
Complete Solution Archives for
Evolutionary Combinatorial

Optimization
Application to a Competitive Facility Location and

a Stochastic Vehicle Routing Problem

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Benjamin Biesinger
Registration Number 0927842

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Günther R. Raidl

The dissertation has been reviewed by:

Günther R. Raidl Christian Blum Ulrich Pferschy

Vienna, 20th April, 2016
Benjamin Biesinger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Benjamin Biesinger
Stättermayergasse 8/21-22, 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. April 2016
Benjamin Biesinger

iii

Acknowledgements

First and foremost I want to thank Günther Raidl, my excellent supervisor, who provided
me with countless invaluable advice, supported me in any aspect, and always guided me
in the right direction when I was facing difficulties during my research. I further want to
thank Christian Blum, who happily agreed to be the second reviewer of this thesis.

I also want to express my gratitude to all of my current and former colleagues of the
Algorithms and Complexity Group of the Vienna University of Technology for fruitful
discussions, sharing ideas and thoughts on work-related and work-unrelated topics, and
helpful comments on my own research. Especially, I want to thank Bin Hu who constantly
helped me overcome any challenges during my work and who is a co-author of many
of my publications. For financial support I want to thank the Vienna Scientific Fund
(FWF), who provided funding within the project P24660-N23.

I owe my gratitude to my family, especially my parents, who always supported me in my
course of education. My biggest thanks, however, goes to Sandra, love of my life and best
friend. Thank you for your patience, support, understanding, and encouragement over
the last few years and for teaching me the important things in life (apart from algorithms,
obviously).

v

Kurzfassung

Hybride Metaheuristiken wurden in den letzten Jahrzehnten intensiv erforscht um schwie-
rige kombinatorische Optimierungsprobleme zu lösen. In dieser Dissertation werden
solche Hybridisierungen von Metaheuristiken mit auf Tree-Search basierenden Methoden
untersucht, um Schwächen beider einzelnen Verfahren auszugleichen. Auf der einen Seite
kommt es, insbesondere bei evolutionären Algorithmen, auf Grund der fehlenden Infor-
mation zum bisherigen Suchverlauf oft zu unnötigen Re-evaluierungen, einem Verlust
der Diversität und vorzeitiger Konvergenz. Auf der anderen Seite haben Tree-Search
Methoden wie Branch-and-Bound häufig eine hohe Laufzeit und skalieren schlecht mit der
Instanzgröße. Der Fokus dieser Arbeit liegt in der Hybridisierung dieser Methoden durch
vollständige Trie-basierte Lösungsarchive innerhalb metaheuristischer Frameworks. Ein
solches Lösungsarchiv speichert alle generierten Lösungskandidaten in einer effizienten
baumbasierten Datenstruktur und vermeidet dadurch Duplikate. Bei jedem Auftreten ei-
ner Duplikatlösung wird diese in eine garantiert neue, üblicherweise ähnliche Lösung direkt
vom Archiv konvertiert. Wendet man dieses Lösungsarchiv innerhalb einer Metaheuristik
an, wird diese dadurch im Prinzip zu einem vollständigen, exakten Suchalgorithmus, der
eine optimale Lösung bei genügend langer Laufzeit garantiert findet. Obwohl dieser Fall
normalerweise nur bei kleineren Instanzen auftritt, kann das Archiv die Performance der
Metaheuristik verbessern, selbst wenn der Algorithmus vorzeitig abgebrochen wird. In die-
ser Dissertation werden solche Lösungsarchive detailliert untersucht, mit fortgeschrittenen
Verfahren erweitert und auf zwei praxisrelevante Problemstellungen angewandt.

Die erste betrachtete Problemstellung ist das Competitive Facility Location Problem, in
dem zwei nicht kooperative Unternehmen, ein Leader und ein Follower, durch Auswählen
von Filialstandorten um Marktanteile konkurrieren. Wir betrachten sechs verschiedene
Szenarien für das Kundenverhalten und die Art des Bedarfs um die Marktanteile für
den Leader und den Follower zu berechnen und präsentieren mathematische Modelle
für jedes dieser Szenarien. Wir stellen einen heuristischen Ansatz vor, der auf einem
fortgeschrittenen evolutionärem Algorithmus und einem Lösungsarchiv mit randomisier-
ter Baumstruktur basiert. Der Algorithmus nutzt eine eingebettete lokale Suche und
Tabusuche, die mit dem Lösungsarchiv auf vier verschiedene Arten kombiniert werden.
Die hohe Laufzeit der Lösungsevaluierung wird durch ein multi-level Evaluierungsschema
reduziert, welches einen Greedy-Algorithmus und ein Mixed Integer Linear Programming
Modell kombiniert einsetzt. Da dieses Problem sowohl eine kompakte Lösungsreprä-
sentierung besitzt, da nur die Standorte des Leaders gespeichert werden, als auch eine
teure Evaluierungsfunktion hat, die aus dem Finden optimaler Standorte für den Fol-

vii

lower besteht, konnte mit dem Lösungsarchiv eine substantielle Verbesserung der finalen
Lösungsgüte erreicht werden.

Die zweite Problemstellung ist das Generalized Vehicle Routing Problem with Stocha-
stic Demands and Preventive Restocking, welches eine Kombination aus zwei Generali-
sierungen des klassischen Routenplanungsproblems ist. Ziel dieses Problems ist, Routen
durch eine Menge von Standorten (Knoten) zu finden, die in disjunkte Cluster eingeteilt
sind, wobei genau ein Knoten von jedem Cluster zu besuchen ist. Da die Kapazität eines
Fahrzeugs beschränkt ist und daher der (stochastische) Bedarf der Cluster nicht immer
erfüllt werden kann, müssen zusätzliche Wege zum Auffüllen des Fahrzeugs geplant wer-
den. Um die optimalen Positionen für so ein Auffüllen in der Tour zu finden, die von der
Realisierung der Zufallsvariablen und der derzeitigen Ladung abhängt, kann ein exakter
aber zeitaufwändiger Algorithmus basierend auf dynamischer Programmierung eingesetzt
werden. Für dieses Problem werden ein exakter und zwei metaheuristische Lösungsansätze
entwickelt und in dieser Arbeit präsentiert. Der exakte Algorithmus basiert auf einem
Mixed Integer Linear Programming Modell für das generalisierte Traveling Salesman
Problem, welches via Branch-and-Cut gelöst wird und die dynamische Programmierung
für das Finden optimaler Auffüllpositionen benutzt. Die erste Metaheuristik ist eine
General Variable Neighborhood Search mit drei Nachbarschaftsstrukturen. Um die Lauf-
zeit der Lösungsevaluierungen zu reduzieren, wird ein Multi-level Evaluierungsschema
verwendet, welches die dynamische Programmierung benutzt und iterativ mit immer
größerer Genauigkeit die exakte Lösungsqualität approximiert. In diesem Evaluierungs-
schema wird die Kapazität des Fahrzeugs und die Wahrscheinlichkeitsverteilungen des
Bedarfs in den Clustern herab skaliert. Die zweite Metaheuristik ist ein genetischer
Algorithmus, der ein vollständiges Trie-basiertes Lösungsarchiv benutzt. Das Archiv
wird mit einer Bounding Erweiterung versehen, die Teile des Suchbereichs wegschneidet,
welche garantiert keine optimale Lösung beinhalten. Empirische Resultate zeigen, dass
der exakte Algorithmus nur kleinere Instanzen lösen kann, aber beide Metaheuristiken
gut für größere Instanzen eingesetzt werden können. Das Lösungsarchiv stellte sich auch
für dieses Problem als wichtiger Teil des genetischen Algorithmus heraus und gemeinsam
mit der Bounding Erweiterung war es möglich, optimale oder nahezu optimale Lösungen
für viele Benchmark Instanzen zu finden.

Die Resultate der entwickelten Algorithmen für die vorgestellten Probleme zeigen
insgesamt, dass vollständige Trie-basierte Lösungsarchive in der Lage sind, die Perfor-
mance von evolutionären Algorithmen für kombinatorische Optimierungsprobleme mit
einer kompakten Lösungsrepräsentierung und zeitaufwändiger Evaluierungsfunktion signi-
fikant zu steigern. Erweiterungen für Lösungsarchive, die deren Baumstruktur ausnutzen,
können zu substantiellen Verbesserungen der Metaheuristik führen. Diese Dissertation
zeigt, dass die Kombination aus evolutionären Algorithmen und Lösungsarchiven zu
neuen state-of-the-art Lösungsverfahren in dem Gebiet der Standort- und Routenplanung
führen können.

Abstract

Hybrid metaheuristics for solving hard combinatorial optimization problems have been
intensively studied over the last few decades. This thesis considers such a hybridization of
metaheuristics and tree search methods to overcome some weaknesses of each individual
method. On the one hand, especially in evolutionary algorithms the lack of information
on the search history usually leads to unnecessary re-evaluations, a loss of diversity, and
premature convergence. On the other hand, tree search methods like branch-and-bound
frequently have a high run-time requirement and scale not so well with the instance
size. The focus of this thesis lies in the hybridization of these methods using complete
trie-based solution archives within a metaheuristic framework. Such a solution archive
stores all generated solution candidates in an efficient tree data structure and thereby
avoids duplicates. Whenever a potential duplicate solution is identified it is converted
into a guaranteed new, usually similar solution directly by the archive. Applying this
archive to a metaheuristic turns it, in principle, into a complete exact search algorithm
which finds an optimal solution given enough time. Although this is usually only
possible for smaller instances, even when prematurely terminated, using the archive
can improve the performance of the metaheuristic. In this thesis such solution archives
are investigated in detail, extended with more advanced techniques, and applied to two
practical combinatorial optimization problems with real-world applications.

The first considered problem is the competitive facility location problem, in which two
non-cooperating companies, a leader and a follower, compete for market share by choosing
locations for opening stores. We consider six different customer behavior scenarios and
demand models to compute the market share for the leader and the follower and present
mathematical models for each of them. We approach this problem heuristically with an
advanced evolutionary algorithm using a solution archive with a randomized trie structure.
The algorithm employs an embedded local and tabu search procedure which is combined
with the solution archive in four different ways. The substantial time consumption of the
solution evaluation is reduced by utilizing a multi-level evaluation scheme using a greedy
algorithm and a mixed integer programming formulation in a combined way. As this
problem comprises both, a compact solution representation by only storing the locations
for the leader and an expensive evaluation function consisting of computing optimal
locations for the follower, using a solution archive results in a substantial improvement
of the final solution quality.

The second problem is the generalized vehicle routing problem with stochastic demands
and preventive restocking which is a combination of two generalizations of the classical

ix

vehicle routing problem. The aim of this problem is to find routes through a set of
nodes, which are partitioned into disjoint clusters and exactly one node of each cluster
has to be visited. The capacity of the vehicle is limited, and therefore the (stochastic)
demands of the clusters cannot always be satisfied within a route and restocking trips
must be planned. Determining optimal restocking points depends on the realizations
of the random variables and the actual load of the vehicle, and can be computed using
an exact but time-consuming dynamic programming algorithm. For this problem an
exact solution algorithm and two metaheuristics are developed and presented in this
thesis. The exact algorithm is based on a mixed integer linear programming model for
the generalized traveling salesman problem and solved via branch-and-cut, which uses the
dynamic programming algorithm for computing the restocking points as sub-procedure
in order to separate cuts. In the first metaheuristic a general variable neighborhood
search with three neighborhood structures is used. For decreasing the run-time of the
solution evaluations a multi-level evaluation scheme is developed, which uses the dynamic
programming algorithm and iteratively approximates the actual solution quality with
increasing accuracy by scaling down the vehicle capacity and the probability distributions
of the cluster demands. The second metaheuristic is a genetic algorithm using a complete
trie-based solution archive. This archive is further extended with a bounding procedure
to cut off areas of the solution space that evidently cannot contain optimal solutions.
Computational results show that while the exact algorithm is only able to solve smaller
instances, both metaheuristics can be used well for larger instances. The solution archive
turned out to be, also for this problem, an important component of the genetic algorithm
and together with the bounding procedure the approach was able to find optimal or
near-optimal results for many benchmark instances.

The overall results of the computational tests of the developed algorithms for these
problems show that complete trie-based solution archives are able to significantly boost
the performance of evolutionary algorithms for combinatorial optimization problems with
a compact solution representation and a time-consuming evaluation function. When
properly designed, extensions to the solution archive exploiting their tree structure
can lead to significant improvements of the metaheuristic. This thesis shows that the
combination of evolutionary algorithms with solution archives can lead to new state-of-
the-art algorithms in the area of location and routing problems.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Overview of the Thesis . 4

2 Methodology 7
2.1 Combinatorial Optimization Problems 7
2.2 Computational Complexity . 8
2.3 Exact Methods . 11

2.3.1 (Mixed) Integer Linear Programming 11
2.3.2 (LP-based) Branch-and-Bound 13

2.4 Heuristic and Metaheuristic Methods 16
2.4.1 Construction Heuristics . 16
2.4.2 Local Search . 17
2.4.3 Metaheuristics . 18
2.4.4 Variable Neighborhood Descent 19
2.4.5 Variable Neighborhood Search 20
2.4.6 Tabu Search . 21
2.4.7 Genetic Algorithms . 23

2.5 Hybrid Metaheuristics . 25
2.5.1 Guidance for (Meta-)heuristics by Solving Problem Relaxations 25
2.5.2 Exact Methods Integrated in Metaheuristics 26
2.5.3 Metaheuristics Integrated in Exact Methods 26
2.5.4 Exact Methods for Decoding Indirect or Incomplete Solution

Representations . 27
2.5.5 Hybridization Based on Problem Instance Reduction 27
2.5.6 Parallel, Non-independent Construction of Solutions Within

Metaheuristics . 28
2.5.7 Other Possibilities for Hybridization 28

xi

3 Complete Trie-Based Solution Archives 29
3.1 Duplicate Detection Strategies . 30
3.2 Trie Structure . 31
3.3 Insertion into the Solution Archive . 32
3.4 Conversion within the Solution Archive 33
3.5 Incorporation into a Metaheuristic . 35
3.6 Extensions . 35

4 Competitive Facility Location Problems 37
4.1 Introduction . 38
4.2 Problem Definition . 39

4.2.1 Binary Essential . 40
4.2.2 Proportional Essential . 40
4.2.3 Partially Binary Essential . 40
4.2.4 Unessential Demand . 40

4.3 Related Work . 41
4.3.1 Competitive Facility Location Problems – Variants 41
4.3.2 Competitive Facility Location Problems – Solution approaches 43

4.4 Mathematical Models . 45
4.4.1 Binary Essential . 45
4.4.2 Proportional Essential . 46
4.4.3 Partially Binary Essential . 48
4.4.4 Unessential Cases . 50
4.4.5 Binary Unessential . 50
4.4.6 Proportional Unessential . 51
4.4.7 Partially Binary Unessential . 51

4.5 Solution Representation and Evaluation 51
4.5.1 Exact evaluation . 52
4.5.2 Linear Programming (LP) evaluation 52
4.5.3 Greedy evaluation . 52

4.6 Evolutionary Algorithm . 53
4.6.1 Variation Operators . 54
4.6.2 Local Search . 54
4.6.3 Solution Archive . 54
4.6.4 Insertion . 55
4.6.5 Conversion . 57
4.6.6 Randomization of the Trie . 58

4.7 Local and Tabu Search with Solution Archive 58
4.7.1 Complete Neighborhood . 59
4.7.2 Reduced Neighborhood . 59
4.7.3 Conversion Neighborhood . 59
4.7.4 Tabu Search . 60

4.8 Multi-level Solution Evaluation Scheme 60

4.8.1 Basic Multi-Level Solution Evaluation Scheme 60
4.8.2 Multi-Level Solution Evaluation Scheme and Local Search . . . 61

4.9 Computational Results . 62
4.9.1 Binary Essential . 63
4.9.2 Proportional Essential . 77
4.9.3 Partially Binary Essential . 82
4.9.4 Unessential Demands . 83
4.9.5 Case Study of Vienna, Austria 88

4.10 Conclusions . 93

5 Generalized Vehicle Routing Problem with Stochastic Demands 95
5.1 Introduction . 96
5.2 Problem Definition . 97
5.3 Related Work . 97
5.4 An Integer L-shaped Method for the GVRPSD 99

5.4.1 Mathematical Model . 99
5.4.2 Dynamic Programming for Computing the Restocking Costs . 100
5.4.3 Specific and General Optimality Cuts 101
5.4.4 General Optimality Cuts . 101

5.5 A Variable Neighborhood Search for the GVRPSD 102
5.5.1 Multi-Level Evaluation Scheme 102
5.5.2 Initial Solution . 104
5.5.3 Neighborhood Structures . 105

5.6 A Genetic Algorithm in Combination with a Solution Archive for
Solving the GVRPSD . 106
5.6.1 Initial Population . 107
5.6.2 Genetic Operators . 107
5.6.3 Variable Neighborhood Descent 108
5.6.4 Solution Archive . 109

5.7 Computational Results . 113
5.7.1 Integer L-shaped Method . 114
5.7.2 Variable Neighborhood Search 114
5.7.3 Genetic Algorithm with Solution Archive 117

5.8 Conclusions . 131

6 Conclusions and Future Work 133
6.1 Future Work . 135

Bibliography 137

A Full Result Tables 149
A.1 Competitive Facility Location Problem 149

A.1.1 Solution Evaluation . 149
A.1.2 Genetic Algorithm . 151

A.1.3 Neighborhoods of the Local Search 153
A.1.4 Multi-Level Evaluation Scheme 154

A.2 Generalized Vehicle Routing Problem with Stochastic Demands 156

CHAPTER 1
Introduction

Efficient and sustainable utilization of the available resources is of paramount importance
to the economical and social success of a company in modern society. In many industry
sectors decision makers face the challenge of planning a set of actions leading to a
particular outcome which should be beneficial to the company’s success. This need of
making good decisions gives rise to challenging optimization problems which can be
computationally tackled. Especially in the areas of transportation, telecommunication,
scheduling, network design, location planning, and many more, such problems arise
naturally. General sample questions in these fields are the following:

• What are the most resource-efficient routes for my fleet of vehicles to distribute my
goods?

• From several possible locations to open new stores / warehouses / distribution
centers, which ones should I choose?

• How can I make a schedule for public transportation / patients / students / machines
in order to efficiently satisfy all required conditions?

In many cases such problems can be modeled as combinatorial optimization problems
(COPs) for which in Section 2.1 a formal definition is given. There is a large history of
modeling and solving COPs. While easier variants of COPs can be solved in polynomial
time, most practically relevant problems are not always efficiently solvable anymore under
the assumption that P 6=NP (in Section 2.2 more information about the complexity classes
P and NP is provided). For a formal definition of above optimization problems, they are
usually modeled as a graph G = (V,E), where V denotes the set of nodes representing
customers, possible locations, activities, etc. and edges E ⊆ (V × V) corresponding to
connections between the nodes.

Let us consider a well-known COP which deals with a problem in the domain of
location science as motivating example: the p-Median Problem (PMP), which was

1

introduced by Hakimi [67]. In the PMP we are given a graph G = (I,D) consisting of a
set I of locations and a distance matrix D = (dij) containing a distance (or cost) for each
pair of locations (i, j) with i, j ∈ I. The aim of the problem is to find a subset S ⊆ I of
exactly p locations such that the total distance between each i ∈ I and its closest j ∈ S
is minimized:

min
∑
i∈I

min
j∈S

dij

The PMP was shown to be NP-hard. It models fundamental aspects of several real-world
applications, e.g., choosing the locations for industrial plants, warehouses, and public
facilities [97].

Although problems like the PMP are NP-hard and therefore in general cannot be solved
in polynomial time (under the assumption that P 6=NP), there exist several algorithms
which are in practice sometimes able to find an optimal solution in reasonable time. These
approaches include, for example, bounded enumeration, branch-and-bound, constraint
programming, and dynamic programming. In Section 2.3 an overview of some of these
exact methods is given. As these methods often do not scale well enough with the problem
size, optimality is frequently traded for shorter running times by turning to incomplete
approximate solution methods. These methods include heuristics, metaheuristics, and
approximation algorithms. This thesis focuses on solving COPs with metaheuristics and
therefore in Section 2.4 an overview on a selection of important types of metaheuristics
is given.

A common property of metaheuristics is their lack of a long-term memory to keep
track of their search history. This implies that with a high probability at some point
during the search the algorithm comes to a solution candidate it has already considered
before. For several types of COPs and algorithms this might be problematic since cycling
among a set of solutions is possible and evaluating the quality of an already assessed
solution candidate can be (unnecessarily) time-consuming. Raidl and Hu [112] performed
pioneer work on complete trie-based solution archives which are data structures that store
all visited solution candidates in a compact way and upon duplicate detection solutions
are transformed into typically similar but guaranteed not yet visited solutions. The
storing of visited solutions and the duplicate checking mechanism can also be achieved by
using simpler caching approaches based on hashing. The considered trie-based solution
archives, however, go further and extend the duplicate checks with a non-trivial and
problem dependent transformation method that efficiently converts a found duplicate
into a new solution. This is achieved by using a trie for the solution archive, which is a
special tree data structure commonly used for language dictionaries. The construction of
this trie depends on the solution representation used for the problem. This combination
of a metaheuristic and the tree structure of the solution archive can be further exploited
by concepts known from tree search methods, e.g., computing bounds on sub-trees to
cut off areas which evidently do not contain an optimal solution. The main challenges
of applying solution archives to a COP lie in the determination of a suitable compact
solution representation, the design of the conversion operator, and to ensure that only
feasible solution candidates are generated by the transformation method. The aim of this

2

thesis is to investigate the effectiveness of such solution archives in more detail, find new
application areas, and to extend the basic idea with various more advanced concepts.

In order to evaluate the effectiveness of solution archives several problems with
real-world applications have been chosen. The first problem that we consider is the
competitive facility location problem (CFL), which is the main topic of Chapter 4. In the
CFL there are two non-cooperating companies entering a market sequentially and are
competing for market share. The first decision maker, referred to as the leader, wants to
maximize his market share knowing that a so-called follower will enter the same market.
Thus, for evaluating a leader’s candidate solution, a corresponding follower’s subproblem
needs to be solved, and the overall problem therefore is a bi-level optimization problem.
This thesis considers several customer behavior scenarios combined with two different
demand models. This problem is chosen because evaluating a candidate leader’s solution
is time-consuming and therefore re-evaluating the same solution is expensive and should
be avoided. We use an evolutionary algorithm with solution archive for solving this
problem heuristically. This algorithm is based on a genetic algorithm with tabu search as
local improvement procedure. Different evaluation procedures, a greedy algorithm and
approaches based mixed integer linear programming models, are combined in a unified
approach to a multi-level evaluation scheme which decreases the overall time spent for
solution evaluations. The employed solution archive is a binary trie with randomized
insertion order based on the chosen locations of the leader. The conversion method
changes the detected duplicate solution at at least two positions: one facility must be
closed and re-opened again at another position. It is ensured that the converted solution
is not too far off the original solution if possible, by preferring the values of the original
solutions’ variables. The evolutionary algorithm is tested both on Euclidean and non-
Euclidean instances from the literature. Especially on the Euclidean instances and binary
or proportional customer behavior with essential demands the developed algorithm is able
to exceed previous state-of-the-art heuristic approaches in solution quality and running
time in most cases. For the other considered scenarios no computational results have
been published in the literature but several configurations of the evolutionary algorithm
are compared. The results showed that the configurations using the solution archive
provided significantly better results than the configurations without on the majority
of the test instances. Finally, for a better illustration of the results and to show the
practical applicability of this approach, a case study using real data of the registration
districts of Vienna, Austria was conducted.

The second COP considered in this thesis is the generalized vehicle routing problem
with stochastic demands (GVRPSD), which is treated in Chapter 5. The GVRPSD is a
generalization of the stochastic variant of the well-known vehicle routing problem (VRP).
The aim of this problem is to find a set of routes so that all customers are served. The
demands of these customers, however, are not known beforehand and therefore restocking
trips back to a central depot may be necessary. Computing these restocking points
depends on the current load of the vehicle and is a time-consuming procedure and can be
done via an exact dynamic programming algorithm. Thus, avoiding duplicate solutions
by a solution archive appears highly promising. As the GVRPSD has not been considered

3

yet in the literature, first, an exact algorithm is developed to obtain optimal solutions to
at least smaller instances. This algorithm is based on a mixed integer linear programming
model for the generalized traveling salesman problem and the dynamic programming
algorithm. The model is iteratively solved within a branch-and-cut framework after
introducing new inequalities derived by the results of the dynamic programming algorithm.
The introduced inequalities reflect the additional restocking costs which are introduced
by the unplanned return trips to the depot. As the results of this method showed that
such an exact approach is only able to solve small instances, in a next step metaheuristic
algorithms are developed. First, a variable neighborhood search is proposed which uses
three neighborhood structures for permutation encodings. The main feature of this
algorithm is another multi-level evaluation scheme which iteratively estimates the true
objective value by scaling down the vehicle capacity and the probability distributions of
the stochastic demand. We show that the resulting value of each of the levels is a lower
bound to the value of the previous level which can lead to an early termination of the
evaluation procedure and thereby reducing its running time. This multi-level evaluation
scheme is also used in our second metaheuristic for the GVRPSD, which is an evolutionary
algorithm with solution archive. This algorithm employs an embedded local improvement
procedure which uses the neighborhood structures from the variable neighborhood search
as well as a new one based on conversions in the solution archive. Another feature of this
algorithm is the bounding extension of the solution archive. Lower bounds are computed
for partial solutions so that subtries which cannot contain an optimal solution are pruned.
The computational results showed that with such a bounding extension optimal solutions
for smaller instances could be found and that the resulting solution quality also increased
for larger instances. Also for this problem the configurations using the solution archive
produced significantly better results than the others on most of the test instances.

1.1 Overview of the Thesis

In Chapter 2 an overview of complexity theory and exact and (meta-)heuristic solution
methods for COPs is given. The focus lies on (mixed) integer programming, extensions
for the exact methods, and on a selection of popular metaheuristics which are used to
solve the problems considered later in this thesis. The last part of this chapter presents
hybrid metaheuristics which deal with an efficient combination of metaheuristics and
exact methods.

Chapter 3 is devoted to complete trie-based solution archives. In this chapter, first, a
literature overview about existing duplicate elimination techniques is given, followed by a
description of how the trie is structured and the trie insertion and conversion procedures.
Furthermore, the integration into metaheuristics, especially into evolutionary algorithms,
is illustrated and possible extensions are presented.

In the next two chapters the considered problems and the proposed solution approaches
are shown. Therefore, first a formal problem definition is given and previous and related
work is described. Then, the solution algorithms are shown and explained in detail.
At the end of each chapter they are experimentally evaluated with respect to solution

4

quality, run-time consumption, and other properties, and compared to the results from
the literature as far as available. Finally, for each problem, conclusions are drawn and an
outlook for future work is given.

Chapter 4 is dedicated to competitive facility location problems. Several types
of customer behavior and demand models with corresponding integer programming
formulations are presented. Parts of this chapter have been published in:

B. Biesinger, B. Hu, and G. R. Raidl. Models and algorithms for competitive
facility location problems with different customer behavior. Annals of Mathe-
matics and Artificial Intelligence, 76(1):93–119, 2015

An earlier version of the solution algorithm which is a hybrid evolutionary algorithm
with solution archive has been published in:

B. Biesinger, B. Hu, and G. R. Raidl. A hybrid genetic algorithm with solution
archive for the discrete (r|p)-centroid problem. Journal of Heuristics, 21(3):391–
431, 2015

This algorithm was adapted to a different type of customer behavior and has been
published in:

B. Biesinger, B. Hu, and G. R. Raidl. An evolutionary algorithm for the
leader-follower facility location problem with proportional customer behavior.
In Conference Proceedings of Learning and Intelligent Optimization Conference
(LION 8), volume 8426 of LNCS, pages 203–217. Springer, 2014

A case study using the evolutionary algorithm on the data of Vienna, Austria will appear
in the form of an invited book chapter in:

B. Biesinger, B. Hu, and G. R. Raidl. A memetic algorithm for competitive
facility location problems. In Natalie Jane de Vries and Pablo Moscato, editors,
Business and Consumer Analytics: New Directions (Vol1), pages 1–23. 2016. To
appear

Furthermore, a presentation with preliminary results was given:

B. Biesinger. A hybrid evolutionary algorithm for the discrete (r|p)-centroid
problem. Austrian Workshop on Metaheuristics 9, Vienna, Austria, 2013

Next, Chapter 5 is dedicated to the generalized vehicle routing problem with stochastic
demands. First, the problem is introduced and an exact algorithm based on integer
programming is described. This work has been published in:

5

B. Biesinger, B. Hu, and G. R. Raidl. An integer L-shaped method for the gen-
eralized vehicle routing problem with stochastic demands. In 7th International
Network Optimization Conference, INOC, 2015. To appear

Then, two metaheuristics for this problem are proposed. The first metaheuristic is
a variable neighborhood search which uses a multi-level technique for faster solution
evaluation. This work has been published in:

B. Biesinger, B. Hu, and G. R. Raidl. A variable neighborhood search for the
generalized vehicle routing problem with stochastic demands. In Gabriela Ochoa
and Francisco Chicano, editors, Evolutionary Computation in Combinatorial
Optimization – EvoCOP 2015, volume 9026 of LNCS, pages 48–60. Springer, 2015

The second metaheuristic is a genetic algorithm in combination with a solution archive
and has been submitted to:

B. Biesinger, B. Hu, and G. R. Raidl. A genetic algorithm in combination
with a solution archive for solving the generalized vehicle routing problem with
stochastic demands. 2016. submitted to a journal

Finally, Chapter 6 draws general conclusions on solution archives and points out possible
future research directions.

All of the above publications and this thesis are supported by the Austrian Science
Fund (FWF) under grant P24660-N23 and we thank the FWF for all received funding.

6

CHAPTER 2
Methodology

This chapter first gives an overview on some basic concepts from complexity theory related
to combinatorial optimization and then presents the concepts and solution methodologies
for combinatorial optimization problems which are used throughout the thesis. These
methods can be classified into exact approaches, from which we will consider branch-and-
bound and (mixed) integer linear programming and (meta-)heuristic methods which solve
COPs only approximately. As there is also a huge variety of different (meta-)heuristics
described in the literature we only focus on these relevant to the further parts of this
thesis, which are construction heuristics, local search, variable neighborhood descent,
variable neighborhood search, tabu search, and genetic algorithms.

2.1 Combinatorial Optimization Problems
Before starting to discuss solution methods, the considered problems are formally intro-
duced. Let us start with combinatorial optimization problems in general, for which the
definitions are based on Aarts and Lenstra [1]:

Definition 1. A combinatorial optimization problem is specified by a set of problem
instances and is either a minimization or a maximization problem.

Definition 2. An instance of a combinatorial optimization problem is a pair (S, f),
where the solution set S is the finite set of feasible solutions and the cost function f is a
mapping f : S 7→ R. The problem is to find a globally optimal solution, i.e., an i∗ ∈ S
such that

f(i∗) ≤ f(i) ∀i ∈ S (2.1)
for minimization problems and

f(i∗) ≥ f(i) ∀i ∈ S (2.2)

for maximization problems. Furthermore, f∗ = f(i∗) denotes the optimal cost, and
S∗ = {i ∈ S | f(i) = f∗} denotes the set of optimal solutions.

7

2.2 Computational Complexity

In the introduction we already mentioned hard, especially NP-hard, problems but what
exactly does hard mean in this context? As this thesis considers only NP-hard problems
whose underlying decision problems lie either in the complexity class NP or above, we
will give a brief introduction to the basics of complexity theory, the complexity classes P
and NP, as well as touch the topic of problems beyond NP. In the field of complexity
theory usually primarily decision problems are considered as opposed to optimization
problems. However, if we, for example, have a global upper bound to the optimal value
of a minimization problem, then we can apply a binary search in the value solution space
(let B be the current value) and repeatedly ask the question “Is there a solution to the
given optimization problem with a value no larger than B?”. Thereby, we can transform
most optimization problems in a straightforward way into a series of decision problems.

To answer the question of hard problems it is necessary to give a formal definition of
an algorithm and an associated computation model. For that reason we will use models
from the literature and the remainder of this section is therefore based on the book
Computers and Intractability by Garey and Johnson [56]. The simple formal model on
which this section is based is a deterministic one-tape Turing machine (DTM), which
consists of a finite state control, a read-write head, and an infinitely long tape, which is
partitioned into tape squares. Then we can define a program for a DTM as follows [56].

Definition 3. A program for a DTM specifies the following information:

(a) A finite set Γ of tape symbols, including a subset Σ ⊂ Γ of input symbols and a
distinguished blank symbol b ∈ Γ− Σ;

(b) a finite set Q of states, including a distinguished start state q0 and two distinguished
stop states qY and qN;

(c) a transition function δ : (Q− {qY, qN})× Γ→ Q× Γ× {−1,+1}.

The input of such a program is a string x ∈ Σ∗, where Σ∗ is the set of all finite strings
using symbols from Σ. In the beginning of the execution of the program this input is
written on the tape starting at position 0. The program starts in state q0 and proceeds by
following the statements of the transition function until either state qY or qN is reached
which corresponds to a yes-answer or a no-answer to the decision problem, respectively.
We remark that in general the program does not have to stop at all but this does not
pose a problem here.

The input string x corresponds to a specific encoding scheme e of an instance of
a decision problem, where an encoding scheme e describes each instance of a decision
problem by a string of symbols over a fixed alphabet Σ. Before we can define the
complexity class P we have to establish the connection between a decision problem and
a language. We associate a language L[Π, e] with the decision problem Π and a proper
encoding e as follows [56]:

8

L[Π, e] =
{
x ∈ Σ∗ : Σ is the alphabet used by e, and x is the encoding under e

of an instance I ∈ YΠ

}
,

where YΠ is the set of yes-instances of decision problem Π. Then, we say that a program
M with input alphabet Σ accepts x ∈ Σ∗ if and only if M halts in state qY. The language
LM that is recognized by program M is given by LM = {x ∈ Σ∗ : M accepts x} [56].
Finally, we can formally define the complexity class P as follows:

Definition 4. Complexity class P
P = {L : there is a polynomial time DTM program M for which L = LM}

Going further to nondeterministic algorithms and the complexity class NP we first
give an intuitive explanation of this class. We can informally classify a problem to belong
to the complexity class NP if we can devise a guess-and-check algorithm. First, we nonde-
terministically guess an arbitrary solution candidate S. When speaking about languages,
each possible string from Γ∗ can be guessed since we are doing this nondeterministically.
After the guessing phase we check if the guessed string is actually a yes-instance. Now,
if the string is polynomially bounded in the size of Γ and the checking algorithm runs
in polynomial time we say that the decision program lies in the complexity class NP.
More formally, we extend the model of a DTM to a nondeterministic one-tape Turing
machine (NDTM) by adding a guessing module which has its own write-only head. A
program of a NDTM is defined the same way as for a DTM but the computation has
an additional guessing phase before it continues working like the DTM. In the guessing
phase the write-only head writes an arbitrary string from Γ∗ on the tape. Then, the
checking phase starts with the same rules as for the DTM. In contrast to the DTM from
before we say that an NDTM program M accepts a given input string x if at least one
of all (infinitely many) possible guessed strings will result in a halt in the state qY. We
define the complexity class NP as follows:

Definition 5. Complexity class NP
NP = {L : there is a polynomial time NDTM program M for which L = LM}

Having defined the most important complexity classes P and NP, we continue by
showing how to identify NP-hard problems. Therefore, we first have to introduce the
notion of polynomial reductions between two languages. Formally we define a polynomial
reduction from a language L1 ⊆ Σ∗1 to another language L2 ⊆ Σ∗2 (we write L1 ∝ L2) to
be a function f : Σ∗1 → Σ∗2 that satisfies the following two conditions [56]:

1. There is a polynomial DTM program that computes f .

2. For all x ∈ Σ∗1, x ∈ L1 if and only if f(x) ∈ L2.

Informally spoken, the reduction must be computable in polynomial time and after
the transformation the problem must be solvable with any algorithm that solves the

9

corresponding problem of L2. Then, we say that a language L is NP-hard if for all other
languages L′ ∈ NP , L′ ∝ L holds. Correspondingly, a language L is NP-complete if
L ∈ NP and L is NP-hard. Proving that a problem Π is NP-complete can be done
methodologically by first devising a guess-and-check algorithm to prove that Π ∈ NP and
then taking any problem which is known to be NP-hard and find a polynomial reduction
to Π which shows that it is also NP-hard.

Now that we have defined that NP-complete problems are in some sense the hardest
problems in NP one could raise the question what happens if we leave the class NP and
take a look at even higher levels of complexity. Therefore, we first introduce the notion
of an oracle and an oracle Turing machine. Intuitively, an oracle is an algorithm (or
program, subroutine, . . .) which solves a specific problem in zero time. Such an oracle
can be used to further specify the complexity of a given problem in the following way:
Suppose, we know that a subproblem Π′ of the input problem Π has a known complexity
(and can possibly be solved easily). What is the remaining complexity of problem Π? To
comply with our notion of Turing machines, we define an oracle Turing machine (OTM)
as an extension of a DTM. An OTM has an additional tape and additional states: a
query state qc and two answer states of the oracle qcY, and qcN. The computation of an
OTM program works similarly to that of a DTM, except that if the current state is qc,
then it consults an oracle and gets an answer from the oracle (state qcY or qcN) in one
step. By using this definition we introduce a notation for new complexity classes. We
write CC2

1 for problems which can be decided by an OTM within the time bound given
by complexity class C1 and an oracle for any problem in the complexity class C2. On
basis of this definition Meyer and Stockmeyer [96] observed that such a structure can be
extended indefinitely and thereby introduced the polynomial hierarchy, which is defined
as follows [56]:

Definition 6. Polynomial Hierarchy

Σp
0 = Πp

0 = ∆p
0 = P

and for all k ≥ 0

∆p
k+1 = PΣp

k

Σp
k+1 = NPΣp

k

Πp
k+1 = co-Σp

k+1

Although we so far did not mention co-classes here, our focus lies on the class Σp
k and

therefore we refer the interested reader to the literature (e.g., [56, 103]). An easy example
of a set of problems in Σp

k is based on quantified boolean formulas (QBFs). Suppose we
are given a well-formed boolean expression φ with boolean variables partitioned into i
disjoint sets X1, . . . , Xi. Then, the QBF problem with i alternating quantifiers asks the
question if there is a truth assignment for the variables in X1 such that for all truth
assignments for X2 there exists a truth assignment for X3, . . . such that φ is satisfied.

10

Such an alternating behavior is characteristic for problems of the polynomial hierarchy.
Although it is not known yet if any of the relations ∆p

k = Σp
k = Πp

k = NP = P , ∀k > 1
hold, it is assumed that those problems are considerably harder to solve than any problem
of the class NP. Chapter 4 considers a COP of practical relevance that is Σp

2-hard and in
Chapter 5 solution methods for an NP-hard problem are developed.

2.3 Exact Methods
Many exact solution methods for COPs are based on integer linear programming (ILP),
which is in principle a modeling technique. In this section we will define and briefly discuss
ILPs and show how they can be solved. This section is based on the books Introduction
to Linear Optimization by Bertsimas and Tsitsiklis [12] and Integer Programming by
Wolsey [128].

2.3.1 (Mixed) Integer Linear Programming

First, we start by giving the definition of a linear program (LP). Suppose that we have a
vector of n continuous decision variables x = (x1, . . . , xn) and an associated cost vector
c = (c1, . . . , cn). Furthermore, we are given m constraints via an m× n matrix A and an
m-dimensional column vector b. A linear program in general form is stated as follows:

Definition 7. Linear Program

min cTx
s.t. Ax ≥ b

x ∈ Rn

We assume in Definition 7 that a minimization problem is considered and that all the
constraints have the same structure, i.e., are expressed as greater-than inequalities. This
is, however, not a restriction because of the following transformation rules:

max cTx⇔ min−cTx
aT

i x = bi ⇔ aT
i x ≤ bi ∧ aT

i x ≥ bi
aT

i x ≤ bi ⇔ −aT
i x ≥ −bi

For showing how to solve such a linear program we first define the notion of a
polyhedron [128], active constraints, a basic solution, and a basic feasible solution [12].

Definition 8. A subset of Rn described by a finite set of linear constraints P = {x ∈
Rn : Ax ≥ b} is a polyhedron.

Definition 9. If a vector x∗ satisfies aT
i x
∗ = bi for some i = 1, . . . ,m, we say that the

corresponding constraint is active at x∗.

11

Definition 10. Consider a polyhedron P defined by linear equality and inequality con-
straints, and let x∗ be an element of Rn.

(a) The vector x∗ is a basic solution if:

(i) All equality constraints are active;

(ii) Out of the constraints that are active at x∗, there are n of them that are
linearly independent.

(b) If x∗ is a basic solution that satisfies all the constraints, we call it a basic feasible
solution.

There are several solution algorithm for LPs described in the literature and the most
practically important one is the simplex method. As a detailed discussion of it is out of
scope of this thesis, we only sketch its principles here, a more detailed description can be
found in Bertsimas and Tsitsiklis [12, Chapter 3]. The working principle of the simplex
algorithm is based on the fact that if an LP has an optimal solution then there exists an
optimal basic feasible solution [12]. The algorithm starts at an arbitrary basic feasible
solution and moves to another basic feasible solution by exchanging one active variable
with another in a direction which reduces the costs. After a finite number of such steps
there is no direction available which reduces the costs and at that point we know that
the current basic feasible solution is optimal. Although the simplex algorithm has an
exponential worst case run-time, in practice it is most often the fastest solution method.

Apart from the simplex method there are two other noteworthy solution algorithms
for LPs:

• Ellipsoid method [123, 130] – A rather theoretical algorithm which is not practically
efficient but showed that linear programs are efficiently, i.e., in polynomial time
solvable.

• Interior point methods [78] – These methods have a practical relevance as they are
frequently competitive so the simplex method, and even able to outperform it on
certain kind of problems. They are called interior point methods because they find
an optimal solution while moving in the interior of the feasible set, in contrast to
the simplex method which moves on the borders. A detailed description on interior
point methods and several variants are described in Bertsimas and Tsitsiklis [12,
Chapter 9].

Being able to solve LPs is the basis of solving ILPs which are the basis for modeling
discrete problems such as COPs involving integral decision variables. In the following
we will briefly discuss ILPs which is succeeded by a description of a solution method in
Section 2.3.2. An ILP is defined as follows:

12

Definition 11. Integer Linear Program

min cTx
s.t. Ax ≥ b

x ∈ Zn

In Definition 11 we see that the essential difference of an LP and an ILP is the
integrality condition of the decision variables. Unfortunately, this integrality condition
makes the problem NP-hard [79] and in general also much more difficult to solve in
practice.

Two variants of ILPs are mixed integer linear programs (MILPs) in which only some
of the decision variables need to be integral and 0-1 or binary integer programs (BIPs) in
which all of the decision variables need to be either 0 or 1.

2.3.2 (LP-based) Branch-and-Bound

As we saw in the previous section, LPs can be solved efficiently in polynomial time. As
this is not the case anymore for ILPs and MILPs another solution algorithms are required.
The most common solution technique for solving ILPs is LP-based branch-and-bound
(B&B) which follows the principle of divide and conquer and is based on the following
observation [128]:

Proposition 1. We are given the problem

z = min{cTx : x ∈ S}

Let S = S1 ∪ · · · ∪ SK be a decomposition of S into smaller sets, and let zk = min{cTx :
x ∈ Sk} for k = 1, . . . ,K. Then z = mink zk.

We conclude from Proposition 1 that we do not need to solve the problem in its entirety
but it is sufficient to find a suitable decomposition and solve all the resulting subproblems.
These subproblems can be decomposed again and this procedure can be recursively
repeated until the resulting problems cannot be split further and a complete enumeration
tree is created. Completely enumerating all possible solutions to a given problem is
usually not a practical approach, so a bounding procedure is added to prematurely
discard subproblems that cannot yield a better solution than already known. Suppose
that we have a procedure which computes lower / upper bounds to the optimal value
of the subproblems. Note that for minimization problems the objective value of every
feasible solution is always an upper bound. We use the following proposition to restrict
the number of problems we need to solve [128]:

Proposition 2. Let S = S1 ∪ · · · ∪ SK be a decomposition of S into smaller sets, and
let zk = min{cTx : x ∈ Sk} for k = 1, . . . ,K, zk be an upper bound on zk and zk be a
lower bound on zk. Then z = mink zk is an upper bound on z and z = mink zk is a lower
bound on z.

13

Using Proposition 2 three cases can be identified in which the subtree of the given
subproblem zk = min{cTx : x ∈ Sk} does not have to be examined any further:

(i) Prune by optimality: If zk = zk the exact value of zk is known and the problem is
solved.

(ii) Prune by bound: If zk ≥ z the optimal solution cannot be in Sk.

(iii) Prune by infeasibility: If Sk = ∅ no solution lies in Sk.

Based on the above considerations we can devise a BNB algorithm which is shown in
Algorithm 2.1. The most common way for computing bounds of ILPs within a branch-
and-bound algorithm is to solve the linear programming (LP) relaxation of the given
problem:

Definition 12. Given the Integer Linear Program min{cTx : Ax ≥ b,x ∈ Zn}, the LP
relaxation is the solution to the simplified problem min{cTx : Ax ≥ b,x ∈ Rn}.

Algorithm 2.1: LP-based Branch-and-Bound
Input: ILP min{cTx : x ∈ S}
Output: Optimal solution x∗

1 L = {S};
2 x∗ = NULL;
3 z =∞;
4 while L 6= ∅
5 Choose next problem Sk ∈ L;
6 L = L \ Sk;
7 Solve the LP relaxation of problem Sk;
8 let zk be the resulting LP value;
9 let xk(LP) be the LP solution;

10 If Sk = ∅ then
11 prune by infeasibility;
12 Else if zk ≥ z then
13 prune by bound;
14 Else if xk(LP) ∈ Sk then
15 z = zk;
16 x∗ = xk(LP);
17 prune by optimality;
18 Else
19 Generate new subproblems S1

k and S2
k ;

20 L = L ∪ {S1
k , S

2
k};

21 return x∗;

14

In Algorithm 2.1 first the variables are initialized and the original problem is added
to the list of open problems L. Then, until L is empty a subproblem Sk is chosen from L
and the LP relaxation of Sk is solved. Based on this value, the node is either pruned or
two new subproblems based on Sk are generated and inserted into L. At the end the
best found solution x∗ is returned, which is an optimal solution to the overall problem.

There are, however, still two decisions to be made:

• How to generate new subproblems?

• How to choose the next subproblem?

For choosing the next subproblem there are two basic possibilities: A depth-first
search strategy descends further into the tree to hopefully find a feasible solution and thus
a good upper bound soon. Contrary, a best-node first strategy first examines the node
with the best lower bound to minimize the number of node evaluations. Combination of
these strategies or more advanced node selection strategies are also possible also described
in the literature, see, e.g., [55].

By using the LP-relaxation for computing lower bounds there is a natural and common
way to generate two new subproblems. First, we choose a variable xi with a fractional
value xki in the LP solution. Then, in one subproblem the constraint xi ≤ bxki c and in
the other subproblem the constraint xi ≥ dxki e is added.

Cutting Plane Methods and Branch-and-Cut
LP-based branch-and-bound strongly relies on good bounds and therefore there are some
methods to strengthen the bound obtained from the LP relaxation. It is also possible
that a reasonable ILP formulation has an exponentially large number of constraints which
cannot be completely enumerated. In both cases a cutting plane approach can be used
in order to iteratively add constraints, resolve the problem, and thereby strengthen the
obtained bound. These steps can be repeated until an optimal solution is found. The
process of finding suitable constraints to add in this way on the fly is known as the
separation problem and is often a non-trivial task. One must find at least one constraint
which is valid for the problem but violated by the current (LP) solution. As the cutting
plane method would in many cases add an exponential number of constraints it is a
common approach to incorporate such cutting plane methods within a branch-and-bound
algorithm. This method is known as branch-and-cut (B&C). Such algorithms apply a
cutting plane approach in every node of the branch-and-bound tree in addition to solving
the LP relaxation. Therefore, usually stronger bounds are obtained and less nodes have
to be examined. A similar approach is used in Section 5.4, where the exact L-shaped
method, which is a kind of a B&C algorithm for stochastic problems, is used to solve the
generalized vehicle routing problem with stochastic demands.

Column Generation and Branch-and-Price
A kind of dual approach for tightening the LP relaxation is column generation (CG). In
contrast to the cutting plane method, variables are iteratively added to the model instead

15

of constraints. Especially when the ILP formulation has a large (exponential) number
of variables this approach can be viable. The working principle of CG is that initially
the model contains only a small set of variables. Then, variables which may improve the
LP relaxation value are iteratively added to the model, which is then resolved. Finding
such variables is called the pricing problem and, similar to the B&C algorithm, it can
often be a difficult task to solve on its own that has to be performed for each problem
individually. For more information about column generation the reader is referred to the
book by Desaulniers et al. [41].

Column generation can also be used within a branch-and-bound framework in a
similar fashion as the cutting plane method, which is then called branch-and-price (B&P).
In a B&P algorithm the LP relaxation is solved in each node using the CG method.

Finally, branch-and-cut-and-price approaches combine the cutting plane method and
column generation with B&B.

2.4 Heuristic and Metaheuristic Methods

In contrast to the exact methods from the previous section, which are in principle
guaranteed to find an optimal solution to COPs, providing one exists, in many cases it is
sufficient to provide only a near optimal or high-quality solution. Especially when the
problem instances are large, those exact algorithms may not find the optimal solution,
or, even worse, are not able to find any feasible solution, in a reasonable amount of time.
In practical applications time is often crucial and therefore solution quality is traded
for shorter running time. In those scenarios heuristic solution methods and especially
metaheuristics come into play as they are known to be frequently able to provide near
optimal solutions relatively quickly. Parts of this section are based on the Handbook
of Metaheuristics edited by Gendreau and Potvin [60] and for an overview of different
metaheuristics we refer to, e.g., [59, 28]. First, we describe construction heuristics and
local search methods.

2.4.1 Construction Heuristics

Construction heuristics are typically relatively fast and intuitive. The methods range
from simple ones, which construct solutions by iteratively adding arbitrary or randomly
selected solution components to more complex algorithms that use more sophisticated
heuristic information for the construction. A common approach are greedy algorithms
which iteratively build a solution by always adding a locally best component according
to some selected criterion.

Algorithm 2.2 illustrates a greedy construction heuristic (GCH) in pseudocode. The
GCH starts with an empty solution S and iteratively adds solution components to it.
Therefore, for each feasible component i its incremental costs are computed. In each
iteration a cheapest component is chosen and added to S until the whole solution is
constructed.

16

Algorithm 2.2: Greedy Construction Heuristic
Input: COP Π
Output: Feasible solution S

1 S = ∅;
2 while further components can / need to be added to S
3 Let C be the set of feasible components to extend S;
4 Determine cost ci for adding component i, ∀i ∈ C;
5 Find component s = argmins∈Ccs;
6 S = S ∪ s;
7 return S;

Let us consider two examples of GCHs for the traveling salesman problem (TSP).
In the TSP we are given a set of cities V = {v1, . . . , vn}, a starting city vs ∈ V , and
a distance function d : V × V 7→ R. The aim is to find a tour through all cities of
minimum length starting and ending at vs. The nearest neighbor heuristic starts at vs
and iteratively appends a not yet added vi ∈ V to the tour with minimum distance to the
last added city. In contrast, the insertion heuristic iteratively adds cities to the initially
empty tour by choosing a city and an insertion position so that the additional traveled
distance is increased less.

2.4.2 Local Search

Solutions obtained from simple construction heuristics are often not good enough. It is
therefore natural to try to improve such solutions. Local Search provides a systematic
way to do this. It is based on the notion of a neighborhood structure, which defines a
neighborhood for each solution x in the search space. A neighborhood is a set of solution
candidates, which are in some sense “near” to x. More formally, suppose we have the set
of feasible solutions S to a given problem.

Definition 13. Neighborhood Structure
A neighborhood structure is a function N : S → 2S, that assigns to each solution candidate
x ∈ S a set of neighbors N(x) ⊆ S. The function N(x) is called the neighborhood of
solution candidate x.

Usually, neighborhood structures are not defined explicitly but by a description of
valid moves from a given solution. Such a move defines the structure of an allowed
change of the solution. A prominent example of a neighborhood structure for the TSP (as
defined in Section 2.4.1) is 2-opt. A 2-opt move deletes two edges (vi, vj), (v′i, v′j) ∈ V ×V
of an existing solution and inserts them again by connecting vi with v′i and vj with v′j .
This basically changes the visit sequence of the cities between i and j′ and removes edge
crossings on Euclidean instances. Another well-known neighborhood structure, which
is applicable for a solution representation using binary strings, is the flip neighborhood

17

structure. A move in the flip neighborhood changes the value of a variable from zero to
one or the other way round, i.e., it flips a bit.

The defined neighborhood is then searched for a solution candidate x′ with a better
objective value than the starting solution x. If there is such a solution candidate the
next iteration of the LS is started with x′ as the new incumbent solution. The procedure
is repeated as long as an improving solution candidate is found or another stopping
criterion, e.g., a time limit is satisfied.

Algorithm 2.3: Local search
Input: Initial solution x
Output: Possibly improved solution

1 repeat
2 choose an x′ ∈ N(x);
3 if x′ has a better objective value than x then
4 x = x′;
5 until stopping criterion satisfied;
6 return x;

Algorithm 2.3 shows a general LS procedure in pseudocode. In line 2 of the algorithm
a neighbor of solution x′ is chosen but it is not specified which one. There are these
commonly applied strategies:

• Random improvement: A neighbor is chosen randomly, which is computationally
inexpensive but the resulting solution candidate can frequently be worse than the
incumbent.

• Next improvement: A systematic search ofN(x) is performed and the first improving
solution is chosen. With this method it is guaranteed to find a better solution
if there exists one but it is not guaranteed that this is an overall best neighbor.
Compared to random improvement this is a more expensive step function but
probably it likely has a better outcome.

• Best improvement: With the best improvement step function the whole neighbor-
hood is searched and a solution with the best objective value always is returned.

If the LS terminates with a solution x and there does not exist any neighboring
solution x′ ∈ N(x) with a better objective value, then the solution x is said to be locally
optimal with respect to the neighborhood N(x). Figure 2.1 shows that such a local
optimum is not necessarily a global optimum. In the next sections we will see how to
escape from such a local optimum in order to find the global optimum more likely.

2.4.3 Metaheuristics

Construction heuristics and local search methods suffer from the already mentioned
drawback of locality. They are often trapped in local optima with no possibility to escape

18

o
b
je

ct
iv

e
v
a
lu

e

solution space

global optimum

local optima

Figure 2.1: Local vs. global optimum

them. This is where metaheuristic come into play which introduce a way of getting out of
local optima. So, we identify two important principles every metaheuristic should follow:

• Exploration: The metaheuristic search should cover a large part of the search space
to identify promising areas. Thus, a method to diversify the search to escape local
optima has to be employed.

• Exploitation: When promising areas in the search space are identified they should
be more intensively investigated for the best solution within this area, which is
often achieved by local search procedures, see Section 2.4.2.

In any metaheuristic it is usually important to find a right balance between exploration
and exploitation. For a formal definition of the term metaheuristic, several variants can
be found in the literature. Bianchi et al. [15] state them as follows:

Definition 14. Metaheuristic
A metaheuristic is a higher-level procedure or heuristic designed to find, generate, or
select a heuristic that may provide a sufficiently good solution to an optimization problem,
especially with incomplete or imperfect information or limited computation capacity.

In the next sections we present several metaheuristics which are well-known in the
literature, e.g., variable neighborhood search, tabu search, and genetic algorithms. The
focus lies on those which are later used to solve the problems introduced in Chapter 4
and 5.

2.4.4 Variable Neighborhood Descent

The first step towards escaping local optima is based on the observation that if a solution
x is locally optimal for some neighborhood N1(x) this does not necessarily mean that x
is locally optimal for another neighborhood N2(x). A variable neighborhood descent [69]

19

(VND) exploits this observation and uses different neighborhood structures for its search.
Let us suppose we have kmax neighborhood structures which are denoted by N1, . . . , Nkmax

and we use the next or best improvement step function. The pseudocode of a VND is
shown in Algorithm 2.4.

Algorithm 2.4: Variable neighborhood descent
Input: Initial solution x
Output: Locally optimal solution with respect to all neighborhoods N1, . . . , Nkmax

1 k = 1;
2 repeat
3 choose x′ ∈ Nk(x);
4 if x′ is better than x then
5 x = x′;
6 k = 1;
7 else
8 k = k + 1;
9 until k == kmax;

10 return x;

At the beginning, the first neighborhood of the starting solution is searched. If the
obtained neighbor has a better objective value than the original solution the neighborhood
structure stays the same and the search continues from the new solution candidate.
However, if the solution is already locally optimal for the neighborhood then the structure
is changed to the next one. This process is repeated until no improvement was found
in neighborhood Nkmax(x). Then we know that the solution x is locally optimal for all
neighborhoods N1, . . . , Nkmax(x). The described strategy follows a sequential ordering of
the neighborhood structures and determining such an ordering is also a design decision.
There is, however, an alternative nested structure, which, e.g., performs a VND using the
first two neighborhood structures for each solution of a third neighborhood structure [69].

2.4.5 Variable Neighborhood Search

Variable neighborhood search (VNS), introduced by Hansen and Mladenović [98], is related
to VND but does not systematically search the neighborhoods. Instead, it typically
applies larger neighborhoods and the random neighbor step function, whose application
is called shaking in this context. Each solution obtained from shaking undergoes usually
some local improvement, which can be an embedded LS or even a VND. In the latter
case, the whole approach is also called a general VNS (GVNS). Let N s

1 , . . . , N
s
lmax

be the
sequence of shaking neighborhood structures to be used.

Algorithm 2.5 shows the VNS in pseudocode. In line 4 a random neighbor is chosen
from the current shaking neighborhood, which corresponds to the exploration step. The
obtained solution is locally improved (emphasis on exploitation). Based on the objective
value of the resulting solution the shaking neighborhood structure either stays the same

20

Algorithm 2.5: Variable neighborhood search
Input: Initial solution x
Output: Best found solution

1 repeat
2 l = 1;
3 repeat
4 choose a random neighbor x′ ∈ N s

l (x);
5 x′′ = possibly locally improve x′
6 if x′′ has a better objective value than x then
7 x = x′′;
8 l = 1;
9 else

10 l = l + 1;
11 until l == lmax;
12 until stopping criterion satisfied;
13 return x;

or changes. This process is repeated until a prespecified stopping criterion is satisfied
which is in many cases a time limit, a maximum number of iterations, or a convergence
criterion. The shaking neighborhood structures are often ordered in increasing size so
that in the later iterations also solutions are considered which are “farther” away in some
sense but there exist also adaptive approaches [69].

In the literature there are several further variants of VNS described, e.g., skewed VNS,
variable neighborhood decomposition search. In a skewed VNS the algorithm sometimes
accepts a slightly worse solution in order to reduce the shaking to solutions which are
far away which would lead to a degeneration. A variable neighborhood decomposition
search splits up the VNS in a two-level approach, in which first a set of attributes of a
solution is fixed and then a local search is performed on the remaining attributes. For
more information about VNS see Hansen et al. [69].

2.4.6 Tabu Search

Another class of local search based metaheuristics is tabu search (TS). TS is based on
a local search and a memory storing some history of the search, which is used as a
diversification mechanism to avoid getting stuck in poor local optima. In the basic TS the
memory is only short-term and usually stores specific changes, so called tabu attributes
to a solution candidate derived from performed moves from solutions to their neighbors
in a tabu list. Moves matching attributes in the tabu list are forbidden for a prespecified
number of iterations. The tabu attributes are typically chosen so that the reversal of
performed moves is prohibited in the near future. This number of iterations is called
the tabu tenure. Examples of tabu attributes can be shown by taking the neighborhood
structures introduced in Section 2.4.2. For 2-opt a reasonable tabu attribute would be the

21

newly added edges; for the next few iterations it is prohibited to remove them again. A
possible tabu attribute for the flip neighborhood structure is the flipped bit, which is not
allowed to flip again for the next few iterations. A different but rather unusual approach
is to store whole solutions, which are prohibited in the next iterations. Gendreau and
Potvin [61] claim that this approach consumes a lot of storage and is expensive but we
will see in Chapter 3 a more general, efficient approach how to forbid the creation of
already considered solution candidates by using solution archives.

As the main reason for forbidding moves is to avoid cycling between (a possibly small
set) of solution candidates it could happen that the tabu list is too strict and potentially
good solution candidates are missed. Therefore, one could use an aspiration criterion to
accept a move even though it is tabu. A common aspiration criterion is that a solution
candidate is accepted if it would improve the best solution found so far.

Algorithm 2.6: Tabu search
Input: Initial solution x
Output: Best found solution x∗

1 x∗ = x;
2 repeat
3 get set of valid neighbors N ′(x) ⊆ N(x);
4 choose best x′ ∈ N ′(x);
5 if x′ has a better objective value than x∗ then
6 x∗ = x′;
7 x = x′;
8 update tabu list;
9 until stopping criterion satisfied;

10 return x∗;

A pseudocode of a TS shown in Algorithm 2.6. In line 3 of the algorithm the set of
valid neighboring solution candidates based on the neighborhood structure N , the tabu
list, and the aspiration criterion is built. Then, the best solution of this set is always
accepted for the next iteration even though it might be worse than the original solution.
This avoids getting trapped in a local optimum and makes it possible to explore other
parts of the search space.

A common challenge of designing an efficient TS lies in the exploration of the search
space. As this method heavily relies on local search technique it also suffers from the same
drawback as the local search, the locality. Gendreau and Potvin [61] give two suggestions
to overcome this problem: Restart diversification forces rarely used components and
restarts the search at that point and continuous diversification alters the objective
function to prefer the use of moves involving such rarely used components.

Another critical decision when designing a TS is the choice of an appropriate tabu
tenure. If it is too short the TS might not be able to reliably escape local optima and
cycling would be possible but if it is too long the search is too restricted and would
forbid too many possible neighbors. A method to overcome the problem of choosing an

22

appropriate tabu tenure beforehand is a reactive tabu search [9], in which the tabu tenure
is automatically adapted by reacting to the occurrence of cycles.

2.4.7 Genetic Algorithms

Compared to the previous metaheuristic, which all work on a single solution there also
exist population based metaheuristics. The most prominent representative of this category
are genetic algorithms (GAs). Originally introduced by Holland [71] in 1975 GAs evolved
and grew in popularity over the last decades. They are inspired by principles of Darwin’s
theory of evolution [36] and imitate several concepts of evolution like survival of the
fittest, sexual reproduction, and mutation in an abstract way.

A GA works on a population of solution candidates (in this context also called
chromosomes or individuals) which are encoded in a specific representation. In the
literature the representation of the variables of these solution candidates is referred
to as genotype, which decodes to the phenotype, which is the natural expression of a
solution [113]. A fitness value is associated to each chromosome which is computed by the
specified fitness function. Usually, a higher fitness represents a better solution candidate
and this fitness has a direct relation to the objective function of the problem to be solved.
The aim of the GA is to find an individual with the highest possible fitness, which is
then decoded into the actual solution to the COP. In some cases it is beneficial to reduce
the search space of the GA by choosing a suitable representation and to shift a part of
the complexity into this decoding procedure. Then, we generally speak of an incomplete
solution representation. Algorithm 2.7 shows a canonical GA in pseudocode.

Algorithm 2.7: Genetic Algorithm
Output: Best found solution

1 t = 0;
2 P (t) = initialize();
3 evaluate(P (t));
4 repeat
5 t = t+ 1;
6 Qs(t) = select(P (t− 1));
7 Qr(t) = recombine(Qs(t));
8 Qm(t) = mutate(Qr(t));
9 P (t) = replace(P (t− 1), Qm(t));

10 evaluate(P (t));
11 until stopping criterion satisfied;
12 return x ∈ P (t) with the best fitness;

First, the population has to be initialized, which is often done by some simple random
solution construction but also more elaborate initialization procedures are used. When
designing a suitable method one should strive for diversity in the initial population in
order to avoid converging too quickly into suboptimal areas of the search space. It is also

23

possible to construct the initial population more intelligently by construction heuristics,
as described in Section 2.4.1 if properly randomized. In line 3 of the algorithm the whole
population is evaluated, which means that the fitness function is computed for each
generated individual to assess its quality. Then, the main loop of the GA starts with the
four steps selection, recombination (also called crossover), mutation, and replacement.

In the selection process individuals are selected that will be recombined. Fitter
individuals should be selected with higher probability and therefore a typical selection is
some sort of fitness proportional selection, where the basic variant is the roulette-wheel
selection (RWS). In an RWS each individual is selected with a probability which is
proportional to its fitness. This method suffers, however, from a high variability and in
practice often stochastic universal sampling (SUS) is used [113]. Similar to the one-arm
roulette-wheel from the RWS, which points to exactly one individual, in the SUS method
an equally spaced m-arm spinner is used, which points at m individuals simultaneously.
Both methods, however, have the problem of finding an appropriate measure of fitness
respecting the scale of fitness values and also possibly negative fitness values. This
problem can be overcome by using some scaling mechanism [63]. More robust alternatives
to the classical fitness proportional selection are rank-based methods such as tournament
selection which chooses a certain number of individuals uniformly at random and selects
the best individual among them.

For the recombination of two (or more, in some cases) individuals many different
methods are possible which are usually designed to incorporate problem specific knowledge.
The main idea is to create new solutions from properties appearing in the parent solutions.
There exist, however, several standard operators which will be briefly surveyed here.
Given a binary string of length n as solution representation, then we choose a random
point 1 ≤ l ≤ n in this string to perform a one-point crossover. We adopt the values of
the variables on positions 1, . . . , l from the first parent and the other values from the
second parent to create a new offspring. Performing this procedure the other way round
a second offspring is generated immediately. Other possibilities for crossover operators
are, for example, uniform crossover, in which it is randomly decided for each variable
individually from which parent it inherits its value or k-point crossover. Specifically for
permutation representations there exist other crossover operators like partially mapped
crossover, cyclic crossover, see [101] for a study on different permutation crossover
operators.

The mutation operator is used in a GA to (re-)introduce “genetic material”, i.e.,
variable values that do not appear in the current population. A mutation changes one or
more variables to another, usually randomly chosen, value and is typically not performed
for each individual in each generation but only with a specific mutation probability.
Staying at the previous example of the binary string, a mutation would, e.g., flip one bit
at a randomly chosen location.

In the original GA as proposed by Holland [71], a new population is generated in
each iteration based on selection, recombination, and mutation which then replaces the
previous population. A reasonable extension, referred to as elitism, was introduced by
De Jong [40]. A small set of the best individuals of one population always is directly

24

adopted by the next population. This idea can even be extended to a steady-state genetic
algorithm which produces only exactly one new individual per iteration which then
replaces the individual with the worst fitness of the current population. In this step often
a diversity management strategy is used to maintain (or even increase) the diversity
of the population. A common method is to forbid duplicate solutions within the same
population as this could lead to premature convergence. In this thesis the focus lies also
on the avoidance of duplicate solutions but during the whole search process instead of
only the current population. In Chapter 3 the concept of complete solution archives
is introduced and it is also explained how it can be incorporated in metaheuristics in
general and GAs in particular.

As a last note on GAs it should be mentioned that they often suffer from the lack
of a proper exploitation technique, which is the reason why they are often combined
with local search as subprocedure to intensify the search. This combination is frequently
called memetic algorithm and was introduced by Moscato [99]

2.5 Hybrid Metaheuristics

In the previous two chapters rather “pure” exact and (meta-)heuristic solution approaches
were considered. In practice, however, hybrid techniques, which combine different kinds
of methods, in particular also exact and / or heuristic algorithms, are often among the
most successful approaches for many problems. This chapter therefore gives a brief
overview on some possibilities to combine exact and heuristic approaches in a meaningful
way to benefit from synergy and exploit the individual advantages. As the hybridization
possibilities are huge it would be out of scope of this thesis to describe them here in detail.
For detailed surveys on different hybrid metaheuristics we refer to [111, 110, 26, 126]
and to the recent book by Blum and Raidl [27] on which the remainder of this section is
based.

2.5.1 Guidance for (Meta-)heuristics by Solving Problem Relaxations

In the context of mixed integer linear programming, problem relaxations can be used
as guidance or a starting point for heuristics and metaheuristics. When solving the
LP relaxation of a given formulation, the information of the non-integral variables
or other dual information can be used within a heuristic. Chu and Beasley [35] and
Puchinger et al. [109] make use of so-called pseudo-utility ratios for the primal variables for
multidimensional knapsack problems and use them to guide repair and local improvement
methods.

As we have seen in Section 2.4, for metaheuristics it is often crucial to start their search
at a good initial solution. Especially for evolutionary methods like GAs a set of diverse
and high-quality solutions is important for their performance. Several initialization
algorithms can be used to create the initial population, which could have a different
focus, e.g., part of the population is initialized randomly for a set of diverse individuals.
For high-quality initial solutions exact algorithms, which solve a relaxed version of the

25

original problem could be employed. The solution to this relaxed problem then can then
be repaired and integrated into the population. Such a repair method can be, e.g., a
rounding scheme which is applied to the solution of an LP relaxation. In one of the
problems considered in this thesis such intelligent initialization methods based on solving
an ILP model is used and explained in detail in Section 5.5.2.

2.5.2 Exact Methods Integrated in Metaheuristics

Exact methods can also be used as subordinate procedure for the search itself as em-
bedded improvement method. A prominent example of such an approach is the explo-
ration of a large neighborhood in the framework of a (Very) Large Neighborhood Search
((V)LNS) [122, 3] using exact approaches. In the LNS the neighborhood of a solution
candidate is not exhaustively searched by complete enumeration like in the standard
local search but more intelligently. Ahuja et al. [3] and Pisinger and Ropke [105] classify
VLNS algorithms into three classes:

• Variable-Depth Methods, which are based on iteratively largen the neighborhood
to escape local optima.

• Network flow-based improvement methods, which use neighborhood structures that
can effectively searched by network flow algorithms.

• Efficiently solvable special cases, which are based on intelligently chosen neighbor-
hood structures so that the remaining search space of the neighborhood can be
searched efficiently, e.g., in polynomial time.

Such LNS approaches can be used in combination with constraint programming [122]
and it is also possible to use other exact algorithms to search the large neighborhood,
especially ILP methods. Moreover, adaptive LNS (ALNS) approaches have been described
in the literature which use multiple destroy operators, which define the neighborhood,
and repair mechanism, which define the way the neighborhood is searched. Especially
for vehicle routing problems ALNS algorithms are successful, e.g., for the pickup and
delivery problem with time windows [117].

2.5.3 Metaheuristics Integrated in Exact Methods

We have seen in the last section that exact methods can be used within metaheuristic
but we can also consider the other way round. Within a branch-and-bound framework
heuristics and metaheuristics can be used for initially finding good primal bounds and can
also be used to solve subproblems occurring in the inner nodes. More complex applications
of metaheuristics and especially local search methods within branch-and-bound are, e.g.,
local branching [52]. As the name indicates, local branching is a binary branching strategy
in which the remaining search space is divided in the subspace spanned by the k-opt
neighborhood of the incumbent solution and in the subspace containing the remaining
solutions. Then, the MIP solver is forced to first search the solution space given by the
k-opt neighborhood.

26

Also the proposed complete solution archive is a tree-based exact method which is
combined with a metaheuristic to improve the performance of the overall algorithm.
There, the metaheuristic guides the search and the decisions within the search tree, see
Chapter 3 for further details.

2.5.4 Exact Methods for Decoding Indirect or Incomplete Solution
Representations

As already pointed out in Section 2.7 in some cases, especially for GAs, it can make sense
to encode the actual solution candidates of a problem using an indirect or incomplete
solution representation. This reduces the search space of the metaheuristic and, if properly
designed, makes the operators which work on solutions easier to design. For obtaining and
evaluating the actual solution a decoding procedure has to be developed, which can be
done using an exact algorithm. A prominent example of indirect solution representation
are permutations, especially in the context of scheduling or packing problems [80]. The
decoder then reconstructs a solution to the problem by using a construction algorithm
which follows the order of the elements in the permutation. In this thesis such decoding
methods based on solving ILPs as well as by using a dynamic programming algorithm
are developed for both considered problems, see Chapter 4 and 5. Note that such an
incomplete solution representation is especially useful when using complete solution
archives, as it provides a compact encoding as well as frequently a time-consuming
solution evaluation.

2.5.5 Hybridization Based on Problem Instance Reduction

Another hybridization is based on the observation that general MIP solvers are very
effective for solving instances up to a certain size. When the problem instances can be
reduced in such a way that their optimal solution is also an optimal or at least a high
quality solution to the original problem, such MIP solvers can be used also for large
instances. This problem instance reduction is achieved by considering only a subset of
all solution components. An example of such a hybridization is the Construct, Merge,
Solve & Adapt (CMSA) algorithm [25]. The CMSA algorithm first generates a number
of feasible solutions to the original problem. Then all components of these generated
solutions are merged into the incumbent solution, which is then solved exactly using
a MIP solver. After a solution to the reduced problem has been found, some solution
components of the incumbent solution are deleted by an aging mechanism to keep the
size of the reduced instance small. Such an approach can in principle be applied to any
problem for which there exists a way of probabilistically generating feasible solutions and
a method for exactly solving smaller instances is known.

27

2.5.6 Parallel, Non-independent Construction of Solutions Within
Metaheuristics

Dual bounds and parallel extensions of partial solutions for the solution construction can
also be combined into a hybrid approach. The construction of solutions can be seen as an
exploration of the search space in form of a tree in which the inner nodes represent partial
solutions. A greedy algorithm, for example, always chooses the best child node with
respect to a greedy criterion. Other methods expand the partial solution in a randomized
way, e.g., by assigning a probability to each possibility using heuristic information.
These expansions can be extended when additionally dual bounds are considered like
in branch-and-bound algorithms. A systematic way to construct solutions in a parallel
and non-independent way using dual bounds is a Beam-ACO [24], which combines the
branch-and-bound derivate beam search [102] with an ant colony optimization [42], which
is a metaheuristic based on iteratively constructing solutions.

2.5.7 Other Possibilities for Hybridization

In the literature there are many more important classes of hybridizations of metaheuristics
and exact algorithms and some of them are described in the following.

Originally, the first combination of metaheuristics with other optimization techniques
was the hybridization with another metaheuristic [27]. A typical hybridization are
memetic algorithms [99], which combine genetic algorithms with local search techniques
and have already been mentioned at the end of Section 2.4.7. It is also possible to
integrate population based methods within the framework of local search techniques, e.g.,
in population-based iterated local search algorithms [124] and population-based iterated
greedy algorithms [31].

In the area of mathematical programming, the special structure of practical problems
can be exploited by devising a decomposition approach, which can provide a fruitful basis
for hybrid metaheuristics. Prominent examples of such decompositions are lagrangian
decomposition, Danzig-Wolfe decomposition, and Benders decomposition and we refer to
Boschetti and Maniezzo [29, 30] and the survey by Raidl [111] for more information on
such hybridizations.

28

CHAPTER 3
Complete Trie-Based Solution

Archives

Before we proceed with the two problem classes which are considered in this thesis,
first a general overview of the main principle of complete trie-based solution archives
(SAs) is given. Under the term complete solution archive we understand here a data
structure that stores all generated candidate solutions in a compact way with the ability
to efficiently search for already contained solutions and in particular to convert them into
guaranteed new ones. Especially evolutionary algorithms can benefit from such an archive
because the on-the-fly conversion of already visited solution candidates increases diversity
in the population, reduces the danger of premature convergence, and re-evaluations of
already generated solution candidates are avoided completely. In principle, such a SA is
able to turn a metaheuristic into a complete optimization approach always yielding a
guaranteed optimal solution in bounded (but not necessarily practically acceptable) time
after considering all solutions in the search space. In practice, however, the algorithm
is typically terminated earlier and yields only a heuristic solution. Furthermore, one
can also see the archive-enhanced metaheuristic as a hybridization with tree-search, and
concepts from there, like pruning subspaces based on bounds, can be adopted.

In this chapter we are going to give a literature survey about other known techniques
to avoid duplicate solutions during a heuristic search and introduce the basic general
concept of SAs. The general trie structure is described as well as the fundamental solution
insertion and conversion methods, although these are mostly problem-dependent. Finally,
at the end of this chapter, the actual integration of SAs into metaheuristics, in particular
GAs, is presented.

29

3.1 Duplicate Detection Strategies

The importance of duplicate detection, especially in evolutionary algorithms, has been
pointed out already in the early 1980s by Mauldin [95], who demonstrated that maintaining
diversity in each population can significantly improve the performance of genetic search.
This result is not obvious at all since the removal of duplicate solutions may prevent
elitism, which may be more important than the loss of diversity. This is, however, in
general not the case and Ronald [116] argued that duplicate removal is not at odds with
the basic mechanisms of genetic algorithms. He also introduced hash tagging as duplicate
detection technique to avoid duplicates within the current population. Kratica [82] also
described an approach using hash tables and Louis and Li [89] suggest the use of a binary
search tree. In contrast to simple hashing-based approaches, in which duplicates are only
discarded, there exist a few works where an archive is not just used to recognize duplicates,
but more importantly to also efficiently convert them into similar not yet considered
solutions. The first non-revisiting GA following such an approach was developed by
Yuen and Chow [131] who implemented a complete SA based on a k-d-tree for solving
continuous optimization problems. When a duplicate solution is detected a backtracking
to a preceding node is performed and the solution is mutated to a not yet considered
value with minimum (Euclidean) distance to the original solution. The authors also
showed that the pruning of subtrees containing only solutions that have already been
visited is isomorphic to a parameter-less self adaption mutation operator. The results
of this work showed that the GA using this archive produced solutions of significantly
higher quality on their six continuous benchmark functions.

Raidl and Hu [112] adapted and extended this idea for discrete search spaces and
introduced complete SAs for GAs based on a so-called trie data structure. They compared
the impact of using such a SA on the results of a developed genetic algorithm for several
binary benchmark problems like Royal Road functions and NK landscapes. It turned
out that the quality of solutions increased in most cases when using the solution archive
while maintaining the same time limits. Ruthmair and Raidl [118] and Hu and Raidl [73]
implemented SAs for more relevant, complex problems, the rooted delay-constrained
minimum spanning tree (RDCMST) problem and the generalized minimum spanning tree
(GMST) problem, respectively. For the RDCMST a solution representation was chosen
which stores for each node of the tree a delay value and a decoding algorithm is used which
constructs a solution based on these values. Upon a duplicate detection the conversion
method of the SA changes one or more of these values to another not yet considered
composition of delay values. For the GMST two different solution representations were
used, the spanned nodes representation and the global structure representation which
complement each other. For each solution representation an own SA was used an upon
duplicate detection a conversion procedure is carried out in turn by both SAs and
re-checked in the opposite trie until a solution has been derived which is new in both
SAs. The used SAs for the GMST are extended in a follow-up work [74] with bounding
extensions used to prune subspaces which improved the results significantly. From the
results presented in these articles one can conclude that the use of such complete SAs

30

root

/

/

/

/

C/

/

C

0 1

0 1

0 1

0 1

0 1

0 1

/

0 1

0 10 1

0 1 0 1

/

/

0 1

C /

Figure 3.1: Example of a binary trie-based solution archive

are especially beneficial if the problem has a compact solution representation and the
solution evaluation is costly. This thesis builds upon these results, extends the basic idea
of SAs, and fruitfully applies the concept to new application domains.

3.2 Trie Structure

The underlying data structure of complete SAs, as considered in this thesis, is an indexed
trie, which is a tree data structure often applied in dictionary applications [65]. On
some memory-intensive applications also a linked trie could be used to trade memory
consumption for run-time. For the performance of a SA it is important that inserting,
searching and converting a solution can be performed efficiently. A trie has an exception-
ally good performance for this purpose because basically all of these operations can be
implemented in O(m) time (as we will see in Section 3.3 and 3.4), where m is the length
of the solution representation. For scalability it is especially important that the run-time
of these operations does not strongly increase with the number of solutions the solution
archive contains.

Let us assume we are given a problem where solutions can be encoded as binary
strings of length m and the feasible search space is {0, 1}m, i.e., the domain of each
decision variable x1, . . . , xm is A = {0, 1}. Our indexed trie T has a maximum height of
m and on each level l = 1, . . . ,m there exist at most 2l−1 trie nodes. Each trie node q at
level l corresponds to variable xl and has the same structure consisting of two entries
q.next[0] and q.next[1]. Such an entry can be either a pointer to a successor node at the
next level or is set to one of the two special flags null or complete. Each node of the
trie refers to a part of the search space, and the root node at level 1 corresponds to the

31

Algorithm 3.1: insert(x, l, q)
Global Variable:
devpoints = ∅; // Set of feasible deviation positions for
conversion
Input : leader solution x, level l, node q
Output: boolean value whether or not x is already contained in the archive

1 alreadyContained = false;
2 if l ≤ m ∧ q 6= complete then
3 if q.next[1− xl] 6= complete then
4 devpoints = devpoints ∪ {(l, p)}
5 end
6 if q.next[xl] == null then
7 q.next[xl] = new trienode(null, null);
8 end
9 alreadyContained = insert(x, l + 1, q.next[xl]);

10 end
11 if q == complete then
12 alreadyContained = true;
13 end
14 else if l > m then
15 q = complete;
16 end

// Pruning
17 else if q.next[xl] = complete ∧ q.next[1− xl] = complete then
18 q = complete;
19 end
20 return alreadyContained;

whole search space {0, 1}m. The entries q.next[0] and q.next[1] of a trie node q at level l
split the solution space into two subspaces with xl = 0 and xl = 1, respectively. In both
subspaces all elements from x1 to xl−1 are fixed according to the path from the root to
node q. Note that such a trie is related to an explicitly stored branch-and-bound tree.

Figure 3.1 shows an example of a trie-based solution archive with three solutions
(0, 0, 1, 0, 1, 1), (0, 0, 1, 1, 0, 0), and (0, 1, 0, 1, 1, 0). Arrows are pointers to successor nodes,
a null flag is denoted by a slash, and a complete flag is shown as a C.

3.3 Insertion into the Solution Archive
Knowing the structure of the trie, inserting a solution candidate is straightforward and
shown in Algorithm 3.1 in pseudocode. For inserting a solution x = (x1, . . . , xm) into
the trie we start at the root node with the first element x1 of the solution vector. The
recursive algorithm is therefore initially called with parameters (x, 1, root). On each level

32

root

/

/

/

/

C/

/

C

0 1

0 1

0 1

0 1

0 1

0 1

0 1

/

0 1

0 10 1

0 1 0 1

deviation point

/

/

/

/C

0 1

0 10 1

C /

Figure 3.2: Example of a solution conversion in a binary trie-based solution archive

i = 1, . . . ,m− 1 of the trie we follow the pointer indexed by xi. Furthermore, we store all
potential nodes for a possibly needed succeeding conversion in the set devpoints. At the
lowest level m− 1, a complete flag is stored to finally represent the solution. Intermediate
nodes are always only created when needed. A pruning procedure ensures that each
subtrie contains at least one not yet visited solution candidate. Whenever all entries of a
trie node are complete, this node is deleted and the corresponding entry in the parent
node is set to complete. This is performed iteratively until the whole trie consists of
just one complete node and the whole solution space has been exhaustively searched
or a node with a not yet complete entry is encountered. Pruning also ensures that the
memory consumption is not unnecessarily high. The worst case run-time complexity
of Algorithm 3.1 is O(m) because l is initially set to one, in every recursive call l is
increased by one, and the algorithm terminates once l > m.

3.4 Conversion within the Solution Archive

Whenever a complete entry is encountered during the insertion of a solution candidate
we know that this solution has already been inserted and is contained in the SA. This
duplicate solution is then converted into a new solution candidate directly by the SA.
Algorithm 3.2 shows such a conversion in pseudocode. For converting such a duplicate
solution (x1, . . . , xm) into a usually similar but not yet discovered one, we first choose a
position where we will alter the solution. All possible positions were recognized during

33

Algorithm 3.2: convert(x, devpoints)
Input : duplicate leader solution x, feasible deviation positions devpoints
Output: converted not yet considered solution x

1 q = random entry from devpoints
2 l = level of the trie node q
3 xl = 1− xl;
4 while q.next[xl] 6= null do
5 if q.next[xl] == complete then
6 xl = 1− xl;
7 end
8 if q.next[xl] == null then
9 break;

10 end
11 q = q.next[xl];
12 l = l + 1;
13 end
14 insert(x,l,q);
15 return x;

the insertion procedure and stored in the set devpoints. From these possibilities, one
deviation position is then selected uniformly at random. If there does not exist a feasible
deviation position anymore (i.e., the root node is complete), we know that the whole
search space has been covered and we can stop the whole optimization with the so far
best solution being a global optimum. Otherwise, we change the element at the deviation
position to another randomly chosen feasible value for which the corresponding entry is
not complete (in the case of binary tries we flip the bit). There are two possible cases
depending on the pointer at the deviation position:

• If it is a null-pointer, we know that the corresponding subspace has not been
explored yet, which means that any feasible solution from this point on is a new one.
Therefore, we can just insert the remaining solution without the need of further
changes.

• If the pointer at the deviation position points towards a successive trie node, we
visit this node and consider its entries. If all of them but one are complete, we have
no choice but to follow the not complete one. Otherwise, we prefer the pointer
corresponding to the original solution’s variable value, i.e., at level j we follow the
entry indexed by xj , and repeat this process until we end up in a null entry. From
there on we proceed analogously to the first case and insert the remaining elements
of the unchanged solution unchanged. This procedure is guaranteed to terminate
with a feasible solution because the pruning ensures that there must be at least
one null pointer in each subtrie.

34

Also for the conversion method (Algorithm 3.2), the worst case run-time complexity
is clearly O(m) because l is increased in each iteration of the while-loop, it is guaranteed
that eventually the while-loop terminates, and we have already shown that the insertion
method has a O(m) worst case run-time complexity.

Figure 3.2 shows a possible trie conversion when inserting the solution (0, 0, 1, 1, 0, 0)
into the SA from Figure 3.1. As deviation position level 2 is chosen, where x2 is changed
from 0 to 1. Then, it is clear that we can insert the remaining elements unchanged
because on the next node we follow an entry which was null before. This shows that
with such a conversion procedure we can efficiently convert a duplicate solution into a
new and usually similar solution. In this case we transformed the duplicate (0, 0, 1, 1, 0, 0)
into the new unexplored solution (0, 1, 1, 1, 0, 0).

3.5 Incorporation into a Metaheuristic
The incorporation of such a solution archive into a metaheuristic is best explained in the
context of a GA. In contrast to a standard GA as described in Section 2.4.7 at the end of
each iteration after the mutation step the newly generated solution is transferred to the
SA. In the SA, it is checked whether it is a new solution and is converted if not. This
possibly converted solution is then transferred back to the GA and replaces the original
solution in the population, after which the GA proceeds as usual.

A SA can also be used in combination with local search based approaches. In these
cases two reasonable SA integration strategies are possible. First, after each move the
created solution is transferred to the SA and the same procedure as for the GA is applied.
This would, however, change the structure of the neighborhood and could possibly alter
the local optimum. Another strategy is to use the archive within the local search only
for consultation whether the solution has already been considered. This would not lead
to any changes of the neighborhood structure except its size but could, thus, lead to a
speed-up of the search process. Also, a combination of the two strategies is reasonable,
especially in later iterations of the search the first method could be employed to modify
the neighborhood and thereby escaping local optima.

3.6 Extensions
Frequently, practical relevant problems have a more complex solution representation
and the structure of this basic binary trie must be altered. Especially when using
representations in which not every possible solution is feasible, the trie structure gets
more complicated. In general, for constrained problems each variable from the solution
vector (x1, . . . , xm) can have its own domain Al, for l = 1, . . . ,m, which may further
depend on the already fixed values of other variables. In such a case, the corresponding
trie node q at level l now has |Al| entries q.next[0], . . . , q.next[|Al|−1]. In the applications
of SAs considered in this thesis we show how to extend the structure of a trie to a binary
solution representation with constraints in Section 4.6.3 and to permutation encodings in
Section 5.6.4. This further leads to problem-specific conversion methods, which have to

35

take care to produce only feasible solutions and therefore an efficient realization might
not always be possible.

Another possible extension to the basic scheme is the randomization of the insertion
order of the variables. In the description of the insertion above we inserted a solution
x1, . . . , xm by starting at x1 and using the order of the solution representation. Instead,
we could decide at each level anew with which yet not inserted variable we want to
continue. This reduces the bias towards the elements with higher indices of the conversion
method and we will see in Section 4.6.6 how such a randomization can be applied.

Finally, a bounding extension to a SA can be applied to cut off subtrees with evidently
cannot contain an optimal solution. Therefore, we need a procedure to compute lower
or upper bounds on partial solutions for minimization and maximization problems,
respectively. These bounds can then be stored in the corresponding trie nodes. Directly
after the computation of such a bound and at each subsequent visit it is checked if this
bound is larger (minimization) or smaller (maximization) than the objective value of the
best solution found so far. If this is the case the corresponding subspace can be pruned.
In Section 5.6.4 such a bounding extension is applied to a practical relevant COP.

36

CHAPTER 4
Competitive Facility Location

Problems

In this chapter competitive facility location problems (CFLPs) are considered which
are the first type of problems considered in this thesis. CFLPs arise in the context of
two non-cooperating companies, a leader and a follower, competing for market share
from a given set of customers. We assume that the firms place a given number of
facilities on locations taken from a discrete set of possible points. For this bi-level
optimization problem we consider six different customer behavior scenarios from the
literature: binary, proportional and partially binary, each combined with essential and
unessential demand. The decision making for the leader and the follower depends on
these scenarios. We present mixed integer linear programming models for the follower
problem of each scenario and use them in combination with an evolutionary algorithm to
optimize the location selection for the leader. A complete solution archive as presented
in Chapter 3 is used to detect already visited candidate solutions and convert them
efficiently into similar, not yet considered ones. As the solution evaluation entails the
solution of the follower’s problem, which is an NP-hard optimization problem itself, it
is a time-consuming procedure. Therefore, the application of a solution archive seems
promising and we will see the results of the application in this chapter. Also, different
solution evaluation methods are combined into a multi-level-evaluation scheme.

First, an introduction to CFLPs and a classification of several variants is given in
Section 4.1. Then, in Section 4.2 we give a formal problem definition and explain all
the customer behavior scenarios and both demand models in detai. After discussing the
related and previous work in Section 4.3, we present mixed integer linear programming
models for all variants in Section 4.4. The used solution representation and different
evaluation methods are proposed in Section 4.5. The novel evolutionary algorithm
(EA), which incorporates a solution archive in order to store and transform already
visited solutions, as well as a local improvement component is introduced in Section 4.6.
Different concepts of how the local search method can benefit from the solution archive are

37

investigated in Section 4.7. An extension to the GA which intends to lower the effort for
solution evaluation by applying a multi-level strategy is presented in Section 4.8. Finally,
at the end of this chapter we discuss computational results and compare the new method
to other state-of-the-art approaches from literature if available in Section 4.9. This section
further includes a case study of Vienna, Austria, in which we assume the registration
districts to be possible locations and the demand of the customers is proportional to the
population of the respective district.

4.1 Introduction

In the considered CFLPs two decision makers, a leader and a follower, compete for
market share. They choose given numbers of facility locations from a finite set of possible
positions in order to satisfy client demands, whereas the leader starts to place all of
his facilities, then the follower places his facilities. In this thesis different scenarios are
considered which vary in the way customers satisfy their demands from the set of open
facilities. This classification is taken from Suárez-Vega et al. [125]:

Customer behavior

• Binary: The demand of each customer is fulfilled by the nearest facility only.

• Proportional: Each customer splits his demand over all open facilities proportional
to an attractiveness value, which depends on the distances to the facilities.

• Partially binary: This is similar to the proportional behavior but the demand is split
only between the nearest leader and nearest follower facility, again, proportional to
an attractiveness value depending on the distance.

Demand model

• Essential demand: The customers satisfy all of their demand.

• Unessential demand: The customers do not satisfy all of their demand but only a
proportion depending on the attractiveness of the serving facility.

Combining the three customer behaviors and the two demand models results in six
different scenarios. Since demand corresponds to the buying power of the customers the
market share (or turnover) of the competing firms increases with the amount of fulfilled
demand. Therefore, in order to obtain an accurate revenue value for the leader, the
subproblem of finding an optimal set of facility locations for the follower for a given set of
leader locations has to be solved. This makes the problem a ΣP

2 -hard bi-level optimization
problem [100]. In this work we model the decision problem of the leader who wants to
maximize his market share knowing that a follower will enter the market subsequently
under a given customer behavior scenario. We propose mathematical models as well as

38

a hybrid metaheuristic based on an evolutionary algorithm to approximately solve all
variants of this problem in a practically efficient way.

Our evolutionary algorithm (EA) searches for the best possible facility locations for
the leader so that his turnover is maximized. It is assumed that the follower will place
his facilities optimally, i.e., aiming at maximizing his revenue or minimizing the leader’s
revenue. For the problem of finding the optimal locations for the follower, MIP models
for different customer behaviors are presented. These models can then be solved either
exactly using a general purpose MIP solver like CPLEX or approximated by solving
their linear programming (LP) relaxation or by a greedy algorithm. As a result, we
obtain a multi-level evaluation scheme which reduces the number of accurate, hence more
time-consuming, evaluations which can be applied when the LP relaxation value of the
model is good enough. The EA is further enhanced with a solution archive which is a
special data structure that stores all generated candidate solutions and converts duplicate
solutions into guaranteed not yet considered ones. A local search procedure, combined
with the archive into a tabu search variant, further improves promising solutions of the
EA and thus turns it into a powerful hybrid approach.

4.2 Problem Definition

In the following we will formally define the competitive facility location problem with
different customer behavior scenarios. Given are the numbers p ≥ 1 and r ≥ 1 of
facilities to be opened by the leader and follower, respectively, and a weighted complete
bipartite graph G = (I, J, E) where I = {1, . . . ,m} represents the set of potential facility
locations, J = {1, . . . , n} represents the set of customers, and E = I × J , is the set of
edges indicating corresponding assignments. Let wj > 0, ∀j ∈ J , be the demand of each
customer, which corresponds to the (maximal) turnover to be earned by the serving
facilities, and dij ≥ 0, ∀(i, j) ∈ E, be the distances between customers and potential
facility locations. The goal for the leader is to choose exactly p locations from I for
opening facilities in order to maximize his turnover under the assumption that the follower
in turn chooses r locations for his facilities optimally maximizing his turnover.

The turnover distribution of the customers differ in the six scenarios defined before
and in the following we will give a formal description of the turnover computation of all
scenarios. In the following let (X,Y) be a candidate solution to our competitive facility
location problem, where X ⊆ I, |X| = p, is the set of locations chosen by the leader and
Y ⊆ I, |Y | = r, is the associated set of follower locations. Note that X and Y do not have
to be disjunct in general. Further, let D(j, V) = min{dji | i ∈ V }, ∀j ∈ J, V ⊆ I be the
minimum distance from customer j to all facility locations in set V . Following Kochetov
et al. [81] we define the attractiveness of a facility location to a customer by vij = aij

(dij+1)β
and define analogous to the minimum distance the maximum attractiveness from customer
j to all facility locations in the set V as A(j, V) = max{vji | i ∈ V }, ∀j ∈ J, V ⊆ I. In
this work we set β = 1 and aij = 1 ∀i ∈ I, j ∈ J . For the attractiveness one is added
to the original distances dij just to avoid numerical problems with zero distances which
might occur when considering the same locations for facilities and customers.

39

In the next sections we follow the classification of the different customer behavior
scenarios [125] and give definitions of the turnover computation of each of these scenarios.

4.2.1 Binary Essential

Each customer j ∈ J chooses the closest facility, hence the owner of this closest facility
gains the complete turnover wj . The leader is preferred in case of equal distances so the
follower never places a facility at a location occupied by the leader and therefore we can
assume that X ∩ Y = ∅ for this scenario. The set of customers which are served by one
of the follower’s facilities is U f = {j ∈ J | D(j, Y) < D(j,X)} and the customers served
by the leader is given by U l = J \ U f . Consequently, the total turnover of the follower is
pf =

∑
j∈U f wj and the total turnover of the leader pl =

∑
j∈J wj − pf . Note that this

problem is also known as (r|p)-centroid problem [68].

4.2.2 Proportional Essential

Each customer j splits all of his demand over all opened facilities proportional to their
attractiveness. Let xi = 1 if i ∈ X and xi = 0 otherwise, and yi = 1 if i ∈ Y and yi = 0
otherwise, ∀i ∈ I. Then, the turnover of the follower is

pf =
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi

and the turnover of the leader is

pl =
∑
j∈J

wj − pf .

4.2.3 Partially Binary Essential

Each customer j splits all of his demand over the nearest leader and the nearest follower
facility proportional to their attractiveness. Let vLj = A(j,X), i.e., the highest attraction
value from any leader facility to customer j and vFj = A(j, Y). Then, the turnover of the
follower is

pf =
∑
j∈J

wj
vFj

vFj + vLj

and the turnover of the leader is

pl =
∑
j∈J

wj − pf .

4.2.4 Unessential Demand

In the unessential demand scenarios we need a function which describes how much the
demand of a customer decreases with the distance to the nearest facility. We define

40

this demand reduction function as f(d) = 1
(d+1)γ . Parameter γ controls the decrease

of demand, in our work we assume γ = 1. Further, we note that when the demand is
unessential

∑
j∈J

wj ≥ pl + pf , i.e., the total demand satisfied by the leader and the follower

is no longer necessarily equal to the total demand of all customers. In the following we
present the profit computation for the unessential scenarios under the different customer
choice rules:

• Binary Unessential

pf =
∑
j∈U f

wjf(D(j, Y)) and pl =
∑
j∈U l

wjf(D(j,X))

• Proportional Unessential

pf =
∑
j∈J

wj

∑
i∈I

vijf(dij)yi∑
i∈I

vijxi +
∑
i∈I

vijyi
and

pl =
∑
j∈J

wj

∑
i∈I

vijf(dij)xi∑
i∈I

vijxi +
∑
i∈I

vijyi

• Partially Binary Unessential

pf =
∑
j∈J

wj
vFj

vFj + vLj
f(D(j, Y)) and pl =

∑
j∈J

wj
vLj

vFj + vLj
f(D(j,X))

4.3 Related Work
There is a huge number of articles in the literature dealing with location problems. While
we focus here on competitive variants we refer to a recently published book by [88] and
two recent review articles by [50] and [7] which give an overview on recent developments
in general location science.

4.3.1 Competitive Facility Location Problems – Variants

Competitive facility location problems have been introduced as early as the late 1920s by
Hotelling [72]. He originally considers two salespersons competing for market share while
placing one facility each on a line. From then on many researchers within the operations
research community started to embed competition in their location models, especially
Drezner [46] and Hakimi [68] did important early work in this field. There are several
review articles handling various topics in the competitive facility location domain and we
refer to [48, 83, 8, 49] and [47].

Several location models have been described in the literature and whereas in the
original work by Hotelling [72] the demand of each customer in the market is satisfied by

41

the nearest facility only, Huff [75] introduced a new notion of attraction. So, instead of
being served by only one facility, each customer splits its demand over all facilities in the
market based on an attraction factor. This factor determines a patronising probability of
each facility. A frequent form of an attraction function on a network is, as introduced
in the previous section, vij = aij

(dij)β
, where i is a customer, j is a facility, aij is the

attractiveness of facility j to customer i, dij is the distance, and β determines the
influence of the distance to the overall attractiveness. An extension to the basic Huff
model is the Pareto-Huff Model [104], in which the attractiveness of facilities with the
same or worse quality than a nearer facility is set to zero.

Another choice in the area of CFLPs is whether to allow the placement only on a
set of predetermined points or anywhere on the plane. The solution approaches of these
continuous or discrete models are usually significantly different and most articles focus on
one of these two models. In [43, 44, 45, 32, 51, 125, 13] the authors focused on continuous
location models and [68, 121, 85, 115, 4, 5, 6] concentrate on the discrete variant. Here
we only consider the discrete variant to model the CFLP as a combinatorial optimization
problem.

In CFLPs it further can be distinguished between the case where a competitor
already exists in the market and the case where he has not yet entered the market, i.e.,
competition with foresight. In the static competition model the competition is assumed
to be known and fixed and is therefore a simpler and easier model [106]. Nevertheless,
this is an important case to consider since more complex competition models often use
methodologies for the static competition model as a basis. When the competitor only
enters the market after the first decision maker fixed its preferred locations, we obtain
the leader-follower model. This form of sequential model is a Stackelberg-type model,
in which the evaluation of the choice of locations for the leader includes the solution
of finding the optimal locations of the follower based on the leader’s locations, which
is often a non-trivial optimization problem itself. Hakimi [68] was among the first to
consider the discrete variant with binary customer behavior and essential demand and
called the resulting problem (r|p)-centroid problem.

In practical applications the actual point of the location may not be the only decision
to make but also the specifics of the facility, e.g., quality or size. The optimal design
of the facilities then depends on their location and influences the attractiveness to
customers. Also, different opening costs for each possible location and a limited budget
could be considered in the model. Such location and design problems are approached,
e.g., in [84, 119] and [120].

The complexity of the discrete CFLP model with the different customer behavior
scenarios which is considered in this work is shown to be ΣP

2 -hard by Noltemeier et
al. [100]. Even if the locations of the leader are fixed, the remaining problem of finding
the optimal locations for the follower, which is also called the (r|Xp)-medianoid problem,
is proven to be NP-hard by Hakimi [68]. These complexity results are strengthened
by Davydov et al. [39], who looked at special network structures and showed that the
(r|p)-centroid problem remains ΣP

2 -hard for the special case of Euclidean distances.

42

4.3.2 Competitive Facility Location Problems – Solution approaches

As the presented CFLP models are hard to solve exactly, most solution methods for
discrete CFLPs are metaheuristics. Laporte and Benati [85] developed a tabu search
heuristic for the (r|p)-centroid problem. They use an embedded second-level tabu
search for solving the (r|Xp)-medianoid problem. The final solution quality is thus only
approximated as the (r|Xp)-medianoid problem is not solved exactly.

Alekseeva et al. [6] present several approaches for the discrete (r|p)-centroid problem
including an exact procedure. The first method is a hybrid memetic algorithm (HMA)
which uses a probabilistic tabu search as local improvement procedure. It employs rather
simple genetic operators and the tabu search utilizes a probabilistic swap neighborhood
structure, which is well known from the p-median problem; see the review article by
Mladenović et al. [97] for an overview of this problem. A neighborhood of this structure
contains elements only with a given probability to speed up the search. They use the
linear programming relaxation of a mixed integer linear programming model for the
solution evaluation which will also be used here and is described in Section 4.4.1. The
authors observe that this approach outperforms several simpler heuristics including an
alternating heuristic originally proposed for a continuous variant of the problem [13].
In [4] results for the tabu search alone are presented which are similar to the results of
the HMA. They further describe an exact method based on a single level binary integer
program with exponentially many constraints and variables. For solving this model
they present an algorithm similar to a column generation approach where new sets of
locations for the follower are iteratively added to the model which is then solved again.
The optimal value of this model defines an upper bound and by solving the follower’s
problem using solutions of the model a lower bound is obtained. If the bounds coincide
the optimum has been found. The HMA is applied for finding the initial family of follower
solutions. Using this method the authors are able to optimally solve instances with up to
100 customers and p = r = 5.

Campos-Rodríguez et al. [32] studied particle swarm optimization methods for the
continuous (r|p)-centroid problem, where the facilities can be placed anywhere on the
Euclidean plane, as well as for the discrete variant [33]. A jumping particle swarm
optimization is used with two swarms, one for the leader and one for the follower. The
particles jump from one solution to another in dependence of its own best position so
far, the best position of its neighborhood and the best position obtained by all particles
so far, i.e, the best global position. In the experiments this algorithm was able to solve
instances with 25 customers, p = 3 and r = 2 to optimality.

Davydov [37] describes another tabu search for the RPCP. He uses a probabilistic swap
neighborhood structure similar to the one developed by [6]. For the solution evaluation
the follower problem is approximately solved by Lagrangian relaxation. The method is
tested on the instances from Alekseeva et al. [6] and additionally on some non-Euclidean
instances. For many of the instances optimal solutions are obtained.

A recent article by Davydov et al. [38] proposes two metaheuristics which are both
based on the swap neighborhood structure. The first one uses a variable neighborhood
search (VNS) with a disjoint partitioning of the swap neighborhood structure into three

43

sub-neighborhoods Fswap, Nswap, and Cswap. A neighbor from the Fswap neighborhood
is determined by closing one leader facility and opening a facility at a location chosen by
the follower. The Nswap neighborhood consists of solution candidates that are generated
by closing one leader facility and opening a facility at a location in its vicinity. Cswap
consists of all solutions that are in the swap neighborhood but not already in Fswap or
Nswap. The second method, which is called STS, uses the probabilistic swap neighborhood
which has been proposed by Alekseeva et al. [6]. The STS uses the same neighborhood
partioning as the VNS. Additionally, a tabu list is maintained to remove elements of
the neighborhood which consist of pairs for leader facilities that have been closed and
opened during the last few iterations. Both methods use the same model for the solution
evaluation as Alekseeva et al. [6]. The authors were able to find good solutions for
many instances faster than the tabu search by Davydov [37]. Moreover, they tested their
algorithms on non-euclidean instances, on which both methods, VNS and STS, showed
similar performance.

Roboredo and Pessoa [115] developed an exact branch-and-cut algorithm for the
discrete RPCP. They use a single-level integer programming model which is similar to
the model by Alekseeva et al. [6] but with only a polynomial number of variables. It
consists of exponentially many constraints, one for each follower strategy, i.e., for each
set of possible facility locations of the follower. An important reason for the success of
their method is the introduction of strengthening inequalities by lifting the exponentially
many constraints. Due to the assumption that the customers are conservative the lower
bound on the leader’s solution becomes zero if the follower chooses the same facility
location. Therefore, for each facility location an alternative location is given which is
chosen if the position has already been used by the leader. These cuts are separated
either by a greedy heuristic or by solving a mixed integer programming model. For most
of the benchmark instances the authors report better results than Alekseeva et al. [6],
i.e., they found optimal solutions in less time. Instances with 100 customers and up to
r = p = 15 facilities could be solved to optimality. The authors also present promising
results for r = p = 20 but are not able to prove their optimality within the given time
limit of 10 hours.

Alekseeva and Kochetov [4] give an overview of recent research regarding the discrete
(r|p)-centroid problem. They also improve their iterative exact method by using a model
with only a polynomial number of variables and by using the strengthening inequalities
introduced by Roboredo and Pessoa [115]. This improved iterative approach is able to
find optimal solutions for instances with up to 100 customers and r = p = 15. Especially
for the instances with r = p ∈ {5, 10} optimal solutions are found significantly faster
than by the branch-and-cut algorithm from Roboredo and Pessoa [115].

For the other customer behavior scenarios not many algorithms are described in the
literature. An exception is the work by Kochetov et al. [81], who propose an algorithm
for the CFLP with proportional customer behavior. The algorithm’s principle is similar
to the alternating heuristic for the RPCP by Bhadury et al. [13].

Serra and Revelle [121] propose a heuristic approach for a variant of the discrete
RPCP which is based on repeatedly solving a maximum capture (MAXCAP) problem.

44

The MAXCAP problem is similar to the (r|Xp)-medianoid problem with the difference
that it is possible to place a facility on one of the leader’s locations with the result
that the captured demand is equally shared between the two players. The algorithm is
basically a local search using the swap neighborhood structure and candidate solutions
are evaluated by solving the MAXCAP problem by means of integer programming or by
using a local search heuristic for larger instances.

4.4 Mathematical Models

In this section we present mathematical models for CFLPs with different customer
behavior scenarios. In case of binary choice we adopt the linear model from Alekseeva
et al. [5]. Finding linear models for the partially binary and proportional case is not
straightforward because we have to model a ratio of demand fulfilled by the leader and the
follower, respectively. In these cases we present linear transformations which are based
on the transformation performed by Kochetov et al. [81] for the proportional essential
scenario. All models use two types of binary decision variables:

xi =
{

1 if the leader opens a facility at location i
0 else

∀i ∈ I

and

yi =
{

1 if the follower opens a facility at location i
0 else

∀i ∈ I.

4.4.1 Binary Essential

The following bi-level MIP model has been introduced in [5]. It uses an additional type
of binary decision variables:

uj =
{

1 if customer j is served by the leader
0 if customer j is served by the follower

∀j ∈ J.

We define the set of facilities that allow the follower to capture customer j if the
leader uses solution x (x = (xi)i∈I):

Ij(x) = {i ∈ I | dij < min
l∈I|xl=1

dlj} ∀j ∈ J

Then we can define the upper level problem, denoted as leader’s problem, as follows:

45

max
∑
j∈J

wju
∗
j (4.1)

s.t.
∑
i∈I

xi = p (4.2)

xi ∈ {0, 1} ∀i ∈ I (4.3)

where (u∗1, . . . , u∗m) is an optimal solution to the lower level problem, denoted as follower’s
problem:

max
∑
j∈J

wj(1− uj) (4.4)

s.t.
∑
i∈I

yi = r (4.5)

1− uj ≤
∑

i∈Ij(x)
yi ∀j ∈ J (4.6)

xi + yi ≤ 1 ∀i ∈ I (4.7)
uj ≥ 0 ∀j ∈ J (4.8)
yi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (4.9)

The objective function for the leader’s problem (4.1) maximizes the leader’s turnover.
Equation (4.2) ensures that the leader places exactly p facilities. The objective function for
the follower’s problem (4.4) maximizes the follower’s turnover. Similarly as in the leader’s
problem, (4.5) ensures that the follower places exactly r facilities. Inequalities (4.6)
together with the objective function ensure the uj variables to be set correctly, i.e., decide
for each customer j ∈ J from which competitor he is served. Inequalities (4.7) guarantee
that the follower does not choose a location where the leader has already opened a facility.
Note that all xi variables are considered as constants here. Variables uj are not restricted
to binary values because in an optimal solution they will become 0 or 1 anyway.

4.4.2 Proportional Essential

For the proportional essential scenario we start with a non-linear bi-level model which is
derived from Kochetov et al. [81]. The upper level problem (leader’s problem) is:

max
∑
j∈J

wj

∑
i∈I

vijxi∑
i∈I

vijxi +
∑
i∈I

vijy∗i
(4.10)

s.t.
∑
i∈I

xi = p (4.11)

xi ∈ {0, 1} ∀i ∈ I (4.12)

46

where (y∗1, . . . , y∗m) is an optimal solution to the lower level problem (follower’s problem):

max
∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi
(4.13)

s.t.
∑
i∈I

yi = r (4.14)

yi ∈ {0, 1} ∀i ∈ I (4.15)

The objective functions (4.10) and (4.13) maximize the sums of the fulfilled demand
by the leader and the follower, respectively, considering the splitting over the facilities
inversely proportional to their distances. Constraint (4.11) ensures that the leader opens
exactly p facilities and, similarly, constraint (4.14) guarantees that the follower places
exactly r facilities. Note that the follower in principle is allowed to open facilities at the
same locations as the leader. All of the xi variables are considered as constants in the
follower’s problem.

In order to be able to solve the follower’s problem more efficiently Kochetov et al.
[81] suggested a linear transformation of this model, which works as follows. First, two
new kinds of variables are introduced:

zj = 1∑
i∈I

vijxi +
∑
i∈I

vijyi
∀j ∈ J (4.16)

and

yij = wjzjvijyi ∀i ∈ I, j ∈ J. (4.17)

Variables yij have the intuitive meaning that they are the demand of customer j that
is supplied by the follower facility at location i and the zj variables are basically the
denominator of the fractional objective function for a fixed j. It is obvious that if we are
able to model the non-linear equation (4.17) in a linear way such that equation (4.16) is
valid we get a model that is equivalent to (4.13–4.15). This is realized by the following
mixed integer linear program:

max
∑
j∈J

∑
i∈I

yij (4.18)

s.t. (4.14), (4.15) and∑
i∈I

yij + wjzj
∑
i∈I

vijxi ≤ wj ∀j ∈ J (4.19)

yij ≤ wjyi ∀i ∈ I, j ∈ J (4.20)
yij ≤ wjvijzj ≤ yij +W (1− yi) ∀i ∈ I, j ∈ J (4.21)
yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (4.22)

Objective function (4.18) maximizes the turnover obtained by the follower. Constraints
(4.19) set the variables yij by restricting them to not exceed the total demand of customer

47

j minus the demand captured by the leader. The fact that a facility location i can only
get some turnover from customer j when the follower opens a facility there is ensured by
constraints (4.20). Finally, equations (4.17) are fulfilled because of constraints (4.21).

Constant W is chosen large enough, so that an optimal solution to this model satisfies
equations (4.16), i.e., W = max

j∈J
(wj) · max

i∈I,j∈J
(vij) · max

j∈J
(zj), where

max
j∈J

(zj) ≤ max
j∈J

(1/
∑
i∈I

vijxi) because of constraints (4.19). Due to constraints (4.21)

with its W , the LP relaxation of this model unfortunately is in general relatively weak,
therefore finding an optimal follower solution by this model using a general purpose
mixed integer programming solver like CPLEX is time-consuming even for small instances.
Nevertheless, this model is still easier to solve than the non-linear model (4.13–4.15).

4.4.3 Partially Binary Essential

The model for the partially binary essential scenario is similar to the model for the
proportional case. The difference is that for each customer we only have to model the
ratio of the nearest leader and the nearest follower facility, which results in the following
non-linear bi-level model:

max
∑
j∈J

wj
vLj

vLj + vF
∗

j

(4.23)

s.t.
∑
i∈I

xi = p (4.24)

vLj = max
i∈I

(vijxi) ∀j ∈ J (4.25)

xi ∈ {0, 1} ∀i ∈ I (4.26)

where (vF ∗1 , . . . , vF
∗

m) is an optimal solution to the lower level problem:

max
∑
j∈J

wj
vFj

vLj + vFj
(4.27)

s.t.
∑
i∈I

yi = r (4.28)

vFj = max
i∈I

(vijyi) ∀j ∈ J (4.29)

yi ∈ {0, 1} ∀i ∈ I (4.30)

The objective functions (4.23) and (4.27) maximize the sums of the fulfilled demand
by the leader and the follower, respectively, considering the splitting over their nearest
facilities. Constraint (4.24) ensures that the leader opens exactly p facilities and, similarly,
constraint (4.28) guarantees that the follower places exactly r facilities. The highest
attraction values for each customer j, expressed by variables vLj and vFj , ∀j ∈ J are set
by the non-linear constraints (4.25) and (4.29).

48

Again, we propose a linear transformation of the follower model similar to the
proportional case. We introduce three new kinds of variables:

zj = 1
vLj + vFj

∀j ∈ J (4.31)

ŷij =
{

1 if i is the nearest follower facility to customer j
0 else

and

yij = wjzjvij ŷij ∀i ∈ I, j ∈ J. (4.32)

Once more, variables yij are set to the amount of demand a (possible) follower facility
at location i supplies to customer j and zj is the denominator of the objective function
Note that exactly one facility satisfies a certain amount of demand of a customer and
therefore for a fixed j exactly one yij variable has a non-zero value. The linearized model
is presented next.

max
∑
j∈J

∑
i∈I

yij (4.33)

s.t.
∑
i∈I

yi = r (4.34)

∑
i∈I

yij + wjzjv
L
j ≤ wj ∀j ∈ J (4.35)

yij ≤ wj ŷij ∀i ∈ I, j ∈ J (4.36)
yij ≤ wjvijzj ≤ yij +W (1− ŷij) ∀i ∈ I, j ∈ J (4.37)
ŷij ≤ yi ∀i ∈ I, j ∈ J (4.38)∑
i∈I

ŷij = 1 ∀j ∈ J (4.39)

yi ≥ 0, yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (4.40)
ŷij ∈ {0, 1} ∀i ∈ I, j ∈ J (4.41)

Objective function (4.33) maximizes the turnover obtained by the follower. Constraints
(4.35) set the variables yij by restricting them to not exceed the total demand of customer
j minus the demand captured by the leader. The fact that a facility location i can only
get some turnover from customer j when there is the nearest open follower facility is
ensured by constraints (4.36). Equations (4.32) are fulfilled because of constraints (4.37).
Constraints (4.38) and (4.39) guarantee that there is exactly one nearest follower facility
to each customer and that this location has to be chosen by the follower.

49

4.4.4 Unessential Cases

When the demand of customers is unessential, two different goals for the follower are
possible. He can either aim to minimize the leader’s profit (LMIN) or to maximize his
profit (FMAX). Depending on the goal the follower might choose different locations for
his facilities. In this section we will discuss the changes to the models introduced before
that are needed to consider unessential demand.

4.4.5 Binary Unessential

In the LMIN scenario only a change in the objective function is needed because the
distance from each customer to the nearest leader facility is known beforehand. The new
objective function for the follower’s problem is the following:

min
∑
j∈J

wjzjf(D(j,X))

If the follower uses the FMAX strategy new variables have to be introduced to indicate
which location i hosts a follower facility that is nearer to a customer j than any other
open (leader or follower) facility. This is modelled by decision variables ŷij which are
defined similarly as before:

ŷij =


1 if i is the nearest follower facility to customer j

and nearer than all leader facilities
0 else

The complete model for the follower problem is as follows:

max
∑
j∈J

wj
∑
i∈I

ŷijf(dij) (4.42)

s.t.
∑
i∈I

yi = r (4.43)

1− zj ≤
∑

i∈Ij(x)
yi ∀j ∈ J (4.44)

xi + yi ≤ 1 ∀i ∈ I (4.45)
ŷij ≤ yi ∀i ∈ I, ∀j ∈ J (4.46)
ŷij ≤ 1− zj ∀i ∈ I, ∀j ∈ J (4.47)∑
i∈I

ŷij ≤ 1 ∀j ∈ J (4.48)

zj ≥ 0 ∀j ∈ J (4.49)
yi ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (4.50)
ŷij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (4.51)

In this model there are three new types of constraints to set the ŷij variables correctly.
Constraints (4.46) ensure that if one of these variables is set to one then there must be a

50

follower facility on this location. Furthermore, a ŷij variable is only set to 1 iff customer
j is served by the follower, which is ensured by constraints (4.47). Of course, only one
follower facility can be the nearest to a customer, so constraints (4.48) are introduced.
The change in the objective function models the unessential demand by reducing the
turnover gained by each customer by our demand reduction function f .

4.4.6 Proportional Unessential

In the proportional customer behavior scenario for both LMIN and FMAX a change in
the objective function is needed and for LMIN additionally a change of constraints (4.19):

LMIN: min
∑
j∈J

wjzj
∑
i∈I

vijxif(dij)∑
i∈I

yij + wjzj
∑
i∈I

vijxi = wj ∀j ∈ J

FMAX: max
∑
j∈J

∑
i∈I

yijf(dij)

4.4.7 Partially Binary Unessential

Also for the partially binary case, the objective function changes and for LMIN the
constraints (4.35) as well:

LMIN: min
∑
j∈J

wjzjv
L
j f(1

vLj
− 1)

∑
i∈I

yij + wjzjv
L
j = wj ∀j ∈ J

FMAX: max
∑
j∈J

∑
i∈I

yijf(dij)

4.5 Solution Representation and Evaluation
We use the binary vector x = (x1, . . . , xm) as incomplete solution representation where
the value of variable xi, 1 ≤ i ≤ m indicate whether a facility is opened at location i. An
actual solution to the problem also includes the locations for the follower and to get a
better notion of feasible solutions we extend the problem definition of Section 4.2 by the
following further definitions which are adopted from [4].

Definition 15. Semi-feasible Solution
The tuple (X,Y) is called a semi-feasible solution to the competitive facility location

problem iff X ⊆ I with |X| = p, Y ⊆ I with |Y | = r and, for binary customer behavior,
X ∩ Y = ∅.

Let pl(X,Y) be the turnover of the leader and pf(X,Y) be the turnover of the follower
where X is the set of facility locations chosen by the leader and Y is the set of facility

51

locations chosen by the follower. Then we define a feasible solution and an optimal
solution as follows.

Definition 16. Feasible Solution
A semi-feasible solution (X,Y ∗) is called a feasible solution to the discrete (r|p)-

centroid problem iff pf(X,Y ∗) ≥ pf(X,Y) for each possible set of follower locations
Y .

Definition 17. Optimal Solution
A feasible solution (X∗, Y ∗) is called an optimal solution to the discrete (r|p)-centroid

problem iff pl(X∗, Y ∗) ≥ pl(X,Y) for each feasible solution (X,Y).

It is easy to find a semi-feasible solution but already NP-hard to find a feasible
solution because an optimal follower solution has to be found. This means that the
solution evaluation of an arbitrary leader solution might be quite time-consuming. For
practice there are several possibilities how to evaluate such a leader solution X. In our
metaheuristic approach we consider the following natural ways of evaluating a leader
solution x; two of them use the models introduced in Section 4.4.

4.5.1 Exact evaluation

In the exact evaluation we solve the follower’s problem of the corresponding scenario (see
Section 4.4) exactly using a MIP solver, e.g., CPLEX.

4.5.2 Linear Programming (LP) evaluation

In the LP evaluation we solve the LP relaxation of the follower’s problem using CPLEX.
This will in general yield not even semi-feasible solutions because of fractional values
of some variables. For intermediate solution candidates we might, however, only be
interested in an approximate objective value of a leader’s solution for which purpose this
method may be sufficient. This approximation yields a lower bound of the real objective
value of x.

4.5.3 Greedy evaluation

To yield semi-feasible solutions and therefore an upper bound to the objective value
of x greedy evaluation algorithms are used for solving the follower’s problem. They
perform by iteratively selecting a locally best possible position for opening a facility, until
all r follower facilities are placed. A currently best possible location is determined by
computing the turnover of the follower for each possible additional location depending on
the specific consumer behavior using the corresponding functions defined in Section 4.2:

52

Binary Essential: pf
BE(y) =

∑
j∈U f(y)

wj (4.52)

Proportional Essential: pf
PE(y) =

∑
j∈J

wj

∑
i∈I

vijyi∑
i∈I

vijxi +
∑
i∈I

vijyi
(4.53)

Partially Binary Essential: pf
PBE(y) =

∑
j∈J

wj
vFj (y)

vFj (y) + vLj
(4.54)

Here, y = (y1, . . . , ym) is the partial solution vector of the follower containing all so
far opened facilities plus the candidate location. A location with the highest turnover
is chosen; ties are broken randomly. The final value obtained from this procedure is a
lower bound to the follower’s problem and therefore

∑
j∈J wj − pf(y) is an upper bound

to the objective value of the leader’s solution. For the binary essential case we do not
have to recompute the whole function each time we place a new facility. Whenever a new
facility captures facilities from the leader, they are removed from the set of customers
and therefore do no longer increase the turnover of the follower. Then we only compute
the turnover gain for each placed facility separately and in the end take the sum. When
the demand is unessential the greedy criteria can be adapted analogously. However, the
upper bound to the leader’s problem has to be computed using the functions for the
turnover computation for the leader defined in Section 4.2.

In Section 4.9.1 we will observe that among our evaluation algorithms for binary
customer behavior the LP evaluation usually offers the best compromise in terms of
speed and evaluation precision. However, by applying the different solution evaluation
methods in a joined way within a multi-level evaluation scheme described in Section 4.8,
we will be able to significantly improve the performance. For proportional and partially
binary customer behavior even the LP evaluation is too time-consuming and therefore the
greedy evaluation is used for intermediate evaluations. After the termination of the EA
the final best solution is evaluated exactly for all scenarios to obtain a feasible solution.

4.6 Evolutionary Algorithm
This section describes the developed evolutionary algorithm which is used for all considered
scenarios. The framework is a steady-state GA with an embedded local improvement. It
uses simple genetic operators, which are explained in Section 4.6.1. The local improvement
procedure is based on the swap neighborhood structure and is addressed in Section 4.6.2.
Most importantly, the GA utilizes a complete solution archive for duplicate detection
and conversion, which is detailed in Section 4.6.3.

As mentioned in the previous section we use the leader’s incidence vector x as solution
representation for the GA. The initial population is generated by choosing p locations
uniformly at random to ensure high diversity in the beginning. Then, in each GA
iteration one new solution is derived and always replaces the worst solution of the current

53

population. Selecting parents for crossover is performed by binary tournament selection
with replacement. Mutation is applied to offsprings with a certain probability in each
iteration.

4.6.1 Variation Operators

We use the following variation operators within the GA:

Crossover Operator Suppose that we have two candidate solutions X1 ⊂ I and
X2 ⊂ I. An offspring X ′ is derived from its parents X1 and X2 by adopting all locations
that are opened in both, i.e., all locations from S = X1 ∩ X2 and then choosing the
remaining p− |X1 ∩X2| locations from (X1 ∪X2) \ S, i.e., the set of locations that are
opened in exactly one of the parents, uniformly at random.

Mutation Operator Mutation is based on the swap neighborhood structure, which is
also known from the p-median problem [97]. A swap move closes a facility and re-opens
it at a different, so far unoccupied position. Our mutation applies µ random swap moves,
where µ is determined anew at each GA-iteration by a random sample from a Poisson
distribution with mean value one so that each position is mutated independently with
probability 1

p .

4.6.2 Local Search

Each new candidate solution derived in the GA via recombination and mutation whose
objective value is at most α% off the so far best solution value further undergoes a local
improvement, with α ∈ {1, 5} in our experiments presented here. Local search (LS)
is applied with the swap neighborhood structure already used for mutation. The best
improvement step function is used, so all neighbors of a solution that are reachable via
one swap move are evaluated and a best one is selected for the next iteration. This
procedure terminates with a local optimal solution when no superior neighbor can be
found.

4.6.3 Solution Archive

After each iteration of the genetic algorithm the newly created offspring is inserted into
the archive. If this solution is already contained in the archive, the solution conversion is
automatically performed and this adapted and guaranteed new solution is integrated in
the population of the GA. The conversion operation can therefore also be considered as
“intelligent mutation”. As suggested in Chapter 3 the used data structure for the solution
archive is a binary trie. Like in the example of Section 3.2, the maximum height of the
solution archive is m and the domain of each variable is A = {0, 1} and therefore each
trie node q has two entries q.next[0] and q.next[1], see Figure 4.1.

54

level 1

level 2

level 3

level 4

level 5

level 6

level 7

root

/ /

/

C

/

/

/

C/ C

0 1

0 1

0 1 0 1

C

C

0 1 0 1

0 1 0 10 1

0 1 0 1

0 1

/

/

root

/

/

/

/

❈/

/

❈

0 1

0 1

0 1

0 1

0 1

❈

0 1

0 1

/

0 1

0 1

❈

0 1

0 1 0 1

deviation node q

/

/

Figure 4.1: Solution archive with some inserted solutions on the lefthand side and a
conversion of (0, 0, 1, 1, 0, 0, 1) into the new solution (0, 1, 1, 1, 0, 0, 0) on the righthand
side.

4.6.4 Insertion

Algorithm 4.1 shows how to insert a new candidate solution x = (x1, . . . , xm) into the
trie. The biggest difference to the generic method from Chapter 3 is that we can stop
the insertion procedure when all chosen locations have been inserted, i.e., the values
of the remaining decision variables are all zero. Still, the whole insertion procedure
will be described in detail here. Initially, the recursive insertion method is called with
parameters (x, 1, root, 0). We start at the root node at level 1 with the first element x1.
At each level l = 1, . . . ,m of the trie we follow the pointer indexed by xl. When the p-th
facility has been encountered, i.e., openFacs = p, at some node q the procedure stops
and we set q.next[1] to complete. We further check at each insertion of a “one” at trie
node q if enough facilities would still fit if instead a zero would be chosen. If this is not
the case, q.next[0] is set to complete to indicate that there is no valid candidate solution
in this subtrie. A set of feasible deviation positions, devpoints, is computed during the
insertion and needed for the potentially following conversion. This set is cleared at the
beginning of each solution insertion and contains all trie nodes visited during insertion
where both entries are not complete. When we encounter a complete-pointer we know
that this solution is already contained in the trie and it must be converted.

If we are finished with the insertion and the solution is not a duplicate, we prune the
trie if possible to reduce its memory consumption. Pruning is performed as described in
Chapter 3 by checking all trie nodes that have been visited during insertion bottom up
if both entries of a trie node q are set to complete. If q.next[0] = q.next[1] = complete

55

Algorithm 4.1: insert(x, l, q, openFacs)
Global Variable:
devpoints = ∅; // Set of feasible deviation positions for
conversion
Input : leader solution x, level l, node q,

int openFacs; // Number of facilities opened until level l
Output: boolean value whether or not x is already contained in the archive

1 alreadyContained = false;
2 if l ≤ m ∧ q 6= complete ∧ openFacs < p then
3 if xl == 1 then
4 if m− l < p− openFacs then
5 q.next[0] = complete;
6 end
7 openFacs = openFacs + 1;
8 end
9 if q.next[1− xl] 6= complete then

10 devpoints = devpoints ∪ {(l, p)}
11 end
12 if q.next[xl] == null then
13 q.next[xl] = new trienode(null, null);
14 end
15 alreadyContained = insert(x, l + 1, q.next[xl], openFacs);
16 end
17 if q == complete then
18 alreadyContained = true;
19 end
20 else if l > m then
21 q = complete;
22 end

// Pruning
23 else if q.next[xl] = complete ∧ q.next[1− xl] = complete then
24 q = complete;
25 end
26 return alreadyContained;

we prune this trie node by setting the corresponding entry of the preceding trie node to
complete. On the left-hand side of Figure 4.1 an example of a trie containing the three
solutions (0, 0, 1, 1, 0, 0, 1), (0, 1, 0, 1, 1, 0, 0), and (0, 0, 1, 0, 1, 1, 0) is given. The crossed
out node at level 7 is a demonstration of setting a “zero” entry to complete because no
feasible solution fits in this subtrie anymore and of the pruning that followed.

Note that no explicit look-up procedure is needed because the insertion method
sketched in Algorithm 4.1 integrates the functionality to check whether or not a candidate

56

solution is already contained.

4.6.5 Conversion

Algorithm 4.2: convert(x, devpoints)
Input : duplicate leader solution x, feasible deviation positions devpoints
Output: converted not yet considered solution x

1 q = random entry from devpoints
2 l = level of the trie node q
3 xl = 1− xl;
4 while q.next[xl] 6= null do
5 if q.next[xl] == complete then
6 xl = 1− xl;
7 end
8 if q.next[xl] == null then
9 break;

10 end
11 q = q.next[xl];
12 l = l + 1;
13 end
14 openFacs = number of facilities opened in x
15 k = p− openFacs;
16 if k > 0 then
17 open k facilities among xl+1, . . . , xm randomly
18 end
19 else if k < 0 then
20 close |k| facilities among xl+1, . . . , xm randomly
21 end
22 insert(x,l,q,openFacs);
23 return x;

When the insertion procedure detects a solution which is already contained in the
archive, a conversion into a new solution is performed. A pseudocode of this procedure
is given in Algorithm 4.2. In contrast to the general method described in Chapter 4
we have to take care that the conversion produces only feasible solutions, i.e., solutions
with exactly p open facilities. Therefore, we have to apply at least two changes: open a
facility and close another one. For the first change, let devpoints denote the set of feasible
deviation points computed during insertion. A trie node q at level l is chosen from this
set uniformly at random. Should this set be empty, we know that the whole search space
has been covered and we can stop the optimization process with the so far best solution
being a proven optimum. Otherwise we set the l-th element of the solution vector to
1− xl, which corresponds to opening or closing a facility at position l. Now we have to

57

apply a second (inverse) change at a later position in order to have exactly p facilities
opened. We go down the subtrie level by level using the following strategy. For each trie
node q′ at level l′ we prefer to follow the original solution, i.e., the pointer q′.next[xl′]. If
it is complete, we have no choice but to use the pointer q′.next[1− xl′] instead (which
corresponds to adding further modifications to the solution vector). As soon as we reach
a null-pointer at a trie node q′ at level l′, we know that the corresponding subspace
has not been explored yet, i.e., any feasible solution from this point on is a new one.
Therefore, we apply the remaining necessary changes to get a feasible solution. If the
number of opened facilities in x exceeds p, we close the appropriate number of facilities
randomly among {xl′+1, . . . , xm}. Otherwise, if this number is smaller than p, we open
the appropriate number of facilities analogously. Finally, this new solution is inserted by
applying Algorithm 4.1 starting from trie node q′ at level l′.

On the righthand side of Figure 4.1 an example of a solution conversion is shown.
The duplicate solution x = (0, 0, 1, 1, 0, 0, 1) is inserted into the trie and subsequently
converted. Node q on level 2 is chosen as the deviation point for the first change and we
set x2 = 1, resulting in solution (0, 1, 1, 1, 0, 0, 1). Since the alternative entry at q.next[1]
points to another trie node, this path is followed until a null-pointer is reached at level 3.
Then we close the facility at the randomly chosen position 7 to get the valid solution
(0, 1, 1, 1, 0, 0, 0).

4.6.6 Randomization of the Trie

The above conversion procedure can only change values of solution elements with a
greater index than the level of the deviation position. This induces an undesirable bias
towards elements on positions with higher indices being changed more likely. In order
to counter this problem, a technique called trie randomization is employed, which has
first been suggested by [112]. For each search path of the trie we use a different ordering
of the solution variables, i.e., a trie node on level l does not necessarily correspond to
element xl of the solution vector. Instead, the index of the element related to a trie node
q is chosen randomly from the indices not already used in the path from the root to node
q. In our case this is achieved by additionally storing the corresponding variable index
at each trie node. Another possibility is to compute the next index by a deterministic
pseudo random function taking the path from the root to node q as input. This method
saves memory but needs more computational effort and is applied in [112]. Figure 4.2
shows an example of a randomized trie. Although this technique cannot avoid biasing
completely, the negative effect is substantially reduced.

4.7 Local and Tabu Search with Solution Archive

There exist several options for possibly utilizing the archive not just within the GA but
also the embedded LS, based on the original swap neighborhood structure. The idea of
the reduced and the conversion neighborhood has already been introduced in Section 3.5
and is practically applied here.

58

level 1

level 2

level 3

/

/

/

/

/

level 4

level 5

x4

x3

x5

x1

x2

x5

x2

/

x2

x1

x3

CCC

Figure 4.2: Candidate solutions (0,1,1,0,0), (1,0,1,0,0), and (0,0,0,1,1) in a randomized
trie, where the variables are randomly associated with the levels.

4.7.1 Complete Neighborhood

The simplest way to perform LS is just to use the complete neighborhood as introduced
in Section 4.6.2 without considering the solution archive. This method will find the
best solution within the swap neighborhood but there is no benefit from the solution
archive. We have to re-evaluate already visited solutions within the LS. However, all
generated solutions during the LS are inserted into the solution archive so that the
variation operators of the GA are still guaranteed to produce only not yet considered
solution candidates.

4.7.2 Reduced Neighborhood

The second option is to skip already visited solutions in the neighborhood search. After
each swap it is checked if the new solution is already contained in the solution archive. If
this is the case the evaluation of this solution is skipped and the LS continues with the
next swap. Otherwise this solution is inserted into the solution archive. The advantage of
this method is that re-evaluations of already generated solutions are completely avoided
and the neighborhoods are usually much smaller, resulting in a lower run-time. A
downside is, however, that due to the reduced neighborhoods LS may terminate with
worse solutions that are not local optimal with respect to the original neighborhood
anymore.

4.7.3 Conversion Neighborhood

Another possibility for a combination of the local search and the solution archive is to
perform a conversion whenever an already visited solution is generated by the local search.
This implies that the size of this neighborhood is the same as the complete neighborhood
but instead of re-evaluating duplicates, solutions that are farther away are considered to
possibly find a better solution.

59

4.7.4 Tabu Search

The fourth method we consider uses a tabu search instead of a local search where the
tabu list is realized by the solution archive. This means in particular that the search is
not stopped when a neighborhood does not contain a better solution but a best neighbor
solution that has not been visited, even when worse than the current solution, is always
accepted and the search continues. In this way, the algorithm might escape local optima.
This strategy can be combined with either of the latter two methods. Unlike the LS,
since there is no predefined end of the tabu search, an explicit termination criterion
is needed, e.g., a time limit or a number of iterations without improvement. As final
solution, the best one encountered during the whole tabu search is returned.

4.8 Multi-level Solution Evaluation Scheme
In this section we want to exploit several relationships between the solution values of the
different evaluation methods which are described in Section 4.5. Suppose that pf

LP(x) is
the objective value of the follower’s problem obtained by LP evaluation for a given leader
solution x, pf

exact(x) is the objective value obtained by exact (MIP-based) evaluation
and pf

greedy(x) is the objective value of the follower’s problem when using the greedy
evaluation. Then pf

LP(x) is obviously an upper bound and pf
greedy(x) a lower bound to

pf
exact(x), i.e., the following relations hold:

pf
greedy(x) ≤ pf

exact(x) ≤ pf
LP(x) (4.55)

Since we compute the turnover of the leader by subtracting the turnover of the
follower from the total demand for all customers, i.e.,

pl
LP(x) =

∑
j∈J

wj − pf
LP(x),

pl
exact(x) =

∑
j∈J

wj − pf
exact(x),

pl
greedy(x) =

∑
j∈J

wj − pf
greedy(x),

we obtain:
pl

LP(x) ≤ pl
exact(x) ≤ pl

greedy(x) (4.56)

4.8.1 Basic Multi-Level Solution Evaluation Scheme

Based on inequalities (4.56) we devise a multi-level solution evaluation scheme. Suppose
that pl

LP(x̂) is the value of the leader’s turnover obtained by LP evaluation of the
best solution found so far x̂. For each generated solution candidate x we evaluate it
using greedy evaluation yielding a maximum achievable turnover of pl

greedy(x). Then we
distinguish two cases:

60

• pl
greedy(x) ≤ pl

LP(x̂): This implies that plexact(x) ≤ plexact(x̂) and therefore x cannot
be better than the so far best solution. So we do not put more effort in evaluating
x more accurately.

• pl
greedy(x) > pl

LP(x̂): We do not know if plexact(x) > plexact(x̂) and therefore have to
evaluate x more accurately. We do this by performing a more accurate (i.e., LP or
exact) evaluation after the initial greedy evaluation to get a better estimate of the
quality of x.

Preliminary tests showed that during an average run of our algorithm we can avoid
the more accurate and thus more time-consuming solution evaluation for over 95% of
the solution candidates for binary customer behavior. Therefore, it is likely that this
method will reduce the overall optimization time of our algorithm in comparison to always
performing an accurate evaluation. In Section 4.9.1 we will show that this multi-level
solution evalution scheme is able to improve the results for binary essential customer
behavior significantly in terms of running time and final solution quality.

4.8.2 Multi-Level Solution Evaluation Scheme and Local Search

For intermediate local search a modification of the multi-level evaluation scheme is
needed. Suppose that x̂ is the so far best candidate solution with an objective value of
pl

LP(x̂) which is obtained by LP evaluation. Furthermore let x′ be the starting solution
of the local search which has an objective value of pl

LP(x′) ≤ pl
LP(x̂) also obtained by LP

evaluation. Then we encounter a problem if the objective value pl
greedy(x) of a neighboring

candidate solution x, which initially is obtained by greedy evaluation lies between pl
LP(x′)

and pl
LP(x̂), i.e.,

pl
LP(x′) < pl

greedy(x) ≤ pl
LP(x̂).

Since pl
greedy(x) is smaller than the best LP solution value found so far, x is not

evaluated more accurately. It is, however, greater than the LP solution value of the
starting solution of the LS so a move toward this solution is performed. This could
lead to undesirable behavior because in fact we do not know if solution x is superior to
solution x′ and the LS would most likely perform moves towards a solution with a good
greedy value instead of a solution with a good LP or exact value.

To avoid this problem we compare the solution value obtained by the initial greedy
evaluation to the best LP solution value found so far in this local search call instead of
the global best LP solution value for determining whether or not the solution shall be
evaluated more accurately. This implies that in each iteration of the local search we start
with a candidate solution that is evaluated using LP evaluation. This results in a local
search towards the candidate solution with the best LP value at the cost of additional
LP evaluations.

61

4.9 Computational Results

In this section we present computational results of our algorithmic approach applied to
different customer behavior scenarios and demand models. We consider separate sets
of instances for the binary and for the proportional and partially binary case because
the binary essential case has a significantly lower complexity and we want to maintain
comparability to algorithms from the literature. We used instances generated in [18] for
the binary case and newly created instances [17] for the proportional and partially binary
case. Both instance sets are based on instances from the discrete problem library1 and
can be found online2. In all instances each customer location corresponds to a possible
facility location, i.e., I = J and the other properties are shown in Table 4.1.

Table 4.1: Properties of the benchmark instances.

Binary Proportional and partially
binary

Number of
locations

essential: 200, unessential: 100,
chosen randomly on an Euclidean
plane of size 7000× 7000

100, chosen randomly on an Eu-
clidean plane of size 100× 100

Customer
demands

chosen uniformly at random from
the set {1, . . . , 200}

chosen uniformly at random from
the set {1, . . . , 10}

r, p r = p ∈ {10, 15, 20} r ∈ {2, . . . , 5}, p ∈ {2, . . . , 10}

The parameter settings for the EA were determined in preliminary tests and are
similar for all scenarios. The population size is 100 and the EA is terminated after
3000 iterations without improvement or after 300 seconds except for the binary case,
where we have a fixed time limit of 600 seconds. The termination condition for the tabu
search-based local search is set to five iterations without improvement. Local search/tabu
search is called for each candidate solution whose objective value lies within 1% (for the
binary case 5%) of the best solution found so far. After the EA finishes. the final best
solution is evaluated exactly by solving the corresponding MIP from Section 4.4 and
using the best greedy solution as starting solution with CPLEX 12.5. In preliminary tests
it turned out that for the binary behavior the exact evaluation of one candidate solution
needs less than one second. so in these test cases we evaluated the whole population
after the last iteration exactly and took the best solution candidate among them as our
final solution. All tests were performed on a single core of an Intel Xeon Quadcore with
2.54 GHz. In the next sections each customer behavior scenario with essential demand is
analyzed and discussed.

At the end of the following tables for essential demands we give a quick overview over
all instances on the geometric mean. the number of instances where the corresponding

1http://www.math.nsc.ru/AP/benchmarks/english.html
2https://www.ac.tuwien.ac.at/research/problem-instances/#Competitive_Facility_

Location_Problems

62

http://www.math.nsc.ru/AP/benchmarks/english.html
https://www.ac.tuwien.ac.at/research/problem-instances/#Competitive_Facility_Location_Problems
https://www.ac.tuwien.ac.at/research/problem-instances/#Competitive_Facility_Location_Problems

configuration performed best and the number of instances where the algorithm performed
best and better than all others.

4.9.1 Binary Essential

During the computational study for the binary essential scenario we tested most com-
ponents of the EA individually to study their impact on the solution quality and / or
run-time. To keep clarity in the following tables for some tests only a representative
selection of the whole instances set is chosen and the full result tables are given in
Appendix A.1. In most of the following sections there is a second table after the main
results table. These tables display the results of pairwise Wilcoxon rank sum tests of
the different configurations with error levels of 5%. The value in the cell at line i and
row j gives the number of instances for which configuration i yields significantly better
results than configuration j. The rightmost column lists the sums over all numbers in the
corresponding rows. For all main result tables the following holds: Instances Code111 to
Code1011 are the instances with n = 100 by Alekseeva et al. [5] and instances Code123
to Code1023 are the uniform instances also with n = 100 by Davydov et al. [38]. The
other instance names contain either 150 or 200 which stands for the number of customers.
The number right after rp corresponds to the number of facilities to place for both the
leader and the follower. In the first row the name of the algorithm is listed. The second
row describes the columns. where obj stands for the average of the final leader objective
value over 30 runs. sd is the corresponding standard deviation and t∗ is the median time
needed for finding the best solution in seconds. All runs are terminated after 600 seconds
to ensure comparability. We start by analyzing the impact of the solution evaluation
method on the final objective value and run-time. Then. the GA with and without the
local search and the solution archive is tested and the results are compared. This is
followed an investigation of the influence of the different variants of the neighborhood
structures in combination with the SA and the multi-level evaluation scheme on the final
results. This section ends with a comparison of the developed EA to algorithms from
the literature on Euclidean instances and instances with uniformly distributed distances.
The best configuration found during these computational tests was also used for the
remaining customer behavior scenarios and demand models.

Solution Evaluation on Euclidean Instances

In the following tests we compare three types of solution evaluation schemes according
to Section 4.5: greedy evaluation. LP evaluation and exact evaluation. The aim of
these tests is to find out which run-time / solution accuracy tradeoff is suitable for this
problem.

Table 4.2 and 4.3 show the results. As we can see, although each greedy evaluation
is 4 to 5 times faster than the LP evaluation, the results for the greedy evaluation are
rather poor because the solution with the highest greedy value often does not correspond
to an optimal solution according to the exact evaluation. In contrast, the results for
evaluating solutions using the LP evaluation are similiar to those obtained by using the

63

Table 4.2: Results of different solution evaluation methods using the standard configura-
tion.

greedy LP exact

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code111w_rp10 4359.00 0.00 14.80 4361.00 0.00 130.30 4361.00 0.00 70.60
Code111w_rp15 4547.11 6.01 20.10 4596.00 0.00 64.10 4596.00 0.00 55.60
Code111w_rp20 4508.50 6.09 253.30 4505.47 11.22 343.30 4502.90 11.26 217.70
Code1_150w_rp10 7132.20 130.36 250.20 7138.37 112.88 88.60 7167.43 51.47 94.00
Code1_150w_rp15 7008.63 54.17 138.40 7077.97 35.79 341.20 7088.83 43.99 398.50
Code1_150w_rp20 7070.67 52.46 314.20 7198.27 19.01 380.20 7198.53 22.50 370.60
Code1_200w_rp10 9349.60 69.78 406.60 9476.17 107.30 200.60 9478.50 92.39 369.70
Code1_200w_rp15 9814.13 185.24 351.30 10001.40 92.78 394.40 10000.30 82.92 475.60
Code1_200w_rp20 9615.13 135.94 411.90 9753.07 77.54 572.80 9697.53 85.19 586.90
Code211w_rp10 5309.47 2.92 26.50 5310.00 0.00 43.50 5310.00 0.00 46.10
Code211w_rp15 5373.00 0.00 97.10 5373.00 0.00 111.80 5373.00 0.00 95.70
Code211w_rp20 5431.57 2.37 284.50 5404.43 29.69 291.60 5405.63 31.19 365.20
Code2_150w_rp10 7181.53 52.91 332.10 7247.47 53.43 292.50 7253.30 71.29 291.00
Code2_150w_rp15 7590.23 92.37 154.60 7743.20 4.70 281.40 7742.00 5.57 358.40
Code2_150w_rp20 7673.90 83.24 255.00 7772.13 40.91 349.50 7755.50 46.49 347.80
Code2_200w_rp10 9032.00 71.74 221.20 9231.63 75.55 249.80 9254.53 62.00 448.00
Code2_200w_rp15 9274.23 153.66 312.40 9539.27 70.94 516.40 9505.43 109.72 438.40
Code2_200w_rp20 9381.90 138.87 475.30 9579.83 118.18 508.00 9570.30 110.98 548.80
Code311w_rp10 4392.47 42.88 17.80 4483.00 0.00 25.80 4483.00 0.00 24.50
Code311w_rp15 4782.10 18.23 221.60 4800.00 0.00 73.60 4800.00 0.00 63.20
Code311w_rp20 4853.47 8.76 100.50 4892.80 0.61 297.90 4892.67 0.76 250.80
Code3_150w_rp10 7240.20 75.69 362.80 7286.93 16.36 310.70 7291.87 13.30 369.20
Code3_150w_rp15 7499.30 44.12 161.60 7589.00 18.83 285.80 7589.27 18.01 200.50
Code3_150w_rp20 7520.40 63.06 303.20 7624.43 34.03 309.10 7624.37 34.20 411.20
Code3_200w_rp10 9224.03 52.98 202.70 9300.23 70.30 291.70 9287.13 74.85 362.90
Code3_200w_rp15 9145.17 210.97 378.30 9304.57 71.44 386.40 9308.37 70.27 459.10
Code3_200w_rp20 8902.30 210.90 468.70 9197.97 155.51 516.80 9145.73 107.33 574.10

geometric mean 6907.43 6995.12 6993.29
#best results 11 53 48
#unique best res. 6 35 31

Table 4.3: Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
solution evaluation methods.

greedy LP exact Σ

greedy – 5 5 10
LP 75 – 6 81

exact 73 4 – 77

exact evaluation. In many cases the root LP relaxation of the follower’s problem is already
integral and no branching has to be performed, hence the similar results. Therefore, for
the remaining tests we primarily use the LP evaluation method.

64

Ta
bl
e
4.
4:

R
es
ul
ts

of
di
ffe

re
nt

co
nfi

gu
ra
tio

ns
fo
r
th
e
G
A
:t

he
pu

re
ge
ne

tic
al
go

rit
hm

(G
A
),

G
A

w
ith

lo
ca
ls

ea
rc
h
(G

A
+

LS
),

G
A

w
ith

so
lu
tio

n
ar
ch
iv
e
(G

A
+

so
lA

)
an

d
G
A

w
ith

so
lu
tio

n
ar
ch
iv
e
an

d
lo
ca
ls

ea
rc
h
(G

A
+

LS
+

so
lA

).

G
A

G
A

+
LS

G
A

+
so
lA

G
A

+
LS

+
so
lA

In
st

an
ce

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

C
od

e1
11

w
_
rp
10

43
31

.8
0

12
.3
2

33
8.
20

43
48
.9
7

25
.0
0

11
3.
00

43
34
.2
0

10
.7
5

40
2.
60

43
61

.0
0

0.
00

14
.7
0

C
od

e1
11

w
_
rp
15

45
72

.3
7

21
.1
8

46
1.
10

45
86
.4
3

16
.6
5

38
.5
0

45
82
.6
7

6.
63

41
2.
80

45
96

.0
0

0.
00

16
.1
0

C
od

e1
11

w
_
rp
20

44
52

.2
3

17
.5
0

53
8.
40

44
74
.9
7

23
.5
2

16
2.
50

44
64
.1
7

21
.4
2

52
1.
40

45
05

.4
7

11
.2
2

20
9.
50

C
od

e1
_
15

0w
_
rp
10

65
03

.6
3

12
3.
24

53
8.
20

71
63

.5
7

54
.7
5

11
3.
40

66
06
.0
3

12
0.
76

53
0.
10

71
38
.3
7

11
2.
88

29
.2
0

C
od

e1
_
15

0w
_
rp
15

68
23

.1
3

63
.3
6

54
9.
60

70
21
.4
7

75
.6
4

14
9.
30

68
76
.5
0

49
.8
3

54
6.
80

70
77

.9
7

35
.7
9

13
3.
00

C
od

e1
_
15

0w
_
rp
20

69
00

.6
3

10
9.
91

55
0.
20

71
63
.0
3

58
.6
9

18
7.
30

69
80
.6
3

10
5.
85

56
0.
30

71
98

.2
7

19
.0
1

24
1.
40

C
od

e1
_
20

0w
_
rp
10

88
10

.1
0

20
1.
26

53
1.
40

94
43
.6
0

10
5.
48

24
6.
70

89
26
.3
0

18
9.
46

50
9.
10

94
76

.1
7

10
7.
30

24
3.
10

C
od

e1
_
20

0w
_
rp
15

90
79

.4
3

26
5.
11

57
2.
00

99
56
.7
7

11
2.
63

34
9.
90

92
12
.5
3

22
7.
11

55
3.
60

10
00

1.
40

92
.7
8

29
7.
10

C
od

e1
_
20

0w
_
rp
20

88
99

.6
3

15
7.
41

56
2.
00

96
83
.2
0

11
9.
85

47
9.
60

89
96
.9
3

21
9.
23

56
0.
80

97
53

.0
7

77
.5
4

46
0.
50

C
od

e2
11

w
_
rp
10

52
89

.4
7

25
.6
0

52
1.
20

53
10

.0
0

0.
00

51
.2
0

52
91
.1
3

28
.0
9

47
3.
40

53
10

.0
0

0.
00

8.
10

C
od

e2
11

w
_
rp
15

52
79

.4
7

35
.1
2

54
6.
90

53
62
.3
3

19
.7
3

42
.4
0

52
94
.4
3

31
.3
1

49
3.
60

53
73

.0
0

0.
00

23
.1
0

C
od

e2
11

w
_
rp
20

52
50

.0
3

52
.4
7

55
6.
90

53
51
.8
0

55
.1
6

13
5.
10

52
68
.9
3

47
.0
1

54
6.
80

54
04

.4
3

29
.6
9

82
.4
0

C
od

e2
_
15

0w
_
rp
10

69
62

.6
7

46
.4
8

51
9.
90

72
29
.9
0

89
.6
1

23
3.
40

69
69
.4
0

43
.4
3

51
2.
40

72
47

.4
7

53
.4
3

24
2.
70

C
od

e2
_
15

0w
_
rp
15

74
23

.0
0

94
.9
1

53
7.
40

77
02
.2
3

10
3.
32

14
8.
00

74
96
.6
7

66
.0
9

51
6.
30

77
43

.2
0

4.
70

96
.9
0

C
od

e2
_
15

0w
_
rp
20

74
39

.3
7

65
.1
2

54
0.
10

77
13
.4
3

70
.9
6

20
8.
40

75
00
.3
3

60
.9
7

55
1.
80

77
72

.1
3

40
.9
1

21
1.
50

C
od

e2
_
20

0w
_
rp
10

86
09

.1
7

15
1.
04

52
4.
40

91
81
.0
7

12
7.
89

22
8.
80

87
17
.2
0

13
1.
21

52
9.
70

92
31

.6
3

75
.5
5

13
0.
10

C
od

e2
_
20

0w
_
rp
15

86
39

.4
3

15
9.
89

52
3.
30

94
82
.1
7

11
9.
41

34
2.
10

86
78
.7
7

14
4.
79

52
0.
70

95
39

.2
7

70
.9
4

39
2.
00

C
od

e2
_
20

0w
_
rp
20

86
26

.4
7

11
9.
66

55
7.
10

95
08
.3
0

11
9.
17

52
1.
50

87
26
.3
0

11
2.
43

54
7.
80

95
79

.8
3

11
8.
18

42
1.
30

C
od

e3
11

w
_
rp
10

44
72

.5
0

34
.6
5

33
1.
60

44
83

.0
0

0.
00

21
.2
0

44
83

.0
0

0.
00

33
6.
20

44
83

.0
0

0.
00

8.
10

C
od

e3
11

w
_
rp
15

47
75

.9
3

19
.7
9

47
3.
20

47
85
.4
0

22
.8
5

70
.4
0

47
81
.1
3

21
.8
9

53
4.
60

48
00

.0
0

0.
00

13
.3
0

C
od

e3
11

w
_
rp
20

48
35

.7
7

15
.6
2

53
4.
70

48
79
.1
7

14
.6
1

11
6.
60

48
49
.6
7

11
.7
0

49
5.
30

48
92

.8
0

0.
61

65
.2
0

C
od

e3
_
15

0w
_
rp
10

69
75

.1
7

75
.2
9

52
2.
30

72
52
.5
0

69
.7
5

13
6.
20

70
04
.4
7

71
.9
6

49
3.
00

72
86

.9
3

16
.3
6

35
.4
0

C
od

e3
_
15

0w
_
rp
15

73
33

.7
3

12
4.
31

55
1.
10

75
54
.0
0

47
.9
5

13
1.
20

73
91
.3
3

95
.7
2

52
3.
60

75
89

.0
0

18
.8
3

14
2.
50

C
od

e3
_
15

0w
_
rp
20

73
58

.3
3

70
.6
0

54
3.
60

76
01
.3
0

45
.2
9

21
4.
80

74
06
.1
7

50
.7
0

55
9.
40

76
24

.4
3

34
.0
3

27
4.
00

C
od

e3
_
20

0w
_
rp
10

88
32

.4
0

18
1.
41

55
3.
50

92
29
.4
0

86
.1
7

23
9.
00

88
56
.2
3

18
5.
09

53
5.
80

93
00

.2
3

70
.3
0

22
7.
00

C
od

e3
_
20

0w
_
rp
15

82
32

.1
0

26
9.
27

56
3.
40

92
65
.4
3

98
.3
6

33
3.
10

84
97
.4
0

20
3.
87

56
2.
00

93
04

.5
7

71
.4
4

28
1.
90

C
od

e3
_
20

0w
_
rp
20

80
91

.8
3

18
8.
37

56
4.
80

91
50
.3
7

17
4.
73

50
9.
90

82
51
.0
3

13
4.
42

55
0.
60

91
97

.9
7

15
5.
51

42
6.
90

ge
om

et
ri
c
m
ea
n

66
43

.7
2

69
64
.1
0

66
91
.7
0

69
95

.1
2

#
be

st
re
su
lt
s

1
10

3
85

#
un

iq
ue

be
st

re
s.

0
5

0
80

65

Genetic Algorithm on Euclidean Instances

Now, we analyze different configurations of the GA. The GA was tested with and without
the local search and with and without the solution archive. The aim was to see the impact
of the different techniques on the solution quality and speed. Table 4.4 and 4.5 show
the computational results. We can make several interesting observations: As expected,
the GA alone performs not very well, neither regarding solution quality nor convergence
speed, but its performance is substantially improved by executing intermediate local
searches. By adding the solution archive (solA) to the pure GA we were also able to
significantly improve the results. The benefit of the local search seems to be greater
than the benefit of the solution archive because the relative difference of the geometric
mean of GA + LS and the GA is about 5% while the difference of GA + SA and GA
is only about 0.7%. Adding both, LS and solA, to the GA clearly further improves the
performance. For this combined approval not only the solution quality is the best among
the configurations but these solutions in most of the cases are also found faster.

Table 4.5: Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
configurations of the GA.

GA GA+LS GA+solA GA+LS+solA Σ

GA – 0 0 0 0
GA + LS 85 – 84 0 169
GA + SA 56 0 – 0 56

GA + LS + SA 87 60 87 – 234

Neighborhoods of the Local Search and Tabu Search on Euclidean Instances

Table 4.6 and 4.7 show the results of using the different strategies for utilizing the solA
within LS and tabu search (TS), respectively (c.f. Section 4.7). As expected the complete
neighborhood strategy performed worst because of the overhead of re-evaluating already
visited solutions but on some of the smaller test instances it is able to produce equally
good results. Among all tested LS neighborhoods, reduced neighborhood yields the
best results, so it is chosen for all further tests. While on the smaller test instances
with 100 customers the conversion and the complete neighborhood can keep up with
the reduced neighborhood in terms of mean objective value, on larger instances the
performance gap increases. The differences in the objective value of the conversion
neighborhood and the reduced neighborhood are small and the conversion neighborhood
even finds the best solution in less time for some instances, e.g., Code111w_rp10 and
Code211w_rp10. However, this difference vanishes when considering larger instances,
where the reduced neighborhood consistently finds better solutions. Apparently, for these
instances conversion moves were too rarely able to improve the starting solution. The
largest improvement of the overall results could be achieved by using a tabu search with
the reduced neighborhood. In none of our benchmark instances any other configuration
was able to find solutions with a statistical significant better mean objective value.

66

Ta
bl
e
4.
6:

R
es
ul
ts

of
us
in
g
di
ffe

re
nt

ne
ig
hb

or
ho

od
(N

B
)
st
ru
ct
ur
es

fo
r
in
te
rm

ed
ia
te

lo
ca
l/

ta
bu

se
ar
ch

(T
S)
.

co
m
pl
et
e
N
B

re
du

ce
d
N
B

co
nv

er
si
on

N
B

T
S
w
it
h
re
du

ce
d
N
B

In
st

an
ce

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

C
od

e1
11

w
_
rp
10

43
61

.0
0

0.
00

13
3.
80

43
61

.0
0

0.
00

13
0.
30

43
61

.0
0

0.
00

72
.2
0

43
61

.0
0

0.
00

47
.0
0

C
od

e1
11

w
_
rp
15

45
96

.0
0

0.
00

44
.9
0

45
96

.0
0

0.
00

64
.1
0

45
96

.0
0

0.
00

79
.4
0

45
96

.0
0

0.
00

55
.1
0

C
od

e1
11

w
_
rp
20

44
88

.2
0

22
.4
2

29
9.
50

45
05
.4
7

11
.2
2

34
3.
30

44
97
.9
3

14
.6
9

34
3.
60

45
06

.2
3

8.
39

26
8.
70

C
od

e1
_
15

0w
_
rp
10

71
57

.0
7

89
.9
6

11
3.
60

71
38
.3
7

11
2.
88

88
.6
0

71
71
.3
0

47
.6
5

13
7.
40

71
80

.0
0

0.
00

11
8.
00

C
od

e1
_
15

0w
_
rp
15

70
55

.7
0

39
.7
1

24
0.
40

70
77
.9
7

35
.7
9

34
1.
20

70
70
.7
7

45
.7
9

33
9.
40

71
43

.3
0

31
.6
3

33
7.
00

C
od

e1
_
15

0w
_
rp
20

71
87

.8
7

22
.5
9

28
9.
30

71
98
.2
7

19
.0
1

38
0.
20

71
90
.8
7

24
.8
4

40
0.
70

72
21

.5
0

27
.7
5

45
5.
20

C
od

e1
_
20

0w
_
rp
10

94
71

.8
0

85
.4
2

28
6.
70

94
76
.1
7

10
7.
30

20
0.
60

95
08
.0
0

67
.2
9

40
0.
10

95
32

.5
0

56
.1
0

35
0.
30

C
od

e1
_
20

0w
_
rp
15

99
59

.1
7

13
3.
66

48
3.
60

10
00

1.
40

92
.7
8

39
4.
40

99
88
.8
7

10
0.
51

46
1.
90

99
86
.1
3

99
.4
3

50
0.
60

C
od

e1
_
20

0w
_
rp
20

97
06

.3
7

70
.2
7

53
0.
90

97
53
.0
7

77
.5
4

57
2.
80

97
20
.6
7

74
.2
9

52
1.
80

97
60

.1
0

69
.6
7

60
0.
00

C
od

e2
11

w
_
rp
10

53
10

.0
0

0.
00

85
.5
0

53
10

.0
0

0.
00

43
.5
0

53
10

.0
0

0.
00

29
.0
0

53
10

.0
0

0.
00

33
.1
0

C
od

e2
11

w
_
rp
15

53
67

.6
0

8.
39

62
.4
0

53
73

.0
0

0.
00

11
1.
80

53
73

.0
0

0.
00

10
0.
40

53
73

.0
0

0.
00

16
2.
80

C
od

e2
11

w
_
rp
20

53
86

.7
7

37
.4
2

29
1.
80

54
04
.4
3

29
.6
9

29
1.
60

54
04
.1
3

30
.6
2

43
9.
50

54
27

.3
7

9.
90

20
0.
00

C
od

e2
_
15

0w
_
rp
10

72
34

.7
7

55
.5
4

30
3.
70

72
47
.4
7

53
.4
3

29
2.
50

72
65
.5
3

58
.7
2

21
6.
00

72
90

.1
7

48
.8
1

40
1.
10

C
od

e2
_
15

0w
_
rp
15

77
38

.4
0

13
.7
5

30
6.
10

77
43

.2
0

4.
70

28
1.
40

77
42
.3
0

5.
53

36
7.
50

77
41
.6
0

6.
29

34
2.
30

C
od

e2
_
15

0w
_
rp
20

77
37

.8
0

51
.8
7

36
0.
50

77
72
.1
3

40
.9
1

34
9.
50

77
71
.4
0

39
.2
9

39
0.
40

77
74

.1
3

59
.6
1

31
7.
60

C
od

e2
_
20

0w
_
rp
10

92
14

.4
3

10
2.
90

26
6.
60

92
31
.6
3

75
.5
5

24
9.
80

92
30
.2
3

94
.5
3

39
5.
30

92
52

.0
7

89
.1
0

37
6.
50

C
od

e2
_
20

0w
_
rp
15

95
25

.3
7

92
.8
6

41
9.
00

95
39
.2
7

70
.9
4

51
6.
40

95
18
.1
0

93
.2
3

43
9.
20

95
61

.3
0

83
.0
8

59
1.
40

C
od

e2
_
20

0w
_
rp
20

95
42

.9
3

10
6.
14

54
9.
80

95
79
.8
3

11
8.
18

50
8.
00

95
49
.4
3

10
1.
89

54
9.
80

96
19

.7
0

67
.3
3

60
0.
00

C
od

e3
11

w
_
rp
10

44
83

.0
0

0.
00

25
.4
0

44
83

.0
0

0.
00

25
.8
0

44
83

.0
0

0.
00

23
.8
0

44
83

.0
0

0.
00

31
.1
0

C
od

e3
11

w
_
rp
15

48
00

.0
0

0.
00

85
.9
0

48
00

.0
0

0.
00

73
.6
0

48
00

.0
0

0.
00

50
.8
0

48
00

.0
0

0.
00

49
.2
0

C
od

e3
11

w
_
rp
20

48
90

.6
3

3.
95

18
3.
30

48
92

.8
0

0.
61

29
7.
90

48
92
.6
7

0.
76

26
4.
90

48
92
.7
3

0.
69

21
3.
90

C
od

e3
_
15

0w
_
rp
10

72
85

.6
7

15
.7
6

11
3.
40

72
86
.9
3

16
.3
6

31
0.
70

72
93
.1
0

12
.1
0

31
4.
30

72
99

.0
0

0.
00

13
0.
90

C
od

e3
_
15

0w
_
rp
15

75
67

.0
3

34
.6
8

19
3.
00

75
89
.0
0

18
.8
3

28
5.
80

75
89

.9
0

18
.8
6

28
6.
60

75
83
.7
7

20
.3
8

19
2.
40

C
od

e3
_
15

0w
_
rp
20

76
05

.3
3

47
.9
0

29
8.
50

76
24
.4
3

34
.0
3

30
9.
10

76
27

.9
3

26
.4
9

33
1.
80

76
20
.6
7

46
.2
1

42
9.
70

C
od

e3
_
20

0w
_
rp
10

92
65

.9
7

10
2.
41

24
7.
40

93
00
.2
3

70
.3
0

29
1.
70

92
75
.8
7

85
.7
9

32
0.
20

93
39

.9
7

76
.4
6

37
5.
40

C
od

e3
_
20

0w
_
rp
15

92
79

.6
0

91
.0
5

38
3.
20

93
04
.5
7

71
.4
4

38
6.
40

93
01
.6
0

68
.8
0

43
8.
00

93
17

.8
3

66
.4
0

49
6.
10

C
od

e3
_
20

0w
_
rp
20

91
49

.4
3

11
8.
80

51
8.
40

91
97
.9
7

15
5.
51

51
6.
80

91
47
.5
0

11
5.
48

51
7.
80

92
20

.9
7

10
5.
33

60
0.
00

ge
om

et
ri
c
m
ea
n

69
83

.6
5

69
95
.1
2

69
92
.3
8

70
06

.5
3

#
be

st
re
su
lt
s

13
27

22
74

#
un

iq
ue

be
st

re
su
lt
s

0
9

7
55

67

Table 4.7: Results of Wilcoxon Rank Sum tests with error levels of 5% for the different
local search neighborhood structures and tabu search.

complete NB reduced NB conversion NB TS with reduced NB Σ

complete NB – 1 0 0 1
reduced NB 31 – 5 0 36

conversion NB 23 3 – 0 26
TS with reduced NB 54 21 32 – 107

Multi-Level Evaluation Scheme on Euclidean Instances

The computational results for testing the multi-level evaluation scheme (ML-ES) confirms
the hypothesis that it is able to speed up the algorithm significantly. We further tested if
the local search using the local best LP solution (improved LS) as described in Section 4.8.2
actually improves the solution quality. Finally we investigated the tabu search approach
(improved TS), which is explained in Section 4.7.4 in combination with the reduced NB.
For the TS we also used the adaptation for the improved LS in a straightforward way
and set a termination criterion of five iterations without improvement.

Table 4.8 and 4.9 show the results of these tests. We observe that the multi-level
evaluation scheme is able to improve the solution quality for some instances, especially
the larger ones with 200 customers. The largest improvement could be made in the time
needed for finding the best solution. It is in general much lower than when using only the
simple LP evaluation, e.g., for instance Code111w_rp10 the time could be decreased by
about 90%. With the improved local search the mean solution quality gets better in 65 of
the (mostly larger) instances, while it is equal on most of the other ones. Our best setup
turned out to be GA + solA + ML-ES + improved TS, when we switched from a local
search to a tabu search. We have a low standard deviation of the results and achieved a
better mean objective value than the local search in 47 instances. The improvements
are again mostly on the larger instances with 150 and 200 customers because, as we
see in Section 4.9.1, we could find optimal solutions for many of the instances with 100
customers. In total, our best configurations of the multi-level evaluation scheme was able
to produce statistically better results in 63 out of 90 instances.

Comparison to Results from the Literature on Euclidean Instances

In this section we compare the results of our best configuration to the state-of-the-art in
the literature. Since the metaheuristic approaches of Alekseeva et al. [6], Alekseeva and
Kochetov [4], and Davydov et al. [38] are the best heuristic approaches so far we compare
with them. For this purpose both the probabilistic tabu search (TSAl) [6] and the hybrid
memetic algorithm (HMA) [4] were re-implemented in C++. Our re-implementations
were verified to exhibit nearly equal performance as published in the respective original
papers. The results of the STS are taken from [38], where they presented the objective
values of single runs (obj1). Although they developed two metaheuristics here we only
compare with STS because the other one, the VNS, performed worse on Euclidean

68

Ta
bl
e
4.
8:

R
es
ul
ts

fo
r
th
e
m
ul
ti-
le
ve
le

va
lu
at
io
n
sc
he
m
e
an

d
th
e
lo
ca
l/
ta
bu

se
ar
ch

im
pr
ov
em

en
t
co
m
pa

re
d
to

th
e
st
an

da
rd

LP
so
lu
tio

n
ev
al
ua

tio
n.

G
A

+
so
lA

+
G
A

+
so
lA

+
G
A

+
so
lA

+
G
A

+
so
lA

+
LP

+
LS

M
L-
E
S
+

LS
M
L-
E
S
+

im
pr
ov
ed

LS
M
L-
E
S
+

im
pr
ov
ed

T
S

In
st

an
ce

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

ob
j

sd
t∗

[s
]

C
od

e1
11

w
_
rp
10

43
61

.0
0

0.
00

13
0.
30

43
61

.0
0

0.
00

13
.0
0

43
61

.0
0

0.
00

12
.7
0

43
61

.0
0

0.
00

14
.7
0

C
od

e1
11

w
_
rp
15

45
96

.0
0

0.
00

64
.1
0

45
96

.0
0

0.
00

22
.2
0

45
96

.0
0

0.
00

12
.2
0

45
96

.0
0

0.
00

16
.1
0

C
od

e1
11

w
_
rp
20

45
05

.4
7

11
.2
2

34
3.
30

45
07
.7
7

4.
15

18
1.
80

45
11
.4
7

1.
38

23
1.
30

45
11

.8
7

0.
73

20
9.
50

C
od

e1
_
15

0w
_
rp
10

71
38

.3
7

11
2.
88

88
.6
0

71
80

.0
0

0.
00

23
.5
0

71
80

.0
0

0.
00

33
.7
0

71
80

.0
0

0.
00

29
.2
0

C
od

e1
_
15

0w
_
rp
15

70
77

.9
7

35
.7
9

34
1.
20

70
80
.2
3

45
.9
2

11
0.
30

71
30
.9
7

36
.6
7

29
1.
60

71
53

.9
3

0.
25

13
3.
00

C
od

e1
_
15

0w
_
rp
20

71
98

.2
7

19
.0
1

38
0.
20

71
98
.7
0

23
.3
9

26
4.
90

72
08
.1
3

18
.9
7

28
2.
50

72
47

.2
7

7.
97

24
1.
40

C
od

e1
_
20

0w
_
rp
10

94
76

.1
7

10
7.
30

20
0.
60

95
15
.2
3

54
.6
5

20
1.
80

95
58
.8
3

37
.2
6

29
8.
50

95
94

.0
0

10
.3
7

24
3.
10

C
od

e1
_
20

0w
_
rp
15

10
00

1.
40

92
.7
8

39
4.
40

10
02
6.
23

67
.1
7

13
4.
20

10
07
7.
10

42
.9
6

28
9.
20

10
09

5.
00

37
.0
2

29
7.
10

C
od

e1
_
20

0w
_
rp
20

97
53

.0
7

77
.5
4

57
2.
80

97
42
.1
0

93
.2
0

22
5.
20

98
07
.5
7

74
.6
7

46
0.
80

98
31

.9
7

56
.3
5

46
0.
50

C
od

e2
11

w
_
rp
10

53
10

.0
0

0.
00

43
.5
0

53
10

.0
0

0.
00

8.
60

53
10

.0
0

0.
00

8.
30

53
10

.0
0

0.
00

8.
10

C
od

e2
11

w
_
rp
15

53
73

.0
0

0.
00

11
1.
80

53
73

.0
0

0.
00

37
.0
0

53
73

.0
0

0.
00

17
.8
0

53
73

.0
0

0.
00

23
.1
0

C
od

e2
11

w
_
rp
20

54
04

.4
3

29
.6
9

29
1.
60

54
27
.8
0

10
.5
3

25
2.
60

54
32

.0
0

0.
00

16
5.
70

54
31
.5
7

2.
37

82
.4
0

C
od

e2
_
15

0w
_
rp
10

72
47

.4
7

53
.4
3

29
2.
50

72
76
.7
0

61
.7
4

98
.6
0

73
28
.9
7

23
.9
1

16
6.
70

73
37

.0
0

0.
00

24
2.
70

C
od

e2
_
15

0w
_
rp
15

77
43

.2
0

4.
70

28
1.
40

77
35
.9
3

9.
15

60
.3
0

77
44
.0
0

3.
81

10
2.
90

77
45

.0
0

0.
00

96
.9
0

C
od

e2
_
15

0w
_
rp
20

77
72

.1
3

40
.9
1

34
9.
50

77
59
.6
0

40
.5
9

18
1.
30

77
89
.2
7

28
.7
1

17
7.
00

78
02

.0
3

15
.7
9

21
1.
50

C
od

e2
_
20

0w
_
rp
10

92
31

.6
3

75
.5
5

24
9.
80

92
38
.2
3

78
.8
1

58
.3
0

93
07
.1
3

53
.1
1

23
6.
50

93
21

.1
3

26
.2
8

13
0.
10

C
od

e2
_
20

0w
_
rp
15

95
39

.2
7

70
.9
4

51
6.
40

94
71
.0
7

78
.2
1

11
9.
40

95
93
.5
3

53
.4
0

34
5.
90

96
26

.6
7

17
.3
4

39
2.
00

C
od

e2
_
20

0w
_
rp
20

95
79

.8
3

11
8.
18

50
8.
00

95
99
.4
0

88
.0
2

24
1.
50

96
43
.8
0

80
.4
7

40
2.
70

96
66

.3
7

52
.7
2

42
1.
30

C
od

e3
11

w
_
rp
10

44
83

.0
0

0.
00

25
.8
0

44
83

.0
0

0.
00

5.
90

44
83

.0
0

0.
00

7.
90

44
83

.0
0

0.
00

8.
10

C
od

e3
11

w
_
rp
15

48
00

.0
0

0.
00

73
.6
0

48
00

.0
0

0.
00

13
.5
0

48
00

.0
0

0.
00

19
.8
0

48
00

.0
0

0.
00

13
.3
0

C
od

e3
11

w
_
rp
20

48
92

.8
0

0.
61

29
7.
90

48
89
.3
3

6.
19

10
0.
10

48
93

.0
0

0.
00

10
3.
30

48
93

.0
0

0.
00

65
.2
0

C
od

e3
_
15

0w
_
rp
10

72
86

.9
3

16
.3
6

31
0.
70

72
92
.5
0

13
.3
8

62
.9
0

72
96
.8
3

8.
33

64
.1
0

72
99

.0
0

0.
00

35
.4
0

C
od

e3
_
15

0w
_
rp
15

75
89

.0
0

18
.8
3

28
5.
80

75
80
.9
7

23
.6
0

45
.6
0

75
97
.7
7

13
.8
0

20
7.
80

76
03

.1
0

2.
75

14
2.
50

C
od

e3
_
15

0w
_
rp
20

76
24

.4
3

34
.0
3

30
9.
10

76
05
.7
7

60
.4
7

11
1.
10

76
36
.4
7

15
.2
8

28
9.
20

76
46

.8
7

4.
32

27
4.
00

C
od

e3
_
20

0w
_
rp
10

93
00

.2
3

70
.3
0

29
1.
70

93
20
.5
3

62
.7
2

16
4.
60

93
58
.9
7

48
.6
6

28
3.
30

93
74

.3
0

28
.1
5

22
7.
00

C
od

e3
_
20

0w
_
rp
15

93
04

.5
7

71
.4
4

38
6.
40

93
10
.3
3

71
.2
2

19
2.
00

93
53
.3
3

39
.2
9

38
8.
40

93
65

.9
7

17
.1
9

28
1.
90

C
od

e3
_
20

0w
_
rp
20

91
97

.9
7

15
5.
51

51
6.
80

92
65
.9
3

10
7.
10

25
2.
20

92
85
.7
3

81
.4
7

41
6.
80

92
96

.6
7

70
.9
6

42
6.
90

ge
om

et
ri
c
m
ea
n

69
95

.1
2

70
00
.5
4

70
19
.3
7

70
27

.1
6

#
be

st
re
su
lt
s

19
24

43
85

#
un

iq
ue

be
st

re
su
lt
s

0
0

5
47

69

Table 4.9: Results of Wilcoxon Rank Sum tests with error levels of 5% for the multi-level
evaluation scheme configurations.

GA+solA+ GA+solA+ GA + solA + GA + solA +
LP+LS ML-ES+LS ML-ES + imp. LS ML-ES + imp. TS Σ

GA + solA +
LP + LS – 10 0 0 10

GA + solA +
ML-ES + LS 17 – 1 2 18
GA + solA +

ML-ES + imp. LS 60 55 – 1 115
GA + solA +

ML-ES + imp. TS 63 59 29 – 151

instances.
Table 4.10 shows the results of their approaches compared to our algorithm (GA +

solA + ML-ES + imp. TS) with n = 100. Additionally, Tables 4.11 and 4.12 show the
results of it compared to TSAl and HMA with n = 150 and n = 200. It can be seen that
especially for larger instances our algorithm achieves the best results among all three
tested algorithms. For the instances with 100 customers the algorithm described in this
work gets better or equally good results than TSAl and HMA in all but one instances,
although the differences in the mean objective value is rather small. Compared to STS
both algorithms get better objective values on 3 instances and equally good solutions on
the remaining 24 instances. However, the time needed to find these solutions is much
lower for most instances when using our algorithm. The differences in the objective value
become larger when considering larger instances. On all instances with n = 200 the
presented EA obtains better results than HMA and on 24 out of 30 instances it also gets
better mean objective values than TSAl.

We observe that because of the time-consuming local searches in the creation of the
initial population the HMA was not able to finish the initialization within the timelimit
for some instances, so we made further tests with an increased timelimit of 1800 seconds.
The results of these tests can be found in Table 4.14 for n = 100 and Table 4.15 for
n = 150 and n = 200. In Table 4.14 we also show the results of the modified iterative exact
method (MEM) by Alekseeva and Kochetov [4] and the results of the branch-and-cut by
Roboredo and Pesso [115]. For more than 100 customers no results of exact methods are
published in the literature. From Table 4.14 we conclude that our algorithm is able to
find optimal solutions to all but one instance, with n = 100 but in much less time than
the exact algorithms. Table 4.15 shows that the described approach is still superior and
exceeds the HMA in most instances. The HMA can compete with the GA on some of the
instances with n = 150 and even gets better mean objective values for 3 instances, e.g.,
Code5_150w_rp15. However, the differences are rather small and for n = 200 the GA is
better in 28 out of 30 instances with a much lower standard deviation on most instances.

It is interesting that although our algorithm did not find the optimal solution for
instance Code511 with r = p = 15 it always terminated with the same suboptimal
solution. This is due to its solution evaluation method because even though the optimal

70

Table 4.10: Comparison to results from the literature with a runtime of 600 seconds and
n = 100. The Tabu Search (TSAl), the Hybrid Memetic Algorithm (HMA), and the STS
approach by Alekseeva et al. [6], Alekseeva and Kochetov [4], and Davydov et al. [38],
respectively, compared to our best configuration GA + solA + ML-ES + improved TS.

GA + solA +
TSAl HMA STS ML-ES+imp.TS

Instance obj sd t∗[s] obj sd t∗[s] obj1 t∗[s] obj sd t∗[s]

Code111w_rp10 4361.00 0.00 118.0 4361.00 0.00 92.3 4361.00 63.7 4361.00 0.00 14.7
Code111w_rp15 4596.00 0.00 38.6 4596.00 0.00 106.8 4596.00 173.3 4596.00 0.00 16.1
Code111w_rp20 4506.87 6.96 92.1 4510.60 2.03 393.6 4484.00 118.1 4511.87 0.73 209.5
Code211w_rp10 5310.00 0.00 11.9 5310.00 0.00 26.6 5310.00 23.5 5310.00 0.00 8.1
Code211w_rp15 5373.00 0.00 115.5 5373.00 0.00 121.9 5373.00 88.9 5373.00 0.00 23.1
Code211w_rp20 5428.13 6.01 167.1 5430.67 3.40 287.2 5432.00 289.2 5431.57 2.37 82.4
Code311w_rp10 4483.00 0.00 11.6 4483.00 0.00 45.1 4483.00 33.8 4483.00 0.00 8.1
Code311w_rp15 4800.00 0.00 71.3 4799.77 1.28 122.5 4800.00 91.1 4800.00 0.00 13.3
Code311w_rp20 4892.73 0.69 94.7 4892.60 0.81 297.8 4893.00 211.3 4893.00 0.00 65.2
Code411w_rp10 4994.00 0.00 11.7 4994.00 0.00 24.0 4994.00 19.3 4994.00 0.00 7.9
Code411w_rp15 5063.20 2.07 139.0 5063.80 1.10 201.0 5064.00 121.3 5064.00 0.00 48.8
Code411w_rp20 5209.00 0.00 105.6 5208.93 0.25 275.5 5209.00 288.9 5209.00 0.00 39.6
Code511w_rp10 4906.00 0.00 38.8 4906.00 0.00 81.1 4906.00 27.2 4906.00 0.00 8.9
Code511w_rp15 5123.00 0.00 104.1 5127.00 4.07 263.1 5131.00 216.2 5123.00 0.00 63.4
Code511w_rp20 5327.30 13.81 231.5 5329.93 7.26 219.5 5334.00 133.2 5334.00 0.00 76.0
Code611w_rp10 4595.00 0.00 82.7 4595.00 0.00 93.3 4595.00 44.5 4595.00 0.00 17.7
Code611w_rp15 4881.00 0.00 47.3 4881.00 0.00 67.0 4881.00 114.8 4881.00 0.00 15.7
Code611w_rp20 4951.73 1.46 137.0 4951.20 2.44 225.5 4944.00 198.1 4952.00 0.00 96.0
Code711w_rp10 5586.00 0.00 48.9 5586.00 0.00 78.9 5586.00 101.0 5586.00 0.00 8.7
Code711w_rp15 5827.00 0.00 155.5 5826.27 4.02 160.9 5827.00 210.9 5827.00 0.00 31.6
Code711w_rp20 5884.37 15.92 53.7 5892.30 2.74 216.4 5893.00 254.3 5893.00 0.00 29.8
Code811w_rp10 4609.00 0.00 70.5 4609.00 0.00 169.6 4609.00 27.2 4609.00 0.00 21.6
Code811w_rp15 4674.47 1.38 158.4 4674.87 0.73 233.9 4675.00 123.4 4675.00 0.00 41.6
Code811w_rp20 4857.63 2.01 154.6 4854.60 6.59 271.3 4858.00 118.8 4858.00 0.00 24.4
Code911w_rp10 5302.00 0.00 28.8 5302.00 0.00 37.2 5302.00 19.2 5302.00 0.00 7.5
Code911w_rp15 5157.63 1.13 204.7 5156.90 2.01 284.7 5158.00 157.8 5157.93 0.25 220.6
Code911w_rp20 5458.67 1.03 178.7 5457.50 1.78 208.9 5455.00 202.2 5459.00 0.00 92.5
Code1011w_rp10 5003.67 7.30 66.7 5004.10 4.93 104.4 5005.00 103.5 5005.00 0.00 18.2
Code1011w_rp15 5194.47 2.29 233.2 5194.23 3.52 223.6 5195.00 48.2 5195.00 0.00 29.2
Code1011w_rp20 5399.00 0.00 49.0 5399.00 0.00 261.8 5399.00 184.4 5399.00 0.00 60.8

geometric mean 5043.99 5044.47 5043.74 5044.90
#best results 16 13 27 27
#un. best res. 0 0 3 3

71

Table 4.11: Comparison to results from the literature with a runtime of 600 seconds
and n = 150. The Tabu Search (TSAl) and the Hybrid Memetic Algorithm (HMA) by
Alekseeva et al. [6] and Alekseeva and Kochetov [4], respectively, compared to our best
configuration GA + solA + ML-ES + improved TS.

GA + solA +
TSAl HMA ML-ES + improved TS

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code1_150w_rp10 7180.00 0.00 40.10 7180.00 0.00 118.50 7180.00 0.00 29.20
Code1_150w_rp15 7152.23 5.02 207.00 7132.60 32.10 428.80 7153.93 0.25 133.00
Code1_150w_rp20 7247.77 7.45 368.60 7211.07 26.63 353.10 7247.27 7.97 241.40
Code2_150w_rp10 7321.07 23.97 146.70 7325.57 16.59 334.60 7337.00 0.00 242.70
Code2_150w_rp15 7736.87 8.36 174.60 7732.87 11.63 335.90 7745.00 0.00 96.90
Code2_150w_rp20 7796.43 14.76 386.30 7770.07 25.08 510.10 7802.03 15.79 211.50
Code3_150w_rp10 7299.00 0.00 103.90 7299.00 0.00 267.90 7299.00 0.00 35.40
Code3_150w_rp15 7596.47 12.06 252.60 7593.07 16.98 231.70 7603.10 2.75 142.50
Code3_150w_rp20 7610.47 63.78 217.80 7630.60 14.08 242.60 7646.87 4.32 274.00
Code4_150w_rp10 7306.17 39.97 157.00 7307.63 19.12 298.00 7318.00 0.00 38.30
Code4_150w_rp15 7406.73 7.08 180.10 7392.30 18.53 259.10 7409.00 0.00 71.30
Code4_150w_rp20 7926.00 5.19 227.30 7917.87 10.70 244.00 7927.50 2.74 251.30
Code5_150w_rp10 6972.50 5.19 173.70 6968.90 8.56 202.40 6975.00 0.00 32.90
Code5_150w_rp15 7154.77 19.25 370.60 7135.10 26.72 459.90 7139.97 26.56 214.60
Code5_150w_rp20 7322.50 6.30 272.60 7316.13 13.54 457.00 7326.50 3.29 227.30
Code6_150w_rp10 7047.27 7.02 182.50 7043.60 10.88 323.50 7050.00 0.00 36.90
Code6_150w_rp15 7184.83 4.49 183.80 7172.50 16.84 409.60 7186.00 0.00 71.60
Code6_150w_rp20 7378.10 14.45 338.40 7333.67 39.97 500.50 7386.00 0.00 133.90
Code7_150w_rp10 6247.10 3.59 264.10 6248.17 2.57 397.90 6248.10 0.55 190.10
Code7_150w_rp15 6839.60 2.19 107.20 6834.33 9.36 175.60 6840.00 0.00 82.90
Code7_150w_rp20 7284.37 18.24 129.50 7275.30 20.64 341.10 7290.83 14.02 203.10
Code8_150w_rp10 7732.00 0.00 159.20 7732.00 0.00 232.20 7732.00 0.00 28.70
Code8_150w_rp15 7658.23 7.54 237.50 7650.80 20.36 443.60 7662.00 0.00 103.10
Code8_150w_rp20 7848.80 8.38 164.50 7836.40 18.38 428.80 7846.73 11.06 188.20
Code9_150w_rp10 6855.00 0.00 182.20 6853.47 5.84 309.40 6855.00 0.00 55.50
Code9_150w_rp15 6881.30 5.52 297.90 6878.13 7.77 350.70 6883.40 0.93 148.40
Code9_150w_rp20 7177.90 19.76 230.80 7145.17 35.49 453.60 7160.40 41.30 299.90
Code10_150w_rp10 6715.00 0.00 88.80 6715.00 0.00 209.40 6715.00 0.00 30.20
Code10_150w_rp15 7009.07 13.99 231.00 7008.07 16.87 405.10 7014.00 0.00 104.30
Code10_150w_rp20 7201.07 13.43 320.00 7181.53 24.32 489.10 7203.40 10.21 175.30

geometric mean 7260.27 7251.42 7263.31
#best results 9 5 25
#unique best res. 4 1 20

72

Table 4.12: Comparison to results from the literature with a runtime of 600 seconds
and n = 200. The Tabu Search (TSAl) and the Hybrid Memetic Algorithm (HMA) by
Alekseeva et al. [6] and Alekseeva and Kochetov [4], respectively, compared to our best
configuration GA + solA + ML-ES + improved TS.

GA + solA +
TSAl HMA ML-ES + improved TS

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code1_200w_rp10 9545.43 35.14 402.30 9505.07 57.16 348.50 9594.00 10.37 243.10
Code1_200w_rp15 10076.73 49.31 337.60 10051.83 59.42 348.30 10095.00 37.02 297.10
Code1_200w_rp20 9837.17 53.95 405.50 9767.93 58.96 365.60 9831.97 56.35 460.50
Code2_200w_rp10 9324.50 50.20 279.80 9217.80 58.07 455.30 9321.13 26.28 130.10
Code2_200w_rp15 9578.77 46.03 370.60 9514.93 51.54 286.20 9626.67 17.34 392.00
Code2_200w_rp20 9667.17 32.12 386.70 9602.20 38.63 258.70 9666.37 52.72 421.30
Code3_200w_rp10 9367.07 32.45 237.10 9329.37 53.93 350.40 9374.30 28.15 227.00
Code3_200w_rp15 9355.93 18.85 323.80 9310.30 44.48 317.70 9365.97 17.19 281.90
Code3_200w_rp20 9286.17 67.10 358.20 9253.50 63.57 313.00 9296.67 70.96 426.90
Code4_200w_rp10 8882.03 18.31 259.60 8877.13 22.02 460.40 8888.47 14.39 115.60
Code4_200w_rp15 9169.93 18.46 279.30 9116.27 68.57 365.90 9179.03 32.68 241.30
Code4_200w_rp20 9439.13 34.47 393.30 9402.23 55.74 248.50 9404.70 89.41 388.50
Code5_200w_rp10 9227.30 48.62 294.60 9240.40 52.15 304.80 9273.10 27.45 268.20
Code5_200w_rp15 9242.57 64.44 382.50 9237.70 41.65 325.90 9252.03 42.10 320.90
Code5_200w_rp20 9498.80 38.81 364.40 9422.63 52.81 379.40 9512.10 42.91 345.90
Code6_200w_rp10 9825.20 35.02 402.10 9808.13 39.34 330.50 9850.53 5.58 197.50
Code6_200w_rp15 10119.03 52.39 401.30 10095.73 41.17 269.30 10148.23 27.71 326.70
Code6_200w_rp20 10283.10 83.09 438.90 10210.53 59.37 270.30 10261.53 91.67 452.50
Code7_200w_rp10 9225.70 42.60 356.90 9183.77 55.95 382.20 9270.30 20.44 222.80
Code7_200w_rp15 9556.13 39.65 424.40 9496.63 59.54 267.30 9580.30 35.03 283.90
Code7_200w_rp20 9902.20 43.20 430.40 9860.03 52.13 221.80 9943.10 33.88 361.90
Code8_200w_rp10 9088.17 9.62 269.40 9046.43 34.70 345.10 9092.57 2.37 170.60
Code8_200w_rp15 9047.13 47.40 413.80 8987.20 41.46 244.00 9063.10 41.76 357.90
Code8_200w_rp20 9329.67 29.32 368.20 9248.07 59.96 302.60 9342.90 23.35 484.30
Code9_200w_rp10 9009.53 3.68 381.70 8950.47 59.78 324.80 9011.40 8.76 182.90
Code9_200w_rp15 9124.70 66.93 341.00 9086.47 65.56 297.60 9168.20 23.40 335.40
Code9_200w_rp20 9438.00 17.91 383.40 9404.67 42.67 300.90 9452.57 16.55 416.80
Code10_200w_rp10 9382.67 25.28 388.00 9365.40 46.44 498.60 9411.00 0.00 151.70
Code10_200w_rp15 9290.80 49.24 408.10 9240.83 57.79 252.70 9312.40 51.91 434.30
Code10_200w_rp20 9741.20 35.77 467.60 9683.63 50.92 328.30 9688.73 74.95 460.40

geometric mean 9456.10 9411.33 9470.05
#best results 6 0 24
#unique best res. 6 0 24

Table 4.13: Results of Wilcoxon Rank Sum tests with error levels of 5% for the algorithms
of the literature and the GA.

GA + solA +
TS HMA ML-ES + improved TS Σ

TS – 45 3 57
HMA 4 – 1 7

GA + solA +
ML-ES + improved TS 38 56 – 123

73

value of the LP relaxation and the optimal value to the follower problem often coincide,
it is not the case here. During our runs the algorithm might have visited the optimal
solution but it was not able to identify it because its objective value is only approximated
by the LP evaluation and was therefore discarded later.

Uniform Instances

Next, we tested our algorithm on the Uniform instances and compared the results with
the VNS and STS by Davydov et al. [38], who tested their algorithms on a Pentium Intel
Core Dual with 2.66 GHz. They published only the result of one single run (obj1). Since
we perform 30 runs, it is not straightforward to compare these approaches. Therefore
we list for our algorithm the average objective value (obj) and the objective value of the
best run (obj∗).

When using the configuration that performed best in the Euclidean instances (GA +
solA + ML-ES + imp. TS) we see in Table 4.17 that for the instances where r = p = 7
the algorithm quickly converges to a non-optimal solution. We observed that on Uniform
instances the case occurs more frequently where a good LP value does not necessarily
lead to a good (or optimal) solution. To further investigate this issue we modified the
ML-ES to solve the follower’s problem exactly instead of only using the LP evaluation
(GA + solA + ML-ES(EE) + imp. TS). Indeed, although the runtime increases, with
this modification the GA was able to find the same solutions as STS for all but one
instances with r = p = 7. Compared to the VNS, better solutions were found for five of
ten instances but more time was required. STS performed excellent on these instances
and was able to find equally good or better solutions in less time. However, the best of
the 30 runs for GA + solA + ML-ES(EE) + imp. TS identifies a better or equally good
solution for each instance.

When considering the instances where wj = 1, ∀j ∈ J and r = p ∈ {25, 30} the
modification of ML-ES is apparently not beneficial because the runtime increases and
the average objective value is often equal but sometimes even worse. The results in
Table 4.17 confirm the observation of Davydov et al. [38] that when r and p increase at
least for these instances the problem gets easier since GA + solA + ML-ES + imp. TS
obtains equally good results as the VNS with a low standard deviation. For instances
with r = p = 25 we observe the largest deviation of the objective values. While the
results of the GA are often within 3% of the VNS results in 9 out of 10 instances, they
are generally worse and in one case it is equally good. However, also for these cases the
best run for each instance found a solution that is equally good or better.

From these results we conclude that especially for the Uniform instances the search
order of the neighborhoods is important to speed up the algorithm. It seems that it
is often unnecessary to search through the whole swap neighborhood but to consider
promising moves first. An interesting extension to the presented algorithm would be to
incorporate the VNS into a hybrid GA, e.g., we could replace the swap neighborhood for
the TS with the neighborhoods of the VNS. The combination of the strengths of both the
special neighborhood structure of the VNS and STS with the hybrid GA could potentially
lead to an algorithm that performs well on both Euclidean and Uniform instances.

74

Ta
bl
e
4.
14

:
C
om

pa
ris

on
of

th
e
re
su
lts

fr
om

in
st
an

ce
s
w
ith

n
=

10
0
of

th
e
so

fa
r
be

st
ex
ac
t
m
et
ho

ds
M
E
M

by
K
oc
he

to
v

et
al
.[
81
]a

nd
B
&
C

by
R
ob

or
ed

o
an

d
Pe

ss
oa

[1
15
],
th
e
so

fa
r
be

st
he

ur
ist

ic
m
et
ho

ds
H
M
A

an
d
ST

S
by

A
le
ks
ee
va

an
d

K
oc
he

to
v
[4
]a

nd
D
av
yd

ov
et

al
.[
38

],
re
sp
ec
tiv

el
y,

an
d
ou

r
G
A

+
so
lA

+
M
L-
ES

+
im

p.
T
S
w
ith

a
ru
nt
im

e
of

18
00

se
co
nd

s.

B
&

C
M
E
M

H
M
A

ST
S

G
A
+
so
lA

+
M
L-
E
S+

im
p.

T
S

In
st

an
ce

ob
j

t∗
[s

]
ob

j
t∗

[s
]

ob
j

sd
t∗

[s
]

o
bj

1
t∗

[s
]

ob
j

sd
t∗

[s
]

C
od

e1
11

w
_
rp
10

43
61

.0
0

10
21

7.
0

43
61

.0
0

36
00
.0

43
61

.0
0

0.
00

97
.4

43
61

.0
0

63
.7

43
61

.0
0

0.
00

11
.2

C
od

e1
11

w
_
rp
15

45
96

.0
0

97
52

.0
45

96
.0

0
43
20
.0

45
96

.0
0

0.
00

11
8.
4

45
96

.0
0

17
3.
3

45
96

.0
0

0.
00

16
.3

C
od

e1
11

w
_
rp
20

45
12

.0
0

>
36

00
0

45
12

.0
0a

60
.0

45
11
.4
7

1.
38

49
2.
9

44
84
.0
0

11
8.
1

45
12

.0
0

0.
00

15
9.
4

C
od

e2
11

w
_
rp
10

53
10

.0
0

94
88

.8
53

10
.0

0
25
20
.0

53
10

.0
0

0.
00

34
.6

53
10

.0
0

23
.5

53
10

.0
0

0.
00

8.
1

C
od

e2
11

w
_
rp
15

53
73

.0
0

80
95

6.
4

53
73

.0
0

23
07
00
.0

53
73

.0
0

0.
00

11
6.
1

53
73

.0
0

88
.9

53
73

.0
0

0.
00

18
.0

C
od

e2
11

w
_
rp
20

54
32

.0
0

>
36

00
0

54
32

.0
0a

11
10
0.
0

54
32

.0
0

0.
00

28
4.
0

54
32

.0
0

28
9.
2

54
32

.0
0

0.
00

75
.4

C
od

e3
11

w
_
rp
10

44
83

.0
0

19
07

1.
3

44
83

.0
0

87
60
.0

44
83

.0
0

0.
00

38
.8

44
83

.0
0

33
.8

44
83

.0
0

0.
00

8.
2

C
od

e3
11

w
_
rp
15

48
00

.0
0

27
70

7.
3

48
00

.0
0

23
70
0.
0

48
00

.0
0

0.
00

12
0.
5

48
00

.0
0

91
.1

48
00

.0
0

0.
00

18
.9

C
od

e3
11

w
_
rp
20

48
93

.0
0

>
36

00
0

48
93

.0
0a

14
88
0.
0

48
92
.9
3

0.
37

29
7.
7

48
93

.0
0

21
1.
3

48
93

.0
0

0.
00

85
.4

C
od

e4
11

w
_
rp
10

49
94

.0
0

13
74

3.
9

49
94

.0
0

19
80
.0

49
94

.0
0

0.
00

34
.1

49
94

.0
0

19
.3

49
94

.0
0

0.
00

8.
0

C
od

e4
11

w
_
rp
15

50
64

.0
0

84
14

0.
1

50
64

.0
0

73
38
0.
0

50
64

.0
0

0.
00

20
6.
9

50
64

.0
0

12
1.
3

50
64

.0
0

0.
00

54
.5

C
od

e4
11

w
_
rp
20

52
09

.0
0

>
36

00
0

52
09

.0
0a

30
0.
0

52
09

.0
0

0.
00

25
9.
6

52
09

.0
0

28
8.
9

52
09

.0
0

0.
00

46
.8

C
od

e5
11

w
_
rp
10

49
06

.0
0

80
41

3.
8

49
06

.0
0

23
94
0.
0

49
06

.0
0

0.
00

75
.1

49
06

.0
0

27
.2

49
06

.0
0

0.
00

11
.4

C
od

e5
11

w
_
rp
15

51
31

.0
0

79
09

9.
6

51
31

.0
0

12
72
00
.0

51
30
.6
7

1.
49

57
9.
1

51
31

.0
0

21
6.
2

51
23
.0
0

0.
00

58
.2

C
od

e5
11

w
_
rp
20

53
34

.0
0

>
36

00
0

53
34

.0
0a

66
00
.0

53
34

.0
0

0.
00

27
4.
4

53
34

.0
0

13
3.
2

53
34

.0
0

0.
00

60
.9

C
od

e6
11

w
_
rp
10

45
95

.0
0

51
58

3.
2

45
95

.0
0

85
80
.0

45
95

.0
0

0.
00

15
4.
6

45
95

.0
0

44
.5

45
95

.0
0

0.
00

21
.6

C
od

e6
11

w
_
rp
15

48
81

.0
0

28
34

2.
7

48
81

.0
0

13
75
80
.0

48
81

.0
0

0.
00

52
.5

48
81

.0
0

11
4.
8

48
81

.0
0

0.
00

17
.2

C
od

e6
11

w
_
rp
20

49
52

.0
0

>
36

00
0

49
52

.0
0a

11
40
0.
0

49
52

.0
0

0.
00

28
1.
6

49
44
.0
0

19
8.
1

49
52

.0
0

0.
00

58
.1

C
od

e7
11

w
_
rp
10

55
86

.0
0

20
35

2.
7

55
86

.0
0

43
80
.0

55
86

.0
0

0.
00

10
8.
3

55
86

.0
0

10
1.
0

55
86

.0
0

0.
00

9.
2

C
od

e7
11

w
_
rp
15

58
27

.0
0

48
60

0.
5

58
27

.0
0

79
20
0.
0

58
27

.0
0

0.
00

17
2.
6

58
27

.0
0

21
0.
9

58
27

.0
0

0.
00

33
.8

C
od

e7
11

w
_
rp
20

58
93

.0
0

>
36

00
0

58
93

.0
0a

58
20
.0

58
93

.0
0

0.
00

16
8.
7

58
93

.0
0

25
4.
3

58
93

.0
0

0.
00

21
.5

C
od

e8
11

w
_
rp
10

46
09

.0
0

26
80

8.
0

46
09

.0
0

91
20
.0

46
09

.0
0

0.
00

13
9.
2

46
09

.0
0

27
.2

46
09

.0
0

0.
00

18
.8

C
od

e8
11

w
_
rp
15

46
75

.0
0

11
51

83
.5

46
75

.0
0

27
42
00
.0

46
75

.0
0

0.
00

26
6.
8

46
75

.0
0

12
3.
4

46
75

.0
0

0.
00

52
.1

C
od

e8
11

w
_
rp
20

48
58

.0
0

>
36

00
0

48
58

.0
0a

34
20
0.
0

48
58

.0
0

0.
00

37
0.
3

48
58

.0
0

11
8.
8

48
58

.0
0

0.
00

22
.9

C
od

e9
11

w
_
rp
10

53
02

.0
0

23
77

.9
53

02
.0

0
36
0.
0

53
02

.0
0

0.
00

30
.6

53
02

.0
0

19
.2

53
02

.0
0

0.
00

7.
5

C
od

e9
11

w
_
rp
15

51
58

.0
0

>
36

00
0

51
58

.0
0

>
36
00
0

51
58

.0
0

0.
00

33
8.
8

51
58

.0
0

15
7.
8

51
58

.0
0

0.
00

24
0.
1

C
od

e9
11

w
_
rp
20

54
59

.0
0

>
36

00
0

54
59

.0
0a

99
00
.0

54
58
.9
0

0.
55

35
0.
6

54
55
.0
0

20
2.
2

54
59

.0
0

0.
00

14
6.
2

C
od

e1
01

1w
_
rp
10

50
05

.0
0

33
76

5.
1

50
05

.0
0

58
20
.0

50
05

.0
0

0.
00

12
0.
0

50
05

.0
0

10
3.
5

50
05

.0
0

0.
00

15
.0

C
od

e1
01

1w
_
rp
15

51
95

.0
0

72
03

4.
4

51
95

.0
0

>
36
00
0

51
95

.0
0

0.
00

22
3.
8

51
95

.0
0

48
.2

51
95

.0
0

0.
00

28
.2

C
od

e1
01

1w
_
rp
20

53
99

.0
0

>
36

00
0

53
99

.0
0a

78
00
.0

53
99

.0
0

0.
00

18
8.
4

53
99

.0
0

18
4.
4

53
99

.0
0

0.
00

28
.0

ge
om

et
ri
c
m
ea
n

50
45

.1
8

50
45

.1
8

50
45
.1
5

50
43
.7
4

50
44
.9
2

#
be

st
re
su
lt
s

30
30

26
27

29
#
un

iq
ue

be
st

re
su
lt
s

0
0

0
0

0
a
ti
m
e
ne

ed
ed

fo
r
fin

di
ng

so
lu
ti
on

s
th
at

ar
e
w
it
hi
n

5%
of

th
e
op

ti
m
um

,
i.e

.,
th
e
op

ti
m
al
it
y
is

no
t
pr
ov
en

75

Ta
bl
e
4.
15

:
C
om

pa
ris

on
of

th
e
re
su
lts

fr
om

in
st
an

ce
s
w
ith

n
=

15
0
an

d
n

=
20

0
of

H
M
A

an
d
ou

r
G
A

+
so
lA

+
M
L-
E
S
+

im
p.
T
S
w
ith

a
ru
nt
im

e
of

18
00

se
co
nd

s.

G
A

+
so
lA

+
G
A

+
so
lA

+
H
M
A

M
L-
E
S+

im
p.
T
S

H
M
A

M
L-
E
S+

im
p.
T
S

In
st

an
ce

ob
j

sd
ob

j
sd

In
st

an
ce

ob
j

sd
ob

j
sd

C
od

e1
_
15

0w
_
rp
10

71
80

.0
0

0.
00

71
80

.0
0

0.
00

C
od

e1
_
20
0w

_
rp
10

95
75
.2
7

24
.6
2

95
98

.0
0

0.
00

C
od

e1
_
15

0w
_
rp
15

71
53

.9
0

0.
31

71
54

.0
0

0.
00

C
od

e1
_
20
0w

_
rp
15

10
10
7.
73

31
.0
2

10
13

0.
00

0.
00

C
od

e1
_
15

0w
_
rp
20

72
49

.7
0

0.
47

72
49

.9
0

0.
31

C
od

e1
_
20
0w

_
rp
20

98
58
.9
3

31
.2
2

98
94

.3
3

24
.1
9

C
od

e2
_
15

0w
_
rp
10

73
37

.0
0

0.
00

73
37

.0
0

0.
00

C
od

e2
_
20
0w

_
rp
10

93
25
.3
3

40
.5
6

93
33

.8
0

35
.4
2

C
od

e2
_
15

0w
_
rp
15

77
44

.1
0

3.
45

77
45

.0
0

0.
00

C
od

e2
_
20
0w

_
rp
15

96
15
.3
0

23
.2
0

96
33

.8
0

6.
57

C
od

e2
_
15

0w
_
rp
20

78
04

.9
0

8.
76

78
09

.4
0

3.
29

C
od

e2
_
20
0w

_
rp
20

96
85
.5
7

27
.1
0

97
02

.2
7

20
.6
0

C
od

e3
_
15

0w
_
rp
10

72
99

.0
0

0.
00

72
99

.0
0

0.
00

C
od

e3
_
20
0w

_
rp
10

93
78
.5
7

10
.8
5

93
82

.0
0

0.
00

C
od

e3
_
15

0w
_
rp
15

76
03

.4
0

2.
28

76
04

.0
0

0.
00

C
od

e3
_
20
0w

_
rp
15

93
62
.6
3

11
.7
8

93
71

.0
0

0.
00

C
od

e3
_
15

0w
_
rp
20

76
48

.0
0

0.
00

76
47
.4
7

2.
92

C
od

e3
_
20
0w

_
rp
20

93
34
.6
0

39
.8
9

93
52

.0
0

58
.9
8

C
od

e4
_
15

0w
_
rp
10

73
18

.0
0

0.
00

73
18

.0
0

0.
00

C
od

e4
_
20
0w

_
rp
10

88
93
.7
3

9.
19

88
97

.0
0

0.
00

C
od

e4
_
15

0w
_
rp
15

74
09

.0
0

0.
00

74
09

.0
0

0.
00

C
od

e4
_
20
0w

_
rp
15

91
74
.7
3

14
.6
4

91
85

.0
0

0.
00

C
od

e4
_
15

0w
_
rp
20

79
27

.0
0

3.
81

79
28

.0
0

0.
00

C
od

e4
_
20
0w

_
rp
20

94
58
.9
7

23
.7
9

94
73

.8
3

6.
39

C
od

e5
_
15

0w
_
rp
10

69
75

.0
0

0.
00

69
75

.0
0

0.
00

C
od

e5
_
20
0w

_
rp
10

92
66
.4
7

28
.8
4

92
81

.2
7

9.
49

C
od

e5
_
15

0w
_
rp
15

71
62

.1
3

8.
99

71
58
.9
3

15
.7
6

C
od

e5
_
20
0w

_
rp
15

92
86

.6
3

30
.7
0

92
59
.5
7

52
.7
7

C
od

e5
_
15

0w
_
rp
20

73
24

.8
7

4.
01

73
26

.7
7

2.
87

C
od

e5
_
20
0w

_
rp
20

95
41
.2
7

23
.0
4

95
56

.0
0

0.
00

C
od

e6
_
15

0w
_
rp
10

70
49

.6
7

1.
83

70
50

.0
0

0.
00

C
od

e6
_
20
0w

_
rp
10

98
47
.4
7

8.
89

98
52

.0
0

0.
00

C
od

e6
_
15

0w
_
rp
15

71
86

.0
0

0.
00

71
86

.0
0

0.
00

C
od

e6
_
20
0w

_
rp
15

10
14
1.
63

18
.5
4

10
15

5.
27

9.
03

C
od

e6
_
15

0w
_
rp
20

73
83

.8
3

6.
61

73
86

.0
0

0.
00

C
od

e6
_
20
0w

_
rp
20

10
33
3.
63

30
.5
5

10
35

0.
83

39
.8
1

C
od

e7
_
15

0w
_
rp
10

62
50

.3
0

1.
29

62
48
.0
0

0.
00

C
od

e7
_
20
0w

_
rp
10

92
52
.1
3

33
.5
9

92
77

.0
0

0.
00

C
od

e7
_
15

0w
_
rp
15

68
40

.0
0

0.
00

68
40

.0
0

0.
00

C
od

e7
_
20
0w

_
rp
15

95
70
.4
3

16
.9
2

95
88

.0
0

0.
00

C
od

e7
_
15

0w
_
rp
20

72
95

.7
7

6.
76

72
97

.0
0

0.
00

C
od

e7
_
20
0w

_
rp
20

99
30
.8
3

31
.8
5

99
52

.3
3

17
.2
9

C
od

e8
_
15

0w
_
rp
10

77
32

.0
0

0.
00

77
32

.0
0

0.
00

C
od

e8
_
20
0w

_
rp
10

90
92
.7
7

4.
93

90
93

.0
0

0.
00

C
od

e8
_
15

0w
_
rp
15

76
62

.0
0

0.
00

76
62

.0
0

0.
00

C
od

e8
_
20
0w

_
rp
15

90
69
.6
3

21
.6
1

90
85

.8
0

21
.1
2

C
od

e8
_
15

0w
_
rp
20

78
50

.7
7

1.
28

78
51

.0
0

0.
00

C
od

e8
_
20
0w

_
rp
20

93
26
.7
7

30
.9
5

93
48

.7
7

18
.6
4

C
od

e9
_
15

0w
_
rp
10

68
55

.0
0

0.
00

68
55

.0
0

0.
00

C
od

e9
_
20
0w

_
rp
10

90
12
.6
0

1.
04

90
13

.0
0

0.
00

C
od

e9
_
15

0w
_
rp
15

68
83

.3
0

1.
21

68
83

.8
0

0.
61

C
od

e9
_
20
0w

_
rp
15

91
60
.2
0

20
.1
3

91
74

.0
7

10
.5
9

C
od

e9
_
15

0w
_
rp
20

71
85

.3
0

4.
67

71
87

.0
0

3.
81

C
od

e9
_
20
0w

_
rp
20

94
50
.9
7

13
.2
6

94
62

.6
7

1.
83

C
od

e1
0_

15
0w

_
rp
10

67
15

.0
0

0.
00

67
15

.0
0

0.
00

C
od

e1
0_

20
0w

_
rp
10

94
06
.9
7

4.
80

94
11

.0
0

0.
00

C
od

e1
0_

15
0w

_
rp
15

70
14

.0
0

0.
00

70
14

.0
0

0.
00

C
od

e1
0_

20
0w

_
rp
15

93
23
.4
3

34
.2
6

93
53

.8
0

25
.0
2

C
od

e1
0_

15
0w

_
rp
20

72
05

.1
3

2.
73

72
06

.0
0

0.
00

C
od

e1
0_

20
0w

_
rp
20

97
51

.0
3

18
.4
2

97
42
.5
3

30
.8
6

ge
om

et
ri
c
m
ea
n

72
65

.3
7

72
65

.6
8

94
78
.4
3

94
90

.7
6

#
be

st
re
su
lt
s

16
27

2
28

#
un

iq
ue

be
st

re
s.

3
14

2
28

76

Table 4.16: Results of Wilcoxon Rank Sum tests with error levels of 5% for HMA and
the GA with longer runtime for all 90 Euclidean test instances.

GA + solA +
HMA ML-ES + improved TS Σ

HMA – 3 3
GA + solA +

ML-ES + improved TS 31 – 31

Distribution of Facilities

After the computational tests with binary essential customer behavior we want to
investigate how solutions to the problem may look like and what properties they might
have. Although we cannot make general statements that apply to all problem instances,
we show in Figure 4.3 the graphical representation of optimal solutions for one instance
with 100 customers (Code311w) with different r and p values. The circles are customer
locations, the filled points stand for locations chosen by the leader and the rectangles
represent facilities of the follower. The size of the symbols depends on the demand of the
corresponding location, i.e., the larger the symbol the higher the demand.

In Figure 4.3 it seems that the leader tends to choose locations that are more or less
evenly spreaded across the whole region with a focus on the more crowded areas. The
follower then appears to prefer locations in the vicinity of a leader’s facility. Another
interesting observation is that while some locations are picked each time by the leader
for different r and p values, some other locations are not always chosen. Visualizations
on other instances reveal similar patterns, but as said before it is hard to draw precise
general conclusions.

4.9.2 Proportional Essential

For evaluating the EA with the other customer behavior scenarios we use the configuration
determined by previous tests as basis. We choose to evaluate the impact of the solution
archive on the results in Table 4.18 as well as investigating the performance compared
to the alternating heuristic (AH) by Kochetov et al. [81]. Their AH is based on a
starting solution for the leader to find the optimal facility locations for the follower
which are computed using the linear MIP model for the follower. This follower solution
is subsequently chosen as leader solution and the optimal follower solution is found
again. This procedure is repeated until a solution is obtained which has already been
generated. Since the repeated exact computation of the optimal follower’s locations is
time-consuming we modified their approach by using our greedy algorithm instead of the
MIP as described in Section 4.5 for finding the locations for the follower. We analyze the
following configurations:

• The EA variant where the final best solution is not evaluated with the MIP. This

77

Ta
bl
e
4.
17

:
C
om

pa
ris

on
of

re
su
lts

fr
om

U
ni
fo
rm

in
st
an

ce
s
of

V
N
S
an

d
ST

S
by

D
av

yd
ov

et
al
.
[3
8]

w
ith

ou
r
al
go

rit
hm

G
A
+
so
lA

+
M
L-
ES

+
im

p.
T
S
an

d
ou

r
m
od

ifi
ca
tio

n
M
L-
ES

(E
E)

.

V
N
S

ST
S

G
A
+
so
lA

+
M
L-
E
S+

im
p.

T
S

G
A
+
so
lA

+
M
L-
E
S(
E
E
)+

im
p.

T
S

In
st

an
ce

o
bj

1
t∗

[s
]

o
bj

1
t∗

[s
]

o
bj
∗

ob
j

sd
t∗

[s
]

o
bj
∗

ob
j

sd
t∗

[s
]

12
3C

om
p-
U
ni
f_

rp
7

50
09

.0
0

30
4.
17

50
09
.0
0

65
.0
9

49
04
.0
0

49
04
.0
0

0.
00

54
.1
0

50
09
.0
0

50
09
.0
0

0.
00

50
4.
00

22
3C

om
p-
U
ni
f_

rp
7

54
59

.0
0

18
2.
91

54
59
.0
0

63
.1
8

54
59
.0
0

54
59
.0
0

0.
00

38
.4
0

54
59
.0
0

54
59
.0
0

0.
00

24
5.
50

32
3C

om
p-
U
ni
f_

rp
7

50
09

.0
0

14
5.
01

50
19
.0
0

54
.6
9

50
03
.0
0

50
03
.0
0

0.
00

53
.1
0

50
19
.0
0

50
19
.0
0

0.
00

44
5.
40

42
3C

om
p-
U
ni
f_

rp
7

49
08

.0
0

29
6.
63

49
08
.0
0

14
5.
22

48
46
.0
0

48
46
.0
0

0.
00

58
.8
0

49
08
.0
0

49
08
.0
0

0.
00

64
1.
80

52
3C

om
p-
U
ni
f_

rp
7

51
98

.0
0

29
2.
05

52
08
.0
0

22
.6
3

52
06
.0
0

52
06
.0
0

0.
00

57
.9
0

52
08
.0
0

52
08
.0
0

0.
00

37
4.
10

62
3C

om
p-
U
ni
f_

rp
7

50
32

.0
0

29
6.
52

50
32
.0
0

19
7.
08

50
32
.0
0

50
32
.0
0

0.
00

51
.0
0

50
32
.0
0

50
28
.5
0

19
.1
7

38
6.
70

72
3C

om
p-
U
ni
f_

rp
7

50
55

.0
0

28
6.
04

50
55
.0
0

62
.2
3

49
62
.0
0

49
62
.0
0

0.
00

46
.8
0

50
55
.0
0

50
55
.0
0

0.
00

44
6.
10

82
3C

om
p-
U
ni
f_

rp
7

48
60

.0
0

29
5.
77

49
51
.0
0

74
.4
9

48
47
.0
0

48
47
.0
0

0.
00

83
.3
0

49
51
.0
0

49
51
.0
0

0.
00

44
1.
30

92
3C

om
p-
U
ni
f_

rp
7

50
60

.0
0

21
7.
70

51
27
.0
0

11
1.
27

51
27
.0
0

51
27
.0
0

0.
00

80
.2
0

51
27
.0
0

51
27
.0
0

0.
00

82
5.
00

10
23

C
om

p-
U
ni
f_

rp
7

50
67

.0
0

32
2.
48

50
84
.0
0

27
8.
18

50
00
.0
0

50
00
.0
0

0.
00

55
.2
0

50
84
.0
0

50
84
.0
0

0.
00

51
0.
70

w
j

=
1.
∀j
∈
J
:

12
3C

om
p-
U
ni
f_

rp
25

62
.0
0

16
.1
2

62
.0
0

30
.2
7

62
.0
0

61
.2
0

1.
27

89
.9
0

62
.0
0

61
.3
0

1.
09

15
4.
90

22
3C

om
p-
U
ni
f_

rp
25

62
.0
0

15
7.
40

62
.0
0

38
.8
4

61
.0
0

60
.7
0

0.
47

96
.4
0

62
.0
0

60
.7
7

0.
57

16
0.
30

32
3C

om
p-
U
ni
f_

rp
25

61
.0
0

34
.6
0

61
.0
0

47
.4
8

61
.0
0

60
.2
0

1.
30

10
6.
60

61
.0
0

59
.5
0

1.
83

17
2.
70

42
3C

om
p-
U
ni
f_

rp
25

59
.0
0

25
.5
9

59
.0
0

17
.2
6

59
.0
0

58
.6
0

0.
89

11
2.
90

59
.0
0

58
.8
0

0.
48

15
5.
00

52
3C

om
p-
U
ni
f_

rp
25

63
.0
0

70
.9
1

63
.0
0

41
.0
0

63
.0
0

61
.9
0

0.
92

95
.0
0

63
.0
0

61
.9
0

0.
84

16
4.
80

62
3C

om
p-
U
ni
f_

rp
25

62
.0
0

16
.3
9

61
.0
0

35
.6
1

62
.0
0

60
.1
3

1.
48

91
.0
0

62
.0
0

60
.0
7

1.
26

14
8.
00

72
3C

om
p-
U
ni
f_

rp
25

66
.0
0

15
.6
9

66
.0
0

19
.4
2

66
.0
0

65
.8
7

0.
73

11
0.
40

66
.0
0

65
.8
7

0.
73

17
2.
90

82
3C

om
p-
U
ni
f_

rp
25

60
.0
0

32
.9
8

60
.0
0

19
.3
8

60
.0
0

58
.2
0

1.
16

91
.6
0

60
.0
0

58
.4
3

1.
07

14
5.
00

92
3C

om
p-
U
ni
f_

rp
25

63
.0
0

18
.9
6

63
.0
0

17
.4
3

63
.0
0

61
.7
0

1.
18

98
.6
0

63
.0
0

61
.4
3

1.
38

16
4.
60

10
23

C
om

p-
U
ni
f_

rp
25

65
.0
0

15
.4
9

65
.0
0

21
.5
8

65
.0
0

65
.0
0

0.
00

91
.9
0

65
.0
0

65
.0
0

0.
00

15
3.
70

12
3C

om
p-
U
ni
f_

rp
30

70
.0
0

15
.7
3

69
.0
0

50
.9
7

70
.0
0

70
.0
0

0.
00

11
6.
50

70
.0
0

70
.0
0

0.
00

18
2.
30

22
3C

om
p-
U
ni
f_

rp
30

65
.0
0

15
.8
1

65
.0
0

67
.8
7

65
.0
0

65
.0
0

0.
00

10
3.
40

65
.0
0

65
.0
0

0.
00

16
7.
30

32
3C

om
p-
U
ni
f_

rp
30

65
.0
0

15
.8
2

65
.0
0

86
.9
2

65
.0
0

65
.0
0

0.
00

11
4.
10

65
.0
0

65
.0
0

0.
00

17
4.
40

42
3C

om
p-
U
ni
f_

rp
30

65
.0
0

16
.0
9

65
.0
0

91
.1
3

65
.0
0

65
.0
0

0.
00

11
9.
40

65
.0
0

65
.0
0

0.
00

19
7.
00

52
3C

om
p-
U
ni
f_

rp
30

69
.0
0

15
.5
8

69
.0
0

76
.3
1

69
.0
0

69
.0
0

0.
00

11
4.
80

69
.0
0

69
.0
0

0.
00

18
5.
20

62
3C

om
p-
U
ni
f_

rp
30

69
.0
0

15
.9
4

69
.0
0

78
.4
4

69
.0
0

69
.0
0

0.
00

11
1.
70

69
.0
0

69
.0
0

0.
00

17
9.
90

72
3C

om
p-
U
ni
f_

rp
30

72
.0
0

15
.6
4

72
.0
0

74
.2
0

72
.0
0

72
.0
0

0.
00

11
3.
40

72
.0
0

72
.0
0

0.
00

18
2.
80

82
3C

om
p-
U
ni
f_

rp
30

62
.0
0

15
.6
4

62
.0
0

80
.5
6

62
.0
0

62
.0
0

0.
00

91
.3
0

62
.0
0

61
.7
7

0.
73

14
6.
20

92
3C

om
p-
U
ni
f_

rp
30

68
.0
0

15
.4
2

68
.0
0

59
.3
6

68
.0
0

68
.0
0

0.
00

10
7.
50

68
.0
0

68
.0
0

0.
00

17
0.
00

10
23

C
om

p-
U
ni
f_

rp
30

73
.0
0

15
.4
2

71
.0
0

12
6.
19

73
.0
0

73
.0
0

0.
00

11
5.
20

73
.0
0

73
.0
0

0.
00

17
6.
30

ge
om

et
ri
c
m
ea
n

27
7.
42

27
7.
24

27
6.
76

27
5.
48

27
7.
78

27
6.
24

78

(a) r = p = 10 (b) r = p = 15

(c) r = p = 20

Figure 4.3: Optimal Solutions for instance Code311w with different r and p values.

79

means that the corresponding objective values are not exact, but only approximate
values from the greedy evaluation method.

• A modified version of the Alternating Heuristic (MAH) by Kochetov et al. [81],
where each solution candidate is approximated by our greedy algorithm instead of
evaluated exactly.

• The EA variant (EA + MIP) that does not employ the archive and utilizes the
basic local search only; the final best solution is evaluated with MIP.

• The EA variant (EA + SA + MIP) that uses the solution archive and the tabu
search as local improvement method; the final best solution is evaluated with MIP.

In this table, again, obj stands for the average of the objective values over 30 runs with
their standard deviation in column sd . The time needed until termination is given in
column t[s]. Since MAH is a deterministic algorithm only one run is performed.

In Table 4.18 the numerical values are given. Numbers in parenthesis mean that
evaluating the best solution candidate of the EA needed more than the time limit of
3600 seconds and so the objective values are determined by the greedy algorithm only.
Therefore they are only approximations and not directly comparable to exact objective
values. So in the summary of the EA configuration these values are not considered for
comparison. The best value in each row is marked bold. When some values of a row
are obtained by greedy evaluation and some other values in the same row are exact
solution qualities, only the exact values are compared to each other, e.g., in the row with
r = p = 3.

In some cases of the EA + MIP variant not all 30 runs terminated within the time
limit so only the average over the finished runs is given, e.g., the row with r = 3 and
p = 5. We observe that even for small p values of 4 and 5 we were not able to evaluate
even one solution candidate in the given time limit. Another interesting point is that
evaluating the candidate solution exactly via the MIP is the most time-consuming part
of the algorithm; for r = 3 and p = 8 it needed over 90% of the overall time but it
decreases when p increases. The run-time of all configurations that incorporate the exact
evaluation increases steadily with r because of the growing complexity of the MIP.

On some instances MAH finds a solution in less time than our algorithms and
especially when the exact evaluation is too time consuming it is very fast. The quality
of the solutions is similar to our EA approach when we do not use the SA, but by
incorporating the solution archive we boosted the performance of our algorithm so that
the final solution quality is in all but 4 of the tested instances better than the quality
of the solutions produced by MAH and in 3 of the 4 cases it is equal. For some of the
smaller instances EA + SA + MIP has a very small standard deviation, which underlines
the robustness of our algorithm.

Compared to binary customer behavior, the proportional scenario is much harder to
solve and we can only approximate the value of solution candidates for instances that
are only half the size.

80

Table 4.18: Results of proportional customer behavior with essential demand.

EA EA + MIP MAH EA + SA + MIP

r p obj sd t[s] obj sd t[s] obj t[s] obj sd t[s]

2 2 (280.002) 0.13 106 278.671 0.15 677 277.942 667 278.736 0.00 600
2 3 (338.170) 0.31 157 336.587 0.19 684 334.233 535 337.228 0.00 625
2 4 (374.754) 0.71 154 373.455 0.48 623 373.665 503 374.425 0.00 674
2 5 (399.834) 0.50 200 398.642 0.90 493 399.208 260 401.781 0.00 505
2 6 (419.360) 0.46 241 418.779 0.67 525 419.920 275 421.091 0.15 586
2 7 (434.640) 0.62 223 434.388 0.74 394 431.803 272 436.123 0.00 440
2 8 (447.131) 0.42 202 446.710 0.46 322 446.474 158 448.192 0.18 440
2 9 (456.992) 0.45 300 456.615 0.63 419 455.788 166 458.905 0.37 529
2 10 (465.178) 0.54 300 464.620 0.53 401 463.211 173 467.055 0.16 416

3 2 (223.059) 0.18 144 (223.059) 0.18 144 (223.153) <1 (223.194) 0.00 27
3 3 (281.283) 0.31 174 (281.283) 0.31 174 276.818 5959 279.000 0.00 6397
3 4 (321.185) 0.86 201 (321.185) 0.86 201 319.427 4128 319.819 0.00 3956
3 5 (349.644) 0.54 300 347.429* 0.48 3892 349.471 3867 349.793 0.00 2703
3 6 (372.924) 0.68 300 371.900* 0.98 3896 372.760 3453 373.836 0.12 2777
3 7 (391.264) 0.65 300 390.753* 0.74 3493 391.314 2086 391.894 0.39 2658
3 8 (406.302) 0.52 300 405.907* 0.77 3124 407.623 1721 407.765 0.08 3148
3 9 (418.553) 0.37 300 418.051* 0.53 2795 419.985 1709 420.305 0.18 2424
3 10 (429.040) 0.56 300 428.357 0.53 2370 430.465 1299 431.578 0.33 2670

4 2 (183.188) 0.11 246 (183.188) 0.11 246 (183.223) <1 (183.223) 0.00 38
4 3 (238.953) 0.33 226 (238.953) 0.33 226 (239.527) <1 (239.628) 0.00 83
4 4 (279.021) 0.56 298 (279.021) 0.56 298 (280.336) <1 (280.549) 0.08 126
4 5 (310.562) 0.70 300 (310.562) 0.70 300 (313.041) <1 (313.041) 0.00 157
4 6 (335.415) 0.65 300 (335.415) 0.65 300 (337.158) <1 (337.540) 0.12 242
4 7 (355.659) 0.52 300 (355.659) 0.52 300 (356.575) <1 (358.233) 0.18 267
4 8 (372.334) 0.67 300 (372.334) 0.67 300 (374.436) <1 (375.031) 0.04 300
4 9 (386.207) 0.81 300 (386.207) 0.81 300 (387.975) <1 (389.837) 0.12 300
4 10 (398.011) 0.74 300 (398.011) 0.74 300 (400.421) 1 (401.428) 0.13 300

5 2 (156.357) 0.15 199 (156.357) 0.15 199 (156.538) <1 (156.538) 0.00 44
5 3 (207.548) 0.18 293 (207.548) 0.18 293 (207.682) <1 (208.025) 0.00 112
5 4 (247.295) 0.76 300 (247.295) 0.76 300 (244.959) <1 (248.663) 0.06 212
5 5 (278.806) 0.60 300 (278.806) 0.60 300 (279.889) <1 (281.522) 0.00 194
5 6 (304.283) 0.54 300 (304.283) 0.54 300 (305.488) <1 (307.129) 0.13 300
5 7 (325.520) 0.81 300 (325.520) 0.81 300 (327.357) <1 (328.314) 0.05 300
5 8 (343.534) 0.61 300 (343.534) 0.61 300 (345.947) <1 (346.254) 0.12 300
5 9 (358.373) 1.02 300 (358.373) 1.02 300 (360.572) <1 (362.159) 0.31 300
5 10 (371.213) 0.74 300 (371.213) 0.74 300 (374.737) 1 (374.556) 0.24 300

geo. mean (330.38) 330.06 330.55 331.67
#best res. - 0 1 35

#u. best res. - 0 1 32
∗Not all of the 30 runs completed in the time limit

81

4.9.3 Partially Binary Essential

In the next computational tests we analyzed the partially binary essential customer
behavior. Since there is, to the best of our knowledge, no algorithm with numerical
results described in the literature we only compare different configurations of our EA.
Similarly to the proportional case we compare our EA without exact evaluation, the EA
with exact evaluation in the end (EA + MIP) and the EA with solution archive and
exact evaluation (EA + SA + MIP). Table 4.19 shows our numerical results, column
names have the same meaning as before.

Table 4.19: Results of partially binary customer behavior with essential demand.

EA EA + MIP EA + SA + MIP

r p obj sd t[s] obj sd t[s] obj sd t[s]

2 2 (283.753) 0.29 26 278.450 1.15 549 278.931 0.00 529
2 3 (315.105) 0.47 33 309.243 0.49 539 310.013 0.00 515
2 4 (337.476) 1.13 32 330.013 1.24 432 332.359 0.00 376
2 5 (349.361) 0.35 38 343.743 0.46 417 345.116 0.32 444
2 6 (359.113) 0.53 36 354.270 0.76 436 357.640 0.45 437
2 7 (368.140) 0.64 40 363.248 0.70 404 366.883 2.55 412
2 8 (376.035) 0.71 33 370.994 1.18 378 376.136 2.12 382
2 9 (383.784) 0.84 47 378.761 1.91 382 385.354 1.08 316
2 10 (391.553) 1.31 44 384.370 1.72 378 388.068 0.47 303

3 2 (259.461) 0.25 38 247.791 0.34 590 247.946 0.00 606
3 3 (289.450) 0.74 42 277.505 1.26 451 279.000 0.00 432
3 4 (311.032) 1.50 43 299.228 1.47 380 302.217 0.00 354
3 5 (323.333) 0.93 39 312.901 1.92 362 313.582 0.43 362
3 6 (334.559) 0.65 42 324.425 0.88 393 325.250 0.97 386
3 7 (343.815) 0.66 49 333.255 1.39 354 335.827 1.37 348
3 8 (352.919) 0.83 57 341.766 0.91 331 347.421 2.07 344
3 9 (360.388) 1.14 72 349.304 1.94 333 356.983 2.23 320
3 10 (367.969) 1.45 64 355.705 1.97 305 363.047 1.97 348

4 2 (239.204) 0.54 58 225.354 0.57 559 225.640 0.00 560
4 3 (269.482) 0.64 52 253.806 1.15 429 255.072 0.00 410
4 4 (290.283) 1.68 45 274.913 1.94 331 279.000 0.00 330
4 5 (303.248) 1.61 51 288.922 1.95 349 291.000 0.62 330
4 6 (315.374) 0.65 56 301.074 0.58 331 303.139 0.78 343
4 7 (324.823) 0.61 83 310.542 0.83 325 315.167 0.33 298
4 8 (333.640) 0.86 78 319.463 1.15 317 327.670 0.00 302
4 9 (341.007) 0.87 80 327.074 3.05 299 335.919 0.13 318
4 10 (348.310) 1.02 97 335.461 1.64 299 343.982 0.58 304

5 2 (220.928) 0.72 58 211.955 0.94 667 212.604 0.00 626
5 3 (250.491) 0.99 52 240.746 1.07 515 242.035 0.00 427
5 4 (272.251) 2.35 45 262.368 2.43 379 265.917 0.00 365
5 5 (285.997) 1.32 51 276.552 1.71 403 278.193 0.00 401
5 6 (297.032) 0.58 56 287.690 0.77 402 290.754 0.88 400
5 7 (306.395) 0.75 83 297.093 0.92 356 301.843 0.49 340
5 8 (315.239) 0.74 78 306.201 1.21 370 314.168 0.00 340
5 9 (323.263) 0.98 80 314.983 1.40 353 323.154 0.00 364
5 10 (330.717) 2.00 99 322.066 2.12 315 330.684 0.00 311

geo. mean (316.00) 305.65 309.24
#best res. - 0 36

u. best res. - 0 36

82

First, we observe that for all our tested instance we were able to evaluate the best
solution candidate exactly, even for the cases which were not possible for the proportional
customer behavior. Also, the time needed for this evaluation is much less and at most
about 10 minutes for the hardest instance (in the case of r = 5 and p = 2). The deviation
of the greedy objective value and the exact objective value is around 3% on average which
shows that our greedy solution evaluation method is relatively accurate. In this customer
behavior scenario the benefits of using a solution archive are even more obvious than
in the other scenarios as EA + SA + MIP performed better in all our tested instances.
Second, we see again that for a fixed r the time needed for solving the model decreases
with increasing p because the solution space is getting smaller. For many of the instances
we obtained a very low standard deviation which, again, shows the robustness of our
approach.

Compared to the other customer behavior scenarios the complexity of partially binary
behavior lies in between the binary and the proportional choice rule, where binary is
the easiest to solve and proportional by far the hardest. We also see that the leader is
preferred in proportional scenarios as for a fixed r and p the turnover is higher than in
the partially binary case in most of the instances but especially for a large p and small r,
i.e., when he is able to place more facilities than the follower. For example, the turnover
for the leader when r = 3 and p = 10 is in the proportional case nearly 16% higher than
when the customers use the partially binary choice.

4.9.4 Unessential Demands

We performed computational tests for all customer behavior scenarios with unessential
demands. Like in the partially binary customer behavior also for unessential demands
there are no numerical results available in the literature. We tested the two different
follower strategies LMIN and FMAX and compared them to each other. In the following
tables in addition to the average leader objective value (obj l) over 30 runs we also present
the average turnover obtained by the follower for the corresponding best leader solution
found (obj f). For both values the standard deviations are given as well (sd). Usually
only a fraction of the total demand of all customers can be satisfied when the demand
is unessential and these (average) fractions are the values in column market saturation
(sat.).

The first interesting observation is that the turnover of the follower and the market
saturation in the FMAX strategy is higher than in the LMIN strategy in all our test cases,
which corresponds to our intuition. Also, in the proportional and the partially binary
case the turnover of the leader is always lower when the follower uses the LMIN strategy.
It is quite surprising that this is not always the case for the binary customer behavior,
see Table 4.20. In most of the instances with r = p = 20 the leader objective value is
higher for the LMIN strategy. This can be explained by the observation that the model
for the follower is usually easier to solve in the LMIN case. Therefore the algorithm is
able to converge faster and the leader can frequently obtain better facility locations. To
confirm this assumption we increased the time limit on instances with r = p = 20 to 1800

83

seconds and report the results in Table 4.21. There we see that now the leader’s profit of
the LMIN strategy is consistently lower than with the FMAX strategy.

Table 4.20: Results of binary customer behavior with unessential demand.

LMIN FMAX

Instance r p obj l sd obj f sd sat. obj l sd obj f sd sat.

Code1 10 10 1846.37 0.00 699.52 0.00 29.30% 1849.32 0.00 1539.73 0.00 39.00%
Code2 10 10 1927.16 0.00 988.90 0.00 27.72% 1929.70 0.00 1793.24 0.00 35.39%
Code3 10 10 1850.92 0.00 1164.79 0.00 32.25% 1855.38 0.01 1564.22 0.01 36.57%
Code4 10 10 1914.31 0.00 1313.22 0.00 32.51% 1918.90 0.00 1674.72 0.00 36.20%
Code5 10 10 1909.94 0.00 1189.45 0.00 30.26% 1912.81 0.00 1718.66 0.00 35.45%
Code6 10 10 1892.39 0.00 1000.04 0.00 30.39% 1898.67 0.00 1753.45 0.00 38.37%
Code7 10 10 1928.64 0.00 895.01 0.00 25.21% 1937.19 0.00 1819.43 0.00 33.54%
Code8 10 10 1889.22 0.00 995.05 0.00 30.18% 1893.17 0.00 1698.59 0.00 37.58%
Code9 10 10 1937.16 0.00 1001.99 0.00 28.27% 1943.06 0.00 1756.90 0.00 35.59%

Code10 10 10 1926.28 0.00 1165.26 0.00 30.23% 1931.94 0.00 1793.41 0.00 36.43%

Code1 15 15 2626.28 0.00 1270.15 0.00 44.84% 2630.42 0.41 2065.77 0.41 54.05%
Code2 15 15 2835.00 0.00 1148.96 0.00 37.87% 2835.93 4.31 2492.44 4.31 50.65%
Code3 15 15 2673.87 0.00 1602.77 0.00 45.73% 2675.32 5.63 2118.62 5.63 51.27%
Code4 15 15 2786.36 0.00 1576.55 0.00 43.95% 2791.15 0.00 2231.67 0.00 50.60%
Code5 15 15 2788.79 0.00 1433.94 0.00 41.23% 2790.91 3.26 2346.67 3.26 50.16%
Code6 15 15 2780.75 0.00 1635.72 0.00 46.40% 2786.19 0.26 2398.07 0.26 54.47%
Code7 15 15 2850.97 0.89 1453.86 10.88 38.44% 2857.61 4.30 2563.34 4.30 48.41%
Code8 15 15 2766.82 0.00 1429.97 0.00 43.91% 2769.97 2.24 2239.73 2.24 52.42%
Code9 15 15 2827.96 0.00 1553.82 0.00 42.15% 2832.91 1.53 2418.83 1.54 50.52%

Code10 15 15 2835.45 0.00 1686.00 0.00 44.22% 2841.64 1.69 2466.41 1.69 51.91%

Code1 20 20 3156.98 64.77 1549.71 132.88 54.17% 3153.85 51.35 2654.00 40.05 66.84%
Code2 20 20 3476.13 65.08 1813.75 212.00 50.28% 3515.71 54.99 3224.91 47.04 64.07%
Code3 20 20 3267.67 48.30 1806.11 131.34 54.26% 3227.89 64.64 2754.22 57.30 63.97%
Code4 20 20 3386.16 85.40 1985.39 132.71 54.11% 3375.96 62.21 2817.20 60.38 62.39%
Code5 20 20 3418.97 59.38 2011.84 134.34 53.02% 3402.50 60.47 2987.49 56.47 62.38%
Code6 20 20 3436.56 82.77 1807.69 152.24 55.10% 3356.40 80.46 2963.24 66.61 66.40%
Code7 20 20 3537.77 61.17 1978.53 155.31 49.26% 3548.15 63.04 3316.42 45.49 61.30%
Code8 20 20 3378.65 60.82 1714.22 133.31 53.29% 3355.12 58.21 2851.08 54.63 64.94%
Code9 20 20 3540.28 59.59 1981.12 148.48 53.11% 3494.47 51.85 3124.28 36.54 63.67%

Code10 20 20 3482.95 78.33 2137.71 134.22 54.96% 3463.84 81.00 3135.54 65.65 64.54%

The model for the follower’s problem for the proportional unessential customer
behavior, especially FMAX, is still hard to solve so we again only compute greedy values
for some of the instances, denoted by parentheses in Table 4.22. For these instances we
do not state the market saturation and the objective values and standard deviations
of the follower because we do not have exact results. However, compared to essential
demands we were able to solve the follower’s model for more instances and therefore get
accurate results in more cases.

In Table 4.23 we see the results of partially binary customer behavior with unessential
demands. The results show that for this scenario the results are very stable because
the objective values have a very low standard deviation in many instances. The most
interesting observation in this table is that, in contrast to the essential cases, in most
instances the leader objective value (and the market saturation) is higher than in the
proportional scenario. The reason for this behavior is that in the partially binary scenario
more demand is satisfied by nearer facilities and therefore the total satisfied demand also

84

Table 4.21: Results of binary customer behavior with unessential demand for instances
with r = p = 20 with an increased time limit of 1800s.

LMIN FMAX

Instance r p obj l sd obj f sd sat. obj l sd obj f sd sat.

Code1 20 20 3379.95 0.00 1607.54 0.00 57.40% 3382.53 0.00 2442.62 0.00 67.04%
Code2 20 20 3714.01 0.00 1407.34 0.00 48.68% 3717.09 0.00 3034.83 0.00 64.18%
Code3 20 20 3409.31 0.00 1749.61 0.00 55.17% 3412.34 0.00 2578.23 0.00 64.06%
Code4 20 20 3582.97 0.00 1849.46 0.00 54.72% 3587.58 0.00 2611.09 0.00 62.44%
Code5 20 20 3621.48 0.00 2053.21 0.00 55.40% 3626.47 0.00 2773.11 0.00 62.48%
Code6 20 20 3639.92 0.00 1687.07 0.00 55.97% 3643.62 0.00 2706.55 0.00 66.72%
Code7 20 20 3739.66 0.00 1956.10 0.00 50.86% 3750.13 0.00 3132.62 0.00 61.46%
Code8 20 20 3581.40 0.00 1517.67 0.00 53.35% 3586.28 0.00 2635.38 0.00 65.10%
Code9 20 20 3689.02 0.00 1983.98 0.00 54.57% 3693.16 0.00 2949.16 0.00 63.89%
Code10 20 20 3712.01 0.00 1744.49 0.00 53.36% 3716.74 0.00 2908.06 0.00 64.78%

increases.
From the results we conclude that in general the FMAX strategy is better because

significantly more demand can be satisfied and the follower increases his profit, too.
However, if the follower wants to lower the turnover of the leader by all means the LMIN
strategy might be useful. Compared to the essential demand cases we showed that while
the complexity of the models for the follower’s problem of the binary behavior increases,
the complexity of the other two scenarios decreases and we got accurate results for more
instances.

85

Table 4.22: Results of proportional customer behavior with unessential demand.

LMIN FMAX

r p obj l sd obj f sd sat. obj l sd obj f sd sat.

2 2 19.818 0.00 19.818 0.00 7.10% 30.460 0.00 29.331 0.00 10.72%
2 3 32.045 0.00 18.100 0.00 8.99% 42.091 0.00 26.735 0.00 12.33%
2 4 42.586 0.00 16.047 0.00 10.51% 52.266 0.00 25.160 0.00 13.88%
2 5 52.538 0.00 15.569 0.00 12.21% 61.266 0.00 23.528 0.00 15.20%
2 6 61.468 0.00 14.990 0.00 13.70% 70.285 0.00 22.218 0.00 16.58%
2 7 69.757 0.00 14.551 0.00 15.11% 78.613 0.00 20.634 0.00 17.79%
2 8 77.767 0.00 14.143 0.00 16.47% 85.893 0.00 19.610 0.00 18.91%
2 9 84.962 0.00 13.604 0.00 17.66% 91.963 0.00 19.118 0.00 19.91%
2 10 91.552 0.00 13.027 0.00 18.74% 98.666 0.03 18.557 0.07 21.01%

3 2 17.133 0.00 23.343 0.00 7.25% 28.049 0.00 40.476 0.00 12.28%
3 3 25.262 0.00 25.262 0.00 9.05% 39.386 0.00 38.039 0.00 13.88%
3 4 35.786 0.02 23.610 0.32 10.64% 49.724 0.03 35.434 0.03 15.26%
3 5 45.888 0.00 22.267 0.00 12.21% 59.172 0.00 33.332 0.00 16.58%
3 6 54.939 0.00 21.571 0.00 13.71% 67.564 0.00 31.682 0.00 17.79%
3 7 63.250 0.00 21.026 0.00 15.10% 74.954 0.00 29.902 0.00 18.79%
3 8 71.341 0.08 20.260 0.10 16.42% 82.241 0.00 28.839 0.00 19.91%
3 9 78.551 0.20 19.595 0.08 17.59% 89.195 0.07 28.040 0.13 21.01%
3 10 85.244 0.19 18.998 0.08 18.68% 95.494 0.39 27.384 0.21 22.02%

4 2 15.120 0.00 33.323 0.00 8.68% (26.501) 0.00 – – –
4 3 22.935 0.00 28.380 0.00 9.20% (37.586) 0.00 – – –
4 4 29.895 0.00 29.895 0.00 10.72% 47.448 0.00 45.056 0.00 16.58%
4 5 39.870 0.00 28.417 0.00 12.24% 56.606 0.00 42.641 0.00 17.79%
4 6 49.085 0.00 27.466 0.00 13.72% 64.863 0.13 40.647 0.14 18.91%
4 7 57.464 0.03 26.822 0.03 15.10% 72.384 0.03 39.126 0.16 19.98%
4 8 65.234 0.34 25.972 0.25 16.35% 79.469 0.25 37.534 0.30 20.97%
4 9 72.388 0.54 25.180 0.23 17.49% 86.197 0.53 36.634 0.27 22.01%
4 10 78.244 0.84 24.138 0.38 18.35% 91.158 1.06 35.784 0.33 22.75%

5 2 (13.856) 0.00 – – – (25.474) 0.00 – – –
5 3 20.973 0.00 35.673 0.00 10.15% (36.173) 0.00 – – –
5 4 27.804 0.00 32.685 0.00 10.84% (45.780) 0.00 – – –
5 5 34.449 0.00 34.449 0.00 12.35% (54.150) 0.00 – – –
5 6 43.715 0.01 33.071 0.02 13.76% 62.393* 0.05 49.228* 0.11 20.00%
5 7 52.077 0.13 32.331 0.17 15.13% 70.206 0.25 47.418 0.26 21.08%
5 8 59.373 0.77 31.206 0.36 16.23% 76.770 0.51 46.073 0.41 22.01%
5 9 65.956 1.14 30.357 0.30 17.26% 82.630 0.68 44.856 0.36 22.85%
5 10 70.972 2.02 29.086 0.38 17.93% 86.950 1.85 43.642 0.38 23.40%
∗Not all of the 30 runs completed in the time limit

86

Table 4.23: Results of partially binary customer behavior with unessential demand.

LMIN FMAX

r p obj l sd obj f sd sat. obj l sd obj f sd sat.

2 2 21.288 0.00 21.288 0.00 7.63% 34.168 0.00 31.450 0.00 11.76%
2 3 35.324 0.00 20.960 0.00 10.09% 47.015 0.00 30.165 0.00 13.83%
2 4 48.015 0.00 21.055 0.00 12.38% 59.276 0.00 29.247 0.00 15.86%
2 5 59.988 0.00 19.512 0.00 14.25% 71.004 0.00 27.864 0.00 17.72%
2 6 71.623 0.00 19.022 0.00 16.24% 82.540 0.00 27.079 0.00 19.64%
2 7 82.551 0.00 19.783 0.00 18.34% 93.484 0.00 25.939 0.00 21.40%
2 8 93.423 0.00 19.487 0.00 20.23% 103.987 0.30 25.514 0.65 23.21%
2 9 103.254 0.00 20.031 0.00 22.09% 114.234 0.00 25.246 0.00 25.00%
2 10 113.116 0.00 20.735 0.00 23.99% 122.132 1.36 24.473 0.38 26.27%

3 2 20.501 0.00 22.075 0.00 7.63% 32.744 0.00 44.798 0.00 13.90%
3 3 28.658 0.00 28.658 0.00 10.27% 45.339 0.00 43.072 0.00 15.84%
3 4 41.349 0.00 28.753 0.00 12.56% 57.582 0.00 41.117 0.00 17.69%
3 5 53.268 0.00 29.170 0.00 14.77% 69.171 0.00 39.802 0.00 19.53%
3 6 64.903 0.00 28.679 0.00 16.77% 80.790 0.00 38.398 0.00 21.36%
3 7 75.591 0.00 29.186 0.00 18.78% 91.440 0.00 37.178 0.00 23.05%
3 8 86.463 0.00 28.890 0.00 20.67% 101.820 0.00 36.985 0.00 24.88%
3 9 96.482 0.00 27.898 0.00 22.29% 111.967 0.02 36.416 0.20 26.59%
3 10 106.419 0.00 28.221 0.00 24.13% 122.981 0.31 35.902 0.04 28.47%

4 2 19.856 0.00 22.720 0.00 7.63% 31.007 0.00 57.367 0.00 15.84%
4 3 27.934 0.00 29.378 0.00 10.27% 44.102 0.00 55.005 0.00 17.76%
4 4 35.294 0.00 35.294 0.00 12.65% 56.457 0.00 53.602 0.00 19.72%
4 5 47.213 0.00 35.711 0.00 14.86% 67.858 0.00 51.352 0.00 21.36%
4 6 58.848 0.00 35.220 0.00 16.86% 79.037 0.00 49.204 0.00 22.98%
4 7 69.629 0.00 35.515 0.00 18.84% 89.714 0.00 48.228 0.00 24.72%
4 8 79.507 0.00 35.948 0.00 20.69% 100.461 0.00 47.720 0.00 26.56%
4 9 90.337 0.00 34.987 0.00 22.46% 110.602 0.03 46.858 0.16 28.22%
4 10 100.274 0.00 35.311 0.00 24.30% 120.672 0.07 46.275 0.33 29.92%

5 2 19.241 0.00 20.779 0.00 7.17% 30.831 0.00 68.490 0.00 17.80%
5 3 27.318 0.00 27.420 0.00 9.81% 43.493 0.00 66.877 0.00 19.78%
5 4 34.570 0.00 36.014 0.00 12.65% 55.232 0.00 64.410 0.00 21.44%
5 5 41.462 0.00 41.462 0.00 14.86% 66.663 0.00 61.991 0.00 23.06%
5 6 53.097 0.00 40.971 0.00 16.86% 77.940 0.00 59.831 0.00 24.69%
5 7 63.878 0.00 41.266 0.00 18.84% 88.616 0.00 58.855 0.00 26.43%
5 8 74.554 0.00 40.796 0.00 20.67% 98.942 0.03 58.530 0.12 28.22%
5 9 84.363 0.00 41.222 0.00 22.51% 109.581 0.00 57.526 0.00 29.95%
5 10 94.297 0.00 41.528 0.00 24.34% 119.869 0.00 56.054 0.00 31.53%

87

Figure 4.4: Registration districts of Vienna: absolute population and density.

4.9.5 Case Study of Vienna, Austria

For evaluating the algorithm under realistic conditions, we further perform a case study
on Vienna, Austria using real world demographic data from Stadt Wien3 from 2014. In
our hypothetical scenario, a hypermarket chain wants to access the Viennese market,
with the knowledge that a rival company has the same intention in the near future.

Vienna has a total population of 1,716,635 (year 2014) and consists of 23 districts. In
order to achieve a reasonable level of detail for the strategic planning, we consider the
further subdivision into 250 registration districts as planning cells. We assume that the
demand of each such district is proportional to its population. In average these cells have
a size of around 1.5 km2 where those in the inner districts are smaller (0.2 km2 – 0.8
km2) and the peripheral ones are larger (up to 26 km2). Though the latter cells would
be too large for a detailed planning, they are rather unproblematic since they cover large
weakly populated areas and therefore are less interesting for the case study anyway.

Figure 4.4 shows the 250 registration districts of Vienna and the population distribu-
tion. The left figure shows the absolute population and the right figure shows the density.
Cells with darker and more purple colors indicate a higher population or a higher density.

The leader has to decide in which cells he opens hypermarket stores. Recall that the
attractiveness of a store is determined by the distance to the potential customers, i.e.,
vij = aij

(dij)β
with aij = 10, 000 for i ∈ I, j ∈ J and β = 2. For the unessential cases we set

the parameter b of the demand reduction function to 10,000. We distinguish between
two situations for approximating the distance:

• On the cell where a store is opened, we approximate the cell’s shape by a circle
and take half of its radius as average distance for the inhabitants. This includes
the assumption that within the cell, the store is located at a promising location.

3https://www.data.gv.at/auftritte/?organisation=stadt-wien

88

• On the other cells, we use the distances between the geometric centers4 to that of
the store’s cell as approximation.

For the computational experiments we investigate all six scenarios for the customer
behavior: binary essential, binary unessential, proportional essential, proportional unessen-
tial, partially binary. While some of these scenarios are more suited than others for the
hypermarket scenario, we want to provide evaluations for all of them. Also, in a real
world scenario, a combination of these elementary behaviors is most likely the happen.

In our case study we assume that the leader knows that the follower has a budget
to open five stores in Vienna, i.e., r = 5. To compete over the market share, the leader
considers different number of stores and their optimal placement.

For obtaining the computational results, we used the same parameter setting as
described in Section 4.9, except the time limit, which is increased to 1,800 CPU seconds
for the evolutionary algorithm and 86,400 CPU seconds for solving the final model
because the instance is larger.

Tables 4.24, 4.25, and 4.26 show the numerical results of the tests for fixed r = 5 and
different values for p for all scenarios. The values in the tables under column ms are the
average market shares over 30 runs for the leader and the follower, respectively, expressed
relative to the total demand of the market (Vienna’s population). Next to the market
shares also the corresponding standard deviations (sd) and the median run-times in
seconds (t) are given. The results are shown for each scenario separately and Table 4.24
shows the results for binary customer behavior, Table 4.25 for proportional customer
behavior, and Table 4.26 for the partially binary customer behavior. The values for
the proportional essential case are listed in parentheses indicating that CPLEX could
not solve the model within the time limit and the values being therefore only upper
bounds on the leader’s market share. Bold values indicate the values for p for which the
leader could achieve a greater market share than the follower. We have to keep in mind,
however, that the presented solution method solves the problem only heuristically and
therefore the values for the leader’s market share represent only lower bounds to the
actual optimal value.

For the essential demand model we see that the leader’s market share is naturally
steadily increasing with increasing values of p. We also see that if r = p in this demand
model the follower has always a greater market share. It is clear that for proportional and
partially binary customer behavior the leader can have at most 50% market share because
the follower can choose the same locations as the leader and the demand then always
splits equally between them. For the binary customer behavior, however, the follower’s
advantage of knowing the locations of the leader outweighs the leader’s advantage of
choosing his locations first.

When looking at the results for the unessential demand model we observe that the
total market share of the leader and the follower is much lower than for the essential
demand model and always less than 3% for each individual player. This is due to the
assumption that attractiveness of a facility decreases quadratically with respect to the

4http://www.wu.ac.at/inst/iir/datarchive/dist_zbez.html

89

Table 4.24: Results for binary customer behavior, r = 5, and different values for p.

Leader Follower

Essential Unessential LMIN Unessential FMAX LMIN FMAX

p ms [%] sd [%] t [s] ms [%] sd [%] t [s] ms [%] sd [%] t [s] ms [%] ms [%]

2 5.35 0.00 289 0.43 0.04 1800 0.56 0.05 1839 1.09 1.68
3 23.17 0.00 223 0.59 0.06 1800 0.75 0.06 1859 1.00 1.67
4 37.37 0.00 111 0.76 0.07 1800 0.91 0.08 1884 1.13 1.64
5 46.10 0.25 133 0.92 0.11 1800 1.04 0.08 1925 1.12 1.65
6 53.97 0.11 121 1.06 0.08 1800 1.21 0.09 1939 1.09 1.63
7 59.77 0.90 123 1.19 0.10 1800 1.34 0.08 1964 1.13 1.61
8 63.08 0.52 136 1.33 0.08 1800 1.48 0.09 1963 1.11 1.59
9 66.24 0.55 185 1.49 0.11 1800 1.61 0.10 1986 1.13 1.59
10 69.10 0.61 216 1.60 0.10 1800 1.76 0.12 1996 1.13 1.58

Table 4.25: Results for proportional customer behavior, r = 5, and different values for p.

Leader Follower

Essential Unessential LMIN Unessential FMAX LMIN FMAX

p ms [%] sd [%] t [s] ms [%] sd [%] t [s] ms [%] sd [%] t [s] ms [%] ms [%]

2 (27.54) 0.21 88200 0.31 0.00 12463 0.67 0.00 3435 0.85 1.47
3 (37.05) 0.21 88200 0.43 0.02 4241 0.87 0.05 3899 0.80 1.44
4 (43.92) 0.63 88200 0.55 0.03 3302 1.04 0.07 3866 0.73 1.41
5 (49.23) 0.58 88200 0.67 0.04 3170 1.21 0.07 3758 0.67 1.38
6 (53.51) 0.75 88200 0.82 0.05 3122 1.36 0.09 3988 0.67 1.37
7 (57.25) 0.58 88200 0.96 0.08 3292 1.48 0.10 4040 0.68 1.35
8 (60.37) 0.69 88200 1.09 0.08 3246 1.59 0.08 3800 0.66 1.35
9 (62.57) 0.59 88200 1.22 0.09 3075 1.69 0.10 4138 0.65 1.32
10 (64.51) 0.50 88200 1.33 0.10 2979 1.84 0.12 4292 0.65 1.29

Table 4.26: Results for partially binary customer behavior, r = 5, and different values for
p.

Leader Follower

Essential Unessential LMIN Unessential FMAX LMIN FMAX

p ms [%] sd [%] t [s] ms [%] sd [%] t [s] ms [%] sd [%] t [s] ms [%] ms [%]

2 33.88 0.00 33527 0.36 0.00 6318 0.71 0.00 2271 0.35 1.53
3 40.91 0.00 22428 0.54 0.00 6059 1.03 0.00 2683 0.55 1.44
4 45.32 0.36 19564 0.72 0.00 4108 1.32 0.00 2567 0.70 1.37
5 49.26 0.60 17914 0.89 0.00 4829 1.56 0.00 2688 0.89 1.34
6 52.35 0.44 15280 1.16 0.00 3365 1.82 0.01 2689 0.88 1.31
7 55.18 0.49 14930 1.41 0.00 3260 2.04 0.02 2937 0.88 1.28
8 57.34 0.61 12975 1.64 0.02 3304 2.24 0.04 2972 0.87 1.26
9 59.25 0.60 12546 1.83 0.04 3319 2.45 0.04 2932 0.88 1.26
10 61.14 0.58 11514 1.99 0.04 3251 2.61 0.07 2656 0.84 1.27

90

distance. In the LMIN scenarios the follower can always achieve his goal to lower the
market share of the leader, as it is always lower than in the FMAX scenarios for the
same value of p. However, the follower’s market share is also always significantly lower in
the LMIN cases and therefore this behavior is not beneficial for the overall penetration
of the market.

The tables further show that for both LMIN and FMAX in the partially binary
behavior scenario the leader needs the least number of facilities to have a greater market
share than the follower and in the binary behavior he needs the most. Especially in
the partially binary LMIN case the leader needs only four stores, which means that the
advantage of being the first in the market is larger in this case.

Regarding the variance of the results over the 30 runs we observed that the standard
deviation increases with increasing p but is always less than 0.91 for the essential demand
model and less than 0.13 for unessential demand. In 17 cases for low values of p the
standard deviation was even zero which means that the algorithm stopped with a solution
of the same quality in each run. Overall, the MA therefore is quite robust.

The run-time of the tests differ in each scenario, and in all but the binary cases, in
which solving the model needs less than one second, the run-time of exactly solving the
follower’s subproblem model for the final solution is significantly high and in the most
difficult cases even dominates the total run-time of the MA. In general the essential
models are harder to solve than the unessential models. We conclude from Table 4.25
and 4.26 that the models for the proportional cases are the hardest to solve followed by
the models for the partially binary cases. Also, for proportional and partially binary
customer behavior the LMIN scenario needs more time to solve than the FMAX scenario.
While the run-times of the FMAX scenarios do not differ much for different values of p,
in the LMIN cases the run-time tends to decrease with increasing p.

To get a better understanding of the found solutions, Figures 4.5, 4.6 and 4.7 show
best found solutions for r = p = 5 within a map of Vienna for different customer behaviors
and demand models. For the unessential demand always the FMAX variant is illustrated.
In these figures the leader is marked with blue color and the follower with red and the
actual chosen locations are the dark districts. If the leader and the follower choose
the same planning cell for their locations, it is marked with purple. The color of the
remaining districts indicate the amount of demand that is captured by the leader and
the follower, respectively. The more blue an area is, the more demand is satisfied by the
leader. The same holds for the follower with red. Purple areas are served by both the
leader and the follower.

In Figure 4.5 left we see that in case of a binary behavior, each cell is either served by
the leader or the follower. All cells are roughly equally divided between both competitors.
We also see that in the lower left area, the follower is able to significantly reduce the
influence of a leader’s facility by placing two facilities next to it. In the unessential case
on the right, there are large white areas where demand is hardly fulfilled because of their
large distances to the facilities.

In Figures 4.6 and 4.7 we see that basically all districts are served by both leader
and follower facilities. In the essential model, especially for the proportional behavior in

91

Figure 4.5: Best found solution for binary customer behavior and essential (left) and
unessential (right) demand models with r = p = 5.

Figure 4.6: Best found solution for proportional customer behavior and essential (left)
and unessential (right) demand models with r = p = 5.

Figure 4.6, the facilities are placed very centrally since each customer has a probability
to visit all facilities. For the partially binary behavior in Figure 4.7, the facilities are
more spread out, but some profitable districts are occupied by both competitors.

Overall we observe that in the unessential demand models the facility locations tend
to be more central than in the essential demand models, which corresponds to our
intuition of choosing the profitable districts first. We also see in all six figures that some
locations are often chosen regardless of the considered scenario. For essential demand
two locations were chosen for two different customer behavior models and for unessential
demand four locations are chosen twice. These indicate promising, robust choices which
could also be used for real-world applications, where the actual customer behavior is
not so easy to determine. For practical applications of these results one also has to
decide on the demand model one wants to assume, which highly depends on the offered
goods. While some goods like basic foods are obviously essential, other goods are not

92

Figure 4.7: Best found solution for partially binary customer behavior and essential (left)
and unessential (right) demand models with r = p = 5.

so easily categorized. Especially in our case, as hypermarkets offer a variety of essential
and unessential goods, the demand model is not totally accurate. Nevertheless, the
practitioner could simulate all kinds of different customer behavior and demand models
and make a decision based on the results of all these scenarios.

4.10 Conclusions

This chapter presented the application of a complete trie-based solution archive to
a genetic algorithm to solve variants of competitive facility location problems. The
employed local search procedure led to a significant efficiency gain. Several ways of
combining the local search with the solution archive were investigated, and the reduced
neighborhood in combination with a tabu search was identified to work best in practice.
Different solution evaluation methods were considered for each customer scenario and for
the binary cases an effective way to combine them was found, which led to the multi-level
evaluation scheme. For all customer behavior scenarios and demand models bi-level
mixed integer programming models are presented.

Extensive tests showed that especially the solution archive had a significant positive
effect on the quality of the final solutions. In combination with the other developed
advanced techniques the overall algorithm showed to perform well, especially on Euclidean
instances. For many of the commonly used instances it is able to exceed previous state-of-
the-art heuristic approaches and also scales well to larger instances that cannot be solved
with today’s exact methods anymore. The conducted case study showed the practical
applicability of this approach and several promising locations could be identified, some
of them turned out to be robust choices regardless of the considered scenario.

Future research directions could be the development of a better approximation of
the leader’s objective value, e.g., by extending our greedy algorithms with a local search.
When using a more elaborate solution evaluation we have obviously a tradeoff between
accuracy and run-time. This could be especially useful for the customer scenarios other

93

than binary and non-Euclidean instances. It would also be interesting to extend our
models for different customer behavior to more realistic scenarios by taking opening costs
and design of facilities into account to be able to maximize not only the turnover of the
leader but also the profit.

94

CHAPTER 5
Generalized Vehicle Routing

Problem with Stochastic
Demands

The second type of problem considered in this thesis is the generalized vehicle routing
problem with stochastic demands (GVRPSD). This NP-hard problem combines the
clustering aspect of the generalized vehicle routing problem with the uncertainty aspect
of the vehicle routing problem with stochastic demands. We consider the preventive
restocking strategy which is substantially harder than the standard restocking strategy
used by the majority of the published articles for the stochastic vehicle routing problem.
Using this strategy the vehicle can make a return trip to the depot even before an actual
stockout occurs and therefore save travel time. As this particular problem has not been
covered in the literature yet, first an exact MILP-based solution algorithm is presented,
which is based on the integer L-shaped method which is itself based on decomposition
and branch-and-cut. This decomposition is also further used for two metaheuristics,
which have also been developed to tackle larger instances. While the upper level problem
is used as search space for the exact and heuristic algorithms, the lower level problem
of computing the exact restocking costs is based on dynamic programming. The first
metaheuristic is a VNS using three different neighborhood structures and a multi-level
evaluation scheme (ML-ES) to reduce the overall time needed for solution evaluations.
This ML-ES is also used within the second metaheuristic, an evolutionary algorithm,
which is enhanced by a complete trie-based solution archive based on the methods
described in Chapter 3. The tree structure of the SA is further exploited to compute
lower bounds on the nodes to cut off parts of the solution space which evidently do not
contain good solutions. Using this bounding procedure leads to optimal solutions for
smaller instances and could also improve the results for medium to large instances.

First, an introduction to the problem is given in Section 5.1 and a formal problem

95

definition is introduced in Section 5.2. Then, Section 5.3 gives an overview of the related
literature. The algorithms are described in Sections 5.4, 5.5, and 5.6, starting from
the exact algorithm, after which the VNS is explained and finally the GA is presented.
Computational results and comparisons of all the developed methods are shown in
Section 5.7 and conclusions are drawn in Section 5.8.

5.1 Introduction
Vehicle Routing Problems (VRPs) are among the most important and widely studied
transportation and logistics problems in the field of combinatorial optimization. In the
classical variants a set of delivery or pick-up routes for a capacity constrained fleet of
vehicles starting from a central depot has to be designed in order to satisfy customers’
demands. Here we consider two generalizations of this basic problem:

• In some applications specific delivery locations are not of importance but requested
goods can be brought to any delivery points in the surrounding areas of the
customers. In practice, the redistribution within each area is then carried out by
the customers. Practical examples of this generalization are disaster relief operations
to distribute medical staff or equipment to damaged sites [2] and the distribution of
goods over sea to a number of customers in an archipelago, where each island has
several ports from which the actual point of delivery can be chosen [62]. Ghiani
and Improta [62] originally introduced this VRP variant and named it Generalized
Vehicle Routing Problem (GVRP).

• The actual demand of the customers may not be precisely known in advance,
resulting in the vehicle routing problem with stochastic demands (VRPSD). This
situation can occur in urban waste collection, where garbage trucks need to collect
the waste from certain collection points to deliver it to a central landfill site [129],
or in the delivery of petrol to petrol stations [14]. In practical applications the
demands are usually not uniformly random but specific probability distributions
can be deduced from historical data.

The generalized vehicle routing problem with stochastic demands considers both
above extensions at once. A cluster of delivery points is given for each customer, as well
as a stochastic demand, which is modeled by a random variable with a certain probability
distribution. The aim of this problem is to plan so-called a-priori routes with minimum
expected length or costs, respectively.

An important characteristic of stochastic routing problems is that the planned routes
may not be followed as planned. Since the demand of the visited clusters may be higher
than expected the vehicle may be depleted before the tour is finished. Then, a recourse
action must be executed in order to satisfy the remaining demand of the tour. The
most widely used recourse action in the literature, which we call standard restocking
henceforth, sends the vehicle back to the depot whenever it is not able to service a current
customer, e.g., [11, 86, 58, 70, 114]. However, this strategy is sub-optimal with respect

96

to the expected length of the routes as shown by Yang et al. [129]. A recourse action
which may result in shorter routes is the preventive restocking strategy which allows
return trips to the depot before the vehicle is fully depleted. Although expected costs
can frequently be significantly lower by employing such a strategy, the computational
overhead for computing them is substantial. A dynamic programming algorithm can be
used for this purpose. In this work we consider such a preventive restocking policy and a
relatively efficient computation of the expected costs is explained in Section 5.4.2.

5.2 Problem Definition
The GVRPSD is defined on a complete undirected graph G = (V,E) with node set V
and edge set E. The nodes are partitioned into disjoint clusters C = {C0, C1, . . . , Cm},
Ci ⊆ V , ∀i = 0, . . . ,m, such that C0 ∪ C1 ∪ · · · ∪ Cm = V . Each edge (i, j) ∈ E has
a distance or cost value dij ≥ 0. Node v0 represents the depot node and is the only
node contained in C0. Each other cluster Cj , j = 1, . . . ,m has an associated stochastic
demand ξj which is modeled as a random variable with a known discrete probability
distribution and has r possible values ξ1

j , . . . , ξ
r
j . Thus, we know for each cluster Cj the

probability mass function given by values pjk for all k = 0, . . . , Q denoting the probability
that cluster j has an actual demand of k. Furthermore, we are given one vehicle with a
limited capacity Q. Situations where the demand exceeds the vehicle capacity are not
considered, so we assume that pjk = 0, ∀j = 1, . . . ,m, ∀k > Q. The goal is to find a
tour starting from the depot which visits one node from each cluster exactly once and
returns to the depot with minimum expected costs. During the route the clusters’ actual
demands, which depend on the realization of the random variables ξj , get revealed upon
arrival and the load of the vehicle reduces by exactly these amounts. Intermediate visits
of the depot are always allowed and become necessary when the vehicle cannot satisfy
the demand of a cluster. Note that without further restrictions the planning of only one
tour is sufficient because by employing the preventive restocking strategy the capacity
constraints cannot be violated as the restocking trips are dynamically planned.

Figure 5.1 shows an example of a solution candidate for a small instance. In this
example the vehicle capacity Q = 10, and all clusters except C1 have a constant demand
of 6 for cluster C4 and 1 for the other clusters C2, C3, and C5. Depending on the
realization of ξ1 a tour without an intermediate return to the depot could be planned (if
ξ1 = 1) or a restocking has to be performed (if ξ1 = 5). However, as the actual demand
only becomes known upon arrival at C1 a restocking trip back to the depot would be
needed with a high probability of 0.9. Therefore, as we use the preventive restocking
strategy an anticipatory restocking trip from v1 back to the depot v0 is beneficial because
its cost is significantly lower than the cost of the likely needed restocking trip from v2.

5.3 Related Work
As the generalized vehicle routing problem with stochastic demands is a new variant
of a VRP, there is not much specific literature available yet. When each generalization

97

C0={v0}

v2

v1

C1

C2

C4

C3

C5

P(ξ4=6)=1

P(ξ1=1)=0.1
P(ξ1=5)=0.9

P(ξ2=1)=1

P(ξ3=1)=1

P(ξ5=1)=1

Q=10

Figure 5.1: Example of a solution for an instance of the GVRPSD.

is considered separately, the literature for the GVRP and the VRPSD is richer. Since
the introduction of the GVRP by Ghiani and Improta [62], several exact and heuristic
methods have been proposed for solving the problem. Exact methods include the compact
mixed integer programming formulations by Kara and Bektaş [77], with which they solved
instances with up to 50 nodes and 25 clusters. More elaborate exact methods include
branch-and-cut algorithms by Bektaş et al. [10] and Hà et al. [66], with the latter being
based on a two-commodity flow model, and a column generation approach by Afsar
et al. [2]. The latter presents also two heuristics based on a route-first, cluster-second
approach, in which the split procedure is executed using an iterated local search. Other
heuristic methods for the GVRP include a genetic algorithm [108], a variable neighborhood
search [107], and a hybrid metaheuristic combining a greedy randomized adaptive search
procedure with an evolutionary local search [66]. The largest instance which is tackled
by all of these algorithms contains 262 vertices and 131 clusters.

In the area of vehicle routing problems with stochastic demands most works use
the standard restocking approach. There is much literature for exact methods, e.g.,
[57, 70, 87, 34, 76] and heuristic approaches, e.g., [58, 114, 64]. Current state-of-the-
art exact solution approaches based on the integer L-shaped method are able to solve
instances with up to 100 customers and 2 vehicles [87] or instances with up to 4 vehicles
but only 60 customers [76]. Christiansen and Lysgaard [34] complement the L-shaped
method by introducing a branch-and-price algorithm for solving the VRPSD and are
able to solve instances with up to 60 customers and 16 vehicles with tighter capacity

98

constraints.
The situation changes when preventive restocking is considered. To the best of our

knowledge there is no exact algorithm described for the VRPSD with preventive restocking.
However, the L-shaped method for the GVRPSD with preventive restocking presented
in Section 5.4 can also be used to solve the non-generalized version. Several authors
developed metaheuristics. Yang et al. [129] were the first to introduce the preventive
restocking strategy and a dynamic programming (DP) procedure to compute the expected
costs of a tour using this strategy. The authors also describe two heuristics for solving a
variant of the VRPSD in which the maximum planned expected route length is limited.
Based on that DP [14] developed several metaheuristics and approximative algorithms
for move evaluations in the Or-opt local search neighborhood structure. Marinakis et
al. presented a particle swarm optimization (PSO) algorithm [91], extended it with
a combinatorial expanding neighborhood topology (CENTPSO) [92] and a memetic
differential evolution algorithm [94] for solving the VRPSD with preventive restocking.
The latest heuristic solution method is a glowworm swarm optimization which makes use
of path relinking and a variable neighborhood search [90] which, together with a hybrid
clonal selection algorithm [93] and the CENTPSO, constitute the current state-of-the-art
algorithms.

5.4 An Integer L-shaped Method for the GVRPSD

First, we approach the GVRPSD by solving it exactly using the integer L-shaped method
and a formulation for the GTSP by Fischetti et al. [53]. This method has been introduced
by Van Slyke and Wets [127] and is a well-known algorithm in the field of stochastic
programming. It is based on a Benders decomposition approach in which subproblems
compute the restocking costs [86] for which optimality cuts are then iteratively added to
the initially relaxed master problem. The L-shaped method has already been successfully
applied to several stochastic optimization problems, e.g,. stochastic vehicle routing
problems [86, 70, 76].

5.4.1 Mathematical Model

To model the GVRPSD we define binary decision variables xe,∀e ∈ E, which are set to
one if edge e is used in the solution and zero otherwise. We further use binary variables
yv,∀v ∈ V to determine which nodes are visited, i.e., yv is set to one if v is visited and
zero otherwise. Finally, variable θ denotes a lower bound on the restocking costs. In a
preprocessing step a global lower bound L of the expected restocking costs is computed
as follows. We calculate the rounded expected number of restocks E[nr] =

⌊∑m

k=1(E[ξk])
Q

⌋
and for each pair of nodes (i, j) the costs sij = d(i,0) + d(0,j) − d(i,j) for a preventive
restock between them. Then, L is the sum of the E[nr] smallest sij values. Function δ(S)
denotes the edge-set of the cut (S, V \ S), i.e., δ(S) = {(i, j) ∈ E | i ∈ S, j 6∈ S}, ∀S ⊆ V .
Our model for the master problem works as follows.

99

min
∑
e∈E

dexe + θ (5.1)

s.t.
∑

e∈δ({v})
xe = 2yv for v ∈ V (5.2)

∑
v∈Cj

yv = 1 for j = 1, . . . ,m (5.3)

∑
e∈δ(S)

xe ≥ 2 ∀S ⊂ C, 2 ≤ |S| ≤ m− 2, C0 ∈ S (5.4)

θ ≥ L (5.5)
xe ∈ {0, 1} for e ∈ E (5.6)
yv ∈ {0, 1} for v ∈ V (5.7)

(θπ − L)

 ∑
(i,l)∈Eπ

xil − (m− 2)

 /2
+ L ≤ θ ∀π ∈ Π (5.8)

Objective function (5.1) minimizes the sum of the total travel costs and the additional
restocking costs. Equations (5.2) ensure that each node which is used in the solution has
exactly two outgoing edges. Constraints (5.3) guarantee that exactly one node from each
cluster is visited. Eliminating subtours is done by classical cut-set inequalities (5.4). They
are dynamically added within a branch-and-cut framework. The separation procedure is
based on m maximum flow computations. Inequality (5.5) sets the value of the lower
bound of the restocking costs to be at least the global lower bound L. Inequalities (5.8)
are the specific optimality cuts setting the restocking costs accordingly. Set Π consists
of all possible cluster permutations. The edge set Eπ of a cluster permutation π ∈ Π
consists of all the edges between all consecutive clusters without cluster C0.

The value of θπ represents the recourse costs for permutation π and is computed
in the subproblem via a dynamic programming procedure, which is described in the
next section. This value is equal to θ for exactly the route corresponding to the cluster
permutation π, because then

∑
(i,j)∈Eπ xij = m. In all other feasible routes at least two

edge variables in Eπ are zero and therefore the lefthand side of the inequality does not
exceed L.

5.4.2 Dynamic Programming for Computing the Restocking Costs

In this section the computation of the restocking costs using the preventive restocking
strategy is described. As mentioned before a dynamic programming procedure is used
to compute these additional costs exactly. A similar algorithm has already been used
for the VRPSD [129, 14]. In the DP we define a recursive function fij(q) for all q =
0, . . . , Q, j = 0, . . . ,m, i = 0, . . . , |π(j)|−1 to be the expected remaining cost of the tour
after servicing the i-th node of the cluster π(j) with respect to the remaining capacity q.
The auxiliary function bj(l) returns the l-th node of cluster at position j. To compute
the total cost c∗(π) of a cluster permutation π the following DP recursion is used:

100

fij(q) = min{fpij(q), f
r
ij(q)}

fpij(q) = min
l=0,...,|π(j+1)|

{dbj(i),bj+1(l) +
q∑

k=0
fl,j+1(q − k)pj+1,k

+
Q∑

k=q+1
2dbj+1(l),0 + fl,j+1(q +Q− k)pj+1,k}

f rij(q) = dbj(i),0 + min
l=0,...,|π(j+1)|

{d0,bj+1(l) +
Q∑
k=0

fl,j+1(Q− k)pj+1,k}

∀q = 0, . . . , Q, j = 0, . . . ,m, i = 0, . . . , |π(j)| − 1

and the boundary condition

fim(q) = dbm(i),0, ∀q = 0, . . . , Q, i = 0, . . . , |π(m)| − 1

This DP computes for each node i and each vehicle load q if it is in the expected case
more cost efficient to proceed directly to the next cluster with costs fpij(q) or to make a
preventive restock with costs f rij(q). The total cost c∗(π) is given by f0,0(Q).

5.4.3 Specific and General Optimality Cuts

When considering restocking costs the direction of the route is important so the actual
cost of an undirected route stated as permutation π is given by

c∗(π∗) = min {c∗(π), c∗(reverse(π)},

where reverse(π) represents the reversed order of the elements in π. Let ĉ(π) be the
travel costs of permutation π from solving the model without considering the restocking
costs. Then the exact restocking costs θπ are c∗(π∗)− ĉ(π).

Each time the master problem is solved, the DP algorithm from Section 5.4.2 is
executed and the respective specific optimality cut (5.8) is added to the model if not
yet included. The procedure iterates until no further cuts are separated and thus an
optimum overall solution has been found. A weakness of these specific optimality cuts
is that they only apply to exactly one solution but in the next section we show how to
generalize these cuts in order to increase the lower bound on the restocking costs more
generally.

5.4.4 General Optimality Cuts

We generalize the specific optimality cuts from Section 5.4.3 by computing lower bounds on
the restocking costs for partial routes. Therefore, we consider for a given permutation π =
〈Cπ(0), Cπ(1), . . . , Cπ(m−1)〉, m − 2 partial segments πh = 〈Cπ(h), Cπ(h+1), . . . , Cπ(m−1)〉,

101

∀h = 1, . . . ,m− 2. Each segment implicitly starts and ends at the depot and we use a
slightly modified version of the DP for computing a lower bound on the restocking costs
θπh for all solutions using this segment. For all θπh values which are larger than zero the
following general optimality cut is added to the model.

(θπh − L)

 ∑
(i,l)∈E

πh

xil − (m− h− 3)

 /2
+ L ≤ θ

Adding such a general optimality cut increases the lower bounds on the restocking costs
for all cluster permutations π which contain πh as partial segment. In a naive approach
2(m−2) executions of the DP algorithm would be needed to compute the restocking costs
of all these segments. However, by using an incremented evaluation technique we can
store the values of fij(q) and use them for the next DP computation. More specifically,
we start with the last segment πm−2 and calculate fi,m−2(q), ∀i ∈ π(m−2), q = 0, . . . , Q.
This value is used for the next iteration where segment πh−3 is considered and we only
have to compute fi,m−3(q), ∀i ∈ π(m − 3), q = 0, . . . , Q and use the previous values of
fi,m−2(q). This method saves many unnecessary computations so that we can add up to
m− 2 general optimality cuts without having to execute the whole DP algorithm each
time.

The computational results of this integer L-shaped algorithm and the differences
when only specific or both types of cuts are used will be shown in the computational
study described in Section 5.7.

5.5 A Variable Neighborhood Search for the GVRPSD

Our first proposed metaheuristic for the GVRPSD, a VNS, follows the general variable
neighborhood search scheme as described in [69]. The underlying variable neighborhood
descent (VND) considers three neighborhood structures which are well-known for the
TSP: 1-shift, 2-opt, and Or-opt. As a shaking procedure for diversification we perform k2

moves in the k-th neighborhood with k = 1, . . . , 3.
Following the decomposition approach used by the exact algorithm described in

Section 5.4, it is sufficient to plan one giant tour through all clusters. Therefore, we use a
solution representation based on the sequence of clusters that are visited and the tour, and
use the DP from Section 5.4.2 to compute the objective value of such a sequence. However,
for our VNS such an expensive solution evaluation is inconvenient for larger instances
with a large vehicle capacity. In Section 5.5.1 we describe a method to potentially reduce
the run-time of the solution evaluation within the VNS framework, which can also be
applied to other metaheuristics, e.g., our genetic algorithm in Section 5.6.

5.5.1 Multi-Level Evaluation Scheme

In this section we describe a multi-level evaluation scheme to iteratively estimate the
exact objective value of a solution candidate with increasing accuracy until we either

102

know that it cannot be better than the best solution found so far or we know its exact
value. The basic idea is to scale down both the vehicle capacity and the probability
distribution of the demand for each cluster accordingly. Since the time needed for the
solution evaluation is quadratically dependent on Q, a large performance gain in terms
of run-time is expected when Q is decreased.

In our ML-ES there are log2Q levels of approximation, where level 0 is the exact
evaluation and log2Q is the roughest approximation level. Starting with level 0, increasing
the level by one means to scale down the vehicle capacity Q and all demand distributions
pjk by a factor of two. We introduce a new vehicle capacity Qi and new probabilities pijk
subject to level i, which are defined in the following way:

Q0 = Q (5.9)
p0
jk = pjk ∀j = 1, . . . , |C|, k = 0, . . . , Q (5.10)

Qi =
⌈
Qi−1

2

⌉
∀i = 1, . . . , dlog2Qe (5.11)

pijk = pi−1
j,2k + pi−1

j,2k+1 ∀j = 1, . . . , |C|, k = 0, . . . , Qi, (5.12)
∀i = 1, . . . , dlog2Qe

Figure 5.2 shows exemplarily for one cluster how the probability distribution for the
demand changes at each level.

Not only is level i ≥ 1 an approximation, but its objective value is also a lower bound
for the objective value of the preceding level i− 1, which we will show next.

Lemma 1. With increasing level i the ratio of the scaled expected demand of each cluster
to the vehicle capacity Qi is non-increasing.

Proof. We have to show for each cluster j and each demand 0 ≤ k ≤ Q that

∑Qi

k=0 kp
i
jk

Qi
≤
∑Qi−1

k=0 kpi−1
jk

Qi−1 , ∀i = 1, . . . , dlog2Qe

is valid. Suppose to the contrary that for one cluster j and one demand k the following
holds:

kpijk
Qi

=
k(pi−1

j,2k + pi−1
j,2k+1)

Qi−1

2
>

2kpi−1
j,2k + (2k + 1)pi−1

j,2k+1
Qi−1 =

kpi−1
jk

Qi−1

2kpi−1
j,2k + 2kpi−1

j,2k+1 > 2kpi−1
j,2k + 2kpi−1

j,2k+1 + pi−1
j,2k+1

0 > pi−1
j,2k+1

Obviously, this is a contradiction because all probabilities must be non-negative. Therefore,
as no kpijk

Qi
can be larger than kpi−1

jk

Qi−1 for any cluster j this also holds for the sum over all
demands, which proves the Lemma.

103

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8
demand

p
ro

b
a
b
il
it

y Q0 = 8

i = 0

(a) Original probability distribution

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
demand

p
ro

b
a
b
il
it

y Q1 = 4

i = 1

(b) First level of approximation

0

0.2

0.4

0.6

0.8

1.0

0 1 2
demand

p
ro

b
a
b
il
it

y Q2 = 2

i = 2

(c) Second level of approximation

0

0.2

0.4

0.6

0.8

1.0

0 1
demand

p
ro

b
a
b
il
it

y Q3 = 1

i = 3

(d) Highest level of approximation

Figure 5.2: An exemplary demand probability distribution and its different levels of
approximation.

Theorem 1. Let ci(t) be the objective value of a tour t on approximation level i. For
each tour t it holds that ci(t) ≤ ci−1(t),∀i = 1, . . . , dlog2Qe.

Proof. Due to Lemma 1 it follows that the total expected relative demand of all clusters
on level i is smaller or equal to that of level i − 1. So we can possibly service more
customers before a restocking is needed and therefore the resulting objective ci(t) value
is a lower bound to the exact objective value c0(t) and to the objective value at the
preceding level ci−1(t).

Algorithm 5.1 describes our ML-ES in pseudocode, where DP(t, i) executes the DP
described above with the scaled vehicle capacity and probability distributions according
to (5.9–5.12). Algorithm 5.1 returns either the exact objective value of t if DP(t, 0) is
executed or a lower bound to the exact value otherwise. In the latter case the solution
candidate can immediately be discarded because we know that it cannot be better than
the best solution found so far.

5.5.2 Initial Solution

For finding an initial solution for the VNS two types of construction heuristics are
considered. The first, farthest insertion, is well-known for the classical traveling salesman

104

Algorithm 5.1: ML-ES(t, bestObj)
Input : tour t, objective value of best solution found so far bestObj
Output: exact or approximate objective value

1 obj = 0;
2 i = dlog2Qe;
3 while obj < bestObj ∧ i ≥ 0 do
4 obj = DP(t, i);
5 i = i − 1;
6 end
7 return obj;

problem and suited for Euclidean instances only. It builds iteratively a tour by starting
at the depot cluster and inserting the cluster which is farthest away from the last inserted
cluster at the best possible position. For that purpose we have to define distances between
clusters, which is done by computing the geometric centers of clusters by taking the
average of the x- and y-coordinates of its nodes. Then the distance between two clusters
is the Euclidean distance between their centers.

An alternative but much more time-consuming method for finding a starting solution
is solving the GTSP relaxation of the problem. From the solution of the GTSP relaxation
we extract the cluster sequence which is then our initial solution. The GTSP is solved
exactly by using a branch-and-cut algorithm with CPLEX and the E-GTSP formulation
described by Fischetti et al. [54], which is also used as basis for the developed exact
method 5.4.

5.5.3 Neighborhood Structures

Three types of neighborhood structures are used in the VND part, which are searched
with a best improvement step function in the order they are described here.

• 1-shift: A cluster is shifted to another position of the tour.

• 2-opt: A subsequence of the tour is inverted.

• Or-opt: First two, then three consecutive clusters are shifted to another position
of the tour. Note that Or-opt usually starts by shifting only one cluster in the tour
but we covered this case by our first neighborhood structure and omit it here.

Like the results for the integer L-shaped method, the computational results and of
the VNS and appropriate comparisons are shown in Section 5.7.

105

5.6 A Genetic Algorithm in Combination with a Solution
Archive for Solving the GVRPSD

The second developed metaheuristic for solving the GVRPSD is a genetic algorithm with
solution archive (GASA). The overall algorithmic framework, which also uses a VND
procedure similar to the one described in Section 5.5, is depicted in Algorithm 5.2.

Algorithm 5.2: Genetic algorithm with solution archive (GASA)
1 begin
2 Initialize Population;
3 while unconsidered solutions remaining according to the solution archive
4 Select parent solutions xP1 and xP2 ;
5 Derive child xC from xP1 and xP2 using a crossover operator;
6 Perform mutation of xC with probability pmut;
7 if f(xC) < αf(xbest) then
8 Improve xC by executing VND(xC);
9 else

10 if xC is not yet contained in the solution archive then
11 Insert xC into the solution archive;
12 else
13 Convert xC ;
14 Delete the worst individual of the population;
15 Add xC to the population;
16 end while
17 Return best found solution;
18 end

The genetic algorithm is a steady-state GA, which replaces in each iteration the
worst solution of the current population with the newly created solution. The solution
representation and evaluation function is the same as for the VNS described in Section 5.5
and ML-ES is also applied here. Within the GA a VND procedure is executed for
promising solution candidates whose objective value, which is computed by the function
f(·) (described in Section 5.4.2), is close to the best solution found so far, where closeness
is defined by the parameter α. After the genetic operators produced the new solution
candidate, it is either inserted into the solution archive or converted if the archive already
contains the new solution. This step is skipped when VND was performed on this solution
because then the insertion / conversion procedure is carried out within the VND. The
algorithm terminates after a specific time limit Tmax.

The individual components of GASA are described in the following section. Sec-
tions 5.6.1 and 5.6.2 address the framework of the GA which includes the initial population
generation method and its operators. The VND is presented in Section 5.6.3 and the
solution archive with its bounding extension is explained in Section 5.6.4.

106

5.6.1 Initial Population

The choice of the generation method for the initial population of this GA is important
and the aim here is to include both diverse and high quality individuals. Therefore, three
different methods for solution initialization are applied with specific particular purpose:

1. High quality
To get one initial solution candidate of typically relatively high quality we solve the
generalized travelling salesman problem (GTSP) with the given instance ignoring
the demands as underlying graph. As for the VNS, the MILP model by [54], which
is based on an undirected cut-set formulation, is solved with a branch-and-cut
algorithm based on CPLEX. After an optimal solution to this model is obtained a
VND is performed starting from this solution to obtain a typically even better initial
solution candidate; see Section 5.6.3 for a detailed description of the VND. Note
that due to the relatively high computational effort for solving the ILP, this solution
generation method is aborted after 120 seconds with the best solution found so far.
If no solution could be obtained within that time a randomly generated solution is
used instead.

2. Medium quality / medium diversity
For Euclidean instances the next bPsize−1

2 c initial solutions are generated by using
a farthest insertion heuristic based on cluster distances as one variant described
for the VNS in Section 5.5. We compute the distances between every pair of two
clusters by taking the Euclidean distances between their geometric centers, which
are obtained by taking the arithmetic mean of the Euclidean coordinates of their
nodes. Then a starting cluster is chosen at random and the other clusters are
iteratively inserted at the best possible position of the current tour by always taking
the farthest, not yet inserted cluster from the last inserted one. Ties are broken
randomly.

3. Low quality / high diversity
The remaining dPsize−1

2 e, or Psize − 1 for non-Euclidean instances, individuals are
generated uniformly at random.

5.6.2 Genetic Operators

For selecting the crossover candidates a tournament selection is employed. The GA uses
a cyclic crossover operator to generate one child solution out of two parent solutions (A
and B). This operator takes a randomly chosen sub-tour of the parent A and successively
appends clusters from parent B starting from the last node of the sub-tour, skipping any
already considered clusters. For diversification a swap-mutation operator is developed
which swaps two randomly chosen cluster positions. This move is repeated for nMut
times, where nMut is a parameter of the algorithm.

107

5.6.3 Variable Neighborhood Descent

To intensify the search a variable neighborhood descent (VND) algorithm with four
different neighborhood structures is used, where the first three are taken from the VNS
of Section 5.5:

N1 1-shift: One cluster is shifted to another position.

N2 2-opt: A sequence of clusters between two positions is inversed.

N3 Or-opt: Two or three consecutive clusters are shifted to another position.

N4 SAConv: One solution conversion based on the solution archive is performed.

The VND is executed during the GA for each solution candidate x whose objective
value is at most α times larger than the best solution found so far where α is an exogenous
parameter. The fourth neighborhood structure is based on the solution archive, which
is described in detail in Section 5.6.4. Having defined the neighborhood structures, the
complete VND with the solution archive is shown in Algorithm 5.3 as pseudocode.

Algorithm 5.3: Variable neighborhood descent with solution archive
Input : Initial solution x
Output: Local optimal solution

1 begin
2 l← 1;
3 repeat
4 x∗ = x;
5 f∗ = f(x);
6 for all x′ ∈ Nl(x)
7 if x′ is already contained in the solution archive then
8 if SAconv then Convert x′;
9 else continue;

10 else
11 Insert x′ into the solution archive;
12 if f(x′) < f∗ then
13 f∗ = f(x′);
14 x∗ = x′;
15 if f∗ < f(x) then
16 x← x∗;
17 l← 1;
18 else
19 l← l + 1;
20 until l > lmax;
21 return x;
22 end

108

The VND systematically searches the given neighborhoods and basically follows the
standard procedure as described in Section 2.4.4 using a best improvement step function
for N1 to N3. However, before each neighboring solution is evaluated it is checked if it
is already contained in the solution archive. Depending on a binary parameter SAconv
this solution is either converted into a new solution or its evaluation is skipped and the
search continues as if it is already contained in the archive. This parameter determines,
similar to the local search with solution archive as described for the CFLP in Section 4.7,
if the reduced or the converted neighborhood structure is used.

5.6.4 Solution Archive

An important part of the GA is the employed solution archive (SA). As shown in
Algorithm 5.2 and 5.3 the SA is used in all parts of the algorithm and is attached to the
GA after mutation and after each neighborhood move in the VND. It is expected that
the performance of the GA can be significantly increased by employing a SA because we
use a compact representation and the solution evaluations are costly. The next sections
describe the particularities of the complete trie-based solution archive employed to the
GVRPSD.

Trie Structure

As described in the general section about solution archives (see Chapter 3) the underlying
data structure of the solution archive is an indexed trie, but for this problem the trie
nodes may have more than two children.

In Figure 5.3 the trie structure for the proposed solution archive is shown. Each level
i represents a position in the permutation based solution representation whereas each trie
node of a level corresponds to a specific variable assignment of the first i positions. The
size of each trie node is decreasing with increasing depth and has m possible child nodes
on the first level. Each node q on level l has the same structure consisting of m− l + 1
entries q[0], . . . , q[m − l + 1]. Like in the general SA and the SA for the CFLP, each
entry can either be a pointer to another trie node on level l + 1 (denoted by an arrow),
a null-pointer (denoted by a slash), or a complete-pointer (denoted by a C). Now let
(i1, . . . , im) be the cluster permutation representing a solution candidate which should be
inserted. Then, each variable il is related to a node q of level l in the trie. This node
q splits the solution space into m− l + 1 parts, where in all subspaces the variables i1
to il−1 are fixed according to the path from the root node to q. Figure 5.3 shows two
already inserted solution candidates (i1, . . . , im) and (j1, . . . , jm). Here we see, that the
decision of the node on the first level i1 or j1, respectively, fixes the first variable so
that on the second level only m− 1 decisions remain. This number of decisions, which
corresponds to deciding which cluster is visited next in the sequence, decreases on each
level so that on level m the last decision, i.e., the last remaining cluster, is already fixed
and a complete-pointer is set to the associated entry.

This structure is further exploited in Section 5.6.4 when lower bounds on partial
solutions are computed to cut off subtries which evidently cannot contain good solution

109

root

// /

2 i1 j11 m

/ /

. . . i1-11 mi1+1

/ /

j1-11 mj1+1

. . .

. . .

. . .

i2

/ /

. . . .

im

C

. . .

. . .

. . .

. . .

j2

. . . .

jm

C

/ /

index

entrylevel 1

level 2

level m

. . . .

Figure 5.3: Solution archive with two solution candidates (i1, i2, . . . , im) and
(j1, j2, . . . , jm).

candidates.

Solution Conversion

The basic structure of the solution conversion is similar to the generic version described
in Chapter 3. Whenever the insertion procedure detects a duplicate solution such a
conversion is performed. Assume that the solution x = (x1, . . . , xm) is inserted and
on level l ∈ {1, . . . ,m} a complete-pointer is encountered. Let P = {q1, . . . , ql} be the
trie nodes visited during the insertion. Then, a conversion is performed by choosing a
conversion node q′ ∈ P randomly which has at least one other entry whose value is not a
complete-pointer. If there is no such node we know that the whole solution space has been
covered and we can stop the optimization with the so far best solution candidate being a
proven optimum. Otherwise we pick a non-complete entry q′[k], k ∈ {0, . . . ,m− l + 1}
uniformly at random and swap its index x′l with xl in the solution. If the value at
q′[k] was a null-pointer we know that this new solution obtained by the swap has not
been considered so far and therefore we insert it from node q on, which completes the
conversion. Otherwise if the value at q′[k] was a pointer to another trie node we could
end up in a complete-pointer again. Then, analogously, another swap is performed. This
procedure is repeated until level m is reached, at which point a guaranteed new and
usually similar solution after at most m− l swaps has been derived.

An example of a solution conversion for an instance with five clusters is shown
in Figure 5.4. The sequence of visited trie nodes is denoted by the enumeration of
the arcs starting from the root node and ending at the node where the conversion
ends. The solution archive contains already two solutions s1 = (C4, C1, C2, C3, C5) and

110

q3

q4

q2=q′

q1
//

21

/

3 4

/

5

/

21 3

/

5

/

32

/

5

/

21

/

5

/

53 51

C C

1.

2.

3.

4.

5.

6.

7.

8.

C

root

Figure 5.4: Example of a conversion operation in the solution archive transforming the
duplicate solution (C4, C1, C2, C3, C5) into the new solution candidate (C4, C3, C2, C5, C1).

s2 = (C4, C3, C2, C1, C5) before the duplicate s1 is inserted again into the archive by
following the first four arcs. On node q4 the duplicate is detected and consequently a
conversion is performed. The node q2 is chosen for conversion among all the visited nodes
{q1, . . . , q4}. On that level a swap of C1 and C3 is performed leading to the intermediate
solution s2. However, while inserting the remaining solution it is observed that it is still
not a new solution yet, so another conversion on level 4 has to be performed leading to
the final converted solution candidate (C4, C3, C2, C5, C1).

Computing Lower Bounds for Partial Solutions

As an additional feature of the solution archive a bounding extension is added, which is
similar to the one described by [74] for the generalized minimum spanning tree problem.
It is based on one of the basic ideas of a tree search like branch-and-bound: as mentioned
in Section 5.6.4 each node of the trie represents a subspace of all solutions. If meaningful
lower bounds for the objective values of the solutions associated with trie nodes can be
computed, some of these nodes can likely be pruned in a branch-and-bound manner.

Before we compute lower bounds on trie nodes, we reverse the order of the variables
as they are considered in the trie, i.e., for a given solution x = (x1, . . . , xm) the variable

111

order is xm, xm−1, . . . , x1. This order is beneficial for the bound computation as we will
see next. To compute a lower bound for a particular subtrie represented by entry k of a
trie node q on level l, we partition the set of clusters into three disjoint subsets C0, Cf ,
and Co as shown in Figure 5.5. Cf denotes the set of fixed clusters, which is given by
the fixed part of the solution (xm, . . . , xm−l+1). Assume that the last fixed cluster of Cf
is cluster Cl. Co = C \ (Cf ∪ C0) is the set of open clusters, for which the sequence of
visit is still unknown. For these clusters four conditions are relaxed:

1. Capacity constraints of the vehicle.

2. Connectivity constraints for avoiding subtours.

3. Constraints ensuring that exactly one node from each cluster must be chosen

4. Degree constraints of the nodes (the degree of each node must be either zero or
two).

In the following we use the notation a(Ck), ∀Ck ∈ 2C to determine all inter-cluster edges
of the clusters in Ck. Then, a valid lower bound on the partial solution (xm, . . . , xm−l+1)
can be computed by summing up costs of five different components:

1. The dynamic programming algorithm for the solution evaluation is adapted to
work correctly for partial solutions and is executed on the fixed set of clusters,
which results in the value lbf . Note that lbf already contains an arc from C0 to Cl,
although Cl is definitely not the first visited cluster, so the arc weight af = max

j∈Cl
c0j

is subtracted from lbf resulting in a lower bound on Cf of lb1 = lbf − af .

2. The total cost of the |Co| − 1 cheapest edges in Co is denoted by lb2. While there
are methods that can produce better bounds, e.g., computing a minimum spanning
tree, we choose to use this simple computation to keep the time consumption low.

3. A lower bound on the restocking costs for the clusters in Co is computed by first
taking the total sum of the expected demand E[Co] of these clusters. Then, lb3 is
given by multiplying the cheapest edge from the depot to any node in Co, bE[Co]

Q c
times.

4. To connect Co to Cf the cheapest edge from Co to Cl determines lb4.

5. Finally, lb5 is given by the cheapest edge from C0 to any node in Co.

These individual parts form the lower bound lb =
5∑
i=1

lbi, which is stored at the
corresponding trie node. Directly after this computation or whenever this trie node is
visited again, this lower bound is compared to the value of the best solution found so
far, which corresponds to a global upper bound, to possibly cut off this node and the
corresponding solution subspace. Figure 5.5 shows an example of the bounding procedure,

112

C0

Cl

Co

Cf

Figure 5.5: Example of the computation of a lower bound on a partial solution.

where the position of three clusters are already fixed as denoted by the arrows. The
dotted lines represent the lowest-cost edges which form lb2, lb4, and lb5.

To speed up the computation of lb1 at the cost of potentially worsening the bound,
any approximation level from the multi-level evaluation (see Section 5.5.1) can be chosen
for the DP algorithm. In our preliminary tests it turned out that even at the highest
approximation level dlog2Qe the bound was reasonably good so that this level is chosen
for the remaining computational tests. However, even with this speed-up computing
bounds on each new trie node would be too time consuming and therefore this procedure
is only applied with a certain probability whenever a trie node is accessed.

5.7 Computational Results

To evaluate the developed algorithms a computational study is performed. We rely on a set
of 158 benchmark instances for the GVRPSD1 which are based on (deterministic) instances
for the generalized vehicle routing problem generated by Bektaş et al. [10]. They modified
instances from the CVRP-library (http://branchandcut.org/VRP/data/), having
16 to 262 nodes and partitioned them into m = bnθ c clusters, where θ = {2, 3}. These
instances are adapted to the GVRPSD by setting the expected demand of each cluster to
the deterministic demand of the corresponding cluster. Then the clusters are divided into
low spread and high spread clusters uniformly at random. The possible demand values for
each cluster lie in ±10% of the expected demand (rounded down) for low spread clusters
and ±30% (rounded up) for high spread clusters. Values lower than zero or larger than

1https://www.ac.tuwien.ac.at/research/problem-instances/#Generalized_
Vehicle_Routing_Problem_with_Stochastic_Demands

113

http://branchandcut.org/VRP/data/
https://www.ac.tuwien.ac.at/research/problem-instances/#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands
https://www.ac.tuwien.ac.at/research/problem-instances/#Generalized_Vehicle_Routing_Problem_with_Stochastic_Demands

Q are not considered. A uniform distribution is used for the set of possible demands.
The algorithms are implemented in C++ using CPLEX 12.6 for the integer L-shaped
method as well as for solving the GTSP in the initial solution creation phase. All runs
were executed on a single core of an Intel Xeon processor with 2.54 GHz and 20 GB
RAM. For the metaheuristics each run of all tested configurations was repeated 30 times.

5.7.1 Integer L-shaped Method

For evaluating the integer L-shaped method we use a selection of the smaller instances
with θ = 3 and additionally consider instances with a higher demand variance. In these
instances the possible demand values lie in ±50% of the expected demand for low spread
and ±80% for high spread clusters.

In Table 5.1 the integer L-shaped algorithm with only the specific optimality cuts is
compared to the version where both specific and general optimality cuts are considered.
For both configurations the final objective value obj, the time needed in seconds t[s] and
the resulting optimality gap (gap) are listed. Additionally, the number of specific (#OS)
and general (#OG) optimality cuts are given.
We observe that when only the specific optimality cuts are used only 7 out of 27 instances
could be solved to optimality within the CPU time limit of four hours. This number
is increased to 11 when also general optimality cuts are added. Also for the unsolved
instances the final optimality gap is consistently better and the number of specific
optimality cuts lower when considering general optimality cuts. We further observe that
a lot of optimality cuts were needed to solve the model, which indicates a potential to
improve this algorithm. Apparently, the lower bounds obtained by the general optimality
cuts are still too weak to be able to solve all instances in reasonable time. We notice
that the complexity of the instances does not only depend on the number of clusters and
nodes but even more on the number of expected restocks as no instance with E[nr] > 2
could be solved to optimality. The variability of the demand for each cluster, however,
seems not to increase the hardness of the instance, as the results are similar as for the
instances with the lower variance. Therefore, for the metaheuristic algorithms only the
instances with lower demand variance are considered.

5.7.2 Variable Neighborhood Search

For the tests of the VNS we cosider the full benchmark set of 158 instances but here we
show only a representative selection of 37 instances and refer to the Appendix A.2 for
the full result tables.

In the following tables the results for the different configurations are given with their
(average) objective values, their standard deviations (sd) if applicable and either the
total run-time in seconds t[s] for the deterministic configurations or the average time
when the best solution is identified t∗[s].

First we compare the results of the different starting solutions, farthest insertion (FI)
and GTSP, with a subsequent VND using the neighborhood structures and the order
described in Section 5.5.3. Table 5.2 shows the (deterministic) numerical results for these

114

Table 5.1: Results of the integer L-shaped method with and without general optimality
cuts.

L-shaped + OPTS L-shaped + OPTS + OPTG
Instance n m E[nr] obj t[s] gap #OS obj t[s] gap #OS #OG
A-n32-k5-C11-V2 32 11 1.39 386.909 >14400 4.2% 877 386.909 2086 0.0% 160 631
A-n33-k5-C11-V2 33 11 1.52 318.028 231 0.0% 389 318.028 84 0.0% 76 353
A-n33-k6-C11-V2 33 11 1.91 364.589 10172 0.0% 1367 364.589 658 0.0% 78 359
A-n34-k5-C12-V2 34 12 1.66 419.124 >14400 8.1% 2752 419.124 10824 0.0% 260 1467
A-n36-k5-C12-V2 36 12 1.34 399.905 >14400 12.9% 2018 399.997 >14400 9.1% 671 2882
A-n37-k5-C13-V2 37 13 1.43 359.133 1271 0.0% 903 359.133 212 0.0% 158 594
A-n38-k5-C13-V2 38 13 1.71 371.795 >14400 4.0% 2007 371.795 339 0.0% 61 408
P-n40-k5-C14-V2 40 14 1.51 214.753 2308 0.0% 1279 214.753 399 0.0% 123 748
P-n45-k5-C15-V2 45 15 1.61 239.357 >14400 7.2% 2337 239.568 >14400 3.0% 281 1910
P-n76-k4-C26-V2 76 26 1.33 310.397 >14400 5.9% 1229 310.397 >14400 6.1% 283 2269
P-n76-k5-C26-V2 76 26 1.67 310.397 >14400 5.9% 1252 310.397 >14400 6.3% 299 3484

Instances with higher demand variance
A-n32-k5-C11-V2 32 11 1.39 393.475 >14400 6.5% 1180 393.475 3845 0.0% 199 1209
A-n33-k5-C11-V2 33 11 1.52 322.048 571 0.0% 577 322.048 134 0.0% 108 605
A-n33-k6-C11-V2 33 11 1.91 366.445 9380 0.0% 1335 366.445 570 0.0% 84 519
A-n34-k5-C12-V2 34 12 1.66 427.409 >14400 9.7% 3673 427.409 >14400 2.6% 371 2705
P-n40-k5-C14-V2 40 14 1.51 215.798 2480 0.0% 1662 215.798 392 0.0% 131 1056
P-n45-k5-C15-V2 45 15 1.61 241.271 >14400 8.1% 2624 241.271 >14400 3.6% 257 2315
P-n76-k4-C26-V2 76 26 1.33 310.397 >14400 6.0% 1078 310.397 >14400 7.2% 161 1742
P-n76-k5-C26-V2 76 26 1.67 311.431 >14400 6.4% 1032 311.431 >14400 6.8% 255 3786

Instances with E[nr] > 2
A-n45-k6-C15-V3 45 15 2.09 478.219 >14400 16.8% 2369 478.219 >14400 13.3% 503 4400
A-n45-k7-C15-V3 45 15 2.06 491.539 >14400 31.7% 3498 491.739 >14400 29.0% 871 6614
A-n46-k7-C16-V3 46 16 2.08 471.716 >14400 23.3% 2626 465.624 >14400 15.7% 511 4734
A-n48-k7-C16-V3 48 16 2.13 465.343 >14400 28.7% 2361 465.35 >14400 25.8% 892 8151
A-n53-k7-C18-V3 53 18 2.09 443.873 >14400 14.6% 1977 445.802 >14400 11.8% 539 6521
A-n54-k7-C18-V3 54 18 2.19 496.364 >14400 28.8% 1961 507.513 >14400 27.9% 661 6785
A-n55-k9-C19-V3 55 19 2.75 481.531 >14400 21.9% 1662 483.997 >14400 19.2% 359 4625
A-n60-k9-C20-V3 60 20 2.8 622.404 >14400 36.6% 1726 622.404 >14400 34.6% 440 5835

Average gap 10.7% 8.2%

configurations. Additionally, it contains a third configuration where the ML-ES is used
along with the GTSP starting solution.

The results indicate that both starting solutions produce similarly good results for
the instances with up to 75 nodes. However, when considering larger instances with 76
nodes and more, FI is not competitive anymore. When starting from an inferior solution
produced by FI the VND needs too much time and could not even be completed within
the time limit of 10000 seconds. When comparing run-time we also see the advantage
of using the GTSP over the FI; for most of the instances, especially for the larger ones,
it pays off to invest more time to get a better starting solution so that the subsequent
VND does not need so many iterations. We also applied the ML-ES to the GTSP +
VND configuration and we observe a huge drop in run-time. It is clear that the resulting
solution is the same as in the GTSP + VND configuration but the run-time could be
reduced substantially. Only by using the ML-ES the VND is about 10 times faster on
average with a peak speedup factor of 75 for instance P-n76-k4-C26-V2. During our tests

115

Table 5.2: Results for the different configurations of the VND.

FI + VND GTSP + VND GTSP + VND
+ ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

P-n19-k2-C7-V1 19 7 0.71 112.105 5 112.105 3 112.105 <1
P-n20-k2-C7-V1 20 7 0.68 117.306 4 117.306 <1 117.306 <1
P-n21-k2-C7-V1 21 7 0.64 117.071 3 117.071 <1 117.071 <1
P-n22-k2-C8-V1 22 8 0.73 111.194 10 111.194 5 111.194 <1

B-n31-k5-C11-V2 31 11 1.38 355.729 25 355.729 16 355.729 5
A-n32-k5-C11-V2 32 11 1.39 386.909 20 388.597 10 388.597 2
A-n33-k5-C11-V2 33 11 1.52 318.028 17 318.028 15 318.028 3
A-n33-k6-C11-V2 33 11 1.91 367.629 23 367.629 16 367.629 4
A-n34-k5-C12-V2 34 12 1.66 419.124 29 419.124 25 419.124 4
B-n34-k5-C12-V2 34 12 1.34 363.089 33 363.089 13 363.089 5
B-n35-k5-C12-V2 35 12 1.54 501.470 32 501.470 14 501.470 6
A-n36-k5-C12-V2 36 12 1.34 404.579 30 399.905 23 399.905 7
A-n37-k5-C13-V2 37 13 1.43 359.133 45 359.133 20 359.133 3
A-n37-k6-C13-V2 37 13 1.95 467.266 31 430.987 32 430.987 7
A-n38-k5-C13-V2 38 13 1.71 371.795 57 371.795 20 371.795 2
B-n38-k6-C13-V2 38 13 1.93 386.195 55 389.241 27 389.241 7
A-n39-k5-C13-V2 39 13 1.48 390.400 47 371.410 20 371.410 8
A-n39-k6-C13-V2 39 13 1.83 417.844 43 417.844 40 417.844 8
B-n39-k5-C13-V2 39 13 1.45 281.482 50 281.482 <1 281.482 <1
P-n40-k5-C14-V2 40 14 1.51 214.775 175 214.753 49 214.753 4
B-n41-k6-C14-V2 41 14 1.82 404.261 93 404.261 34 404.261 11
B-n43-k6-C15-V2 43 15 1.81 394.529 74 347.650 33 347.650 6
A-n44-k6-C15-V2 44 15 2.00 505.129 105 508.981 51 508.981 15
B-n45-k5-C15-V2 45 15 1.51 419.613 116 419.613 59 419.613 8
B-n45-k6-C15-V2 45 15 1.96 358.989 72 358.989 83 358.989 31
P-n45-k5-C15-V2 45 15 1.61 239.568 172 239.357 94 239.357 6
A-n45-k6-C15-V3 45 15 2.09 478.219 105 478.219 56 478.219 12
A-n45-k7-C15-V3 45 15 2.06 516.508 94 488.017 99 488.017 34
A-n46-k7-C16-V3 46 16 2.08 465.624 209 471.980 82 471.980 16
A-n48-k7-C16-V3 48 16 2.13 474.210 150 462.548 95 462.548 35
A-n53-k7-C18-V3 53 18 2.09 450.973 268 443.875 97 443.875 16
A-n54-k7-C18-V3 54 18 2.19 507.805 201 490.544 134 490.544 41
A-n55-k9-C19-V3 55 19 2.75 475.919 292 474.048 114 474.048 15
A-n60-k9-C20-V3 60 20 2.80 614.515 517 620.897 361 620.897 117
P-n76-k4-C26-V2 76 26 1.33 461.753 >10000 310.397 4312 310.397 58
P-n76-k5-C26-V2 76 26 1.67 373.937 >10000 310.397 3748 310.397 56
P-n101-k4-C34-V2 101 34 1.25 992.679 >10000 371.926 9979 371.926 397

when a solution is evaluated using ML-ES the procedure could be terminated in the top
30% of the approximation levels where the acceleration is the largest.

Next we show how average results over 30 independent runs of the VNS with the
GTSP starting solution and the ML-ES compares to the integer L-shaped method. Table
5.3 shows the numerical comparison with the exact method and for the exact algorithm
the optimality gap (gap) and the time needed is stated in the table.

The high optimality gaps on the medium to large instances show that the GVRPSD
is a hard problem but on the instances where the L-shaped method is able to find a
proven optimal solution the VNS also finds it in substantially less time. In the extreme
case of instance A-n34-k5-C12-V2 the VNS found an optimal solution in all 30 runs
about 865 times faster than the exact algorithm. However, since the L-shaped method

116

Table 5.3: Comparison of the proposed VNS with an exact integer L-shaped method.

L-shaped VNS + GTSP
+ ML-ES

Instance n m E[nr] obj gap t[s] obj sd t∗[s]

P-n19-k2-C7-V1 19 7 0.71 112.105 0.0% <1 112.105 0.00 <1
P-n20-k2-C7-V1 20 7 0.68 117.306 0.0% <1 117.306 0.00 <1
P-n21-k2-C7-V1 21 7 0.64 117.071 0.0% <1 117.071 0.00 <1
P-n22-k2-C8-V1 22 8 0.73 111.194 0.0% <1 111.194 0.00 <1

B-n31-k5-C11-V2 31 11 1.38 355.729 11.1% >7200 355.729 0.00 5
A-n32-k5-C11-V2 32 11 1.39 386.909 0.0% 1331 386.909 0.00 25
A-n33-k5-C11-V2 33 11 1.52 318.028 0.0% 374 318.028 0.00 2
A-n33-k6-C11-V2 33 11 1.91 364.589 0.0% 598 364.589 0.00 27
A-n34-k5-C12-V2 34 12 1.66 419.124 0.0% 3719 419.124 0.00 4
B-n34-k5-C12-V2 34 12 1.34 363.089 18.1% >7200 363.089 0.00 4
B-n35-k5-C12-V2 35 12 1.54 501.470 26.3% >7200 501.450 0.11 6
A-n36-k5-C12-V2 36 12 1.34 399.905 9.4% >7200 399.905 0.00 7
A-n37-k5-C13-V2 37 13 1.43 359.133 0.0% 98 359.133 0.00 3
A-n37-k6-C13-V2 37 13 1.95 434.865 18.5% >7200 430.987 0.00 7
A-n38-k5-C13-V2 38 13 1.71 371.795 0.0% 588 371.795 0.00 2
B-n38-k6-C13-V2 38 13 1.93 386.195 12.2% >7200 388.734 1.15 8
A-n39-k5-C13-V2 39 13 1.48 371.410 7.6% >7200 371.410 0.00 8
A-n39-k6-C13-V2 39 13 1.83 417.844 5.6% >7200 417.844 0.00 8
B-n39-k5-C13-V2 39 13 1.45 281.482 0.0% 282 281.482 0.00 <1
P-n40-k5-C14-V2 40 14 1.51 214.753 0.0% 392 214.753 0.00 4
B-n41-k6-C14-V2 41 14 1.82 408.977 16.7% >7200 404.261 0.00 10
B-n43-k6-C15-V2 43 15 1.81 347.650 19.7% >7200 347.650 0.00 6
A-n44-k6-C15-V2 44 15 2.00 509.254 16.2% >7200 508.981 0.00 15
B-n45-k5-C15-V2 45 15 1.51 419.613 3.6% >7200 419.096 1.05 8
B-n45-k6-C15-V2 45 15 1.96 367.730 23.6% >7200 358.989 0.00 31
P-n45-k5-C15-V2 45 15 1.61 239.357 4.6% >7200 239.357 0.00 6
A-n45-k6-C15-V3 45 15 2.09 478.265 16.2% >7200 478.219 0.00 12
A-n45-k7-C15-V3 45 15 2.06 491.539 30.6% >7200 488.017 0.00 34
A-n46-k7-C16-V3 46 16 2.08 465.624 19.0% >7200 471.539 0.51 16
A-n48-k7-C16-V3 48 16 2.13 469.690 28.7% >7200 462.548 0.00 35
A-n53-k7-C18-V3 53 18 2.09 443.873 13.6% >7200 443.875 0.00 16
A-n54-k7-C18-V3 54 18 2.19 500.349 28.6% >7200 490.544 0.00 41
A-n55-k9-C19-V3 55 19 2.75 483.997 21.7% >7200 474.048 0.00 15
A-n60-k9-C20-V3 60 20 2.80 623.528 35.6% >7200 617.575 4.98 118
P-n76-k4-C26-V2 76 26 1.33 310.397 6.1% >7200 310.397 0.00 55
P-n76-k5-C26-V2 76 26 1.67 310.397 5.8% >7200 310.397 0.00 53
P-n101-k4-C34-V2 101 34 1.25 371.926 5.7% >7200 371.926 0.00 379

guarantees the optimality of the solution we cannot directly compare the run-time of
these algorithms. Our tests further showed that in the VNS the ML-ES can be terminated
within the top 4% of the approximation levels which is even better than for the VND.

5.7.3 Genetic Algorithm with Solution Archive

Finally, the genetic algorithm with solution archive is evaluated. Since the GASA consists
of several components, each is evaluated separately. Each run of the GA is terminated
after a maximum of 300 CPU seconds (Tmax=300). Preliminary tests showed that the
parameters for the basic GA were not particularly sensitive to changes, therefore the
population size is fixed to 100, pmut to 0.1, and nMut to 10.

117

In the first set of experiments for the GASA the VND is examined more closely to
evaluate the effectiveness of the used neighborhood structures within the GA. Then,
extensive tests regarding the solution archive are performed. Therefore, the algorithm
is run with and without the solution archive and results are compared. After that, the
bounding extension is investigated in detail.

Variable Neighborhood Descent

In a first step tests with various values for α, which determines the frequency of VND
executions, are performed. In preliminary tests it turned out that when α is higher
than 0.1 the run-time spent in the VND dominates the other parts of the algorithm too
much. Therefore, we consider here α ∈ {0.01, 0.05, 0.1}. Table 5.4 shows a summary of
the results grouped by the instance set. In this table as well as in other tables in this
chapter obj stands for the average objective value over 30 independent runs using all
instances of the respective group, objg is the geometric mean over these runs, and gap
to BKS is the average percentage gap to the best known solution (BKS). The BKS is
determined by taking the best objective value of each instance separately over all runs
and configurations which are tested here. The row #Best results indicates the number
of instances, for which this configuration yields the best average objective value of the
configurations under comparison. The next three rows show the p-Values of one-sided
paired Wilcoxon rank sum tests which were performed over all instances.

Table 5.4: Performance of the GA+VND with different values for α.

Instances with θ = 2 Instances with θ = 3

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

obj 696.32 695.53 695.23 492.59 490.74 490.74
objg 540.19 539.58 539.75 399.48 399.19 398.97

gap to BKS 1.31% 1.19% 1.25% 0.77% 0.70% 0.64%
Best results 61 65 72 67 74 83

p-Value (< α = 0.01) - 0.000011 <0.000001 - 0.000002 <0.000001
p-Value (< α = 0.05) 0.999989 - 0.006113 0.999998 - 0.082960
p-Value (< α = 0.1) >0.999999 0.993892 - >0.999999 0.917141 -

The results in Table 5.4 show that obj, objg, and the gap to the BKS for α = 0.05
and α = 0.1 are lower than for α = 0.01. The conclusion that the configuration with
α = 0.01 is worse than the other values for α is also confirmed by the statistical tests,
which showed that both α = 0.05 and α = 0.1 are significantly better with an error
level of less than 1%. Considering the number of best results both configurations with
α ∈ {0.05, 0.1} have similar values and the gap to the BKS is lower for α = 0.05 when
instances with θ = 2 are considered but higher for the instance set with θ = 3. However,
the statistical test revealed that α = 0.1 is significantly better for instances with θ = 2
and therefore this value is used for the remaining tests.

To investigate the effectiveness of each of the used neighborhood structures within the
VND the number of times where an improvement could be achieved was counted for each
neighborhood N1 to N4. For this test we include the solution archive as it is the basis

118

for N4. The number of conversions, which corresponds to the size of this neighborhood
structure, is set to n2 to have a comparable size to the other neighborhoods. Tables 5.5
and 5.6 show the number of improvements for each instance, which are referred to by
their name, the number of nodes n, the number of clusters m, and the expected number
of restocks E[nr]. Note that the instances are the same as for the other tested algorithms
but abbreviations of the instance names are used.

Table 5.5: Average number of improvements in the different neighborhood structures for
smaller instances.

θ = 2 n m E[nr] N1 N2 N3 N4 θ = 3 n m E[nr] N1 N2 N3 N4

P1 16 8 4.20 38 8 5 48 P1 16 6 3.00 3 0 0 1
P2 19 10 1.08 10 13 1 2 P2 19 7 0.71 0 0 0 0
P3 20 10 1.04 28 16 3 6 P3 20 7 0.68 0 0 0 0
P4 21 11 1.04 268 110 26 46 P4 21 7 0.64 0 0 0 0
P5 22 11 1.04 147 47 14 21 P5 22 8 0.73 0 0 0 0
P6 22 11 3.87 380 166 110 40 P6 22 8 2.82 6 3 1 2
P7 23 12 4.53 11907 2694 2339 2652 P7 23 8 2.55 34 13 6 41
B1 31 16 2.03 8779 2648 953 951 B1 31 11 1.38 8701 3000 1034 3189
A1 32 16 2.00 10100 2741 706 887 A1 32 11 1.39 117 47 14 32
A2 33 17 2.33 9333 3272 722 736 A2 33 11 1.52 43 25 2 9
A3 33 17 2.74 9436 4039 818 658 A3 33 11 1.91 98 39 9 15
A4 34 17 2.25 9099 3345 778 666 A4 34 12 1.66 793 265 79 122
B2 34 17 2.05 7243 2395 521 791 B2 34 12 1.34 748 423 59 151
B3 35 18 2.23 7421 1946 505 621 B3 35 12 1.54 4596 1630 432 973
A5 36 18 1.98 6572 2860 484 494 A5 36 12 1.34 771 223 52 125
A6 37 19 2.10 2552 1127 151 163 A6 37 13 1.43 147 57 6 16
A7 37 19 2.93 6754 2520 575 571 A7 37 13 1.95 6282 1949 719 906
A8 38 19 2.42 7011 2513 518 430 A8 38 13 1.71 257 133 25 33
B4 38 19 2.75 5291 1989 447 758 B4 38 13 1.93 8167 2799 702 1708
A9 39 20 2.47 6163 1995 494 350 A9 39 13 1.48 1478 449 101 184
A10 39 20 2.68 6002 1971 491 456 A10 39 13 1.83 1743 897 185 335
B5 39 20 2.33 5753 1660 153 508 B5 39 13 1.45 3 4 0 0
P8 40 20 2.26 5956 2021 325 284 P8 40 14 1.51 215 118 13 29
B6 41 21 2.88 5344 1922 243 339 B6 41 14 1.82 4751 1654 210 584
B7 43 22 2.78 5037 1359 350 296 B7 43 15 1.81 2355 1171 238 265

A11 44 22 2.91 4818 1526 371 367 A11 44 15 2.00 6241 1921 508 802
B8 44 22 3.16 4030 1255 303 332 B8 44 15 2.24 5579 1726 361 785

A12 45 23 3.12 4234 1528 335 275 A12 45 15 2.09 6596 2174 439 732
A13 45 23 3.16 3749 1265 401 328 A13 45 15 2.06 5538 1682 450 860
B9 45 23 2.45 5486 1344 213 211 B9 45 15 1.51 602 200 51 76
B10 45 23 3.05 3865 1361 367 338 B10 45 15 1.96 6417 2155 353 673
P9 45 23 2.35 3529 1123 190 220 P9 45 15 1.61 1202 457 73 140

A14 46 23 3.12 3856 1379 309 270 A14 46 16 2.08 5478 1816 409 635
A15 48 24 3.25 3474 1070 329 331 A15 48 16 2.13 4531 1188 352 709
B11 50 25 3.01 3260 1223 155 283 B11 50 17 2.05 3539 1195 121 301
B12 50 25 4.26 2336 282 210 274 B12 50 17 2.72 4624 1508 385 716
P10 50 25 4.77 3364 994 298 280 P10 50 17 3.32 4934 1437 336 725
P11 50 25 3.18 2952 803 169 208 P11 50 17 2.21 3689 1264 171 452
P12 50 25 3.98 3059 966 203 217 P12 50 17 2.77 4266 1164 239 586

As we see in Tables 5.5 and 5.6 the number of improvements achieved in a specific
neighborhood structure is usually smaller than the number in the preceding neighborhood
structure. This can be explained by the design of the employed VND: each time an
improvement in any neighborhood is found, the search restarts with the first neighborhood

119

Table 5.6: Average number of improvements in the different neighborhood structures for
larger instances.

θ = 2 n m E[nr] N1 N2 N3 N4 θ = 3 n m E[nr] N1 N2 N3 N4

B13 51 26 3.56 2693 866 234 239 B13 51 17 2.44 5710 1249 282 454
P13 51 26 5.04 3123 862 275 237 P13 51 17 3.31 4964 1255 350 617
B14 52 26 3.12 2799 872 161 224 B14 52 18 2.18 3622 1412 266 474
A16 53 27 3.38 2688 687 197 164 A16 53 18 2.09 4178 1176 253 348
A17 54 27 3.43 2477 812 226 227 A17 54 18 2.19 3966 939 220 356
A18 55 28 4.18 2344 639 189 147 A18 55 19 2.75 3818 1362 294 353
P14 55 28 4.72 2244 702 186 169 P14 55 19 3.21 3353 830 215 400
P15 55 28 7.76 2094 257 258 253 P15 55 19 5.27 3580 402 344 763
P16 55 28 3.19 2189 654 127 115 P16 55 19 2.17 2983 859 134 253
P17 55 28 3.39 2260 661 122 118 P17 55 19 2.31 3041 771 149 269
B15 56 28 3.19 1753 413 91 111 B15 56 19 2.20 4013 1134 123 279
B16 57 29 3.68 2394 543 119 107 B16 57 19 2.39 2724 598 104 188
B17 57 29 4.19 1831 511 144 161 B17 57 19 2.55 2928 840 256 445
A19 60 30 4.11 1700 589 173 135 A19 60 20 2.80 3010 875 229 330
P18 60 30 4.83 1748 521 143 126 P18 60 20 3.19 2728 694 179 331
P19 60 30 7.23 1684 530 195 165 P19 60 20 4.78 3306 871 284 474
A20 61 31 4.51 1528 423 143 115 A20 61 21 3.09 2801 897 202 322
A21 62 31 3.66 1605 504 127 78 A21 62 21 2.59 2586 577 185 300
A22 63 32 4.69 1372 420 137 92 A22 63 21 3.14 2493 826 219 308
A23 63 32 4.52 1384 477 135 119 A23 63 21 2.96 2437 723 205 344
B18 63 32 4.41 1589 422 129 107 B18 63 21 2.90 2611 740 184 363
A24 64 32 4.11 1342 357 138 107 A24 64 22 2.55 2409 592 169 276
B19 64 32 4.17 1361 427 105 114 B19 64 22 3.17 2951 701 159 256
A25 65 33 4.14 1092 397 122 89 A25 65 22 2.89 2472 701 166 266
P20 65 33 4.78 1189 375 116 90 P20 65 22 3.23 2592 562 143 241
B20 66 33 4.36 1458 376 93 85 B20 66 22 2.80 2427 625 156 251
B21 67 34 4.59 1425 298 90 71 B21 67 23 3.14 2217 563 153 240
B22 68 34 4.17 1303 383 81 77 B22 68 23 2.87 2257 552 121 232
A26 69 35 4.30 940 302 89 69 A26 69 23 2.94 2340 542 116 196
P21 70 35 4.79 946 299 82 64 P21 70 24 3.36 2062 478 111 206
P22 76 38 1.95 529 172 12 12 P22 76 26 1.33 659 210 25 30
P23 76 38 2.44 697 204 29 18 P23 76 26 1.67 966 237 26 39
B23 78 39 4.89 1056 183 45 37 B23 78 26 3.31 1798 358 79 132
A27 80 40 4.43 627 150 56 37 A27 80 27 3.04 1388 267 83 116
M1 101 51 4.73 197 38 7 6 M1 101 34 3.20 1071 81 11 16
P24 101 51 1.83 179 33 4 1 P24 101 34 1.25 318 50 6 12
M2 121 61 3.54 113 14 1 1 M2 121 41 2.44 226 52 11 12
M3 151 76 5.69 87 3 0 0 M3 151 51 3.71 119 19 3 3
M4 200 100 7.92 46 0 0 0 M4 200 67 5.29 63 0 0 0
G1 262 131 11.79 7 0 0 0 G1 262 88 8.13 9 0 0 0

structure, so the earlier neighborhood structures are searched more often. But still it can
be observed that for most but the largest instances even N4 was useful as it sometimes
led to an improvement where the other neighborhood structures did not. Note that the
numbers for the smallest instances are very small compared to the larger instances. This
is because by using the solution archive the optimal solution was found within seconds
after which the algorithm terminated. In Section 5.7.3 this issue is further discussed.

120

Solution Archive

The next experiments are performed to investigate the impact of the solution archive
to the overall results. Therefore, the algorithm with the parameters described before
(without SA) is compared to the algorithm with the solution archive and no conversion
within the VND (GASA SAconv=0) and to the configuration with solution archive and
conversion (GASA SAconv=1). Furthermore, the relative number of identified duplicate
solutions per instance (dups) is recorded.

Table 5.7: Results for the configurations without the solution archive (without SA), with
the SA and no conversion in the VND (GASA SAconv=0), and with the SA and with
conversion (GASA SAconv=1) for smaller instances with θ = 2.

without SA GASA SAconv=0 GASA SAconv=1

θ = 2 obj sd obj sd dups[%] obj sd dups[%]

P1 245.34 0.00 245.34 0.00 39.89 245.34 0.00 33.48
P2 146.82 0.00 146.82 0.00 93.01 146.82 0.00 92.86
P3 149.02 0.00 149.02 0.00 92.64 149.02 0.00 92.92
P4 160.48 0.00 160.48 0.00 86.81 160.48 0.00 85.24
P5 162.95 0.00 161.36 0.00 86.75 161.36 0.00 87.48
P6 323.59 0.01 323.59 0.00 24.28 323.59 0.01 21.64
P7 312.51 0.00 312.51 0.01 17.76 312.51 0.01 15.81
B1 419.91 0.00 419.91 0.00 11.95 419.91 0.00 11.06
A1 538.49 3.49 520.04 0.00 41.98 520.40 0.94 24.93
A2 455.15 0.00 455.15 0.00 39.80 455.15 0.00 26.17
A3 468.10 0.19 467.95 0.00 45.02 467.96 0.07 23.23
A4 503.34 2.07 498.15 0.00 46.05 498.35 1.09 26.59
B2 466.80 0.00 466.80 0.00 13.40 466.80 0.00 12.53
B3 619.24 0.00 619.24 0.00 12.89 619.24 0.00 11.52
A5 506.95 0.00 506.40 0.79 58.80 506.68 0.63 40.58
A6 454.29 3.95 447.86 0.00 76.72 447.86 0.00 57.30
A7 609.17 3.78 590.59 3.49 15.18 595.03 8.16 11.05
A8 481.97 0.00 481.97 0.00 29.78 481.97 0.00 20.95
B4 479.92 0.00 479.92 0.00 10.18 479.87 0.26 9.50
A9 567.41 0.00 567.41 0.00 16.84 567.41 0.00 11.75

A10 561.25 0.00 560.61 0.40 15.91 561.02 0.39 11.52
B5 356.43 0.00 356.43 0.00 16.33 356.43 0.00 16.44
P8 296.44 0.00 296.36 0.05 17.50 296.35 0.04 18.46
B6 483.26 0.00 483.22 0.15 9.58 483.26 0.00 9.08
B7 485.46 0.00 485.46 0.00 9.22 485.46 0.00 8.61

A11 627.86 0.00 627.86 0.00 10.66 627.86 0.00 8.93
B8 563.95 0.00 563.95 0.00 8.19 563.95 0.00 7.81

A12 621.23 0.00 621.23 0.00 10.29 621.23 0.00 8.44
A13 692.89 0.00 692.89 0.00 8.24 693.09 1.09 7.47
B9 502.02 0.00 502.02 0.00 10.76 502.02 0.00 10.52
B10 482.91 0.00 482.91 0.00 7.95 482.91 0.00 7.44
P9 340.68 0.00 340.50 0.06 10.16 340.53 0.09 9.60

A14 624.05 0.00 622.84 1.32 8.03 622.75 1.32 7.54
A15 686.42 0.00 686.42 0.00 7.62 686.42 0.00 7.25
B11 454.09 0.00 454.09 0.00 7.92 454.09 0.00 7.68
B12 923.53 0.00 923.53 0.00 6.81 923.53 0.00 6.49
P10 423.34 0.57 422.24 1.50 7.06 421.86 1.45 6.58
P11 354.47 0.00 354.47 0.00 8.51 354.47 0.00 8.12
P12 377.66 0.00 377.62 0.21 7.39 377.62 0.21 6.97

121

Table 5.8: Results for the configurations without the solution archive (without SA), with
the SA and no conversion in the VND (GASA SAconv=0), and with the SA and with
conversion (GASA SAconv=1) for larger instances with θ = 2.

without SA GASA SAconv=0 GASA SAconv=1

θ = 2 obj sd obj sd dups[%] obj sd dups[%]

B13 682.70 0.00 682.70 0.00 6.85 682.70 0.00 6.47
P13 451.79 0.00 451.79 0.00 6.86 451.79 0.00 6.51
B14 458.66 0.33 458.39 0.34 7.00 458.34 0.33 6.65
A16 633.47 0.00 632.78 2.79 6.55 632.03 4.48 6.21
A17 722.02 2.62 721.54 3.63 6.50 722.38 0.60 6.12
A18 718.26 0.51 718.11 0.06 6.33 718.45 1.80 6.03
P14 420.69 0.00 420.69 0.00 6.30 420.69 0.00 5.97
P15 560.92 0.01 560.86 0.30 6.21 560.69 0.60 5.93
P16 361.87 0.00 361.87 0.00 6.84 361.87 0.00 6.53
P17 362.07 0.03 362.04 0.02 7.03 362.03 0.00 6.70
B15 474.92 0.00 474.92 0.00 6.09 474.89 0.15 5.84
B16 779.30 0.41 778.60 0.91 5.94 778.76 0.92 5.69
B17 967.33 0.00 967.33 0.00 5.91 967.33 0.00 5.72
A19 815.86 0.00 815.86 0.00 5.79 815.86 0.00 5.59
P18 452.86 0.00 452.86 0.00 5.78 452.86 0.00 5.45
P19 572.08 0.00 572.08 0.00 5.85 572.06 0.37 5.50
A20 658.06 8.24 653.64 9.18 5.60 653.30 8.81 5.46
A21 755.75 0.00 755.75 0.00 5.81 755.75 0.00 5.51
A22 830.88 0.53 830.88 0.53 5.45 830.80 0.66 5.25
A23 946.39 0.00 946.39 0.00 5.44 946.39 0.00 5.22
B18 852.87 0.00 852.87 0.00 5.54 852.87 0.00 5.28
A24 837.31 0.00 837.31 0.00 5.41 837.31 0.00 5.12
B19 514.92 0.00 514.92 0.00 5.32 514.92 0.00 5.05
A25 712.14 0.00 712.14 0.00 5.42 712.14 0.00 5.11
P20 501.39 0.00 501.34 0.30 5.43 501.39 0.00 5.25
B20 818.42 0.00 818.42 0.00 5.15 818.42 0.00 4.92
B21 672.40 0.00 672.40 0.00 4.93 672.42 0.05 4.80
B22 738.48 0.00 738.48 0.00 4.97 738.13 1.91 4.76
A26 706.39 6.91 707.90 6.07 4.85 707.67 6.52 4.68
P21 504.96 0.00 504.96 0.00 4.90 504.96 0.00 4.69
P22 394.20 0.00 392.81 1.01 8.55 392.89 0.89 8.43
P23 409.93 0.00 409.93 0.00 6.08 409.93 0.00 5.96
B23 873.27 12.83 863.99 18.93 4.00 865.28 18.52 3.80
A27 1049.26 0.71 1049.26 0.71 3.79 1049.39 0.00 3.60
M1 569.06 17.30 569.15 19.41 3.47 572.23 18.08 3.44
P24 462.25 3.27 458.43 0.35 28.98 458.37 0.28 24.97
M2 896.42 83.21 860.22 112.30 3.09 886.63 148.42 2.88
M3 966.97 102.47 983.18 209.26 2.39 993.70 211.74 2.20
M4 1967.18 166.82 1680.24 605.77 2.02 1740.09 545.62 1.71
G1 8709.61 775.64 8669.10 741.93 1.52 8526.76 550.58 1.21

122

Table 5.9: Results for the configurations without the solution archive (without SA), with
the SA and no conversion in the VND (GASA SAconv=0), and with the SA and with
conversion (GASA SAconv=1) for smaller instances with θ = 3.

without SA GASA SAconv=0 GASA SAconv=1

θ = 3 obj sd obj sd dups[%] obj sd dups[%]

P1 170.37 0.00 170.37 0.00 7.46 170.37 0.00 10.36
P2 112.10 0.00 112.10 0.00 70.94 112.10 0.00 72.02
P3 117.31 0.00 117.31 0.00 72.52 117.31 0.00 72.00
P4 117.07 0.00 117.07 0.00 71.52 117.07 0.00 70.90
P5 111.19 0.00 111.19 0.00 87.77 111.19 0.00 87.66
P6 245.83 0.00 245.83 0.00 31.92 245.83 0.00 29.28
P7 183.59 0.00 183.59 0.00 20.44 183.59 0.00 19.78
B1 355.73 0.00 355.73 0.00 28.09 355.73 0.00 24.59
A1 386.91 0.00 386.91 0.00 85.45 386.91 0.00 85.33
A2 318.03 0.00 318.03 0.00 89.28 318.03 0.00 88.76
A3 364.59 0.00 364.59 0.00 86.83 364.59 0.00 87.40
A4 419.12 0.00 419.12 0.00 71.34 419.12 0.00 70.76
B2 363.09 0.00 363.09 0.00 72.98 363.09 0.00 73.14
B3 501.47 0.00 500.87 0.00 45.85 500.87 0.00 47.17
A5 399.90 0.00 399.90 0.00 74.41 399.90 0.00 71.99
A6 359.13 0.00 359.13 0.00 83.34 359.13 0.00 83.65
A7 430.99 0.00 430.99 0.00 48.11 430.99 0.00 48.19
A8 371.80 0.00 371.80 0.00 80.60 371.80 0.00 78.99
B4 389.04 0.77 386.25 0.30 28.90 386.25 0.30 24.60
A9 371.41 0.00 371.41 0.00 63.80 371.41 0.00 64.09
A10 416.03 0.00 416.03 0.00 59.30 416.03 0.00 60.26
B5 281.48 0.00 281.48 0.00 88.47 281.48 0.00 88.64
P8 214.75 0.00 214.75 0.00 80.90 214.75 0.00 78.42
B6 404.26 0.00 404.26 0.00 39.34 404.26 0.00 39.92
B7 347.65 0.00 347.65 0.00 57.08 347.65 0.00 55.01

A11 508.85 0.70 506.60 1.09 26.19 506.48 1.03 24.82
B8 402.02 0.00 402.02 0.00 14.85 402.02 0.00 14.13

A12 478.22 0.00 478.22 0.00 26.14 478.22 0.00 24.67
A13 488.02 0.00 488.02 0.00 11.66 488.02 0.00 11.53
B9 417.03 0.00 417.03 0.00 66.42 417.03 0.00 67.98
B10 358.99 0.00 358.99 0.00 16.81 358.99 0.00 15.99
P9 239.36 0.00 239.36 0.00 59.32 239.36 0.00 58.08

A14 470.96 0.00 466.82 2.22 18.53 466.34 1.85 18.58
A15 462.55 0.00 462.55 0.00 15.58 462.55 0.00 14.26
B11 398.38 0.00 398.38 0.00 15.97 398.38 0.00 14.11
B12 600.66 0.00 600.64 0.05 7.87 600.65 0.03 7.63
P10 302.37 0.00 302.37 0.00 8.00 302.37 0.00 8.30
P11 261.31 0.00 261.31 0.00 21.17 261.31 0.00 17.35
P12 273.12 0.80 268.91 0.00 18.91 268.91 0.00 16.08

123

Table 5.10: Results for the configurations without the solution archive (without SA),
with the SA and no conversion in the VND (GASA SAconv=0), and with the SA and
with conversion (GASA SAconv=1) for larger instances with θ = 3.

without SA GASA SAconv=0 GASA SAconv=1

θ = 3 obj sd obj sd dups[%] obj sd dups[%]

B13 513.02 0.00 513.02 0.00 12.84 513.02 0.00 12.34
P13 313.41 0.00 313.41 0.00 7.57 313.41 0.00 7.87
B14 360.50 0.00 360.50 0.00 22.16 360.50 0.00 18.56
A16 443.87 0.00 443.87 0.00 17.87 443.87 0.00 17.86
A17 490.54 0.00 490.54 0.00 10.00 490.54 0.00 9.86
A18 474.05 0.00 474.05 0.00 10.24 474.05 0.00 9.24
P14 316.65 0.00 313.37 2.18 6.99 313.67 2.25 6.72
P15 396.20 0.00 396.20 0.00 6.38 396.12 0.44 6.10
P16 274.22 0.00 274.22 0.00 12.14 274.22 0.00 12.97
P17 276.33 0.00 276.33 0.00 10.92 276.33 0.00 11.55
B15 358.81 0.26 357.91 0.26 10.65 357.84 0.00 10.44
B16 565.26 1.06 564.53 0.55 9.42 564.37 0.12 9.09
B17 689.78 8.96 681.73 11.45 6.35 682.01 11.30 6.14
A19 620.10 3.03 616.92 5.72 6.67 616.68 8.13 6.28
P18 328.89 0.00 328.83 0.05 6.41 328.83 0.05 5.94
P19 372.63 0.00 372.63 0.00 5.83 372.63 0.00 5.66
A20 482.51 0.00 482.51 0.00 6.11 482.51 0.00 5.96
A21 617.56 0.00 617.56 0.00 6.31 617.56 0.00 6.02
A22 611.54 0.00 611.54 0.00 5.86 611.66 0.68 5.69
A23 665.59 1.46 664.95 1.64 5.84 664.66 1.61 5.67
B18 604.67 0.07 604.66 0.09 6.80 604.62 0.10 6.53
A24 564.46 0.00 564.46 0.00 6.44 564.33 0.73 6.25
B19 457.24 0.00 457.24 0.00 8.13 457.24 0.00 7.62
A25 525.03 0.00 525.03 0.00 6.06 525.03 0.00 5.78
P20 378.48 0.00 378.48 0.00 5.68 378.48 0.00 5.56
B20 627.36 0.00 627.22 0.35 7.29 627.29 0.26 7.14
B21 561.71 0.00 561.71 0.00 5.74 561.71 0.00 5.58
B22 538.59 1.91 539.25 1.46 6.01 538.70 1.89 5.74
A26 523.77 0.00 523.77 0.00 7.94 523.77 0.00 7.84
P21 386.15 0.00 385.82 0.19 5.28 385.88 0.21 4.93
P22 310.40 0.00 310.40 0.00 34.38 310.40 0.00 32.96
P23 310.40 0.00 310.40 0.00 23.82 310.40 0.00 27.64
B23 620.11 0.00 620.11 0.00 7.73 620.11 0.00 7.48
A27 748.99 6.03 751.46 6.18 5.25 752.06 6.15 5.09
M1 468.10 14.60 463.48 8.51 5.32 463.06 5.95 5.33
P24 378.68 0.00 371.93 0.00 18.22 372.74 2.15 18.26
M2 578.24 18.02 561.00 18.40 4.87 566.74 18.97 4.57
M3 538.05 30.39 532.71 44.21 4.13 523.75 33.84 4.04
M4 936.83 113.82 834.52 158.87 2.89 829.13 163.78 2.59
G1 3769.61 317.90 3843.03 324.70 2.31 3898.56 302.18 2.09

124

The results of these tests are shown in Tables 5.7 and 5.8 for instances with θ = 2 and
in Tables 5.9 and 5.10 for instances with θ = 3. The average objective values (obj) and
corresponding standard deviations (sd) over 30 runs are given along with the number of
duplicate solutions relative to all generated solutions. The bold numbers in the column
for the configuration without the SA mean that on these instances the algorithm without
the SA achieved statistically better results (using a pairwise Wilcoxon rank sum test as
described before) than either GASA SAconv=0 or GASA SAconv=1. The bold numbers
in the other columns indicate statistically better results for the respective configuration
compared only to the GA without the SA. These tables show that through all instance
sizes the SA is able to improve the algorithm as it produces in 20 out of 79 instances
with θ = 2 and in 14 out of 79 instances with θ = 3 significantly better results whereas
the GA without the archive was never significantly better. When considering the number
of duplicate solutions, it is observed that generally the larger the instances the fewer
duplicates are produced and the average number of duplicates is 16.30% for instances
with θ = 2 and 28.29% for instances with θ = 3 (for SAconv=0). A summary of the results
is given in Table 5.11 where it becomes more obvious that both configurations using the
SA achieve significantly better results than the GA without the SA at a significance
level of 1%. However, when comparing SAconv=0 to SAconv=1 the results do not show
a clear indication which one performed better, but SAconv=0 is used for the remaining
tests since the total average gap to the BKS and the geometric mean is lower for this
configuration.

Table 5.11: Performance of the GA with different variants of the SA.
Instances with θ = 2 Instances with θ = 3

no SA SAconv=0 SAconv=1 no SA SAconv=0 SAconv=1

obj 679.91 674.57 674.12 460.92 459.77 460.36
objg 545.15 542.90 543.41 398.58 397.42 397.42

gap to BKS 3.22% 2.58% 2.72% 1.37% 1.02% 1.02%
Best results 43 60 55 56 62 65

p-Value (< no SA) - <0.000001 <0.000001 - <0.000001 <0.000001
p-Value (< SAconv=0) >0.999999 - 0.949769 >0.999999 - 0.641107
p-Value (< SAconv=1) >0.999999 0.050273 - >0.999999 0.359077 -

Bounding Extension

For the evaluation of the bounding extension the probability of a bound computation on
the visit of a trie node is set to 5% and as already stated in Section 5.6.4 the coarsest
approximation of the DP is used for computing lb1.

To investigate the impact of the bounding extension on the algorithm first it is
determined how successful the bound computations are. In this context successful means
that after the bound computation the subtrie could actually be cut off, i.e., the computed
lower bound on this partial solution is already higher than the global upper bound given
by the best solution found so far. To get an overview of the results the relative number

125

of bound cuts is grouped by the trie levels which are divided into four quarters in which
the bounds are computed.

Table 5.12: Successful bound cuts grouped by instance and part of the trie where they
were computed for smaller instances.

θ = 2 0-25[%] 26-50[%] 51-75[%] 76-100[%] θ = 3 0-25[%] 26-50[%] 51-75[%] 76-100[%]

P1 0.00 0.00 0.00 0.00 P1 0.00 0.00 0.00 0.00
P2 24.36 68.98 94.08 98.62 P2 23.10 85.17 97.84 100.00
P3 16.35 58.85 91.73 98.70 P3 7.04 55.04 96.43 100.00
P4 8.64 56.54 91.24 98.87 P4 2.11 56.65 98.20 99.77
P5 8.64 61.21 93.34 99.26 P5 26.20 69.65 95.93 98.44
P6 0.00 5.97 36.61 58.74 P6 0.66 10.95 38.90 52.22
P7 0.00 0.00 0.60 1.48 P7 0.00 1.51 12.33 22.65
B1 2.04 5.70 19.93 52.47 B1 0.55 5.82 42.14 75.16
A1 18.51 29.46 55.61 81.62 A1 16.36 61.68 92.43 99.06
A2 13.59 26.76 57.28 82.25 A2 10.27 63.27 94.08 99.53
A3 11.83 28.28 57.13 82.00 A3 6.73 65.43 92.35 99.12
A4 20.76 35.39 60.46 84.44 A4 29.18 52.41 80.32 95.01
B2 3.34 13.65 49.10 77.29 B2 27.58 61.50 88.67 96.21
B3 0.46 9.85 42.46 76.86 B3 22.92 44.71 75.78 89.48
A5 19.48 35.85 64.10 88.70 A5 10.22 52.40 84.36 96.48
A6 23.82 48.40 68.69 92.24 A6 16.09 55.16 85.11 96.95
A7 1.58 9.65 39.31 77.19 A7 14.90 36.45 72.13 87.82
A8 9.48 27.05 48.70 83.96 A8 33.88 62.06 85.18 96.72
B4 0.33 8.27 35.36 63.84 B4 21.58 34.48 68.48 84.00
A9 1.69 11.78 38.91 73.40 A9 11.22 41.05 77.66 93.15
A10 2.77 12.80 40.60 74.55 A10 17.42 44.38 77.05 91.96
B5 14.93 27.88 58.20 82.91 B5 59.44 82.71 97.39 99.78
P8 9.79 21.41 45.14 77.91 P8 23.69 53.42 74.92 94.77
B6 1.42 7.33 44.00 80.95 B6 29.05 45.74 74.50 91.72
B7 0.03 3.35 32.67 73.67 B7 31.74 57.65 77.59 94.08

A11 0.53 6.60 36.27 73.91 A11 2.17 24.03 54.29 84.30
B8 0.01 1.31 24.68 64.77 B8 1.60 15.38 52.98 80.71

A12 1.60 9.32 39.19 76.30 A12 3.32 21.33 47.93 81.74
A13 0.02 1.37 20.29 60.32 A13 0.32 6.15 36.58 73.74
B9 2.24 11.99 46.06 85.50 B9 53.73 63.08 81.45 96.77
B10 0.38 3.58 22.70 66.08 B10 3.68 15.53 47.88 81.54
P9 5.20 17.22 41.87 81.12 P9 14.92 42.35 59.49 90.87

A14 0.38 5.55 33.19 72.75 A14 6.72 19.84 46.65 76.94
A15 0.12 2.80 21.94 59.50 A15 3.73 14.90 44.38 75.62
B11 2.54 10.94 45.15 77.34 B11 10.57 19.04 57.26 84.89
B12 0.00 0.02 5.66 37.12 B12 0.00 1.24 29.63 60.06
P10 0.06 1.74 24.28 61.04 P10 0.32 3.76 33.82 65.34
P11 1.73 7.19 35.85 73.10 P11 7.13 19.16 46.49 76.01
P12 0.55 5.01 33.22 68.40 P12 5.18 16.18 45.38 74.69

Tables 5.12 and 5.13 show the number of successful bound cuts. Column 0-25
corresponds to the top quarter of the trie, column 26-50 to the second quarter and so
on. As expected, this value increases on higher levels as more of the solution is already
fixed. However, also for the lower levels this number is surprisingly high for some of the
smaller instances. Even if the number of bound cuts on the first quarter of the trie is
often less than 1% for the larger instances, one successful cut on a top level drastically
reduces the search space, as a cut on level i removes (m − i + 1)! solution candidates,
which are not considered in later iterations anymore. On average the successful bound

126

Table 5.13: Successful bound cuts grouped by instance and part of the trie where they
were computed for larger instances.

θ = 2 0-25[%] 26-50[%] 51-75[%] 76-100[%] θ = 3 0-25[%] 26-50[%] 51-75[%] 76-100[%]

B13 0.20 4.94 32.80 66.08 B13 8.01 24.95 56.29 82.17
P13 0.03 1.56 21.64 60.19 P13 0.11 2.22 28.23 61.43
B14 0.68 7.17 40.21 74.88 B14 14.54 27.65 60.58 87.43
A16 0.42 4.92 30.92 71.31 A16 7.38 18.42 49.76 82.64
A17 0.03 1.57 20.36 64.63 A17 1.94 10.90 41.67 76.49
A18 0.25 3.45 25.48 64.52 A18 4.70 15.58 44.44 79.71
P14 0.15 2.83 21.75 59.34 P14 0.10 3.02 25.61 67.13
P15 0.00 0.16 7.35 39.64 P15 0.00 0.24 13.44 49.72
P16 1.45 8.56 32.95 69.56 P16 2.40 11.29 35.00 75.81
P17 1.75 8.84 33.94 70.90 P17 1.98 10.80 35.30 75.28
B15 0.61 5.57 31.63 66.08 B15 4.68 15.89 48.02 84.96
B16 0.02 0.91 19.40 60.83 B16 0.35 7.42 39.14 79.63
B17 0.00 0.09 7.49 36.96 B17 0.01 1.92 17.44 59.09
A19 0.01 0.92 16.79 58.12 A19 0.13 3.15 26.76 64.46
P18 0.10 2.77 24.13 62.89 P18 0.31 3.47 25.64 61.94
P19 0.00 0.34 10.13 47.70 P19 0.01 1.32 18.72 51.65
A20 0.17 2.92 23.89 64.39 A20 0.43 4.09 32.11 68.87
A21 0.13 2.75 23.80 68.27 A21 0.15 3.76 29.69 67.98
A22 0.02 1.33 16.55 54.39 A22 0.10 2.50 30.90 66.13
A23 0.00 0.62 10.36 45.26 A23 0.04 1.52 20.93 57.48
B18 0.03 1.99 16.62 53.05 B18 1.45 10.06 38.99 73.59
A24 0.02 1.13 15.13 53.13 A24 0.38 5.70 31.05 70.06
B19 0.86 6.54 24.01 60.17 B19 0.68 6.38 34.56 74.20
A25 0.34 4.48 28.94 63.92 A25 1.04 6.89 34.28 71.82
P20 0.10 1.81 22.24 61.10 P20 0.11 2.12 23.11 63.25
B20 0.00 0.71 13.62 51.56 B20 0.18 5.68 31.98 72.01
B21 0.07 2.27 19.61 58.78 B21 0.20 3.65 30.50 72.79
B22 0.01 0.80 14.97 54.15 B22 0.21 4.30 30.09 73.62
A26 0.15 2.65 23.24 65.45 A26 0.93 6.18 30.37 74.23
P21 0.07 1.38 17.69 60.77 P21 0.22 2.21 20.72 60.28
P22 4.94 11.84 38.76 79.72 P22 18.93 28.92 47.04 80.43
P23 1.86 8.18 34.45 77.95 P23 15.82 24.08 45.51 79.60
B23 0.01 0.37 9.88 51.07 B23 0.14 2.87 28.00 70.48
A27 0.01 0.55 9.56 45.63 A27 0.03 1.25 13.42 59.07
M1 0.41 2.51 14.68 45.68 M1 0.30 2.35 19.23 64.11
P24 9.74 14.03 36.32 80.61 P24 7.23 14.18 35.56 75.67
M2 0.12 0.34 12.33 46.12 M2 0.55 1.70 24.17 63.63
M3 0.20 0.61 8.73 33.08 M3 0.43 1.22 12.03 52.82
M4 0.00 0.00 0.00 17.81 M4 0.04 0.05 0.84 27.47
G1 0.00 0.00 0.00 8.43 G1 0.00 0.00 0.00 13.10

127

cuts for instances with θ = 2 are, starting from the first quarter, 3.22%, 10.42%, 31.75%,
and 64.47% and for the instances with θ = 3, 8.25%, 22.55%, 47.79%, 75.31%.

Optimal Solutions

Using the solution archive and the bounding extension within the GA has the side effect
to enhance the algorithm into an exact bounded enumeration method. This is basically
a theoretic result but if the computed bounds are strong enough it may be sufficient to
solve smaller instances to proven optimality. Therefore, a set of experiments is conducted
in which the global run-time was not limited but instead a memory limit of 20 GB is
used.

Table 5.14: List of the instances which could be solved optimally within the memory
limit of 20 GB with and without the bounding extension of the solution archive.

GASA GASA GASA GASA
+bounding +bounding

θ = 2 obj* t[s] t[s] θ = 3 obj* t[s] t[s]

P1 245.34 1.16 0.86 P1 170.37 0.06 0.06
P2 146.82 63.56 22.30 P2 112.10 0.11 0.08
P3 149.02 63.34 31.48 P3 117.31 0.13 0.11
P4 160.48 756.62 282.02 P4 117.07 0.13 0.11
P5 161.36 756.54 300.48 P5 111.19 0.72 0.46
P6 323.59 1445.44 1335.61 P6 245.83 6.31 7.20
P7 312.48 13334.70 14126.00 P7 183.59 0.98 0.79

B1 355.73 782.63 721.70
A1 386.91 835.08 288.87
A2 318.03 842.92 332.92
A3 364.59 832.20 306.27
A4 419.12 10697.70 2538.82
B2 363.09 10595.70 1959.18
B3 500.87 10740.90 3144.64
A5 399.90 10702.10 3802.57
A8 371.80 - 13415.50
B5 281.48 - 6535.06

Table 5.14 shows the instances, along with their optimal objective values and the
needed time, which could be solved within the memory limit with and without the
bounding extension. We observe that all instances with up to 12 clusters could be solved
optimally. The largest instance which could be solved was B5 with θ = 3, 39 nodes, and
13 clusters, which is solved in less than two hours. For most of the solved instances the
bounding extension is able to reduce the needed run-time by up to a factor of more than
5.0 (for instance B2) and for the largest two instances it is even able to find the optimal
solution whereas the GA with the solution archive alone could not.

Final Results

Finally, the GASA and the GASA with the bounding extension are compared to each other
and the proposed VNS. All algorithms are terminated after 300 seconds and in Tables 5.15
and 5.16 the average objective values over 30 runs and the corresponding standard

128

deviations are shown. As in Section 5.7.3 bold values indicate that the corresponding
algorithm performed significantly better than the other two methods on a 1% error level
according to a one-sided paired Wilcoxon rank sum test.

Table 5.15: Results of the GASA with and without the bounding extension and the VNS
for smaller instances.

VNS GASA GASA VNS GASA GASA
+ bounding + bounding

θ = 2 obj sd obj sd obj sd θ = 3 obj sd obj sd obj sd

P1 245.34 0.00 245.34 0.00 245.34 0.00 P1 170.37 0.00 170.37 0.00 170.37 0.00
P2 146.82 0.00 146.82 0.00 146.82 0.00 P2 112.10 0.00 112.10 0.00 112.10 0.00
P3 149.02 0.00 149.02 0.00 149.02 0.00 P3 117.31 0.00 117.31 0.00 117.31 0.00
P4 160.48 0.00 160.48 0.00 160.48 0.00 P4 117.07 0.00 117.07 0.00 117.07 0.00
P5 161.36 0.00 161.36 0.00 161.36 0.00 P5 111.19 0.00 111.19 0.00 111.19 0.00
P6 323.95 0.91 323.59 0.00 323.59 0.00 P6 245.83 0.00 245.83 0.00 245.83 0.00
P7 312.51 0.00 312.51 0.01 312.51 0.01 P7 183.59 0.00 183.59 0.00 183.59 0.00
B1 419.91 0.00 419.91 0.00 419.91 0.00 B1 355.73 0.00 355.73 0.00 355.73 0.00
A1 521.92 5.73 520.04 0.00 520.04 0.00 A1 386.91 0.00 386.91 0.00 386.91 0.00
A2 455.34 0.25 455.15 0.00 455.15 0.00 A2 318.03 0.00 318.03 0.00 318.03 0.00
A3 468.76 0.08 467.95 0.00 467.95 0.00 A3 364.59 0.00 364.59 0.00 364.59 0.00
A4 498.15 0.00 498.15 0.00 498.15 0.00 A4 419.12 0.00 419.12 0.00 419.12 0.00
B2 466.80 0.00 466.80 0.00 466.80 0.00 B2 363.09 0.00 363.09 0.00 363.09 0.00
B3 619.24 0.00 619.24 0.00 619.24 0.00 B3 501.39 0.21 500.87 0.00 500.87 0.00
A5 506.95 0.00 506.40 0.79 506.46 0.77 A5 399.90 0.00 399.90 0.00 399.90 0.00
A6 447.86 0.00 447.86 0.00 447.86 0.00 A6 359.13 0.00 359.13 0.00 359.13 0.00
A7 608.39 0.86 590.59 3.49 589.70 0.71 A7 430.99 0.00 430.99 0.00 430.99 0.00
A8 481.98 0.00 481.97 0.00 481.97 0.00 A8 371.80 0.00 371.80 0.00 371.80 0.00
B4 479.44 0.69 479.92 0.00 479.92 0.00 B4 388.84 1.05 386.25 0.30 386.25 0.30
A9 567.91 0.00 567.41 0.00 567.41 0.00 A9 371.41 0.00 371.41 0.00 371.41 0.00

A10 561.25 0.00 560.61 0.40 560.73 0.44 A10 417.78 0.33 416.03 0.00 416.03 0.00
B5 356.48 0.00 356.43 0.00 356.43 0.00 B5 281.48 0.00 281.48 0.00 281.48 0.00
P8 296.44 0.00 296.36 0.05 296.33 0.00 P8 214.75 0.00 214.75 0.00 214.75 0.00
B6 483.26 0.00 483.22 0.15 483.20 0.18 B6 404.26 0.00 404.26 0.00 404.26 0.00
B7 487.02 2.20 485.46 0.00 485.46 0.00 B7 347.65 0.00 347.65 0.00 347.65 0.00

A11 627.86 0.00 627.86 0.00 627.86 0.00 A11 508.98 0.00 506.60 1.09 505.32 0.59
B8 563.96 0.00 563.95 0.00 563.95 0.00 B8 402.02 0.00 402.02 0.00 402.02 0.00

A12 621.23 0.00 621.23 0.00 621.23 0.00 A12 478.22 0.00 478.22 0.00 478.22 0.00
A13 692.89 0.00 692.89 0.00 692.89 0.00 A13 488.02 0.00 488.02 0.00 488.02 0.00
B9 502.02 0.00 502.02 0.00 502.02 0.00 B9 419.35 0.79 417.03 0.00 417.03 0.00
B10 482.91 0.00 482.91 0.00 482.91 0.00 B10 358.99 0.00 358.99 0.00 358.99 0.00
P9 340.48 0.00 340.50 0.06 340.49 0.04 P9 239.36 0.00 239.36 0.00 239.36 0.00

A14 623.01 1.16 622.84 1.32 622.58 1.31 A14 471.34 0.50 466.82 2.22 465.62 0.00
A15 686.42 0.00 686.42 0.00 686.42 0.00 A15 462.55 0.00 462.55 0.00 462.55 0.00
B11 454.09 0.00 454.09 0.00 454.09 0.00 B11 398.38 0.00 398.38 0.00 398.38 0.00
B12 923.53 0.00 923.53 0.00 923.53 0.00 B12 604.66 1.64 600.64 0.05 600.62 0.06
P10 431.22 1.31 422.24 1.50 421.36 1.33 P10 302.37 0.00 302.37 0.00 302.37 0.00
P11 354.47 0.00 354.47 0.00 354.47 0.00 P11 261.31 0.00 261.31 0.00 261.31 0.00
P12 377.66 0.00 377.62 0.21 377.62 0.19 P12 273.27 0.00 268.91 0.00 268.91 0.00

The results show that both GASA and GASA + bounding outperform the VNS
on most of the instances. Specifically, GASA found on 35 instances with θ = 2 and
on 28 instances with θ = 3 significantly better results and GASA + bounding on 38
instances with θ = 2 and on 30 instances with θ = 3 better results than the VNS. The
VNS, however, achieved only in five instances better results than any of the other two
algorithms. When we compare GASA with GASA + bounding in Tables 5.15 and 5.16

129

Table 5.16: Results of the GASA with and without the bounding extension and the VNS
for larger instances.

VNS GASA GASA VNS GASA GASA
+ bounding + bounding

θ = 2 obj sd obj sd obj sd θ = 3 obj sd obj sd obj sd

B13 682.27 1.32 682.70 0.00 682.70 0.00 B13 513.02 0.00 513.02 0.00 513.02 0.00
P13 451.79 0.00 451.79 0.00 451.64 0.52 P13 313.41 0.00 313.41 0.00 313.41 0.00
B14 458.87 0.14 458.39 0.34 458.57 0.19 B14 360.50 0.00 360.50 0.00 360.50 0.00
A16 636.61 1.89 632.78 2.79 631.10 5.99 A16 443.87 0.00 443.87 0.00 443.87 0.00
A17 721.48 2.64 721.54 3.63 720.96 4.12 A17 490.54 0.00 490.54 0.00 490.54 0.00
A18 730.53 4.91 718.11 0.06 718.12 0.00 A18 474.05 0.00 474.05 0.00 474.05 0.00
P14 424.54 0.19 420.69 0.00 420.69 0.00 P14 316.65 0.00 313.37 2.18 312.14 0.87
P15 560.92 0.00 560.86 0.30 560.62 0.67 P15 395.57 0.76 396.20 0.00 396.16 0.27
P16 370.43 5.70 361.87 0.00 361.87 0.00 P16 274.22 0.00 274.22 0.00 274.22 0.00
P17 362.21 0.00 362.04 0.02 362.03 0.00 P17 276.33 0.00 276.33 0.00 276.33 0.00
B15 478.10 0.00 474.92 0.00 474.92 0.00 B15 358.85 0.19 357.91 0.26 357.84 0.00
B16 779.43 0.19 778.60 0.91 778.69 1.13 B16 567.66 0.23 564.53 0.55 564.35 0.00
B17 967.33 0.00 967.33 0.00 967.33 0.00 B17 692.38 3.10 681.73 11.45 674.93 8.63
A19 816.39 0.00 815.86 0.00 815.86 0.00 A19 617.87 4.70 616.92 5.72 615.61 5.95
P18 455.26 0.00 452.86 0.00 452.86 0.00 P18 328.89 0.00 328.83 0.05 328.79 0.00
P19 572.08 0.00 572.08 0.00 572.07 0.09 P19 372.63 0.00 372.63 0.00 372.63 0.00
A20 662.94 0.00 653.64 9.18 648.92 7.85 A20 482.51 0.00 482.51 0.00 482.51 0.00
A21 755.77 0.00 755.75 0.00 755.75 0.00 A21 617.56 0.00 617.56 0.00 617.56 0.00
A22 830.79 0.00 830.88 0.53 830.88 0.53 A22 611.54 0.00 611.54 0.00 611.54 0.00
A23 946.39 0.00 946.39 0.00 946.39 0.00 A23 666.46 0.00 664.95 1.64 663.65 1.12
B18 852.87 0.00 852.87 0.00 852.87 0.00 B18 604.68 0.06 604.66 0.09 604.59 0.11
A24 837.31 0.00 837.31 0.00 837.31 0.00 A24 563.57 3.39 564.46 0.00 564.02 2.44
B19 514.92 0.00 514.92 0.00 514.92 0.00 B19 457.24 0.00 457.24 0.00 457.24 0.00
A25 712.74 0.00 712.14 0.00 712.14 0.00 A25 525.03 0.00 525.03 0.00 525.03 0.00
P20 501.39 0.00 501.34 0.30 501.39 0.00 P20 378.53 0.00 378.48 0.00 378.48 0.00
B20 818.42 0.00 818.42 0.00 818.42 0.00 B20 627.36 0.00 627.22 0.35 627.22 0.35
B21 674.95 0.00 672.40 0.00 672.40 0.00 B21 561.71 0.00 561.71 0.00 561.71 0.00
B22 738.48 0.00 738.48 0.00 738.48 0.00 B22 539.10 1.63 539.25 1.46 538.88 1.74
A26 711.19 0.00 707.90 6.07 708.78 5.48 A26 523.77 0.00 523.77 0.00 523.77 0.00
P21 504.96 0.00 504.96 0.00 504.96 0.00 P21 386.07 0.17 385.82 0.19 385.69 0.00
P22 394.16 0.20 392.81 1.01 392.46 1.12 P22 310.40 0.00 310.40 0.00 310.40 0.00
P23 409.93 0.00 409.93 0.00 409.93 0.00 P23 310.40 0.00 310.40 0.00 310.40 0.00
B23 840.94 0.52 863.99 18.93 839.53 0.00 B23 620.11 0.00 620.11 0.00 620.11 0.00
A27 1064.86 0.00 1049.26 0.71 1049.13 0.98 A27 757.24 1.70 751.46 6.18 743.00 0.00
M1 590.38 0.03 569.15 19.41 544.82 0.55 M1 467.14 0.03 463.48 8.51 463.96 0.00
P24 462.18 0.83 458.43 0.35 458.31 0.23 P24 371.93 0.00 371.93 0.00 371.93 0.00
M2 769.86 0.00 860.22 112.30 745.93 0.01 M2 565.77 0.00 561.00 18.40 545.87 1.25
M3 732.85 0.80 983.18 209.26 692.56 0.41 M3 530.05 3.73 532.71 44.21 506.51 20.49
M4 3372.85 97.94 1680.24 605.77 1398.44 69.30 M4 2338.33 45.86 834.52 158.87 646.41 17.22
G1 13817.9 252.8 8669.10 741.93 10741.71 338.27 G1 8544.93 161.56 3843.03 324.70 4435.65 345.10

130

it is not clear which should be preferred. Therefore, an overall summary of all three
algorithms is given in Table 5.17, which is constructed like the previous summaries.
Although GASA + bounding has a higher arithmetic mean than GASA, the geometric
mean, the average gap to the BKS, and the number of best results are better which is
also reflected in the statistical tests which showed that GASA + bounding performs
significantly better on the given problem instances. Additionally it has the property that
for smaller instances it can actually find proven optimal solutions which makes GASA +
bounding the superior algorithm.

Table 5.17: Summary of the performance of the GASA with and without the bounding
extension compared to the VNS.

Instances with θ = 2 Instances with θ = 3

VNS GASA GASA VNS GASA GASA
+ bounding + bounding

obj 758.17 674.57 691.39 539.00 459.77 464.08
objg 549.48 542.90 539.14 407.29 397.42 396.28

gap to BKS 5.66% 2.58% 1.70% 6.14% 1.02% 0.72%
Best results 31 53 66 48 56 74

p-Value (< VNS) - <0.000001 <0.000001 - <0.000001 <0.000001
p-Value (< GASA) >0.999999 - <0.000001 >0.999999 - 0.000948

p-Value
(< GASA+bounding) >0.999999 >0.999999 - >0.999999 0.999053 -

5.8 Conclusions
In this chapter solution algorithms for the generalized vehicle routing problem with
stochastic demands using the (optimal) preventive restocking strategy are presented. As
neither the GVRPSD nor the VRPSD with preventive restocking have been considered by
exact algorithms so far, an initial attempt is made. Results showed that this approach is
effective for solving smaller instances up to about 40 nodes and 13 clusters with E[nr] ≤ 2.
Having obtained optimal results or at least bounds for the benchmark instances a step
towards heuristically solving the GVRPSD is made by developing an efficient solution
evaluation method by using a multi-level evaluation scheme which is used by a VNS. The
VNS further used concepts from both the related VRPSD and the GTSP and the results
showed that especially the ML-ES was able to significantly reduce the needed run-time
for the solution evaluations. The third proposed solution algorithm for the GVRPSD uses
a complete trie-based solution archive in combination with an evolutionary algorithm.
Within this EA both the ML-ES and the neighborhood structures from the VNS are
used. The basic concept of the solution archive was extended to permutation encodings
and a bounding extension was introduced such that the considered solution space could
be significantly pruned. All presented algorithms, components, and configurations were
extensively analyzed to show their contribution to the resulting solution quality. The
results show that the GASA method is superior to the VNS and even able to solve smaller
instances optimally with the help of the solution archive.

131

The computational study for the GVRPSD showed that also for this problem, the
solution archive and especially the bounding extension is beneficial to the final solution
quality and improved the basic algorithms. The combination of the SA and the other
employed method led to a new state-of-the-art heuristic solution method for the GVRPSD
which showed find optimal or near-optimal results.

Ideas for future work include the application of the methods, especially the ML-ES
and the SA, to similar problems, e.g., when a maximum route duration is given such that
more than one tour has to be planned. Also a more in-depth analysis when the GASA is
applied to the VRPSD could be interesting. For the solution archive another promising
research direction is the utilization of the computed bounds for making a more intelligent
branching decision.

132

CHAPTER 6
Conclusions and Future Work

Metaheuristics and, more generally, stochastic search methods for solving combinatorial
optimization problems have the common weakness that they usually do not keep track
of their search history. Therefore, already evaluated solution candidates are frequently
revisited and unnecessarily reevaluated. Especially in evolutionary algorithms such
duplicate solutions can cause problems by reducing the diversity and therefore the
algorithm could potentially converge prematurely. To overcome this problem, in this
thesis an efficient method for recognizing and converting duplicate solutions occurring
in stochastic search procedures for combinatorial optimization problems was developed,
extended, and applied to two relevant problem domains with real-world applications.
Such a complete trie-based solution archive is especially useful in combination with an
evolutionary algorithm to reduce or avoid the risk of premature convergence and to
maintain diversity in the population. Also for other metaheuristic algorithms a solution
archive can be beneficial to avoid possibly expensive, time-consuming, and unnecessary
re-evaluations of already generated solution candidates.

In this thesis we extended the basic idea of complete trie-based solution archives
to different, constrained solution representations. We extended the trie structure from
simple unconstrained binary strings to constrained bit vectors and permutations. For the
considered problems, a particular trie structure and conversion method was developed
which can be applied also to other problems having the same or similar solution repre-
sentations. Advanced concepts like trie randomization and bound computations were
applied and their effectiveness empirically shown.

The first considered problem belongs to the family of competitive facility location
problems and an evolutionary algorithm using such a solution archive was developed
and applied to several different scenarios of the problem. We showed that some of these
scenarios, especially the proportional customer behavior, were much more difficult to
solve than the easier ones like the binary customer behavior. For all scenarios the solution
archive was able to significantly increase the final solution quality of the algorithm and
the developed evolutionary algorithm was able to outperform previous state-of-the-art

133

algorithms. The evolutionary algorithm with solution archive found new best results for
more than 45 Euclidean instances from the literature using binary customer behavior
and more than 30 new best results for instances with proportional customer behavior.
Therefore, a new state-of-the-art heuristic solution algorithm for the considered type of
competitive facility location problems was found which profoundly relies on the complete
trie-based solution archive.

The second considered problem is the generalized vehicle routing problem with
stochastic demands and preventive restocking which in this form has not yet been
considered in the literature. In this thesis a new exact branch-and-cut algorithm was
developed which was able to solve 11 out of 27 smaller benchmark instances to optimality.
Using a variable neighborhood search and an innovative multi-level evaluation scheme
also larger instances could be tackled and for all instances with a known optimal solution
value, it was able to find an optimal solution, usually in only a fraction of the run-time.
The second developed metaheuristic for this problem is an evolutionary algorithm using
a solution archive and a variable neighborhood descent algorithm as subprocedure. Also
for this problem, by employing the solution archive the results significantly improved.
With the bounding extension of the solution archive the algorithm was frequently able
to cut off a large part of the search space such that smaller instances could even be
solved to optimality which was not possible in reasonable time without the bounding
extension. Specifically, 24 out of the whole set of 158 benchmark instances could be solved
to optimality using the bounding extension. Also for this problem a new state-of-the-art
algorithm was found which also relies on the solution archive and the developed extensions
to it.

Although this thesis showed that complete trie-based solution archives are able to
boost the performance of metaheuristics for some problems, they are not always suitable
as standard extension to any metaheuristic for every problem. If there does not exist
(or cannot be found) a reasonable compact solution representation of a problem, the
memory consumption of the solution archive can be too high to be usable. Even if the
solution representation is compact but the instance size is too big, memory problems
can occur because the height of the trie, hence the size of the solution archive, depends
on the length of the solution. For the used solution representations, i.e., a constrained
binary string and permutations, the solution archive was beneficial and the memory
consumption was reasonably low. However, especially for the permutation representation,
we could already observe that for larger instances the memory consumption increased
strongly, so we would run into problems when considering larger instances and / or longer
run-times. Although the time overhead of the solution archive is negligible when the
solution evaluation is time-consuming, as in our considered problems, for problems with
a fast solution evaluation method, the time consumption of the archive can be more
substantial and the overhead of the archive might not outweigh its advantages which
could lead to an overall slower, and therefore worse, algorithm.

For many practical relevant combinatorial optimization problems, however, the use of
complete trie-based solution archives is still a viable approach which can lead, as we have
seen in this thesis, to huge improvements of the performance of the solution algorithm.

134

6.1 Future Work
There are several promising possibilities for future work on complete trie-based solution
archives. First, we have seen the application of solution archives on various different
solution representations. It would be interesting to find a more fine-grained distinction
for which solution representations solution archives are fruitful and for which they are
not and to generally investigate the application of solution archives to other kinds of
problems.

With the current knowledge about solution archives it is still an unsolved challenge
how to use a solution archive with a solution representation for strongly constrained
problems with complex side constraints. In particular, given a solution representation
of the form (x1, . . . , xm) and the partial solution (x1, . . . , xl) with l < m. For creating a
trie node for variable xl+1 we need to know the feasible values for xl+1 during insertion,
otherwise the conversion method could create infeasible solutions. If the computation of
those values is time-consuming, e.g., needs more than constant time, the time consumption
of the insertion method will in general be huge.

Another open challenge of solution archives are large domains of the decision variables.
As the size of a trie node is determined by the size of the domain, the memory consumption
would be huge. To overcome this memory problem one can use a linked trie instead of an
indexed trie, in which the entries are created on the fly when needed and not beforehand.
A drawback of this approach is, however, that the access time of the entries would not
be constant anymore which would increase the overall time consumption of the insertion
and conversion method. For some problems this could still be a viable approach but this
has not been accessed in this thesis and could be investigated in future work.

As already mentioned in the last section even if the solution representation is compact
the memory consumption can be too high if large instances are considered. An option to
significantly reduce the memory usage in this case would be to split the solution into
multiple parts and use one trie for each of them. By applying this technique, however, the
solution archive is not complete anymore. Even if the solution archives classifies a solution
as a duplicate in each of the tries, it does not need to be the case that it has already been
considered before because each individual part can have appeared in different solutions.
Investigating such a split solution archive nevertheless seems promising for future work
when facing large instances.

Finally, it appears interesting to investigate the bounding extension of the solution
archive further. So far only dual bounds on partial solutions were considered in the
bounding extension. Frequently, it is possible to come up with a fast method for computing
primal bounds. Especially in the second considered problem of this thesis such primal
bounds can rather easily be computed. These bounds may indicate promising solution
subspaces which might further guide the metaheuristic search.

135

Bibliography

[1] E. Aarts and J. K. Lenstra. Local search in combinatorial optimization. Princeton
University Press, 2003.

[2] H. M. Afsar, C. Prins, and A. C. Santos. Exact and heuristic algorithms for
solving the generalized vehicle routing problem with flexible fleet size. International
Transactions in Operational Research, 21(1):153–175, 2014.

[3] R. K. Ahuja, Ö. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale
neighborhood search techniques. Discrete Applied Mathematics, 123(1):75–102,
2002.

[4] E. Alekseeva and Y. Kochetov. Matheuristics and exact methods for the discrete
(r|p)-centroid problem. In El-Ghazali Talbi, editor, Metaheuristics for Bi-level
Optimization, volume 482 of Studies in Computational Intelligence, pages 189–219.
Springer Berlin Heidelberg, 2013.

[5] E. Alekseeva, N. Kochetova, Y. Kochetov, and A. Plyasunov. A hybrid memetic
algorithm for the competitive p-median problem. In Natalia Bakhtadze and Alexan-
dre Dolgui, editors, Information Control Problems in Manufacturing, volume 13,
pages 1533–1537. International Federation of Automatic Control, 2009.

[6] E. Alekseeva, N. Kochetova, Y. Kochetov, and A. Plyasunov. Heuristic and exact
methods for the discrete (r|p)-centroid problem. In Peter Cowling and Peter Merz,
editors, Evolutionary Computation in Combinatorial Optimization, volume 6022 of
LNCS, pages 11–22. Springer Berlin Heidelberg, 2010.

[7] B. A. Alireza and R. Z. Farahani. Facility location dynamics: An overview of
classifications and applications. Computers & Industrial Engineering, 62(1):408–420,
2012.

[8] M. G. Ashtiani. Competitive location: a state-of-art review. International Journal
of Industrial Engineering Computations, 7(1):1, 2016.

[9] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA journal on computing,
6(2):126–140, 1994.

137

[10] T. Bektaş, G. Erdoǧan, and S. Røpke. Formulations and branch-and-cut algorithms
for the generalized vehicle routing problem. Transportation Science, 45(3):299–316,
2011.

[11] D. J. Bertsimas. A vehicle routing problem with stochastic demand. Operations
Research, 40(3):574–585, 1992.

[12] D. J. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6.
Athena Scientific Belmont, MA, 1997.

[13] J. Bhadury, H. A. Eiselt, and J. H. Jaramillo. An alternating heuristic for medianoid
and centroid problems in the plane. Computers & Operations Research, 30(4):553–
565, 2003.

[14] L. Bianchi, M. Birattari, M. Chiarandini, M. Manfrin, M. Mastrolilli, L. Paquete,
O. Rossi-Doria, and T. Schiavinotto. Hybrid metaheuristics for the vehicle rout-
ing problem with stochastic demands. Journal of Mathematical Modelling and
Algorithms, 5(1):91–110, 2006.

[15] L. Bianchi, M. Dorigo, L. M. Gambardella, and W. J. Gutjahr. A survey on
metaheuristics for stochastic combinatorial optimization. Natural Computing,
8(2):239–287, 2009.

[16] B. Biesinger. A hybrid evolutionary algorithm for the discrete (r|p)-centroid
problem. Austrian Workshop on Metaheuristics 9, Vienna, Austria, 2013.

[17] B. Biesinger, B. Hu, and G. R. Raidl. An evolutionary algorithm for the leader-
follower facility location problem with proportional customer behavior. In Confer-
ence Proceedings of Learning and Intelligent Optimization Conference (LION 8),
volume 8426 of LNCS, pages 203–217. Springer, 2014.

[18] B. Biesinger, B. Hu, and G. R. Raidl. A hybrid genetic algorithm with solution
archive for the discrete (r|p)-centroid problem. Journal of Heuristics, 21(3):391–431,
2015.

[19] B. Biesinger, B. Hu, and G. R. Raidl. An integer L-shaped method for the
generalized vehicle routing problem with stochastic demands. In 7th International
Network Optimization Conference, INOC, 2015. To appear.

[20] B. Biesinger, B. Hu, and G. R. Raidl. Models and algorithms for competitive
facility location problems with different customer behavior. Annals of Mathematics
and Artificial Intelligence, 76(1):93–119, 2015.

[21] B. Biesinger, B. Hu, and G. R. Raidl. A variable neighborhood search for the
generalized vehicle routing problem with stochastic demands. In Gabriela Ochoa
and Francisco Chicano, editors, Evolutionary Computation in Combinatorial Opti-
mization – EvoCOP 2015, volume 9026 of LNCS, pages 48–60. Springer, 2015.

138

[22] B. Biesinger, B. Hu, and G. R. Raidl. A genetic algorithm in combination with a
solution archive for solving the generalized vehicle routing problem with stochastic
demands. 2016. submitted to a journal.

[23] B. Biesinger, B. Hu, and G. R. Raidl. A memetic algorithm for competitive facility
location problems. In Natalie Jane de Vries and Pablo Moscato, editors, Business
and Consumer Analytics: New Directions (Vol1), pages 1–23. 2016. To appear.

[24] C. Blum. Beam-ACO—hybridizing ant colony optimization with beam search: An
application to open shop scheduling. Computers & Operations Research, 32(6):1565–
1591, 2005.

[25] C. Blum, P. Pinacho, M. López-Ibáñez, and J. A. Lozano. Construct, merge, solve
& adapt a new general algorithm for combinatorial optimization. Computers &
Operations Research, 68(0):75–88, 2016.

[26] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in
combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135–4151,
2011.

[27] C. Blum and G. R. Raidl. Hybrid Metaheuristics. Springer International Publishing,
2016.

[28] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308, 2003.

[29] M. Boschetti and V. Maniezzo. Benders decomposition, lagrangean relaxation and
metaheuristic design. Journal of Heuristics, 15(3):283–312, 2009.

[30] M. Boschetti, V. Maniezzo, and M. Roffilli. Decomposition techniques as meta-
heuristic frameworks. In Matheuristics, pages 135–158. Springer, 2009.

[31] S. Bouamama, C. Blum, and A. Boukerram. A population-based iterated greedy
algorithm for the minimum weight vertex cover problem. Applied Soft Computing,
12(6):1632–1639, 2012.

[32] C. Campos-Rodríguez, J. A. Moreno-Pérez, H. Noltemeier, and D. R. Santos-Peñate.
Two-swarm pso for competitive location problems. In N. Krasnogor, M. B. Melián-
Batista, J. A. Moreno-Pérez, J. M. Moreno-Vega, and D. A. Pelta, editors, Nature
Inspired Cooperative Strategies for Optimization (NICSO 2008), volume 236 of
Studies in Computational Intelligence, pages 115–126. Springer Berlin Heidelberg,
2009.

[33] C. Campos-Rodríguez, J. A. Moreno-Pérez, and D. R. Santos-Peñate. Particle
swarm optimization with two swarms for the discrete (r|p)-centroid problem. In
R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, editors, Computer Aided
Systems Theory (EUROCAST 2011), volume 6927 of LNCS, pages 432–439. Springer
Berlin Heidelberg, 2012.

139

[34] C. H. Christiansen and J. Lysgaard. A branch-and-price algorithm for the ca-
pacitated vehicle routing problem with stochastic demands. Operations Research
Letters, 35(6):773–781, 2007.

[35] P. C. Chu and J. E. Beasley. A genetic algorithm for the multidimensional knapsack
problem. Journal of heuristics, 4(1):63–86, 1998.

[36] C. Darwin. On the Origin of Species. John Murray, 1859.

[37] I. A. Davydov, Y. Kochetov, and E. Carrizosa. VNS heuristic for the (r|p)-centroid
problem on the plane. Electronic Notes in Discrete Mathematics, 39:5–12, December
2012.

[38] I. A. Davydov, Y. Kochetov, N. Mladenovic, and D. Urosevic. Fast metaheuristics
for the discrete (r|p)-centroid problem. Automation and Remote Control, 75(4):677–
687, 2014.

[39] I. A. Davydov, Y. Kochetov, and A. Plyasunov. On the complexity of the (r|p)-
centroid problem in the plane. Top, 22(2):614–623, 2014.

[40] K. A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive Systems.
PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

[41] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation, volume 5.
Springer Science & Business Media, 2006.

[42] M. Dorigo, M. Birattari, and T. Stützle. Ant colony optimization. Computational
Intelligence Magazine, IEEE, 1(4):28–39, 2006.

[43] T. Drezner. Optimal continuous location of a retail facility, facility attractiveness,
and market share: An interactive model. Journal of Retailing, 70(1):49–64, 1994.

[44] T. Drezner. Location of multiple retail facilities with limited budget constraints —
in continuous space. Journal of Retailing and Consumer Services, 5(3):173–184,
1998.

[45] T. Drezner, Z. Drezner, and S. Salhi. Solving the multiple competitive facilities
location problem. European Journal of Operational Research, 142(1):138–151, 2002.

[46] Z. Drezner. On a modified one-center model. Management Science, 27(7):848–851,
1981.

[47] H. A. Eiselt. Foundations of Location Analysis, chapter Equilibria in Competitive
Location Models, pages 139–162. Springer US, Boston, MA, 2011.

[48] H. A. Eiselt and G. Laporte. Sequential location problems. European Journal of
Operational Research, 96(2):217–231, 1997.

140

[49] H. A. Eiselt, V. Marianov, and T. Drezner. Location Science, chapter Competitive
Location Models, pages 365–398. Springer International Publishing, Cham, 2015.

[50] R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh. Hub location
problems: A review of models, classification, solution techniques, and applications.
Computers & Industrial Engineering, 64(4):1096–1109, 2013.

[51] J. Fernández, B. Pelegrı, F. Plastria, and B. Tóth. Solving a huff-like competitive
location and design model for profit maximization in the plane. European Journal
of Operational Research, 179(3):1274–1287, 2007.

[52] M. Fischetti and A. Lodi. Local branching. Mathematical programming, 98(1-3):23–
47, 2003.

[53] M. Fischetti, J. Salazar-González, and P. Toth. The symmetric generalized traveling
salesman polytope. Networks, 26(2):113–123, 1995.

[54] M. Fischetti, J. Salazar-González, and P. Toth. A branch-and-cut algorithm
for the symmetric generalized traveling salesman problem. Operations Research,
45(3):378–394, 1997.

[55] J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin. Practical solution of large mixed
integer programming problems with umpire. Management Science, 20(5):736–773,
1974.

[56] M. R. Garey and D. S. Johnson. Computers and intractability, volume 22. W.H.
Freeman and Company, New York, 2000.

[57] M. Gendreau, G. Laporte, and R. Séguin. An exact algorithm for the vehicle
routing problem with stochastic demands and customers. Transportation science,
29(2):143–155, 1995.

[58] M. Gendreau, G. Laporte, and R. Séguin. A tabu search heuristic for the vehicle
routing problem with stochastic demands and customers. Operations Research,
44(3):469–477, 1996.

[59] M. Gendreau and J. Potvin. Metaheuristics in combinatorial optimization. Annals
of Operations Research, 140(1):189–213, 2005.

[60] M. Gendreau and J. Potvin. Handbook of metaheuristics, volume 2. Springer, 2010.

[61] M. Gendreau and J. Potvin. Tabu search. In Handbook of Metaheuristics, pages
41–59. Springer, 2010.

[62] G. Ghiani and G. Improta. An efficient transformation of the generalized vehicle
routing problem. European Journal of Operational Research, 122(1):11–17, 2000.

[63] D. E. Goldberg. Genetic algorithms in search optimization and machine learning,
volume 412. Addison-Wesley Reading Menlo Park, 1989.

141

[64] J. C. Goodson, J. W. Ohlmann, and B. W. Thomas. Cyclic-order neighborhoods
with application to the vehicle routing problem with stochastic demand. European
Journal of Operational Research, 217(2):312–323, 2012.

[65] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA, 1997.

[66] M. H. Hà, N. Bostel, A. Langevin, and L. Rousseau. An exact algorithm and a
metaheuristic for the generalized vehicle routing problem with flexible fleet size.
Computers & Operations Research, 43(0):9–19, 2014.

[67] S. L. Hakimi. Optimum locations of switching centers and the absolute centers and
medians of a graph. Operations Research, 12(3):450–459, 1964.

[68] S. L. Hakimi. On locating new facilities in a competitive environment. European
Journal of Operational Research, 12(1):29–35, 1983.

[69] P. Hansen, N. Mladenović, J. Brimberg, and J. A. Moreno-Pérez. Variable neigh-
borhood search. In Handbook of Metaheuristics, pages 61–87. Springer, 2010.

[70] C. Hjorring and J. Holt. New optimality cuts for a single-vehicle stochastic routing
problem. Annals of Operations Research, 86(0):569–584, 1999.

[71] J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. U Michigan Press,
1975.

[72] H. Hotelling. Stability in competition. The Economic Journal, 39(153):41–57, 1929.

[73] B. Hu and G. R. Raidl. An evolutionary algorithm with solution archive for the
generalized minimum spanning tree problem. In R. Moreno-Díaz, F. Pichler, and
A. Quesada-Arencibia, editors, Proceedings of the 13th International Conference
on Computer Aided Systems Theory: Part I, volume 6927 of LNCS, pages 287–294.
Springer, 2012.

[74] B. Hu and G. R. Raidl. An evolutionary algorithm with solution archives and
bounding extension for the generalized minimum spanning tree problem. In Pro-
ceedings of the 14th Annual Conference on Genetic and Evolutionary Computation
(GECCO), pages 393–400, Philadelphia, PA, USA, 2012. ACM Press.

[75] D. L. Huff. Defining and estimating a trading area. The Journal of Marketing,
28(3):34–38, 1964.

[76] O. Jabali, W. Rei, M. Gendreau, and G. Laporte. Partial-route inequalities for
the multi-vehicle routing problem with stochastic demands. Discrete Applied
Mathematics, 177(0):121–136, 2014.

142

[77] I. Kara and T. Bektaş. Integer linear programming formulation of the generalized
vehicle routing problem. In Proc. of the 5-th EURO/INFORMS Joint International
Meeting, pages 6–10, 2003.

[78] N. Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311. ACM, 1984.

[79] R. M. Karp. Complexity of computer computations. chapter Reducibility among
Combinatorial Problems, pages 85–103. Springer US, 1972.

[80] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[81] Y. Kochetov, N. Kochetova, and A. Plyasunov. A matheuristic for the leader-
follower facility location and design problem. In H. Lau, P. Van Hentenryck,
and G. R. Raidl, editors, Proceedings of the 10th Metaheuristics International
Conference (MIC 2013), pages 32/1–32/3, Singapore, 2013.

[82] J. Kratica. Improving performances of the genetic algorithm by caching. Computers
and artificial intelligence, 18(3):271–283, 1999.

[83] D. Kress and E. Pesch. Sequential competitive location on networks. European
Journal of Operational Research, 217(3):483–499, 2012.

[84] H. Küçükaydin, N. Aras, and I. K. Altınel. Competitive facility location problem
with attractiveness adjustment of the follower: A bilevel programming model and
its solution. European Journal of Operational Research, 208(3):206–220, 2011.

[85] G. Laporte and S. Benati. Tabu Search Algorithms for the (r|Xp)-medianoid and
(r|p)-centroid Problems. Location Science, 2:193–204, 1994.

[86] G. Laporte and F. V. Louveaux. Solving stochastic routing problems with the integer
L-shaped method. In T. G. Crainic and G. Laporte, editors, Fleet Management
and Logistics, pages 159–167. Springer, 1998.

[87] G. Laporte, F. V. Louveaux, and L. Van Hamme. An integer L-shaped algorithm
for the capacitated vehicle routing problem with stochastic demands. Operations
Research, 50(3):415–423, 2002.

[88] G. Laporte, S. Nickel, and F. S. da Gama. Location science, volume 145. Springer,
2015.

[89] S. J. Louis and G. Li. Combining robot control strategies using genetic algorithms
with memory. In Evolutionary Programming VI, LNCS, pages 431–441. Springer,
1997.

[90] M. Marinaki and Y. Marinakis. A glowworm swarm optimization algorithm for the
vehicle routing problem with stochastic demands. Expert Systems with Applications,
46(0):145–163, 2016.

143

[91] Y. Marinakis, G. Iordanidou, and M. Marinaki. Particle swarm optimization for
the vehicle routing problem with stochastic demands. Applied Soft Computing,
13(4):1693–1704, 2013.

[92] Y. Marinakis and M. Marinaki. Combinatorial expanding neighborhood topology
particle swarm optimization for the vehicle routing problem with stochastic de-
mands. In Proceedings of the 15th annual Conference on Genetic and Evolutionary
Computation, pages 49–56. ACM, 2013.

[93] Y. Marinakis, M. Marinaki, and A. Migdalas. A hybrid clonal selection algorithm
for the vehicle routing problem with stochastic demands. In Learning and Intelligent
Optimization, pages 258–273. Springer, 2014.

[94] Y. Marinakis, M. Marinaki, and P. Spanou. A memetic differential evolution
algorithm for the vehicle routing problem with stochastic demands. In I. Fister
and I. F. Jr., editors, Adaptation and Hybridization in Computational Intelligence,
volume 18 of Adaptation, Learning, and Optimization, pages 185–204. Springer,
2015.

[95] M. L. Mauldin. Maintaining diversity in genetic search. In National Conference on
Artificial Intelligence, volume 19, pages 247–250. AAAI, William Kaufmann, 1984.

[96] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Proceedings of the 13th Annual
Symposium on Switching and Automata Theory, pages 125–129. IEEE, 1972.

[97] N. Mladenović, J. Brimberg, P. Hansen, and J. A. Moreno-Pérez. The p-median
problem: A survey of metaheuristic approaches. European Journal of Operational
Research, 179(3):927–939, 2007.

[98] N. Mladenović and P. Hansen. Variable neighborhood search. Computers &
Operations Research, 24(11):1097–1100, 1997.

[99] P. Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Caltech concurrent computation program, C3P
Report, 826:1–68, 1989.

[100] H. Noltemeier, J. Spoerhase, and H. Wirth. Multiple voting location and single
voting location on trees. European Journal of Operational Research, 181(2):654–667,
2007.

[101] I. M. Oliver, D. J. D. Smith, and J. R. C. Holland. Study of permutation crossover
operators on the traveling salesman problem. In Genetic algorithms and their appli-
cations: proceedings of the second International Conference on Genetic Algorithms.
Hillsdale, NJ: L. Erlhaum Associates, 1987.

[102] P. S. Ow and T. E. Morton. Filtered beam search in scheduling†. The International
Journal Of Production Research, 26(1):35–62, 1988.

144

[103] C. H. Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.

[104] P. H. Peeters and F. Plastria. Discretization results for the huff and pareto-huff
competitive location models on networks. Top, 6(2):247–260, 1998.

[105] D. Pisinger and S. Ropke. Large neighborhood search. In Handbook of Metaheuris-
tics, pages 399–421. Springer, 2010.

[106] F. Plastria. Static competitive facility location: An overview of optimisation
approaches. European Journal of Operational Research, 129(3):461–470, 2001.

[107] P. C. Pop, L. Fuksz, and A. H. Marc. A variable neighborhood search approach for
solving the generalized vehicle routing problem. In M. Polycarpou, A. C. P. L. F.
de Carvalho, J. Pan, M. Woźniak, H. Quintian, and E. Corchado, editors, Hybrid
Artificial Intelligence Systems, volume 8480 of LNCS, pages 13–24. Springer, 2014.

[108] P. C. Pop, O. Matei, C. P. Sitar, and C. Chira. A genetic algorithm for solving
the generalized vehicle routing problem. In E. Corchado, M. Graña Romay, and
A. Manhaes Savio, editors, Hybrid Artificial Intelligence Systems, volume 6077 of
LNCS, pages 119–126. Springer, 2010.

[109] J. Puchinger, G. R. Raidl, and U. Pferschy. The multidimensional knapsack problem:
Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265, 2010.

[110] G. R. Raidl. A unified view on hybrid metaheuristics. In Hybrid Metaheuristics,
pages 1–12. Springer, 2006.

[111] G. R. Raidl. Decomposition based hybrid metaheuristics. European Journal of
Operational Research, 244(1):66–76, 2015.

[112] G. R. Raidl and B. Hu. Enhancing genetic algorithms by a trie-based complete
solution archive. In Peter Cowling and Peter Merz, editors, Evolutionary Com-
putation in Combinatorial Optimization, volume 6022 of LNCS, pages 239–251.
Springer Berlin Heidelberg, 2010.

[113] C. R. Reeves. Genetic algorithms. In Handbook of Metaheuristics, pages 109–141.
Springer, 2010.

[114] W. Rei, M. Gendreau, and P. Soriano. A hybrid monte carlo local branching
algorithm for the single vehicle routing problem with stochastic demands. Trans-
portation Science, 44(1):136–146, 2010.

[115] M. C. Roboredo and A. A. Pessoa. A branch-and-cut algorithm for the discrete
(r|p)-centroid problem. European Journal of Operational Research, 224(1):101–109,
2013.

[116] S. Ronald. Duplicate genotypes in a genetic algorithm. In Proceedings of the 1998
IEEE International Conference on Evolutionary Computation, pages 793–798, 1998.

145

[117] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation science,
40(4):455–472, 2006.

[118] M. Ruthmair and G. R. Raidl. A memetic algorithm and a solution archive for the
rooted delay-constrained minimum spanning tree problem. In Proceedings of the
13th International Conference on Computer Aided Systems Theory: Part I, pages
351–358, 2012.

[119] N. Saidani, F. Chu, and H. Chen. Competitive facility location and design with
reactions of competitors already in the market. European journal of operational
research, 219(1):9–17, 2012.

[120] M. E. Sáiz, E. M. T. Hendrix, and B. Pelegrín. On nash equilibria of a competitive
location-design problem. European Journal of Operational Research, 210(3):588–593,
2011.

[121] D. Serra and C. Revelle. Competitive location in discrete space. Economics Working
Papers 96, Department of Economics and Business, Universitat Pompeu Fabra,
Nov 1994. Techn. Report.

[122] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint Programming—CP98,
pages 417–431. Springer, 1998.

[123] N. Z. Shor. Utilization of the operation of space dilatation in the minimization of
convex functions. Cybernetics and Systems Analysis, 6(1):7–15, 1972.

[124] T. Stützle. Iterated local search for the quadratic assignment problem. European
Journal of Operational Research, 174(3):1519–1539, 2006.

[125] R. Suárez-Vega, D. Santos-Peñate, and D. Pablo. Competitive multifacility location
on networks: the (r|Xp)-medianoid problem. Journal of Regional Science, 44(3):569–
588, 2004.

[126] E. Talbi. Hybrid Metaheuristics, volume 22 of Studies in Computational Intelligence.
Springer-Verlag Berlin Heidelberg, 2013.

[127] R. M. Van Slyke and R. Wets. L-shaped linear programs with applications to optimal
control and stochastic programming. SIAM Journal on Applied Mathematics,
17(4):638–663, 1969.

[128] L. A. Wolsey. Integer programming. Wiley, 1998.

[129] W. Yang, K. Mathur, and R. H. Ballou. Stochastic vehicle routing problem with
restocking. Transportation Science, 34(1):99–112, 2000.

146

[130] D. B. Yudin and Nemirovskii A. Informational complexity and efficient methods
for the solution of convex extremal problems. Matekon, 13(0):25–45, 1977.

[131] S. Y. Yuen and C. K. Chow. A non-revisiting genetic algorithm. In IEEE Congress
on Evolutionary Computation (CEC 2007), pages 4583–4590. IEEE, 2007.

147

APPENDIX A
Full Result Tables

Here, we present the full result tables of the presented algorithms for both the competitive
facility location problem and the generalized vehicle routing problem with stochastic
demands.

A.1 Competitive Facility Location Problem
In this section we show the results of the various algorithm configurations for all instances
of the benchmark set.

A.1.1 Solution Evaluation

Table A.1 shows the results of the tests for the different types of solution evaluation
methods as described in the paper.

Table A.1: Results of different solution evaluation methods using the standard
configuration and a runtime of 600 seconds.

greedy LP exact

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code111w_rp10 4359,00 0,00 14,80 4361,00 0,00 130,30 4361,00 0,00 70,60
Code111w_rp15 4547,11 6,01 20,10 4596,00 0,00 64,10 4596,00 0,00 55,60
Code111w_rp20 4508,50 6,09 253,30 4505,47 11,22 343,30 4502,90 11,26 217,70
Code1_150w_rp10 7132,20 130,36 250,20 7138,37 112,88 88,60 7167,43 51,47 94,00
Code1_150w_rp15 7008,63 54,17 138,40 7077,97 35,79 341,20 7088,83 43,99 398,50
Code1_150w_rp20 7070,67 52,46 314,20 7198,27 19,01 380,20 7198,53 22,50 370,60
Code1_200w_rp10 9349,60 69,78 406,60 9476,17 107,30 200,60 9478,50 92,39 369,70
Code1_200w_rp15 9814,13 185,24 351,30 10001,40 92,78 394,40 10000,30 82,92 475,60
Code1_200w_rp20 9615,13 135,94 411,90 9753,07 77,54 572,80 9697,53 85,19 586,90
Code211w_rp10 5309,47 2,92 26,50 5310,00 0,00 43,50 5310,00 0,00 46,10
Code211w_rp15 5373,00 0,00 97,10 5373,00 0,00 111,80 5373,00 0,00 95,70
Code211w_rp20 5431,57 2,37 284,50 5404,43 29,69 291,60 5405,63 31,19 365,20
Code2_150w_rp10 7181,53 52,91 332,10 7247,47 53,43 292,50 7253,30 71,29 291,00
Code2_150w_rp15 7590,23 92,37 154,60 7743,20 4,70 281,40 7742,00 5,57 358,40

149

Code2_150w_rp20 7673,90 83,24 255,00 7772,13 40,91 349,50 7755,50 46,49 347,80
Code2_200w_rp10 9032,00 71,74 221,20 9231,63 75,55 249,80 9254,53 62187,00 448,00
Code2_200w_rp15 9274,23 153,66 312,40 9539,27 70,94 516,40 9505,43 109,72 438,40
Code2_200w_rp20 9381,90 138,87 475,30 9579,83 118,18 508,00 9570,30 110,98 548,80
Code311w_rp10 4392,47 42,88 17,80 4483,00 0,00 25,80 4483,00 0,00 24,50
Code311w_rp15 4782,10 18,23 221,60 4800,00 0,00 73,60 4800,00 0,00 63,20
Code311w_rp20 4853,47 8,76 100,50 4892,80 0,61 297,90 4892,67 0,76 250,80
Code3_150w_rp10 7240,20 75,69 362,80 7286,93 16,36 310,70 7291,87 13,30 369,20
Code3_150w_rp15 7499,30 44,12 161,60 7589,00 18,83 285,80 7589,27 18,01 200,50
Code3_150w_rp20 7520,40 63,06 303,20 7624,43 34,03 309,10 7624,37 34,20 411,20
Code3_200w_rp10 9224,03 52,98 202,70 9300,23 70,30 291,70 9287,13 74,85 362,90
Code3_200w_rp15 9145,17 210,97 378,30 9304,57 71,44 386,40 9308,37 70,27 459,10
Code3_200w_rp20 8902,30 210,90 468,70 9197,97 155,51 516,80 9145,73 107,33 574,10
Code411w_rp10 4994,00 0,00 10,10 4994,00 0,00 22,10 4994,00 0,00 22,40
Code411w_rp15 5045,43 4,26 108,80 5064,00 0,00 117,40 5064,00 0,00 125,40
Code411w_rp20 5184,70 5,87 34,40 5204,73 16,24 298,10 5205,63 13,61 189,80
Code4_150w_rp10 7232,53 62,64 156,00 7246,33 98,75 290,60 7201,73 112,80 151,40
Code4_150w_rp15 7324,93 79,35 120,20 7409,00 0,00 285,00 7404,07 14,62 329,30
Code4_150w_rp20 7867,20 7,92 213,90 7915,93 7,44 276,10 7916,37 8,83 260,00
Code4_200w_rp10 8594,47 77,24 231,80 8852,40 43,37 191,10 8873,50 30,67 289,40
Code4_200w_rp15 8912,20 189,16 387,10 9106,43 87,24 403,10 9092,47 99,50 410,80
Code4_200w_rp20 9069,10 194,06 373,00 9335,67 113,20 502,40 9300,20 88,94 521,90
Code511w_rp10 4862,93 6,96 7,20 4906,00 0,00 39,60 4906,00 0,00 38,50
Code511w_rp15 5131,00 0,00 162,80 5123,90 7,40 332,30 5128,07 8,37 276,80
Code511w_rp20 5334,00 0,00 70,70 5330,33 9,94 101,10 5329,27 9,65 223,70
Code5_150w_rp10 6891,63 16,27 169,60 6965,73 10,59 329,10 6966,27 6,38 276,90
Code5_150w_rp15 7039,60 24,26 374,80 7084,93 34,91 392,70 7097,00 33,52 323,90
Code5_150w_rp20 7212,87 55,66 291,60 7320,77 8,91 343,80 7313,73 24,91 408,30
Code5_200w_rp10 8992,13 96,25 398,60 9159,13 66,25 338,70 9184,13 95,30 308,30
Code5_200w_rp15 9094,07 87,52 395,80 9167,60 71,37 413,00 9175,10 78,45 374,40
Code5_200w_rp20 9163,33 143,66 398,70 9442,13 90,25 499,20 9417,00 101,19 502,20
Code611w_rp10 4589,13 3,60 112,70 4594,73 1,46 110,90 4595,00 0,00 95,30
Code611w_rp15 4868,97 25,55 74,10 4881,00 0,00 74,50 4881,00 0,00 83,00
Code611w_rp20 4949,33 8,91 173,10 4941,53 18,58 248,40 4946,13 11,68 266,50
Code6_150w_rp10 6990,83 63,95 129,30 7015,83 64,84 242,70 7019,17 65,40 321,50
Code6_150w_rp15 7050,13 70,94 198,60 7162,53 32,51 319,90 7160,63 50,74 202,60
Code6_150w_rp20 7325,03 48,11 197,20 7356,23 39,25 368,20 7355,60 37,80 353,60
Code6_200w_rp10 9542,23 143,32 233,00 9750,17 130,57 207,40 9710,83 107,38 247,90
Code6_200w_rp15 9747,10 242,75 361,80 10025,27 150,55 442,70 10007,77 137,66 439,00
Code6_200w_rp20 9864,70 190,84 406,00 10192,63 116,02 570,30 10118,63 131,96 580,60
Code711w_rp10 5555,27 10,51 25,30 5586,00 0,00 79,70 5586,00 0,00 85,00
Code711w_rp15 5826,43 3,10 162,40 5827,00 0,00 83,90 5827,00 0,00 94,70
Code711w_rp20 5893,00 0,00 38,50 5893,00 0,00 73,60 5893,00 0,00 55,70
Code7_150w_rp10 6042,90 71,68 177,90 6223,90 44,98 293,90 6230,60 41,73 220,00
Code7_150w_rp15 6779,17 70,04 292,60 6840,00 0,00 231,80 6840,00 0,00 218,40
Code7_150w_rp20 7253,33 23,61 215,70 7266,87 42,85 290,10 7272,97 41,70 273,00
Code7_200w_rp10 8835,33 166,84 260,20 9142,37 149,21 274,10 9122,20 144,57 375,00
Code7_200w_rp15 9413,57 127,38 385,90 9527,73 61,94 518,30 9527,67 73,61 424,10
Code7_200w_rp20 9719,33 83,12 330,40 9837,63 58,28 476,10 9863,23 53,11 482,90
Code811w_rp10 4576,33 41,45 280,10 4605,20 14,09 301,10 4607,60 1,52 356,80
Code811w_rp15 4647,70 19,03 45,70 4670,77 11,42 180,70 4658,87 24,49 223,80
Code811w_rp20 4847,00 0,00 212,40 4858,00 0,00 77,40 4858,00 0,00 75,10
Code8_150w_rp10 7692,70 57,34 236,00 7729,33 14,61 217,60 7729,43 14,06 246,90
Code8_150w_rp15 7628,13 100,02 171,20 7659,73 8,45 340,50 7659,13 7,04 340,30
Code8_150w_rp20 7784,87 24,04 215,30 7838,13 19,77 285,60 7833,87 29,02 294,40
Code8_200w_rp10 8896,83 125,44 382,10 8997,83 122,64 375,90 9045,00 89,40 413,80
Code8_200w_rp15 8869,87 111,97 429,20 8983,57 81,04 530,30 9005,33 59,87 501,80
Code8_200w_rp20 8882,37 192,45 480,60 9230,93 97,88 512,80 9203,87 105,27 565,80
Code911w_rp10 5302,00 0,00 8,00 5302,00 0,00 21,80 5302,00 0,00 21,00
Code911w_rp15 5083,93 6,90 48,90 5155,07 6,15 339,40 5150,10 13,94 332,30
Code911w_rp20 5450,87 4,97 20,50 5457,00 2,03 239,90 5456,63 1,97 195,10
Code9_150w_rp10 6801,07 137,08 323,00 6838,70 39,05 220,30 6848,60 24,36 231,40

150

Code9_150w_rp15 6651,40 48,96 362,20 6877,93 15,49 274,40 6865,97 31,32 327,80
Code9_150w_rp20 6897,60 97,04 321,10 7073,23 63,63 365,00 7113,53 52,19 432,00
Code9_200w_rp10 8468,00 253,61 192,40 8818,73 119,21 204,00 8824,73 162,21 209,30
Code9_200w_rp15 8880,57 84,92 226,40 9074,87 75,56 445,30 9097,67 53,24 547,00
Code9_200w_rp20 9025,07 172,46 445,70 9409,13 62,21 539,00 9391,50 78,89 515,80
Code1011w_rp10 5005,00 0,00 49,60 5000,53 11,83 110,70 4998,73 13,05 93,10
Code1011w_rp15 5195,00 0,00 98,30 5195,00 0,00 254,00 5194,60 2,19 189,00
Code1011w_rp20 5359,03 37,90 101,50 5399,00 0,00 222,80 5399,00 0,00 204,10
Code10_150w_rp10 6531,80 76,84 226,90 6701,30 43,97 114,40 6699,90 48,60 171,00
Code10_150w_rp15 6826,63 127,95 148,50 7004,00 34,14 228,80 7009,47 17,54 313,30
Code10_150w_rp20 7089,93 89,07 237,70 7176,17 40,36 336,30 7171,73 54,05 277,90
Code10_200w_rp10 9282,37 108,47 313,30 9333,13 118,39 437,50 9317,03 116,95 438,50
Code10_200w_rp15 8990,13 164,61 307,40 9221,83 63,44 465,20 9197,70 79,54 533,60
Code10_200w_rp20 9310,17 184,23 433,50 9585,33 100,70 512,40 9588,63 133,12 522,80

geometric mean 6907,43 6995,12 6993,29
#best results 11 53 48
#unique best res. 6 35 31

A.1.2 Genetic Algorithm
In Table A.2 the computational results of different configurations of the genetic algorithm
are given.

Table A.2: Results for the different configurations of the GA. The pure genetic
algorithm (GA), the genetic algorithm with the local search (GA + LS), the genetic
algorithm with the solution archive (GA + solA) and the genetic algorithm with
the solution archive and the local search (GA + LS + solA) with a runtime of 600
seconds.

GA GA + LS GA + solA GA + LS + solA

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code111w_rp10 4331,80 12,32 338,20 4348,97 25,00 113,00 4334,20 10,75 402,60 4361,00 0,00 14,70
Code111w_rp15 4572,37 21,18 461,10 4586,43 16,65 38,50 4582,67 6,63 412,80 4596,00 0,00 16,10
Code111w_rp20 4452,23 17,50 538,40 4474,97 23,52 162,50 4464,17 21,42 521,40 4505,47 11,22 209,50
Code1_150w_rp10 6503,63 123,24 538,20 7163,57 54,75 113,40 6606,03 120,76 530,10 7138,37 112,88 29,20
Code1_150w_rp15 6823,13 63,36 549,60 7021,47 75,64 149,30 6876,50 49,83 546,80 7077,97 35,79 133,00
Code1_150w_rp20 6900,63 109,91 550,20 7163,03 58,69 187,30 6980,63 105,85 560,30 7198,27 19,01 241,40
Code1_200w_rp10 8810,10 201,26 531,40 9443,60 105,48 246,70 8926,30 189,46 509,10 9476,17 107,30 243,10
Code1_200w_rp15 9079,43 265,11 572,00 9956,77 112,63 349,90 9212,53 227,11 553,60 10001,40 92,78 297,10
Code1_200w_rp20 8899,63 157,41 562,00 9683,20 119,85 479,60 8996,93 219,23 560,80 9753,07 77,54 460,50
Code211w_rp10 5289,47 25,60 521,20 5310,00 0,00 51,20 5291,13 28,09 473,40 5310,00 0,00 8,10
Code211w_rp15 5279,47 35,12 546,90 5362,33 19,73 42,40 5294,43 31,31 493,60 5373,00 0,00 23,10
Code211w_rp20 5250,03 52,47 556,90 5351,80 55,16 135,10 5268,93 47,01 546,80 5404,43 29,69 82,40
Code2_150w_rp10 6962,67 46,48 519,90 7229,90 89,61 233,40 6969,40 43,43 512,40 7247,47 53,43 242,70
Code2_150w_rp15 7423,00 94,91 537,40 7702,23 103,32 148,00 7496,67 66,09 516,30 7743,20 4,70 96,90
Code2_150w_rp20 7439,37 65,12 540,10 7713,43 70,96 208,40 7500,33 60,97 551,80 7772,13 40,91 211,50
Code2_200w_rp10 8609,17 151,04 524,40 9181,07 127,89 228,80 8717,20 131,21 529,70 9231,63 75,55 130,10
Code2_200w_rp15 8639,43 159,89 523,30 9482,17 119,41 342,10 8678,77 144,79 520,70 9539,27 70,94 392,00
Code2_200w_rp20 8626,47 119,66 557,10 9508,30 119,17 521,50 8726,30 112,43 547,80 9579,83 118,18 421,30
Code311w_rp10 4472,50 34,65 331,60 4483,00 0,00 21,20 4483,00 0,00 336,20 4483,00 0,00 8,10
Code311w_rp15 4775,93 19,79 473,20 4785,40 22,85 70,40 4781,13 21,89 534,60 4800,00 0,00 13,30
Code311w_rp20 4835,77 15,62 534,70 4879,17 14,61 116,60 4849,67 11,70 495,30 4892,80 0,61 65,20
Code3_150w_rp10 6975,17 75,29 522,30 7252,50 69,75 136,20 7004,47 71,96 493,00 7286,93 16,36 35,40
Code3_150w_rp15 7333,73 124,31 551,10 7554,00 47,95 131,20 7391,33 95,72 523,60 7589,00 18,83 142,50
Code3_150w_rp20 7358,33 70,60 543,60 7601,30 45,29 214,80 7406,17 50,70 559,40 7624,43 34,03 274,00
Code3_200w_rp10 8832,40 181,41 553,50 9229,40 86,17 239,00 8856,23 185,09 535,80 9300,23 70,30 227,00
Code3_200w_rp15 8232,10 269,27 563,40 9265,43 98,36 333,10 8497,40 203,87 562,00 9304,57 71,44 281,90
Code3_200w_rp20 8091,83 188,37 564,80 9150,37 174,73 509,90 8251,03 134,42 550,60 9197,97 155,51 426,90
Code411w_rp10 4984,67 9,57 466,20 4994,00 0,00 22,40 4988,00 9,03 506,10 4994,00 0,00 7,90
Code411w_rp15 5044,90 19,96 476,30 5046,63 16,87 113,20 5051,83 15,50 431,40 5064,00 0,00 48,80
Code411w_rp20 5081,93 27,01 514,60 5131,80 55,58 129,10 5101,10 26,28 468,60 5204,73 16,24 39,60
Code4_150w_rp10 6503,53 136,21 530,50 7174,67 90,48 110,00 6611,83 117,85 534,90 7246,33 98,75 38,30
Code4_150w_rp15 6934,27 174,97 551,90 7353,67 74,30 237,60 7047,40 139,91 536,30 7409,00 0,00 71,30
Code4_150w_rp20 7382,80 148,05 549,80 7900,00 25,49 201,90 7405,40 139,86 565,90 7915,93 7,44 251,30
Code4_200w_rp10 8385,63 93,41 496,60 8849,43 45,21 232,20 8380,77 105,28 493,90 8852,40 43,37 115,60

151

Code4_200w_rp15 8377,87 139,43 541,50 9055,10 101,98 339,30 8407,60 141,00 519,60 9106,43 87,24 241,30
Code4_200w_rp20 8633,17 137,69 570,10 9313,53 98,52 482,20 8770,83 178,30 550,00 9335,67 113,20 388,50
Code511w_rp10 4906,00 0,00 318,00 4906,00 0,00 49,20 4906,00 0,00 254,40 4906,00 0,00 8,90
Code511w_rp15 5030,73 37,47 534,10 5086,10 31,13 141,50 5047,93 30,46 466,90 5123,90 7,40 63,40
Code511w_rp20 5224,03 26,17 524,80 5305,67 37,00 208,70 5238,90 33,37 565,80 5330,33 9,94 76,00
Code5_150w_rp10 6777,10 78,29 509,00 6954,27 20,27 190,10 6788,97 75,57 514,60 6965,73 10,59 32,90
Code5_150w_rp15 6849,03 80,05 507,10 7065,03 60,02 161,20 6904,83 63,76 524,60 7084,93 34,91 214,60
Code5_150w_rp20 6768,50 86,03 560,90 7292,87 47,62 345,60 6849,43 99,17 555,50 7320,77 8,91 227,30
Code5_200w_rp10 8566,63 138,43 512,50 9137,57 74,39 220,10 8645,13 106,16 527,10 9159,13 66,25 268,20
Code5_200w_rp15 8494,37 151,08 554,50 9115,17 120,27 319,60 8660,67 216,45 547,10 9167,60 71,37 320,90
Code5_200w_rp20 9008,77 94,42 511,50 9398,47 103,93 480,20 9045,77 72,74 509,70 9442,13 90,25 345,90
Code611w_rp10 4582,17 26,63 435,10 4590,50 11,28 107,00 4573,27 36,36 452,90 4594,73 1,46 17,70
Code611w_rp15 4752,67 37,81 528,40 4858,90 41,88 56,80 4769,70 40,16 508,70 4881,00 0,00 15,70
Code611w_rp20 4811,00 29,47 554,50 4913,00 36,56 187,20 4827,60 12,76 536,70 4941,53 18,58 96,00
Code6_150w_rp10 6680,50 86,69 512,80 6988,53 76,38 100,20 6772,37 67,94 523,40 7015,83 64,84 36,90
Code6_150w_rp15 6776,40 97,73 556,50 7126,77 82,94 165,50 6821,50 91,48 564,20 7162,53 32,51 71,60
Code6_150w_rp20 6894,73 98,39 550,10 7267,33 94,63 194,40 6950,80 55,80 541,00 7356,23 39,25 133,90
Code6_200w_rp10 8783,10 181,04 464,50 9710,20 139,67 283,00 8986,30 195,73 520,10 9750,17 130,57 197,50
Code6_200w_rp15 8873,43 178,65 545,20 9957,50 164,71 396,90 9013,73 235,39 564,80 10025,27 150,55 326,70
Code6_200w_rp20 9222,03 170,11 561,20 10153,33 129,86 521,50 9404,47 158,70 567,50 10192,63 116,02 452,50
Code711w_rp10 5384,73 95,76 531,90 5585,10 4,93 26,40 5431,20 72,86 525,20 5586,00 0,00 8,70
Code711w_rp15 5763,40 18,20 486,30 5820,17 17,61 67,00 5767,93 18,34 500,40 5827,00 0,00 31,60
Code711w_rp20 5863,40 12,67 512,00 5889,30 11,29 51,60 5861,47 28,80 537,50 5893,00 0,00 29,80
Code7_150w_rp10 5895,37 81,25 531,90 6193,73 75,22 160,40 5886,43 75,72 544,20 6223,90 44,98 190,10
Code7_150w_rp15 6615,50 71,31 543,90 6823,97 39,32 142,60 6667,40 46,97 542,40 6840,00 0,00 82,90
Code7_150w_rp20 6920,20 56,37 573,10 7221,87 60,19 211,60 6961,73 46,05 530,70 7266,87 42,85 203,10
Code7_200w_rp10 8177,73 205,33 548,00 9040,83 192,16 250,90 8296,80 130,13 532,90 9142,37 149,21 222,80
Code7_200w_rp15 8743,93 138,58 550,40 9469,50 96,36 356,30 8891,03 112,83 543,60 9527,73 61,94 283,90
Code7_200w_rp20 9159,53 183,23 564,60 9848,93 58,16 482,80 9265,63 94,41 545,60 9837,63 58,28 361,90
Code811w_rp10 4468,77 31,34 447,50 4558,27 34,34 148,90 4482,23 33,97 483,10 4605,20 14,09 21,60
Code811w_rp15 4472,03 55,21 562,40 4615,97 47,53 210,30 4489,60 56,09 544,40 4670,77 11,42 41,60
Code811w_rp20 4799,47 23,40 553,70 4854,03 9,35 162,90 4818,70 9,89 524,30 4858,00 0,00 24,40
Code8_150w_rp10 7091,50 178,99 562,80 7664,23 123,59 113,20 7164,93 132,71 529,60 7729,33 14,61 28,70
Code8_150w_rp15 7133,27 128,62 542,30 7624,73 48,91 161,90 7242,30 148,03 551,20 7659,73 8,45 103,10
Code8_150w_rp20 7534,20 31,35 530,30 7785,50 86,49 199,50 7554,07 37,92 531,00 7838,13 19,77 188,20
Code8_200w_rp10 8499,73 167,54 496,30 9031,87 103,59 282,50 8564,03 194,36 476,60 8997,83 122,64 170,60
Code8_200w_rp15 8496,33 159,99 534,20 8960,00 107,96 349,80 8540,93 133,65 546,80 8983,57 81,04 357,90
Code8_200w_rp20 8479,23 120,61 563,20 9201,30 88,44 511,60 8574,77 72,10 559,80 9230,93 97,88 484,30
Code911w_rp10 5300,80 6,57 294,40 5302,00 0,00 23,30 5302,00 0,00 235,70 5302,00 0,00 7,50
Code911w_rp15 4989,77 55,79 527,80 5119,67 35,51 140,20 5000,17 60,71 551,40 5155,07 6,15 220,60
Code911w_rp20 5385,73 36,02 562,10 5448,63 12,93 58,80 5424,17 16,11 552,40 5457,00 2,03 92,50
Code9_150w_rp10 6548,50 67,94 499,90 6810,67 69,48 271,50 6574,13 59,01 521,50 6838,70 39,05 55,50
Code9_150w_rp15 6561,50 65,00 528,50 6811,50 91,06 164,70 6591,00 54,31 505,30 6877,93 15,49 148,40
Code9_150w_rp20 6661,43 59,53 563,10 7020,67 87,25 207,80 6716,47 48,97 552,70 7073,23 63,63 299,90
Code9_200w_rp10 8020,73 178,59 552,60 8836,20 134,15 254,10 8064,03 164,39 506,00 8818,73 119,21 182,90
Code9_200w_rp15 8220,90 135,00 558,40 9020,63 105,81 357,90 8289,27 138,26 550,00 9074,87 75,56 335,40
Code9_200w_rp20 8370,97 112,10 519,30 9377,47 83,44 486,70 8484,93 161,26 554,50 9409,13 62,21 416,80
Code1011w_rp10 4927,47 31,00 515,90 4982,97 22,94 95,80 4941,87 26,25 487,60 5000,53 11,83 18,20
Code1011w_rp15 5162,80 17,34 517,50 5172,60 22,95 126,40 5167,57 10,31 428,60 5195,00 0,00 29,20
Code1011w_rp20 5268,87 35,60 546,70 5342,00 31,38 80,10 5277,20 35,12 544,00 5399,00 0,00 60,80
Code10_150w_rp10 6191,23 111,42 514,90 6662,80 84,69 108,00 6239,10 96,49 522,10 6701,30 43,97 30,20
Code10_150w_rp15 6477,40 112,59 523,80 6998,43 31,17 131,60 6493,60 104,47 554,20 7004,00 34,14 104,30
Code10_150w_rp20 6776,33 88,64 512,50 7112,63 80,67 219,70 6820,37 66,04 548,30 7176,17 40,36 175,30
Code10_200w_rp10 8744,50 185,66 514,40 9312,07 125,38 297,10 8827,13 174,75 535,80 9333,13 118,39 151,70
Code10_200w_rp15 8825,93 89,75 488,50 9174,60 94,69 328,70 8859,43 64,82 470,40 9221,83 63,44 434,30
Code10_200w_rp20 8911,50 118,03 549,90 9607,57 97,67 485,20 8980,20 154,75 541,90 9585,33 100,70 460,40

geometric mean 6643,72 6964,10 6691,70 6995,12
#best results 1 10 3 85
#unique best res. 0 5 0 80

152

A.1.3 Neighborhoods of the Local Search
Table A.3 shows the results of using the different strategies for utilizing the solution
archive within the local / tabu search as described in Section 4.7.

Table A.3: Results of using different neighborhood structures for intermediate local
search with a total runtime of 600 seconds.

complete NB reduced NB conversion NB TS with reduced NB

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code1011w_rp10 4998,73 13,05 249,20 5000,53 11,83 110,70 5000,07 11,43 123,20 5003,67 7,30 93,80
Code111w_rp10 4361,00 0,00 133,80 4361,00 0,00 130,30 4361,00 0,00 72,20 4361,00 0,00 47,00
Code111w_rp15 4596,00 0,00 44,90 4596,00 0,00 64,10 4596,00 0,00 79,40 4596,00 0,00 55,10
Code111w_rp20 4488,20 22,42 299,50 4505,47 11,22 343,30 4497,93 14,69 343,60 4506,23 8,39 268,70
Code1_150w_rp10 7157,07 89,96 113,60 7138,37 112,88 88,60 7171,30 47,65 137,40 7180,00 0,00 118,00
Code1_150w_rp15 7055,70 39,71 240,40 7077,97 35,79 341,20 7070,77 45,79 339,40 7143,30 31,63 337,00
Code1_150w_rp20 7187,87 22,59 289,30 7198,27 19,01 380,20 7190,87 24,84 400,70 7221,50 27,75 455,20
Code1_200w_rp10 9471,80 85,42 286,70 9476,17 107,30 200,60 9508,00 67,29 400,10 9532,50 56,10 350,30
Code1_200w_rp15 9959,17 133,66 483,60 10001,40 92,78 394,40 9988,87 100,51 461,90 9986,13 99,43 500,60
Code1_200w_rp20 9706,37 70,27 530,90 9753,07 77,54 572,80 9720,67 74,29 521,80 9760,10 69,67 600,00
Code211w_rp10 5310,00 0,00 85,50 5310,00 0,00 43,50 5310,00 0,00 29,00 5310,00 0,00 33,10
Code211w_rp15 5367,60 8,39 62,40 5373,00 0,00 111,80 5373,00 0,00 100,40 5373,00 0,00 162,80
Code211w_rp20 5386,77 37,42 291,80 5404,43 29,69 291,60 5404,13 30,62 439,50 5427,37 9,90 200,00
Code2_150w_rp10 7234,77 55,54 303,70 7247,47 53,43 292,50 7265,53 58,72 216,00 7290,17 48,81 401,10
Code2_150w_rp15 7738,40 13,75 306,10 7743,20 4,70 281,40 7742,30 5,53 367,50 7741,60 6,29 342,30
Code2_150w_rp20 7737,80 51,87 360,50 7772,13 40,91 349,50 7771,40 39,29 390,40 7774,13 59,61 317,60
Code2_200w_rp10 9214,43 102,90 266,60 9231,63 75,55 249,80 9230,23 94,53 395,30 9252,07 89,10 376,50
Code2_200w_rp15 9525,37 92,86 419,00 9539,27 70,94 516,40 9518,10 93,23 439,20 9561,30 83,08 591,40
Code2_200w_rp20 9542,93 106,14 549,80 9579,83 118,18 508,00 9549,43 101,89 549,80 9619,70 67,33 600,00
Code311w_rp10 4483,00 0,00 25,40 4483,00 0,00 25,80 4483,00 0,00 23,80 4483,00 0,00 31,10
Code311w_rp15 4800,00 0,00 85,90 4800,00 0,00 73,60 4800,00 0,00 50,80 4800,00 0,00 49,20
Code311w_rp20 4890,63 3,95 183,30 4892,80 0,61 297,90 4892,67 0,76 264,90 4892,73 0,69 213,90
Code3_150w_rp10 7285,67 15,76 113,40 7286,93 16,36 310,70 7293,10 12,10 314,30 7299,00 0,00 130,90
Code3_150w_rp15 7567,03 34,68 193,00 7589,00 18,83 285,80 7589,90 18,86 286,60 7583,77 20,38 192,40
Code3_150w_rp20 7605,33 47,90 298,50 7624,43 34,03 309,10 7627,93 26,49 331,80 7620,67 46,21 429,70
Code3_200w_rp10 9265,97 102,41 247,40 9300,23 70,30 291,70 9275,87 85,79 320,20 9339,97 76,46 375,40
Code3_200w_rp15 9279,60 91,05 383,20 9304,57 71,44 386,40 9301,60 68,80 438,00 9317,83 66,40 496,10
Code3_200w_rp20 9149,43 118,80 518,40 9197,97 155,51 516,80 9147,50 115,48 517,80 9220,97 105,33 600,00
Code411w_rp10 4994,00 0,00 25,00 4994,00 0,00 22,10 4994,00 0,00 25,20 4994,00 0,00 32,50
Code411w_rp15 5059,97 10,25 140,10 5064,00 0,00 117,40 5062,27 6,67 191,10 5063,80 1,10 125,10
Code411w_rp20 5163,60 38,10 211,20 5204,73 16,24 298,10 5206,73 12,42 239,00 5209,00 0,00 163,80
Code4_150w_rp10 7207,10 93,32 225,00 7246,33 98,75 290,60 7242,53 108,65 230,40 7281,60 67,11 152,70
Code4_150w_rp15 7384,97 30,96 363,40 7409,00 0,00 285,00 7399,00 29,61 304,00 7409,00 0,00 225,20
Code4_150w_rp20 7911,43 10,11 229,20 7915,93 7,44 276,10 7914,17 10,51 232,30 7919,00 7,47 300,30
Code4_200w_rp10 8870,13 32,68 228,90 8852,40 43,37 191,10 8868,47 35,77 360,30 8874,80 28,02 312,40
Code4_200w_rp15 9071,50 119,82 352,40 9106,43 87,24 403,10 9070,27 131,37 417,30 9069,73 112,00 476,90
Code4_200w_rp20 9279,47 115,51 520,90 9335,67 113,20 502,40 9285,10 99,60 531,00 9341,20 82,14 600,00
Code511w_rp10 4906,00 0,00 39,60 4906,00 0,00 39,60 4906,00 0,00 53,90 4906,00 0,00 52,60
Code511w_rp15 5099,53 20,20 206,70 5123,90 7,40 332,30 5115,77 14,33 212,00 5122,30 5,54 259,30
Code511w_rp20 5318,53 15,85 233,60 5330,33 9,94 101,10 5328,40 14,62 165,80 5332,57 7,85 122,00
Code5_150w_rp10 6961,43 11,62 215,90 6965,73 10,59 329,10 6963,13 9,49 265,70 6972,20 5,70 144,80
Code5_150w_rp15 7088,87 42,55 275,30 7084,93 34,91 392,70 7090,03 41,84 352,00 7096,03 45,75 320,90
Code5_150w_rp20 7304,07 30,18 416,80 7320,77 8,91 343,80 7307,43 34,81 375,90 7316,13 23,14 454,70
Code5_200w_rp10 9187,27 86,31 278,00 9159,13 66,25 338,70 9153,13 99,28 242,90 9202,97 63,13 327,20
Code5_200w_rp15 9160,30 79,24 385,50 9167,60 71,37 413,00 9179,13 68,50 482,60 9192,50 81,90 480,60
Code5_200w_rp20 9413,07 75,87 490,10 9442,13 90,25 499,20 9420,60 108,68 514,30 9450,87 84,16 591,40
Code611w_rp10 4595,00 0,00 104,60 4594,73 1,46 110,90 4595,00 0,00 155,80 4595,00 0,00 81,50
Code611w_rp15 4879,33 9,13 86,40 4881,00 0,00 74,50 4881,00 0,00 75,20 4881,00 0,00 61,80
Code611w_rp20 4936,80 25,44 237,20 4941,53 18,58 248,40 4946,23 11,56 321,70 4945,17 18,24 146,10
Code6_150w_rp10 7016,53 50,58 356,20 7015,83 64,84 242,70 7031,67 36,71 269,40 7050,00 0,00 146,00
Code6_150w_rp15 7141,17 55,31 270,10 7162,53 32,51 319,90 7152,30 51,89 309,20 7181,37 25,38 288,80
Code6_150w_rp20 7360,67 25,43 320,30 7356,23 39,25 368,20 7352,20 42,01 394,70 7386,00 0,00 328,20
Code6_200w_rp10 9749,27 127,43 278,30 9750,17 130,57 207,40 9729,67 130,58 252,10 9798,00 65,27 348,40
Code6_200w_rp15 9991,10 146,05 410,70 10025,27 150,55 442,70 9999,57 156,43 430,20 10071,83 106,40 552,90
Code6_200w_rp20 10187,07 107,08 539,10 10192,63 116,02 570,30 10195,33 118,35 528,70 10234,30 77,10 600,00
Code711w_rp10 5586,00 0,00 96,10 5586,00 0,00 79,70 5585,10 4,93 100,90 5586,00 0,00 39,50
Code711w_rp15 5827,00 0,00 74,50 5827,00 0,00 83,90 5827,00 0,00 105,00 5827,00 0,00 111,40
Code711w_rp20 5893,00 0,00 79,40 5893,00 0,00 73,60 5893,00 0,00 52,50 5893,00 0,00 98,40
Code7_150w_rp10 6201,60 54,54 304,40 6223,90 44,98 293,90 6202,33 60,52 237,40 6235,20 49,09 262,70
Code7_150w_rp15 6833,93 6,60 141,90 6840,00 0,00 231,80 6839,57 2,37 313,40 6840,00 0,00 214,90
Code7_150w_rp20 7255,87 57,45 279,10 7266,87 42,85 290,10 7265,03 41,55 299,30 7267,90 38,74 444,80

153

Code7_200w_rp10 9137,07 146,47 242,40 9142,37 149,21 274,10 9168,00 90,67 241,30 9194,97 97,00 331,50
Code7_200w_rp15 9529,87 49,08 416,50 9527,73 61,94 518,30 9538,90 56,23 511,20 9524,90 75,55 503,80
Code7_200w_rp20 9826,40 62,92 524,20 9837,63 58,28 476,10 9839,83 79,96 492,80 9886,83 64,06 600,00
Code811w_rp10 4574,37 35,63 432,40 4605,20 14,09 301,10 4606,43 9,62 340,70 4609,00 0,00 134,10
Code811w_rp15 4647,07 25,37 247,10 4670,77 11,42 180,70 4670,20 14,13 187,70 4664,63 20,80 214,30
Code811w_rp20 4858,00 0,00 116,80 4858,00 0,00 77,40 4858,00 0,00 86,70 4858,00 0,00 79,30
Code8_150w_rp10 7729,33 14,61 176,00 7729,33 14,61 217,60 7732,00 0,00 294,20 7723,47 46,74 142,90
Code8_150w_rp15 7647,80 30,24 364,90 7659,73 8,45 340,50 7654,67 24,28 303,80 7660,80 3,66 261,90
Code8_150w_rp20 7816,23 55,06 301,90 7838,13 19,77 285,60 7818,63 59,88 302,50 7840,13 17,64 360,60
Code8_200w_rp10 9003,17 132,27 302,40 8997,83 122,64 375,90 9041,93 94,40 268,10 9050,13 95,65 406,70
Code8_200w_rp15 8994,00 79,88 460,00 8983,57 81,04 530,30 8984,13 83,64 500,50 9007,90 76,47 527,50
Code8_200w_rp20 9171,17 128,52 536,00 9230,93 97,88 512,80 9245,07 93,85 527,90 9242,60 86,11 600,00
Code911w_rp10 5302,00 0,00 21,80 5302,00 0,00 21,80 5302,00 0,00 24,80 5302,00 0,00 33,10
Code911w_rp15 5138,67 22,18 313,90 5155,07 6,15 339,40 5154,77 6,22 357,80 5156,53 2,47 307,50
Code911w_rp20 5455,70 2,98 200,20 5457,00 2,03 239,90 5456,60 1,99 167,30 5457,70 1,76 175,90
Code9_150w_rp10 6845,00 26,98 240,80 6838,70 39,05 220,30 6851,80 17,53 185,10 6849,97 19,90 278,10
Code9_150w_rp15 6860,70 42,20 281,60 6877,93 15,49 274,40 6857,10 46,96 248,90 6875,87 18,06 324,40
Code9_150w_rp20 7072,17 64,04 307,20 7073,23 63,63 365,00 7107,07 60,49 324,00 7127,70 55,41 508,00
Code9_200w_rp10 8834,53 105,05 260,70 8818,73 119,21 204,00 8808,93 143,98 259,60 8869,87 146,19 352,30
Code9_200w_rp15 9051,40 56,97 348,40 9074,87 75,56 445,30 9052,70 96,45 500,50 9079,77 53,21 489,00
Code9_200w_rp20 9369,40 104,99 496,80 9409,13 62,21 539,00 9383,87 81,97 512,10 9427,07 44,51 600,00
Code1011w_rp15 5192,10 7,92 297,20 5195,00 0,00 254,00 5194,60 2,19 209,00 5195,00 0,00 134,70
Code1011w_rp20 5368,00 28,86 169,50 5399,00 0,00 222,80 5399,00 0,00 246,30 5399,00 0,00 178,60
Code10_150w_rp10 6696,30 55,79 154,00 6701,30 43,97 114,40 6698,47 43,41 155,00 6708,43 35,97 122,20
Code10_150w_rp15 7006,17 17,42 220,20 7004,00 34,14 228,80 7000,53 46,09 290,10 7008,00 18,09 290,70
Code10_150w_rp20 7144,17 60,73 394,40 7176,17 40,36 336,30 7170,10 40,19 390,50 7198,20 19,17 435,10
Code10_200w_rp10 9322,00 95,62 337,10 9333,13 118,39 437,50 9308,50 94,90 454,70 9356,07 83,08 477,00
Code10_200w_rp15 9211,87 74,97 431,10 9221,83 63,44 465,20 9190,40 83,05 397,20 9289,80 60,00 468,90
Code10_200w_rp20 9581,93 101,29 512,60 9585,33 100,70 512,40 9584,77 126,69 516,30 9587,97 106,61 600,00

geometric mean 6983,653735 6995,12021 6992,376022 7006,534831
#best results 13 27 22 74
#unique best results 0 9 7 55

A.1.4 Multi-Level Evaluation Scheme

The computational results for testing the multi-level evaluation scheme (ML-ES) are
listed in Table A.4.

Table A.4: Results for the multi-level evaluation scheme and the local/tabu search
improvement compared to the standard LP solution evaluation with a runtime of
600 seconds.

GA + solA + GA + solA + GA + solA + GA + solA +
LP + LS ML-ES + LS ML-ES + improved LS ML-ES + improved TS

Instance obj sd t∗[s] obj sd t∗[s] obj sd t∗[s] obj sd t∗[s]

Code111w_rp10 4361,00 0,00 130,30 4361,00 0,00 13,00 4361,00 0,00 12,70 4361,00 0,00 14,70
Code111w_rp15 4596,00 0,00 64,10 4596,00 0,00 22,20 4596,00 0,00 12,20 4596,00 0,00 16,10
Code111w_rp20 4505,47 11,22 343,30 4507,77 4,15 181,80 4511,47 1,38 231,30 4511,87 0,73 209,50
Code1_150w_rp10 7138,37 112,88 88,60 7180,00 0,00 23,50 7180,00 0,00 33,70 7180,00 0,00 29,20
Code1_150w_rp15 7077,97 35,79 341,20 7080,23 45,92 110,30 7130,97 36,67 291,60 7153,93 0,25 133,00
Code1_150w_rp20 7198,27 19,01 380,20 7198,70 23,39 264,90 7208,13 18,97 282,50 7247,27 7,97 241,40
Code1_200w_rp10 9476,17 107,30 200,60 9515,23 54,65 201,80 9558,83 37,26 298,50 9594,00 10,37 243,10
Code1_200w_rp15 10001,40 92,78 394,40 10026,23 67,17 134,20 10077,10 42,96 289,20 10095,00 37,02 297,10
Code1_200w_rp20 9753,07 77,54 572,80 9742,10 93,20 225,20 9807,57 74,67 460,80 9831,97 56,35 460,50
Code211w_rp10 5310,00 0,00 43,50 5310,00 0,00 8,60 5310,00 0,00 8,30 5310,00 0,00 8,10
Code211w_rp15 5373,00 0,00 111,80 5373,00 0,00 37,00 5373,00 0,00 17,80 5373,00 0,00 23,10
Code211w_rp20 5404,43 29,69 291,60 5427,80 10,53 252,60 5432,00 0,00 165,70 5431,57 2,37 82,40
Code2_150w_rp10 7247,47 53,43 292,50 7276,70 61,74 98,60 7328,97 23,91 166,70 7337,00 0,00 242,70
Code2_150w_rp15 7743,20 4,70 281,40 7735,93 9,15 60,30 7744,00 3,81 102,90 7745,00 0,00 96,90
Code2_150w_rp20 7772,13 40,91 349,50 7759,60 40,59 181,30 7789,27 28,71 177,00 7802,03 15,79 211,50
Code2_200w_rp10 9231,63 75,55 249,80 9238,23 78,81 58,30 9307,13 53,11 236,50 9321,13 26,28 130,10
Code2_200w_rp15 9539,27 70,94 516,40 9471,07 78,21 119,40 9593,53 53,40 345,90 9626,67 17,34 392,00
Code2_200w_rp20 9579,83 118,18 508,00 9599,40 88,02 241,50 9643,80 80,47 402,70 9666,37 52,72 421,30
Code311w_rp10 4483,00 0,00 25,80 4483,00 0,00 5,90 4483,00 0,00 7,90 4483,00 0,00 8,10
Code311w_rp15 4800,00 0,00 73,60 4800,00 0,00 13,50 4800,00 0,00 19,80 4800,00 0,00 13,30
Code311w_rp20 4892,80 0,61 297,90 4889,33 6,19 100,10 4893,00 0,00 103,30 4893,00 0,00 65,20
Code3_150w_rp10 7286,93 16,36 310,70 7292,50 13,38 62,90 7296,83 8,33 64,10 7299,00 0,00 35,40
Code3_150w_rp15 7589,00 18,83 285,80 7580,97 23,60 45,60 7597,77 13,80 207,80 7603,10 2,75 142,50

154

Code3_150w_rp20 7624,43 34,03 309,10 7605,77 60,47 111,10 7636,47 15,28 289,20 7646,87 4,32 274,00
Code3_200w_rp10 9300,23 70,30 291,70 9320,53 62,72 164,60 9358,97 48,66 283,30 9374,30 28,15 227,00
Code3_200w_rp15 9304,57 71,44 386,40 9310,33 71,22 192,00 9353,33 39,29 388,40 9365,97 17,19 281,90
Code3_200w_rp20 9197,97 155,51 516,80 9265,93 107,10 252,20 9285,73 81,47 416,80 9296,67 70,96 426,90
Code411w_rp10 4994,00 0,00 22,10 4994,00 0,00 5,30 4994,00 0,00 5,30 4994,00 0,00 7,90
Code411w_rp15 5064,00 0,00 117,40 5064,00 0,00 49,70 5064,00 0,00 53,20 5064,00 0,00 48,80
Code411w_rp20 5204,73 16,24 298,10 5209,00 0,00 92,40 5209,00 0,00 89,80 5209,00 0,00 39,60
Code4_150w_rp10 7246,33 98,75 290,60 7275,20 66,09 56,30 7302,43 77,20 128,70 7318,00 0,00 38,30
Code4_150w_rp15 7409,00 0,00 285,00 7387,43 24,88 71,60 7409,00 0,00 124,70 7409,00 0,00 71,30
Code4_150w_rp20 7915,93 7,44 276,10 7918,43 8,52 79,50 7925,50 5,69 221,10 7927,50 2,74 251,30
Code4_200w_rp10 8852,40 43,37 191,10 8841,70 66,08 50,60 8884,87 15,15 271,30 8888,47 14,39 115,60
Code4_200w_rp15 9106,43 87,24 403,10 9094,30 108,36 120,90 9153,63 52,72 217,60 9179,03 32,68 241,30
Code4_200w_rp20 9335,67 113,20 502,40 9334,77 118,92 253,60 9355,37 97,49 362,10 9404,70 89,41 388,50
Code511w_rp10 4906,00 0,00 39,60 4906,00 0,00 16,90 4906,00 0,00 9,50 4906,00 0,00 8,90
Code511w_rp15 5123,90 7,40 332,30 5126,47 4,03 114,90 5127,80 3,99 141,20 5123,00 0,00 63,40
Code511w_rp20 5330,33 9,94 101,10 5334,00 0,00 95,20 5334,00 0,00 89,90 5334,00 0,00 76,00
Code5_150w_rp10 6965,73 10,59 329,10 6966,83 6,43 153,50 6975,00 0,00 162,90 6975,00 0,00 32,90
Code5_150w_rp15 7084,93 34,91 392,70 7102,20 39,38 205,00 7124,87 27,57 273,90 7139,97 26,56 214,60
Code5_150w_rp20 7320,77 8,91 343,80 7314,83 14,82 108,50 7324,90 3,19 344,40 7326,50 3,29 227,30
Code5_200w_rp10 9159,13 66,25 338,70 9187,77 60,06 70,60 9229,40 66,03 208,20 9273,10 27,45 268,20
Code5_200w_rp15 9167,60 71,37 413,00 9193,97 84,84 118,10 9203,77 86,14 262,50 9252,03 42,10 320,90
Code5_200w_rp20 9442,13 90,25 499,20 9429,90 96,86 201,60 9465,43 108,54 340,60 9512,10 42,91 345,90
Code611w_rp10 4594,73 1,46 110,90 4595,00 0,00 22,60 4595,00 0,00 17,80 4595,00 0,00 17,70
Code611w_rp15 4881,00 0,00 74,50 4881,00 0,00 17,50 4881,00 0,00 16,90 4881,00 0,00 15,70
Code611w_rp20 4941,53 18,58 248,40 4951,13 3,30 95,00 4952,00 0,00 120,30 4952,00 0,00 96,00
Code6_150w_rp10 7015,83 64,84 242,70 7049,13 4,75 51,10 7050,00 0,00 73,20 7050,00 0,00 36,90
Code6_150w_rp15 7162,53 32,51 319,90 7150,47 69,57 152,40 7186,00 0,00 112,10 7186,00 0,00 71,60
Code6_150w_rp20 7356,23 39,25 368,20 7356,77 52,27 262,10 7384,53 8,03 258,50 7386,00 0,00 133,90
Code6_200w_rp10 9750,17 130,57 207,40 9800,73 54,01 227,10 9831,83 46,47 340,90 9850,53 5,58 197,50
Code6_200w_rp15 10025,27 150,55 442,70 10033,50 115,47 131,70 10123,40 53,01 253,30 10148,23 27,71 326,70
Code6_200w_rp20 10192,63 116,02 570,30 10181,83 100,37 229,60 10274,20 82,03 366,10 10261,53 91,67 452,50
Code711w_rp10 5586,00 0,00 79,70 5586,00 0,00 34,90 5586,00 0,00 7,20 5586,00 0,00 8,70
Code711w_rp15 5827,00 0,00 83,90 5827,00 0,00 56,70 5827,00 0,00 21,10 5827,00 0,00 31,60
Code711w_rp20 5893,00 0,00 73,60 5893,00 0,00 20,10 5893,00 0,00 22,80 5893,00 0,00 29,80
Code7_150w_rp10 6223,90 44,98 293,90 6247,07 17,08 216,20 6238,17 38,36 316,70 6248,10 0,55 190,10
Code7_150w_rp15 6840,00 0,00 231,80 6827,97 21,41 44,80 6840,00 0,00 59,90 6840,00 0,00 82,90
Code7_150w_rp20 7266,87 42,85 290,10 7280,63 39,41 201,00 7295,77 6,76 143,40 7290,83 14,02 203,10
Code7_200w_rp10 9142,37 149,21 274,10 9185,57 80,24 264,50 9223,70 57,39 234,20 9270,30 20,44 222,80
Code7_200w_rp15 9527,73 61,94 518,30 9533,13 52,77 127,50 9573,93 23,12 367,30 9580,30 35,03 283,90
Code7_200w_rp20 9837,63 58,28 476,10 9877,93 61,18 251,20 9918,77 39,99 363,50 9943,10 33,88 361,90
Code811w_rp10 4605,20 14,09 301,10 4609,00 0,00 116,90 4609,00 0,00 91,60 4609,00 0,00 21,60
Code811w_rp15 4670,77 11,42 180,70 4662,20 22,13 102,90 4675,00 0,00 66,20 4675,00 0,00 41,60
Code811w_rp20 4858,00 0,00 77,40 4858,00 0,00 39,60 4858,00 0,00 25,80 4858,00 0,00 24,40
Code8_150w_rp10 7729,33 14,61 217,60 7732,00 0,00 41,10 7732,00 0,00 68,00 7732,00 0,00 28,70
Code8_150w_rp15 7659,73 8,45 340,50 7659,20 5,16 155,60 7662,00 0,00 139,50 7662,00 0,00 103,10
Code8_150w_rp20 7838,13 19,77 285,60 7834,67 30,79 83,30 7847,33 9,94 174,50 7846,73 11,06 188,20
Code8_200w_rp10 8997,83 122,64 375,90 9066,20 63,40 149,90 9092,57 2,37 149,60 9092,57 2,37 170,60
Code8_200w_rp15 8983,57 81,04 530,30 8978,17 119,21 165,70 9061,40 35,42 429,30 9063,10 41,76 357,90
Code8_200w_rp20 9230,93 97,88 512,80 9204,63 95,46 236,40 9298,53 66,63 445,50 9342,90 23,35 484,30
Code911w_rp10 5302,00 0,00 21,80 5302,00 0,00 5,70 5302,00 0,00 5,30 5302,00 0,00 7,50
Code911w_rp15 5155,07 6,15 339,40 5138,07 20,95 220,60 5157,43 1,48 325,60 5157,93 0,25 220,60
Code911w_rp20 5457,00 2,03 239,90 5458,07 1,72 109,10 5459,00 0,00 203,40 5459,00 0,00 92,50
Code9_150w_rp10 6838,70 39,05 220,30 6855,00 0,00 46,20 6855,00 0,00 41,30 6855,00 0,00 55,50
Code9_150w_rp15 6877,93 15,49 274,40 6852,30 49,77 179,80 6880,70 12,07 136,40 6883,40 0,93 148,40
Code9_150w_rp20 7073,23 63,63 365,00 7069,77 64,64 99,70 7130,27 44,37 382,80 7160,40 41,30 299,90
Code9_200w_rp10 8818,73 119,21 204,00 8897,87 143,78 78,00 8946,43 103,98 238,70 9011,40 8,76 182,90
Code9_200w_rp15 9074,87 75,56 445,30 9066,30 81,41 117,50 9144,33 44,68 312,80 9168,20 23,40 335,40
Code9_200w_rp20 9409,13 62,21 539,00 9418,93 74,78 231,10 9448,47 16,11 382,90 9452,57 16,55 416,80
Code1011w_rp10 5000,53 11,83 110,70 4998,70 11,61 74,70 5005,00 0,00 19,10 5005,00 0,00 18,20
Code1011w_rp15 5195,00 0,00 254,00 5195,00 0,00 78,80 5195,00 0,00 54,40 5195,00 0,00 29,20
Code1011w_rp20 5399,00 0,00 222,80 5399,00 0,00 91,20 5399,00 0,00 72,40 5399,00 0,00 60,80
Code10_150w_rp10 6701,30 43,97 114,40 6701,47 35,67 90,90 6715,00 0,00 35,30 6715,00 0,00 30,20
Code10_150w_rp15 7004,00 34,14 228,80 7010,60 13,56 95,80 7014,00 0,00 90,70 7014,00 0,00 104,30
Code10_150w_rp20 7176,17 40,36 336,30 7189,13 31,81 260,90 7200,13 17,52 216,30 7203,40 10,21 175,30
Code10_200w_rp10 9333,13 118,39 437,50 9400,20 15,97 361,30 9408,63 7,57 329,00 9411,00 0,00 151,70
Code10_200w_rp15 9221,83 63,44 465,20 9218,17 109,00 130,30 9287,37 56,94 332,60 9312,40 51,91 434,30
Code10_200w_rp20 9585,33 100,70 512,40 9611,67 131,72 224,70 9651,30 143,66 390,50 9688,73 74,95 460,40

geometric mean 6995,12 7000,54 7019,37 7027,16
#best results 19 24 43 85
#unique best results 0 0 5 47

155

A.2 Generalized Vehicle Routing Problem with
Stochastic Demands

In this section we show the full result tables of the tests performed with the variable
neighborhood search for the GVRPSD with preventive restocking. Table A.5 shows the
results of the tests for the different types of the VND as described in Section 5.5.3 for
instances with θ = 2 and Table A.6 lists the results for the instances with θ = 3.

Table A.5: Results for the different configurations of the VND for instances
with θ = 2.

FI + VND GTSP + VND GTSP + VND
+ ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

P-n16-k8-C8-V5 16 8 4,2 208,511 1 208,158 1 208,158 1
P-n19-k2-C10-V2 19 10 1,08 146,825 13 146,825 <1 146,825 <1
P-n20-k2-C10-V2 20 10 1,04 149,024 13 149,024 <1 149,024 <1
P-n21-k2-C11-V2 21 11 1,04 162,77 21 160,481 <1 160,481 <1
P-n22-k2-C11-V2 22 11 1,04 161,365 24 162,952 18 162,952 8
P-n22-k8-C11-V5 22 11 3,87 326,225 5425 326,225 4988 326,225 190
P-n23-k8-C12-V5 23 12 4,53 313,084 8 312,512 2 312,512 2
B-n31-k5-C16-V3 31 16 2,03 419,912 57 419,912 23 419,912 25
A-n32-k5-C16-V2 32 16 2 547,267 65 539,161 20 539,161 12
A-n33-k5-C17-V3 33 17 2,33 455,146 96 455,665 39 455,665 7
A-n33-k6-C17-V3 33 17 2,74 468,337 87 468,775 31 468,775 4
A-n34-k5-C17-V3 34 17 2,25 541,021 73 504,136 36 504,136 6
B-n34-k5-C17-V3 34 17 2,05 466,803 113 466,803 43 466,803 25
B-n35-k5-C18-V3 35 18 2,23 619,24 115 619,24 45 619,24 26
A-n36-k5-C18-V2 36 18 1,98 506,953 146 506,953 36 506,953 7
A-n37-k5-C19-V3 37 19 2,1 447,859 145 447,859 131 447,859 19
A-n37-k6-C19-V3 37 19 2,93 626,813 165 610,072 59 610,072 13
A-n38-k5-C19-V3 38 19 2,42 485,88 124 481,977 0 481,977 0
B-n38-k6-C19-V3 38 19 2,75 487,754 157 479,918 67 479,918 27
A-n39-k5-C20-V3 39 20 2,47 567,414 210 567,906 77 567,906 14
A-n39-k6-C20-V3 39 20 2,68 560,574 301 561,253 72 561,253 20
B-n39-k5-C20-V3 39 20 2,33 356,43 220 356,484 <1 356,484 <1
P-n40-k5-C20-V3 40 20 2,26 299,248 480 296,443 133 296,443 10
B-n41-k6-C21-V3 41 21 2,88 483,257 360 483,257 106 483,257 28
B-n43-k6-C22-V3 43 22 2,78 490,23 337 490,23 165 490,23 77
A-n44-k6-C22-V3 44 22 2,91 628,954 332 627,856 211 627,856 44
B-n44-k7-C22-V4 44 22 3,16 559,111 435 563,957 126 563,957 80
A-n45-k6-C23-V4 45 23 3,12 622,394 405 621,23 150 621,23 31
A-n45-k7-C23-V4 45 23 3,16 704,585 476 692,887 219 692,887 97
B-n45-k5-C23-V3 45 23 2,45 502,021 447 502,021 285 502,021 34
B-n45-k6-C23-V4 45 23 3,05 480,861 491 482,913 182 482,913 92
P-n45-k5-C23-V3 45 23 2,35 342,329 865 340,48 388 340,48 34
A-n46-k7-C23-V4 46 23 3,12 624,051 578 624,051 156 624,051 62
A-n48-k7-C24-V4 48 24 3,25 693,444 684 686,417 249 686,417 152
B-n50-k7-C25-V4 50 25 3,01 454,088 715 454,088 216 454,088 34
B-n50-k8-C25-V5 50 25 4,26 951,949 659 923,532 292 923,532 199
P-n50-k10-C25-V5 50 25 4,77 428,477 516 431,461 296 431,461 131
P-n50-k7-C25-V4 50 25 3,18 354,473 1133 354,467 599 354,467 58
P-n50-k8-C25-V4 50 25 3,98 400,619 666 377,659 255 377,659 57
B-n51-k7-C26-V4 51 26 3,56 699,957 650 682,701 157 682,701 61
P-n51-k10-C26-V6 51 26 5,04 480,028 691 451,79 138 451,79 58
B-n52-k7-C26-V4 52 26 3,12 461,436 888 458,949 427 458,949 91
A-n53-k7-C27-V4 53 27 3,38 643,524 801 637,534 442 637,534 110
A-n54-k7-C27-V4 54 27 3,43 719,822 1126 722,494 287 722,494 91

156

A-n55-k9-C28-V5 55 28 4,18 733,084 1013 733,496 405 733,496 145
P-n55-k10-C28-V5 55 28 4,72 424,796 1639 424,598 570 424,598 111
P-n55-k15-C28-V8 55 28 7,76 563,252 618 560,924 204 560,924 91
P-n55-k7-C28-V4 55 28 3,19 361,871 3080 374,094 615 374,094 78
P-n55-k8-C28-V4 55 28 3,39 362,202 2885 362,205 1269 362,205 108
B-n56-k7-C28-V4 56 28 3,19 474,611 1100 478,102 497 478,102 313
B-n57-k7-C29-V4 57 29 3,68 766,237 1377 779,483 803 779,483 446
B-n57-k9-C29-V5 57 29 4,19 1018,781 1569 967,332 481 967,332 395
A-n60-k9-C30-V5 60 30 4,11 897,263 1617 816,393 597 816,393 257
P-n60-k10-C30-V5 60 30 4,83 459,237 2078 455,262 749 455,262 225
P-n60-k15-C30-V8 60 30 7,23 580,988 1136 572,084 748 572,084 316
A-n61-k9-C31-V5 61 31 4,51 644,702 2465 662,945 746 662,945 181
A-n62-k8-C31-V4 62 31 3,66 794,707 1680 755,773 960 755,773 261
A-n63-k10-C32-V5 63 32 4,69 851,511 2033 830,794 904 830,794 438
A-n63-k9-C32-V5 63 32 4,52 980,597 3037 946,39 578 946,39 229
B-n63-k10-C32-V5 63 32 4,41 881,188 1933 852,866 642 852,866 475
A-n64-k9-C32-V5 64 32 4,11 831,768 3232 837,309 563 837,309 352
B-n64-k9-C32-V5 64 32 4,17 514,915 2574 514,915 984 514,915 234
A-n65-k9-C33-V5 65 33 4,14 726,861 2908 712,743 1050 712,743 509
P-n65-k10-C33-V5 65 33 4,78 498,862 4287 501,391 1668 501,391 336
B-n66-k9-C33-V5 66 33 4,36 830,581 2983 818,424 816 818,424 590
B-n67-k10-C34-V5 67 34 4,59 692,05 3376 674,948 946 674,948 647
B-n68-k9-C34-V5 68 34 4,17 721,533 3519 738,479 971 738,479 507
A-n69-k9-C35-V5 69 35 4,3 695,626 3547 711,188 1012 711,188 379
P-n70-k10-C35-V5 70 35 4,79 512,773 6176 504,961 2145 504,961 336
P-n76-k4-C38-V2 76 38 1,95 844,06 >10000 394,195 >10000 394,195 366
P-n76-k5-C38-V3 76 38 2,44 701,248 >10000 410,097 >10000 409,933 439
B-n78-k10-C39-V5 78 39 4,89 843,099 7736 839,6 3335 839,6 1375
A-n80-k10-C40-V5 80 40 4,43 1065,212 8307 1049,388 2035 1049,388 1745
M-n101-k10-C51-V5 101 51 4,73 1430,448 >10000 550,072 >10000 545,681 4000
P-n101-k4-C51-V2 101 51 1,83 1646,051 >10000 468,871 >10000 461,77 780
M-n121-k7-C61-V4 121 61 3,54 2881,864 >10000 765,489 >10000 760,821 >10000
M-n151-k12-C76-V6 151 76 5,69 2398,81 >10000 731,037 >10000 714,182 >10000
M-n200-k16-C100-V8 200 100 7,92 3314,08 >10000 905,613 >10000 906,447 >10000
G-n262-k25-C131-V12 262 131 11,79 13691,641 >10000 3666,883 >10000 3667,864 >10000

Table A.6: Results for the different configurations of the VND for instances
with θ = 3.

FI + VND GTSP + VND GTSP + VND
+ ML-ES

Instance n m E[nr] obj t[s] obj t[s] obj t[s]

P-n16-k8-C6-V4 16 6 3 162,17 <1 162,17 <1 162,17 <1
P-n19-k2-C7-V1 19 7 0,71 112,105 5 112,105 3 112,105 <1
P-n20-k2-C7-V1 20 7 0,68 117,306 4 117,306 <1 117,306 <1
P-n21-k2-C7-V1 21 7 0,64 117,071 3 117,071 <1 117,071 <1
P-n22-k2-C8-V1 22 8 0,73 111,194 10 111,194 5 111,194 <1
P-n22-k8-C8-V4 22 8 2,82 246,082 2681 246,082 1927 246,082 97
P-n23-k8-C8-V3 23 8 2,55 194,018 2 183,586 1 183,586 1
B-n31-k5-C11-V2 31 11 1,38 355,729 25 355,729 16 355,729 5
A-n32-k5-C11-V2 32 11 1,39 386,909 20 388,597 10 388,597 2
A-n33-k5-C11-V2 33 11 1,52 318,028 17 318,028 15 318,028 3
A-n33-k6-C11-V2 33 11 1,91 367,629 23 367,629 16 367,629 4
A-n34-k5-C12-V2 34 12 1,66 419,124 29 419,124 25 419,124 4
B-n34-k5-C12-V2 34 12 1,34 363,089 33 363,089 13 363,089 5
B-n35-k5-C12-V2 35 12 1,54 501,47 32 501,47 14 501,47 6
A-n36-k5-C12-V2 36 12 1,34 404,579 30 399,905 23 399,905 7
A-n37-k5-C13-V2 37 13 1,43 359,133 45 359,133 20 359,133 3
A-n37-k6-C13-V2 37 13 1,95 467,266 31 430,987 32 430,987 7
A-n38-k5-C13-V2 38 13 1,71 371,795 57 371,795 20 371,795 2

157

B-n38-k6-C13-V2 38 13 1,93 386,195 55 389,241 27 389,241 7
A-n39-k5-C13-V2 39 13 1,48 390,4 47 371,41 20 371,41 8
A-n39-k6-C13-V2 39 13 1,83 417,844 43 417,844 40 417,844 8
B-n39-k5-C13-V2 39 13 1,45 281,482 50 281,482 <1 281,482 <1
P-n40-k5-C14-V2 40 14 1,51 214,775 175 214,753 49 214,753 4
B-n41-k6-C14-V2 41 14 1,82 404,261 93 404,261 34 404,261 11
B-n43-k6-C15-V2 43 15 1,81 394,529 74 347,65 33 347,65 6
A-n44-k6-C15-V2 44 15 2 505,129 105 508,981 51 508,981 15
B-n44-k7-C15-V3 44 15 2,24 402,02 119 402,02 57 402,02 25
A-n45-k6-C15-V3 45 15 2,09 478,219 105 478,219 56 478,219 12
A-n45-k7-C15-V3 45 15 2,06 516,508 94 488,017 99 488,017 34
B-n45-k5-C15-V2 45 15 1,51 419,613 116 419,613 59 419,613 8
B-n45-k6-C15-V2 45 15 1,96 358,989 72 358,989 83 358,989 31
P-n45-k5-C15-V2 45 15 1,61 239,568 172 239,357 94 239,357 6
A-n46-k7-C16-V3 46 16 2,08 465,624 209 471,98 82 471,98 16
A-n48-k7-C16-V3 48 16 2,13 474,21 150 462,548 95 462,548 35
B-n50-k7-C17-V3 50 17 2,05 398,38 160 398,38 103 398,38 33
B-n50-k8-C17-V3 50 17 2,72 600,656 169 605,714 123 605,714 23
P-n50-k10-C17-V4 50 17 3,32 302,371 181 302,371 106 302,371 23
P-n50-k7-C17-V3 50 17 2,21 261,343 402 261,343 214 261,343 19
P-n50-k8-C17-V3 50 17 2,77 273,27 276 273,27 134 273,27 17
B-n51-k7-C17-V3 51 17 2,44 513,021 184 513,021 64 513,021 11
P-n51-k10-C17-V4 51 17 3,31 313,594 162 313,41 94 313,41 27
B-n52-k7-C18-V3 52 18 2,18 360,496 269 360,496 143 360,496 21
A-n53-k7-C18-V3 53 18 2,09 450,973 268 443,875 97 443,875 16
A-n54-k7-C18-V3 54 18 2,19 507,805 201 490,544 134 490,544 41
A-n55-k9-C19-V3 55 19 2,75 475,919 292 474,048 114 474,048 15
P-n55-k10-C19-V4 55 19 3,21 311,949 300 316,648 254 316,648 54
P-n55-k15-C19-V6 55 19 5,27 402,374 290 396,226 204 396,226 66
P-n55-k7-C19-V3 55 19 2,17 275,083 781 274,223 496 274,223 31
P-n55-k8-C19-V3 55 19 2,31 276,328 796 276,328 393 276,328 27
B-n56-k7-C19-V3 56 19 2,2 357,843 264 358,882 109 358,882 25
B-n57-k7-C19-V3 57 19 2,39 569,003 317 567,698 287 567,698 128
B-n57-k9-C19-V3 57 19 2,55 691,991 377 693,717 285 693,717 124
A-n60-k9-C20-V3 60 20 2,8 614,515 517 620,897 361 620,897 117
P-n60-k10-C20-V4 60 20 3,19 340,535 627 328,893 324 328,893 36
P-n60-k15-C20-V5 60 20 4,78 372,634 428 372,634 156 372,634 57
A-n61-k9-C21-V4 61 21 3,09 495,72 528 482,511 219 482,511 61
A-n62-k8-C21-V3 62 21 2,59 629,651 382 617,56 260 617,56 93
A-n63-k10-C21-V4 63 21 3,14 627,932 398 611,536 283 611,536 80
A-n63-k9-C21-V3 63 21 2,96 678,592 398 666,458 277 666,458 109
B-n63-k10-C21-V3 63 21 2,9 604,49 460 604,701 181 604,701 50
A-n64-k9-C22-V3 64 22 2,55 551,108 786 564,462 417 564,462 145
B-n64-k9-C22-V4 64 22 3,17 457,245 640 457,245 337 457,245 85
A-n65-k9-C22-V3 65 22 2,89 550,806 683 525,03 259 525,03 90
P-n65-k10-C22-V4 65 22 3,23 378,526 1326 378,526 1082 378,526 123
B-n66-k9-C22-V3 66 22 2,8 649,179 568 627,357 279 627,357 121
B-n67-k10-C23-V4 67 23 3,14 561,816 934 561,712 385 561,712 109
B-n68-k9-C23-V3 68 23 2,87 546,556 715 539,815 441 539,815 131
A-n69-k9-C23-V3 69 23 2,94 523,774 1130 523,774 389 523,774 88
P-n70-k10-C24-V4 70 24 3,36 390,951 1649 386,148 1088 386,148 120
P-n76-k4-C26-V2 76 26 1,33 461,753 >10000 310,397 4312 310,397 58
P-n76-k5-C26-V2 76 26 1,67 373,937 >10000 310,397 3748 310,397 56
B-n78-k10-C26-V4 78 26 3,31 620,112 1941 620,112 774 620,112 342
A-n80-k10-C27-V4 80 27 3,04 760,272 1878 757,547 943 757,547 381
M-n101-k10-C34-V4 101 34 3,2 720,202 >10000 465,866 9949 465,866 958
P-n101-k4-C34-V2 101 34 1,25 992,679 >10000 371,926 9979 371,926 397
M-n121-k7-C41-V3 121 41 2,44 1480,015 >10000 559,549 >10000 550,556 5051
M-n151-k12-C51-V4 151 51 3,71 1542,827 >10000 526,302 >10000 491,768 9090
M-n200-k16-C67-V6 200 67 5,29 2315,641 >10000 661,227 >10000 657,803 8382
G-n262-k25-C88-V9 262 88 8,13 8582,402 >10000 2756,278 >10000 2757,088 >10000

158

Curriculum Vitae

Personal Details

Name: Benjamin Biesinger

Address: Stättermayergasse 8/21-22, 1150 Vienna, Austria

E-Mail: bbiesinger@gmail.com

Date of Birth: January 6th, 1987

Education

since 2012 PhD studies in Computer Science, Vienna University of Technology.

Dissertation on the topic of “Complete Solution Archives for Evolutionary Combi-

natorial Optimization”

2009–2012 Master studies in Computational Intelligence, Vienna University of

Technology.

Master thesis on the topic of “Enhancing an Evolutionary Algorithm with a Solu-

tion Archive to Reconstruct Cross Cut Shredded Text Documents”

2006–2009 Bachelor studies in Computer Engineering, University of Applied Sciences

Wr. Neustadt.

1997–2005 Secondary School, Bundesgymnasium Babenbergerring Wr. Neustadt.

Working Experience

since 2012 Research assistant, Algorithms and Complexity Group, Institute of Computer

Graphics and Algorithms, Vienna University of Technology.

2013–2015 University assistant, Algorithms and Complexity Group, Institute of Computer

Graphics and Algorithms, Vienna University of Technology.

2010–2012 Student assistent, Information Technology Services, Vienna University of

Technology.

Feb–Apr 2009 Internship, Fotec GmbH, software engineer.

Aug–Sep 2008 Internship, Fotec GmbH, software engineer.

Jul 2008 Internship, SOREX Wireless Solutions GmbH, software engineer.

Jul 2005 / 2006 Internship, Bizerba Waagen, technical service department.

Publications

[1] Benjamin Biesinger, Bin Hu, and Günther R. Raidl. A genetic algorithm in combination with

a solution archive for solving the generalized vehicle routing problem with stochastic demands,

pages 1–29. 2016. submitted to a journal.

[2] Benjamin Biesinger, Bin Hu, and Günther R. Raidl. A memetic algorithm for competitive fa-

cility location problems. In Business and Consumer Analytics: New Directions (Vol1) (Natalie

Jane de Vries and Pablo Moscato, eds.), pages 1–23. 2016. To appear.

Publications (continued)

[3] Benjamin Biesinger, Bin Hu, and Günther R. Raidl. Models and algorithms for competitive fa-

cility location problems with different customer behavior. Annals of Mathematics and Artificial

Intelligence, 76(1):93–119, 2015.

[4] Benjamin Biesinger, Bin Hu, and Günther R. Raidl. An integer L-shaped method for the

generalized vehicle routing problem with stochastic demands. In 7th International Network

Optimization Conference (INOC), 2015. To appear.

[5] Matthias Lanzinger, Benjamin Biesinger, Bin Hu, Günther R. Raidl. A Genetic Algorithm

for the Capacity and Distance Constrained Plant Location Problem. Proceedings of the 11th

Metaheuristics International Conference, pages 89/1–89/9, 2015.

[6] Benjamin Biesinger, Bin Hu, Günther R. Raidl. A Variable Neighborhood Search for the Ge-

neralized Vehicle Routing Problem with Stochastic Demands. Evolutionary Computation in

Combinatorial Optimization (EvoCOP’15) (Gabriela Ochoa, Francisco Chicano, eds.), volume

9026 of LNCS, pages 48-60, 2015, Springer International Publishing.

[7] Christoph Weiler, Benjamin Biesinger, Bin Hu, Günther R. Raidl. Heuristic Approaches for the

Probabilistic Traveling Salesman Problem. In Computer Aided Systems Theory – EUROCAST

2015 (Roberto Moreno-Dı́az, Franz Pichler, Alexis Quesada-Arencibia, eds.), volume 9520 of

LNCS, pages 342–349, 2015, Springer.

[8] Christoph Weiler, Benjamin Biesinger, Bin Hu, and Günther R. Raidl. Heuristic Approaches for

the Probabilistic Traveling Salesman Problem. In Extended Abstracts of the 15th International

Conference on Computer Aided Systems Theory, pages 99–100, 2015.

[9] Benjamin Biesinger, Bin Hu, Günther R. Raidl. An Evolutionary Algorithm for the Leader-

Follower Facility Location Problem with Proportional Customer Behavior. Conference Procee-

dings of Learning and Intelligent Optimization Conference (LION 8), volume 8426 of LNCS,

pages 203-217, 2014, Springer.

[10] Benjamin Biesinger, Bin Hu, Günther R. Raidl. A Hybrid Genetic Algorithm with Solution

Archive for the Discrete (r|p)-Centroid Problem. Journal of Heuristics, 21(3):391–431, 2015.

[11] Benjamin Biesinger, Christian Schauer, Bin Hu, Günther R. Raidl. Enhancing a Genetic Al-

gorithm with a Solution Archive to Reconstruct Cross Cut Shredded Text Documents. In

Computer Aided Systems Theory – EUROCAST 2013 (Roberto Moreno-Dı́az, Franz Pichler,

Alexis Quesada-Arencibia, eds.), volume 8111 of LNCS, pages 380–387, 2013, Springer.

[12] Benjamin Biesinger, Christian Schauer, Bin Hu, and Günther R. Raidl. Reconstructing cross

cut shredded documents with a genetic algorithm with solution archive. In Extended Abstracts

of the 14th International Conference on Computer Aided Systems Theory, pages 226–228, 2013.

	Kurzfassung
	Abstract
	Contents
	Introduction
	Overview of the Thesis

	Methodology
	Combinatorial Optimization Problems
	Computational Complexity
	Exact Methods
	(Mixed) Integer Linear Programming
	(LP-based) Branch-and-Bound

	Heuristic and Metaheuristic Methods
	Construction Heuristics
	Local Search
	Metaheuristics
	Variable Neighborhood Descent
	Variable Neighborhood Search
	Tabu Search
	Genetic Algorithms

	Hybrid Metaheuristics
	Guidance for (Meta-)heuristics by Solving Problem Relaxations
	Exact Methods Integrated in Metaheuristics
	Metaheuristics Integrated in Exact Methods
	Exact Methods for Decoding Indirect or Incomplete Solution Representations
	Hybridization Based on Problem Instance Reduction
	Parallel, Non-independent Construction of Solutions Within Metaheuristics
	Other Possibilities for Hybridization

	Complete Trie-Based Solution Archives
	Duplicate Detection Strategies
	Trie Structure
	Insertion into the Solution Archive
	Conversion within the Solution Archive
	Incorporation into a Metaheuristic
	Extensions

	Competitive Facility Location Problems
	Introduction
	Problem Definition
	Binary Essential
	Proportional Essential
	Partially Binary Essential
	Unessential Demand

	Related Work
	Competitive Facility Location Problems – Variants
	Competitive Facility Location Problems – Solution approaches

	Mathematical Models
	Binary Essential
	Proportional Essential
	Partially Binary Essential
	Unessential Cases
	Binary Unessential
	Proportional Unessential
	Partially Binary Unessential

	Solution Representation and Evaluation
	Exact evaluation
	Linear Programming (LP) evaluation
	Greedy evaluation

	Evolutionary Algorithm
	Variation Operators
	Local Search
	Solution Archive
	Insertion
	Conversion
	Randomization of the Trie

	Local and Tabu Search with Solution Archive
	Complete Neighborhood
	Reduced Neighborhood
	Conversion Neighborhood
	Tabu Search

	Multi-level Solution Evaluation Scheme
	Basic Multi-Level Solution Evaluation Scheme
	Multi-Level Solution Evaluation Scheme and Local Search

	Computational Results
	Binary Essential
	Proportional Essential
	Partially Binary Essential
	Unessential Demands
	Case Study of Vienna, Austria

	Conclusions

	Generalized Vehicle Routing Problem with Stochastic Demands
	Introduction
	Problem Definition
	Related Work
	An Integer L-shaped Method for the GVRPSD
	Mathematical Model
	Dynamic Programming for Computing the Restocking Costs
	Specific and General Optimality Cuts
	General Optimality Cuts

	A Variable Neighborhood Search for the GVRPSD
	Multi-Level Evaluation Scheme
	Initial Solution
	Neighborhood Structures

	A Genetic Algorithm in Combination with a Solution Archive for Solving the GVRPSD
	Initial Population
	Genetic Operators
	Variable Neighborhood Descent
	Solution Archive

	Computational Results
	Integer L-shaped Method
	Variable Neighborhood Search
	Genetic Algorithm with Solution Archive

	Conclusions

	Conclusions and Future Work
	Future Work

	Bibliography
	Full Result Tables
	Competitive Facility Location Problem
	Solution Evaluation
	Genetic Algorithm
	Neighborhoods of the Local Search
	Multi-Level Evaluation Scheme

	Generalized Vehicle Routing Problem with Stochastic Demands

