
Search-Based Model
Transformations

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Martin Fleck, MSc
Matrikelnummer 1248308

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Mag. Dr. Manuel Wimmer

Diese Dissertation haben begutachtet:

Gerti Kappel Marouane Kessentini

Wien, 20. April 2016
Martin Fleck

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Search-Based Model
Transformations

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Martin Fleck, MSc
Registration Number 1248308

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Mag. Dr. Manuel Wimmer

The dissertation has been reviewed by:

Gerti Kappel Marouane Kessentini

Vienna, 20th April, 2016
Martin Fleck

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Martin Fleck, MSc
Barawitzkagasse 34/4/50
1190 Wien
Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 20. April 2016
Martin Fleck

v

To Niki.

Acknowledgements

Writing these acknowledgements is the final activity before my thesis is finished. At this
point, I must confess that I struggle to find the right words to thank the many people
who have supported me along the way. Without the invaluable contributions of these
people, this thesis would not have been possible. Not everyone is mentioned here by
name, but I am eternally grateful to all of you.
I want to start by thanking my advisor, Dr. Manuel Wimmer, for always encouraging
me to explore interesting research ideas and continuously supporting me in spreading
these ideas.
I want to thank Prof. Marouane Kessentini for supporting me with valuable feedback on
my research and for providing me with insights into search-based software engineering.
I am also grateful to Prof. Gerti Kappel, who gave me the opportunity to do my PhD in
her outstanding research group. Her vast experience and her keen eye for detail (always
double-check your references!) helped improve many of my papers and presentations.
Of course, this thesis would not have been possible without the stimulating environment
created by my colleagues, who have become dear friends over the past years. This includes
my fellow ARTISTs Alex, Javi, Michi, and Patrick, Robert, and Manuel, Philip, and
Tanja from the other side of the hallway (from the room with the good coffee machine).
Thank you for many inspiring and motivational discussions as well as the great moments
we shared both inside and outside the office.
I am particularly indebted to Tanja, who has always listened to me patiently and
encouraged me to not give up in times when I was not sure how to continue. Thank you.
I also want to acknowledge my friends outside of work, who helped me balance the long
nights in the office with long nights in pubs in Vienna and Linz. Thank you Koza, Anni,
Steffi, Schügi, Marina, Manu, Berndi, Michi, Silvia, Adi, Natascha, Matthias, Hubsi, Emi,
Julian, Birgit, Berni, René, Andi, Dennis, and Catherine.
I furthermore owe my gratitude to my loving family who has always been a source of
happiness for me. Thank you Mom, Dad, Dre, Iveta, Vivi, Mischi, Markus, Ines, Nori,
Mani, Emily, Hilde, Elmar, Gabi, Arthur, Maxi, Leo, and Diego.
Finally, I am deeply thankful to my boyfriend Niki, who has always supported me
unconditionally. Words cannot express how grateful I am for the strength he has given
me during this PhD and how fortunate I consider myself for our life together.

ix

Kurzfassung

Model-Driven Engineering (MDE) ist ein Paradigma, in der Modelle als zentrale Ar-
tefakte zur Problemlösung eingesetzt werden. Die Problemdomäne wird durch eine
domänenspezifische Modellierungssprache definiert und Modelle repräsentieren konkre-
te Probleminstanzen, welche von der Realität abstrahieren um unnötige Komplexität
zu vermeiden. Im Kern von MDE verwendet man Modelltransformationen um jede
systematische Änderung an diesen Modellen durchzuführen. Die Orchestrierung dieser
Transformationen um konkrete Probleme zu lösen ist jedoch eine komplexe Aufgabe,
da der zu durchsuchende Transformationsraum sehr groß bis unendlich groß sein kann.
Daher wird diese Aufgabe entweder automatisiert durchgeführt, indem Regeln so lange
wie möglich angewendet werden, was jedoch nicht immer zufriedenstellende Resultate
liefert, oder die Aufgabe wird an den Modellierer zur manuellen Lösung abgegeben. Dies
führt dazu, dass MDE nur in geringem Maße dazu eingesetzt werden kann, Probleme zu
lösen, die einen unendlich großen Lösungsraum haben oder manuell schwer lösbar sind.
Aus diesem Grund stellen wir in dieser Arbeitet einen Ansatz vor, der es ermöglicht
derartige Probleme zu lösen indem die zu optimierenden Eigenschaften durch modellba-
sierte Analysetechniken operationalisiert werden und metaheuristischen Methoden auf
Modellebene gehoben werden um optimale Transformationsorchestrierungen zu finden. Im
ersten Schritt präsentieren wir einen Ansatz, der dynamische, zeitbasierte Eigenschaften
unter Berücksichtigung des Resourcenbedarfs direkt auf Modellebene mittels fUML analy-
sieren kann. Im zweiten Schritt kodieren wir das Transformationsorchestrierungsproblem
generisch, wodurch eine Vielzahl verschiedener metaheuristischen Methoden eingesetzt
werden können. Anschließend, entwickeln wir auf Basis dieser Kodierung einen Ansatz, der
ein deklaratives Lösen von Problemen auf Modellebene ermöglicht, indem ein Modellierer
das Problemmodell und die jeweiligen Modelltransformationen bereit stellt und die zu
optimierenden Eigenschaften und die Zwangsbedingungen deklariert. Die Konfiguration
wird durch eine dedizierte Sprache unterstützt, welche allgemeine Informationen bietet
und Feedback zur aktuellen Parametrisierung liefert. Als Resultat stellen wir die orche-
strierten Transformationen, die daraus resultierenden Lösungsmodelle, die Werte der
Optimierungseigenschaften und Bedingungen sowie zusätzliche Analyseinformationen
bereit. Unser Ansatz basiert auf Graphtransformationen und wurde als quelloffenes
Framework namens MOMoT implementiert. Die Effektivität unseres Ansatzes wird in
einer intensiven Evaluierung auf Basis von verschiedenen Fallstudien und zwei neuen
Problemdefinitionen aus den Bereichen Software Engineering und MDE validiert.

xi

Abstract

Model-Driven Engineering (MDE) is a paradigm that promotes the use of models as
the central artifacts for solving problems. In MDE, problem domains are specified using
domain-specific modeling languages and models are concrete problem instances that
abstract from reality to reduce complexity. At the heart of MDE, model transformations
are used to systematically manipulate these problem models to find good solutions to
the problem at hand. However, reasoning about how the transformation needs to be
orchestrated to find good solutions is a non-trivial task due to the large or even infinite
transformation space. As a result, this task is either performed automatically, e.g., by
following an apply-as-long-as-possible approach, which does not necessarily produce
satisfactory results, or it is carried out manually by the respective engineer. This, in
turn, hampers the application of MDE techniques on complex problems which usually
cannot be solved manually or by enumerating all possible solutions.
Therefore, we present in this thesis an approach that facilitates to solve these problems
by stating clear objectives operationalized through model-based analysis techniques
and elevating search-based optimization methods to the model level to find optimal
transformation orchestrations. As first contribution, we introduce a model-based analysis
approach that measures dynamic, timed properties that consider the contention of
resources directly on the model level using the fUML standard. As second contribution,
we provide a generic encoding of the transformation orchestration problem on which
many different optimization methods can be applied. Using this encoding, we propose an
approach that enables to solve problems by providing a model, a set of transformation rules,
a set of objectives that are optimized during the process and a set of constraints that mark
invalid solutions. The optimization process is configured through a dedicated language
which provides information on the optimization concepts and immediate feedback for the
concrete configuration. The results consist of the respective orchestrated transformations,
the solution models, the objective and constraint values as well as analysis details about
the optimization process. Our approach is based on graph transformations and has been
implemented as an open-source framework called MOMoT. Based on this implementation,
we provide an extensive evaluation of our approach using several case studies from the
area of model-driven software engineering as well as two novel problem formulations that
tackle the modularization of model transformations and the generic modularization of
modeling languages. The obtained evaluation results validate the effectiveness of our
approach and give rise to interesting lines of research.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Aim of the Work . 4
1.4 Methodological Approach . 7
1.5 Structure of the Work . 9

2 Preliminaries 11
2.1 Model-Driven Engineering . 11
2.2 Search-Based Optimization . 27

3 Model-Based Property Analysis 41
3.1 Overview . 42
3.2 Running Example . 46
3.3 Resource Contention Analysis Approach 50
3.4 Evaluation . 58
3.5 Related Work . 65

4 Marrying Optimization and Model Transformations 67
4.1 Overview . 67
4.2 Running Example . 69
4.3 MOMoT Approach . 72
4.4 Generic Solution Encoding . 73
4.5 Solution Fitness . 77
4.6 Exploration Configuration . 78
4.7 Result Analysis . 80
4.8 Support System . 83
4.9 Implementation . 85

xv

4.10 Related Work . 97

5 Evaluation 101
5.1 Overview . 101
5.2 Reproduction Case Studies . 104
5.3 Transformation Modularization . 120
5.4 Modeling Language Modularization . 153

6 Conclusion and Future Work 165
6.1 Conclusion . 165
6.2 Future Work . 167

A MOMoT Configuration DSL 169
A.1 Grammar . 169
A.2 Example: Modularization Configuration 173

List of Figures 177

List of Tables 179

List of Listings 179

Bibliography 181

Curriculum Vitae 207

CHAPTER 1
Introduction

1.1 Motivation

Model-Driven Engineering (MDE) is a paradigm that promotes the use of models as
a central artifact [BCW12, Béz05] to solve problems on a higher level of abstraction.
In MDE, the respective problem domain is expressed using domain-specific modeling
languages and models are the concrete problem instances that conform to this language.
One core principle of MDE is abstraction. By abstracting [Kra07] from reality and
focusing on the specific purpose of a model, we can deal with the world in a simplified
manner and are able to avoid unnecessary complexity [Rot89].

A very successful research line that has originated from this principle is the field of model-
based software engineering (MBSE) where software engineering is the problem domain
under consideration. In MBSE, models are used throughout the software engineering life
cycle to simplify the design process and increase productivity. Indeed, it is recommended
to test and optimize the system already in the design phase [MNB+13], since errors that
are detected in this phase are much cheaper and easier to correct than those detected
later on [CLR+09, CHM+02]. Therefore, models are used to describe complex systems
from various viewpoints and at multiple levels of abstraction using appropriate modeling
formalisms.

At the heart of MDE are model transformations [SK03] which provide the essential
mechanism for manipulating models. Their application field ranges from simple editing
operations, visualization, and analysis to the translation of models from one language
to another [LAD+14]. For instance, transformations may be used to refactor a model,
i.e., improve the models structure while preserving its observable behaviour, abstract
software models such as class models from existing source code using reverse-engineering
techniques [BCJM10], or obtain knowledge about the system by extracting domain models
out of a class diagram [BGWK14]. In general, model transformations are executed

1

1. Introduction

using a transformation engine and expressed using model transformation languages.
Several distinct categories of model transformation languages have been identified [CH06,
LAD+14]. In broader terms, there exist declarative, imperative, and hybrid languages,
most of which are expressed by means of transformation rules.

A crucial aspect when dealing with rule-based model transformations is the orchestration
of the rules that compose them. This orchestration consists of the rule parameterization,
i.e., the setting of the rule parameters, and the rule scheduling, i.e., the determination of
the order in which the rules need to be executed. The transformation can be orchestrated
implicitly or explicitly [CH06]. In an implicit orchestration, the order in which the
rules are triggered is decided by the transformation engine and the developer has no
control mechanism. This is typically the case with purely declarative languages, such
as QVT Relations [Kur08], Triple-Graph-Grammars [Sch95], and many graph-based
transformation languages [RDV09, Tae03, Agr03]. Other languages often provide mecha-
nisms to explicitly define the rule scheduling. For instance, ATL [JABK08] is a hybrid
transformation language that offers the possibility of partially orchestrating the rules by
explicitly calling rules from the declarative part of the language. Other languages provide
more dedicated mechanisms to schedule rules, such as VIATRA [CHM+02] which uses
abstract state machines. As such, in an explicit rule orchestration, the complex task of
finding a rule orchestration is shifted to the model engineer.

1.2 Problem Statement

When we apply MDE to solve problems on a higher level of abstraction, a model engineer
defines transformation rules to manipulate an input model representing the problem
instance to obtain good solutions, i.e., models with desired characteristics. However,
reasoning about the orchestration of these rules to find good solutions is a non-trivial
task suffering from four major challenges. First, the effect a rule application has on the
characteristics of the resulting model is implicitly encoded in the behavior of the rule.
Second, two rule applications may be in conflict or may enable each other [BAHT15], i.e.,
they offer alternatives or a given rule may check for some information produced by another
rule. Third, the number of rule combinations may be very large or even infinite, especially
when considering the parameters a rule may have, making an exhaustive exploration of
rule orchestrations difficult or even impossible. And finally, the expected solutions may
need to optimize several, potentially conflicting characteristics which further complicates
the reasoning process. Thus, deciding on a rule orchestration to optimize a given model
is a challenging task which hampers solving of complex problems on the model level.

The process of tackling such decision problems consists generally of four steps, as depicted
in Figure 1.1 [Tal09]. First, the decision problem is identified and the objectives of the
problems are outlined. Second, an optimization model is built for an abstracted version
of the problem. Third, an optimization method generates solutions for the problem and
depending on the problem and the respective optimization method, these solutions may
or may not be optimal. And finally, a selected solution is implemented and evaluated to

2

1.2. Problem Statement

Formulate ImplementOptimizeModel
Solution

Figure 1.1: Classical Process in Decision Making [Tal09]

see whether it is acceptable or not. If a selected solution is not acceptable, either the
optimization model or the solving method may be adapted until an acceptable solution
is found.

The field of mathematical optimization is concerned with solving decision problems.
Specifically, in search-based optimization we are able to tackle highly complex problems
with large or even infinite search spaces. A solution to such a problem is encoded as
a set of decision variables that are optimized by the respective optimization method
according to a given set of objectives and constraints. Common types of decision variables
include real-valued variables, binary variables, permutations, and trees. The optimization
method manipulates these decision variables using dedicated operators to explore the
solution space and to guide the search towards solutions with good objective values
while considering the specified constraints. As optimization methods, we can distinguish
between exact optimization methods that can guarantee the optimality of the retrieved
solutions and approximate methods that are able to generate high-quality solutions in a
reasonable time, but in turn cannot guarantee their optimality. If possible, the use of exact
optimization methods is preferred. However, if the problem is complex, i.e., NP-complete,
an exact method needs at least exponential time to produce optimal solutions [Tal09].
This is not feasible for most real world problems in which case approximate methods can
be used instead. Metaheuristics are a family of general-purpose approximation methods
that are applicable to most optimization problems and are often applied when it is
infeasible to use exact methods [ZTL+03]. The goal of metaheuristics is to explore the
solution space efficiently in order to find (near-)optimal solutions [BR03].

Recently a lot of research has been done in the field of search-based software engineering
(SBSE) [HJ01], where metaheuristic methods are applied on software engineering problems
to deal with their inherent complexity. In a similar spirit, we propose in this thesis the
integration of metaheuristics with MDE to solve complex problems on the model level.

However, there is a gap between the formalisms used in search-based optimization and
the techniques used in MDE. In MDE, the problem domain is constructed using modeling
languages and solutions to these problems are models whereas in search-based optimization
solutions to problems are encoded as a set of decision variables. Furthermore, in MDE
there is no dedicated technique to tackle large transformation search spaces based on a
set of declaratively given objectives like in search-based optimization. Instead domain-
specific model transformation rules are used to modify models and the optimization
is performed by orchestrating the transformation, a task often delegated to the model

3

1. Introduction

engineer. However, there are problems where a manual or exhaustive exploration of
the transformation search space is not feasible. In order to tackle these problems using
metaheuristics, a model engineer would need to manually translate the transformation
rules into search operators, invent a dedicated encoding of decision variables for the
problem domain and map any domain-specific constraints and the necessary objectives
onto this encoding. Furthermore, to subsequently process the solutions, they need to be
converted back from the specific encoding to the model formalism. Besides, translating
transformation rules to another formalism and inventing an encoding for a dedicated
problem is considered a complex process. Moreover, once an encoding has been defined,
integrating changes may become quite expensive as objective calculations, constraint
definitions, search operators and the translation back depend on that encoding.

1.3 Aim of the Work
In this work, we aim to bridge this gap between search-based optimization and MDE
formalisms and facilitate the formulation of an optimization problem directly on model
level. This way, model engineers can use the languages and tools they are familiar
with and at the same time profit from the declarative objective specification and the
exploration capabilities of metaheuristic methods. Specifically, we focus on the following
research questions:

(i) How can we measure properties on model level to declaratively express objectives
and constraints?

(ii) How can we define a generic encoding that combines metaheuristics and transfor-
mations to solve complex problems on model level?

(iii) What optimization methods can we apply on such an encoding?

(iv) What are the resulting advantages and challenges to be tackled?

In this thesis, these research questions are addressed by two main contributions. Before
we discuss each contribution in detail, we outline the envisioned model-level optimization
approach (see Figure 1.2) which constitutes the context of the contributions. Our
approach facilitates the formulation of a search problem through MDE techniques and
seamlessly integrates search-based optimization methods that a model engineer can use to
solve complex problems on model level. The core idea of our approach is to formulate the
transformation orchestration problem as a search-based problem and therefore deal with
the large or even infinite transformation space [Kur05] that can occur for problems defined
on model level. As such, we provide a generic encoding based on model transformations
and elevate the necessary input such as the configuration of the search process that
optimizes the model. Finally, we propose an analysis method to retrieve the values
of common properties on model level that can be used in the objective and constraint
specification of the optimization approach.

4

1.3. Aim of the Work

Model-Based
Property Analysis

Model
[unoptimized]

applies

modifies

guides

orchestration of

WorkloadWorkloadModel
Transformation

Transformation
Space Exploration

optimizes

CX ContributionArtifact Task

measures

Generic
Solution Encoding

Objective and
Constraint Evaluation

C1

representsemploys

C2 C2

Figure 1.2: Model-Level Optimization Approach and Contributions of this Thesis

The goal of our approach is to support model engineers in solving problems which are
either too large or too expensive to solve through an exhaustive or manual approach.
Specifically, we provide an approach which enables model engineers to solve their problems
declaratively through objectives and constraints and not by specifying the transformation
orchestration. For such an approach, the following requirements are desirable.

Generic The approach must be problem- and optimization method-agnostic so that no
assumptions about the problem and the selected optimization method need to be
made in advance. Switching between methods should be simple and the changes
necessary to switch from one problem to another problem should be minimal to
reduce the learning effort.

Transparent In order to understand the approach, the executed process must be
transparent to the model engineer. This means that the approach must (i) take the
artifacts produced by the model engineer as input, i.e., the model which constitutes
the problem instance and the set of model transformation rules that can manipulate
this model, (ii) produce output on the same level as the input, i.e., an output
model conforming to a metamodel and a sequence of orchestrated transformation
rules, and (iii) provide analysis information about the search process.

Declarative The goal of the transformation orchestration, i.e., the objectives and
constraints of the output model, must be separated from the model transformation
specification and elevated to a first-class citizen. By making the objectives, which
are typically implicitly defined as part of the model transformations semantics,
explicit, we make both the transformation and the objective specifications re-usable
for other problems. Furthermore, explicit objectives can serve as documentation
for the problem solving process. The language(s) in which the objectives and
constraints can be defined should be known to the model engineer.

Supportive Since it cannot be assumed that model engineers are proficient in search-
based optimization methods, a support system must be in place that provides

5

1. Introduction

general information about these methods and prevents common mistakes when
configuring the methods for a specific problem.

In this thesis, there are two main contributions that support such an approach in order
to answer the research questions.

C1: Model-Based Property Analysis. In our optimization approach, objectives
and constraints can be given declaratively on model level. Objectives are properties of
an output model that need to be optimized whereas constraints are properties that an
output model needs to satisfy in order to be considered valid. In general, such properties
may be categorized into static or dynamic properties and functional or non-functional
properties. Static properties can be analyzed using static methods, such as model queries,
whereas dynamic properties can only be evaluated by considering the runtime behavior
of the respective model, e.g., through monitoring. Functional properties relate to aspects
of the system that are concerned with its behavior, e.g., whether the correct functionality
is provided or not. Non-functional properties on the other hand focus on how well this
functionality is provided, e.g., the performance of a function or the considered security
model. In general, the retrieval of these properties is done using dedicated model-based
analysis techniques.

In this thesis, we propose a novel analysis approach that allows the retrieval of dynamic,
non-functional properties for UML models directly on model-level. Previous strategies
often translate the respective models into dedicated formalisms such as queuing networks.
However, such translational approaches introduce inevitably an additional level of indi-
rection, additional notations, and hence additional complexity, such as the consistent
propagation of UML model changes to the analysis model and the translation of the analy-
sis results back on the UML model. Our proposed approach, however, analyzes properties
directly on model level by using the operational semantics of the recent Foundational
UML (fUML) [OMG16] standard to obtain model execution traces on which further
analysis can be performed. The application of our approach is shown for performance
properties considering the contention of resources.

Our model-based analysis approach addresses research question (i).

C2: Marrying Optimization and Model Transformations. The second contribu-
tion of this thesis focuses on the integration of metaheuristics with MDE. Specifically, in
this contribution we realize a generic encoding to tackle the transformation orchestration
problem. In this encoding, a decision variable is a transformation unit, i.e., transforma-
tion rule or transformation component providing control-flow semantics, which can be
adapted by the optimization method. Consequently, a solution consists of an ordered
sequence of these decision variables, i.e., a complete transformation orchestration. In
our encoding, we abstract from concrete transformation languages by defining a set of
supported transformation units. As a result, our encoding may be realized through any
rule-based transformation language that can implement these units.

6

1.4. Methodological Approach

Based on our encoding, we realize our model-level optimization approach that aims
to fulfil the requirements stated before. The input for this approach are the model
that represents the problem to be tackled, a set of transformation units to modify
that model, the objectives and constraints that need to be optimized and fulfilled by a
solution to this problem, and a configuration for the search and the selected optimization
methods. Our approach offers generic interfaces for different metaheuristic methods and
provides a set of method implementations. In order to support the model engineer of
our approach in configuring the methods and the search process, we offer a dedicated
configuration modeling language that provides general information about the concepts
used in metaheuristic optimization and provides feedback regarding the current state of
the configuration. Hence, all input for our approach can be provided using techniques with
which model engineers are familiar. As result of applying our approach, the model engineer
obtains the transformation orchestrations, the resulting output models, the objective and
constraint values of those models, and a statistical analysis of the optimization process.

Our model-level optimization approach addresses research questions (ii), (iii), and (iv).

Implementation. The artifacts developed in the course of this thesis have been realized
as research prototypes. These prototypes are integrated with the Eclipse Modeling
Framework [SBPM08, Ecl16b] and are published on our websites [BIG16, FTW16a].

1.4 Methodological Approach
For carrying out this thesis, we apply the design science approach as underlying
methodological approach. Design science is a constructive methodological approach
where knowledge is created by building and evaluating innovative artifacts. Hevner et
al. [HMPR04, Hev07] introduced a conceptual framework as well as seven guidelines
for applying design science in software systems research. These seven guidelines for
conducting design science in information systems research are applied in this thesis.

1. Design as an Artifact. The aim of this thesis is to design an approach for
automatically deriving orchestrations of model transformations in order to facilitate
the solving of complex problems on model level satisfying the defined objectives and
constraints. More precisely the following artifacts have been built in the course of the
thesis.

(i) A strategy to calculate dynamic, non-functional properties that consider the con-
tention of resources on model level has been developed (cf. Chapter 3).

(ii) A generic solution encoding to tackle the model transformation orchestration
problem has been defined (cf. Chapter 4).

(iii) An algorithm- and problem-agnostic approach to solve optimization problems
on model level using metaheuristic optimization and model transformations has

7

1. Introduction

been developed by building upon the Eclipse Modeling Framework (EMF) (cf.
Chapter 4).

(iv) A set of case studies and experiments to evaluate the approach have been created
and are publicly available to enable re-execution and the reproduction of the results
(cf. Chapter 5).

2. Problem Relevance. In MDE, problem domains can be represented using dedi-
cated modeling languages and problems can then be expressed using the concepts available
from that domain. In general, solving problems on model-level is often cheaper and
easier as models abstract from the concrete reality of the problem and we can focus on
aspects relevant to solving the problem. Model transformations are used to manipulate
models in order to find solutions for the respective problem. However, reasoning about
these model transformations for complex problems is a non-trivial task with several
drawbacks hampering the tackling of those problems on model level. Therefore, we need a
mechanism that automatically determines the optimal transformation orchestration for a
specific scenario in a setting where the number of possible rule combinations may be very
large or even infinite. For instance, in the research project ARTIST [TBF+15, BBCI+13]
the aim is to migrate existing software to the cloud by manipulating the reverse engi-
neered software models according to a set of migration objectives. However, the space of
potential model optimizations is very large and the optimization has been identified as
very challenging.

3. Design Evaluation. The artifacts developed in the course of this thesis are
evaluated by applying the overall approach and single artifacts in a number of well-
defined and representative case study setups. More precisely, initial experiments have been
conducted using very simple case studies for single artifacts. Iteratively, the complexity of
the case studies have been increased to evaluate the boundaries of the proposed approach
in terms of objectives and complexity of model transformations. All experiments have
been documented in a structured way to enable re-execution and the reproduction of the
results.

4. Research Contributions. The presented generic optimization process as well
as the presented artifacts implemented for this process constitute the contributions of
this thesis. All conclusions drawn from developing the artifacts and running different
experiments have been documented and added to the knowledge base of the MDE and
SBSE community. Details about the contributions have been outlined in the previous
section and are further described in the following chapters.

5. Research Rigor. Research exists about different model-based property analysis
approaches and the application of search-based optimization methods on models. The
provided research is taken into account when developing the optimization approach and
the model-based analysis approach. Existing work combining SBSE and MDE is taken

8

1.5. Structure of the Work

into account when exploring different strategies to explore the transformation search
space. Overall, intensive literature studies are carried out prior to designing the artifacts,
and existing approaches and tools have been reviewed. Furthermore, evaluation methods
applied by previous related research have been investigated for their applicability in
evaluating the artifacts built within the thesis. The built artifacts have been contrasted
and compared with the artifacts built in related research, specifically the application of
different optimization methods have been compared using a number of statistical tests,
as proposed by Arcuri and Briand [AB11].

6. Design as a Search Process. The artifacts developed in course of the thesis
are iteratively developed and evaluated. These iterations have been driven by different
problem case studies. This means that the artifacts have been first designed and built to
support exemplary case studies. By doing so, design alternatives for the artifacts have
been explored, the problem domain has becomes better understood, and experience has
been gained. As a result, more complex case studies have been considered subsequently,
and the artifacts have been further refined.

7. Communications of Research. The contributions of the thesis have been com-
municated through well-known publication venues in the MDE and SBSE community as
well as in the broader software engineering community.

1.5 Structure of the Work
This thesis is structured according to the elaborated contributions. In the following,
we provide an overview of this thesis by briefly describing the contents of each chapter.
Some of the contributions of this thesis have already been published in peer reviewed
workshops, symposia, and journals. Hence, the contents of these publications overlap
with the contents of this thesis.

Chapter 2: Preliminaries. The aim of this chapter is to introduce the basic concepts
on which the contributions are founded, namely MDE and search-based optimization.
Specifically, we describe the metamodeling stack which defines how conformance con-
straints are specified on models, we explain how domain-specific modeling languages can
be developed and illustrate how model transformations are used in the area of MDE.
Second, we describe the fundamental aspects of search-based optimization. In particular,
we introduce the different aspects of an optimization problem and give an overview of
metaheuristic methods that can be used to solve such problems.

Chapter 3: Model-Based Property Analysis. In order to apply metaheuristic
optimization methods on model level, a model engineer needs to specify objectives that
should be optimized and constraints that need to be considered. Such objectives and
constraints are given in the form of properties which are realized through dedicated
model-based analysis techniques. This chapter provides an overview of such techniques by

9

1. Introduction

explaining how properties can be categorized and by describing general ways of retrieving
properties using MDE techniques. After the general overview, we introduce our novel
approach that is able to analyze dynamic, non-functional properties that consider the
contention of resources on model level. While many approaches accomplish this task by
translating the model into a dedicated analysis formalism, our approach is different in
the sense that it can analyze these properties directly using model execution traces. In
this chapter, we describe our approach in detail and evaluate it for several performance
properties. The approach has also been published in [FBL+13].

Chapter 3: Model-Based Property Analysis. Using model-based analysis tech-
niques to retrieve properties as part of the objective and constraint specification, we
have all necessary inputs to realize our model-level optimization approach in this chapter.
Specifically, the approach, named MOMoT, is realized by formulating the transformation
orchestration problem as a search problem through a generic encoding and elevate the
necessary inputs to the model level. In this chapter, we describe all relevant parts of
the realization in detail and exemplify them on a running example. Furthermore, we
introduce the dedicated configuration language that provides the model engineer with
additional information to use our approach. Finally, we outline how the approach is
implemented as a framework to allow the application of our approach on concrete problem
instances. The approach has been published in [FTW15, FTW16b].

Chapter 5: Evaluation. In this chapter, we provide an extensive evaluation of the
MOMoT approach. Specifically, we focus on the applicability, the runtime overhead,
and the search features of our approach and evaluate these aspects on four case studies.
This part of the evaluation has been published in [FTW15, FTW16b]. Moreover, we use
our approach to tackle two existing problems in the field of model-driven engineering.
First, we tackle the problem of modularizing model transformations by formulating this
problem as a search problem using MOMoT. For the results, we provide an extensive
evaluation using both statistical analysis of the solutions and an evaluation based on user
studies. The problem formulation and presented solutions are published in [FTKW16].
Based on the results retrieved from the model transformation modularization problem,
we provide an approach to tackle the problem of generically modularizing concepts
in modeling languages. This approach is demonstrated and evaluated using Ecore as
modeling language. It has been published in [FTW16c].

Chapter 6: Conclusion and Future Work. Finally, in this chapter, we summarize
the contributions of this thesis and discuss overall conclusions. In addition, we point out
the limitations of the contributions and give directions to interesting lines of research for
the future.

10

CHAPTER 2
Preliminaries

This chapter provides an overview of the two worlds that to combine in this thesis:
model-driven engineering (MDE) and search-based optimization (SBO). First, we provide
an introduction into the main concepts of MDE including metamodeling, the development
of modeling languages, and an overview of model transformations in Section 2.1. These
concepts are also applied in two simple examples to further consolidate their understanding.
Second, we describe the main terminology and concepts used in SBO in Section 2.2.
In particular, we demonstrate how an optimization problem can be formulated, how
solutions to these problems are encoded, and which metaheuristic methods exist to tackle
these problems.

2.1 Model-Driven Engineering

Model-Driven Engineering (MDE) [dS15] is a methodology that advocates the use of
models as first class entities throughout the development life cycle or the problem solving
process. It is meant to increase productivity by maximizing compatibility between systems,
simplifying the process of design and promoting communication between individuals and
teams working on the system. In short, a model can be seen as an abstraction of a system
or a real-world concept.

2.1.1 Metamodeling

Using models as the central artifacts in the development and problem solving process
gives rise to the question of how these models can be defined. In MDE, the answer to this
question is given by so called metamodels. A metamodel formally defines the structure,
semantics and constraints for a family of models [MSUW04]. Thus a metamodel can be
seen as a model that describes a set of models in the same way a model describes an
abstraction of a system or reality [BCW12]. Interestingly, when we consider metamodels

11

2. Preliminaries

to be models, we can create a metamodel to define a family of metamodels. This
metamodel is called meta-metamodel and may itself be seen as a model. In theory, this
process of abstraction can be repeated infinitely often. However, it has been shown that
in practice the meta-metamodel already provides sufficient concepts to be define itself and
that further abstractions do not yield a real benefit [BCW12]. As a result, we have the
following four-layer metamodeling stack that is also implemented in most metamodeling
tools.

Meta-Metamodel

Metamodel

Model

Model Instance

conformsTo

conformsTo

conformsTo

M0

M2

M3

M1

conformsTo

Metamodeling
Language

Modeling
Language

System

System Snapshot /
Reality

represents

defines

defines

represents

Figure 2.1: Four-Layered Metamodeling Stack (adapted from [BCW12, Küh06])

An overview of this stack is depicted in Figure 2.1 [BCW12, Küh06]. The upper half
of this figure is concerned with language engineering, i.e., building models for defining
modeling languages, while the lower half is concerned with domain engineering, i.e.,
building models for particular problem domains. Between each layer and its describing
meta-layer, we assume a conformance relationship (conformsTo), i.e., a model on one
layer has to fulfil all constraints given by the model one layer above. In terms of graph
theory, a model can be seen as a graph consisting of nodes and edges and the model it
conforms to as its type graph. An exception to this rule is the top-most layer, M3, which
is defined upon itself and therefore needs to conform to itself. As inverse relationship to
the conformance relationship, we define that a model is an instance of a metamodel, a
metamodel is an instance of a meta-metamodel and a meta-metamodel is an instance of
itself.

M3: Meta-Metamodel. A meta-metamodel defines a metamodeling language that
can be used to define metamodels. Meta-metamodels are defined reflexively, i.e., a meta-
metamodel must conform to itself. This means, that every element in the meta-metamodel
can be expressed using the very same meta-metamodel. The standard metamodeling
language defined by OMG is the Meta Object Facility (MOF) [OMG15b] language.

12

2.1. Model-Driven Engineering

MOF is based on a core subset of UML class diagrams and provide concepts for classes,
attributes, and references. It was standardized by the OMG in 1997 to ensure the
interoperability of metamodels and modeling environments [BG01, May14]. Another
prominent metamodeling language is Ecore, the meta-metamodel used in the Eclipse
Modeling Framework (EMF). Ecore is also based on a subset of UML class diagrams,
but was tailored towards Java implementations.

M2: Metamodel. A metamodel conforms to a meta-metamodel and defines a model-
ing language to describe models. In that sense, every element in the metamodel is an
instance of an element in the meta-metamodel. From a language engineering point of view,
the metamodel describes the abstract syntax of a modeling language (cf. Section 2.1.2),
i.e., the language concepts, their attributes and the relationships among them. There
is a plethora of different modeling languages available. Among the most prominent
examples, we have the Unified Modeling Language (UML) [OMG15c] for system develop-
ment, the Knowledge Discovery Metamodel (KDM) [OMG11a] for architecture-driven
modernization, and the Common Warehouse Metamodel (CWM) [OMG03] to manage
data warehouses, all of which are standardized by the OMG and defined with MOF.

M1: Model. A model describes instances of domain concepts which represent real-
world entities and describe real world phenomena. The structure, semantics, and con-
straints of a model are given by the metamodel to which the model conforms.

M0: Model Instance. And finally, a model instance is an actual object or phenomena
in the real world from which we abstract.

Conformance Relationship. Each model of a specific layer has to conform to the
constraints defined by the respective meta-layer. By viewing models as graphs and type
graphs, we are able to define constraints based on the node and edge structure of the
graph. However, there are several constraints that cannot be defined using only graphical
elements such as constraints based on objects and values of a concrete model. For instance,
we cannot express that in UML the names of all parameters in a method signature must
be unique. In order to express such constraints in MDE, we use a dedicated constraint
language. The most prominent representative of these languages is the Object Constraint
Language (OCL) [OMG14b]. OCL is a standardized, typed, and side-effect free language
to describe expressions on any MOF-compliant models. The specified expressions can
be used to define model queries, invariants on states, and pre- and post conditions of
operations, among others. Only if all constraints are fulfilled we consider a model to be
valid.

2.1.2 Developing Modeling Languages

In order to develop our own modeling language, we need to define the abstract syntax of
the language using concepts of a meta-metamodel, a set of concrete syntaxes to express

13

2. Preliminaries

instances of the language and language semantics. In a metamodel-centric language
design approach [BCW12] a metamodel is used to define the abstract syntax to which
we map from the concrete syntaxes and from which we map to the semantic domain.

In general, we can distinguish between general purpose languages and domain-specific
languages. General purpose languages can be applied to any sector or domain [BCW12],
e.g., UML [OMG15c], Petri-nets, or state machines. Domain-specific languages (DSLs),
on the other hand, deal with the concepts of a concrete problem domain. DSLs tend
to support higher-level abstractions than general-purpose modeling languages, and are
closer to the problem domain than to the implementation domain. Thus, a DSL following
the domain abstractions and semantics, allowing modelers to perceive themselves as
working directly with domain concepts. Furthermore, the restrictions of the domain can
be included into the language as constraints, disallowing the specification of illegal or
incorrect models. DSLs enable domain experts to create models independently from the
implementation platforms using their domain vocabulary. The development of a DSL is
worthwhile if the language allows a particular type of problem or solution to be expressed
more clearly than in an existing general purpose language and if the type of problem in
question reappears sufficiently often.

Abstract Syntax. The abstract syntax of a modeling language defines the set of
possible modeling concepts when creating a model. Each concept consists of specific
attributes and the relations to other concepts. In MDE, metamodels are the standard
means to specify the abstract syntax of modeling languages [Küh06].

Concrete Syntax. The concrete syntax of a language defines the notation used for
representing the models that can be described with the language. Generally, we distinguish
between a graphical and a textual concrete syntax. In a graphical syntax models are
described in a diagrammatic manner, using symbols to represent their elements and
relationships among them. For instance, UML offers rectangular boxes to represent classes
and instances, and lines to represent associations and links. In a textual syntax models
are described using sentences composed of strings, similar to programming languages.
For instance, the OCL standard provides a textual concrete syntax for the expressions
used in queries and constraints. It is important to note that all concrete syntaxes map
to the same abstract syntax, i.e., they are defined upon the concepts available in the
metamodel. Therefore, there is no restriction to the number of concrete syntaxes a single
modeling language may have.

Semantics. Finally, the semantics is used to express the meaning of a model that can
be created using the modeling language [HR04]. In that sense, the abstract syntax of
a modeling language is mapped to a semantic domain. In MDE, two approaches for
formally defining the semantics of a modeling language have been applied: translational
semantics and operational semantics [CCGT09, Kle08, May14]. In the translational
semantics approach, the semantics is defined by a translation from the modeling language
to another language whose semantics is formally defined. In the operational semantics

14

2.1. Model-Driven Engineering

approach, the semantics is defined by an interpreter that specifies the computation steps
required for executing a model. Of course, the semantics of a modeling language may also
be defined in a less formal way, e.g., using natural language. For instance, the semantics
of OCL is described using UML and the semantics of UML is described in English prose
as the semantic domain.

2.1.3 Model Transformations

In MDE where models are the central artifacts of, model transformations provide the
essential mechanisms to manipulate models and are the key technique to automate
different tasks [SK03, BCW12]. In fact, model transformations play such a crucial role
in the process that they are considered the heart and soul of MDE [SK03].

Source
Metamodel

Source
Models

conformsTo

Target
Metamodel

Transformation
Engine

Transformation
Specification

Target
Models

executes conformsTo

refersTo

reads

refersTo

writes

Figure 2.2: Model Transformation Pattern [CH06]

In general, a model transformation is considered a program that is executed by a
transformation engine. The transformation engine takes one or more models as input and
produces one or more models as output by executing the transformation specification,
as illustrated by the model transformation pattern [CH06] in Figure 2.2. The input
models, also referred to as source models, conform to a source metamodel, and the output
models, also called target models, conform to a target metamodel. For endogenous
transformations, the source and target metamodel are the same. It is important to note
that a model transformation is defined on the level of the source and target metamodel
and is therefore applicable on all valid source models.

Model Transformation Intents

Typically, a model transformation realizes a specific transformation intent, such as the
refinement or the refactoring of a model, the merging of two models, or the translation
of a model from one language to another. In this section, we give a short overview on
the main intent categories that have been identified by Lúcio et al. [LAD+14].

Refinement. The aim of refinement is to add precision and detail to an existing
model and reduce ambiguities. For instance, in the MDA approach for forward engineer-
ing [OMG14a], a platform-independent model might be refined into a platform-specific
model by adding platform-related knowledge. Other examples for refinement include the
generation of code called synthesis and the serialization of models for storing purposes.

15

2. Preliminaries

Abstraction. Abstraction can be seen as the inverse of refinement, i.e., abstraction
aggregates information or removes information from a model to produce a simpler or more
high-level version of the source model. In this sense, model queries can also be seen as
abstractions since they retrieve parts of the information contained in a model. Also reverse
engineering falls under this category, e.g., the abstraction from a platform-specific model
into a platform-independent model or the generation of UML class diagrams from source
code. Another interesting abstraction is the approximation of model transformations,
where a certain transformation is equivalent to another transformation up to a certain
error margin.

Semantic Definition. As already described in Section 2.1.2, two approaches can be
applied to define the semantics of a modeling language. In the translational approach we
transform the concepts available in the source modeling language to a target language
that has a clearly defined semantic domain. In the operational approach we provide the
computational steps to interpret or execute the language. Each of these computational
steps can be realized through a model transformation, where the source model is the
current state and the target model is the following state after one step.

Language Translation. Under language translation we subsume the mapping of one
modeling language to a target modeling language and the migration of a software model
from one version of a language to another version of that language. For instance, the
transformation from UML class diagrams to an equivalent relational database scheme is
considered a translation whereas the transformation from UML class diagrams conforming
to EJB2 to class diagrams conforming to EJB3 is considered a migration.

Constraint Satisfaction. In this category the aim of the transformation is to produce
a set of output models given a set of constraints. Here, we can distinguish between
model generation and model finding. In model generation we automatically generate
models conforming to the constraints defined in the metamodel, In model finding we
are interested in models that satisfy a given set of constraints, e.g., when exploring the
design space of a system.

Analysis. When the intent of the transformation is to analyze the model, we are
interested in certain properties or parts of the model. Numerous model analysis methods
based on transformation exist which are considered research fields on their own, such as
model-based property analysis or model checking, cf. Chapter 3.

Editing. Transformations in this category aim to manipulate the source model directly.
In its simplest form, the transformation might just add, delete or modify elements
in the model. More elaborate editing intents are the optimization of models or the
refactoring of models. Optimization aims at improving operational qualities of a model
such as scalability and efficiency, and in refactoring a model is restructured to improve
its internal quality characteristics without changing its observable behavior [Fow99].

16

2.1. Model-Driven Engineering

Also the reduction of the syntactic complexity of a model through normalization and
canonicalization fall under the category of model editing.

Model Visualization. The aim of transformations in model visualization is to deal
with the abstract and concrete syntaxes of a modeling language (cf. Section 2.1.2). In
particular, we include the rendering of model elements in the abstract syntax into a
concrete syntax and the parsing of a concrete syntax into its abstract representation in
this category. Also transformations that visualize a simulation, i.e., animate the process,
realize model visualization.

Model Composition. Model composition is dealing with the integration of individual
models into a compound model. This is the case when several models are merged into
one target model, when changes made in the individual models are synchronized in a
common global model or when we define correspondence links between corresponding
entities of several models.

Model Transformation Languages

In the last decade, many different model transformation languages have emerged in the
MDE field [CH06, MG06]. In this section, we provide an overview on the classification of
these languages based on the features defined by Czarnecki and Helsen [CH06]. In this
overview, we focus on features and aspects that are relevant to this thesis, for details on
all features, we refer the reader to the full article.

Major Categories. There are three major categories under which model transforma-
tions can be subsumed: model-to-text (M2T) transformations, model-to-model (M2M)
transformations, or text-to-model (T2M) transformations.

Conceptually, there is not much difference between M2T and M2M transformations besides
the target of the transformation. Whereas in M2T transformations the target is plain text,
e.g., source code or documentation, the target in M2M transformations is a model conform-
ing to a metamodel. We can divide M2T transformations into visitor-based approaches
that traverses the internal representation of a model and template-based approaches where
we have a textual template with special commands to incorporate information from the
model. Available frameworks and languages include among others MOFM2T [OMG08],
XPand [Ecl16e], Acceleo [Ecl16a], JET [Ecl11], and AndroMDA [And14].

In M2M transformations, we distinguish between direct-manipulation, structure-driven,
operational, template-based, relational, graph transformation-based, and hybrid ap-
proaches. Direct manipulation approaches are the most low-level approach and usually
provide just some API to manipulate the internal representations of models. Structure-
driven approaches focus on the creation of the target models in two phases, by creating
the hierarchical structure first and then setting attributes and references. Operational
approaches are similar to direct manipulation approaches, but usually provide more

17

2. Preliminaries

detailed support for model transformations. Template-based approaches facilitate the
use of model templates with embedded metacode that computes the variable parts of the
resulting target model. Relational approaches build upon the mathematical definition
of relations and can be seen as a form of constraint solving. Graph-based approaches
deal with models as typed, attributed, and labeled graphs whereas the metamodel is
considered as the type graph. Approaches that do not clearly fit into any of the described
categories or combine different aspects of the categories, are considered hybrid approaches
In general, a M2M transformation where the source and target metamodel are the same
is called endogenous or rephrasing whereas a transformation with different source and
target metamodel is called exogenous or translation. There is a plethora of frameworks
and languages to define M2M transformations, such as AGG [Tae03], Maude [CDE+07],
AToM3 [dLV02], e-Motions [RDV09], VIATRA [CHM+02], QVT [GK10], ATL [JK06],
Henshin [ABJ+10], Kermeta [JBF11], and JTL [CDREP10].

And finally, T2M transformations have text as source and produce a model conforming
to a metamodel. As such, all parsing approaches fall under this category.

Transformation Rules. In this thesis, we consider transformation rules as the smallest
units of transformations in a transformation language. The logic of these rules, i.e., the
computation steps and constraints, may be expressed using a certain paradigm such
as object-orientation or a functional approach. In a declarative logic, we specify the
relationship between the source and the target models without specifying the concrete
computational steps that are necessary to produce one from the other. The actual
computation is delegated to the transformation engine. In an imperative logic, we give
an explicit sequence of computation steps that should be executed by the transformation
engine. A merge of these two logics can be found in hybrid languages such as ATL where
the rules can be defined declaratively, but imperative calls to rules or helpers are also
possible.

Parameterization. In order to adapt the behavior of a transformation rule or pass
information between rules, a transformation rule may have parameters. The simplest form
of parameters are control parameters which pass simple flags to dictate how a rule should
behave. If the parameter value can be any data type, including model elements, we refer
to them as generic parameters. They may be used to provide values that can be used to
select or adapt specific model elements or to pass contextual information between rules. If
rules themselves can be used as parameters in a rule, we consider the rule to be a higher-
order rule. Higher-order rules can be used to realize higher-order transformations (HOTs),
i.e., transformations whose input/output are transformations [TJF+09, VP04, ALS08].
A HOT operates on a more abstract level and enables the generation of transformations
from different information sources, the composition and decomposition of transformations,
the analysis of transformations, and the modification of transformations [TJF+09].

Rule Application Conditions. In some approaches, transformation rules may have
explicit conditions before they can be applied. For instance, in QVT, we can define a

18

2.1. Model-Driven Engineering

when-clause that specifies a condition under which the specified relationship must hold.
In Henshin, a graph-based approach, we have explicit positive application conditions
(PACs) and negative application conditions (NACs) that define whether a specified graph
pattern needs to be present or absent in order for the rule to be applicable.

Application Control. In order to apply a transformation on a model, two aspects
have to be considered: scheduling and location determination.

Scheduling determines the order in which the rules are applied on the respective model
and may be done implicitly or explicitly. In implicit scheduling, the user has no control
over the actual scheduling process and the transformation engine takes care of the
execution order of the rules. In such a case, the rules may be selected through an
explicit condition or non-deterministically. In a transformation approach that supports
an explicit scheduling, a user may influence the order in which rules are executed through
an external mechanism or internally as part of the transformation rules. For instance,
VIATRA allows the external scheduling of rules through finite state machines and ATL
provides mechanisms to explicitly call a rule from another rule. As part of the scheduling
mechanism, a rule iteration mechanism may be defined such as recursive rule iterations,
looping concepts and fix-point iterations, i.e., applying a rule as long as it produces
changes on the model.

In general, in order to check whether a rule is applicable or not, we need consider the
current structure of the model and the application conditions of the rule. If a rule is
applicable, we can produce a set of matches that specify in which parts of the model the
rule may be applied. These parts of the model are also referred to as source or application
location and these locations from the set of matches may be calculated deterministically,
non-deterministically or interactively. In a deterministic strategy, we always select the
location using the same technique, e.g., breadth-first traversal of the model elements. A
non-deterministic strategy, on the other hand, chooses one location at random or applies
the transformation to all matching locations concurrently. Concurrent application is
supported in AGG, AToM3, and VIATRA. In an interactive strategy, a user may be
asked to select the location in the model on which the rule should be applied.

Rule Organization. This feature describes what mechanisms a transformation lan-
guage provides to support the organization of rules into modules and the re-use of rule
functionality. For instance, ATL, VIATRA, Henshin, and QVT provide an explicit
concept of modules or packages in their language through which individual transfor-
mation units can be organized and imported. In order to re-use the functionality of
transformation rules, similar concepts as in object-oriented programming may be applied,
namely inheritance between rules, inheritance between modules, and logical composition.

Source-Target Relationship. We already briefly discussed the source-target relation-
ship with respect to the type of artifact that is used as input or output, i.e., model or
text. In M2M transformation, we also consider whether the source model and the target

19

2. Preliminaries

model are the same. If a M2M transformation creates new models from scratch, for
instance when reverse-engineering code into models, it can be categorized as out-place. If
a M2M transformation rewrites the input models until the output models are obtained,
like in refactoring tasks, it is categorized as in-place. A transformation language may
support one or both of these modes. For instance, the default mode in ATL is to create
models from scratch, i.e., out-place transformations, but enables the execution of the
rules as in-place by switching to the so called refining mode.

Directionality. For now, we have considered that a transformation takes a source
model conforming to a source metamodel as input and produces a target model conforming
to a target metamodel as output. In the sense of directionality, such a transformation is
considered unidirectional, i.e., the execution proceeds from source to target. However, a
transformation may also be multidirectional, i.e., executable from source to target and
from target to source. Multidirectional behavior may be achieved using multidirectional
rules provided by the language or by defining several complementary unidirectional rules.

2.1.4 Example: Class To Relational

In this section, we apply the concepts of metamodeling and model transformations
that we have discussed in the previous sections on an example taken from the ATL
Transformation Zoo [Ecl]. The goal of this example is to demonstrate the application of
an out-place model transformation that translates class diagrams into relational models.
We achieve this by (i) defining the respective metamodels, (ii) specifying the model
transformation, and (iii) applying the transformation on a concrete input model.

Metamodels. As a first step to solve our problem, we define languages to express two
involved problem domains, i.e., we need to develop a metamodel for class diagrams and a
metamodel for relational databases. In order to represent class diagrams, we could use
UML, however as the UML metamodel is quite large and for sake of simplicity, we define
our own metamodel which may be considered as a core subset of UML class diagrams.

Named

name : EString

Column

Type

Table

NamedElement

name : EString

Classifier

Class

isAbstract : EBoolean

Attribute

multivalued: EBoolean

DataType

col
keyOf key * 1..*

* type

*

super

*

type

attr *

(a) Class Diagram Metamodel

Named

name : EString

Column

Type

Table

NamedElement

name : EString

Classifier

Class

isAbstract : EBoolean

Attribute

multivalued: EBoolean

DataType

col
keyOf key * 1..*

* type

*

super

*

type

attr *

(b) Relational Metamodel

Figure 2.3: Class To Relational Example Metamodels

20

2.1. Model-Driven Engineering

Figure 2.3a depicts the class diagram metamodel which will serve as source metamodel
for the transformation. In this metamodel, a class diagram consists of a classes which
have a name inherited from the abstract class NamedElement. Each class has a set of
attributes which have a name, a type and can be defined as multi-valued attributes using
a Boolean flag. Additionally, a class may have one or more super classes in order to
express inheritance relations. Moreover, we support the concept of primitive data types
in our language which opposed to classes are only specified by their name and do not
have any attributes or relations. Figure 2.3b depicts the relational metamodel which will
serve as target metamodel for the transformation. The relational model consists of a set
of named tables which in turn consist of a set of columns. Each column as has a name
and a type and may serve as a key column to identify entries in the table.

Model Transformation with ATL. In order to transform class diagram models
into relational models, we need to convert each class to a table, each data type to a
type, each single-valued attribute to a column and create a new table for multi-valued
attributes as they cannot be represented naturally in a relational model. To define
this transformation, we use the ATL language. The Atlas Transformation Language
(ATL) [JABK08, Ecl15] is a hybrid model transformation language containing a mixture
of declarative and imperative constructs in order to execute transformations both as
out-place and as in-place. Listing 2.1 displays an excerpt of the transformation that
generates a relational model from a class model. In the excerpt, we have included one
imperative helper function and two declarative rules, so-called matched rules in ATL.

Listing 2.1 Excerpt of the Class To Relational ATL Transformation
1: module Class2Relation;
2: create OUT : RelationalMM from IN : ClassMM; -- referenced metamodels
3:

4: helper def : objectIdType : Relational!Type =
5: Class!DataType.allInstances()->select(e | e.name = 'Integer')->first();
6:

7: rule ClassAttribute2Column {
8: from
9: a : Class!Attribute (a.type.oclIsKindOf(Class!Class) and not a.multiValued)
10: to
11: foreignKey : Relational!Column (
12: name <- a.name + 'Id',
13: type <- thisModule.objectIdType)
14: }
15:

16: rule Class2Table {
17: from
18: c : Class!Class
19: to
20: out : Relational!Table (
21: name <- c.name,
22: col <- Sequence {key}->union(c.attr->select(e | not e.multiValued)),
23: key <- Set {key}),
24: key : Relational!Column (
25: name <- 'objectId',
26: type <- thisModule.objectIdType)
27: }

21

2. Preliminaries

The first rule, named ClassAttribute2Column, translates elements of type Attribute
from the class diagram metamodel whose type is Class and whose multiValued
attribute is set to false. This is specified by the guard condition of the rule in Line 9.
Elements satisfying this condition are translated into elements of type Column with a
name set to the value of the respective attribute concatenated with the String Id, cf.
Line 12. The element referenced by the type relationship of a column is retrieved by
the helper function.

This helper function selects a type for the relational model that should be used for
references. Here, we assume that a type with the name Integer is specified in the class
model and always select this one as the usage of numeric values as ids is a common
practice when defining relational models.

The second rule, Class2Table, takes an element of type Class as input and creates
two output elements. The first element is of type Table, cf. Line 20, and gets the same
name as the corresponding class element. As table columns, all columns created by the
corresponding attribute elements are chosen together with the key column created the in
the next step. The second element this rule creates is a dedicated key column for the table,
cf. Line 24. This key column has a fixed name of objectId and its type is assigned with
the helper function, i.e., Integer. In order to retrieve all columns for the table, no explicit
call is necessary. Instead, ATL performs a transparent lookup of output model elements
for given input model elements. Therefore, for each element of type Class!Attribute,
ATL automatically retrieves the corresponding Relational!Column elements.

The other transformation rules to translate the remaining parts of the metamodels are
defined in a similar way.

Applying the Transformation. While the model transformation is defined on the
metamodel level, the execution is performed on the model level. Therefore, in order to
apply our transformation, we define an input model that conforms to the class diagram
metamodel, cf. Figure 2.4.

family : Class

name = "Family"
isAbstract = false

name : Attribute

name = "name"
multivalued = false
type = String

members : Attribute

name = "members"
multivalued = true
type = Person

string : DataType

name = "String"

integer : DataType

name = "Integer"

person : Class

name = "Person"
isAbstract = false

name : Attribute

name = "firstName"
multivalued = false
type = String

friend : Attribute

name = "closestFriend"
multivalued = false
type = Person

addresses : Attribute

name = "emailAddresses"
multivalued = true
type = String

Figure 2.4: Source Model Conforming to the Class Diagram Metamodel

22

2.1. Model-Driven Engineering

In this figure, we use the object diagram notation, i.e., the head of each box gives the
unique identifier of the object and the objects type, i.e., the corresponding metaclass. The
values for each object are given as key-value pairs in the body of the box. Links between
the objects are given by the arrows and named like the corresponding relationships in
the metamodel. For presentation purposes, links between attributes and their types are
also shown as key-value pair in the body of the box.

In order to produce an output model where the elements are connected correctly, ATL
uses an internal trace mechanism to lookup which elements have been created and how
the source elements are connected. Every time a rule is executed, a new trace is created
and stored in the internal trace model, as depicted in Figure 2.5. On the left-hand side
of this figure, we have an input model and the right-hand side shows the model produced
by the Class2Relation transformation. In the central part of the figure we can see
the traces that have been produced during the execution of the two described rules. The
traces keep track of which output elements are created from which input elements and
by which rule. Thus, rule ClassAttribute2Column creates element co1 from at1
and produces Trace 1. Then, rule Class2Table creates elements t1 and co2 from
c1 and produces Trace 2. In order to properly set the column reference of the element
t1, the engine searches in the trace model for the traces where attributes of c1 serve as
input. Therefore traces of type Trace 1 are selected and the respective column elements
are connected to t1.col.

Trace Model

Output ModelInput Model

at1 co1

c1 t1

attr
col

Trace 1

Trace 2

ClassAttribute2Column

Class2Table

keycol
co2

retrieval

at1 : Attribute

name = "age"
multivalued = false

c1 : Class

name = "Man"

co1 : Column

name = "ageId"

t1 : Table

name = "Man"

co2 : Column

name = "objectId"

Figure 2.5: Excerpt of the Trace Model Used by ATL During Execution

When we apply the transformation on the input model defined in Figure 2.4, we create
the output model as depicted in Figure 2.6. As expected, one table element has been
created for each class element and for each multivalued attribute. Each table has been
connected correctly with its corresponding columns and the correct key links have been
set for the newly created objectId columns. Please note, that in the figure, attribute
types are shown as values and not explicitly as links.

23

2. Preliminaries

person : Table

name = "Person"

personID : Column

name = "objectId"
type = Integer

string : Type

name = "String"

integer : Type

name = "Integer"

family : Table

name = "Family"

familyID : Column

name = "objectId"
type = Integer

familyName : Column

name = "name"
type = String

personName : Column

name = "firstName"
type = String

personFriend : Column

name = "closestFriendId"
type = Integer

key

members : Table

name = "Family_members"

key

membersFam : Column

name = "familyId"
type = Integer

membersMem : Column

name = "membersId"
type = Integer

emailAddresses : Table

name = "Person_emailAddresses"

emailPerson : Column

name = "personId"
type = Integer

emailAddress : Column

name = "emailAddresses"
type = String

Figure 2.6: Target Model Conforming to the Relational Metamodel

2.1.5 Example: Pacman

In this section, we demonstrate and further consolidate the concepts of MDE with a
second example. In particular, we show how an in-place model transformations can
be applied to change the state of a model in order to play a game of Pacman. More
specifically, we use two model transformations to move the ghost and the Pacman player
around. A variation of this example has been published, for instance, in [Hec06] and in
[BGKS14].

Game

Pacman GhostField

id : Integer
treasure : EBoolean

pacman ghosts

fields 1..*1..*1

neighbors0..4

on on

1 1

(a) Pacman Metamodel Game

Pacman GhostField

id : Integer
treasure : EBoolean

pacman ghosts

fields 1..*1..*1

neighbors0..4

on on

1 1

(b) Pacman Example Model

Figure 2.7: Pacman Game Specification

Metamodel. As opposed to the previous example, with in-place model transformations
we only have a single metamodel to which both the source and the target model of the
transformation need to conform. For this example, we model a variation of the well-known
Pacman game as depicted in Figure 2.7a. Pacman is a game that is played on a board
of several square fields which may be connected to each other on their horizontal and
vertical axis, resulting in at most four neighbors per field. Each field has a unique id

24

2.1. Model-Driven Engineering

and may or may not be the final treasure field, indicated by a Boolean flag. The game is
played as the Pacman character and the goal is to get to the treasure field by moving
around the board without encountering a ghost. In each game, there is at least one ghost
which moves around the board. If the ghost catches the Pacman, i.e., moves to a field
where the Pacman is located, then the game is over and the player has lost the game. If
the Pacman finds the treasure field before being caught, the player wins. Consequently,
a ghost is not allowed to move to a treasure field to prevent the player from winning.
Figure 2.7b depicts an instance of the Pacman game with four fields, a treasure on field
four, Pacman on field one, and a ghost on field three.

Model Transformations with Henshin. As a particular game of Pacman is realized
as a model conforming to our game specification, we can use model transformations to
implement the move operations. For this example, we use Henshin [ABJ+10] as model
transformation language and engine. Henshin follows a graph-based transformation
approach and offers a rich language and associated tool set for in-place M2M transfor-
mations of Ecore-based models. In Henshin, graphs are attributed, and nodes, edges,
and attributes refer to EClass, EReference and EAttribute classes of the Ecore
metamodel. Henshin comes along with a powerful declarative model transformation
language that has its roots in attributed graph transformations and offers the possibility
for formal reasoning.

The applicability of graph transformations for model transformations rests upon the fact
that most models exhibit a graph-based structure, e.g., consider the underlying structure
of UML class diagrams or state machines, whereas the metamodels of the models act
as type graphs [Hec06]. The initial graph representing a model evolves through the
application of graph transformation rules until the execution stops and we obtain the
output graph, i.e., the output model. In general, a graph transformation rule r = (L,R)
consists of a name r, and a pair (L,R) whose structure is compatible, i.e., nodes with
the same identity in L and R have the same type and attributes and edges with the
same identity have the same type, source, and target. The left-hand side (LHS) L of a
rule defines the graph patterns and conditions to be matched (preconditions) and the
right-hand side (RHS) R describes the changes to be applied (effect, post-conditions).
The LHS of a rule may have positive and negative application conditions (PACs and
NACs), which specify the mandatory presence and absence of graph patterns before the
rule may be applied.

In Henshin, the LHS and RHS of a transformation rule are combined into a single notation
and their role is only given through dedicated keywords. The two rules for moving the
Pacman and the ghosts within a game are depicted in Figure 2.8. These rules are called
movePacman and moveGhost and are applied on the root element of our model, i.e.,
the Game instance, indicated by @Game. Each rule has two named and typed parameters,
p and f for moving the Pacman and g and f for moving the ghost, to capture the
Pacman and ghost element as well as the field to which they are moved. While these
parameters are not necessary in this example, as we do not process the parameters any

25

2. Preliminaries

Rule movePacman(p : Pacman, f : Field) @Game

«preserve»

p : Pacman

«preserve»

: Field

treasure = false

«forbid»

: Ghost

«preserve»

f : Field

«preserve»

neighbors «create»

on

«delete»

on
«forbid»

on

Rule moveGhost(g : Ghost, f : Field) @Game

«preserve»

g : Ghost

«forbid»

: Pacman

«preserve»

neighbors

«create»

on

«delete»

on
«forbid»

on «preserve»

: Field

«preserve»

f : Field

treasure = false

Figure 2.8: Rules to Move the Pacman and Ghosts

further, this is an important concept later when combining model transformations with
search-based optimization methods. In Henshin rules, nodes and edges with the keyword
preserve need to be matched in the underlying model graph before the respective rule
can be applied. Negative application conditions, such that the Pacman may not move
when he was already caught by a ghost or that a ghost does not move once it catches the
Pacman, are marked with the keyword forbid. After a suitable match for the LHS of a
rule has been found, the resulting changes applied on the graph for the RHS of the rule
are denoted with delete to remove nodes and edges, and create to produce new nodes
and edges. In our rules, we use these keywords to update the location relation on for the
moved Pacman or ghost.

Applying the Transformation. When we apply a rule on a model, a graph trans-
formation engine rewrites the given model graph by performing the following three
steps [Hec06]:

(i) Find a match m : L 7→M of the left-hand side L in the given model graph M .

(ii) Delete from M all nodes and edges matched by L \R.

(iii) Paste to the result a copy of R \ L.

The result of these three steps is a derived model graph M ′ on which further rules may
be applied. By performing these steps multiple times, we create a sequence of applied
transformation rules that illustrate the progress of a single game of Pacman.

At this point, it should be noted, that finding matches of LHS rule patterns in graphs is
a non-trivial task and corresponds to the subgraph isomorphism problem which is NP-
complete in the worst case [Coo71]. In Henshin, this problem is tackled by using constraint
solving technique [TKL13] where each node in the graph is considered a variable with a
corresponding domain slot that is the solution space for that variable. Impossible solutions
for each variable are then removed according to the given constraints. The constraints
are extracted from the provided patterns and the metamodel and are categorized into
different groups, e.g., type constraints, reference constraints or containment constraints.

26

2.2. Search-Based Optimization

To improve performance, the order in which variables and constraints are processed is
determined heuristically on-the-fly based on the current graph. The final matches are
constructed by locking variables to specific solutions after the impossible solutions have
been removed.

2.2 Search-Based Optimization

This section provides an introduction to the concepts of search-based optimization. Search-
based optimization methods can be categorized as metaheuristic methods that deal with
large or even infinite search spaces in an efficient manner. Therefore these methods are
often applied on problems where it is infeasible to use exact methods [ZTL+03]. In this
section, we describe how a search-based optimization problem can be formulated, followed
by an overview of optimization methods that can be applied to tackle these problems.

2.2.1 Optimization Problem

An optimization problem may be defined as a couple (X, f) where X is the set of solutions
representing the search space, and f : X 7→ Z is the fitness function that assigns to each
solution x ∈ X in the search space a value that indicates the quality of the solution.

Decision Variables

A solution x to a given optimization problem can be encoded as a vector of n decision
variables xi in the search space X. This is formally defined in Equation 2.1 [CLV07],
where T indicates the transposition of the column vector to a row vector.

x =


x1
x2
...
xn

 also written as x =
[
x1, x2, . . . , xn

]T
(2.1)

During the optimization process, an algorithm manipulates these decision variables to
produce high quality solutions. Depending on the problem, a solution may be encoded
in one of several ways. For instance, real-valued variables may be used to represent
numeric values in a natural way, e.g., 4.0 or 3.14, binary variables can be used to represent
individual choices, e.g., 1001 0100 1010, permutations can be used to represent order and
scheduling problems, e.g., 4-0-1-3-2, and trees can be used to represent hierarchies and
expressions [Had16b, Had16a].

Constraints

Depending on the problem, not all solutions representable in the search space X may be
feasible. To express these restrictions, constraints on the solutions can be specified. These

27

2. Preliminaries

constraints are expressed in the form of mathematical inequalities (cf. Equation 2.2) or
mathematical equalities (cf. Equation 2.3) [CLV07].

gi(x) ≤ 0 where i = 1, . . . ,m (2.2)
hj(x) = 0 where j = 1, . . . , p (2.3)

A problem is said to be overconstraint if the number of equality constraints p is greater
or equal to the number of decision variables, i.e., p ≥ n [CLV07]. In that case, no degrees
of freedom are left for optimization. A solution satisfying all (m+ p) constraints is said
to be feasible and the set of all feasible solutions defines the feasible search space Ω.

Fitness

In order to evaluate the quality of a solution, an objective or fitness function f : X 7→ Z
maps a given solution from the search space X to an objective vector in the objective
space Z. A metaheuristic approach uses these mappings to manipulate the decision
variables of a solution in such a way that we reach good values in the objective space. The
notion of good values relates to the direction of the optimization; typically, an objective
value in the objective vector needs to be minimized or maximized. In order to have a
uniform optimization direction for all objectives, a maximization objective can be easily
turned into a minimization objective by taking its negative value and vice versa. In the
remainder of this section, we assume a minimization problem.

A fitness function with k objectives on a solution x is defined in Equation 2.4. If the
fitness function has more than one objective, we call it commensurable if all objectives
are measured in the same unit and non-commensurable otherwise.

f(x) =
[
f1(x), f2(x), . . . , fk(x)

]T
(2.4)

For many real-world problems, multiple conflicting objectives need to be considered
in order to find desirable solutions. Two objectives are said to be in conflict, if the
improvement of one objective leads to the worsening of the other and vice versa. Typical
examples include quality versus cost or from the software engineering domain coupling
versus cohesion.

For most metaheuristics, the evaluation of the fitness function is the most expensive
part [Tal09]. If the computational complexity of the evaluation needs to be reduced,
surrogate functions may be applied instead. A surrogate function does not calculate the
exact value of the fitness of a solution but only approximates the value. This speeds up
the time needed for the evaluation, but produces less accurate results in general.

The number of objectives that need to be optimized, i.e., the size of the objective vector,
is also used to categorize optimization problems, as described in the next wo sections.

28

2.2. Search-Based Optimization

Single-Objective Optimization Problem

A single-objective or mono-objective problem deals with one objective and can be defined
as follows:


Minf(x)
gi(x) ≥ 0 i = 1, . . . ,m;
hj(x) = 0 j = 1, . . . , p;
xL

l ≤ xl ≤ xU
l l = 1, . . . , n;

In this formulation, we have one objectives that needs to be minimized, m inequality
constraints, p equality constraints, and the lower and upper bounds of the decision
variable xl defined by xL

l and xU
l . A solution x consists of a vector of n decision variables

which are optimized by the metaheuristic algorithm. The objective value for a specific
solution is calculated by the provided objective function f .

Having only a single objective to optimize, solutions can be compared with each other
using their respective fitness values. We can define, that a solution x1 ∈ X is better than
another solution x2 ∈ X, if f(x1) < f(x2) in case the aim is to minimize the objective or
if f(x1) > f(x2) in case the aim is to maximize the objective. Using this notion of total
order, we can define a globally optimal solution, i.e., a solution that is better than all
other solutions.

Definition 1: Global Optimum. A solution x∗ ∈ Ω is a global optimum if it is has a
better objective function than all solutions of the search space, that is,

∀x ∈ Ω : f(x∗) ≤ f(x)

In single-objective optimization problems, the goal of a metaheuristic approach is to find
one of the globally optimal solutions.

Multi-Objective and Many-Objective Optimization Problem

A multi-objective problem (MOP) deals with at least two objectives and can be expressed
as [MKS+15]:

MOP =


MinF (x) = [f1(x), f2(x), . . . , fk(x)]T k > 1
gi(x) ≥ 0 i = 1, . . . ,m;
hj(x) = 0 j = 1, . . . , p;
xL

l ≤ xl ≤ xU
l l = 1, . . . , n;

In this formulation, we have at least two objectives k that need to be minimized, m
inequality constraints, p equality constraints, and xL

l and xU
l corresponding to the lower

and upper bounds of the decision variable xl. A solution x consists of a vector of decision

29

2. Preliminaries

variables which are optimized by the metaheuristic algorithm. The objective value for a
specific solution is calculated by the provided objective function fi and the aggregation
of all objective functions defines the fitness function f .

Recently, due to the limits of how many objectives different algorithms can handle, a
distinction is made between multi-objective problems and many-objective problems. A
many-objective problem, as opposed to a multi-objective problem, is a problem with at
least four objectives, i.e., k > 3 1 [DJ14].

As opposed to the single-objective case, for multi-objective problems defining an order
between solutions in order to compare them is more complicated. There are four
common strategies to deal with this issue [Tal09]. Scalar approaches transform the
multi-objective problem into a mono-objective problem by converting all objectives into
a single objective. Criterion-based approaches treat each non-commensurable objective
separately. Dominance-based approaches use the concepts of Pareto dominance and
Pareto optimality to deal with all objectives at the same time. And finally, indicator-based
approaches [ZK04] use dedicated quality indicators that can be seen as an extension to
the Pareto dominance relation and that compare two set of solutions and produce a
single quality value.

Scalar Approaches. One way to create an order between solutions is to use scalariza-
tion, i.e., the conversion of all objectives into a single objective through a scalarization
function, e.g., a weighted sum function as depicted in Equation 2.5 [Tal09, HM79] with
weights λ:

F (x) =
n∑

i=1
λifi(x), for x ∈ X where λi ∈ [0 . . . 1] (2.5)

However, this approach can only be used if all objective values are defined on the same
scale. If this is not the case, the objectives need to be normalized, cf. Equation 2.6 [Tal09]
where fmax

i and fmin
i are the upper and lower bounds of the respective objective fi.

F (x) =
n∑

i=1
λi
fi(x)− fmin

i

fmax
i − fmin

i

(2.6)

Other methods for scalarization include the definition of an aspiration or reference point
and minimizing the distance to this point. In any case, scalarization only produces
optimal results if the solution space is convex. Otherwise, no matter what weights have
been chosen, some solutions may never be reached [Tal09, CLV07, CD08].

1 In the remainder of this thesis, we refer to multi-objective and many-objective problems simply
as multi-objective problems. If a distinction between multi-objective and many-objective problems is
necessary, it is mentioned explicitly.

30

2.2. Search-Based Optimization

Criterion-based Approaches. Criterion-based approaches treat each non-commensurable
objective separately, either by parallelizing the search by splitting the population into
sub-populations for each objective or by using a lexicographic approach. In a lexicographic
approach, the decision maker defines a priority between the objectives, giving them a
total order [Fis74]. In the first step, the most significant objective is optimized. If only
one solution is found in that step, then that solution is considered the optimum. If more
than one solution is found, the second most significant objective is optimized for these
solutions. If only one solution is returned, that solution is the optimum. Otherwise, the
next objective is optimized and so on.

Dominance-based Approaches. Dominance-based approaches consider all objectives
at the same time by using the concept of partial ordering over a dominance relation. The
most common adopted dominance relation, is the Pareto dominance relation [CLV07]
which builds upon the concept of Pareto optimality proposed by Francis Ysidro Edge-
worth [Edg81] in 1881 and generalized by Vilfredo Pareto [Par96] in 1896. The Pareto
dominance relation is defined as follows [Tal09].

Definition 2: Pareto Dominance. An objective vector u = (u1, . . . , un) is said to
dominate another vector v = (v1, . . . , vn), denoted by u ≺ v, if and only if no component
of v is smaller than the corresponding component of u and at least one component of u
is strictly smaller, that is,

∀i∈{1,...,n} : ui ≤ vi ∧ ∃i∈{1,...,n} : ui < vi

Under Pareto optimality, it is impossible to find a solution that improves the value of
one objective without decreasing the value of at least another objective.

Definition 3: Pareto Optimality. A solution x∗ ∈ Ω is Pareto optimal if for every
x ∈ Ω, F (x) does not dominate F (x∗), that is,

F (x) ⊀ F (x∗)

A solution that is Pareto optimal is also called non-dominated. Each non-dominated
solution can be considered an optimal trade-off between all objectives. However, there
may exist several optimal trade-offs between the individual objectives. Therefore, a
problem may yield a set of Pareto-optimal solutions, often denoted as the Pareto optimal
set.

Definition 4: Pareto Optimal Set. The Pareto optimal set for a set of feasible
solutions Ω is defined as

P ∗ = {x ∈ Ω | 6 ∃x′ ∈ X : F (x′) ≺ F (x)}

The corresponding objective values from the Pareto optimal set of solutions is referred to
as Pareto front.

31

2. Preliminaries

Definition 5: Pareto Front. For a Pareto optimal set P ∗ the Pareto front is defined
as the objective vectors for all solutions in that set, that is,

PF ∗ = {u = F (x) | x ∈ P ∗}

The aim of a metaheuristic method is to find those solutions that yield the true Pareto
front for a given problem. It should be noted that we assume that the ’true’ Pareto front
of a problem PFtrue, i.e., the subset of values which are all Pareto optimal, is impossible
to derive analytically and impractical to produce through exhaustive search [HT07].
Therefore, each set produced using metaheuristic search is an approximation set to
this, often unknown, ’true’ Pareto front. A good approximation therefore aims to have
objective values that are spread uniformly across the Pareto front using the limited
number of solutions.

f1

f2

Ideal Vector

Nadir Point

Pareto Front

Figure 2.9: Ideal Vector and Nadir Point in a MOP (adapted from [Tal09])

Some information about the ranges of the Pareto font may be given through the ideal
vector and the Nadir point, cf. Figure for a bi-objective problem 2.9 [Tal09].

Definition 6: Ideal Vector. A point y∗ = (y∗1, . . . , y∗n) is an ideal vector if it minimizes
each objective function fi in F (x), that is,

y∗i = min(fi(x)) where x ∈ X, i ∈ [1, n]

As such, the ideal vector does not need to be a feasible solution as it considers each
objective separately. If the optimal objective values are not known in advance, the ideal
vector can be substituted by a reference vector given by a decision maker. This reference
vector gives an acceptable or desirable value for each objective.

Definition 7: Nadir Point. A point y∗ = (y∗1, . . . , y∗n) is the Nadir point if it maximizes
each objective function fi of F (x) over the Pareto set, that is,

y∗i = max(fi(x)) where x ∈ P ∗, i ∈ [1, n]

It is important to note that by using Pareto dominance, we can determine whether one
solution is better than another, but not measure by how much it is better. Therefore,
the final solution needs to be selected by the decision maker.

32

2.2. Search-Based Optimization

Indicator-Based Approaches. Indicator-based approaches define a quality indicator
that are used to guide the search. Unary indicators are functions that assign to each
Pareto front approximation a scalar value, i.e., I : Ω 7→ R, where Ω is the space of all
Pareto front approximations. In order to evaluate whether one approximation A is better
than another approximation B, binary indicators can be used, i.e., I : Ω×Ω 7→ R [HJ98].
Using binary indicators, the optimization goal can be formulated as in Equation 2.7,
where R is a known reference set for the Pareto front.

arg minA∈ΩI(A,R) (2.7)

If a reference set cannot be given in advance, a unary indicator can be used instead.

2.2.2 Metaheuristic Methods

In order to solve mono- or multi-objective problems, metaheuristic methods may be
applied. Metaheuristic search methods can be defined as upper level general methodologies
that can be used as guiding strategies in designing underlying heuristics to solve specific
optimization problems. As such, metaheuristics can be seen as one family of methods
to solve optimization problem. Figure 2.10 gives an overview of how metaheuristics are
related to other main families of classical optimization methods [Tal09].

Metaheuristics

Heuristic
Algorithms

Optimization Methods

Exact Methods Approximate Methods

Branch and X Constraint
Programming

Dynamic
Programming

A*, IDA* Approximation
Algorithms

Problem-specific
Heuristics

Branch and
Bound

Branch and
Cut

Branch and
Price

Figure 2.10: Metaheuristic Optimization in Classical Optimization Methods [Tal09]

Depending on the complexity of a given problem, an exact or approximate method can
be used. In general, exact methods can obtain optimal solutions for a given optimization
problem and guarantee their optimality. Dynamic programming, branch and bound
algorithm, the A* family of search algorithms, and constraint programming are all in the
class of exact methods. However, if the problem is complex, i.e., NP-complete, an exact
method needs at least exponential time to produce optimal solutions [Tal09] and may
only be applicable to a small instance of the problem. Such time constraint is not feasible
for most real world problems in which the problem instances may be quite large. In these
cases, approximate methods can be used. Approximate methods are able to generate
high-quality solutions in a reasonable time, but cannot guarantee the optimality of these

33

2. Preliminaries

solutions. In the class of approximate methods we can distinguish between approximation
algorithms and heuristic algorithms. Approximate algorithms provide solutions with a
provable but not optimal quality and within provable run-time bounds. Heuristics, on
the other hand, do not provide any guarantee on quality of the solutions, but are able
to handle large-sized problem instances. Heuristics may further be divided into specific
heuristics that are tailored and designed to solve a specific problem or problem instance
and metaheuristics. At this point, it is interesting to note that there is no agreed upon
definition of the term metaheuristic [BR03] and some literature uses the terms heuristic
and metaheuristics interchangeably [Yan10].

At its core, a metaheuristic is a general-purpose algorithm that is applicable to most
optimization problems and may incorporate domain-specific knowledge in the form of
specific heuristics to solve the problem at hand. The goal of metaheuristics is to explore
the search space efficiently in order to find (near-)optimal solutions [BR03]. In this search,
two contradicting criteria need to be considered: the diversification of the search space
(exploration) and the intensification of the best solutions found (exploitation) [Tal09].
In exploration, the metaheuristic aims to cover as much area of the search space as
possible while in exploitation promising areas are searched more thoroughly to find
better solutions. For instance, random search can be considered at the exploration end
of this spectrum as new candidate solutions are generated in each iteration without
considering how good already found solutions are. On the other, local search algorithms
(cf. Section 2.2.2) are closer to the exploitation end of the spectrum as they start with
one solution that is iteratively improved.

Classification of Metaheuristics

In order to classify metaheuristic methods, many different criteria may be used. In the
following, we give a summary of the common criteria defined in [CLV07, Yan10, Tal09].

Deterministic versus Stochastic. A deterministic metaheuristic solves an optimiza-
tion problem by making deterministic decisions, i.e, in a given situation the method always
chooses the same option. This means that for the same problem instance, a deterministic
metaheuristic will always produce the same solutions. A stochastic metaheuristic, on the
other hand, solves an optimization problem by making decisions with a certain degree of
randomness. Therefore, for the same problem instance, a stochastic metaheuristic will
produce different solutions every time it is executed.

Nature Inspired versus Non-Nature Inspired. Most metaheuristic algorithms are
inspired by nature [Tal09, Yan10], e.g., the evolution process, the behavior of animals
or physics. As such we have algorithms like evolutionary algorithms [Hol92], ant colony
optimization [Dor92], particle swarm optimization [KE95], artificial bee colony [See95,
YK96], cuckoo search [YD09] or simulated annealing [KJV83]. Of course, metaheuristics
which have not been inspired by nature do also exist, such as Tabu Search [Glo86] and
Hill Climbing.

34

2.2. Search-Based Optimization

Memory Usage versus Memoryless. An important feature of metaheuristics is
the use of memory, i.e., the storage of dynamic information collected during the search
process. For instance, in Tabu Search [Glo86] we may use different memories to remember
the recently visited solutions (short term), focus or prohibit moves towards solutions
with specific characteristics (intermediate) or even reset the search when we get stuck on
a plateau, i.e., no improvements have been made for a a certain amount of time (long
term). However, there are also memoryless metaheuristics that do not use any dynamic
information from the search. They perform a Markov process as in each step they only
use the current state of the search as information to decide the next action. For instance,
basic local search only considers the neighbourhood of the current solution in order to
move through the search space.

Dynamic versus Static Objective Function. Metaheuristics may also be classified
according to how they use the fitness function. Most metaheuristics use the fitness
function exactly as it is given in the problem formulation. However, other methods such
as Guided Local Search are also able to incorporate dynamic information collected during
the search into the fitness function during the search process in order to escape from
local optima.

Population-Based versus Single Solution-Based. A very common criterion to
categorize metaheuristics is the number of solutions they handle at a given time. Single
solution-based methods, also referred to as trajectory methods [BR03], aim to optimize a
single solution at a time and are therefore more exploitation-oriented [Tal09]. Examples
include Tabu Search, Iterated Local Search, or Simulated Annealing. Population-based
methods deal with a set of solutions, called a population, at a time and as such cover
larger areas of the search space and are more exploration-oriented. Examples include
particle swarm optimization or evolutionary algorithms.

Iterative versus Greedy. In order to manipulate solutions, a metaheuristic may
either follow an iterative approach or a greedy method. Greedy methods, also called
constructive methods, start with an empty solution and add decision variables step-by-
step to the solution. These methods are usually the fastest approximation methods
but often yield low quality solutions [BR03]. In an iterative approach, we start with
a complete solution and aim to replace this solution with a better solution through
manipulation in each iteration. The necessary manipulations are realized in terms of
search operators (cf. Section 6 for the operators used in evolutionary algorithms). Most
metaheuristics follow an iterative approach [Tal09].

In order to gain a more insight into the way metaheuristic algorithms work, we have a
closer look at two major categories: local search as a representative of non-nature inspired,
single solution-based methods, and evolutionary algorithms [Hol92] as representatives of
nature inspired population-based methods.

35

2. Preliminaries

Generate
Neighborhood

Move to
Neighbor

Current
Solution

Figure 2.11: Two Steps Performed by Local Search Methods in Each Iteration

Local Search

Local search methods start with an initial solution and then perform two steps in each iter-
ation: generation and moving. The local search process is shown in Algorithm 2.1 [Tal09]
and visually depicted in Figure 2.11. In the first step, a set of candidate solutions called
a neighborhood is generated from the current solution. In the second step, a solution
from the generated neighborhood is selected to replace the current solution. The whole
process iterates until the given stopping criteria is fulfilled, e.g., a specific solution is
found, a solution with sufficient quality is found or the algorithm has run a given number
of iterations.

Algorithm 2.1: High-level Process of Local Search [Tal09]
Input: Initial Solution s0
Output: Best Solution Found

1: t = 0
2: repeat
3: Generate(N(st)) // Generate partial or complete neighborhood

4: st+1 = Select(N(st)) // Select a neighbor to replace current solution

5: t = t+ 1
6: until Stopping criteria satisfied

Neighborhood. This set of candidate solutions that is generated from the current
solution is called a neighborhood and should consist of solutions that represent a small
move from the current solution, i.e., a small change in the representation of the current
solution. If this is the case, we say that the neighborhood has a strong locality. If this is
not the case, i.e., when the neighborhood has a weak locality, then the algorithm may
move from the current solution to a solution that is very different from the current one
and in the extreme case converges towards random search.

Definition 8: Neighborhood Structure. Formally, a neighborhood structure is a
function N : S 7→ 2S that assigns to each solution s of the search space S a set of
neighbor solutions N (s) ⊆ S. N (s) is called the neighborhood of s and each solution
s′ ∈ N (S) is called a neighbor.

36

2.2. Search-Based Optimization

Search Space

Objective

Local Optima Local Optima

Local and Global Optima

Figure 2.12: Local Optimum and Global Optimum in a Search Space (from[Tal09])

Local Optima. Having the concept of a neighborhood of a solution allows us to think
of the concept of local optimality in contrast to global optimal solutions in a search space.

Definition 9: Local Optimum. Formally, a locally optimal solution with respect to a
neighborhood function N is a solution ŝ s.t. ∀s ∈ N : f(ŝ) ≤ f(s). Furthermore, we call
ŝ a strict locally minimal solution if ∀s ∈ N : f(ŝ) < f(s).

The relation between local and global optima is depicted in the fitness landscape of
Figure 2.12 [Tal09] for a minimization problem. In a search space, many neighborhoods
with different local optima may exist, however only a subset of these local optima are
actually global optima. In many cases, there is even only one globally optimal solution.
Knowing the fitness landscape can help to select an algorithm that is able to not get
stuck in a local optimum. For instance, in Hill Climbing or Gradient Descent [RN09], we
start with an initial, random solution in the search space and always select a neighbor
with a better fitness than the current solution. As such, depending on where in the fitness
landscape we start, we may find a local optimum or even a global optima. However, once
a local optimum is found, there is no way of exploring other parts of the search space
and therefore there is no guarantee to find a global optimum.

Therefore many different local search algorithms have been proposed. These algorithms
differ in whether they use a memory or are memoryless, in how they generate the initial
solution, in how they generate the neighborhood and in how they select the next solution.
In general, there are two ways to generate an initial solution, either we generate it
randomly or we use a greedy approach. The definition of the neighborhood depends
strongly on the representation associated with the problem at hand, e.g., in a binary
encoding a neighborhood may be defined with a Hamming distance of 1, i.e., one bit-
flip. How the resulting neighborhood is searched is also up to the algorithm. For large
neighborhood, heuristic search or exact search is possible. Finally, the algorithm needs
to select a neighbor to replace the current solution. This may be done by only accepting
solutions with a better fitness value or by accepting also worse solutions. For instance,
Simulating Annealing accepts worse solutions more likely in the beginning but less likely

37

2. Preliminaries

as the search continues in order to provide a more explorative search in the beginning
but intensify the search process later on.

Evolutionary Algorithms

Evolutionary algorithms [Hol92] are stochastic, population-based algorithms that build
upon the Darwinian principles of evolution [Dar59], i.e., the struggle of individuals to sur-
vive in an environment with limited resources and the process of natural selection. In the
1980s, different approaches to incorporate this process into algorithms have been proposed.
For instance, Genetic Algorithms [Hol62, Hol75], Evolution Strategies [Rec65, Rec73],
Evolutionary Programming [Fog62, Fog66], or Genetic Programming [Koz92]. Nowadays,
some widely used evolutionary algorithms include the Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) [ZLT01], the Non-Dominated Sorting Genetic Algorithm-II [DAPM02]
(NSGA-II), and the NSGA-III [DJ14]. Evolutionary algorithms are the most studied
population-based algorithms [Tal09] and the field of Evolutionary Multi-objective Op-
timization (EMO) is considered one of the most active research areas in evolutionary
computation [DJ12].

Algorithm 2.2: High-level Process of Evolutionary Search [Tal09]
Output: Best Solutions Found

1: Generate(P (0))
2: t = 0
3: while not termination_criterion(P(t)) do
4: Evaluate(P (t))
5: P ′(t) = Selection(P (t))
6: P ′(t) = Reproduction(P ′(t)) // Recombination and Mutation

7: Evaluate(P ′(t))
8: P (t+ 1) = Replace(P (t), P ′(t))
9: t = t+ 1
10: end

The high-level process of an evolutionary algorithm is shown in Algorithm 2.2. In general,
evolutionary algorithms start with a population of individual solutions. This initial
population is often randomly generated or may be produced in some other form. Every
individual in the population is a solution with a specific fitness assigned by the fitness
function. In order to manipulate the population towards good areas of the search space,
evolutionary algorithms typically use three search operators and a replacement scheme.
The algorithm stops when the defined stopping criterion is satisfied, e.g., a specific
number of iterations or evaluations have been performed or no improvement has been
achieved for a given number of iterations.

Selection. The first search operator, called the selection operator, chooses individuals
from the population and selects them for reproduction. Here, different selection strategies

38

2.2. Search-Based Optimization

Select k
random
(k = 4)

Choose n
best

(n = 2)

Recombine Mutate

= 1

= 3

= 2

= 4

Population
(size = 10)

Cut Point

Figure 2.13: Steps Performed by Evolutionary Search Methods in Each Iteration

may be applied, e.g., based on absolute or relative fitness of a solution. In any case, the
idea is that solutions with a higher fitness are more likely to reproduce. For instance,
in deterministic tournament selection illustrated in Figure 2.13, we select k random
solutions from the current population and choose the best n solutions for recombination.
In non-deterministic tournament selection, the solution with the highest fitness is selected
with a given probability p, the next best solution is selected with probability p ∗ (1− p),
the next best with p ∗ (1 − p)2 and so on. Another selection strategy is the roulette
wheel selection where the chance of each individual solution is proportionate to its fitness
value, i.e., in a population with N solutions, the chance to be selected is pi = fi/

∑N

j=1 fj.
The degree to which better individuals are favoured is called selection pressure and it
is used to regulate the algorithms convergence [MG95]. If the selection pressure is too
high, randomly generated solutions with a higher fitness at the beginning strongly shape
the solutions found at the end and the algorithm may converge too early to suboptimal
solutions (premature convergence). If the selection pressure is too low, the convergence
towards optimal solutions may take an unnecessary long amount of time.

Reproduction. In the reproduction phase, we apply variation operators on the selected
solutions in order to produce new solutions. Here, we use the terms parent solution
and child solutions or parent population and offspring population. The most common
variation operators are the recombination, or crossover, operator and the mutation
operator.

The recombination operator is a n-ary operator that takes n parent solutions and produces
n child solutions. The idea is that the characteristics that make a solution good can be
given to its children and if two good solutions are (re-)combined an even better solution
may emerge. The most basic recombination strategy is the one-point crossover, where
two parent solutions are cut at the same random position and the children are created
by a crosswise merge of the resulting parts. This strategy is also depicted in Figure 2.13.
In constraint optimization problems, such an operator might produce solutions which are
no longer valid. This must be considered when choosing a recombination operator. For
instance, the partially mapped crossover (PMX) [GL85] can preserve the order of decision
variables within an encoding. Common recombination operators beside the PMX and the
one-point crossover include the geometrical crossover [MNM96], the unimodal normal
distribution crossover (UNDX) [OKK03], the simplex crossover (SPX) [TYH99], the

39

2. Preliminaries

simulated binary crossover (SBX) [DA95], the parent-centric crossover (PCX) [DAPM02],
and the order crossover (OX).

The mutation operator is an unary operator that introduces small, random changes into a
single solution. The main idea behind mutation is that it guides the algorithm into areas of
the search space that would not be reachable through recombination alone and avoids the
convergence of the population towards a few elite solutions. The mutation in evolutionary
algorithms is related to neighborhood operators of single solution-based algorithms and
some of the neighborhood operators may be reused as mutation operators [Tal09]. For
instance, in a binary encoding, a mutation may be the flip of one bit in a solution. In
general, the mutation probability pm for each variable of a single solution should be rather
low to not generate entirely new solutions and negate the positive effect of recombination.

Replacement. As the population size is constant, after selection and reproduction, we
need to choose which solutions from the parent population and the offspring population
should be kept for the next iteration. The two extreme cases are the replacement of
the complete parent population with the offspring population and the replacement of
only one individual in the parent population, e.g., the worst individual, through the
best individual from the offspring population. Of course, in practice, any number of
individuals may be replaced. Another replacement strategy is elitism, i.e., the selection
of only the best solutions from both populations. This leads to faster convergence, but
may result in premature convergence.

After giving an overview of the specifics of two families of metaheuristic methods, we
can see that selecting and configuring an algorithm is not an easy task and highly
depends on the respective optimization problem. Furthermore, it should be noted
that no metaheuristic performs uniformly better than any other metaheuristic on all
optimization problems, cf. the no free lunch theorem for optimization by Wolpert and
Macready [WM97].

40

CHAPTER 3
Model-Based Property Analysis

In this chapter, we describe the first contribution of this thesis, an analysis approach for
dynamic, time-based non-functional properties that considers the contention of resources
directly on model level using MDE techniques. This approach can be used in general to
analyze these properties for further processing, but may also be applied in the context
of the objective and constraint specification in our model-level optimization approach
described in the next chapter, cf. Figure 3.1.

Model-Based
Property Analysis

Model
[unoptimized]

applies

modifies

guides

orchestration of

WorkloadWorkloadModel
Transformation

Transformation
Space Exploration

optimizes

CX ContributionArtifact Task

C2

measures

Generic
Solution Encoding

Objective and
Constraint Evaluation

C1

represents

C2

employs

Focus of this Chapter

Figure 3.1: Model-Based Property Analysis Contribution

This chapter is structured as follows. First, we give a general overview of how properties
can be categorized and describe general analysis techniques to retrieve and measure the
value of properties of models in Section 3.1. In Section 3.2 we introduce a running example
based on UML which is used to evaluate our property analysis approach presented in
Section 3.3. The evaluation is performed in Section 3.4 and Section 3.5 concludes this
chapter with an overview of related work.

41

3. Model-Based Property Analysis

3.1 Overview

In this section we give a general introduction into the categorization of properties and
provide an overview of how these properties can be analyzed on model level.

3.1.1 Property Categorization

In the following, we describe three dimensions which are often used in literature to
categorize properties: functional versus non-functional, external versus internal, and
static versus dynamic. It should be noted that these dimensions are by no means
complete and often properties cannot be strictly placed in one of the dimensions categories.
Nevertheless, these dimensions help to broadly specify characteristics of properties which
in turn can have an influence on which analysis technique may be applied to retrieve
them. Specifically, we consider categories in the software engineering context as our
approach is also evaluated on a software system, cf. Section 3.2.

Functional versus Non-Functional. The first dimension we consider is focused on
what type of concern the property represents in the system. This is by far the most
common dimension under which properties are categorized.

Functional properties relate to the provided functionality of a system, i.e., what concrete
behavior is offered and the way the system can be used. For instance, a functional
property may measure how much of the intended functionality is already covered by the
implemented system or if the functionality behaves as expected. These properties may
be evaluated using methods from requirements engineering and dedicated test cases to
retrieve the coverage of correct functionality.

Non-functional properties (NFPs), sometimes also referred to as quality properties,
are concerned with how the system functionality is provided. There is a plethora
of non-functional properties relating to a systems performance, security, reliability
or maintainability, to name just a few. Many different categorizations of NFPs are
available in literature, often related to a specific domain. For instance, in software
engineering, dedicated software quality models [MRW77, CM78, BBL76, Gra92, Dro95,
ISO11] are defined to categorize software properties and use them as a base for tasks
such as requirements elicitation, measurement and evaluation. A software quality model
decomposes software quality into characteristics and sub-characteristics and defines
relationships between them. In order to evaluate a specific characteristic, it is mapped to
a measurable property called a metric. For a review of several software quality models,
we refer the reader to the work by Miguel et al. [MMR14]. As an example, we depict
the quality model from the ISO/IEC 25010:2011 standard [ISO11] in Figure 3.2. This
model contains eight top-level characteristics which are then further divided into several
sub-characteristics.

Nevertheless, breaking down quality into characteristics and metrics is only the first step.
The second step is to actually measure these metrics. Quite often, the research done for

42

3.1. Overview

Figure 3.2: Product Quality Model Characteristics (illustrated from [ISO11])

a particular set of properties can be considered a research line on its own. For instance,
there is the field of component-based software engineering [Szy02] that aims to tackle the
complexity of a software system with a divide-and-conquer approach by modularizing
the system into small, reusable components. How well the system is structured into
components is then measured with dedicated modularization metrics such as coupling or
cohesion. Consequently, having a well-structured system has not only a positive effect on
the modularity of the system, but also on other maintainability-related characteristics
such as modifiability or testability.

External versus Internal. Another dimension to classify properties is concerned
with how they relate to the systems user [McC04, FP09]. External, sometimes also
extrinsic [Zsc09], properties are properties which have a direct effect on the user experience
as they view the system as a whole and are not concerned with the internal structure
of the system or the contention of resources. Examples for external properties are
correctness, usability, reliability or efficiency. In contrast, internal or intrinsic properties
are concerned with the inner workings of a system. Examples include maintainability,
testability, re-usability, and understandability. As noted by McConnell [McC04], internal
and external properties may affect each other and therefore there is not always a clear-cut
distinction between these two.

Static versus Dynamic. Another dimension, which is used for instance in program
analysis, is related to how properties can be analyzed. Static properties are properties
that can be analyzed based on the information that is available without having a
running system. This includes properties relating to the system design and architecture.

43

3. Model-Based Property Analysis

Dynamic properties, on the other hand, are evaluated by executing or simulating a system
and observing its execution. This comprises, among others, properties relating to the
performance of a system, the fault tolerance and the systems availability.

3.1.2 Model Analysis Techniques

In the following, we briefly describe a few techniques with corresponding examples that
illustrate how we can analyze properties on model level. We divide these techniques
into static analysis techniques and dynamic analysis techniques. Typically, static anal-
ysis techniques are faster but less precise than dynamic techniques [AB05], but some
information may only be available at runtime.

Static Analysis

Static property analysis techniques include the traversal of the underlying structure,
dedicated model transformations and model checkers to reason about the potential states
of a system.

Model Queries. The most basic way of accessing a model is through a dedicated model
API provided by the respective metamodeling tool. Using this API, we can read the
model into memory, traverse the graph structure and calculate properties of interest using
the respective programming language. For instance, in the Eclipse Modeling Framework
(EMF) we can automatically generate a Java model API from the information present in
the metamodel.

Another way to traverse a model is to use model query languages. These languages
provide a concise syntax and are often be integrated directly in the metamodeling tool.
For instance, OCL [OMG14b] is a standardized, typed, side-effect free and declarative
language to describe expressions on MOF-compliant models. While OCL can be used to
express invariants on states, and pre- and post-conditions of operations, it can also state
model queries. For instance, in EMF Refactor [Ecl14, AT13] OCL queries are used to
calculate different metrics for Ecore and UML models. An example is shown in Listing 3.1
where the number of different classes being referenced from a given class is returned.

Listing 3.1 Metric Calculation Using an OCL Query
1: -- NDEROEC metric from EMF Refactor: number of different class references
2: -- query context is EClass, i.e., self is an instance of EClass
3: self.eReferences->select(ref : EReference | ref.eReferenceType <> self)
4: ->asSet() -- only count unique class references
5: ->size()

Model Transformations. As mentioned in Section 2.1.3, one possible transformation
intent is to apply model transformations to extract properties of interest for certain
parts of the model. One way to use transformation is to convert the information present
in the model directly into the respective property value. Another way is used in EMF

44

3.1. Overview

Refactor, where they use the graph transformation engine to calculate numeric properties
by counting how often a certain rule matches in the underlying model. Figure 3.3 depicts
such a rule for calculating the number of parameters within other classes having the
given class as a type. As all elements in this rule must be matched, we can simply count
the number of matches. By giving the given class (context) a different name than the
class containing the parameters, we specify that the containing class must be a different
class than the given class.

Rule ECEPEC(context : EClass)

«preserve»

eOperations
«preserve»

: EOperation

«preserve»

: EParameter

«preserve»

context : EClass

«preserve»

: EClass

«preserve»

eParameters

«preserve»

eType

Figure 3.3: Metric Calculation Using a Model Transformation

Model Checking. Model checking is a technique to automatically verify correctness
properties of finite-state systems using a state-transition graph to specify all potential
states of a model and a temporal logic formula specification. The aim is to verify whether
the specification is true in the given graph or not. Two well-known model checkers which
are able to perform this verification are SPIN [Hol97, Hol03] and NuSMV [CCGR99,
CCGR00, CCG+02]. These model checkers can then be used to verify properties of
models trough translation to the respective input language of the model checker, as
done in [KW06, KR06, JDJ+06] for UML models or by Meyers et al. [MDL+14] for
annotated models of dedicated property specification and verification languages. Other
approaches do not translate to dedicated model checkers, but aim to elevate the model
checking techniques to MDE. For instance, Bill et al. [BGKS14] present a temporal
extension of OCL based on computation tree logic (CTL) to specify constraints over
the state space of a model. Their model checker uses the Henshin graph transformation
engine to generate the state space and OCL to evaluate the constraint on these states.
An example constraint in the extended OCL language for the Pacman example (cf.
Section 2.1.5) is depicted in Listing 3.2. Here, we define that it must be true that in
all games (Always), no matter how it is played (Globally), the game is over, i.e.,
no further state can be reached (Always Next false) if Pacman has reached the
treasure (self.pacman.on.treasure).

Listing 3.2 Temporal Query Using OCL Extended with CTL
1: -- The keywords Always, Globally, and Next are part of the CTL extension
2: Always Globally (self.pacman.on.treasure) implies (Always Next false)

Model checking is usually faster than theorem proving, it provides counterexamples if
the specification is not satisfied and allows partial specifications. However, besides the
difficulty of writing temporal logic specifications, model checking suffers from the state
explosion problem [Cla08].

45

3. Model-Based Property Analysis

Dynamic Analysis

Dynamic analysis methods have their root in the execution or simulation of models in
order to test a specification, profile a system [TMB14] or analyze properties based on the
resulting execution traces. In order to perform dynamic analysis on model level, we need
three ingredients: (i) precisely defined execution semantics of the modeling language, (ii)
a corresponding execution platform, and (iii) analysis capabilities based on the execution
information provided by the platform to retrieve property values.

Unfortunately, many modeling languages lack such a precise semantics definition. For
instance, UML [OMG15c], the most common language used to develop software systems,
is described using English prose. This has led to many approaches that translate models
into dedicated analysis formalisms where these semantics are provided, e.g., [WPP+05,
MB04] translate UML models to queuing networks in order to analyze performance-
related properties. While the execution of models has proven to be very successful in
many application domains to simulate and validate non-functional properties functional
behavior with tools like Maude [CDE+07] and MathWorks Simulink [Bor15], translational
approaches introduce an additional layer of indirection, provide the results in a different
language than the original input and often implement the missing semantics in the
transformation.

This problem has also been recognized by the OMG which standardized the execution
semantics of a subset of UML with Foundational UML (fUML) [OMG16] in 2011,
cf. Section 3.2.1. As a result, new approaches have emerged that allow the analysis
of non-functional properties [BLM13] and the testing and debugging of the modeled
behavior [MLMK13] directly using fUML models. Also our approach to analyze the
contention of resources falls under this category, cf. Section 3.3. Interestingly, using the
standardized execution semantics of UML, Mayerhofer et al. [May13, MLW13, May14]
even proposes to use fUML as a language to define the execution semantics of other
MOF-based modeling languages.

3.2 Running Example
After giving a general overview on property categorization and model-level property
analysis techniques in the next section, we describe an example in this section to introduce
our approach in the next section. This example represents a simple online store called
PetStore which is modeled using UML. This example is also used to evaluate the feasibility
and applicability of our property analysis approach later on. Before introducing the
PetStore system, we provide a short overview of UML to facilitate the understanding of
the system and our approach.

3.2.1 Unified Modeling Language

UML. The Unified Modeling Language (UML) [OMG15c] is a standardized, MOF-
compliant, general-purpose modeling language intended for developing software systems.

46

3.2. Running Example

For this purpose, UML offers structure diagrams to model the system structure and
behaviour diagrams to model the functionality and interactions of a software system. For
instance, the UML class diagram is a structure diagram used to model the classes of
the system, their interrelationships (including inheritance, aggregation, and association),
and the operations and attributes of the classes. Other structure diagrams include the
package diagram that shows the dependencies between the packages that make up a
model, the component diagram that represents how components are wired together to
form larger components and the final software system, and the deployment diagram that
shows how the software system is deployed on physical device nodes. In order to express
behavior UML offers, among others, activity diagrams to represent stepwise activities
and actions within a workflow, sequence diagrams to indicate how objects communicate
with each other through messages, and state machine diagrams to express the states of a
system and to specify how the system can transition between these states.

UML Profiles. UML profiles are light-weight extensions to the existing UML language.
Profiles are used to add additional information to existing UML model elements to extend
UML with domain-specific concepts [Sel07]. A profile can define stereotypes, data types,
primitive types, and enumerations. Stereotypes extend the model elements on which they
are applied [AKH03] with so-called tagged values, i.e., new meta properties that can use
the defined data types, primitive types, or enumerations. These meta properties are used
to hold the domain-specific information and basically consist of key-value pairs. A list
of all official UML profile specifications can be found on the OMG website1. Examples
profiles include the UML Testing Profile (UTP) [OMG13b] used to define testing scenarios
on model level and the Modeling and Analysis of Real Time and Embedded Systems
Profile (MARTE) [OMG11b] that defines concepts for time and resource modeling and
has a dedicated sub package for defining non-functional properties.

Foundational UML. As previously mentioned, Foundational UML (fUML) [OMG16]
is an OMG standard that defines the execution semantics of a subset of UML. This
subset mainly covers the structural and behavioral kernel for defining the structure of a
system using UML classes and its behavior using UML activities. Specifically, the subset
includes parts of the UML packages Classes, Common Behaviors, Activities, and Actions
and therefore essentially allows the execution of UML activities. The fUML standard
is accompanied by a Java-based reference implementation of a virtual machine, which
allows computing outputs from executing fUML activities with specified input parameters.
Furthermore, a Java-like textual syntax for fUML diagrams, called Alf [OMG13a], is also
available. By complying with the fUML standard, activity diagrams can be executed
directly without having to rely on any non-standardized simulators or translating the
activity diagrams into different notations. However, fUML only covers a subset of UML
and many high-level concepts known from programming languages are currently not
supported such as exceptions, annotations, and reflection. Therefore, model translations
from UML models to fUML-compliant models may still be necessary in some cases.

1OMG Specifications: http://www.omg.org/spec/

47

http://www.omg.org/spec/

3. Model-Based Property Analysis

3.2.2 PetStore

The PetStore is a simple online store where customers can register, log in, browse a
catalogue of pets, add them to their shopping cart, and place orders. It is used as a
running example to introduce our property analysis approach in the next section and to
evaluate the approach in Section 3.4.

cart

1

Cart

Order

- orderDate : String

OrderLine

- quantity : Integer

CartItem

- quantity : Integer Item

- name : String
- description : String
- unitCost : Integer

Product

- name : String
- description : String

1

Customer

- login : String
- password : String
- firstname : String
- lastname : String
- email : String

0..1

*

customer

customer orders order orderLines

1 *

cart cartItems

1 *

orderLine item

itemcartItem

*

*
1

1

items

product 1

*

Figure 3.4: PetStore Entities

The PetStore system consists of the entity classes depicted in Figure 3.4 and explained in
the following paragraphs. Please note that in the notation used in the figure, a minus (−)
in front of an attribute or method indicates that this feature is marked private and a plus
(+) indicates a public features. References are depicted as arrows with their respective
cardinality shown at the end of these arrows.

Item The pets and pet supplies that the PetStore offers via its online store are represented
in the system as items. Each item consists of a unique name and a detailed
description providing the features of the item and the price for which the item can
be bought.

Product To enhance the browsing experience for store visitors, all items are put into
product categories. A product consists of a unique name and an overall description
of the category.

Customer In order to purchase items, visitors need to create an account which turns
them into customers. A customer has credentials consisting of the user login and
the password as well as general information such as the first name, last name and
email address that is used for correspondence.

Cart While browsing the store, customers are given a virtual shopping cart in which
they can put items they intend to purchase.

CartItem Items in the cart are linked to one specific shopping cart which in turn is
connected to a customer account. The quantity attribute of the cart item indicates
how many instances of a particular item the customer intends to purchase.

48

3.2. Running Example

Order If customers are finished with browsing the store and putting items into their
cart, they can place an order. For transparency, we capture the exact date and
time when the order is placed.

OrderLines One order can contain several lines whereas each line corresponds to one
particular item and the respective quantity.

Based on these entity classes, the following service classes are used to provide the
functionality for the PetStore. Figure 3.5 depicts these classes with their methods and
the relations among them.

ApplicationController

- createSession(Customer) : Integer
- createSessionId() : Integer
- getCustomer(Integer) : Customer
+ login(String, String) : Integer
+ findItem(String) : Item
+ addItemToCart(Integer, Item) : void
+ removeItemFromCart(Item, Integer) : void
+ confirmOrder(Integer) : Order

EntityManager

- checkCredentials(Customer, String, String) : Boolean
+ findCustomer(String, String) : Customer
+ findAllItems() : Item[*]
+ findAllProducts() : Product[*]
+ persist(Object) : void
+ delte(Object) : void

OrderService

- getCart(Customer) : Cart
- getCartItem(Cart, Item) : CartItem
- createOrderLine(Item, Integer) : OrderLine
- createOrderLine(CartItem) : OrderLine
+ addItemToCart(Customer, Item) : void
+ removeItemFromCart(Customer, Item) : void
+ confirmOrder(Customer) : Order

entityManager

Session

- sessionId : Integer

CustomerService

+ login(String, String) : Customer

CatalogService

+ findItem(String) : Item
+ findAllItems() : Item[*]
+ findAllProducts() : Product[*]

Customer

…

catalogService

orderService

entityManager

customerService
1

1 1

1

1

1

1

1
1

1 entityManager
1

1

customer 1

0..11

*sessions

Figure 3.5: PetStore Services

Session As soon as a user logs into their customer account, we create a session that
captures the interactions of the customer with the PetStore. As common in most
online stores, a session is identified by a dedicated session id that is transferred
with each HTTP request.

ApplicationController On the server side, all sessions are handled by the application
controller. This controller is responsible for the creation of a session and acts as
interface for all functionality provided to the user. Internally, the functionality is
distributed among three separate services based on the respective entity classes.

49

3. Model-Based Property Analysis

CustomerService The customer service is responsible for handling all data concerning
the customer account. Most notably, this includes the login functionality which
yields returns the customer object representing the customer account if the correct
credentials are provided.

CatalogService The catalog service handles all interaction relating to products and
items, e.g., finding all items and all products or only finding specific items based
on their name.

OrderService The order service takes care of the shopping process, i.e., the shopping
cart and the placement of orders.

EntityManager All services have access to an entity manager to provide their function-
ality. The entity manager offers operations to persist, retrieve, and delete PetStore
data from the data store, e.g., the database.

În our example, we define the behavior of the PetStore system with UML activity diagrams.
An example is depicted in Figure 3.6 where we realize the checkCredentials operation
from the EntityManager class. The operation consists of three input parameters and
one output parameter and compares the provided credentials, i.e., login and password,
with a given customer. If the credentials match, we return true and false otherwise.

login: String

password: String

valid: Boolean

object result

EntityManager::checkCredentials(customer: Customer, login: String, password: String, valid: Boolean)

result

result

result

customer: Customer

object result

[true]

[false]

[false]

[true]

first
result

second

first
result

second

read login

read password false

false

true

equals

equals

Figure 3.6: PetStore EntityManager CheckCredentials Behavior

3.3 Resource Contention Analysis Approach

This section introduces the first contribution of this thesis, i.e., a property analysis
approach that analyzes performance-related properties of UML models based on fUML
and queuing network theory while considering the contention of resources. This approach
has also been published in [FBL+13] and is described in the following paragraphs.

50

3.3. Resource Contention Analysis Approach

3.3.1 Motivation

With the advent of model-driven software engineering, developers are empowered to
raise the level of abstraction during the development using high-level models and to
automatically generate executable code. This shift from code to models facilitates also
the analysis of non-functional properties at early development stages [PAT12]. UML is
currently the most adopted design modeling language whose extensibility, through UML
profiles, lead to the emergence of several UML-based approaches for analyzing NFPs of
the modeled software. However, due to the lack of formal execution semantics of UML
and the lack of UML-based tools for NFP analysis, current approaches translate UML
models into different kinds of analysis models, such as queuing networks (QN), for sake of
performance analysis. Thus, a semantic gap between UML models and analysis models
has to be bridged using often complex chains of model transformations before NFPs can
be analyzed.

Although researchers have accomplished significant advances in transforming UML
models in combination with applied UML profiles, such as MARTE [OMG11b], to
dedicated analysis models, translational approaches suffer from some inherent drawbacks.
Transformations have to generate analysis models that correctly reflect the heretofore
informal semantics of UML models using concepts of the target analysis modeling language.
Implementing such transformations is a complex task that requires deep knowledge not
only of the semantics of UML and of the target analysis languages, but also of model
transformation techniques, which hampers significantly the development and emergence
of novel analysis tools. Even though transformations already exist, such transformation
chains introduce inevitably an additional level of indirection, additional notations, and
hence additional complexity, such as the consistent propagation of UML model changes to
the analysis model and analysis results back on the UML model. This is a very relevant
obstacle to the usability of analysis tools, because usually software developers are not
trained in understanding formal languages applied for the analysis [BMIS04].

To address these drawbacks, France et al. [FR07] suggested integrating analysis algorithms
directly with the source modeling language, such as UML. Following this suggestion,
a framework for analyzing NFPs based on executing UML models directly has been
proposed by Berardinelli et al. [BLM13]. Instead of translating UML models into different
notations, they showed how the execution semantics of fUML can be exploited to obtain
model-based execution traces [MLK12] from UML models and how these traces can be
processed to compute NFPs, such as resource usage and execution time. However, their
framework only supported the analysis of single independent execution traces, and could
not consider the contention of resources. This aspect, however, is of uttermost importance
when it comes to analyzing, for instance, the scalability of cloud-based applications on
the IaaS layer or the thread contention in multicore systems.

In our approach, we address this limitation and extend the framework to study the
influence of resource contention on NFPs, such as response time, throughput, and utiliza-
tion, which require the consideration of multiple overlapping executions. We enable this

51

3. Model-Based Property Analysis

analysis within the fUML-based framework by obtaining execution traces from executing
UML models that are annotated with the MARTE profile [OMG11b], attach timing
information to these execution traces according to a workload specification, compute the
temporal relation of these execution traces, and calculate performance indices that can so
far be only obtained through translating UML models and performing the analysis based
on other notations and formalisms, such as QNs.

As no transformation and no notation other than UML is involved, the presented
framework is easily extensible with respect to the integration of additional analysis aspects.
Thus, we further incorporated the analysis of load balancing and scaling strategies into
our framework. Thereby, developers are equipped with methods for reasoning about
optimal resource management configurations of the modeled components.

3.3.2 Trace-Based Analysis Framework

In order to realize our approach, we use the fUML analysis framework introduced by
Berardinelli et al. [BLM13] as basis. Their analysis framework uses the open-source fUML
implementation of the extended fUML virtual machine by Mayerhofer et al. [MLK12,
May12], which enhances the standard virtual machine from the OMG with capabilities
to not only produce outputs but also capture execution traces as additional output of a
performed model execution. An execution trace provides the information necessary for
analyzing the runtime behavior of the executed model. It captures information about the
call hierarchy among executed activities, the chronological execution order of activities
and contained activity nodes, the input provided to and the output produced by the
activities and activity nodes, as well the token flow. These execution traces are then
used for further analysis, an idea also outlined in the Software Performance Engineering
approach [SW02] by using UML models annotated with UML SPT [OMG05] stereotypes
and execution graphs to aggregate demands of computing, storage and communication
resources. An overview of the framework is depicted in Figure 3.7.

The framework takes common UML models and applied profiles as input, seamlessly
adapts those models to fUML for executing them, and transparently maps the resulting
execution traces back to the level of UML, where the information on profile applications
is again accessible. Thus, the framework enables the development of analysis components
that leverage the well-defined semantics of fUML for capturing the runtime behavior of
UML models in combination with the additional information from UML profiles.

UML Profile Application. As described in the previous section UML profiles are
lightweight extensions to existing UML languages using stereotypes. These stereotypes
can be used to provide additional information needed for the evaluation of the non-
functional properties, e.g., time needed to add two integer values. From this low level
information, it is possible to calculate information on a higher abstraction level, e.g.
time one method takes to execute. Often the low level data depends on the specific
platform the application is executed on, e.g. the power of the CPU or the read/write
speed of the hard drive. Since there is no existing profile that covers all non-functional

52

3.3. Resource Contention Analysis Approach

Input

UML-based Analysis

fUML-based Model ExecutionUML/fUML Integration Output

UML

Model

appliedTo

Model Analysis

Report
Model Analysis

Report

Model Analysis

Report

produceModel-based

Analyzer
Execution

Trace
Execution

Trace

UML
Execution

Trace

analyzedBy

produce

produce

Extended

fUML VM

fUML
Execution

Trace

fUML

View

integrate

integrate UML Trace

Adapter

fUML

Adapter

executedBy

produce

integrate

use

Analysis-Specific Reusable

Profile

Application

Figure 3.7: fUML-Based Analysis Framework For Non-functional Properties [BLM13]

properties out of the box, multiple profiles can be used, e.g., MARTE for performance
properties or the MARTE-extension for dependability properties Dependability Analysis
Modeling (DAM) [BMP09]. The annotated UML model can then serve as input to the
fUML Adapter.

UML/fUML Integration: fUML Adapter. The framework uses fUML Adapter to
convert UML models into fUML models and produce the in-memory representation of the
model necessary to execute it in the virtual machine. In its current implementation, the
Adapter truncates all UML model elements that are not conform to the supported subset
of fUML, maps the conforming elements with their fUML counterpart and then generates
the fUML View. This includes also any information annotated with the UML profile
applications, which need to be introduced again by the UML Trace Adapter. While
the additional meta-information from the profile applications can be introduced again,
non-compliant UML model elements are lost and cannot be included in the model-based
analysis. This is considered in our approach and only compliant elements should be used.

fUML-based Model Execution. Using the fUML View created by the fUML Adapter,
i.e., instantiated Java classes, the extended fUML VM can execute the modeled behavior.
As mentioned previously, the fUML standard is accompanied by a Java-based reference
implementation of a virtual machine, which allows computing outputs from executing
fUML activities with specified input parameters. However, while this enables executing
fUML-compliant models and validating their execution output, a thorough analysis of a
performed model execution is not possible. This prevents the model-based analysis of
functional and non-functional properties of the modeled system. From this VM we are able

53

3. Model-Based Property Analysis

to retrieve a detailed fUML Execution Trace. The execution trace includes the runtime
information of the model execution, i.e., the call hierarchy of executed activities, the
chronological execution order of the activity nodes contained in the executed activities, the
input provided to and the output produced by the executed activity nodes and activities,
as well as the token flow between activity nodes and activities. This information can be
used to reason about the model execution and analyze the details.

UML/fUML Integration: UML Trace Adapter. As mentioned previously, the
extended fUML virtual machine only handles fUML-compliant model elements and
therefore the fUML Adapter truncates the data provided by the UML profile applications.
It is the task of the UML Trace Adapter to integrate this missing data back into the
fUML execution trace and produce the enriched UML execution trace. To allow the
re-introduction of the profile information, the UML Trace Adapter uses the mapping
information generated by the fUML Adapter, i.e., which fUML element corresponds to
which UML model element.

Model-Based Analyzer. As a final step, the enriched UML execution trace can then
be used to analyze the model runtime information together with the non-functional
properties annotated in the model, e.g., the runtime of a method based on how often the
method was called and how much time the contained activities need. This analysis is
done by a dedicated Analyzer which is also responsible to produce the desired output,
e.g., property values, graphs, etc.

3.3.3 Resource Contention Analyzer

Based on their framework, Berardinelli et al. [BLM13] showed how performance analysis
methodologies that are based on execution graphs [SW02] can be conducted directly on
UML models and execution traces to aggregate demands of computing, storage, and
communication resources. However, in order to carry out a performance analysis that
considers the contention of resources, we have to deal not only with single independent
executions but multiple overlapping executions. This, however, is not possible yet
as neither plain fUML nor our existing analysis framework allows running competing
executions of models concurrently within a shared runtime environment. Only sequential
executions are supported so far, resulting in execution traces that are independent of
each other. However, when analyzing software systems, performance indices concerning
the contention of resources, such as response time, utilization, and throughput, are of
utmost importance.

In this section, we show how we address this limitation to enable the analysis of resource
contention based solely on UML models, profile application, and model execution, without
the need to translate the involved models into different notations and formalisms, as it
is done in existing approaches. Please note, that in our approach we consider software
components as shared resources, whereas this notion could be extended also to platform

54

3.3. Resource Contention Analysis Approach

resources. We provide in the following a brief overview on the basic idea behind our
approach and discuss the input of the analysis process and the individual components.

Tracing & AnalysisInput

Workload

Generator

Software

Model

Workload

Performance

Analyzer

Trace

Extractor
Timed Execution

Trace

00:01 SC2 SC3 SC2

SC3 SC2 SC100:02

00:02 SC2 SC3 SC2

SC3 SC2 SC100:03

SC2

SC3

SC2 SC3 SC1

SC3 SC2 SC1

SC3 SC1

SC2 SC1 waiting

waiting

00:01

SC2 SC3 SC2

00:02

waiting SC3 SC2 SC1

00:04

SC2 SC3 SC2

00:03 00:05

SC3 …

Extension Reusable

Figure 3.8: Model-Based Performance Analysis Framework

As proposed by Di Marco [DM05], we adopt the idea of considering software components
as service centers [LZGS84]. A service center represents a software component that
provides some sort of functionality as services to other classes. For instance, in the
PetStore the ApplicationController, CustomerService, CatalogService, OrderService, and
EntityManager may be considered service centers. A job is a request for the services of
different service centers and has an arrival time specifying the point in time at which it
enters the system. As long as a request is processed by a service center, further requests
to this service center are stored in a queue until the service center is available. After
the request has been processed, the next request from the queue is chosen following a
first-come, first-serve (FCFS) principle. Based on these concepts, mature algorithms are
available to compute performance indices under resource contention.

In order to apply these concepts to UML models directly, without translating them into
dedicated performance models, we propose to: (i) trigger executions of UML models
according to specific workloads for obtaining execution traces that reflect the runtime
behavior of jobs (i.e., which services are requested in which order), (ii) annotate the
arrival time to each of the resulting execution traces, and (iii) compute, based on known
service times of consumed services, the temporal relation of concurrently running jobs (cf.
Figure 3.8). Based on the temporal relation of executed jobs, we can step-wise derive their
temporal overlaps and compute waiting times in each queue and, in further consequence,
the overall response time, throughput, and utilization indices. In addition, we introduce
dedicated types of service centers that support balancing and scaling strategies to allow
users of our framework to reason about optimal resource management configurations. In
particular, a single service center may distribute incoming jobs to multiple instances of
this service center according to certain strategies, as well as dynamically allocate and
deallocate instances (horizontal scaling).

55

3. Model-Based Property Analysis

Input

As input of our proposed approach, we use a UML model annotated with MARTE
stereotypes representing the system. A summary of the stereotypes used for the software
model (SW), hardware platform (HW), workload model (WL), and property analysis
results (PA) can be found in Table 3.1. The UML model contains the specification of
the software structure and behavior, whereas MARTE is used to specify the system
workload(s) as well as the performance characteristics of its structural and behavioral
elements.

Table 3.1: MARTE Stereotypes in the Performance Evaluation Framework

View Stereotype Name Applied To Used Tagged Values
HW HwProcessor Class mips
SW RtScalableUnit Class srPoolSize, queueSchedPolicy,

scalingStrategy, timeToScale,
scalingRange, scaleInThreshold,
scaleOutThreshold,
balancingStrategy

SW GaStep Activity execTime
WL GaScenario Activity Diagram cause, root
WL GaWorkloadEvent Activity effect, pattern
PA GaAnalysisContext * contextParam

The software specification consists of one or more class diagrams defining the structure
and activity diagrams representing its behavior, as shown for the PetStore in Section 3.2.
Classes that should act as software service centers during the model execution (RtScalable-
Unit) have to be extended with information regarding: (i) the initial number of instances
(srPoolSize), (ii) the scheduling policy for the incoming operation calls (queueSchedPol-
icy), (iii) the balancing strategy for selecting the instance that receives the next request
(balancingStrategy), and, optionally, (iv) the rules for horizontal scaling (scalingStrategy,
timeToScale, scalingRange, scaleInThreshold, scaleOutThreshold). Currently, no stereo-
types in MARTE can represent both balancing strategies and scaling rules. Thus, we
extended the existing stereotype RtUnit in this initial version of the framework to provide
a set of pre-defined rules from which the model engineer can choose, such as round robin
or random balancing, and scaling based on the queue length.

In addition, the UML activities representing the software behavior (GaStep) have to be
annotated with their respective execution times (execTime). These values may be either
computed by estimating the complexity of behavioral units (e.g., number of executed
instructions) in combination to the underlying platform characteristics (e.g., millions

56

3.3. Resource Contention Analysis Approach

of instructions per second of HwProcessor), as proposed in [BLM13] and shown in
Section 3.4.

Alongside the structure and behavior of the software, the model engineer has to specify
the workloads in terms of UML activities that represent the expected interactions with
the software. Such interactions start with a workload event (GaWorkloadEvent), e.g., a
user interaction with the system, and a behavior scenario (effect) that is triggered by that
event (cause). A behavior scenario (GaScenario) is a sequence of execution steps, i.e.,
calls of activities in the software models, that require the operations associated to service
centers, i.e., the RtScalableUnit classes. To specify how often a scenario is triggered,
the model engineer provides an arrival pattern for different types of workloads, such as
periodic, open, or closed workloads.

After the evaluation has been performed, the results are attached to the respective model
elements, e.g., models, classes, or attributes, through the GaAnalysisContext stereotype.
All results pertaining to a particular model element are provided as key-value pair using
the context parameters (contextParam) of that stereotype. This allows the user to view
the results directly in the UML modeling editor and avoids a translation between different
formalisms.

Workload Generator

Once the UML model is provided, the analysis can be started. In a first step, a workload
generator component reads the scenarios defining the software workload and automatically
runs each of them once by executing the associated activities on top of the fUML virtual
machine. From these executions, we obtain one execution trace for each scenario that
captures the order in which services are requested as well as the execution time for each
of the requests. In a next step, the traces are annotated with their arrival times as
obtained from the inter-arrival times randomly generated from a probability distribution
(e.g., exponential) according to the specified arrival pattern. This step results in a set of
timed execution traces.

Performance Analyzer

The Performance Analyzer takes the timed execution traces with their execution time
as input and performs common operational analysis as defined in [LZGS84]. Special
consideration is given to service centers having multiple instances, because they require
balancing strategies to determine which instance will get the next request from the queue.
We support balancing and scaling strategies, such as round robin, random balancing,
and scaling based on queue length. However, additional strategies can be easily added
by extending the interpretation of the respective MARTE stereotypes. The obtained
performance values include, among others, the waiting time and service time for the
scenarios and utilization and throughput for the service centers, i.e., instances of the
corresponding UML classes.

57

3. Model-Based Property Analysis

Using our performance analyzer, it is possible to calculate the performance values for the
overall simulation time, for a specific point in time or for a given time frame. As a result,
we can generate detailed graphs that show the evolution of individual performance values
in order to provide additional insight into the systems behavior.

In the next section, we evaluate our resource contention analysis approach by applying it
on the PetStore system and validating the results of our performance analyzer.

3.4 Evaluation

Using our approach, we can compute the utilization, throughput, and response time of
all jobs for the overall workload, as well as the minimum, average, and maximum waiting
time and service time of the jobs for each scenario. Additionally, we calculate the idle
time, busy time, utilization, throughput, as well as the minimum, average, and maximum
queue length for each service center. The computed results are annotated in the UML
model.

In order to evaluate our approach, we are interested in the following two research
questions:

RQ1 Applicability: Is our approach applicable to software systems modeled in UML?

RQ2 Result Analysis: Does our approach produce results comparable to results of
established property analyzers?

To answer RQ1, we apply our approach on the PetStore case study, already partially
introduced in Section 3.2. We demonstrate what additional information is needed and
what output is produced.

In order to validate the analysis results obtained by our approach for RQ2, we compare
its results for the PetStore case study with the results retrieved from an existing QN
solver. Among them, our first choice is JSIMgraph (JSIM), a QN models simulator part
of the Java Modelling Tools (JMT) suite2 [BCS09]. JMT is a standalone Java application
that allows performance evaluation using queuing networks with Mean Value Analysis
and similar algorithms for exact and approximate solutions to retrieve the residence time,
utilization, and throughput for each service center and overall. The necessary model can
be provided via a textual wizard or via a graphical interface. Extensions have been made
to also allow non-product-form models containing blocking, parallelism, priority classes
or class switching. Besides bottleneck identification and a graphical simulation of Markov
chains, JMT also allows workload analysis, e.g., checking for univariate or multivariate
data or clustering.

2http://jmt.sourceforge.net/

58

http://jmt.sourceforge.net/

3.4. Evaluation

3.4.1 RQ1: Application on the PetStore

The software architecture and the hardware platform of the PetStore have been modeled
in UML3 as described in Section 3.2. Additionally, to apply our analysis approach we
need to provide additional information through a subset of MARTE stereotypes and
properties. Specifically, we need to provide a scenario which annotates the expected
runtime for each operation, declare what parts of the software system should be used as
service centers and define a hardware specification as context of the execution.

Scenario In order to analyze the resource contention, the functionality of the PetStore
needs to be modeled using UML activity diagrams while the structure is defined using
class diagrams. Based on this functionality we can define a scenario that is executed for
our dynamic analysis. In this case study, we want to analyze a typical online shopping
workload consisting of the Single Buy Scenario, which represents a user that logs into the
PetStore, searches for a specific item, adds this item to the shopping cart and confirms the
order. We assume this to occur on average every two seconds, exponentially distributed,
which is annotated as pattern in the triggering event of the scenario. Figure 3.9 depicts
the Single Buy Scenario including the involved classes, the called operations and the
applied stereotypes as sequence diagram. Each lifeline corresponds to a service center
instance while each asynchronous message corresponds to the invocation of an operation
on the receiving lifeline. Note that in our model the service center annotations are applied
to a class level and not to an instance level, so all instances of the same class share the
same performance characteristics. The scenario as well as its setup, e.g., the available
pets or existing user accounts, are modeled using fUML activity diagrams.

Hardware Specification Besides the software architecture and the behavior, we need
information about the underlying hardware in order to estimate the times needed to
execute the respective operations provided by the service classes. In this case study,
we therefore assume a reference hardware platform that is capable of executing 200,000
millions of instructions per second (MIPS). Since all services use the same hardware, the
contention of resources is limited to the software components. The hardware model is
depicted in Figure 3.10 and shows the allocation of the PetStore software components on
the reference hardware platform using the allocate relationship.

Estimating Execution Times Based on the hardware and the instructions it is
capable to execute, we can obtain an early estimation of the execution time of the
operations provided by the services using an overhead matrix as defined by Smith and
Williams [SW02]. An overhead matrix contains the software-to-hardware unit conversion
factors that are used to combine an estimated number of high-level instructions executed
for each operation call with the capability of the CPU. For our conversion, we use the
number of instructions on three distinct levels of abstraction: assembly-level instructions
as the lowest level of instructions closest to the CPU (L1), bytecode-level instructions

3The PetStore UML model can be downloaded at http://www.modelexecution.org/.

59

http://www.modelexecution.org/

3. Model-Based Property AnalysisJob

3

«RtScalableUnit»

: ApplicationController
: Client

«RtScalableUnit»

: CustomerService

«RtScalableUnit»

: CatalogService

«RtScalableUnit»

: OrderService

«RtScalableUnit»

: Entity Manager

«GaWorkloadEvent, GaStep»

login(login,pw) «GaStep»

login(login,pw) «GaStep»

findCustomer(login,pw)

customer = findCustomer(login,pw) customer =

login(login,pw)

sessionId = login(login,pw)

«GaStep»

findItem(name) «GaStep»

findItem(name) «GaStep»

findAllItems()

allItems= findAllItems()
item = findItem(name)

item= findItem(name)

«GaStep»

addItemToCart(sessionId,item) «GaStep»

addItemToCart(customer,item) «GaStep»

persist(cart)
«GaStep»

confirmOrder(sessionId)
«GaStep»

confirmOrder(customer) «GaStep»

persist(order)

«GaStep»

delete(cart)

sd «GaScenario» BuyItem

Figure 3.9: PetStore Single Buy Scenario

as executed in the Java virtual machine (L2), and finally high-level Java instructions
as written by the developer (L3). To perform our conversion, we first measure the
complexity of the operations provided by the PetStore software services as a number of
high-level instructions executed for their invocation. Then, we set a conversion factor
from assembly-level to bytecode-level to ×20 and a conversion factor from bytecode-level
to high-level to ×25, as depicted in Table 3.2. The accuracy of this kind of estimation
depends on the accuracy of such factors.

1

«RtScalableUnit»
{ queueSchedPoliciy = FIFO,

srPoolSize = 1 }

ApplicationController

«RtScalableUnit»
{ queueSchedPoliciy = FIFO,

srPoolSize = 1 }

CustomerService

«RtScalableUnit»
{ queueSchedPoliciy = FIFO,

srPoolSize = 1 }

CatalogService

«RtScalableUnit»
{ queueSchedPoliciy = FIFO,

srPoolSize = 1 }

OrderService

«RtScalableUnit»
{ queueSchedPoliciy = FIFO,

srPoolSize = 1 }

EntityManager

«GaExecHost»
PetStore Execution Host

«HwProcessor»
{ mips = 200000 }

Intel Core i7 Extreme Edition 3960X

«Allocate» «Allocate» «Allocate» «Allocate» «Allocate»

cpu

Figure 3.10: PetStore Hardware

60

3.4. Evaluation

MIPS L1 MIPS L2 MIPS L3
MIPS L1 1.0000 0.0500 0.0020
MIPS L2 20.0000 1.0000 0.0400
MIPS L3 500.0000 25.0000 1.0000

Table 3.2: Overhead Matrix for the PetStore

Number of executed instructions
Operation MIPS L3 MIPS L2 MIPS L1 Time
AppCon::login 10.00 250.00 5000.00 25.00
AppCon::findItem 5.00 125.00 2500.00 12.50
AppCon::addItemToCart 50.00 1250.00 25000.00 125.00
AppCon::confirmOrder 50.00 1250.00 25000.00 125.00
CusSer::login 100.00 2500.00 50000.00 250.00
CatSer::findItem 10.00 250.00 5000.00 25.00
OrdSer::addItemToCart 10.00 250.00 5000.00 25.00
OrdSer::confirmOrder 500.00 12500.00 250000.00 1250.00
EntMan::findCustomer 2000.00 50000.00 1000000.00 5000.00
EntMan::findAllItems 2000.00 50000.00 1000000.00 5000.00
EntMan::persist 1000.00 25000.00 500000.00 2500.00

Table 3.3: Execution Times for Operations in the PetStore Single Buy Scenario

Based on the capabilities of the CPU and our overhead matrix, we can estimate the
execution times for our PetStore Single Buy Scenario. The concrete numbers and
execution times are depicted in Table 3.3.

Finally, the operations are annotated with their respective execution times using the
GaStep stereotypes. An example is shown in Figure 3.11 for the login operation of
the CustomerService class, where we have annotated an estimated execution time of
250ms.

read self

login: String

password: String
customer: Customer

target

password

login

result object result

customer

«GaStep» { execTime = 250.00 }

CustomerService::login(login: String, password: String, customer: Customer)

read entityManager

findCustomer()

Figure 3.11: PetStore CustomerService Login Behavior

61

3. Model-Based Property Analysis

Output. Using the defined UML model as input, we can reason about different config-
urations on software service level and explore the effect of different balancing and scaling
strategies. For simplicity, we consider four configurations in our example and focus
on the utilization of service centers within the system, as well as the overall execution
time. The utilization represents the busy time of a system or component in relation to
its overall execution time. Furthermore, we focus on the provided reasoning based on
the auto-generated graphs while for each configuration we also obtain an output model
which is equivalent to the input model with the analysis results annotated as stereotype
applications.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

U
ti

liz
at

io
n

Base

Duo

Trio

Dynamic

Figure 3.12: Utilization of the PetStore Single Buy Scenario

For all four configurations we apply the same workload within the same time frame of
6 seconds. The result for each single configuration is depicted in Figure 3.12. As baseline,
the first configuration (Base) only considers one instance per service center and uses
neither balancing nor scaling, resulting in an average execution time of about 87 seconds.
From these results we can identify the EntityManager as the bottleneck of the application:
the EntityManager has a very high utilization and blocks an optimal utilization of the
other components. This is not surprising considering that the EntityManager is needed
for almost every operation.Utilization for Service Centers

0 2 4 6 8 10 12 14 16 18 20 22 24 26 Seconds
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

U
tili

za
tio

n

CustomerService

CatalogService

ApplicationController

EntityManager_3

EntityManager_2

EntityManager_1

EntityManager_balancer

OrderService

Figure 3.13: Evolution of the Utilization Property Over Time

Trying to improve this result, we introduce one (Duo) and two (Trio) additional Entity-

62

3.4. Evaluation

Manager instances and balance the requests between these instances using a round robin
strategy. Figure 3.12 depicts the utilization of these additional instances, identified by
the number in the parenthesis. A more detailed investigation of the results is possible by
considering how the utilization of each instance behaves over time. Figure 3.13 depicts
the evolution of the utilization for each instance for the Dynamic configuration. We can
see that, in our example, multiple instances of the EntityManager center can reduce the
execution time to almost a half or third and, hence, increase the utilization of the other
service centers. However, more instances usually also imply more costs, thus making the
number of instances a tradeoff between cost and performance.

In the fourth configuration (Dynamic), we vary the number of EntityManager instances
dynamically instead of choosing a fixed number. We introduce the following horizontal
scaling strategy: whenever the average queue length of the EntityManager is larger than
1.2, a new EntityManager instance should be allocated, and whenever the average queue
length is lower than 0.6, an instance should be removed. For the sake of experimentation,
the time needed for adding and removing instances is set to 100ms and we allow the
number of instances to range from one to three, starting with one instance. The results
for this configuration show that two additional instances are created during the run time,
but neither of them can reach a high utilization, indicating that they might have been
allocated too late. In comparison with the previous two configurations, we can further
see that horizontal scaling yields no real benefit in our example. Possible reasons for
this could be that the specified workload has little time between two jobs and that the
average queue length does not reflect the changes made through scaling fast enough,
resulting in a quick allocation and deallocation of many instances in a short period of
time.

In conclusion, this case study illustrates that we can use our approach to analyze NFPs
considering the resource contention solely based on UML models and execution traces.
Moreover, it shows that our approach is extensible as it allows considering further
concerns, such as the analysis of optimal configuration of balancing and scaling strategies.

3.4.2 RQ2: Comparison with JMT

In order to answer RQ2 and validate the results of our analysis approach, we compare
them to the results retrieved by JSIMgraph (JSIM), an established QN models simulator.
Our aim in this evaluation is not to re-implement the complete functionality provided by
JSIM, but use it as a reference implementation from which we select a very small set
of basic functionalities that are indispensable to calculate a performance metrics, such
as the utilization of each service centers. For our comparison, we use a simple scenario
(Scenario 1) and the PetStore Single Buy Scenario (Scenario 2).

The simple scenario is depicted in Figure 3.14 as queueing network modeled in JSIM.
The QN is composed of a source node, a sink node and four service centers (SCs).
Within the QN, we define two different types of customers (TypeA and TypeB) performing
different requests on the queueing network. The interarrival times among jobs, expressed

63

3. Model-Based Property Analysis

S
Source 1 SC1

SC2

SC3

SC4 Sink 1

Figure 3.14: Scenario 1 QN Specified in JSIM

in milliseconds, are generated by two distinct exponential probability distributions exp(λ).
Each job from both customer classes generates three service requests before leaving the
QN from the same sink node. Specifically, jobs of TypeA request the service centers
in the following order SC1, SC2, and SC4, whereas customers of TypeB request the
service centers as SC1, SC3, and SC4. At each service center, the service time (in
milliseconds) required to complete the processing of a single job, is obtained by two
probability distribution functions: Deterministic(k) or Exponential(λ). The former
returns always k, i.e., the service time is deterministic and always equal to k milliseconds,
while the latter generates a positive random natural number 0 < λ < 1 according to an
exponential distribution. Next, we create the same model (i.e., the same SCs, the same
connections and parameters) programmatically using the API provided by our approach.

The second scenario, i.e., the PetStore Single Buy Scenario, has been discussed in the
previous section. It is also modeled using four service centers.

Finally, in order to evaluate our approach, we execute the same scenarios with the same
configuration with our approach modeled in UML and the queueing networks modeled in
JSIM. This execution is repeated several times in order to raise the confidence of our
evaluation and mitigate the risk of false results due to the randomness given through the
exponential distribution in the service times. The results for our two scenarios for the
average utilization property are depicted in Table 3.4.

Table 3.4: Average Utilization per ServiceCenter in JSIM and our Approach

Scenario 1 Scenario 2
JSIM Our Approach JSIM Our Approach

Service Center 1 1.000 1.000 1.000 1.000
Service Center 2 0.500 0.510 0.503 0.445
Service Center 3 0.505 0.510 0.248 0.261
Service Center 4 1.000 0.994 1.000 0.994

As we can see, the results are very close to each other and there is only a slight variation
between the values. These variations are most likely the result of the different number
of jobs created during the sampling process. Therefore, we conclude that our approach
produces values very close to an established queueing network solver and as a result its
values can be considered valid.
Nevertheless, there are to the validity of our evaluation. First, we only performed the
analysis for one case study and second, we only compared the results to one queueing
network solver. However, regarding the applicability of our approach, we do not expect
any difference for other case studies as the model formalisms and our approach components
stay the same. In order to mitigate the threat regarding the queuing network solver, we
selected a well-known solver in order to improve the trust into its results.

64

3.5. Related Work

3.5 Related Work

Due to the previous lack of semantics in UML, many UML model-based analysis ap-
proaches have implemented dedicated model transformations to specific performance
models that can be used as input for existing analysis tools. In this section, we only
briefly outline a few of these approaches. For more details, we refer to the respective
approach or surveys such as the one performed by Balsamo et al. [BMIS04].

Performance from Unified Model Analysis [WPP+05] (PUMA) is an approach that uses
transformation from UML software models into dedicated performance models. They use
a transformation from UML activity, deployment and interaction diagrams annotated
with the SPT profile into the common Core Scenario Model (CSM) format to avoid the
N-by-M problem of transformations. The common format can then be translated into
Layered Queueing Networks, Petri Nets, and Queueing Networks that can be fed into
existing performance analysis tools. UML-Ψ [MB04] is a performance evaluation tool
using process-oriented simulation to calculate the resource utilization, throughput and
mean execution time of actions and use cases. UML Use Case, Activity, and Deployment
diagrams are enriched with SPT profile annotations and combined with a configuration
file translated into a C++ simulation model. All results are afterwards annotated on the
respective UML elements using the Tag Value Language (TVL).

This eventually led to the introduction of common performance model interchange formats,
such as PMIF [SLP10a] or CSM [PW07], to reduce the effort for transforming UML
models to performance models and for integrating new methodologies with existing tools.
However, due to the fact that many analysis tools existed before the introduction of
the interchange formats, there is still limited support for these intermediate formats in
analysis tools [SLP10b].

Other methodologies overcome this problem by introducing their own proprietary model-
ing notation and their own integrated analysis tools. For instance, Rivera et al. [RDV09]
added time-related attributes directly to model transformation rules of their e-Motions
tool based on Maude [CDE+07], a framework capable of simulating models using rewrit-
ing logic. Based on these attributes and the simulation engine, special observer objects
can then be integrated to monitor the system and analyze non-functional properties
such as throughput or idle-time [TRV10]. Another tool is Palladio [BKR09, BKR07],
a software architecture simulation tool based on the Eclipse Modeling Framework. It
allows the simulation and analysis of component-based software architectures that can
be described with the so called Palladio Component Model (PCM). The model com-
bines the component specification, the assembly model, the allocation model and the
usage model. The PCM is an Ecore-based domain-specific language that bears a lot of
resemblance with many UML2 models, e.g., specifying the behavior and usage in an
activity diagram-like notation. Random variables are used to express resource demands,
number of loop iterations and in QoS-related specifications. The PCM is also used by
other simulators, e.g., SLAstic.SIM [vMvHH11] which changes component deployment
and server allocation at runtime to control the QoS of distributed systems. The main

65

3. Model-Based Property Analysis

difference of our approach to Palladio besides the functionality is the usage of standards,
which promotes interoperability and tool-independence.

Recently, also approaches that directly execute models for analysis without translating
them into dedicated analysis models or code have emerged. Especially, since the introduc-
tion of the fUML standard [OMG16], more and more tools utilize the standard-conform
execution of UML models. For instance, Moliz [MLMK13] is a testing and debugging
framework for fUML models based on the extended virtual machine by Mayerhofer et
al. [MLK12, May12]. Another example is Moka [Ecl16c], an extension to the Papyrus
UML editor that is capable of simulating UML activity diagrams using the standard
execution engine or a user-provided execution engine, and provides basic debugging
support based on the graphical notation used in Papyrus.

66

CHAPTER 4
Marrying Optimization and

Model Transformations

4.1 Overview
In this chapter, we introduce a model-level optimization approach that combines search-
based optimization (SBO) methods with model transformations in order to facilitate the
tackling of highly complex problems using MDE techniques. The related contributions of
this approach are highlighted in Figure 4.1 and explained in the following paragraphs.

Model-Based
Property Analysis

Model
[unoptimized]

applies

modifies

guides

orchestration of

WorkloadWorkloadModel
Transformation

Transformation
Space Exploration

optimizes

CX ContributionArtifact Task

measures

Generic
Solution Encoding

Objective and
Constraint Evaluation

C1

representsemploys

Focus of this Chapter

C2 C2

Figure 4.1: Marrying Optimization and Model Transformations Contribution

Model transformations are an important cornerstone of model-driven engineering, a
discipline which facilitates the abstraction of relevant information of a problem as
models. The success of the solutions heavily depends on the optimization of these models
through model transformations. Currently, the application of transformations is realized
either by following the apply-as-long-as-possible strategy or explicit rule orchestrations

67

4. Marrying Optimization and Model Transformations

have to be provided, which suffers from several drawbacks as outlined in Section 1.2.
Summarized, these drawbacks include the implicitly hidden effect a transformation has on
the characteristics of the model, the required knowledge to understand the relationships
among transformation rules, i.e., whether they are conflicting or enabling, the large or
even infinite number of rule combinations, and the consideration of multiple, potentially
conflicting objectives.

To overcome these drawbacks, we present a novel approach which builds on the non-
intrusive integration of search-based optimization and model transformations to solve
complex problems on model level. In particular, we formulate the transformation
orchestration problem as a search problem by providing a generic solution encoding based
on transformations, which allows for search-based exploration of the transformation space
and explicating the transformation objectives. The idea to tackle this problem using search-
based techniques is also reflected in the recent approaches by Abdeen et al. [AVS+14] who
integrate multi-objective optimization techniques to drive a rule-based design exploration
and Denil et al. [DJVV14] who integrate single-state search-based optimization techniques
such as Hill Climbing and Simulated Annealing directly into a model transformation
approach. Based on this trend and the ideas that we have initially outlined in [KLW13]
on combining metaheuristic optimization and MDE, similar to Search-Based Software
Engineering (SBSE) [Har07], we introduce a problem- and algorithm-agnostic approach
called MOMoT (Marrying Optimization and Model Transformations), also published in
[FTW15, FTW16b]. Our approach loosely couples the MDE and SBO worlds to allow
model engineers to benefit from search-based techniques while staying in the model-
engineering technical space [KAB02], i.e., the input, the search configuration and the
computed solutions are provided at model level. In particular, we are focusing on how
different metaheuristic methods can be used to solve an optimization problem, on how
we can support the model engineer in configuring these methods, and on the separation
of the objectives of the transformation from the transformation itself. This separation
enables the reuse of the same set of transformation rules and objective specifications for
several problem scenarios.

The remainder of this chapter is structured as follows. Section 4.2 introduces a running
example which we use throughout this chapter to demonstrate the different aspects of
our approach. Section 4.3 provides an overview our approach, followed by Section 4.4
which details the generic encoding on which the features of our approach are based.
Section 4.5 to Section 4.7 then describe these features in detail, from the specification of
the objectives and constraints to the exploration configuration of the optimization method
and the returned analysis results. In Section 4.8, we describe how, through the use of a
dedicated configuration language, we support model engineers in selecting and configuring
the respective optimization algorithms and experiment parameters. Section 4.9 outlines
how the approach has been implemented, in particular, which techniques we build upon
and how the framework can be used and extended. Finally, Section 4.10 describes how
the approach fits into the current state of the art. The evaluation of our approach can
be found in Chapter 5.

68

4.2. Running Example

4.2 Running Example
A well-known problem in software architecture design that can often not be solved through
exhaustive approaches is the modularization problem [PHY11, SSB06, HT07]. The goal
is to create high-quality object-oriented models by grouping classes into modules. Solving
this problem implies to decide where classes belong and how objects should interact.
Producing a class diagram where the right number of modules is chosen and a proper
assignment of classes is realized is a non-trivial task, often requiring human judgement
and decision-making [MJ14]. In fact, the problem has an exponentially growing search
space of potential class partitions given by the Bell number Bn+1 = ∑n

k=0
(n

k

)
Bk. The

nth of these numbers, Bn, counts the number of different ways a given set of n classes
can be divided into modules. If there are no classes given (B0), we can in theory produce
exactly one partition (the empty set, ∅). The order of the modules as well as the order
of the classes within a module do not need to be considered as the semantics of a class
diagram does not depend on that order. Already starting from a low number of classes,
the number of possible partitions is unsuitable for exhaustive search, e.g., 15 classes,
which is rather small in a real-world example, yields 1, 382, 958, 545 possible ways to
create modules. Even when dismissing special cases where we group all classes into one
module or every class into a separate module, the search space is still enormous.

4.2.1 Metamodeling

In MDE, the first step to solve such a problem is to model the problem domain in terms
of a metamodel, cf. Section 2.1.1. UML already considers this problem as part of its
class diagram structure. However, for simplicity we will work on a smaller version of
this metamodel, as depicted in Figure 4.2. In our modularization metamodel, a system
consists of modules and classes. Classes may depend on an arbitrary number of other
classes (dependsOn-provider relationship), i.e., if class A depends on class B, B is a
provider for A. Modules are used to group classes into meaningful clusters. As we can see,
each class may be in one module, while modules may contain many classes. An instance
of our modularization metamodel is depicted in Figure 4.3. In the figure, the relationships
between classes are shown in different colors to foster the figures readability. The depicted
model is a representation of mtunis [Hol83], an operating system for educational purposes
written in the Turing Language. This system contains 20 classes and 57 dependencies
among them. As a result, there are, according to the Bell number described above,
51, 724, 158, 235, 372 possibilities for grouping the classes into modules. Please note that
the figure depicts the abstract model syntax, i.e., the graph-based representation of the
model information modulo its notation.

ModularizationModel

name : EString

Class

name : EString

Module

name : EString

modules module dependsOn

provider

classes

0..*

0..*

0..*

0..* 0..1

classes 0..*

Figure 4.2: Modularization Metamodel

69

4. Marrying Optimization and Model Transformations

File

FileTableDirectory

Inode

Panic

Device

Tty

Disk

System

InodeTable

FreeInode

FileIO

InodeGlobals

main

Control

User

FamilyState

Memory
Computer

Figure 4.3: Modularization Model Instance (mtunis System)

4.2.2 Model Transformations

To manipulate model instances in order to group classes into modules, we propose the
two rules depicted in Figure 4.4. In this figure, we use the Henshin notation, as described
in Section 2.1.5. Since at the beginning there are no modules in the input model (it
only contains classes and the dependencies among them), we define a rule to create a
module (createModule). This rule creates a module with the provided name, only if
a module with such a name does not already exist. Rule assignClass then enables the
system to group a previously unassigned class into a module. All rules have parameters,
namely moduleName, module and class. While producing a match for these rules, all
these input parameters acquire a value, i.e., they are instantiated, and the rules can be
applied. For retrieving such values, the graph transformation engine matches the pattern
in the rules consisting of nodes and edges with the model graph. Since the moduleName
parameter provides a value for a newly created class instance, it cannot be matched
automatically and requires input from the user before it can be applied.

Rule createModule(moduleName: EString)

«preserve»
: ModularizationModel

«forbid»
: Module

name = moduleName

«create»
: Module

name = moduleName
«create»
modulesmodules

«forbid»

Rule assignClass(class: Class, module: Module) @ModularizationModel

«preserve»
class : Class

«forbid»
: Module

«preserve»
module : Module«create»

modulemodule
«forbid»

Figure 4.4: Rules to Manipulate a Modularization Model

70

4.2. Running Example

4.2.3 Quality

For determining the quality of the obtained modularized model, we follow an Equal-Size
Cluster Approach (ECA) [PHY11]. The ECA attempts to produce a modularization that
contains modules of roughly equal size. Specifically, we use the following metrics for
measuring the quality of the modularization: (1) coupling, (2) cohesion, (3) modularization
quality, (4) number of modules, and (5) the difference between the maximum and minimum
number of classes in a module. Please note that in general several metrics may exist to
measure the same aspect of a system, but the results retrieved from these metrics do not
necessarily compare to each other [ÓCTH+12]. For instance, the coupling and cohesion
of a system can be calculated using several different metrics, as studied by Abdeen et
al. [ADS11].

In our example, coupling refers to the number of external dependencies a specific module
has, i.e., the sum of inter-relationships with other modules. This translates to the
number of class dependencies (dependsOn) that origin in one module but end in another.
Cohesion refers to the dependencies within a module, i.e., the sum of intra-relationships
in the module. In our example, this reflects the number of class dependencies that origin
and end in the same module. Typically, low coupling is preferred as this indicates that a
module covers separate functionality aspects of a system, improving the maintainability,
readability and changeability of the overall system [YC79, ADS11]. On the contrary,
the cohesion within one module should be maximized to ensure that a module does not
contain parts that are not part of its functionality. Ideally, a module should be a provider
of one functionality [ADS11]. The calculation of coupling and cohesion used for our
example is depicted in Equation 4.1 and Equation 4.2 respectively. In these equations
M refers to the set of all modules and C(m) refers to the set of classes contained in the
module m.

COP =
∑

mi,mj∈M
mi 6=mj

∑
ci∈C(mi)
cj∈C(mj)

{
1 if ci depends on cj

0 otherwise
(4.1)

COH =
∑

mi∈M

∑
ci,cj∈C(mi)

{
1 if ci depends on cj

0 otherwise
(4.2)

The modularization quality (MQ) [PHY11] evaluates the balance between coupling and
cohesion by combining them into a single measurement. It has been proven that the
higher the value of MQ, the better the quality of the modularization [dOB11]. The aim
is to reward increased cohesion with a higher MQ score and to punish increased coupling
with a lower MQ score. The modularization quality is defined in Equation 4.3, where
MFm is the modularization factor for module m. The modularization factor is the ratio of
intra-edges to edges in each cluster, as defined in Equation 4.3, where i is the number of
intra-edges, i.e., cohesion, and j is the number of all edges that originate or terminate in

71

4. Marrying Optimization and Model Transformations

module m. The reason for the occurrence of the term 1/2 rather than merely j is to split
the penalty of the inter-edge across the two modules connected by that edge [PHY11].

MQ =
∑

mi∈M

MFm, where MFm =

0 if i = 0
i

i+ 1
2 j

if i > 0 (4.3)

The MQ value tends to increase if there are more modules in the system, so it also makes
sense to include the number of modules in the model as an objective. Another reason to
include this metric is to avoid having all classes in a single large module which would
yield no coupling and a maximum cohesion. Therefore, as part of our fitness function,
we also maximize the number of modules. At the same time, we minimize the difference
between the maximum and minimum number of classes in a module to aim at equal-sized
modules.
With the rules and quality objectives presented, it is not clear how to orchestrate the two
rules depicted in Figure 4.4 in order to obtain a desired model where all measures are
optimized. In fact, model transformation languages do not offer any mechanism to specify
the objectives of a transformation explicitly. Besides, if objectives were encoded somehow
within the transformation, e.g., by using a scheduling language for transformation rules
or encoding the schedule as additional positive or negative application conditions, the
transformation could only be used to solve this particular problem and only for the given
objectives. On the other hand, if they are not encoded in the transformations, it is less
clear how the rules affect the objectives and how they should be applied. Therefore, in
next section we introduce our approach to solve this problem and in the process facilitate
the usage of search-based optimization methods on model level.

4.3 MOMoT Approach
In order to realize an approach that solves this problem, we combine MDE techniques
with search-based optimization methods. Instead of manually deriving an orchestration
of transformations for a given scenario in a specific problem domain, we deploy dedicated
optimization methods to calculate the transformation orchestration based on a given set
of objectives and constraints. In fact, metaheuristic optimization methods allow us to
address multi-modality problems as they aim to find the Pareto-optimal set of solutions,
as opposed to trying to obtain a single optimal solution. For the modularization problem
this would mean that we are interested in a set of solutions where all objectives are
compensated and optimized instead of being combined into a single metric, which may
not achieve optimality [PHY11].
An overview of our approach with the necessary inputs and the provided outputs is
depicted in Figure 4.5. Specifically, we design our approach to meet the requirements
stated in Section 1.3, i.e., the approach needs to be problem- and optimization method-
agnostic, transparent to the model engineer, declarative in the specification of the
objectives, and supportive by providing additional information to the model engineer.

72

4.4. Generic Solution Encoding

MOMoT

Transformation Rules

Objectives

Constraints

Problem Instance Model

Exploration Configuration

Result Models

Objective Values
Problem
Encoding

Search-based
Exploration

Result
Generation

Constraint Values

Rule Orchestrations

Exploration Statistics

Objective and
Constraint Evaluation

Rule
Orchestration

Figure 4.5: Overview of the MOMoT Approach

To realize our approach, we need the following ingredients: (i) a generic way to describe
the problem domain and the concrete problem instance, (ii) an encoding for the solution
of the concrete problem instance based on model transformation solutions, (iii) a random
solution generator that is used for the generation of an initial, random individual or
random population, and (iv) a set of search-based algorithms to execute the search.
To further support the use of multi-objective evolutionary algorithms, we additionally
provide (v) generic objectives and constraints for our solution encoding, (vi) generic
mutation operators that can modify the respective solutions, and (vii) a configuration
language that provides feedback about the specified search configuration. Since our
approach combines MDE techniques with metaheuristics, the key building blocks are an
environment to enable the creation of metamodels and models, a model transformation
engine and language to manipulate those models and a set of optimization algorithms that
perform a search to find transformation orchestrations that optimize the given objectives
and fulfil the specified constraints. In the following, we describe the different parts of our
approach on the basis of the modularization problem introduced in the previous section.

4.4 Generic Solution Encoding
As it is typical in MDE, the problem domain itself is defined as a metamodel (e.g., cf.
the metamodel of the modularization problem depicted in Figure 4.2). Based on the
specific problem domain, a user can define both concrete problem instances, i.e., models
(e.g., cf. Figure 4.3) and transformation rules that specify how problem instances can be
modified (e.g., cf. Figure 4.4). In this section, we therefore provide a generic encoding
for search-based optimization methods that considers these concepts.

A solution to an optimization problem consists of a set of decision variables that are
optimized by the respective search-based optimization algorithm, as described in Sec-
tion 2.2. As we deal with the problem of orchestration transformation rules, there are two
common ways in representing a solution. Either a solution is an ordered sequence of rule
applications or it is the model resulting from the application of that sequence. We choose
the first encoding as we consider it more flexible, because the resulting model can always
be calculated from the sequence of configured rules and may be stored in a solution
as attribute to avoid re-execution. Furthermore, in our understanding, using a rule
application sequence as first-class citizen in the encoding has several advantages. First,
we are in line with the general optimization encoding, where a solution consists of separate

73

4. Marrying Optimization and Model Transformations

decision variables that are optimized by an algorithm. This increases the understanding
for users who are knowledgeable in optimization methods. Second, we are on the level
of abstraction on which the user has provided information, i.e., transformation rules.
Therefore, we give also novices in metaheuristic optimization insight into the solutions.
And third, we think that having the rule sequence shown explicitly also makes the output
models more comprehensible as the user can compare solutions on the level they are
computed and not only based on the output model which may increase the acceptance of
our approach. Therefore, a decision variable in our solution is one transformation unit.
A description of all supported transformation units based on [ABJ+10] can be found in
Table 4.1.

Table 4.1: Transformation Units That Serve as Decision Variables in the Encoding

Unit Description
Transformation Rule Rules are the main transformation units and the only ones that

are ultimately executed on the input model. A rule consists of
a left-hand side and a right-hand side graphs which describe the
pattern to be matched and the changes to be made, respectively.
Rules may have positive and negative application conditions
and can be nested to execute inner rules as long as possible if
the outer rule matches.

Sequential Unit A sequential unit executes all sub-units in the given order once
and may be configured to stop the execution if any of the
sub-units can not be executed and to rollback any changes that
have been made by the sequential unit.

Priority Unit A priority unit executes the first given sub-unit that can be
successfully applied on the given input model. Subsequent
sub-units are not executed.

Independent Unit An independent unit executes the first randomly selected sub-
unit that can be executed on the given input model. Other
sub-units are not executed.

Loop Unit A loop unit consists of one sub-unit. The loop unit is executed
as long as the sub-unit can be applied in the underlying graph.

Iterated Unit An iterated unit is composed of one sub-unit that is executed
as often as explicitly specified.

Conditional Unit This unit enables the expression of an if-then-else condition.
It consists of at least two sub-units (if, then) and an optional
third sub-unit (else). The then-unit is only executed if the
if -unit can be successfully matched, otherwise the else-unit is
executed if possible.

Placeholder Unit This unit acts as a placeholder within the transformation
without modifying the given input model.

74

4.4. Generic Solution Encoding

The most basic transformation unit is a transformation rule which directly manipulates
the model being transformed. Other transformation units can be used to combine one or
more transformation units to provide simple control-flow semantics. It is important to
note that a loop unit may create an infinite search space in which our approach would
not stop until it runs out of memory, e.g., when the provided sub-unit manipulates the
graph in a way that produces additional matches for that sub-unit. Currently, we have
no way to automatically detect whether a loop unit creates an infinite search space, but
we inform the user about the possibility using our support system (cf. Section 4.8).

Each transformation unit can have an arbitrary number of parameters that need to be
instantiated, i.e., values for these parameters must be found. Additionally, application
conditions can be specified that need to be fulfilled in order for the unit to be applicable.
As typical for graph transformation systems, there are two kinds of application conditions,
positive application conditions (PACs) and negative application conditions (NACs). The
former require the presence of certain elements or relationships in the model, whereas
the latter forbid their presence. Besides using model elements and relationships in the
PACs and NACs, it is also possible to formulate these conditions using parameter values
or attributes of elements. In such a case, we allow the usage of JavaScript or OCL. As
a special transformation unit, we provide transformation unit placeholders, i.e., units
that are not actually executed and do not have any effect on the output model. This
enables the actual solution length to vary in cases where the solution length must be
fixed in advance. Besides the decision variables, we also provide an attribute storage for a
solution where key-value pairs can hold additional information relating to the evaluation
or the search process.

Variables Attributes Objectives Constraints Result Model

rule = shiftLeft
fromId = 'Stack 2'
toId = 'Stack 1'
amount = 3

Placeholders

AggregatedFitness = 3.09762
CrowdingDistance = 1.21945
Executions = [true, true, true]
Rank = 0

StdDev = 2.09762
Length = 1.0

4 4 3 9 5

Variables Objectives Constraints Attributes

rule = shiftLeft
fromId = 'Stack 2'
toId = 'Stack 1'
amount = 3

rule = shiftLeft
fromId = 'Stack 4'
toId = 'Stack 3'
amount = 3

Placeholder

StdDev = 0.89443
Length = 2.0

Executions = [true, true, true]

AggregatedFitness = 2.89443

CrowdingDistance = 1.01801

ResultModel = 4 4 3 9 5

Variables Objectives Constraints Attributes

rule = shiftLeft
fromId = 'Stack 2'
toId = 'Stack 1'
amount = 3

rule = shiftLeft
fromId = 'Stack 4'
toId = 'Stack 3'
amount = 3

Placeholder

StdDev = 0.89443
Length = 2.0

Executions = [true, true, true]

AggregatedFitness = 2.89443

CrowdingDistance = 1.01801

Rank = 0

ResultModel = 4 4 3 9 5

Variables Objectives Constraints Attributes

unit = createModule
moduelName = 'ModuleZrl'

unit = assignClass
module = ModuleZrldp
class = FreeInode
amount = 3

Placeholder ...

Coupling = 66.0
Cohesion = -24.0
MQ = -1.964
MinMaxDiff = 4.0
NrModules = -6.0
Length = 33.0

UnassignedClasses = 0
EmptyModules = 0

AggregatedFitness = 72.036

CrowdingDistance = Infinity

Rank = 0

Root = <model>

Decision Variables (Transformation Units) Objectives Constraints

unit = createModule
moduleName = 'ModuleZrldp'

unit = assignClass
module = ModuleZrldp
class = FreeInode

Placeholder ...

Coupling = 66.0
Cohesion = -24.0
MQ = -1.964
MinMaxDiff = 4.0
NrModules = -6.0
Length = 33.0

UnassignedClasses = 0
EmptyModules = 0

Figure 4.6: Solution with the First Two Transformation Units and One Placeholder

In summary, one solution consists of an ordered sequence of applicable transformation
units (decision variables) that creates a valid output model when executed on the specified
input model. An example of a solution for the modularization problem with the first
two transformation units and one placeholder is depicted in Figure 4.6. The figure also
visualizes that for each solution, we store the respective objective and constraint values.

Transformation Unit Parameters. Parameters allow to change the behavior of
transformation units with variable information that is typically not present before
execution time. When dealing with model transformations, we can distinguish between
two kinds of parameters: those that are matched by the graph transformation engine
(matched parameters), and those that need to be set by the user (user parameters). The

75

4. Marrying Optimization and Model Transformations

former are often nodes within the graph, whereas the latter are typically values of newly
created or modified properties. In the rules provided for the modularization problem (cf.
Figure 4.4), the class and module of the assignClass rule are matched parameters,
whereas the moduleName parameter of the createModule rule is a user parameter.

Values for matched parameters can be retrieved from the respective transformation engine
through a matching procedure. In our approach, we use non-deterministic matching, i.e.,
for a given model a different transformation unit with different parameters may be selected
each time the matching is executed. This leads to a non-deterministic optimization,
where we produce different results every time the search is executed. However, during the
search, the matching parameters within a solution are fixed, unless otherwise modified,
i.e., a solution always produces the same output model for the given input model. Values
for user parameters need to be handled differently, as a user usually can provide a value
for these programmatically or via a dedicated user interface when the unit is applied
manually. In an automated approach, however, we need a way to generate those values
when needed. This is also necessary in order to facilitate the creation of random solutions
and populations, what is needed by most search algorithms. Usually, a high variance of
parameter values is preferred to cover as much area of the search space as possible. By
default, we use random parameter value generators for most primitive values. The range
of these value generators is the range of the data type of the respective parameter, e.g.,
for Integer in Java the value can range from −231 to 231− 1. Although an efficient search
algorithm should quickly remove values that are not beneficial in a specific scenario, the
user may restrict this range as part of the configuration to prune such unfruitful areas of
the search space in advance. Additionally, we provide a hook where a user can integrate
how values should be generated for specific parameters. Furthermore, the user may define
which parameters should be retained as part of the solution. By default all parameters
are kept, any other parameters are re-matched by the graph transformation engine when
the respective unit is executed again.

Solution Repair. Even though constraints can be used to specify the validity or
feasibility of solutions, a solution that is the product of re-combining two other solutions
might have unit applications that are not actually executable. By default, units that can
not be executed are ignored. However, this behavior might not be satisfactory in some
cases as the process of establishing that a transformation unit can not be executed is
quite expensive due to unnecessary match finding done by the transformation engine.
Therefore we consider two repair strategies in our approach.

The first strategy replaces all non-executable transformation units with transformation
placeholders and the second strategy replaces each non-executable transformation unit
with a random, executable transformation unit. Which strategy is the best depends on the
problem at hand. Replacing non-executable unit applications with a placeholder effectively
shortens the solution length and has the risk of removing useful applications from the
search-space which may cause the search to converge too early. On the other hand,
replacing a non-executable unit application with a random executable unit application

76

4.5. Solution Fitness

may have an impact on the overall solution quality as other transformation units might
become non-executable due to the new transformation unit and may also need to be
replaced. The resulting solution may be a solution that is quite different from the original
solution, which may negate the positive effect of selection and recombination. Therefore,
this strategy should be used with caution, especially when many different transformation
rules are given and the risk of producing a very different solution is higher.

In the ideal case, no solution repair strategy is necessary as no non-executable unit
applications are produced. Of course this depends on the chosen algorithm and the
actual constraints of the solutions. A user can also select a dedicated re-combination
operator that is able to consider some constraints, e.g., the partially matched crossover
(PMX) [GL85] can preserve the order of variables within a solution.

4.5 Solution Fitness

As described in Section 2.2, the quality of each solution candidate is defined by a fitness
function that evaluates multiple objective and constraint dimensions. Each objective
dimension refers to a specific value that should be either minimized or maximized for
a solution to be considered “better” than another solution. In our approach, we can
distinguish between objectives that are problem domain-specific, e.g., minimizing the
coupling of modularization models, and objectives that relate to the solution encoding,
e.g., minimizing the number of transformations that should be applied to reach a solution.
Additionally, a solution candidate may be subjected to a number of constraints in order
for the solution to be valid. Depending on the algorithm, invalid solutions may be filtered
out completely or may receive a low ranking in relation to the magnitude of the constraint
violation. As with objectives, we distinguish between domain-specific constraints, e.g.,
all classes must be assigned to a module, and solution-specific constraints, e.g., a specific
transformation rule needs to be applied at least once.

Objectives and constraints can be defined either by providing a direct implementation
of the respective objective value or by specifying model queries in OCL. OCL is a
standardized and formal language to describe expressions, constraints and queries on
models. In our approach, the support for OCL is crucial as model engineers are typically
proficient in OCL and therefore can provide the necessary input in a language they
are familiar with. Alternatively, users may also provide objectives and constraints in
a Java-like expression language in case they are not familiar with OCL. Furthermore,
objectives and constraints may also be calculated using external mechanisms such as
model-based analysis techniques described in Chapter 3. Constraints may also be defined
as NACs directly in the transformation units as we are building upon the expressive power
of a graph transformation system. By doing so, we can effectively avoid the generation
of invalid solution candidates, resulting in a potentially smaller search space. However,
due to the cost of graph pattern matching, the application of NACs may also introduce
an additional overhead, depending on the NACs complexity and the number of pruned
solutions.

77

4. Marrying Optimization and Model Transformations

In summary, the problem domain is represented as a metamodel, from which a concrete
problem instance model can be created. Transformation units defined upon concepts of
the metamodel are then used to modify the model instances. The objectives that should
be optimized in order to create the desired output model may be defined directly or via
model queries in OCL. The constraints that a possible solution must fulfil in order to
be valid can also be specified in OCL, but may also be encoded as NACs directly in the
rules.

4.6 Exploration Configuration

In order to search for good solutions to the given search problem, the user must select and
configure at least one optimization method and specify the parameters of the experiment
configuration.

4.6.1 Optimization Method Selection

As mentioned previously, our proposed approach is optimization method-agnostic. There-
fore additional method-specific exploration options need to be configured by the user.
These options depend on whether it is an evolutionary algorithm or a local search al-
gorithm. The parameters for these algorithm families are summarized in the following
paragraphs. Further details on these families can be found in Section 2.2.2.

Evolutionary search algorithms are a subset of population-based search algorithms that
deploy selection, crossover, and mutation operators to improve the fitness of the solutions
in the population in each iteration (the first population is usually generated randomly).
The selection operators can be defined generically and choose which solutions of the
population should be considered for re-combination. An example for a selection operator
would be deterministic tournament selection, which takes k random candidate solutions
from the population and allows the best one to be considered for re-combination. The
crossover operator is responsible for creating new solutions based on already existing ones,
i.e., re-combining solutions into new ones. Presumably, traits which make the selected
solutions fitter than other solutions will be inherited by the newly created solutions.
In our case, each solution is represented as a sequence of transformation application
units for which many generic operators already exist, e.g., the one-point crossover
operator that splits two solutions at a random point and merges them crosswise. The
mutation operators are used to introduce slight, random changes into solution candidates.
This guides the algorithm into areas of the search space that would not be reachable
through recombination alone and avoids the convergence of the population towards a
few elite solutions. To take the semantics of transformation units into account, we have
introduced three dedicated mutation operators. The first operator replaces random
transformation units by placeholders, reducing the actual solution length. The second
operator varies the user parameters of a transformation unit based on the parameters
values (cf. Section 4.4). The third operator selects a random position within a solution

78

4.6. Exploration Configuration

and replaces all transformation units after that position with a random, executable
transformation unit.

Local search algorithms maintain one solution at a time and try to improve that solution
in each iteration. Improvement depends on the solution comparison method the user
selects, e.g., comparison based on objective, constraint or attribute values. The initial
solution may be given by the user or can be generated randomly. In each iteration, the
algorithm may take a step to a neighbor solution, i.e., a solution that is a slight variation
of the current solution. The calculation of neighbors from the current solution can be done
generically using a neighborhood function. How many neighbors are evaluated and whether
only fitter neighbors are accepted as the next solution depends on the respective algorithm.
In our approach, we support two neighborhood functions. Following the principle of reuse,
the first function uses one of the previously defined mutation operators to introduce slight
changes into the current solution. Depending on the operator, this function may produce
an infinite number of neighbors, e.g., when varying floating point rule parameter values.
Therefore, an upper bound on the number of calculated neighbors can be specified. The
second neighborhood function adds an additional, random transformation unit to the
current solution, increasing its solution length. Here, an upper bound on the solution
length can be specified.

If multiple algorithms are configured by the user, each algorithm is executed individually
and their results can be used separately or in combination (see Section 4.7).

4.6.2 Experiment

In order to execute the search for the selected and configured optimization methods, the
user needs to provide additional experiment parameters. First, there is the population
size, i.e., the number of solutions in each iteration (population size) for evolutionary
algorithms. Second, the user must specify a stopping criterion for the algorithms, i.e.,
the maximum number of fitness evaluations (maximum evaluations) that are performed
by each algorithm. The number of iterations of an algorithm is implicitly calculated by
the population size divided by the maximum number of fitness evaluations. Finally, the
user needs to specify the number of times each algorithm should be executed (number of
runs). As explained by Harman et al. [HMTY10], experiments should be repeated 30-50
times in order to draw statistically valid conclusions from the results.

As part of the optional configuration parameters, a user may specify a reference Pareto
front, i.e., a set of known, good objective values, to enable the analysis the search process
(cf. Section 4.7). Additionally, a user may configure our approach to print detailed
information about the on-going search process on the console or terminate a single run
of an algorithm based on a different criteria, e.g., after a certain time limit has been
reached or a given solution has been found.

As our target audience of our approach is model engineers, we aim to make the configu-
ration of the exploration easy and provide support with respect to their configuration
options (cf. Section 4.8).

79

4. Marrying Optimization and Model Transformations

4.7 Result Analysis

4.7.1 Output

Finally, after the experiment with the configured search algorithms has been executed, the
user can process the results. As results we have (i) the set of orchestrated transformation
sequences leading to (ii) the set of Pareto-optimal output models with (iii) their respective
objective values, i.e., the Pareto front. Since the results are on the level of the provided
input, i.e., transformation rules, the set of orchestrated transformation sequences can be
inspected by the model engineer to get an understanding of the produced results. The
set of output models produced by these transformations conform to the same metamodel
as the given input model and can be inspected or processed further by MDE tools. The
objective values may give an overview of how well the objectives are optimized by the
different algorithms. All results of the experiment can be retrieved for each algorithm
individually or combined into one set of Pareto-optimal solutions. Especially, the Pareto
front of the combined solutions may be of interest, as they can be used as a reference
set for future experiments if a Pareto front is not known a priori, which is the case for
many real-world problems. Individual algorithm results may be of interest if different
algorithms or different configurations of one algorithm need to be compared.

4.7.2 Statistical Analysis

This data can be used to plot graphs and give a better overview about the algorithm
executions. For example, Figure 4.7 depicts the convergence of the modularization quality
objective over time for multiple runs of two local search algorithms, Hill Climbing and
Random Descent. Each line corresponds to one run of the respective algorithm.

If the user provides a reference set, we can also calculate several indicators during the
search. These indicators are used to gain insight into the search performance of the
different algorithms. As an example, we describe two common indicators, Hypervolume
and inverted generational distance. Hypervolume corresponds to the proportion of the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

M
o

d
u

la
ri

za
ti

o
n

 Q
u

al
it

y
"M

Q
"

Number of Evaluations

Hill Climbing

Random Descent

Figure 4.7: Modularization Quality Convergence Graph For Local Search

80

4.7. Result Analysis

objective space that is dominated by the Pareto front approximation returned by the
algorithm and delimited by a reference point. The larger the proportion, the better the
algorithm performs. Hypervolume can capture both the convergence and the diversity of
the solutions. Inverted generational distance is a convergence measure that corresponds
to the average Euclidean distance between the Pareto set produced by the algorithm
and the given reference set. We can calculate the distance between these two fronts in
an M -objective space as the average M -dimensional Euclidean distance between each
solution in the approximation and its nearest neighbor in the reference front. Better
convergence is indicated by lower values. For each run of an algorithm, we can calculate
one value per indicator.

In order to draw valid conclusions from these values, we need to perform a statistical
analysis, e.g., using the Mann-Whitney U test [MW47]. The Mann-Whitney U test,
equivalent to the Wilcoxon rank-sum test, is a nonparametric test that allows two solution
sets to be compared without making the assumption that values are normally distributed.
Specifically, we test under a given significance level α the null hypothesis (H0) that
two sets have the same median against the alternative hypothesis (H1) that they have
different medians. If the resulting p-value is less than or equal to α, we accept H1 and
we reject H0; if the p-value is strictly greater than α we do the opposite. Usually, a
significance level of 95% (α = 0.05) or 99% (α = 0.01) is used. Alternatively, in our
approach, the user may choose another test like Kruskal-Wallis One-Way Analysis of
Variance by Ranks test [KW52, She03]. To also allow for a visual evaluation, we generate
box plot diagrams for each indicator and algorithm.

Using these statistical tests, we can determine whether two algorithms are interchangeable
with respect to a certain indicator. However, it is not possible to show the magnitude of
how much one algorithm is better than another, i.e., the effect size. In our approach,
we support the calculation of the effect size using Cohen’s d statistic [Coh88] for equal
sized groups. Cohen’s d is defined as the difference between the two means x1 and x2
divided by the mean squared standard deviation si, as depicted in Equation 4.4. The
effect size is considered: (1) small if 0.2 ≤ d < 0.5, (2) medium if 0.5 ≤ d < 0.8, or (3)
large if d ≥ 0.8.

d = x1 − x2
s

, where s =

√
s2

1 + s2
2

2 (4.4)

For an example experiment, we use three algorithms, ε-MOEA algorithm [DMM03],
NSGA-III [DJ14] and Random Search (RS), and execute each algorithm 30 times on the
mtunis system with a population size of 100 and for 200 iterations. We use tournament
selection with k = 2, a one-point crossover operator and a placeholder mutation operator
with p = 0.1. The result of the analysis are shown in Table 4.2 and depicted in Figure 4.8.
Each box plot in the figure shows the minimum value of the indicator (shown by the
lower whisker), the maximum value of the indicator (shown by the upper whisker), the
second quantile (lower box), the third quantile (upper box), the median value (horizontal
line separating the boxes) and the mean value of the indicator (marked by an 'x') for each

81

4. Marrying Optimization and Model Transformations

0.060

0.070

0.080

0.090

0.100

0.110

eMOEA NSGA-III RS

Hypervolume

(a) Hypervolume

0.050

0.100

0.150

0.200

0.250

eMOEA NSGA-III RS

Inverted General Distance

(b) Inverted Generational Distance

Figure 4.8: Hypervolume and Inverted Generational Box Plots

algorithm. We can clearly see that for the Hypervolume indicator, Random Search has
lowest and therefore worst value while ε-MOEA has the highest value. A similar result
is produced for the inverted generational distance where lower values are considered
better. In order to investigate the results further, we deploy the Mann-Whitney U test
with a significance level of 99% as described above. Based on this statistical analysis we
determine that the results of all algorithms are statistically different from each other,
i.e., no two algorithms perform equally well. This is also indicated in Table 4.2 (row
indifferent) as empty set. Finally, we calculate the effect size and find the magnitude
of the differences between the algorithms using Cohen’s d statistic. From the results,
we can see that all differences are considered large. The effect size for ε-MOEA and
NSGA-III is d = 3.44, for NSGA-III and RandomSearch is d = 3.21, and for ε-MOEA to
Random Search is d = 6.96 for Hypervolume. A similar effect size is calculated for the
inverted generational distance. As a conclusion, we can state that for the settings we
have chosen and based on our selected performance indicators, ε-MOEA performs the
best, NSGA-III performs second best, and Random Search has the worst performance.
The fact that a sophisticated metaheuristic search outperforms Random Search is also a
good indicator that the problem is suitable for search-based optimization.

Table 4.2: Excerpt of Indicator Statistic for Different Multi-Objective Algorithms

Hypervolume Inverted Generational Distance
ε-MOEA NSGA-III RS ε-MOEA NSGA-III RS

Min 0.089 0.078 0.065 0.097 0.114 0.139
Median 0.097 0.084 0.072 0.108 0.135 0.172

Max 0.102 0.093 0.079 0.121 0.165 0.196
Mean 0.097 0.084 0.072 0.108 0.136 0.172

StdDev 0.003 0.004 0.004 0.006 0.011 0.011
Count 30 30 30 30 30 30

Indifferent {} {} {} {} {} {}

82

4.8. Support System

4.8 Support System

4.8.1 Configuration Language

To support the model engineer in specifying the search problem, the necessary input
and the experiment configurations, we provide a dedicated configuration language to use
MOMoT. Conceptually, this domain-specific language is defined platform-independently
using a metamodel and an expression language, making the specified configuration of a
model. In fact, all configurations can be made in a single file with a few lines of mandatory
configuration parameters and some optional configuration parameters. In general, the
textual notation of the language uses ’=’ to assign values, ’{}’ to define objects, ’[]’ to
denote lists and ’:’ to separate key-value pairs. Content-Assist provides the next allowed
configuration parameters and guides the users when they need to provide their own input.
Furthermore, when the user is required to implement specific behavior, we provide helper
objects with additional convenience methods. An excerpt of a configuration is depicted
in Listing 4.1. Using such configuration, we can either generate code or interpret the
configuration directly to execute the search.

Listing 4.1 Experiment Configuration Excerpt in the Textual Notation of Our DSL
1: model = "modularization_model.xmi" // has a reference to the metamodel
2: transformations = { modules = ["modularization.henshin"] }
3: fitness = {
4: objectives = { ...
5: NrModules : maximize "self.modules->size()" // OCL-specification
6: Length : minimize new TransformationLengthDimension // generic objective
7: }
8: constraints = { ...
9: UnassignedFeatures : minimize { // Java-like syntax, direct calculation
10: (root as ModularizationModel).classes.filter[c|c.module == null].size }
11: }
12: }
13: algorithms = { ... // moea is an auto-injected objects
14: Random : moea.createRandomSearch()
15: NSGAIII : moea.createNSGAIII(
16: new TournamentSelection(2), // k == 2
17: new OnePointCrossover(1.0), // 1.0 == 100%, always do crossover
18: new TransformationPlaceholderMutation(0.15)) // 15% mutation
19: }
20: experiment = {
21: populationSize = 300
22: maxEvaluations = 21000
23: nrRuns = 30
24: referenceSet = "reference_objectives.pf" // if available (optional)
25: collectors = [hypervolume] // collect during search, needs referenceSet
26: }
27: results = {
28: objectives = {
29: outputFile = "data/output/all/modularization_model.pf"
30: }
31: models {
32: algorithms = [NSGAIII]
33: outputDirectory = "data/output/nsgaiii/modularization_model/"
34: }
35: }

83

4. Marrying Optimization and Model Transformations

4.8.2 Static Analysis

One major advantage of providing a DSL over providing an API is that we can statically
check the given configurations before we compile and execute them. These static analysis
checks can be used to inform the user about certain aspects of the search, warn about
uncommon configurations and prohibit the execution in case any errors can be detected.
These checks are integrated in the editor of the DSL providing the details on the respective
positions in the text. Additionally, an overview is used to show all information in a
list. A summary of all provided checks is shown in Table 4.3. The upper part of the
table shows checks related to the search, while the lower part shows consistency checks.
Dependencies between the individual configurations are considered by the editor and
invalid configurations are marked and prevent execution. Please note that some of these
checks are more complex than others, e.g., checking if any of the given transformation units
can be applied can only be answered if we actually load the model and transformations
and try it out. Therefore, not all checks are done on the fly and the user needs to
explicitly trigger the more complex validation process.

Table 4.3: List of Static Checks in the Configuration DSL

Name Type Description
Unit Applicability Error Check if any of the given transformation units

can be applied.
User Parameters Error Check if values are provided for user parameters.
Algorithm Runs Warning Warn if the number of runs less than the recom-

mended minimum (< 30) [HMTY10].
Number of Iterations Warning Warn if the resulting number of iterations is very

small (≤ 10).
Many-Objective Warning Warn if we have many-objective search (> 3

objectives) [DJ14] but a multi-objective or local
search algorithm has been chosen.

Object Identity Warning Warn about missing equals implementation for
parameters.

Population Size Warning Warn if the population size is very small (≤ 10).
Algorithm Parameters Info Inform about the relevance of different algorithm

parameters, e.g., about specific evolutionary op-
erators.

Loop Unit Info Inform the user about the possibility of a poten-
tial infinite search space created through a loop
unit.

Single-Objective Info Inform about local search algorithms if only a
single objective is used.

Algorithm Name Error Check if every algorithm name is unique.
Input Model Error Check if the specified input model exists.

84

4.9. Implementation

OCL Dimension Error Check if the given dimension are valid OCL
queries.

Parameter Value Error Check if parameter values are defined for existing
parameters.

Parameter Value Name Error Check if parameter values are not defined twice
for the same paramter.

Reference Set Error Check if the given reference set file exists.
Transformations Error Check if the specified transformations exist.
Save Analysis Warning Warn if analysis should be saved but has not

been defined.
Result Analysis Info Inform when an existing analysis file will be

overridden.
Result Objectives Info Inform when an existing objectives file will be

overridden.

4.9 Implementation
In order to show the feasibility of our approach, we provide an implementation as Java
framework. In this section, we provide an overview of the technology stack, the core
classes, and the implementation of the configuration DSL. The complete code of MOMoT
with further explanations as well as the case studies presented in this thesis can be found
on our project website [FTW16a].

4.9.1 Technology Stack

While it is possible to implement our MOMoT approach from scratch, reusing the
functionality of existing frameworks as much as possible is a central principle of our
implementation. Reuse avoids the necessity for users to learn new formalisms and
reduces the risk of introducing additional errors through re-implementation. Furthermore,
there is little to no delay in receiving updates for bug-fixes, new functions, algorithms,
or optimizations from the existing frameworks. Specifically, to unify the MDE and
search-based optimization worlds in a single framework, we bridge the Eclise Modeling
Framework (EMF), the Henshin graph transformation system, and the MOEA Framework.
For realizing the MOMoT configuration language, we build on the functionality of XBase.
The resulting technology stack is depicted in Figure 4.9.

EMF. The Eclipse Modeling Framework (EMF) [Ecl16b] is an open-source, Eclipse-
based framework that supports the creation of modeling and metamodeling tools. At the
core of EMF is Ecore, a meta-metamodel to define metamodels and DSLs. Ecore is the
de facto reference implementation of the Essential MOF standard in Java. By basing our
implementation on EMF, we can reuse many existing frameworks. Particularly, we use
Eclipse OCL to evaluate OCL queries and constraints on Ecore-based models, and the
EMF Validation Framework to implement the support checks of our configuration DSL.

85

4. Marrying Optimization and Model Transformations

MOMoT Language

MOMoT

MOEA Henshin

Java

XBase

EMF

Henshin

MOMoT Language

MOMoT

MOEA

Java

XBase

EMF

Henshin

MOMoT Language

MOMoT

MOEA

Java

XBase

EMF

Figure 4.9: Technology Stack of MOMoT

Henshin. In our implementation, we use Henshin [ABJ+10] as model transformation
language and the accompanying transformation engine. Henshin has already been
described and applied in Section 2.1.5. An example of the visual notation of a Henshin
transformation rule has been shown in Figure 4.4. Besides rules, Henshin provides
units to orchestrate these rules, e.g., sequential units, priority units or amalgamation
units [BET10]. These units cover all transformation units proposed for our generic
solution encoding in Section 4.4

MOEA Framework. The MOEA framework is an open-source Java library which
provides a set of multi-objective evolutionary algorithms with additional analytical
performance measures and which can be easily extended with new algorithms. By reusing
the MOEA framework, we can use the following evolutionary algorithms out of the box:
NSGA-II, eNSGA-II, NSGA-III, eMOEA, and Random Search. Furthermore a set of
selection and crossover operators are provided, which can also be reused. A user may
choose to develop further algorithms or integrate existing ones from the jMetal library1,
the PISA library2 and the BORG MOEA Framework3, for which adapters or specific
plug-ins are already provided by MOEA.

In order to also support local search algorithms, we provide a base interface and imple-
mentation as well as the described neighborhood functions within MOEA. More precisely,
we demonstrate the use of our local search hooks by implementing Random Descent and
Hill Climbing as proof-of-concept algorithms.

Xbase. Xbase [Ecl16d] is a statically typed expression language similar to Java. Among
the main differences to Java are the lack of checked exceptions, the automatic type
inference, lambda expressions, and the fact that everything is an expressions, i.e., there
are no statements like in the Java language. Xbase itself is implemented in Xtext [Ecl16f],
a language development framework for defining the abstract and the textual concrete
syntax of a modeling language that also covers a languages infrastructure such as parsers,

1http://jmetal.sourceforge.net
2http://www.tik.ee.ethz.ch/pisa/
3http://borgmoea.org/

86

http://jmetal.sourceforge.net
http://www.tik.ee.ethz.ch/pisa/
http://borgmoea.org/

4.9. Implementation

linkers, compilers and interpreters. Xbase is described as a partial programming language
and is intended to be embedded and extended in other DSLs written in Xtext. In our
implementation we embed Xbase in our MOMoT configuration language to enable the
user to not only specify the configuration parameters but also implement behavior directly
in the language if necessary, e.g., the calculation of objective values.

4.9.2 Core Classes

In this section, we present the core classes that are needed to connect the different
frameworks in order to encode the model transformation problem, and the central classes
that a user needs to use in order to solve such a problem through search. Please note
that for most of the discussed classes, only their core functionality is presented. For more
details on a specific class or on other involved classes, we kindly refer the reader to our
project website [FTW16a].

Solution Definition

In order to encode a solution, we need to define decision variables that are optimized by
the search algorithm (cf. Section 2.2.1). The solution and decision variable classes are
implemented as depicted in Figure 4.10.

ITransformationVariable

getParameterValue(parameter)
setParameterValue(parameter, Object)

Variable

Variable copy()
void randomize()

UnitApplication

eGraph : EGraph
unit : Unit
assignment : Assignment

boolean execute()

Solution

numberOfVariables : Integer
numberOfObjectives : Integer
numberOfConstraints : Integer
objectives : Double[]
constraints : Double[]
attributes : Map<String, Serializable>

RuleApplication

partialMatch : Match
completeMatch : Match
resultMatch : Match
rule : Rule

TransformationSolution

sourceGraph : EGraph
resultGraph : EGraph

IUnitApplicationVariableIRuleApplicationVariable TransformationPlaceholderVariable

from MOEA Framework from Henshin

Figure 4.10: Solution Definition in MOMoT

Transformation Variable. The main components of each solution are the decision
variables which are optimized by the search algorithm. For the model transformation
problem, we distinguish between three decision variables. First, we have unit application
variables which represent a configured transformation unit, i.e., a unit where all parameters
have a dedicated value. Second, we have a rule application variable which represents a
configured transformation rule. While in general, we consider a rule to be the most basic
form of a transformation unit (cf. Section 4.4), in the implementation we distinguish

87

4. Marrying Optimization and Model Transformations

these two units as it is done in Henshin. This distinction comes from the way the unit
parameters are handled. In order to create a rule application, the transformation engine
needs to find a match in the underlying graph to lock values for the matched parameters.
This is not necessary for the other transformation units, where the parameters are either
user parameters or come from a rule application within the unit. In general, before a unit
application can be created, the user parameters need to be assigned; assignment in
the unit application, and partialMatch in the rule application. Only if all parameters
have values, is a unit application considered to be complete and applicable. The final
decision variable type we consider is placeholder variables. These variables do not have
an impact when applied on any graph and may be used to vary the solution length.

Transformation Solution. A solution to the model transformation problem consists
of a vector of decision variables, i.e., configured model transformations units, a vector of
objectives values that reflect the quality of the solution, a vector of constraint values that
indicate whether a solution is feasible or not, and a map of key-value pairs (attributes)
to store additional information about a solution. The size of the variable, objective,
and constraint vector needs to be fixed when the solution is created. Therefore, in
order to vary the length of the solution, placeholder variables can be used which do
not towards the calculated solution length but still take a place in the variable vector.
Furthermore, each solution holds a reference to the graph that represents the problem
instance (sourceGraph) and a solution graph that is produced when the vector of
decision variables is executed on the problem instance (resultGraph).

Problem Definition

In order to represent the model transformation problem and use the MOEA framework,
we need the following three main classes, as depicted in Figure 4.11.

Search Problem. The main class in the MOEA framework is the Problem class. It
specifies how many variables a dedicated solution has, the number of constraints that
need to be satisfied in order for a solution to be feasible, and the number of objectives that
a search algorithm needs to optimize. Furthermore, it is also responsible for evaluating
the solution and generating new solutions. As in the model transformation problem,
these two tasks are more heavy-weight as it involves the derivation of matches and the
evaluation on model level, we delegate these tasks to two dedicated classes. Namely,
a fitness function for the evaluation of the objectives and constraints and a solution
generator to create new solutions. Separating these two concerns enables us to quickly
switch between different fitness functions within a dedicated problem.

Fitness Function. The fitness function interface is responsible for evaluating a given
solution based on the user-defined objectives and constraints. The central implementation
of this interface in the MOMoT framework is the EGraphMultiDimensionalFitness-
Function which operates on the graph-based representation of the model used in Henshin

88

4.9. Implementation

ISearchProblem<S>

from MOEA Framework from Henshin

Problem

name : String
numberOfVariables : Integer
numberOfObjectives : Integer
numberOfConstraints : Integer

void evaluate(Solution)
Solution newSolution()

ISolutionGenerator<S>

S createNewSolution()
S createNewSolution(nrVars)
S createNewSolution(nrVars, nrObjs)
S createNewSolution(nrVars, nrObjs, nrCons)

IFitnessFunction<S>

double evaluate(S)
void preprocessEvaluation(S)

IMultiDimensionalFitnessFunction<S>

objectives : List<IFitnessDimension<S>>
constraints : List<IFitnessDimension<S>>
repairer : ISolutionRepairer<S>

IRandomSolutionGenerator<S>

S createRandomSolution()
S createRandomSolution(nrVars)
S createRandomSolution(nrVars, nrObjs)
S createRandomSolution(nrVars, nrObjs, nrCons)

TransformationSolutionGenerator<TransformationSolution>

TransformationProblem<TransformationSolution>

SearchHelper

orchestration : TransformationSearchOrchestration

ITransformationVariable findUnitApplication(EGraph)
List<ITransformationVariable> findUnitApplications(EGraph)
TransformationSolution createRandomTransformationSolution(nrVars)MomotEngine

Engine

scriptEngine : ScriptEngine
Iterable<Match> findMatches(Rule, EGraph, Match)

searchHelper

engine

fitnessFunction solutionGenerator

EGraphMultiDimensionalFitnessFunction<TransformationSolution>

Figure 4.11: Transformation Problem Definition in MOMoT

and which takes several separate objective and constraint dimensions. Each dimension
corresponds to one objective and constraint in the multi-dimensional objective space, has
an optimization direction, i.e., minimization or maximization, and is identified by a unique
name. During the evaluation, each dimension produces a double value which is stored
in the objective and constraint vector of the solution. A user can provide dimensions
either as a separate class, as an anonymous Java function (or Xbase expression in the
configuration DSL), or as an OCL expression that is evaluated on the root element of
the problem model. For each solution evaluation, a preprocess method is called which
may be used to calculate the objective and constraint values for all dimension in one
run and store the results in the attributes of the solution to avoid recalculation. The
fitness function also holds the repair mechanism for solutions in case the search operators
produce a non-feasible solution that needs to be adapted.

Solution Generator. The second main concern for a problem is the generation of new,
random solutions as this functionality is needed by most algorithms in order to provide an
initial solution or an initial population. Since we are dealing with model transformations,
we leverage the use of a model transformation engine to create these random solutions.
In MOMoT, we implement a dedicated MOMoTEngine which extends the transformation

89

4. Marrying Optimization and Model Transformations

engine from Henshin with additional scripting capabilities, i.e., the usage of OCL inside of
negative application conditions. In order to produce a random solution, we take a random
transformation unit from the transformation orchestration (cf. Section 4.9.2) and find
matches for this unit using the transformation engine. If no matches are found, another
unit is randomly selected. If no matches can be found for any of the transformation units,
we produce solutions which only consist of placeholder variables. If a match is found,
the match gets converted into a transformation variable usable in the search process.
This process is repeated until the given number of transformation variables have been
produced and a solution consisting of these variables is returned.

Search Execution

In order to use MOMoT, detailed knowledge about how the solution and the problem
is encoded is not necessary. Instead, we provide the following five classes which can be
used to execute the complete search process, cf. Figure 4.12

Henshin

Search
Orchestration

MOEA

Search
Experiment

EMF Search
Analysis

Result
Manager

Module
Manager

transformation
units

model algorithms

Fitness Function

objectives constraints

Henshin

Search
Orchestration

MOEA

Search
Experiment

EMF Search
Analysis

Result
Manager

Module
Manager

transformation
units

model algorithms

Fitness Function

objectives constraints

Figure 4.12: Involved Classes for Executing a Search in MOMoT

ModuleManager. The ModuleManager is responsible for loading and configuring
the Henshin transformation units. Therefore, the user needs to provide a set of Henshin
modules (*.henshin files) The manager then loads all the modules and provides an
interface to query specific modules, transformation units, and unit parameters in a name
based fashion. Using the module manager a user may select which transformation units
should be considered during the search process; by default all units are considered. Fur-
thermore, a user can specify how user parameters can be calculated, i.e., parameters that
are not matched by the graph transformation engine. In order to ease this specification,
a set of convenience classes provide methods to create random parameter values for the
Java primitive types.

Transformation Search Orchestration. The search orchestration class is the main
configuration class for the search problem configuration. It takes as input the problem
model as xmi file, the module manager containing the transformation units that can
manipulate the problem model, a solution length to specify how many transformation
units should be used in a solution, a fitness function for evaluating the objectives and
constraints on each solution, and a set of algorithms that should be deployed for the
search. To ease the definition of a fitness function, a dedicated class may be used
(cf. Section 4.9.2). For the specification of the used algorithms, two factory classes

90

4.9. Implementation

are provided by the search orchestration, EvolutionaryAlgorithmFactory and
LocalSearchAlgorithmFactory. These factory classes provide several overloaded
convenience methods to create fully configured search algorithms.

Due to the way Java and EMF handle objects by default, two object references are only
equal if they are referring to the same JVM object. This behavior, however, yields a
problem if an object is used as parameter value matched in one graph, but then applied
on another graph, e.g., when two solutions are recombined, as the object does not conform
to any object in the new graph. The problem of having two different model elements
which refer to the same objects in the real world has also been identified by Langer et
al. [LWG+12]. They propose to identify objects explicitly by their natural identifier,
i.e., their properties which make them unique in the real world. This explicit object
identity can be implemented through equals method where the criteria for the equality of
two objects can be given. For example, in the modularization problem, we can specify
that two classes are equal if they have the same fully qualified name as this is also the
identification method used in Java and most software systems [QGC00]. Unfortunately, if
for some reason, we do not have access to the implementation of the model elements that
are used in the parameters, this solution can not be applied, e.g., when working with UML
or Ecore classes which are already available in their compiled form. We therefore provide
a hook for the user to provide a method to implement a dedicated identification strategy
through the IEObjectEqualityHelper interface. This interface has one method that
is equivalent to the standard equals method in Java. The helper instance is specified
once in the transformation search orchestration and injected into each individual solution.

From the provided input, the search orchestration class produces the search problem
formulation, instantiates the solution generator with the respective search helper, and
registers the configured algorithms.

Search Experiment. The search experiment class handles the execution of the con-
figured algorithms on the specified problem. It takes the orchestration class as input and
needs the following execution parameters: the maximum number of fitness evaluations
that should be done in each algorithm run and the number of runs per algorithm. Op-
tionally, a user can specify progress listeners that are called after each algorithm iteration,
e.g., to provide information about the search on the console. Furthermore, a user may
be interested in certain search performance indicators such as Hypervolume or Inverted
Generational Distance. In this case, the user must specify the respective collectors to
record these indicator values during the search and may provide a reference set for the
indicator calculation (cf. Section 2.2.1). After executing the search experiment, we can
retrieve all the Pareto sets of solutions for each algorithm and the performance indicators
collected during the search.

Result Manager. The result manager is responsible for handling the Pareto set
of solutions and provides methods to print these solutions or save these solutions in
files. Specifically, we can save the actual solutions, i.e., the sequence of transformation

91

4. Marrying Optimization and Model Transformations

applications, in a text file, we can save the models resulting from the transformations as
model xmi-files which can be further processed by other EMF tools, and we can save the
Pareto front, i.e., the objectives of the solutions in a separate file which can be used as
a reference file in future experiments and which gives a good overview over the found
solutions. The user may choose to group different sets of solutions based on the respective
algorithm, e.g., we may save the Pareto set solutions of each algorithm separately to
compare the solution sets afterwards or we may save the Pareto set of solutions of all
algorithms to cover as much of the true Pareto front as possible.

Search Analysis. The search analysis class enables the user to perform statistical
analysis of the performance indicators recorded for each algorithm. Here we build upon
the analysis functionality provided by the MOEA framework and can use, for instance,
the Mann-Whitney U test [MW47] (cf. Section 4.7). The class takes the respective
experiment as input and the user needs to specify significance level that should be used
in the statistical analysis. The test is then applied on the values of each algorithm and
indicates whether the results of two algorithms are significantly different. Furthermore,
we calculate the effect size based on Cohen’s d statistic [Coh88] to not only provide
the user with the information that two algorithms are significantly different, but also
about the magnitude of this difference. In addition, we generate box plots that show
the distribution of the different indicator values for each algorithm. All these tests and
artifacts aim to support the user in reasoning about which configured algorithm may be
better suitable for a given problem.

4.9.3 MOMoT Configuration DSL

In order to support the user in defining a problem and a search experiment, we provide a
dedicated configuration DSL, cf. Section 4.8. We make the configuration DSL executable
by providing the semantics of the language through a mapping of the domain concepts
to concepts of the Java virtual machine. Using this DSL, the user can make all necessary
specification and configurations in a single file and receives additional support in the
form of validation informations, warnings, and errors. In the following sections, we give
an overview of grammar of the DSL containing the textual concrete syntax, the mapping
procedure, and how validation rules can be specified. The complete specification of the
grammar and an instance of this grammar for the modularization case study can be
found in Appendix A

Language Grammar

Our DSL covers all concepts that have been discussed in the core classes related to the
search execution in Section 4.9.2. We develop our DSL using a generative approach using
Xtext. This means, we specify the textual concrete syntax of our language together with
its abstract syntax and generate the respective metamodel from the language grammar.
Conceptually, we build our language on the expression language Xbase which already
has defined execution semantics through a mapping to the concepts of the Java virtual

92

4.9. Implementation

machine. Using Xbase, we can provide an expressive language to the user that resembles
the syntax of Java and enables him to specify behavior directly in the model, e.g., for
calculating objectives. An excerpt of the specification of our configuration DSL is shown
in Listing 4.2.

Listing 4.2 Excerpt of the Configuration DSL Grammar
1: grammar at.ac.tuwien.big.momot.lang.MOMoT with org.eclipse.xtext.xbase.Xbase
2:

3: import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase
4: generate momot "http://www.big.tuwien.ac.at/momot/lang/MOMoT"
5:

6: MOMoTSearch:
7: ("package" package=QualifiedName)?
8: importSection=XImportSection?
9: variables += VariableDeclaration*
10: ("initialization" OpSingleAssign initialization=XBlockExpression)?
11: "search" (name=ValidID)? OpSingleAssign searchOrchestration=SearchOrchestration
12: "experiment" OpSingleAssign experimentOrchestration=ExperimentOrchestration
13: ("analysis" OpSingleAssign analysisOrchestration=AnalysisOrchestration)?
14: ("results" OpSingleAssign resultManagement=ResultManagement)?
15: ("finalization" OpSingleAssign finalization=XBlockExpression)?;
16:

17: VariableDeclaration:
18: "var" type=JvmTypeReference? name=ValidID (OpSingleAssign init=XExpression)?;
19:

20: FitnessDimensionSpecification:
21: FitnessDimensionConstructor | FitnessDimensionXBase | FitnessDimensionOCL;
22:

23: enum FitnessDimensionType:
24: MINIMIZE = "minimize" | MAXIMIZE = "maximize";
25:

26: FitnessDimensionConstructor:
27: name=ValidID OpKeyAssign type=FitnessDimensionType call=XConstructorCall;
28:

29: FitnessDimensionXBase:
30: name=ValidID OpKeyAssign type=FitnessDimensionType value=XBlockExpression;
31:

32: FitnessDimensionOCL:
33: name=ValidID OpKeyAssign type=FitnessDimensionType query=XStringLiteral
34: ("{" defExpressions += DefExpression* "}")?;
35:

36: DefExpression:
37: "def" expression=STRING;

In this listing, we define that our grammar uses Xbase as base and generates a meta-
model with the uri http://www.big.tuwien.ac.at/momot/lang/MOMoT. The
entry parser rule of our grammar is called MOMoTSearch and also represents the root
element in our metamodel. Rules starting with an ’X’ are imported from the Xbase
language. The root element in our DSL has, besides the configuration of the core classes,
an optional package declaration (indicated by the question mark ?), an optional import
section, contains a set of zero or many variable declarations (indicated by the operator +=
and the asterisk *) and has optional initialization and finalization block in which the user
may define behavior that is executed before the search is started and after the analysis
and result management has been performed, e.g., in order to register the metamodel in a
standalone setup or perform cleanup actions. In our DSL, we use ’=’ to assign values,

93

4. Marrying Optimization and Model Transformations

’{}’ to define objects, ’[]’ to denote lists and ’:’ to separate key-value pairs. A variable
declaration consists of the keyword ’var’, an optional type reference, a name and an
optional initialization of the variable value. In this listing, we also show the different
capabilities to specify fitness dimensions. A fitness dimension may be specified through
an explicit constructor call to an external fitness dimension class, a block expression
returning the double value of the fitness evaluation, or through an OCL query with
an optional set of definition expressions. In order to ensure that the constructor call
actually creates a valid instance of our fitness dimension class, we map the dimension
specification to a Java method that returns such an instance. Through this mapping, we
automatically generate the Java code for this specification and any errors produced by
an invalid instance are mapped back to the textual notation of our DSL.

From this language specification, Xtext generates the metamodel containing the abstract
syntax of the language, the model classes reflecting the abstract syntax, a parser and
compiler for reading and writing models conforming to the textual concrete syntax, and
a textual editor. The textual editor is opened whenever a file with a dedicated file
extension is opened. For the MOMoT configuration files, we use the extension *.momot.
Furthermore, Xtext enables us to easily implement the formatting of the textual models,
the scope of elements, the validation for elements, a quickfix mechanism for common
problem, and content assist. Additionally, Xbase provides a hook for mapping our own
domain concepts to JVM concepts to automatically generate JVM code for our language.

Mapping to JVM Concepts

In order to map our domain concepts to JVM concepts, we need to provide an im-
plementation of the JvmModelInInferrer class. Using the JVM concepts, we can
automatically generate Java code which is evaluated by the Java compiler. Any errors,
warning or information messages that are raised on the Java code level are translated
to our DSL level using the provided mapping. Of course, additional validation checks
specifically for our DSL can also be provided, cf. Section 4.9.3.

An excerpt of our implementation is depicted in Listing 4.3. In this listing, we show how
the root element of our model is mapped to a class and any contained elements become
fields, methods, and parameters. In particular, we show how the specified solution length
in the search orchestration is mapped to a protected, final, and static field with the
name LENGTH. The type of this field is Integer (int) and the field is initialized with
the expression given in the attribute solutionLength of the orchestration. Using this
mapping, Xbase is now able to raise an error if the expression given by the user does not
compile to a statement that can be assigned to an integer field.

In a similar manner, variable declarations are mapped to fields. However, for variable
declarations, the name and the type of the fields may come from the user. If the user did
not define a dedicated type, we need to infer the type from the given value expression
(init). If the value cannot be inferred, we assume variables of type String. Please
note that in the Xtend language, the right hand side of the Elvis operator ?: is only

94

4.9. Implementation

evaluated if the left hand side evaluates to null. Similarly, Xtend provides the null-safe
navigation operator ?. that only accesses the attribute or method if the object is not
null.

If the user has provided an initialization expression, we map this expression to a static
method in the class. The body of this method is simply the expression given by the user.

Listing 4.3 Excerpt of the Mapping From DSL Concepts to JVM Concepts
1: def dispatch void infer(MOMoTSearch search, IJvmDeclaredTypeAcceptor acceptor,
2: boolean isPreIndexingPhase) {
3: acceptor.accept(search.toClass(searchClassName)) [// map search to class
4: // fields - example: solution length, variable declarations
5: members += search.searchOrchestration.solutionLength.toField(
6: "LENGTH", typeRef(int)) [// name: LENGTH, type: int
7: static = true
8: final = true
9: visibility = JvmVisibility::PROTECTED
10: initializer = search.searchOrchestration.solutionLength
11:]
12: for (declaredVariable : search.variables) {
13: val type = declaredVariable.type ?: declaredVariable?.init?.inferredType
14: ?: typeRef(String) // default type
15: members += declaredVariable.toField(declaredVariable.name, type) [
16: static = true
17: visibility = JvmVisibility::PROTECTED
18: initializer = declaredVariable.init
19:]
20: }
21: // methods - Example: initialization and main method to run
22: if(search.initialization != null)
23: members += search.toMethod("initialization", typeRef(void)) [
24: static = true
25: body = search.initialization
26:]
27: val searchType = typeRef(searchClassName).type
28: members += search.toMethod("main", typeRef(void)) [
29: parameters += search.toParameter("args", typeRef(String).addArrayType)
30: varArgs = true
31: static = true
32: body = new StringConcatenationClient() {
33: override protected appendTo(TargetStringConcatenation it) {
34: if(search.initialization != null) appendLine("initialization();");
35: appendLine(searchType, " search = new ", searchType, "();");
36: appendLine("search.performSearch(MODEL, LENGTH);")
37: if(search.finalization != null) appendLine("finalization();");
38: }
39: }
40:]
41:]
42: }

And finally, to make our model executable, we specify a dedicated main method in its
JVM representation. In this method, we can not refer to any expressions defined by
the user to specify the method body. Instead, we must define our own expression. In
order to avoid working with the abstract syntax tree of an expression, Xbase allows us to
specify the expression as text and parses it correctly into an expression. In MOMoT,
the main method of a search calls the provided initialization and finalization method if

95

4. Marrying Optimization and Model Transformations

necessary, instantiates an object of the search class and performs the experiment. An UI
extension in Eclipse enables the user to simply right-click on a MOMoT configuration
file to execute the defined experiment.

Model Validation

Before the search is executed, we evaluate whether the configuration provided by the
user is valid or not. The EMF Validation Framework provides three types of validation
markers: errors, warnings, and informations. Any configuration that has at least one
error marker is considered invalid and we therefore prevent the execution of such an
experiment.

In the EMF Validation Framework and its integration into Xtext, we can attach infor-
mation, warning, and error markers to our model elements by providing a dedicated
validator class. In this class, we provide one method for each of the validation checks
described in Section 4.8. The validation class iterates over the complete model tree and
automatically calls the validation methods (indicated by a @Check annotation) that take
such an element as parameter. Listing 4.4 demonstrates how the rule for the validation
of the number of algorithms is implemented in Xtend.

Listing 4.4 Example Validation Rule for a Warning on Algorithm Runs
1: @Check
2: def checkAlgorithmRuns(ExperimentOrchestration it) {
3: val intNrRuns = interpreter.evaluate(it.nrRuns)
4: val runs = CastUtil.asClass(intNrRuns, typeof(Integer))
5: if(runs == null)
6: return; // not specified or can not be interpreted as number
7: if(runs < 30)
8: warning("Since we are using metaheuristics, at least 30 runs should be " +
9: "specified to draw statistically valid conclusions from the results.",
10: it, MomotPackage.Literals.EXPERIMENT_ORCHESTRATION__NR_RUNS)
11: }

In this listing, we validate part of the experiment orchestration by interpreting the
expression specified by the user for the number of runs. Through the mapping to the
JVM concepts, we ensure that the type of the number of runs is compatible to an Integer.
Otherwise, the element is already marked with an error with a detailed error message
explaining the problem. However, an element might have more than one marker, e.g.,
a warning and an error. Therefore, we need to ensure that we only check the given if
it actually is an Integer value. If this is not the case, we let the remaining validation
methods handle the problem. If we can interpret the expression as an Integer value, we
check whether the user has specified at least the recommended number of algorithm runs,
i.e., 30 runs. If not, we provide a warning with the given message on the element in the
experiment orchestration (it) that is reachable through the NR_RUNS reference provided
through the package literals. This message is then displayed on the respective element in
the editor. Similarly, the remaining validation checks are implemented.

96

4.10. Related Work

4.10 Related Work

With respect to the contribution of this work, we discuss three main threads of related
work. First, we review the application of search-based techniques for generating model
transformations from examples which has been the first application target of search-based
optimization (SBO) methods concerning model transformations. Second, we discuss
approaches which apply search-based techniques to optimize models. Finally, we survey
work done in the related field of program transformation.

Generating Model Transformations through SBO. An alternative approach to
develop model transformations from scratch is to learn model transformations from
existing transformation examples, i.e., input/output model pairs. This approach is called
model transformation by example (MTBE) [Var06, WSKK07, KLR+12] and several
dedicated approaches have been presented in the past. Because of the huge search
space when searching for possible model transformations for a given set of input/out-
put model pairs, search-based techniques have been applied to automate this complex
task [KSB08, KBSB10, KSBB12, BSC+14, FSB13, SHNS13]. While MTBE approaches
do not foresee the existence of model transformation rules, on the contrary, the goal is
to produce such rules, we discussed in this work the orthogonal problem of finding the
best sequence of rule applications for a given set of transformation rules in combination
with transformation goals. Furthermore, MTBE approaches are mostly concerned with
out-place transformations, i.e., generating a new model from scratch based on input
models, while we focused in this work on in-place transformations, i.e., rewriting input
models to output models. Finally, the authors in [SKT13] propose the use of search-based
optimization in MDE for optimizing regression tests for model transformations. In
particular, they use a multi-objective approach to generate test cases, in the form of
models that are the input for testing updated transformations. In our work we assume
to have correct model transformation rules available as a prerequisite but foresee as a
possible future work the inclusion of oracle functions for model transformations in the
search process.

Optimizing Models through SBO. Searching for transformation rule applications
with search-based optimization methods for high-level change detection has been presented
in [bFKLW12]. In the scenario of high-level change detection, the input model and the
output model are given as well as the possible transformation rules. The goal is to find
the best sequence of rule applications which give the most similar output model when
applying the rule application sequence to the input model. In other words, the high-level
change detection we have investigated previously is a special case which is now more
generalized in the proposed framework by having the possibility to specify arbitrary goals
for the search. Another combination of model engineering and metaheuristic optimization
is presented in [EWZ14], however, in this framework the possible changes to the models
are not defined as transformation rules, but are generally defined directly on the generic
genotype representations of the models. Similarly, the authors in [MHF+15] present an

97

4. Marrying Optimization and Model Transformations

approach to extend the model API generated from metamodels to provide an optimization
layer on top of models. This layer provides generic optimization concepts such as a
fitness function and concepts from evolutionary algorithms such as selection, mutation
and crossover operators which can be implemented by the user as Java classes using the
domain concepts defined by the metamodel.

Searching for model transformation results is currently supported by approaches using
some kind of constraint solver. For instance, Kleiner et al. [KDDFQS13] introduce an
approach they call transformation as search where they use constraint programming to
search and produce a set of target models from a given source model. Another approach
is proposed by et al. [GHH14] where so called transformation models are defined with
OCL and then translated to a constraint solver to find valid output models for given
input models. Compared to MOMoT, these approaches aim for a full enumerative
approach where some concrete bounds for constraining the search space have to be given.
Furthermore, these approaches search for models fulfilling some correctness constraints,
but finding optimal models based on some objectives is not natively supported in such
approaches. In [DGM11, DGM15] an approach extending the QVT Relations language is
presented which also foresee the inclusion of transformation goals in the transformation
specifications including different transformation variants. However, the search for finding
the most suitable transformation variant is not based on metaheuristics but delegated to
the model engineers who have to make decisions for guiding the search process.

Another very recent line of research concerning the search of transformation results is
already applying search-based techniques to orchestrate the transformation rules to find
models fulfilling some given objectives. The authors in [DJVV14] propose a strategy for
integrating multiple single-solution search techniques directly into a model transformation
approach. In particular, they apply exhaustive search, randomized search, Hill Climbing,
and Simulated Annealing. Their goal is to explicitly model the search algorithms as graph
transformations. Compared to this approach, our approach is going into the opposite
direction. We are reusing already existing search algorithms provided by dedicated
frameworks from the search-based optimization domain. The most related approach
to MOMoT is presented by Abdeen et al. [AVS+14]. They also addresses the problem
of finding optimal sequences of rule applications, but they focus on population-based
search techniques. Thereby, they consider the multi-objective exploration of graph
transformation systems, where they apply NSGA-II [DAPM02] to drive rule-based design
space explorations of models. For this purpose, they have directly extended a model
transformation engine to provide the necessary search capabilities. Our presented work has
the same spirit as the previous mentioned two approaches, however, our aim is to provide
a loosely coupled framework which is not targeted to a single optimization algorithm,
but allows to (re)use the most appropriate one for a given transformation problem.
Additionally, we aim to support the model engineer in using these algorithms through a
dedicated configuration DSL and provide analysis capabilities to evaluate the performance
of different algorithms. As an interesting line of future research we consider the evaluation
of the flexibility and performance of the different approaches we have now for combining

98

4.10. Related Work

MDE and SBO: modeling the search algorithms as transformations [DJVV14], integrating
the search algorithms into transformation engines [AVS+14], or combining transformation
engines with search algorithm frameworks as we are doing with MOMoT.

Program Transformation. Program transformation is a field closely related to model
transformation [Vis01], thus, similar problems are occurring in both fields. One chal-
lenging program transformation scenario is to enhance the readability of source code
given certain metrics. In this context, we are aware of a related approach that discusses
the search-based transformation of programs [FHH03, FHH04]. In particular, a set
of rewriting rules is presented to optimize the readability of the code and dedicated
metrics are proposed and used as fitness function. As search techniques random search,
Hill Climbing, and genetic algorithms are used. Our approach follows a similar idea of
finding optimal sequences of rule applications, but in our case we are focussing on model
structures and model transformations instead of source code. However, we consider the
instantiation of our framework for the problem of program transformation in combination
with model-driven reverse engineering tools [BCJM10] as an interesting subject for future
work to further evaluate our approach.

99

CHAPTER 5
Evaluation

In this chapter, we evaluate our model-level optimization approach called MOMoT, which
we introduced in Chapter 4. Specifically, we are interested in the application of our
approach and whether we can use it to tackle specific problems from the area of software
engineering and MDE. Consequently, the evaluation is performed on several case studies
that cover different aspects of the approach and focus on different research questions.
Section 5.1 provides an overview of these case studies and the related research questions.
The first set of research questions relating to the features of MOMoT are answered
in Section 5.2. Afterwards, we develop two new problem solving approaches based on
MOMoT to tackle the problem of modularizing transformations in Section 5.3 and the
problem of generically modularizing transformation languages in Section 5.4.

5.1 Overview

In order to organize the evaluation of MOMoT, we group case studies that focus on
similar research questions together. As such, we have grouped case studies that evaluate
different features of MOMoT using existing case studies from literature under the
term reproduction case studies. Additionally, we introduce two novel, MOMoT-based
approaches that tackle the problem case studies of modularizing model transformations
and the problem of modularizing modeling languages in order to demonstrate how the
features of MOMoT can be used to formulate a new problem and analyze the respective
results. An introduction to the case studies and the tackled research questions is given in
the next paragraphs while the case study details can be found in the following sections.

5.1.1 Reproduction Case Studies

The reproduction case studies evaluate the applicability of our approach for existing
problems, the overhead MOMoT introduces compared to a native search-based encoding,

101

5. Evaluation

and the search features provided by MOMoT. In particular, we use the following four
case studies to validate these features.

The Stack Load Balancing case study problem domain is a set of stacks that are inter-
connected in a circular way, where each stack can have a different number of boxes referred
to as load The main goal of this case study is to find a good load balance. The Class
Modularization case study represents a classic problem in software architecture design
where the aim is to group classes into modules to create high-quality object-oriented
models. This case study has been used as running example in Section 4.2. The Class
Diagram Restructuring case study is related to the restructuring of class diagrams in order
to enhance the object-oriented design while preserving the given behavior. The aim is to
remove duplicate properties from the overall class diagram, and to identify new entities
which abstract data features shared in a group of entities in order to minimize the number
of elements in the class diagram. This case study is based on a case study presented in
the Transformation Tool Contest (TTC) of 2013 [GRK13]. The EMF Refactor case study
is built upon EMF Refactor [Ecl14, AT13], an open-source Eclipse project that supports
a structured model quality assurance process for Ecore and UML models. As part of
their process, EMF Refactor allows the calculation of different properties on model level.
With this case study, we show how existing property calculation can be incorporated into
MOMoT.

The research questions tackled by these case studies are:

RQ1 Applicability: Is our approach applicable to challenging problems in model-based
software engineering?

RQ2 Overhead: How much runtime overhead is introduced by our approach compared
to a native encoded solution?

RQ3 Search Features: What are the additional search features offered by MOMoT w.r.t.
pure transformation approaches?

5.1.2 Model Transformation Modularization

This case study tackles the newly formulated problem of modularizing model transforma-
tions in order to improve characteristics like maintainability or testability.

Model transformation programs are iteratively refined, restructured, and evolved due
to many reasons such as fixing bugs and adapting existing transformation rules to new
metamodels version. Thus, modular design is a desirable property for model transforma-
tions as it can significantly improve their evolution, comprehensibility, maintainability,
reusability, and thus, their overall quality. Although language support for modularization
of model transformations is emerging, model transformations are created as monolithic
artifacts containing a huge number of rules. To the best of our knowledge, the problem
of automatically modularizing model transformation programs was not addressed before
in the current literature. These programs written in transformation languages, such

102

5.1. Overview

as ATL, are implemented as one main module containing a large number of rules. To
tackle this problem and improve the quality and maintainability of model transforma-
tion programs, we propose an automated search-based approach to modularize model
transformations based on higher-order transformations whose application and execution
is guided by MOMoT. We demonstrate the feasibility of our approach by using ATL
as concrete transformation language and NSGA-III as optimization method to find a
trade-off between different well-known conflicting design metrics for the fitness functions
to evaluate the generated modularized solutions. To validate our approach, we apply it
to a comprehensive dataset of model transformations, statistically analyze the results of
our experiments, and perform a user study to confirm the relevance of the recommended
modularization solutions for several maintenance activities based on different scenarios
and interviews.

The research questions tackled in this case study are:

RQ1 Search Validation: Do we need an intelligent search for the transformation
modularization problem?

RQ2 Search Quality: How does the proposed many-objective approach based on
NSGA-III perform compared to other multi-objective algorithms?

RQ3.1 Automatic Solution Correctness: How close are the solutions generated by our
approach to solutions a software engineer would develop?

RQ3.2 Manual Solution Correctness: How good are the solutions of our approach based
on manual inspection?

RQ4.1 Usability in Bug Fixing: How useful are modularizations when identifying or
fixing bugs in a transformation?

RQ4.2 Usability in Metamodel Evolution: How useful are modularizations when adapting
transformation rules due to metamodel changes?

5.1.3 Modeling Language Modularization

Based on the results from the previous case study, we explore the generic modularization
of modeling languages in this case study and problem formulation.

Modularization concepts have been introduced in several modeling languages in order
to tackle the problem that real-world models quickly become large monolithic artifacts.
Having these concepts at hand allows for structuring models during modeling activities.
However, legacy models often lack a proper structure, and thus, still remain monolithic
artifacts. In order to tackle this problem, we present in this case study a modularization
transformation approach which can be reused for several modeling languages by binding
their concrete concepts to the generic concepts offered by the modularization transfor-
mation. This provided binding is enough to reuse different modularization strategies

103

5. Evaluation

provided by our search-based model transformations through MOMoT. In this case study,
we demonstrate the applicability of our modularization approach for Ecore models.

The research questions tackled in this case study are:

RQ1 Approach Feasibility: Is the binding between Ecore and the generic modularization
metamodel feasible with the proposed approach?

RQ2 Result Quality: How good are the results of the modularization task, i.e., the results
of applying the generic modularization strategies?

5.2 Reproduction Case Studies

5.2.1 Introduction

As described in Chapter 4, MOMoT is an approach that combines MDE with search-based
optimization methods and allows model engineers to formulate search problems using
MDE techniques. In this section we present an evaluation of MOMoT based on four
different case studies from the area of MDE and software engineering. Section 5.2.2
defines the research questions to be answered in this evaluation. In Section 5.2.3 we
introduce the four case studies in detail while in Section 5.2.4 introduces the measures we
apply on the case studies to answer the research questions. Finally, Section 5.2.5 presents
the results which we use to answer the research questions and Section 5.2.6 elaborates on
the threats to validity of our results.

5.2.2 Research Questions

To evaluate our approach, we are interested in answering the following research questions
that target the applicability of MOMoT, the runtime overhead it introduces, and the
search features it provides.

RQ1 Applicability: Is our approach applicable to challenging problems in model-based
software engineering?

RQ2 Overhead: How much runtime overhead is introduced by our approach compared
to a native encoded solution?

RQ3 Search Features: What are the additional search features offered by MOMoT w.r.t.
pure transformation approaches?

In order to answer the RQ1 and RQ2, we use four case studies that target different
problem areas and differ in their level of complexity with regard to the transformation
implementation. The answer to RQ3 is given by-argumentation based on the analysis of
the default Henshin transformation engine compared to the MOMoT extension. As a
result, this discussion is valid for all provided case studies.

104

5.2. Reproduction Case Studies

5.2.3 Case Study Setup

This section explains the four case studies used to evaluate MOMoT with respect to
the RQs. The first case study is known as the stack balancing example, and is used to
exemplify a simple problem domain and to show that our approach is not only applicable
to software systems, but to any system where MDE is used in its construction process. The
remaining case studies represent classical problems of model-based software engineering.

Stack Load Balancing. The problem domain is a set of stacks that are inter-connected
in a circular way, where each stack can have a different number of boxes referred to as
load. The main goal of this study is to find a good load balance. The two objectives that
should be minimized are the standard deviation of the loads and the solution length.

Class Modularization. This is a classic problem in software architecture design that
is also used as running example in Section4.2. The goal is to group a number of classes
that have inter-dependencies into modules in order to optimize five objectives described
previously. Among these objectives, coupling and cohesion are two well-known conflicting
objectives. A problem instance of this case study consists of a set of classes and their
inter-dependencies, as shown in Figure 4.3 for the mtunis system [Hol83]. To manipulate
instances of this kind we need to (i) create new modules and (ii) assign classes to existing
modules. A valid solution assigns each class to exactly one module and has no empty
modules.

Class Diagram Restructuring. Refactoring is a technique tailored at enhancing
object-oriented software designs through the application of behavior-preserving opera-
tions [Fow99]. However, there can be a high number of choices and complex dependencies
and conflicts between them that makes it difficult to choose an optimal sequence of
refactoring steps that would maximize the quality of the resulting design and mini-
mize the cost of the transformation [QH11]. Refactoring can become very complex
when we deal with large systems because existing tools offer only limited support
for their automated application [MTR07]. Therefore, search-based approaches have
been suggested in order to provide automation in discovering appropriate refactoring se-
quences [SSB06, HJ01, OC08, MKB+14]. Thereby, the idea is to see the design process as
a combinatorial optimization problem attempting to derive the best solution, with respect
to a given quality measure or objective function, from a given initial design [QH11, OC03].

This case study is based on a case study from the Transformation Tool Contest (TTC)
of 2013 [GRK13]. The aim of the TTC series is to compare the expressiveness, the
usability, and the performance of graph transformation tools along a number of selected
software-engineering case studies. Specifically, we use the class diagram restructuring
case study [LKR13, RLP+14], which consists of an in-place refactoring transformation on
UML class diagrams realized in the design or maintenance phase of systems construction.
A problem instance consists of a set of entities, e.g., classes, and their properties, e.g.,
attributes or methods, as well as possible inheritance relationships between the entities

105

5. Evaluation

(we only consider single inheritance in this case study). The goal is to remove duplicate
properties from the overall class diagram, and to identify new entities which abstract
data features shared in a group of entities in order to minimize the number of elements
in the class diagram, i.e., entities and properties. The three ways used to achieve this
objective are (a) pulling up common properties of all direct sub-entities into a super-entity,
(b) extracting a super-entity for duplicated properties of entities that already have a
super-entity, and (c) creating a root entity for duplicated properties of entities that have
no super-entity. They are graphically shown in Figure 5.1.

A1
n : t

An
n : t

C
n : t

A1
n : t

An
n : t

B1 BmA1 An
C

n : t

A1 An

C

B1 Bm

CC

A1
n : t

An
n : t

B1 Bm

B1 Bm

A1 An

C
n : t

(a) Pull Up Property Rule

A1
n : t

An
n : t

C
n : t

A1
n : t

An
n : t

B1 BmA1 An
C

n : t

A1 An

C

B1 Bm

CC

A1
n : t

An
n : t

B1 Bm

B1 Bm

A1 An

C
n : t

(b) Extract Super-Entity Rule

A1
n : t

An
n : t

C
n : t

A1
n : t

An
n : t

B1 BmA1 An
C

n : t

A1 An

C

B1 Bm

CC

A1
n : t

An
n : t

B1 Bm

B1 Bm

A1 An

C
n : t

(c) Create Root Entity Rule

Figure 5.1: Class Diagram Restructuring Transformations (from [RLP+14])

In this case study, the order in which the three rules are executed has a direct effect
on the quality of the resulting model. In fact, considering only the number of elements
in the class diagram as objective and the three rules, we can give a canonical solution
that always yields the best result. First, properties need to be pulled up (Rule a), then
super entities should be extracted (Rule b), and then new root entities should be created
(Rule c). If the same rule can be applied on more than one property, it must be applied in
the one that has more occurrences first. The way the approaches described in [RLP+14]
deal with the rules execution ordering problem is by implementing a rules prioritization
mechanism when writing the transformations. In our approach, this can be done using
the Priority Unit, cf. Table 4.1. Therefore, we can express the class diagram restructuring
case study in our approach without any problem.

However, if such a clear ordering of rule applications can be given in advance, a search-
based approach is not suitable and the problem should be solved as indicated. In order to
make the case study interesting for metaheuristic search, we extend it with an additional
domain-specific objective: the minimization of the maximal depth of the inheritance tree
(DIT) [CK94], i.e., we aim to minimize the longest path from an entity to the root of the
hierarchy. The DIT is a metric that can be used to measure the structural complexity
of class diagrams [GPC05] and the deeper the hierarchy, the greater the number of

106

5.2. Reproduction Case Studies

properties an entity is likely to inherit, making it more complex to predict its behavior
yielding a higher design complexity. However, the deeper a particular entity is in the
hierarchy, the greater the potential reuse of inherited entities [CK94]. Therefore, we have
a conflict between the DIT and the objective to minimize the overall number of elements
in the class diagram.

EMF Refactor. EMF Refactor is an open-source Eclipse project [Ecl14, AT13] that
supports a structured model quality assurance process for Ecore and UML models. In
particular, EMF Refactor builds upon the following three concepts:

Metrics Several metrics can be calculated on model-level to gain insight into the
model, e.g., average number of parameters of an operation of a class or the depth
of the inheritance tree.

Smells Smells are anti-patterns that may be an indicator for insufficient quality in
the models. These smells can be generally defined, e.g., the model contains an
abstract class without any concrete subclasses, or based on the detected model
metrics, e.g., the model contains an operation with more input parameters than
the specified limit (Long Parameter List).

Refactoring Refactorings are changes made on model-level with the aim of improving
the quality of that model. For example, to remove the smell of the Long Parameter
List we can group a set of parameters together to introduce a separate parameter
object which is used instead of the list of parameters.

The aim of this case study is to show how we can integrate the external metrics calculation
from EMF Refactor into MOMoT in order to avoid re-definition and re-implementation
of these metrics.

5.2.4 Measures

To assess the applicability of MOMoT (RQ1), we use all four case studies as they are
known problems that have been extensively discussed in the literature. In particular,
we consider our approach to be applicable for a specific case study if the respective
problem domain can be represented using our approach. This will indicate whether
the formalisms used in our approach, i.e., using metamodels and graph transformation
rules, are expressive enough for real-world problems. Then, to assess the overhead of our
approach (RQ2), we compare the time it takes to obtain solutions for a particular problem
(total runtime performance) in our approach with the time it takes in a native encoded
problem in the MOEA framework. The overhead of our approach will be evaluated
for the modularization and the stack case study as representatives of different-sized
problems by varying the population size parameter. Finally, in order to demonstrate
how our approach advances the current research state w.r.t. search features offered by
existing MDE frameworks (RQ3), we compare the search features of the pure Henshin
transformation engine with the search features contributed by MOMoT.

107

5. Evaluation

5.2.5 Results

In this section, we describe the experiments conducted with the four case studies and
discuss the answers to our research questions based on the obtained results. All results
are retrieved through 30 independent runs of the NSGA-III algorithm to deal with the
stochastic nature of metaheuristic optimization [HMTY10]. To ensure the sanity of the
solutions found during these runs, we manually inspected the solutions for any constraint
violations or contradicting objective values. Additionally, we selected one solution for
each case study selected using a kneepoint strategy [BBSG11] to evaluate the quality
of the solutions. The artifacts created for this evaluation are described in the following
sections and are available on our project website [FTW16a].

RQ1: Applicability

To answer the first research question, we have modeled the problem domain of all case
studies as Ecore metamodels and have developed rules that manipulate instances of these
metamodels.

The Stack Load Balancing case study has been modeled as shown in Figure 5.2. The
metamodel that represents the system is depicted in Figure 5.2a. Every stack in the
system has a unique identifier, a number that indicates its load, and is connected to
a left and right neighbor in a circular manner. A concrete instance of this metamodel
composed of five stacks with different loads is shown in Figure 5.2b. To manipulate
instance models such as the shown one, we propose two basic rules to shift part of the
load from one stack either to the left or to the right neighbor. The ShiftLeft rule is shown
in Figure 5.2c, and an analogous rule is used to shift parts to the right. The rule contains
a precondition, which ensures that the amount that is shifted is not higher than the load
of the source stack. This attribute condition is shown as an annotation in the figure,
although it has been implemented using JavaScript. Applying our approach on the input

StackModel
Stack

id: EString
load: EInt0..*

stacks

right1

left1

(a) Stack Metamodel

1

7

9

5

3

Stack 1 Stack 2 Stack 3 Stack 4 Stack 5

StackModel

Stack
id: 1
load: 1

rightleft
Stack
id: 2
load: 7

Stack
id: 3
load: 3

Stack
id: 4
load: 9

Stack
id: 5
load: 5

rightleft rightleft rightleft leftright

s1 : Stack
id = 'Stack 1'
load = 1

s2 : Stack
id = 'Stack 2'
load = 7

s3 : Stack
id = 'Stack 3'
load = 3

s4 : Stack
id = 'Stack 4'
load = 9

s5 : Stack
id = 'Stack 5'
load = 5

m : StackModel

right
left

right
left

right
left

right
left left

right

(b) Instance Model in Abstract Syntax
Rule shiftLeft(fromId: EString, toId: EString, amount: EInt, fromLoad: EInt, toLoad: EInt) @StackModel

«preserve»
to: Stack

id = toId
load = toLoad->toLoad + amount

«preserve»
from: Stack

id = fromId
load = fromLoad->fromLoad – amount

«preserve»
left

SufficientLoadPrecondition:
amount <= fromLoad

(c) ShiftLeft Rule to Shift Load

Figure 5.2: Stack System

108

5.2. Reproduction Case Studies

model shown in Figure 5.2b, we quickly find the shortest sequence of rule applications
(three) that leaves five pieces in each stack.

The Class Modularization case study has been shown throughout the two previous
sections. Thus, we keep the discussion in this section short. Section 4.2 describes how
the problem is modeled and represented in Henshin, while Section 4.3 explains how it
can be solved with MOMoT, and several code excerpts of the MOMoT configuration
file for such example are shown. We have applied our approach to the mtunis system
instance shown in Figure 4.3. One of the optimal solutions of the Pareto set is presented
in Figure 5.3, showing also the respective fitness values. In order to foster the readability
of the figure, arrows inside the same module are green while arrows targeting a different
module are colored according to their source module.

File

FileTable

Directory

Inode

Panic

Device

Tty
Disk System

InodeTable

FreeInode

FileIO

InodeGlobals

main Control

User

Family

State

Memory Computer

M1

M2

M3

M4

M5

M6

Objectives

Coupling: 68
Cohesion: 23
MQ: 1.964
MinMaxDiff: 5
Modules: 6

Constraints

Unassigned Classes: 0
Empty Modules: 0

Figure 5.3: Modularization Model Solution for the mtunis System

The Class Diagram Restructuring case study is the most complex one with regard
to rule complexity. Figure 5.4 depicts the metamodel to which problem instances need to
conform [RLP+14]. In this metamodel, the inheritance relationship among entities are
modeled by using the Generalization concept. This way, if an entity has a super type,
then the entity has a generalization that, in turns, points to a general entity. In the same
way, if an entity has a child, then it has a specialization that, in turns, points to a specific
entity. Please note that we deal with single inheritance, what is modeled by the cardinality
0..1 of relationship generalization. In fact, the problem with multiple inheritance is not
considered a search problem and has been solved. For instance, Godin and Mili [GM93]
use formal concept analysis and pruned lattices to solve the problem. These techniques
are able to reach a unique canonical solution in a polynomial time [BGH+14].

109

5. Evaluation

Generalization

NamedElement

name: EString

Entity Property Type
type
1..10..*

ownedAttribute
0..*0..1

general

specific
generalization

specialization
0..1

0..*

1..1

1..1

generalization

type

10..*0..1

NamedElement

name : EString

Generalization Entity Property Type
ownedAttribute

0..*

0..*

specific

specialization general

0..1 1

0..* 1

Figure 5.4: Metamodel of the Class Diagram Restructuring Case Study

In order to tackle the class diagram restructuring case study with single inheritance, we
translate all three manipulations (cf. Figure 5.1) into graph transformation rules. Each
rule needs at least one NAC and contains at least one nested rule. To give an estimate
of the complexity to develop such a rule, we depict the rule for creating root classes in
Figure 5.5. A nested rule (indicated by a ’∗’ in the action name in Figure 5.5) is executed
as often as possible if the outer rule matches. Therefore nested rules can lead to a large
set of overall rule matches, making the application of such rules more expensive.

Rule createRootClass(pName: EString, e1: EString, e2: EString) @model

Rule shiftLeft(fromId: EString, toId: EString, amount: EInt, fromLoad: EInt, toLoad: EInt) @StackModel

«preserve»
to: Stack

id = toId
load = toLoad->toLoad + amount

«preserve»
from: Stack

id = fromId
load = fromLoad->fromLoad – amount

«preserve»
left

SufficientLoadPrecondition:
amount <= fromLoad

«preserve»
: Entity

name = e1

«forbid#1»
: Generalization

«create»
: Entity

name = 'Entity_' + pName + '_' + e1 + '_' + e2

«delete»
: Property

name = pName

«create»
: Generalization

«create»
: Generalization

«create*»
: Generalization

«preserve»
: Entity

name = e2

«create»
: Property

name = pName

«preserve*»
: Entity

«delete»
: Property

name = pName

«delete*»
: Property

name = pName
«preserve»
: Type

«forbid#2»
: Generalization

«forbid*#3»
: Generalization

Figure 5.5: Create Root Class Rule With Three NACs and One Nested Rule

The NACs have been implemented both directly as graph patterns (indicated as forbid
action in Figure 5.5) and as OCL constraints. For example, the NAC of pulling up
attributes shown in Listing 5.1 ensures that all sub-classes of the class with the name
eName have an attribute with name pName before that attribute is pulled up. Both
parameters, eName and pName, are matched by the graph transformation engine
automatically.

Listing 5.1 OCL-NAC for Pulling Up Attributes of a Class Diagram
1: self.entities->select(e | e.name = eName).specialization
2: ->collect(g | g.specific)
3: ->forAll(e | e.ownedAttribute->exists(p | p.name = pName))

The two objectives for the fitness functions can be translated to OCL or simply calculated
in Java. The calculation of the first objective, i.e., the number of elements in the class
diagram, is depicted in Listing 5.2. For the calculation of the maximum hierarchy depth,

110

5.2. Reproduction Case Studies

we simply traverse the paths from all leaf entities to its root entity with a derived property
called allSuperEntities and determine the maximum length as also shown in Listing 5.2.

Listing 5.2 OCL Objectives for the Class Diagram Refactoring Case Study
1: -- computing the number of elements
2: self.properties->size() + self.entities->size()
3: -- computing the maximum hierarchy depth
4: self.entities -> collect(e|e.allSuperEntities->size())->max()

In conclusion, we are able to represent the class diagram restructuring as described in
[LKR13, RLP+14]. In addition, we can easily handle the extension with the additional
objective which would require a redesign of the other solutions for this case study as
presented in [RLP+14].

In the EMF Refactor case study, the quality assurance process is partly realized
with Henshin to detect metrics by counting how often a given rule can be matched,
detecting smells through matching and executing refactorings realized as transformation
units. In particular, EMF Refactor uses control-flow units to check whether all pre-
conditions of a refactoring are fulfilled before it is actually executed. An example of this
is depicted in Figure 5.6, which demonstrates removal of empty subclasses. In the initial
check it is evaluated whether the selected class is not the super class of another class
(check_superetypes), whether it is truly empty (check_empty_eclass) and whether it is
the sub-class of another class (check_subetypes). Only then the actual execution units
(cf. Figure 5.6b) are executed which remove the class from the containing package.

(a) Initial Check for Remove Empty Sub-Class-Refactoring

(b) Execution for Remove Empty Sub-Class-Refactoring

Figure 5.6: Remove Empty Sub-Class-Refactoring from EMF Refactor

This case study is the one where we can re-use most existing functionality, since EMF
Refactor works on Ecore and UML, two metamodels which already have been defined.

111

5. Evaluation

The refactoring rules are also provided, however, since they are split up into an initial
check and an actual execution, we have to first combine them into one transformation
unit. Here, we make use of the Conditional Unit without the else-unit. An example for
such a combination is depicted in Figure 5.7, which uses the initial check as the if -unit
and the actual execution as the then-unit. Please note that, we renamed the rules in
Figure 5.6b as EMF Refactor uses the name mainUnit for the combined initial check
and the actual execution. Only if the initial check is matched successfully, the actual
change will be executed.

initialCheck(?) execute(?)

Figure 5.7: Combining Initial Check and Execution of Remove Empty Sub-Class

The metrics in EMF Refactor can also be re-used by selecting the elements they can
be applied upon from the model (getDomain) and calculating the respective metric.
Listing 5.3 depicts an example of how we can use the metric calculator that returns the
number of all child EClasses of a given EClass by first selecting all EClasses and
then calculating the individual values for each class. Re-using the metric calculators from
EMF Refactor avoids potential implementation errors and can save a lot of time when
working with UML or Ecore models since many metric calculators are already provided.

Listing 5.3 Usage of an EMF Refactor Metric Calculator in MOMoT Objective
1: SubClasses : minimize {
2: val subClassCalculator = new NSUPEC2() // number of all sub-classes
3: val eClasses = graph.getDomain(EcorePackage.Literals.ECLASS.eClass, true)
4: var subClasses = 0.0
5: for(eClass : eClasses) {
6: subClassCalculator.context = #[eClass] // eClass as list
7: subClasses += subClassCalculator.calculate // reuse EMF Refactor metric
8: }
9: return subClasses
10: }

Answering RQ1. Summarizing, we have been able to demonstrate the applicability
of our approach in different scenarios with different complexity. In this regard, the rules
of the different case studies contain varying features in the different examples, and all
of them can be integrated in our approach. For instance, the rules in the stack load
balancing case study present a prerequisite that is implemented with JavaScript. The
class diagram restructuring case study is modeled with complex rules that use the nesting
mechanism provided by Henshin, and have also complex NACs, while the use of Henshin
units has been exemplified in the EMF Refactor example. Finally, the modularization
problem requires the optimization of five objectives in order to obtain proper solutions,
what is feasible with the use of many-objective algorithms [DJ14], such as NSGA-III,
also included in MOMoT.

112

5.2. Reproduction Case Studies

RQ2: Overhead

To evaluate the overhead of our approach, we compare the runtime performance of
MOMoT with the performance of a native implementation in the MOEA framework for
the modularization and the stack case study. A native implementation only uses classes
from the MOEA framework. In order to provide such an implementation the following
steps need to be performed:

1. Choose an appropriate representation (encoding) for the decision variables and
solution.

2. Map the modularization concepts (classes, modules and their relationships) and stack
concepts (stacks, their connections, and loads) to that representation, respectively.

3. Provide or select a mechanism to produce new and random solutions.

4. Evaluate the fitness objectives and constraints based on the defined encoding.

5. Decode the representation into a human-understandable form.

The MOEA framework provides binary variables, grammars, permutations, programs,
and real variables as well as a set of search operators that can work on these variables.

Class Modularization. For the modularization case study, we use the following
strategy. First, all classes are given a unique, consecutive index. Second, we encode the
assignments of classes to modules as a sequence of binary variables so that each position
in that sequence corresponds to one class and the value of the binary variable indicates
the module to which the class is assigned. Therefore we have as many binary variables
as there are classes in the model, e.g., for the mtunis model (cf. Figure 4.3) a sequence
of twenty binary variables would be used. The length of the binary variable is set to
represent at most the number of classes in the model, i.e., the case in which all classes
are in their own module. Since this is not exactly possible with binary variables, we need
to use the next possible value, e.g., to represent twenty modules we need five bits in a
variable enabling an actual range from 0 (00000) to 31 (11111). A representation for the
described encoding using the mtunis model is depicted in Figure 5.8.

Variables

01001

01101

01001

...

00101

Control

Computer

Device

User

...

M9

Control

Device

...

M13
Computer

...

M5
User

...

encode

Index

0

1

2

…

19

decode

Figure 5.8: Native Encoding for the Modularization Case Study

113

5. Evaluation

By choosing binary variables, we can re-use the operators and random solution generators
provided by MOEA. However, the evaluation of the fitness of a solution on binary variables
is very challenging. We therefore decode the solutions to an internal representation which
makes the concepts of classes, modules and dependencies explicit in order to evaluate
the objectives and constraints. This representation can then also be used to present the
solutions to the user.

To compare the native encoding with the MOMoT encoding, both approaches are run on
the same machine with the same algorithm configuration. The machine is a Lenovo T430S
with an Intel Core i5-3320M CPU2.60GHz using 8GB RAM and running a 64 bit version
of Windows 7 Professional. As algorithm we use the NSGA-III with a maximum of 32768
evaluations, tournament selection with k = 2 and the one-point crossover operator with
p = 1.0. However, due to the differences in the encoding, we cannot use the exact same
mutation operators. In the MOMoT approach we mutate parts of the solution sequences
by substituting them with applicable, random sequences as explained in Section 4.6. In
the native approach, we apply a bit-flip mutation which flips each bit of a binary variable,
i.e., switches a 0 to a 1 and vice versa. Both mutation operators are used with p = 0.1.
To gain insight into the performance, we vary the population size resulting in a different
number of iterations, starting with a population size of one and doubling it until we
reach the maximum of 32768. Each population size is executed 30 times. A comparison
with local search is not possible since MOEA does not provide local search by default.

0

10

20

30

40

50

60

70

R
u

n
ti

m
e

 in
 s

e
co

n
d

s

Population Size

MOMoT

Native

Figure 5.9: Total Runtime Comparison for Modularization: Native Encoding vs MOMoT

The results of the NSGA-III comparison are depicted in Figure 5.9. The solid lines
represent the average runtime of all runs while the vertical lines through each point
indicate the minimum and the maximum runtime encountered. Table 5.1 depicts the
average values and standard deviations for each of the 30 runs. From these experiments
we can observe that the native encoding has a stable runtime performance between 1.5
and 20 seconds, while the runtime performance of our approach has a bit more variation,
since in each execution it varies between 24 and 69 seconds. Furthermore, our approach
performs slower in all execution scenarios.

114

5.2. Reproduction Case Studies

Table 5.1: Average Runtime and Standard Deviations in Milliseconds for Modularization:
Native Encoding vs MOMoT

MOMoT Native
PopulationSize Avg StdDev Avg StdDev

1 27,178 1,141 3,207 833
2 28,394 1,375 4,807 401
4 27,713 846 3,486 317
8 27,082 989 2,658 414
16 25,151 920 2,013 420
32 26,843 1,011 1,753 554
64 25,477 862 1,827 538

128 25,631 968 1,970 570
256 26,249 937 2,734 280
512 27,987 872 2,363 246

1,024 27,396 1,156 2,869 256
2,048 31,065 1,276 3,829 462
4,096 33,967 1,733 5,935 348
8,192 40,233 1,926 10,463 662
16,384 50,472 1,818 16,383 964
32,768 61,282 3,868 12,264 3,220

Stack Load Balancing. In a similar manner, we can encode the stack case study
where we need to encode the shifting of load parameters between stacks [FTW15]. The
stack system (StackModel in Figure 5.2) is represented as a sequence of binary variables.
While the integer value of the binary variable indicates how much load is shifted, the
position of the binary variable in the sequence indicates from which stack the load is
shifted. Therefore we have as many binary variables as there are stacks in the model.
In addition, one bit in each binary variable is added as a discriminator for indicating
whether the load is shifted to the left or to the right. This bit is not considered to be
part of the variables integer value. The number of bits to represent the load value is
based on the highest load in the provided stack instance, e.g., to represent 15 we need 4
bits (1111) and to represent 16 we need 5 bits (10000).

Since in the stack case study we deal with only two objectives, we can use the NSGA-II
algorithm for the comparison of MOMoT and a native implementation. To execute the
experiment, we fix the problem complexity with 100 stacks having a load between 0 and
200 and stop after 10,000 evaluations. To gain insight into the performance, we vary the
population size and the number of iterations respectively. The results of the experiments
are depicted in Figure 5.10 and are similar to what we have seen for the modularization
case study. In all cases, the performance of our approach is slower than the performance
of the opposing native encoding.

115

5. Evaluation

0

50

100

150

200

250

300

8 16 32 64 128 256 512 1024

R
u

n
ti

m
e

 in
 s

e
co

n
d

s

Population Size

MOMoT

Native

Figure 5.10: Total Runtime Comparison for Stack System: Native Encoding vs MOMoT

This observed loss in performance can be explained two-fold. First, there is a slight
difference in the performance of the applied mutation operators. While the bit-flip
operator is really fast, the creation of a random transformation sequence is more expensive.
Second and more importantly, by using graph transformation rules instead of a native
encoding, we inherit the complexity of graph pattern matching and match application,
which are expensive tasks on their own. In the worst case, the graph pattern matching
problem in Henshin is equivalent to the subgraph isomorphism problem [TKL13] which
is NP-complete [Coo71].

To further investigate this behavior we use the JVM Monitor1 profiler for Java for tracking
which operations are the most expensive to execute in MOMoT. The profiling is executed
on the same machine as the performance evaluation above and samples the runtime every
50ms. The results obtained from this profiling show that over 90% of the execution time
is spent on finding new matches by evaluating all constraints (NACs, PACs, implicit
containment and reference constraints as well as explicit attribute constraints) in the
graph and then creating the changes that are applied on that graph. These operations
are followed by the graph copy operation, the evaluation of the fitness function and the
updating of the population set maintained by the algorithm. The graph copy operation
is called whenever a new solution is calculated based on the input graph, i.e., the input
graph is copied and then the transformation is applied upon that copy resulting in the
output graph which is used for the fitness evaluation. The fitness evaluation is called for
every created solution and the population set gets updated any time a new solution is
added to it, e.g., it needs to check whether the solution is dominated by another solution
and how the solution relates to the reference points maintained by NSGA-III.

Answering RQ2. Although Henshin uses constraint solving to tackle the problem
of finding pattern matches more efficiently, a loss in performance cannot be avoided.
This performance loss is also evident when creating a large initial population in the first
iteration, where we have to find and apply a lot of random matches to create solutions,
which takes a large proportion of the overall execution time. In fact, when profiling
the stack case study, where the performance difference between the native encoding

1JVM Monitor, version 3.8.1, available from http://jvmmonitor.org/

116

http://jvmmonitor.org/

5.2. Reproduction Case Studies

and MOMoT is even larger, we can see that the larger difference stems from the use of
attribute NACs written in JavaScript. The evaluation of these NACs takes a long time
as it involves not only the matching process, but also the interpretation of JavaScript
statements. Concluding, the performance of MOMoT strongly depends on the complexity
of the rules. A similar observation has been made by Arendt and Taentzer [AT13] for
EMF Refactor where the time of applying different refactorings can vary from 17ms for
the Inline Class refactoring to 236ms for the Extract Subclass refactoring.

RQ3: Search Features

In order to evaluate how our approach contributes and integrates search capabilities
to existing MDE frameworks, we compare what search features our approach offers
with respect to what is currently available in Henshin. This is done by investigating
what search capabilities are integrated in Henshin and what problems they can solve.
Consequently, we discuss the delta introduced with our approach in order to estimate
the effort that is reduced through MOMoT.

In general, with Henshin you need to specify explicitly which transformation unit you
want to apply and you need to provide all necessary parameters. The rule engine then
tries to find a match for the parameterized transformation unit in the underlying graph.
If no matches are found, an error message is displayed. Otherwise, one match is selected
either deterministically or non-deterministically, depending on your settings in the rule
engine. Multiple units can be applied either manually one after the other or explicitly
through a different transformation unit, e.g., the sequential unit. Additionally, Henshin
provides the so-called Henshin State Space Tools to execute search. These tools are
used to verify the correctness of transformations and can generate and analyze a state
space given some initial state and the transformation rules. The automatic exploration
of Henshin uses a breadth-first search strategy that creates the state space and keeps
track of all states that have been visited. Starting from an initial model, all matches for
all applicable rules are used to generate a set of new states. Two states are connected
through one concrete rule application. In each step of the exploration, a newly created
state is checked if it is valid according to a given criteria and if it is a final state (goal
state) given some other criteria. These criteria can be formulated using OCL or given as
a Java class through the configuration. Goal states and states where no transformation
rule can be applied are not explored any further (closed states). If an invalid state is
found, the exploration ends. This is used to evaluate whether the given transformation
rules can lead to invalid states by finding counter examples. The automatic explorer
stops if all states have been generated and no invalid state has been found. After the
exploration process, Henshin provides analysis capabilities to investigate the states space
for certain criteria, e.g., finding the shortest path from the initial state to some goal state.
Summarized, Henshin provides an exhaustive approach to find paths in an explicitly
enumerated state space for specified criteria. More complex behaviour, such as different
search heuristics or an optimization procedure where the concrete criteria cannot be
specified in advance, needs to be implemented by the user through the API of Henshin.

117

5. Evaluation

MOMoT, on the other hand, does not provide an exhaustive approach, but local search
and population-based metaheuristic approaches. Therefore, without using MOMoT, one
can (i) use the Henshin rules manually to derive a solution, (ii) implement another
approach which is able to apply the rules and check the resulting model or (iii) adapt
the existing State Space Tools. However, due to the complexity of the problems we are
dealing with, i.e., problems that warrant a metaheuristic search, a manual approach is
clearly not feasible for larger examples. A search-and-check-approach must be able to take
back applied transformations in form of backtracking and in most cases more than one
possible solution exists, as also observed by Schätz et al. [SHL10]. Therefore we would
at least need to provide rules which are able to negate the effects of another rule. For
the modularization case study, this would mean that we need a rule for deleting a class,
and another one for removing a feature from a class. For the class diagram restructuring
case study, we would need rules to remove root classes and distribute attributes among
classes by considering the current class hierarchy in the model. Similar rules need to be
implemented for the other case studies. Discarding a manual approach and an approach
where we would need to modify the user-provided input, we would aim to adapt the
existing functionality in Henshin.

To integrate local search in Henshin, we need to at least implement the following aspects:

• The state space explorer must be able to deal with infinite search spaces as is
often created by transformation rules, e.g., the rule which creates modules in the
modularization case study. Currently, the explorer would run until it runs out of
memory.

• The evaluation of the quality criteria needs to be implemented and should be
executed every time a new state is created. Therefore, a concept of fitness function
needs to be integrated into the existing state space tools. Invalid states (according
to the specified constraints) should be marked and the evaluated quality criteria
should be saved with each state.

• Currently the tools only derive new states from rules through matching. An
extension which allows the use of other transformation units needs to be developed
as otherwise the power of control-flow semantics in units cannot be used.

• Additional search strategies besides breadth-first search need to implemented, e.g.,
depth-first search or A*-search. If possible, the fitness function should guide the
direction of the search, similar to what is done in MOMoT.

• In case multiple quality criteria need to be optimized, the search needs a way to
compare different solutions, e.g., through the use of the Pareto optimality concept.

In order to implement population-based search, model engineers need to start from
scratch. Listing the aspects that need to be considered and implemented in order to
provide a similar functionality than MOMoT, it should be clear that this task requires a
lot of knowledge and time.

118

5.2. Reproduction Case Studies

Answering RQ3. Current Henshin search functionality focuses on model-checking
aspects and therefore offers an exhaustive search in a bounded, explicitly enumerated
search space. However, for the case studies we investigated, such an approach would
not yield satisfactory results. First of all it lacks the capabilities to define optimization
objectives and second Henshin cannot deal with infinite search spaces. Furthermore, we
may only use transformation rules, which means that the expressive power of control-flow
units is lost. Therefore a lot of effort needs to be invested in order to solve the given
case studies with the default Henshin transformation engine. Consequently, we consider
MOMoT a valuable contribution to existing search capabilities with respect to Henshin.
In particular, the declarative specification of objectives and constraints and the ability to
deal with very large or even infinite transformation search spaces through metaheuristic
optimization methods can be considered an advancement.

Summary

In this section, we have demonstrated that our approach is applicable for model-based
software engineering problems. However, due to the complexity of graph pattern match-
ing, there is a clear trade-off between the expressiveness provided by MDE through
metamodeling and model transformations and the performance of a more dedicated
encoding. Inventing such a dedicated encoding is a creative process and is in most
cases not as straight forward as in the Modularization case study. Furthermore, once a
dedicated encoding has been defined, integrating changes may become quite expensive.
The complexity of finding a good, dedicated encoding becomes even more evident when
many diverse manipulations with a varying number of parameters of different data
types need to be represented in the solution. Additionally, a dedicated encoding may
make assumptions about the deployed search algorithm, hampering the switch between
different algorithms. Both of these drawbacks are mitigated in our approach, where the
parameters and their data types are part of a transformation rule and where the switch
to a different algorithm can be done by changing one line in the search configuration.
Indeed, this ease of use is especially important for model engineers, who are familiar
with MDE technologies such as metamodels, model transformations, and OCL, but may
find it challenging to express their problem with a dedicated encoding, corresponding
operators and a fitness function as well as converting the obtained solutions back onto
model level, where they can be further processed. The use of dedicated encodings is
further complicated by the fact that there is often no common consensus how to solve a
specific problem. For instance, whereas the works in [SSB06, HT07] both address the
problem of refactoring at design level using a modeling approach, each of them proposes
a different encoding.

In summary, we conclude that while our approach is applicable for many problems, it
introduces an overhead that has its root in the graph matching problem and depends
on the complexity of the transformation rules used for solving the respective problem.
Nevertheless, our approach enables and guides model engineers to use metaheuristic
search to tackle problems which may not be solvable through an exhaustive approach.

119

5. Evaluation

5.2.6 Threats to Validity

Although the evaluation of MOMoT features has been carried out with the utmost care,
there are several factors that may jeopardize the validity of our results.

Internal validity — Are there factors which might affect the results of this case study?
First, a prerequisite of our approach is for the user to be able to create class diagrams
(metamodels) and define rule-based systems. While this task was simple for us as
model engineers, people from other domains may find these tasks more challenging.
Nonetheless, the aim of this approach is to be used in the software engineering process,
where models are used as first-class citizens in the design phase, so designers are likely
to be knowledgeable about models and model transformations. Second, although we
have sanity-checked all solutions, we only had a reference set of optimal solutions for
one example (the modularization case study). Further investigation may be needed to
ensure that our approach does not introduce problems hindering the algorithm from
finding the optimal solutions. In any case, to alleviate this threat, we have implemented
native encodings using the MOEA framework for both the stack and modularization case
studies. These implementations have yielded similar solutions as the ones obtained with
our approach.

External validity — To what extent is it possible to generalize the findings? Even though
we have selected four case studies from different areas with varying degrees of complexity,
the number of case studies may still not be representative enough to argue that our
approach can be applied on any model-based software engineering problem. Therefore,
additional case studies need to be conducted to mitigate this threat. Furthermore, we have
used Henshin as model transformation language to express in-place model transformations.
This means that additional studies are needed in order to know how integrable other
model transformation languages are in our approach and to consider out-place model
transformations. As part of our future work, we plan to investigate these issues and try
to define a minimal set of requirements on the kinds of notations and transformation
languages that are amenable to be directly addressed by our approach, cf. Chapter 6.

5.3 Transformation Modularization

In the previous section, we have demonstrated based on four different case studies how
MOMoT can be used to tackle existing problems of the MDE and software engineering
domain. In this section, we introduce a novel case study to demonstrate the process
of formulating a new problem through MOMoT. Specifically, in this case study we
investigate the problem of modularizing model transformations.

5.3.1 Motivation

In order to motivate our problem case study, we compare the modularization of software
systems with the modularization of model transformation programs.

120

5.3. Transformation Modularization

Modularization of Software Systems. In the last two decades, a large number of
research has been proposed to support (semi-)automatic approaches to help software
engineers maintain and extend existing systems. In fact, several studies addressed the
problem of clustering to find the best decomposition of a system in terms of modules
and not improving existing modularizations.

Wiggerts [Wig97] provides the theoretical background for the application of cluster
analysis in systems remodularization. He discusses on how to establish similarity criteria
between the entities to cluster and provide the summary of possible clustering algorithms
to use in system remodularization. Later, Anquetil and Lethbridge [AL99] use cohesion
and coupling of modules within a decomposition to evaluate its quality. They tested some
of the algorithms proposed by Wiggerts and compared their strengths and weaknesses
when applied to system remodularization. Magbool and Babri [MB07] focus on the
application of hierarchical clustering in the context of software architecture recovery and
modularization. They investigate the measures to use in this domain, categorizing various
similarity and distance measures into families according to their characteristics. A more
recent work by Shtern and Azerpos [ST09] introduced a formal description template for
software clustering algorithms. Based on this template, they proposed a novel method
for the selection of a software clustering algorithm for specific needs, as well as a method
for software clustering algorithm improvement.

There have also been several developments in search-based approaches to support the
automation of software modularization. Mancoridis et al. [MMR+98] presented the first
search-based approach to address the problem of software modularization using a single-
objective approach. Their idea to identify the modularization of a software system is based
on the use of the hill-climbing search heuristic to maximize cohesion and minimize coupling.
The same technique has been also used by Mitchell and Mancoridis [MM06, MM08] where
the authors present Bunch, a tool supporting automatic system decomposition. Subsystem
decomposition is performed by Bunch by partitioning a graph of entities and relations in a
given source code. To evaluate the quality of the graph partition, a fitness function is used
to find the trade-off between interconnectivity (i.e., dependencies between the modules of
two distinct subsystems) and intra-connectivity (i.e., dependencies between the modules
of the same subsystem), to find out a satisfactory solution. Harman et al. [HHP02]
use a genetic algorithm to improve the subsystem decomposition of a software system.
The fitness function to maximize is defined using a combination of quality metrics, e.g.,
coupling, cohesion, and complexity. Similarly, [SBBP05] treated the remodularization
task as a single-objective optimization problem using genetic algorithm. The goal is
to develop a methodology for object-oriented systems that, starting from an existing
subsystem decomposition, determines a decomposition with better metric values and
fewer violations of design principles. Abdeen et al. [ADSA09] proposed a heuristic search-
based approach for automatically optimizing (i.e., reducing) the dependencies between
packages of a software system using simulated annealing. Their optimization technique
is based on moving classes between packages. Mkaouer et al. [MKS+15] proposed to
remodularize object oriented software systems using many-objective optimization with

121

5. Evaluation

seven objectives based on structural metrics and history of changes at the code level.
Praditwong et al. [PHY11] have recently formulated the software clustering problem as a
multi-objective optimization problem. Their work aims at maximizing the modularization
quality measurement, minimizing the inter-package dependencies, increasing intra-package
dependencies, maximizing the number of clusters having similar sizes and minimizing the
number of isolated clusters.

Modularization of Model Transformations. In MDE, models and model transfor-
mations are considered development artifacts which must be maintained and tested similar
to source code in classical software engineering. Similar to any software systems, model
transformation programs are iteratively refined, restructured, and evolved due to many
reasons such as fixing bugs and adapting existing transformation rules to new metamodels
version. Thus, it is critical to maintain a good quality and modularity of implemented
model transformation programs to easily evolve them by quickly locating and fixing bugs,
flexibility to update existing transformation rules, improving the execution performance,
etc. However, while there are several modularization approaches for software engineering
to tackle the issue of maintainability and testability, we are not aware of any approach
dealing with peculiarities of modularizing rule-based model transformations.

Nevertheless, the introduction of an explicit module concept going beyond rules as
modularization concept [KvdBJ07] has been considered in numerous transformation
languages to split up transformations into manageable size and scope. In the fol-
lowing, we shortly summarize module support in the imperative transformation lan-
guage QVT-O [OMG15a], the declarative transformation languages TGGs [KKS07] and
QVT-R [OMG15a], and the hybrid transformation languages ATL [JK06, JABK08],
ETL [KPP08], and RubyTL [CGM08, CM09] . All these languages allow the import
of transformation definitions statically by means of explicit keywords. In QVT-O the
keyword extends is provided, in order to base a new transformation on an existing
one. In TGGs, it is possible to merge the rule types, i.e., the high-level correspondences
from one transformation with those of a new one. In QVT-R it is possible to import a
dependent transformation file and to extend a certain transformation of this file. In ATL
it is possible to use a set of helper in a transformation or another helper library. ETL
allows the import of rules from a different transformation definition and so does RubyTL.
Going one step further, in [CGdL14] the authors propose transformation components
which may be considered as transformation modules providing a more systematic descrip-
tion of their usage context such as required metamodel elements and configurations of a
transformation’s variability.

Although language support for modularization in model transformation is emerging, it
has not been studied in that much detail and has not been widely adopted. This is
also reflected by the current application of modularization concepts of transformations
within the ATL Transformation Zoo [Ecl], which does not contain any modularized
transformation [KSW+13]. Thus, most of the existing ATL transformations are difficult
to evolve, test and maintain.

122

5.3. Transformation Modularization

5.3.2 Overview

In this case study, we therefore propose, for the first time in the MDE literature, an
automatic approach to modularize large model transformations by splitting them into
smaller model transformations that are reassembled when the transformation needs
to be executed. Smaller transformations are more manageable in a sense that they
can be understood more easily and therefore reduces the complexity of testability and
maintainability. In particular, we focus on the modularization of ATL transformations
consisting of rules and helper functions. The general usage of ATL has been introduced
in Section 2.1.4.

The modularization of model transformation programs is a very subjective process and
developers have to deal with different conflicting quality metrics to improve the modularity
of the transformation rules. The critical question to answer is what is the best way
to regroup the rules that are semantically close by reducing the number of intra-calls
between rules in different modules (coupling) and increasing the number of inter-calls
between rules within the same module (cohesion). In such a scenario, it is clear that both
of these quality metrics are conflicting. To this end, we leverage the usage of search-based
optimization methods to deal with the potentially large search space of modularization
solutions. We measure the improvement of both testability and maintainability through
common metrics such as coupling and cohesion, which have been adapted for model
transformations and which are also used to guide the search process. As a result, our
many-objective formulation, based on NSGA-III [DJ14], finds a set of modularization
solutions providing a good trade-off between four main conflicting objectives of cohesion,
coupling, number of generated modules and the deviations between the size of these
modules.

In our evaluation, we demonstrate the necessity for such an approach by outperforming
random search in all selected case studies (sanity check). Furthermore, we investigate
the quality of our generated solutions by determining their recall and precision based
on comparison with other algorithms and manual solutions, ensuring quality of the
produced results. In this case study, we consider seven different-sized transformations, of
which six are available in the ATL Zoo and one has been created within our research
group. Specifically, we show the configuration necessary to apply our modularization
approach and how the different metrics of the selected transformations can be improved
automatically. We found that, on average, the majority of recommended modules for all
the ATL programs are considered correct with more than 84% of precision and 86% of
recall when compared to manual solutions provided by active developers. The statistical
analysis of our experiments over several runs shows that NSGA-III performed significantly
better than multi-objective algorithms and random search. We were not able to compare
with existing ATL modularization approaches since our study is the first to address this
problem. The software developers considered in our experiments confirm the relevance of
the recommended modularization solutions for several maintenance activities based on
different scenarios and interviews.

123

5. Evaluation

Therefore, the contributions of this case study and evaluation over the state of the art
can be summarized as follows:

1. Problem Formulation. We define the problem of modularizing model transfor-
mations as a many-objective optimization problem.

2. Problem Instantiation. We instantiate our proposed problem formulation for
the use case of ATL, which supports modularization through superimposition, and
apply our approach on six different-sized ATL case studies and investigate their
results.

3. Solution Quality. We demonstrate the quality of our approach by comparing
the quality of the automatically generated solutions of NSGA-III with other multi-
objective algorithms, one mono-objective algorithm and manually created solutions.

4. Approach Usability. The qualitative evaluation of the performed user study
confirms the usefulness of the generated modularized solutions based on ATL.

The remainder of this case study is structured as follows. In Section 5.3.3 we introduce
modularization capabilities for model transformations. Section 5.3.4 summarizes our
generic approach for tackling the model transformation modularization problem using
metaheuristic optimization techniques. In Section 5.3.5, the approach is instantiated for
the ATL transformation language using the NSGA-III algorithm. Finally, Section 5.3.6
describes the evaluation of our solutions retrieved for the modularization problem.

5.3.3 Modularization in ATL

Domain-Specific Languages (DSLs) are languages that deal with the concepts of the
problem domain, cf. Section 2.1.2. These languages tend to support higher-level abstrac-
tions than general-purpose modeling languages, and are closer to the problem domain
than to the implementation domain. Thus, a DSL follows the domain abstractions and
semantics, allowing modelers to perceive themselves as working directly with domain
concepts. For transformations, we have transformation DSLs. Among these, we focus
in this evaluation on the ATL language, since it has come to prominence in the MDE
community. This success is due to ATL’s flexibility, support of the main metamodeling
standards, usability that relies on good tool integration with the Eclipse world, and a
supportive development community [Ecl15]. In general, our proposed approach may be
also applicable for other transformation languages providing a module concept.

The Atlas Transformation Language (ATL) is a hybrid model transformation language
containing a mixture of declarative and imperative constructs, cf. the class to relational
example in Section 2.1.4. Both out-place and in-place transformations can be defined
in ATL. An out-place transformation specifies which concepts of the output model are
created from which ones of the input model. The default mode of ATL is used for this.

124

5.3. Transformation Modularization

In-place rules are defined using the refining mode of ATL. In the refining mode, the input
model evolves to obtain the output one.

ATL supports three kinds of units: modules, queries, and libraries. An ATL module
corresponds to a model to model transformation. This kind of ATL unit enables ATL
developers to specify the way to produce a set of target models from a set of source
models. Both source and target models of an ATL module must be “typed” by their
respective metamodels. Modules are composed of a set of transformation rules, and
may also contain helper functions (helpers). ATL modules are the only kind of unit
that can return output models. ATL queries consist of models to primitive type value
transformations. They can be viewed as operations that compute a primitive value from
a set of source models. The most common use of ATL queries is the generation of a
textual output (encoded into a string value) from a set of source models. ATL queries are
not considered in this work due to their rare use [KSW+13]. Finally, ATL libraries enable
to define a set of ATL helpers that can be called from different ATL units. Compared to
both modules and queries, an ATL library cannot be executed independently.

All ATL units support composition. In particular, ATL libraries can import other
libraries, ATL queries can import libraries, and ATL modules can import libraries and
other modules. Wagelaar et al. [WSD10] distinguish between external composition, where
the output of one transformation serves as input for the next transformation, and internal
composition, where one transformation is split into a number of transformation definitions
which are combined when the transformation needs to be executed. In that sense, the
superimposition feature of ATL can be viewed as an internal composition method.

Module superimposition [WSD10] is used to split up transformation modules into modules
of manageable size and scope, which are then superimposed on top of each other. This
results in (the equivalent of) a transformation module that contains the union of all
transformation rules. In addition it is also possible for a transformation module to
override rules from the transformation modules it is superimposed upon. Overriding in
this sense means replacing the original rule with a new one, whereby the original rule
is no longer accessible. When overriding rules the order in which the superimposition
is done must be considered. However, in this evaluation, we are not interested in this
aspect of superimposition, since our purpose is to split a transformation composed of
a large module into modules of smaller size with the aim of improving maintainability,
understandability and testability, but we do not modify or override existing rules. On
that note, we also consider the creation of ATL libraries. In fact our approach will
automatically split a large module into smaller modules and ATL libraries if this improves
the aforementioned properties.

5.3.4 Approach

In this case study, we formulate the model transformation modularization problem as a
many-objective problem using Pareto optimality. In order to do so, we need to specify
three aspects. First, we need to formalize the model transformation domain in which

125

5. Evaluation

transformations, both unmodularized and modularized, can be defined in a concise way.
This formalization should be independent of any specific transformation language in order
to make the approach more widely applicable and generic. Second, we need to provide
modularization operations which can be used to convert an unmodularized transformation
into a modularized transformation. Each modularization operation serves as decision
variables in our solution. And finally, we need to specify a fitness function composed of a
set of objective functions in order to evaluate the quality of our solutions and compare
solutions among each other. Here, we need to use well-established objectives from the
software modularization domain and adapt them for the model transformation domain.
An overview of our approach is depicted in Figure 5.11. The basis for this approach is
given by MOMoT as described in Chapter 4.

Many-Objective
Transformation
Modularization

using SBSE

Unmodularized
Transformation

Objectives

Modularization
Operations

Sequence of
Modularization

Operations

Modularized
Transformations

Many-Objective
Transformation Modularization

using
Search-Based Optimization

Unmodularized
Transformation

Objectives

Modularization
Operations

Sequence of
Modularization

Operations

Modularized
Transformations

Figure 5.11: Transformation Modularization Approach Overview

Transformation Representation

Our problem domain is the modularization of model transformations. Therefore, we
need to be able to represent unmodularized model transformations and modularized
model transformations in a concise way. In order to provide a generic approach that is
independent of any specific transformation language, we formalize this problem domain
using a dedicated Modularization domain-specific language (DSL), whose abstract syntax
is depicted in the metamodel in Figure 5.12.

NamedElement

name: String

RuleHelper

Module

helpers rules

[0..1] inheritsFrom

[0..*] helperDependencies

helperDependencies ruleDependencies [0..*]

Transformation
modules [0..*]

[0..*] [0..*]

[0..*]

Dependency
Composition
Inheritance

Transformation

Helper

Module

Rule

NamedElement

name : EString

modules 0..*

helpers helperDependencies

0..*0..*

helperDependencies

0..*

ruleDependencies

rules

inheritsFrom

0..* 0..1

Figure 5.12: Transformation Modularization Metamodel

In our language, a transformation is composed of transformation artifacts. A transforma-
tion artifact can be either a transformation rule or an auxiliary function. Following the

126

5.3. Transformation Modularization

syntax of ATL, we have named auxiliary functions in our Modularization DSL helpers.
In model transformation languages, a transformation rule can inherit the functionality of
another rule and may realize its own functionality by implicitly or explicitly invoking
other transformation rules or helper functions. A helper function, in turn, provides a
piece of executable code which can be called explicitly by any rule or helper. In our DSL,
dependencies between rules and helpers are made explicit (helperDependencies,
ruleDependencies) and any hierarchy is flattened. The identification of the three
transformation elements, modules, helpers, and rules, is done via a unique name inherited
through the class NamedElement.

Modularization Operation

For the transformation modularization problem, a solution must be able to convert an
unmodularized transformation into a transformation with modules. To represent the
process of this conversion, we consider a solution to be a vector of decision variables, where
each decision variable in this vector corresponds to one application of a modularization
operation. Initially, all rules and helpers of a transformation are contained in one module.
The modularization operations assign a rule or a helper function from one existing module
to another existing module or a newly created module. Therefore, we only need the two
rules depicted in Figure 5.13.

Rule reassignHelper(source : Module, target : Module, helper : Helper) @Transformation

«preserve»

source : Module

«create»

helpers

«delete»

helpers
«preserve»

helper : Helper

«preserve»

target : Module

Rule reassignRule(source : Module, target : Module, rule : Rule) @Transformation

«preserve»

source : Module

«create»

rules

«delete»

rules
«preserve»

rule : Rule

«preserve»

target : Module

Figure 5.13: Transformation Modularization Rules

The parameters of this operation are the rule or helper that is moved to a module and
the respective source and target module. We use an injective matching strategy that
specifies that no two left-hand side nodes are assigned to the same model element, i.e.,
the source and target module parameter in the rules cannot be assigned to the same
module element. The bounds for helper and rule parameters are given by the set of rules
and helpers in the unmodularized transformation. The bound for the module parameter
is a set of modules, where there can be no more than n modules, where n is the total
number of rules and helpers, i.e., the case in which all rules and helpers are in their own
module. By having such a precise upper bound for the parameters of the modularization
operation, we can define the length of the solution vector as n, i.e., a solution where each
helper and rule is assigned exactly once.

127

5. Evaluation

Solution Fitness

In order to evaluate the quality of the solutions during the search, we consider four
objective functions based on the resulting modularized transformation. An overview of
these functions is depicted in Table 5.2. Specifically, we aim to minimize the number of
modules (NMT), minimize the difference between the lowest and the highest number of
transformation artifact, i.e., rules and helpers, in a module (DIF), minimize the coupling
ratio (COP) and maximize the cohesion ratio (COH). Since the multi-objective problem
formulation only deals with minimization, in practice, we take the negated value of the
cohesion ratio.

Table 5.2: Transformation Modularization Objectives

ID Description Type
NMT Number of modules in the transformation Min
DIF Min/Max difference in transformation artifacts Min
COH Cohesion ratio (intra-module dependencies ratio) Max
COP Coupling ratio (inter-module dependencies ratio) Min

Similar objectives have been used in the class diagram restructuring case study described in
Section 4.2. However, for this case study, these objectives have been adapted. Specifically,
we do not use coupling and cohesion as absolute number of dependencies, but use the
definition of coupling and cohesion ratio as defined by Masoud and Jalili [MJ14]. The
concrete formulas for each objective function are given in Equation 5.1 to Equation 5.4.
In these formulas, M is the set of all modules and n is the number of all transformations
artifacts. U(m), R(m) and H(m) refer to all transformation artifacts, rules, and helpers
of a given module m, respectively. Furthermore, DRR(mi,mj), DRH(mi,mj), and
DHH(mi,mj) specify the number of rule-to-rule, rule-to-helper and helper-to-helper
dependencies between the given modules mi and mj , respectively; while RR(mi,mj),
RH(mi,mj), and HH(mi,mj) represent the ratio of rule-to-rule, rule-to-helper and
helper-to-helper dependencies.

The underlying assumption to minimize the NMT objective is that a small number of
modules is easier to comprehend and to maintain. Additionally, distributing the number of
rules and helpers equally among the modules mitigates against small isolated clusters and
tends to avoid larger modules, as also discussed by [PHY11] in their clustering approach.
Furthermore, we optimize the coupling and cohesion ratio which are well-known metrics
in clustering problems. Both coupling and cohesion ratios set the coupling, i.e., the
number of inter-module dependencies, and the cohesion, i.e., the number of intra-module
dependencies, in relation to all possible dependencies between the associated modules.
Typically, a low coupling ratio is preferred as this indicates that each module covers
separate functionality aspects. On the contrary, the cohesion within one module should
be maximized to ensure that it does not contain rules or helpers which are not needed to
fulfil its functionality.

128

5.3. Transformation Modularization

NMT = |M | (5.1)
DIF = max(|U(m)|)−min(|U(m)|), m ∈M (5.2)
COH =

∑
mi∈M

D(mi,mi) (5.3)

COP =
∑

mi,mj∈M
mi 6=mj

D(mi,mj) (5.4)

D(mi,mj) = RR(mi,mj) +RH(mi,mj) +HH(mi,mj) (5.5)

RR(mi,mj) = DRR(mi,mj)
|R(mi)| × |R(mj)− 1| (5.6)

RH(mi,mj) = DRH(mi,mj)
|R(mi)| × |H(mj)| (5.7)

HH(mi,mj) = DHH(mi,mj)
|H(mi)| × |H(mj)− 1| (5.8)

Finally, to define the validity of our solutions, we enforce through constraints that all
transformation artifacts need to be assigned to a module and that each module must
contain at least one artifact. Solutions which do not fulfil these constraints are not part
of the feasible search space.

5.3.5 Many-Objective Modularization for the case of ATL Programs

To demonstrate our approach, we instantiate it for the ATL transformation language.
In particular, we need to perform three steps, which are depicted in the ATL-specific
approach in Figure 5.14.

ATL
Unit

ATL
Units

Search-based
Modularization

ATL to
Modularization

Model

Modularization
Model
[initial]

Modularization
Model

[optimized]

Modularization
Model
to ATL

ATL
Unit

ATL
Units

Search-based
Modularization

ATL to
Modularization

Model

Modularization
Model
[initial]

Modularization
Model

[optimized]

Modularization
Model
to ATL

Figure 5.14: ATL Modularization Approach Overview

First, we translate the given ATL transformation into our modularization DSL described
in Section 5.3.4. By doing this translation, we make the dependencies within the ATL
transformation explicit. Second, we perform the modularization using the modularization
operations and fitness function described above. To modularize the transformation
expressed in our language we apply our search-based framework called MOMoT with the
NSGA-III algorithm. And finally, we translate the optimized modularization model with
1 to n modules back into ATL files, i.e., transformation modules and libraries. All three
steps are explained in detail in the following sections.

129

5. Evaluation

Converting ATL to Modularization Models

In order to use our generic approach, we need to convert ATL transformations into
the modularization language described in Section 5.3.4. While most of this conversion
can be done easily as ATL provides explicit concepts for modules, rules, and helpers,
the extraction of the dependencies between rules, between helpers and between rules
and helpers is more challenging. In fact, in ATL we can distinguish between implicit
invocations of matched rules and explicit invocation of lazy rules, called rules and helpers.
Lazy and called rules are non-declarative rules that are only executed when they are
invoked. Explicit invocation can be visually identified, since it is represented in a similar
way as method calls in Java. However, it is much trickier to identify the dependencies
among matched rules, i.e., rules that are executed when a respective match on the input
model can be found. We have automated the way of producing the dependency model
with a high-order transformation (HOT) [TJF+09] that takes the transformation injected
into a model-based representation as well as the metamodels of the transformation as
input and statically infers information about types in the transformation. The HOT
consists of two steps.

First, the types of the rules are statically extracted, i.e., the classes of the metamodels
that participate in the rules. While modules and rules already have unique names in ATL,
unique names for helpers are derived from the complete helper signature. Second, these
types, plus the explicit calls to helpers and non-declarative rules, are used to compute the
dependencies. If the type retrieved by an OCL expression of a binding (used to initialize
an association) in rule R1 is the same as the type of an InPatternElement (element
with which the matching is done) in rule R2, then R1 depends on R2 since the object
created by the latter rule will be referenced by an object created from the former one.
Consequently, the first step consists of extracting such types. Since ATL does not offer
any support or API to statically obtain the types of the elements appearing in the rules,
the process is not trivial when OCL expressions play part of it. In order to extract the
type of an OCL expression, we extract the type of the eventual element that is reached
through the navigation, as presented in [BTWV15].

In the second step, after we have extracted the types of the InPatternElements of
each rule as well as the types appearing in the bindings, we can easily calculate the
dependencies. Thus, we consider that a rule, R1, depends on another rule, R2, if the
intersection of the types of the bindings of R1 with the ones of the InPatternElements
of R2 is not empty.

Using this approach, we can obtain a dependencies graph describing the dependen-
cies among rules, between rules and helpers, and among helpers for any ATL model
transformation. For the Class2Relational example described in Section 2.1.4 and
the code excerpt shown in Listing 2.1, we extract that rule Class2Table depends
on ClassAttribute2Column since some of the objects retrieved in the second bind-
ing of the former rule, c.attr -> select(e | not e.multivalued), have the
same type as the one specified in the InPatternElement of the latter rule, i.e.,

130

5.3. Transformation Modularization

Class!Attribute where the multivalued attribute is set to false. As a result, we
get the dependency graph depicted in Figure 5.15.

objectIdType

Class2Table

DataType2Type

ClassAttribute2Column

MultiValuedDataTypeAttribute2Column

MultiValuedClassAttribute2Column

DataTypeAttribute2Column

Figure 5.15: Dependencies of the Class2Relational Transformation

The model produced by this step conforms to our Modularization DSL and is composed of
one module and the same number of rules and helpers as the original ATL transformation.
Furthermore, all dependencies between rules and helpers are explicitly declared in the
model.

Search-based Modularization

After translating the ATL transformation to our modularization DSL, we can use our
search-based framework to find the Pareto-optimal module structure. In order to apply
MOMoT for the ATL modularization, we need to specify the necessary input. The
instance model is the modularization model obtained in the previous step, while the rules
are the modularization operations defined in Section 5.3.4.

Before deciding which artifacts go into which module, we have to create modules. Thereby,
we produce input models with different number of modules in the range of [1, n], where n
is the number of rules and helpers combined. This covers both the case that all rules and
helpers are in one single module and the case in which each helper and rule is in its own
module. The objectives and constraints described in Section 5.3.4 are implemented as
Java methods to provide the fitness function for MOMoT. Finally, we need to select an
algorithm to perform the search and optimization process. For this task, we choose the
NSGA-III, as detailed in the next section, since it can handle not only multi-objective
problems, but also many-objective problems.

NSGA-III. NSGA-III is a very recent many-objective algorithm proposed by Deb
et al. [DJ14]. The basic framework remains similar to the original NSGA-II algorithm
with significant changes in its selection mechanism. The pseudo-code of the NSGA-III
procedure for a particular generation t is displayed in Algorithm 5.1. First, the parent
population Pt (of size N) is randomly initialized in the specified domain, and then the
binary tournament selection, crossover and mutation operators are applied to create an

131

5. Evaluation

offspring population Qt. Thereafter, both populations are combined and sorted according
to their domination level and the best N members are selected from the combined
population to form the parent population for the next generation.

Algorithm 5.1: NSGA-III procedure at generation t
Input: H structured reference points Zs, parent population Pt.
Output: Pt+1

1: St ← ∅, i← 1
2: Qt ← Variation(Pt)
3: Rt ← Pt ∪Qt

4: (F1, F2, . . .) ← Nondominated_Sort(Rt)
5: repeat
6: St ← St ∪ Fi; i← i+ 1
7: until |St| ≥ N
8: Fl ← Fi // last front to be included

9: if |St| = N then
10: Pt+1 ← St

11: else
12: Pt+1 ←

⋃l−1
j=1 Fj

// number of points to be chosen from Fl

13: K ← N − |Pt+1|
// normalize objectives and create reference set Zr

14: Normalize(FM , St, Z
r, Zs)

// Associate each member s of St with a reference point
// π(s) : closest reference point

// d(s) : distance between s and π(s)
15: [π(s), d(s)]← Associate(St, Z

r)
// compute niche count of a reference point j ∈ Zr

16: pj ←
∑

s∈St/Fl
((π(s)= j) ? 1 : 0)

// Choose K members one at a time from Fl to construct Pt+1

17: Niching(K, pj , π(s), d(s), Zr, Fl, Pt+1)
18: end

The fundamental difference between NSGA-II and NSGA-III lies in the way the niche
preservation operation is performed. Unlike NSGA-II, NSGA-III starts with a set of
reference points Zr. After non-dominated sorting, all acceptable front members and the
last front Fl that could not be completely accepted are saved in a set St. Members in
St/Fl are selected right away for the next generation. However, the remaining members
are selected from Fl such that a desired diversity is maintained in the population. Original
NSGA-II uses the crowding distance measure for selecting well-distributed set of points,
however, in NSGA-III the supplied reference points (Zr) are used to select these remaining
members as described in Figure 5.16. To accomplish this, objective values and reference
points are first normalized so that they have an identical range. Thereafter, orthogonal

132

5.3. Transformation Modularization

Figure 5.16: Normalized Reference Plane for Three Objectives

distance between a member in St and each of the reference lines (joining the ideal point
and a reference point) is computed. The member is then associated with the reference
point having the smallest orthogonal distance. Next, the niche count p for each reference
point, defined as the number of members in St/Fl that are associated with the reference
point, is computed for further processing. The reference point having the minimum niche
count is identified and the member from the last front Fl that is associated with it is
included in the final population. The niche count of the identified reference point is
increased by one and the procedure is repeated to fill up population Pt+1.

It is worth noting that a reference point may have one or more population members
associated with it or need not have any population member associated with it. Let
us denote this niche count as pj for the j-th reference point. We now devise a new
niche-preserving operation as follows. First, we identify the reference point set Jmin =
{j : argminj(pj)} having minimum pj . In case of multiple such reference points, one
(j∗ ∈ Jmin) is chosen at random. If pj∗ = 0 (meaning that there is no associated Pt+1
member to the reference point j∗), two scenarios can occur. First, there exists one or
more members in front Fl that are already associated with the reference point j∗. In
this case, the one having the shortest perpendicular distance from the reference line is
added to Pt+1. The count pj∗ is then incremented by one. Second, the front Fl does
not have any member associated with the reference point j∗. In this case, the reference
point is excluded from further consideration for the current generation. In the event of
pj∗ ≥ 1 (meaning that already one member associated with the reference point exists), a
randomly chosen member, if exists, from front Fl that is associated with the reference
point Fl is added to Pt+1. If such a member exists, the count pj∗ is incremented by one.
After pj counts are updated, the procedure is repeated for a total of K times to increase
the population size of Pt+1 to N .

133

5. Evaluation

Search Operators. In each search algorithm, the variation operators play the key role
of moving within the search space with the aim of driving the search towards optimal
solutions. We describe in the following the two main used search operators of crossover
and mutation (cf. Section 2.2.2).

Crossover. When two parent individuals are selected, a random cut point is determined
to split them into two sub-vectors. The crossover operator selects a random cut-point in
the interval [0, minLength] where minLength is the minimum length between the two
parent chromosomes. Then, crossover swaps the sub-vectors from one parent to the other.
Thus, each child combines information from both parents. This operator must enforce
the maximum length limit constraint by eliminating randomly some modularization
operations. For each crossover, two individuals are selected by applying the SUS selection.
Even though individuals are selected, the crossover happens only with a certain probability.
The crossover operator allows creating two offspring P1′ and P2′ from the two selected
parents P1 and P2. It is defined as follows. A random position k is selected. The first k
operations of P1 become the first k elements of P1′. Similarly, the first k operations of
P2 become the first k operations of P2′. Then, the remaining elements of P1 become
the remaining elements of P2′ and the remaining elements of P2 become the remaining
elements of P1′.

Mutation. The mutation operator consists of randomly changing one or more dimensions
(modularization operator) in the solution. Given a selected individual, the mutation
operator first randomly selects some positions in the vector representation of the individual.
Then, the selected dimensions are replaced by other operation. When applying the
mutation and crossover, we used also a repair operator to delete duplicated operations
after applying the crossover and mutation operators.

Converting Modularization Models to ATL Files

After retrieving the solutions produced by the search, each module is automatically
translated back to an ATL unit, resulting in n ATL files. Modules only containing helper
functions are translated into libraries and modules which have at least one rule are
translated into normal ATL modules. This translation can be done using the unique
naming in our modularization model and the original ATL transformation. The whole
transformation is again implemented as a HOT.

In the next section we evaluate our approach to modularize ATL transformations.

5.3.6 Evaluation

In order to evaluate our approach through the ATL instantiation, we answer four research
questions regarding the need for such an approach, the correctness of the solutions and
the usability of the modularization results. In the next subsections, we describe our
research questions and the seven case studies and metrics we use to answer these questions.
Finally, we discuss the answer to each research question and overall threats to validity of
our approach.

134

5.3. Transformation Modularization

Research Questions

Our study addresses the following four research questions. With these questions, we
aim to justify the use of our metaheuristic approach, compare the use of NSGA-III with
other algorithms (Random Search, ε-MOEA and SPEA2), argue about the correctness of
the modularization results retrieved from our approach and validate the usability of our
approach for software engineers in a real-world setting.

RQ1 Search Validation: Do we need an intelligent search for the transformation mod-
ularization problem? To validate the problem formulation of our modularization
approach, we compared our many-objective formulation with Random Search
(RS). If Random Search outperforms a guided search method, we can conclude
that our problem formulation is not adequate. Since outperforming a random
search is not sufficient, the question is related to performance of NSGA-III, and
a comparison with other mutli-objective algorithms.

RQ2 Search Quality: How does the proposed many-objective approach based on NSGA-
III perform compared to other multi-objective algorithms? Our proposal is the
first work that tackles the modularization of model transformation programs.
Thus, our comparison with the state of the art is limited to other multi-objective
algorithms using the same formulation. We select two algorithms, ε-MOEA and
SPEA2, to do this comparison. We have also compared the different algorithms
when answering to the next questions.

RQ3.1 Automatic Solution Correctness: How close are the solutions generated by our
approach to solutions a software engineer would develop? To see whether our
approach produces sufficiently good results, we compare our generated set of
solutions with a set of manually created solutions by developers based on precision
and recall.

RQ3.2 Manual Solution Correctness: How good are the solutions of our approach based
on manual inspection? While comparison with manually created solutions yields
some insight into the correctness of our solutions, good solutions which have
an unsuspected structure would be ignored. In fact, there is no unique good
modularization solution, thus a deviation with the expected manually created
solutions could be just another good possibility to modularize the ATL program.
Therefore, we perform a user study in order to evaluate the coherence of our
generated solutions by manually inspecting them.

The goal of the following two questions is to evaluate the usefulness and the effectiveness
of our modularization tool in practice. We conducted a non-subjective evaluation with
potential developers who can use our tool related to the relevance of our approach for
software engineers:

135

5. Evaluation

RQ4.1 Usability in Bug Fixing: How useful are modularizations when identifying or
fixing bugs in a transformation? Identifying and fixing bugs in a transformation is
a common task in MDE, where transformations are seen as development artifacts.
As such, they might be developed incrementally and by many people, leading to
potential bugs in the transformation. We investigate whether the performance of
this task can be improved through modularization.

RQ4.2 Usability in Metamodel Evolution: How useful are modularizations when adapting
transformation rules due to metamodel changes? During the life-cycle of an
application, the input and/or output metamodel of a model transformation
might change, e.g., due to new releases of the input or output language. When
the input or output metamodel changes, the model transformation has to be
adapted accordingly to not alter the system semantics. We evaluate whether the
adaptation of the transformation rules can be improved through modularization.

In order to answer these research questions we perform experiments to extract several
metrics using seven case studies and two user studies. The complete experimental setup
is summarized in the next section.

Experimental Setup

Case Studies. Our research questions are evaluated using the following seven case
studies. Each case study consists of one model transformation and all the necessary
artifacts to execute the transformation, i.e., the input and output metamodels and a
sample input model. Most of the case studies have been taken from the ATL Zoo [Ecl], a
repository where developers can upload and describe their ATL transformations.

CS1 Ecore2Maude: This transformation takes an Ecore metamodel as input and
generates a Maude specification. Maude [CDE+07] is a high-performance reflective
language and system supporting both equational and rewriting logic specification
and programming for a wide range of applications.

CS2 OCL2R2ML: This transformation takes OCL models as input and produces
R2ML (REWERSE I1 Markup Language) models as output. Details about this
transformation are described in [MGG+06].

CS3 R2ML2RDM: This transformation is part of the sequence of transformations to
convert OCL models into SWRL (Semantic Web Rule Language) rules [Mil07]. In
this process, the selected transformation takes a R2ML model and obtains an RDM
model that represents the abstract syntax for the SWRL language.

CS4 XHTML2XML: This transformation receives XHTML models conforming to the
XHTML language specification version 1.1 as input and converts them into XML
models consisting of elements and attributes.

136

5.3. Transformation Modularization

CS5 XML2Ant: This transformation is the first step to convert Ant to Maven. It acts
as an injector to obtain an xmi file corresponding to the Ant metamodel from an
XML file.

CS6 XML2KML: This transformation is the main part of the KML (Keyhole Markup
Language) injector, i.e., the transformation from a KML file to a KML model.
Before running the transformation, the KML file is renamed to XML and the KML
tag is deleted. KML is an XML notation for expressing geographic annotation and
visualization within Internet-based, two-dimensional maps and three-dimensional
Earth browsers.

CS7 XML2MySQL: This transformation is the first step of the MySQL to KM3
transformation scenario, which translates XML representations used to encode the
structure of domain models into actual MySQL representations.

We have selected these case studies due to their difference in size, structure and number
of dependencies among their transformation artifacts, i.e., rules and helpers. Table 5.3
summarizes the number of rules (R), the number of helpers (H), the number of dependen-
cies between rules (DRR), the number of dependencies between rules and helpers (DRH)
and the number of dependencies between helpers (DHH) for each case study.

Table 5.3: Size and Structure of All Case Studies

ID Name R H DRR DRH DHH

CS1 Ecore2Maude 40 40 27 202 23
CS2 OCL2R2ML 37 11 54 25 8
CS3 R2ML2RDM 58 31 137 68 17
CS4 XHTML2XML 31 0 59 0 0
CS5 XML2Ant 29 7 28 33 5
CS6 XML2KML 84 5 0 85 2
CS7 XML2MySQL 6 10 5 16 5

Evaluation Metrics. To answer our research questions, we use several metrics de-
pending on the nature of the research question.

Search Performance Metrics: In order to evaluate research questions RQ1 and RQ2,
we compare the results of NSGA-III with Random Search, ε-MOEA and SPEA2 based
on Hypervolume and Inverted Generational Distance for all case studies.

• Hypervolume (IHV) corresponds to the proportion of the objective space that
is dominated by the Pareto front approximation returned by the algorithm and
delimited by a reference point. The larger the proportion, the better the algorithm
performs. It is interesting to note that this indicator is Pareto dominance compliant

137

5. Evaluation

and can capture both the convergence and the diversity of the solutions. Therefore,
IHV is a common indicator used when comparing different search-based algorithms.

• Inverse generational distance (IGD) is a convergence measure that corresponds to
the average Euclidean distance between the Pareto front approximation produced
by the algorithm and the reference front. We can calculate the distance between
these two fronts in an M -objective space as the average M -dimensional Euclidean
distance between each solution in the approximation and its nearest neighbor in
the reference front. Better convergence is indicated by lower values.

Solution Correctness Metrics: In order to evaluate research questions RQ3.1 and
RQ3.2, we inspect our solutions with respect to manual solutions and as standalone
solutions. Specifically, for RQ3.1, we automatically calculate the precision (PR) and recall
(RE) of our generated solutions given a set of manual solutions. Since there are many
different manual solutions, only the best precision and recall value is taken into account,
as it is sufficient to conform to at least one manual solution. For answering RQ3.2
with the manual validation, we asked groups of potential users to evaluate, manually,
whether the suggested solutions are feasible and make sense given the transformation.
We therefore define the manual precision (MP) metric.

• To automatically compute precision (PR) and recall (RE), we extract pair-wise the
true-positive values (TP), false-positive values (FP) and false-negative values (FN)
of each module. TPs are transformation artifacts which are in the same module
and should be, FPs are artifacts which are in the same module but should not be
and FNs are artifacts which should be together in a module but are not:

PR = T P
T P +F P ∈ [0, 1]

RE = T P
T P +F N ∈ [0, 1]

Higher precision and recall rates correspond to results that are closer to the expected
solutions and are therefore desired.

• Manual precision (MP) corresponds to the number of transformation artifacts, i.e.,
rules and helpers, which are modularized meaningfully, over the total number of
transformation artifacts. MP is given by the following equation:

MP = |coherent artifacts|
|all artifacts| ∈ [0, 1]

A higher manual precision indicates more coherent solutions and therefore solutions
that are closer to what a user might expect.

Modularization Usability Metrics: In order to evaluate research questions RQ4.1
and RQ4.2, we consider two dimensions of usability: the estimated difficulty and the
time that is needed to perform each task. These tasks are related to bug fixing in the
transformations (T1) and adapting the transformations due to metamodel changes (T2).

138

5.3. Transformation Modularization

• Subjects in the usability study are able to rate the difficulty to perform a certain
task (DF) using a five-point scale. The values of this scale are very difficult, difficult,
neutral, easy and very easy. The more easy or less difficult in the rating, the better
the result.

• In order to get a better estimate about the efficiency a modularized transformation
can provide, we ask our study subjects to record the time that is needed to perform
each of the tasks. The time unit we use is minutes and the less time is needed, the
better the result.

Statistical Tests. Since metaheuristic algorithms are stochastic optimizers, they can
provide different results for the same problem instance from one run to another. For this
reason, our experimental study is performed based on 30 independent simulation runs for
each case study and the obtained results are statistically analyzed by using the Mann-
Whitney U test [AB11] with a 99% significance level (α = 0.01). The Mann-Whitney U
test [MW47], equivalent to the Wilcoxon rank-sum test, is a nonparametric test that
allows two solution sets to be compared without making the assumption that values are
normally distributed. Specifically, we test the null hypothesis (H0) that two populations
have the same median against the alternative hypothesis (H1) that they have different
medians. The p-value of the Mann-Whitney U test corresponds to the probability of
rejecting the H0 while it is true (type I error). A p-value that is less than or equal to α
means that we accept H1 and we reject H0. However, a p-value that is strictly greater
than α means the opposite.

For each case study, we apply the Mann-Whitney U test for the results retrieved by
the NSGA-III algorithm and the results retrieved by the other algorithms (Random
Search, ε-MOEA and SPEA2). This way, we determine whether the performance between
NSGA-III and the other algorithms is statistically significant or simply a random result.

User Studies. In order to answer research questions RQ3.1 to RQ4.2, we perform two
studies, a correctness study for RQ3.1 and RQ3.2 and a usability study for RQ4.1 and
RQ4.2. The correctness study retrieves the precision, recall and manual precision of
our generated solutions in order to evaluate how good these solutions are. The usability
study consists of two tasks that aim to answer the question of usefulness of modularized
transformations.

Solution Correctness Study: For RQ3.1, we produce manual solutions to calculate
the precision and recall of our automatically generated solutions. These manual solutions
are developed by subjects from the University of Michigan which have knowledge of ATL
but are not affiliated with this thesis. Our study involved 23 subjects from the University
of Michigan. Subjects include 13 undergraduate/master students in Software Engineering,
8 PhD students in Software Engineering, 2 post-docs in Software Engineering. 9 of them
are females and 14 are males. All the subjects are volunteers and familiar with MDE and
ATL. The experience of these subjects on MDE and modeling ranged from 2 to 16 years.
All the subjects have a minimum of 2 years experience in industry (Software companies).

139

5. Evaluation

For RQ3.2 we need transformation engineers to evaluate our generated solutions, indepen-
dent from any solution they would provide. More precisely, we asked the 23 subjects from
the University of Michigan to inspect our solutions. For each case study and algorithm,
we select one solution using a knee point strategy [BBSG11]. The knee point corresponds
to the solution with the maximal trade-off between all fitness functions, i.e., a vector of
the best objective values for all solutions. In order to find the maximal trade-off, we
use the trade-off worthiness metric proposed by Rachmawati and Srinivasan [RS09] to
evaluate the worthiness of each solution in terms of objective value compromise. The
solution nearest to the knee point is then selected and manually inspected by the subjects
to find the differences with an expected solution. The subjects were asked to justify their
evaluation of the solutions and these justifications are reviewed by the organizers of the
study. Subjects were aware that they are going to evaluate the quality of our solutions,
but were not told from which algorithms the produced solutions originate. Based on
the results retrieved through this study, we calculate the manual precision metric as
explained in Section 5.3.6.

Modularization Usability Study: In order to answer RQ4.1 and RQ4.2, we perform
a user study using two of the seven case studies: Ecore2Maude (CS1) and XHTML2XML
(CS4). These two case studies have been selected because they represent a good diversity
of case studies as they differ in their size and structure. The Ecore2Maude transformation
has a balanced and high number of rules and helpers and quite a high number of
dependencies of all kinds. The XHTML2XML transformation, on the other hand, only
consists of rules and has a comparatively low number of rule dependencies. In this
study, subjects are asked to perform two tasks (T1 and T2) for each case study and
version, once for the original, unmodularized transformation and once for the modularized
transformation:

T1 Fixing a Transformation: The first task (T1) is related to fixing a model
transformation due to bugs that have been introduced throughout the developing
cycle. Such bugs usually alter the behavior of a transformation without breaking
it, i.e., the transformation still executes but produces a wrong output. To simulate
such a scenario, we introduced two bugs into the XHTML2XML transformation
and four bugs into the Ecore2Maude transformation since it is larger. The bugs
that are introduced in the original and modularized versions of the transformation
are of equal nature, e.g., a name change, an addition of values or the change of a
rule binding, in order to avoid distorting the results for the comparison. To gain
more insight in our evaluation, we split this task into two subtasks: the task of
locating the bugs (T1a) and the task of actually fixing the bugs (T1b).

T2 Adapting a Transformation: The second task (T2) we ask our subjects to
perform is to adapt a model transformation due to changes introduced in the
input or output metamodels. These changes can occur during the lifecycle of a
transformation when the metamodels are updated, especially when the metamodels
are not maintained by the transformation engineer. In many cases, these changes

140

5.3. Transformation Modularization

break the transformation, i.e., make it not compilable and therefore not executable.
To simulate such a scenario, we changed three elements in the XHTML metamodel
and two elements in the Maude metamodel. The changes are again equal in nature.

The usability study was performed with software engineers from the Ford Motor Company
and students from the University of Michigan. The software engineers were interested
to participate in our experiments since they are planning to adapt our modularization
prototype for transformation programs implemented for car controllers. Based on our
agreement with the Ford Motor Company, only the results for the ATL case studies
described previously can be shared in this evaluation. However, the evaluation results of
the software engineers from Ford on these ATL programs are discussed in this section. In
total, we had 32 subjects that performed the tasks described above including 9 software
engineers from the IT department and innovation center at Ford and 23 participants
from the University of Michigan (described previously). All the subjects are volunteers
and each subject was asked to fill out a questionnaire which contained questions related
to background, i.e., their persona, their level of expertise in software engineering, MDE
and search-based software engineering. To rate their expertise in different fields, subjects
could select from none, very low, low, normal, high and very high. After each task, in
order to evaluate the usability of the modularized transformations against the original,
unmodularized transformations, subjects also had to fill out the experienced difficulty to
perform the task and the time they spent to finish the task.

For our evaluation, we divided the 32 subjects into four equal-sized groups, each group
containing eight people. The first group (G1) consists of most of software engineers
from Ford, the second and third groups (G2 and G3) are composed of students from the
University of Michigan and the fourth group (G4) contains one software engineer from
Ford, 2 post-docs and 5 PhD students from the University of Michigan. All subjects have
high to very high expertise in software development, model engineering and software
modularization and on average a little bit less experience in model transformations and
specifically ATL. To avoid the influence of the learning effect, no group was allowed to
perform the same task on the same case study for the modularized and unmodularized
versions. The actual assignment of groups to tasks and case studies is summarized in
Table 5.4.

Table 5.4: Task and Case Study Group Assignment

CS Task Original Modularized
CS1 Task 1 Group 1 Group 3

Task 2 Group 2 Group 4
CS4 Task 1 Group 3 Group 1

Task 2 Group 4 Group 2

141

5. Evaluation

Parameter Settings. In order to retrieve the results for each case study and algorithm,
we need to configure the execution process and the algorithms accordingly. To be precise,
all our results are retrieved from 30 independent algorithm executions to mitigate the
influence of randomness. In each execution run, a population consists of 100 solutions
and the execution finishes after 100 iterations, resulting in a total number of 10, 000
fitness evaluations.

To configure all algorithms except Random Search, which creates a new, random popula-
tion in each iteration, we need to specify the evolutionary operators the algorithms are
using. As a selection operator, we use deterministic tournament selection with n = 2. De-
terministic tournament selection takes n random candidate solutions from the population
and selects the best one. The selected solutions are then considered for recombination. As
recombination operator, we use the one-point crossover for all algorithms. The one-point
crossover operator splits two parent solutions, i.e., orchestrated rule sequences, at a
random position and merges them crosswise, resulting in two, new offspring solutions.
The underlying assumption here is that traits which make the selected solutions fitter
than other solutions will be inherited by the newly created solutions. Finally, we use
a mutation operator to introduce slight, random changes into the solution candidates
to guide the search into areas of the search space that would not be reachable through
recombination alone. Specifically, we use our own mutation operator that exchanges one
rule application at a random position with another with a mutation rate of five percent.
With these settings, the NSGA-III algorithm is completely configured. However, the
ε-MOEA takes an additional parameter called epsilon that compares solutions based
on ε-dominance [LTDZ02] to provide a wider range of diversity among the solutions in
the Pareto front approximation. We set this parameter to 0.2. Furthermore, in SPEA2
we can control how many offspring solutions are generated in each iteration. For our
evaluation, we produce 100 solutions in each iteration, i.e., the number of solutions in
the population.

As fitness function we use the four objectives described in Section 5.3.4. As a reminder,
these objectives are the number of modules in the transformation (NMT), the difference
between the number of transformation artifacts, i.e., rules and helpers, in the module
with the lowest number of artifacts and the module with the highest number of artifacts
(DIF), the cohesion ratio (COH) and the coupling ratio (COP). The initial objective
values for each case study are listed in Table 5.5. The arrow next to the objective name
indicates the direction of better values.

Result Analysis

Results for RQ1. In order to answer RQ1 and therefore evaluate whether a sophis-
ticated approach is needed to tackle the model transformation problem, we compare
the search performance of our approach based on NSGA-III with the performance of
Random Search (RS). If RS outperforms our approach, we can conclude that there is
no need to use a sophisticated algorithm like NSGA-III. Comparing an approach with
RS is a common practice when introducing new search-based problem formulations in

142

5.3. Transformation Modularization

Table 5.5: Initial Objective Values for All Case Studies

ID Name NMT ↓ DIF ↓ COH ↑ COP ↓
CS1 Ecore2Maude 1 0 0.15830 0.0
CS2 OCL2R2ML 1 0 0.17469 0.0
CS3 R2ML2RDM 1 0 0.79269 0.0
CS4 XHTML2XML 1 0 0.06344 0.0
CS5 XML2Ant 1 0 0.31609 0.0
CS6 XML2KML 1 0 0.30238 0.0
CS7 XML2MySQL 1 0 0.48888 0.0

order to validate the search effort. Specifically, in our evaluation we investigate the
Hypervolume indicator (IHV) and the Inverted Generational Distance indicator (IGD)
on 30 independent algorithm runs for all case studies.

The results of our evaluation are depicted in Figure 5.17 using box plots obtained for the
metrics of the two algorithms. Each box plot shows the minimum value of the indicator
(shown by the lower whisker), the maximum value of the indicator (shown by the upper
whisker), the second quantile (lower box), the third quantile (upper box), the median
value (horizontal line separating the boxes) and the mean value of the indicator (marked
by an 'x'). We can clearly see that for the Hypervolume indicator, RS has lower and
therefore worse values than NSGA-III for all case studies. In order to investigate these
results, we have deployed the Mann-Whitney U test with a significance level of 99%. As
a result, we find a statistical difference between NSGA-III and RS for all case studies,
except XHTML2XML. One reason for this result might be that the XHTML2XLM case
study has a rather simple structure compared to most of the other case studies. To further
investigate the differences between RS and NSGA-III we calculate the effect size for both
indicators. To be precise, we calculate the effect size using Cohen’s d statistic [Coh88], cf.
Section 4.7. As a reminder, Cohen’s d is defined as the difference between the two mean
values x1 − x2 divided by the mean squared standard deviation calculates by

√
(s2

1 + s2
2)/2.

The effect size is considered: (i) small if 0.2 ≤ d < 0.5, (ii) medium if 0.5 ≤ d < 0.8, or
(iii) large if d ≥ 0.8. Following this classification, all differences for Hypervolume are
considered large.

Interestingly, when we compare RS and NSGA-III for the Inverted Generational Distance
(IGD) indicator the same way, the results are different. Please note that for IGD,
lower values are considered better, as they indicate an overall better convergence of the
algorithm. For IGD, there is no significant difference between the results of NSGA-III
and RS, except for the simplest case study, XML2MySQL, where also the effect size
yields a large difference. At the same time, in none of the cases the results of RS were
significantly better due to the huge number of possible solutions to explore (high diversity
of the possible remodularization solutions). Also interesting is the fact that RS produces
solutions with a much lower variance of values.

143

5. Evaluation

IHV IGD

C
S1

: E
co

re
2

M
au

d
e

C
S2

: O
C

L2
R

2
M

L
C

S3
: R

2
M

L2
R

D
M

C
S4

: X
H

TM
L2

X
M

L
C

S5
: X

M
L2

A
n

t
C

S6
: X

M
L2

K
M

L
C

S7
: X

M
L2

M
yS

Q
L

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

0.00
0.10
0.20
0.30
0.40
0.50

SPEA2 eMOEA NSGA-III RS

0.000

0.010

0.020

0.030

SPEA2 eMOEA NSGA-III RS

Figure 5.17: Hypervolume (IHV) and Inverted Generational Distance (IGD) Indicator
Values Retrieved from 30 Independent Algorithm Runs

144

5.3. Transformation Modularization

While IHV and IGD capture the efficiency of the search, we are also interested in the
solutions found by each algorithm. To be more precise, we look at the mean value of
each objective value and its standard deviation. The results are depicted in Table 5.6, at
the bottom two lines of each case study. The arrow next to the objective name indicates
the direction of better values, e.g., we aim to minimize the number of modules in the
transformation (NMT). As we can see from the table, in the median case, the results of
NSGA-III are better for the number of modules, coupling and cohesion by a factor of
around 2 in some cases. The only exception is the difference between the module with
the least and most rules and helpers, where RS yields lower values in most case studies.
This may be explained through the way NSGA-III tries to balance the optimization of
all objective values and by doing so yields good results for all objectives, but may be
outperformed when looking only at single objectives.

Table 5.6: Median Objective Values and Standard Deviations Retrieved from 30 Indepen-
dent Algorithm Runs

CS Approach NMT ↓ DIF ↓ COH ↑ COP ↓

CS1

SPEA2 28 10.09 40 15.08 1.89 1.22 31.14 27.45
ε-MOEA 21 7.81 45 12.00 2.72 1.42 10.37 13.87
NSGA-III 23 7.96 44 12.48 3.72 1.72 13.10 11.87
RS 35 4.26 28 5.28 2.66 1.26 49.66 19.62

CS2

SPEA2 14 4.96 27 8.03 2.68 1.38 3.91 5.15
ε-MOEA 13 4.51 28 7.45 3.44 1.17 0.84 3.75
NSGA-III 13 2.94 23 3.77 5.23 1.03 3.09 2.31
RS 19 3.56 21 4.72 2.56 1.15 5.80 4.58

CS3

SPEA2 30 9.76 49 14.76 1.12 0.87 12.17 12.88
ε-MOEA 27 8.09 50 12.60 1.28 0.91 2.83 6.20
NSGA-III 25 3.54 46 6.56 3.22 1.19 7.31 5.84
RS 39 4.82 32 5.65 1.45 1.01 19.13 12.24

CS4

SPEA2 7 2.76 21 3.85 0.78 0.54 1.35 2.80
ε-MOEA 7 2.74 20 3.66 0.57 0.36 0.36 2.01
NSGA-III 7 3.00 18 4.38 1.06 0.66 0.43 2.64
RS 6 2.31 22 2.97 0.52 0.34 0.31 1.87

CS5

SPEA2 10 3.99 19 6.58 1.55 0.86 4.95 4.30
ε-MOEA 8 3.36 19 5.48 1.76 1.01 2.06 2.80
NSGA-III 9 2.18 18 3.89 2.76 0.98 3.05 2.05
RS 13 3.03 15 3.98 1.53 0.89 6.60 4.67

CS6

SPEA2 23 9.38 57 13.70 0.73 0.69 10.11 8.30
ε-MOEA 18 7.00 59 10.32 1.50 0.85 7.30 5.88
NSGA-III 19 3.25 55 6.82 2.08 0.96 11.13 4.63
RS 30 5.30 47 6.92 1.00 0.82 19.17 6.73

145

5. Evaluation

CS7

SPEA2 5 1.78 6 2.84 2.93 1.30 1.50 2.23
ε-MOEA 4 1.72 7 2.70 3.04 1.16 1.33 1.84
NSGA-III 4 1.75 6 3.16 3.42 1.48 1.05 2.16
RS 6 1.73 5 2.61 2.23 1.16 3.17 2.35

In conclusion, we determine that the model transformation problem is complex and
warrants the use of a sophisticated search algorithm. Since in none of the cases RS
significantly outperforms NSGA-III, while on the other hand there are many instances
where NSGA-III dominates RS, we further infer that our many-objective formulation
surpasses the performance of random search thus justifying the use of our approach and
metaheuristic search.

Results for RQ2. To answer RQ2, we compared NSGA-III with two other algorithms,
namely ε-MOEA and SPEA2, using the same quality indicators as in RQ1: Hypervolume
(IHV) and the Inverted Generational Distance (IGD). All results are retrieved from 30
independent algorithm runs and are statistically evaluated using the Mann-Whitney U
test with a significance level of 99%.

A summary of the results is illustrated in Figure 5.17. As we can see, NSGA-III and
ε-MOEA produce better results than SPEA2 for the Hypervolume indicator. In fact,
the statistical analysis shows that NSGA-III produces significantly better results than
SPEA2 and is on par with ε-MOEA for most case studies. While ε-MOEA has a more
efficient search for CS1 and CS6, NSGA-III is the best algorithm for CS7. A slightly
reversed picture is shown for the IGD indicator, where ε-MOEA always produces the
best results and NSGA-III produces worse results than SPEA2. An exception to that is
CS4 where ε-MOEA and NSGA-III are equally good and SPEA2 is worse, and CS5 and
CS7 where NSGA-III and SPEA2 produce statistically equivalent results. One possible
explanation for this might be that these case studies are small compared to the remaining
ones. According to Cohen’s d statistic, the magnitude of all differences is large.

Investigating the results further on basis of the retrieved objective values (cf. Table 5.6),
we see that NSGA-III and ε-MOEA produce similar median values and standard deviations
for most objectives and case studies, closely followed by SPEA2. For NMT, the difference
between NSGA-III and ε-MOEA is very small, while for DIF NSGA-III produces better
median results for all case studies. The reverse is true for COH and COP where ε-MOEA
produces the best results.

In conclusion, we can state that NSGA-III produces good results, but is occasionally
outperformed by ε-MOEA. This is interesting as NSGA-III has already been applied
successfully for the remodularization of software systems [MKS+15]. However, in the
case of software remodularization, the authors used up to seven different objectives in the
fitness function which makes the difference of using many-objective algorithms compared
to multi-objective algorithms more evident. Therefore, we think that NSGA-III is still a
good choice of algorithm for our model transformation problem as it allows the extension

146

5.3. Transformation Modularization

of the number of objectives without the need to switch algorithms. Nevertheless, we also
encourage the use of other algorithms. If necessary, only little work is needed to use our
approach with a different algorithm [FTW15].

Results for RQ3.1. In order to provide a quantitative evaluation of the correctness
of our solutions for RQ3.1, we compare the produced modularizations of NSGA-III,
ε-MOEA, SPEA2 and RS with a set of expected modularization solutions. Since no such
set existed prior to this work, the expected solutions have been developed by the subjects
of our experiments (cf. Section 5.3.6). We had a consensus between all the groups of
our experiments when considering the best manual solution for every program. In fact,
every participant proposed a possible modularization solution. Then, after rounds of
discussions, we selected the best one for every ATL program based on the majority of the
votes. Specifically, to quantify the correctness of our solutions, we calculate the precision
and recall of our generated solutions as described previously.

0

0.2

0.4

0.6

0.8

1

CS1 CS2 CS3 CS4 CS5 CS6 CS7

PR-SPEA2 PR-eMOEA PR-NSGAIII PR-RS

Figure 5.18: Qualitative Correctness Evaluation Using Precision (PR)

Our findings for the average precision (PR) for each algorithm and for all case studies
are summarized in Figure 5.18. From these results, we can see that, independent of
the case study, NSGA-III has the solutions with the highest precision value, while RS
produces solutions that are rather far away from what can be expected. More precisely,
our approach based on NSGA-III produces solutions with an average of 89% precision
and significantly outperforms the solutions found by the other algorithms. The solutions
found by ε-MOEA have an average precision of 75% and the solutions found by SPEA2
have an average precision of 73%. The modularizations produced by RS have the least
precision with an average of 43% which cannot be considered good. Based on the average
and individual values for all case studies, a ranking of the algorithms would be NSGA-III
on the first place, ε-MOEA on second place, SPEA2 on third place, and RS on the last
place.

A similar result can be seen for recall (RE) depicted in Figure 5.19, where NSGA-III
produces solutions with the highest values, followed by ε-MOEA and SPEA2, and RS
produces solutions with the lowest values. Particularly, the average recall of the solutions

147

5. Evaluation

found across all case studies by NSGA-III is 90%, for ε-MOEA it is 82%, for SPEA2 it is
72% and for RS it is 48%. The performance of all algorithms is stable independent of the
case study size, the highest standard deviations are RS and SPEA2 with 4%. As with
precision, the values produced by the sophisticated algorithms can be considered good
whereas RS solutions have a too small recall to be considered good. Based on the average
and individual values for all case studies, a ranking between the algorithms would look
the same as for the precision value.

0

0.2

0.4

0.6

0.8

1

CS1 CS2 CS3 CS4 CS5 CS6 CS7

RE-SPEA2 RE-eMOEA RE-NSGAIII RE-RS

Figure 5.19: Qualitative Correctness Evaluation Using Recall (RE)

Concluding, we state based on our findings that our approach produces good modular-
ization solutions for all cases studies in terms of structural improvements compared to
a set of manually developed solutions. In fact, NSGA-III produces the solutions with
the highest precision and recall in all case studies compared to the other sophisticated
algorithms, ε-MOEA and SPEA2. Furthermore, all sophisticated algorithms significantly
outperform RS. It is interesting to note that the quality of the solutions and the ratio
among the algorithms are quite stable across all case studies.

Results for RQ3.2. In RQ3.2, we focus more on the qualitative evaluation of the
correctness of our solutions by gaining feedback from potential users in an empirical
study (cf. Section 5.3.6) as opposed to the more quantitative evaluation in RQ3.1. To
effectively collect this feedback, we use the manual precision metric which corresponds to
the number of meaningfully modularized transformation artifacts as described previously.

The summary of our findings based on the average MP for all considered algorithms
and for all case studies is depicted in Figure 5.20. From these results, we can see that
the majority of our suggested solutions can be considered meaningful and semantically
coherent. In fact, for NSGA-III, the average manual precision for all case studies is
around 96% and for the smaller case studies, i.e., XML2Ant (CS5) and XML2MySQL
(CS7), even 100%. This result is significantly higher than that of the other algorithms.
To be precise, ε-MOEA yields solutions with an average of 85% MP and SPEA2 has an
average of 77% MP over all case studies. On the other hand, the solutions found by RS

148

5.3. Transformation Modularization

only yield solutions with an average of 49% and the worst being 44% for the R2ML2RDM
case study (CS3).

0

0.2

0.4

0.6

0.8

1

CS1 CS2 CS3 CS4 CS5 CS6 CS7

MP-SPEA2 MP-eMOEA MP-NSGAIII MP-RS

Figure 5.20: Qualitative Correctness Evaluation Using Manual Precision (MP)

In conclusion, we state that our many-objective approach produces meaningfully modular-
ized transformation solutions with respect to the MP metric. While other sophisticated
algorithms also yield satisfactory results that can be considered good, our approach based
on NSGA-III clearly outperforms these algorithms.

Results for RQ4.1. In order to answer RQ4.1 to evaluate how useful modularizations
are when faced with the task of fixing bugs in a transformation, we have performed a
user study as described previously. In this study, subjects first needed to locate several
bugs in the transformation (T1a) and then fix those bugs by changing the transformation
(T1b). Both subtasks were performed for the original and the modularized version of
the Ecore2Maude (CS1) and XHTML2XML (CS4) case studies. For the evaluation, we
focused on the experienced difficulty and the time that was spent to perform the task.

The results retrieved from the questionnaires for the experienced complexity to perform
the task are depicted in Figure 5.21, CS1-T1a Original to CS4-T1b Modularized. In the
figure we see how many of the eight people in each group have rated the experienced
difficulty from very easy to very difficult. As can be seen, the modularized version only
received ratings between very easy and neutral, while the original, unmodularized version
received only ratings from neutral to very difficult. This is true for both subtasks, i.e.,
locating a bug and actually fixing the bug.

The second dimension we investigate to answer RQ4.1 is the time that is spent to perform
the task. To gain this data, subjects were asked to record their time in minutes. The
results of this part of the study are depicted in Figure 5.22, CS1-T1a Original to CS4-T1b
Modularized. In the figure, each subtask performed by a group for a specific case study
and a specific version is shown as a box plot indicating the minimum and maximum time
recorded by each member of the group as well as the respective quartiles. The mean
value is marked by an 'x'. As we can see, there is a significant difference between the
time needed to perform the tasks on an unmodularized transformation compared to a

149

5. Evaluation

0 1 2 3 4 5 6 7 8

CS1-T1a Original
CS1-T1a Modularized

CS4-T1a Original
CS4-T1a Modularized

CS1-T1b Original
CS1-T1b Modularized

CS4-T1b Original
CS4-T1b Modularized

CS1-T2 Original
CS1-T2 Modularized

CS4-T2 Original
CS4-T2 Modularized

Participants

very easy easy neutral difficult very difficult

Figure 5.21: Task Difficulty Evaluation for Ecore2Maude (CS1) and XHTML2XML
(CS4): Original vs Modularized Transformations

modularized transformation. In fact, the data shows that in all cases, the time needed for
the modularized version is around 50% and less of the time needed in the unmodularized
version. This seems to be true for both subtasks, even though the distribution within
one group may vary.

Concluding, we state that the results clearly show that, independent of the group that
performed the evaluation and independent of the respective case study, the task of bug
fixing in a model transformation is much easier and faster with a modularized model
transformation than with an unmodularized transformation. In this aspect, we think
our approach can help model engineers to automate the otherwise complex task of
transformation modularization and therefore increase the investigated aspects of the
usability when working with model transformations.

Results for RQ4.2. To answer RQ4.2, which is concerned with the adaptability of
model transformations due to metamodel changes, we have performed a user study. In
this part of the study, subjects were asked to adapt a model transformation after the input
or output metamodel has been changed. The necessary changes have been introduced
by us, as described previously. As for RQ4.1, the task was performed for the original
and the modularized versions of the Ecore2Maude (CS1) and XHTML2XML (CS4) case
studies and we focused on the experienced difficulty and the necessary time.

The results retrieved for the experienced complexity are depicted in Figure 5.21, CS1-T2
Original to CS4-T2 Modularized. Similar to what we have seen for the task of fixing
a transformation, there is a significant difference between performing this task for the
original, unmodularized transformation and for the modularized transformation. The
modularized version received ratings between very easy and neutral while the original,

150

5.3. Transformation Modularization

unmodularized version received ratings from neutral to very difficult. Compared to the
bug fixing task, the results may suggest that the gain in modularizing transformations
when adapting transformations is a bit higher. This difference, however, may be caused
by the personal interpretation of a few subjects in one group and cannot be said to be
statistically significant.

0 5 10 15 20 25 30 35 40

CS1-T1a Original

CS1-T1a Modularized

CS4-T1a Original

CS4-T1a Modularized

CS1-T1b Original

CS1-T1b Modularized

CS4-T1b Original

CS4-T1b Modularized

CS1-T2 Original

CS1-T2 Modularized

CS4-T2 Original

CS4-T2 Modularized

Minutes

Figure 5.22: Task Time Evaluation for Ecore2Maude (CS1) and XHTML2XML (CS4):
Original vs Modularized Transformations

The time the subjects spent on adapting the transformation for each case study and
version is depicted in Figure 5.22, CS1-T2 Original to CS4-T2 Modularized. Here
we can see the same trend as with the bug fixing task: a significant reduced time of
around 50% and more for the modularized version of the transformation compared to
the unmodularized version. Interestingly, we can see that while the time needed to adapt
the larger of the two transformations (Ecore2Maude, CS1) is higher than for the smaller
transformation as expected, the gain for the larger transformation is also higher, resulting
in a reversed result for the two case studies.

In conclusion, we determine that modularizing a transformation has a significant impact on
the complexity and time needed to perform model transformation adaptations. Therefore,
we think our approach can be useful for model engineers to automate the otherwise
complex task of transformation modularization and improve these two metrics with
respect to the investigated task.

5.3.7 Threats to Validity

Internal Validity

Are there factors which might affect the results of this evaluation? We consider the
following internal threats to the validity of our evaluation based on the executed exper-
iments and the performed user studies. First, we use stochastic algorithms which by
their nature produce slightly different results with every algorithm run. To mitigate this

151

5. Evaluation

threat, we perform our experiment based on 30 independent runs for each case study
and algorithm and analyze the obtained results statistically with the Mann-Whitney U
test with a confidence level of 99% (α = 0.01). Second, even though the trial-and-error
method we used to define the parameters of our search algorithms is one of the most used
methods [ES11], other parameter settings might yield different results. Therefore, we need
to investigate this internal threat in more detail in our future work. In fact, parameter
tuning of search algorithms is still considered an open research challenge. ANOVA-based
techniques could be an interesting direction to study the parameter sensitivity. Third,
the order in which we placed the objectives might influence the outcome of the search.
We plan to further investigate this influence by evaluating different combinations of
the objectives in future work. Furthermore, our objectives are limited to static metrics
analysis to guide the search process. The use of additional metrics that also capture the
runtime behavior of a transformation, e.g., execution time, might yield different results.
While it is quite easy to introduce new objectives into our approach, we need to further
investigate the use of other metrics in future work, e.g., capturing the performance of a
transformation before and after modularization.

Finally, there are four threats to the validity of the results retrieved from the user studies:
selection bias, learning effect, experimental fatigue, and diffusion. The selection bias is
concerned with the diversity of the subjects in terms of background and experience. We
mitigate this threat by giving the subjects clear instructions and written guidelines to
assert they are on a similar level of understanding the tasks at hand. Additionally, we
took special care to ensure the heterogeneity of our subjects and diversify the subjects in
our groups in terms of expertise and gender. Finally, each group of subjects evaluated
different parts of the evaluation, e.g., no group has worked on the same task or the same
case study twice. This also mitigates the learning effect threat that can occur if the
subjects become familiar with a certain case study. The threat of experimental fatigue
focuses on how the experiments are executed, e.g., how physical or mentally demanding
the experiments are. In particular, we prevent the fatigue threat by providing the subjects
enough time to perform the tasks and fill out the questionnaires. All subjects received
the instructions per e-mail, were allowed to ask questions, and had two weeks to finish
their evaluation. Finally, there is the threat of diffusion which occurs when subjects share
their experiences with each other during the course of the experiment and therefore aim
to imitate each other’s results. In our study, this threat is limited because most of the
subjects do not know each other and are located at different places, i.e., university versus
company. For the subjects who do know each other or are in the same location, they
were instructed not to share any information about their experience before a given date.

External Validity

To what extent is it possible to generalize the findings? The first threat is the limited
number of transformations we have evaluated, which externally threatens the generaliz-
ability of our results. Our results are based on the seven case studies we have studied
and the user studies we have performed with our expert subjects. None of the subjects

152

5.4. Modeling Language Modularization

were part of the original team that developed the model transformations and to the best
of our knowledge no modularized transformations exist for the evaluated case studies.
Therefore, we cannot validate the interpretation of the model transformation and what
constitutes a good modular structure of our subjects against a "correct" solution by the
transformation developers. We cannot assert that our results can be generalized also to
other transformations or other experts. Additional experiments are necessary to confirm
our results and increase the chance of generalizability.

Second, we focus on the ATL transformation language and its superimposition feature,
what enables the division of model transformation into modules. However, ATL is not
the only rule-based model transformation language. In order for our approach to be
generalized also to other model transformation languages, we aim to apply it also to
other popular model transformation languages which also provide the notion of modules,
such as QVT.

5.4 Modeling Language Modularization
Based on the positive evaluation results retrieved for the modularization of model
transformations, we further investigate the modularization capabilities of other MDE
concepts. In particular, in this case study we propose an approach to generically
modularize modeling languages by formulating it as a search-based problem using MOMoT
and providing a generic modularization metamodel.

5.4.1 Motivation

As mentioned in the previous case study, several approaches have been proposed for
software modularization considering programming artifacts (cf. Section 5.3.1). In this
work, we follow the same search-based spirit, but aim to provide a generic representation
of the modularization problem which may be reused for several modeling languages.

Modeling is considered as the technique to deal with complex and large systems [BCW12].
Consequently, modularization concepts have been introduced in several modeling lan-
guages in order to tackle the problem of real-world models quickly becoming monolithic
artifacts, especially when large systems have to be modeled [RM08]. In recent years,
different kinds of modularization concepts have been introduced such as modules, as-
pects [WSK+11], concerns [AKM13], views [ASB09], or subsets [BED14], to name just
a few. Having these concepts at hand enables us to structure models during modeling
activities. However, legacy models often lack a proper structure as these modularization
concepts have not been available or have not been applied, and thus, the models are still
monolithic artifacts.

In literature, there are already some approaches which aim in splitting large models
into more manageable chunks. First of all, EMF Splitter [GGKdL14] provides means to
split large EMF models based on metamodel annotations. Here the user has to come up
with a meaningful configuration for the model splitting and the main use case is to deal

153

5. Evaluation

with very large models. The same is true concerning Fragmenta [AdLG15] which is a
theory on how to fragment models in order to ensure technical constraints. In [SST13],
a graph clustering approach has been presented to modularize large metamodels by
proposing a specific transformation. In [HJZA07, HHJZ09], an approach is presented
how modularity can be added to existing languages. Finally, in [SRTC14] the authors
propose an approach for extracting submodels based on textual description.

While these approaches can be used to modularize modeling languages, they do not
support a clear definition of quality metrics and in many cases expect the user to come
up with a good modularization which is then automatically executed. However, coming
up with a good modularization is a difficult task and declaratively specifying the aim of
the modularization as quality metrics provides additional documentation and increases
comprehensibility. The explicit use of quality metrics has even been mentioned as part of
the future work in [SRTC14].

Therefore, in order to tackle the problem of modularizing modeling languages, we
present a generic modularization transformation which can be reused for several modeling
languages by binding their concrete concepts to the generic concepts offered by our
modularization metamodel. This binding is enough to reuse different modularization
strategies, mostly based on design quality metrics, provided by our search-based model
transformations. Currently, we support the definition of modules which are composed of
different entities. The applicability of this modularization approach is demonstrated for
Ecore-based languages. Consequently, the contribution of this case study is threefold: (i)
we provide generic modularization support for modeling languages having at least some
kind of basic modularization support; (ii) we combine query-driven model transformations
and generic model transformations to provide generic means to deal with heterogeneities
between the generic modularization metamodel and the specific metamodels; (iii) we
provide an application of the generic modularization support for real-world Ecore-based
languages.

5.4.2 Background

In this section, we present the foundations on which we build our modularization approach.
First, we explain how modularization is supported in modeling languages, which kind of
transformations may be combined to implement a reusable generic model transformation,
and how to instantiate such a transformation for performing a concrete modularization.

Modularization: The Basics

The basic modularization problem, also often referred to as software clustering, con-
siders as input a potentially huge set of elements having certain relationships among
them [PHY11, MKS+15]. The goal for the modularization task is to find meaningful
modules or clusters for these elements which consider certain quality characteristics.
Traditionally, modularization approaches, or re-modularization approaches if some initial
module structure is already given which should be improved, consider code-based soft-

154

5.4. Modeling Language Modularization

ware engineering artifacts. For instance, classes are modularized into modules based on
their dependencies such as method invocations or field access. The considered quality
characteristics are mostly based on object-oriented design metrics.

Similarly, the question arises how to provide automated modularization support for
modeling languages. For instance, languages such as UML and Ecore provide the package
concept to structure classifiers, and other languages such as SDL and BPMN provide
some means for modularization of models as well. While the languages themselves seem
heterogeneous, i.e., generic modeling language vs. domain-specific language, structural
vs. behavioural, and so on, the modularization concepts in its basic form of having
modules containing entities seems common. Thus, we aim to explore how we may provide
a generic modularization transformation based on the combination of three different
transformation types.

Generic Model Transformation

Currently there is little support for reusing transformations in different contexts since they
are tightly coupled to the metamodels on which they are defined. Hence reusing them
for other metamodels becomes challenging. Inspired from generic programming, generic
model-to-model transformations [CGdL11] have been proposed, which are defined over
so-called metamodel concepts, which are later bound to specific metamodels. Thus, with
the help of generic model transformations, we are able to define a generic modularization
metamodel which can be bound to different specific modeling languages. Please note that
a similar approach has been proposed as role-based model transformations for in-place
transformations such as model refactorings [RSA10].

Query Structured Transformation

One major challenge for generic model transformations is to deal with the hetero-
geneities [WKR+11] between the generic and the specific metamodels, i.e., one concept
is defined in the generic metamodel as a class, but the same concept is represented in
the specific metamodel as a pattern of different classes having specific relationships. We
propose to combine the generic model transformation approach with another emerging
transformation approach called query structured transformation [GDM14]. The main
idea behind the latter is to enhance the source metamodel with concepts of the target
metamodel in a query-driven manner. Using this idea, the source and the target meta-
model are adjusted and the mapping between the metamodels is reduced to one-to-one
correspondences. As we see in Section 5.4.4, this approach allows us to easily use one-to-
one correspondences for binding the generic modularization metamodel to the specific
metamodels.

Search-based Model Transformations

Having the mechanisms to define modularization as a generic transformation and using
query structured transformations to enhance the binding mechanisms, we still need to

155

5. Evaluation

implement the generic transformation actually performing the modularization. In code-
based modularization problems, the usage of search-based algorithms, such as genetic
algorithm, simulated annealing, and so on, has been proposed to actually compute the
optimal module structure for a given problem [PHY11, MKS+15]. The success of search-
based algorithms is mostly based on the metaheuristic search capabilities, i.e., finding a
good solution without enumerating the whole search space. Following the same spirit, we
implement the transformation rules needed for the generic modularization transformation
and define the objectives of the modularization using MOMoT. This separation of the
transformation rules and the transformation objectives also allows customization of the
generic modularization transformation for specific modeling languages more easily.

5.4.3 A Generic Modularization Transformation

In his section, we introduce our concept metamodel for modularization, our modular-
ization chain, and outline several strategies for performing modularization based on the
information provided by the concept metamodel.

Generic Modularization Metamodel

Our generic modularization metamodel is presented in Figure 5.23. Abstract classes
and relationships are depicted in grey. Elements of type Language represent concrete
instances of modeling languages (MLs). The concepts of a ML are therefore simplified to
Modules, Entities and Relationships. We can see that a language is composed of modules,
which represent the clusters that group entities with similarities. Such similarities can
come in different ways. For instance, we can consider the similarities between the names
of the entities, or the relationships among the entities. Furthermore, we have defined
weights for the relationships, since some of them may be more important that others
(cf. Section 5.4.4). We can see that an entity can have several relationships with other
entities. Each relationship ends in a specific entity.

Language Module Entity

NamedElement
name : String

modules entities

relationships

0..* 0..*

0..*

Relationship
weight : Int

relationshipEnd

1..1

Language Module

NamedElement

name : EString

modules

0..*
Entity

entities

0..*

Relationship

weight: Int

relationships

0..*
relationshipEnd1

Figure 5.23: Generic Modularization Metamodel

The idea is to express any modeling language in terms of our generic modularization
metamodel. This means that the concepts appearing in the MLs are mapped to the three
concepts described: modules, entities and relationships.

156

5.4. Modeling Language Modularization

Query-Driven Model
Transformation

Initial
Modularization Model

Search-Based Model
Transformation

Optimized
Modularization Model

Extraction
Transformation

Injection Transformation

Binding Model
(ML 2 GMM)

1

2 3

4

Model Model Transformation

GMM

Search Objectives

ML Model++

x Step

Figure 5.24: Generic Modularization Chain

Modularization Transformation Chain

The overall transformation chain for the generic modularization of modeling languages
is shown in Figure 5.24. Steps 1 and 2 are explained in this section, while Step 3 is
explained in Section 5.4.3. These three steps are exemplified with an application study
in Section 4. Finally, Step 4 is left for future work.

Our approach takes as input a modeling language (ML) and the generic modularization
metamodel (GMM). A ML is defined in terms of a domain-specific language (DSL).
The structure of a DSL is expressed with a metamodel, which defines the concepts
of the language and the relationships among them. The first step of our approach is
implemented with a Query Structured Model Transformation, whose purpose is to make it
easier and more generic the weaving of different DSLs. In our case, we want to translate
a ML to our generic modularization metamodel (cf. Figure 5.23).

Therefore, we seek the homomorphism between the metamodel of the ML and our generic
modularization metamodel, i.e., the bindings between these two. This homomorphism,
also called mapping, has to be manually identified by the software engineer, since she/he
has to decide what is a module, an entity and a relationship in the ML. Such mapping
can be defined by simply annotating the metamodel of the ML or by adding new derived
properties and classes to it that represent the mapping. The outcome of this step is a
Model with Bindings between ML and Generic Language, “binding model” for short from
here on. Thus, we obtain a model where specific concepts of the input ML are virtually
connected to specific concepts of our generic modularization language.

157

5. Evaluation

The second step is to apply a Generic Model Transformation to such model. This
transformation takes the binding model as input and generates the Initial Generic
Modularization Model. In order to do so, it examines the bindings specified in the binding
model. The generated model conforms to our generic modularization metamodel and is
composed of only one module that contains all the entities. The entities, in turn, have
relationships among them. The generic model transformation produces these relationships
according to the information specified in the binding model.

In our proof-of-concept implementation [FTW16d], we have implemented the both steps
with an ATL transformation for the Ecore case study.

Modularization Strategies

The third step in our approach has to do with the optimal grouping of entities into
modules. In order to do so, we apply search-based techniques using our MOMoT approach,
cf. Chapter 4. Therefore, we need to specify as input the Search Objectives that we want
to optimize in our modularization. According to the fitness function defined by such
objectives, our Search-Based Model Transformation decides the optimal modularization,
i.e., how to optimally split the entities contained by the only module in the initial generic
modularization model into different modules.

In this evaluation, we define four objectives: (i) coupling (COP), (ii) cohesion (COH),
(iii) the difference between the maximum and minimum number of entities in a module
(DIF) and (iv) number of modules (MOD). These objectives have been described for the
modularization of model transformations in Section 5.3 and are in this case study adapted
for the modularization of modeling languages. Listing 5.4 illustrates how these objectives
are defined as fitness function in MOMoT. Please note that the actual calculation of most
objective metrics has been outsourced to the MetricsCalculator class, as shown in
the preprocess method of the fitness function.

Listing 5.4 Fitness Function For Language Modularization
1: fitness = {
2: preprocess = {
3: // use attribute for external calculation
4: val root = MomotUtil.getRoot(solution.execute, typeof(Language))
5: solution.setAttribute("metrics", MetricsCalculator.calculate(root))
6: }
7: objectives = {
8: Coupling : minimize { // java-like syntax
9: val metrics = solution.getAttribute("metrics", typeof(LanguageMetrics))
10: metrics.coupling
11: }
12: Cohesion : maximize {
13: val metrics = solution.getAttribute("metrics", typeof(LanguageMetrics))
14: metrics.cohesion
15: }
16: NrModules : maximize {
17: (root as Language).^modules.filter[m | !m.entities.empty].size
18: }
19: MinMaxDiff : minimize {
20: val sizes = (root as Language).^modules.filter[m | !m.entities.empty]

158

5.4. Modeling Language Modularization

21: .map[m | m.entities.size]
22: sizes.max - sizes.min
23: }
24: }
25: }

The way our search approach works is the following. Given the initial generic modu-
larization model and a set of search objectives defined in our configuration language,
our approach introduces a set of empty modules in the language. The number of empty
modules that is initially introduced varies between a given range to investigate different
areas of the search space. In order to evolve the initial generic modularization model, we
only need to define one very simple Henshin rule (cf. Figure 5.25). This rule moves an
entity from one module to another. Our tool instantiates the input parameters of the rule
with specific entities and modules names. According to the fitness function conformed by
the objectives defined, the search engine searches for the optimal assignments of entities
into modules. The output of the search is given as (i) the Optimized Modularization
Model, as well as (ii) the sequence of rule applications and their input parameters.9/2/2016 MOMoT Generic Modularization Case Study

http://martin­fleck.github.io/momot/casestudy/generic_modularization/ 2/3

«preserve»
:Module

name=source

«preserve»
:Module

name=target

«preserve»
:Entity

name=entity

Rule moveEntity(source:EString, target:EString, entity:EString) @Language

«preserve»
:Module

name=source

«preserve»
:Module

name=target

«preserve»
:Entity

name=entityentities

«delete»

entities

«create»

entities

«delete»

entities

«create»

Objectives and Constraints

Since modularization is such a common and well­studied problem, many metrics have been proposed which
indicate the quality of a module. Common metrics include coupling and cohesion. For our example, we follow
the Equal­Size Cluster Approach, as described by Praditwong et al in Software Module Clustering as a Multi­
Objective Search Problem. The goal of this approach is to produce equally­sized modules, i.e., modules that
have a similar number of entities. Therefore, besides the above mentioned two objectives we also aim to
maximize the number of modules and minimize the difference between the minimum and maximum number
of entities in a module. In order to improve efficiency, we have outsourced evaluation of the objectives and
constraints into a separate class (MetricsCalculator), which calculates the values in one iteration through the
model. In the configuration example below, you can find how this external calculation can be integrated into
the fitness evaluation of MOMoT.

Coupling: Coupling refers to the number of external dependencies a specific module has, i.e., the sum of
inter­relationships with other modules. Typically, low coupling is preferred as this indicates that a group
covers separate functionality aspects of a system, improving the maintainability, readability and testability of
the overall system.

Cohesion: Cohesion refers to the dependencies within a module, i.e., the sum of intra­relationships in the
module. As opposed to coupling, the cohesion within one module should be maximized to ensure that it does
not contain parts that are not part of its functionality.

Number of Modules: We aim to maximize the number of modules to avoid having all entities in a single
large module.

Min­Max Difference: The difference between the module with the lowest number of entities and the module
with the highest number of entities should be minimized. By doing so, we aim to produce equally­sized
modules as the optimal difference would be 0.

fitness = {
 preprocess = { // use attribute storage for external calculation
 val root = MomotUtil.getRoot(solution.execute, typeof(Language))
 solution.setAttribute("metrics", MetricsCalculator.calculate(root))
 }
 objectives = {
 Coupling : minimize { // java‐like syntax
 val metrics = solution.getAttribute("metrics", typeof(LanguageMetrics))
 metrics.coupling
 }
 Cohesion : maximize {
 val metrics = solution.getAttribute("metrics", typeof(LanguageMetrics))
 metrics.cohesion
 }
 NrModules : maximize {
 (root as Language).^modules.filter[m | !m.entities.empty].size
 }
 MinMaxDiff : minimize {
 val sizes = (root as Language).^modules.filter[m | !m.entities.empty].map[m | m.entities.size]
 sizes.max ‐ sizes.min
 }
 }
}

References

Figure 5.25: MoveEntity Rule

Having our generic metamodel, our modularization transformation chain, the necessary
objectives, and the generic model transformation, we can apply our approach on a
concrete examples.

5.4.4 Application Study: Ecore

In this section we apply our generic modularization chain presented in the previous
section for modularizing Ecore-based languages. In order to address this, we (i) define
the research questions for our study, (ii) explain how Ecore models are translated to our
modularization language (cf. Figure 5.23), and finally (iii) describe the results obtained
by our search-based approach for real-world Ecore models.

Research Questions

In particular, we are interested in answering the following research questions (RQs).

RQ1 Feasibility: Is the binding between Ecore and the generic modularization metamodel
feasible with the proposed approach?

RQ2 Result Quality: How good are the results of the modularization task, i.e., the results
of applying the generic modularization strategies?

159

5. Evaluation

Binding between Ecore and the Generic Modularization Metamodel

The first step is to conceptually bind the concepts of the Ecore language with those of
our generic modularization language by means of a query-driven model transformation.
A simplified version of the Ecore metamodel with the concepts that we take into account
is presented in Figure 5.26. Please note that unmapped Ecore elements are depicted with
grey color. We can see that in Ecore EPackages contain EClasses and EDataTypes,
whereas classes can inherit structure and functionality from other classes (eSuperTypes
relationship). At the same time, classes contain EReferences and EAttributes. The
former are used to specify general relationships among classes. Consequently, a reference
needs to have an eReferenceType that points to the respective class. Furthermore,
a reference can either represent a containment or not. Attributes (EAttributes),
on the other hand, have a specific type (eAttributeType), which is specified by a
datatype or an enumeration (EEnum).

EPackage EClassifier

name: String

EClass EStructuralFeature EDataType

EReference
containment: Bool

EAttribute EEnum

eClassifiers

0..*

eStructuralFeatures

0..*

eSuperTypes

0..*

eAttributeType

1..1
1..1
eReferenceType

EClass

EPackage

EAttribute

EEnum

EReference

containment : Boolean

NamedElement

name : EString

EStructuralFeatureEClassifier

EDataType

0..*

eClassifiers

eAttributeType

eReferenceType

eStructuralFeatures

0..*

1 0..*

eSuperTypes

1

Figure 5.26: Simplified Ecore Metamodel

The binding between the Ecore language and our Modularization DSL is summarized
in Table 5.7. Bindings for EPackage, EClass, EDataType and EEnum are quite
straightforward. Each package is mapped to a module and all classifiers are mapped
to a respective entity. More interesting are the bindings that produce the relationships
in the generic modularization model. As we mentioned in Section 5.4.3, relationships
can have different weights, depending on how strong the relationship is. In an Ecore
model, we consider three relationships: containment, inheritance, and references. In
particular, we define that the containment relationship is the strongest one, since a
contained element cannot exist without its container. Therefore, for those references
that are of type containment, we create a relationship with weight 3 between the entities
representing the classes that act as source and target of the reference. References that are
not of type containment are the weakest relationships in our mapping, so we give a weight
of 1 to the relationships created from them. As previously mentioned, classes contain
attributes that are types with a datatype or an enumeration. Therefore, a relationship
that is created between an entity representing a class and those entities representing
datatypes and enumerations are also given weight of 1. Finally, there are inheritance

160

5.4. Modeling Language Modularization

relationships between those entities representing classes. As inheritance relationships
span up type hierarchies, we give them a weight of 2, i.e., they are stronger them simple
references but not as strong as containment.

Table 5.7: Correspondences Between Ecore and Generic Modularization Language

Ecore Generic Modularization Language
EPackage Module
EClass Entity

EDataType Entity
EEnum Entity

eSuperType Relationship (weight=2)
EAttribute Relationship (weight=1)

EReference (non-containment) Relationship (weight=1)
EReference (containment) Relationship (weight=3)

Of course, these weights may be adjusted depending on the language or the desired
modularization, e.g., when type hierarchies are preferred over containments.

According to this mapping, we have implemented an ATL transformation2 that takes any
Ecore model as input and produces a model conforming to our generic modularization
metamodel as output. In the output model we create one module for each package in the
source Ecore model. All entities and the relationships among them are created accordingly.
Next, we implement the transformation consisting of the two steps as explained before.
First, helper functions are defining the queries needed to incorporate the concepts of the
modularization metamodel in the Ecore metamodel. Conceptually one can think of them
as derived properties. Second, we employ one-to-one rules to actually produce the initial
modularization models from the Ecore models.

Table 5.8: Ecore Models as Modularization Models

Model #Mod #Ent #Rel(w=1) #Rel(w=2) #Rel(w=3)
HTML 2 62 14 42 7
Java 1 132 179 145 129
OCL 2 77 47 73 37
QVT 8 151 199 152 100

As example Ecore-based languages we use HTML, Java, OCL and QVT. These languages
are available in the ATL transformation zoo3 and represent middle-sized as well as large
metamodels [KSW+13]. The initial number of modules, entities, and relationships for
each of the three types for these Ecore models are summarized in Table 5.8.

2All artifacts can be downloaded from our website [FTW16d]
3http://www.eclipse.org/atl/atlTransformations/

161

http://www.eclipse.org/atl/atlTransformations/

5. Evaluation

Answering RQ1. Concluding, we can answer RQ1 by having provided a successful
binding between Ecore models and the generic modularization models. The binding has
proven to be feasible and has been implemented with our proposed approach.

Search-Based Optimization

In order to investigate the modularization quality of our approach, we apply it on the
same four Ecore-based languages. The actual optimization is executed using our MOMoT
approach as explained in Chapter 4. The objectives that we use as input are those
described in Section 5.4.3. In order to execute the search, we deploy the NSGA-III
algorithm with the following operators: tournament selection with k = 2, one-point
crossover with p = 1.0, and placeholder and variable mutation, each with p = 0.1. The
algorithm has been executed 30 times with a population size of 300 and a maximum
number of 21, 000 evaluations. The result of a search-based algorithm is the set of Pareto
optimal solutions.

Some works [BDDO04] argue that the most interesting solutions of the Pareto front are
solutions where a small improvement in one objective would lead to a large deterioration
in at least one other objective. These solutions are sometimes also called knees. In order
to show some values for the solutions we retrieve, we extract the knee point solution for
each of the four languages by calculating the proper utilities for each solution [SBS13].
The solutions shown in Table 5.9 displays the value of the different objectives before the
search and for the solution considered as knee point after the search.

Table 5.9: Objectives Values Before and After Optimization

Example Model COH ↑ COP ↓ DIF ↓ MOD ↑

HTML Before 119 0 56 2
After 101 18 31 5

Java Before 856 0 - 1
After 517 339 2 7

OCL Before 304 0 69 2
After 262 42 45 4

QVT Before 587 216 38 8
After 448 355 2 8

Answering RQ2. Let us respond to RQ2 by studying the numbers in the table. As
we can see, the value of coupling (COP) for the first three example models before the
optimization is 0. In the case of Java, this is obvious as there is only one module (MOD).
Regarding HTML and OCL, there are two modules, where one of those only has 3 to
4 entities without any dependency with any entity from the other module. This is due
to the fact that these modules contain only the primitive types such as Boolean or

162

5.4. Modeling Language Modularization

Integer. As for QVT, since there are 8 modules, the value of coupling is larger than 0.
These modules come from the packages in the metamodel and are for example QVT
Template, Imperative OCL, EMOF, or QVT Operational. As for the difference between
the minimum and maximum number of entities in each module (DIF), this value is quite
high for HTML, OCL, and QVT, i.e., the entities between the modules are not distributed
equally. In the Java language, on the other hand, this value does not make sense as there
is only one module. Finally, regarding cohesion (COH), all initial languages present a
very high to optimal value due to the fact that most, if not all, entities are in the same
module.

If we investigate the values after the optimization is performed, we see that in HTML
we have now 5 modules, 7 in Java, 4 in OCL and we keep the same number of modules
in QVT. Since in most cases we have more modules than before the optimization, the
values of cohesion and coupling have gotten worse, as it is obvious. However, the value
of DIF is improved to a great extent. Therefore, we are sacrificing coupling and cohesion
in favour of having several balanced modules.

Module 2Module 1 Module 4

Module 3

PropertyCallExp
BooleanType

RealLiteralExp

BooleanLiteralExp

StringLiteralExp

InvalidLiteralExp

PrimitiveType

BagType

TupleTypeEnumeration

OrderedSetType

DataType

CollectionType

SequenceType

MissingEntity Intra-Module Relationship Inter-Module Relationship

Figure 5.27: Excerpt of the OCL Knee-Point Solution

This is especially visible when we manually inspect the knee solution of OCL depicted
in Figure 5.27. In this solution, two groups of entities have been grouped into a single
module, i.e., the datatypes and the literal expressions, although they are not related in
order to balance the total number of entities between the modules. Furthermore, we can
see that, although our approach already provides good objective values, there is still room
for improvement as the SequenceType is not in the same module as its super class
CollectionType. However, this may be solved by letting the optimization procedure
run longer.

Another interesting result we found is the HTML knee solution, partially depicted in
Figure 5.28. Besides some single entities which are probably grouped together to optimize

163

5. Evaluation

DIF, we expected to see the elements of the description list (DL), i.e., the term that is
being described (DT) and the description data (DD), in the same module as they are used
in the same semantic context. However, it seems that in the HTML metamodel that we
have used for our case study, there is no connection between these elements. As such,
our solutions helped us realize that the metamodel is probably faulty in this aspect.

Module 2

LI

Module 4Module 1 Module 3Module 0

ListElementIFRAME

UL
FORM

DL

OL

DT

MissingEntity Intra-Module Relationship Inter-Module Relationship

DD

Figure 5.28: Excerpt of the HTML Knee-Point Solution

Resulting from this manual inspection, we argue that balancing the number of the entities
between the modules might be a good metric for software system, however for languages
another approach might yield results closer to what we would expect.

It should be noted, that these are the results produced by Step 3 of our approach, i.e., the
results conform to the optimized generic modularization model. The last step would be
to transform these solutions back to the original modeling language. This is left as future
work and would require to inverse the transformation produced in Step 1 and Step 2. As
we are using a query structured approach and one-to-one mappings (isomorphism) for
Step 1 and Step 2, we the inverse transformation should be straight-forward. Nevertheless,
this may not be true for all modeling languages, resulting in the challenging problem of
bridging the syntactic and semantic heterogeneities between the respective language and
our generic modularization metamodel. This challenge has also been recognized by Durán
et al. [DZT12] who specify explicit conditions to construct a syntactically consistent and
a semantically valid binding between two metamodels and by Cuadrado et al. [CGdL14]
who created a dedicated binding DSL to express the bridging of structural heterogeneities
between different concepts present in the metamodels.

164

CHAPTER 6
Conclusion and Future Work

Summarized, the context of this thesis is the area of MDE where models are the central
artifacts that represent problems under consideration. These models conform to modeling
languages that enable us to express the problems with domain-specific vocabulary. Any
changes on these models are realized through model transformations, most of which
are based on transformation rules. However, depending on the number of rules, the
number of parameters, and the objectives that should be achieved by the transformation,
the orchestration of these transformations is a difficult task typically delegated to the
model engineer. In general, search-based optimization methods can be used to solve such
problems, however using those methods is also non-trivial as they are based on a formalism
very different from MDE. Therefore, in this thesis, we presented contributions towards
the integration of search-based optimization methods with model-driven engineering
techniques in order to facilitate the solving of complex problems on model level.

6.1 Conclusion

We introduced an approach called MOMoT, which enables model engineers to apply
metaheuristic optimization methods in order to solve these using MDE techniques by
automatically deriving Pareto-optimal transformation orchestrations. In particular, we
presented an algorithm-agnostic approach that is able to support various optimization
methods while remaining in the model-engineering technical space. The core idea of
our approach is to encode solutions on the model level generically as a sequence of
transformation units. Whereas these transformation units can incorporate knowledge
specific to the respective problem domain, their execution is done generically using a
transformation engine. The search for good transformation orchestrations is guided by
a declarative set of objective and constraints which are realized through model-based
property analysis techniques. By staying on the model level and using the transformation
rules directly in the encoding for the search process, we produce solutions that can be

165

6. Conclusion and Future Work

easily understood by model engineers. Another strong point of our approach is that the
user does not need to be an expert in metaheuristic optimization techniques. In fact, we
implemented an easy-to-use configuration language where the user can configure different
options for the search process, retrieve information on different aspects of the search, and
receive initial feedback on the search configuration through advices, warnings, and errors
provided by a static analysis procedure.

Besides MOMoT, we presented an approach to analyze dynamic properties that consider
the contention of resources directly on model level by utilizing the novel fUML standard
that provides execution semantics for a subset of UML. By analyzing properties directly
on model level we avoid the problems of approaches that translate models into dedicated
analysis formalisms but suffer from the complexity of defining these translation transfor-
mations and mapping the results back onto model level. Most notably, the fUML subset
covers the most important modeling concepts for defining the structure of a system using
UML classes and its behavior using UML activities and is accompanied by a virtual
machine which serves as a reference implementation of the execution semantics. Using
this virtual machine and a pre-defined set of MARTE stereotypes on UML models, we
obtain timed, model-based execution traces for a particular workload. These traces are
then analyzed and processed to compute non-functional, dynamic properties such as
the utilization or throughput of a particular resource modeled as a class and the overall
execution time. In particular, for our approach we focused on the contention of resources
by considering the temporal relation of several execution traces. The analysis results are
then directly annotated on the provided models. This approach has been demonstrated
using a software application as case study and the retrieved results have been confirmed
by comparing them with the results of an established queuing network solver. As such,
this approach constitutes a contribution to the state of the art realized in the course of
this thesis.

Apart from detailing our approach of combining search-based optimization and model
transformations and our approach to analyze dynamic properties on model level, we also
evaluated MOMoT using several case studies. In order to use MOMoT, the problem
domains of the case studies have been expressed through dedicated modeling languages,
the problem instances have been specified as models, the modification operations have
been realized as model transformations, and the objectives and constraints have been
expressed declaratively.

As a first evaluation of MOMoT, we used four known case studies from the area of
software engineering and model-driven engineering to assess the applicability of our
approach, investigate the overhead that is introduced in comparison to a native encoded
solution, and discuss the search features provided by MOMoT. Summarizing, we have
shown that our approach produces correct and sound solutions w.r.t. the constraints and
the objectives defined by the model engineer. However, the performance of MOMoT is not
as good as the performance of a native encoding as we inherit the problem of of finding
and applying matches in graphs as part of using model transformations, which is highly
complex and computationally expensive. Nevertheless, MOMoT removes the complexity

166

6.2. Future Work

of finding such a native encoding and provides features which are not provided in existing
transformation approaches such as the application of search-based optimization methods.

Additionally, we presented two MOMoT-based approaches to tackle novel problems in
model-driven engineering. In particular, we were able to propose, for the first time
in the MDE literature, a new automated search-based approach based on NSGA-III
that tackles the challenge of model transformation modularization, and introduce a
first approach to deal with the modularization of modeling languages in a generic and
reusable way. Specifically, the approaches were realized by formulating the problems
as a many-objective search problem and use search-based methods to calculate a set of
Pareto-optimal solutions based on different quality properties proposed in modularization
literature. The first approach has been evaluated in detail for seven ATL transformations
to demonstrate the analysis features of MOMoT and the results have been manually
analyzed based on two user studies with participants from academia and engineers from
Ford. Our results show that modularizing model transformations requires a sophisticated
approach and that our approach based on MOMoT produces good results. Furthermore,
the use of modularized transformations versus non-modularized ones can reduce the
complexity to perform common tasks in model-driven engineering and can improve
productiveness in terms of time needed to perform these tasks. Based on these good
results, in the second approach we proposed to deal with the modularization of any kind
of modeling language in a generic and reusable way. We achieved this goal by combining
generic, query-structured, and search-based transformation approaches. The result of
this approach for Ecore-based languages as a case study seem very promising.

In conclusion, we can state that MOMoT is a useful approach that can be applied to
solve highly complex problems on model level. MOMoT is problem-independent and
supports several different optimization methods such as local search and evolutionary
multi-objective algorithms. Using MOMoT, a model engineer can declaratively specify
the objectives and constraints and receives dedicated support when configuring the search
process. Moreover, MOMoT features sufficient analysis capabilities to make it applicable
for evaluating novel problem formulations.

6.2 Future Work

Building upon the research conducted in this thesis and the promising results retrieved
during the evaluation, we discuss in the following several, interesting lines of research for
the future. In particular, we foresee further investigations on the applicability of MOMoT
using out-place transformations, and work on the integration of memetic algorithms and
dedicated optimization method modeling languages.

Out-place Transformations. In the evaluation of this thesis, we focused on several
case studies that use in-place transformations to optimize a given model based on a set
of objectives. However, there are no conceptual restrictions that prevent our approach
from being also used on problems that warrant the use of out-place transformations, i.e.,

167

6. Conclusion and Future Work

transformations that create new models from scratch. For instance, problems that need
to translate a model from one semantic domain to another semantic domain modeled
through different metamodels fall under this category. In future research, we envision
the application of MOMoT also on these kinds of problems.

Memetic Algorithms. In the course of this thesis, we have demonstrated how lo-
cal search algorithms and, in particular, evolutionary algorithms as representative for
population-based algorithms can be used to solve complex problems on model level. While
local search is better suited to intensify the search in a particular area of the search space,
population-based algorithms are better in providing a diversified search in the search
space. Memetic algorithms [Mos89], also called genetic local search algorithms [Tal09],
are a family of hybrid metaheuristic algorithms which incorporate local search algorithms
within population-based algorithms in order to balance these two aspects. Another main
idea of memetic algorithms is to introduce problem and instance-dependent knowledge to
speed up the search process [Mos99]. As a result, many memetic algorithms of previously
standalone evolutionary algorithms have been proposed, such as the M-PAES [KC00] or
the algorithm incorporating neighborhood search in NSGA-II [DG01], called M-NSGA-II
in [CLV07]. As part of future research, we foresee the integration of memetic algorithms
in MOMoT and the investigation of their performance in comparison with other algo-
rithms. In practice, this integration is most easily done on the implementation level
by providing abstract and concrete memetic algorithm classes which inherit from the
abstract algorithm classes used in MOMoT.

Optimization Method Languages. Besides the integration of memetic algorithms
as a combination of population-based search and local, neighborhood search, there exist
also dedicated modeling languages to support the implementation of algorithms. For
instance, Localizer [MH97, MH99, MH00] is a language that allows the expression of
local search algorithms in a notation close to their informal description in scientific
papers. Similar, Numerica [HMD97] is a language for global optimization algorithms that
provides similar functionality. As future research, such languages can be incorporated
into MOMoT to give experienced users additional capabilities to control the behavior
of the optimization method within the search space besides algorithm selection. In
practice, this incorporation can be done by either importing the language concepts into
the language of MOMoT and allow the algorithm specification directly as part of the
configuration or by generating the respective algorithm classes from the specifications
which are then automatically recognized by the MOMoT language.

168

APPENDIX A
MOMoT Configuration DSL

This appendix provides the complete grammar of the MOMoT configuration DSL de-
scribed in Section 4.8 and the configuration for the Modularization case study described
in Section 4.2. The implemented static analysis checks based on the DSL and further
example configurations can be found on GitHub and our project website [FTW16a].

A.1 Grammar

Listing A.1 Grammar of the MOMoT Configuration DSL
1: grammar at.ac.tuwien.big.momot.lang.MOMoT with org.eclipse.xtext.xbase.Xbase
2:

3: import "http://www.eclipse.org/xtext/xbase/Xbase" as xbase
4: generate momot "http://www.big.tuwien.ac.at/momot/lang/MOMoT"
5:

6: MOMoTSearch:
7: ("package" package=QualifiedName)?
8: importSection=XImportSection?
9: variables += VariableDeclaration*
10:

11: ("initialization" OpSingleAssign initialization=XBlockExpression)?
12: "search" (name=ValidID)? OpSingleAssign searchOrchestration=SearchOrchestration
13: "experiment" OpSingleAssign experimentOrchestration=ExperimentOrchestration
14: ("analysis" OpSingleAssign analysisOrchestration=AnalysisOrchestration)?
15: ("results" OpSingleAssign resultManagement=ResultManagement)?
16: ("finalization" OpSingleAssign finalization=XBlockExpression)?;
17:

18: OpKeyAssign:
19: ":";
20:

21: VariableDeclaration:
22: "var" type=JvmTypeReference? name=ValidID (OpSingleAssign init=XExpression)?;
23:

24: ArrayLiteral returns xbase::XListLiteral:
25: {xbase::XListLiteral}
26: '[' elements+=XExpression (',' elements+=XExpression)* ']';
27:

169

A. MOMoT Configuration DSL

28: ModuleOrchestration:
29: "{"
30: "modules" OpSingleAssign modules = ArrayLiteral
31: ("ignoreUnits" OpSingleAssign unitsToRemove = ArrayLiteral)?
32: ("ignoreParameters" OpSingleAssign nonSolutionParameters = ArrayLiteral)?
33: ("parameterValues" OpSingleAssign "{"
34: (parameterValues += ParmeterValueSpecification)*
35: "}")?
36: "}";
37:

38: ParmeterValueSpecification:
39: {ParmeterValueSpecification}
40: name=XExpression OpKeyAssign call=XConstructorCall;
41:

42: SearchOrchestration:
43: {SearchOrchestration}
44: "{"
45: "model" OpSingleAssign model = InputModel
46: "solutionLength" OpSingleAssign solutionLength = XExpression
47: "transformations" OpSingleAssign moduleOrchestration = ModuleOrchestration
48: "fitness" OpSingleAssign fitnessFunction = FitnessFunctionSpecification
49: "algorithms" OpSingleAssign algorithms = AlgorithmList
50: ("equalityHelper" OpSingleAssign equalityHelper=EqualityHelper)?
51: "}";
52:

53: InputModel:
54: path = XExpression (adaptation=XBlockExpression)?;
55:

56: EqualityHelper:
57: (call = XConstructorCall | method = XBlockExpression);
58:

59: AlgorithmList:
60: "{" (specifications += AlgorithmSpecification)+ "}";
61:

62: FitnessFunctionSpecification:
63: (constructor = XConstructorCall)? "{"
64: ("preprocess" OpSingleAssign preprocess = XBlockExpression)?
65: "objectives" OpSingleAssign "{"
66: (objectives += FitnessDimensionSpecification)+
67: "}"
68: ("constraints" OpSingleAssign "{"
69: (constraints += FitnessDimensionSpecification)+
70: "}")?
71: ("postprocess" OpSingleAssign postprocess = XBlockExpression)?
72: ("solutionRepairer" OpSingleAssign solutionRepairer = XConstructorCall)?
73: "}";
74:

75: FitnessDimensionSpecification:
76: FitnessDimensionConstructor | FitnessDimensionXBase | FitnessDimensionOCL;
77:

78: enum FitnessDimensionType:
79: MINIMIZE = "minimize" | MAXIMIZE = "maximize";
80:

81: FitnessDimensionConstructor:
82: name=ValidID OpKeyAssign type=FitnessDimensionType call=XConstructorCall;
83:

84: FitnessDimensionXBase:
85: name=ValidID OpKeyAssign type=FitnessDimensionType value=XBlockExpression;
86:

87: FitnessDimensionOCL:
88: name=ValidID OpKeyAssign type=FitnessDimensionType query=XStringLiteral
89: ("{" defExpressions += DefExpression* "}")?;

170

A.1. Grammar

90: DefExpression:
91: "def" expression = STRING;
92:

93: AlgorithmSpecification:
94: name=ValidID OpKeyAssign call=XExpression;
95:

96: ExperimentOrchestration:
97: {ExperimentOrchestration}
98: "{"
99: "populationSize" OpSingleAssign populationSize = XExpression
100: "maxEvaluations" OpSingleAssign maxEvaluations = XExpression
101: "nrRuns" OpSingleAssign nrRuns = XNumberLiteral
102: ("referenceSet" OpSingleAssign referenceSet = XExpression)?
103: ("progressListeners" OpSingleAssign "["
104: (progressListeners += XConstructorCall
105: ("," progressListeners += XConstructorCall)*)?
106: "]")?
107: ("collectors" OpSingleAssign "["
108: (collectors = CollectorArray customCollectors+= XConstructorCall
109: ("," customCollectors += XConstructorCall)*)?
110: "]")?
111: "}";
112:

113: CollectorArray:
114: {CollectorArray}
115: ((hypervolume ?= "hypervolume")? &
116: (generationalDistance ?= "generationalDistance")? &
117: (invertedGenerationalDistance ?= "invertedGenerationalDistance")? &
118: (spacing ?= "spacing")? &
119: (additiveEpsilonIndicator ?= "additiveEpsilonIndicator")? &
120: (contribution ?= "contribution")? &
121: (r1 ?= "R1")? &
122: (r2 ?= "R2")? &
123: (r3 ?= "R3")? &
124: (adaptiveMultimethodVariation ?= "adaptiveMultimethodVariation")? &
125: (adaptiveTimeContinuation ?= "adaptiveTimeContinuation")? &
126: (approximationSet ?= "approximationSet")? &
127: (epsilonProgress ?= "epsilonProgress")? &
128: (elapsedTime ?= "elapsedTime")? &
129: (populationSize ?= "populationSize")?);
130:

131: AnalysisOrchestration:
132: "{"
133: "indicators" OpSingleAssign indicators=IndicatorArray &
134: "significance" OpSingleAssign significance=XNumberLiteral &
135: "show" OpSingleAssign show=ShowArray &
136: ("grouping" OpSingleAssign grouping = AnalysisGroupList)? &
137: (saveCommand = SaveAnalysisCommand)? &
138: (boxplotCommand = BoxplotCommand)? &
139: (printCommand = PrintAnalysisCommand)?
140: "}";
141:

142: AnalysisGroupList:
143: "{" (group += AnalysisGroupSpecification)+ "}";
144:

145: IndicatorArray:
146: {IndicatorArray}
147: "["
148: ((hypervolume ?= "hypervolume")? &
149: (generationalDistance ?= "generationalDistance")? &
150: (invertedGenerationalDistance ?= "invertedGenerationalDistance")? &
151: (spacing ?= "spacing")? &

171

A. MOMoT Configuration DSL

152: (additiveEpsilonIndicator ?= "additiveEpsilonIndicator")? &
153: (contribution ?= "contribution")? &
154: (r1 ?= "R1")? &
155: (r2 ?= "R2")? &
156: (r3 ?= "R3")? &
157: (maximumParetoFrontError ?= "maximumParetoFrontError")?)
158: "]";
159:

160: ShowArray:
161: {ShowArray}
162: "["
163: ((individual ?= "individualValues")? &
164: (aggregate ?= "aggregateValues")? &
165: (statisticalSignificance ?= "statisticalSignificance")?)
166: "]";
167:

168: AnalysisGroupSpecification:
169: {AnalysisGroupSpecification}
170: name=ValidID OpKeyAssign algorithms=AlgorithmReferences;
171:

172: AlgorithmReferences:
173: {AlgorithmReferences}
174: "["
175: (elements+=[AlgorithmSpecification]
176: (',' elements+=[AlgorithmSpecification])*)?
177: "]";
178:

179: AnalysisCommand:
180: PrintAnalysisCommand | SaveAnalysisCommand | BoxplotCommand;
181:

182: PrintAnalysisCommand:
183: {PrintAnalysisCommand}
184: "printOutput";
185:

186: SaveAnalysisCommand:
187: "outputFile" OpSingleAssign file=XStringLiteral;
188:

189: BoxplotCommand:
190: "boxplotDirectory" OpSingleAssign directory=XStringLiteral;
191:

192: ResultManagement:
193: {ResultManagement}
194: "{" (commands += ResultManagementCommand)* "}";
195:

196: ResultManagementCommand:
197: ObjectivesCommand | SolutionsCommand | ModelsCommand ;
198:

199: ObjectivesCommand:
200: {ObjectivesCommand}
201: "objectives" OpSingleAssign "{"
202: (("algorithms" OpSingleAssign algorithms=AlgorithmReferences)? &
203: ("neighborhoodSize" OpSingleAssign &
204: (neighborhoodSize = INT | maxNeighborhoodSize ?= "maxNeighborhoodSize"))? &
205: ("outputFile" OpSingleAssign file=STRING)? &
206: (printOutput ?= "printOutput")?)
207: "}";
208:

209: SolutionsCommand:
210: {SolutionsCommand}
211: "solutions" OpSingleAssign "{"
212: (("algorithms" OpSingleAssign algorithms=AlgorithmReferences)? &
213: ("neighborhoodSize" OpSingleAssign &

172

A.2. Example: Modularization Configuration

214: (neighborhoodSize = INT | maxNeighborhoodSize ?= "maxNeighborhoodSize"))? &
215: ("outputFile" OpSingleAssign file=STRING)? &
216: ("outputDirectory" OpSingleAssign directory=STRING)? &
217: (printOutput ?= "printOutput")?)
218: "}";
219:

220: ModelsCommand:
221: {ModelsCommand}
222: "models" OpSingleAssign "{"
223: (("algorithms" OpSingleAssign algorithms=AlgorithmReferences)? &
224: ("neighborhoodSize" OpSingleAssign &
225: (neighborhoodSize = INT | maxNeighborhoodSize ?= "maxNeighborhoodSize"))? &
226: ("outputDirectory" OpSingleAssign directory=STRING)? &
227: (printOutput ?= "printOutput")?)
228: "}";

A.2 Example: Modularization Configuration

Listing A.2 Textual Configuration for the Modulariztion Case Study
1: var attribute = "calculation"
2:

3: initialization = {
4: ModularizationPackage.eINSTANCE.class // register package in standalone
5: }
6:

7: search = {
8: model = { file = "input/models/mtunis.xmi" }
9: solutionLength = 50 // maximum number of transformation units
10:

11: transformations = {
12: modules = ["data/modularization_jsep.henshin"]
13: parameterValues = { // for user parameters
14: ModularizationRules.CreateModule.Parameter::MODULE_NAME :
15: new IncrementalStringValue("Module", "A")
16: }
17: }
18:

19: fitness = {
20: preprocess = { // use attribute storage for external calculation
21: val root = MomotUtil.getRoot(
22: solution.execute,
23: typeof(ModularizationModel))
24: solution.setAttribute(attribute, new ModularizationCalculator(root))
25: }
26: objectives = {
27: Coupling : minimize { // java-like syntax
28: val calculator = solution.getAttribute(
29: attribute,
30: typeof(ModularizationCalculator))
31: calculator.metrics.coupling
32: }
33: Cohesion : maximize {
34: val calculator = solution.getAttribute(
35: attribute,
36: typeof(ModularizationCalculator))
37: calculator.metrics.cohesion
38: }
39: NrModules : maximize "modules->size()" // OCL-specification

173

A. MOMoT Configuration DSL

40: MQ : maximize {
41: val calculator = solution.getAttribute(
42: attribute,
43: typeof(ModularizationCalculator))
44: calculator.metrics.modularizationQuality
45: }
46: MinMaxDiff : minimize {
47: val calculator = solution.getAttribute(
48: attribute,
49: typeof(ModularizationCalculator))
50: calculator.metrics.minMaxDiff
51: }
52: SolutionLength : minimize new TransformationLengthDimension // generic
53: }
54: constraints = { // mark invalid solutions
55: UnassignedClasses : minimize {
56: (root as ModularizationModel).classes
57: .filter[c | c.module == null].size
58: }
59: EmptyModules : minimize {
60: (root as ModularizationModel).^modules
61: .filter[m | m.classes.empty].size
62: }
63: }
64: solutionRepairer = new TransformationPlaceholderRepairer
65: }
66:

67: algorithms = {
68: NSGAIII : moea.createNSGAIII(
69: 0, 6,
70: new TournamentSelection(2),
71: new OnePointCrossover(1.0),
72: new TransformationPlaceholderMutation(0.10),
73: new TransformationVariableMutation(orchestration.searchHelper, 0.10))
74: eMOEA : moea.createEpsilonMOEA(
75: 0.02,
76: new TournamentSelection(2),
77: new OnePointCrossover(1.0),
78: new TransformationPlaceholderMutation(0.10),
79: new TransformationVariableMutation(orchestration.searchHelper, 0.10))
80: RS : moea.createRandomSearch
81: }
82:

83: // define index-based equivalence between modules
84: equalityHelper = {
85: if(left instanceof Module && right instanceof Module) {
86: val lhs = (left.eContainer as ModularizationModel).^modules.indexOf(left)
87: val rhs = (right.eContainer as ModularizationModel)
88: .^modules.indexOf(right)
89: return lhs.equals(rhs)
90: }
91: left.equals(right)
92: }
93: }
94:

95: experiment = {
96: populationSize = 300
97: maxEvaluations = 21000
98: nrRuns = 30
99: progressListeners = [new SeedRuntimePrintListener]
100: }
101:

174

A.2. Example: Modularization Configuration

102: analysis = {
103: indicators = [hypervolume generationalDistance contribution]
104: significance = 0.01
105: show = [aggregateValues statisticalSignificance individualValues]
106: outputFile = "output/analysis/mtunis_statistic.txt"
107: }
108:

109: results = {
110: // save objectives
111: objectives = {
112: outputFile = "output/objectives/mtunis_objectives_all.pf"
113: printOutput
114: }
115: // save MOEA objectives
116: objectives = {
117: algorithms = [eMOEA NSGAIII]
118: outputFile = "output/objectives/mtunis_objectives_moea.pf"
119: }
120: // save solutions, i.e., transformation orchestrations
121: solutions = {
122: outputFile = "output/solutions/all_solutions.txt"
123: outputDirectory = "output/solutions/"
124: }
125: // save models resulting from the orchestrated transformations
126: models = {
127: outputDirectory = "output/models/mtunis_statistic2/"
128: }
129: // select kneepoint models for further inspection
130: models = {
131: neighborhoodSize = maxNeighborhoodSize
132: outputDirectory = "output/models/kneepoints/"
133: }
134: }

175

List of Figures

1.1 Classical Process in Decision Making . 3
1.2 Model-Level Optimization Approach and Contributions of this Thesis 5

2.1 Four-Layered Metamodeling Stack . 12
2.2 Model Transformation Pattern . 15
2.3 Class To Relational Example Metamodels . 20
2.4 Source Model Conforming to the Class Diagram Metamodel 22
2.5 Excerpt of the Trace Model Used by ATL During Execution 23
2.6 Target Model Conforming to the Relational Metamodel 24
2.7 Pacman Game Specification . 24
2.8 Rules to Move the Pacman and Ghosts . 26
2.9 Ideal Vector and Nadir Point in a MOP . 32
2.10 Metaheuristic Optimization in Classical Optimization Methods 33
2.11 Two Steps Performed by Local Search Methods in Each Iteration 36
2.12 Local Optimum and Global Optimum in a Search Space 37
2.13 Steps Performed by Evolutionary Search Methods in Each Iteration 39

3.1 Model-Based Property Analysis Contribution 41
3.2 Product Quality Model Characteristics . 43
3.3 Metric Calculation Using a Model Transformation 45
3.4 PetStore Entities . 48
3.5 PetStore Services . 49
3.6 PetStore EntityManager CheckCredentials Behavior 50
3.7 fUML-Based Analysis Framework For Non-functional Properties 53
3.8 Model-Based Performance Analysis Framework 55
3.9 PetStore Single Buy Scenario . 60
3.10 PetStore Hardware . 60
3.11 PetStore CustomerService Login Behavior . 61
3.12 Utilization of the PetStore Single Buy Scenario 62
3.13 Evolution of the Utilization Property Over Time 62
3.14 Scenario 1 QN Specified in JSIM . 64

4.1 Marrying Optimization and Model Transformations Contribution 67
4.2 Modularization Metamodel . 69

177

4.3 Modularization Model Instance (mtunis System) 70
4.4 Rules to Manipulate a Modularization Model 70
4.5 Overview of the MOMoT Approach . 73
4.6 Solution with the First Two Transformation Units and One Placeholder . . . 75
4.7 Modularization Quality Convergence Graph For Local Search 80
4.8 Hypervolume and Inverted Generational Box Plots 82
4.9 Technology Stack of MOMoT . 86
4.10 Solution Definition in MOMoT . 87
4.11 Transformation Problem Definition in MOMoT 89
4.12 Involved Classes for Executing a Search in MOMoT 90

5.1 Class Diagram Restructuring Transformations 106
5.2 Stack System . 108
5.3 Modularization Model Solution for the mtunis System 109
5.4 Metamodel of the Class Diagram Restructuring Case Study 110
5.5 Create Root Class Rule With Three NACs and One Nested Rule 110
5.6 Remove Empty Sub-Class-Refactoring from EMF Refactor 111
5.7 Combining Initial Check and Execution of Remove Empty Sub-Class 112
5.8 Native Encoding for the Modularization Case Study 113
5.9 Total Runtime Comparison for Modularization: Native Encoding vs MOMoT 114
5.10 Total Runtime Comparison for Stack System: Native Encoding vs MOMoT . 116
5.11 Transformation Modularization Approach Overview 126
5.12 Transformation Modularization Metamodel 126
5.13 Transformation Modularization Rules . 127
5.14 ATL Modularization Approach Overview . 129
5.15 Dependencies of the Class2Relational Transformation 131
5.16 Normalized Reference Plane for Three Objectives 133
5.17 Hypervolume (IHV) and Inverted Generational Distance (IGD) Indicator

Values Retrieved from 30 Independent Algorithm Runs 144
5.18 Qualitative Correctness Evaluation Using Precision (PR) 147
5.19 Qualitative Correctness Evaluation Using Recall (RE) 148
5.20 Qualitative Correctness Evaluation Using Manual Precision (MP) 149
5.21 Task Difficulty Evaluation for Ecore2Maude (CS1) and XHTML2XML (CS4):

Original vs Modularized Transformations . 150
5.22 Task Time Evaluation for Ecore2Maude (CS1) and XHTML2XML (CS4):

Original vs Modularized Transformations . 151
5.23 Generic Modularization Metamodel . 156
5.24 Generic Modularization Chain . 157
5.25 MoveEntity Rule . 159
5.26 Simplified Ecore Metamodel . 160
5.27 Excerpt of the OCL Knee-Point Solution . 163
5.28 Excerpt of the HTML Knee-Point Solution 164

178

List of Tables

3.1 MARTE Stereotypes in the Performance Evaluation Framework 56
3.2 Overhead Matrix for the PetStore . 61
3.3 Execution Times for Operations in the PetStore Single Buy Scenario 61
3.4 Average Utilization per ServiceCenter in JSIM and our Approach 64

4.1 Transformation Units That Serve as Decision Variables in the Encoding . . . 74
4.2 Excerpt of Indicator Statistic for Different Multi-Objective Algorithms 82
4.3 List of Static Checks in the Configuration DSL 84

5.1 Average Runtime and Standard Deviations in Milliseconds for Modularization:
Native Encoding vs MOMoT . 115

5.2 Transformation Modularization Objectives . 128
5.3 Size and Structure of All Case Studies . 137
5.4 Task and Case Study Group Assignment . 141
5.5 Initial Objective Values for All Case Studies 143
5.6 Median Objective Values and Standard Deviations Retrieved from 30 Inde-

pendent Algorithm Runs . 145
5.7 Correspondences Between Ecore and Generic Modularization Language . . . 161
5.8 Ecore Models as Modularization Models . 161
5.9 Objectives Values Before and After Optimization 162

List of Listings

2.1 Excerpt of the Class To Relational ATL Transformation 21

3.1 Metric Calculation Using an OCL Query 44

179

3.2 Temporal Query Using OCL Extended with CTL 45

4.1 Experiment Configuration Excerpt in the Textual Notation of Our DSL . 83
4.2 Excerpt of the Configuration DSL Grammar 93
4.3 Excerpt of the Mapping From DSL Concepts to JVM Concepts 95
4.4 Example Validation Rule for a Warning on Algorithm Runs 96

5.1 OCL-NAC for Pulling Up Attributes of a Class Diagram 110
5.2 OCL Objectives for the Class Diagram Refactoring Case Study 111
5.3 Usage of an EMF Refactor Metric Calculator in MOMoT Objective . . . 112
5.4 Fitness Function For Language Modularization 158

A.1 Grammar of the MOMoT Configuration DSL 169
A.2 Textual Configuration for the Modulariztion Case Study 173

180

Bibliography

[AB05] Cyrille Artho and Armin Biere. Combined Static and Dynamic Analysis.
Electronic Notes in Theoretical Computer Science, 131:3–14, 2005.

[AB11] Andrea Arcuri and Lionel Briand. A Practical Guide for Using Statistical
Tests to Assess Randomized Algorithms in Software Engineering. In
Proceedings of the 33rd International Conference on Software Engineering
(ICSE), pages 1–10, 2011.

[ABJ+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: Advanced Concepts and Tools for In-Place
EMF Model Transformations. In Proceedings of the 13th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS),
pages 121–135, 2010.

[AdLG15] Nuno Amálio, Juan de Lara, and Esther Guerra. Fragmenta: A Theory
of Fragmentation for MDE. In Proceedings of the 18th International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS),
pages 106–115. IEEE, 2015.

[ADS11] Hani Abdeen, Stephane Ducasse, and Houari Sahraoui. Modularization
Metrics: Assessing Package Organization in Legacy Large Object-Oriented
Software. In Proceedings of the 18th Working Conference on Reverse
Engineering (WCRE), pages 394–398, 2011.

[ADSA09] Hani Abdeen, Stéphane Ducasse, Houari A. Sahraoui, and Ilham Alloui.
Automatic Package Coupling and Cycle Minimization. In Proceedings
of the 16th Working Conference on Reverse Engineering (WCRE), pages
103–112, 2009.

[Agr03] Aditya Agrawal. Graph Rewriting And Transformation (GReAT): A
Solution For The Model Integrated Computing (MIC) Bottleneck. In
Proceedings of the 18th International Conference on Automated Software
Engineering (ASE), pages 364–368, 2003.

[AKH03] Colin Atkinson, Thomas Kühne, and Brian Henderson-Sellers. Systematic
Stereotype Usage. Software and Systems Modeling, 2(3):153–163, 2003.

181

[AKM13] Omar Alam, Jörg Kienzle, and Gunter Mussbacher. Concern-Oriented
Software Design. In Proceedings of the 16th International Conference
on Model-Driven Engineering Languages and Systems (MoDELS), pages
604–621, 2013.

[AL99] Nicolas Anquetil and Timothy Lethbridge. Experiments With Clustering
as a Software Remodularization Method. In Proceedings of the 6th Working
Conference on Reverse Engineering (WCRE), pages 235–255, 1999.

[ALS08] Carsten Amelunxen, Elodie Legros, and Andy Schürr. Generic and Reflec-
tive Graph Transformations for the Checking and Enforcement of Modeling
Guidelines. In Proceedings of the 9th Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 211–218, 2008.

[And14] AndroMDA Team. AndroMDA. http://andromda.sourceforge.
net, 2014. Accessed March 2016.

[ASB09] Colin Atkinson, Dietmar Stoll, and Philipp Bostan. Supporting View-Based
Development through Orthographic Software Modeling. In Proceedings
of the 4th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE), pages 71–86, 2009.

[AT13] Thorsten Arendt and Gabriele Taentzer. A Tool Environment for Quality
Assurance Based on the Eclipse Modeling Framework. Automated Software
Engineering, 20(2):141–184, 2013.

[AVS+14] Hani Abdeen, Dániel Varró, Houari A. Sahraoui, András Szabolcs Nagy,
Csaba Debreceni, Ábel Hegedüs, and Ákos Horváth. Multi-Objective
Optimization in Rule-based Design Space Exploration. In Proceedings
of the 29th International Conference on Automated Software Engineering
(ASE), pages 289–300, 2014.

[BAHT15] Kristopher Born, Thorsten Arendt, Florian Heß, and Gabriele Taentzer.
Analyzing Conflicts and Dependencies of Rule-Based Transformations in
Henshin. In Proceedings of the 18th International Conference on Fun-
damental Approaches to Software Engineering (FASE), pages 165–168,
2015.

[BBCI+13] Alexander Bergmayr, Hugo Brunelière, Javier Luis Canovas Izquierdo,
Jesus Gorronogoitia, George Kousiouris, Dimosthenis Kyriazis, Philip
Langer, Andreas Menychtas, Leire Orue-Echevarria, Clara Pezuela, and
Manuel Wimmer. Migrating Legacy Software to the Cloud with ARTIST.
In Proceedings of the 17th European Conference on Software Maintenance
and Reengineering (CSMR), pages 465–468, 2013.

182

http://andromda.sourceforge.net
http://andromda.sourceforge.net

[BBL76] Barry W. Boehm, John R. Brown, and Myron Lipow. Quantitative
Evaluation of Software Quality. In Proceedings of the 2nd International
Conference on Software Engineering (ICSE), pages 592–605, 1976.

[BBSG11] Slim Bechikh, Lamjed Ben Said, and Khaled Ghédira. Searching for
Knee Regions of the Pareto Front Using Mobile Reference Points. Soft
Computing, 15(9):1807–1823, 2011.

[BCJM10] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot.
MoDisco: A Generic and Extensible Framework for Model Driven Re-
verse Engineering. In Proceedings of the 25th International Conference on
Automated Software Engineering (ASE), pages 173–174, 2010.

[BCS09] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. JMT: Performance
Engineering Tools for System Modeling. ACM SIGMETRICS Performance
Evaluation Review, 36(4):10–15, 2009.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven
Software Engineering in Practice. Morgan & Claypool Publishers, 2012.

[BDDO04] Jürgen Branke, Kalyanmoy Deb, Henning Dierolf, and Matthias Osswald.
Finding Knees in Multi-Objective Optimization. In Proceedings of the
8th International Conference on Parallel Problem Solving from Nature
(PPSN), pages 722–731, 2004.

[BED14] Dominique Blouin, Yvan Eustache, and Jean-Philippe Diguet. Extensible
Global Model Management with Meta-Model Subsets and Model Syn-
chronization. In Proceedings of the 2nd International Workshop on The
Globalization of Modeling Languages (GEMOC), pages 43–52, 2014.

[BET10] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Lifting Parallel
Graph Transformation Concepts of Model Transformation based on the
Eclipse Modeling Framework. Electronic Communications of the European
Association of Software Science and Technology, 26:1–19, 2010.

[Béz05] Jean Bézivin. On the Unification Power of Models. Software and Systems
Modeling, 4(2):171–188, 2005.

[bFKLW12] Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and Manuel
Wimmer. Search- Based Detection of High-Level Model Changes. In
Proceedings of the 28th International Conference on Software Maintenance
(ICSM), pages 212–221, 2012.

[BG01] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In Proceedings of the 16th International Confer-
ence on Automated Software Engineering (ASE), pages 273–280, 2001.

183

[BGH+14] Anne Berry, Alain Gutierrez, Marianne Huchard, Amedeo Napoli, and
Alain Sigayret. Hermes: A Simple and Efficient Algorithm for Building
the AOC-Poset of a Binary Relation. Annals of Mathematics and Artificial
Intelligence, 72(1-2):45–71, 2014.

[BGKS14] Robert Bill, Sebastian Gabmeyer, Petra Kaufmann, and Martina Seidl.
Model Checking of CTL-Extended OCL Specifications. In Proceedings of
the 7th International Conference on Software Language Engineering (SLE),
pages 221–240, 2014.

[BGWK14] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti
Kappel. JUMP-From Java Annotations to UML Profiles. In Proceedings of
the 17th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 552–568, 2014.

[BIG16] BIG: Business Informatics Group. Moliz: Model Execution. http://
modelexecution.org, 2016. Accessed March 2016.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. Model-Based Per-
formance Prediction with the Palladio Component Model. In Proceedings
of the 6th International Workshop on Software and Performance (WOSP),
pages 54–65, 2007.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf H. Reussner. The Palladio
Component Model for Model-Driven Performance Prediction. Journal of
Systems and Software, 82(1):3–22, 2009.

[BLM13] Luca Berardinelli, Philip Langer, and Tanja Mayerhofer. Combining
fUML and Profiles for Non-Functional Analysis Based on Model Execution
Traces. In Proceedings of the 9th International Conference on the Quality
of Software Architectures (QoSA), 2013.

[BMIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta
Simeoni. Model-Based Performance Prediction in Software Development:
A Survey. IEEE Transactions on Software Engineering, 30(5):295–310,
2004.

[BMP09] Simona Bernardi, José Merseguer, and Dorina C. Petriu. A Dependability
Profile within MARTE. Software and Systems Modeling, 10(3):313–336,
2009.

[Bor15] Francis Bordeleau. Why and Where Do We Need Model Execution? In
Proceedings of the 1st International Workshop on Executable Modeling
(EXE), pages 1–2, 2015.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in Combinatorial Op-
timization: Overview and Conceptual Comparison. ACM Computing
Surveys, 35(3):268–308, 2003.

184

http://modelexecution.org
http://modelexecution.org

[BSC+14] Islem Baki, Houari A. Sahraoui, Quentin Cobbaert, Philippe Masson, and
Martin Faunes. Learning Implicit and Explicit Control in Model Transfor-
mations by Example. In Proceedings of the 17th International Conference
on Model Driven Engineering Languages and Systems (MoDELS), pages
636–652, 2014.

[BTWV15] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo.
Static Fault Localization in Model Transformations. IEEE Transactions
on Software Engineering, 41(5):490–506, 2015.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In Proceedings of the 14th International Conference on Computer
Aided Verification (CAV), pages 359–364, 2002.

[CCGR99] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. NUSMV: A New Symbolic Model Verifier. In Proceedings of
the 11th International Conference on Computer Aided Verification (CAV),
pages 495–499, 1999.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco
Roveri. NUSMV: A New Symbolic Model Checker. International Journal
on Software Tools for Technology Transfer, 2(4):410–425, 2000.

[CCGT09] Benoît Combemale, Xavier Crégut, Pierre-Loïc Garoche, and Xavier Thiri-
oux. Essay on Semantics Definition in MDE - An Instrumented Approach
for Model Verification. Journal of Software, 4(9):943–958, 2009.

[CD08] Massimiliano Caramia and Paolo Dell’Olmo. Multi-Objective Management
in Freight Logistics: Increasing Capacity, Service Level and Safety with
Optimization Algorithms, chapter Multi-Objective Optimization, pages
11–36. Springer London, 2008.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martí-Oliet, José Meseguer, and Carolyn Talcott. All About Maude – A
High-Performance Logical Framework. Springer Berlin Heidelberg, 2007.

[CDREP10] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pieran-
tonio. JTL: A Bidirectional and Change Propagating Transformation
Language. In Proceedings of the 3rd International Conference on Software
Language Engineering (SLE), pages 183–202, 2010.

[CGdL11] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. Generic Model
Transformations: Write Once, Reuse Everywhere. In Proceedings of the 4th

International Conference on Theory and Practice of Model Transformations
(ICMT), pages 62–77, 2011.

185

[CGdL14] Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. A Compo-
nent Model for Model Transformations. IEEE Transactions on Software
Engineering, 40(11):1042–1060, 2014.

[CGM08] Jesús Cuadrado and Jesús García Molina. Approaches for Model Transfor-
mation Reuse: Factorization and Composition. In Proceedings of the 1st

International Conference on Theory and Practice of Model Transformations
(ICMT), pages 168–182, 2008.

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey of Model
Transformation Approaches. IBM Systems Journal, 45(3):621–645, 2006.

[CHM+02] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András
Pataricza, and Dániel Varró. VIATRA - Visual Automated Transformations
for Formal Verification and Validation of UML Models. In Proceedings
of the 17th International Conference on Automated Software Engineering
(ASE), pages 267–270, 2002.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476–
493, 1994.

[Cla08] Edmund M. Clarke. 25 Years of Model Checking: History, Achievements,
Perspectives, chapter The Birth of Model Checking, pages 1–26. Springer,
2008.

[CLR+09] Zhenbang Chen, Zhiming Liu, Anders P. Ravn, Volker Stolz, and Naijun
Zhan. Refinement and Verification in Component-Based Model-Driven
Design. Science of Computer Programming, 74(4):168–196, 2009.

[CLV07] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen.
Evolutionary Algorithms for Solving Multi-Objective Problems. Springer
US, 2nd edition, 2007.

[CM78] Joseph P. Cavano and James A. McCall. A Framework for the Measurement
of Software Quality. ACM SIGSOFT Software Engineering Notes, 3(5):133–
139, 1978.

[CM09] Jesús Sánchez Cuadrado and Jesús García Molina. Modularization of
Model Transformations Through a Phasing Mechanism. Software and
Systems Modeling, 8(3):325–345, 2009.

[Coh88] Jacob Cohen. Statistical Power Analysis for the Behavioral Sciences.
Lawrence Erlbaum Associates, 2nd edition, 1988.

[Coo71] Stephen A. Cook. The Complexity of Theorem-Proving Procedures. In
Proceedings of the 3rd Symposium on Theory of Computing (STOC), pages
151–158, 1971.

186

[DA95] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated Binary Crossover
for Continuous Search Space. Complex Systems, 9(2):115–148, 1995.

[DAPM02] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan. A
Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, 6(2):182–197, 2002.

[Dar59] Charles Darwin. On the Origin of Species by Means of Natural Selection.
John Murray, London, 1859.

[DG01] Kalyanmoy Deb and Tushar Goel. A Hybrid Multi-Objective Evolutionary
Approach to Engineering Shape Design. In Proceedings of the 1st Interna-
tional Conference on Evolutionary Multi-Criterion Optimization (EMO),
pages 385–399, 2001.

[DGM11] Mauro Luigi Drago, Carlo Ghezzi, and Raffaela Mirandola. Towards Qual-
ity Driven Exploration of Model Transformation Spaces. In Proceedings of
the 14th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 2–16, 2011.

[DGM15] Mauro Luigi Drago, Carlo Ghezzi, and Raffaela Mirandola. A Quality-
Driven Extension to the QVT-Relations Transformation Language. Com-
puter Science - Research and Development, 30(1):1–20, 2015.

[DJ12] Kalyanmoy Deb and Himanshu Jain. Handling Many-Objective Problems
Using an Improved NSGA-II Procedure. In Proceedings of the 7th World
Congress on Evolutionary Computation (CEC), pages 1–8, 2012.

[DJ14] Kalyanmoy Deb and Himanshu Jain. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-Point-Based Nondominated Sort-
ing Approach, Part I: Solving Problems With Box Constraints. IEEE
Transactions on Evolutionary Computation, 18(4):577–601, 2014.

[DJVV14] Joachim Denil, Maris Jukss, Clark Verbrugge, and Hans Vangheluwe.
Search-Based Model Optimization Using Model Transformations. In Pro-
ceedings of the 8th International Conference on System Analysis and Mod-
eling (SAM), pages 80–95, 2014.

[dLV02] Juan de Lara and Hans Vangheluwe. AToM3: A Tool for Multi-formalism
and Meta-modelling. In Proceedings of of the 5th International Conference
on Fundamental Approaches to Software Engineering (FASE), pages 174–
188, 2002.

[DM05] Antinisca Di Marco. Model-based Performance Analysis of Software Archi-
tectures. PhD thesis, University of L’Aquila, 2005.

187

[DMM03] Kalyanmoy Deb, Manikanth Mohan, and Shikhar Mishra. A Fast Multi-
objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal
Solutions. KanGAL Report 2003002, Indian Institute of Technology
Kanpur, 2003.

[dOB11] Márcio de Oliveira Barros. Evaluating Modularization Quality as an Extra
Objective in Multiobjective Software Module Clustering. In Proceedings
of the 3rd International Symposium on Search Based Software Engineering
(SSBSE), pages 267–267, 2011.

[Dor92] Marco Dorigo. Optimization, Learning and Natural Algorithms (in Italian).
Phd thesis, Politecnico di Milano, 1992.

[Dro95] R. Geoff Dromey. A Model for Software Product Quality. IEEE Transac-
tions on Software Engineering, 21(2):146–162, 1995.

[dS15] Alberto Rodrigues da Silva. Model-Driven Engineering: A Survey Sup-
ported by the Unified Conceptual Model. Computer Languages, Systems
& Structures, 43:139–155, 2015.

[DZT12] Francisco Durán, Steffen Zschaler, and Javier Troya. On the Reusable
Specification of Non-functional Properties in DSLs. In Proceedings of the
5th International Conference on Software Language Engineering (SLE),
pages 332–351, 2012.

[Ecl] Eclipse Foundation. ATL Transformations. http://www.eclipse.
org/atl/atlTransformations/. Accessed March 2016.

[Ecl11] Eclipse Foundation. JET2: Java Emitter Templates. http:
//projects.eclipse.org/projects/modeling.m2t.jet, 2011.
Accessed March 2016.

[Ecl14] Eclipse Foundation. EMF Refactor. http://www.eclipse.org/
emf-refactor/, 2014. Accessed March 2016.

[Ecl15] Eclipse Foundation. Atlas Transformation Language – ATL. http:
//eclipse.org/atl, 2015. Accessed March 2016.

[Ecl16a] Eclipse Foundation. Acceleo. http://projects.eclipse.org/
projects/modeling.m2t.acceleo, 2016. Accessed March 2016.

[Ecl16b] Eclipse Foundation. Eclipse Modeling Framework (EMF). https://
eclipse.org/modeling/emf/, 2016. Accessed March 2016.

[Ecl16c] Eclipse Foundation. Moka Overview. https://wiki.eclipse.org/
Papyrus/UserGuide/ModelExecution, 2016. Accessed March 2016.

188

http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/
http://projects.eclipse.org/projects/modeling.m2t.jet
http://projects.eclipse.org/projects/modeling.m2t.jet
http://www.eclipse.org/emf-refactor/
http://www.eclipse.org/emf-refactor/
http://eclipse.org/atl
http://eclipse.org/atl
http://projects.eclipse.org/projects/modeling.m2t.acceleo
http://projects.eclipse.org/projects/modeling.m2t.acceleo
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

[Ecl16d] Eclipse Foundation. Xbase. https://wiki.eclipse.org/Xbase,
2016. Accessed March 2016.

[Ecl16e] Eclipse Foundation. XPand. http://projects.eclipse.org/
projects/modeling.m2t.xpand, 2016. Accessed March 2016.

[Ecl16f] Eclipse Foundation. Xtext - Language Engineering Made Easy! https:
//www.eclipse.org/Xtext/, 2016. Accessed March 2016.

[Edg81] Francis Ysidro Edgeworth. Mathematical Psychics. P. Keagan, London,
1881.

[ES11] A. E. Eiben and S. K. Smit. Parameter Tuning for Configuring and Ana-
lyzing Evolutionary Algorithms. Swarm and Evolutionary Computation,
1(1):19–31, 2011.

[EWZ14] Dionysios Efstathiou, James R. Williams, and Steffen Zschaler. Crepe
Complete: Multi-Objective Optimisation for Your Models. In Proceedings
of the 1st International Workshop on Combining Modelling with Search-
and Example-Based Approaches (CMSEBA), pages 25–34, 2014.

[FBL+13] Martin Fleck, Luca Berardinelli, Philip Langer, Tanja Mayerhofer, and
Vittorio Cortellessa. Resource Contention Analysis of Cloud-based Sys-
tem through fUML-driven Model Execution. In Proceedings of the 5th

International Workshop Non-functional Properties in Modeling: Analysis,
Languages and Processes (NiM-ALP), pages 6–15, 2013.

[FHH03] Deji Fatiregun, Mark Harman, and Robert M. Hierons. Search Based
Transformations. In Proceedings of the 5th Conference on Genetic and
Evolutionary Computation (GECCO), pages 2511–2512, 2003.

[FHH04] Deji Fatiregun, Mark Harman, and Robert M. Hierons. Evolving Trans-
formation Sequences using Genetic Algorithms. In Proceedings of the
4th International Workshop on Source Code Analysis and Manipulation
(SCAM), pages 66–75, 2004.

[Fis74] Peter C. Fishburn. Lexicographic Orders, Utilities and Decision Rules: A
Survey. Management Science, 20(11):1442–1471, 1974.

[Fog62] Lawrence J. Fogel. Toward Inductive Inference Automata. In Proceedings
of the 2nd International Federation for Information Processing (IFIP),
pages 395–399, 1962.

[Fog66] Lawrence J. Fogel. Intelligence Through Simulated Evolution. John Wiley
& Sons, 1966.

[Fow99] Martin Fowler. Refactoring - Improving the Design of Existing Code.
Addison-Wesley, 1999.

189

https://wiki.eclipse.org/Xbase
http://projects.eclipse.org/projects/modeling.m2t.xpand
http://projects.eclipse.org/projects/modeling.m2t.xpand
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/

[FP09] Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided
by Tests. Addison-Wesley, 2009.

[FR07] Robert B. France and Bernhard Rumpe. Model-Driven Development of
Complex Software: A Research Roadmap. In Proceedings of the Interna-
tional Workshop on the Future of Software Engineering (FOSE), pages
37–54, 2007.

[FSB13] Martin Faunes, Houari A. Sahraoui, and Mounir Boukadoum. Genetic-
Programming Approach to Learn Model Transformation Rules from Ex-
amples. In Proceedings of the 6th International Conference on Theory and
Practice of Model Transformations (ICMT), pages 17–32, 2013.

[FTKW16] Martin Fleck, Javier Troya, Marouane Kessentini, and Manuel Wimmer.
Model Transformation Modularization as a Many-Objective Optimization
Problem. 2016. Submitted for Review to IEEE Transactions on Software
Engineering.

[FTW15] Martin Fleck, Javier Troya, and Manuel Wimmer. Marrying Search-
based Optimization and Model Transformation Technology. In Pro-
ceedings of the 1st North American Symposium on Search Based Soft-
ware Engineering (NasBASE), pages 1–16, 2015. Preprint avail-
able at http://martin-fleck.github.io/momot/downloads/
NasBASE_MOMoT.pdf.

[FTW16a] Martin Fleck, Javier Troya, and Manuel Wimmer. MOMoT - Marrying
Search-based Optimization and Model Transformation Technology. http:
//martin-fleck.github.io/momot/, 2016. Accessed March 2016.

[FTW16b] Martin Fleck, Javier Troya, and Manuel Wimmer. Objective-Driven
Model Transformations. 2016. Revision Submitted to Journal of Software:
Evolution and Process.

[FTW16c] Martin Fleck, Javier Troya, and Manuel Wimmer. Towards Generic
Modularization Transformations. In Companion Proceedings of the 15th

International Conference on Modularity, 1st International Workshop on
Modularity in Modelling (MOMO), pages 190–195, 2016.

[FTW16d] Martin Fleck, Javier Troya, and Manuel Wimmer. Transformation
Chain for Ecore models. http://martin-fleck.github.io/momot/
casestudy/generic_modularization/, 2016. Accessed March
2016.

[GDM14] Hamid Gholizadeh, Zinovy Diskin, and TomMaibaum. A Query Structured
Approach for Model Transformation. In Proceedings of the 3rd Workshop
on the Analysis of Model Transformations (AMT), pages 54–63, 2014.

190

http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://martin-fleck.github.io/momot/downloads/NasBASE_MOMoT.pdf
http://martin-fleck.github.io/momot/
http://martin-fleck.github.io/momot/
http://martin-fleck.github.io/momot/casestudy/generic_modularization/
http://martin-fleck.github.io/momot/casestudy/generic_modularization/

[GGKdL14] Antonio Garmendia, Esther Guerra, Dimitrios S. Kolovos, and Juan
de Lara. EMF Splitter: A Structured Approach to EMF Modularity.
In Proceedings of the 3rd Workshop on Extreme Modeling (XM), pages
22–31, 2014.

[GHH14] Martin Gogolla, Lars Hamann, and Frank Hilken. On Static and Dynamic
Analysis of UML and OCL Transformation Models. In Proceedings of the
3rd Workshop on the Analysis of Model Transformations (AMT), pages
24–33, 2014.

[GK10] Joel Greenyer and Ekkart Kindler. Comparing Relational Model Trans-
formation Technologies: Implementing Query/View/Transformation with
Triple Graph Grammars. Software and Systems Modeling, 9(1):21–46,
2010.

[GL85] David E. Goldberg and Robert Lingle Jr. Alleles, Loci, and the Traveling
Salesman Problem. In Proceedings of the 1st International Conference on
Genetic Algorithms (ICGA), pages 154–159, 1985.

[Glo86] Fred Glover. Future Paths for Integer Programming and Links to Artificial
Intelligence. Computers and Operations Research, 13(5):533–549, 1986.

[GM93] Robert Godin and Hafedh Mili. Building and Maintaining Analysis-
level Class Hierarchies Using Galois Lattices. In Proceedings of the 8th

Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA), pages 394–410, 1993.

[GPC05] Marcela Genero, Mario Piattini, and Coral Calero. Metrics For Software
Conceptual Models. Imperial College Press, 2005.

[Gra92] Robert B. Grady. Practical Software Metrics for Project Management and
Process Improvement. Prentice Hall, 1992.

[GRK13] Pieter Van Gorp, Louis M. Rose, and Christian Krause, editors. Proceedings
of the 6th Transformation Tool Contest (TTC), volume 135 of Electronic
Proceedings in Theoretical Computer Science, 2013.

[Had16a] David Hadka. Beginner’s Guide to the MOEA Framework. CreateSpace
Independent Publishing, 2016.

[Had16b] David Hadka. MOEA Framework User Guide, Version 2.8. http://
moeaframework.org/, 2016. Accessed March 2016.

[Har07] Mark Harman. The Current State and Future of Search Based Software
Engineering. In Proceedings of the Workshop on the Future of Software
Engineering (FOSE), pages 342–357, 2007.

191

http://moeaframework.org/
http://moeaframework.org/

[Hec06] Reiko Heckel. Graph Transformation in a Nutshell. Electronic Notes in
Theoretical Computer Science, 148(1):187–198, 2006.

[Hev07] Alan R. Hevner. The Three Cycle View of Design Science. Scandinavian
Journal of Information Systems, 19(2):87–92, 2007.

[HHJZ09] Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and Steffen
Zschaler. On Language-Independent Model Modularisation. Transactions
on Aspect-Oriented Software Development, 6:39–82, 2009.

[HHP02] Mark Harman, Robert M. Hierons, and Mark Proctor. A New Representa-
tion And Crossover Operator For Search-based Optimization Of Software
Modularization. In Proceedings of the 4th Conference on Genetic and
Evolutionary Computation (GECCO), pages 1351–1358, 2002.

[HJ98] Michael Pilegaard Hansen and Andrzej Jaszkiewicz. Evaluating the Quality
of Approximations to the Non-Dominated Set. Technical report, Technical
University of Denmark, 1998.

[HJ01] Mark Harman and Bryan F. Jones. Search-based Software Engineering.
Information and Software Technology, 43(14):833–839, 2001.

[HJZA07] Jakob Henriksson, Jendrik Johannes, Steffen Zschaler, and Uwe Aßmann.
Reuseware - Adding Modularity to Your Language of Choice. Journal of
Object Technology, 6(9):127–146, 2007.

[HM79] Ching-Lai Hwang and Abu Syed Md. Masud. Multiple Objective Decision
Making — Methods and Applications: A State-of-the-Art Survey. Springer
Berlin, 1979.

[HMD97] Pascal Van Hentenryck, Laurent Michel, and Yves Deville. Numerica - A
Modeling Language for Global Optimization. MIT Press, 1997.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
Science in Information Systems Research. MIS Quarterly, 28(1):75–105,
2004.

[HMTY10] Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial. In
Proceedings of the International Summer School on Empirical Software
Engineering and Verification (LASER), pages 1–59, 2010.

[Hol62] John H. Holland. Outline for a Logical Theory of Adaptive Systems.
Journal of the ACM, 9(3):297–314, 1962.

[Hol75] John Henry Holland. Adaptation in Natural and Artificial Systems. MIT
Press, 1975.

192

[Hol83] Richard C. Holt. Concurrent Euclid, the Unix* System, and Tunis. Addison-
Wesley, 1983.

[Hol92] John Henry Holland. Adaptation in Natural and Artificial Systems. MIT
Press, 1992.

[Hol97] Gerard J. Holzmann. The Model Checker SPIN. IEEE Transactions on
Software Engineering, 23(5):279–295, 1997.

[Hol03] Gerard J. Holzmann. The SPIN Model Checker. Addison-Wesley, 2003.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the
Semantics of "Semantics"? IEEE Computer, 37(10):64–72, 2004.

[HT07] Mark Harman and Laurence Tratt. Pareto Optimal Search Based Refactor-
ing at the Design Level. In Proceedings of the 9th Conference on Genetic
and Evolutionary Computation (GECCO), pages 1106–1113, 2007.

[ISO11] ISO: International Organization for Standardization. Systems and Soft-
ware Quality Requirements and Evaluation (SQuaRE) – System and
Software Quality Models. http://www.iso.org/iso/catalogue_
detail.htm?csnumber=35733, 2011. ISO/IEC 25010:2011, Accessed
March 2016.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:
A Model Transformation Tool. Science of Computer Programming, 72(1–
2):31–39, 2008.

[JBF11] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model Driven
Language Engineering with Kermeta. In Proceedings of the 4th Interna-
tional Summer School on Generative and Transformational Techniques in
Software Engineering (GTTSE), pages 201–221, 2011.

[JDJ+06] Toni Jussila, Jori Dubrovin, Tommi Junttila, Timo Latvala Latvala, and
Ivan Porres. Model Checking Dynamic and Hierarchical UML State
Machines. In Proceedings of the 3rd Workshop on Model Design and
Validation (MoDeVa), 2006.

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. In
Proceedings of the Satellite Events of the 8th International Conference on
on Model Driven Engineering Languages and Systems (MoDELS), pages
128–138, 2006.

[KAB02] Ivan Kurtev, Mehmet Aksit, and Jean Bézivin. Technological Spaces: An
Initial Appraisal. In Proceedings of the 4th International Symposium on
Distributed Objects and Applications (DOA), 2002.

193

http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733

[KBSB10] Marouane Kessentini, Arbi Bouchoucha, Houari A. Sahraoui, and Mounir
Boukadoum. Example-Based Sequence Diagrams to Colored Petri Nets
Transformation Using Heuristic Search. In Proceedings of the 6th European
Conference on Modelling Foundations and Applications (ECMFA), pages
156–172, 2010.

[KC00] Joshua D. Knowles and David W. Corne. M-PAES: A Memetic Algorithm
for Multiobjective Optimization. In Proceedings of the 2000 Congress on
Evolutionary Computation (CEC), pages 325–332, 2000.

[KDDFQS13] Mathias Kleiner, Marcos Didonet Del Fabro, and Davi Queiroz Santos.
Transformation as Search. In Proceedings of the 9th European Conference
on Modelling Foundations and Applications (ECMFA), pages 54–69, 2013.

[KE95] James Kennedy and Russell C. Eberhart. Particle Swarm Optimization.
In Proceedings of the 4th International Conference on Neural Networks,
pages 1942–1948, 1995.

[KJV83] Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by
Simulated Annealing. Science, 220(4598):671–680, 1983.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model Transformation
in the Large. In Proceedings of the 6th Joint Meeting of the European
Software Engineering Conference and the International Symposium on
Foundations of Software Engineering (ESEC-FSE), pages 285–294, 2007.

[Kle08] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific
Languages Using Metamodels. Addison-Wesley, 2008.

[KLR+12] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger,
and Manuel Wimmer. Model Transformation By-Example: A Survey of
the First Wave. In Conceptual Modelling and Its Theoretical Foundations,
pages 197–215, 2012.

[KLW13] Marouane Kessentini, Philip Langer, and Manuel Wimmer. Searching
Models, Modeling Search: On the Synergies of SBSE and MDE. In
Proceedings of the 1st International Workshop on Combining Modelling
and Search-Based Software Engineering (CMSBSE), pages 51–54, 2013.

[Koz92] John R. Koza. Genetic Programming. MIT Press, 1992.

[KPP08] Dimitrios S. Kolovos, Richard F. Paige, and Fiona Polack. The Epsilon
Transformation Language. In Proceedings of the 1st International Confer-
ence on Theory and Practice of Model Transformations (ICMT), pages
46–60, 2008.

194

[KR06] Harmen Kastenberg and Arend Rensink. Model Checking Dynamic States
in GROOVE. In Proceedings of the 13th International Workshop on Model
Checking Software (SPIN), pages 299–305, 2006.

[Kra07] Jeff Kramer. Is Abstraction the Key to Computing? Communications of
the ACM, 50(4):36–42, 2007.

[KSB08] Marouane Kessentini, Houari A. Sahraoui, and Mounir Boukadoum. Model
Transformation as an Optimization Problem. In Proceedings of the 11th

International Conference on Model Driven Engineering Languages and
Systems (MoDELS), pages 159–173, 2008.

[KSBB12] Marouane Kessentini, Houari A. Sahraoui, Mounir Boukadoum, and Omar
Benomar. Search-based Model Transformation by Example. Software and
Systems Modeling, 11(2):209–226, 2012.

[KSW+13] Angelika Kusel, Johannes Schoenboeck, Manuel Wimmer, Werner Rets-
chitzegger, Wieland Schwinger, and Gerti Kappel. Reality Check for Model
Transformation Reuse: The ATL Transformation Zoo Case Study. In Pro-
ceedings of the 2nd Workshop on the Analysis of Model Transformations
(AMT), 2013.

[Küh06] Thomas Kühne. Matters of (Meta-)Modeling. Software and Systems
Modeling, 5(4):369–385, 2006.

[Kur05] Ivan Kurtev. Adaptability of Model Transformations. PhD thesis, University
of Twente, 2005.

[Kur08] Ivan Kurtev. State of the Art of QVT: A Model Transformation Language
Standard. In Proceedings of the 3rd International Symposium on Appli-
cations of Graph Transformations with Industrial Relevance (AGTIVE),
pages 377–393, 2008.

[KvdBJ07] Ivan Kurtev, Klaas van den Berg, and Frédéric Jouault. Rule-based
Modularization in Model Transformation Languages Illustrated with ATL.
Science of Computer Programming, 68(3):138–154, 2007.

[KW52] William H. Kruskal and W. Allen Wallis. Use of Ranks in One-Criterion
Variance Analysis. Journal of the American Statistical Association,
47(260):583–621, 1952.

[KW06] Alexander Knapp and Jochen Wuttke. Model Checking of UML 2.0
Interactions. In Proceedings of the Workshops and Symposia of the 8th

International Conference on on Model Driven Engineering Languages and
Systems (MoDELS), pages 42–51, 2006.

195

[LAD+14] Levi Lúcio, Moussa Amrani, Jürgen Dingel, Leen Lambers, Rick Salay,
Gehan Selim, Eugene Syriani, and Manuel Wimmer. Model Transformation
Intents and Their Properties. Software and Systems Modeling, pages 1–38,
2014.

[LKR13] Kevin Lano and Saeed Kolahdouz Rahimi. Case Study: Class Diagram
Restructuring. In Proceedings of the 6th Transformation Tool Contest
(TTC), pages 8–15, 2013.

[LTDZ02] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler.
Combining Convergence and Diversity in Evolutionary Multiobjective
Optimization. Evolutionary Computation, 10(3):263–282, 2002.

[LWG+12] Philip Langer, Manuel Wimmer, Jeff Gray, Gerti Kappel, and Antonio
Vallecillo. Language-Specific Model Versioning Based on Signifiers. Journal
of Object Technology, 11(3):1–34, 2012.

[LZGS84] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. Quantitative System Performance: Computer System Analysis
Using Queueing Network Models. Prentice-Hall, 1984.

[May12] Tanja Mayerhofer. Testing and Debugging UMLModels Based on fUML. In
Proceedings of the 34th International Conference on Software Engineering
(ICSE), pages 1579–1582, 2012.

[May13] Tanja Mayerhofer. Using fUML as Semantics Specification Language in
Model Driven Engineering. In Proceedings of the Satellite Events of the
16th International Conference on Model Driven Engineering Languages
and Systems (MoDELS), pages 87–93, 2013.

[May14] Tanja Mayerhofer. Defining Executable Modeling Languages with fUML.
PhD thesis, TU Wien, 2014.

[MB04] Moreno Marzolla and Simonetta Balsamo. UML-PSI: The UML Perfor-
mance Simulator. In Proceedings of the 1st International Conference on
Quantitative Evaluation of Systems (QEST), pages 340–341, 2004.

[MB07] Onaiza Maqbool and Haroon Atique Babri. Hierarchical Clustering for Soft-
ware Architecture Recovery. IEEE Transactions on Software Engineering,
33(11):759–780, 2007.

[McC04] Steve McConnell. Code Complete: A Practical Handbook of Software
Construction. Microsoft Press, 2nd edition, 2004.

[MDL+14] Bart Meyers, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans
Vangheluwe, and Manuel Wimmer. ProMoBox: A Framework for Gen-
erating Domain-Specific Property Languages. In Proceedings of the 7th

196

International Conference on Software Language Engineering (SLE), pages
1–20, 2014.

[MG95] Brad L. Miller and David E. Goldberg. Genetic Algorithms, Tournament
Selection, and the Effects of Noise. Complex Systems, 9(3):193–212, 1995.

[MG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142, 2006.

[MGG+06] Milan Milanovic, Dragan Gasevic, Adrian Giurca, Gerd Wagner, and
Vladan Devedzic. Towards Sharing Rules Between OWL/SWRL and
UML/OCL. Electronic Communications of the European Association of
Software Science and Technology, 5, 2006.

[MH97] Laurent Michel and Pascal Van Hentenryck. Localizer: A Modeling Lan-
guage for Local Search. In Proceedings of the 3rd International Conference
on Principles and Practice of Constraint Programming (CP), pages 237–
251, 1997.

[MH99] Laurent D. Michel and Pascal Van Hentenryck. Localizer: A Modeling
Language for Local Search. INFORMS Journal on Computing, 11(1):1–14,
1999.

[MH00] Laurent Michel and Pascal Van Hentenryck. Localizer. Constraints,
5(1):43–84, 2000.

[MHF+15] Assaad Moawad, Thomas Hartmann, François Fouquet, Grégory Nain,
Jacques Klein, and Johann Bourcier. Polymer - A Model-Driven Approach
for Simpler, Safer, and Evolutive Multi-Objective Optimization Develop-
ment. In Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), pages 286–293,
2015.

[Mil07] Milan Milanovic. Modeling Rules on the Semantic Web. Master’s thesis,
University of Belgrade, 2007.

[MJ14] Hamid Masoud and Saeed Jalili. A Clustering-Based Model for Class
Responsibility Assignment Problem in Object-Oriented Analysis. Journal
of Systems and Software, 93:110–131, 2014.

[MKB+14] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyan-
moy Deb, and Mel Ó Cinnéide. High Dimensional Search-Based Software
Engineering: Finding Tradeoffs Among 15 Objectives for Automating Soft-
ware Refactoring Using NSGA-III. In Proceedings of the 16th Conference
on Genetic and Evolutionary Computation (GECCO), pages 1263–1270,
2014.

197

[MKS+15] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu,
Slim Bechikh, Kalyanmoy Deb, and Ali Ouni. Many-Objective Software
Remodularization Using NSGA-III. ACM Transactions on Software Engi-
neering and Methodology, 24(3):17:1–17:45, 2015.

[MLK12] Tanja Mayerhofer, Philip Langer, and Gerti Kappel. A Runtime Model for
fUML. In Proceedings of the 7th Workshop on Models@run.time (MRT),
pages 53–58, 2012.

[MLMK13] Stefan Mijatov, Philip Langer, Tanja Mayerhofer, and Gerti Kappel. A
Framework for Testing UML Activities Based on fUML. In Proceedings of
the 10th International Workshop on Model Driven Engineering, Verification
and Validation (MoDeVVa), pages 1–10, 2013.

[MLW13] Tanja Mayerhofer, Philip Langer, and Manuel Wimmer. xMOF: A Se-
mantics Specification Language for Metamodeling. In Proceedings of the
Satellite Events of the 16th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), pages 46–50, 2013.

[MM06] Brian S. Mitchell and Spiros Mancoridis. On the Automatic Modularization
of Software Systems Using the Bunch Tool. IEEE Transactions on Software
Engineering, 32(3):193–208, 2006.

[MM08] Brian S. Mitchell and Spiros Mancoridis. On the Evaluation of the
Bunch Search-Based Software Modularization Algorithm. Soft Computing,
12(1):77–93, 2008.

[MMR+98] Spiros Mancoridis, Brian S. Mitchell, Chris Rorres, Yih-Farn Chen, and
Emden R. Gansner. Using Automatic Clustering to Produce High-Level
System Organizations of Source Code. In Proceedings of the 6th Inter-
national Workshop on Program Comprehension (IWPC), pages 45–52,
1998.

[MMR14] Jose P. Miguel, David Mauricio, and Glen Rodriguez. A Review of Software
Quality Models for the Evaluation of Software Products. International
Journal of Software Engineering & Applications, 5(6):31–53, 2014.

[MNB+13] Reza Matinnejad, Shiva Nejati, Lionel C. Briand, Thomas Bruckmann,
and Claude Poull. Automated Model-in-the-Loop Testing of Continuous
Controllers Using Search. In Proceedings of the 5th International Sym-
posium on Search Based Software Engineering (SSBSE), pages 141–157,
2013.

[MNM96] Zbigniew Michalewicz, Girish Nazhiyath, and Maciej Michalewicz. A
Note on Usefulness of Geometrical Crossover for Numerical Optimization
Problems. In Proceedings of the 5th Annual Conference on Evolutionary
Programming, pages 305–312, 1996.

198

[Mos89] Pablo Moscato. On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms. Technical Report C3P
826, California Institute of Technology, 1989.

[Mos99] Pablo Moscato. New Ideas in Optimization, chapter Memetic Algorithms:
A Short Introduction, pages 219–234. McGraw-Hill, 1999.

[MRW77] Jim A. McCall, Paul K. Richarts, and Gene F. Walters. Factors in Software
Quality, Volume I, II and III. Technical Report CDRL A003, US Air Force
Electronic Systems Divisions and Rome Air Development Center, 1977.

[MSUW04] Stephen. J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA
Distilled: Principles of Model-Driven Architecture. Addison-Wesley, 2004.

[MTR07] Tom Mens, Gabriele Taentzer, and Olga Runge. Analysing Refactoring De-
pendencies Using Graph Transformation. Software and Systems Modeling,
6(3):269–285, 2007.

[MW47] Henry B. Mann and Donald R. Whitney. On a Test of Whether One
of Two Random Variables is Stochastically Larger than the Other. The
Annals of Mathematical Statistics, 18(1):50–60, 1947.

[OC03] Mark O’Keeffe and Mel Ó Cinnéide. A Stochastic Approach to Automated
Design Improvement. In Proceedings of the 2nd International Conference
on Principles and Practice of Programming in Java (PPPJ), pages 59–62,
2003.

[OC08] Mark Kent O’Keeffe and Mel Ó Cinnéide. Search-Based Refactoring for
Software Maintenance. Journal of Systems and Software, 81(4):502–516,
2008.

[ÓCTH+12] Mel Ó Cinnéide, Laurence Tratt, Mark Harman, Steve Counsell, and
Iman Hemati Moghadam. Experimental Assessment of Software Metrics
Using Automated Refactoring. In Proceedings of the 6th International
Symposium on Empirical Software Engineering and Measurement (ESEM),
pages 49–58. ACM, 2012.

[OKK03] Isao Ono, Hajime Kita, and Shigenobu Kobayashi. Advances in Evo-
lutionary Computing: Theory and Applications, chapter A Real-Coded
Genetic Algorithm using the Unimodal Normal Distribution Crossover,
pages 213–237. Springer Berlin Heidelberg, 2003.

[OMG03] OMG: Object Management Group. Common Warehouse Metamodel
(CWM) Specification, Version 1.1. http://www.omg.org/spec/CWM/
1.1/, 2003. OMG Document Number: formal/2003-03-02, Accessed
March 2016.

199

http://www.omg.org/spec/CWM/1.1/
http://www.omg.org/spec/CWM/1.1/

[OMG05] OMG: Object Management Group. UML Profile for Schedulability, Perfor-
mance, and Time, Version 1.1. http://www.omg.org/spec/SPTP/1.
1/, 2005. OMG Document Number: formal/2005-01-02, Accessed March
2016.

[OMG08] OMG: Object Management Group. MOF Model to Text Transformation
Language, Version 1.0. http://www.omg.org/spec/MOFM2T/1.0/,
2008. OMG Document Number: formal/2008-01-16, Accessed March 2016.

[OMG11a] OMG: Object Management Group. Architecture-Driven Modernization:
Knowledge Discovery Meta-Model (KDM), Version 1.3. http://www.
omg.org/spec/KDM/1.3, 2011. OMG Document Number: formal/2011-
08-04, Accessed March 2016.

[OMG11b] OMG: Object Management Group. UML Profile for MARTE: Model-
ing and Analysis of Real-Time Embedded Systems, Version 1.1. http:
//www.omg.org/spec/MARTE/1.1, 2011. OMG Document Number:
formal/2011-06-02, Accessed March 2016.

[OMG13a] OMG: Object Management Group. Concrete Syntax for a UML Action
Language: Action Language for Foundational UML (ALF), Version 1.0.1.
http://www.omg.org/spec/ALF/1.0.1/, 2013. OMG Document
Number: formal/2013-09-01, Accessed March 2016.

[OMG13b] OMG: Object Management Group. UML Testing Profile (UTP), Version
1.2. http://www.omg.org/spec/UTP/1.2/, 2013. OMG Document
Number: formal/2013-04-03, Accessed March 2016.

[OMG14a] OMG: Object Management Group. MDA - The Architecture of Choice for a
Changing World. http://www.omg.org/mda/, 2014. OMG Document
Number: ormsc/14-06-01, Accessed March 2016.

[OMG14b] OMG: Object Management Group. Object Constraint Language, Version
2.4. http://www.omg.org/spec/OCL/2.4, 2014. OMG Document
Number: formal/2014-02-03, Accessed March 2016.

[OMG15a] OMG: Object Management Group. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, Version 1.2. http://www.
omg.org/spec/QVT/1.2, 2015. OMG Document Number: formal/15-
02-01, Accessed March 2016.

[OMG15b] OMG: Object Management Group. Meta Object Facility (MOF) Core
Specification, Version 2.5. http://www.omg.org/spec/MOF/2.5/,
2015. OMG Document Number: formal/2015-06-05, Accessed March 2016.

[OMG15c] OMG: Object Management Group. OMG Unified Modeling Language
(OMG UML), Version 2.5. http://www.omg.org/spec/UML/2.5,
2015. OMG Document Number: formal/2015-03-01, Accessed March 2016.

200

http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/MOFM2T/1.0/
http://www.omg.org/spec/KDM/1.3
http://www.omg.org/spec/KDM/1.3
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/ALF/1.0.1/
http://www.omg.org/spec/UTP/1.2/
http://www.omg.org/mda/
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/QVT/1.2
http://www.omg.org/spec/QVT/1.2
http://www.omg.org/spec/MOF/2.5/
http://www.omg.org/spec/UML/2.5

[OMG16] OMG: Object Management Group. Semantics of a Foundational Subset for
Executable UML Models (fUML), Version 1.2.1. http://www.omg.org/
spec/FUML/1.2.1, 2016. OMG Document Number: formal/2016-01-05,
Accessed March 2016.

[Par96] Vilfredo Pareto. Cours d’Économie Politique. F. Rouge, Lausanne, 1896.

[PAT12] Dorina C. Petriu, Mohammad Alhaj, and Rasha Tawhid. Software Per-
formance Modeling. In Proceedings of the 12th International School on
Formal Methods for the Design of Computer, Communication, and Software
Systems Formal Methods for Model-Driven Engineering, pages 219–262,
2012.

[PHY11] Kata Praditwong, Mark Harman, and Xin Yao. Software Module Clustering
as a Multi-Objective Search Problem. IEEE Transactions on Software
Engineering, 37(2):264–282, 2011.

[PW07] Dorin Bogdan Petriu and C. Murray Woodside. An Intermediate Meta-
model with Scenarios and Resources for Generating Performance Models
from UML Designs. Software and Systems Modeling, 6(2):163–184, 2007.

[QGC00] Zhenyu Qian, Allen Goldberg, and Alessandro Coglio. A Formal Spec-
ification of JavaTM Class Loading. In Proceedings of the International
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), pages 325–336, 2000.

[QH11] Fawad Qayum and Reiko Heckel. Search-Based Refactoring Using Unfold-
ing of Graph Transformation Systems. Electronic Communications of the
European Association of Software Science and Technology, 38, 2011.

[RDV09] Jose E. Rivera, Francisco Duran, and Antonio Vallecillo. A Graphical
Approach for Modeling Time-Dependent Behavior of DSLs. In Proceedings
of the 10th Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 51–55, 2009.

[Rec65] Ingo Rechenberg. Cybernetic Solution Path of an Experimental Problem.
Library Translation 1112, Royal Aircraft Establishment, 1965.

[Rec73] Ingo Rechenberg. Evolutionsstrategie: Optimierung Technischer Systeme
Nach Prinzipien der Biologischen Evolution. Frommann-Holzboog, 1973.

[RLP+14] Shekoufeh Kolahdouz Rahimi, Kevin Lano, Suresh Pillay, Javier Troya,
and Pieter Van Gorp. Evaluation of Model Transformation Approaches
for Model Refactoring. Science of Computer Programming, 85:5–40, 2014.

[RM08] Hajo A. Reijers and Jan Mendling. Modularity in Process Models: Review
and Effects. In Proceedings of the 6th International Conference on Business
Process Management (BPM), pages 20–35, 2008.

201

http://www.omg.org/spec/FUML/1.2.1
http://www.omg.org/spec/FUML/1.2.1

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice-Hall, 3rd edition, 2009.

[Rot89] Jeff Rothenberg. Artificial Intelligence, Simulation & Modeling, chapter
The Nature of Modeling, pages 75–92. John Wiley & Sons, 1989.

[RS09] Lily Rachmawati and Dipti Srinivasan. Multiobjective Evolutionary Algo-
rithm with Controllable Focus on the Knees of the Pareto Front. IEEE
Transactions on Evolutionary Computation, 13(4):810–824, 2009.

[RSA10] Jan Reimann, Mirko Seifert, and Uwe Aßmann. Role-Based Generic Model
Refactoring. In Proceedings of the 13th International Conference on Model
Driven Engineering Languages and Systems (MoDELS), pages 78–92, 2010.

[SBBP05] Olaf Seng, Markus Bauer, Matthias Biehl, and Gert Pache. Search-Based
Improvement of Subsystem Decompositions. In Proceedings of the 7th

Conference on Genetic and Evolutionary Computation (GECCO), pages
1045–1051, 2005.

[SBPM08] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley, 2nd edition, 2008.

[SBS13] PradyumnKumar Shukla, Marlon Alexander Braun, and Hartmut Schmeck.
Theory and Algorithms for Finding Knees. In Proceedings of the 7th

International Conference on Evolutionary Multi-Criterion Optimization
(EMO), pages 156–170, 2013.

[Sch95] Andy Schürr. Specification of Graph Translators with Triple Graph
Grammars. In Proceedings of the 20th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), pages 151–163, 1995.

[See95] Thomas D. Seeley. The Wisdom of the Hive. Harvard University Press,
1995.

[Sel07] Bran Selic. A Systematic Approach to Domain-Specific Language Design
Using UML. In Proceedings of the 10th International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC), pages 2–9,
2007.

[She03] David J. Sheskin. Handbook of Parametric and Nonparametric Statistical
Procedures. Chapman and Hall/CRC, 3rd edition, 2003.

[SHL10] Bernhard Schätz, Florian Hölzl, and Torbjörn Lundkvist. Design-Space Ex-
ploration Through Constraint-Based Model-Transformation. In Proceedings
of the 17th International Conference and Workshops on the Engineering of
Computer-Based Systems (ECBS), pages 173–182, 2010.

202

[SHNS13] Hajer Saada, Marianne Huchard, Clémentine Nebut, and Houari A.
Sahraoui. Recovering Model Transformation Traces Using Multi-Objective
Optimization. In Proceedings of the 28th International Conference on
Automated Software Engineering (ASE), pages 688–693, 2013.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The
Heart and Soul of Model-Driven Software Development. IEEE Software,
20(5):42–45, 2003.

[SKT13] Jeffery Shelburg, Marouane Kessentini, and DanielR. Tauritz. Regression
Testing for Model Transformations: A Multi-objective Approach. In
Proceedings of the 5th International Symposium on Search Based Software
Engineering (SSBSE), volume 8084 of LNCS, pages 209–223. Springer,
2013.

[SLP10a] Connie U. Smith, Catalina M. Lladó, and Ramón Puigjaner. Perfor-
mance Model Interchange Format (PMIF 2): A Comprehensive Approach
to Queueing Network Model Interoperability. Performance Evaluation,
67(7):548–568, 2010.

[SLP10b] Connie U. Smith, Catalina M. Lladó, and Ramón Puigjaner. PMIF
Extensions: Increasing the Scope of Supported Models. In Proceedings of
the 1st Joint WOSP/SIPEW International Conference on Performance
Engineering, pages 255–256, 2010.

[SRTC14] Daniel Strüber, Julia Rubin, Gabriele Taentzer, and Marsha Chechik.
Splitting Models Using Information Retrieval and Model Crawling Tech-
niques. In Proceedings of the 17th International Conference on Fundamental
Approaches to Software Engineering (FASE), pages 47–62, 2014.

[SSB06] Olaf Seng, Johannes Stammel, and David Burkhart. Search-Based Determi-
nation of Refactorings for Improving the Class Structure of Object-Oriented
Systems. In Proceedings of the 8th Conference on Genetic and Evolutionary
Computation (GECCO), pages 1909–1916, 2006.

[SST13] Daniel Strüber, Matthias Selter, and Gabriele Taentzer. Tool Support for
Clustering Large Meta-Models. In Proceedings of the 1st Workshop on
Scalability in Model Driven Engineering (BigMDE), pages 1–7, 2013.

[ST09] Mark Shtern and Vassilios Tzerpos. Methods for Selecting and Improving
Software Clustering Algorithms. In Proceedings of the 17th International
Conference on Program Comprehension (ICPC), pages 248–252, 2009.

[SW02] Connie U. Smith and Lloyd G. Williams. Performance Solutions: A
Practical Guide to Creating Responsive, Scalable Software. Addison-Wesley,
2002.

203

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 2nd edition, 2002.

[Tae03] Gabriele Taentzer. AGG: A Graph Transformation Environment for Mod-
eling and Validation of Software. In Proceedings of the 2nd Workshop on
Applications of Graph Transformations with Industrial Relevance (AG-
TIVE), pages 446–453, 2003.

[Tal09] El-Ghazali Talbi. Metaheuristics: From Design to Implementation. Wiley
Publishing, 2009.

[TBF+15] Javier Troya, Hugo Brunelière, Martin Fleck, Manuel Wimmer, Leire Orue-
Echevarria, and Jesús Gorroñogoitia. ARTIST: Model-Based Stairway to
the Cloud. In Proceedings of the Projects Showcase at the Federation on
Software Technologies: Applications and Foundations (STAF), pages 1–8,
2015.

[TJF+09] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean
Bézivin. On the Use of Higher-Order Model Transformations. In Pro-
ceedings of the 5th European Conference on Model Driven Architecture -
Foundations and Applications ECMDA-FA, pages 18–33, 2009.

[TKL13] Matthias Tichy, Christian Krause, and Grischa Liebel. Detecting Perfor-
mance Bad Smells for Henshin Model Transformations. In Proceedings of
the 2nd Workshop on the Analysis of Model Transformations (AMT), 2013.

[TMB14] Amjed Tahir, Stephen G. MacDonell, and Jim Buchan. A Study of
the Relationship Between Class Testability and Runtime Properties. In
Proceedings of the 9th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE), pages 63–78, 2014.

[TRV10] Javier Troya, José Eduardo Rivera, and Antonio Vallecillo. Simulating
Domain Specific Visual Models By Observation. In Proceedings of the
Spring Simulation Multiconference (SpringSim), pages 1–8, 2010.

[TYH99] Shigeyoshi Tsutsui, Masayuki Yamamura, and Takahide Higuchi. Multi-
Parent Recombination with Simplex Crossover in Real Coded Genetic
Algorithms. In Proceedings of the 1st Conference on Genetic and Evolu-
tionary Computation (GECCO), pages 657–664, 1999.

[Var06] Dániel Varró. Model Transformation By Example. In Proceedings of the
9th International Conference on Model Driven Engineering Languages and
Systems (MoDELS), pages 410–424, 2006.

[Vis01] Eelco Visser. A Survey of Rewriting Strategies in Program Transformation
Systems. Electronic Notes in Theoretical Computer Science, 57(2):109–143,
2001.

204

[vMvHH11] Robert von Massow, André van Hoorn, and Wilhelm Hasselbring. Perfor-
mance Simulation of Runtime Reconfigurable Component-Based Software
Architectures. In Proceedings of the 5th European Conference on Software
Architecture (ECSA), pages 43–58, 2011.

[VP04] Dániel Varró and András Pataricza. Generic and Meta-Transformations for
Model Transformation Engineering. In Proceedings of the 7th International
Conference on The Unified Modelling Language: Modelling Languages and
Applications (UML), pages 290–304, 2004.

[Wig97] Theo A. Wiggerts. Using Clustering Algorithms in Legacy Systems Re-
modularization. In Proceedings of the 4th Working Conference on Reverse
Engineering (WCRE), pages 33–43, 1997.

[WKR+11] Manuel Wimmer, Angelika Kusel, Werner Retschitzegger, Johannes Schön-
böck, Wieland Schwinger, Jesús Sánchez Cuadrado, Esther Guerra, and
Juan de Lara. Reusing Model Transformations Across Heterogeneous
Metamodels. Electronic Communications of the European Association of
Software Science and Technology, 50, 2011.

[WM97] David H. Wolpert and William. G. Macready. No Free Lunch Theorems for
Optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–
82, 1997.

[WPP+05] C. Murray Woodside, Dorina C. Petriu, Dorin Bogdan Petriu, Hui Shen,
Toqeer Israr, and José Merseguer. Performance By Unified Model Analysis
(PUMA). In Proceedings of the 5th International Workshop on Software
and Performance (WOSP), pages 1–12, 2005.

[WSD10] Dennis Wagelaar, Ragnhild Van Der Straeten, and Dirk Deridder. Mod-
ule Superimposition: A Composition Technique for Rule-Based Model
Transformation Languages. Software and Systems Modeling, 9(3):285–309,
2010.

[WSK+11] Manuel Wimmer, Andrea Schauerhuber, Gerti Kappel, Werner Rets-
chitzegger, Wieland Schwinger, and Elisabeth Kapsammer. A Survey on
UML-Based Aspect-Oriented Design Modeling. ACM Computing Surveys,
43(4):1–28, 2011.

[WSKK07] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler.
Towards Model Transformation Generation By-Example. In Proceedings
of the 40th Hawaii International Conference on Systems Science (HICSS),
page 285, 2007.

[Yan10] Xin-She Yang. Nature-Inspired Metaheuristic Algorithms. Luniver Press,
2nd edition, 2010.

205

[YC79] Edward Yourdon and Larry L. Constantine. Structured Design: Fun-
damentals of a Discipline of Computer Program and Systems Design.
Prentice-Hall, 1st edition, 1979.

[YD09] Xin-She Yang and Suash Deb. Cuckoo Search via Lévy Flights. In
Proceedings of the World Congress on Nature and Biologically Inspired
Computing (NaBIC), pages 210–214, 2009.

[YK96] Yasuo Yonezawa and Takashi Kikuchi. Ecological Algorithm for Optimal
Ordering Used By Collective Honey Bee Behavior. In Proceedings of the 7th

International Symposium on Micro Machine and Human Science (MHS),
pages 249–256, 1996.

[ZK04] Eckart Zitzler and Simon Künzli. Indicator-Based Selection in Multiobjec-
tive Search. In Proceedings of the 8th International Conference on Parallel
Problem Solving from Nature (PPSN), pages 832–842, 2004.

[ZLT01] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm. TIK-Report 103, Computer
Engineering and Networks Laboratory (TIK) and Swiss Federal Institute
of Technology (ETH) Zurich, 2001.

[Zsc09] Steffen Zschaler. Formal Specification of Non-Functional Properties of
Component-Based Software Systems. Software and Systems Modeling,
9(2):161–201, 2009.

[ZTL+03] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M. Fonseca, and
Viviane Grunert da Fonseca. Performance Assessment of Multiobjective
Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary
Computation, 7(2):117–132, 2003.

206

Martin Fleck, MSc | CV
Barawitzkgasse 34/4/50 – 1190 Wien – Austria

¬ +43 (1) 588 01 – 188 649 • 7 fleck@big.tuwien.ac.at
r www.big.tuwien.ac.at/mfleck

Education
Doctoral Studies in Technical Sciences Dr.techn.
TU Wien, Business Informatics Group Since 2012
Title: Search-Based Model Transformations
Advisor: Priv.Doz. Mag. Dr. Manuel Wimmer

Master Studies in Software Engineering MSc
University of Applied Sciences Upper Austria 2010 – 2012
Thesis: Profiling Users in Social Networks (written in german)
Supervisor: Dr. Stefan Mitsch
Second Supervisor: Dr. Stephan Lechner
One semester studying at the KTH Royal Institute of Technology, Sweden

Bachelor Studies in Software Engineering BSc
University of Applied Sciences Upper Austria 2007 – 2010
Thesis Part 1: 3D Positioning on Human Model Surfaces (in german)
Supervisor: Dipl.-Ing. Dr. Stephan Dreiseitl
Thesis Part 2: Java Application to Correct Chemical Formulas (in german)
Supervisor: Dr. Masakazu Suzuki
One semester internship at the Institute of Systems, IT and Nanotechnologies, Japan

Professional Experience
Researcher
TU Wien, Business Informatics Group 09/2015 – 03/2016
Research Interests: MDE, SBSE
Teaching: Model Engineering, Web Engineering

Project Assistant
TU Wien, Business Informatics Group 11/2012 – 09/2015
European Union FP7 Project ARTIST:
Advanced software-based seRvice provisioning and migraTIon of legacy SofTware
Teaching: Model Engineering, Web Engineering

207

Tutor
University of Applied Sciences Upper Austria 10/2009 – 06/2011
Teaching: Relational Databases, SQL, and XML

Developer for Technical Information Systems
Engineering Center Steyr, Austria 07/2009 – 08/2009
Technologies: Qt, C++

Intern
Institute of Systems, IT and Nanotechnologies, Japan 04/2010 – 06/2010
Internship during Bachelor Studies
Technologies: Java, Swing

Tutor
University of Applied Sciences Upper Austria 10/2008 – 06/2009
Teaching: Algorithms and Data Structures

Publications

Peer-Reviewed Journal Papers

[1] Martin Fleck, Javier Troya, Marouane Kessentini, and Manuel Wimmer. Model
Transformation Modularization as a Many-Objective Optimization Problem. 2016.
Submitted for Review to IEEE Transactions on Software Engineering.

[2] Martin Fleck, Javier Troya, and Manuel Wimmer. Objective-Driven Model Transfor-
mations. 2016. Revision Submitted to Journal of Software: Evolution and Process.

Peer-Reviewed Conference and Symposium Papers

[1] Martin Fleck, Javier Troya, and Manuel Wimmer. Marrying Search-based Opti-
mization and Model Transformation Technology. In Proceedings of the 1st North
American Symposium on Search Based Software Engineering (NasBASE), pages 1–16,
2015. Preprint available at http://martin-fleck.github.io/momot/downloads/
NasBASE_MOMoT.pdf.

[2] Martin Fleck, Javier Troya, and Manuel Wimmer. Search-Based Model Transforma-
tions with MOMoT. In Proceedings of the 9th International Conference on Theory and
Practice of Model Transformations (ICMT), 2016. Accepted for Publication.

208

Peer-Reviewed Workshop and Project Showcase Papers

[1] Martin Fleck, Luca Berardinelli, Philip Langer, Tanja Mayerhofer, and Vittorio Cortel-
lessa. Resource Contention Analysis of Cloud-based System through fUML-driven
Model Execution. In Proceedings of the 5th International Workshop Non-functional
Properties in Modeling: Analysis, Languages and Processes (NiM-ALP), pages 6–15, 2013.

[2] Martin Fleck, Javier Troya, Philip Langer, and Manuel Wimmer. Towards Pattern-
Based Optimization of Cloud Applications. In Proceedings of the 2nd International
Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE), pages 16–25,
2014.

[3] Martin Fleck, Javier Troya, and Manuel Wimmer. The Class Responsibility Assign-
ment Case. In Proceedings of the 9th Transformation Tool Contest (TTC), 2016. Accepted
for Publication.

[4] Martin Fleck, Javier Troya, and Manuel Wimmer. Towards Generic Modularization
Transformations. In Companion Proceedings of the 15th International Conference on
Modularity, 1st International Workshop on Modularity in Modelling (MOMO), pages
190–195, 2016.

[5] Javier Troya, Hugo Brunelière, Martin Fleck, Manuel Wimmer, Leire Orue-
Echevarria, and Jesús Gorroñogoitia. ARTIST: Model-Based Stairway to the Cloud.
In Proceedings of the Projects Showcase at the Federation on Software Technologies: Appli-
cations and Foundations (STAF), pages 1–8, 2015.

209

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Preliminaries
	Model-Driven Engineering
	Search-Based Optimization

	Model-Based Property Analysis
	Overview
	Running Example
	Resource Contention Analysis Approach
	Evaluation
	Related Work

	Marrying Optimization and Model Transformations
	Overview
	Running Example
	MOMoT Approach
	Generic Solution Encoding
	Solution Fitness
	Exploration Configuration
	Result Analysis
	Support System
	Implementation
	Related Work

	Evaluation
	Overview
	Reproduction Case Studies
	Transformation Modularization
	Modeling Language Modularization

	Conclusion and Future Work
	Conclusion
	Future Work

	MOMoT Configuration DSL
	Grammar
	Example: Modularization Configuration

	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Curriculum Vitae

