing all these
PHI elements does not necessarily guarantee true anonymity within the scrubbed data
set [10]. Background knowledge in the form of publicly available registers (e.g., voter
registries) or the distribution of data variables (e.g., the number of people within the
set with a particular medical condition) allows statistical or inference attacks and thus
increases the risk of successful reidentification. HIPAA also defines a second method
for de-identification which requires a domain expert to decide on the critical PHI (Ex-
pert Determination) and consider other context-specific requirements. By combining
statistical or scientific principles for de-identification with domain knowledge, the expert
can calculate the acceptable risk level of reidentification while maintaining the data
usefulness by balancing privacy and data expressiveness. Apart from completely removing
identifying elements, their values can also be generalized to more general levels. In that
case, individuals have the same PHI combinations and are thus hidden within the groups
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with a common set of PHI values (cf. equivalence sets [99]). Again, this increases overall
data expressiveness but is also prone to statistical and background knowledge attacks.

Pseudonymity is defined as relying on pseudonyms as identifiers [83]. Pseudonyms
are often used in medical research where the identities of the involved patients need to
be kept confidential towards the researchers (e.g., [79], [51], [60]). Before researchers
are granted access to the medical data, the identifiers of the patients are replaced with
generated pseudonyms so that intended traceability and linkability can be controlled (e.g.,
identifying all medical records of a particular patient), depending on the requirements.
Another concept that hides a person’s identity is an anonymous credential system, but
in the different context of user authentication by proving the possession of a certain
credential without disclosing the user’s identity, introduced in [29]: A sender uses different
pseudonyms for the communication with a credential provider and a credential receiver,
where the pseudonym for the receiver is blinded before it is sent to the credential provider.
This basic concept was extended to a practical protocol in [22] which also discourages
sharing of pseudonyms by different users (non-transferability), and supports single or
multiple uses of the credentials and optional reversibility: Non-transferability by sharing
the credential owner’s master secret with someone else is discouraged since it allows the
other user to use all other credentials of the owner (all-or-nothing non-transferability).
Alternatively, a certificate authority (CA) is responsible for checking the owner’s external
public key registered at the CA (PKI-assured non-transferability). While the certificates
are multi-use in nature, the protocol can be modified so that multi-use of a credential
can be detected by the verifier without the user showing the actual credential, which is a
cornerstone of applications such as online e-cash.

Both Anonymity and Pseudonymity have the property of Directionality which indicates
whether anonymization/pseudonymization is single-sided or multi-sided. For example,
k-anonymity [99] is a typical single-sided anonymization protocol; the server as data
provider is obviously known to the clients. In contrast, in an anonymized network (e.g.,
mix nets [28], see below), both the senders and receivers can be anonymized, which
results in a multi-sided anonymization scheme.

While identifying properties from individuals are removed (or generalized) in an
anonymous data set, identifying properties are replaced with an identifier that does
not allow unintended relinking to the corresponding individual in a pseudonymous set.
This allows more finely controlled unlinkability between data records by selection of the
proper count and reusability of pseudonyms. This is considered by the Pseudonymity
attributes of Holder and Cardinality: Holder indicates the number of individuals that
are referenced to a single pseudonym and can be either Individual for a 1:1 relationship
between pseudonym and individual or Group for group pseudonyms shared between all
members of a particular group, indicating a 1:n relationship. By carefully selecting the
number of pseudonym holders, the ’level of anonymity’ can be controlled across different
groups. The Cardinality attribute expresses how many pseudonyms can be used by a
single individual, either Limited (usually a single pseudonym per individual) or Unlimited.
The Cardinality property allows to control the traceability of individuals or transactions.
The usefulness of pseudonyms is reflected, e.g., by the application of pseudonymization
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in areas such as secondary use of medical records for research purposes where the
identities of patients are kept hidden while records of the same patient should still be
identifiable as such (e.g., [86], [111], [79], [60]). Anonymous credentials as mentioned
above are single-sided (credentials protect the credential owners, not the verifiers) and
each pseudonym is used by only a single credential holder. Depending on the usage
scenario, each credential holder can use one or multiple pseudonyms (if it is necessary to
unlink multiple authentication operations).

Content refers to hiding or masking the data content of a service consumed by a
client and corresponds to the classic security attribute of confidentiality. While privacy
usually refers to protecting the identity of the persons involved, Content refers to the
data processed or created during the service consumption, including both payload and
meta data. The main approach to hiding sensitive content in both data-in-motion and
data-at-rest scenarios is to employ encryption. The aim of encryption of data-in-motion
is to prevent unauthorized third parties from gathering sensitive details of the content
exchanged between communication partners and does not require further processing
other than encryption and decryption. In the case of encrypted data-at-rest, querying
and processing methods are desirable that are more efficient than the trivial solution
of retrieving the encrypted data, decrypting it, and then performing the operation over
the decrypted data, which makes a simple querying operation a more complex task.
Searchable encryption techniques allow the server to execute limited operations over
encrypted data without the need for decryption by the server. A potential solution is to
create special search index structures by individually encrypting or hashing keywords
or attributes for exact match queries [37], where the latter counters inference attacks
by carefully choosing the cardinality of the algorithm’s co-domain. This allows to query
for predetermined attributes within a data table only. A public key-based searchable
encryption scheme was first presented in [16] which allows an untrusted server to verify
the existence of an encrypted keyword that has been encrypted with a receiver’s public
key by a sender. The server is provided with a trapdoor for this particular keyword that
is created with the receiver’s secret private key. Obviously, the payload data encryption
can be fully reversed, but only by the user with access to the secret key (cooperation of
the key owner required).

The third element of Aspect is Behavior which refers to hiding the behavior of actors.
For example, in contrast to Content, not the content of data records retrieved by a
service consumer is relevant (e.g., because data is encrypted) but which data records were
retrieved. Again, techniques that are more efficient than the trivial solution of retrieving
the whole database are considered. A private information retrieval scheme [31] effectively
hides the access pattern of a data consumer insofar as the query operations executed by
the data provider do not yield the actual results but only intermediate results. The final
result is then calculated and determined at the data consumer’s side. In general, not only
the payload data itself but also any meta data needs to be considered for successfully
hiding the data consumers’ behavior.
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Figure 2.9: Aim dimension

2.3.3 Aim

The Aim (Figure 2.9) dimension describes how privacy is achieved or which aim a
particular PET is pursuing. The properties cover general terms that are usually associated
with a PET (cf. [83]).

Indistinguishability is the property of an entity that makes it impossible to unam-
biguously distinguish it from another entity in certain regards. This refers to hiding
an individual within a specified set of individuals and, e.g., modifying the attributes
in a data table to make them indistinguishable from each other. In k-anonymity [99],
individuals within the same equivalence group share the same generalized (or suppressed)
quasi-identifiers so that the individuals cannot be distinguished from each other. This is
only true for individuals within an equivalence group; members of different equivalence
groups have different quasi-identifiers and can therefore be distinguished. The data owner
needs to keep a balance between indistinguishability (and thus the data originators’
privacy) and data expressiveness for the service consumers by carefully selecting the
generalization and suppression strategies.

Unlinkability is closely related to Indistinguishability and refers to the entities’ property
of being not linkable/associable with other entities such as transactions or data entries.
In other words, Indistinguishability denotes that an entity cannot be distinguished from
another entity of the same entity class (e.g., persons in a database), while Unlinkability
indicates that an entity cannot be related to another entity where the entities need
not necessarily be of the same class (e.g., person and corresponding medical data). An
example of unlinkability can be observed in anonymous networks such as in a mix net
[28]. A mix net is a concept for anonymized communication between sender and receiver
and is based on the encapsulation of a message with multiple encryption layers to hide
the message’s route, combined with mixing the messages (sequence, delay, dummy traffic).
Each node within the net is able to decrypt one layer of the message to identify the next
node to which the message has to be sent, where multiple messages are collected at each
node and sent in different sequences, delayed and extended with dummy messages to
break up the correlation of the message path. Each node only knows the immediate
predecessor and successor nodes, which effectively unlinks the messages from the sender
(and receiver in case of anonymous return addresses) under the assumption of non-
colluding servers. Widely-used applications based on the original mix net concept - like
the onion routing application Tor [40] - modify certain aspects such as the inclusion of
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symmetric cryptography or the determination of the path.
Another example of unlinkability can be found in group signatures [29]: In a group

signature scheme, members of the group are able to create a valid signature while the
actual individual is kept hidden from the verifier, i.e. the aim is to create signatures which
are unlinked from the actual signer and only linked to the group, as well as signatures
unlinked from each other when created by the same individual. The initial schemes
require the involvement of a trusted group manager of different degrees depending on
the scheme for setup, operation, and reversal (i.e. opening a signature) in case of a
dispute, and all suffer from a linear increase of the group’s public key size depending
on the number of group members. A more practical version with a fixed-size public
key was proposed in [23] where a group manager is responsible for setting up the group
including the creation of the public verification key and member secret keys, as well
as for the opening of individual signatures for identifying the corresponding members
directly, but who is not able to fake a valid signature. Further works introduce efficiency
improvements such as shortening the signatures [15].

Deniability refers to the property of being able to plausibly deny a fact, possession,
or transaction, which is the direct opposite of accountability. For example, deniable
encryption allows to hide the real cleartext message by providing convincing fake cleartext
messages and keys when an adversary has access to the ciphertext message [26]. Thus
the attacker cannot unambiguously identify the correct message and key from the fake
messages and fake keys. Another potential application is that of hiding personal search
queries by slightly modifying them and adding noise in the form of cover queries (e.g.,
[73]).

The final attribute, Confidentiality, corresponds to the secrecy of a data fragment’s
content. In contrast to Indistinguishability and Unlinkability where data fragments must
not be associable to ensure privacy while being uncritical on their own, Confidentiality
refers to the requirement of keeping a data fragment protected from unintended disclo-
sure. This is a stricter requirement compared to Indistinguishability and Unlinkability.
Confidentiality is usually achieved by some form of encryption. As the decryption process
requires the secret key, a key distribution mechanism and/or key management system is
required. (Plain) Public key cryptography solves the problem of the necessity to share a
secret key, but is relatively inflexible because the data needs to be re-encrypted with a
new public key for each new data recipient by the data originator. Proxy re-encryption
is a cryptographic protocol proposed in [13] which allows the re-encryption of data by a
third party so that the data initially encrypted with the sender’s public key can then
be decrypted with the receiver’s private key, without the third party having access to
any of the secret keys or the data’s content. This is useful for data exchange via a third
party without the need for sharing a common secret key. In [5], proxy re-encryption is
the basis of a secure file system. In this scenario, data at a storage provider is encrypted
with (symmetric) content encryption keys which in turn are encrypted with a master
public key (owned by the data originator). Access is controlled by a semi-trusted third
party which is able to re-encrypt the content encryption keys for the data recipients
without having access to the data originator’s master secret key or the plaintext content
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encryption keys. Therefore, trust requirements on the third party concerning the data
content can be relaxed. This re-encryption process can only be done correctly for the
recipients who are chosen by the data originator in the form of delegation keys which
were created using the master secret encryption key and which were then forwarded to
the third party.

2.3.4 Foundation

Figure 2.10: Foundation dimension

The Foundation (Figure 2.10) dimension describes the conceptual and technical
foundation of the PET derived from the general security domain (cf. [120]) and has two
attributes, Security Model and Cryptography.

The Security Model attribute is divided into the Information-Theoretic and Compu-
tational models. The Information-Theoretic model is based on the information theory
introduced in Shannon’s seminal work [103] where he proved that encryption with a
one-time pad provides perfect security. An information-theoretically secure technique is
said to be secure (i.e. unbreakable) even with unrestricted computational resources, or
in other words, does not provide any more information even with access to unlimited
computational power. For the one-time pad example, this is only true when the key
length equals the length of the message and the key is selected in a truly random fashion.
Information-theoretic or unconditional security is a desired property in cryptography [71]
to keep content confidential, but there are also other areas where the information-theoretic
security model is applicable. For example, when a user intends to hide from the data
provider which particular pieces of information stored in a database he/she is really
interested in, the trivial solution is to transmit the whole database content to this user,
exchanging security with increased communication costs, though more sophisticated solu-
tions have been proposed. Multi-server PIR solutions [31] provide information-theoretic
security if the servers are non-colluding.

Still, as demonstrated by the one-time pad, information-theoretic solutions are in
general less practical, although one-time pads have been used in highly critical message
exchange scenarios (e.g., government-level communication). However, the need for more
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practical solutions has led to weaker but nevertheless ’reasonably’ secure solutions under
the Computational model. A computationally (or practically) secure solution cannot
be broken by a computationally-bound adversary (e.g., polynomial time adversary).
Most modern day cryptographic algorithms are based on the Computational security
model [72] and rely on hard problems, such as number-theoretical problems (e.g., integer
factorization), which cannot be efficiently solved without having a certain piece of
information (trapdoor), and therefore act as one-way functions. These problems allow
shorter key lengths independent of the message length and are thus better applicable
than pure information-theoretic solutions. Practically any PET relying on modern day
cryptography is based on computational security.

PETs can rely on different types of cryptographic primitives [72]: Symmetric or secret-
key algorithms are characterized by the shared secret key that has to be known to all
communication partners, which requires a secure key exchange and management scheme.
Symmetric algorithms include block and stream ciphers that apply transformation
operations such as substitution and transposition (permutation) of symbols in the
plaintext to create the ciphertext. In contrast, Asymmetric or public key algorithms rely
on a publicly known and a secret part of keys to encrypt and decrypt messages where
the secret part acts as the trapdoor to reverse the number-theoretic one-way function
(encryption). As each communication party is provided with its own keypair, there is
no need for secure key exchange, as long as the public components are authenticated.
Apart from that, asymmetric ciphers are known to be much slower than their symmetric
counterparts. This issue is usually solved by combining asymmetric and symmetric
encryption as follows: The faster symmetric cryptography is applied to the data content
that needs to be kept confidential, while the symmetric key is encrypted by asymmetric
cryptography to prevent the problem of sharing the secret key. This hybrid encryption
technique is widely applied, such as in the SSL/TLS protocol or disk encryption [5].
Unkeyed algorithms implement one-way functions that do not have a trapdoor function,
and are thus considered irreversible. Unkeyed algorithms, such as hash algorithms, are
often combined (or included) in higher level cryptographic algorithms and are designed
to be very efficient in terms of computing. Considering this and the fact that the
transformation function always yields deterministic outcomes, Unkeyed algorithms are
not security-enhancing on their own. Again, PETs may rely on individual or a combination
of multiple cryptographic primitives to achieve their goal. In the searchable encryption
method described in [37], symmetric encryption is used to protect the data content, while
individual attributes are hashed to create search indices which can be quickly created
and verified due to the hash algorithm’s speed. Finally, PETs can also completely forgo
cryptography but this only works when certain requirements are met, such as that the
original (plain) data is considered not to be available to the data consumers (cf. [99]) or
that multiple service providers are non-colluding (cf. [31]).

2.3.5 Data

The Data (Figure 2.11) dimension describes what types of data are addressed by the
PET or how they are affected. The basic distinction is made according to the general
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Figure 2.11: Data dimension

states of data, data-at-rest and data-in-motion (cf. [67]).
Stored data refers to data-at-rest in storage areas such as databases, file systems, or

other storage methods (e.g., online storage systems). The data fragments are modified to
prevent a privacy compromise by an attacker. The adversary can be both service provider
and service consumer depending on the data usage scenario, and data modification
measures include techniques like client-side encryption of the payload data to protect
against untrusted service providers or data anonymization against untrusted service
consumers (cf. [99]). Modifications to the data content are preferred over modifications
to the access routine since untrusted service providers are expected to have full control
over the data they have been provided with anyway, whereas untrusted service consumers
should in general have the same access and retrieval means available as fully trusted
consumers.

Transmitted data refers to data-in-motion passing one or more stations in a particular
protocol, which is a critical component of a PET. These stations do not modify the actual
content of the payload data, but are required to process metadata for the successful
application of the PET, such as the individual proxies in a mix network that each add
and remove cryptographic layers [28]. These stations can be fully trusted (e.g., in the
form of trusted third parties), but need not be. Data transferred in an oblivious transfer
scheme (cf. [87], [18]) also falls in the Transmitted category: While the messages are
modified according to the oblivious transfer scheme, the actual message (information)
content remains unchanged.

Technically speaking, a service provider storing encrypted data for a service consumer
can also be interpreted as an intermediate station since the (cleartext) content would not
be modified by the service provider in case of client-side encryption. Therefore, we need
to specify transmitted data more precisely as follows: i) data that is transmitted from a
sender who is not the same entity as the recipient and ii) data that is transmitted within
a reasonable amount of time with the purpose of forwarding a piece of information from
the sender to the receiver without the goal of permanent storage.

In contrast to Transmitted, a PET addresses Processed data when the exchanged
payload data content is explicitly processed and modified by the protocol participants.
For example, anonymous credentials are data elements whose payload (content) are the
authentication tokens produced in the protocol [29]. This example demonstrates the
ambiguity of what the payload of a protocol actually is: In the context of anonymous
credentials, the authentication token is regarded as payload, whereas in another scenario
where the token is used as authentication means for some other service, the token is only
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a piece of metadata required to retrieve the actual payload in the form of the database
result set. The PET-specific interpretation of data and the corresponding categorization
are critical for an accurate analysis of the PET.

2.3.6 Trusted Third Party

Figure 2.12: Trusted third party dimension

The Trusted Third Party (TTP) (Figure 2.12) dimension describes if the PET requires
the assistance of a specially trusted entity (cf. [120]) and how this TTP is involved in a
PET operation. A TTP’s task is to act as a broker or mediator between two or more
parties to provide security- and privacy-critical support functions such as user registration
and authentication (certification authority). The attributes of the Trusted Third Party
dimensions are relatively similar to each other, but describe the TTP involvement from
different viewpoints.

Frequency denotes how often the TTP interacts with the PET participants: Per-
manently indicates that the TTP’s involvement is permanent and that the TTP is an
integral component of the PET’s operation. In other words, the unavailability of the
TTP in this case would prevent the PET operation altogether. By contrast, Situational
implies that a TTP’s involvement is only required in certain situations and scenarios
such as in case of a dispute. Apart from that, the PET is not critically affected by a
temporary unavailability of the TTP. None means that no TTP involvement is required.

Phase describes in which specific phases of PET protocols a TTP is involved: Regular
indicates that the TTP is involved in the regular operation of the PET, whereas Setup
refers to the preparation or setup phase required before the actual start of a PET
operation. This includes setup phases such as the creation, binding, and distribution of
cryptographic keys in privacy-preserving authentication schemes (e.g., [19]). Similar to

26



Frequency, the PET’s TTP phase attribution is None if no TTP is involved in any phase
of PET execution.

Finally, Task determines a potential TTP involvement by describing which task the
TTP fulfills: Here Operation refers to some regular task that is delegated to the TTP,
while Validation defines the TTP involvement only in case of validation (or revocation)
when the need occurs (e.g., disputes, unsatisfied conditions). Again, None represents no
TTP at all.

This Trusted Third Party dimension helps to clarify ambiguities of certain PET
application scenarios. Given a (semi-)trusted third party as intermediate between two
untrusted communication parties, the trust statement as defined in Scenario can be
set to Mutual when both communication parties do not trust each other, or Untrusted
Server when describing the relationship between one of the communication parties and
the intermediate server. A particular example for this case is the proxy re-encryption
technique where a (honest-but-curious) third party provides re-encryption services for
different clients that need not share mutual trust [5]. The Trusted Third Party dimension
helps to precise the TTP’s purpose within this PET scenario. In mix nets [28], the
servers within the network serve as (semi-)trusted third parties who are responsible for
forwarding the clients’ messages. These servers are permanently active and are therefore
a core requirement for the operation of a mix net. Other PETs, such as k-anonymity
[99] or searchable encryption [37], do not require TTPs at all; the only participants in
these PET schemes are the data providers and data consumers. And for some PETs, the
involvement of a TTP is dependent on the actual implementation of the PET and can
include a permanent involvement of the PET for each operation, a limited or situational
involvement such as only for the setup phase of the PET scheme, as well as no involvement
whatsoever (e.g., [30]).

2.3.7 Reversibility

Figure 2.13: Reversibility dimension

The final dimension Reversibility (Figure 2.13) describes whether a particular PET
operation is intended to be reversible by design (e.g., cryptography [38]) and to what

27



Degree, as well as if Cooperation of the data originator is required.
If the data originator is Required under the Cooperation attribute, the originator has

to actively participate in the reversal process, i.e. the PET operation can only be reversed
with the data originator’s approval. Otherwise, Cooperation is Not Required and the
reversal can be initiated by, e.g., a TTP. K-anonymity [99] for example cannot be reversed
as long as the original data is unavailable, thus the operation requires the cooperation of
the data originators. The same is true for PETs such as deniable encryption [26]: Only
the data originator is able to decrypt the correct message (or a data recipient if the data
has been transferred and the data recipient has been provided with the correct key). In
contrast, since group signatures [30] are specifically designed to be verified by entities
other than the signature creators (data originators), their cooperation in verifying a
signature, or ’reversing’ the signature procedure, is not required.

The Degree attribute describes to which extent a PET operation can be reversed
and includes Full for fully reversible operations, Partial if only specific operations can
be reversed or only parts of the original information can be restored, or None if no
information can be restored whatsoever. PETs aimed at confidentiality of data records
by applying encryption are obviously required to be fully reversible, otherwise their
application would result in data loss. Anonymous credentials [22] can be fully or partially
reversible, depending on how the credentials are to be ’opened’: A partial reversal occurs
when only a single pseudonym is opened and the corresponding user is identified by a
TTP, whereas a global reidentification for all pseudonyms used by this user results in a
full reversal.

In addition, Deniable specifies a special reversibility option where the data originator
is able to deniably reverse an operation. This is a desirable property when the data
originator is coerced to reverse the operation and disclose the original information. In
this case, the data originator is able to provide data that is indistinguishable from the
real original data, as is the case with deniable encryption [26].

And finally, the degree of reversibility can also simply be a non-issue, as it is the case
with PETs such as PIR [31].

2.4 Pseudonymization

Generally, pseudonymization approaches have the following properties in common:

Identity focus Pseudonymization is focused on the identity aspect of privacy, i.e. aims
to hide the identity of participating persons. These persons are either data orig-
inators or data consumers, depending on whether the data in question is at-rest
or in-motion. The content of data is not confidential in these scenarios (or more
specifically, not confidential towards the data consumers in the PET schemes) and
is required to be readable (and processable) by the data consumers. Behavior is
usually a non-issue as well: In case of data-in-motion, pseudonymization masks the
behavior of a particular person by unlinking multiple actions and operations from
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this person. However, this is actually not achieved by hiding the behavior of the
person (actions) but the person’s identity.

Unlinkability The goal of pseudonymization is to provide unlinkability between in-
dividuals and their data or operations. As already mentioned, confidentiality is
not focused on within pseudonymization schemes, but can still be relevant for
external parties. For example, considering a pseudonymized health database for
research purposes, the patients are pseudonymized and researchers granted access
to their health data. Still, the health data records need to be kept confidential
from any external parties other than authorized researchers. Indistinguishability of
individuals also plays a role in pseudonymization, but the primary focus lies on the
separation of individuals and their corresponding data.

Reversibility The main difference to anonymization, the other identity-focused PET,
is that pseudonymization approaches are designed to be reversible when necessary.
This can be the case when, e.g., patients need to be reidentified for further consul-
tation or when pseudonyms are required to be traced back to their holders in case
of disputes. In any case, reversing the pseudonymization process is only done under
specific and controlled circumstances by specifically authorized parties. Technically,
reversibility is realized by protected and access-controlled ID/pseudonym-mapping
information (mapping tables) or reversible algorithms requiring secret information
such as cryptographic algorithms.

In this thesis, the focus lies on pseudonymization of medical data (data-at-rest) where
the identities of the data originators (patients) are protected and kept hidden from the
data consumers. In the following, several pseudonymization approaches for handling
medical data are described.

Data-centric pseudonymization approaches mainly deal with medical data for sec-
ondary use: One of the earlier approaches developed by Pommerening and Reng ([85],
[86]) relies on the combination of hashing and encryption techniques for data transport.
The pseudonymization service is provided by a trusted third party replacing the unique
patient identifier with a pseudonym that is derived by encryption; the encryption itself is
based on a centralized secret key. An important prerequisite for this scenario is that the
patient identifier is not publicly available. The final model involves multiple secondary
users in a research network where a central research database is introduced containing
the medical data and the unique patient identifier (again generated by a trusted third
party service), and where each secondary user accesses the medical data pseudonymized
by the pseudonymization service.

Bouzelat et al. [17] propose a simple anonymization protocol for exporting medical
files which is actually a pseudonymization approach as it allows relinking of medical
records by a trusted party. It is based on one-way hashing to replace patient identifiers so
that the records can be published without compromising the patients’ privacy while still
allowing the linkage of multiple records to the same patient (if the patient’s identifier is
known) by the Department of Medical Informations (DIM) to carry out an epidemiological
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study. To circumvent the susceptibility of hash algorithms to dictionary attacks, the
authors propose the application of a large random file as padding information (k1). This
pad is securely transferred to the data providers (laboratories) via asymmetric encryption
and effectively prevents dictionary-style attacks by data recipients. Upon receipt of the
padded and hashed nominal identifiers by the DIM, the data is further hashed, but with
a second pad (k2), while the received data is destroyed. The twice hashed data is then
published.

The approach developed by Peterson [82] involves the use of multiple encryption keys
and three data tables to make personal medical data available without compromising
the patient’s privacy. During registration, the patient is issued a unique global key (GK)
and a server side key (SSID) on a smart card. Furthermore, the patient has to provide
a unique personal encryption key (PEK) and a password stored in the user table. The
security table contains the reference to the user (SSID), the server-side encryption key
(SSEK) and the reference to the personal data in the personal data table. The personal
data is encrypted two times with the PEK and the SSEK. Data retrieval requires the
knowledge of either the PEK or the GK transferred to the server that looks up the
referenced SSID. With the SSID, the personal data record can be retrieved and decrypted
with the corresponding keys. Data addition, deletion, and modification require the
knowledge of the password in addition to the PEK or GK. As a fallback mechanism in
case of a lost smart card, the patient logs in with the PEK and password and is issued a
new GK.

Kalam et al. [64] use a unique patient identifier, which must not be publicly known,
for deriving an anonymized identifier stored on a smart card. Furthermore, a unique
project identifier is required as input where the anonymized identifier is the result of a
one-way hashing procedure with the concatenation of the unique patient identifier stored
on the smart card and the unique project identifier as input. That way, the patient has
to explicitly consent to each secondary use of the data in each individual project. In
order to protect against attacks where an external attacker tries to link data held by two
different hospitals by knowing the fingerprint (hash value) of a certain patient/project and
gaining unauthorized access to the database, the anonymized identifier is encrypted with
a secret key only known to the hospital where the database is located. The corresponding
decryption key is only known to the project participants.

Thielscher et al. [111] developed a system consisting of two databases for the patient’s
personal identification information and for the anamnesis data. While the datasets are
stored decoupled, the relation between the patients and medical records can be restored
with secret keys stored on smart cards as secure keystore. These secret keys generate
unique data identification codes which are also stored in the database and do not contain
any patient-identifying information. Authorizations are realized by sharing these codes
between patient and health care providers, while the authorizations are only valid for a
certain period of time. As a fallback mechanism in case a patient loses the smart card, a
centralized patient-pseudonym list is maintained (otherwise there would be no way to
recover the identifier). Since this centralized patient-pseudonym list may be the target of
intrusion attacks, it is operated off-line.

30



Claerhout and DeMoor [33] address different pseudonym application and creation types
with respect to project requirements like always using the same pseudonym for a given
identifier or using different pseudonyms, creating time-dependent, location-dependent,
or content-dependent pseudonyms. As for pseudonym implementation techniques, the
authors distinguish between two different approaches: In batch data collection, a document
register with pseudonymized (medical) payload data is used where the identifiers are
replaced with pseudo identities. Pseudonymization is conducted in a two-stage process:
At first, at the health professionals’ local databases, the identifiers are identified and
a pre-pseudonymization takes place where the identifiers are replaced with pre-pseudo-
IDs. Secured by public key encryption, the pre-pseudo-IDs and payload data are then
transferred to a trusted third party, where the pre-pseudo-IDs are replaced with the
’real’ pseudo identities. The second approach presents an interactive data storage where
there is no explicit need for local storages; there is only a single central pseudonymous
database for concurrent nominative (primary) and pseudonymized (secondary) use.

Zhang et al. [129] discuss the application of pseudonyms in privacy-preserving identity
management in a HealthGrid, an administrative data repository containing health-related
documents generated at different points of care, similar to electronic health records. In
their proposal, the authors rely on a trusted third party or a dedicated trusted HealthGrid
manager for creating different pseudonyms for the same patient when treated by different
health care providers using a Linkable Identity Privacy Algorithm (LIPA). A unique
HealthGridID is used to internally index all records related to the particular patient,
while the LIPA generates externally used pseudonyms for each corresponding health care
provider, containing the HealthGridID, a random number, and a hash value calculated
with a master key (only known to the HealthGrid manager or trusted third party), the
health care provider’s name and address, and a timestamp when the pseudonym is issued
as input.

Nourmeir et al. [79] describe the pseudonymization of radiology data encoded as
DICOM (cf. [77]) files for secondary use. The unique patient identification numbers
in the DICOM images are replaced with pseudonyms and the files stored in a separate
research database. Thereby, the authors distinguish between two kinds of pseudonyms:
irreversible one-way pseudonyms (i.e. anonymization) and reversible pseudonyms. One-
way pseudonyms are generated by hashing the patient identification number with a
hashing algorithm. As hashing is prone to collisions, the authors propose the inclusion
of the medical history in the hashing process. To prevent dictionary attacks, salting
should be applied. Alternatively, a message authentication code-based hashing technique
requiring a secret key may be used. Reversible pseudonyms also contain a secret key for
the encryption of the patient identification number.

Iacono [60] proposes a system for multi-centric pseudonymization of health data
for secondary use where a patient always has the same pseudonym, regardless of the
study he/she participates in, thus allowing to link the records to the same entity, but
still without disclosing this entity’s identity. This approach relies on a trusted third
party to create the global unambiguous inter-clinic pseudonym, but does not require any
personal identifying information of the patient. This global pseudonym is calculated
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using elements from all different study centers (public keys) as well as local pseudonyms
created at one of the study centers. To reidentify the particular patient from the global
pseudonym, pseudonym mappings are used where the local pseudonyms are stored at the
individual study centers while the global mappings are stored at the trusted third party
for reidentification.

Galindo and Verheul [51] apply pseudonymization to the privacy-preserving sharing of
microdata allowing researchers to correlate data. Again a trusted third party is responsible
for pseudonymization and is the only entity able to reidentify the individuals. In this
scheme, so-called Accumulators are acting as mediators receiving data from Suppliers and
forwarding it to Researchers. The Accumulators are assigned a secret symmetric key by
the trusted third party, which is unknown to them. Supplying new data works as follows:
the Supplier sends the (de-identified) data blocks directly to the Accumulator and the
corresponding identifiers in the same order to the trusted third party. The trusted third
party encrypts these identifiers with the Accumulator’s symmetric key as pseudonyms
and forwards them to the Accumulator where the pseudonyms are linked to the data
blocks. Join and intersection operations between Accumulators also involve the trusted
third party where the data blocks are sent directly from Accumulator A to Accumulator
B, while the corresponding pseudonyms are decrypted and then re-encrypted with the
Accumulators’ symmetric keys.

Elger et al. [43] describe technical, practical, legal and ethical aspects of secondary use
in the multi-institutional @neurIST research project which also includes pseudonymiza-
tion. Their pseudonymization approach involves reversible pseudonyms that are created
by encrypting patient IDs with secret symmetric keys (AES) unique for each clinic
participating in the study. To ensure pseudonym integrity, the scheme also includes a
hash value of the pseudonym calculated by a keyed hash algorithm, again with a secret
key unique for each clinic. Similar to [33], a multi-stage pseudonymization with a local
and a global part is used to limit the need for passing any real patient identifiers several
times when a new pseudonym is required; while the local part includes the real identifiers,
the global part is executed by a trusted third party only using the pre-pseudonyms.

Rahim et al. [88] also rely on a trusted dedicated pseudonymization server which
is situated between the original (local) databases and the data consumers. Similar to
[51], any access operation is routed through the pseudonymization server where the data
is first pre-pseudonymized at the source and then transferred to the pseudonymization
server via secured channels as follows: The pre-pseudonyms are encrypted with the third
party’s public key, while the actual medical payload data is encrypted with the public
key of the data recipient (data register) to limit data disclosure at the trusted third
party. The authors argue that the trusted third party not only provides optimal security
against malicious attacks during the pseudonymization approach, but it is also able to
dynamically control data access by monitoring the data traffic. The pseudonymization at
the trusted third party should be conducted using cryptographic algorithms.

Aamot et al. [1] propose an asymmetric encryption-based pseudonymization mecha-
nism separating actual pseudonymization and de-pseudonymization so that a pseudonymiza-
tion service provider enables a specially authorized ombudsman to relink a pseudonym to
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a particular patient identifier: At first, given a certain patient identifier, the pseudonymiza-
tion service provider deterministically calculates a one-way mapping information (DOWMAP)
and checks if it is already stored, i.e. checks if a pseudonym already exists for the patient
identifier. If not, a new pseudonym is generated, but unlike other approaches, the
pseudonym is not directly derived from the patient identifier. The patient identifier is
then encrypted with each of the ombudsman’s public keys and stored along with the
pseudonym so that each of the ombudsman is able to decrypt the patient identifier for a
given pseudonym without the pseudonymization service provider’s participation.
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CHAPTER 3
Development of a holistic
pseudonym-based security

methodology

This chapter describes the design of a pseudonym-based security methodology for the
concurrent primary and secondary use of sensitive data (health data). The requirements
are derived from the limitations of existing pseudonymization approaches described in
the previous section including security aspects such as authorization and access control.
The pseudonymization approach is then applied to different application scenarios. The
content of this chapter has been published in the following publications:

• Thomas Neubauer, Johannes Heurix: A methodology for the pseudonymization
of medical data, International Journal of Medical Informatics, Vol. 80, No. 3, pp.
190-204, 2011

• Johannes Heurix, Michael Karlinger, Michael Schrefl, Thomas Neubauer: A hybrid
approach integrating encryption and pseudonymization for protecting electronic
health records, Proceedings of the 8th IASTED International Conference on Biomed-
ical Engineering, pp. 117-124, 2011

• Johannes Heurix, Michael Karlinger, Thomas Neubauer: Pseudonymization with
metadata encryption for privacy-preserving searchable documents, Proceedings of
the 45th Hawaii International Conference on System Science (HICSS), pp. 3011-
3020, 2012

• (invited follow-up journal publication) Johannes Heurix, Michael Karlinger, Thomas
Nebauer: PERiMETER - Pseudonymization and pERsonal METadata EncRyption
for privacy-preserving searchable documents, Health Systems, Vol. 1, No. 1, pp.
46-57, 2012
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3.1 Requirements

An analysis of existing pseudonymization approaches indicates the following limita-
tions: The majority of the pseudonymization methods in health care is solely focused
on secondary use of health data and completely neglects the possibility of using the
data concurrently for primary use, i.e. in direct health care. As a consequence, data
has to be stored in two states, in the non-modified original version as well as in the
pseudonymized version for secondary use. Concurrent primary use would require per-
manent de-pseudonymized access for authorized (and only authorized) persons such as
the patient and any patient-treating health professional, which in turn would require a
dedicated authentication, authorization, and access control scheme. Due to the focus on
secondary use, these security measures are usually not specifically addressed and simply
assumed to be given. There are examples of the application of pseudonymization in
primary use cases where patients’ identities are protected when consuming health services
by using asymmetric keypairs as pseudonyms combined with anonymous certificates
[7] or where authentication and service consumption are separated and the latter is
authorized by proving the validity of prepared tokens as pseudonyms [122], in essence
creating a pseudonym-based security infrastructure. However, as these approaches apply
pseudonymization in order to protect the patients as service consumers and not as data
originators, they cannot be applied to support secondary use.

Another limitation that many existing methods have in common is their reliance on
trusted third parties (e.g., [85], [33], [60], [51], [43], [88], [1]). Strictly speaking, trusted
third parties are tools to circumvent security- and privacy-related problems, but they
cannot actually solve the problems. Since trusted third parties have to ensure the integrity
of their services, they have to implement security safeguards in order to protect their
infrastructures. But introducing another security-relevant ’environment’ also increases
the chances of security flaws and attack vectors. Therefore, in general, it is desirable to
reduce the required trust towards other parties and thus the reliance on other parties to a
minimum to prevent additional loopholes and potential attackers. A prominent example
of a trusted third party is a certificate authority (CA) that ensures the validity and
authenticity of digital certificates (public key). Although widely accepted and regarded as
a cornerstone of modern day cryptography, it has been shown that certificate authorities
are also prone to attacks involving fraudulent certificates for top internet companies
leading to man-in-the-middle attacks [128]. Thus, alternative approaches of decentralizing
trust such as PGP’s web of trust [21] have been proposed to eliminate the need for a
central trusted third party, but in turn suffering from other problems like the revocation
of certificates.

A further limitation is the lack of consideration for internal attackers. Security
reports like Verizon’s annual Data Breach Investigations Reports1 indicate that the
primary threat does not emanate from external attackers but from the inside, ranging
from disgruntled employees with malicious intent to faithful employees that simply
make mistakes (social engineering, improper use of privileges). While the latter can be

1http://www.verizonenterprise.com/at/DBIR/
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mitigated by measures including awareness trainings and proper privilege management,
the former poses serious problems since these internal attackers do not need to intrude into
a system, they are already inside the system. With extensive access privileges, a malicious
administrator is the most dangerous attacker possible. Therefore, pseudonymization
can be broken if critical elements can be examined and tampered with, including offline
pseudonym/ID-linking-tables (cf. [111], [60]) or cryptographic keys (cf. [82]).

Finally, the way of how to create the pseudonyms can also lead to privacy flaws.
Pseudonyms are often created by some kind of one-way derivation methods such as
hashing using the primary identifiers like names and patient IDs (e.g., [79]). However,
this may pose a problem since these derivation mechanisms need to be deterministic in
nature. To prevent brute-forcing attacks, the derivation methods thus need to include
secret components such as salts or secret keys which in turn need to be properly protected
and accessible by authorized parties only. The design of the derivation method also has
to ensure high-entropic results to prevent statistical attacks.

Therefore, we define the following general requirements for our pseudonymization
methodology:

Concurrent primary and secondary use The first requirement is the concurrent use
of the stored data in primary and secondary usage scenarios by keeping stored data
always in a pseudonymized state. While secondary users (researchers) are granted
access to the data without the ability to de-pseudonymize it, primary users (direct-
care health professionals and patients) are granted permanent de-pseudonymized
access. Keeping the data-at-rest pseudonymized also reduces the threat of internal
attackers and reduces the required storage space.

User controlled To counter internal attackers, privacy has to be controlled by the data
originators (i.e. patients) who should be the data owners as well. That means that
(i) the data owners need to be able to control who is entitled to access which data
records and that (ii) this is technically enforced by the data owners.

Cryptography and key secrecy Since practical pseudonymization requires reversibil-
ity of the pseudonymization process for specific parties only, cryptography needs
to be applied to prevent unauthorized de-pseudonymization. The use of offline
pseudonym/ID-tables is prone to internal attackers and thus less effective than
cryptography-based mechanisms. Obviously the involved cryptographic keys need
to be protected adequately.

Authentication, authorization, and access control Because of the concurrent pri-
mary use, there is a need for proper authentication, authorization, and access control
mechanisms in accordance with pseudonym usage. Traditional methods such as
role-based access control are too coarse and thus ill-suited; de-pseudonymized access
to a patient’s health data should only be granted to treating health professionals,
which means that a form of discretionary access control defined by the data owner
is required.
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Absence of trusted third parties Finally, the pseudonymization methodology should
not rely on trusted third parties to realize the security infrastructure to prevent
this specific attack vector.

To meet these requirements, we introduce PERiMETER, a holistic Pseudonymization
and pERsonal METadata EncRyption methodology, which is based on the pseudonymiza-
tion approach PIPE [95], [93], [92], [94] and aims at dealing with the following attackers:
(i) honest-but-curious data consumers including patients that are interested in other
patients’ data, health professionals that intend to access data of patients they are not
directly involved with, and secondary users who try to reidentify the corresponding
patients of health data records, (ii) internal attackers such as the database administrators,
and (iii) external attackers. The methodology has the following PET properties (cf.
Section 2.3):

Scenario The primary untrusted entity in our pseudonymization methodology is the
Untrusted Client in the form of secondary users accessing the pseudonymized health
data and primary users who are accessing the data they are authorized for. The
secondary untrusted entity is the storage server where the data is hosted since an
internal attacker at the server side can never be ruled out.

Aspect Since Pseudonymity is the protected aspect, the directionality in our approach
is Single (only data originators’ data is pseudonymized), the holder Individual
(pseudonyms are not assigned to multiple entities), and the cardinality Limited
(limited reuse of the same pseudonym). In this context, the (pseudonymized)
content is regarded as uncritical (i.e. available for secondary users and thus not
fully encrypted) and the behavior of data consumers is also non-critical in our
scenario (no need for hiding which records are accessed by the data consumers).

Aim The primary aim is to provide Unlinkability between patients and their individual
health records as well as between the health records. Since the data is unlinked
from the patients, indistinguishability of patients is not required. Deniability and
confidentiality are not required either.

Foundation Our pseudonymization approach is primarily based on standard crypto-
graphic algorithms and thus provides Computational Security only. The crypto-
graphic paradigms involved include both Asymmetric and Symmetric.

Data As we investigate data-at-rest, the data property is Stored.

Trusted Third Party No trusted third party is involved to allow for a generally un-
trusted environment (frequency is Never, phase and task both None).

Reversibility And finally, de-pseudonymization for authenticated and authorized pri-
mary users requires Full reversibility where the participation of data owner is
Required (only when providing the health professional with the ability to de-
pseudonymize the health records, since pseudonymization is controlled by the data
owner).
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This pseudonymization method is aimed at data-at-rest and requires the unambiguous
identification of the system users (data providers and consumers).

3.2 Methodology
Since PERiMETER is a methodology for data-at-rest, pseudonymization is applied to
the health records owned by patients as data originators and not to the data consumers
(patients, health professionals, secondary users) who are accessing the records. The basic
concept of the methodology revolves around the following aspects:

• Fragment the sensitive health documents into non-critical fragments and store
them in cleartext in a non-hierarchical fashion. Fragmentation may be done across
documents or for the content of individual documents. For example, health records
including discharge summaries can be fragmented into individual incidents. This
includes the separation of patient-identifying sections of the documents from the
actual medical contents.

• Pseudonymize the fragments, i.e. assign each fragment a number of pseudonyms to
be used as access identifiers and access authorization tickets (see below). For each
user who is authorized for a particular fragment, a new pseudonym is created.

• Retain the health documents’ organizational structure and associations and keep
them as pseudonymization metadata (pseudonym combinations) to be used as
document fragment links. Knowledge of the links between different pseudonyms
results in the knowledge of the correct fragments of a particular document.

• Instead of encrypting the actual health documents, only encrypt the pseudonymiza-
tion metadata with a secret cryptographic key of the particular data consumer to
ensure that only those persons are able to correctly reestablish the links between
the document fragments.

• Provide a pseudonymization-conforming query mechanism that allows primary users
to search for specific documents. This includes the ability to identify all involving
fragments. Secondary users should not be able to use this query mechanism.

The use of pseudonyms as document fragment referrers results in a pseudonym-based
access control mechanism where multiple cryptographic keys are employed to protect
the secret links between the pseudonyms, forming a layer-based security model. Only
for eligible primary users, the security model grants access to the pseudonymization
metadata, or more specifically, grants the ability to de-pseudonymize and relink the
document fragments. In the following, the main three features of the PERiMETER
concept are described in detail. In this scheme, patients are considered to be data owners
who are in full control of their data, while health professionals or health care providers
who are granted primary access to documents by a patient are denoted as authorized
persons.
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3.2.1 Pseudonym-based access control

Pseudonyms as document identifiers provide a form of ’traceable anonymity’. In terms of
pseudonymized data, access control does not refer to the traditional definition but refers
to the knowledge and the ability to reconnect certain pseudonyms with each other. If
someone is authorized for a particular document, this person is able to identify which
pseudonyms belong together and, thus, which fragments are part of this document. If not
authorized, the person cannot identify the correct associations between the fragments.
In the following, we refer to the document fragments simply as records for the remainder
of this chapter. In PERiMETER, a pseudonym is randomly selected from the domain of
pseudonyms Dom(P) and not derived from any entity, and then assigned to a record as
access identifier. Each pseudonym can be assigned to a single record only, while each
record can be assigned multiple pseudonyms. The Dom(P) should be sufficiently large
to prevent pseudonym duplicates, e.g., 128-bit universally unique identifiers (UUIDs).
In general, there are two different kinds of pseudonyms which are syntactically equal
but used in a different context: Root pseudonyms are available to the data owner only
and represent the main record access identifiers. Whenever new records are stored, a
new root pseudonym is assigned to each individual record. The (access) authorization
for a trusted authorized person is represented by a set of pseudonyms called shared
pseudonyms. Authorizations are always defined for specific records, and for each specific
authorization, new shared pseudonyms are created by the data owner and assigned to the
records. As their name implies, shared pseudonyms are shared between data owner and
authorized user. While the data owner retains the root pseudonyms as primary access
identifiers, the shared pseudonyms are used as access identifiers by the authorized user.
Since access authorizations are controlled by the data owner, the data owner creates the
shared pseudonyms for the authorized users. Technically, access revocation by the data
owner is possible by deleting the shared pseudonyms, although arguably ineffective since
knowledge cannot be ’taken away’ from someone. Only the data owner is able to control
who is authorized for which records, as long as the authorized users act faithfully and do
not pass on the authorization information to third parties.

Health care providers are not necessarily authorized for the same records by the same
patient. This is illustrated in Figure 3.1 where users, pseudonyms, and data records
are organized as follows: The patient has three document fragments, an identification
record with all person-identifying elements (name, birth date, address, etc.) as well as
two different health records A and B. In this scenario, the pseudonyms are organized
into pairs, one for the identification record and one for the health record forming a 1:1
relationship. Each of the health records is assigned a single root health pseudonym
(root PSN HE), while the identification record is referenced with two root identification
pseudonyms (root PSN ID). Furthermore, the patient has created two authorizations
for health care providers A and B. Health care provider A is granted access rights to
health record A sharing a shared pseudonym pair with the patient (left), while health
care provider B is granted access rights to health record B, sharing another set of
shared pseudonyms (right). Thus the identification record is now referenced with four
identification pseudonyms, while each of the health records is referenced with two health
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Figure 3.1: Root and shared pseudonyms organized in pairs

pseudonyms. The patient is the only person having knowledge of all elements concerning
his/her identification and health records; the health care providers are aware of the
records concerning their individual authorizations only. By inspecting health record B,
health care provider A can only derive from the number of assigned health pseudonyms
that there is an authorization for this particular record, but - lacking the knowledge of
the corresponding identification pseudonyms - not that the record belongs to the patient
as well. This pseudonym usage scheme results in the following: The number of randomly
selected and assigned pseudonyms per record is 1 + nauth where 0 ≤ nauth ≤ ntotal where
ntotal is the number of all potential authorizations grantees and nauth the number of
persons currently authorized for the particular record, and usually nreca

auth 6= nrecb
auth, i.e.

the number of assigned authorizations need not be the same for all records in the data
owner’s possession.

In order to protect the pseudonym links, pseudonyms are stored as follows: The
plaintext pseudonyms are directly assigned to the records, while the pseudonym links are
stored as pseudonymization metadata encrypted with user-specific cryptographic keys,
i.e. pseudonyms are individually encrypted and jointly stored to represent their link.
Without the key, the pseudonyms cannot be decrypted and therefore the link cannot be
restored. Encryption is applied according to the layer-based security model as described
in the following section.

3.2.2 Layer-based security model

PERiMETER implements a layer-based security model (cf. Figure 3.2) relying on a
combination of user-specific asymmetric and symmetric cryptographic keys which protects
and controls access to the data records. Here, having access to the data records means
having access to de-pseudonymized documents as well. Each layer is responsible for one
step in the data access process which means that the user has to pass all layers in order
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to retrieve the actual de-pseudonymized documents. Technically, each layer is composed
of specific cryptographic keys as follows:

• The outer layer, the authentication layer, consists of each user’s outer asymmetric
keypair (outer public key OPuK and outer private key OPK) and is responsible
for identifying each user unambiguously. The OPK grants access to the inner
asymmetric key.

• The middle layer, the authorization layer, consists of each user’s inner asymmetric
keypair (inner public key IPuK and inner private key IPK) and inner symmetric
key ISK and is responsible for controlling access authorizations. The ISK is
encrypted with the IPuK, while the IPK is encrypted with the OPuK.

• The inner layer, the concealed data layer, is the final layer and consists of the
pseudonyms and the records. The ISK is used to encrypt the pseudonym links.

Figure 3.2: Security layers

In combination with the root and shared pseudonyms, this layer-based security model
supports the following user types:

Data owner The patient as data owner is the only person who is in full control of
his/her health data and can add and delete health data at his/her discretion. The
data owner can grant trusted persons access to specific health records in the form
of authorizations (shared pseudonym sets, cf. Section 3.2.1). Primary access to the
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health records (in this example two record fragments) is achieved by using the root
pseudonyms protected by the following encryption chain:

{IPKOW }OP uKOW
(3.1){

{rPSNR1, rPSNR2, UIDOW }ISKOW

}
IP uKOW

(3.2)

rPSNR1 7→ RECORD1 (3.3)
rPSNR2 7→ RECORD2 (3.4)

Data retrieval includes the following steps: First, the owner’s inner private key
IPKOW encrypted with the outer public key OPuKOW is decrypted with the
owner’s outer private key OPKOW . Then, the inner symmetric key ISKOW

encrypted with the inner public key IPuKOW is decrypted with the inner private
key IPKOW . Finally, the root pseudonyms rPSN for records (fragments) 1 and 2
can be accessed with the inner symmetric key ISKOW .

Authorized user The authorized user AU is a trusted party like a health care provider
who is granted access only to specific health data of the owner. When provided
with shared pseudonym sets, the authorized user is able to relink only those records
referenced with the shared pseudonyms. Since both data owner and authorized
user require access to the shared pseudonyms, they are encrypted with each of their
inner symmetric keys:{

{sPSNR1, sPSNR2, UIDOW , UIDAU}ISKOW

}
IP uKOW

(3.5){
{sPSNR1, sPSNR2, UIDOW , UIDAU}ISKAU

}
IP uKAU

(3.6)

sPSNR1 7→ RECORD1 (3.7)
sPSNR2 7→ RECORD2 (3.8)

Analogous to the data owner’s data retrieval process, the authorized user requires
the outer private key OPKAU to get access to the inner private key IPKAU , which
in turn decrypts the inner symmetric key ISKAU to decrypt the shared pseudonyms
sPSNR1 and sPSNR2. With those, the corresponding records RECORD1 and
RECORD2 can be identified.

Secondary user A researcher is a secondary user who has access to the records only
in the pseudonymized state without the ability to decrypt the pseudonym links,
lacking access to the required secret keys. Thus, the secondary user can have
knowledge of the pseudonym/record mappings (since the pseudonyms are stored in
plaintext here), but not of the pseudonym/pseudonym-mappings:

rPSNR1, sPSNR1 7→ RECORD1 (3.9)
rPSNR2, sPSNR2 7→ RECORD2 (3.10)

rPSNR1 9 rPSNR2 (3.11)
sPSNR1 9 sPSNR2 (3.12)
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Encryption with the OPuK and IPuK are required to be probabilistic (with a
suitable padding scheme) to prevent chosen-plaintext attacks, while ISK encryptions
need to be deterministic (with a reused IV) in order to support querying by ID and
pseudonyms (cf. Section 3.2.4).

3.2.3 Secure hardware and cryptographic keys

The security layers with their set of user-specific asymmetric and symmetric keys have been
specifically designed to be implemented using secure hardware. In order to successfully
and securely apply cryptography, three requirements must be fulfilled: (i) the security
and soundness of the cryptographic algorithm must be ensured, (ii) the implementation
of the cryptographic algorithm must be correct, and (iii) the cryptographic keys must
be kept secret. While the soundness of modern algorithms is nowadays verified by the
scientific communities and the correctness of the implementations can be checked by
code reviews (in case of open source implementations, like Bouncy Castle API2, again
by a large community), the secrecy of the keys must be ensured by the cryptography
operators and applications.

The majority of cryptographic implementations is software-based with keys stored
in a standardized key store or container on a file system directly where the algorithms
are executed or on a dedicated key management server. However, keys stored in a file
system or in a database are prone to be stolen or compromised, and algorithms executed
in the computer’s generic memory can be tampered with, which makes software-based
solutions cost-efficient but less dependable in a high-security environment. The most
secure solution is a hardware-based solution where the algorithms are executed and keys
are used within the secure confinement of a specially protected piece of hardware. A
hardware security module (HSM) [6] is an encapsulated and tamper-resistant hardware
module that is designed to withstand logical as well as physical attacks [14, 46]. The
protection measures range from solid metal casings to special switches that zeroize the
memory when tampering is detected [2] and are required to be certified against industry
standards such as Common Criteria or FIPS 140-2. HSMs provide standardized interfaces
to communicate with their host computers such as PKCS#11 [98] and serve as secure
key stores and cryptographic processors which implement all standard cryptographic
algorithms currently in use including RSA, ECC, and AES. They also provide secure
key generation facilities and support that the keys are generated and used only within
the HSM and thus never leave its secure boundaries. HSMs also come in different sizes
including USB-connected devices, PCI-connected devices for installation within desktop
computers and servers, as well as network-connected devices. HSMs are usually deployed
in application areas where security is of utmost importance, like in ATMs for PIN
management including PIN acquisition/verification/generation, in electronic payment
schemes as an integral part of the back-end systems at banks processing the transactions,
or in military applications as encryption and decryption modules for highly sensitive
communication or as nuclear command and control tools [2]. Other applications include

2https://www.bouncycastle.org/
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their implementation within public key infrastructures (PKI) [125] or in electronic voting
schemes [97].

In addition to an HSM, PERiMETER is designed to be used with smart cards as
user-side security token. A smart card is a secured (contact) micro controller card (cf.
[63], [59]) that has similar properties to an HSM, i.e. tamper resistance, secured key
storage area, and dedicated hardware-based cryptographic engines for common symmetric
and asymmetric cryptographic algorithms such as RSA and AES. Due to these properties,
a smart card is used as user-owned PIN-protected secure key store for the authentication
credentials as well as a trusted client-side cryptographic engine. Since access to the smart
card, or more specifically, to the keys stored on the card, is restricted by the PIN, the
combination provides two-factor-authentication, an authentication mechanism superior
to the simple username/password combination. For optimum security, the smart card
requires a certified card reader (Common Criteria EAL3+) with an integrated keypad.
The integrated keypad ensures the secured entry of the required PIN, preventing its
exposure to potential malicious code installed on the host computer (malware, viruses,
etc.).

Figure 3.3: Cryptographic keys

PERiMETER aims at maximum cryptographic compatibility and does not require
specific cryptographic algorithms to provide special properties like homomorphism; any
general-purpose symmetric and asymmetric algorithm including 3DES, AES, RSA or ECC
can be employed. There is also no restriction concerning block or key size, apart from
general security considerations. Therefore, the algorithms can be easily replaced should
the need arise without compromising the pseudonymization scheme. The cryptographic
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keys are distributed over the user-owned smart card, a central server-side HSM and
the pseudonymization database as follows to implement the layer-based security model
(Figure 3.3):

• The smart card is used as tamper-resistant user authentication token and client-side
secure cryptographic module for the authentication procedure. That means that
the asymmetric keypair responsible for the authentication, the outer asymmetric
keypair, is generated at the smart card and the OPK never leaves the card. Access
to this key is protected by the PIN to realize two-factor authentication. Furthermore,
the server’s (or HSM’s) OPuK is also stored at the smart card for the authentication
procedure.

• The HSM acts as tamper-resistant main cryptographic module at the server side
where the health and pseudonymization metadata is stored. It uses each user’s
ISK for the bulk of the cryptographic operations which is imported during the
user authentication phase. The ISK is only used in plaintext within the HSM.
Furthermore, the HSM also stores and uses its OPK necessary for the authentication.
Similar to the OPK at each smart card, the server’s outer keypair is also generated
within the HSM and its OPK is never available in cleartext outside the HSM.

• Finally, each user’s OPuK-encrypted IPK and the IPuK-encrypted ISK are
stored in the pseudonymization database. The users’ public keys are also stored in
the database. Since the database only stores public and encrypted secret keys, it
can be considered not fully trusted; only the smart card and HSM are required to
be fully trusted.

During the authentication procedure, the encrypted user keys are retrieved from
the database and are decrypted either at the smart card or at the HSM. Figure 3.4
illustrates the individual steps of the authentication process including the keys involved
and how they are transferred between smart card, HSM, and database. The authen-
tication itself applies a challenge-response protocol involving the user’s and server’s
outer asymmetric keypair and two randomly-generated nonces as user-side and server-
side challenges (cf. Needham-Schroeder-Lowe protocol [68]). In Figure 3.4, we use the
following notation: Subscript u and s refers to the user and server (HSM) elements
(e.g., OPuKs and IPKu), and UID refers to the user identifier. OPuK/OPK and
IPuK/IPK are the two asymmetric keypairs and ISK the single secret symmetric
key. Gen(N) denotes the generation of a nonce, i.e. the random selection of a suitable
nonce. Enc(encryption key, {item(s)}) describes the encryption of one or more items
with the encryption key, while Dec(decryption key, encryption key {item(s)}) denotes
the complementary operation of decrypting one or more item(s) with the corresponding
decryption key. Get(user identifier → key) refers to retrieving the key related to
the UID. Finally, the arrows represent the messages between smart card, HSM, and
database, and the operations within the three locations are shown on the lower part of
the boxes. The upper part contains the keys that are stored and/or are available where
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secret keys are shown in italic letters. For the sake of simplicity, the pseudonymization
server which is actually responsible for the client/server and database communication
has been omitted here.

Figure 3.4: Authentication procedure with key preparation

The authentication procedure begins with the generation of the user nonce Nu and its
encryption along with the user identifier UIDu with the server’s outer public key OPuKs

(1). Both Nu and UIDu are transferred to the HSM where the elements are decrypted
with the server’s outer private key OPKs (2). With the UIDu, the corresponding outer
public key OPuKu can be retrieved from the database (3). Within the HSM, the server
nonce Ns is generated and encrypted with the OPuKu along with the server’s identity
UIDs (4). The Nu is also included as response to the user’s challenge. When the smart
card receives the nonces, they are decrypted with the user’s outer private key OPKu

and the Nu is checked for validity (5). If the Nu is correct, the Ns is encrypted with
the OPuKs as response and transferred back to the HSM (6), where it is decrypted
and also checked for validity (7). If both nonces are confirmed to be correct, the actual
authentication is completed and the user unambiguously identified. Next, the secret keys
must be made available and loaded into the HSM. This involves the retrieval of the user’s
inner private key IPKu encrypted with the OPuKu and its transfer to the smart card
without an operation at the HSM (8). After its decryption with the OPuKu (9), it is
re-encrypted with the OPuKs for its transfer to the HSM (10) where it is decrypted
(11). Finally, the user’s inner symmetric key ISKu is retrieved from the database (12),
decrypted with the IPKu (13), and then made available for any further operations (14).
This completes the authentication procedure.

In this authentication scheme, the user’s IPK acts as decryption token for the
ISK, which allows to keep the sensitive ISK at the server side at all times (encrypted
in the database and in cleartext only within the HSM) and therefore to minimize its
exposure. Since the smart card is in essence an HSM in miniature format, it can also
act as primary user-side cryptographic device replacing the HSM. In this scenario, the
smart card takes over all main cryptographic operations involving the ISK (pseudonym
encryption/decryption) and the HSM is replaced with a conventional software-based
cryptographic module. The difference in the authentication procedure compared to the
HSM scenario is explained in Figure 3.5: Here the HSM is replaced with the server
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Figure 3.5: Authentication procedure without an HSM

which integrates the software cryptographic module. After the user authentication (1)
which works exactly like in the HSM scenario, the server retrieves both encrypted IPKu

and ISKu from the database and sends them to the smart card. Then, the IPKu is
decrypted, followed by the ISKu and made available for further use (5). Since the secret
keys only pass the server and are decrypted only within the smart card, they cannot
be compromised without detection. Therefore, even if the user authentication without
a server-side HSM would be compromised, unauthorized use of the secret keys in the
database is still prevented due to the user’s OPK storage location at the smart card.

As an additional security measure, a secret session key can be generated at the
HSM and forwarded to the smart card during the authentication procedure to prevent
eavesdropping of further communication between client and server (health documents,
pseudonyms in the non-HSM scenario), realizing a TLS-like communication method.

3.2.4 Document query mechanism

Since pseudonyms must not contain any semantic information, they cannot be used for
querying operations. Still, there are several ways to find the desired documents, with
different levels of granularity.

The first way is to query for all documents a user owns or is authorized for by
retrieving all pseudonyms that are related to either the data owner or the authorized
user. This can be done due to the deterministic encryption with the ISK. Encrypting
the UID with the ISK and querying the pseudonymization database yields the records
for the data owner by the root pseudonym relations

{UIDOW }ISKOW
7→ {rPSN1...n, UIDOW }ISKOW

7→ rPSN1...n 7→ RECORD1...n

(3.13)

and for an authorized user by the shared pseudonym relations

{UIDAU}ISKAU
7→ {sPSN1...n, UIDOW , UIDAU}ISKAU

7→ sPSN1...n 7→ RECORD1...n

(3.14)
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after the decryption of the root respectively shared pseudonyms where n denotes the
total amount of individual records (fragments) of the owner’s health documents. The same
mechanism can for example be used to find all fragments k of a particular document by a
single fragment x by retrieving x’s root pseudonym, encrypting it, querying the database
for the encrypted root pseudonym relation and thus retrieving the root pseudonyms of
the remaining fragments:

RECORDx 7→ rPSNx 7→ {rPSNx}ISKOW
7→ {rPSN1...k, UIDOW }ISKOW

7→
7→ rPSN1...k 7→ RECORD1...k

(3.15)

While this method yields either all documents or a single one, it cannot produce
results based on document content. Therefore, the second method supports specific
keywords that return only matching pseudonyms, more specifically, pseudonyms related
to matching keywords. The idea is that keywords are stored in plaintext to support exact
match as well as range queries without relying on special cryptographic properties like
homomorphic encryption, while the relation to the pseudonyms are stored encrypted
with the ISK (Figure 3.6). While unstructured (arbitrary) keywords are ill-suited for
range queries and may also contain unwanted sensitive information, in PERiMETER
only structured keywords constructed from prespecified keyword templates are used. The
templates are designed for different health record properties such as document type (e.g.,
anamnesis, computed axial tomography), disease type, and date. Standards like the
International Statistical Classification of Diseases and Related Health Problems (ICD)
[127] or the Logical Observation Identifiers Names and Codes (LOINC) [89] are especially
suited for the application as keyword templates.

Figure 3.6: Structured keywords

A keyword template combination consisting of the document type DocTypex, the
disease type DisTypey, and the date Datez is assigned a keyword identifier KIDxyz
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which is encrypted with the user’s ISK and stored along with the encrypted pseudonyms,
from the viewpoint of the data owner:

DocTypex + DisTypey + Datez 7→ KIDxyz 7→ {KIDxyz}ISKOW
7→

7→ {KIDxyz, rPSN1...k, UIDOW }ISKOW
7→

7→ rPSN1...k 7→ RECORD1...k

(3.16)

A query for multiple keyword template combinations would yield multiple keyword
identifiers, which in turn would result in multiple pseudonym relations and thus multiple
health documents.

The third approach involves a personal metadata storage and is the most powerful
way in terms of allowing arbitrary keywords which are stored encrypted because they
may contain sensitive information. The idea is to store describing metadata (document
type, disease type, arbitrary descriptions, etc.) in this personal document directory
including the pseudonym references to create a personal document directory. However,
this also requires a mechanism to query within the encrypted document directory. Since
PERiMETER should be largely independent from the cryptographic algorithms in use, the
query mechanism must not rely on specific algorithmic properties such as homomorphism.
The solution is to organize the document directory in a schema-aware XML document
[101] and to rely on a schema-aware labeling scheme as query mechanism [55]. Figure 3.7
shows how the personal metadata storage integrates with PERiMETER’s layer-based
security model (cf. Section 3.2.2): The metadata storage is part of the authorization
layer and extends the pseudonym information (i.e. pseudonym relations) with description
entries. To protect the metadata storage from unauthorized access, each one is encrypted
with the corresponding user’s ISK.

As shown in the figure, both data owner and authorized user store the same types
of information, but the directories are organized differently. The authorized user’s
metadata storage contains the shared pseudonyms only, organized under an owner entry
node, whereas the data owner’s storage contains all owned root pseudonyms plus each
authorization. In other words, the XML data structure allows organizing the directory
entries in an hierarchical manner, as long as the structure corresponds to the predefined
schema information obtained from an XML schema or DTD. Because each user has
his/her own private store, each user is able to organize the document entries at his/her
discretion, as long as it corresponds to the schema. To realize the schema-aware labeling
scheme, each node is assigned a unique node label l which encodes the path leading to
the node, as well as the node’s tag name and type. For persistence, the XML document’s
content and structure are split and stored separately. The content of the XML document
is stored at the metadata storage provider in a hash table H (l) 7→ E (v, ISK, n) where
H is a cryptographic hash function, E is a symmetric encryption algorithm taking the
textual value v of the leaf node labeled l as input to be encrypted with key ISK nonced
with n. Here the nonce is necessary to break the determinism provided by ISK encryption
since arbitrary and thus reused keywords are allowed that produce duplicate ciphers
(the same XML content may exist within an XML document at different locations).
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Figure 3.7: Personal metadata storage

The structure of the XML document is stored in another hash table which essentially
represents a B+-tree over the node labels in the document. To further speed up query
performance, secondary index structures can be employed. To insert a new node into
a document, first the node label is computed and then new entries are added to the
hash tables for storing the structure and the content of the document. Queries are
defined in XPath expressions. The supported XPath fragment allows for navigational
queries with value-based predicates. Navigational queries are primarily processed by
means of querying the structural information about the document, but also expressive
node labels are exploited to reduce the number of storage access operations. To process
value-based predicates, secondary index structures are used if available, or the values of
nodes need to be filtered by the retriever. Basically, exact match queries, range queries, or
a combination of them can be realized by defining the corresponding XPath expressions,
supported by prepared secondary index structures.

Figure 3.8 illustrates this concept: The XML document consists of the text leaf nodes
B and D connected by nodes A and C; only the text leaf nodes contain actual content.
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Figure 3.8: Metadata structure and content

Each node is also assigned a unique label based on its position in the XML tree (depth
and number of siblings). The schema defines the path and the corresponding identifiers
of each node, as well as the cardinality of the leaf nodes. In this example, node of type D
has a cardinality of 2, while the schema allows a cardinality of 0 or more instances. The
structure is represented as a B+-tree that supports exact match and range queries and
contains the labels of each node. And finally, the content itself is stored along with the
corresponding node’s label.

3.2.5 Extensions

The previous sections described the core elements of the PERiMETER methodology
developed to cover the requirements as stated in Section 3.1. In the following, we describe
several concepts that extend the basic methodology with useful functionality.

Affiliation

The primary authorization method using shared pseudonyms is designed to be as granular
as possible to achieve a discretionary access control-like authorization scheme. This
allows the patient as data owner to be in full control and limits access to a need-to-know
basis. However, in certain situations it is desired to allow that these root rights are passed
on to a trusted person such as a close relative. Acting as a surrogate, this trusted person
should be able to exert all data owner rights including the retrieval of all documents via
root pseudonyms as well as the creation of new authorizations. Technically, this can be
realized by granting the trusted person access to the data owner’s secret key, which we
denote as affiliation. The user types as described in Section 3.2.2 are extended with the
affiliate:

Affiliate The affiliate AF is a trusted person (e.g., close relative) who is granted access to
the data owner’s IPKOW so that the affiliate is able to decrypt the owner’s ISKOW ,
which allows the affiliate to encrypt/decrypt the data owner’s root and shared
pseudonyms. The IPKOW is encrypted with the affiliate’s ISKAF and stored in
the pseudonymization database as affiliation token, similar to an authorization for
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a health care provider where the shared pseudonyms are stored encrypted with the
ISK as authorization token. The encryption chain for the affiliate is constructed
as follows:

{IPKAF }OP uKAF
(3.17){

{IPKOW , UIDOW , UIDAF }ISKAF

}
IP uKAF

(3.18){
{rPSNR1, rPSNR2, UIDOW }ISKOW

}
IP uKOW

(3.19)

rPSNR1 7→ RECORD1 (3.20)
rPSNR2 7→ RECORD2 (3.21)

Before the affiliate is able to decrypt the root pseudonyms rPSNR1 and rPSNR2,
the data owner’s ISKOW needs to be decrypted with the IPKOW , which in turn
can be decrypted with the affiliate’s ISKAF made available after the authentication
procedure (cf. 3.2.3) involving the OPKAF and the IPKAF .

Since the affiliate also has access to the owner’s IPK, the affiliate can also participate in
asynchronous operations in place of the data owner as described in the following section.

Asynchronous operations

Due to the security layers protecting the secret ISK, all operations involving the ISKs
of two persons, i.e. the creation of authorizations (shared pseudonyms) and affiliations,
are basically synchronous operations where both parties have to be present to provide
their security tokens so that their individual ISKs can be made available. While this
represents a security feature to make sure that the correct parties are involved, this
may also be hindering its practical use in certain circumstances. Affiliations are low-
frequency operations and are thus less affected by the required face-to-face meeting of the
participants. But for authorizations, it can be impractical to require both data owner and
authorized person to be present due to the discretionary access control-style. Furthermore,
since new documents are usually created/provided by the health care provider and not
by the patient, an asynchronous mechanism is required to allow the health care provider
as authorized person to add new documents without the patient to be authenticated at
the same time. This can be realized by using the inner asymmetric keypair.

This situation may apply, for example, when a secret message needs to be forwarded to
a particular recipient. In this case, using the inner asymmetric keypair has the following
advantages: (i) Only the intended recipient is able to decrypt the message since the IPK
is kept secret. However, due to affiliations (cf. previous section), an affiliate is also able
to receive and decrypt the message, which would not be possible if the outer asymmetric
keypair was used since it should be used for authentications only and thus cannot be
shared. (ii) No secret key needs to be shared between message sender and receiver
because each user’s IPuK is stored unencrypted in the pseudonymization database.
And finally, (iii) because deterministic public key encryption schemes are required to
incorporate randomness in the form of a suitable padding scheme (e.g., RSA-OAEP) to
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prevent chosen-plaintext attacks, the same messages are guaranteed to produce different
ciphertexts even when encrypting them with the same public key. This scenario of a data
owner using the database as storage area for a (temporary) message for an authorized
user is depicted in Figure 3.9:

At first, the data owner as message sender must be authenticated, both user identifiers
UIDOW and UIDAU must be known, and the message M prepared at the server (1). Then
the authorized user’s IPuKAU is retrieved from the database using the corresponding
UIDAU (2) and is used to encrypt the message as well as the data owner’s identifier
UIDOW as sender’s identifier (3). Then, the encrypted M and UIDOW are both stored
in the database along with the receiver’s UIDAU which is kept in plaintext (4). This
completes the owner’s part. When the authorized user completes the authentication
process and the server is provided with the authorized user’s UIDAU (5), the server can
query the database for any unread messages. If there is one, it is retrieved from the
database (6) and decrypted using the IPKAU (7) so that it is available in cleartext (8).
The UIDOW acts as sender reference. Since the message is only temporary, it is deleted
in the database after having been received (9). Depending on the message’s length, it may
be more efficient to encrypt the message with a generated symmetric message encryption
key instead of directly with the public key and encrypt the message key with the public
key (hybrid encryption).

Figure 3.9: Asynchronous message

This simple message system can be extended to handle asynchronous authorizations
where the pseudonym relations are stored encrypted (first with the authorized user’s
IPuKAU and then re-encrypted with the ISKAU when the user is available). The data
owner thus prepares the authorization elements which are then accepted by the authorized
user. In particular, the asynchronous authorization involves the following steps (cf. Figure
3.10): As a precondition, all root pseudonyms rPSN1...rPSNn referencing fragments of
the particular medical document as well as both user identifiers UIDOW and UIDAU

must be known (1). Then all records are retrieved (2) and referenced with newly generated
shared pseudonyms sPSN1...sPSNn (3). The new shared pseudonym/record relations
are stored in the database (4). The HSM then creates the data owner’s part of the
authorization relation, i.e. the sPSN1...sPSNn and both UIDOW and UIDAU encrypted
with the ISKOW (5) to be stored in the database (6). Furthermore, the owner’s UIDOW
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and pseudonyms are also encrypted with the authorized user’s IPuKAU (8) and stored in
the database as encrypted message (9), after the IPuKAU has been retrieved (7). This
completes the authorization preparation phase for the data owner. The authorized user’s
phase begins after authentication when the identifier UIDAU (10) and all secret keys are
available. At first, the database is queried for pending asynchronous authorizations. If
existing, the encrypted elements are retrieved (11) and decrypted (12) in the HSM. Then,
both identifiers UIDOW and UIDAU as well as the shared pseudonyms sPSN1...sPSNn

are (re)encrypted with the ISKAU (13) and then stored in the database (14) as the
authorized user’s part of the authorization elements. Since the shared pseudonyms are
now known by the authorized user, the corresponding records can be retrieved (15) and
made available to the server (16) for further use (retrieving the corresponding medical
record fragments). Finally, the temporary message containing the pseudonyms is deleted
(17) since the authorization has been accepted.

Figure 3.10: Asynchronous authorization

Another application scenario of the asynchronous operations is the storage of new
medical documents which are usually provided by the health professional instead of the
patient. This operation involves similar steps with roles reversed, where the authorized
user creates the access authorization for himself/herself and the data owner completes
it with his/her part, in addition to creating the root pseudonyms (cf. Figure 3.11):
Again, the precondition is that both user identifiers UIDOW and UIDAU are known, as
well as the records REC1...RECn referring to the document fragments. The operation
starts when the server generates new shared pseudonyms sPSN1...sPSNn for the health
professional as authorized user (1) and stores the pseudonym/record relations in the
database (2). Then both user identifiers and the pseudonyms are encrypted with the
authorized user’s ISKAU and also stored in the database (4). The data owner’s IPuKOW
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is then retrieved (5) and the shared pseudonyms (including the UIDAU as reference)
encrypted with the IPuKOW (6). To complete the authorized user’s part, the (reverse)
authorization is stored in the database (7). When the data owner is authenticated and the
UIDOW as well as the secret keys are available, the (reverse) authorization is retrieved
from the database (8), decrypted with the IPKOW in the HSM (9), re-encrypted with
the ISKOW with the UIDOW added (10) and finally persisted in the database (11).
This completes the finalization of the authorization. Since the records are new, root
pseudonyms rPSN1...rPSNn must still be generated (12), encrypted with the ISKOW

(13), and stored in the database (14). The root pseudonyms must also be referenced
with the records, which involves their retrieval using the shared pseudonyms (15) and
the storage of the root pseudonym/record relations (17). The records are stored at the
server for further use (16). In the last step, the temporary authorization is deleted (18).

Figure 3.11: Adding a new medical document by the health professional

Before asynchronous operations can be executed, both participants, or more specifi-
cally, their user identifiers and inner public keys have to be known and authenticated
to make sure that the message recipient is the correct person. Therefore, asynchronous
operations require at least one prior face-to-face authorization.

Integrity

PERiMETER’s pseudonymization scheme is designed to work in an honest-but-curious
attacker-style scenario where the attacker is assumed to have access to the pseudonymiza-
tion database. Since an honest-but-curious attacker is not able or does not intend to
act maliciously, i.e. alter data without proper authorization, it is sufficient to keep
the data confidential by pseudonymization. However, when considering a malicious
attacker, the data’s integrity will play a major role. As in general one cannot prevent
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malicious data modifications in an untrusted environment, the goal is to identify if data
has been altered maliciously by checking verifiable (i.e. signed) digests of data relations.
Technically, the HSM with a secret key can be used to create those digests. Since the
focus of PERiMETER lies on user-controlled and user-centered privacy, integrity should
also be verifiable by the users. User-verifiable integrity can be realized by introducing
dedicated and user-owned cryptographic integrity verification keys, a symmetric integrity
verification key IV K and an asymmetric verification keypair IV PuK and IV PK which
are used on the pseudonymization metadata (i.e. encrypted pseudonym relations and user
ID/public key relations) in the following denoted as tuples. Depending on which types of
tuples are required to be checked for integrity, either the symmetric or the asymmetric
verification keys are used: In cases where the tuple creator and tuple verifier is the same
person, the symmetric IV K is used. These include permanent tuples that are intended
to be stored for a longer period of time, such as the user identifiers with public keys or
the encrypted root and shared pseudonym relations. Here the IV K is required to be
kept secret to prevent that the integrity verification digests provide information which
allows the identification of the corresponding tuple creator. For tuples with different
creator and verifier, the IV PuK and IV PK are used. These tuples are temporary tuples
which contain temporary data elements intended to exchange information between a
sender and receiver (cf. Section 3.2.5). Integrity verification is particularly important for
asynchronous operations in order to authenticate the message sender.

The basis for the integrity verification of permanent tuples is the creation of the digest
which involves appending the data tuple’s elements (attributes) and a cryptographic
hashing operation where the hash value is then signed as follows:

{{ATTRIB1||ATTRIB2||...||ATTRIBn}Hash ||UID}IV K (3.22)

where ATTRIBx denotes the x’th tuple attribute, || the concatenation of elements,
Hash the application of a cryptographic one-way hash algorithm (e.g., SHA-3), and IV K
the encryption with the secret integrity verification key as the signature operation. This
encrypted digest needs to be stored along with the corresponding data tuples. As usual,
integrity verification is done by acquiring the IV K (stored encrypted with the user’s
ISK), recalculating the hash value, appending the UID, encrypting it with the IV K
and then comparing the results with the encrypted stored digest, when the encryption
is deterministic, or alternatively by decrypting the stored has value, decrypting it, and
comparing it with the recalculated hash value in plaintext when the symmetric encryption
is done probabilistically (including padding and/or different IVs).

Digest creation for temporary tuples (messages including new health documents
or asynchronous authorizations) involving the IV PuK and IV PK follows the more
traditional route of signing messages with an asymmetric technique. Here the signed
digest has two functions: (i) to verify that the message’s content has not been tampered
with and (ii) to verify its origin (sender’s identity). The digest is simply added to the
tuple’s encrypted content as follows:
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UIDrecipient,
{

UIDsender, M,
{
{UIDrecipient||UIDsender||M}Hash

}
IV P Ksender

}
IP uKrecipient

(3.23)

With access to the sender’s IV PuK which should be proven to be valid (see public
keys section below), the message’s integrity and sender’s identity can be verified after
the message is decrypted with the recipient’s IPK.

The following data tuples are required to be verifiable by signed digests:

Public keys Since PERiMETER is designed to forgo a trusted third party and thus
lacks a central certificate authority, it must be assured that the public keys and
the encrypted private and secret keys stored in the pseudonymization database are
not tampered with. From the key owner’s view, there might be the risk that an
attacker replaces all inner keys, which would be possible because only the outer
keys are stored at the user’s security token and the user’s OPuK is available in the
database for the HSM (cf. Figure 3.3). Even if a digest with all involved encrypted
secret and public keys was created, data tampering would not be detectable as the
IV K could also be faked and encrypted in turn with a faked ISK. Therefore, a
secret component is required which is only known to the user and thus stored at
the security token only, transferred to the HSM during authentication when the
integrity of the other user keys is to be checked. This secret component SECRET ,
e.g., a sufficiently long random number, has to be included in the digest as follows:

{{OPuK||IPuK||IPK||ISK||IV PuK||IV PK||SECRET}Hash ||UID}
IV K

(3.24)

That way, the SECRET must be correctly guessed by an attacker to produce a
valid digest with the faked keys, encrypted with the faked IV K.
From an authorized user’s view who needs to use a data owner’s IPuK for an
asynchronous operation (and vice versa), the data owner’s IV K must not be
available to the authorized user and another mechanism is required. Since the first
authorization requires both users to be logged in and authenticated at the same
time3, the data owner’s public key is validated and the authorized user can create
the digest as follows:

{{IPuKOW ||IV PuKOW ||UIDOW }Hash ||UIDAU}IV KAU
(3.25)

{{IPuKAU ||IV PuKAU ||UIDAU}Hash ||UIDOW }IV KOW
(3.26)

3An asynchronous operation is not allowed until both involved users have participated in at least one
synchronous authorization operation to verify their identities.
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Both users mutually sign their respective counterpart’s digest in order to verify
the IPuK used when sending an asynchronous message, as well as the IV PuK
used when checking the message’s integrity and origin when receiving it. Their
respective IV Ks are verified during their authentication operations.
An affiliate also requires an own digest for the data owner’s keys because the affiliate
lacks access to the SECRET stored at the owner’s security token. The affiliate’s
digest of the owner keys is constructed as follows:

{{IPuKOW ||IPKOW ||ISKOW ||IV KOW ||IV PuKOW ||IV PKOW ||UIDOW }Hash ||UIDAF }IV KAF

(3.27)

Again the digest is created during the affiliation process where the owner’s IPK
is re-encrypted with the affiliate’s ISK. As the owner’s IPK grants access to
the owner’s IV K, the affiliate can also verify, e.g., the owner’s root pseudonyms’
integrity (see below).

(encrypted) Pseudonyms Pseudonyms are stored in the database in tuples either
in plaintext (referenced with the records) or encrypted (referenced with other
pseudonyms). For root pseudonyms, only the data owner creates and verifies the
digests. For shared pseudonyms, both data owner and authorized user need to have
their own digests signed with their own individual IV Ks (exemplary authorization
for two records):

{{
{sPSNR1, sPSNR2, UIDOW , UIDAU}ISKOW

}
Hash

||UIDOW

}
IV KOW

(3.28){{
{sPSNR1, sPSNR2, UIDOW , UIDAU}ISKAU

}
Hash

||UIDAU

}
IV KAU

(3.29)

Data owner and authorized user then use their specific pseudonym tuples and
digests for integrity verification purposes.

Asynchronous authorizations, new records Digests created for asynchronous au-
thorization and new record tuples are signed with the sender’s IV PK and verified
with the sender’s IV PuK. The digests involve the sender’s UID and the shared
pseudonyms:

UIDAU ,{
UIDOW , sPSN1, ..., sPSNn, {{UIDAU ||UIDOW ||sPSN1||...||sPSNn}Hash}IV P KOW

}
IP uKAU

(3.30)
UIDOW ,{

UIDAU , sPSN1, ..., sPSNn, {{UIDOW ||UIDAU ||sPSN1||...||sPSNn}Hash}IV P KAU

}
IP uKOW

(3.31)
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The upper relation shows the tuple for an asynchronous authorization, while the
lower the tuple for a new record. In both cases, the corresponding receiver validates
the tuples, removes the temporary tuples and creates the permanent pseudonym
tuple(s) with the corresponding digests signed with the IV K.

Backup

The use of a user-owned security token as storage for the outer private key provides a
high-level of security: The outer asymmetric keypair is generated within the secured
confinements of the security token and the outer private key actually never leaves the
token. Access to the key is also granted only when the secret PIN has been provided, in
combination with the token itself proving two-factor authentication. However, relying
on a physical device as authentication token has the disadvantage that there is a risk of
the token to be damaged or lost. Whereas a new token can always be issued with a new
asymmetric keypair, lacking the original outer private key, the critical inner private key
can no longer be decrypted. Therefore, a suitable fallback mechanism in the form of a
backup of the inner private key is necessary. The challenge here is to protect the key
backup against potential attackers.

One solution to this problem is a key escrow arrangement where a trusted user is
entrusted with the inner private key. Technically, the affiliation procedure (cf. Section
3.2.5) is a key escrow scheme where the affiliate is provided with the data owner’s inner
private key to allow the affiliate access to the owner’s data, as well as to ensure a recovery
option in case of an owner security token being unavailable. Since the owner’s inner
private key is protected by the affiliate’s inner symmetric key, the key cannot be restored
without the affiliate’s participation. Still there are certain issues with this approach: On
the one hand, this obviously requires the existence of such a trusted person, yet data
owners might not want to share the inner private key with a single person at all. And
on the other hand, although highly unlikely, there is a chance that both owner’s and
affiliate’s security tokens are unavailable, which in turn blocks them from accessing the
pseudonymization framework, unless the affiliate has a key escrow arrangement with a
user other than the data owner.

To solve both problems, the key backup can be created with an approach based on
secret sharing in the form of Shamir’s threshold scheme [102] where the inner private key
is split into n shares where at least k shares are required with k < n. Unless k shares
are brought together, the inner private key cannot be restored, or in other words, with
l shares where l < k, no information on the inner private key can be gathered. This
scheme has the advantages that (i) it is more robust than the affiliate’s approach as
n− k shares can be lost without compromising the key restoration process and, (ii) if
the shares are distributed among different persons, a group of share holders is required
to restore the key, which distributes the required trust among these share holders without
the need to fully trust each individual share holder.
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Shamir’s approach is based on polynomial interpolation in a finite field (modular
arithmetic) where a polynomial q(x) of degree k − 1 is created as follows:

q(x) = a0 + a1x + ... + ak−1xk−1 mod p (3.32)

where a0 is the secret to be split encoded as number, a1, ..., ak−1 are coefficients
randomly chosen uniformly over the integers [0, p), and p a publicly known prime with
p > a0 and p > n. Shares D are calculated by evaluating n points of this polynomial at
D1 = q(1), ... , Dn = q(n). Only with k of the n points of the polynomial and polynomial
interpolation, the polynomial, i.e. the coefficients, can be determined, including a0, the
original secret. With k′ < k number of shares, a polynomial can be found which covers
all these k′ points for any secret a′0, thus acquiring k′ < k shares does not provide any
additional information, resulting in perfect security.

Figure 3.12: Share distribution

As shown in Figure 3.12, a user’s IPK is split into five shares and distributed to
five share holders. They are then encrypted with the corresponding share holder’s ISK
and stored in the pseudonymization database along with the user’s identity. When the
user’s security token is damaged or lost, the user’s identity is broadcast until at least
three shares (orange lines) are available. Once the shares have been decrypted by the
corresponding share holders, the user’s IPK can be restored. A new security token is
issued, a new outer asymmetric keypair is generated and the IPK encrypted with the
new OPK. Along with the new OPuK, the encrypted IPK is then replaced in the
pseudonymization database.
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There are a couple of limitations with this simple threshold scheme: First, when
Lagrange interpolation is used, the algorithm is limited to finite field arithmetic (modular
arithmetic). Then, the share size is equal to the original secret’s size, and the share
distributor requires full knowledge of the secret in order to calculate the shares. There are
more complex secret sharing methodologies that deal with these limitations (cf. [9] for a
survey). However, for PERiMETER the limitations are no real issue: Since cryptographic
keys can be simply expressed in the form of integers, modular arithmetic is perfectly
suitable. Furthermore, as keys have fixed lengths, there is no sizable amount of data that
needs to be produced when creating the shares. And finally, since the share distributor
is the key holder (or more specifically, the security token or the HSM, depending on the
secure hardware scenario, cf. Section 3.2.3), the share distributor already knows the
secret IPK.

3.3 Scenarios
PERiMETER’s pseudonymization methodology of splitting a document set into multiple
non-critical documents (or document fragments) provides a flexible way of organizing
sensitive documents, regardless of their content domain. In the following, this flexibility
is demonstrated by applying PERiMETER to several document type-differing scenarios.

3.3.1 Plain documents

In the first and most generic scenario, plain documents of different types that are
logically linked are organized into unlinkable documents by pseudonymization. In
terms of medical records, the documents may comprise the following (Figure 3.13): A
dedicated identification record contains all identifying patient information including
geographic/demographic identifiers such as names, addresses, and phone numbers, as well
as biometric identifiers such as size and age. The other documents contain medical data
only, and each individual document does not provide sufficient information to uniquely
reidentify the corresponding patient, e.g., an X-ray image of a right knee without patient
identifiers or a fever chart.

In this scenario, the health records and thus the pseudonyms form a 1:n relationship,
one pseudonym for the identification record and one or more pseudonyms for each
medical record. From the data owner’s point of view, an encrypted pseudonym relation
is constructed as

{rPSNID, rPSNHE1 , ..., rPSNHEn , UIDOW }ISKOW
(3.33)

where rPSNID denotes the root pseudonym referenced with the identification record
and rPSNHE1 ...rPSNHEn the multiple root pseudonyms for each of the n health docu-
ments. The authorization relation contains the shared pseudonym plus the set of shared
pseudonyms for only those health records the authorized user is cleared for, e.g., only for
health document 1 and 2:

62



Figure 3.13: Pseudonymization of plain documents

{sPSNID, sPSNHE1 , sPSNHE2 , UIDOW , UIDAU}ISKAU
(3.34)

This structure provides a high level of flexibility, attaching medical documents to a
single identification record regardless of the formers’ document types.

3.3.2 Clinical Document Architecture

In addition to pseudonymization over multiple documents, the documents themselves
can be split into non-critical fragments which are then individually pseudonymized.
This is necessary if health documents contain sections with identifying information. To
separate patient-identifying sections from purely medical content, it is helpful to rely on
standardized health document structures. One example of those document standards is
the HL7 Version 3 Clinical Document Architecture (CDA R©) [57]. It is especially suitable
for fragmentation and pseudonymization because of the following two reasons: (i) it is a
widely used industry standard of representing health data in electronic health records
and (ii) it separates patient-identifying information from the actual medical content.

In its current release 2, the CDA is developed by the non-profit standards developing
organization Health Level Seven International (HL7) and is aimed at standardizing
the structure of health documents to improve readability and interoperability between
different IT systems like hospital information systems. This enables the document to
be processed by different institutions regardless of how their information systems are
organized and composed of. As a result, CDA documents can be exchanged electronically
and displayed differently since the CDA document lays emphasis on the content of the
document, not the layout. A CDA document is implemented as an XML document and
consists of a highly structured header section containing person-identifying information for
the patient and health professional, as well as information on the document’s originator,
recipient, and other administrative data, and the body section containing the actual
medical content. The structure of the CDA is determined by the HL7 Version 3 Reference
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Information Model (RIM) [58], an object-oriented conceptual information model that
addresses general health and health care information and is the basis for all the other
HL7 Version 3 standards including specifications for general patient administration or
messaging.

Figure 3.14: HL7 Reference Information Model version 2.41 [58]

As shown in Figure 3.14, the RIM consists of different sections representing different
types of objects: entities (green), roles (yellow), and acts (red and blue). Other objects
not shown in this image are elements related to messaging. CDA header elements like
the patient and the involved health care professional are modeled as objects of the class
Person of the group Entities exerting a specific Role of the group Roles. The health care
professional is also related to the health institute modeled as Organization. The medical
CDA body content is largely modeled as objects of the various classes collected in the Acts
group. The RIM is further specified by multiple case scenario-specific Refined Message
Information Models (R-MIMs) such as the CDA R-MIM (Figure 3.15). Due to these
modeling standards, a CDA document can be easily validated by an XML Document
Type Definition (DTD) file.

To ensure human-readability while also allowing automated processing, the body
section of CDA documents may contain narrative text, which is useful especially for
documents such as discharge letters, as well as highly-structured machine-readable codes.
How ’deeply’ the contents are structured is determined by three levels:

• Level 1 contains largely narrative text in free form to support the transition
from paper-based documents to electronic documents. No emphasis is laid on
coded information, except for the administrative header, which is defined in detail
(individual sections for the patient’s first and last name, home address, the health
care specialist’s name and organization etc.).
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Figure 3.15: Excerpt of the CDA R-MIM specifying CDA header elements

• Level 2 extends level 1 by defining mandatory sections within the body section of
CDA documents. For example, a discharge letter must contain mandatory sections
including anamnesis, diagnosis, and medication so that the different medical content
is organized in a more logical and semantic way. This also makes it easier to display
its content more clearly in a graphical user interface of a hospital information
system.

• Level 3 further extends levels 1 and 2 by including machine-readable standardized
codes that are fully conforming to the RIM for optimal interoperability. For
example, a level 3 CDA document’s content can then be fully integrated with the
HL7 Version 3 messaging system so that specific information can be extracted
from the CDA document since the document has been enhanced with standardized
markups to support fully automated processing. Medical incidents are encoded in
standardized schemes such as Logical Observation Identifiers Names and Codes
(LOINC) or Systematized Nomenclature of Medicine (SNOMED).

Regardless of its level, the content of the CDA document remains the same, only
varying in its degree of machine processability.

The HL7 member countries’ technical committees are responsible for creating imple-
mentation guidelines for different medical document types for different contexts. For
example, HL7 Austria currently (as of 2015) provides guidelines and specifications of
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clinical discharge letters for physicians and nursing personnel, lab results, medication,
and radiological documents4 in accordance with the Austrian version of a federated
health information system, the Elektronische Gesundheitsakte ELGA. HL7 Germany
also provides guidelines for creating more specific documents such as for the reporting of
diseases for pandemic prevention. Still, due to the common basis RIM and CDA R-MIM,
it is guaranteed that all these document types are readable by all systems conforming to
the HL7 Version 3 standard.

Figure 3.16: CDA document pseudonymization

Since CDA documents are already structured into administrative header and medical
body sections, they can easily be split into these two parts and be pseudonymized
separately. In this case, a header pseudonym PSNHE and a body pseudonym PSNBO

form a fixed 1:1 relationship (Figure 3.16), linked with their respective sections and the
relation protected by the ISK as follows:

{rPSNHE , rPSNBO, UIDOW }ISKOW
(3.35)

and

{sPSNHE , sPSNBO, UIDOW , UIDAU}ISKAU
(3.36)

This scenario is the basis for the conversion of real-life archived paper-based medical
records into a standardized and pseudonymized form discussed in Chapter 4.

4www.hl7.at
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3.3.3 Austrian federated health information system - ELGA

Whereas the previous scenarios focus on how to pseudonymize medical documents, the
following scenario discusses the application of pseudonymization with interconnected
information systems, or federated health information systems (FHIS), integrating au-
tonomous information systems of the participating health care providers, like the Austrian
implementation of an FHIS, the Elektronische Gesundheitsakte ELGA [42]. The primary
goal of ELGA and FHIS in general is the facilitated exchange and processing of patient
data in the form of electronic health records (EHR) to increase the quality of health care
and simultaneously cut costs by improving the efficiency of health care. Not only health
professionals should benefit from faster access to critical patient data, but also the patients
should have facilitated access to their own data by easy-to-use public portals via the
Internet to view medical documents such as radiological results. An integrated security
infrastructure controlling data access and authorizations is responsible for preventing
unauthorized data access.

Like the majority of FHIS, ELGA’s architecture is conforming to the IHE IT In-
frastructure (ITI), a technical framework developed by the Integrating the Healthcare
Enterprise (IHE) initiative that has continuously been updated (currently at revision 15.0
as of late 2015 [61]). The IHE is a worldwide initiative by health care professionals and the
industry to improve interoperability of health information systems with the ultimate goal
of facilitating information exchange between different systems. The ITI defines so called
Integration Profiles which define how to implement specific use cases occurring in clinical
environments in a standardized way and which in part are dependent on each other.
The profiles cover issues including patient lookup and administration (Patient Identifier
Cross-referencing (PIX), Patient Administration Management (PAM)), access control and
security (Enterprise User Authentication (EUA), Audit Trail and Node Authentication
(ATNA)), patient privacy (Basic Patient Privacy Consent (BPPC)), or auxiliary profiles
realizing support functions (Consistent Time (CT), Personnel White Pages (PWP)).
However, we want to focus on the core of the profiles, namely the Cross-Enterprise
Document Sharing (XDS) profile controlling the document exchange between different
health organizations or within organizational units called XDS Affinity Domains [62].
The core idea of an affinity domain is to group health care enterprises using a common set
of policies and sharing a common infrastructure where the patients’ medical records are
stored at the location of creation and not in a centralized document repository. However,
to enable document sharing, searchable metadata is collected at a central document
registry which allows the health institutions to identify where the required document is
located to forward the document request to the correct location.

The IHE Cross-Enterprise Document Sharing-b (XDS.b) profile (cf. Figure 3.17)
consists of a centralized patient identity source and document registry, and decentralized
document repositories where the actual documents are stored and assigned a unique
record identifier (RID). To enable common processing, documents are stored in agreed
formats such as HL7 CDA and DICOM, and data is exchanged in compliance with
IHE ITI profiles and transactions. The patient identity source contains personal data
about patients and health professionals and assigns a globally unique identifier to each
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Figure 3.17: IHE ITI XDS.b Integration Profile [62]

patient (PID) and health care provider (HCP-ID). The document registry establishes the
connection between a document in a document repository and the corresponding patient.

To enable search, the document source supplies metadata to the health document.
For example, the metadata of a document includes the name of the health professional
who created the record, the creation date and time, or the type of clinical activity.
Subsequently the document is stored in the document repository and registered in the
document registry using the PID, the RID generated for the document, the location of
the document repository in terms of an URL, and the metadata. In case that the local
storage format of the new document differs from the agreed storage format used in the
document repositories, the document is transformed prior to its submission.

A document created at the source is fed into the FHIS only with the patient’s consent.
If the patient does not want to participate, the document is not registered at the central
registry with the result that the document is retrievable only for the health professionals
located at the source. Just as the patient can decide if he/she wants to participate in the
cross enterprise document exchange, the patient can also control who, i.e. in addition
to the document creators, is authorized to access the documents. This guarantees that
patients have full control over their documents as demanded by legislation, and that it is
the patients’ choice with whom they want to share their medical data.

Search for documents within the FHIS is performed by (i) passing a query to the
document registry, which returns the RID for each matching document together with the
URL of the document repository where the document is stored, and (ii) retrieving the
actual document from the specified document repository. The document registry allows
to query for the documents’ metadata as well as for the document owner (patient). In
order to prevent information leakage, the URL and RID of a matching document are
returned by the document registry only to authorized users, controlled by access and
authorization profiles (BPPC, EUA, etc.).

Figure 3.18 illustrates how an ELGA area (ELGA Bereich) implemented as an affinity
domain can be enhanced with pseudonymization at the document registry-level. The
basic infrastructure is composed of a central patient index and a central health care
provider (HCP) index, providing demographic and authentication information, including
the central (global) patient and HCP identifiers (C-PID and HCP-ID). The health records
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Figure 3.18: Concept of pseudonymization within an ELGA area

are managed by distributed and independent ELGA areas representing a single or a group
of HCPs within the same organizational domain. Each of these affinity domains operates
its own local patient index with XDS-PIDs (L-PIDs) and a local document registry
containing the queryable document metadata including the references to the documents
which are stored in the document repositories. Each affinity domain is connected to all
other domains and to the central registry via a gateway, communicating with standardized
IHE ITI-conforming transactions [62]. The core transactions include the following (cf.
Figure 3.17):

• Central and local patient identifiers are queried for via transactions ITI-45 (PIX
Query) and ITI-47 (Patient Demographic Query).

• Document search is realized by ITI-18 (Registry Stored Query) for local search
and ITI-38 (Cross Gateway Query) for queries addressed at other affinity domains.
Similarly, document retrieval is related to ITI-43 (Retrieve Document Set) and
ITI-39 (Cross Gateway Retrieve).

• Providing a new health document involves ITI-41 (Provide and Register Document
Set-b) and ITI-42 (Register Document Set-b).

• ITI-8 (Patient Identity Feed) and ITI-44 (Patient Identity Feed HL7v3) transactions
are responsible for adding and referencing patient data to the document registry.
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Figure 3.19: PERiMETER for ELGA

Pseudonymization within an affinity domain requires the following adaptations (Figure
3.19): A central key store is introduced keeping the patients’ and HCPs’ secret keys
secured by encryption. While the local patient index is left unaltered, the document
registry is split so that each FHIS participant maintains his/her own personal document
registries, encrypted with his/her own secret key usable only after authentication with
the personal security token. The document references (in case of ELGA consisting of
record identifiers and locations as URLs) originally stored along with the document
metadata entries are now replaced with pseudonyms which in turn are associated with
the document references in cleartext in a separate pseudonymized document reference
registry. Assuming that the health documents are stored in a standardized format as
it is required for interoperability between different independent affinity domains, the
documents are depersonalized (cf. Section 4) before they are moved from the HCP’s local
repository(s) to the depersonalized document repository.

Assuming pseudonymization over full documents (cf. Section 3.3.1), the encrypted
personal document repositories contain the following entry for a single health document
(cf. Section 3.2.2)

{DocInf, L− PID, HCP − IDDP , rPSN, [HCP − IDAU , sPSN ]∗}ISKOW
(3.37)

for the patient as data owner and

{DocInf, L− PID, HCP − IDDP , HCP − IDAU , sPSN}ISKAU
(3.38)
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for the authorized health professional, with DocInf representing the document
reference (URL), L−PID the patient identifier, HCP −IDDP the data-providing health
professional (source), rPSN the root pseudonym and [HCP −IDAU , sPSN ]∗ the shared
pseudonym for each authorized health professional as document consumer (none, one,
or more). Finally, the document reference storage contains the pseudonym/reference
mappings as follows:

[DocRef, rPSN, [sPSN ]∗] (3.39)

To support these pseudonymization adaptations, the ITI transactions need to be
modified in order to return pseudonyms instead of explicit document references. As a
result, multiple lookups are required to retrieve the actual health document. In particular,
the following adaptations are necessary:

• ITI-18: Reformulation of queries to suit the query mechanisms as described in
Section 3.2.4.

• ITI-43: Modification to accept one or more pseudonyms instead of document
references which are not transferred to the document consumer.

• ITI-39: Similar to ITI-43, modification to accept one or more pseudonyms instead
of document references.

• ITI-41: Document storage in the document repository only, i.e. without automatic
registration/metadata storage in the document registry (ITI-42).

• ITI-42: Modification of document registration to include pseudonym mapping
storage as well as updating the personal document registries.

A data retrieval operation (either by the patient as data owner or an authorized
health care provider HCP) involves the following steps (Figure 3.20):

1. The user formulates the query and sends it to the personal document registry.
The query is processed and the registry returns any matching document metadata
including the pseudonym in encrypted form.

2. The user selects the desired pseudonym(s) inspecting the document metadata
information and sends the pseudonym(s) to the document reference storage which
forwards the associated document reference(s) to the document repository to return
the corresponding health record(s).

The authorization operation between patient and authorized health care provider
(other than the data-providing health professional) is described as follows (Figure 3.21):

1. First, the patient executes the steps described in the previous section to retrieve
the health document’s root pseudonym and metadata. Then, the patient randomly
selects a new shared pseudonym and transfers it to the document reference storage,
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Figure 3.20: Modified ELGA data retrieval

where it is associated with the same document reference as the root pseudonym.
Furthermore, the patient updates the personal document registry with the autho-
rization information using the root pseudonym as metadata ’identifier’.

2. When both patient and HCP are present at the same machine, the document info,
shared pseudonym, and patient’s and HCPs’ identifiers are simply re-encrypted and
stored in the HCP’s personal document registry. If they are not present, the patient
retrieves the HCP’s inner public key from the key repository via HCP-ID and
sends the metadata elements to the HCP (e.g., via a shared storage area). If the
HCP then logs in to the system, the authorization can be retrieved, the elements
re-encrypted and appended as new document metadata entry in the HCP’s personal
document registry (cf. asynchronous authorization 3.2.5).

When a new health document is created and is to be registered in the central document
registry, the patient has to be informed about the new document as well. Since the
patient would in general not be logged in to the system at that time, this must be done
asynchronously (Figure 3.22:

1. First, the document provider (HCP − IDDP ), who is also the authorized HCP
in this scenario (HCP − IDAU ), copies the new document from the local HCP
repository to the depersonalized ELGA document repository after removing any
patient-identifying details. In addition, a randomly selected shared pseudonym is
also forwarded to the document reference storage.

2. The document provider retrieves the patient’s inner public key to forward the
document information, the HCP and patient identifiers, and the pseudonym to
the patient (via the shared storage area). The provider also stores the document
metadata in the HCP’s personal document registry and is automatically authorized
for data access.
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Figure 3.21: Modified ELGA access authorization

3. Upon logging in, the patient retrieves the encrypted elements and decrypts them
with the inner private key. In addition, the patient also creates a new root
pseudonym to be appended to the document reference (via shared pseudonym).
Then the patient registers the document metadata along with the authorization
information concerning the document provider in the personal document registry,
concluding the document storage procedure.

Figure 3.22: Modified ELGA document registration

Since affinity domains are designed to be independent from each other [61], the
aforementioned modifications of the ELGA operations can be implemented in one ELGA
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area without affecting other ELGA areas, as long as the gateway implementation remains
unaffected.

3.4 Implementation and analysis

As a proof-of-concept, the PERiMETER methodology has been realized as a prototype
using a combination of Java and .NET technologies for the implementation of the main
logic module. As secure hardware, the prototype relies on programmable smart cards
(Gemalto .NET V2+ Cards) that act as both authentication mechanism as well as
client-side cryptographic processor replacing the centralized HSM (cf. Section 3.2.3); in
this architecture, each user thus has his/her own client-side HSM. As storage provider,
a MS SQL Server acts as key and document storage and a JBoss application server as
metadata storage provider containing the record description elements, realizing all three
document query mechanisms as discussed in Section 3.2.4. HL7 CDA documents are used
as records to be pseudonymized (cf. Section 3.3.2) where the pseudonyms are organized
in a 1:1 relationship as shown in the health document data model depicted in Figure
3.23.

Figure 3.23: Health document data model

For each (complete) CDA health document, the corresponding metadata entry in-
cludes pseudonyms, user identifiers, and record description elements: While the data
owner’s metadata storage includes all root pseudonym pairs as well as all authorizations
represented by shared pseudonym pairs organized under the same node, the authorized
person’s view involves only the shared pseudonym pair. Description elements are basically
equal in both metadata databases, but can be extended with arbitrary elements by the
metadata storage owner if required. The description elements are document-type specific,
i.e. metadata lab results include other searchable description elements than a medical
discharge letter or anamnesis.

As a precondition for the successful pseudonymization, the health record part, i.e.
the CDA body section, needs to be free of any directly person-identifying information.
While the majority of the personal patient-identifying information is collected in the
administrative header sections of CDA documents, the body sections usually contain some
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personal data as well. These Protected Health Information (PHI) elements determined
by the HIPAA [116] were defined independently from the CDA standard and need to be
removed from health information for proper de-identification, including names, social
security numbers, telephone numbers, dates, and other potentially patient-identifying
information such as account numbers and medical record numbers. Since marking and
extracting these elements manually is time-consuming, automated de-identification is
required to make it feasible to de-identify a large number of documents5. An example
of a de-identified CDA body is given in Figure 3.24 where the first and last names are
replaced with the generic placeholders phi:givenName and phi:lastName.

Figure 3.24: De-identified CDA body section

The de-identified CDA body section belongs to the fictional patient Paul Jones who
has recently been discharged from in-patient stay and received a discharge letter. In this
exemplary scenario, he authorizes his trusted general practitioner access to the letter.
For this authorization, a new shared pseudonym pair is created and assigned to the two
record identifiers of both fragments. Along with record-specific description elements, the
shared pseudonym pair is appended to both the corresponding root pseudonym pair in
Paul Jones’ metadata storage and to a newly created entry in the general practitioner’s
personal metadata storage. Figure 3.25 illustrates the (plaintext) document description
entry from the general practitioner’s viewpoint.

Apart from the shared pseudonyms and the (internal) user identifiers iuid for both
data owner and authorized user, the entry contains general queryable elements, such as
the patient’s name, as well as elements unique to the DischargeLetterDescription type,
including discharge date and a list of diagnosed diseases encoded in the ICD10 standard -
I70 for Atherosclerosis. The entry also contains the PHI elements that were extracted
from the CDA body section. Furthermore, the general practitioner added arbitrary
private keywords including check insurance status. These arbitrary keywords are stored
at the general practitioner’s metadata storage only and are thus not visible to anyone
else.

A typical query expressed in XPath has the elements

/child::records/child::record

5A more thorough discussion on the automated de-identification is given in the following Chapter 4.
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Figure 3.25: Document description entity

[child::element(description, DischargeLetterDescription)]
/self::*[child::description/child::keywords
/child::keyword = ’check insurance status’]
/child::element(pseudonym, SharedPseudonym)

and yields the shared pseudonyms of the discharge letter fragments that belong
to the patient Paul Jones. With the retrieved pseudonyms, the logic then retrieves
the corresponding fragments to restore the original discharge letter document. During
this process, the PHI elements are extracted from the document description entity and
inserted into the CDA body fragment (placeholders removed). The PHI elements’ index
values determined during the de-identification process ensure that the PHI elements are
inserted into the correct positions.

3.4.1 Performance

Performance of PERiMETER is largely influenced by the cryptographic and database
operations. While the challenge/response-based authentication procedure is required
only once for each login and data retrieval is expected to be executed more often than
data storage, we analyze a typical query execution and document retrieval operation in
terms of required encryption/decryption and database retrieval operations. Since the
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query method involving the personal metadata storage (cf. Section 3.2.4) is the most
complex out of the three query mechanisms, we focus on this scenario.

A document retrieval operation can be broken down into two phases: (i) metadata
query execution to identify the correct pseudonyms and (ii) the actual records’ (i.e.
document fragments’) retrieval. The latter requires no decryption and depends simply
on the number of document fragments to be retrieved. The performance of metadata
query execution depends highly on the query’s complexity which influences how many
nodes within the XML metadata document need to be visited. The counts of hashing,
database retrieval, and decryption operations are exactly countH = countR = countD =
countvisitednodes. Taking the query and metadata document of the previous section as an
example, all record nodes are visited first and then checked whether their descendant
description equals the DischargeLetterDescription and then whether one of their keyword
nodes’ values equals the check insurance status. If so, both psnid and psnhe nodes’
values are retrieved. Depending on the number of total record elements within the XML
document, a potentially large number of individual nodes needs to be visited to identify
the requested pseudonyms.

To improve the performance of query processing, we have implemented two optimiza-
tion mechanisms, namely secondary index structures and alternative node fragmentation.
While the former aims at reducing the number of visited nodes to ’find’ the correct
entry, the latter aims at reducing the decryption operations of the actual ’values’ (i.e.
pseudonyms) one is interested in. For the exemplary metadata document, suitable index
structures are built on keyword and, e.g., dischargeDate pointing to record. If a query
contains both elements (e.g., keyword = reminder and dischargeDate > 2010-01-01),
the results are joined to find the record matching both elements, thereby significantly
reducing the visited nodes. If the query should always return both pseudonyms, psnid
and psnhe can be stored in a single node, as well as all PHI elements, further reducing
the visited nodes (and thus decryption operations). In addition to these optimizations, a
typical caching mechanism is also implemented which retains the recently accessed nodes.

In terms of actual execution time, a complex query requiring tens of seconds (with
ISK decryptions directly on the smart card) can be reduced to a couple of seconds with
proper indexing and fragmentation, or even to far less than a second.

3.4.2 Privacy

The overall privacy assurance of PERiMETER is analyzed by investigating the following
three aspects: crypto key secrecy, query secrecy, and record unlinkability.

Key secrecy

In PERiMETER, each user has his/her own set of secret keys. The outer private key
always stays at the user side, while the other secret keys are stored at the central keystore
protected by the security layers ({ISK}IP uK , {IPK}OP uK). Considering the tamper-
resistance of smart cards and the fact that the outer private key never leaves the card,
and assuming PIN secrecy, the outer private key is assumed to be reasonably secure, thus
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the other secret keys as well. When no HSM is employed, the inner private and symmetric
keys are decrypted at the smart card during the login procedure (authentication at the
storage provider). If the card is used as main crypto module, all secret keys including
the inner symmetric key are in plaintext only within the secure confinements of the card.

Query secrecy

Query secrecy depends on which query method is used. For the encrypted personal
metadata method, query secrecy is ensured by the metadata storage and retrieval scheme
that stores the document metadata fragmented into individual nodes represented by
key/value pairs in a hash table without revealing secret information. The keys of the
hash table containing the node labels (or node values for reverse lookups/secondary
index structures) are calculated by a (salted) hash algorithm for efficient search, while
the values of the hash table containing the node values (or node labels for reverse
lookups/secondary index structures) are required to be encrypted by a (reversible)
symmetric encryption scheme. A query (H (l)) containing node label l masked with the
hash algorithm H therefore contains no cleartext elements, while the corresponding return
value return

(
{v}ISK,n

)
contains the node value v encrypted with the inner symmetric

key ISK enhanced with the nonce n. Given the cryptographic strength of both the
hashing and encryption algorithms and the key secrecy assumption stated above, the
stored metadata in general and the queries in particular are arguably secret. The nonce
prevents attacks based on frequency analysis on cipher texts.

For the other query methods by keyword or user identifier, the query reveals more
information. Since these query methods are based on exact-match queries, symmetric
encryption must be executed deterministically, which reveals more information than the
encrypted personal metadata method 6. In case of keywords, the query and its result
reveal all encrypted pseudonyms that have the same keyword (template combination)
and thus also the count of related document fragments due to the relation {KID}ISK 7→
{PSN}ISK , though not the keyword itself. In case of query by UID, the query reveals
the entirety of encrypted pseudonyms that are related to this particular UID. This
is prevented in the personal metadata version due to the nonce-extended symmetric
encryption, however at the expense of less-efficient query execution.

There is also a general limitation concerning PERiMETER’s query secrecy depending
on a potential attacker’s ability to track individual queries of users: If an attacker is able
to chain together multiple queries to the corresponding querier in their correct temporal
order, it is possible for the attacker to identify which encrypted and non-encrypted
entities belong together, potentially also revealing the relation between multiple record
fragments. Potential solutions to prevent this limitation include organizational solutions
such as storing documents at different locations or supplementing real queries with fake
queries to obscure the real query sequence. Existing technical solutions to solve this
problem using information-theoretic approaches or relying on cryptography (cf. [31])

6Cf. next section for a more in-depth analysis.
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can be applied to individual data fragments but cannot be easily applied to (file-based)
documents.

Record unlinkability

The main privacy property of PERiMETER, record unlinkability, is provided by the
pseudonymized document fragments. The general goal is to mask the relation userx 6=
recx. Given that the record is properly depersonalized, this is achieved as follows: First,
the direct mapping is broken up by introducing a set of individual pseudonyms so that
userx 7→ psnx 7→ recx. For a second usery being authorized to access the same record
recx, the following additional mapping exists: usery 7→ psny while (psnx/psny) 7→
recx. The latter pseudonym/record mappings remain in cleartext whereas the for-
mer user/pseudonym relations are persisted encrypted with the ISKs. Therefore,
{userx 7→ psnx}ISKx

and {usery 7→ psny}ISKy
where due to the key secrecy assump-

tion userx 7→ usery (i.e. authorization relation) or userx 7→ psny cannot be identified,
unless userx is the data owner and usery the trusted authorized person, in which case
userx has created psny as authorization. As a result, all unauthorized persons cannot
identify userx 7→ recx, and, assuming that another userz has been authorized for recx,
both authorized persons usery and userz have the knowledge of userx 7→ recx, but the
authorization relation userx 7→ usery is hidden for userz and vice versa.

Since pseudonyms are randomly selected and used only once for each record fragment,
no substantial information can be gathered with frequency analysis of pseudonyms, even
when deterministically encrypted with the same key. However, a static analysis of the
pseudonymization metadata may reveal information due to deterministic encryption
depending on the stored tuples and their storage structure. If, for example, the UID is
encrypted deterministically and stored individually so that it can be used in exact-match
queries (see above), an analysis of the encrypted root pseudonyms reveals the number of
record fragments owned by a particular user, but it does not reveal which user. In general,
deterministic encryption affects leaked information of pseudonymization metadata as
follows:

Keys User keys stored at the database comprise outer and inner public keys and the
encrypted private and secret keys. Since the public keys are selected randomly for
each user and obviously need to be publicly known, only the encrypted private
keys’ secrecy has to be checked. The asymmetric encryption scheme is probabilistic
(e.g., RSA with OAEP) to prevent chosen-plaintext attacks. However, since the
asymmetric keypairs are chosen randomly with a key size sufficiently large (min.
2048 bit for RSA or 224 bit for ECC), the chosen-plaintext attack to identify a
correct IPK or ISK is still practically an unfeasible brute-force attack. Apart
from that, the number of keys also disclose the number of users in the system.

Root pseudonyms Plaintext root pseudonyms are used only once and thus exclusively
tied to a single document/record. Therefore, root pseudonyms encrypted deter-
ministically with the same ISK yield different ciphertexts. The encrypted user
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identifier stored along with the encrypted root pseudonyms though discloses (i) the
number of encrypted root pseudonyms and thus documents that are owned by the
user and (ii) the number of document fragments that belong together.

Shared pseudonyms Plaintext shared pseudonyms have the same properties as root
pseudonyms and are also exclusively tied to a single document/record. However,
since shared pseudonyms represent single authorizations, a single record can be
connected to multiple share pseudonyms. Each user can also have multiple autho-
rizations, both as authorization grantor and grantee. Thus, the encrypted shared
pseudonyms may indicate (i) the number of authorizations a particular user has
granted and/or (ii) the number of authorizations a user has received. Furthermore,
the number of plaintext pseudonyms assigned to each record indicates (iii) the
number of authorizations for this record (one root and x shared pseudonyms).

Keywords Each composed keyword is assigned a unique ID which is encrypted and
stored along with the encrypted root/shared pseudonyms. If a particular keyword
is used multiple times by the same user resulting in the same ciphertext, counting
the encrypted keyword IDs indicates the number of times the keyword is used, i.e.,
how many records have the same keyword, but obviously not which keyword. If the
same keyword is used by multiple users and thus its ID encrypted with different
ISKs, the total number cannot be deciphered due to the different ciphertexts.

Asynchronous messages By investigating the number of asynchronous messages stored
in the pseudonymization database, the total count of messages as well as their
recipients can be identified. However, due to probabilistic encryption involving the
IPuKs, the message contents including the message creators’ (e.g., authorization
grantors’) identities are kept hidden.

Digests Digests to validate the integrity of pseudonymization metadata come in two
flavors: Created with a symmetric IV K when the integrity verifier is the key owner
or created with a private IV PK when the verifier isn’t the key owner and uses the
corresponding IV PuK. In the former case, each digest is unique since the attributes
involved in hash calculation for a particular digest differ from those of another digest
(user-specific unique cryptographic keys, unique root and shared pseudonyms), even
if digests are encrypted deterministically with the IV Ks. Digests for asynchronous
messages are signed with the sender’s IPV K and added to the message which is
encrypted with the receiver’s IPuK. Since these digests are integrated into the
encrypted messages, digests do not leak information.

If the third query mechanism with encrypted personal metadata stores (cf. Section
3.2.4) is employed, replacing the keywords as described above, the root and shared
pseudonyms are organized differently and encrypted probabilistically, preventing the
information leaks concerning the pseudonyms, but also reducing query efficiency.
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CHAPTER 4
Extension to secondary use - a

real world scenario

This chapter describes the application of the pseudonymization technique in a real-world
scenario where archived paper-based health records are pseudonymized before they are
made available for secondary use. Before the records can be pseudonymized, several
preconditions must be fulfilled including the proper identification of patient-identifying
elements (PHI) as well as the conversion of the health records into a standardized universal
format (CDA). The following text describes how these requirements can be met and
demonstrates the approach with a sample composed of real-life archived health records.
The content of this chapter has been published in the following publications:

• Johannes Heurix, Antonio Rella, Stefan Fenz, Thomas Neubauer: Automated
Transformation of Semi-Structured Text Elements, Proceedings of the 2012 Americas
Conference on Information Systems (AMCIS), pp. 1-11, 2012

• (invited follow-up journal publication) Johannes Heurix, Antonio Rella, Stefan
Fenz, Thomas Neubauer: A rule-based transformation system for converting semi-
structured medical documents, Health and Technologies, Vol. 3, No. 1, pp 51-63,
2013

• Stefan Fenz, Johannes Heurix, Thomas Neubauer, Antonio Rella: De-identification
of unstructured paper-based health records for privacy-preserving secondary use,
Journal of Medical Engineering & Technology, Vol. 38, No. 5, pp. 260-268, 2014

• Johannes Heurix, Stefan Fenz, Antonio Rella, Thomas Neubauer: Recognition
and pseudonymisation of medical records for secondary use, Medical & Biomedical
Engineering & Computing, Vol. 54, No. 2, pp. 371-383, 2016
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4.1 Requirements

In the previous chapter, the application of pseudonymization of health data has been
demonstrated as an effective way to support secondary use of health data while preserving
the corresponding patients’ privacy. The PERiMETER approach is suitable for combining
primary and secondary use of data where pseudonymization is applied to allow primary
users, i.e. patients and health professionals involved in direct-care, to reidentify the
patients’ health records. However, pseudonymization can also be used in a pure secondary
use scenario where, in general, secondary users are granted access to the pseudonymized
data. In addition, these users have the option of selective de-pseudonymization controlled
by an authorized person such as a data manager if the need arises. In this case, instead
of the patients, the data manager is the data owner who is bound by legal regulations
to ensure privacy. In particular, the following workflow sketches the application of
pseudonymization in such scenario:

1. Health records in a research database for, e.g., epidemiological research, are stored
in a pseudonymized state and are available to registered researchers.

2. A researcher queries the pseudonymized data records for useful entries for a study,
e.g., searching for patients/records with specific diseases.

3. The researcher requires additional information like other records of the particular
patients or requires the reidentification of the patients to (directly) request further
information or permission to use the data.

4. The authorized person can trigger the selective de-pseudonymization if the request is
valid to either identify the remaining patients’ documents (but still pseudonymized)
or actually reveal the patients’ identities.

In order to realize such scenario while pseudonymization is in force, three requirements
have to be met:

Depersonalization Real-life medical records are largely unstructured and contain
many patient-identifying details, so the first step of creating documents for privacy-
preserving secondary use is to scrub these identifiers from the records. While
this is relatively easy for a domain expert to do for a few documents, it becomes
unfeasible to do manually for a large number of documents. With highly structured
documents, it is simple to remove PHI in an automated approach, but as medical
records may contain large segments of narrative texts, it becomes much more
difficult to identify PHI automatically. Thus, an automated method to identify
PHI even within narrative text is required to depersonalize medical records.

Standardization Since medical information systems have been heterogeneous solutions
which have usually grown over time, documents produced and managed by these
systems also differ in structure and the way they organize the medical content,
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which leads to problems with interoperability and information exchange. When
documents conform to standards like HL7 CDA, it would greatly improve the
interoperability and thus would allow the documents to be made available to
a larger research community. The situation has somewhat improved with the
introduction of the electronic health records and their standardization mechanisms
driven by organizations such as the IHE and HL7. Still, a great source of information
for secondary use is largely unaffected by this standardization effort due to its
age, namely patient records maintained in archives by medical professionals due
to legal regulations. These archives contain largely paper-based records digitized
(i.e. scanned) as image files. Before these documents can be used, they must be
brought into a standardized form.

Information extraction The standardization of documents requires the transformation
of the documents’ content by identifying, extracting and converting useful text
segments and information into the new document standard. For example, a CDA
discharge letter requires patient and health professional identifiers in the header
section and the medical contents in the body section, separated into segments
of the patient anamnesis, diagnosis, and medication (among others). Similar to
depersonalization, this is simple for a limited number of documents but unfeasible
to do manually for a whole archive of documents. Therefore, the information
extraction process has to be executed in an automated way in order to efficiently
process the large amounts of data.

Information extraction (IE) is a subdomain of the natural language processing (NLP)
discipline and is tasked with the automated extraction of structured information from
unstructured sources [100]. IE is closely related to information retrieval (IR), but IR’s
goal is to return documents as a result of a search whereas IE returns information or
facts [74]. A typical IE system has two objectives: (i) to identify and annotate potentially
relevant information in the narrative input text and (ii) to actually extract and transform
the desired information into the target form. The annotation task usually involves
multiple preprocessing steps including tokenization, part-of-speech tagging, or parsers
for boundary and named entity recognition which are executed in a pipeline where the
output of the former step is used as input for the next step to improve the quality
of the overall result. Existing work largely does not distinguish entity recognition or
annotation and actual information extraction. Text processing steps are composed into
adaptable annotation frameworks such as GATE [36], C-PANKOW [32] or UIMA [47]
which provide their different processing functionality like tokenization or whitespace
identification through special plug-ins.

IE systems can be categorized into two fundamentally different types [4]: (i) the
Knowledge Engineering Approach with hand-made rules written by domain experts to
identify and correctly mark the relevant information entities, and (ii) the Automatic
Training Approach where the system creates the rules itself by analyzing manually
pre-labeled (annotated) training corpora. There has been an ongoing debate on which of
these approaches performs better [4, 100]: Knowledge engineering-based systems tend to
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produce good results very fast, especially when training data is tedious and costly to
acquire. They also excel when the annotation and extraction specifications are likely
to change in a foreseeable way (e.g., when the layout of documents are updated). The
big downside of hand-crafted rules is the actual work to define them. Creating accurate
rules often relies on an iterative testing and adapting process. Training-based systems
relieve the domain expert from this manual rule-creation work which means that no
(potentially) complex rule formalisms need to be learned. But in essence, automatic
training-based systems shift the workload from creating the rules to annotating the
training corpora. To produce reasonably good results, these systems require a large
number of manually annotated documents. Thus, selecting the adequate system for
a particular IE problem highly depends on the availability of training data and the
structure thereof, the technical expertise of domain experts, as well as the structural and
lexical properties of the document base.

IE systems have been applied in a multitude of applications including enterprise ap-
plications, scientific purposes, or web-based systems [100]. Although originally developed
outside the biomedical and clinical area, information extraction has meanwhile been
adapted to the medical domain as well, where its main application was to identify PHI
so that they can be annotated and extracted for privacy-preserving use. In general, both
rule-based and machine learning based techniques can be found, since neither approach
has turned out to be clearly superior.

Earlier approaches relied on lookup tables and dictionaries, but usually incorporated
other aspects like POS or other semantics as well. Taira et al. [110] developed an
algorithm that uses lexical lookup tables with more than 64 000 first and last names and
semantic constraints to calculate the probability of a word being a name. The algorithm
scans each sentence and extracts potential names based on the structure of the sentence.
While the approach works well to identify patient names, it cannot be used to identify
further personal or medical information. Berman et al. [11] developed an algorithm to
remove personal data from pathology reports. The algorithm steps through the text and
a word matching a Unified Medical Language System term (UMLS) is replaced by the
UMLS code and a synonym for the original word. High-frequency words (’stop words’)
such as ’a’, ’an’, ’the’, or ’for’ are left in place. All other words such as personal data
are replaced by asterisks. The problem of this approach is that it removes more than
just personal data, and the resulting text is hardly readable. In [12], Berman presented
an improved approach which uses a list of safe words (i.e. words which do not refer to
personal data) denoting those that can be kept in the document, while the others are
replaced by an asterisk.

In 2006, an i2b2 natural language processing challenge focused on de-identification
[119] was held. The submitted approaches were dominated by machine learning-type
systems, though some used a combination of machine learning and rules. For example,
Hara et al. [56] use regular expression pattern matching for identifying phone numbers,
dates, and IDs. A sentence classifier based on a boosting algorithm and phrase chunker
based on support vector machine (SVM) technology are used to identify ages and the
name of hospitals, patients, and doctors. The features used for the SVM include headings
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of sections (closest to the target), the category of the sentence as determined by the
sentence classifier, part-of-speech (POS) tag, orthography, and the root and surface form
of the target. Sentences are classified based on the PHI they contain. Evaluation has
shown that the entire system performs better without sentence classification. Szarvas et al.
[109] developed a feature set for the word-level classification model, describing the word
characteristics along with its actual context (window of size four). The model does not use
deep domain knowledge such as part-of-speech, chunk codes, ontologies, or domain-specific
resources such as MeSH IDs. The following feature categories are used: (i) orthographic
features, (ii) frequency information, (iii) phrasal information, (iv) dictionaries, and (v)
contextual information. Additionally, the authors used regular expressions, a dictionary
of common headings observed in typical discharge records, and trigger words/phrases to
identify PHI. The Boosting algorithm and C4.5 classifiers are combined in an iterative
learning approach for word/phrase classification. Wellner et al. [123] used the MITRE
Carafe toolkit based on conditional random fields (CRF) to de-identify medical records.
Within Carafe, the BIO representation is used to identify phrases within sentences.
Additionally, the authors used location dictionaries and regular expressions to capture the
more standardized PHI (e.g., dates). Although the system performs very well, 50 percent
of the errors (131 in total) are due to insufficient classification, i.e. the classification
system did not identify and tag PHI (e.g., location).

Still, rule-based approaches continued to emerge, like the Medical De-Identification
System (MeDS) by Friedlin et al. [50] for de-identifying Health Level Seven (HL7)
messages and narrative text documents. It removes identifying information in four
scrubbing processes and one preprocessing process. The main strength of the system
is that it does not rely on a single method or process to remove identifiers. Regular
expressions, name lists, header information, and word-nearness similarity algorithms (in
the case of misspelled names) are used. Geographic name databases and the integration
of natural language processing techniques are mentioned as possible extensions to enhance
the effectiveness of the de-identification system. Velupillai et al. [121] developed a system
for de-identifying electronic patient records written in Swedish. The authors customized
the de-identification software package De-id [76], a rule-based system relying on rule sets,
heuristics, and supplemental dictionaries, for Swedish health records. As the system is
rule-based, regular expressions and dictionaries for Swedish names, locations, and diseases
were created. The main conclusion was that the American system De-id did not yield
good de-identification results when used for Swedish health records (even with adapted
rules and dictionaries), thus requiring a completely new Swedish de-identification system
using rules, lexical resources, and semi-supervised machine learning techniques. Grouin
et al. [54] came to a similar conclusion when they tried to adapt the de-identification
software package De-id to the French language. Again, simply modifying the system and
its rules resulted in low precision and recall.

One of the main limitations of these solutions is their focus on the identification of
PHI, whereas the information extraction part is limited to simple removal. However, more
sophisticated methods of information extraction are required to transform the documents’
content into a standardized form. Furthermore, existing systems are evaluated using
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prepared test data sets (cf. [119]) and thus face the problem that they were not designed
to handle systematic errors such as optical character recognition (OCR) errors which are
the results of the digitization of paper-based health records. Other issues include the
correct recognition of misspelled words, unknown names and addresses, and words with
multiple meanings.

To fulfill all three requirements, a combined approach of PHI identification and
information extraction is required to produce de-personalized medical documents in a
common data format. To improve the accuracy of the PHI identification process, it is best
to combine individual techniques (cf. [50]) to circumvent their individual weaknesses.

4.2 Methodology
MEDSEC (MEDical records for SECondary use) is a system to create privacy-preserving
health records for secondary use. It is designed to automatically convert large amounts of
existing archived health records into pseudonymized HL7 CDA documents. In particular,
it involves the following four phases (Figure 4.1):

Figure 4.1: Phases of MEDSEC

OCR Since the majority of archived health records are still paper-based, they have to be
made machine-readable. The OCR (optical character recognition) phase is tasked
with converting the paper-based medical records (scanned images) into a machine-
readable input string of characters. Furthermore, the output is extended with
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structural annotations (paragraphs) that help in the annotation and transformation
phases. The outcome is largely unstructured but machine-readable data.

Annotation In the annotation phase, the unstructured data is extended with anno-
tations, identifying PHI elements using specific annotation rules and techniques
which take both content and context of text elements into consideration. The
annotation makes use of regular expressions, lists, and other domain knowledge to
create structured data.

Transformation The structured data is further processed in the transformation phase
and converted into standardized HL7 CDA documents. The transformation relies
on the annotations added in the previous phase to identify the elements of interest
using domain knowledge about structural compositions of the medical records.

Pseudonymization In the final phase, the HL7 CDA documents are split into personal
and health sections and pseudonymized. Furthermore, any PHI elements identified
in the annotation phase that are within the health section are also filtered out so
that the pseudonymized health sections can be used for secondary use.

The system is designed to process documents with minimum interaction with a human
operator once the system has been set up properly (e.g., conversion rules, input sources).
International research projects such as EHR4CR1 and EURECA2 also investigate the
utilization of existing electronic health records (EHR) for secondary use, though at a
much larger scale. Although some aspects are similar (such as the application of natural
language processing techniques and the consideration of privacy issues), these projects
focus more on the interoperability of systems and the actual identification and extraction
of useful medical information for research, whereas MEDSEC’s goal is the total conversion
of paper-based archives into a digital up-to-date document type (CDA) combined with
de-identification and pseudonymization.

In the following, the individual logic modules responsible for the execution of their
corresponding phases are described in detail.

4.2.1 OCR

The OCR module is responsible for converting paper-based health documents in the
form of bit-mapped images (scans of the printed paper documents) into a continuous
character stream. It is a support module which is only necessary when the documents
are not available in machine-readable text form yet. Otherwise, the OCR phase can be
completely skipped. As technical backbone, the module relies on the third-party OCR
engine Tesseract3 (Version 3.00), an open source OCR engine originally developed by
Hewlett Packard and now published under the GNU Apache license 2.0. An overview of
the OCR module is shown in Figure 4.2.

1www.ehr4cr.eu
2www.eurecaproject.eu
3https://code.google.com/p/tesseract-ocr/
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Figure 4.2: OCR module

A file/directory watcher monitors a specific folder for available medical records and
fetches them to the main OCR wrapper. Since version 3.00, Tesseract includes a page
layout analyzer which highly improves the information’s ’cohesion’ within a document.
The page layout analyzer creates a pre-scan of the page to identify individual text blocks,
processes them, and forwards them to the actual character recognition logic. Thereby,
each text block can be processed individually, which allows grouping relevant information
together (previous instances of Tesseract could only recognize text in a continuous stream).
As the page layouts of different types of medical records vary substantially, document-type
specific configurations need to be created which determine threshold values concerning
distances (pixels) for detecting lines, blocks, or tables and others. These settings also
define which text blocks are of particular interest and which could be ignored or need to
be handled differently, such as header and footer lines. If, for example, header and footer
lines are not collected and added to the output string at the end, they would interfere
with page breaks. The thresholds also need to factor in skewness in the scanned images
so that the text blocks are still accurately identified. These text blocks (e.g., paragraphs)
are also included in the output strings as double line breaks (empty line) which are useful
especially in the transformation phase.

Still, OCR engines are susceptible to misinterpretation of characters, especially when
the scanned images are of less quality or are otherwise difficult to process (special
backgrounds, etc.). In order to counter that, several error correction mechanisms are
included. Comparison of the words with standards such as general purpose or domain-
specific dictionaries improves accuracy. In addition, a post-processing step is added which
looks for typical recognition failures such as telephone numbers or patient identification
numbers or other identifiers which cannot be easily checked with the help of general
purpose dictionaries. The post processor relies on specific regular expressions (regex)
to identify typical characters (combinations) or well-known character mix-ups like the
number 0 versus the capital letter O. Matching one of the regex rules results in the
replacement of the characters or a re-evaluation of the word in question against dictionaries.
These rules are usually required to be document-type specific. For example, if an internal
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patient identifier is known to be composed of a capital letter followed by six digits and
the document contains a section with a capital letter O within five digits, then it is highly
likely that this is actually a misinterpreted number 0. If the capital letter O was at the
beginning of the digit sequence, then it would rather be correct if followed by six digits.

4.2.2 Annotation

While there are no explicit European standards regarding the protection of PHI, the
Safe Harbor method of the HIPAA Privacy Rule defines 18 PHI identifiers that have
to be removed from the health record [80]: (i) names, (ii) locations, (iii) dates, (iv)
ages greater than 89, (v) telephone numbers, (vi) fax numbers, (vii) email addresses,
(viii) social security numbers, (ix) medical record numbers, (x) health plan beneficiary
numbers, (xi) account numbers, (xii) certificate numbers, (xiii) vehicle identifiers, (xiv)
device identification numbers, (xv) URLs, (xvi) IP addresses, (xvii) biometric identifiers,
and (xviii) any other unique identifying number, code, or characteristic such as full
face photos. Alternatively, the Expert Determination method involves a domain expert
who decides on which elements are to be considered as PHI to adapt to the documents’
domains and to increase data expressiveness and/or reduce the risk of reidentification.
Still, the Safe Harbor list can act as a starting point for further refinements and thus is
used as primary PHI list for MEDSEC.

The annotation module is mainly rule-based with the option of adding machine
learning and recognizes PHI in the character strings produced by the OCR module, after
the strings are tokenized, with one token representing a word or a single symbol. Then
the following combination of recognition techniques are used:

Metadata (MD) If metadata such as patient name and medical record number is
provided with the health record, tokens are matched against it to identify PHI.

Lookup tables (LT) Each token is matched against lookup tables. Each table is
assigned to a specific PHI class (e.g., first name).

Pattern matching (PM) Rules, regular expressions, and general patterns are used to
identify the PHI class (e.g., date identification).

Machine learning (ML) PHI is recognized based on a feature set and the correspond-
ing training set.

Table 4.1 shows which techniques are used to recognize the PHI classes. The recogni-
tion techniques are not used in isolation. Instead, each technique uses the output of the
previous techniques. For instance, pattern matching uses preliminary classification results
of the lookup table matcher. Depending on the PHI class, each recognition technique
has a different confidence rating indicating its overall rating of success for a correct
annotation. For example, lookup table matching results would have a higher priority than
certain pattern matching results at the recognition of names due to access to a statistical
database including all first and last names of the current population of a country. In
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PHI Class (tag) MD LT PM ML
First Name (firstName) x x x x
Last Name (lastName) x x x x
Age > 89 (age) x x x x
Street Name (street) x x x
House Number (houseNo) x x
Postcode (zip) x x x
City Name (city) x x x
Organization (org) x x x x
Suborganization (subOrg) x x x x
Date (date) x x x
Telephone Number (telNo) x x
Fax Number (faxNo) x x
Email Address (email) x x
Social Security Number (ssNo) x x x
Medical Record Number (mrNo) x x x
Health Plan Beneficiary No. (hpbNo) x x
Account Number (accountNo) x x
Certificate/License Number (licenseNo) x x
Vehicle Identifier (vehicleId) x x
Device Identifier (deviceId) x x
URL (url) x x
IP Address (ip) x x
Biometric Identifier (bioId) x x

Table 4.1: PHI class - recognition technique mapping

other cases, the exclusion of certain techniques would be beneficial to prevent too many
false positives. The email address, for instance, is more suited for pattern matching (due
to the @ symbol) than for lookup tables (high probability of being incorrectly identified
as names).

Figure 4.3 provides an overview of the individual components of the annotation
module: The initializer simply sets up the input string. The tokenizer then annotates
tokens and whitespace tokens within the string. Tokeniser.rules defines how different
kinds of tokens should be extracted from the string. Besides tokenization, the following
basic token features are extracted: (i) length, (ii) orthography (e.g., upperInitial), (iii)
kind (e.g., word or symbol), and (iv) the actual content of the token. Each token is
matched against lookup tables that contain potential PHI. The metadata is structured
data that is provided with the (largely) unstructured input data. For example, the
documents taken from the document archive in the case study (cf. Section 4.3) are
attached to (incomplete) metadata records used for internal querying operations con-
taining standardized information including patient-related information (internal patient
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Figure 4.3: Annotation module

identifier, academic title, date of birth, etc.) and case-related information (date values
of in-patient stays, medical record number, etc.). Each metadata field is mapped to a
PHI class and matched against the tokens found in the unstructured data. In case of a
positive match, the token is annotated according to the corresponding PHI class. The
lookup tables include the following lists (compiled for Austrian health records):

First name A list of all first names registered in Austria between 1984 and 2006 has
been provided by Statistics Austria (31690 entries).

Last name Based on an electronic Austrian phone book we compiled a list of last names
(210125 entries).

Street name List provided by Statistics Austria (100318 entries).

Postcode List provided by Statistics Austria (1893 entries).

City name List provided by Statistics Austria (2794 entries).

Organization List of domain-specific organizations, i.e. hospitals (268 entries).

In general, multiple annotations are possible, e.g., one token can be annotated as
organization and last name at the same time. In this case, this ambiguity can be solved
in the next stages of the annotation process using the other annotation techniques.
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The part-of-speech (POS) tagger annotates tokens with their part-of-speech (e.g., verb
and noun) and their word stem. The module relies on the Tree Tagger implementation
and German rule sets and lexicons. Besides basic features provided by the tokenizer, POS
annotations are necessary for satisfactory machine learning results. The named entity
(NE) transducer relies on rule sets to recognize PHI elements based on their grammar
or syntax. For each PHI class, pattern matching rules are defined that recognize PHI
elements based on their syntax and existing metadata and lookup table annotations.
While PHI classes such as ’Email Address’ and ’IP Address’ can be easily recognized by
applying regular expressions, more sophisticated rules are required to recognize most
of the remaining PHI classes. For example, an Austrian postcode is represented by a
four-digit number. Simply applying a regular expression would falsely recognize other
four-digit numbers (such as telephone extension numbers) as postcodes. Therefore, rules
have to consider previous annotations (e.g., each four-digit token is classified as a postcode
if the following token has been recognized as a city name). Paper-based health records
containing text in natural language usually include descriptive health-related elements
such as the words ’anamnesis’ or ’therapy’. These descriptors are also utilized by the
rules. For example, it is very likely that the token preceded by the tokens ’First’ ’Name’
’:’ represents a first name.

machine learning makes it possible to recognize unknown or misspelled terms within
unstructured data. The annotation module uses the LibSVM (Library for Support Vector
Machines) implementation and the GATE Tagger Framework to train and apply machine
learning models for PHI recognition. The machine learning component uses the features
produced by the previous modules as input features:

• Content of the token and its surrounding tokens, (-2/+2) denoting two preceding
and two succeeding tokens, numbers determined by empirical tests

• Orthographic features (upper case, lower case, initial letter case) of the token and
its surrounding tokens (-2/+2)

• Length of the token

• Part-of-speech of the token and its surrounding tokens (-2/+2)

• Kind (letter, numeric, symbol, etc.) of the token and its surrounding tokens (-2/+2)

• Lookup type of the token and its surrounding tokens (-2/+2)

• PHI class of the token and its surrounding tokens (-2/+2)

In addition to the input features of the actual document, the learner relies on training
data to calculate annotation suggestions. Therefore, the final output of the decision and
annotation engine is fed back to the training component of the learner to extend the
training data set and to increase the accuracy of the learner.

This decision and annotation engine is responsible for the final annotation decision for
each token and factors in the suggestions made in the previous stages of the process. All
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PHI Class Rule Conf. Value
First Name TitleNameRule 1.2
First Name FirstBeforeLast 0.2
Street Name AddressWithStr 1.2
Date DatePointStartDay 1.2

Table 4.2: PHI class/rule confidence values (excerpt)

annotation suggestions are stored in an XML-encoded GATE document format. The NE
transducer and its rules produce annotation suggestions with different quality depending
on the PHI class. Therefore, confidence values are determined for each rule processed by
the NE transducer. The confidence values are stored in a separate table and are linked
to the PHI class (example shown in Table 4.2) by the rule identifier. These confidence
values have been assigned based on multiple empirical experiments.

The final decision on the determination of the selected annotation candidate (SAC)
is made by using the following formula to choose the candidate (C) with the highest
aggregated recognition values:

SAC = C

(
maxx

{∑
i∈RT

xC1
i , ...,

∑
i∈RT

xCn
i

})
(4.1)

with x ∈ {0, 1} for i = LT and

x ∈ {0, 1.5} for i = MD and

0 < x ≤ 1 for i ∈ {PM, ML}

where RT = MD, LT, PM, ML denotes the list of PHI recognition techniques and
C1, ..., Cn the individual annotation candidates.

This additive calculation scheme clearly favors PHI classes assigned to multiple recog-
nition techniques. Emphasis is laid on the selection of the proper recognition techniques
to benefit from high probabilities of correct annotation with certain technique/PHI class
combinations (like with names and organizations and complete lookup tables). Using
the results of several recognition techniques makes it possible to address the word sense
disambiguation problem. While lookup table matcher and NE transducer focus on the
local token context, the learner provides data on the global context of the token (i.e. in
the context of the entire training data). For further processing, annotated health records
are stored in a compact XML structure. PHI is annotated according to the tags described
in Table 4.1 (e.g., a first name is annotated by the ’firstName’ tag). The ’p’ tag is used
to represent paragraphs within the health record as shown in the following example:

<?xml version="1.0" encoding="UTF-8" ?>
<document>
<p>
Anamnesis: Mrs. <lastName>Doe</lastName>
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<firstName>Jane</firstName> went for a walk on the weekend of...
</p>

</document>

4.2.3 Transformation

The transformation module primarily consists of the mapping processor (cf. Figure
4.4) which accepts the annotated input string produced in the previous phase and the
metadata object. It relies on specific XML-encoded rules that identify and extract
the relevant information from the input string and inserts the extracted content into
HL7 CDA header and body templates which are then merged in order to create the
CDA candidate document. The templates are organized into logical CDA sections
(recordTarget, diagnosis, etc.) containing static text bodies and references where the
extracted information should be inserted into. The CDA candidate document is then fed
into the CDA validator which checks the candidate document for any missing elements and
collects the notifications as feedback. The module’s final output comprises two versions
of the CDA document, one extended version as input for the pseudonymization including
all annotations and another one with extracted annotations for archiving purposes.

Figure 4.4: Transformation module

The underlying transformation methodology is completely rule-based to exploit the
similarity of medical documents (e.g., discharge letters almost always contain sections
including diagnosis, reason for visit, procedures, etc. separated into logical units like
paragraphs), which makes it easier to write rules and, thus, to achieve results faster
without a large training set. Separating transformation rules from target document
templates also facilitates template reuse when adapting rules to a different document set
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(e.g., different layouts of medical records depending on the creation date). Also, designing
the transformation rules’ syntax and semantics allows non-technical domain specialists
to develop sophisticated rules covering all requirements without having to learn complex
formalisms (e.g., XSLT combined with complex XPath expressions). The rules make
use of both structural and content-related knowledge and require the input string to
be (i) partitioned into semantically-contained text blocks such as paragraphs (section
boundaries identification marked with <p> tags) and (ii) annotated with prespecified
entity classes such as names or dates (named entity recognition). Each text block can
have multiple named entities, again annotated with XML tags (e.g., <a_firstname>4).
The document templates are organized into logical CDA sections (recordTarget, author,
diagnosis, etc.) and contain the static text body (predefined) and references where the
extracted information should be inserted into. Templates are selected and composed
depending on the document types (discharge letter, lab results, etc.). Each of the
templates is assigned one or more rules which are expressed in XML as well and contain
subrules for each entity-of-interest in each template. Multiple rules for a single template
account for different document subtypes (e.g., layout changes of discharge letter in the
course of time).

Considering a typical discharge letter, the rules must be able to meet the following
requirements (examples in parenthesis):

• Identification and extraction of single named entities (names, locations).

• Distinction between different instances of the same entity class (patient name vs.
health professional name).

• Composition of entities (social security number with birth date).

• Limited sections of text blocks (ICD codes).

• Complete text blocks (diagnosis).

• Multiple successive text blocks (medical history extending over multiple paragraphs).

The transformation process is sketched in Figure 4.5:

1. Identification of the document (sub)type and selection of the appropriate rules and
templates.

2. For each template:

a) Identification of the region-of-interest (one or more paragraphs) using region
structure (combination of annotations) and/or content (regular expression)
information as decision tools.

b) Extraction of the actual content-of-interest from the region-of-interest using
either region structure or content information as filters.

4’a’ for annotation to distinguish these tags from any preexisting tags in the source input string
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Figure 4.5: Transformation process

c) Insertion of the content-of-interest into the corresponding sections in the
template.

d) Continuation with the next template until all templates and corresponding
rules are processed.

3. Composition of the templates into a full CDA document.

In the following, templates and rules, their semantics, and text processing effects are
described in detail. As the syntax is XML-based, both templates and rules must conform
to XML schema definitions. For better overview, the template and rule structures are
represented as figures with boxes as XML elements (nodes), where element attributes
are shown below and element text content on the right. Parent/child relationships of
the nodes are expressed by connecting lines with cardinality indicators, extended with
sequence/choice bars if applicable.

Templates

A template represents a building block (e.g., diagnostic section) that needs to be filled
with the extracted information and combined with other templates to form the complete
CDA document. Each <template> (see Figure 4.6) has a unique ’ID’ and contains the
<itemList> and <content> sections. While <content> contains the static text building
blocks with empty sections that need to be filled with information extracted from the
input string, <itemList> contains a set of <itemPath> elements corresponding to each
empty field in the <content> section. An <itemPath> definition has an ’ID’, optional
’prefix’ and ’suffix’ attributes (i.e. static text that is added to the extracted information
like area codes), and an ’opt’ indicator expressing whether the particular field is optional
(e.g., patient names are mandatory while telecom values are not). The XPath expression
specifies the field’s location in the <content> section.

Rules

A rule encodes the information of how to identify (region-of-interest) and extract the
relevant entities (content-of-interest) from the source input string. Each <rule> (see
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Figure 4.6: Template structure

Figure 4.7) must correspond to a particular template indicated by the ’targetTemplate’
attribute. The other attribute defines a document subtype for which the rule is applicable
(e.g., discharge letters from different wards within a hospital). Each rule contains one or
more <region> nodes representing the regions-of-interest (i.e. paragraphs) where the
<conditions> section denotes the structural and content-related conditions for finding
the correct region and <contentMapping> the actual content that needs to be extracted
from the region(s) and inserted into the corresponding parts of the CDA templates.

Figure 4.7: Rule structure

The region’s ’nodeType’ attribute defines different ways of how to find the particular
nodes, i.e. paragraphs in the input string, of the regions-of-interest. Depending on
’nodeType’, a different set of child <(begin/end)nodeCondition> elements is necessary in
the <conditions> section (see Figure 4.8). Types, required children in the <conditions>
section, and purposes are as follows:
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• The ’single’ type states that the region consists of a single paragraph only and,
thus, requires a single <nodeCondition> element only. This type is useful when
the node’s composition is known relatively well.

• The ’singleSelected’ type states that the region consists of multiple paragraphs that
do not necessarily occur in immediate succession in the source input string. Only a
single node per node condition is returned. It requires two or more <nodeCondition>
elements and is used to get multiple nodes where each node condition refers to a
single node and the nodes’ compositions are known relatively well.

• The ’multiSelected’ type states that the region consists of all nodes matching any
node condition and requires one or more <nodeCondition> elements. It is used
to get multiple nodes which may contain any known regular expression keyword
and/or tag (see below).

• The ’multiContinuous’ type states that the region contains all nodes between a
beginning node, <beginNodeCondition>, and an ending node, <endNodeCondi-
tion>. The ’conditionType’ attribute determines whether the begin/end nodes are
included in the region or not. The ’multiContinuous’ type is used to get all nodes
within two known boundaries.

Figure 4.8: Rule - conditions structure

The <nodeCondition> element contains a <targetRegexList> and/or a <targetTags>
element. The former describes a condition on the paragraph’s content, while the latter
states the set of required XML tags, i.e. annotations within the paragraph. The
<targetRegexList> contains one or more <targetRegex> elements with the actual regular
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Figure 4.9: Rule - content mapping structure

expression as text value. The attributes ’linkingType’ and ’conditionType’ indicate how
the individual regular expressions are linked (and/or) and whether the particular regular
expression must or must not yield a match in the paragraph’s text in order to be part of
the region-of-interest (include/exclude). Similarly, <targetTags> contains one or more
annotations defined as <targetElement> and tag name as text values which have to
occur in either a particular sequence or in any sequence (’tagType’). The ’tagComplete’
attribute defines whether the paragraph must not contain any annotation other than that
of <targetElement>, while ’occurrence’ states the desired occurrence of the annotation
combination (e.g., ’occurrence’ = ’2’ matches the second paragraph with the particular
annotation combination).

Apart from the ’conditionType’ as attributes, <beginNodeCondition> and <endNode-
Condition> are composed just like the <nodeCondition> elements.

While <conditions> indicate the conditions under which the paragraphs belong to the
region-of-interest of the current rule, <contentMapping> defines which information to
actually extract from the region-of-interest. The section contains one or more <mapping>
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elements (Figure 4.9). The attribute ’ID’ indicates where to insert the extracted infor-
mation into the templates (matching the <itemPath> ’ID’ attribute), while ’mapType’
defines how to extract the information, defined as follows:

• The ’singleElement’ type represents a 1:1 mapping of an annotation tag’s content
(determined by tag name and its ’occurrence’ within the region-of-interest, e.g.,
second occurrence of <a_firstName> as the patient’s first name) to a particular
section within the CDA template. The content can optionally be filtered by a
regular expression or composed of the annotation tag’s attributes instead of the
text content (indicated by one or more <targetAttribute> elements).

• The ’composedElement’ type represents a content written into the CDA template
composed of multiple annotated <targetElement> tags, separated by a ’separator’
(default is an empty string), e.g., the composition of the Austrian ten-digit social
security number using the four-digit version combined with the person’s birth date.
The <targetElement> elements can again be filtered by regular expressions or
attribute values.

• The ’fullContent’ type simply refers to extracting the whole content of the region-
of-interest into the corresponding section of the CDA template. It can (optionally)
be filtered by a single <targetRegex>. An example of ’fullContent’ is to copy the
complete narrative paragraph of a diagnosis to the CDA template, while it may be
filtered to extract the ICD codes only.

• The ’multiContent’ type refers to multiple elements within the region-of-interest
that are inserted into the CDA template separated by a default grouping tag5 unless
specified otherwise. The content can be filtered by either a <targetRegexList> or
<targetTags>. The <targetRegexList> contains a set of one or more <targetRegex>
elements with attributes ’encounterType’ and ’groupingTag’. The former attribute
distinguishes between extracting only the first regular expression-matching string or
all matching strings within the region-of-interest, while the optional latter attribute
overrides the default grouping tag with an alternative tag for each individual regular
expression. <targetTags> contains the set of <targetElement> tags whose contents
are to be extracted. The ’includeTag’ attribute indicates whether the elements’
original tags should be copied to the template too (in this case, the default grouping
tag is replaced with the original one). The optional attribute ’renameTagTo’ allows
to individually rename the tag to an arbitrary tag for each <targetElement>. Both
<targetTags> and <targetRegexList> have their fields of uses, e.g., to extract ICD
codes from a diagnostic text spanning over multiple paragraphs, depending on how
these are annotated by the annotation engine: If the tags are already annotated,
<targetTags> can be used to extract them with potentially renaming the annotation
tags with arbitrary tags matching the CDA standard. If the annotation is not able
to annotate the tags, <targetRegexList> may contain the regular expressions to

5As this is only used in CDA body templates, we simply use <paragraph> here.

100



extract them (in this case with ’encounterType’ = ’all’), again with an optional
renamed grouping tag.

All mapping sections can have an additional and optional <replacement> section contain-
ing <valuePair> elements. These elements refer to text elements (’source’) that should
be replaced with another text (’value’), e.g., if the word ’female’ is encountered within
a <gender> tag, it should be replaced with ’F’ before being inserted into the patient
template of the CDA header section.

Algorithm

The core of the transformation process is the algorithm to identify the regions-of-interest,
followed by the extraction of the content-of-interest. For the sake of clarity, we focus here
on the condition and mapping types. The overall procedure is depicted in Algorithm 4.1.

Algorithm 4.1: Overall transformation algorithm
Input: Annotated source input string
Output: Converted CDA document

1 Identify document type and date;
2 Select and load the corresponding templates;
3 Select and load the corresponding rules;
4 forall the Rules do
5 Identify the corresponding template;
6 forall the Regions in the current rule do
7 Apply Conditions;
8 Apply Content mappings;
9 end

10 end
11 Compose the filled templates to a CDA document according to the document type’s

specifications;
12 Validate CDA document:
13 forall the ’itemPaths’ in all filled templates do
14 if Corresponding section in template is empty AND mandatory then
15 Add to validation report;
16 end
17 end

The process consists of identifying and loading the correct rules and templates (lines
1-3), iterating all rules and applying the conditions and content mappings (lines 4-10),
composing the filled templates to a full CDA document and validating the document for
missing sections (lines 11-17).
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Algorithm 4.2: Apply conditions algorithm
Input: Region
Input: Regions-of-interest

1 if ’nodeType’ = ’single’ then
2 foreach Paragraph do
3 if Current paragraph matches the tag and/or regex condition then
4 Mark it as region-of-interest;
5 Stop;
6 end
7 end
8 end
9 else if ’nodeType’ = ’singleSelected’ then

10 foreach Paragraph and node condition do
11 if Current paragraph matches the CURRENT tag and/or regex condition then
12 Mark it as region-of-interest;
13 Continue with next paragraph AND next node condition;
14 end
15 end
16 end
17 else if ’nodeType’ = ’multiSelected’ then
18 foreach Paragraph do
19 if Current paragraph matches ANY tag and/or regex condition then
20 Mark as region-of-interest;
21 Continue with next paragraph;
22 end
23 end
24 end
25 else if ’nodeType’ = ’multiContinuous’ then
26 foreach Paragraph do
27 if Current paragraph matches the ’beginNode’ tag and/or regex condition then
28 Mark as begin node;
29 Continue with next paragraph and skip checking for ’beginNode’ conditions

beginning with the next paragraph;
30 end
31 if Current paragraph matches the ’endNode’ tag and/or regex condition then
32 Mark as end node;
33 Stop;
34 end
35 end
36 Mark all paragraphs between the begin and end node as regions-of-interest;
37 Include the actual begin and end node depending on the ’conditionType’;
38 end

A more detailed view of the ’Apply Conditions’ operation is depicted in Algorithm
4.2. It distinguishes between different node types (cf. Section 4.2.3): ’single’ looks for
the first paragraph (i.e. section in the source document enclosed in <p> tags) which
matches the tag and/or regex condition (lines 1-8); ’singleSelected’ returns all matching
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paragraphs per each node tag/regex condition (lines 9-16); ’multiSelected’ in turn yields
all paragraphs that match any tag/regex condition within the current rule (lines 17-
24), while ’multiContinous’ first searches for the begin node, then for the end node (in
the remaining paragraphs) by their corresponding tag/regex conditions and marks all
paragraphs between them (optionally including them) as region-of-interest (lines 25-38).

Algorithm 4.3: Apply content mappings algorithm
Input: Regions-of-interest
Output: Filled templates

1 foreach Content mapping do
2 if ’mapType’ = ’single’ then
3 Extract content-of-interest by tag and filter by regex (if applicable);
4 Insert the content into the corresponding section of the template identified by the

’itemPath’;
5 end
6 else if ’mapType’ = ’composed’ then
7 Extract all contents-of-interest by tag and filter by regex (if applicable);
8 Compose the parts with the given separator (if applicable);
9 Insert the content into the corresponding section of the template identified by the

’itemPath’;
10 end
11 else if ’mapType’ = ’fullContent’ then
12 Extract the whole content of the region-of-interest and filter by regex (if

applicable);
13 Insert the content into the corresponding section of the template identified by the

’itemPath’;
14 end
15 else if ’mapType’ = ’multiContent’ then
16 Extract the whole content of all regions-of-interest and filter by either tags or regex

(if applicable);
17 Group the content with the given ’groupingTag’ OR use/replace the original tag

depending on ’includeTag’ and ’renameTagTo’;
18 Insert the content into the corresponding section of the template identified by the

’itemPath’;
19 end
20 end

Algorithm 4.3 shows how the content mappings are applied. Depending on the
’mapType’ the content-of-interest is extracted differently from the region-of-interest:
’single’ simply extracts the tag content (possibly filtered by regex, lines 1-5), while
’composed’ combines multiple tag contents to a single element in the order defined by
the mapping conditions’ order (lines 6-10); ’fullContent’ in turn simply selects the whole
content of the region-of-interest (possibly filtered) as content-of-interest (lines 11-14),
and finally ’multiContent’ allows combining multiple sections in the region-of-interest,
possibly filtered by either tags or regex, with predefined grouping tags to form a single
CDA section entry.
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Example

In the following example, a patient’s name and address are extracted from a digitized and
annotated medical discharge letter (source input string). The input string is formatted
as XML document with paragraphs represented as enclosing <p> tags. Furthermore,
the source document is also extended with prespecified tags including <a_title> for
academic title, <a_firstName> for first names, <a_lastName> for last names, <a_date>
for dates, and so on, by the annotation module (cf. Section 4.2.2). An excerpt of the
source document is shown in Figure 4.10. Note that the annotation module only adds
annotations while leaving the document structure as it is (line breaks, spaces, etc.).

Figure 4.10: Example source document (excerpt)

The target template, i.e. the ’recordTarget’ header section of the CDA document, is
shown in Figure 4.11 and consists of the static segment specified by the CDA document
standard with empty attribute/element sections (lower part) and the corresponding
<itemPath> elements with the identifiers and XPath expressions (upper section). For
example, the item ’nameGiven’ has to be inserted into the empty element ’/recordTar-
get/patientRole/patient/name/given’.

The rule, or more specifically, the particular region that is responsible for the patient’s
name and address is depicted in Figure 4.12: The <region> is of ’multiContinuous’ type
where the <conditions> section contains the specifications for the nodes beginning and
ending the region-of-interest. For the beginning node, the particular paragraph has to
include either the text segment ’born on’ or ’date of birth’; it also contains both tags
<a_lastName> and <a_date>. The attribute ’tagComplete’ = ’false’ denotes that other
tags are allowed within this paragraph. Returning to the source document (Figure 4.10),
the second paragraph matches this condition, as the first misses out the two regex and
does not include the <a_date> tag either. Due to their common occurrence in medical
documents, the use of keywords such as ’born on’ in combination with tags is useful
in solving the name disambiguity problem (e.g., patient’s name vs physician’s name)
and distinguishing otherwise similar sections. The second condition in the rule for the
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Figure 4.11: CDA header section: patientRole

ending node consists of the single regex keyword ’Diagnosis:’ which matches the fourth
paragraph in the source document. Because of the ’conditionType = ’exclude’, this
fourth paragraph needs to be excluded, thus the region-of-interest comprises the second
and third paragraphs.

The actual content mapping involves just a simple extraction of tag contents (’map-
Type’ = ’singleElement’) for the first/last names and address components without any
regex filtering and insertion into the template.

4.2.4 Pseudonymization

In the final phase, the (annotated) HL7 CDA document produced by the transformation
module is pseudonymized to prevent reidentification. The pseudonymization method
is based on the CDA scenario of PERiMETER (cf. Section 3.3.2), but without the
authorization mechanism due to MEDSEC’s focus on secondary use only. The research
data manager de-pseudonymizes individual records as data owner when deemed necessary.

As shown in Figure 4.13, the actual pseudonymization is preceded by document frag-
mentation where the CDA document is split into multiple individual parts. Furthermore,
the document fragmenter screens the CDA body section for the PHI annotations, extracts
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Figure 4.12: A region section of a rule matching the ’recordTarget’ template

them, and replaces them with general purpose tags. The extracted PHI elements are then
collected in a separate body PHI XML document. In the figure, document fragmentation
is shown on its highest level, (i) CDA header fragment, (ii) CDA body fragment, and
(iii) extracted body PHI elements. However, the fragmentation level can be adapted
if required (e.g., further fragmenting the body into individual CDA sections). After
the actual pseudonymization operation by the pseudonymization engine, the resulting
documents are stored in different storages: The PHI storage contains the CDA header
and PHI documents, whereas the pseudonymized CDA body documents are stored in the
PSY (pseudonym) storage. The PSY metadata contains the pseudonymization linkage
information. In order to securely generate and encrypt the pseudonyms, a crypto service
provider is used. There are different possibilities for implementing the crypto service
provider such as in a software module with a file-based key store or in a fully-fledged
hardware security module with tamper-resistant hardware and a secure key storage within
the confinements of the hardware (cf. Section 3.2.3). The decision of how to implement
the crypto service provider depends on the overall system’s technical and organizational
environment and the required security level.

As described in Section 3.2.1, the pseudonymization involves (randomly selected)
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Figure 4.13: Pseudonymization module

pseudonyms for each fragment (in this case the PSNHE , PSNBO, and PSNP HI) at-
tached to the fragments (represented by their record identifiers RIDHE , RIDBO, and
RIDP HI). While the mappings to the records are stored in cleartext, the link between
the pseudonyms representing the links to reidentify the necessary document fragments
to recover the complete CDA document is protected by encryption (structure shown in
Figure 4.14). Assuming that the crypto service provider and the secret key are both
protected, pseudonymized documents cannot be reidentified without explicit access to
the secret key managed by the crypto service provider. Thus, while the PSY storage
is intended to be fully accessible by any secondary user and the PHI storage and PSY
metadata should be kept unavailable for them, the documents are still protected from
reidentification in case of unwanted full disclosure of the storages.

Figure 4.14: CDA/pseudonym structure

To de-pseudonymize a particular CDA body, the mappings table stores additional
pseudonym types (HE, BO, PHI) that help to reidentify the correct associated header
and PHI pseudonyms. Retrieving all documents of a particular patient can be achieved
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by executing an exact match query over the encrypted patient identifier PatID. Thus,
the logic also supports partial de-pseudonymization, i.e. retrieving multiple documents of
the same patient without disclosing the patient’s identity in the form of the CDA header
and PHI elements fragment.

4.3 Implementation and evaluation

All four engines were implemented in Java as independent software modules executed
by the XiTrust Business Server (XBS6), an advanced Java-based workflow engine which
allows control flow changes and dynamic loading of software components on demand.
The XBS also provided additional interfaces like the connector to the document archive
and to the hospital information system necessary for the case study. The crypto service
module provided by the XBS relies on standardized external interfaces which allow a
software-based or a hardware security module as cryptographic backend. In our test
case, we used a software implementation with a separate authentication module and key
storage.

The case study involves the automated processing and conversion of paper-based
discharge letters taken from an archive of an Austrian hospital. The discharge letters
stored as TIFF images of the scanned pages included incomplete metadata (patient
name, case number, etc.). The documents were taken from two different wards (internal
medicine and surgery) of the same hospital. While the same configuration settings,
lookup tables, and rules for the OCR and annotation modules were used, we created two
sets of transformation rules for each ward in order to adapt to the different document
layouts. The transformation rules required some localized changes such as the positioning
and sequence of names. For example, in the first ward, the patient names were written
as first names followed by the last names, while in the second ward, the order was
the other way round. Another example involved the sequence of the elements in the
letter head. In general, both wards included the same amount of information in their
discharge letters, though there were minor structural changes that had to be taken into
consideration. As the rules can be expressed in different levels of granularity (e.g., single
rule for patient’s first name, single rule for the complete diagnosis section of the discharge
letter), fine-grained rules were created to account for these minor structural differences,
while it was possible to reuse the remaining rules such as the one for the diagnosis (which
always followed the salutation section of the letter).

In a production environment, the setup of the system would require some manual
work before the automated conversion can commence. At first, a domain expert has to
analyze the paper-based documents that have to be converted. Usually, the documents
can be categorized into different classes (lab results, discharge letters, etc.). Apart from
that, documents may also differ depending on their source of origin such as the hospital
wards (see above). Once the document’s structure and content have been identified, the
annotation and transformation rules have to be devised. Since the content of a particular

6www.xitrust.com
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document class usually contains the same type of information (also specified by law),
many annotation and transformation rule sections can be reused. Knowledge of the font
types used as well as the layout of the scanned documents (such as the positioning of
header and footer sections) can also help to fine-tune the OCR module. To improve the
accuracy of the conversion process, the outcome needs to be analyzed manually for errors
in order to improve the rules. This conversion-analysis-revision cycle needs to be done
multiple times to reach a satisfactory rule set.

In our case study, we have applied following testing methodology: At first, we
randomly selected 100 documents acting as the test corpus and placed them into a
specific folder in order to trigger the OCR module’s file watcher. The documents then
underwent all four phases of the MEDSEC system, where the documents were collected
after each phase. In parallel, we manually screened the OCR output and corrected
any errors, annotated the documents manually and transformed the strings into CDA
documents to create the gold standard to compare it with the output of the (unsupervised)
automated MEDSEC test run. To test the overall robustness of the overall framework,
we only used the paper-based documents and the metadata (if existing) as information
sources; no external data sources like organizational data from hospital information
systems were included. We also deactivated the machine learning components of the
annotation module due to the limitations of available training data.

As the pseudonymization phase’s outcome is deterministic and the application of
symmetric cryptography (under the assumption of a securely kept secret key) is proven
secure, we focused on the outcome’s quality in terms of annotation and transforma-
tion. We split the CDA document into the following segments for examination: The
header section’s focus of interest included recordTarget (patient’s personal information),
author (usually the treating physician), and informationRecipient (physician receiving
the discharge summary), while the body section included reason for visit (incidents,
problems), diagnosis (results and outcome), procedures (medications and treatments),
and plan of care (recommended medications). The results in Figure 4.15 show the overall
erroneous sections due to missing elements or incorrectly classified entities. We identified
a significantly higher percentage of total errors in the CDA header blocks (24%, 17%,
34%) than in the CDA body blocks (2%, 3%, 9%, 14%), though the errors in the header
blocks were usually due to a single missing element such as a street name in an address
block. These numbers were acquired by simply counting all errors including missing or
incorrectly assigned entities.

Besides, we analyzed each error and identified the corresponding cause: The majority
of the errors was traced back to incorrect annotations (recordTarget and informationRe-
cipient), partly due to recognition errors in the OCR module (recordTarget and author).
Many errors in the recordTarget and author sections were due to incorrect (or missing)
name annotations. An investigation of the original paper-based scanned images revealed
the problem: First and last name annotation errors were the result of character recognition
difficulties due to special greyed and dotted background boxes surrounding the patient
names in the document. Another source of recognition failures was hand-written signa-
tures placed directly over the printed names, which was the main cause for misidentified
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Figure 4.15: Erroneous CDA sections

physician names. The transformation rules for the CDA header section mainly consisted
of structural conditions (i.e. annotation combinations); missing or incorrectly annotated
names therefore reduced the number of identified regions-of-interest (false negatives) and
thus increased the number of recordTarget, author, and informationRecipient errors.

Figure 4.16: Selected PHI elements (annotation)

The analysis of the annotation results provides a more detailed view where we
evaluated the system’s performance by calculating the precision, recall, and f-measures
(cf. [20]) as follows: The precision metric is determined by x/X in the context of PHI
class p where x is the number of correctly recognized class p tokens and X the total
number of tokens recognized as p. Recall is defined as y/Y in the context of PHI class p
where y is the number of correctly recognized class p tokens and Y the total number of
class p tokens present in the document. To combine precision and recall, the f-measure is
calculated as the harmonic mean as follows:

F = 2 ∗ precision ∗ recall

precision + recall
(4.2)

As shown in Figure 4.16, PHI classes like the social security number, postcodes,
and organization have reliably been identified due to their static structure (Austrian
social security numbers combine a four-digit number with the birth date, while Austrian
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postcodes are always comprised of four digits) and the availability of extensive lookup
tables (organizations), leading to precision/recall values of 0.95/0.96, 0.96/0.95, and
1/0.99 respectively. Street names have also been reliably identified due to lookup
tables, though some were misspelled or incomplete (missing ’Strasse’, i.e. the German
equivalent for ’Street’ or ’Avenue’). Names and telephone numbers could reach only
lower precision/recall values (0.78/0.85, 0.85/0.87, and 0.69/0.78): Apart from the
issues described above, names were also miscategorized (first/last names were mixed
up), whereas phone numbers suffered from character recognition errors, formatting issues
(slashes, hyphens) and inconsistent domains with different digit counts (with/without
area codes or call-through numbers).

As the transformation rules in the CDA body sections were largely comprised of
content-based conditions, the remaining errors in the CDA sections (cf. figure 6) resulted
from incomplete keyword sets (e.g., ’diagnosis’, ’diagnostic results’, etc.) or misspelled
keywords due to OCR recognition errors. Other causes included keywords and indicators
missing in the original document (e.g., ’to be sent to’) or structural variations in the source
documents. Finally, a large number of sections could not be successfully transformed
because they simply did not exist in the original health document.

Given the fact that no special tweaking was done with the configuration and rules,
the system produced very good results. Concerning the annotation phase, we achieved
an overall f-measure of 91.5%, compared to 96.3% of in [123], 96.7% in [109], and
88.3% [54], but including OCR errors which are often neglected in other approaches
where, for the sake of comparability, a standardized set of test documents is used (cf.
i2b2 de-identification challenges). Still, the results also indicate that there is room for
improvement, especially in the area of names, the primary identifiers of persons. The
test run was conducted with a setting that was intended to keep a balance between
precision and recall. A production system would lay the emphasis on recall for the
de-identification purpose, as a false-positive is less critical than a false-negative. As each
module relies on the quality of the outcome of the previous modules, emphasis has to
be laid on the OCR and annotation phases. OCR quality is expected to increase with
further document-type specific thresholds and configurations, i.e. optimizing the text
box thresholds, using font-specific configurations, etc. To counter the first/last name
mix up issue, the name categories could also be merged to a single PHI class, which
would allow creating more general annotation conditions in the transformation rules.
Further annotation improvement strategies include using more advanced rules (cascading
compositions) and more greedy rules with explicit exceptions, as well as tweaking the
confidence values. The integration of further external data sources can also improve the
annotation quality by providing extended lookup tables and direct-match verification
opportunities. With access to extended training data, the machine learning components
should also prove useful.

Better OCR and annotation quality also positively affects the transformation, although
the transformation rules are designed in such a way that they are able to compensate
OCR and annotation shortcomings. The rules for the test run included simple rule
compositions with few condition alternatives (structural and content-based). The rules
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can be adapted to specifically address certain known OCR and annotation limitations,
such as the first/last name issue or misspelled words by creating less-specific conditions
(e.g., more general regex). The transformation module’s CDA validator provides the
necessary feedback to iteratively adapt the OCR/annotation/transformation configuration
settings and rules to finally improve the overall result.
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CHAPTER 5
Conclusion

5.1 Summary
Privacy is a commodity whose role has become more important than ever. Given the
interconnectivity of computer systems and the large amounts of data produced every
day, there is a need for the protection of data, especially sensitive personal data like
health data. Since legal or organizational protection measures are often not sufficient,
they need to be supplemented by technical solutions. These technical security measures
should ensure that sensitive data is disclosed to authorized persons only. With regard to
health data, authorized persons are in general patients and trusted health care providers.
Obviously, health professionals should have access to their patients’ data to provide the
best possible health service, but patient data should not be disclosed to other interested
parties to prevent adverse consequences such as discrimination against patients. However,
personal health data is also valuable for research purposes to improve current practices in
health care and also to investigate new research directions. Still, when making the data
available to the research community, the patients’ privacy has to be ensured. Therefore,
a suitable security architecture for handling health data should be able to (i) grant
access to authorized parties such as health care providers responsible for the treatment
(which requires the patient’s consent) and (ii) allow privacy-preserving secondary use for
research.

In Chapter 2, this thesis first introduced information privacy and privacy-enhancing
technologies and discussed their properties in seven distinctive dimensions which help to
categorize different types of PETs. Then pseudonymization and its properties are
investigated. While different pseudonymization approaches have been proposed in
literature, they all focus on identity, provide unlinkability, and are reversible, which are
useful properties for handling sensitive health data.

In Chapter 3, PERiMETER was introduced, a holistic security architecture based
on pseudonymization which allows the concurrent use of health data for both direct
care (primary use) as well as privacy-preserving research (secondary use). Its main
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features are as follows: (i) The pseudonym-based access control relies on root and
shared pseudonyms which represent access rights to health records. They hide which
health records belong to a particular patient, unless the correct pseudonyms are known.
(ii) These pseudonym links are protected by encryption with multiple keys that form
a layer-based security architecture where the different layers are responsible for user
authentication, access authorization, and data access to the health records. The security
architecture also distinguishes between data owner, authorized users, and secondary
users. Finally, (iii) PERiMETER was designed to be used with secure hardware to
keep vital cryptographic keys secure during their use. Then, extensions to the basic
pseudonymization method were described that deal with ensuring data integrity or allow
for asynchronous operations. Furthermore, different application scenarios were described
including the pseudonymization of plain documents or documents in the HL7 CDA
format, as well as the integration of pseudonymization with electronic health records as
exemplified with the Austrian Elektronische Gesundheitsakte.

In Chapter 4, pseudonymization was discussed as privacy-enhancing technology in
a real life scenario involving paper-based archived health records that were to be made
available for secondary use. This chapter in particular investigated the requirements of
using the digitized paper-based records for privacy-preserving secondary use, including
the proper de-identification of the records and their transformation into a standardized
form. It then introduced MEDSEC, a methodology consisting of four phases: (i) The
OCR phase converts the paper-based records into a machine-readable input string of
characters and extends the strings with structural annotations. (ii) The annotation phase
then extends the input text with annotations marking all identified elements of Protected
Health Information. (iii) The transformation phase converts the unstructured input text
into standardized CDA documents using the structural information and PHI annotations
appended in the previous phases. And finally (iv) the pseudonymization phase ensures
that the CDA documents are unlinkable so that the documents can be disclosed to the
researchers.

5.2 Research questions revisited

In this section, the research questions stated in Section 1.3 are reviewed to investigate
how they have been answered in this thesis.

Can pseudonymization be used as a holistic security architecture
controlling authentication, authorization and data access to sensitive
data?

PERiMETER is a pseudonym-based security methodology ensuring that health records
are stored in pseudonymized form so that the data can be used for privacy-preserving
secondary use, i.e. the records are unlinked from both the patient and other records. For
primary use in direct health care, each patient acts as data owner and is able to create
user- and record-specific access authorizations for trusted health care providers. These
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access authorizations in the form of shared pseudonyms allow the authorized parties
to reidentify the correct patient’s records by having knowledge of the corresponding
pseudonym links. With the correct pseudonyms, the correct patient’s records can be
retrieved. Each user is also assigned unique sets of cryptographic keys including the
outer asymmetric keypair which is used to unambiguously identify and authenticate the
user. In order to protect the outer private key, it is created and stored on a user-owned
security token that acts as authentication device. The user-specific cryptographic keys
also include the inner symmetric key which is used to protect the pseudonym links and
ensures that only the key holder is able to decrypt the pseudonyms. As each user is
provided with security tokens for authentication and general access to the pseudonymized
data can be restricted to authenticated users only, PERiMETER represents a pseudonym-
based holistic security architecture that handles authentication, authorization, and access
control to sensitive data.

How does pseudonymization fare in a real-world scenario with
unstructured source data? What are the preconditions for successful
pseudonymization?

As demonstrated by MEDSEC, pseudonymization is suitable for privacy-preserving
secondary use and, in contrast to anonymization, is reversible so that patients can
also be reidentified. This is beneficial in cases where potential patients are selected for
clinical trials or need to be contacted to provide further details about their medical
histories. In order to handle unstructured source data, several requirements have to be
met: At first, the source data has to be transformed into a machine-readable format
since manual handling of the data is usually unfeasible due to the large amounts of
records in a real-world scenario. While health record standardization has recently been
promoted, the majority of records in health record storage archives, representing sizable
data sources, is still paper-based even when digitized, i.e. stored as scanned images.
Using techniques such as OCR, the text contents of the images can be read and converted
into machine-readable text. The unstructured data then needs to be converted into a
standardized document standard such as HL7 CDA to facilitate interoperability and
processing. Since the CDA standard dictates the structure of the documents’ contents,
the relevant information has to be identified within the source data and extracted so that
CDA-compliant documents can be created. Then the documents can be pseudonymized.
An important precondition for successful pseudonymization is the diligent de-identification
of the documents, including recognizing and removing all patient-identifying elements
(PHI). The CDA document standard is particularly suitable for pseudonymization since it
collects person-identifying information in the administrative header section while keeping
the actual medical content in the body section. Thus, the documents can be separated
into header and body sections to naturally separate identifying information from medical
data. Still, the body section usually contains several PHI elements as well because the
contents of the documents contain natural language texts, especially in clinical discharge
letters. Therefore, the body sections also have to be scrubbed before they can be made
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available for secondary use. The four phases of MEDSEC include all these steps and
demonstrate how to convert and pseudonymize existing health data for privacy-preserving
secondary use.

5.3 Benefits of the developed approach and comparison
to related work

Compared to existing approaches, the pseudonymization framework presented in this
thesis provides several benefits. Whereas pseudonymization has been used in approaches
focusing on either primary or secondary use (cf. Section 2.4), PERiMETER’s novelty lies
in its design as a holistic security infrastructure combining authentication, authorization,
and access control. This allows it to be used concurrently for both primary as well as
secondary use. Furthermore, the pseudonym-based infrastructure also provides user-
controlled security which does not depend on a dedicated trusted third party, unlike
existing work (e.g., [85], [33], [60], [51], [43], [88], [1]). Since the patients’ data is
stored pseudonymized, the risk of data disclosure emanating from internal attackers can
also be reduced because the correct secret cryptographic keys are required to revert
pseudonymization. Therefore, any non-authorized party, including internal actors such
as data administrators, does not have the ability to de-pseudonymize the data.

Similar to PERiMETER, the MEDSEC system represents a holistic approach for
automatically converting and pseudonymizing medical records. Unlike existing systems
which focus on individual aspects of the conversion process such as the de-identification of
health records or the information extraction of relevant data (cf. Section 4.1), MEDSEC
includes four distinctive phases to cover the individual requirements of converting paper-
based archived health records into a standardized and pseudonymized form. Whereas other
systems for de-identification (validated using test documents (cf. [119])) provide more
accurate results (e.g., [123], [109]), the MEDSEC modules are designed to provide robust
results in real-world scenarios. These modules working in conjunction help to mitigate
known limitations of information identification and extraction such as incomplete source
data, misinterpreted characters (OCR), or different data formats. Therefore, MEDSEC
can be applied to a wider variety of health data compared to the more specialized existing
systems presented in literature.

5.4 Limitations and future research directions

Whereas PERiMETER and MEDSEC demonstrate the practicability of pseudonymization
when handling sensitive health data, there are still some limitations. In PERiMETER,
pseudonymization is limited to health data-at-rest to hide the static links between patients
and their health records, while the dynamic or temporal factor is neglected. That means
that the links between health records can be reidentified when the order of retrieved
record (fragments) and the time interval between the retrieval operations is tracked: Two
records retrieved consecutively by a health care provider are likely to be related to the
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same patient. Even when the connection between client and database server is properly
protected by transport-layer end-to-end encryption (TLS) preventing eavesdropping, a
malicious database administrator with access to the data retrieval logs is able to identify
the access patterns and, therefore, to break the pseudonymization. We identify two
research directions to prevent this problem: On the one hand, the returned result set can
be modified so that the result must still be processed at the data querier’s side before
useful information can be extracted. Private information retrieval [31] hides the access
pattern by either distributing sensitive data to multiple databases (multi-server PIR)
or applying cryptographic operations (single-server PIR). However, since the result of a
data query in this thesis is a complete health document, applying PIR-based solutions
considerably hinders secondary use which is one of the requirements identified in this
thesis. Future research in this direction might be able to answer the question if techniques
such as PIR can be properly combined with pseudonymization. On the other hand,
the access pattern can also be obscured by inserting fake data requests to hide the link
between two legitimate data requests. In this case, the research question is how large the
amount of fake requests has to be to sufficiently hide the access pattern. One privacy
model that relies on the insertion of noise in data requests for privacy preservation is
differential privacy [41]. The idea of differential privacy is to keep the changes in a
query result due to a single change in the original data (inclusion of a particular data
row representing the presence of a particular person in this data set) at a minimal
manageable level. This can be ensured by adding sufficient random noise which is
dependent on the maximum deviation of the query result set. For example, if the query
is a simple count of the rows, the maximum deviation when adding the particular row is
1, which means that the required noise is also 1. Thereby, a differentially private query
mechanism can hide the existence of a particular person in a data set, but in contrast to
PERiMETER, the original database remains unchanged and the result sets are modified
before they are sent to the data querier (or alternatively a subset of the original data or
synthesized data set is created which produces similar results for any allowed query types).
Differential privacy works with aggregation queries, but it is unclear if it can be combined
with pseudonymization to handle exact match queries (or modify the queries to range
queries) without further research. MEDSEC’s PHI identification and pseudonymization
mechanism is limited to the machine-readable text inputs produced in the OCR phase,
while images like radiological files (DICOM), which are often part of health records, are
neglected. Even when metadata fields are scrubbed in such a file, the image itself might
contain PHI. Therefore, the automated PHI recognition process could be extended to
include images using image recognition and processing approaches.
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