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Abstract

Nowadays, techniques for 3D reconstruction that are used in a variety of computer
vision applications need to account for the 3D structure of a real-world scene. This task
is often performed using a stereo vision system which consists of two digital cameras
observing the same scene from two different viewing angles. A major challenge in
stereo vision is the stereo matching problem, which involves finding corresponding
pixels that are projections of the same scene point in the image pair. While stereo
matching of images delivered by conventional cameras has been the subject of intense
research for many years, this thesis focuses on the analysis of stereo data delivered by
a different type of digital camera - a Silicon Retina sensor - whose stereo processing
capabilities have been addressed by only few publications thus far.

The special analog pixel design of a silicon retina camera enables a high dynamic
range of light and very fast pixel updates. Unlike a conventional camera, the silicon
retina camera’s sensor pre-processes the information on-chip, and only transmits pixels
that capture a change of light. This significantly reduces the amount of data that
must be transferred and processed. However, as the process yields visual information
different to a normal digital image, the data poses new challenges for solving the
correspondence problem occurring in a silicon retina stereo set-up. In this thesis, we
first analyze the data from a silicon retina stereo sensor and study its behavior in order
to assess the impact of various algorithms on this data. Then, based on these results,
we design and implement new kinds of stereo matching algorithms to overcome the
imposed challenges of silicon retina data. Besides the core stereo matching algorithms,
we develop and evaluate different approaches to improve the accuracy of the stereo
matching algorithms. Additionally, we design a method to generate ground truth data
to better evaluate the calculated depth data; this enables meaningful discussions and
interpretation of the generated stereo matching output.
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Kurzfassung

Heutzutage werden in verschiedensten Anwendungen der Bildverarbeitung Techniken
zur 3D-Rekonstruktion herangezogen, um die Tiefeninformationen der realen Umge-
bung abzubilden. Zu diesem Zweck werden häufig Stereo Vision Systeme, beste-
hend aus zwei Kameras, welche die Szene aus zwei unterschiedlichen Blickwinkeln
aufnehmen, verwendet. Eine wesentliche Herausforderung in der Stereobildverar-
beitung ist die Lösung des Korrespondenzproblems, welches darauf abzielt, korre-
spondierende Pixel - welche Projektionen des gleichen Punkts der 3D-Szene darstellen
- im Bildpaar zu finden. Im Gegensatz zur Stereoverarbeitung von Bildern herkömm-
licher Kameras, welche bereits seit vielen Jahren Gegenstand intensiver Forschung ist,
konzentriert sich die vorliegende Arbeit auf die in der bisherigen Literatur kaum behan-
delte Analyse von Stereodaten, welche mit einer Silicon Retina Kamera aufgenommen
wurden.

Das spezielle analoge Pixeldesign einer Silicon Retina Kamera ermöglicht einen ho-
hen Dynamikbereich sowie schnelle Pixel Updates. Im Gegensatz zu konventionellen
Kameras wird beim Silicon Retina Sensor eine Vorverarbeitung der Daten auf dem
Chip durchgeführt, und Pixelinformationen werden nur dann weitergeleitet, wenn
eine Helligkeitsänderung stattgefunden hat. Diese Funktionsweise reduziert die Menge
an Daten, die transferiert und weiter verarbeitet werden muss. Aufgrund der unter-
schiedlichen Bildinformation im Vergleich zu normalen digitalen Kameras stellt ein
Silicon Retina Stereosystem neue Herausforderungen an die Lösung des Korresponden-
zproblems. In der vorliegenden Arbeit untersuchen wir zunächst die Daten eines Silicon
Retina Stereosystems, um dann neue Stereo Matching Ansätze zu entwickeln, welche
auf die Besonderheiten der Silicon Retina Daten zugeschnitten sind. Zusätzlich zu den
eigentlichen Matching Algorithmen entwickeln und vergleichen wir verschiedene Ver-
fahren zur Verbesserung der Tiefenergebisse. Des Weiteren wurde zur Evaluierung
der berechneten 3D-Daten eine Methode zur Generierung von Referenzdaten (Ground
Truth) entwickelt, die quantitative Aussagen über die berechneten Resultate ermöglicht,
welche die Basis für eine ausführliche Diskussion und Interpretation der erzielten Stere-
oergebnisse bilden.
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CHAPTER 1
Introduction

1.1 Motivation

Automation is present in our daily lives. The cars we drive are assembled almost
completely autonomously. Driver assistance systems improve safety in traffic. Our
food and other articles of daily use come from large factories where production is
carried out by robotic systems. For safe and accurate operation, these systems need
to have knowledge about their environments. In many cases, a variety of different
sensors are involved that analyze the surroundings of autonomously operating systems.
Typically, such sensors also retrieve depth information for correct perception of the three
dimensional world. The sensors for depth measurement can be grouped into active
sensors, such as laser scanners (light detection and ranging (LIDAR)) or time-of-flight
(TOF) cameras, and passive sensors, like stereo vision which consists of two cameras
in a stereo configuration. Figure 1.1(a) shows as example a TOF camera from MESA
Imaging1 and Figure 1.1(b) depicts a LIDAR from SICK2. State-of-the-art laser scanners
emit laser pulses and measure the round-trip time between the emission and the received
pulse which bounced back from an object within the beam’s directional path. Other
laser scanners measure the phase difference between emitted and received laser beams.
Time-of-flight sensors actively illuminate the scene with modulated infrared light and
measure the time of travel or phase difference between emission of the light and the
sensor’s detection of the returned light beams. Both active sensors (TOF and laser
scanner) deliver accurate depth information, but depend on the active emission of
signals in order to measure depth.

Therefore, passive sensors such as stereo vision sensors are considered an alterna-
tive. In an ideal stereo vision setup, two cameras are mounted coplanar with parallel
optical axes and the observed scene points are projected onto the cameras’ image planes.

1http://www.mesa-imaging.ch
2http://www.sick.com)

1

http://www.mesa-imaging.ch
http://www.sick.com)


(a) (b)

Figure 1.1: (a) Time-of-flight camera (model SR4500) from MESA Imaging AG and (b)
3D laser scanner (model LD-MRS400001) from SICK AG.

One goal in stereo vision is to find corresponding pixels within the image pair and to
calculate the horizontal displacement, also known as the disparity, of the pixels using
stereo matching algorithms. The distance from a scene point to the camera is inversely
proportional to the corresponding pixel’s disparity, which allows the calculation of the
3D point in camera coordinates, if the geometry of the calibrated cameras is known.
For each pixel of the camera, a dense stereo matching algorithm tries to find the corre-
sponding pixel in the other camera’s image, which ultimately leads to a 3D point cloud
of the observed scene. Figure 1.2 shows a typical workflow of a stereo vision system for
retrieving 3D information. Even though many stereo vision systems are in use, the com-
putational effort of calculating the 3D depth maps is still a challenging task depending
on the resolution and frame rate chosen for the stereo vision system. Computing the
stereo correspondences for each image pixel and frame pair of a stereo video sequence
may lead to a considerable amount of redundant work, since in many applications, only
information about the changing areas of a scene is required. This means the processing
of all correspondences for each image pair is a loss of valuable resources. In such cases,
it would be helpful to have a camera which only captures the changing parts of the
scene, which are then subject to further analysis and 3D reconstruction.

Such an alternative camera sensor is the Silicon Retina sensor. A silicon retina sensor
efficiently transmits the data from the observed scene in the form of sparse events
according to the model of nature [67]. This sensor differs in its construction from the
conventional complementary metal oxide semiconductor (CMOS) or charge coupled
device (CCD) sensors with respect to the chip architecture and electronic circuits around
the pixels. The silicon retina technology also brings about new challenges regarding
the processing of sparse data within stereo matching algorithms. Within this thesis
we analyze the aforementioned sparse data delivered by the silicon retina sensor, and
explore the ways in which stereo matching can be applied to sparse input data. In this
context, we also adapt the classic stereo vision workflow to be used for silicon retina data
with the goal to benefit from the sensor’s advantages and to overcome its drawbacks.

2



1.2 Contributions

For stereo vision using conventional (conventional refers to the usage of
monochrome/color cameras) cameras, many different stereo matching approaches have
been developed. Most of these algorithms aim to calculate an accurate and dense dis-
parity map of the captured image pair. Important peculiarities of the silicon retina
sensor include a sparse data representation as well as a reduction of the information
stored within one pixel. This exemplifies the challenge of establishing stereo matching
correspondences using silicon retina cameras. We summarize the contributions of this
thesis as follows.

Since classical stereo matching algorithms use intensity information as matching
criterion and silicon retina sensors only deliver whether or not a pixel (event) has
changed, pre-processing is necessary to adapt, for example, a standard SAD (sum of
absolute differences) algorithm for silicon retina data. This pre-processing could be
the generation of a standard image by aggregating several events over time. Even if
this is an interesting strategy, we developed a novel event-based approach using the
time difference between the received pixels of the left and right camera as matching
criterion. Another algorithmic contributions of this work are two novel approaches for
silicon retina-based stereo matching. The first method uses a global optimization scheme
specifically designed to deal with sparse data in order to minimize the matching costs.
For this we use the Belief Propagation (BP) approach, which uses the disparity information

Left Right

1.5m

X

Y

Z

(a)

(b)

(c)

(d)

Figure 1.2: Overview of the workflow using a stereo vision camera system for 3D
reconstruction. (a) Stereo camera system with both cameras. (b) Captured grayscale
images from the left and right camera. (c) Calculated disparity image from the stereo
matching algorithm. (d) 3D representation of the captured scene.
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between neighbors to gain an overall matching result. The second approach is a filter
which consists of two stages and analyzes the disparities around a considered pixel in
order to improve its own disparity level.

For evaluation of the algorithms developed in this thesis, we first used planar objects
at known distances. This pragmatic approach is easy to implement but is not accurate
enough since not all pixels can be evaluated. This was the motivation for us to construct
and utilize, for the first time, ground truth data sets which represent the real-world
environment more closely, and are suitable for sparse silicon retina data. Using these
ground truth data sets for the evaluation of the different algorithms implemented allows
us to better interpret the algorithms’ performance and provide a comparison with other
algorithms.

Many classical stereo vision algorithms require calibrated cameras and a subse-
quently rectified image pair before the stereo matching is applied. Even though in
principle, using the silicon retina camera in a stereo setup follows the same optical laws,
no detailed calibration and rectification procedure for silicon retina data is available.
Therefore, a calibration method suitable for silicon retina cameras was designed within
this thesis, including a rectification procedure that was tailored to deal with sparse
data. The calibration-based data preparation and the generated ground truth data set
provided a valuable basis for our algorithmic development and evaluation.

1.3 Resulting Publications

The publications below have resulted from the work on this thesis. During my PhD
thesis, I collaborated with Florian Eibensteiner, from University of Applied Sciences
Hagenberg, whose PhD [24] topic dealt with the establishment of a stereo matching
work flow on a field programmable gate array (FPGA) using data from silicon retina
cameras. The calibration, rectification, and generation of ground truth data described
in Sections 5.1 and 6.1.3 of this thesis are the result of this collaboration, which also led
to several joint publications.

Journal

• Jürgen Kogler, Florian Eibensteiner, Martin Humenberger, Christoph Sulzbach-
ner, Margrit Gelautz and Josef Scharinger: Enhancement of sparse silicon retina-based
stereo matching using belief propagation and two-stage post-filtering. Journal of Elec-
tronic Imaging (SPIE), volume 23, issue 4, number 043011, pp 1-15, 2014.

Book Chapter

• Jürgen Kogler, Christoph Sulzbachner, Martin Humenberger, Florian Eiben-
steiner: Address-event based stereo vision with bio-inspired silicon retina imagers. Pub-
lished in the Book Advances in Theory and Applications of Stereo Vision, Editor: Asim
Bhatt and published from InTech, pp 165-188, 2011.
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Conferences

• Jürgen Kogler, Florian Eibensteiner, Martin Humenberger, Margrit Gelautz, Josef
Scharinger: Ground truth evaluation for event-based silicon retina stereo data. In the
Proceedings of the 9th IEEE Embedded Vision Workshop (held in conjuction with
IEEE CVPR), pp. 649-656, 2013.

• Jürgen Kogler, Martin Humenberger, Christoph Sulzbachner: Event-based stereo
matching approaches for frameless address event stereo data. In the Proceedings of the
7th International Symposium on Visual Computing (ISVC), pp. 674-685, 2011.

• Jürgen Kogler, Christoph Sulzbachner, Florian Eibensteiner, Martin Humen-
berger: Address event matching for a silicon retina based stereo vision system. In
the Proceedings of the 4th International Conference from Scientific Computing to
Computational Engineering (IC-SCCE), pp 17-24, 2010.

• Jürgen Kogler, Christoph Sulzbachner, Erwin Schoitsch, Wilfried Kubinger, Mar-
tin Litzenberger: ADOSE - New bio-inspired in-vehicle sensor technology for active
safety. In the Proceedings of the 14th International Forum on Advanced Microsys-
tems for Automotive Applications (AMAA), pp 155-164, 2010.

• Jürgen Kogler, Christoph Sulzbachner, Wilfried Kubinger: Bio-inspired stereo vi-
sion system with silicon retina imagers. In the Proceedings of the 7th International
Conference on Computer Vision Systems (ICVS), pp 174-183, 2009.

Magazine Article

• Jürgen Kogler, Christoph Sulzbachner, Erwin Schoitsch, Wilfried Kubinger:
ADOSE: New in-vehicle sensor technology for vehicle safety in road traffic. Published
in the European Research Consortium for Informatics and Mathematics (ERCIM)
Magazine, number 78, pp. 47-48, 2009.

1.4 Structure of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2 the concept of a camera
and the derivation of the principle from the human eye is explained, which leads to the
description of the silicon retina technology. Chapter 3 explains fundamentals of stereo
vision relevant for this work and the challenges which must be addressed regarding
stereo matching. Chapter 4 presents the related work regarding the topic of stereo
matching using conventional cameras as well as silicon retina cameras. In Chapter 5, the
stereo matching algorithms developed in this thesis are explained in detail, including
relevant pre-processing steps, if needed, such as the conversion of events to images.
Chapter 6 presents the evaluation method, followed by the results and their discussion.
Chapter 7 finally concludes the work and provides an outlook on future work.
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CHAPTER 2
Fundamentals of Vision Sensors

Before starting our discussion of stereo camera systems, we describe relevant funda-
mentals of the human visual system and historical camera development. After that, we
review in Section 2.2 the functionality of modern digital cameras, in general, before we
present in Section 2.3 the description of the silicon retina sensor technology. First, we
talk about the historical development of the silicon retina technology, and second, we
describe more specifically the differences between them and conventional cameras.

2.1 Human Eye and Camera History

Cameras, we use on a daily basis, seek to imitate nature where eyes serve as important
organs for humans and animals to perceive their environment. The eye is considered
the most important sensing organ of human beings, because∼80% of all sensory input is
perceived by the eyes. The eyes work reliably under different environmental conditions
and may adjust to a large dynamic range of 100dB [72].The size of the area in the brain
which is contributing to visual processing indicates the importance of the visual sense.
Approximately 60% of the cerebral cortex is involved in the task of visual processing,
and in total, more than 30 different areas of the brain are active during the processing
of visual input [31].

A closer look at the human eye is given in Figure 2.1. It illustrates the eye more
specifically, including the path of the light through the cornea. In order to cope with
changing light conditions, the pupil can control the amount of light passing the lens.
The retina consists of different receptors converting the incoming light to signals which
can be interpreted by the human brain. A human is equipped with ∼5 million cones
which are responsible for recognizing the three basic colors: red, green, and blue, and
∼100 million rods for the detection of monochromatic light [5]. Not all of these more
than 100 million signals are transferred to the brain directly. That means the eye applies
a pre-processing to the receptor input and reduces the number of signals transferred

6



Figure 2.1: Left: A cross section of the eye with all of its components is shown. Right:
A cross section of the retina is shown with the light path through the retina to the pho-
toreceptors (rods and cones). Image source: Next Generation Artificial Vision Systems [5].

to the brain to ∼1.5 million. This mechanism of natural vision processing has been
improved over thousands of years of evolutionary development and forms the basics
of cameras currently found on the market.

Before the camera was invented, the philosopher Aristotle (384–322 BC) discovered
some optical principles used in today’s cameras. Aristotle discovered that light passing
through a small hole and entering a dark room projects an up side down picture of the
scene outside the hole at the opposite end of the room [95]. Based on this discovery, the
idea of the camera obscura was created, also known as pinhole camera. Figure 2.2(a)1 shows
the principal idea of the camera obscura. The light reflected from an object (candle)
passes a hole in the box and produces a turned copy of the object on the backside
of the box. Later, Leonardo Da Vinci (1452–1519) made investigations regarding the
optical path of the camera obscura and discovered similarities with the human eye.
This research brought up the idea of equipping the camera obscura with optical lenses
instead of having a simple hole. In 1686, Johann Zahn (1641–1707) developed the first
portable camera obscura, which is shown in Figure 2.2(b)2. This camera obscura was
equipped with a mirror, located inside the box, that was turned at a 45◦ angle to the
lens, which projected the captured image to a focusing screen at the top of the camera

1Wikimedia commons public domain: https://commons.wikimedia.org/wiki/Category:Camera_
obscura#/media/File:Camera_obscura_1.jpg - Original: Fizyka z 1910

2Wikimedia commons public domain: https://commons.wikimedia.org/wiki/Category:Camera_
obscura#/media/File:Camera_Obscura_box18thCentury.jpg - Original : By unknown illustrator (19th
Century Dictionary Illustration)
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(a) (b)

Figure 2.2: (a) Shows the principle behind the pinhole camera. (b) Usage of the camera
obscura to capture the scene by drawing the projected image on paper.

where it could be drawn on paper. Since this time, the camera obscura was used by
painters and photographers to capture the real world and record the observed scene.
This was a starting point for today’s camera which are digital and are used in different
fields to capture the real world in images.

2.2 Conventional Digital Cameras

The digital cameras which are currently used on a daily basis contain either monochrome
sensors which only capture intensity images, or sensors with the ability to capture
colors. Additionally, the cameras can be differentiated based on their internal hardware
architecture. The differences are described in more detail in the following subsections.

2.2.1 Intensity Capturing Method

Within intensity cameras, the light is not divided into different wavelengths (red, green
and blue), as it is in cameras with color capturing abilities. Cameras which only capture
intensity images are very often used in the industry, where in order for the processing
of the image to occur, the color information is not needed, but rather, higher sensitivity
of the sensor is necessary. The sensor has a higher sensitivity because more light
contributes to each single pixel as result of the missing color separation.

2.2.2 Color Capturing Methods

For capturing color images, three different approaches can often be found in modern
cameras.

The first method works with three sensors, where one sensor for each of the colors
red, green and blue exists within the camera. Figure 2.3 shows the principle of the
three chip sensors. Here, the light goes through a prism and is split into the spectral
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Figure 2.3: Color capturing principle with a three chip camera sensor, where a prism
splits the light into its respective wavelengths.

colors red, green and blue. The camera is equipped with three sensor chips where
each color is captured by a single chip and converted into digital values. The color
information from the three chips is then combined again into the full color image. Since
the mechanical placement of all components has to be very precise, this technology is
normally expensive.

The second method to capture color images relies on a principle designed by
Foveon1 [48]. This approach from Foveon takes into account the fact that the pene-
tration depth of light in silicon is different depending on the wavelength of the light.
Figure 2.4 shows the schematic which demonstrates how the color is separated. The

Figure 2.4: Color capturing principle which takes into account the fact that light with
different wavelength (energy) is able to penetrate the silicon in different depths.

camera sensor chip has three layers, because the light shall be separated in the three
colors red, green, and blue. Blue light has the shortest wavelength therefore has a

1Foveon, Inc. created and produced the Foveon X3 Sensor
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high energy and penetrates the silicon in the deepest layer, followed by the color green
and red. After the conversion of the red, green and blue light into digital values, the
information can be combined to get the full color image.

The third method is based on filtering the light for each pixel using the Bayer color
filter pattern [2] and one sensor chip. Figure 2.5 shows a Bayer pattern consisting of red,
green and blue pixels. The spectral range of the color green lies in-between red and blue

Figure 2.5: The Bayer pattern which filters the light based on the color filter each pixel
has. Interpolation between the pixels can reconstruct the full color image.

and is the wavelength where the eye of humans has its highest sensitivity [72]. Therefore,
the Bayer pattern is equipped with more pixels sensitive to green light, rather than red
or blue. The missing color information of a pixel position can be estimated by evaluating
the neighbor pixel values using different demosaicking (interpolation) techniques [71].
This color imaging method is simple in contrast to the methods mentioned above. An
additional advantage is that a camera with Bayer pattern can have similar data rates to
intensity cameras.

2.2.3 CCD Cameras

Digital cameras can often be assigned to two different groups, according to the image
sensor used. The first type is called Charged Coupled Device (CCD) [55, 56]. In the CCD
chip, the light is measured by a photo sensor which carries out the photon-to-charge
conversion. A capacitor accumulates the charge, which is proportional to the quantity
of light. Figure 2.6 shows the schematic of a Full-Frame CCD architecture with the
main components. While the shutter is closed, the light is prevented from reaching
the sensor. During that time, the pixel information (charge) is read out by shifting
it vertically through the chip into a register where the charge is then converted into
a voltage level. This analog signal is transmitted to the camera electronics, where
it is converted into a digital signal that represents the digital image. This read out
procedure makes the sensor slow and is responsible for motion blur if fast motion is
captured. Another side effect caused by the architecture of the CCD sensor is blooming,
where saturated pixels leak charges to neighboring pixels and generate spots with
saturated pixels. The smearing effect is also a disadvantage of the CCD sensor, because
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Figure 2.6: The schematic of a Full-Frame CCD-based camera sensor. The sensor
electronics located in the camera electronics is steering the image capturing process. On
the right, the CCD image sensor is depicted such that for each pixel, photon-to-charge
conversion takes place. After the shutter is closed, the charge is vertically shifted into
a register. The charge is shifted through the register to an output and converted to
an analog signal (voltage). Afterwards, the analog signal is transmitted to the camera
electronics where it is converted into a digital image.

it causes bright vertical lines. These smearing lines are generated by the transportation
of saturated pixel charges collecting additional charges during the vertical transport.
The main advantage of the CCD sensor in comparison to the CMOS sensor is the higher
sensitivity and the capability to capture good images in low light conditions.

2.2.4 CMOS Cameras

The second type of image sensor is based on the Complementary Metal Oxide Semiconduc-
tor (CMOS) [55,56] technology. In the CMOS chip, the light is measured and converted
into a charge by a photo sensor, which amplifies the measured charge with a transis-
tor circuit in order to quantify the amount of light. After the shutter closes, the pixel
charge can be read directly, which is the main difference between the CMOS and the
CCD design. Figure 2.7 shows the schematic of a CMOS-based camera chip with the
main components. Each pixel is equipped with an amplifier and the electronic circuit
necessary to convert the charge directly into an analog signal. All pixels can be read
parallel and then transferred to the analog-to-digital converter. The main advantage of
CMOS chip architecture is the fast direct access to the pixels which enables the read out
of only the certain regions of interest on the chip-level. The disadvantages are that it
allows variations in pixel behavior because of fabrication tolerances, and its need for
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Figure 2.7: The schematic of a CMOS-based digital camera. The sensor electronic is
located in the image sensor, where each pixel is amplified and read directly after the
shutter closes. The charges are converted into analog signals, which are then transferred
through the output logic to the analog-to-digital converter, where they are converted
into digital images.

more light to retrieve better images.
Both the CMOS and CCD architectures have their benefits and drawbacks and can

be found in current camera models.

2.3 Silicon Retina Camera

Cameras based on silicon retina sensors use a similar design to CMOS sensors, but
have differences in architecture and functional behavior, which we shall explain in the
following subsections.

2.3.1 Silicon Retina Development

The research on silicon retina camera sensors started about 30 years ago. In 1988,
Mead and Mahowald [61] executed the first integration of a silicon retina sensor on
a single chip. This model differed in its function from conventional cameras in that
its goal was to imitate some basic steps of the human visual system. In a follow-
up work one year later, Mahowald and Mead [59] introduced the term Silicon Retina.
Since that time, different silicon retina architectures and related processing technologies
have been developed. These approaches range from simple light to variable impulse
rate transformation [21], time-to-first-spike encoding (TFS) [82, 83, 96], motion sensing
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and computation systems [9], sensing spatial contrast by doing more on-chip signal
processing [20, 74] to a model for a mammalian retina [101, 102].

In this thesis we use two different models of silicon retina sensors, which are different
in their spatial and temporal resolution, as well as the dynamic range in which they
operate. The first sensor has a resolution of 128×128 pixels and a temporal resolution
up to 1ms. This sensor provides a dynamic range of up to 120dB, and is described in
the work of Lichtsteiner et al. [53, 54]. The second sensor, which is used throughout
most parts of this thesis, represents the newer generation of silicon retina sensors, and is
called ATIS (Asynchronous, Time-based Image Sensor). This sensor provides a spatial
resolution of 304×240 pixels and a temporal resolution up to 10ns. Additionally, this
sensor has an increased dynamic range of 143dB, which enables its operation in different
applications with varying lighting conditions. A detailed description of the ATIS sensor
can be found in the work of Posch et al. [68–70]. We use both of these sensor types in
stereo configurations for the stereo matching and 3D reconstruction task. Figure 2.8
shows the stereo silicon retina sensors used in this work. The left images (a) show

(a) (b)

Figure 2.8: (a) Small silicon retina sensors with a resolution of 128×128 mounted on a
rigid bar to build up a stereo head. (b) Silicon retina stereo system equipped with two
304×240 sensors, which are integrated directly into a common hardware with a fixed
baseline.

the lower resolution silicon retina sensor. For our experiments we used two of them
mounted on a rigid bar to form a stereo camera system. In Figure 2.8(b) the silicon
retina stereo system with the higher resolution sensor is shown. Two of these sensors
were integrated directly into a common hardware to form a stereo camera head with a
fixed baseline.
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2.3.2 Silicon Retina Sensor - Technical Overview

The silicon retina sensor differs from conventional camera chips, but the base is a CMOS
chip with adaptations made to achieve the specific behavior of a silicon retina camera.
Most conventional sensors are considered cameras with frame rates up to 200fps (frames
per second), but a silicon retina sensor is a frame-free, asynchronous, time-continuous
photoreceptor. Every pixel independently delivers data based only on changes of the
luminance. Hence, this kind of vision sensor offers three potential advantages:

• The construction of the sensor chip and the event-based processing of the visual
information leads to a very high temporal resolution.

• The high dynamic range of the sensor is achieved by a logarithmic measurement
of the photo current, which makes the sensor suitable for use in situations where
large fluctuations in amount of light occur.

• The asynchronous and illumination-change-dependent event data generation sig-
nificantly reduces the data which must be transmitted, because only dynamic
parts of the scene induce a data transfer.

Figure 2.9 illustrates these three advantages with the help of image examples. The

(a) (b) (c)

I

II

Figure 2.9: Differences between conventional image sensor (I) and a silicon retina sensor
(II). (a) Benefit of the temporal resolution (conventional sensor has motion blur). (b)
High dynamic range (conventional sensor needs adaption on shutter to operate). (c)
Efficient data transmission (conventional sensor transfers the whole image without any
changes).

first row (I) shows the images of a conventional camera sensor and the second row
(II) displays the output of a silicon retina sensor. In Figure 2.9(a) the benefit of a high
temporal resolution is demonstrated. Here, the disadvantage observed is that fast
movements within a scene will, in contrast to silicon retina sensors, lead to motion
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blur when using conventional cameras. A board equipped with lights running from
right to left is placed in the scene, but at any given point in time, only three vertically
oriented lights are active. As the lights change with increasing speed, a point will
occur where the shutter time of the conventional camera is not able to capture only
three lights, and motion blur occurs. In this case the silicon retina sensor with the
high temporal resolution is able to capture fast movements in the scene in detail, and
only the three active lights are shown within the silicon retina image. Figure 2.9(b)
shows the advantage of the high dynamic range in the example of a moving hand that
was observed under office light (left) and nearly dark surroundings (right). Under the
office light, both sensors see the moving hand. But if the light is reduced to nearly
complete darkness, the conventional sensor cannot capture an image of the hand any
more, unless a shutter or aperture change is made. In contrast, the silicon retina sensor
is able to capture the moving hand without changing its configuration. In Figure 2.9(c)
the difference in data transmission is shown. The scene shows the same board with the
lights in (a), but in this case, it is switched off, which means no activity of light changes
(static scene) occur over time. For each new frame, the conventional sensor captures
all pixels of the sensor in order to generate a new image. This results in redundant
data transmission. A silicon retina sensor transfers data only if changes of pixels, also
known as events, were detected. This means that data is transferred only when intensity
changes occur. In this case, the silicon retina sensor is observing the board with switched
off lights, and that means no data is transferred for the static scene, except a few events
which are considered to be noise.

As mentioned, the data delivered by the silicon retina sensor are called events,
and are generated inside the retina sensor by the illumination change detector which
functions as follows. Formally, an event can be defined as e(x, y, t) [73], where (x, y) is
the spatial location of the pixel firing the event, and t is the time of occurrence given in
the unit of timestamps. One timestamp corresponds to the temporal resolution of the
silicon retina sensor (1 timestamp, 10ns in the case of ATIS). Depending on the polarity
of the change of illumination I over a period of time ∆t, an event can either be positive
+1 (on-event) or negative −1 (off-event):

e(x, y, t) =

+1 if I(x, y, t) − I(x, y, t − ∆t) > ∆I
−1 if I(x, y, t) − I(x, y, t − ∆t) < −∆I

, (2.1)

with the adjustable on- and off-threshold ∆I. Each pixel of the sensor measures the
changes of illumination in a logarithmic manner, and works asynchronously and time
continuously. In contrast to conventional frame-based image sensors, which generate
frames of intensity or color values representing the observed area, these kinds of event-
based neuromorphic visual sensors only deliver events on intensity changes caused by
the dynamic parts of a scene.

The event data is transferred from the silicon retina sensor to the subsequent pro-
cessing system by using a protocol which is called address-event representation (AER) .
This kind of data representation is well-suited for nervous systems and frameless data
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transmission [58, 84]. Boahen [10] proposed a first application using AER for point-
to-point communication between neuromorphic chips. Since the silicon retina sensor
does not need to transfer the information of the whole sensor matrix, the AER sends the
individual address of the firing pixel as a packet within the protocol. In addition to the
address represented by the x- and y-coordinate, the time of occurrence and the polarity
(on- or off-event) are transferred within such a packet. In Figure 2.10, the construction
of the AER protocol used for the stereo silicon retina system from Figure 2.8(b) is shown
in more detail. The packets sent from the stereo camera can be divided into times-

TS TS TS TSAE AE AE AE AE AE AE

23:031:24

Indicator/Identifier Bits Timestamp

9:1 0

Indicator/

Identifier Bits

31:28 27:21 18:1020 19

y-Coordinate x-CoordinateDisparity

TS… Timestamp Packet

AE… Address-Event Packet

PolarityChannel AE Type

Figure 2.10: The AER protocol of the silicon retina stereo camera (see Figure 2.8(b)).
Timestamp packets and address-event packets, both with a length of 32 Bit, are shown
with the information inside them. The numbers within the packets describe the number
of bits used for the different information.

tamp packets and address-event packets. After transmission of a timestamp packet,
all address-events belonging to this timestamp are transferred, and afterwards the next
timestamp is sent. In contrast to other AER protocols, the channel information is en-
coded in the address-event packet, which gives us the opportunity to identify whether
an event was received from the left or right camera. Further information that can be
encoded within the address-event packet is the disparity, but those bits are only used if
the stereo matching takes place directly within the stereo camera head. In our case, we
calculate the stereo matching results separately and therefore the disparity bits are not
used.

2.4 Summary

This chapter described the principle of how the human eye works and the development
of the first camera, also known as camera obscura. After reviewing the principles of
modern digital cameras based on CCD or CMOS technology, we explained the design
of a silicon retina sensor, which is inspired by human visual processing. The silicon
retina camera, with its benefits of a high temporal resolution, a high dynamic range,
and an efficient data transmission, is used for the development of suitable algorithms
and evaluation experiments within this work.
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CHAPTER 3
Fundamentals of Stereo Vision

The field of stereo vision addresses the derivation of depth information from a scene
by observing the scene from two different points of view. Similar to the two human
eyes, two cameras are placed next to each other in a stereo vision system to retrieve 3D
information, as shown in Figure 3.1. The distance between the two cameras is called

Bas
eli

ne
Left 

Camera View

Right 

Camera View

Figure 3.1: Stereo view with two cameras observing the same scene.

baseline and is an important parameter of a stereo camera set-up because it directly
relates to the achievable depth accuracy. Our explanation of a stereo vision scenario
is based on the epipolar geometry, which is introduced in Section 3.1. After that, the
task of correspondence search, which is one of the key topics within stereo vision, is
explained in Section 3.2. In Section 3.3 we review the calibration and rectification steps
necessary for an accurate and precise calculation of stereo vision results. Finally, in
Section 3.4 the calculation of the depth information is presented.
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3.1 Epipolar Geometry

In our experiments we use a pinhole camera model [1], which is also used to explain
the epipolar geometry [36]. Figure 3.2 shows the projection of a scene point S onto the
left IL and the right IR image plane. The projected scene point S is represented by the
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pL pR
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X

Y
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Figure 3.2: Epipolar geometry showing the projection of the scene point S onto the left
image plane IL and right image plane IR.

image points pL and pR on the image planes. The distance between the optical centers
CL and CR of the left and right camera is defined by the baseline b. Both image points
pL = (uL, vL)T and pR = (uR, vR)T are given in pixels, and the scene point S = (xc, yc, zc)T

is given in meters, because the scene point is described in the camera coordinate system
and the image points in the image coordinate systems. The world coordinate system is
described by (X,Y,Z)T in meters. The epipolar geometric relation between points in the
left and right image is described by the fundamental matrix F according to

pT
R F pL = 0. (3.1)

The epipolar plane EP, spanned by the scene point S and the optical centers CL and CR,
intersects the left and right image planes at the epipolar lines elL and elR. The epipoles
eL and eR represent the points where the baseline b is intersecting the image planes. As
a consequence, the corresponding point of point pL is located on the epipolar line elR in
the right image and vice versa. Using the fundamental matrix F, the epipolar line elL

18



can be calculated by
elL = FT pR, (3.2)

and the epipolar line elR is accordingly calculated by

elR = F pL. (3.3)

These relationships reduce the search space of corresponding pixels from the whole
image to the epipolar lines. Once the epipolar geometry is known, a rectification can
take place which further restricts the search space to a horizontal line by transforming
the image planes in such a way that the epipolar lines are parallel. In Figure 3.3 the
rectified epipolar geometry is shown, where the epipolar lines are parallel and the
epipoles are located at infinity. Details about the rectification step are presented in
Section 3.3.
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Figure 3.3: The rectified epipolar geometry with parallel epipolar lines.

3.2 Correspondence Problem

As shown before, the epipolar geometry can be exploited to restrict the search of cor-
responding pixels between the left and right image to the epipolar lines, which are, in
case of an epipolarly rectified geometry, parallel horizontal lines. Even if the search is
restricted to a horizontal line, the determination of the correct match is difficult. The
reason is that pixels in the left image can have more the one matching candidate in the

19



right image, because of pixels with identical gray/color values. Another factor are oc-
cluded areas where based on the stereo geometry areas visible from the left camera are
not seen from the right. Figure 3.4 summarizes major challenges of the correspondence
search. Figure 3.4(a) shows the left image of the Tsukuba test set from the Middlebury1

(a) (b)

...half occluded area

...fully occluded area

Figure 3.4: (a) Shows the left image of the Tsukuba test set from the Middlebury test
database where yellow squares mark texture-less region, blue squares mark horizontal
oriented texture and red squares mark repetitive pattern. (b) Shows the bird view of
a scene with multiple objects observed from two cameras. Fully occluded areas are
marked in dark gray and half-occluded areas are marked in light gray.

data set to demonstrate some challenges of the correspondence search, which are:

Texture-less regions are regions with similar color or intensity information which in-
crease the difficulty to identify exact corresponding matches, because most of the
pixels look the same. In Figure 3.4(a) (yellow marks) the background with the
monochrome wall and the table in the foreground are representatives of texture-
less regions.

Horizontally oriented textures are regions where less texture is available along the
horizontal axis, which is at the same time also the search axis for the corresponding
matches. Figure 3.4(a) (blue marks) shows an example of this challenge. The pixel
rows of the shelf have nearly the same color. This leads to the texture-less region
problem when correspondences are searched horizontally.

Repetitive patterns have grayscale differences, but this grayscale information is con-
tinually repeated as shown in Figure 3.4(a) (red marks). The pattern confuses the
search because within a certain disparity range many matches can be found but
only one match is correct.

1http://vision.middlebury.edu/stereo
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Thin and small objects are problematic if instead of single pixels, blocks of pixel are
used for matching. Block-matching can increase the quality of the matching
process at low-texture areas, but fails if the background information within the
block is much more dominant than the foreground object.

Environmental factors are the influence which comes from the cameras used. Here
the camera and its settings can reduce the matching quality. Cameras, e.g., have
a limited dynamic range to capture scenes with bright and dark areas. Other
influences can be moving objects which cause motion blur captured differently
from the left and right camera.

Figure 3.4(b) shows occluded areas which are another challenge the correspondence
search has to deal with. Occlusions are areas which are not seen from the cameras. It
can be distinguished between fully occluded areas (marked in dark gray) which are not
seen from any camera and half-occluded areas (marked in light gray) seen only from
one camera. The correspondence search is not able to find matches for these areas. If the
occlusions are detected correctly from the stereo matching algorithm, then the disparity
map shows holes where no depth information can be retrieved.

Additional challenges for stereo matching are transparent or non-Lambertian sur-
faces (e.g. with strong reflections). In this case it is difficult to find the corresponding
match, because the matching algorithm cannot distinguish if a pixel is viewed through
a transparent object or if it is observed as a reflection from a mirror. Those are special
cases and do not represent fundamental matching problems we focus in this thesis.

3.3 Calibration and Rectification

As mentioned before a rectified image pair can reduce the search space for corresponding
pixels, but this requires a calibration before the stereo matching takes place. The goal of
the calibration is to determine the intrinsic and extrinsic parameters [1]. The calibration
procedure is a well-covered research topic, thus, a comprehensive number of related
work exists.

In the calibration method of Tsai [92], objects with a known geometry are captured
which contain two or three orthogonal planes. The knowledge of the orthogonal planes
is used to retrieve the calibration parameters of the camera. This approach requires
a high configuration effort what makes the method not to the preferred calibration
procedure.

Another approach uses one plane with a known calibration pattern, instead of a 3D
object. The pattern is then captured from several distances and angles. On the one
hand, this method is flexible, but on the other hand, it has the disadvantage that it is
computationally expensive with an accuracy of the results which is depending on many
factors, such as plane positions captured, number of images, feature points extracted,
etc.. Because of its wide applicability, this calibration is introduced in many variations.
Important work is presented by Hartley [37], Triggs [91], and Zhang [103], with the
latter one also being used as calibration approach in this work.
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There are many more approaches for camera calibration that address specific ap-
plications, such as vanishing point analysis presented by Caprile and Torre [17], or
calibration using camera rotation, as proposed in the work of Stein [85].

Based on the work of Azad et al. [1] the extrinsic parameters describe the rela-
tion between the world coordinate system (X,Y,Z)T and the camera coordinate system
(xc, yc, zc)T using a rotation matrix R3×3 and translation vector t3×1 with

xc
yc
zc

 = R


X
Y
Z

 + t. (3.4)

The intrinsic parameters describe the relation between the camera coordinate system
(xc, yc, zc)T and the image coordinate system (u, v)T, using(

u
v

)
=

1
zc

(
fx · xc
fy · yc

)
+

(
cx
cy

)
, (3.5)

where ( fx, fy) describes the focal length independently for x and y-direction in case
pixels are not square and (cx, cy) denotes the coordinates of the optical center within the
image plane. These parameters can be summarized as

K =


fx s cx
0 fy cy
0 0 1

 , (3.6)

where K represents the camera matrix. Additionally, there is a factor s inside the
camera matrix, which represents the skew factor of the pixels. This factor describes
how trapezoidal the pixels are, where the value is zero for perfectly shaped rectangular
pixels. Using the intrinsic parameters expressed by K and the extrinsic parameters R
and t in the projection matrix P

P = (K|0)
(

R t
0 1

)
, (3.7)

a 3D point given in homogenous coordinates (X,Y,Z, 1)T is transformed into homoge-
neous image coordinates (u, v, 1)T by


u
v
1

 = P


X
Y
Z
1

 . (3.8)

Further to these parameters, the parameters for the lens distortion must be calculated,
because only an ideal lens would not have any distortion. There are two different types
of distortions present in a lens, which are depicted in Figure 3.5. The first distortion is
the radial distortion, which increases as the distance from the optical center increases.
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Figure 3.5: Explanation of the radial (dr) and tangential (dt) distortion caused by the
lens.

A radial distortion can appear either as barrel distortion, or pin cushion distortion. The
second distortion is the so-called tangential distortion, describing the displacement in
tangential direction. To remove the distortion, the distortion coefficients are calculated
describing the relation between the distorted camera coordinates (xcd, ycd, zcd)T and
undistorted camera coordinates (xc, yc, zc)T, where zcd/zc = 1. For the approximation
of the distortion, three coefficients kr1, kr2, kr3 are used for the radial model and two
coefficients kt1, kt2 for the tangential model. There is no closed form to calculate the
undistorted coordinates and therefore, a so-called backward mapping takes place, where
from the undistorted coordinates the distorted coordinates are calculated using(

xcd
ycd

)
=

(
xc
yc

)
(1 + kr1r2 + kr2r4 + kr3r6) +

(
kt1(2xcyc) + kt2(r2 + 2x2

c )
kt1(r2 + 2y2

c ) + kt2(2xcyc)

)
, (3.9)

where

r =

√
x2

c + y2
c (3.10)

is the radius between the optical center and the undistorted pixel. The calculated
distorted coordinates (xcd, ycd)T will be subpixel coordinates and a bilinear interpolation
is applied to calculate the new pixel value for the undistorted coordinates.

In case of a stereo camera system, the stereo calibration is needed, which additionally
estimates the relative translation and rotation between the left and the right camera, in
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order to rectify the images as mentioned in Section 3.2 to limit the search space during
the stereo matching procedure. There are two common approaches for calculating the
rectification information. One is the method of Hartley [38], for which no calibration
information is needed, and the other method is the calibrated case where the already
known intrinsic and extrinsic parameters are used for the calculation of the rectification.
The second method is used in the calibration toolbox of Bouguet [11] which is used in
this work. In the work of Tsai [92] and Zhang [103] the calibrated stereo rectification
approach is explained in detail. The method calculates two rotation matrices RL and RR,
which describe the transformation of each image where the epipolar lines are parallel.
After the rectification the camera matrices KL and KR are changed to rectified camera
matrices K′L and K′R, where the parameters are adapted based on the rotation and
shift during the rectification. As already for the removal of the lens distortion, the
rectification step can be applied as a backward mapping and can be combined with the
lens undistortion mapping. In this case a single mapping step is generated in which the
subpixel values of the input image are taken and mapped to the final pixel positions
which are integer coordinates.

3.4 Depth Reconstruction

Assuming that two corresponding points are found, the depth reconstruction of the
scene point can take place. In Figure 3.6 the schematic of Figure 3.3 from a top view is
shown, where the triangulation [34] of the scene point is illustrated. In this perspective

S

b

IL IR

f

z

xL xR

uL

CL CR

uR

pL pR

Figure 3.6: The reconstruction of a scene point using triangulation from two different
views is illustrated. The difference |uL − uR| represents the disparity d.

additionally the focal length f of the cameras and the distance z between the scene
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point S and the cameras’ optical centers CL and CR are marked. Considering xL and xR
as helping variables splitting the baseline and uL and uR which describe the distance
between the projected image points pL and pR and the center of the images planes IL
and IR, the equation

uL

f
=

xL

z
and

−uR

f
=

xR

z
(3.11)

can be formulated using similar triangles and the intercept theorem. Substituting xR
with b − xL and writing xL in an explicit form leads to

xL =
z · uL

f
and xL =

z · uR

f
+ b. (3.12)

Combining both equations in Equation (3.12) and writing z in explicit form gives

z =
b · f
|uL − uR|

=
b · f

d
, (3.13)

where the difference |uL − uR| represents the disparity d which is used to calculate the
depth z of the scene point S.

z =
f · b
d

, (3.14)

which represents the law of calculating depth values z using the focal length f , baseline
b and disparity d. Using this equation, all disparity values d calculated during the
matching procedure are reconstructed into their depth values z representing the distance
of the scene point S in relation to the optical centers.

3.5 Summary

This chapter summarizes the relevant fundamentals of stereo vision for this work.
For a classical stereo vision camera system, two parallel-mounted cameras survey the
same scene. Using a stereo matching algorithm that searches for pixel correspondence
between the two views enables the reconstruction of depth information for each pixel.
The horizontal displacement of the matched pixels is inversely proportional to the
distance between scene point and camera and is called disparity. The relationship
between disparity and the distance of the scene point to the camera is described by the
epipolar geometry. If the epipolar geometry is known, the stereo image pair can be
rectified, which reduces the search effort of the matching algorithm to one dimension.
The cameras’ calibration information which includes the specific parameters of the
camera and lenses is necessary for calculating the epipolar geometry.

In the next chapter, we will present related work that considers stereo matching ap-
proaches in general and, in particular, stereo matching algorithms using data delivered
by silicon retina cameras.
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CHAPTER 4
Related Work

The correspondence problem, explained in Section 3.2, describes the fundamental task
that must be solved by a stereo matching algorithm. Many diverse approaches have
been developed over the last few years regarding the search for matches between the left
and right camera images. In Section 4.1, an overview of stereo matching approaches that
consider conventional stereo vision is given. Section 4.2 presents silicon retina-based
stereo matching algorithms. In Section 4.3, techniques and methods for the evaluation
of stereo matching results are presented.

4.1 Conventional Stereo Matching

Stereo matching approaches can be divided into a variety of different categories, but
a major distinction is traditionally made between area-based and feature-based algo-
rithms. For both area- and feature-based algorithms, a calibration and rectification step
is applied to the input data, as explained in Section 3.3. For further explanations, we as-
sume that a calibrated and rectified image pair is available. Comprehensive summaries
of area-based and feature-based stereo matching algorithms are presented in the work
of Scharstein and Szeliski [75] and Brown et al. [14].

4.1.1 Difference Between Area-based and Feature-based Algorithms

Area-based algorithms attempt to match each pixel of an image pair by minimizing a
cost function (probability of a correct match). This results in dense disparity maps even
if uncertain pixels - such as occlusions - are present.

In contrast, feature-based algorithms do not attempt to find a match for each indi-
vidual pixel. These algorithms first detect appropriate features, such as lines, corners
or segments, as depicted in Figure 4.1. For the extracted features, matching costs are
determined, which are then used to search for correspondences. This also means that
the disparity map is sparse, thus, only representative values for the matched features
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(a) (b) (c)

Figure 4.1: Examples of different image features which can be used for stereo matching.
(a) Line features. (b) Corner/Point features. (c) Segment features.

are present in the disparity map. Shi and Tomasi [80] have analyzed different features
and give an overview of which features are useful for tracking (matching).

4.1.2 Cost Calculation and Cost Aggregation

For both area-based and feature-based stereo matching, costs must be calculated. As
previously mentioned, the calculated costs represent a measure for the probability of
a correct match. For stereo matching algorithms, the calculated costs for each pixel
and disparity level are usually stored in a so-called Disparity Space Image (DSI), or
cost volume, shown in Figure 4.2. In the context of area-based algorithms, we are

ymin

ymax

xmin xmax

dmin

dmax

Figure 4.2: Disparity space image which stores for each pixel (area-based) or each feature
(feature-based) the calculated costs within the defined disparity range.
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usually dealing with DSIs that are filled densely. Contrary feature-based algorithms
will produce sparsely populated DSIs corresponding to the sparsely computed costs of
features.

The following constraints are often utilized to reduce mismatches and remove im-
possible matches from the DSI.

Uniqueness The assumption can be made that a pixel from the left image has only one
unique corresponding match in the right image if the point is not occluded in one
of the images. As described in Section 3.2, besides occlusions, other challenges
in the correspondence search can lead to multiple matches for the same reference
pixel. Due to the uniqueness assumption only one match is valid, which means
that all other matching candidates must be excluded.

Ordering The ordering constraint demands that the pixel order of the left scan line re-
main unchanged in the corresponding scan line of the right image. This constraint
is violated if the perspective view of the left and right camera is too different. It
also fails on thin objects in the foreground.

Smoothness The smoothness constraint assumes that the disparity around a pixel only
changes smoothly. The constraint is not valid at locations where depth disconti-
nuities, such as objects edges of foreground objects, occur.

Consistency This constraint describes the fact that a corresponding match searched
from the left to the right image must be also found if the search is done from
the right to the left image. For the consistency check, the two disparity maps are
analyzed, and a certain threshold can be defined which excludes matches that do
have a higher disparity difference (e.g., a disparity difference of more than one
pixel) between the left-right and right-left matching results.

The usage of single pixels to find corresponding matches will lead to many mis-
matches, and therefore the costs are often aggregated with the purpose to reduce the
ambiguity of possible matches. The basic idea of so-called cost aggregation techniques is
to process the cost entries of the DSI using windows of suitable shape and size based
on the assumption that pixels within a certain neighborhood are likely to have the same
disparity.

The following metric represents a common cost calculation metric used for stereo
matching, where pixels of the left image Il(x, y) (reference image) are correlated with
the pixels of the right image Ir(x, y). The Sum of Absolute Differences (SAD) metric
calculates for a pixel (x, y) and disparity d the cost values CSAD(x, y, d) with

CSAD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

|Il(x + i, y + j) − Ir(x − d + i, y + j)|, (4.1)

where the cost aggregation is over an m × n window. In Figure 4.3 the principle of the
matching using a 3× 3 aggregation window is shown. The best match is represented by
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Example:

Figure 4.3: Grayvalues from a part of the left and right image, which are used for
the area-based matching. As an example, the matching costs for a 3×3 window and a
disparity range of 5 using the SAD correlation method are calculated.

the lowest costs. In this example, the lowest costs of the pixel at location (x6, y1) with
the value 38 from the left image are found at disparity 5 (i.e., at location (x1, y1)) in the
right image. Other related correlation metrics are used and explained in Section 5.2.2.2.

It is also possible to first transform the input images in order to enhance their
properties for stereo matching. The Census and Rank transforms [100], for example,
encode the intensity differences between a pixel pc (center) and a pixel pn (neighbor)
with 0 and 1 according to

ξ(pc, pn) =

1 if pc > pn

0 if pc ≤ pn
. (4.2)

The Census transform uses Equation (4.2) to generate a bit vector for each pixel which
encodes its difference to all neighbors within an m×n window as shown in Equation (4.3).

IC(x, y) =

b
m
2 c⊗

i=−bm
2 c

b
n
2 c⊗

j=−b n
2 c

ξ(I(x, y), I(x + i, y + j)) (4.3)

Here, the Census image IC is calculated, where
⊗

symbolizes the bit-wise concatenation
of the m × n neighborhood. Image IC has stored a bit vector at each position, which is
then used for the further cost calculation. For calculating the costs CCensus given by

CCensus(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

HD(IC_l(x + i, y + j), IC_r(x − d + i, y + j)), (4.4)
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the Hamming distance [35] HD between the bit vector of the left Census image IC_l and
the bit vector of the right Census image IC_r at the disparity d is calculated and summed
up over an aggregation window of size m × n. The Hamming distance HD between two
bit vectors (v1, v2) is calculated by

HD(v1, v2) =

(m×n)−1∑
i=0

v1[i] , v2[i], (4.5)

where the number of all different elements within the two vectors is calculated.
These methods tend to be more robust against illumination differences between the

left and right camera, variations in shutter times, and other factors that may influence the
absolute intensity values. A detailed evaluation and comparison of the non-parametric
local transforms is presented in the work of Hirschmüller and Scharstein [45].

The choice of a proper window size is an elementary decision for the aggregation, be-
cause the size influences the matching results. Choosing a larger window size increases,
on one hand, the probability of finding uniquely identified correct matches. However,
on the other hand, large windows fail at depth discontinuities and decrease the chances
of properly detecting the disparity of small objects. Using smaller window sizes usu-
ally increases the matching quality at depth borders, but the detection of disparities
in regions with repetitive and textureless patterns becomes less reliable. Therefore,
assigning an appropriate aggregation window size is an essential task in stereo match-
ing. In the work of Fusiello et al. [30], as well as in the work of Hirschmüller [41] and
Hirschmüller et al. [44], multiple window aggregation techniques are presented as ways
to overcome the problem of choosing a correct window size. These approaches use
different window sizes and varying shapes of windows around the considered pixel to
calculate the costs. Another approach to determine the window size follows the work
of Kanade et al. [50], where the window size and shape are adaptively set after a local
analysis of intensity and disparity variations. This means that an initial calculation
of the disparities is used to form a statistical model, which helps, in conjunction with
the intensity analysis, to adaptively choose the best matching window. Yoon et al. [99]
present a process of analyzing the object boundaries with an initial disparity map,
which is further used in choosing a proper window size and shape. The procedure
of finding the best support window size and shape and applying the window to the
cost computation is computationally expensive and increases with larger window sizes.
Therefore, Veksler’s study [94] demonstrated the use of integral images, which reduce
the processing effort and are not dependent on the support window size. In order to
better model object surfaces, which are mainly slanted and not fronto-parallel to the
camera, an aggregation using slanted support windows can be applied per the work
of Bleyer et al. [8] and Cho and Humenberger [19]. In addition to the size, shape, and
orientation of the aggregation window, a weight can be determined for each pixel in
the window to describe the impact of its contribution to the aggregation. Yoon and
Kweon [97, 98] offer an adaptive weight approach, where the support-weight of each
pixel within the window is calculated based on the color similarity and the distance
to the center pixel. In this context, suitable techniques for cost aggregation, including
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newer cost volume filtering techniques, have gained traction [22, 46]. A good com-
parison of different aggregation methods and techniques can be found in the work of
Tombari et al. [90]. Hosni et al. [47] present an evaluation study in their work that
considers different approaches to calculating adaptive support weights.

After the cost aggregation, the best matches are usually selected by a winner-takes-
all (WTA) approach, where the lowest costs represent the disparity finally chosen. All
of these aforementioned methods are local approaches because the final cost function is
evaluated locally (within a small neighborhood). In contrast to local techniques, global
methods minimize a global energy function (using multiple scanlines, or even the whole
images). An example of such a global energy function E is

E(DM) = EData(DM) + ESmooth(DM), (4.6)

where EData describes the data term which measures the color dissimilarity for each
pixel, ESmooth represents the smoothness term measuring the disparity difference of
neighbor pixels and DM which represents the disparity map.

There are different global optimization approaches that try to either optimize the
energy of each scan line, as in Dynamic Programming [3, 6, 33], or optimize the energy
of the whole image, as used in Graph Cuts [12, 52] and Belief Propagation (BP) [29, 89]
approaches. Another approach that searches for an optimal global solution is the
Simple Tree Method introduced in the work of Bleyer and Gelautz [7]. In the interest
of completeness, we should also mention the work of Hirschmüller [42, 43], which
describes the Semi-Global stereo matching approach that combines concepts of local
and global stereo matching.

4.2 Silicon Retina-based Stereo Matching

For stereo matching using silicon retina cameras several matching algorithms have
been developed, which differ from the stereo matching algorithms used for conventional
stereo vision systems. We have divided the stereo matching approaches for silicon retina
cameras into two different groups. One group proceeds by using event data from the
silicon retina sensors directly without converting the event data into images. The other
group follows the direction of using the event data of silicon retina sensors by converting
the incoming events first into images (see Section 5.2.1) and then applying one of the
stereo matching algorithms used for conventional stereo vision explained in the previous
section. The first group is categorized under the term event-based algorithms, and the
second group is called event image-based algorithms. Both groups have their benefits
and drawbacks. On the one hand, taking an event-based approach enables exploiting
the unique sensor characteristics, and on the other hand, aggregating single events to
images allows directly using many well-known stereo matching algorithms.

Stereo matching for silicon retina sensors started in 1989 when Mahowald and
Delbrück [57] presented an event-based stereo matching approach which operates on
one-dimensional event input data, using static and dynamic image features. This
approach is based on the cooperative algorithm presented in the work of Marr and
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Poggio [60], where matching candidates within the same disparity receive a support
and matching candidates violating the uniqueness constraint are inhibited. Motivated
by the idea of a cooperative stereo matching algorithm, Hess [40] presented in his work
two approaches. The first algorithm measures the time difference between events and
calculates the costs for the matching with an inverse linear function. Additionally it
is assumed that a single frontal object is observed, where all events within the same
period have the same disparity. This limitation of considering a global disparity is
handled in the second algorithm by processing each event individually. Here, the
disparity of each event is calculated by assuming that disparity changes spatially and
temporally smooth. Additionally the mean disparity of previous events restrict the
disparity range, which leads to more representative stereo matching results. In the
work of Schraml et al. [78] event image-based stereo matching algorithms are presented,
where as mentioned events are converted into images to apply conventional stereo
matching approaches. The work evaluates different correlation metrics and comes to
the conclusion that the normalized sum of absolute difference (NSAD) metric works
best.

This point represented the state-of-the-art in stereo matching using events from
retina cameras at the beginning of this thesis. Part of our motivation was to develop
a silicon retina stereo set-up which delivers a calibrated and rectified input for the
algorithms. Since the approaches by Hess [40] had not been evaluated yet in a qualitative
way, one of our goals was to implement an event-based time correlation algorithm
and to test it with real-world data. We also wanted to evaluate the comparison of
Schraml et al. [78] with calibrated data and extend the comparison with a feature-based
stereo matching approach. Additionally we saw potential using global optimization
methods from the conventional stereo matching area and decided to apply them to
stereo matching algorithms using events. Our approaches are presented in detail in
Section 5.2. After this starting point in parallel some new work based on silicon retina-
based stereo matching was published, which we present in the following.

Shimonomura et al. [81] proposed in 2008 a neural network which emulates the
stereo matching process in the visual cortex (V1), using a disparity energy model. This
approach exploits the biological characteristics of the silicon retina sensor and tries to
emulate depth perception characteristics of the visual cortex. In the event-based stereo
matching approach of Benosman et al. [4] a temporal-spatial activation of pixels forms
coactivation sets, which are used for the determination of the epipolar geometry. With-
out an explicit calibration and rectification step, the method can be applied on any stereo
camera set-up independent on its geometrical structure. Dominguez-Morales et al. [23]
present in their work an event-based fuzzy stereo matching technique which counts the
events received at each pixel. All counts are written in a table and the matching takes
place in the table. The counts within this table represent matching costs used for the
matching process. The fuzzy approach is that entries with different counts are consid-
ered as matching candidates. In the work of Rogister et al. [73] an event-based stereo
matching algorithm is proposed which uses the spatial distance to the epipolar line and
appearance in time of events as matching criteria. Additional constraints such as po-
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larity of events, ordering, uniqueness and similar temporal activity of pixels are taken
into account for the correspondence search. The work of Carneiro et al. [18] proposes
an event-based stereo matching approach similar to the work of Benosman et al. [4]
and Rogister et al. [73], which uses for the matching spatio-temporal information. The
main difference is that this approach allows to use more than two cameras for the stereo
matching and subsequent 3D reconstruction. This algorithm benefits from the N-ocular
usage to reduce occluded areas and ambiguities of the scene. Piatkowska et al. [65, 66]
proposed in their work an event-based adaptive cooperative stereo matching approach
based on the work of Marr and Poggio [60] and Hess [40]. The extension is to apply the
algorithm on two-dimensional areas such as event data from two silicon retina cameras.
Here, the spatial neighborhood within the same disparity level contributes excitatory
and the neighbors across all disparity levels contribute inhibitory to find the correct
matches of a considered pixel. In the work of Eibensteiner et al. [26] an event-based
algorithm is presented using time differences as correlation metric. Additionally a seg-
mentation of the sensor field takes place which lets the matching process focus only on
areas with a certain event activity to reduce the computational effort.

Some of the algorithms mentioned have also been tested on embedded platforms to
evaluate their real-time performance. In order to complete the related work section, we
outline the work realizing silicon retina-based stereo matching on hardware platforms
such as a field programmable gate array (FPGA) or a digital signal processor (DSP). The
approach of Schraml et al. [78] is implemented on a DSP, and an FPGA version of the
algorithm is presented in a study by Eibensteiner et al. [25]. Shimonomura et al. [81]
and Eibensteiner et al. [26] implemented their approach on a FPGA platform. A time
correlation algorithm [51] is implemented on a DSP by Sulzbachner et al. [88] as well as
on the FPGA processing unit by Eibensteiner et al. [28].

4.3 Evaluation of Stereo Matching Algorithms

Testing is an important part of developing stereo matching algorithms. The evaluation
of the stereo matching results provides an overview about how accurately and robustly
a stereo matching approach performs. Different platforms for the evaluation of stereo
matching algorithms producing dense disparity maps are available. The most popular
evaluation platform for dense stereo matching algorithms is the Middlebury1 stereo
database developed by Scharstein and Szeliski [75]. This online evaluation platform
provides many stereo image data sets consisting of the stereo image pair and the corre-
sponding ground truth data. The data sets represent static scenes and have been created
with a structured light approach [76]. For the evaluation of the algorithm results, the
disparity maps must be generated and uploaded to the website. The evaluation engine
calculates the performance of the matching algorithm, within a certain disparity error
threshold, by pixel-wise comparison with the reference disparity values. Many stereo
algorithm developers, contributing to approximately 160 entries to date, have used

1http://vision.middlebury.edu/stereo
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this platform for evaluation. This offers a significant indication of how a developed
algorithm performs in comparison to other algorithms. The platform is up-to-date and
constantly growing.

However, a certain disadvantage of the Middlebury platform is that some data sets
do not realistically represent real-world scenarios and the processing speed as well
is not considered within the Middlebury ranking. The usage of stereo vision as 3D
sensor technology has been growing over the last couple of years, especially in driver
assistance systems, for autonomous robotics as well as consumer vehicles. To provide a
more suitable evaluation platform for this kind of application in particular, the KITTI1

(Karlsruhe Institute of Technology and Toyota Technological Institute) benchmark was
introduced by Geiger et al. [32].

Similar to Middlebury, this platform provides data sets to evaluate stereo vision
algorithms (as well as optical flow, tracking, visual odometry, and object detection)
online. Unlike Middlebury, these data sets have been recorded from the roof of a car
driving on regular roads, with a front pointing stereo camera. The reference 3D data
has been determined with a laser scanner calibrated onto the stereo camera. Another
remarkable difference to the Middlebury database is that, at KITTI, the processing time
of the algorithm is also a part of the evaluation. This platform is rather new in the stereo
vision community, thus, fewer algorithms are available than at Middlebury.

The Auckland analysis test site (EISATS2 - Environment perception and driver as-
sistance Image Sequence Analysis Test Site) provides several data sets of, for example,
dangerous situations in traffic scenes. These data sets also include challenging scenes
for the camera hardware, such as direct sunlight, shadows, and fluctuating light. Unfor-
tunately, no reference data is available, which makes no direct statistical evaluation and
comparison of different algorithms. To overcome this limitation, EISATS also provides
synthetic sequences of automotive scenes with ground truth [93].

A further stereo vision evaluation method was presented by Meister et al. [62]. The
provided data sets3 show a huge variety of different weather conditions, motion, and
depth layers. City as well as countryside situations were acquired at night and at day.

4.4 Summary

This chapter presented the relevant related work on stereo matching especially on silicon
retina-based stereo matching. Both groups of silicon retina-based stereo processing
introduced, event-based and event image-based, aim to use the uniqueness of silicon
retina sensors to retrieve depth information. Using this specific type of data is the
obvious first step for silicon retina stereo matching. However, advances in global
optimization of the cost volume and disparity post-processing for conventional stereo
matching showed the importance of these algorithmic steps, which are currently not

1http://www.cvlibs.net/datasets/kitti/index.php
2http://www.mi.auckland.ac.nz/EISATS
3http://hci.iwr.uni-heidelberg.de/Benchmarks
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addressed in the related work regarding silicon retina stereo. Thus, we tackle this
challenge and details are given in the following sections.

All the presented evaluation methods and platforms within this chapter well con-
tributed to making progress in dense stereo vision for scientific as well as industrial
purposes. However, none of them can be used for evaluating silicon retina stereo sys-
tems because of two important reasons. Firstly, many of the available data sets are
static, so no events can be created and, thus, no silicon retina sensor output is available.
Secondly, and this is the main reason why it does not work for us, all data sets acquired
with conventional video cameras do not represent the asynchronous, time-continuous,
event-driven spiking output of the silicon retina sensor chip properly. Another fact is
that challenging lighting conditions and fast moving objects can be well handled by
a silicon retina sensor and are a less significant limitation than for conventional video
cameras. This is the reason why we developed evaluation methods especially for silicon
retina-based stereo matching, presented in Section 6.1.
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CHAPTER 5
Silicon Retina-based Stereo

Matching

In this section, we describe our new stereo matching approaches for silicon retina cam-
eras. Before the stereo matching algorithms are described in Section 5.2, Section 5.1
introduces calibration and rectification procedures which were specifically designed for
silicon retina-based stereo camera systems. Section 5.2.1 describes the special properties
of silicon retina-based data and their preparation for usage with the stereo matching
algorithms. We start in Section 5.2.2 with the event image-based algorithms, which
include area-based and feature-based techniques. We take a closer look at event-based
stereo matching algorithms in Section 5.2.3. In Section 5.3 we propose two new tech-
niques for improving silicon retina-based stereo matching results. The first method
(Section 5.3.1) uses a global optimization scheme specifically adapted to deal with sparse
data in order to minimize the matching costs. The second method (Section 5.3.2.2) seeks
to efficiently eliminate outliers in a post-processing step.

5.1 Calibration and Rectification

Before the stereo matching approaches are explained, the necessary preparatory tasks
for stereo matching, such as calibration and rectification, are described as they differ to
stereo vision systems based on conventional grayscale or color cameras. For conven-
tional cameras, the calibration task is well-known as summarized in Section 3.3. Before
the calibration can begin, the lenses of the cameras must be adjusted. For the silicon
retina camera, we developed a hardware, which enables a straightforward adjustment
of the camera lenses. After the adjustment, the calibration takes place. The standard
checkerboard calibration pattern (shown in Figure 5.1 on the left side) cannot be used
for silicon retina cameras in the same way as for conventional cameras. Observing the
same static calibration pattern with the silicon retina camera will lead to an image as
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Grayscale Image Silicon Retina Event-Image

(a) (b)

Figure 5.1: (a) Shows the checkerboard calibration pattern captured and used for the
calibration procedure of a conventional monochrome sensor and (b) shows the silicon
retina event-image generated by observing the same calibration pattern. No information
except that of noise is present in the image captured of the static pattern.

shown on the right side of Figure 5.1, because it contains no changes in brightness.
Hence, other procedures or modified techniques must be established for the calibration
of silicon retina cameras. Since the calibration and rectification of silicon retina stereo
sensors is a relatively new topic, for which practically no literature is available, we have
developed two novel techniques expressly tailored to deal with the characteristics of
silicon retina cameras.

To add motion to the scene, we use the static pattern alongside a white paper moved
up and down in front of the checkerboard pattern in our first approach, as shown in
Figure 5.2(1). This movement generates events at the locations of the black squares of
the checkerboard pattern. The events are converted into a binary event-image in stage
(2), as explained in more detail in Section 5.2.1. In stage (3), morphological operators
are applied to the binary event-image to extract separate areas (blobs). All blobs with
certain properties, such as a pixel count between 10 and 75 pixels and an aspect ratio
bigger than 0.5, are considered to be valid and are used in the search for blob center
features, as shown in Figure 5.2(3). The ego motion of the person moving the white sheet
generates additional events that are visible in the binary event-image and influence the
blob detection. Therefore, the relevant blob center features are annotated and selected
manually by the user, who assigns the correct order of specific centers used in the
calibration step. The list with the blob center feature points is used as input for the
calibration toolbox of Bouguet [11], as indicated in step (5). The results showed that the
usage of a calibration step improves the results of the stereo matching, but this method
requires a great deal of manual interaction and has a low overall accuracy regarding the
blob center extraction.

For this reason, we developed a second approach to improve the quality of the sili-
con retina-based calibration. In our second approach, not only the checkerboard pattern
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Figure 5.2: (1) shows the generation of events by moving a white paper up and down in
front of a static checkerboard calibration pattern. (2) shows the converted binary event-
image generated from the received events. (3) presents the results of the blob center
feature detection. (4) illustrates the manual selection of detected feature points (centers)
involved in the calibration process. (5) represents the calibration toolbox which takes
the extracted points as input and delivers as output the calibration and rectification
parameters.

was used, but also a square pattern and a circle pattern, as illustrated in Figure 5.3(1)I-
III. Additionally, the generation of events was, instead of moving a white paper up and
down, done by a computer screen, which flashes with the chosen calibration pattern.
This flashing screen generates events that are collected over time and converted into a
binary event image, as shown in Figure 5.3(2). Automatic filtering delivers a cleaner bi-
nary event image, shown in step (3), which is then subjected to morphological operations
in step (4). The main difference to the first approach, aside from the flashing calibration
pattern, is the extraction of the blob center features. The subsequent blob center feature
detection in step (5) works fully autonomously and is also robust to changes in viewing
perspectives by using the three circles with holes in the middle (see Figure 5.3(1)) as
reference. The approach is described in detail in the work of Schörghuber [77] and eval-
uated in our work published by Eibensteiner et al. [27]. Using this approach accelerates
the calibration procedure of silicon retina cameras. Mueggler et al. [64] presented as
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Figure 5.3: (1) shows the generation of the events by using a computer screen where one
pattern is used and flashes continuously. (2) shows the converted binary event-image
from the received events. In (3) filters were applied to clean the binary event-image
before the feature extraction takes place. (4) presents the result of the pre-processing
using morphological operations. In (5) the automatic feature points extraction detects
the centers (purple dots) of the shown circle pattern, which are further used in (6) as
input for the calibration toolbox.

well a method including a toolbox for the calibration of silicon retina sensors.
Additionally, as we are dealing with a stereo camera setup, the rectification pa-

rameters are calculated during the calibration procedure using Bouguet’s calibration
toolbox [11]. The rectification is the transformation of the images in such a way that
the epipolar lines are parallel and correspond to the image lines. As mentioned in Sec-
tion 3.3, the rectification and undistortion can be combined in a backward mapping [79],
which is illustrated in Figure 5.4. Here, the backward mapping starts to transform the
rectified and undistorted image (destination image) back to the distorted and unrecti-
fied image, where the coordinates will be subpixel coordinates (source image). In the
case of grayscale images, an interpolation takes place to calculate the best representing
grayscale value for the subpixel, which is used as the coordinates in the destination
image.

Using backward mapping for a silicon retina camera fails because the interpolation
step in the source image cannot be carried out in the same way for sparse address-
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Figure 5.4: Shows the backward mapping from the destination image to the source
image in case of monochrome cameras.

event data. For this reason, a forward mapping procedure has been implemented, as
shown in Figure 5.5. The forward mapping does not exist in a closed form because the

x1 x2 xr1 xr2 xr3x3
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y2
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yr1

yr2

yr3

Source image Destination image

Figure 5.5: Shows the rectification based on forward mapping where each event from
the source event-image is mapped to the destination event-image.

undistorted coordinates can only be calculated with an iterative approach. Thus, we use
the approach suggested in a study by Heikkila and Silven [39], where the coordinate
mapping is approximated. Forward mapping has the advantage that each received
event of the source is considered and is assigned a destination coordinate. That means
that no input event is lost or ignored, but on the destination event-image one coordinate
can be assigned to two different source events.

5.2 Stereo Matching Approaches

This section explains the stereo matching approaches that we developed and imple-
mented for sparse silicon retina event-based data. In the following, we distinguish
between event-based and event image-based algorithms. Before the stereo matching
methods are described, the handling of event streams received from the silicon retina
camera and their conversion are presented.
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5.2.1 Event to Event-Image Converter

In order to process the silicon retina sensor’s raw data, we have implemented a converter
interface, which transforms the data received from the silicon retina sensor into event
lists or event-images to be processed by our developed algorithms.

5.2.1.1 Significance of Time History

The time history is an important parameter driving the amount of events considered for
the conversion of events into a list or an image. A silicon retina sensor sends events
asynchronously and time continuously based on the activity in front of the camera. A
timestamp is attached to the data, which identifies the time of occurrence. This time
stamp information is used for collecting event data based on the time history chosen.
In general, static parts (e.g. objects without movement) of the scene are completely
suppressed and will not be recognized from a stationary-mounted silicon retina sensor.
Therefore, the time history must be set based on the scene dynamics to collect or consider
enough events to obtain complete contours and distinguish data from noise. However,
as the time history becomes longer, the contours of objects tend to blur. In Figure 5.6,
the influence of the time history on the conversion process, which is explained in the
next section in more detail, is illustrated. Figure 5.6(a) shows the grayscale image of
a non-moving person captured by a monochrome stationary camera. Figure 5.6(b)

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.6: Silicon retina sensor in comparison to a conventional monochrome sensor.
White pixels (on-events), black pixels (off-events), gray pixels (no events). (a) Person
without movement in front of monochrome sensor, (b) silicon retina sensor output
without movement, (c) person walking in front of monochrome sensor, (d)-(h) silicon
retina sensor data from the walking person with events collected over a time period of
5ms, 10ms, 20ms, 40ms and 60ms.

shows the same scenario, but as an event event-image derived from the silicon retina
camera, where on-events are marked white and off-events are shown in black. The pixels
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where no event information (e.g. background without moving objects) from the silicon
retina camera was received are marked in gray. Because the person is not moving, the
silhouette of the person is not visible, and only very few events are present (largely
representing noise). In contrast, Figure 5.6(c) shows an intensity image of a walking
person. The same walking person observed with a silicon retina camera induces the
event-generation behavior of this sensor. The sensor’s high temporal resolution of 10ns
was reduced for our experiments to 100µs. In this example, a temporal resolution
of 100µs in conjunction with a collection period of 50 timestamps (i.e., 5ms) results
in relatively incomplete contours (Figure 5.6(d)). The object’s shape becomes more
complete when events corresponding to more timestamps are collected. Figure 5.6(e-h)
shows the events collected within a time history of 100 (10ms), 200 (20ms), 400 (40ms),
and 600 (60ms) timestamps. The time history should be chosen to optimize complete
object edges, as shown in Figure 5.6(f), without causing blurred object contours as
shown in Figure 5.6(h). This illustrates that the time history is not a fixed parameter and
plays an important role when input data for stereo matching algorithms are generated.

5.2.1.2 Conversion Process

The silicon retina camera sends an event stream based on the AER protocol as Sec-
tion 2.3.2 stated. Based on the time history described in the previous section, we will
now present the conversion process in more detail, along with four different output
formats of the converter. In Figure 5.7 the data flow of the conversion process and the
different types of output formats are presented. Figure 5.7(a) shows the events repre-
sented as list which is used in event-based stereo matching algorithms and (b-d) shows
the image outputs used for event image-based algorithms. The events are transmitted
continuously and all events e(x, y, t) received between the time tC − h, which represents
the current time tC minus the time history h, and the current time tC are considered for
the conversion process. All coordinates and timestamps within this time history form
the event index set eI given by

eI := {(x, y, t), ...} , with (5.1)
x ∈ {1, ..., sW} ∧ y ∈ {1, ..., sH} ∧ t ∈ {tC − h, ..., tC} ,

where sW and sH describe the maximum value of the camera resolution in horizontal
(width) and vertical (height) direction. In output (a), all events of the described event
index set eI are concatenated to an event list EL according to

EL =
⊗

(x,y,t)∈eI

(x, y, t, e(x, y, t)), (5.2)

where
⊗

symbolizes the concatenation of the information from all events.
For the generation of event-images three different types are distinguished. Fig-

ure 5.7(b) shows an Event event-image EIe(x, y), Figure 5.7(c) shows a Binary event-
image EIb(x, y) and Figure 5.7(d) shows a Grayscale event-image EIg(x, y). All three
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Figure 5.7: Conversion of address-events received from the silicon retina sensor to
different output types. (a) Events encoded in an event list. (b) Event event-image
with on-events (white), off-events (black) and background without information (gray).
(c) Binary event-image with events in white and background in gray. (d) Grayscale
event-image where events collected over time are represented by different gray values.

images are stored as 8-bit grayscale image and are initialized with a middle grayscale
value gm of the grayscale range 0-255 (grayscale range 0-255 =̂ middle grayvalue 128).
After this generation, the specific conversion procedure for one of these three individual
event-images starts.

For the Event event-image EIe(x, y) shown in (b), the polarity of the events described
by the event index set eI is directly mapped into the event event-image according to

EIe(x, y) = fe(e(x, y, t)) ∀(x, y, t) ∈ eI , with (5.3)

fe(ε) =

0 if ε = +1 , on-event
255 if ε = −1 , off-event

, (5.4)

where function fe distinguishes the assignment of the grayscale value for an on- and
off-event. This conversion was used for the converted images in Figure 5.6(b) and
Figure 5.6(d-h), to illustrate the importance of the time history.

For the Binary event-image EIb(x, y) shown in (c) the polarity of the events within
the event set eI are directly mapped into the binary event-image according to

EIb(x, y) = fb(e(x, y, t)) ∀(x, y, t) ∈ eI , with (5.5)

fb(ε) =

255 if ε = +1 , on-event
255 if ε = −1 , off-event

, (5.6)

where function fb assigns for each event the grayscale value 255, which forms together
with the grayscale value gm the binary event-image.
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The event event-image and binary event-image have one of three grayscale values
representing on-events, off-events or background information gm. In this case events
occurring within the time period at the same spatial location override the previous infor-
mation, which means a loss of information useful in correspondence search. Therefore,
we use all events to form the Grayscale event-image EIg(x, y) shown in (d). Using all
events described by the event index set eI, the polarity of the event adds or subtracts a
grayscale value gs to the grayscale event-image according to

EIg(x, y) = EIg(x, y) + fg(e(x, y, t)) ∀(x, y, t) ∈ eI , with (5.7)

fg(ε) =

+gs if ε = +1 , on-event
−gs if ε = −1 , off-event

, (5.8)

where function fg determines a grayscale value gs which is added or subtracted depend-
ing on the occurrence of an on- or off-event. Events with different polarities occurring
at the same spatial location during the time history, can cancel each other.

5.2.2 Event Image-based Stereo Matching

In the category of event image-based algorithms, we can distinguish between area-based
and feature-based approaches. Before the two algorithm categories are described, two
filtering options for the input event-images are discussed. This filtering reduces noise
and outliers in the input event-image and increases the performance of the subsequently
applied stereo matching algorithms.

5.2.2.1 Filtering Input Event-Images

For the filtering of the event-images a median filter and a connected component filter
were implemented.

Median Filter The first filter, which is used for the filtering of the input event-images,
is a median filter [15] with a kernel size of 3×3. In Figure 5.8, the first row shows the input
images with the deactivated median filter and the row below shows the results when
the median filter is applied. The filter removes the noise but we found that - depending
on the time history - important parts of the camera data might be suppressed as well.
Additionally, the median filter also changes the value based on the neighbor values,
which is a data manipulation.

Connected Component Filter The second filter which we tested for the filtering of
the input event-images is a connected component filter. Here, all three event-image
types EIe(x, y), EIb(x, y) and EIg(x, y) are possible inputs for the filter. In the following,
EI#(x, y) represents all three event-image types. For each pixel (x, y) within the event-
image EI#(x, y), where the value is unequal to the value gm, the filter operation is applied.
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(a) (b) (c)

Figure 5.8: The effect of using a 3×3 median filter (second row) for filtering the in-
put event-images (first row). (a) Event event-image, (b) Binary event-image and (c)
Grayscale event-image.

Then, at the pixel location (x, y) the sum s(x, y) of all values n of the neighborhood N(x, y)
(8-connected neighborhood) is calculated according to

s(x, y) =
∑

n∈N(x,y)

EI#(n). (5.9)

Based on the sum s(x, y) can be determined with

EI#(x, y) =

EI#(x, y) if s(x, y) , 8 · gm

gm if s(x, y) = 8 · gm
, (5.10)

if the pixel (x, y) has a neighbor unequal to gm. A sum which is equal eight times the value
gm describes a pixel that has no direct neighbor (connected component) and is removed
from the event-image EI#(x, y) by overwriting the pixel (x, y) with gm. In Figure 5.9, the
first row again shows the input event-images without an applied filter, and the second
row provides the results when the connected component filter is applied. The effects
of the filtering are shown for event event-images in Figure 5.9(a), binary event-images
in (b), and grayscale event-images in (c). In comparing the connected component filter
with the median filter, we find that the connected component filter removes noise more
carefully than the median filter. This can be explained by the fact that the connected
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(a) (b) (c)

Figure 5.9: The effect of using a connected component filter (second row) for filtering
the input event-images (first row). (a) Event event-image, (b) Binary event-image and
(c) Grayscale event-image.

component filter only removes pixels if they have no direct neighbors different to gm.
In contrast the median filter removes or the same pixel. Even so, there are neighbors
unequal to gm and, in some cases, applying the filter on grayscale event-images changes
the pixel value. This difference makes the connected component filter the preferred
filter to use with event-images.

5.2.2.2 Area-Based Approaches

The first category of event image-based algorithms we consider is comprised of the
area-based approaches. There exists a variety of cost calculation metrics, as introduced
in Section 4.1.2. For our experiments, we have chosen seven metrics that are applied to
event-images.

The following six metrics are applied to a grayscale event-image EIg(x, y). First cor-
relation metric is the previously introduced SAD metric (Section 4.1.2), which calculates
the cost values CSAD(x, y, d) for a given left EIg_l and right EIg_r grayscale event-image
with

CSAD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

|EIg_l(x + i, y + j) − EIg_r(x − d + i, y + j)|, (5.11)
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where m and n define the window size in horizontal and vertical direction and d the
disparity.

The next correlation measure is the Zero-mean Sum of Absolute Differences (ZSAD)
which calculates the costs CZSAD using

CZSAD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

|(EIg_l(x+i, y+ j)−EIg_l)−(EIg_r(x−d+i, y+ j)−EIg_r)|. (5.12)

Here, in comparison to the SAD metric, the average value of the left EIg_l and right EIg_r
grayscale event-image is subtracted before the costs are calculated. In case of grayscale
event-images, the average value is almost always the middle grayscale value gm.

Another correlation metric is the Locally Scaled Sum of Absolute Differences (LSAD),
which calculates the costs CLSAD using

CLSAD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

|EIg_l(x + i, y + j) −
EIg_l

EIg_r
· EIg_r(x − d + i, y + j)|. (5.13)

The next three correlation metrics are similar to the previous three except that
the squared differences of the pixels in the window are summed up, according to
Equation (5.14) for the Sum of Squared Differences (SSD), Equation (5.15) for the Zero-
mean Sum of Squared Differences (ZSSD) and Equation (5.16) for the Locally Scaled
Sum of Squared Differences (LSSD).

CSSD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

(EIg_l(x + i, y + j) − EIg_r(x − d + i, y + j))2 (5.14)

CZSSD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

((EIg_l(x+i, y+ j)−EIg_l)−(EIg_r(x−d+i, y+ j)−EIg_r))2 (5.15)

CLSSD(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

(EIg_l(x + i, y + j) −
EIg_l

EIg_r
· EIg_r(x − d + i, y + j))2 (5.16)

The seventh correlation metric differs from the previous six metrics and is based
on the definition in Section 4.1.2 that described non-parametric local transforms intro-
duced by Zabih and Woodfill [100]. This algorithm, based on the Census transform,
is called in the following event transform (ET) and is applied on event event-images.
In Figure 5.10 we describe the principle of the event transform and the differences to
the census transform. Figure 5.10(a) shows the left and right input event event-images
with the windows considered. The correlation using the dual-state logic is illustrated
in Figure 5.10(b) and using the tri-state logic in (c). Before the costs can be calculated,
vectors are created, which encode the pixels within the considered window. Using the
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dr

Figure 5.10: Matching of the input event event-images (a) using the event transform:
The neighborhood of the matching candidate is encoded in a bit vector ((b) dual-state
logic or (c) tri-state logic) which is used for calculating the matching costs.

dual-state logic the vector image V(x, y) for a considered pixel is constructed according
to

V(x, y) =

b
m
2 c⊗

i=−bm
2 c

b
n
2 c⊗

j=−b n
2 c

fd(EIe(x + i, y + j)), (5.17)

where
⊗

symbolizes value-wise concatenation of the m × n neighborhood using the
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function fd according to

fd(ε) =


1 if ε = 0 , on-event
1 if ε = 255 , off-event
0 if ε = gm , background

. (5.18)

If the neighbor is a background pixel gm then a 0 is concatenated to the vector, and if
the neighbor is an on- or off-event the added value to the vector is 1. To use the tri-state
logic, the function fd is replaced by the function ft which calculates the values for the
vector according to

ft(ε) =


1 if ε = 0 , on-event
−1 if ε = 255 , off-event
0 if ε = gm , background

. (5.19)

The difference with the tri-state logic is that the on-event is encoded with 1 and the
off-event with -1. A neighbor which represents a background pixel gm is encoded as
before with 0.

After the vectors of the window patches have been generated and stored into the
vector image, the costs for each pixel CET(x, y, d) at disparity d within the disparity range
dr are calculated with

CET(x, y, d) = HD(Vl(x, y),Vr(x − d, y)) (5.20)

HD(v1, v2) =

(m×n)−1∑
i=0

v1[i] , v2[i]. (5.21)

The function HD computes the Hamming distance [35] between a vector v1 from the left
vector image Vl and a vector v2 from the right vector image Vr. The Hamming distance
describes the number of different elements (values) between the two vectors, and less
dissimilar values correspond to lower cost and indicate a better match.

5.2.2.3 Feature-Based Approaches

Feature-based matching approaches represent the second category of event image-
based algorithms we use for our experiments with silicon retina stereo data. Before
the matching takes place, the event-image is processed and analyzed to extract features
that can be used for the correspondence search. Various properties of an image can be
chosen as features for further processing. Examples of such features are lines, points,
segments, and many more. For our silicon retina stereo matching, the following two
feature matching approaches are chosen.

The first feature-based approach is a Center of Gravity (COG) matcher, which extracts
objects in the binary event-image and calculates the geometric center of the extracted
segments. These segment centers are involved in the correspondence search to retrieve
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Figure 5.11: Work flow of the center of gravity stereo matching algorithm. The images
show in (a) the binary event-images, (b) the results after the erosion step, (c) the output
after the dilation step, (d) the segmented and labeled images and (e) the extracted center
of gravity features used for matching (red dots).

the depth values. In Figure 5.11 the work flow of the COG stereo matching algorithm
is shown. In Figure 5.11(a) the binary event-images of the left and right camera are
depicted before erosion (5.11(b)) and dilation (5.11(c)) [34] take place. For both morpho-
logical operations, which represent an additional filtering of the binary event-images,
a circular structure element is used. After the morphological pre-filtering, we apply a
segmentation step using a flood-filling algorithm [15]. This algorithm groups and labels
connected pixels within blobs, which is illustrated in Figure 5.11(d). In the next step,
the labeled segments are analyzed and the geometrical center (center of gravity) of the
segment is calculated. The center represents the whole segment within the matching
process. In Figure 5.11(e) the red dots symbolize the center of gravity features matched
in the next step. The whole segment is represented by a point, which is used for the
matching and calculating of the depth for all pixels within the segment. This, as well as
the fact that the center of gravity from the same segment in the left and right image can
have different y-coordinates, make this approach faulty. Additionally, the approach is
specialized for single objects or objects without overlapping edges, which reduces the
flexibility and range of usage. The possible displacement in the y-coordinate is consid-
ered during the matching process to achieve comparable results. In the experimental
result section, we will evaluate the COG algorithm and compare the results with the
second implemented feature-based stereo approach.

The second feature-based matching approach we evaluate with silicon retina stereo
data is a corner feature (CF) matching algorithm. The CF algorithm is based on features
described in the work of Shi and Tomasi [80], which is implemented in the function
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goodFeaturesToTrack of the OpenCV1 [13] library. In Figure 5.12 the work flow of the
corner feature matcher is presented. In Figure 5.12(a) the extracted corner features of

Build BRIEF Descriptors

Matching Descriptors

Filtering Matches
(Epipolar Constraint)

(a)

(c)

(b)

Output: Lines connect corresponding corner features (matches)

Input: Extracted corner features from the grayscale event-images

Build BRIEF Descriptors

Figure 5.12: (a) Detected corner features (red circles) of the left and right grayscale
event-image. (b) Workflow of the corner feature matcher. (c) Corresponding corner
features (green circles) are connected with green lines.

the left and right grayscale event-image are shown. After the feature detection, the
work flow for finding corresponding matches is shown in Figure 5.12(b). The workflow
starts with the extraction of image descriptors. Here, the Binary Robust Independent
Elementary Features (BRIEF) descriptors presented in the work of Calonder et al. [16]
are used. These descriptors are very competitive to the often used Speeded Up Robust
Features (SURF) descriptors and calculated in a fraction of time. A brute force matcher
of OpenCV is used to match the constructed descriptors of the left and right image.
Finally, filtering checks if the found matches fulfil the epipolar constraint. In a rectified
setup, only features which are on the same y-coordinate fulfil the epipolar constraint,
but the possible localization of the features on slightly different y-positions requires a
consideration of matches on different y-lines. In Figure 5.12(c) the final matched features
(connected by solid lines) are shown. Besides the search space of the line position, we

1Open Source Computer Vision Library - http://opencv.org/
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also considered other parameters during the evaluation of the corner feature matcher,
which are presented in the experimental results section.

5.2.3 Event-based Stereo Matching

The second category of matching algorithms this study used is the event-based stereo
matching algorithms which do not require the conversion of events to event-images
prior to matching. Instead of an event-image, we use an event list as described in
Figure 5.7.

The proposed algorithm for the event-based category is a time correlation (TC) stereo
matching approach. In this approach, we use the time of occurrence of the events and
the spatial location as correlation information. Here, the costs CTC(x, y, d) at disparity d
within the disparity range dr are calculated according to

CTC(x, y, d) = fm(ELl[il],ELr[ir], d) . . .
∀il = [0 . . . nl − 1] ∧ ir = [0 . . . nr − 1] , with (5.22)

fm(sl, sr, d) =

 fc(tsl , tsr) if ysl = ysr ∧ (xsl − d) ≥ (xsr − dr) ∧ esl = esr

cM if otherwise
, (5.23)

where nl and nr describe the number of entries in the left ELl and right ELr event list. The
matching function fm calculates for a pair of event data (sl, sr) the costs using the function
fc (see Equation (5.24)) if the y-coordinate of the left ysl and right ysr event data are the
same, the x-coordinate between the left xsl and right xsr event data is within the disparity
range dr and the polarity of the left esl and right esr event is the same. Otherwise the cost
of the position (x, y, d) of the DSI is set to the value cM which describes a predefined cost
value stored in the DSI needed to search for matching candidates. The maximum costs
have to be set greater than the time history h, because the best match has a cost 0 which
would lead to problems during the search for matching candidates.

For the cost calculating function fc two different timestamps (tl, tr) are used to cal-
culate the cost, based on the chosen method m according to

fc(tl, tr) =


tl − tr if m = 0
0 if m = 1 ∧ (tl − tr) ≤ 1
log(tl − tr) · s if m = 1 ∧ (tl − tr) > 1

, (5.24)

where the costs for the events are calculated with an inverse linear method (m = 0) or
a logarithmic method (m = 1). If the time difference is equal or smaller than 1, then
the costs for the logarithmic function are set to 0. For a time difference greater than 1
and method where m = 1, the result of the logarithmic function is multiplied by scaling
factor s, which is adapted based on the time history.

In Figure 5.13, the matching process using the time as correlation criterion is shown
in more detail. For the demonstrated example of cost calculation, the inverse linear
method is used. The timestamp of the considered event of the left event list te1 is 10,
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Figure 5.13: Time-based matching: The time differences between events are used as
matching costs.

which represents the current time. In the right event list, all timestamps te2 of events with
the same polarity and within the disparity range d are compared with the timestamp
of the considered event on the left side. The events with the lowest time difference
between their timestamps likely represent the best match.

5.3 Improvement Techniques for Silicon Retina-based Stereo
Matching Algorithms

Before the following improvement techniques were applied to the stereo matching algo-
rithms, all introduced stereo matching approaches were tested and evaluated indepen-
dently. We used these improvement techniques to increase the accuracy of the overall
stereo matching performance. There are two main approaches that we suggested. First,
we developed a modified version of the global optimization Belief Propagation (BP)
method, which was adapted to work with silicon retina data; secondly, we developed
different post-processing methods such as average filter, median filter, and a novel
approach called Two-Stage Postfilter (further called also as Two-Stage Filter (2SF) ).

5.3.1 Sparse Belief Propagation Improvement Method

The first improvement technique we suggest is a Belief Propagation (BP) [89] approach.
BP is also known as a sum-product message passing algorithm, and is applied on initial
stereo matching results to improve the matching quality. In the literature, different
versions can be found that focus not only on the stereo matching improvement, but
also try to optimize the BP approach itself in terms of processing time and memory
consumption [104]. Even though BP mainly benefits from the smoothness assumption
between neighbors in dense cost volumes, we have chosen BP to be used with sparse
stereo input. The reason is its potential for adapting the global smoothness term in a
way that operates locally with connected groups of disparities. We expected especially
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sparse data with little local information to benefit from this information gain. In the
following, we present our adaptations of BP to improve the stereo matching results.

Before going into detail about the adaptations for sparse data, we will first explain
the BP method itself. First, the initial matching costs

CI(x, y, d) =

b
m
2 c∑

i=−bm
2 c

b
n
2 c∑

j=−b n
2 c

|Il(x + i, y + j) − Ir(x − d + i, y + j)| (5.25)

are calculated. Il and Ir denote the left and right grayscale event-images, and d represents
the disparity. Here, a sum of absolute difference function (SAD) with an aggregation
window size of m×n is used. Second, the global energy function [104] defined according
to

E =
∑
p∈P

{
Ed(px, py, dp) +

∑
q∈Np

Es(dp, dq)
}
, (5.26)

where P describes the set of all pixels in the image and Np denotes the 4-connected
neighborhood of pixel p, is minimized. Ed(px, py, dp) represents the cost of assigning
disparity dp to pixel p, which is called data costs (data term) and is extracted from
the DSI calculated in Equation (5.25). The second term Es(dp, dq) of the equation is the
smoothness term, which represents the smoothness costs between neighboring pixels
p and q if p is assigned to disparity dp and q to disparity dq. The calculation of the
smoothness cost is presented in Equation (5.30). BP is an iterative procedure that seeks
to minimize the mentioned energy costs. In each iteration j, the pixel p updates its
neighbors’ costs using a D-dimensional message M j

pq, as shown in Figure 5.14(a). This
message sends the belief (costs) in what pixel q’s disparity could be, given by

M j
pq(dq) = min

dp∈D

{
Ed(dp) + Es(dp, dq) +

∑
q′∈Np\q

M j−1
q′p (dp)

}
, (5.27)

where D is the set of all possible disparities. Np represents the set of all neighbors
of p and q′ ∈ Np\q are all neighbors of p except q. Figure 5.14(a) shows the generated
message at iteration j for one neighbor using the beliefs of the other neighbors at j−1. In
Figure 5.14(b) the graph with the message update for all neighbors at iteration j is shown.
Each pixel has sent its beliefs to all four neighbors, who use these beliefs in the next
iteration as information for generating new messages as described in Equation (5.27).
After a certain number of iterations J, the final step of BP is to sum (also called aggregation)
the costs shown in Figure 5.14(c) and search for the best disparity of each pixel, which
can be expressed as

dp = arg min
d∈D

{
Ed(d) +

∑
q∈N

MJ
qp(d)

}
. (5.28)

Ed(d) are representing the costs of the data term, calculated in Equation (5.25), where
the summed costs of the neighbors N are added. The lowest costs are associated with
the best match dp which is chosen for the disparity map.
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Figure 5.14: BP message flow: (a) Shows the messages sent to one neighbor (p to q)
at iteration j depending on the other three neighbors’ belief at ( j − 1). (b) Shows the
messages sent from one pixel at iteration j to its 4-connected neighborhood. (c) Indicates
the final message passing after J iterations where all neighbors’ beliefs contribute for
the evaluation of pixel p.

One problem with this method is that the BP algorithm in its original version works
in conjunction with neighbors in the 2D image grid, and expects cost values from the
4-connected neighborhood to optimize the overall energy E(d) of Equation (5.26). In
the beginning, the initial matching costs CI are calculated by using Equation (5.25) with
Il = EIl and Ir = EIr, where EIl and EIr describe the left and right grayscale event-images
from silicon retina sensors. The DSI filled with matching costs CI exists due to use of
grayscale event-images that are not densely filled, which means that many locations of
the DSI have a value of zero. This causes failure of the propagation steps. Therefore, a
maximum cost value evaluation within the DSI takes place before starting the update
of the neighbors’ costs, using a D-dimensional message M j

pq. The maximum costs are
calculated according to

CImax(x, y) = max
d∈D

{
CI(x, y, d)

}
, (5.29)

where CImax(x, y) is the maximum of a pixel’s matching costs within the defined disparity
range D. If CImax(x, y) is not equal to zero, the processing of the current considered pixel
continues, otherwise it is skipped because there is no possible match for pixel p. Now,
if the neighbor pixel q has a value unequal to the background value gm of the grayscale
event-image, the calculation of the belief and its corresponding message occurs. If
the cost values Ed(dp) within the disparity range of the considered pixel are zero, a
replacement cost value must be assigned to calculate the beliefs of the neighbors. For
this reason, we use the calculated cost value CImax(x, y) of Equation (5.29) to represent
the values which are zero within the DSI. If there is only one possible match, which
has the cost value CImax(x, y), then the belief calculation would negatively influence
the message generation process. To avoid this influence over the message, the final
replacement value for values equal to zero within the DSI is two times the calculated
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cost value CImax(x, y). The calculation of the smoothness costs Es(dp, dq) is done with
assignment of a penalty according to

Es(dp, dq) =


0, dp = dq
Pe
8 , |dp − dq| = 1
Pe
2 , |dp − dq| = 2

Pe, |dp − dq| ≥ 3

, (5.30)

where the penalty depends on the neighbors’ disparity difference and a constant value
Pe. Another important implementation step is the division of the third term of Equa-
tion (5.27) by the number of neighbors Nmsg who have sent costs unequal to zero because
of the sparse DSI. In case all neighbors have sent costs equal to zero, the sum of all neigh-
bors’ beliefs is set to two times the previously introduced CImax(x, y). The result of the
final aggregation step given in Equation (5.28) also needs to be divided by the number
of neighbors Nmsg who are unequal to zero. In case the result of the final aggregation is
equal to zero, the costs are set to 2 · CImax(x, y). These calculation steps are necessary to
make the BP work with the sparse data within the DSI, where many cost values equal
to zero are present. The proposed adaptations enable the usage of BP-based algorithms
with sparse grayscale event-images.

5.3.2 Post-processing Improvement Methods

As input for the post-processing improvement techniques, we use the disparity maps
from the stereo matching algorithms to get more robust and accurate depth information.
We employ three different filters for the post-processing which include two standard
filters (average filter and median filter), which are presented in Section 5.3.2.1. The third
filter introduced in Section 5.3.2.2 is more advanced and optimized for the operation on
sparse disparity maps.

5.3.2.1 Simple Filters

The average filter and median filter [15] used for the post-processing of the sparse
disparity maps are applied with window sizes of 3×3 and 5×5. Both filters operate
on the disparity map calculated from the stereo matching algorithm. In Figure 5.15
the impact of the average and median filter is shown. Image (a) shows the original
disparity image delivered by the stereo matching algorithm. The average filter shown
with a window size of 3×3 in (b) and 5×5 in (c) changes the values but does not remove
disparity values during the filtering process. In contrast, the median filter, based on
the window size of the filter, removes a disparity value if more than half of the values
within the considered window are zero. Image (d) shows the results of the 3×3 median
filter and image (e) the results of the median filter using a 5×5 window. Using the 5×5
window many of the disparity values are completely removed and the outcome changes
significantly, which shows that the post-processing filter must be chosen carefully where
there is sparse data.
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Figure 5.15: Showing the impact of the average filter 3×3 in (b) and 5×5 in (c). The
results of the median filter using a 3×3 window is shown in (d) and a 5×5 window
in (e). For the comparison of the filter outcome, the original stereo matching result is
shown in (a).

5.3.2.2 Two-Stage Filter

The third post-processing filter was specifically adjusted to the operation on sparse
disparity maps. This filter works in two steps, and therefore, we call it the Two-Stage
Filter (2SF).

In comparison to standard filters, such as the average filter or median filter, which
were designed for dense image processing, the proposed filter is especially designed for
sparse input data and considers an 8-connected neighborhood with a certain radius as
shown in Figure 5.16. First for each disparity value d, an array L1 j

d ∈ R
rm×8 at iteration j

is calculated with

L1 j
d[r, i] = DM j

Ni
(x + r, y + r) ∀r ∈ {1 . . . rm} ∧ i ∈ {0 . . . 7}, (5.31)

where for each direction Ni (8-connected neighborhood) the values of the disparity map
DM within the radius rm are collected and stored in L1 j

d. Because of the sparse character
of the disparity map the array contains disparity values which are equal to zero. Now a
median filter fm is applied to all disparity values not equal to zero within the array L1 j

d.

For each direction Ni the median value is calculated and stored in an array L2 j
d ∈ R

1×8

given by
L2 j

d[i] = fm(L1 j
d[1, i],L1 j

d[2, i], . . . ,L1 j
d[rm, i]) ∀i ∈ {0 . . . 7}. (5.32)

L2 j
d stores now all median values of all directions. In a second step, a median filter fm is

once again applied to all values of L2 j
d unequal to zero, resulting in the final disparity

value d.
SDM j

d = fm(L2 j
d[0],L2 j

d[1], . . . ,L2 j
d[7]) (5.33)
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Figure 5.16: 8-connected neighborhood of disparity value d with radius rm used for the
2SF.

defines the filtered and smoothed disparity map SDM j
d for further processing. Now,

depending on the number of iterations J, the disparity map is considered as final
DMJ

d = SDMJ
d or used for the next iteration cycle.

5.4 Summary

In this chapter, we have introduced stereo matching algorithms for silicon retina cam-
eras. Because the specific sparse data format consists of only two states (on- and
off-events), the calibration and rectification tasks needed to be adapted. Additionally,
we described an event-to-event-list and an event-to-event-image conversion process
that prepares the received data according to the demands of the stereo matching al-
gorithm applied. On one hand, we converted the events to event-images in order to
apply stereo matching algorithms that are also suitable for conventional stereo camera
systems. On the other hand, we developed stereo matching approaches using the event
data as event list without event-image generation to benefit from the specific data of
the silicon retina cameras. Both approaches have advantages and draw backs and,
therefore, we also addressed improvement techniques that seek to increase the quality
of the results delivered by the stereo matching algorithms. The overall improvement
of silicon retina-based stereo matching results that can be achieved by these algorithms
will be evaluated and discussed in Chapter 6.
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CHAPTER 6
Experimental Results

In this chapter, the newly developed stereo matching algorithms are evaluated. Before
the results of the stereo matching algorithms are presented, the evaluation methods are
explained. The tests are divided into two test series. In the first test series (TS1) the
silicon retina sensor with a resolution of 128×128 is used. The second test series (TS2)
uses the silicon retina sensor with a resolution of 304×240.

6.1 Evaluation Methods

As mentioned in Section 4.3, standard evaluation platforms and methods do not suit
silicon retina-based stereo matching. Therefore, we developed an evaluation platform
using synthetic silicon retina sensor data, which is described in Section 6.1.1. This eval-
uation is more suitable for laboratory tests, and does not represent real-world scenes.
For testing the algorithms with real-world scenes an evaluation method was imple-
mented that considered real objects first as planar surfaces (described in Section 6.1.2),
and second as complex curved surfaces (presented in Section 6.1.3). Thus, it was nec-
essary to develop an approach which uses real silicon retina sensor output data for
evaluation. For TS1 in Section 6.2, the evaluation described in Section 6.1.2 was used,
where the distance of objects was measured and used as reference for the evaluation.
This method works accurately for planar objects located in parallel to the image plane
of the camera. However, to improve the evaluation of silicon retina-based data, a more
accurate method was developed. Instead of assuming a planar object representation,
this method evaluates all pixels separately. That means that the evaluation of curved
shapes and different objects at different positions is possible. This approach is presented
in Section 6.1.3 and is used for evaluation of all stereo matching approaches presented
within TS2 in Section 6.3.
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6.1.1 Testing with Synthetic Data

A first evaluation platform for silicon retina-based stereo matching algorithms generates
both synthetic event data streams [87] for the stereo matching algorithms and ground
truth data for the subsequent evaluation step. To test the functional behavior and correct
operation of the silicon retina stereo matching algorithms, we have developed the tool
called Event Editor [87]. This tool allows the generation of synthetic silicon retina stereo
data, as well as the evaluation and analysis of the results. The event editor interface,
presented in Figure 6.1, shows, for example, a vertical line moving from top left to
bottom right. The tool consists of a graphical user interface for visualizing the event

Figure 6.1: Software tool Event Editor used for generating synthetic silicon retina sensor
data. Scenario shows a line moving from the upper left to the bottom right corner.
Left window: left camera view; Middle window: right camera view; Right window:
disparity map generated by the stereo matching algorithm.

input data and the stereo matching results in the form of a disparity map. Additionally,
the event editor offers a Python1 interface for textual input of commands controlling
the input data and evaluation process. To generate the synthetic input data, Python
scripts are used and all objects are defined by size, shape and moving direction. The
synthetic data points generated do not use an exact model of a silicon retina camera and,
therefore, the asynchronous characteristics are not considered and algorithms tailored
to the silicon retina sensor cannot be tested under real-world conditions. Real-world
application thus requires an additional evaluation with real-world data.

1http://www.python.org
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6.1.2 Testing with Assuming Planar Objects at Fixed Distances

For the evaluation of stereo matching algorithms under real-world conditions, test data
of real scenarios are used. In case of the real-world data the ground truth has to be
defined as well. To facilitate the ground truth generation, objects in front of the camera
are considered as ideal planar objects at a certain distance, which is used as ground
truth distance for the evaluation of the TS1 presented in Section 6.2. Figure 6.2 shows
some examples, assuming planar objects. The ground truth distance between the object
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(parallel to camera plane)
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Figure 6.2: Assumption of planar objects for evaluation stereo matching algorithms. (a)
Planar object fronto-parallel to the image plane, (b) planar object slanted to the image
plane, and (c) a human body assumed as planar object fronto-parallel to the image
plane.

centers and the camera plane was measured with a laser distance meter. This evaluation
method works well for objects that are planar and parallel to the image plane, as shown
in Figure 6.2(a), because all object pixels then have the same distance. If planar objects
(Figure 6.2(b)) are slanted with respect to the image plane, some object points are
closer and other ones are farther from the camera. This results in inaccurate evaluation
because the distance at the object’s center is used as ground truth. Here, the obvious
defect of this approach is evident since real objects are not ideally planar, as illustrated
in Figure 6.2(c). The person’s shape with different distances along its silhouette cannot
be evaluated accurately with this approach. Therefore, we developed another method
described in Section 6.1.3 and used the method for TS2.

6.1.3 Testing Pixel-wise with Complex and Curved Objects

The evaluation method described in this subsection generates ground truth data by
capturing the same scene as the silicon retina stereo sensor with a second conventional
stereo camera system. This enables a pixel-wise comparison of calculated silicon retina
stereo matching results with the ground truth depth values offered by the second camera
system. Though the depth data calculated by the conventional stereo sensor exhibits a
limited accuracy, this accuracy is considered sufficient for our experiments and therefore,
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is considered to be ground truth. This method is used for the evaluation of the TS2
presented in Section 6.3.

6.1.3.1 Ground Truth System Setup

Enabling the pixel-wise evaluation of the silicon retina stereo matching results requires
the measurement of the ground truth depth values from the test scenes shown in
Figure 6.9. We used conventional monochrome cameras in a stereo set-up that was
designed to achieve at least twice of the accuracy of the silicon retina stereo system, in
order to obtain valid reference data. In Figure 6.3, the stereo system in the white box
represents the silicon retina stereo system, which is under evaluation. This system has
a rigid connection to the monochrome reference stereo vision system above, which is
marked with a dashed bounding box. The reference system shown in Figure 6.3 consists

Reference Stereo System

Silicon Retina Stereo System

Figure 6.3: Camera set-up for ground truth generation. The white box holds the
embedded silicon retina stereo system, the stereo system in the dashed bounding box
above acts as the reference stereo camera system.

of two Imaging Development Systems1 (IDS) cameras (model UI-1220SE-M-GL Rev.2)
which are mounted on a rigid baseline of 0.12m. The cameras transmit their images to
the PC, where further processing takes place. The rectified images are processed with
a sufficiently accurate and reliable Census-based stereo matching algorithm. Details
about the stereo matching engine can be found in the work of Humenberger et al. [49].

For the measurement of the reference system’s accuracy, objects were placed at
different distances. All distances were measured with a laser distance meter device and
compared with the depth output of the stereo algorithm. The accuracy was evaluated in
the range where the tests took place. The average distance error in the range of interest
is shown in Table 6.1. The results show that the reference system has at close distances

1http://en.ids-imaging.com/
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distance avg err error
1.0m 0.012m 1.20%
1.5m 0.017m 1.13%
2.0m 0.027m 1.35%
2.5m 0.040m 1.60%
3.0m 0.081m 2.69%
3.5m 0.117m 3.35%
4.0m 0.220m 5.48%

Table 6.1: Evaluation of the distance accuracy of the reference stereo vision system.
In the testing range, the depth algorithm output is compared with the real distance
measured by a laser distance meter.

till 2.5m an error of less than 1.6%, and for distances between 2.5m and 4.0m of less than
5.48%.

6.1.3.2 Calibration of Ground Truth Setup

Before the ground truth-based testing can be done, both stereo camera systems need to
be calibrated and registered onto each other in a way that they have a pixel congruent
representation of the scene in front of them. In the calibration step, both stereo heads are
calibrated separately. The reference system, as well as the silicon retina stereo system,
use the same calibration procedure as described in the work of Zhang [103] and adapted
in our work [27]. The only difference is the pattern used. For the reference system, the
classic checkerboard calibration pattern is captured in different positions to provide
the necessary feature points. In contrast, the silicon retina system uses a circle pattern
flashing on a computer display to generate stimuli for the retina sensors, and later to
extract the feature points for the calibration step. In this case, either the computer
display or the silicon retina stereo camera can be moved to capture the necessary
different views. After the calibration step for both stereo heads, all calibration and
rectification parameters are available and are further used in the registration process.

6.1.3.3 Registration of Ground Truth Setup

For the registration of both cameras onto one another, in order to achieve a common
understanding of the scene, the left image is used as reference for the depth map.
Therefore, the registration took place between the left views of the stereo systems.

In a first experimental setup, we tried to register both camera systems to a common
world coordinate system. The results have shown that the accuracy depends on the
exact calculation of the origin point and orientation of the world coordinate system. The
overall problem with this approach was that the transform had to be done in 3D space,
where we additionally (to the estimation of R and t) had to deal with reconstruction
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uncertainty. This lack of accuracy led us to another approach with more promising
results. The second approach is based on homographies, which represent the projective
transformation between two planar spaces. Thus, we use a homography H according
to

pre f = H · psr, (6.1)

with psr, pre f in homogeneous coordinates which is written element by element as
xre f
yre f
zre f

 =


h11 h12 h13
h21 h22 h23
h31 h32 h33

 ·

xsr
ysr
zsr

 , (6.2)

where a point psr = (xsr, ysr, zsr)T from the silicon retina stereo camera image (left) is
transformed to a point pre f = (xre f , yre f , zre f )T in the reference stereo camera image (left).
The homography H is determined to match one certain plane for a set of given feature
points, as shown in Figure 6.4. All feature points represented by the green circles are

Silicon Retina (Left) Reference System (Left)

(a) (b)

Figure 6.4: (a) Silicon retina camera image. (b) Reference image. The green circles in
the left and right image represent the extracted feature points, and crosses in the right
image show the feature points after transformation using the homography.

the extracted feature points. Image (a) shows the silicon retina image with the extracted
feature points psr from the left sensor, and the image (b) shows the extracted feature
points pre f from the reference image of the left sensor. The blue crosses in image (b),
mark the transformed feature points, estimated with the calculated homography at a
distance of 1m.

Using only this homography will lead to errors when applying it to other distances.
Therefore, the homography H was calculated at different distances d (in meters), where
d ∈M := {1, 1.5, 2, 2.5, 3, 3.5, 4}. For each of these distances the corresponding homogra-
phy H(d) was calculated using the singular value decomposition (SVD) [86].
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Before the SVD can be used the Equation (6.2) is transformed into the Euclidean
form by dividing with zre f and setting zsr = 1, which leads to

xre f

zre f
=

h11xsr + h12ysr + h13

h31xsr + h32ysr + h33
(6.3)

yre f

zre f
=

h21xsr + h22ysr + h23

h31xsr + h32ysr + h33
. (6.4)

Now, the equations are multiplied by the denominator and rearranged according to

xre f

zre f
· (h31xsr + h32ysr + h33) − h11xsr − h12ysr − h13 = 0 (6.5)

yre f

zre f
· (h31xsr + h32ysr + h33) − h21xsr − h22ysr − h23 = 0, (6.6)

which can be written as system of linear equations according to

Dh =



−xsr1,−ysr1,−1, 0, 0, 0,
xre f 1·xsr1

zre f 1
,

xre f 1·ysr1

zre f 1
,

xre f 1

zre f 1

0, 0, 0,−xsr1,−ysr1,−1,
yre f 1·xsr1

zre f 1
,

yre f 1·ysr1

zre f 1
,

yre f 1

zre f 1
...

−xsrN,−ysrN,−1, 0, 0, 0,
xre f N ·xsrN

zre f N
,

xre f N ·ysrN

zre f N
,

xre f N

zre f N

0, 0, 0,−xsrN,−ysrN,−1,
yre f N ·xsrN

zre f N
,

yre f N ·ysrN

zre f N
,

yre f N

zre f N





h11
h12
h13
h21
h22
h23
h31
h32
h33


= 0, (6.7)

where N describes the number of feature points and fills the matrix D with 2N rows.
Together with the vector

h = [h11h12h13h21h22h23h31h32h33]T, (6.8)

which describes all elements of the homography and forms a system of linear equations,
which has to be solved under the constraint h , 0. For a system with more than four
point correspondences the solution of

arg min
||h||=1
||Dh|| = arg min

||h||=1
hTDTDh = λmin (6.9)

is wanted, whereλmin represents the smallest eigenvalue of DTD. To find the eigenvector
which corresponds to the smallest eigenvalue the SVD is applied given by

[USV] = SVD(D(psr(d), pre f (d))), (6.10)

where the columns of U contain the eigenvectors of DDT and the columns of V the
eigenvectors of DTD corresponding to the singular values of the diagonal in matrix S.
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Since we searched for the vector h an eigenvector with the eigenvalue closest to zero,
we used the last column of matrix V, which corresponds to the smallest eigenvalue
of DTD. This last column of V represents the solution for vector h = V(:, 9) ∈ R9x1 in
Equation (6.8), which gives the coefficients of our searched homography H(d) in the
form of

H(d) =


h11 h12 h13
h21 h22 h23
h31 h32 h33

 . (6.11)

After the SVD, an optimization step fr

Hr(d) = fr(H(d)), (6.12)

using the Levenberg-Marquardt [63] algorithm, takes place to obtain the refined ho-
mography Hr(d).

After this step, the homographies for the seven defined distances are available, but
the distances in between are still missing. For this reason, an interpolation step was
done to determine a polynomial function of degree 4 to approximate the homography of
each position in the range between 1m and 4m. The polynomial of degree 4 was chosen
because it achieved the best results in our experiments, in which we tested polynomials
of degree 3, 4 and 6. All of the homographies calculated in Equation (6.12) for the
distances d ∈M are used to calculate a coefficient vector C ∈ R5x1, which represents the
coefficients for a polynomial of degree 4. The polynomial curve fitting function fp is
used to calculate the vector C for each element of the homography H = (hi, j)i, j=1..3 with

C(h(i, j)) = fp(Hr(d, i, j)) ∀ d ∈M. (6.13)

Now, for a certain distance dn all elements of the vector C are used to calculate with

Hn(dn, i, j) = C(h(i, j)1) · d4
n + C(h(i, j)2) · d3

n + . . .

C(h(i, j)3) · d2
n + C(h(i, j)4) · dn + C(h(i, j)5) (6.14)

the elements of a new homography Hn.
To check the accuracy of the homographies at the distances dn ∈ Mn :=

{1.25, 1.75, 2.25, 2.75, 3.25, 3.75} (in meters), the coefficient vectors C described in Equa-
tion (6.14) are used. In Table 6.2 the displacement of the calculated pixel positions in
relation to the real measured pixel positions in x- and y-direction are shown. The aver-
age pixel error in x- and y-direction is less than 2 pixels, which is an acceptable accuracy
for our evaluations, because we assume that, largely, a similar depth value is present
within a 2 pixel neighborhood. This means that in the evaluation, we accept the fact
that sometimes a value is evaluated wrongly; but this has, as shown in the experiments,
only minor effects on the total results.

6.2 Test Series 1

In the first test series (TS1) a silicon retina sensor with 128×128 and a temporal resolution
of 1ms was used. Two cameras of this type were rigidly mounted to form a stereo sensor,
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distance avg pix avg pix
[m] err x [px] err y [px]
1.25 0.83 1.50
1.75 0.67 0.67
2.25 0.67 1.67
2.75 0.17 0.67
3.25 0.67 0.83
3.75 1.67 1.33

Table 6.2: Accuracy and displacement of the calculated pixel positions in relation to the
real measured pixel positions in x- and y-direction.

which had been designed for an application of the silicon retina sensor in an automotive
application. The goal of this application was to use a silicon retina stereo sensor for
pre-crash side impact detection, where a depth resolution of 0.3m at a distance of 5 to 6
meters was needed. Based on these requirements, the two sensors were mounted with a
baseline of 0.45m and lenses with a focal length of 8.5mm were chosen. In Figure 6.5(a)
a scenario is shown where the stereo sensor was mounted on the side of the car and
should have detected approaching vehicles with a maximum speed of 60 km/h, that
may have caused a side impact. The detection must be made before the 5 meter limit is
reached so that the system then has the time necessary to activate the pre-crash safety
features, such as pretensioner or side airbag preparation. Figure 6.5(b) shows an image
pair of an oncoming car, once converted and displayed as grayscale images (first pair)
and once as on- and off-events (second pair). Another assumption we made for the
first tests, was that the ego motion of the stereo sensor is zero. This means that the side
impact detection is carried out when the stereo sensor is not moving. An additional
focus within the project was to test the ability of the silicon retina stereo sensor in
different traffic environments, where with different visibility and lighting condition
had to be dealt with. The functional behavior of the algorithms used in TS1 was tested
with synthetic data, as described in Section 6.1.1, and the evaluation with real-world
data was done with the method explained in Section 6.1.2.

The algorithms evaluated and compared within TS1 were an area-based sum of
absolute difference (SAD) algorithm and a feature-based center of gravity (COG) stereo
matching approach. Due to the lack of ground truth data, indoor test data with persons
at different distances were used for the evaluation of the algorithms instead of automo-
tive data. The persons were considered to be planar objects at a certain distance. In
Figure 6.6 the test data in 2m (a), 4m (b) and 6m (c) distance are shown. The top row
represents input data for the SAD algorithm and the bottom row the input data for the
COG stereo matching algorithm. The event data received were converted into images,
and 500 images were used to calculate an average error rate. The average error was
determined with the method presented in Section 6.1.2, where, for the SAD algorithm,
each calculated depth value was compared with the ground truth depth value mea-
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Figure 6.5: (a) Silicon retina stereo sensor used in a scenario for side impact pre-crash
detection. (b) Grayscale event-images from the left and right camera in the first row
and a pair of event event-images in the second row.

sured. In the case of the feature-based stereo matching, the depth of the feature centers
was compared with the depth of the measured ground truth distance.

Based on the time resolution of 1ms and the speed of the observed objects, time
histories of 10 and 20 timestamps were chosen.

6.2.1 Evaluation of SAD Matching Approach

The SAD approach was tested with four different window sizes, which were set to 3×3,
5×5, 7×7, and 9×9. The results of the SAD stereo matching algorithm are presented
in Figure 6.7. The results show that for farther objects a longer time history of 20ms
is more appropriate because more grayscale values needed the matching are available
in this timeframe. Considering the window sizes no major difference is visible, but a
slight trend towards better results with bigger window sizes is evident.

6.2.2 Evaluation of COG Matching Approach

In the tests with the COG approach, morphological operations [34] were applied to
the binary event-images. First an erosion to remove noise and outliers, and second a
dilation to close holes and support edges. The shape of the kernel element is a circle with
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Figure 6.6: Test input data in distances of (a) 2m, (b) 4m and (c) 6m for the SAD algorithm
shown in the first row and for the COG algorithm in the second.
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Figure 6.7: Evaluation of the SAD algorithm with a history of 10 and 20 timestamps and
different window sizes.

varying radii which are set during the experiments to erosion/dilation combinations of
3/5, 5/9 and 3/11 pixels. The results of the COG stereo matching approach are illustrated
in Figure 6.8. In case of the COG matching, only the center of an object is used for
calculating the distance, which means that this single center match is used to represent
and describe the depth of the whole object. Various erosion and dilation sizes generate
different results, but the combination 5/9 generates optimal matching results for all
investigated distances. Regarding the time history, for distances of 2m and 4m, no
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Figure 6.8: Evaluation of the COG feature-based algorithm with a time history of 10
and 20 timestamps and different kernel sizes of the morphological operators.

significant difference is visible between 10 and 20 timestamps. A time history of 20
performs better for the 6m distance. Overall, it remains a challenging task to set the
parameters of the erosion/dilation kernels and time history using the COG approach.

To summarize the evaluation of both algorithms in TS1, the SAD algorithm performs
better given the average distance error of the three evaluated distances.

6.3 Test Series 2

The second test series (TS2) is based on a silicon retina stereo sensor consisting of two
retina cameras with a spatial resolution of 304×240 and a temporal resolution of 100µs.
This sensor has a higher resolution than the one used for TS1 and is used for all further
experiments and evaluations of the different stereo matching algorithms in this thesis.
The sensor was designed for a variety of applications, and the baseline was chosen to
be 0.15m. Furthermore, for the evaluations in this section we used lenses with a focal
length of 8.5mm. All test data used for the evaluation of the different algorithms were
recorded indoors between 1m and 4m. For evaluation we used the pixel-wise ground
truth method presented in Section 6.1.3. In TS2, we used four test data sets (called
A, B, C, and D in the following), which are shown in the first row of Figure 6.9. Test
data set A shows one person walking in parallel to the camera plane at a distance of
2.5m and another one at 3.5m distance. In test data set B, two persons are walking at
distances of 2.5m and 3.5m, respectively, while partly overlapping. The third test data
set C consists of a human torso sitting in front of the camera and moving at a distance of
1.5m. Test data set D shows a striped rotating disc at a distance of 1.5m for stimulation
of events. The second row in Figure 6.9 shows the ground truth depth maps used for
the evaluation of the stereo matching results.

The silicon retina sensor is set to a temporal resolution of 100µs, which is an im-
portant setting for the time history used for our test data sets. Based on the temporal
resolution and the test data sets used, the time history was chosen in the range of 20-

70



Testset A

(2 persons walking 

seperately)

G
ra

y
 I

m
ag

e

(L
ef

t 
V

ie
w

)

G
ro

u
n

d
 T

ru
th

D
ep

th
 M

ap
Testset B

(2 persons walking 

partly overlapping)

Testset C

(human torso)

Testset D

(rotating disc)

1.5m 4.5m3.0m 0.5m 2.5m1.5m

Figure 6.9: The four test data sets A-D used in TS2, first row from left to right: A) two
persons walking at 2.5m and 3.5m, B) two persons walking partly overlapping at 2.5m
and 3.5m, C) human torso moving at 1.5m, and D) a rotating disc at 1.5m. In the second
row, the ground truth data corresponding to each test data set is shown.

600 timestamps, or 2ms-60ms. This range was chosen in order to maximize complete
objects contours without blurring effects. Figure 6.10 shows the examples of gener-
ated grayscale event-images for all four data sets. These input images are examples of
the gray scale images used for the stereo matching algorithms evaluated. During the
evaluation, time histories are used to generate different input images from the shown
examples in Figure 6.10.

In addition to the average distance error, we calculate two ratios, which are used
as confidence value as well as providing us with information on how reliable the
calculated average distance error is. A low average error indicates accurate results, but
does not note how many values are contributing to the calculation of this average error.
Therefore, two event ratios are introduced which describe the relation between input
and output. The first value is the ratio RD calculated by

RD =
Disparities Calculated

All Input Events
, (6.15)

which describes the relation between the amount of disparity values calculated and
the input events considered for the calculation. This is a measure of the density of the
output in comparison to the input.
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Figure 6.10: Grayscale event-images from all four test data sets A, B, C and D, generated
from the collected events of the silicon retina sensor. The images shown represent
the grayscale event-images with a time history of 600 (A-C) and 100 (D) timestamps.
(Contrast-enhanced images for better visualization.)

The second ratio RE is calculated by

RE =
Disparities Evaluated
Disparities Calculated

, (6.16)

which measures the relation between the evaluated disparity values and the disparity
values delivered by the algorithm. This ratio measures the amount of values which are
evaluated using the sparse ground truth and finally contribute to calculate the average
distance error.
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In Figure 6.11 the meaning of the ratios introduced in Equation (6.15) and (6.16) is
illustrated. Image (a) shows all input events (on- and off-events) within a certain time

(a) (b) (c)

Input Events Calc. Disparities Eval. Disparities

RD RE

Figure 6.11: The three subsets for calculating the ratios RD and RE represented by
images: (a) shows the input event event-image with the on- and off events, (b) the
calculated disparities, and (c) the disparities which are evaluated.

and image (b) represents the disparity values calculated based on this input. These two
values in relation lead to the ratio RD. In image (c), the background color indicates the
area for which ground truth values are available, and only disparities located inside this
area are evaluated. The disparities inside this area divided by all calculated disparities
provide the ratio RE.

For the evaluation of the stereo matching algorithms, the RD and RE values in
conjunction with the average distance error are important metrics for the interpretation
of the results. A good stereo matching approach would not only achieve a low average
distance error, but high RD and RE ratios as well.

6.3.1 Evaluation of Area-based Algorithms

Within TS2 we evaluate the area-based correlation algorithms described in Sec-
tion 5.2.2.2. Before the tests of the different area-based stereo matching algorithms
are conducted, the effect of filtering the input event-images generated from the silicon
retina camera is evaluated.

6.3.1.1 Evaluation of Input Event-image Filtering

The input data is filtered before the stereo matching takes place, to remove noise and
outliers. For this reason, we tested and compared a median filter and a connected
component filter. Both filters are tested on grayscale event-images generated from test
data sets A and D. After filtering, we employed the SAD and SSD approach with three
different window sizes (3×3, 9×9, 15×15) and three different time histories (200, 400,
600) to calculate the results.

The first tested filter is the median filter, described in Section 5.2.2.1, with a kernel
size of 3×3. Figure 6.12 shows the effect of the median filter when applied to test set A.
The results are improved by the median filter because the filter removes values which
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Figure 6.12: Evaluation of the median filter applied on the grayscale event-images
generated from test data set A.

would contribute negatively to the results from test set A. This reduces the number
of available and contributing matches, which decreases the ratio RD as presented in
Table 6.3.

The median filter was also applied on test set D, as shown in Figure 6.13. The median
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Figure 6.13: Evaluation of the median filter applied on the grayscale event-images
generated from test data set D.

filter applied on test set D has a different result compared to Figure 6.12, because of
the shorter time history less information was available for the generation of grayscale
event-images. This means the median filter removes more grayscale values from the
input images and lowers the amount of matching candidates.

Table 6.3 shows the event ratios RD and RE achieved with the median input filter.
The overall results show that the usage of the median filter improves the quality of the
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Median Time A Time D
Filter History RD/RE History RD/RE

Off h200 91.3/63.8 h50 86.3/51.6
On h200 12.8/41.2 h50 18.3/76.2
Off h400 84.0/61.0 h100 78.3/48.3
On h400 29.9/76.0 h100 51.2/64.8
Off h600 81.6/59.4 h150 68.8/41.1
On h600 42.3/78.3 h150 45.8/55.5

Table 6.3: Average ratios RD and RE with and without applying a 3×3 median filter on
the grayscale event-images of test data sets A and D.

calculated depth values but decreases the number of events evaluated. Therefore, we
decided not to incorporate the median filter into our evaluation because the amount of
removed input values is excessive.

Another filter applied to input grayscale event-images is the connected component
filter introduced in Section 5.2.2.1. The filter is applied to each event of the grayscale
event-image which is unequal to the background value and eliminates this event if
no connected gray value unequal to the background value is present. In Figure 6.14
the results of applying the connected component filter to test set A are shown, and
Figure 6.15 shows the results for test set D. If the time history is short, the number of
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Figure 6.14: Evaluation of the connected component filter applied to grayscale event-
images generated from test data set A.

events along edges is low and, consequently, edges appear sparse and become filtered
out. In contrast to the median filter, such sparse data is only removed if no direct
neighbor is present. This means the connected component filter deletes more safely
input data, because, for example, a 3×3 median filter will remove the pixel even if there
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Figure 6.15: Evaluation of the connected component filter applied to grayscale event-
images generated from test data set D.

are three direct neighbors. Therefore, the connected component filter achieves more
stable filtering results over different time histories.

Table 6.4 shows the event ratios RD and RE using the connected component filter.
The table shows the mentioned impact of the connected component filter in comparison

Conn. Comp. Time A Time D
Filter History RD/RE History RD/RE

Off h200 91.3/63.8 h50 86.3/51.6
On h200 62.5/68.9 h50 62.1/56.8
Off h400 84.0/61.0 h100 78.3/48.3
On h400 67.2/65.8 h100 65.2/57.1
Off h600 81.6/59.4 h150 68.8/41.1
On h600 68.1/65.3 h150 56.2/49.0

Table 6.4: Average ratios RD and RE with and without application of the connected
component filter.

to the median filter. Considering the ratio RD more carefully, the noise pixels are
removed, and the drop of the ratio RD is lower than that of the median filter. Longer
time histories increase the ratios RD and RE computed from the filtered results because
the filter eliminates noise and additionally performs better than the median filter under
the same test conditions.

From our tests, we conclude that the connected component filter is a good choice
for the reduction of noise in our input event-images, and will therefore be used for the
further tests.
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6.3.1.2 Evaluation of Area-based Correlation Algorithms

In this section, we evaluate and compare various area-based correlation stereo matching
approaches. We used the six correlation metrics SAD, ZSAD, LSAD, SSD, ZSSD and
LSSD, which were introduced in Section 5.2.2.2. In Table 6.5, the different settings for
the test of the correlation functions are summarized.

Correlation Time History Time History Window
Functions for A,B,C for D Sizes

SAD, ZSAD, LSAD 50, 200, 400, 20, 50, 100, 3, 9, 15
SSD, ZSSD, LSSD 600 150

Table 6.5: Settings used for the evaluation of the area-based correlation functions.

Figure 6.16 shows the average distance errors for test set A. In general, the results
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Figure 6.16: Evaluation of the different correlation functions using test data set A.

show that larger window sizes tend to achieve more accurate results, but have to be
carefully chosen because of the foreground fattening effect which blurs the depth values
at the objects edges. The results show also the expected increase of the accuracy with
increasing time histories because of the higher number of events available for generating
grayscale event-images. Considering the xSAD (SAD, ZSAD, LSAD) algorithms and
the xSSD (SSD, ZSSD, LSSD) approaches, similar results are achieved. In Figure 6.17 the
results are shown, where all correlation functions were evaluated with test set B. Here,
the main difference in comparison to test set A is the better performance obtained from
a time history of 50 timestamps. This can possibly be explained by the partial overlap
of the walking persons and the amount of events in the overlapping area which are not
affected by noise filter for the input event-images. This means despite the short history
more events are available for matching.

The results of applying the different correlation methods on the human torso test
set C are presented in Figure 6.18. The results show that the changing time history has
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Figure 6.17: Evaluation of the different correlation functions using test data set B.
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Figure 6.18: Evaluation of the different correlation functions using test data set C.

a rather small influence on the distance error. This can be explained by the fact that
the human torso is moving at a relatively close distance of 1.5m, where short histories
collect already enough events for good matching results.

The average distance error derived from testing the rotating disc (test set D) is
shown in Figure 6.19. The results show that longer time histories with a 3×3 window
show a higher error rate, which may be attributed to the fact that the higher number of
active events causes some motion blur, which degrades the matching results for smaller
window sizes. As the window size increases, the accuracy of the matching results also
increases and the results tend to be stable with respect to different time histories.

In addition to the average distance error, the ratios RD and RE were calculated. In
Table 6.6 the event ratios of the correlation function results are shown. The values show,
as expected, that with short time histories, many events are filtered and the ratio RD
clearly drops in most cases. By contrast, the ratio RE remains constant considering the
different correlation functions.

In conclusion we can say that aside from the expected behavior with respect to

78



3 9 15 3 9 15 3 9 15 3 9 15 3 9 15 3 9 15
0

0.05

0.1

0.15

0.2

SAD ZSAD LSAD SSD ZSSD LSSD

A
vg

.E
rr

or
[m

]
Evaluation Correlation Functions - Test Set D

h20 h50 h100 h150

Figure 6.19: Evaluation of the different correlation functions using test data set D.

SAD ZSAD LSAD SSD ZSSD LSSD
RD/RE RD/RE RD/RE RD/RE RD/RE RD/RE

A-h50 41.2/32.5 41.2/32.5 41.2/32.5 41.2/32.5 41.2/32.5 41.2/32.5
A-h200 61.9/74.8 61.6/75.8 61.6/75.8 63.1/63.0 63.1/63.5 63.0/63.5
A-h400 66.6/77.8 66.3/79.1 66.4/79.2 67.8/53.8 67.8/53.6 67.8/53.6
A-h600 67.7/79.7 67.2/83.1 67.2/83.0 68.5/51.0 68.5/50.9 68.4/50.9
B-h50 44.5/32.9 44.5/32.9 44.5/32.9 44.5/32.7 44.5/32.7 44.5/32.7

B-h200 67.4/79.9 67.4/79.6 67.4/79.6 67.9/65.3 68.1/65.2 67.9/65.6
B-h400 71.5/82.4 71.4/84.4 71.4/84.2 72.4/53.2 72.3/52.8 72.2/52.9
B-h600 73.0/78.4 72.5/84.1 72.5/84.0 73.8/49.4 73.7/49.1 73.7/49.4
C-h50 28.6/27.8 29.0/27.3 29.0/27.3 29.0/27.3 29.0/27.3 29.0/27.3
C-h200 67.1/75.7 67.1/76.4 67.1/76.4 67.1/73.5 67.1/73.7 67.1/73.7
C-h400 75.9/83.4 75.9/83.0 75.9/83.1 75.8/66.8 75.8/66.5 75.8/66.5
C-h600 76.7/85.1 76.7/85.7 76.7/85.6 76.5/64.8 76.5/65.2 76.5/65.2
D-h20 58.1/50.0 58.1/50.0 58.1/50.0 58.1/51.9 58.1/51.9 58.1/51.9
D-h50 62.1/57.2 62.1/55.4 62.1/55.4 62.1/56.5 62.1/56.8 62.1/56.5

D-h100 65.9/58.2 65.9/57.9 65.9/57.9 65.9/55.0 65.9/54.1 65.9/54.1
D-h150 56.7/50.1 56.7/52.4 56.7/52.4 56.7/47.2 56.7/49.2 56.7/49.1

Table 6.6: Average ratios RD and RE of all area-based correlation functions for all test
data sets and time histories.

different window sizes and time histories, no major difference was observed among
correlation methods. Since the correlation methods deliver nearly the same results, and
the SAD is the fastest metric to calculate, we choose the SAD correlation method for the
evaluation of the improvement techniques in Section 6.3.4.1.
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6.3.1.3 Evaluation of Area-based Event Transform Algorithm

Another stereo matching approach we evaluate is the area-based event transform (ET)
described in Section 5.2.2.2. In Table 6.7, all settings used for the evaluation of the event
transform algorithm are summarized.

Input Noise Tri-State Time History Time History Window
Filter Dual-State for A,B,C for D Sizes

NOn, NOff TOn, DOn 50, 100, 200, 20, 50, 100, 3, 9, 15
400, 600 150, 200

Table 6.7: Settings used for the evaluation of the area-based event transform algorithm.

All four test sets are used for the event transform evaluation, where in Figure 6.20
the results of test data set A, in Figure 6.21 the results of test data set B, in Figure 6.22 the
results of test data set C, and in Figure 6.23 the results of test data set D are presented.

Regarding different time histories and window sizes, the results show a behavior
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Figure 6.20: Evaluation of the event transform matching algorithm using test data set
A.

similar to the area-based correlation functions. It is interesting that the results do not
change significantly if the tri-state logic (TOn) is used instead of the dual-state logic
(DOn). That means that the additional information extracted from the neighborhood
using the tri-state logic does not provide additional insight to improve the matching
results. In fact, the dual-state logic extracts enough information for the correspondence
search by comparing the difference of bit vectors. The dual-state logic is the preferred
setting for further tests because the calculation effort is less computationally expensive
than tri-state logic. In terms of the input filter, the results show the expected behavior
that the switched on input noise filter leads to better matching results.

Table 6.8 presents the event ratios of the event transform matching approach to
analyze the average distance errors in more detail. Here, the usage of dual-state logic
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Figure 6.21: Evaluation of the event transform matching algorithm using test data set
B.
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Figure 6.22: Evaluation of the event transform matching algorithm using test data set
C.

and tri-sate logic respectively, makes no recognizable difference, and therefore, the
event ratios are compared with activated and deactivated noise canceling. Comparing
the event ratios of the event transform to the correlation functions (Table 6.6), shows
that the ratio RD is generally higher for all data sets and time histories, whereas the
ratio RE is almost identical in both cases. That means the event transform is performing
better considering the matching in comparison to the before presented results of the
different correlation methods.

6.3.2 Evaluation of Feature-based Corner Matching Algorithm

In this section we evaluate the feature-based corner feature matching approach (CF)
which uses the feature detector from Shi and Tomasi [80], as described in Section 5.2.2.3.
In Table 6.9 all parameters used during the evaluation of the feature-based corner
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Figure 6.23: Evaluation of the event transform matching algorithm using test data set
D.

A B C D
RD/RE RD/RE RD/RE RD/RE

h20-NOn — — — 27.4/76.5
h20-NOff — — — 41.9/71.2
h50-NOn 10.2/88.3 12.7/90.7 8.1/74.5 61.4/60.3
h50-NOff 36.2/82.2 38.3/74.7 41.4/84.3 69.3/58.8
h100-NOn 34.3/83.6 42.5/80.3 26.4/84.7 68.2/58.5
h100-NOff 61.3/77.7 64.6/77.7 58.0/85.8 71.7/55.6
h150-NOn — — — 70.0/54.2
h150-NOff — — — 72.8/52.5
h200-NOn 63.3/83.0 68.8/85.4 58.1/88.3 72.3/45.6
h200-NOff 76.9/80.5 81.5/83.1 73.2/87.3 75.2/44.4
h400-NOn 77.8/84.1 81.7/85.7 72.4/88.5 —
h400-NOff 83.9/83.1 87.1/83.4 81.8/88.6 —
h600-NOn 81.2/87.1 84.8/87.1 77.2/89.6 —
h600-NOff 86.1/85.3 88.4/85.3 85.2/88.5 —

Table 6.8: Average ratios RD and RE of the event transform algorithm for all test data
sets and time histories (lines represent that no results were calculated for the certain
time history of the considered test set).

matching algorithm are presented.
In Figure 6.24 the results of the corner feature matching algorithm applied on all

four test data sets are shown. The results show that the amount of allowed corners and
the block size of the covariance matrix do not influence significantly the outcome of the
algorithm. As expected, longer time histories deliver in general better results because of
more information gathered in the grayscale event-images used by the feature extractor.
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Maximal Block Size y-Shift Time History Time History
Corners Covar. Matrix Tolerance for A,B,C for D
500, 1000 5, 9 1,3 200, 400, 600 50, 100, 150

Table 6.9: Settings used for the evaluation of the feature-based corner matching algo-
rithm.

Regarding the influence of the y-shift allowed for finding corresponding matches, we
found that a y-shift of three, which allows a difference of three pixels between left and
right feature, does not always lead to superior results.

The ratios RD and RE are presented in Table 6.10. As expected, the ratio RD is very

A B C D
RD/RE RD/RE RD/RE RD/RE

h200-Y1 1.1/85.7 1.2/100.0 1.9/93.8 h50-Y1 37.5/100.0
h400-Y1 0.9/95.0 1.0/95.5 2.6/90.5 h100-Y1 45.2/100.0
h600-Y1 1.1/90.6 1.1/100.0 1.6/91.4 h150-Y1 66.3/98.4
h200-Y3 3.8/93.7 4.5/96.4 7.6/86.2 h50-Y3 37.5/100.0
h400-Y3 3.4/97.8 2.6/99.0 5.1/93.6 h100-Y3 45.2/100.0
h600-Y3 2.6/97.6 2.7/97.2 3.8/95.4 h150-Y3 66.3/98.4

Table 6.10: Average ratios RD and RE of the feature-based corner matching algorithm
for all test data sets and time histories.

low because only a few features from all input events are matched. However, nearly all
of the extracted features are evaluated, which explains the high ratio RE. Regarding the
y-shift, the ratio RD confirms the assumption derived from the average distance errors
that with a higher allowed y-shift more features are contributing to the results. But this
contribution of values triggers a minor decrease in the accuracy of the average distance
errors because added values with an inaccurate disparity are involved in the evaluation.

From the above experiments, we conclude that the feature-based corner matching
algorithm is an alternative matching algorithm which can be used as a fast initial
matching algorithm for key points before the matching of all available pixels takes
place. For further testing, a y-shift of three pixels is suggested, because it provides the
best results considering the amount of pixels matched and the average distance error.

6.3.3 Evaluation of Event-based Time Correlation Algorithm

This section evaluates the event-based time correlation algorithm (TC) using two differ-
ent methods calculating the matching costs. In the case of time correlation, no window
sizes are used because the algorithm is based on a line-wise search that considers each
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Figure 6.24: Evaluation of the corner feature matching algorithm using (a) test data set
A, (b) test data set B, (c) test data set C and (d) test data set D. Here, 500 and 1000 on
the x-axis represent the maximal corners used for the evaluation, and the value tuple
above the number of maximum corners are the block size of the covariance matrix and
the y-shift (block size/y-shift).

pixel individually. This also means that the input noise filter is switched off during the
tests.

In Table 6.11, all settings used for the event-based time correlation algorithm are
illustrated.

In Figure 6.25 the results of the event-based time correlation algorithm applied on
all four test data sets are shown. The first observation which can be derived from the
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Costs Calc. Time History Time History
Method for A,B,C for D

m0 (inv. lin.), 50, 100, 200, 300, 10, 20, 30, 40, 50, 100,
m1 (log.) 400, 500, 600 150, 200, 250, 300

Table 6.11: Settings used for the evaluation of the event-based time correlation algo-
rithm.
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Figure 6.25: Evaluation of the time correlation algorithm with the two different cost
calculation methods using (a) test data set A, (b) test data set B, (c) test data set C and
(d) test data set D.
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results are the nearly identical error values from the cost calculation method 0 (m0 -
inverse linear) and method 1 (m1 - logarithmic). This means that the method does not
influence the matching of the events, which leads to the decision of using the inverse
linear method for a time-based matching algorithm, because it is computationally less
expensive. In contrast, the time history has - as expected - a major influence on the
distance errors, because the event-based time correlation approach matches in contrast
to the evaluated algorithms in Figure 6.3.1.2 and Figure 6.3.1.3 only line-wise without
considering the pixel neighborhood. This search is more sensitive to time histories
because, firstly the history is needed as correlation metric and, secondly, too long time
histories may lead to mismatches. Figure 6.25(d) illustrates this influence very clearly,
where the best results are achieved with a time history of 50 timestamps.

Additionally to the average distance error, the event ratios have to be considered
for a more detailed statement on the time history influence. Therefore, in Table 6.12
the ratios RD and RE calculated for all time histories are shown. The results show that

A B C D
RD/RE RD/RE RD/RE RD/RE

h10 — — — 37.5/100.0
h20 — — — 45.2/100.0
h30 — — — 66.3/98.4
h40 — — — 68.0/98.8
h50 42.6/81.1 40.7/77.5 45.7/85.4 67.3/98.1
h100 65.3/79.3 66.5/78.2 62.5/86.6 69.9/97.1
h150 — — — 72.3/97.9
h200 78.9/79.9 82.9/79.3 73.3/86.3 73.4/98.4
h250 — — — 73.3/98.4
h300 84.0/78.3 86.6/79.3 81.3/85.7 74.1/97.5
h400 86.1/78.1 88.0/78.2 83.3/85.0 —
h500 86.7/78.0 88.3/78.0 84.2/85.2 —
h600 88.0/79.0 88.9/78.8 84.3/84.7 —

Table 6.12: Average ratios RD and RE of the event-based time correlation algorithm for
all test data sets and time histories (lines represent that no results were calculated for
the certain time history of the considered test set).

all test sets have in common an increasing ratio RD in conjunction with longer time
histories. Considering the ratio RE all time histories generate a high ratio, which means
concerning Figure 6.41 that a higher amount of matches with the wrong disparity are
contributing to the average distance error.

Summarizing we have found that the event-based time correlation works reasonable
due to the fact that the events are directly used as event list without converting event-
images, and without using a neighborhood information for the matching. But the
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algorithm is easily influenced by the time history which has to be set in accordance
to the object speed in the scene. This renders the algorithm highly sensitive when
operating on scenes with variable content.

6.3.4 Evaluation of Different Improvement Techniques

In this section we evaluate the improvement techniques presented in Section 5.3. Here,
the goal is to reveal which improvement technique works best for the different stereo
matching approaches tested in TS2.

In Table 6.13 all parameters used during the evaluation of the improvement tech-
niques are presented. In all diagrams of Section 6.3.4.1, 6.3.4.2, 6.3.4.3 and 6.3.4.4 the

Avg. Med. BP 2SF BP - 2SF Time Hist. Time Hist.
Filter Filter Penalty Radius Iter. for A,B,C for D
3, 5 3, 5 10, 20, 40, 2, 4, 2, 4 200, 400, 50, 100,

80, 160, 240 8, 12 600 150

Table 6.13: Settings used for the evaluation of the improvement techniques.

results without improvement technique are represented by unfilled symbols and the
results with an applied improvement technique are represented by filled symbols. In
addition, the abbreviation im indicates in the legend of the diagrams that the symbols
filled in black represent the improved results. The median filter and average filter we
have combined under the category diverse filters (Div/Filt.). Next to the diverse filter cat-
egory the Belief Propagation (BP) and Two-Stage Filter (2SF) improvement method results
are presented on the x-axis of the diagrams.

6.3.4.1 Impact of Improvement Techniques Applied on Area-based Correlation
Algorithm

In this section we evaluate the improvement techniques applied on an area-based cor-
relation stereo matching approach, which we have introduced in Section 5.2.2.2. The
representative correlation function chosen for this test was the SAD algorithm with a
9×9 window. In Figure 6.26, 6.27, 6.28 and 6.29, the impact of the improvement tech-
niques applied on the SAD stereo matching algorithm using the test data sets A, B, C
and D, respectively, is shown.

Table 6.14 shows the event ratios achieved by applying the tested improvement
techniques to the area-based SAD stereo matching algorithm. All results show that the
median filter (Med.) increases the accuracy compared to the SAD algorithm without
the improvement technique, but at the same time reduces the amount of data in the
disparity image, which is represented by the low event ratio RD in the corresponding
rows of Table 6.14. In contrast, the average filter (Avg.) has a minor or negative impact
on the accuracy compared to the SAD stereo matching results, but it does not eliminate
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Figure 6.26: Evaluation of the impact of different improvement techniques applied to
the area-based SAD algorithm using test data set A.
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Figure 6.27: Evaluation of the impact of different improvement techniques applied to
the area-based SAD algorithm using test data set B.

the same amount of disparity values as the median filter and, therefore, more values
are involved in the evaluation process.

Regarding the belief propagation (BP) method, which mainly improves the SAD
matching results minimal for all four test data sets in some cases (Figure 6.26 and Fig-
ure 6.27) also has a negative influence on the matching results. This may be explained by
the dependency of the belief propagation on the neighborhood to perform the message
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Figure 6.28: Evaluation of the impact of different improvement techniques applied to
the area-based SAD algorithm using test data set C.
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Figure 6.29: Evaluation of the impact of different improvement techniques applied to
the area-based SAD algorithm using test data set D.

passing, as we have explained in Section 5.3.1. Further, the neighborhood for message
passing is dependent on the chosen time history. Based on the chosen time history, the
parameter penalty costs is set which again influences the outcome of the message pass-
ing. Regarding the event ratios, the belief propagation shows in all rows of Table 6.14
that the percentage of evaluated pixels does not change tremendously from the values
of the SAD algorithm (Table 6.6). This means the BP does not change (manipulate) the
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Improvement Time A B C Time D
Method History RD/RE RD/RE RD/RE History RD/RE

BP h200 61.4/82.7 66.6/85.7 66.4/86.3 h50 64.7/62.1
BP h400 66.1/83.9 70.5/87.9 74.7/89.6 h100 64.9/55.7
BP h600 67.2/89.2 71.9/92.4 76.2/89.3 h150 55.9/51.6
2SF h200 60.8/91.2 67.4/92.3 67.1/87.6 h50 62.1/61.8
2SF h400 66.0/92.5 70.8/94.2 75.8/89.0 h100 65.2/57.1
2SF h600 67.0/93.6 72.2/93.7 76.8/90.6 h150 56.2/52.9

Avg. 3×3 h200 61.8/80.8 68.0/85.9 67.4/81.9 h50 62.1/62.1
Avg. 3×3 h400 66.4/87.1 71.4/89.8 76.0/87.3 h100 65.2/61.5
Avg. 3×3 h600 67.6/90.7 72.9/92.6 76.9/89.4 h150 56.2/51.1
Avg. 5×5 h200 62.4/84.2 68.0/87.6 67.3/84.5 h50 62.1/62.1
Avg. 5×5 h400 66.7/90.3 71.4/91.8 76.1/88.6 h100 65.2/61.0
Avg. 5×5 h600 67.5/93.5 72.5/93.5 76.9/90.6 h150 56.2/53.7
Med. 3×3 h200 19.5/68.4 22.2/76.0 15.9/86.1 h50 26.8/95.1
Med. 3×3 h400 41.8/72.3 50.9/80.5 44.2/91.6 h100 61.5/68.5
Med. 3×3 h600 53.5/83.6 64.5/89.0 76.9/89.4 h150 51.0/56.8
Med. 5×5 h200 4.4/76.8 4.1/77.4 3.0/96.2 h50 13.1/95.0
Med. 5×5 h400 21.2/68.7 33.3/71.3 28.4/95.0 h100 46.5/69.8
Med. 5×5 h600 39.3/73.2 55.2/83.0 41.0/90.5 h150 38.9/54.8

Table 6.14: Average ratios RD and RE obtained by using improvement techniques in
conjunction with the area-based SAD algorithm for all test data sets and time histories.

amount of disparity such as the median filter does.
The results of the two-stage filter (2SF) show that the average distance error is

improved by increasing the number of iterations from 2 to 4, and also by using a
larger radius. With data set D (Figure 6.29), the 2SF encounters problems because the
rotating disc at a time history of 50 does not provide enough disparity values for correct
filtering. Looking at the event ratios, the 2SF technique achieves comparable ratios
to belief propagation. Considering the good average distance error results achieved
with the 2SF in conjunction with the event ratios the 2SF indicated to be a promising
improvement technique.

6.3.4.2 Impact of Improvement Techniques Applied on Area-based Event
Transform Algorithm

In this section, the evaluation of the improvement techniques applied to an area-based
event transform stereo matching approach is carried out. For the evaluation of the event
transform dual-state logic and a 9×9 window was used. In Figure 6.30, 6.31, 6.32 and
6.33 the impact of the improvement techniques applied to the event transform stereo
matching results and the test data sets A, B, C and D is shown.
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Figure 6.30: Evaluation of the impact of different improvement techniques applied to
the area-based event transform algorithm and test data set A.
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Figure 6.31: Evaluation of the impact of different improvement techniques applied to
the area-based event transform algorithm and test data set B.

Table 6.15 shows the event ratios achieved by applying the investigated improve-
ment techniques on the area-based event transform stereo matching algorithm described
in Section 5.2.2.2. Comparing the results of the median filter applied to the event trans-
form algorithm (Figure 6.26-6.29) and the SAD algorithm (Figure 6.30-6.33), the median
filter performs in a similar way such that increasing time history decreases the average
distance error. Additionally, with longer time histories the event ratio RD is increasing
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Figure 6.32: Evaluation of the impact of different improvement techniques applied to
the area-based event transform algorithm and test data set C.
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Figure 6.33: Evaluation of the impact of different improvement techniques applied to
the area-based event transform algorithm and test data set D.

which is shown in all rows of Table 6.15 and makes the results of the median filter more
valid, because more matches are considered for the calculation of the average distance
error. Similar to the median filter the average filter performs better with longer time
histories, but considering the ratio RD in Table 6.15 also with short time histories a high
percentage of matches used for the calculation of the average distance error is achieved.

Using the BP improvement technique with the event transform algorithm shows
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Improvement Time A B C Time D
Method History RD/RE RD/RE RD/RE History RD/RE

BP h200 74.7/81.8 76.3/86.5 71.4/87.9 h50 66.7/63.2
BP h400 79.8/88.1 83.2/88.3 80.3/88.6 h100 72.2/56.9
BP h600 82.5/90.1 85.7/89.5 81.6/89.2 h150 71.5/53.2
2SF h200 62.9/93.2 68.2/93.6 58.1/92.7 h50 61.4/67.4
2SF h400 77.6/94.3 81.0/93.7 72.4/90.5 h100 68.2/58.3
2SF h600 80.6/94.6 84.2/94.4 77.6/91.4 h150 70.0/54.8

Avg. 3×3 h200 63.5/87.6 69.1/90.4 58.2/92.4 h50 61.4/67.0
Avg. 3×3 h400 78.3/91.5 81.5/92.4 72.2/90.9 h100 68.2/59.8
Avg. 3×3 h600 81.5/94.1 84.8/92.3 59.4/91.3 h150 70.0/54.1
Avg. 5×5 h200 63.9/91.4 68.8/92.0 81.9/93.7 h50 61.4/71.3
Avg. 5×5 h400 78.5/94.6 81.9/93.7 72.3/91.9 h100 68.2/62.7
Avg. 5×5 h600 81.5/95.0 84.5/93.8 77.4/92.3 h150 70.0/54.8
Med. 3×3 h200 22.7/74.6 25.9/78.5 15.0/87.6 h50 24.2/86.5
Med. 3×3 h400 59.0/77.0 67.7/83.4 45.7/91.6 h100 64.9/66.0
Med. 3×3 h600 75.1/87.5 83.0/88.3 77.1/91.3 h150 67.6/62.3
Med. 5×5 h200 8.0/76.5 7.1/76.1 3.1/92.6 h50 9.2/92.9
Med. 5×5 h400 41.3/68.2 51.1/75.4 30.2/95.7 h100 51.5/71.4
Med. 5×5 h600 64.3/83.1 77.4/85.8 47.9/92.9 h150 60.6/63.7

Table 6.15: Average ratios RD and RE of using improvement techniques in conjunction
with area-based event transform stereo matching algorithm for all test data sets and
time histories.

in Figure 6.30-6.33 that the results are improved better than using BP with the SAD
algorithm. This variance can be explained by the mentioned dependency between time
history, penalty costs, and message passing, which lends the BP algorithm its behavior.
The event transform uses the difference between the left and right vectors for the cost
calculation and the penalty costs are derived from the maximal difference a vector can
have. This means the cost structure is more balanced considering the vector difference
and penalty costs, which enables a better operation of the BP with the event transform.

In contrast, the two-stage filter performs for all time histories and with all filter
radii in a way that the overall average distance error is significantly decreased (see
Figure 6.30- 6.33). The 2SF experiences added difficulties if objects of different depth
levels are overlapping, as in in test set B (Figure 6.31), because then the 2SF technique -
especially with larger radii - can degrade the results.
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6.3.4.3 Impact of the 2SF Improvement Technique Applied on Feature-based
Corner Matching Algorithm

In this section we evaluate the 2SF improvement technique applied on the results of
the feature-based corner matching algorithm, introduced in Section 5.2.2.3. For the
test a maximum corner count of 500, a minimum corner feature distance of 2 pixels, a
block size of 5 and a maximum y-coordinate shift of 3 was chosen. In Figure 6.34(a),
6.34(b), 6.34(c) and 6.34(d) the impact of the 2SF improvement technique applied on the
feature-based corner matching results of the test data set A, B, C and D is shown.
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Figure 6.34: Evaluation of the impact of the 2SF improvement technique applied to the
results of the feature-based corner matcher of all test data sets.
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Table 6.16 shows the event ratios of the feature-based corner stereo matching algo-
rithm. In general can be observed for all four test sets (Figure 6.34a-6.34d) that the 2SF

Improvement Time A B C Time D
Method History RD/RE RD/RE RD/RE History RD/RE

2SF h200 3.1/87.5 3.2/95.1 7.7/87.4 h50 3.9/66.7
2SF h400 3.0/97.0 2.7/97.7 5.5/89.4 h100 3.0/22.2
2SF h600 2.4/97.2 2.5/94.6 4.5/92.4 h150 2.2/44.4

Table 6.16: Average ratios RD and RE of the feature-based corner matching algorithm
for all test data sets and time histories.

improves with a larger radius of 12 the average distance error, which can be explained
with the large distance between the matched features. The 2SF method as additional
improvement of the corner matching results is good until a certain point, because the
radius has to be increased but should not connect features of intensely different depth.
Using the radius of 12 can be considered as the maximum useful radius for test data
sets processed.

Considering the ratios RD and RE in Table 6.10 the usage of the 2SF improvement
technique does not change the ratios much from the values presented in Table 6.16.
From all different 2SF settings considering radii and iterations the average of the event
ratios was calculated, because mainly the difference of the ratios is caused by the time
history.

Concluding, the feature-based corner matching algorithm generates a sparse depth
output and only the 2SF is a useful improvement technique for this algorithm, which has
not the significant impact on the results of the feature-based corner matching algorithm.
This means that for the feature-based corner matching, it is not necessary to apply an
improvement technique and spend valuable processing resources to achieve minor
improvements.

6.3.4.4 Impact of Improvement Techniques Applied on Event-based Time
Correlation Algorithm

In this section we evaluate the improvement techniques applied on the event-based
time correlation stereo matching approach, which was described in Section 5.2.3. For
event-based time correlation correspondence search the inverse linear cost calculation
method was chosen. In Figure 6.35, 6.36, 6.37 and 6.38 the impact of the improvement
techniques applied on the time-based correlation matching results of test data set A, B,
C and D is shown.

In Table 6.17 the event ratios achieved applying improvement techniques to the
event-based time correlation algorithm are shown. In case of the event-based time
correlation algorithm no noise canceling is active for the input data and therefore, the
performance of the median and average filter is moderate for test case A, B and C
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Figure 6.35: Evaluation of the impact of different improvement techniques applied to
the event-based time correlation algorithm and test data set A.
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Figure 6.36: Evaluation of the impact of different improvement techniques applied to
the event-based time correlation algorithm and test data set B.

(Figure 6.35-6.37). For test set D in Figure 6.38 the median filter and average filter
achieve good results, which can be explained by the fact that the rotating disc is plane
and results in many pixels with a similar disparity level used by the filters.

The usage of the BP improvement method has again for the test sets A, B and C only
minor improvements, which can be explained with the algorithm’s line-wise matching.
This means the matching process does match different disparities for pixels close to each
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Figure 6.37: Evaluation of the impact of different improvement techniques applied to
the event-based time correlation algorithm and test data set C.
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Figure 6.38: Evaluation of the impact of different improvement techniques applied to
the event-based time correlation algorithm and test data set D.

other, which makes the matching passing process of the BP difficult. An exception is
test set D, where the BP benefits from the plane rotating disc as already mentioned for
the average filter and median filter. The BP technique improves the average distance in
a level to be competitive with the 2SF shown in Figure 6.38.

Using the 2SF improvement approach shows for all four test sets (Figure 6.35-6.38)
that the filter very constantly improves the distance values for all time histories used.
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Improvement Time A B C Time D
Method History RD/RE RD/RE RD/RE History RD/RE

BP h200 94.7/76.0 95.1/76.5 91.9/83.2 h50 80.4/55.0
BP h400 92.8/76.9 93.9/77.0 91.1/82.9 h100 84.6/47.5
BP h600 94.0/77.5 94.2/78.2 90.1/83.9 h150 83.2/44.3
2SF h200 78.7/92.3 82.5/91.7 73.2/91.6 h50 67.3/55.7
2SF h400 85.7/92.7 86.9/92.4 83.4/90.5 h100 69.9/56.5
2SF h600 87.5/92.3 87.9/92.5 84.7/90.2 h150 72.3/49.6

Avg. 3×3 h200 79.2/86.1 83.3/86.0 73.1/89.4 h50 67.3/63.1
Avg. 3×3 h400 86.1/87.9 87.9/89.1 82.9/89.7 h100 69.9/56.5
Avg. 3×3 h600 88.2/89.2 88.8/90.4 84.2/88.4 h150 72.3/50.7
Avg. 5×5 h200 66.0/61.3 75.4/52.9 73.4/90.2 h50 67.3/67.0
Avg. 5×5 h400 74.8/67.7 36.7/45.9 49.3/93.3 h100 69.9/56.5
Avg. 5×5 h600 24.0/59.4 82.7/54.6 84.4/89.9 h150 72.3/49.0
Med. 3×3 h200 26.8/62.4 28.7/63.9 13.5/81.9 h50 29.4/77.8
Med. 3×3 h400 62.2/65.3 70.8/70.4 48.2/82.7 h100 64.2/63.5
Med. 3×3 h600 76.6/74.8 84.8/75.3 60.8/86.4 h150 67.6/57.5
Med. 5×5 h200 13.0/57.2 7.7/52.5 2.7/78.3 h50 11.8/88.9
Med. 5×5 h400 44.6/55.5 55.1/60.7 32.1/78.8 h100 50.8/62.5
Med. 5×5 h600 67.5/66.5 80.4/67.9 49.8/83.1 h150 61.6/54.2

Table 6.17: Average ratios RD and RE of using improvement techniques in conjunction
with event-based time correlation stereo matching algorithms for all test data sets and
time histories.

The mismatches of the event-based time correlation algorithm are reliably removed
from the 2SF because of its design (see Section 5.2.3) the two stages.

Considering the event ratios the event-based time correlation matching algorithm
has more disparities because no input filter (noise removing see Section 6.3.1.1) is
applied, which leads to high RD ratios in Table 6.17. Not all of the matched events
can be evaluated, which lowers the RE ratios to a level comparable to the area-based
correlation approaches (see Table 6.6). The shown performance of the 2SF makes this
method to the preferred improvement technique using the event-based time correlation
matching algorithm.

6.3.4.5 Depth Maps, Error Images and Processing Time of the Algorithms

Figure 6.39, 6.40, 6.41 and 6.42 show the depth maps of the different algorithms with
and without the applied improvement techniques. The four columns represent the
four test data sets and the rows differentiate the algorithm and improvement technique
used. These depth images visualize some of the numeric results afore presented in the
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certain sections. The disparity maps are color coded for a better visualization, where
close distances appear in blue and far objects are represented by the color red.

The visualization in Figure 6.43 gives more insight into the location of the errors. The
error map is color coded in order to highlight areas in the image which are more difficult
to match. Columns represent test data sets A-D and the rows represent the different
improvement techniques used. In the first row the result from the SAD algorithm
without an applied improvement technique and with a 9×9 window and a time history
of 600 timestamps is shown. Row 2-5 shows the results of the improvement techniques
median filter, average filter, BP and 2SF, applied on the SAD results shown in the first
row. Using only the SAD stereo matching shows mismatches and errors of up to 20%
distributed over all image areas. Applying the median filter produces decent results, but
reducing the number of depth values and the average filter does not reduce the number
of depth values but rather decreases the quality. Both improvement techniques do not
achieve the preferred outcome. In investigating the error maps of the BP improvement
technique, the error is reduced in comparison to the SAD algorithm, but this is at
the expense of any reduction in the number of depth values. With the 2SF method,
the performance is acceptable and the error is reduced in most cases. If the number
of mismatches within a certain neighborhood increases, then the 2SF method is not
able to maintain improvement in the results, and can possibly generate worse results
in comparison to the SAD (illustrated in Figure 6.43 column B row 5). This can be
explained by the different points of view of the left and right camera (see Figure 6.10
row B), because the algorithm’s correspondence search generates mismatches with high
error values.

To better understand the computational effort of the stereo matching algorithms
and the improvement techniques, the processing time was measured with different
parameter settings, as presented in Table 6.18. All algorithms were implemented in C++
without optimization and executed on an Intel R© CoreTM2 Quad processor running at
2.83GHz. This table shows, as expected, that the SAD algorithm without improvement
techniques operates more rapidly depending on window size and time history. The
computational effort of the SAD algorithm in generating the disparity map is between
1ms and 49ms. In Table 6.18 the number of events processed is written in parentheses
next to the test set description. Different test sets and time periods (200(50) or 600(150))
change the number of events which have to be processed and, thus, directly influence the
processing time of the algorithms. For the SAD algorithm the BP and 2SF method were
evaluated and for the TC, ET and CF algorithm only the 2SF improvement technique
were considered. The usage of belief propagation leads in average to a 10 times longer
processing time in comparison to the SAD algorithm. The 2SF method only increases
the processing time by a factor of 2-4. These measurements are not absolute time values
because with optimizations better processing times can be achieved, but it gives us a
better understanding on complexity and the potential of the different approaches.
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A-200 A-600 B-200 B-600 C-200 C-600 D-50 D-150
(2549) (5649) (2360) (5347) (1332) (3303) (197) (524)
(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)

SAD 3×3 2 5 2 5 1 4 1 2
SAD 9×9 6 21 5 19 3 15 1 2
SAD 15×15 13 49 11 45 6 37 2 4
SAD 9×9 56 154 51 130 53 184 25 42
+BP Iter. 2
SAD 9×9 107 301 97 251 105 380 49 81
+BP Iter. 4
SAD 9×9 11 35 10 31 6 24 2 4
+2SF I2/R4
SAD 9×9 19 54 16 46 9 35 3 5
+2SF I4/R8
TC 1 2 1 2 1 1 1 2
TC +2SF I4/R8 17 46 16 44 8 26 2 5
ET 9×9 5 18 4 18 2 8 1 2
ET 9×9 20 62 18 63 7 29 2 6
+2SF I4/R8
CF 10 12 9 11 8 10 8 10
CF+2SF I4/R8 12 13 10 12 9 11 10 11

Table 6.18: Processing time of the un-optimized C++ implementation of the stereo
matching algorithms (SAD, TC, ET, CF) and improvement techniques (+BP, +2SF).
Rows show algorithm and improvement technique and the current parameter settings.
Columns show the different test sets A-D with 200(50) or 600(150) timestamps, and in
parentheses the number of events processed.

6.4 Summary

At the beginning of this chapter we introduced the methods we used for testing and
evaluating the different algorithms. The first method used objects at fixed distances and
calculated depth values which are compared with those distances (used in test series 1
with a silicon retina sensor resolution of 128×128). The disadvantage of this method is
that objects with curved surfaces are not correctly and accurately evaluated. Therefore,
we developed a set-up to capture ground truth test data which allowed a pixel-wise
evaluation of the calculated depth values (used in test series 2 with a silicon retina
sensor resolution of 304×240).

For an expand analysis of the different approaches, we focused on the pixel-wise
evaluation method in TS2 because the results were more suitable for a quantitative
interpretation of the algorithm outcome. In TS2 we used four different test sets with
objects at distances between 1.5m and 4m. Before the evaluation of the algorithms, we
introduced the two ratios RD and RE, which allowed a more precise interpretation of
the algorithms’ results.
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Our first test was the evaluation of the pre-processing approaches of the event data.
In this context we mainly addressed the reduction of noise using different filters for
pre-processing. After that we tested the implemented area-based and feature-based
algorithms, which require an event-to-image conversion before applying the algorithm.
These algorithms are dependent on the conversion process because they do not operate
directly on the event stream received from silicon retina sensor. Different correlation
metrics and a non-parametric transform for events were chosen as representatives for
the area-based category. For tests of a feature-based approach we chose a corner-feature
matcher. Using feature-based approaches in our work was generally limited by the fact
that the event data are sparse, which reduces the number of features that are candidates
for matching.

We also developed an event-based time correlation algorithm which operates on the
event data without a prior conversion step. This approach was implemented to exploit
the uniqueness of event-data and to show the differences in stereo matching compared
to the area-based and feature-based algorithms mentioned above.

In addition to the evaluation of different stereo matching approaches, we evaluated
various methods to improve the results of the basic stereo matching algorithms. For
this reason, two simple filters (Median Filter, Average Filter) were applied to the stereo
matching outcome. A more advanced approach was an adapted Belief Propagation
algorithm. This optimization technique was adapted to operate with the sparse event
data. Another improvement method utilized was a specialized post-processing filter
named Two-Stage Filter.

The evaluation of the different algorithms was concluded with a time analysis,
where we analyzed and compared the time consumption of certain algorithms. This
assisted in the understanding of the basic complexity of the algorithms. Additionally,
we demonstrated an overlay of the calculated error and the captured grayscale test
image to provide a visual overview of critical areas to match, as well as showing where
areas of high error incidence occurred.
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Figure 6.39: Depth results of the SAD algorithm and the applied improvement tech-
niques.
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Figure 6.40: Depth results of the event transform algorithm and the applied improve-
ment techniques.
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Figure 6.41: Depth results of the event-based time correlation algorithm and the applied
improvement techniques.
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Figure 6.42: Depth results of the corner feature matcher algorithm and the applied
improvement technique.
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Figure 6.43: Overlay of the depth error with the corresponding, grayscale image (from
the ground truth stereo vision system) of test data set A, B, C and D. Row 1 shows
the result of the SAD algorithm without improvement technique. Rows 2-5 show the
results if the improvement technique (Median, Average, BP, 2SF) were applied. The
error range from 0 to 20% is shown in color coded representation. Errors larger than
20%, are scaled to 20% for better viewing.
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CHAPTER 7
Conclusions and Outlook

In this thesis we have focused on solving the correspondence problem of sparse data
captured with a silicon retina stereo camera system. The first part, Section 7.1, of this
concluding section summarizes the results and findings of the thesis. In the second
part, represented by Section 7.2, we give an overview of future work which could be
carried out based on the thesis’ results.

7.1 Conclusions

A major difference between the silicon retina camera and a conventional camera is the
sparse appearance of the retina camera’s data, as well as the little information encoded
in a single event, in addition to the process for data retrieval and processing. This
is why stereo matching using silicon retina cameras is considered to be a challenging
task. One of the points that requires special attention is the transformation of the sparse
silicon retina data into images suitable for stereo matching. The dynamics of a scene
directly influence which time history must be chosen for the conversion process. As
a consequence, the selection of a suitable time history for data acquisition can become
difficult for scenes that contain several objects moving at significantly different speeds.

After converting the original event data into images that were more suitable for
stereo matching, an additional pre-processing step was applied, with a focus on noise
reduction (noise filtering). At this point, a connected component noise filter performed
better in comparison to the conventional median filter used for the noise reduction. For
our test data, the median filter considered 49%-87% of the input data as noise in contrast
to the connected component filter, which filtered 32%-44% of the same input data as
noise, while improving the average distance error up to 30%. Therefore, the connected
component filter was found to be a suitable noise filter for the sparse silicon retina data
and was applied for all further tests in this thesis.

We investigated both area-based and feature-based matching approaches, we com-
pared seven different correlation metrics including a non-parametric local transform
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(event transform) similar to the Census transform. The results showed that all seven
correlation metrics achieved a similar range of average distance error depending on
the time history and window size chosen. For the test set A, for example, the average
distance error ranges between 0.2m-0.7m and for test set D between 0.05m-0.1m. The
event transform in comparison to the other six correlation metrics (SAD, ZSAD, LSAD,
SSD, ZSSD, LSSD) achieves - depending on the test set chosen - an up to 17% higher
ratio RD (represents the amount of events processed from all input events) and an up
to 7% higher ratio RE (represents the amount of events evaluated from the processed
events and contribute to the calculation of the average distance error). The usage of
tri-state or dual-state logic within the event transform has no recognizable impact on
the results. We therefore suggest to use the the dual-state logic because of its lower
calculation complexity.

The outcome of the chosen feature-based approach cannot be compared directly with
the other algorithms, because instead of the whole event image only a few extracted
features are used for the matching process. That means regarding the ratios RD and RE a
direct mapping to the results of the seven area-based correlation metrics is not possible.
But considering the absolute average distance error calculated for the features detected,
the corner feature matcher achieved approximately 0.15m (test set A with a RE of 98%)
and 0.03m (test set D with a RE 100%), which suggests that those feature points can be
used as reliable pre-known anchors points for other matching approaches.

We implemented an event-based time correlation algorithm that works directly
on the event data and showed different results regarding average distance error and
evaluation ratios. The best average distance error was for test set A about 0.58m (time
history 200) and for test set D about 0.14m (time history 50). Comparing the ratio RE,
which was approximately 80% for test set A and approximately 98% for test set D, the
time correlation algorithm evaluates a high percentage of the processed input events
but fails during the matching process due to the sparseness of valid input data.

After comparing the different stereo matching algorithms, we evaluated the ability
of improving the matching results by applying additional methods including a sparse
Belief Propagation (BP) approach and several post-processing techniques as described
in Section 5.3. All the numerical results depend on the algorithm settings chosen, but
the results summarized in the following are based on an area-based SAD algorithm
with a time history of 400 (test set A-C)/100 (test set D) and a matching window of
9 × 9. Considering the median filter and average filter as improvement methods, the
median filter is not recommended because it was found to remove an excessive number
of results (RD ratio is in average 41% lower than for the average filter) even though
the average filter increased the results up to 33% in contrast to the median filter, which
improved the average distance error up to 40%. Furthermore, we applied an adapted
belief propagation approach and tested how much improvement could be derived. The
BP optimized the matching procedure itself and was very sensitive to the sparse nature
of the input data, which resulted mainly in minor improvements up to about 8%, and
in some cases yielded even worse results. The Two-Stage Filter (2SF) showed the best
performance of all of the improvement techniques. Regarding the reduction of the
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average distance error, the 2SF decreased the error in average between 20% and 50%
and achieves at the same time a high ratio RE of up to 94%. This is in contrast to the
SAD algorithm which has a ratio RE of 83% and no applied improvement technique an
increased RE of approximately 13%. Comparing all improvement techniques the 2SF
has the best overall performance and an execution time that is by a factor 3 faster than
the BP technique (under similar algorithm settings).

Overall the results have shown that silicon retina cameras need specifically tailored
approaches to process the data and to compute satisfying depth results, so that subse-
quent applications such as high speed analysis or automotive applications with different
dynamic lighting conditions can benefit from the advantages of a silicon retina sensor.

7.2 Future Work

We consider this work as finished, however we suggest the following research activities
as potential next steps.

The presented algorithms can be adapted regarding a dynamic time history based on
the scene’s dynamics. The matched corner features can be used as reliable anchor points
for guided dense stereo matching approaches. The time correlation approach could be
additionally extended and evaluated with different windowing techniques. From a
more practical point of view, we suggest to reimplement the calibration procedure to
reduce the manual workload.

Furthermore, an optimized implementation of the algorithms on different, e.g. em-
bedded, platforms would be necessary to enhance applicability.
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