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Zusammenfassung

Diese Diplomarbeit handelt vom ‘jump activity index’ β, welcher für beliebige Semi-

martingale definiert ist. Der Index β ist eine Erweiterung des Blumenthal-Getoor Index,

welcher für Lévy Prozesse berechnet werden kann. Durch den ‘jump activity index’ wird das

Sprungverhalten von unendlich vielen kleinen Sprüngen eines Semimartingals beschrieben.

Gibt es nur endlich viele Sprünge, so gilt β = 0. Dieser Index wurde von Aı̈t-Sahalia und

Jacod definiert und in ihrer Publikation ‘Estimating the Degree of Activity of Jumps in High

Frequency Data’ [2], zeigen sie Resultate seines asymptotischen Verhaltens. In dieser Ar-

beit besprechen wir zwei ihrer zentralen Ergebnisse aus der soeben genannten Publikation,

nachdem wir einen kurzen Einblick in die Entwicklung der Verwendung von high frequency

data geben und einige notwendige mathematische Grundlagen beschreiben. Wir befassen

uns hierbei mit Semimartingalen, mit der stabilen Konvergenz und mit stabilen Prozessen.

Bei der Abhandlung der Beweise, versuchen wir jeden Schritt einzeln und klar verständlich

darzustellen. Abschließend implementieren wir das Diskutierte in Matlab um Ergebnisse

auch graphisch darzustellen.



Abstract

This thesis deals with the topic of the jump activity index β, which is defined for any

generic semimartingale. The index β is an extension of the Blumenthal-Getoor index, which

can be calculated for Lévy Processes only. The jump activity index β characterizes the

behavior of small jumps of semimartingales, in the case of infinitely many jumps being present.

If the process only shows finitely many jumps, we get β = 0. The index is defined by

Aı̈t-Sahalia and Jacod and they show details about its asymptotic behavior in their paper

‘Estimating the Degree of Activity of Jumps in High Frequency Data’ [2]. We discuss two of

the main results of this paper, after we give a brief overview of the development of the usage

of high frequency data and the corresponding mathematical theory. By doing so, we provide

some details on semimartingales, stable convergence and stable processes. In the discussion

of the proofs we try to be as mindful as possible and to fragment them into steps which are

easy to understand. Finally we provide some implementations in Matlab, to allow for a

visualization of the discussed.
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Chapter 1

Introduction

The increasing availability of high frequency data in combination with rising computer power

has influenced the direction of academic interest with regard to the analysis of stochastic

processes. The reason being that such changes allow for the implementation and usage of

asymptotic results, which have rather built nice theory earlier. One such area which now

combines theory and modeling of financial data, is formed by the analysis of jumps in high

frequency data. As more models allowing for jumps seem to become popular, it is also essen-

tial to choose the right model for the empirical observations. When using Doob’s words, we

know that a stochastic process is the mathematical abstraction of an empirical process whose

development is governed by probabilistic law [18]. This choice of the right abstraction and

a suitable underlying law, is what can be supported by first applying certain estimators on

the available high frequency data. Amongst other information which can be obtained, we

can find out if jumps are present and, in the case of infinitely many being contained in the

underlying process, we can categorize the jump behavior with an index β ∈ (0, 2), which is

not necessarily deterministic. By Aı̈t-Sahalia and Jacod this index is called the ‘jump activity

index’. If there are only finitely many jumps, then β = 0. Contrarily, if we had β = 2 the

paths would be continuous. In the latter case, one could imagine that there are so many

arbitrarily small jumps, that they result in making the sample paths continuous. Hence, the

index β describes how the jumps of the underlying process behave, when categorizing them

at some point in between these two extreme cases.

The jump activity index β for a genuine semimartingale was defined by Aı̈t-Sahalia and

Jacod in 2008, in their paper ‘Estimating the Degree of Activity of Jumps in High Frequency

Data’ [2]. In an earlier paper [1], they already analyze a Lévy process, being made up of

the sum of a stable Lévy process and an independent other Lévy process. Therein they talk

about characterizing the jump activity of the first. They also mention the Blumenthal-Getoor

index, which coincides with the jump activity index, if the underlying process is Lévy. Other

publications written on the topic of the jump behavior refer to the Blumenthal-Getoor index

too, e.g. [33,41]. In this thesis, however, we will focus on two main results of the paper [2] by

6
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Aı̈t-Sahalia and Jacod. We see that their choice of a stable process as in [1] is not maintained

as such in [2], but we will see that the jump behavior close to zero is assumed to come from

a Lévy process.

The jump activity index is defined as the infimum over the exponents r > 0 of the jumps,

which still makes the sum over the jumps to the power of r finite. Hence, we need to find

out if the stated sum is finite or infinite, to determine the jump activity index. This becomes

a more interesting question, when we only consider finitely many observations obtained from

high frequency data, but want to conclude if the stated sum is infinite or not. This finite

observation of the increments (as we cannot observe the jumps) is what we want to use to de-

duce if the sum over the jumps to the power of r is finite or not. Since knowing this allows us

to derive which value the jump activity index takes. The situation considered in [2] becomes

even more challenging, as we allow the underlying semimartingale to consists of a continuous

part too. This adds complexity, since the jump activity index is defined by the behavior

of arbitrarily small jumps, as there are only finitely many big jumps present in our chosen

setting. With the presence of a continuous part, these small jumps might not be seen in the

increments however, because they are indistinguishable from the increments coming from the

continuous part. To overcome this problem we will develop an estimator only considering the

increments bigger than a certain threshold.

This thesis deals with the topic of the jump activity index, defined by Aı̈t-Sahalia and

Jacod. We start the next chapter by providing information on the general development of

the usage of high frequency data. Then we describe some aspects of semimartingales and

stable convergence, when stating various details on the framework often used in connection

with high frequency data. Afterwards we focus on the work by Aı̈t-Sahalia and Jacod by

giving an overview of what they have done and by describing their approach. In Chapter 3

we solely focus on the aforementioned paper [2] and we discuss the proofs of their two main

results within this paper. We will go through them as mindful as possible and we will point

out any steps, which we do not manage to break down to the desired level of clarity. We will

be doing this using footnotes and remarks. After exploiting the theory we dedicate Chapter 4

to the implementation of the discussed. We choose our implementations in such a way that

we can draw a comparison to the results stated in the very same paper [2]. We dedicate the

last section on carrying out some simulations not mentioned in the paper. After we conclude

we provide all the self-programmed Matlab code in the appendix. Whenever we make direct

citations, we print the text in italics and state the corresponding page of the used source.

Due to the depth of this topic we do not state all definitions, but assume them in the way

given in [25], if not stated otherwise.



Chapter 2

General Aspects of Observing High

Frequency Data

We use this chapter to provide a short overview of the development of how high frequency

data is used for studying stochastic processes. Furthermore the mathematical environment

necessary for such analysis is described. This is not done on an exhaustive level as it would

lie beyond the scope of this thesis. Amongst the many sources available on this topic the

ones mainly used for this thesis are [24, 25, 29, 37]. As this thesis will focus on one paper

of Aı̈t-Sahalia and Jacod, we also give a broader overview of the approach they use for the

analysis of high frequency data.

2.1 Historical Overview

The increasing power of computers allowing for extensions of existing Monte Carlo methods,

along with the more widespread availability of high frequency data, form two main reasons

for the academic interest in the limit behavior of discretized processes [24]. The first allows

to simulate even very complex functions and numerically approximate the desired expected

values. The second can be seen in biology and finance, for example. In the area of biology,

electrical or chemical activity can be measured at an ever higher frequency. In finance, prices

are sometimes recorded every second or even more frequently, opening new areas like algo-

rithmic trading or the herein mentioned analysis of the high frequency data.

The afore mentioned shows why this area is of interest now, but research in this field

has started much earlier. Herein we have in mind the development of asymptotic results for

stochastic processes. The connection lies in high frequency data allowing for the observation

of ever smaller time steps, which can be formulated to happen for n → ∞. Very relevant

asymptotic results can be achieved when looking at the limit of sums of independent rvs and

corresponding Central Limit Theorems (CLTs). The earliest CLTs have been formulated by

8



2.1. Historical Overview 9

Bernstein in 19271 and by Lévy, who published his earliest results on this topic in 19352 [19].

This was even before the term martingale was introduced into the modern probabilistic liter-

ature in 1939 [19, p.1]. A detailed overview of how CLTs continued to develop till around

1980, can be found in the introduction to the chapter of CLTs in [19, Section 3.1]. These

CLTs have often been formulated for martingales.

If we jump a bit further in time, Jacod started formulating CLTs for semimartingales [36].

Semimartingales are a generalization of martingales and Definition 2.2, in the next section,

states their properties. In 1994 Jacod was the first to formulate a CLT for high frequency

observations [36]. By doing so he set the starting point of theory being developed in con-

nection with high frequency data, as many used his work to derive CLTs for certain specific

situations [36]. His work from 1994 is called: ‘Limit of random measures associated with the

increments of a Brownian semimartingale.’ but it was never published [34, 36]. The CLT he

developed does not only hold in distribution however, but it converges in a slightly stronger

way, which we describe in Definition 2.14. Such convergence is referred to as stable conver-

gence and its definition builds on the work from Rényi [38]. Around this time Jacod was not

the only one developing new methods for the analysis of high frequency data and a list naming

more than a dozen papers can be found in [6, footnote 1]. There were many different areas

developing in connection with high frequency data. How to deal with the problem of noise,

was one of these areas. With regard to noise, established methods (e.g. realized variance) did

not deliver acceptable results, when market frictions were present and time steps of length

1 minute or less were observed [10]. The topic of how to deal with blurred data sets is still

prevailing. Aı̈t-Sahalia and Jacod are dealing with such matter and show their new results

on various test statistics under the consideration when market microstructure noise is present

in their most recent joint paper [6, p.1011].

Many applications were found in finance, where such dense sets of data allowed for new

approaches to study various issues related to the market’s microstructure. Numerous papers

have been dealing with the topics of price discovery, competition among related markets,

strategic behavior of market participants, and modeling of realtime market dynamics [42].

Also, the volatility of asset returns was of interest. To perform the necessary analysis, the

increments of the underlying processes are often observed. In this context, there are two basic

types of sums frequently used for an observed process X := (Xt)t≥0. We show their structure

1His main contribution came from the French article ‘Sur l’extension du théoréme limite du calcul des

probabilités aux sommes de quantités dépendantes’ [12].
2The first such article by him was called ‘Propriétés asymptotiques des sommes de variables aléatoires

indépendants et enchâınées’ [31].
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by using the notation from [24, p.6]:

i) ‘normalized functionals’: V ′n(f,X)t :=

⌊t/∆n⌋∑

i=1

f( (Xi∆n −X(i−1)∆n
) /
√

∆n ),

ii) ‘non-normalized functionals’: V n(f,X)t :=

⌊t/∆n⌋∑

i=1

f(Xi∆n −X(i−1)∆n
).

In this display the step size is denoted by ∆n and equally sized steps are assumed. The

function f may be random and it might also depend on the step size ∆n and not only on the

increment of the underlying process. The ‘normalized functional’ is showing germane results

when the underlying process X is continuous, whereas the ‘non-normalized functional’ is more

relevant when looking at processes containing jumps [36]. We will later consider a certain

type of the latter functional for our discussion of the jump behavior. In this representation

however, we are interested in the asymptotic behavior when the the step size ∆n → 0 for

n → ∞. Unfortunately, if we look at available data, we often get irregular observation points,

when, for example, recording the traded prices, where trades can take place at any time. Al-

lowing for irregular time steps makes the situation more difficult, as these observation times

would occur randomly as well.

In the beginning, the research dealing with high frequency data built on models only al-

lowing for continuous sample paths. We see the inclusion of jumps as the next step in the

development of the analysis of such data [6]. This can be seen as a necessary step, as more

and more models considering jumps became popular. An overview can be found in the book

‘Financial Modeling with Jump Processes’ [17], which provides some details about Lévy pro-

cesses, Semimartingales and time inhomogeneous jump processes. To find the right model for

an underlying process it is necessary to analyze some characteristic properties, such as testing

for the presence of jumps and diffusion, the boundedness of variation or the behavior of the

jumps [16]. Research is being developed in this area and Aı̈t-Sahalia and Jacod are playing

a major role in this movement. Amongst some others of relevance, Barndorff-Nielsen has

contributed a lot. Many of his papers deal with realized power and bipower variations. The

realized power variation is defined as a specific form of the ‘normalized functional’ V ′n(f,X)t,

namely when we choose f(x) = |x|p for p > 0 as shown in [36, Example 3.2], for example. The

realized bipower variation is a generalisation thereof and details can be found in various of his

papers, see for example [9, 11]. In the earlier he claims to be the first to introduce a method

for separating the jump from the continuous part in the quadratic variation. He also points

at the related work by Mancini, who considers truncated power variations in order to find

an estimator for the quadratic variation coming from the jump component of the underlying

process. In one of her papers, for example, she introduces a jump size estimation and one for

the integrated infinitesimal variance under specific conditions [33].
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The inclusion of jumps has shown to be a necessary extension for modeling financial

processes and only allowing for continuous sample paths coming from a Brownian motion

may be seen as an ill fitting assumption [11, p.2]. Hence, allowing for such a more general

model can be considered as essential and, in combination with high frequency data, many

properties of the jump process can be analyzed. Later in the thesis we will focus on ‘estimating

the degree of activity of jumps in high frequency data’, which is also the title of the paper [2]

by Aı̈t-Sahalia and Jacod, which we will discuss. Before going into any details however,

we provide a general overview of the mathematical framework used in connection with high

frequency data in the following section.

2.2 Mathematical Definitions used for Dealing with High Fre-

quency Data

For the analysis of any data over time, often an appropriate underlying process is assumed.

We omit the detailed description of a stochastic basis (Ω,F ,F,P), and if not stated otherwise

an arbitrary stochastic basis is assumed. All random variables (rvs) and processes are assumed

to take values in R throughout the whole thesis. Beside this probabilistic setting, we want to

mention the space D(R) of all càdlàg3 functions: R+ → R, which is referred to as the Skorokhod

space. A detailed description of this space can be found in [25, Chapter VI], but here we only

want to note the existence of the Skorokhod topology, which is described in Theorem VI.1.14

of the same book. The theorem states the existence of a metrizable topology, which makes

D(R) a Polish space (i.e. it is a complete, separable metric space) and is characterized by the

convergence of a sequence (αn)
Sk−−−→ α. A sequence converges in this way, iff for n → ∞:

sup
0≤s

∣
∣λn(s)− s

∣
∣→ 0 and sup

0≤s≤N

∣
∣αn ◦ λn(s)− α(s)

∣
∣→ 0 ∀N ∈ N, (2.1)

for a sequence of strictly increasing functions λn : R+ → R+ with λn(0) = 0 and λn(t) ր ∞
for t ր ∞.

In finance, where high frequency data tends to be available more often now, a common

choice is to use a Brownian motion to model the observed stochastic process. The underlying

process becomes more general, allowing for a better replication of the true world, if a Lévy

process or a martingale is assumed, since both have the Brownian motion as a special form.

A Lévy process generalizes it in the way of allowing for càdlàg almost surely (a.s.) instead

of continuous a.s. sample paths (i.e. jumps are allowed) and it requires the increments to be

independent and stationary only and not to be normally distributed. A martingale is con-

nected to a Brownian motion over Lévy’s martingale characterization, which says that every

continuous martingale with the time as quadric variation, i.e. [X,X]t = t a.s. for all t ≥ 0

(which means that X2 − [X,X] is a martingale), is a Brownian motion. When looking at the

3‘continue à droite, limite à gauche’, i.e. right continuous with left limits existing.
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connection between Lévy processes and martingales we can see the link in [37, Theorem 40]

which is cited below.

Theorem 2.1: Any Lévy process X := (Xt)t≥0 can be shown as the sum of two Lévy pro-

cesses X = Y +Z. Herein Y := (Yt)t≥0 is a martingale with bounded jumps fulfilling Yt ∈ Lp

for all p > 1 and the sample paths of Z := (Zt)t≥0 have finite variation on all compacts.

If we want more freedom a relatively general approach, yet allowing for enough structure,

is given by the set of processes of semimartingales. These processes are special since they

have many ‘nice’ features, such as the space of semimartingales remaining stable under stop-

ping, localization, ‘change of time’, ‘absolutely continuous change of probability measure’ and

‘changes of filtration’ [25, p.43]. Amongst all their properties one can even be used to charac-

terize the set of processes: Semimartingales form the largest class of processes which can be

used as stochastic integrators for all bounded predictable processes, when still maintaining

the ‘usual nice’ properties (e.g. Lebesgue convergence theorem) [24, 25]. Main properties of

semimartingales and the way this last feature can be used to characterize semimartingales are

shown in several publications, e.g. [13, 37]. Furthermore semimartingales play an important

role in mathematical finance, as the fundamental theorem of asset pricing (FTAP) says that

if no arbitrage is allowed, then the price process should at least be a semimartingale [24, p.24].

As early as 1980 it was stated that prices must follow semimartingales in order to have no

arbitrage opportunities [6, 20]. In this thesis however we shall stick to the traditional defini-

tion and notation as used in [25].

Definition 2.2: We call X := (Xt)t≥0 a semimartingale if X0 is a F0-measurable, finite-

valued rv and, for a local martingale M := (Mt)t≥0 which starts in 0 and a processes of finite

variation A := (At)t≥0, we have

X = X0 +M +A.

Note that the decomposition in Definition 2.2 can be taken one step further as for any

local martingale M we have a unique decomposition into a continuous local martingale M c :=

(M c
t )t≥0 and a purely discontinuous part Md := (Md

t )t≥0 [25, Theorem I.4.18]. The term

purely discontinuous means that Md
0 = 0 and that for any continuous local Martingale Z :=

(Zt)t≥0 the product ZMd is a local martingale4 [25, p.40]. Hence, any semimartingale can be

written in the following way, as also stated in [25, Proposition I.4.27]:

X = X0 +Xc +Md +A. (2.2)

4ZMd being a local martingale makes Z and Md orthogonal. This term comes from their predictable

quadratic covariation being zero, i.e. 〈Z,Md〉 = 0. This terminology can provide an explanation of purely

discontinuous as being ‘orthogonal’ to ‘continuous’.



2.2. Mathematical Definitions used for Dealing with High Frequency Data 13

Above we write Xc for the continuous martingale part (instead of M c), as we will refer

to this part of the semimartingale by Xc for the remainder of the thesis. For clarity we want

to note that a purely discontinuous martingale M can easily contain continuous parts and

it is not necessarily made up of its jumps, since there is no guarantee that
∑

s≤t∆Ms even

converges, where

∆Ms := Ms −Ms−

denotes the jump size at time s ≥ 0. Even if the sum converges it can differ from M as we

can see in the example taken from [25, p.40] shown below:

Example 2.3 (Poisson Process): Let N := (Nt)t≥0 be a Poisson process with inten-

sity function a(t). Then it can be shown that Mt := Nt − a(t) is a purely discontinuous

local martingale. With the knowledge of a(t) being continuous it can easily be seen that
∑

s≤t∆Ms = Nt 6= Mt. Since this example forms a prototype of any purely discontinuous

local martingale it becomes clear why M is sometimes also referred to as the compensated

sum of jumps. �

We now want to take the decomposition shown in equation (2.2) further. As we are

analyzing the jumps of semimartingales, we wish to represent the jumps in a more explicit

way. Hence, we will introduce a jump measure and we will finally arrive at the canonical

representation of a semimartingale used by Aı̈t-Sahalia and Jacod in [2], which we discuss in

the following chapter. The interested reader is referred to [25, Chapter 2] for more details, as

we will proceed in a similar way. First, we give an adapted version (in line with this thesis

we only state R as the image space, and not an arbitrary measurable space) of [25, Definition

II.1.3].

Definition 2.4: The family µ := (µ(ω; dt, dx) : ω ∈ Ω) of nonnegative measures, satisfying

µ(ω; {0} × R) = 0, is called a random measure on R+ × R.

Having defined a random measure we now want to integrate with respect to this measure.

For doing so, let Y be an optional function on Ω̃ := Ω × R+ × R. A function Y is called

optional, if it is measurable with respect to the optional σ-field Õ := O × B(R), which is the

product of the σ-algebra generated by all càdlàg adapted processes on Ω×R+ (as in [25, Def-

inition I.1.20], for example) and the Borel σ-algebra on R. By seeing that (t, x) 7→ Y (ω, t, x)

is measurable for every ω ∈ Ω, we can provide the following definition of integrating with

respect to µ, in the way it can be found in [25, Equation (II.1.5)].

Definition 2.5: Let Y be an optional function and µ be a random measure. Then we define
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the integral process Y ⋆ µ := (Y ⋆ µt)t≥0, where we also allow t = ∞, by:

Y ⋆ µt(ω) :=







∫

[0,t]×R

Y (ω, s, x)µ(ω; ds, dx) if

∫

[0,t]×R

|Y (ω, s, x)|µ(ω; ds, dx) < ∞,

∞ otherwise.

We now use this framework to give the definition of the measure counting the jumps, as

done in [25, Proposition II.1.16]5. For this purpose, we also need to recall the Dirac measure

at a point a, which we denote by εa.

Definition 2.6: For any adapted càdlàg R valued process X := (Xt)t≥0 we define the random

measure:

µX(ω; dt, dx) :=
∑

s≥0

11{∆Xs(ω) 6=0}ε(s,∆Xs(ω))(dt, dx),

on R+ × R as the jump measure of X.

We clearly see that µX([0, t], A), for t ≥ 0 and for every Borel set A ∈ B(R), is a rv giving

the number of jumps, which occur in the interval [0, t] and have a size contained in the set A,

i.e.:

µX([0, t], A) = 11{A} ⋆ µ
X
t =

∑

s≤t

11{A}(∆Xs).

Analogously to the situation of a Poisson process (as in Example 2.3), where the intensity

a(t) is also referred to as the compensator, making M(t) = N(t) − a(t) a local martingale,

we now proceed by giving the definition of the compensator of a random measure. For this,

we first specify a function on Ω̃ to be called predictable if it is measurable with respect to the

predictable σ-field P̃ := P × B(R), which is the product of the σ-algebra generated by all

càg6 adapted processes on Ω × R+ (as, for example, given in [25, Definition I.2.1]) and the

Borel σ-algebra on R. This definition allows for the inclusion P̃ ⊂ Õ, as P ⊂ O which is

shown in [25, Proposition II.1.24], meaning that every predictable process is optional. Let us

introduce three more terms describing properties of random measures, as done in [25, Defini-

tion II.1.6].

Definition 2.7: With respect to the optional σ-field Õ and the predictable σ-field P̃ we

define the following for a random measure µ:

i) We call µ optional, if the process Y ⋆ µ is optional for every optional function Y .

5The measure is not defined to be called jump measure in Proposition II.1.16, but an equivalent definition

including the name jump measure can be found in, for example, [21, Theorem 11.15].
6‘continue à gauche’, i.e. left continuous
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ii) We call µ predictable, if Y ⋆ µ is predictable for every predictable function Y .

iii) A random measure as in i) is called P̃-σ-finite, if we can find a strictly positive pre-

dictable function Y , such that Y ⋆ µ∞ is integrable.

Now we are ready to generalize the concept compensators. In connection with processes,

they are defined in such a way, that the difference of the process and its compensator is a local

martingale. Below we extend this definition to introduce compensators of random measures,

as it is done in [25, Theorem II.1.8].

Definition 2.8: For a P̃-σ-finite random measure µ we get a unique (up to a P-null set),

predictable random measure ν, referred to as the compensator of µ, as soon as we can show

one of the two equivalent properties:

i) For every nonnegative P̃-measurable function Y on Ω̃, we have:

E[Y ⋆ ν∞] = E[Y ⋆ µ∞].

ii) For every P̃-measurable function Y which results in |Y | ⋆ µ being locally integrable, we

need to get that |Y |⋆ν is locally integrable and that the process Y ⋆ν is the compensator

of Y ⋆ µ.

Note that another commonly used term for ν is the dual predictable projection, as used

in [21] and that it is sometimes also referred to as predictable compensator. As we will see

later, we are also interested in the integral Y ⋆ (µ − ν). We can define it in the logical way,

to be

Y ⋆ (µ− ν) := Y ⋆ µ− Y ⋆ ν,

if the process |Y | ⋆ µ is locally integrable (as property ii) in Definition 2.8 lets us see that

|Y | ⋆ ν is also well-defined). But if we want to define the integral for any predictable function

Y another definition is required. A detailed explanation can be found in [25, Section II.1d]

or [21, p.300ff.], for example. We shall just shortly quote the latter, by saying that such

an integral can be defined for a predictable process Y if
∫

R
|Y (t, x)| ν({t}, dx) < ∞ for all

t ≥ 0 and if for Ỹt :=
∫

R
Y (t, x)µ({t}, dx)−

∫

R
Y (t, x) ν({t}, dx) we have that

√
∑

s≤·(∆Ỹs)2 is

locally integrable. A slightly stronger, but easier to verify, condition, is stated in [24, equation

(2.1.16)], namely, we can define the integral, if

(Y 2 ∧ |Y |) ⋆ νt < ∞ ∀t > 0. (2.3)

As stated in [21, Theorem 7.42], this setup implies the existence of a unique, purely discon-

tinuous local martingale M , which fulfills

∆M = ∆Ỹ . (2.4)
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Consequently we denote M = Y ⋆ (µ − ν). We will need this compensated integral in order

to display all small jumps contained in a semimartingale, as there might be infinitely many

jumps of arbitrary small sizes. Before showing this connection, we want to introduce the

characteristics of a semimartingale to uniquely identify a such a process. To understand the

representation we want to mention a subclass of semimartingales, namely, we get a special

semimartingale if we have the representation:

X = X0 +M +A as in Definition 2.2 with A being predictable.

Such a special semimartingale is always obtained, when the jumps of X are bounded by a

certain constant a > 0, as shown in [25, Lemma I.4.24]. Hence, we can split a semimartingale

into the sum of its jumps bigger than a certain threshold and into a special semimartingale.

It is common to use an arbitrary but fixed truncation function (i.e. a bounded function

h : R → R satisfying h(x) = x in a neighborhood of 0) to extract the big jumps by subtracting
∑

s≤·(∆Xs − h(∆Xs)) from the original process. In this thesis we will only allow

h1(x) := x11{|x|≤1},

as this is the truncation function used in [2], and it is discussed in the next chapter. This

choice of truncation function is the original one, but for various limit theorems a continuous

version of h(x) is preferred. The semimartingale without big jumps, can now be presented as:

X −
∑

s≤·

(∆Xs − h1(∆Xs)) = X0 +M +B, (2.5)

where we have a local martingale M starting in 0, and a predictable process of finite variation

B, which depends on the choice of the truncation function. With the help of this notation

we are able to state [25, Definition 2.6] and get the following.

Definition 2.9: Let X := (Xt)t≥0 be a semimartingale and choose a certain truncation

function (here x11{|x|≤1}). Further we have

i) the predictable process of finite variation B as stated in equation (2.5) above,

ii) the continuous process C representing the quadratic variation of the continuous martin-

gale part (i.e. C = 〈Xc, Xc〉 as will be defined in Theorem 2.11), and

iii) the predictable random measure ν being the compensator of the jump measure µX .

Then the three predictable functions (B,C, ν) are called the characteristics of the semi-

martingale X.

Note that the triplet (B,C, ν) needs to satisfy the required property of being predictable

in order to uniquely represent a semimartingale [25, p.75]. Using the characteristics, we now
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introduce a notation, representing the jumps of the semimartingale explicitly. What we show

is taken from [25, Theorem II.2.34] and [21, Theorem 11.24 and 11.25].

Theorem 2.10: For a semimartingale X with characteristics (B,C, ν) and the corresponding

jump measure µ := µX we can write

X = X0 +B +Xc + (x11{|x|≤1}) ⋆ (µ− ν) + (x11{|x|>1}) ⋆ µ, (2.6)

and refer to it as the canonical representation.

Proof: Using what we stated in equation (2.5), representing the sum of the jumps bigger than

one
∑

s≤·(∆Xs − h1(∆Xs)) by its jump measure µ and splitting the martingale M in two

parts Xc +Md, like done in equation (2.2), we get:

X = X0 +B +Xc +Md + (x11{|x|>1}) ⋆ µ

Hence, all we need to verify is the equality of Md = (x11{|x|≤1}) ⋆ (µ− ν). First we will show

that the right-hand side (r.h.s.) is well-defined. It is enough to show that equation (2.3) holds

for the truncation function h1(x), which holds if:

(h21 ∧ |h1|) ⋆ νt =
(
(x2 ∧ |x|)11{x≤1}

)
⋆ νt

=
(
x211{x≤1}

)
⋆ νt

<
(
x2 ∧ 1)

)
⋆ νt

!
< ∞ ∀t > 0.

This last inequality is commonly known to hold, but it can also be derived by taking the

following steps. From Definition 2.8, we know that the compensator ν needs to yield a

locally integrable process (x2 ∧ 1) ⋆ νt (when using that x2 ∧ 1 = |x2 ∧ 1| holds) as soon as

(x2 ∧ 1) ⋆ µt =
∑

s≤t |∆Xs|2 ∧ 1 is locally integrable. As we will state below in equation (2.7)

the sum over the squared jumps is finite and so is the stated sum if we replace any jumps

bigger than 1 by the smaller value 1. Doing this turns the process into a finite-valued one

with bounded jumps, making it locally integrable. Hence, the desired property is derived. To

show the equality, consider the special semimartingale

X ′ = X −X0 − (x11{|x|>1}) ⋆ µ = B +Xc +Md

︸ ︷︷ ︸

M

,

with the corresponding jump measure µX′

= µ11{|x|≤1} and the compensator νX
′

= ν11{|x|≤1}.

Let T be a predictable stopping time and since B is predictable and M is a martingale, we

can perform the following transformation:

∆BT 11{T<∞} = E
[
∆BT 11{T<∞}

∣
∣FT−

]

= E
[
∆XT 11{T<∞}

∣
∣FT−

]

= E

[∫

R

xµX′

({T}, dx)11{T<∞}

∣
∣
∣
∣
FT−

]
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= E

[∫

R

xνX
′

({T}, dx)11{T<∞}

∣
∣
∣
∣
FT−

]

=

∫

R

xνX
′

({T}, dx)11{T<∞} a.s.

This implies that ∆Bt is indistinguishable from
∫

R
xνX

′

({t}, dx) and we obtain the following

equality for all t ≥ 0:

∫

R

xµX′

({t}, dx)−
∫

R

xνX
′

({t}, dx) = ∆Xt −∆Bt

= ∆Mt

= ∆Md
t .

Now we see the desired equality by the definition of the stochastic integral with respect to

(µX′ − νX
′

) as hinted at in equation (2.4). �

Next we want to emphasize one of the main properties of semimartingales X, [24, p.26],

(used in the proof above), namely that the sum over the squared jumps is finite. Hence, the

property can be written as:

∑

s≤t

|∆Xs|2 < ∞ ∀t ≥ 0. (2.7)

This result is commonly known and can be found in [25, Section I.4c]. The proofs closely

deal with the quadratic variation which forms part of the predictable quadratic variation7 and

coincides for continuous semimartingales. The result below is taken from [25, Theorem I.4.52].

Theorem 2.11: First, for any locally square-integrable martingale M := (Mt)t≥0 we denote

by 〈M,M〉, the predictable quadratic variation, which is the predictable process fulfilling

that M2 − 〈M,M〉 is a local martingale. Second, for a semimartingale X := (Xt)t≥0, let

[X,X] := X2 − X2
0 − 2X−·X be the quadratic variation, with · denoting the stochastic

integration with respect to a semimartingale. For any semimartingale X and its continuous

part Xc we then have:

[X,X]t = 〈Xc, Xc〉t +
∑

s≤t

|∆Xs|2.

For the analysis of data, the jumps ∆Xs themselves cannot be observed. When monitoring

a semimartingale X on the time interval [0, T ] all we can record instead are the increments of

7The general definition would be for covariations but since this detail is not needed within the thesis it is

omitted herein.
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the whole process. When choosing the step size ∆n we denote the corresponding increments

by:

∆n
i X := Xi∆n −X(i−1)∆n

for i = 1, . . . , ⌊T/∆n⌋.

Using this definition we can state the following theorem wich is a simplified version of [25,

Theorem I.4.47]. The proof makes use of a result stated in [25, Theorem I.4.31]. Namely, that

for a semimartingale X and a sequence (Hn)n∈N of predictable processes converging pointwise

to H, we have the following convergence: Hn ·Xt → H ·Xt in measure, uniformly on finite

intervals, i.e. sups≤t |Hn ·Xt −H ·Xt| P−−→ 0.

Theorem 2.12: For a semimartingale X and the step size ∆n → 0 for n → ∞ we see that

the squared sum of increments with step size ∆n

Hn :=

⌊T/∆n⌋∑

i=1

|∆n
i X|2

converges to the quadratic variation [X,X] in measure, uniformly on finite intervals, i.e. for

all ǫ > 0:

lim
n→∞

P

({

sup
s≤t

∣
∣Hn

s − [X,X]s
∣
∣ ≥ ǫ

})

= 0 ∀t ∈ [0, T ].

Proof: Using the equality (x− y)2 = x2− y2−2y(x− y) we can easily transform the sum over

the increments in the following way:

Hn =

⌊T/∆n⌋∑

i=1

(Xi∆n −X(i−1)∆n
)2

=

⌊T/∆n⌋∑

i=1

X2
i∆n

−X2
(i−1)∆n

− 2X(i−1)∆n
∆n

i X

= X2
⌊T/∆n⌋∆n

−X2
0 − 2

⌊T/∆n⌋∑

i=1

X(i−1)∆n
∆n

i X.

The last sum above can be interpreted as stochastically integrating a predictable step process

converging pointwise to the process X. Hence [25, Theorem I.4.31] mentioned above gives

the desired result. �

The result just stated above is useful in applications, since it ensures that the sum over

the squared increments converges. Within the observation of high frequency data the concept

of stable convergence in law has also proved to be very useful. Sometimes it is just referred to

as stable convergence and it is bridging the weaker form of convergence in law to the stronger
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convergence in probability. As commonly known, see for example [30, Definition 17.1], a

sequence of rvs Xn converges to X in law (denoted by Xn L−−→ X) if its distribution function

Fn fulfills

lim
n→∞

Fn(x) = F (x)

for every continuity point of the distribution function of the limit (i.e. where F−(x) = F (x)

is fulfilled). Be aware that we do not require the different Xn to live on the same probability

space, and denote the expected value with respect to Xn by En just for this setting. We know

that the definition above is hence equivalent to:

En [f(X
n)] → E [f(X)] ∀f bounded, continuous,

as can be found, for example, on [25, p.348]. The above representation hints at why this type

of convergence is sometimes also referred to as weak convergence. The reason why convergence

in law is sometimes less than one would desire in the analysis of high frequency data can be

shown by the following example taken from [36, p.3].

Example 2.13 (Mixed Normal rv): Within the framework of semimartingales we often

consider mixed normal limits Xn L−−→ V U with two independent rvs U ∼N(0, 1) and V > 0.

We denote this by Xn L−−→ MN(0, V 2), where MN(0, V 2) is called a mixed normal distri-

bution with random variance V 2. Since we are sometimes confronted with the situation of

not knowing the distribution of V , we cannot calculate confidence intervals. The reason be-

ing that Xn L−−→ MN(0, V 2) does not imply (Xn, V n)
L−−→ (V U, V ), which is essential for

achieving Xn/V n L−−→ N(0, 1). �

Hence, a stronger type of convergence implying the joint convergence in law for any

measurable rv V is needed. As we will state below, this property is guaranteed by stable

convergence and will be stated in Proposition 2.16. This type of convergence is also ‘stronger’

than convergence in law in the way, that it requires all the Xn to be defined on the same

probability space. This allows us to define the convergence on a subset, which does not nec-

essarily make sense for the convergence in law [24, p.16]. When we show the main results of

the paper [2] by Aı̈t-Sahalia and Jacod in the following chapter, we will see that the main

results are defined to hold in stable convergence on a subset only.

Following the literature by [7,22,25,35,38] we want to state that some CLTs are obtained

using stability and that most known CLTs are stable. If they are not, there exists a subse-

quence of rvs along which the convergence is stable. The whole concept of stable convergence

only started to develop in 1963, with Rényi introducing stable sequences of events An ∈ F

iff for every B ∈ F the limit

lim
n→∞

P(An ∩B)
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exists. In line with this definition he calls a sequence of rvs Xn stable if for every B ∈ F

with P(B) > 0 the conditional distribution on B converges to a distribution function FB:

lim
n→∞

P({Xn < x}|B) = FB(x) (2.8)

for every continuity point of FB(x). In 1978 Aldous and Eagleson first used the above to

introduce stable convergence. Namely, if a sequence of rvs Xn fulfills Xn L−−→ X and equa-

tion (2.8) it is said to converge stably. Within literature there are several equivalent definitions

of stable convergence. The interested reader can find the most detailed version in [25, Defini-

tion VIII.5.28], but for the scope of this thesis we use [35, Definition 1.7] to provide a better

understanding of the general concept.

Definition 2.14: A sequence Xn of rvs on (Ω,F ,P) converges stably in law to a limit

X defined on an appropriate extension (Ω′,F ′,P′) of the aforementioned probability space if

lim
n→∞

E [Zf(Xn)] = E[Zf(X)] (2.9)

for every F -measurable, bounded rv Z and any bounded, continuous function f . This con-

vergence is denoted by:

Xn L−(s)−−−−→ X.

The above definition can also be formulated for càdlàg processes, as it is done in [23, Sec-

tion 2.1]. If all Xn are càdlàlg then equation (2.9) must hold for all bounded continuous

functions f on he Skorokhod topology D(R), when Xn L−(s)−−−−→ X shall hold. Further, with

Definition 2.14 we can easily see an interesting property of the stable convergence. Indeed,

the limit given in equation (2.9) does not depend on the distribution of the rv but on the rv

itself. We shall take a closer look at a simple example, hinted at in [7].

Example 2.15 (Stable Convergence): Let Y and Y ′ be two independent, identically

distributed (i.i.d.) rvs with P({Y = 1}) > 0 and E[Y ] 6= 1. We then define a sequence in the

following way:

Xn : =







Y n odd,

Y ′ n even.

Obviously we have Xn L−−→ Y being equivalent to Xn L−−→ Y ′. But when we test the condition

in equation (2.9) for f(x) = x and Z = 11{Y=1} we get:

E [Zf(Xn)] = E[11{Y=1}X
n] =







P({Y = 1}) n odd,

P({Y = 1})E[Y ′] n even...............



2.3. Approach used by Aı̈t-Sahalia and Jacod 22

For E[Y ] 6= 1 as defined above we see that the sequence E [Zf(Xn)] does not converge and

hence we do not have stable convergence. �

As a last general result on stable convergence we cite two useful consequences as stated

in [36, Lemma 2.3 and Proposition 2.5]. The first shows what is needed to have the weaker

stable convergence be equivalent to convergence in probability. The second displays how the

joint convergence for a mixed normal variable from Example 2.13 can be achieved.

Proposition 2.16: Let Xn be a sequence of rvs, stably converging to a rv X defined on the

same space as Xn.

i) We have the following equivalence:

Xn L−(s)−−−−→ X ⇔ Xn P−−→ X.

ii) If additionally the sequence V n and the rv V is defined on the same space we also get

the implication:

Xn L−(s)−−−−→ X,V n P−−→ V ⇒ (Xn, V n)
L−(s)−−−−→ (X,V ).

.

.

2.3 Approach used by Aı̈t-Sahalia and Jacod

On the one hand Aı̈t-Sahalia and Jacod are strongly involved in the development of the

mathematical background for the analysis of semimartingales. This can be seen in various

papers [2–5, etc.] which are written in connection with high frequency data, and also in the

book Jacod published (together with Shiryaev) [25], where they analyze limit theorems of

stochastic processes and do not miss any mathematical precision. On the other hand, in one

of their papers [6], published just last year, they focus on the application of their theory.

Therein they provide a short description of how to apply the statistics developed by them,

and only refer to their earlier work, including the papers [2–5], for details about the required

probability techniques. It can somehow be seen as a summary of their previous work and it is

described how their mathematical framework can be used to analyze the log returns of asset

prices, given over a finite interval of time [0, T ]. Such a finite interval, is what we will assume

for the remainder of the thesis too.

Within this set situation, they assume to have high frequency data as an input and wish

to test which components of a semimartingale are present. They state that only ‘regular’

sampling schemes are considered [6, p.1013], meaning that the time interval between two con-

secutive observations is fixed to be ∆n. The choice of a fixed step size is made, as arbitrary
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intervals would imply a much more complicated mathematical model. In their analysis of

components of a semimartingale X := (Xt)t≥0, they use a version of the canonical represen-

tation as in equation (2.6) of Theorem 2.10, and wish to find out if the continuous part, small

jumps and big jumps are making up part of the underlying process or if they are not present.

To achieve this they introduce so called truncated power variations. In these sums (and all

the ones of this sort to follow) they use the convention of 00 = 0, so that we only consider real

jumps by |∆Xs|r for any value of r ≥ 0. The first variant of the truncated power variation

only considers jumps smaller than certain thresholds un, which converge to 0, and this variant

is denoted by:

B(p, un,∆n) :=

⌊T/∆n⌋∑

i=1

|∆n
i X|p11{|∆n

i X|≤un}. (2.10)

The second variant does the opposite by only taking account of the big jumps:

U(p, un,∆n) := B(p,∞,∆n)−B(p, un,∆n) =

⌊T/∆n⌋∑

i=1

|∆n
i X|p11{|∆n

i X|>un}. (2.11)

These statistics show three degrees of freedom: the power p to which the jumps are taken, the

truncation levels un and the step size ∆n. All three are then altered in appropriate ways to find

out if there is a continuous part present or not and if jumps should be included in the model.

In the case of jumps being found, they go one step further in wanting to analyze the behavior

of jumps, namely, if they have finite or infinite activity. In the case of infinitely many jumps

being present, the behavior of the jumps can be described more precisely with the help of the

so called jump activity index. The analysis of this index is what Aı̈t-Sahalia and Jacod deal

with more precisely in their paper [2], in which the following definition can be found on p.2203.

Definition 2.17: For a generic semimartingale X := (Xt)t≥0 we define the jump activity

index βt : Ω → [0, 2] up to time t ∈ [0, T ] in the three steps:

B(r)t :=
∑

s≤t

|∆Xs|r, It := {r ≥ 0 : B(r)t < ∞} and βt := inf(It).

This makes βt the infimum of the exponents r which make the sum over all jumps to the power

of r finite.

The jump activity index t 7→ βt might grow in time as more jumps appear but it is

bounded from above by 2 since we saw in equation (2.7) that for r = 2 the sum converges to

the quadratic variation process. If the process X has finite jump activity, then βt = 0, since

B(0)t counts the number of jumps up to time t. We cannot conclude the opposite however,

i.e. βt = 0 does not necessarily mean that the process only has finitely many jumps. An

example is stated on [2, p.2206], giving the Gamma process, where the sum over the small
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jumps is only diverging slowly and hence resulting in βt being 0 in spite of infinitely many

jumps occurring. Note also that from the definition we do not know if βt lies in the (random)

interval It or not. In the special case, when X is a Lévy process, then the interval is non-

random and βt does not depend on time. Hence, in this special case, we have βt ≡ β ∈ [0, 2].

This precise behavior of jumps, under the assumption of jumps being present, is what the

remaining thesis deals with. If high frequency data is analyzed for its jump behavior, one

must first assure that there are jumps present at all, as else the outcome might result in an

estimate for the jump activity index being bigger than 2, as stated in [2, Remark 4], which

obviously does not make sense. And also, a value of βt ∈ [0, 2] would not have any meaning.

For the work in this thesis however, we will assume that the underlying process does contain

jumps. The precise way of testing for jumps being present or not can be found in the paper [3]

by Aı̈t-Sahalia and Jacod but we do not include the analysis of this question in our thesis.



Chapter 3

Estimating the Jump Activity

Index

The aim of this chapter is to discuss the results of the paper ‘Estimating the Degree of Ac-

tivity of Jumps in High Frequency Data’ by Aı̈t-Sahalia and Jacod [2]. In their paper they

assume to observe the log-price X of an asset at discrete time steps ∆n over a time horizon

[0, T ]. As high frequency data is observed they make use of the assumption that ∆n → 0 but

they stick to only observing the sample paths over a fixed interval in time. By doing so they

hope to find out more about the behavior of small jumps, i.e. the nature of a generalized Lévy

measure Ft near 0, where Definition 3.3 will state what such a measure needs to fulfill. They

wish to construct estimators for the jump activity index βT as described in Definition 2.17

which are consistent for ∆n → 0. Additionally they aim at providing rates of convergence and

asymptotic distributions. In their work they show these desired results under some restric-

tions on the behavior of the Lévy measure, stated later in Assumption 3.12. When setting

these few assumptions, they claim to stay as model-free as possible for achieving the desired

outcome. In what follows we first state the required details of the chosen approach. Then we

show the two main results of the paper [2] and finally we provide an extended version of the

proofs, stating omitted details wherever possible. This means that we take the proofs from [2]

but explain the steps using other sources or putting to paper our own thoughts where we feel

that more details are needed and available. We do want to emphasize that this chapter is

based on [2] if not stated differently.

3.1 Model Assumptions and Definitions

Within the paper the observed process is chosen to be a specific type of a semimartingale,

namely an Itô semimartingale. We adopt this choice, as such semimartingales are behaving

like Lévy processes, which is not necessarily true for a general semimartingale [24, p.34]. An

25
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Itô semimartingale in the sense of Jacod is obtained when asking for a special property of the

characteristics (B,C, ν), as seen in [24, Definition 2.1.1].

Definition 3.1: If the characteristics (B,C, ν) of a semimartingale X := (Xt)t≥0 are abso-

lutely continuous with respect to the Lebesgue measure, we call X an Itô semimartingale.

Hence, the following representation is possible:

Bt =

∫ t

0
bs ds, Ct =

∫ t

0
σ2
s ds, ν(dt, dx) = dt Ft(dx), (3.1)

with choosing the processes b := (bt)t≥0 and c := (ct)t≥0 to be predictable and the measure

Ft = Ft(ω, dx) to be a predictable random measure.

For the description of a predictable random measure, recall Definition 2.7.ii). If we wish,

we can now display the canonical representation, as in Theorem 2.10, in a way including

Ct =
∫ t
0 σ

2
s ds, and not only B and ν, like sometimes done by Aı̈t-Sahalia and Jacod. By

making use of the Martingale Representation Theorem, see, for example, [28, Section 3.4],

one can extend the probability space in an appropriate way and then use the representation

Xc
t =

∫ t

0
σs dWs, (3.2)

with W := (Wt)t≥0 being a Brownian motion on the extended probability space. Hence we

can write:

Xt = X0 +

∫ t

0
bs ds+

∫ t

0
σs dWs + (x11{|x|≤1}) ⋆ (µ− ν)t + (x11{|x|>1}) ⋆ µt.

The random measure Ft introduced in equation (3.1) above, is referred to as Lévy measure

by Jacod and Aı̈t-Sahalia. This is because it fulfills what a traditional Lévy measure has as

a property. A Lévy measure defined for a Lévy process X ′ := (X ′
t)t≥0, as in [17, Definition

3.4], is the measure F ′ on R representing the expected number of jumps in the unit interval

(or equivalently in any interval of length one, as a Lévy process has stationary increments):

F ′(A) := E[#{t ∈ [0, 1] : ∆Xt 6= 0,∆Xt ∈ A}], A ∈ B(R). (3.3)

Since for a Lévy process we have E[µ([0, t] × A)] = ν([0, t] × A) = tF ′(A) for all A ∈ B(R)
(see [24, p.34], for example) we see that we have F ′ = F for a Lévy process. The property

referred to before can be found in [17, Proposition 3.7] and reads as follows.

Theorem 3.2: A Lévy measure F ′ fulfills:

F ′(0) = 0 and

∫

R

(x2 ∧ 1)F ′(dx) < ∞.

Proof: Since these properties are basic ones, we only shortly mention that F ′(0) = 0 due to the
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definition in equation (3.3), as any jump is by its definition 6= 0. Further, the boundedness

for the integral is derived from the sum over the squared jumps being finite, as stated in

equation (2.7) for semimartingales. �

Hence, we can also state this alternate version of a definition for a Lévy measure, as found

on [17, p.27].

Definition 3.3: Let F ′ be a Borel measure on R. It is called a Lévy measure if

F ′(0) = 0 and

∫

R

(x2 ∧ 1)F ′(dx) < ∞. (3.4)

In the case of a semimartingale, the so called Lévy measure F is a random measure, but

we can choose a version of F , which satisfies the above equation (3.4) for each (ω, t), as the

Lévy measure in Aı̈t-Sahalia and Jacod’s paper may depend on time and it may be random

(in contrast to the Lévy measure F ′ coming from a Lévy process). For the use within the

proofs, we need one more property of the Lévy measure and hence provide one more definition.

Definition 3.4: With respect to any measure G on R we introduce the notation

G(x) := G([−x, x]c) ∀x ≥ 0,

representing the symmetrical tail function.

When looking at the Lévy measure Ft(ω, dx) we see that F t(ǫ) < ∞ is fulfilled (we can

choose a version which fulfills this relation identically, see [24, p.35]) for all ǫ ∈ (0, 1] . We

derive this, by using equation (3.4) and the consecutive simple transformation:

F t(ǫ) =

∫

11{|x|>ǫ} Ft(dx)

=
ǫ2

ǫ2

∫

11{|x|>ǫ} Ft(dx)

=
1

ǫ2

∫

11{|x|>ǫ}(x
2 ∧ ǫ2)Ft(dx)

≤ 1

ǫ2

∫

11{|x|>ǫ}(x
2 ∧ 1)Ft(dx)

≤ 1

ǫ2

∫

(x2 ∧ 1)Ft(dx)
(3.4)
< ∞.

Now we state the first of the two assumptions as required for carrying out the proofs below.

In the paper Aı̈t-Sahalia and Jacod initially give a version only asking for local boundedness

but by referring to a standard localization procedure, to be found in [23], and the fact that
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the main results are ‘local’ in time too, they finally arrive at the condition stated below.

Assumption 3.5: Let L > 0 be a constant. We assume that both b and σ of the character-

istics of X are bounded by L.

The above assumption gives some weak restriction on two of the functions in the character-

istics (B,C, ν). We also need to ask for more structure of the measure ν(dt, dx) = dt Ft(dx).

Therefore we introduce two conditions. The first goes as follows.

Definition 3.6: Two measures µ1 and µ2 on the same space (Ω,F ,P) are called singular

to one another (denoted by µ1 ⊥ µ2) if there exists a set A ∈ F with:

µ1(A) = 1 and µ2(A
c) = 1.

Further, we need the definition of stable processes which form a subclass of Lévy processes.

They are a generalization of a Brownian motion in the way that a Brownian motion W :=

(Wt)t≥0 fulfills the condition of being selfsimilar, i.e. for all a > 0 we have that the following

equality in distribution holds1:

(Wat/
√
a)t≥0

d
= (Wt)t≥0.

This property can be derived when the definition of a stable rv, stated below and taken

from [17, Section 3.7], is transferred to a Lévy process [40, Definition 13.2].

Definition 3.7: A rv U taking values in R with characteristic function ϕ
U
(z) := E[eizU ],

follows a stable distribution iff for all constants a > 0 there are two constants b(a) > 0 and

c(a) ∈ R resulting in the equality for the characteristic function ϕ
U
:

ϕ
U
(z)a = ϕ

U
(zb(a))eic(a)z, ∀z ∈ R. (3.5)

If we have c(a) = 0 then the distribution is called strictly stable.

Definition 3.8: Let X := (Xt)t≥0 be a Levy process with its distribution function at time 1

being the one of a stable rv, i.e. X1
d
= U from Definition 3.7. Then the process X is called a

stable process.

From the above definition we can easily show the selfsimilarity of a stable process. When

we have a Lévy process X we have, as can be found in [8, Theorem 1.3.3], its characteristic

function complying with:

ϕ
Xt

= e
t/s ln

(

ϕ
Xs

)

∀s, t > 0, (3.6)

1The equality in distribution holds for the whole process and not only for every rv at time t.
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i.e. when setting s = 1 we see that the dependence on time of a Lévy process is linear in

the exponent of its characteristic function. Hence, we can derive that a Lévy process is fully

characterized when knowing the law of X1. Using this and the fact that a characteristic

function fully defines the distribution, we can derive that a Lévy process Xt is stable iff for

all constants a > 0 there are two constants b(a) > 0 and c(a) ∈ R conforming with:

(Xat)t≥0
d
= (b(a)Xt + c(a)t)t≥0. (3.7)

This property is sometimes referred to as selfsimilarity up to a translation. We show that

the above is fulfilled by assuming X1 to follow a stable distribution and using Definition 3.7

above. We assume the constants to be as in the stated definition and get:

ϕ
Xat

(z)
(3.6)
= ϕ

X1
(z)at

(3.5)
=
(

ϕ
X1

(zb(a))eic(a)z
)t

(3.6)
= ϕ

Xt
(zb(a))eic(a)zt

= E

[

eizb(a)Xteic(a)zt
]

= E

[

eiz(b(a)Xt+c(a)t)
]

= ϕ
b(a)Xt+c(a)t

.

In this we see that a stable Lévy process is also selfsimilar (up to a translation). The

proposition below, taken from [17, p.97] is even more detailed as it includes that b(a) will

always take the form a1/α (which is proven in [39, Corollary 2.1.3]):

Proposition 3.9: Let X := (Xt)t≥0 be a stable Lévy process and α ∈ (0, 2]. Then we call

X an α-stable Lévy process iff for all a > 0 there is a constant c ∈ R such that:

(Xat)t≥0
d
= (a1/αXt + ct)t≥0 ∀t ≥ 0. (3.8)

If we have α = 2 then we get a Brownian motion with drift (Wt + ct)t≥0. For c = 0 we refer

to Xt as being strictly α-stable.

To get an idea of the influence of parameter α, we provide sample paths for the values

α ∈ {0.1, 1.0, 1.9} in Figure 3.1. The simulation was carried out using the Matlab file

sPlotStable, which can be found in the appendix. In the graphs we clearly see that the

closer the value α is to 2, the more the process reminds us of a Brownian motion. But as

long as α 6= 2 jumps appear. Contrarily, when α is closer to 0, more of the very small jumps

appear in the α-stable process and big jumps become more likely too. When looking at this

process at a big scale it looks similar to a Poisson process, despite being made up of infinitely

many jumps. For any stable process several properties can be derived and some can be found,

for example, in [8,17,39]. One being relevant to this thesis can be derived from [40, p.80] and
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Figure 3.1: Sample path of an α-stable process over 6.5 hours, with increments simulated

every second.

is stated thereafter. It says that for α ∈ (0, 2) the Lévy measure F of an α-stable, real-valued

variable takes the form:

F (dx) =
A

|x|α+1
11{x<0} dx+

B

xα+1
11{x>0} dx, (3.9)

for some A,B > 0. It is interesting to note that the density function of any α-stable rv is

generally not known in a closed form in terms of elementary functions. Only the Gaussian,

the Cauchy and the Lévy distribution can be displayed in closed form and can be found

on [17, p.98]. What we can see from the above representation in (3.9) is, that the jump

activity index β will coincide with the stability index α. The reason being that we can carry

out the following transformation when X := (Xt)t≥0 is an α-stable Lévy process and using

that its Lévy measure is independent of time and not stochastic. Since we know that there are

only finitely many big jumps (due to the càdlàg-property), it is enough to look at the jumps

with absolute value being smaller than 1 only in order to derive the jump activity index β.

First let us denote the sum of such jumps in a similar way to Definition 2.17:

B(r)′t :=
∑

s≤t

|∆Xs|r11{|∆Xs|<1} =

∫ t

0

∫ 1

−1
|x|rµ(ds, dx).

We now use the property of equal expected values from the jump measure µ and its compen-

sator ν. Further, we take advantage of the special form ν(ds, dx) = dsF (dx) (as X is a Lévy

process), with the Lévy measure F being deterministic. Now we can derive:

E[B(r)′t] = E

[∫ t

0
ds

∫ 1

−1
|x|r F (dx)

]

(3.9)
= t

∫ 0

−1
A|x|r−α−1 dx+ t

∫ 1

0
B|x|r−α−1 dx
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=







t(A+B)

r − α
if r ∈ (α,∞),

∞ if r ≤ α.

So we have a finite expected value for r bigger than α. As the jump activity index is defined

on the paths and not the expected value of B(r)′t, we need to see the equivalence between

the two. If we have a finite expected value, we easily see that the integrand needs to be finite

a.s. (see, for example, [30, Lemma 9.26]). On the other hand, if the expected value is infinite,

we need to show that B(r)′t = ∞ a.s. The initial proof thereof comes from Blumenthal and

Getoor and can be found in [14, Theorem 4.1]. These two authors were the eponym for the

Blumenthal-Getoor index, which they define in Definition 2.1 in the same paper and they

simply call it index β. The difference to the jump activity index β in our context is, that

the Blumenthal-Getoor index is only defined for Lévy processes. Coming back to showing

the second direction, we will not state the proof of Blumenthal and Getoor however, but

instead follow [24, Lemma A.2], which shows a general property of any Lévy process by not

introducing any additional notation.

Lemma 3.10: For any Lévy process X := (Xt)t≥0 with Lévy measure F and any r ∈ [0, 2)

the following implication holds:

∫ 1

−1
|x|r F (dx) = ∞ ⇒ B(r)′t = ∞ a.s. ∀t > 0.

Proof: To show the desired we make use of two standard results. Namely, the fact that the

jump measure µ is a Poisson random measure (see, for example [15, Proposition 7.5.15]) and

the form of the ‘Laplace functional’ of a Poisson random measure. This can be found, for ex-

ample, in [15, Theorem 6.2.9], and allows for the following representation for any nonnegative

measurable function f on R+ × R:

E

[

exp

(

−
∫

f dµ

)]

= exp

(

−
∫

(1− e−f ) dν

)

.

We substitute f(s, x) = |x|r11{|x|<1}11{s≤t} and derive
∫
f dµ = B(r)′t. Using the Laplace

functional above we get:

E
[
exp

(
−B(r)′t

)]
= exp

(

−t

∫ 1

−1
(1− e−|x|r)F (dx)

)

. (3.10)

Now we know that
∫ 1
−1 |x|r F (dx) = ∞ and we see that the difference between the integrand

on the r.h.s. above and herein is smaller than K|x|2r by writing:

(1− e−|x|r)− |x|r = 1−
∞∑

j=0

(−|x|r)j
j!

− |x|r = −
∞∑

j=2

(−|x|r)j
j!

.
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By seeing that the term |x|r is hence in both integrands, this implies that the integral on

the r.h.s. of (3.10) is infinite too, as
∫ 1
−1 |x|r F (dx) = ∞ holds. Therefore, the r.h.s. of (3.10)

becomes equal to 0. As equation (3.10) must hold, we deduce that B(r)′t = ∞ a.s., which

concludes the proof. �

Summing up the above we have shown that only for r ∈ (α,∞) the sample paths in B(r)′t
are finite. As B(r)t is finite for the same values of r we state the following:

Lemma 3.11: For an α-stable Lévy process X := (Xt)t≥0 the value α ∈ (0, 2] coincides

with the jump activity index β. Consequently we will refer to X as a β-stable process in the

remainder of the thesis.

We are now ready to formulate the assumption on the Lévy measure of the semimartingale

X, which is split into two parts, denoted by Ft = F ′
t +F ′′

t . Herein the first part is assumed to

behave like the Lévy measure of a symmetric β-stable process near 0 and it is the one being

responsible for the jump activity index β. The second part is assumed to be any type of Lévy

measure with jump activity index β′ fulfilling β′ < β. By Definition 2.17 of the jump activity

index we see that β of F ′
t is also the overall jump activity index of X as only the bigger value

of the two separate jump activity indices allows B(β)t < ∞ (and we have B(β′)t = ∞) for

the overall process X. For a formal definition we introduce some further notation below.

Assumption 3.12: We assume to have four constants β ∈ (0, 2), β′ ∈ [0, β), γ > 0 and

L ∈ [1,∞). The two parts of the Lévy measure F ′
t and F ′′

t are singular, with:

Ft = F ′
t + F ′′

t .

By Φ ⊆ Ω×(0,∞)×R we denote the set showing that they are indeed singular. The set shows

where the measures are equal to 0 in the way that

F ′′
t (ω,A) = 0 ∀A /∈ {x : (ω, t, x) ∈ Φ},

and for F ′
t the opposite holds

F ′
t(ω,A) = 0 ∀A /∈ {x : (ω, t, x) ∈ Φc}.

For the parts of the Lévy measure we have:

i) For F ′
t there are predictable, nonnegative processes a

(+)
t , a

(−)
t , z

(+)
t , z

(−)
t and a predictable

function f(ω, t, x) which fulfill

a)
1

L
≤ z

(+)
t ≤ 1 and

1

L
≤ z

(−)
t ≤ 1, (3.11)

b) a
(+)
t + a

(−)
t ≤ L, (3.12)
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c) 1 + |x|f(t, x) ≥ 0, (3.13)

d) |f(t, x)| ≤ L, (3.14)

and allow for the representation:

F ′
t(dx) =

1 + |x|γf(t, x)
|x|1+β

(

a
(+)
t 11{

0<x≤z
(+)
t

} + a
(−)
t 11{

−z
(−)
t <x≤0

}

)

dx.

ii) For F ′′
t we only require that the following holds:

∫

R

(|x|β′ ∧ 1)F ′′
t (dx) < L.

In order to see where X has a jump activity index of β we introduce the increasing, locally

bounded processes:

At :=
a
(+)
t + a

(−)
t

β
and At :=

∫ t

0
As ds, (3.15)

allowing for the statement that we have βt = β on {At > 0} and else we obtain βt ≤ β′.

Having stated all technical assumption we want to move on to describing the estimators now.

By choosing the observed process to follow a semimartingale we have a continuous mar-

tingale part present as well. When wanting to observe jumps this does not make the situation

easier. As βT characterizes the behavior of the small jumps (as there are only finitely many

bigger than any constant δ > 0) it would be natural that small increments ∆Xn
i provide most

information about the jumps. But in the used setting these small jumps also include the

changes of the continuous part. Trying to get a good estimate for βT despite only obtaining

this ‘blurred picture’ is what formed the challenge for Aı̈t-Sahalia and Jacod in their paper.

They chose to introduce an estimator only counting the jumps bigger than a certain threshold

which is decreasing as the step size decreases. This is in line with their general approach of

using truncated power variations as shortly described in Section 2.3. Here we define a special

version of U(p, un,∆n), given in equation (2.11). In following their approach we set the first

estimator in the way described below.

Definition 3.13: Let ω ∈ (0, 1/2) and α > 0 be two constants. For t ∈ [0, T ] and n ∈ N we

set:

U(ω, α)nt := U(0, α∆ω
n ,∆n) =

⌊t/∆n⌋∑

i=1

11{|∆n
i X|>α∆ω

n}
,

the sum over all increments bigger than the threshold α∆ω
n.

The reason for defining the threshold in this way can be derived heuristically by having

a closer look at the case when X = W + Y with W := (Wt)t≥0 being a Brownian motion
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and Y := (Yt)t≥0 a β-stable process without translation (i.e. c = 0 in equation (3.8)). From

this same equation we get the selfsimilarity of Y (and W if we set β = 2) and hence the

increments satisfy:

∆n
i X

d
= W∆n + Y∆n

d
= ∆1/2

n W1 +∆1/β
n Y1,

showing an overall order of magnitude ∆1/2
n as we have β ≤ 2. But as we are interested in the

‘big jumps’ created by Y , we only observe the increments which are ‘big’, as for the chosen ω

we have ∆1/2
n ≪ ∆ω

n asymptotically for ∆ω
n → 0. Making this choice for the threshold we will

later see in Proposition 3.30 that we have the following convergence in probability:

∆ωβ
n U(ω, α)nt

P−−→ At

αβ
.

When wanting to derive β from the r.h.s. it becomes logical that we calculate the statistic U

for another value of α. For such a value α′ the r.h.s. converges to At/α
′β and, by dividing

the two limits, At cancels out. This proceeding hints at defining an estimator for β in the

following way.

Definition 3.14: Let the two constants α and α′ fulfill 0 < α < α′. We define:

β̂n(t, ω, α, α
′) :=

ln(U(ω, α)nt /U(ω, α′)nt )

ln(α′/α)
,

with the convention that we set β̂n = 0 as soon as one of the statistics U is equal to zero.

Deducing the CLT with regard to the value β will include stable convergence (or more

precisely the property stated in Proposition 2.16). We shall state here that the paper also

mentions two other possible ways of deriving β from the statistic U by varying other degrees

of freedom in the truncated power variation. One way is to have different step sizes, where

the choice is made to double the step size in one of the statistics U but to leave the values

α to be the same. Another one suggested, is to alter the value of ω in the two statistics U

but leave everything else equal. As we only concentrate on the estimator β̂n in the proofs to

follow, we solely mention that the paper declares this choice of β̂n to be the best, as it has a

smaller asymptotic variance than the other two possibilities mentioned above. Properties are

also only given for this estimator and are denoted in the following section. Before moving on

we want to provide a definition appearing in the first result, which provides information about

the speed of convergence of a sequence of estimators. Further we include the description of a

tight sequence, as it can be found in [25, Definition V.1.2].

Definition 3.15: A sequence of rvs (Yn)n∈N, with Yn
P−−→ Y , is said to be ∆θ

n-rate consis-

tent if the sequence of variables
(

1

∆θ
n

(Yn − Y )

)

n≥1
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is tight, which means that it is impossible to have arbitrary large events taking place, i.e.:

lim
N→∞

lim sup
n

P

( ∣
∣
∣
∣

1

∆θ
n

(Yn − Y )

∣
∣
∣
∣
> N

)

= 0. (3.16)

One may note that without the above setting, the general definition for tight, allows for

different probabilities Pn for every element of the sequence.

3.2 Main Results

The main results in paper [2] are split into two groups. The ones which are formulated with

as few restrictions on the process as possible, and the ones where a stable or a general Lévy

process is assumed. In this thesis we only cite the general case. The two results to follow can

only be achieved on the random set {At > 0} for a semimartingale, solely being restricted

by Assumption 3.5 and Assumption 3.12 (below referred to as ‘the stated assumptions’). For

stronger results a more restrictive setting must be chosen.

Theorem 3.16: Under the stated assumptions and for t > 0, ω ∈ (0, 1/2) and 0 < α < α′

we get2:

β̂n(t, ω, α, α
′)

P−−→ β on {At > 0}.

And further β̂n(t, ω, α, α
′) are ∆χ−ǫ

n -rate consistent on the set {At > 0} for any ǫ > 0 and

χ :=χ(β, γ, β′, ω)

=(ωγ) ∧ 1− ωβ

3
∧ ω(β − β′)

1 + β′
∧ 1− 2ω

2
∧ ωβ

2
.

(3.17)

As the value χ only results in being positive but as it is not necessarily far away from

zero, the aforementioned conditions are not strong enough to derive a distributional result.

To achieve this we must ensure that χ = ωβ/2, i.e. ωβ/2 needs to be the minimum of the

values on the right. By undertaking four simple transformations we see the following:

i) (ωγ) >
ωβ

2
⇔ γ >

β

2
,

ii)
1− ωβ

3
>

ωβ

2
⇔ 2 > 5ωβ ⇔ 2

5β
> ω,

iii)
ω(β − β′)

1 + β′
>

ωβ

2
⇔ 0 > −β + β′(2 + β) ⇔ β

2 + β
> β′,

iv)
1− 2ω

2
>

ωβ

2
⇔ 1

2 + β
> ω.

(3.18)

2In the paper the estimator β̂′

n (defined to be the one resulting out of statistics U with different step sizes)

was stated. But this clearly appears to be a typo.
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These conditions will be included in the theorem below as they guarantee that the jump

activity indices not being generated by β, but instead by β′ and β−γ, are not too close to the

value of β. Having this we see the following stable convergence, also to a standardized statistic.

Theorem 3.17: Let the stated assumptions hold and set t > 0 and 0 < α < α′ as in

Theorem 3.16. Additionally we assume γ > β
2 , ω ∈ (0, (2/(5β)) ∧ (1/(2 + β))) and β′ ∈

[0, β/(2 + β)). Then we get the following stable convergence in law on a subset and for a

normally distributed variable independent of X:

i)
1

∆
ωβ/2
n

(

β̂n(t, ω, α, α
′)− β

)
L−(s)−−−−→ N

(

0,
α′β − αβ

At(ln(α′/α))2

)

on {At > 0},

ii)
ln(α′/α)

√

1/U(ω, α)nt − 1/U(ω, α′)nt

(

β̂n(t, ω, α, α
′)− β

)
L−(s)−−−−→ N (0, 1) on {At > 0}.

Obviously, when observing a process X we do not initially know what jump activity index

it has and hence we need to make the choice of ω independent of the value of β ∈ [0, 2]. With

regard to the restrictions stated above, this leads to setting ω := 1/5 for any implementation.

This choice of taking the upper boundary is made, as the convergence is faster for bigger

values of ω. Before moving to any implementations, we discuss the proofs in the following

section. The proofs of both theorems build on various lemmas, which we state in the order

in which they are given in the paper. We provide the steps to prove Theorem 3.16, but with

regard to the proof of Theorem 3.17 we do not show, but only cite, one lemma and one propo-

sition (namely, the ones called ‘Lemma 7’ and ‘Proposition 2’ in the original paper [2]). The

reason is twofold: On the one hand these two proofs strongly build on results taken from [25]

and we feel that stating all details would lie beyond the scope of this thesis. On the other

hand, we assume to have come across some inconsistency in the proof of a part of Lemma 3.28

(which is part of Lemma 9.b) in the original paper). The two results, where we do not go

through the proofs, are used in combination with the outcome of this Lemma 3.28.ii.b) to

imply the proof of Theorem 3.17. Seeing this we felt that it is a good choice to prove one

theorem completely and to leave details of the other proof open for future work.

3.3 Detailed Discussion of the Proofs

Within this whole sectionK always represents a constant with no fixed value and it changes for

every condition as needed. Throughout the proofs we use different versions, like K ′,K ′
1,K

′′,

etc., to allow for an easier way of following the steps. For ease of notation we also introduce

E
n
i−1 and P

n
i−1 and also E

n
t and P

n
t , to represent the expected value and probability condi-

tioned on the sub-σ-algebra F(i−1)∆n
and Ft, respectively. We recall that the semimartingale
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X fulfills the stated assumptions throughout the whole section. As a first step, we give some

general estimates, which will be useful within the proofs to follow.3

Lemma 3.18: For all u ∈ [0, 1], v ∈ (0, 2] and x, y ∈ (0, 1] we obtain the following inequali-

ties:

i) F
′′
t (x) ≤

K

xβ′
, (3.19)

ii)

∣
∣
∣
∣
F t(x)−

At

xβ

∣
∣
∣
∣
≤ K

x(β−γ)∨β′
, (3.20)

iii) F t(x) ≤
K

xβ
, (3.21)

iv)

∫

{|z|≤u}
z2Ft(dz) ≤ Ku2−β , (3.22)

v)

∫

{|z|>u}
(|z|v ∧ 1)Ft(dz) ≤







Kv if v > β,

Kv ln(1/u) if v = β,

Kvu
v−β if v < β,

(3.23)

vi) F t(x)− F t(x+ y) ≤ K

xβ

(

1 ∧ y

x
+ xγ∧(β−β′)

)

. (3.24)

Proof: Before showing the different estimates, we want to state that all of them hold almost

surely, and hence we do not denote the dependence on ω in any of the proofs.

i) By making use of Definition 3.4 providing F
′′
t (x) = F ′′

t ([−x, x]c) and by 1 ≤ 1/xβ
′

we get

F
′′
t (x) =

∫

[−1,−x]∪[x,1]

|z|β′

|z|β′
F ′′
t (dz) +

∫

(−∞,−1)∪(1,∞)
F ′′
t (dz)

≤ 1

|x|β′

(
∫

[−1,−x]∪[x,1]
|z|β′

F ′′
t (dz) +

∫

(−∞,−1)∪(1,∞)
F ′′
t (dz)

)

=
1

xβ′

∫

[−x,x]c
(|z|β′ ∧ 1)F ′′

t (dz)

(3.12)

≤ L

xβ′
.

ii) To deal with the second inequality we first have a closer look at F
′
t by using As-

sumption 3.12.i) and the definition of At given in equation (3.15). For better readability we

introduce the auxiliary functions c(x) and the variable K ′
1:

F
′
t(x) = a

(+)
t

∫ −x

−z
(−)
t

1 + |z|γf(t, z)
|z|1+β

dz + a
(−)
t

∫ z
(+)
t

x

1 + |z|γf(t, z)
|z|1+β

dz

3The estimates stated in Lemma 3.18 are not proven in the paper and so we are not following any ideas by

the authors in this case.
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= a
(+)
t

1

β

1

|z|β
∣
∣
∣
∣

−x

−z
(−)
t

− a
(−)
t

1

β

1

zβ

∣
∣
∣
∣

z
(+)
t

x

+ a
(+)
t

∫ −x

−z
(−)
t

|z|γf(t, z)
|z|1+β

dz + a
(−)
t

∫ z
(+)
t

x

|z|γf(t, z)
|z|1+β

dz

︸ ︷︷ ︸

=:c(x)

=
1

xβ
a
(+)
t + a

(−)
t

β
︸ ︷︷ ︸

(3.15)
= At

− 1

β

(

1

|z(−)
t |β

a
(−)
t +

1

|z(+)
t |β

a
(+)
t

)

︸ ︷︷ ︸

:=K′

1

+ c(x).

For the term c(x) defined above, we can easily conduct the following estimate by using the

boundedness stated in Assumption 3.12.i. (especially conditions a) and d)) and introducing

a constant K ′
2:

c(x) =a
(+)
t

∫ −x

−z
(−)
t

|z|γf(t, z)
|z|1+β

dz + a
(−)
t

∫ z
(+)
t

x

|z|γf(t, z)
|z|1+β

dz

≤2

∫ 1

x

L

|z|1+β−γ
dz

≤ K ′
2

xβ−γ
.

Now we are ready to show the desired inequality by using the above:
∣
∣
∣
∣
F t(x)−

At

xβ

∣
∣
∣
∣
=

∣
∣
∣
∣

At

xβ
−K ′

1 + c(x) + F
′′
t (x)−

At

xβ

∣
∣
∣
∣

=
∣
∣
∣−K ′

1 + c(x) + F
′′
t (x)

∣
∣
∣

≤K ′
1 +

K ′
2

xβ−γ
+

L

xβ′

≤ K

x(β−γ)∨β′
.

iii) The third estimate follows directly from the second, as we have β > (β − γ) ∨ β′

and hence (when keeping in mind that the constant K differs from the above one) the above

equations easily result in:

F t(x) =
At

xβ
−K ′

1 + c(x) + F
′′
t (x)

≤At

xβ
−K ′

1 +
K ′

2

xβ−γ
+

L

xβ′

≤K

xβ
.

iv) In the following transformation we will make use of the above and the setting of u < 1

and 2−β > 0. We do not state the full density of F ′
t , but represent parts of it by (. . .), which

acts as a placeholder. This is done, for ease of notation. However, we do use its boundedness

conditions as stated in Assumption 3.12. (especially a), b), d) from i) and ii)):
∫

{|z|≤u}
z2Ft(dz) =

∫

{|z|≤u}
z2F ′

t(dz) +

∫

{|z|≤u}
z2F ′′

t (dz)
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=

∫

{|z|≤u}

1 + |z|γf(t, z)
|z|1+β−2

(. . .) dz +

∫

{|z|≤u}
|z|2−β(|z|β ∧ 1)F ′′

t (dz)

≤
∫

{|z|≤u}

K1

|z|1+β−2
dz + u2−β

∫

{|z|≤u}
(|z|β ∧ 1)F ′′

t (dz)

≤2K1u
2−β + u2−βL

≤Ku2−β .

v) The first of the three cases v > β is clear by the definition of the jump activity index

β. For the other two estimates we make use of what we have shown in iii) above, by replacing

the β we used there with a β̃ := β − v (as the distribution function (having x1+β in the

denominator) changes to having x1+β−v in the denominator, when multiplying it with xv.

Hence we deduce the following for the third case v < β:

∫

{|z|>u}
(|z|v ∧ 1)Ft(dz) ≤

∫

{|z|>u}
|z|vFt(dz) +K ′

v

iii)

≤ K ′′
v

uβ−v
+K ′

v

≤Kvu
v−β .

In the same way we can receive the result for the second case, as we have
∫ 1
u z−1 dz = ln(1/u).

vi) Again we make use of the boundedness and of the results above. We also display parts

of the density of F ′
t by (. . .) once more, as we already did in the proof of part iv). For ease

of notation we define the set A := [−x− y, x+ y]\[−x, x] to be the union of the two intervals

with length y each.

F t(x)− F t(x+ y) =

∫

A
F ′
t(dz) +

∫

A
F ′′
t (dz)

=

∫

A

1

|z|1+β
(. . .) dz +

∫

A

|z|γf(t, z)
|z|1+β

(. . .) dz

︸ ︷︷ ︸

≤K′

1x
γ−β

+

∫

A
F ′′
t (dz)

︸ ︷︷ ︸

≤K′′x−β′

,

wherein the last estimate holds because of A ∈ [−x, x]c and of inequality i). Further, we

easily see that for the estimate of the two last summands we get K ′
1x

(γ−β) + K ′′x−β′ ≤
(K ′

1 + K ′′)x(γ−β)∧−β′

. Let us now take a closer look at the first summand, while using

Assumption 3.12.i.a) and b):

∫

A

1

|z|1+β
(. . .) dz =

∫

A

1

|z|1+β

(

a
(+)
t 11{

0<z≤z
(+)
t

} + a
(−)
t 11{

−z
(−)
t <z≤0

}

)

dz

≤2

∫ (x+y)∧1

x

1

z1+β
Ldz

= −2L
1

βzβ

∣
∣
∣
∣

(x+y)∧1

x
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=K ′
2

(

1

xβ
− 1

((x+ y) ∧ 1)β

)

.

Summarizing what we have obtained so far, we see that we have:

F t(x)− F t(x+ y) ≤K

xβ

(

1− xβ

((x+ y) ∧ 1)β
+ xγ∧(β−β′)

)

,

and hence, what we still need to show to get the r.h.s. to being K
xβ

(

1 ∧ y
x + xγ∧(β−β′)

)

, is:

1− xβ

((x+ y) ∧ 1)β
!
≤ K ′

(

1 ∧ y

x

)

. (3.25)

If the minimum on the r.h.s. is 1 the inequality becomes obvious. Hence, we only need to

consider y/x < 1 ⇔ y < x. On the left-hand side (l.h.s.) we also need to distinguish two

cases, depending on the minimum of (x+ y) and 1. If we have (x+ y) ≤ 1 what we need to

show is 1− (x/(x+ y))β ≤ K ′y/x and we do this by performing the following transformation:

1−
(

x

x+ y

)β

≤ 1−
(

x

x+ y

)2

=

(

1− x

x+ y

)(

1 +
x

x+ y

)

=
y

x+ y

2x+ y

x+ y

≤ y

x+ y

2(x+ y)

x+ y
=

2y

x+ y

≤ 2
y

x
.

If on the other hand we have (x+ y) > 1 (i.e. we can make use of y > 1− x) then we need to

show 1− xβ ≤ K ′y/x, which is fulfilled if we show the stronger first estimate in:

1− xβ
!
≤ K ′ 1− x

x
≤ K ′ y

x

⇔ 0
!
≤ K ′ − (K ′ + 1)x+ xβ+1

︸ ︷︷ ︸

=:f(x)

for x ∈ (0, 1].

By introducing f(x), showing the desired inequality is equivalent to showing that f(x) ≥ 0

for x ∈ (0, 1]. We easily see this by finding that the values for the corner points of the interval

are bigger than zero for 0 and equal to zero for 1:

f(0) =K ′ > 0 and f(1) = K ′ − (K ′ + 1) + 1 = 0

and by having the function only decrease on the interval (0, 1], which can be seen by its

negative derivative

f ′(x) =− (K ′ + 1) + (β + 1)xβ−1
!
≤ 0 ⇔ (β + 1)xβ

!
≤ K ′ + 1,

which is fulfilled independently of β ∈ (0, 2) as soon as K ′ ≥ 2. �
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For the lemma to follow we consider the observed process Y := (Yt)t≥0 to be a symmetric

strictly β-stable process which demands A = B in the representation of the corresponding

Lévy measure provided in equation (3.9) and yields in F (dx) = A/|x|β+111{|x|>0} dx. Before

stating the associated lemma, we define the process without any jumps bigger than a certain

threshold δ ∈ (0, 1] to be denoted by:

Y (δ)′t := Yt −
∑

s≤t

∆Ys11{|∆Ys|>δ}.

Lemma 3.19: For the symmetric strictly β-stable process Y := (Yt)t≥0 there exists a con-

stant K which depends on (A, β), and fulfills:

P
(
{|Y (δ)′s| > δ/2}

)
≤ K

s4/3

δ4β/3
∀s > 0. (3.26)

Proof: Before stating the idea of the proof we mention some properties of the stable process

Y . From the structure of the Lévy measure F we easily see that the symmetrical tail function

can be represented as F (x) = A/xβ. As Y is a stable process we get from equation (3.8), that

(Yt)t≥0
d
= (t1/βY1)t≥0. (3.27)

We state that for the symmetrical tail function G(x) := P({|Y1| > x}) we have the following

estimate

G(x) =
A

xβ
+O

(
1

x2β

)

for x → ∞, (3.28)

taken from [2, p.2212] and applied below to x = δ/(2s1/β) for very small values of s. Further

we define a variable and the processes and sets required in the proof for fixed s and δ, such

that the variable θ < 1/2:

θ :=sF (δ/2) = s
A

(δ/2)β
, (used as a constant within the proof),

D :={|Ys| > δ/2}, (set where |Y | is > δ/2 at s),

Y ′ :=Y (δ)′, (process excluding any jumps > δ),

D′ :={|Y ′
s | > δ/2}, (set where |Y ′| is > δ/2 at s),

Y ′′ :=Y (δ/2)′, (the process without any jumps > δ/2),

N(δ/2)s :=
∑

r≤s

11{|∆Yr |>δ/2}, (a Poisson process counting jumps > δ/2),

B :={N(δ/2)s = 1}, (set where |Y | has one jump > δ/2 till s),

B′ :={N(δ/2)s = 0}, (set where |Y | has no jump > δ/2 till s).
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Using this notation we now have to show the estimate for P(D′). First, we use the basic

Inclusion-Exclusion principle to get:

P(D ∩Bc) = 1− P(Dc ∪B) = 1− P(Dc)− P(B) + P(Dc ∩B) = P(D)− P(B) + P(Dc ∩B).

Further we see that D ∩B′ = D′ ∩B′, as the the processes Y and Y ′ are the same on the set

B′, where there are no jumps bigger than δ/2. We also use that D′ and B′ are independent, as

stated in the proof in the paper, but this is not as clear and will be discussed in Remark 3.20.

However, when assuming the just stated property and seeing that the Poisson process N(δ/2)s

has expected value θ and hence the probability of it being 0 is P(B′) = e−θ ≥ e−1/2, we derive:

P(D′) =
P(D′ ∩B′)

P(B′)
=

P(D ∩B′)

P(B′)
≤ P(D ∩Bc)

P(B′)
(3.29)

≤ KP(D ∩Bc) = K
(

P(D)− P(B) + P(Dc ∩B)
)

≤ K
(

|P(D)− θ|+ |P(B)− θ|+ P(Dc ∩B)
︸ ︷︷ ︸

=P(Dc|B)P(B)

)

Having this transformation we need to show that all three summands are smaller than

K(s/δβ)4/3 or equivalently < Kθ4/3, as we do not care about constants and K can change for

every estimate, as long as it does only depend on A and β. Proceeding as stated, we make

the first estimate by using the aforementioned properties:

P(D) = P({|Ys| > δ/2}) (3.27)
= P({|Y1| > s−1/βδ/2}) = G(s−1/βδ/2)

(3.28)
=

A

(s−1/βδ/2)β
+O

(
1

(s−1/βδ/2)2β

)

= θ +O
(
θ2
)
,

which implies

∣
∣P(D)− θ

∣
∣ =

∣
∣θ +O

(
θ2
)
− θ
∣
∣ ≤ Kθ2 < Kθ4/3.

For the estimate of the second summand, all we need to do is to use the series expansion of

the exponential function, and we get:

P(B) =P({N(δ/2) = 1}) = θe−θ = θ
∞∑

n=0

(−θ)n

n!
= θ +O(θ2),

which easily results in the same estimate as for the first summand

∣
∣P(B)− θ

∣
∣ =
∣
∣θ +O

(
θ2
)
− θ
∣
∣ ≤ Kθ2 < Kθ4/3.

Getting that far, we only miss an estimate for the last summand. The analysis of this one

is a bit more involved and we first give an estimate for the process Y ′′ without any jumps

bigger than δ/2, which hence has the Lévy measure 11{|x|≤δ/2}F (x) (which is deterministic
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and independent of time) and results in:

E[(Y ′′
s )

2] = s

∫

{|x|≤δ/2}
x2F (dx)

(3.18)
< sK ′(δ/2)2−β

= K ′′θδ2.

(3.30)

Now we see that the set Dc|B gives all paths where the absolute value of the process Y at

the time s is ≤ δ/2 conditioned on the event of exactly one jump bigger than δ/2 happening

till time s. Hence, on the set B we can represent Ys as Y ′′
s plus one jump of size bigger

than δ/2. This jump conditioned on B is distributed by 11{|x|>δ/2}F (x)/θ. The scaling factor

1/θ is needed, as conditioned on the set B we need to have E[N(δ/2)s|B] = 1 and not

E[N(δ/2)s] = θ. Hence, by using the above, and e−θ < 1 and

{|Y ′′
s + x| ≤ δ/2} ⊂ {|x| − |Y ′′

s | ≤ δ/2} = {|Y ′′
s | ≥ |x| − δ/2}, (3.31)

we can proceed as follows:

P(B ∩Dc) = P(B)P(Dc|B)

= θe−θ s

∫

{|x|>δ/2}

1

θ
P({|Y ′′

s + x| ≤ δ/2})F (dx)

≤ s

∫

{|x|>δ/2}
P({|Y ′′

s + x| ≤ δ/2})F (dx)

(3.31)

≤ s

∫

{|x|>δ/2}
P({|Y ′′

s | ≥ |x| − δ/2})F (dx) ≤ . . .

we would find an upper boundary by sF (δ/2)P({|Y ′′
s | ≥ 0}) = sF (δ/2) = θ but this is too

weak for the desired result. Hence we need too split the above in the event of the jump

being smaller than a suitable threshold δ
2θ

1/3 and for the jump bigger than δ
2θ

1/3 we keep the

probability P({|Y ′′
s | ≥ δ

2θ
1/3}):

. . . ≤ s F
({

δ/2 < |x| < δ/2
(

1 + θ1/3
)})

︸ ︷︷ ︸

=:S1(s,δ)

+ s F
(

δ/2
(

1 + θ1/3
))

P

({

|Y ′′
s | ≥ δ/2

(

θ1/3
)})

︸ ︷︷ ︸

=:S2(s,δ)

To provide an estimate for S1(s, δ) we need to apply the estimate from Lemma 3.18.vi) to the

stable process Y (as Y is stable we see that f(t, x) ≡ 0 and F ′′
t (dx) ≡ 0 in Assumption 3.12

and therefore the estimate in vi) is more precise not requiring the second summand) to obtain:

S1(s, δ) = s
(

F (δ/2)− F
(

δ/2
(

1 + θ1/3
)))

≤ sK ′(2/δ)βθ1/3 = Kθ4/3.
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Finally we need to show that the summand S2(s, δ) is smaller than Kθ4/3. We do this by using

Chebyshev’s inequality (see, for example, [30, Implication 13.10]), and combine this with the

estimate for E[(Y ′′
s )

2] from equation (3.30) above. Further we make use of Lemma 3.18.iii).

S2(s, δ) ≤ s F (δ/2)P
({

|Y ′′
s | ≥ δ/2

(

θ1/3
)})

≤ s F (δ/2)
E[(Y ′′

s )
2]

δ2θ2/3/4

≤ s F (δ/2)
K ′′θδ2

δ2θ2/3

≤ sK ′ 1

δβ
θ1/3

1
= Kθ4/3,

where the last equality comes from θ = sA(2/δ)β . Now we have the desired estimate for all

summands, which completes the proof. �

We want to note, that Lemma 3.19 is just slightly stronger than Chebyshev’s inequal-

ity. By using equation (3.30) for Y ′ we get E[(Y ′′
s )

2] < 22−βKθδ2. This implies the l.h.s. of

equation (3.26) to be < K(s/δβ) which is bigger than K(s/δβ)4/3 for small values of s. We

will be interested in small values when proving Lemma 3.25 and hence more steps had to be

taken. Within these steps, we want to stress a step made in the proof, which needs further

verification in our view.

Remark 3.20: As commented on in our proof above, we feel that the statement by the

authors saying that D′ and B′ are independent, is not obvious. We could not show this point

here and want to mention, that it would also be enough to show that P(B′|D′) > K ′ > 0,

for K ′ independent of δ and s. The reason being that without independence we would need

to replace the denominator in equation (3.29) by P(B′|D′) and would still arrive at the same

result when showing the existence of such a K ′.

Next, we move our attention to the most general process assumed within this thesis,

namely the semimartingaleX. For the analysis thereof we will also make use of the Burkholder-

Davis-Gundy inequality (BDG inequality). The standard version for any p > 0 only applies

to continuous local martingales, see, for example, [27, Theorem 17.7]. As we want to apply

the BDG inequality not only for continuous but for general local martingales, we need to

use an extension, which is possible only for exponents p ≥ 1, [27, p.524]. Hence, we cite the

following from [27, Theorem 26.12] and introduce the notation for the supremum of a process

M := (Mt)t≥0 to be denoted by M∗, i.e.:

M∗ := sup
t>0

|Mt|.
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Theorem 3.21 (BDG Inequality): For any local martingale M := (Mt)t≥0 with M0 = 0

and any p ≥ 1, there is a constant Kp > 0 allowing for the BDG inequality:

K−1
p E

[

[M,M ]p/2∞

]

≤ E [M∗p] ≤ KpE

[

[M,M ]p/2∞

]

.

To analyze the estimates for a semimartingale, we use the representation as given in equa-

tion (2.6) in Theorem 2.10 of the characteristics of a semimartingale. We are now interested

in the process without the jumps bigger than a certain δ ∈ (0, 1]. First we define the sum of

the steps bigger than δ as

X(δ)′′t :=
∑

s≤t

∆Xs11{|∆Xs|>δ},

which allows us to define the altered process without any jumps bigger than δ by

X(δ)′t :=X −X(δ)′′t

=X0 +B +Xc + (x11{|x|≤δ}) ⋆ (µ− ν)−B(δ),
(3.32)

when setting

b(δ)s :=

∫

{δ<|x|<1}
xFs(dx) and B(δ)t :=

∫ t

0
b(δ)s ds.

This means that B(δ) represents (x11{δ<|x|<1})⋆ν. In a similar way we also define B(δ)′, when

we have β′ ≤ 1 as in this case Assumption 3.12.ii) guarantees the following integrals to be

bounded4:

b(δ)′s :=

∫

{|x|<δ}
xF ′′

s (dx) and B′(δ)t :=

∫ t

0
b(δ)′s ds. (3.33)

We can deduce that B(δ)′ = (x11{|x|<δ}11Φ) ⋆ ν and (x11{|x|<δ}11Φ) ⋆ µ is of finite variation.

The introduction of this notation will be useful in the consecutive lemma as we can easily

distinguish between the cases β′ ≤ 1 and β′ > 1. The following decomposition will be used:

X(δ)′ = X0 + X̂ +X(δ)a +X(δ)b −B(δ), wherewhere (3.34)

where i) X̂ :=







B +Xc −B(δ)′ if β′ ≤ 1,

B +Xc if β′ > 1,
(3.35)

ii) X(δ)a :=







(x11{|x|<δ}11Φ) ⋆ µ if β′ ≤ 1,

(x11{|x|<δ}11Φ) ⋆ (µ− ν) if β′ > 1,
(3.36)

4The paper sets the integral in the definition of b(δ)′s to be over the set {δ < |x| < 1}, but as this is a typo

we replace it with the set {|x| < δ} as is done by Aı̈t-Sahalia and Jacod when they refer to B(δ′) at a later

stage.



3.3. Detailed Discussion of the Proofs 46

iii) X(δ)b := (x11{|x|<δ}11Φc) ⋆ (µ− ν). (3.37)

Using the decomposition above we can now obtain various estimates on the newly intro-

duced summands in the way stated below.

Lemma 3.22: For all δ ∈ (0, 1], p ≥ 2, s, t ≥ 0, and s ≤ 1 in i)5, there exist various constants

K which fulfill:

i) Et

[∣
∣
∣X̂t+s − X̂t

∣
∣
∣

p]

≤ Kps
p/2, (3.38)

ii) Et

[∣
∣X(δ)at+s −X(δ)at

∣
∣
β′
]

≤ Ks, (3.39)

iii) Et

[∣
∣
∣X(δ)bt+s −X(δ)bt

∣
∣
∣

2
]

≤ Ksδ2−β , (3.40)

iv) |B(δ)t+s −B(δ)t| ≤







Ks if β < 1,

Ks ln(1/δ) if β = 1,

Ksδ1−β if β > 1.

(3.41)

Proof: i) We use the representation of X̂t in equation (3.35) above and analyze the increments

of the summands, where B(δ)′ is only present if β′ ≤ 1 and it is, together with the process

B, of finite variation. Hence we find a K ′ allowing for the following:

Et

[∣
∣
∣X̂t+s − X̂t

∣
∣
∣

p]

≤ Et

[∣
∣sK ′ + |Xc

t+s −Xc
t |
∣
∣p
]
≤ . . .

For continuing the estimation, we derive an inequality from the convex function g(x) := |x|p
by using that we have g([x+ y]/2) ≤ [g(x) + g(y)]/2 for any convex function, and we get:

( |x+ y|
2

)p

≤ |x|p + |y|p
2

, or equivalently |x+ y|p ≤ 2p−1(|x|p + |y|p).

Further we see that |Xc
t+s − Xc

t | is independent of Ft, that it is distributed in the same

way as |Xc
s | and that supr≤s |Xc

r | forms an upper boundary on which we can apply the BDG-

inequality (as stated in Theorem 3.21). The quadratic variation of Xc fulfills [Xc, Xc]s ≤ K ′′s

as we can represent Xc as an integral with respect to a Brownian motion (see equation (3.2),

where σs is bounded). Now we can continue the above estimation by using the steps just

mentioned:

. . . ≤ Et

[∣
∣sK ′ + |Xc

t+s −Xc
t |
∣
∣p
]
≤ 2p−1(|sK ′|p + Et[|Xc

t+s −Xc
t |p]

≤ K ′
p(s

p + sp/2) ≤ Kps
p/2.

The last estimate only holds, as we assume to have s ≤ 1 and p ≥ 2.

5This additional restriction is not included in the paper, but is needed for the proof. However, only small

values of s are analyzed throughout the remainder of the paper, so it does not impose a problem.
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ii) To prove this estimate we need to distinguish between the case in which β′ ≤ 1 and

where β′ > 1. One obvious reason being, that the BDG-inequality can only be applied for

values of p ≥ 1 (see Theorem 3.21), i.e. in the case when β′ > 1.

In the first case, we make use of the inequality

∣
∣
∣

∑

m

xm

∣
∣
∣

β′

≤
∑

m

|xm|β′

, for β′ ≤ 1, (3.42)

which is obvious for β′ = 1. We only need to show the estimate for xm > 0 as with this

assumption we can easily see that |∑m amxm|β′ ≤ |∑m xm|β′

for any am ∈ {−1, 1} for all

m ∈ N. Hence, we can show the estimate for xm > 0 and β′ ∈ (0, 1) by expanding the

estimate (x1 + y)β
′ ≤ xβ

′

1 + yβ
′

for two summands to countable many summands. These

details are not depicted here but we derive the estimate for two summands. The inequality

can be transformed to (x1 + y)β
′ − xβ

′

1 ≤ yβ
′

and this is what we want to show, by making

use of the function xβ
′−1 being decreasing:

(x1 + y)β
′ − xβ

′

1 = xβ
′

∣
∣
∣

x1+y

x1

=

∫ x1+y

x1

β′xβ
′−1 dx ≤

∫ y

0
β′xβ

′−1 dx = xβ
′

∣
∣
∣

y

0
= yβ

′

.

One easily sees, that the stated estimate in equation (3.42) would not hold for β′ > 1 (e.g. for

x1 = x2 = δ and all other summands being zero, we have l.h.s. = 2β
′

δβ
′

but r.h.s. = 2δβ
′

,

which is a counter example as 2β
′

> 2 for β′ > 1). Seeing that X(δ)a is the sum over all

jumps caused by the Lévy measure F ′′
t and being smaller than δ, we get6:

∣
∣X(δ)at+s −X(δ)at

∣
∣
β′

=
∣
∣
∣

∑

r≤s

∆X(δ)at+r

∣
∣
∣

β′

≤
∑

r≤s

∣
∣∆X(δ)at+r

∣
∣
β′

⇒ Et

[∣
∣X(δ)at+s −X(δ)at

∣
∣
β′
]

≤ Et

[
∫ t+s

t

∫

{|x|≤δ}
|x|β′

drF ′′
r (dx)

]

≤ Ks.

To get the last estimate we make use of the required boundedness of F ′′
t as stated in Assump-

tion 3.12.ii).

In the second case, when we have β′ > 1, we see that X(δ)a is a purely discontinuous, local

martingale, due to its definition (compare equation (2.4) for the definition of the integral

with respect to (µ − ν)). Hence we can apply the BDG-inequality (for p = β′ > 1) on

X(δ)at+s−X(δ)at which has
∑

r≤s

∣
∣∆X(δ)at+r

∣
∣
2
as its quadratic variation (see, for example, [21,

Definition 11.16]). By applying this, and also equation (3.42) for β′/2 ≤ 1, we get:

6In the paper there was a typo having a 2 instead of β′ in the exponent of the first estimate and showing

a spare β′ as another exponent.
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Et

[∣
∣X(δ)at+s −X(δ)at

∣
∣
β′
]

≤ Et

[(

sup
r≤s

∣
∣X(δ)at+r −X(δ)at

∣
∣

)β′
]

≤ Et

[(∑

r≤s

∣
∣∆X(δ)at+r

∣
∣
2
)β′/2

]

≤ Et

[
∑

r≤s

∣
∣∆X(δ)at+r

∣
∣
β′

]

≤ Ks.

In the last line the estimate is the same as when we had β′ ≤ 1 and hence we do not display

the sum as an integral, but just state the estimate.

iii) Analogously to the above, for β′ > 1 and X(δ)a, we see that X(δ)b is a purely

discontinuous local martingale, as it is an integral with respect to (µ− ν) too. The quadratic

variation is again the sum over the squared jumps. For proving the estimate, we make

use of the increment of X(δ)b being taken to the power of 2 (and not β′ ∈ (0, 2)). This

situation allows us to apply the Itô-Isometry. To be more precise we use an extension thereof,

holding for any local martingale Y := (Yt)t≥0 and a predictable process ξ, which fulfills

E[
∫∞
0 ξ2 d[Y, Y ]] < ∞. This extended version is taken from [32, Theorem 5]. We simply put

ξ = 11(t,t+s] in our case and by knowing that the sum over the squared jumps on the r.h.s. is

finite, we can write:

Et

[∣
∣
∣X(δ)bt+s −X(δ)bt

∣
∣
∣

2
]

= Et

[
∑

r≤s

∣
∣
∣∆X(δ)bt+r

∣
∣
∣

2
]

= Et

[ ∫ t+s

t

∫

{|x|≤δ}
|x|2 drF ′

r(dx)

]

≤ Ksδ2−β ,

wherein we get the last estimate from Lemma 3.18.iv).

iv) This final estimate easily follows from Lemma 3.18.v) when setting v = 1 and seeing

that for the integrand in B(δ)t =
∫ t
0 b(δ)s ds we have:

b(δ)s =

∫

{δ<|x|<1}
xFs(dx) <

∫

{δ<|x|}
(|x|v ∧ 1)Fs(dx).

.

. �

Next we state a general result for a counting process N := (Nt)t≥0. We recall that such a

process has the property of being integer valued with N0 = 0, right continuous and consists

of jumps of size 1. Here we assume the process to be adapted to F and to have a predictable

compensator, which is represented by Λt =
∫ t
0 λs ds. The feature we want to make use of is

stated below.
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Lemma 3.23: Considering the counting process N , its compensator Λt and assuming there

is a constant u > 0 with λs < u for all s ∈ [0, T ], we get the following7 for any t ≥ 0:

∣
∣Pt({Nt+s −Nt = 1})− Et[Λt+s − Λt]

∣
∣+ Pt({Nt+s −Nt ≥ 2}) ≤ 2(us)2.

.
.

Proof: We show the estimate by showing that each of the two summands is smaller than (us)2.

In both cases we denote by T1 the jump time of the first jump after t and respectively, by T2

the second one. For the first summand we start the approximation by giving one equality

i) Pt({Nt+s −Nt = 1}) = Pt({N(t+s)∧T1
−Nt = 1})

=
∞∑

k=0

kPt({N(t+s)∧T1
−Nt = k})

= E[N(t+s)∧T1
−Nt]

= E[Λ(t+s)∧T1
− Λt],

and one inequality

ii) Pt({Nt+s −Nt ≥ 1}) =
∞∑

k=1

Pt({Nt+s −Nt = k})

≤
∞∑

k=1

kPt({Nt+s −Nt = k})

= Et[Nt+s −Nt]

= Et[Λt+s − Λt]

≤ us,

which we combine to obtain

∣
∣Et[Λt+s − Λt]− Pt({Nt+s −Nt = 1})

∣
∣

i)
= Et[Λt+s − Λ(t+s)∧T1

]where

= Et[(Λt+s − Λ(t+s)∧T1
)11{T1<t+s}]

≤ usPt({Nt+s −Nt ≥ 1})
ii)

≤ (us)2.

Having this, we move to the estimate for the second summand. We use the transformation

iii) E[11{T2<t+s}|FT1 ]] = E[N(t+s)∧T2
− 1|FT1 ]

= E[N(t+s)∧T2
−NT1 |FT1 ]

= E[Λ(t+s)∧T2
− ΛT1 |FT1 ]

7There is no constant 2 on the r.h.s. of the estimate but from what is shown in the proof of the paper, this

constant needs to be added.



3.3. Detailed Discussion of the Proofs 50

= E

[ ∫ (t+s)∧T2

T1

λr dr
∣
∣
∣FT1

]

,

and by also applying the tower property and using the boundedness λr < u, we get:

Pt({Nt+s −Nt ≥ 2}) = Pt({T2 ≤ t+ s})
= Et[11{T1<t+s}11{T2<t+s}]

= Et[11{T1<t+s}E[11{T2<t+s}|FT1 ]]

iii)
= Et

[

11{T1<t+s}E

[ ∫ (t+s)∧T2

T1

λr dr
∣
∣
∣FT1

]]

≤ usEt[11{T1<t+s}]

= usPt({Nt+s −Nt ≥ 1})
ii)

≤ (us)2.

Hence we see that the sum of the two parts is smaller than 2(us)2, which is what we wanted

to show. �

As our next step, we define a specific counting process (which appeared for a stable process

in the proof of Lemma 3.19). Namely, we count the number of jumps of the semimartingale

X, which are bigger than a certain δ ∈ (0, 1], and use the notation:

N(δ)t :=
∑

s≤t

11{|∆Xs|>δ} ∀t ∈ [0, T ]. (3.43)

Now we will give an estimate of the likeliness of the event that, over a timespan of length s,

at least one jump bigger than δ occurs (i.e. {N(δ)t+s −N(δ)t ≥ 1}) while, at the same time,

the process containing only jumps smaller than δ, changes by more than δζ (i.e. {|X(δ)′t+s −
X(δ)′t| > δζ}). This will be useful in the proof of Lemma 3.25 when we have an estimate for

X(δ)′ but want to extend it to the whole process X to arrive at the desired result. The idea

will go along the lines that if the whole process changes by less than an occurring jump in the

interval, then the process X(δ)′ must have changed by at least the remaining difference. This

is why we haveX(δ)′ changing more than a certain threshold in the probability depicted below.

Lemma 3.24: For all δ ∈ (0, 1], ζ ∈ (0, 1/2) and p ≥ 2 and for N(δ)t, the following holds8:

Pt

(
{N(δ)t+s −N(δ)t ≥ 1} ∩

{∣
∣X(δ)′t+s −X(δ)′t

∣
∣ > δζ

})
≤ Ks,p

sp/2

ζpδp
+K

s2

ζ2δ2β
.

Proof: We make use of the representation as in equation (3.32), i.e.

X(δ)′ = X0 +B +Xc + (x11{|x|≤δ}) ⋆ (µ− ν)−B(δ).

8Despite not stated in the Lemma nor the proof, the paper only mentions a constant Kp, which we denote

by Ks,p as it depends on the value of s too.



3.3. Detailed Discussion of the Proofs 51

We define M(δ) := (x11{|x|≤δ}) ⋆ (µ − ν). Further we do not include B(δ)′, as introduced in

equation (3.33), and hence, within this proof we denote X̂ = B +Xc regardless of the value

of β′. The estimate of Lemma 3.22.i) still holds (as the omitted B(δ)′ in the case β′ ≤ 1 has

finite variation) and, by first using a direct implication of Chebyshev’s inequality (see, for

example, [15, Remark 13.11]), we derive the following estimate for one of the increments of

two of the summands of X(δ)′:

Pt

({∣
∣X̂t+s − X̂t

∣
∣ ≥ δζ/3

})

≤ 3p
Et

[∣
∣X̂t+s − X̂t

∣
∣p
]

ζpδp

≤ K ′
p

sp/2

ζpδp
.

The choice of the threshold being δζ/3 is given by how we want to approach this proof.

The idea of showing the inequality is that for any three rvs Y1, Y2, Y3 we have the inclusion

{|Y1+Y2+Y3| > δζ} ⊆ {|Y1| > δζ/3}∪{|Y2| > δζ/3}∪{|Y3| > δζ/3}. Further the probability
gets bigger if we leave out the intersection with another set. This gives us:

Pt

(
{N(δ)t+s −N(δ)t ≥ 1} ∩

{∣
∣X(δ)′t+s −X(δ)′t

∣
∣ > δζ

})

≤ Pt

(

{N(δ)t+s −N(δ)t ≥ 1} ∩
{∣
∣M(δ)t+s −M(δ)t

∣
∣ > δζ/3

})

+Pt

({∣
∣X̂t+s − X̂t

∣
∣ ≥ δζ/3

})

︸ ︷︷ ︸

≤K′

p
sp/2

ζpδp

+Pt

({∣
∣B(δ)t+s −B(δ)t

∣
∣ ≥ δζ/3

})
,

where we already state the estimate for the second summand from above. When looking

at the summand including B(δ) we use the result of Lemma 3.22.iv) and formulate it to be

independent of β for δ ∈ (0, 1]:

|B(δ)t+s −B(δ)t| ≤







Ks if β < 1,

Ks ln(1/δ) if β = 1,

Ksδ1−β if β > 1,







≤ Ks/δ, as







1 ≤ 1/δ,

ln(1/δ) ≤ 1/δ ⇔ 1/δ ≤ e1/δ,

δ/δβ ≤ 1/δ ⇔ δ2 ≤ δβ.

Hence, for small values of s we can demand that |B(δ)t+s − B(δ)t| ≤ δζ/3 (when we have

Ks/δ ≤ δζ/3). Else we can choose Ks,p in such a way, that the upper boundary fulfills

Ks,p
sp/2

ζpδp ≥ 1 (in which case the estimate for a probability obviously holds). The choice for

Ks,p needs to satisfy:

Ks,p

(s1/2

ζδ

)p
≥ 1 ⇔ Ks,p

s1/2

ζδ
≥ 1 ⇔ Ks,ps

1/2 > 1/2 > δζ,

where 1/2 is the upper boundary for δζ due to their allowed range of values and hence we

see that Ks,p is independent of δ and ζ. Having this, we only need to show that the first
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summand is bounded by K s2

ζ2δ2β
in order to achieve the desired result. Therefore we introduce

the shorthand notation for the increments:

Ns := N(δ)t+s −N(δ)t and Ms := M(δ)t+s −M(δ)t.

To get the desired, we perform the following basic transformation first:

Pt(Ns ≥ 1,Ms ≥ ζδ/3) = Et

[
11{Ns≥1} 11{9M2

s /(ζδ)
2≥1}

]

≤ Et

[

Ns11{Ns≥1}
9

(ζδ)2
M2

s 11{9M2
s /(ζδ)

2≥1}

]

≤ 9

(ζδ)2
Et

[
NsM

2
s

]
.

Herein the last estimate is only allowed for M2
s (and would not work for Ms) as we would not

know if negative values make the expected value smaller when considering the whole proba-

bility space. From here we move on by applying the integration by parts for semimartingales

(as stated in [21, Theorem 9.33], for example) twice and obtain:

NsM
2
s =

∫ s

0
Nr− dM2

r

∫ s

0
M2

r− dNr + [N,M2]s

= 2

∫ s

0
Nr−Mr− dMr +

∫ s

0
Nr− d[M,M ]r +

∫ s

0
M2

r− dNr + [N,M2]s

= 2

∫ s

0
Nr−Mr− dMr +

∫ s

0
M2

r− dNr +
∑

r≤s

Nr−|∆Mr|2,

where the last equality comes from N (counting jumps bigger than δ) and M (adding the

compensated jumps smaller or equal to δ) having no common jumps and by the definition of

the quadratic variation. We proceed by seeing that for λr := F r(δ), the process Λs :=
∫ s
0 λrdr

is the compensator of the Poisson process N . From Lemma 3.18.iii) we see that λr ≤ Kδ−β.

By iv) of the same lemma, we see that the compensator Λ′
s :=

∫ s
0 λ′

rdr of the quadratic

variation of M is bounded in a similar way, namely λ′
r :=

∫

{|z|≤δ} z
2Fr(dz) ≤ Kδ2−β . Using

these compensators we can now transform the expected value Et[NsM
2
s ] to obtain the desired

result. Obviously, the first summand vanishes, as it is a martingale, else we get:

Et

[
NsM

2
s

]
= Et

[ ∫ s

0
M2

r dNr +
∑

r≤s

Nr−|∆Mr|2
]

= Et

[∫ s

0
M2

r dΛr +

∫ s

0
Nr dΛ

′
r

]

≤ Kδ−β
Et

[∫ s

0
M2

r dr +

∫ s

0
δ2Nr dr

]

≤ Kδ−β
Et

[∫ s

0
Λ′
r dr +

∫ s

0
δ2Λr dr

]

≤ Kδ−2β
Et

[∫ s

0
rδ2 dr +

∫ s

0
δ2r dr

]

≤ Kδ2(1−β)s2.

.

. �
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The proof of the following three estimates uses all the results shown in the lemmas before.

It can also be seen as relevant, as many further results will build on it. In this thesis, however,

we do not go through the proof in detail, but rather describe what the authors did in the

paper, where this statement is referred to as Lemma 6. The easy step therein is to take the

boundaries found in Lemma 3.22. It is more challenging to find an estimate for the summand

X(δ)b, accounting for the compensated small jumps caused by F ′
t , as the upper bound stated

there is not good enough for achieving this result. To find a more precise value limiting the

growth of this part, the authors construct a stable process, on which they apply Lemma 3.19,

which was also shown in many steps in order give a strong enough estimate.

Lemma 3.25: For α > 0, ω ∈ (0, 1/2) and η ∈ (0, 1/2− ω) we set

ρ := η ∧ (ω(β − β′)− β′η) ∧ (ωγ) ∧ (1− ωβ − 2η), (3.44)

and obtain a constant K depending on the values α, ω, η and on the characteristics of X,

which gives the following estimates for all s ∈ (0,∆n] and t ∈ [0, T ]:

i)

∣
∣
∣
∣
Pt(|Xt+s −Xt| > α∆ω

n)− Et

[∫ t+s

t
F r(α∆

ω
n) dr

]∣
∣
∣
∣
≤ K∆1−ωβ+ρ

n ,

ii) Pt(α∆
ω
n < |Xt+s −Xt| ≤ α∆ω

n(1 + ∆ω
n)) ≤ K∆1−ωβ+ρ

n ,

iii) Pt(|Xt+s −Xt| > α∆ω
n) ≤ Ks∆1−ωβ

n .

Proof: Instead of showing the details of the proof, we want to describe the general approach

used by the authors. As we will only be interested in small values of ∆n, we can always

assume to have ∆n as small as needed and we set δn = α∆ω
n for this whole proof. The value

ρ is chosen to be the minimum of four values. This can be seen as the natural way, as we

often get upper boundaries in the form: ∆z
n, which increases for smaller values of z > 0 as

∆n ∈ (0, 1). Hence, as we are combining various upper bounds with different values for z we

get a collective upper boundary, by taking the minimum of all appearing values of z, resulting

in the value ρ in our case. When starting the estimates, we proceed in the way we did in the

proof of Lemma 3.24 as we make estimates for the three summands on the r.h.s. of9

X(δn)
′ −X(δn)

b −X0 = X̂ +X(δn)
a −B(δn),

which is obtained when transforming equation (3.34). By using Chebyshev’s inequality and

the results of Lemma 3.22 a first estimate for the increments of this part of the semimartingale

is given (i.e. for the increments of X(δn)
′ −X(δn)

b, which represents the semimartingale X

without the big jumps and without the compensated small jumps resulting out of the Lévy

9Here there appears to be a typo in equation (67) in the paper, as the increments of X(δn)
′ +X(δn)

b are

denoted, wherein the plus should be replaced by a minus.
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measure F ′
t). To adapt the estimate in order to be applicable to X(δn)

′ (where only the big

jumps are missing) the probability space is extended and for every n a stable Lévy process

Y (δn)
′ := X(δn)

b +X ′

can be defined, where X ′ is an auxiliary semimartingale defined to make Y (δn)
′ a stable

process. Using the result of Lemma 3.19, an estimate for the increments of X(δn)
b is obtained,

which is combined to provide an estimate for the increments of X(δn)
′. Finally the processes

N(δ), counting jumps bigger than a certain threshold, as introduced in equation (3.43), are

recalled. By considering these Poisson processes and their compensators, for the values

δn and δ′n = α∆ω
n(1 + ∆η

n),

the situation of Lemma 3.24 is resembled. The application thereof, together with various

transformations, allows for the extension of the estimates derived for X(δn)
′ to the whole

semimartingale X. �

The following lemma is the one referred to earlier, namely ‘Lemma 7’ in the original paper.

As mentioned, we do not give any details on how it is proved. The outcome only forms part

of the proof of Proposition 3.31 (which is the second result we will only cite). The proof of

this lemma can be found on p.2237ff. of [2].

Lemma 3.26: When being in the same situation as in Lemma 3.25 (i.e. s ≤ ∆n, etc.),

and for any bounded martingale M := (Mt)t≥0, we see that there is a KM , allowing for the

estimate:

∣
∣Et[(Mt+s −Mt)11{|Xt+s−Xt|>α∆ω

n}
]
∣
∣

≤ K∆1−ωβ+ρ
n +K∆1−(ω+η)β

n Et[|Mt+s −Mt|] +K∆(1−(ω+η)β)/2
n

√

Et[|Mt+s −Mt|2].

.

.

Next, we show two lemmas, which are auxiliary limit theorems. The stated assumptions

still apply and the process At is as defined in equation (3.15). We will use the first of the two

for proving the second, which is then used directly for verifying Proposition 3.30.

Lemma 3.27: For ω ∈ (0, 1/2), α > 0 and ρ′ := 1/2 ∧ (ω(β − (β − γ) ∨ β′)) we see that for

all t > 0 the sequence



∆−ρ′

n

∣
∣
∣
∣
∣
∣

∆ωβ
n

⌊t/∆n⌋∑

i=1

E
n
i−1

[
∫ i∆n

(i−1)∆n

F s(α∆
ω
n) ds

]

− At

αβ

∣
∣
∣
∣
∣
∣





n≥1

is tight.
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Proof: To increase readability we first introduce the following notation:

θni :=

∫ i∆n

(i−1)∆n

F s(α∆
ω
n) ds and ηni :=

∫ i∆n

(i−1)∆n

As ds. (3.45)

By recalling Definition 3.15, which states in equation (3.16) what a tight sequence needs to

fulfill, we see that we need to show

lim
N→∞

lim sup
n

P



∆−ρ′

n

∣
∣
∣
∣
∣
∣

⌊t/∆n⌋∑

i=1

E
n
i−1

[

∆ωβ
n θni

]

− At

αβ

∣
∣
∣
∣
∣
∣

> N



 = 0.

In the process of showing this, we will use the well known fact, that for any rv Y we have:

E[|Y |] < ∞ ⇒ P(|Y | > N) → 0. (3.46)

One way of seeing this is by the inequality

∞ > E[|Y |] > E[11{|Y |≤N}|Y |] +NP(|Y | > N) ∀N ∈ N. (3.47)

As N can become arbitrary large, we see that the convergence to 0 must hold to maintain the

inequality. To derive tightness we need to be more precise. Let us assume we want to verify

that the sequence Y n of rvs is tight. We show that boundedness in L1:

E[|Y n|] < K ∀n ∈ N, (3.48)

i.e. the boundedness by a K > 0 (independent of n) for all Y n, is enough to imply tightness.

Let us hence assume we have the above boundedness. Following the idea of equation (3.47),

we get the equivalence:

K > E[|Y n|] > E[11{|Y n|≤N}|Y n|] +NP(|Y n| > N)

⇔ K

N
>

K − E[11{|Y n|≤N}|Y n|]
N

> P(|Y n| > N).

Seeing this, we can carry out the following estimate for the criterion of tightness:

lim
N→∞

lim sup
n

P(|Y n| > N) < lim
N→∞

lim sup
n

K

N
= lim

N→∞

K

N
= 0.

From all this we see that we only need to show the boundedness of the sequence in order

to achieve tightness. But before we make use thereof we again proceed like in Lemma 3.24

where we saw that the sum of three rvs being bigger than N has a smaller probability than

each of the rvs being bigger than N/3. By including the summands En
i−1[η

n
i /α

β ] and ηni /α
β

we can write:

P



∆−ρ′

n

∣
∣
∣
∣
∣
∣

⌊t/∆n⌋∑

i=1

E
n
i−1

[

∆ωβ
n θni

]

− At

αβ

∣
∣
∣
∣
∣
∣

> N




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= P



∆−ρ′

n

∣
∣
∣
∣
∣
∣

⌊t/∆n⌋∑

i=1

(

E
n
i−1

[

∆ωβ
n θni

]

+
E
n
i−1 [η

n
i ]− E

n
i−1 [η

n
i ] + ηni − ηni

αβ

)

− At

αβ

∣
∣
∣
∣
∣
∣

> N





= P



∆−ρ′

n

∣
∣
∣
∣
∣
∣

⌊t/∆n⌋∑

i=1

E
n
i−1

[

∆ωβ
n θni − ηni

αβ

]

+
1

αβ

⌊t/∆n⌋∑

i=1

(
E
n
i−1 [η

n
i ]− ηni

)
+

1

αβ





⌊t/∆n⌋∑

i=1

ηni −At





∣
∣
∣
∣
∣
∣

> N





≤ P

(

∆−ρ′

n

∣
∣
∣
∣
∣
∣

⌊t/∆n⌋∑

i=1

E
n
i−1

[

∆ωβ
n θni − ηni

αβ

]
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=:Y n
1

>
N

3

)

+ P

(
∣
∣
∣
∣
∣
∣

⌊t/∆n⌋∑

i=1

∆−ρ′

n

(
ηni − E

n
i−1 [η

n
i ]
)

∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=:Y n
2

>
αβN

3

)

+ P

(

∆−ρ′

n

∣
∣
∣
∣
∣
∣





⌊t/∆n⌋∑

i=1

ηni −At





∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

=:Y n
3

>
αβN

3

)

.

In a straight forward way, we first analyze the third summand with respect to Y n
3 . From the

definition of ηni we see that
∑⌊t/∆n⌋

i=1 ηni =
∫ ∆n⌊t/∆n⌋
0 As ds and therefore we obtain the below

from the boundedness of As, as stated in Assumption 3.12.i.b), and from ρ′ ≤ 1/2:

|Y n
3 | ≤ ∆−ρ′

n ∆nK = ∆1−ρ′

n K ≤ K.

This boundedness for all n of the rv, clearly implies that the sequence is tight. Now we look at

the other two summands, where we show that equation (3.48) holds and hence get tightness.

This means, we show that there is a common upper boundary for the expected value. We

start with Y n
1 , where we give an estimate for the summands, which we get from applying

Lemma 3.18.ii) and using the definition of ρ′:

∣
∣
∣∆ωβ

n θni − ηni
αβ

∣
∣
∣ =∆ωβ

n

∣
∣
∣

∫ i∆n

(i−1)∆n

F s(α∆
ω
n)−

As

(α∆ω
n)

β
ds
∣
∣
∣

≤∆ωβ
n ∆n

K ′′

(α∆ω
n)

(β−γ)∨β′
≤ K ′∆1+ρ′

n .

Now we look at the expected value of Y n
1 and can easily see the following when using the

above estimate:

E[|Y n
1 |] ≤ E

[

∆−ρ′

n

⌊t/∆n⌋∑

i=1

K ′∆1+ρ′

n

]

≤ ∆−ρ′

n (t∆−1
n )K ′∆1+ρ′

n ≤ K.
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To achieve the tightness of the whole sequence we still need to show that E[|Y n
2 |] < K. As we

see that the summands in Y n
2 are martingale increments, we make use of this property. Let

us denote such an increment by ζni := ∆−ρ′
n

(
ηni − E

n
i−1 [η

n
i ]
)
. By looking at any martingale

M := (Ms)s≥0, with M0 = 0, and any k ∈ N, we see the following equality:

E

[

(Mk∆n)
2
]

= E

[ k∑

i=1

(
(Mi∆n)

2 − (M(i−1)∆n
)2
)
]

= E

[ k∑

i=1

(
Mi∆n −M(i−1)∆n

)2
]

.

Further, we know that (on a probability space) the fact E[|Y |2] < ∞ implies E[|Y |] ≤ 1 +

E[|Y |2] < ∞, as can be found in [29, Theorem 4.19]. Hence, for all E[|Y n
2 |] to have a common

upper bound, is implied by E[|Y n
2 |2] having a common upper bound. Due to Y n

2 being a

martingale, and when replacing (Mi∆n −M(i−1)∆n
) by ζni in the above equation, we see that:

E[|Y n
2 |2] = E

[ ⌊t/∆n⌋∑

i=1

|ζni |2
]

< K ∀n ∈ N, (3.49)

implies the desired boundedness. The statement above follows easily, since As is bounded

and we can write

∣
∣ηni − E

n
i−1 [η

n
i ]
∣
∣ =

∣
∣
∣
∣
∣

∫ i∆n

(i−1)∆n

As ds− E
n
i−1

[ ∫ i∆n

(i−1)∆n

As ds
]
∣
∣
∣
∣
∣
≤ K ′∆n

⇒ |ζni |2 = ∆−2ρ′

n

∣
∣ηni − E

n
i−1 [η

n
i ]
∣
∣2 ≤ K ′∆2−2ρ′

n ,

which allows us to complete the proof by using 1−2ρ′ > 0, and making the following estimate:

E

[ ⌊t/∆n⌋∑

i=1

|ζni |2
]

≤ (t∆−1
n )K ′∆2−2ρ′

n < K.

.

. �

As stated before, we can use the outcome of the next lemma to show Proposition 3.30.

To be precise, we use part i) for doing so. In the second part, we do not show the outcome of

ii.b). The reason being that there appears to be an inconsistency. See the remark after the

following proof for more details.

Lemma 3.28: i) For ω ∈ (0, 1/2), α > 0 and

χ′ := (ωγ) ∧ 1− ωβ

3
∧ ω(β − β′)

1 + β′
∧ 1− 2ω

2
,

and for all ǫ > 0, t ∈ [0, T ], the sequence



∆ǫ−χ′

n

∣
∣
∣
∣
∣
∣

∆ωβ
n

⌊t/∆n⌋∑

i=1

P
n
i−1

(
|∆n

i X| > α∆ω
n

)
− At

αβ

∣
∣
∣
∣
∣
∣





n≥1
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is tight. Specifically, what we obtain is:

∆ωβ
n

⌊t/∆n⌋∑

i=1

P
n
i−1

(
|∆n

i X| > α∆ω
n

) P−−→ At

αβ
.

ii) Under the condition of γ > β
2 , ω ∈ (0, (2/(5β)) ∧ (1/(2 + β))) and β′ ∈ [0, β/(2 + β)),

and for a bounded continuous martingale M := (Mt)t≥0, we have for all t ∈ [0, T ] and α > 0:

a) ∆−ωβ/2
n

∣
∣
∣
∣
∣
∣

∆ωβ
n

⌊t/∆n⌋∑

i=1

P
n
i−1

(
|∆n

i X| > α∆ω
n

)
− At

αβ

∣
∣
∣
∣
∣
∣

P−−→ 0,

b) ∆ωβ/2
n

⌊t/∆n⌋∑

i=1

∣
∣
∣E

n
i−1[∆

n
i M11{|∆n

i X|>α∆ω
n}
]
∣
∣
∣

P−−→ 0.

Proof: i) To show this part, we see immediately that we only have to prove tightness, as

the convergence in probability follows directly (as ∆ǫ−χ′

n → ∞). The tightness is derived

using the same approach as in the proof of Lemma 3.27 as we first include the summands

∆ωβ
n E

n
i−1[θ

n
i ]−∆ωβ

n E
n
i−1[θ

n
i ], where θ

n
i is defined as in equation (3.45). Hence, we get that the

sequence in i) is tight if both sequences

(

∆ǫ−χ′

n

∣
∣
∣
∣
∣
∆ωβ

n

⌊t/∆n⌋∑

i=1

(

P
n
i−1

(
|∆n

i X| > α∆ω
n

)
− E

n
i−1[θ

n
i ]
)

︸ ︷︷ ︸

≤K′∆1−ωβ+ρ
n

∣
∣
∣
∣
∣

)

n≥1

and

(

∆ǫ−χ′

n

∣
∣
∣
∣
∣
∆ωβ

n

⌊t/∆n⌋∑

i=1

E
n
i−1[θ

n
i ]−

At

αβ

∣
∣
∣
∣
∣

)

n≥1

are tight. To show this property of the first sequence, we use the estimate given for each

summand in Lemma 3.25.i) as shown above. Therein ρ is defined as in equation (3.44) of the

same lemma. When adding all ⌊t/∆n⌋ summands, we see that each element of the sequence

is smaller than K∆ǫ−χ′+ρ. Hence, the first sequence is tight if we have χ′ − ǫ ≤ ρ. For the

second sequence we only need to use the result of Lemma 3.27, to see that it is tight if we

have χ′−ǫ ≤ ρ′, where ρ′ is defined in the same lemma. When we combine the two conditions

we get the strongest result, when setting

χ′ − ǫ = ρ ∧ ρ′.

The result still holds but gets weaker, when the exponent is smaller than ρ ∧ ρ′, and so we

can immediately see, that what we want to show, allows for an arbitrary large value of ǫ. The

reason for having 0 as the lower boundary of ǫ but still needing it, is that the definition of ρ

in equation (3.44) includes an η ∈ (0, 1/2−ω), giving an open interval as the range of allowed
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values. As ρ can take the value η we show that the exponent of this lemma could take this

value by allowing χ′ = 1/2− ω resulting in χ′ − ǫ = ρ = η < 1/2− ω with the right choice of

ǫ > 0. To derive the definition of χ′ we now look at

ρ ∧ ρ′ =
(

η ∧ (ω(β − β′)− β′η) ∧ (ωγ) ∧ (1− ωβ − 2η)
)

∧
(

1/2 ∧ (ω(β − (β − γ) ∨ β′))
)

,

where we only used the definition of the two values. We stated the possible range for η above,

and from Lemma 3.25 we also have ω ∈ (0, 1/2). Let us first consider the case, when the

minimum comes from a term containing η. If it is η itself, we only have the existing upper

bound of < 1/2 − ω. Else the term needs to be equal to η or smaller, to account for the

minimum. Considering this gives us the following upper bounds coming from the

2nd term: if ω(β − β′)− β′η = η ⇒ η =
ω(β − β′)

1 + β′
,

4th term: if 1− ωβ − 2η = η ⇒ η =
1− ωβ

3
.

To arrive at the definition of χ′ we need to show that the last two terms are redundant. For

1/2 this is obvious, as it is always bigger than η. For the last term we distinguish the two

cases:

1) β − γ > β′: ω(β − (β − γ)) = ωγ equal to 3rd term,

2) β − γ ≤ β′: ω(β − β′) >
ω(β − β′)

1 + β′
equal to boundary from 2rd term.

Putting all the bounds together we arrive at the definition of χ′ and i) is proven.

ii) The given restrictions on β′, γ and ω are the same as in Theorem 3.17. These were

derived from the transformations in equation (3.18), which demand all components of χ to

be bigger than ωβ/2, which immediately implies χ′ > ωβ/2 as we have χ = χ′ ∧ ωβ/2. With

ωβ/2 being smaller, we immediately get the estimate in ii.a) from i) as ǫ can be chosen in

the way that χ′ − ǫ = ωβ/2. The proof of part ii.b) is omitted here but commented on in the

remark below. �

Remark 3.29: Within the proof of Lemma 3.28.ii.b) the authors claim to use the result of

Lemma 3.26 but we find that this result is too weak to show the desired. The problem lies

in the first estimate displayed on p.2241, where the factor in the last summand is denoted

by ∆
(1−ηβ)/2
n but to obtain the shown estimates, we feel that it would need to be ∆

1−(ηβ)/2
n

instead. This replacement is assumed to be possible when looking at the last estimate of

the proof of Lemma 3.26 on p.2239, where this factor is introduced. If we assume that the

position of the bracket is just a typo, then the estimates displayed in stand-alone equations

in the proof of Lemma 3.28 do hold. There is another typo in this first estimate displayed on

p.2241, which just misses the power 2, which is then included in the more general estimate to
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follow. Further the proof states that 1−2ηβ > ωβ (which is equivalent to η < (1−ωβ)/(2β))

holds, because of the upper boundary (1 − ωβ)/3, shown for η in part i) of the proof. For

β bigger than 1.5 however, this is not necessarily true. Even more so, the proof does not

account for the dependence of ρ on η, but it is defined in this way in equation (3.44). As we

need ρ > ωβ/2 (to make one of the summands finite) we clearly have to have η > ωβ/2 as ρ

is the minimum over η and some other values. Hence we would need that

1− ωβ

2β
>

ωβ

2
,

or more precisely, when using what we obtained in part i) of the same proof, we require that

1− ωβ

2β
> η =

(
1− ωβ

3
∧ ω(β − β′)

1 + β′
∧ 1− 2ω

2

)

− ǫ >
ωβ

2
, (3.50)

holds for the restricted values of ω and any value of β ∈ (0, 2). If we choose, for example,

β = 1.75 and ω = 0.22, which lies within the stated boundaries, the above inequality does

not hold. Hence, the first inconsistency within the proof becomes irrelevant, as this second

part of the proof does not hold for all values within the claimed boundaries. Seeing this, we

feel that there must either be some other way of showing that the result holds for the stated

boundaries, or we use this way and adapt the boundaries for ω which make equation (3.50)

hold. This would result in only allowing some lower values for ω. If such a restriction was to

be needed, this would also influence the allowed range of ω in Theorem 3.17 as the outcome

of Lemma 3.28.ii.b) is used to proof the stated theorem. For sure, we do not want to doubt

the stated boundaries in Theorem 3.17 and we do not go into any details of formulating new

boundaries which would allow for the stated reasoning. What we will do, is carry out some

simulation tests for lower values of ω complying with equation (3.50). We will discuss the

outcome of the implementations in Section 4.2.

Now we come to the last step in the process of proving Theorem 3.16. In the proposition

below we formulate the result obtained for the conditioned probabilities Pn
i−1

(
|∆n

i X| > α∆ω
n

)

in Lemma 3.28.i), for the idicator functions of these sets. By doing so, we get the desired

result for the estimator U(ω, α)nt , which we have already mentioned before introducing the

estimator β̂n in Definition 3.14.

Proposition 3.30: Let χ be as defined in equation (3.17), then we get for every t ∈ [0, T ]

and every ǫ > 0, that the sequence

(

∆ǫ−χ
n

∣
∣
∣
∣
∆ωβ

n U(ω, α)nt − At

αβ

∣
∣
∣
∣

)

n≥1

is tight, and especially:

∆ωβ
n U(ω, α)nt

P−−→ At

αβ
.
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Proof: We recall Definition 3.13 of U(ω, α)nt and denote by Dn
i := {|∆n

i X| > α∆ω
n} the set

defining the indicator function in each summand (for arbitrary but fixed ω and α). Now

we show the tightness in the way we did in Lemma 3.27. First we include the summands

∆ωβ
n E

n
i−1[11Dn

i
]−∆ωβ

n E
n
i−1[11Dn

i
]. For ease of notation we define ζni := ∆

ωβ/2
n (11Dn

i
−E

n
i−1[11Dn

i
])

and see that it is a martingale increment. (Hence, the same notation as in the proof of

Lemma 3.27.) To show the desired, we state the following estimate, using what we just

announced:

P

(

∆ǫ−χ
n

∣
∣
∣
∣
∆ωβ

n U(ω, α)nt − At

αβ

∣
∣
∣
∣
> N

)

= P



∆ǫ−χ
n

∣
∣
∣
∣
∣
∣

∆ωβ
n

⌊t/∆n⌋∑

i=1

(
11Dn

i
− E

n
i−1[11Dn

i
] + E

n
i−1[11Dn

i
]
)
− At

αβ

∣
∣
∣
∣
∣
∣

> N





≤ P



∆ǫ−χ
n

∣
∣
∣
∣
∣
∣

∆ωβ/2
n

⌊t/∆n⌋∑

i=1

ζni

∣
∣
∣
∣
∣
∣

>
N

2



+ P



∆ǫ−χ
n

∣
∣
∣
∣
∣
∣

∆ωβ
n

⌊t/∆n⌋∑

i=1

P
n
i−1(D

n
i )−

At

αβ

∣
∣
∣
∣
∣
∣

>
N

2





The second probability above contains exactly the same summands as in Lemma 3.28.i) and

since we already saw in the proof of Lemma 3.28.ii) that χ = χ′ ∧ (ωβ/2), we can chose ǫ in

an appropriate way to see that the sequence is tight. For the analysis of the first probability

above, we note that ǫ − χ + ωβ/2 ≥ ǫ > 0 which means that we do not need to consider

the factor coming from ∆n, which is not already included in ζni . For the remaining term

we use the fact that we are dealing with martingale increments ζni . As described in the

proof of Lemma 3.27, in this situation we only need to show that equation (3.49) holds. So

all we need to complete the proof, is the following inequality, where we take the estimate

P
n
i−1(D

n
i ) ≤ K ′∆1−ωβ

n from Lemma 3.25.iii):

E
[
|ζni |2

]
= ∆ωβ

n E

[∣
∣11Dn

i
− P

n
i−1(D

n
i )
∣
∣2
]

= ∆ωβ
n E

[

11Dn
i
− 211Dn

i
P
n
i−1(D

n
i ) + P

n
i−1(D

n
i )

2
]

≤ ∆ωβ
n

(

P(Dn
i ) + 2P(Dn

i )K
′∆1−ωβ

n + (K ′)2∆2(1−ωβ)
n

)

≤ K ′′∆n

⇒ E

[ ⌊t/∆n⌋∑

i=1

|ζni |2
]

≤ (t∆−1
n )K ′′∆n ≤ K.

.

. �

We are now at the final step required for showing the proofs. The proposition below forms

the last part of showing Theorem 3.17. As stated earlier, we will only cite its outcome as

it strongly builds on results from [25], namely Thorem IX.7.28. Further it uses the result of

Lemma 3.28.ii.b), where we pointed out an inconsistency in Remark 3.29. In paper [2] the

proof is given on p.2242.
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Proposition 3.31: For every γ > β
2 , ω ∈ (0, (2/(5β))∧ (1/(2 + β))) and β′ ∈ [0, β/(2 + β))

as in ii) of Lemma 3.28, and α′ > α, the pair of processes

∆−ωβ/2
n

(

∆ωβ
n U(ω, α)nt − At

αβ
,∆ωβ

n U(ω, α′)nt − At

α′β

)

n≥1

converges stably in law to a continuous Gaussian martingale (W,W
′
) := (W t,W

′
t)t≥0 inde-

pendent of F and fulfilling:

E[W
2
t ] =

At

αβ
, E[W

′
t

2
] =

At

α′β
and E[W tW

′
t] =

At

α′β
.

Having stated all needed building blocks for the proofs we are now ready to verify The-

orem 3.16. As the shown results had been interwoven and building onto each other, all we

need for proving the first of the main results, is the outcome of Proposition 3.30.

Proof of Theorem 3.16: For better readability we introduce the shorthand notation, which

we will use when transforming the estimator β̂n:

Vn := ∆ǫ−χ
n

(

∆ωβ
n U(ω, α)nt − At

αβ

)

and V ′
n := ∆ǫ−χ

n

(

∆ωβ
n U(ω, α′)nt − At

α′β

)

.

As we want to show that β̂n(t, ω, α, α
′)

P−−→ β on {At > 0}, we analyze the difference of the

sequence and its desired limit. On this set we obviously do not have a problem with dividing

by At 6= 0. Using the definition of the estimator β̂n(t, ω, α, α
′), we can write (by including

the factor ln(α′/α) for ease of notation):

ln
(
α′/α

) (
β̂n(t, ω, α, α

′)− β
)
= ln

(
U(ω, α)nt /U(ω, α′)nt

)
− β ln

(
α′/α

)

= ln

(

αβU(ω, α)nt
α′βU(ω, α′)nt

∆ωβ
n /At

∆ωβ
n /At

)

= ln

(

1 + αβ
(
∆ωβ

n U(ω, α)nt −At/α
β
)
/At

1 + α′β
(
∆ωβ

n U(ω, α′)nt −At/α′β
)
/At

)

. . .

By using that ∆χ−ǫ
n Vn = (∆ωβ

n U(ω, α)nt −At/α
β)

P−−→ 0 by Proposition 3.30 and the approx-

imation ln(x + 1) ≈ x for x → 0 (which is easily seen when applying l’Hospital’s rule to

limx→0 ln(1 + x)/x = limx→0 1/(1 + x) = 1), we further get:

. . .
P
=

αβ∆χ−ǫ
n Vn − α′β∆χ−ǫ

n V ′
n

At

P−−→ 0.

So we have shown the desired convergence in probability. Further we point out that from the

above we can also see the ∆χ−ǫ
n -rate consistency. The above is equivalent to:

∆ǫ−χ
n

(
β̂n(t, ω, α, α

′)− β
) P
=

αβVn − α′βV ′
n

ln(α′/α)At

, (3.51)
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which is tight, as Vn and V ′
n are tight by what we showed in Proposition 3.30. This completes

the proof. �

Using what we have just shown and replacing ∆χ−ǫ
n with ∆

ωβ/2
n we get the proof of Theo-

rem 3.17. Also, we need to make use of the outcome of Proposition 3.31, giving us the desired

property of stable convergence.

Proof of Theorem 3.17: To show the first part, we arrive at equation (3.51) with the exponent

−ωβ/2 instead of ǫ−χ in exactly the same way as above. This change of exponent is achieved

by defining Vn and V ′
n in a slightly different way, namely:

Vn := ∆−ωβ/2
n

(

∆ωβ
n U(ω, α)nt − At

αβ

)

and V ′
n := ∆−ωβ/2

n

(

∆ωβ
n U(ω, α′)nt − At

α′β

)

.

Now we use the outcome of Proposition 3.31, which describes the stable convergence of (Vn, V
′
n)

to (W,W
′
). By using the stated expected values in Proposition 3.31, we easily see that

E

[(
αβ

ln(α′/α)At

W

)2
]

=
αβ

ln(α′/α)2At

.

By seeing the same result for W
′
we get that the r.h.s. of equation (3.51) converges stably

to a normally distributed variable with variance (α′β − αβ)/(ln(α′/α)2At). Hence, we have

shown the proof of part i).

To show part ii) we just state that it directly follows from the convergence in probability

of the statistic U(ω, α)nt , which we derived in Proposition 3.30, in combination with Propo-

sition 2.16.ii). The latter is giving a general result on combining stable convergence with

convergence in probability. Hence, dividing the l.h.s. of part i) by the standard deviation of

the r.h.s. gives the desired outcome. �

The proof of the distributional result above was now made under the assumption of using

all outcomes of the lemmas and propositions, in the way they are stated in paper [2]. When

we were discussing them however, we felt that there might be some inconsistencies with regard

to the parameter ω. We will carry out some simulations with regard to this assumption in

Section 4.2. Before, we will include simulations rebuilding tables of the stated paper. These

implementations can be found in the next chapter and herewith we end the discussion of the

theory.



Chapter 4

Implementation of the Jump

Activity Index Estimator

In contrast to the previous chapters, this one does not deal with the theory as such, but

rather with the implementation thereof. We assume to have a certain process made up of a

jump process and a continuous part, as defined in equation (4.1). By the jump process Y

being β-stable we fulfill Assumption 3.12, with β′ = 0 and with f(x, t) ≡ 0, which allows

us to take γ arbitrarily large (and obviously we can assume γ > β/2 which is required in

Theorem 3.17). We follow the framework by Aı̈t-Sahalia and Jacod in Section 6 of their

paper [2] and visualize the main results for the estimator β̂. Hereby we show results for the

mean and standard deviation and include histograms for the normalized estimator converging

to a normally distributed rv. Then we show some results for different parameters, which can

not be found in the stated paper. All simulations are carried out using code written in

Matlab. We shortly describe how the code works within this chapter and we provide the

commented code in the appendix.

4.1 Monte Carlo Simulation visualizing the Main Results

The aim of this section is to implement the estimator β̂ and to depict its convergence for

different values of β, different probabilities for big jumps and different time steps ∆n. Doing

this, we wish to recreate Table 1 of [2]. This allows us to somehow ‘test’ our simulation

by comparing our results to the stated table. A difficulty in this comparison is, that the

authors apply a so-called ‘small sample bias correction’, which they describe in [2, Section 5].

This correction does not change the asymptotic results, as the correction term they subtract

from the estimator β̂ is of order ∆1−2ω
n . Despite not explicitly stated in the paper how their

estimates are affected by this correction, we can tell from its structure that it has a bigger

influence for larger values of β and larger values of ∆n. So the comparison we make is between

our ‘raw’ outcomes and the authors’ ‘corrected’ estimates. Our approach will show, where the

64
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application of the ‘raw’ estimates might not deliver the desired results for certain parameters.

We will point out such situations when comparing the mean values of the estimators.

The aforementioned table shows different values of β in the rows. Different time steps in

the discrete observation and different tail probabilities are considered in the columns. These

tail probabilities give the likeliness of the underlying process having increments bigger than

the truncation level α∆ω
n . This probability (set to be 0.25%, 0.5%, 1.0% or 2.5%) gives a

rough percentage of how many of the observed increments will actually be counted by the

statistic U(ω, α)nt , given in Definition 3.13. Despite the stated assumptions allowing for a

quite general stochastic process, we chose to carry out our Monte Carlo simulations using an

underlying stochastic process of the following structure:

dXt =σt dWt + θ dYt, (4.1)

with σt = v
1/2
t , dvt =κ(η − vt) dt+ γv

1/2
t dBt and E[dWtdBt] = ρ dt.

Herein the process Y is a β-stable jump process. Within the paper the case β = 0 is included

in the analysis, but we discuss it separately and do not include its analysis just now. Both,

B and W are Brownian motions which are correlated in the stated way. We note that the

stochastic volatility follows a Cox-Ingersoll-Ross model with mean reversion towards the value

η. In the choice of the parameters, we adopt the authors’ and set them to: η = 1/16, γ = 1/2

(which does not stay in any relation to the γ of Assumption 3.12), κ = 5, ρ = −1/2, and the

scale-parameter θ will be chosen in such a way, that the tail probability P(θ|∆n
i Yt| > α∆ω

n)

has a set value. The parameters to define the truncation level are chosen to be α = 5η,

α′ = 10η and ω = 1/5. To get an idea of how such a process could look like, we provide

Figure 4.1. Therein we display the continuous part and the jump part separately and also

include the sum of the two. We chose the value β = 1, step size of 1 second and the tail

probability (defining the scale parameter θ) to be 1%.

We see that this choice of the scale parameter θ makes the sum of the two processes re-

assemble the pure jump process. This is obviously caused by looking at the sum at a big scale,

where we do not see the small changes caused by the continuous part. The code for generating

this sample path is provided in the appendix. Here we describe the approach for implementing

the stated model in some more detail. To simulate a discrete version of the process, we write

a function for the continuous part, namely simulateContDis(dt,T,eta,gamma,kappa,rho),

and a second one, which we call simulateStable(dt,T,beta,theta), for generating the jump

process. Therein the Greek letters are placeholders for the parameters mentioned above. The

value dt represents the time steps ∆n in seconds and T represents the chosen amount of

observed trading days. We assume one trading day to be made up of 6.5 hours, resulting in

602 · 6.5 = 23, 400 seconds. As our results hold for small time steps, we convert our time step

to be in the unit of days and hence transform the input dt by dividing it by 23, 400. Despite
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Figure 4.1: Sample path of the model stated in equation (4.1) with β = 1, ∆n = 1 second

and tail probability of 1%.

our code allowing for more freedom, we choose to observe 1 trading day in what follows. In

simulating the continuous part we follow an Euler scheme (see for example, [24, Section 5.6.3])

and discretize the stochastic differential equation for vt for increments of size ∆n. We use the

inbuilt Matlab-function mvnrnd to get two correlated Brownian motions. Then we obtain

the continuous part by summing up over the simulated increments. For the simulation of a

stable process Y we follow [17, Algorithm 6.6], which combines a uniformly distributed rv U

on (−π/2, π/2) and an independent standard exponential rv W in such a way, that we obtain

an increment ∆n
i Y of a stable process. The definition is the following

∆n
i Y = (∆n)

1/β sin(βU)

cos(U)1/β

(
cos((1− β)U)

W

)(1−β)/β

,

and the interested reader is referred to the aforementioned source of the algorithm for more

details. Now we have what we need to simulate a sample path of the underlying process.

The next step in recreating Table 1 is to calculate the scale parameter θ. To set the tail

probability for big jumps to a certain value, we need to define θ such that P(θ|∆n
i Yt| ≥ α∆ω

n) is

the desired tail probability. We do not program our own code for getting the inverse distribu-

tion function, but instead use the toolbox Veillette provides on the Mathworks file exchange.1

His toolbox on stable distributions is mainly based on the book [39]. Further, Veillette is

writing his PhD with Taqqu, one of the authors of this book. What he does to obtain the

inverse distribution function is to use a combination of Newton’s method and the bisection

method. He implements this in the code stblinv, which also uses two other functions of the

same toolbox, namely stblcdf and stblpdf.

1The toolbox can be downloaded from the official Mathworks website: http://www.mathworks.com/

matlabcentral/fileexchange/37514-stbl-alpha-stable-distributions-for-matlab [Accessed 09/05/13].

http://www.mathworks.com/matlabcentral/fileexchange/37514-stbl-alpha-stable-distributions-for-matlab
http://www.mathworks.com/matlabcentral/fileexchange/37514-stbl-alpha-stable-distributions-for-matlab
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Our code calcSampleMeanStd(dt,tail pr,beta,N,T,om,alph,eta,gamma,kappa,rho)

makes direct use of stblinv. Therein we calculate the entries replicating Table 1, i.e. the

mean and standard deviation of estimator β̂. As an input for this function we choose the

amount of simulation runs to be N = 5, 000, which is in line with the choice of Aı̈t-Sahalia and

Jacod. The code is written in three main loops. The outer loop goes through the different

values of β, so through the rows. The next goes through the tail probabilities in combination

with the size of the time steps. Herein we calculate θ for each entry in the table. Then the

innermost loop follows, and accounts for the number of simulations N , creating the sample

paths. We first apply the two aforementioned codes to get a sample path of the underlying

process. Then we calculate the statistics U(ω, α)nt and U(ω, α′)nt (in a loop for only two

iterations). Having this we calculate β̂ in accordance with Definition 3.14, also using the

convention that we set β̂ = 0 if either of the statistics U is 0. Before moving to the next

position in the table, we store the mean and the standard deviation of all N sample paths

into the output matrix. We run this function using the script file sBasicTable.

Step size ∆n 1 sec 1 sec 1 sec 1 sec 5 sec

Tail probability 0.25% 0.5% 1.0% 2.5% 1.0%

β = 1.50 1.54 1.53 1.55 1.60 1.57

(1.52) (1.51) (1.50) (1.52) (1.53)

β = 1.25 1.27 1.26 1.26 1.28 1.29

(1.27) (1.26) (1.25) (1.26) (1.27)

β = 1.00 1.01 1.01 1.00 1.00 1.02
(1.01) (1.01) (1.00) (1.00) (1.01)

β = 0.75 0.76 0.75 0.75 0.75 0.76

(0.76) (0.76) (0.75) (0.75) (0.76)

β = 0.50 0.51 0.50 0.50 0.50 0.50
(0.51) (0.50) (0.50) (0.50) (0.50)

β = 0.25 0.25 0.25 0.25 0.25 0.25

(0.25) (0.25) (0.25) (0.25) (0.25)

Table 4.1: Sample mean of estimator β̂ resulting out of a Monte Carlo simulation with

5, 000 runs (in comparison with the outcome displayed in [2]).

The obtained output of mean values can be seen in Table 4.1. Additionally to our cal-

culated values we place the ones from Table 1 in [2] in brackets, just below our values. If



4.1. Monte Carlo Simulation visualizing the Main Results 68

the two are equal we shade the cell in gray. Hence, we easily see that we obtain the same

estimators for most values with β ≤ 1. For β = 1.50 our estimates are always poorer than

the ones depicted in the paper. Further we see that in the last column, where the time step

is 5 seconds, and not only 1 second, the results are still further away from the actual value

of β. A possible reason could be the influence of the bias correction which is applied to the

original table. This would be in line with what we stated earlier, as the correction term,

which is subtracted as part of the small sample bias correction, has more influence for bigger

values of β and bigger time steps. We see this by the structure of the correction term given

in [2, equation (42)], which is

1

ln(α/α′)

[
β(β + 1)σ2

2

(
1

α2
− 1

α′2

)

∆1−2ω
n +

dβθ
β

2cβ

(
1

αβ
− 1

α′β

)

∆1−2β
n

]

with cβ =
Γ(β + 1)

2π
sin(πβ/2) and dβ = −Γ(2β + 1)

8π
sin(πβ).

Herein σ was assumed to come from a constant volatility and Γ represents the Gamma func-

tion. For values of β > 1 we see that both summands are being positive. Hence the estimator

without the bias correction can be assumed to be too big for large values of β. This assump-

tion would be in line with what we see in our table above, but it remains an assumptions.

We point out that not restricting our results onto a subset is fine in our situation, as we

have {At > 0} being the whole set. Hence we are in line with the outcome of the main results.

Further we have Theorem 3.17 providing information on the distribution. Just now we only

have a closer look at the standard deviation, which should be smaller for smaller values of ∆n

and β (as (α′β − αβ)/At with At being proportional to 1/β, is decreasing for smaller values

of β). We can illustrate this by using the aforementioned script file sBasicTable to give out

the values of the standard deviations. We display them in Table 4.2. Therein we use the

same logic as in the table before and hence shade the values being equal to the outcome in

paper [2] in gray. In every column we see that the values decrease for smaller values of β,

which is what we would hope to get. Further we see that the biggest difference between our

simulation and the authors’ is present for β = 0.25 and for the bigger time step of 5 seconds.

We do not see the reason for this coming from the bias correction. In both these cases the

convergence is said to be slower, either because of the larger observation intervals, or because

β is closer to β′ = 0, which also influences the rate of convergence, as we saw in the definition

of χ in equation (3.17). Maybe this slower speed of convergence plays a role in seeing different

values in these cases.

In contrast to the authors’ approach we chose not to include a row for the value β = 0

in both tables, as this value is not considered by the mathematical analysis as stated in

Assumption 3.12. Nevertheless we also included the implementation for β = 0 in our code

simulateStable(dt,T,beta,theta). In this case the parameter theta represents the ar-
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Step size ∆n 1 sec 1 sec 1 sec 1 sec 5 sec

Tail probability 0.25% 0.5% 1.0% 2.5% 1.0%

β = 1.50 0.26 0.19 0.13 0.08 0.30

(0.26) (0.18) (0.13) (0.08) (0.24)

β = 1.25 0.23 0.16 0.11 0.07 0.26
(0.23) (0.16) (0.11) (0.07) (0.19)

β = 1.00 0.19 0.14 0.10 0.06 0.22

(0.19) (0.14) (0.10) (0.06) (0.14)

β = 0.75 0.16 0.11 0.08 0.05 0.18
(0.16) (0.11) (0.08) (0.05) (0.11)

β = 0.50 0.12 0.09 0.06 0.04 0.14

(0.13) (0.09) (0.06) (0.04) (0.08)

β = 0.25 0.11 0.09 0.09 0.07 0.10
(0.09) (0.06) (0.04) (0.04) (0.05)

Table 4.2: Sample standard deviation of estimator β̂ resulting out of a Monte Carlo

simulation with 5, 000 runs (in comparison with the outcome displayed in [2]).

rival rate of a Poisson process. If we choose the model only containing finitely many jumps

in the same way as in the Monte Carlo simulations in [2], then we do not assume random

jump sizes.2 We instead fix the jump size to 0.1 and choose the arrival rate theta such

that P(θ|∆n
i Y | ≥ α∆ω

n) is equal to one of the set tail probabilities. Maintaining all other

parameters as we had them before, results in the Monte Carlo simulation of the mean value

of β̂ showing values greater than 2. This value does not result in the desired, but it is no

contradiction. As soon as we choose the step size ∆n small enough (in relation to the jump

size) we arrive at the mean of β̂ being equal to 0. This is logical, as at one point the statistics

U(ω, α)nt and U(ω, α′)nt will both contain all jumps coming from the Poisson process. How-

ever, the observation of β = 0 lies without the considered scenarios of the main results as we

only allow for β > 0 in Assumption 3.12. Still, the estimator results in the desired for small

enough step sizes.

2The text on p.2220 explains to fix the jump size, but Table 1 showing the results, states that we are

considering a compound Poisson process, which might hint at random jump sizes. Also, the results in Table 1

are all close to 0 and hence very different to our outcome for β = 0, which reaches values up to 6.4 in some

simulations.
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What we have shown in the two tables so far, can be seen as visualizing the outcome of

Theorem 3.16. The behavior described in Theorem 3.17 is a stronger result and we cannot

see it out of the analysis above. To see the distributional result we instead need to observe

all sample paths. We do this in the function makeHistNorm, where we normalize β̂, resulting

out of one sample path, in the way shown in equation ii) of Theorem 3.17. We use these nor-

malized values to create a histogram, and overlay the normal distribution function to allow

for a visual comparison. To get a feeling for the convergence towards a normally distributed

rv we choose bigger time steps than before first, namely 30 and 10 are computed in addition

to the step size of 1 second. Again, we vary the step size by column. To get an overview of

different values of β we chose three values, namely 1.5, 1.0 and 0.5 shown in the rows. Using

the script file sBasicHistNorm we create the described simulations depicted in Figure 4.2.

Within the simulations we fixed the tail probability to 1% and left the other parameters as

they had been before.

−4 −2 0 2 4
0

0.5

∆n = 30 sec ∆n = 10 sec ∆n = 1 sec

β = 1.5 

β = 1.0 

β = 0.5 

Sample mean −0.13
−4 −2 0 2 4
0

0.5

Sample mean 0.05
−4 −2 0 2 4
0

0.5

Sample mean 0.27

−4 −2 0 2 4
0

0.5

Sample mean −0.20
−4 −2 0 2 4
0

0.5

Sample mean −0.10
−4 −2 0 2 4
0

0.5

Sample mean −0.03

−4 −2 0 2 4
0

0.5

Sample mean −0.03
−4 −2 0 2 4
0

0.5

Sample mean −0.18
−4 −2 0 2 4
0

0.5

Sample mean −0.08

Figure 4.2: Distribution of the normalized estimator β̂ after 5,000 simulations, highlighting

its mean and its similarity to a normal rv.

We clearly see that we get closer to a normally distributed rv for smaller time steps.

According to the theory we should have the sample mean of the normalized β̂ converging to

zero. We feel comfortable with seeing this for the smaller values of β in the second and third
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row, but we are not yet able to observe this tendency for β = 1.5. In the figures it looks as if

the mean of β̂ might converge to a bigger value, as the normalized estimator is obtained by

subtracting the actual value of β from the estimator β̂ and scaling it. Despite not depicted,

we get the same distributions for the other values of Table 4.1, and also for β = 1.75, with this

one being shifted to the right as well. If we try to see this convergence for smaller or bigger

values of β, this should be possible by the constraints given in Theorem 3.17, but it is not

what our simulations verify when choosing a time step of 1 second. For values smaller than

β = 0.25 and bigger than β = 1.5 we cannot make a comparison to any results of paper [2],

as these are not included therein. We provide a short discussion for values lying outside these

bounds in the following section.

4.2 Discussion of certain Simulation Results

The analysis of any results obtained from the Monte Carlo simulation for values of β outside

the interval [0.25, 1.5] was not included in paper [2]. When we use our code to compute the

mean of the estimator β̂ and the corresponding standard deviations, as done in Table 4.1

and Table 4.2, we do not see such good fittings for values outside the stated interval. For

example, when looking at the mean we still get good estimators in the situation of β = 0.2

(the estimators lie in the interval [0.19, 0.21] for different tail probabilities). But when the

actual value of β is even smaller, the outcome gets worse (e.g. for β = 0.1 the corresponding

results of Table 4.1 would lie in [0.05, 0.17]). When looking at values of β > 1.5, we again

do not see good fittings. For example, we tested the value β = 1.95 and the corresponding

means of the estimators lie in the interval [2.40, 4.15], which per se does not make sense. The

reasons could be manifold. The exact analysis of this outcome will be left for future research,

but here we want to mention some possible reasons we found. We will summarize what our

thoughts were and how we have tested them.

We assumed that one reason could be that the time steps are still too big to see the

desired convergence. Hence, we computed the mean of the estimator β̂ and of the normalized

estimator, which is defined in Theorem 3.17, for smaller observation intervals. We include

the code we programmed for getting these and the following simulations in the appendix in

Section A.2. When decreasing the size of the time steps, we first calculated the value θ for

every scenario, but as θ does not only depend on the tail probability, but also on the step

size, changing θ implies to change the underlying process. This would mean, that at smaller

time steps the jump part would become bigger, as the underlying process was defined to be

dXt = σt dWt + θ dYt in equation (4.1) and θ increases for smaller time steps3. Obviously

we want to have the same underlying process for shorter observation intervals. Therefore, we

3The dependence of θ on the size of the time step is clear by its definition and we tested the stated relation

by computing the values of θ in dependence on the time steps and β.
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will only refer to the computations we carried out with a fixed level of θ, when talking about

the convergence we wanted to observe from choosing a smaller step size.

As we stated earlier, we still wanted to test if the convergence to a normally distributed

variable as stated in Theorem 3.17 is only visible for smaller values of ω when looking at

big values of β. This restriction might come from what we stated in equation (3.50) in Re-

mark 3.29. From what we saw from our simulations first, we thought that for a lower value

ω, which is in line with the restrictions, the normalized estimator β̂ does converge and that

it does not converge for the given value ω = 0.2. For example, when considering β = 1.75

we had the mean of the standardized estimator growing to 0.33, when using ω = 0.2, and for

ω = 0.12 we only had −0.03 and no growing tendency. This was for a time step of 1/8 seconds

and 5, 000 simulation runs. When we wanted to strengthen our assumption by looking at a

smaller step size however, we found that the convergence was visible for ω = 0.2 as well. For

instance, we got that the mean of the normalized estimator is 0.01 for β = 1.95 and a step size

of only 1/128. Seeing this we could say that in our empirical observations the convergence

is happening in a slower way, when looking at bigger values of β. One reason could be that

the standard deviation is bigger in such a case, as we described when commenting on the

simulated standard deviations, which were depicted in Table 4.2.

For small values of β < 0.25 we have neither obtained good estimators, when choosing

time steps of 1 second. We again tried to decrease the step size to achieve better values.

When, for example, reducing the step size to 1/128 or even 1/256 the estimator β̂ reached

the values 0.081 and 0.087 respectively, when the underlying β = 0.1. This could still be in

line with a slower convergence, which could come from a lower value of χ, which is defined in

Theorem 3.16 and describes the convergence rate. The outcome of the distributional result

in Theorem 3.17 is not yet visible at this step size however. We plotted histograms for the

above scenarios and they were both dominated by one bar around zero. We feel that the jump

sizes might be so small that there is a computational inaccuracy or fault showing up or that

the statistics used to compute β̂ dismiss too many values and are hence too small to reach

the actual value of β. These are just assumptions, however, and the actual reason could be

manifold.



Chapter 5

Conclusion and Future Scope

Within this thesis we had a closer look at the work of Aı̈t-Sahalia and Jacod in connection

with the analysis of high frequency data. We first introduce the reader to some mathematical

background, often used when dealing with such data. Then we focused on one of the pa-

pers by Aı̈t-Sahalia and Jacod, namely ‘Estimating the Degree of Activity of Jumps in High

Frequency Data’ [2]. Therein they introduced the jump activity index β. Within this paper

they go into mathematical depth when showing their results. It was the aim of this thesis,

to discuss two of the main results and to break down the proofs into steps, which are easy

to understand. We have tried to go into as much detail as possible and feel to have thereby

allowed for an easier understanding. By discussing the various lemmas, which form part of

these two proofs, we have come across some minor typos, which we stated in the footnotes.

Further, we used Remark 3.20 and Remark 3.29 to point out two issues, which we could not

clarify in detail. We leave them open for future work and hope to have contributed to the

understanding of the proofs by the steps presented in this thesis.

To round up our discussion of the proofs, we have also implemented some simulations.

These showed the desired outcome when we were comparing our results to the ones displayed

in the aforementioned paper. Using our implementations, we found that the convergence for

values of β > 1.5 is slower than the one seen for the values of β ∈ [0.25, 1.5], which were

considered in the simulations by Aı̈t-Sahalia and Jacod too. When running Monte Carlo

simulations for β < 0.25 we soon find that the outcome is not as precise. With regard to

the results obtained by us, it is interesting to mention one paper, implementing the jump

activity index and extending it further [26]. This publication is written by Jing, Kong, Liu

and Mykland. Therein the estimator β̂ is modified in a way, which makes it consider more

of the increments, instead of ignoring all increments smaller than a certain threshold. It

is shown that this modification results in an improved estimator. Further, this paper [26]

states various tables, in which the new estimator is compared to the original one. Table 1

of paper [26] also depicts values for β = 1.75 (else the same values as in the analysis of Aı̈t-

Sahalia and Jacod are displayed), wherein we see that the error of the original estimator is

73



74

most significant for this high value of β = 1.75. This does not provide us with an answer, of

why our values differ from the actual value for β = 1.75 more than in other cases, but it is at

least in line with our observations.

The paper we discussed throughout this thesis can be seen as being one small part of the

work by Aı̈t-Sahalia and Jacod. In their most recent joint paper [6], they describe various

estimators they have developed with regard to high frequency data. Further, they state

that others have already started to develop refinements of some of their estimators (e.g. in

paper [26] stated above). By reading their work, it also becomes clear that there are many

areas left open for further research. These include the establishment of estimators with lower

standard deviations when looking at the same model assumptions. When looking at real

data observations another challenge comes in, namely the one of market microstructure noise

blurring the data. As we feel that current literature is in the opinion of jumps being present

in financial data, we assume that there will be more research happening in this area. It will

be interesting to see, how things develop and what kind of new statistics will be introduced

in the near future.



Appendix A

Description of the MATLAB Code

For creating the figures within the thesis we used Matlab self-programmed functions con-

sisting of some existing Matlab-functions too. We utilized the software Matlab version

7.11.0.584 (R2010b). The existing Matlab-functions we included in our code are the in-

built ones for generating uniformly distributed rvs and multivariate normally distributed rvs.

Further, we made use of a function calculating the inverse of the stable cumulative distri-

bution function, which is part of the toolbox of alpha-stable distributions programmed by

Mark Veillette and available for free on the Mathworks file exchange.1 The code for the

self-programmed functions is provided below.

A.1 Code for Monte Carlo Simulations

This section displays all code used within Section 4.1. The script files are included as well and

they can be identified by their name starting with an s followed by a capital letter. Within

the name of the following script files we find the word Basic meaning that the simulations are

carried out without considering any bias correction, which is mentioned in section [2, 5. Small

sample bias correction]. The order of the code below is that we first give the two functions

generating the continuous and generating the jump part of the sample paths. The function

simulateStable(dt,T,beta,theta) produces a sample path of a β-stable process, for values

of β ∈ (0, 2). When we choose the input parameter β = 0 a Poisson process with arrival rate

θ is created. Else the variable θ is optional and representing the scaling factor introduced in

equation 4.1. We commented on the output when assuming a Poisson process but did not

include any figures. After stating these two functions, we provide the code for producing

Tables 4.1 and 4.2. This is one function calculating the mean and standard deviation and one

script file executing the code. Afterwards we include the code generating Figure 4.2 displaying

the histograms of the estimator β̂. One function generating the histograms and one script file

is again included.

1The toolbox can be downloaded from the official Mathworks website: http://www.mathworks.com/

matlabcentral/fileexchange/37514-stbl-alpha-stable-distributions-for-matlab [Accessed 09/05/13].
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A.1.1 simulateStable

Matlab help:

This function generates one increment of a beta-stable process for 0 < beta < 2. The

increment is taken over the time span dt. The increments are then added up to give

the process. We proceed like in [1], Algorithm 6.6 and also make use of the inverse

transform method, see Remark 8.17 [3], for example. For beta = 0 we generate a

Poisson process with arrival rate theta and fixed jump size of 0.1. The assumptions

regarding time (e.g. 1 day has 6.5 trading hours) are taken from [2], p.2220.

input: dt ...... time interval in seconds

T ....... no. of 6.5 hour trading days observed

beta .... beta, making the process beta-stable

theta ... OPTIONAL parameter: with two different functions:

1) if 0 < beta < 2, then we multiply the process with

this value, i.e. we return a multiple of the stable

process

2) if beta = 0, this gives the arrival rate of a Poisson

process with fixed jump size of 0.1

Default value: 1

output: Y ...... a vector of all values of the process starting at 0 and at

all multiples of the time interval till T

syntax: Y = simulateStable(dt,T,beta,theta)

references:

[1] Cont, R., and Tankov, P. Financial modelling with Jump Processes.

Chapman & Hall / CRC Press, 2003

[2] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

[3] Kusolitsch, N. Maß- und Wahrscheinlichkeitstheorie: Eine Einführung.

Springer-Verlag Wien, 2011

Matlab code:

function Y = simulateStable(dt,T,beta,theta)

% theta is an OPTIONAL parameter and only needed in case of a Poisson process

if nargin < 4

if beta == 0

error(’error:input:value’, [’For beta = 0 a Poisson process is’ ...
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’simulated. We need the input theta to define the arrival rate.’])

end

theta = 1;

end

% adjusting time to be counted in days

dt = dt/(6.5*60^2);

% no. of increments needed

n = floor(T/dt);

% initializing variables

Y = zeros(1,n+1);

if beta ~=0;

% initializing variables

increments = zeros(1,n);

gamma = zeros(1,n);

W = zeros(1,n);

% generating n uniformly distributed rvs on (-pi/2,pi/2)

gamma = pi*(rand(1,n)-1/2);

% generating n independent standard exponential rvs

W = -log(rand(1,n));

% generating increments of the beta-stable process using Algorithm 6.6;

% where in order to simulate the increments we use the stable property:

% Y_t / t^(1/beta) = Y_1

increments = dt^(1/beta)*sin(beta*gamma)./(cos(gamma).^(1/beta))...

.*(cos((1-beta).*gamma)./W).^((1-beta)/beta);

% and summing them up to get the process scaled by the factor theta

Y = theta*[0,cumsum(increments)];

else

% initializing variables

time = zeros(1,2);

j = 0;

% generating jump times (exponentially distributed inter-arrival times)

% and assigning the constant value between the previous and this jump

while time(1) < T

time(2) = -log(rand(1))/theta + time(1);

Y(floor(time(1)*(6.5*60^2))+1:min(ceil(time(2)*(6.5*60^2)),...

n+1))=j*0.1;
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j=j+1;

time(1) = time(2);

end

end

end

A.1.2 simulateCont

Matlab help:

This function simulates one path of X:=int 0^T sigma t dW t as given in [1] on p.2220

by using discretization. The process sigma t fulfills (where we do not include a

jump process dJ t):

sigma t = v t^(1/2),

dv_t = kappa(eta - v_t) dt + gamma v_t^(1/2) dB_t,

with:

E[dW_t*dB_t] = rho dt.

input: dt ...... time interval in seconds

T ....... no. of 6.5 hour trading days observed

eta ..... parameter as in the equation above

gamma ... parameter as in the equation above

kappa ... parameter as in the equation above

rho ..... parameter as in the equation above

output: X .... a vector of all values of the process starting at 0 and at

all multiples of the time interval till T

syntax: X = simulateCont(dt,T,eta,gamma,kappa,rho)

references:

[1] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

Matlab code:

function X = simulateCont(dt,T,eta,gamma,kappa,rho)

% adjusting time to be counted in days

dt = dt/(6.5*60^2);

% no. of simulations needed
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n = floor(T/dt);

% initializing variables

X = ones(1,n+1);

v = ones(1,n+1);

v(1) = eta;

% creating the correlated random increments, satisfying E[dW_t*dB_t]=rho dt

dW_dB = mvnrnd(zeros(1,2),dt.*[1,rho;rho,1],n).’;

% stepwise simulation of stochastic variance and the process X

for j=1:n

v(j+1) = v(j) + kappa*(eta-v(j))*dt + gamma*sqrt(v(j))*dW_dB(2,j);

X(j+1) = sqrt(v(j))*dW_dB(1,j) + X(j);

end

end

A.1.3 calcSampleMeanStd

Matlab help:

This function calculates the mean and standard deviation of the estimator beta hat.

We proceed as described in [1] in the theoretical part (i.e. we do not include a

bias correction). We allow for n different combinations of time intervals and tail

probabilities, and for m different values of beta. The output will be two m times n

matrices.

input: dt ........ n time intervals stating the frequency of observations

in seconds

tail_pr ... n set tail probabilities

beta ...... m values for the jump activity index beta

N ......... no. of simulation runs

T ......... no. of 6.5 hour trading days observed

om ........ value for scaling the truncation level

alph ...... value for scaling the truncation level

eta ....... parameter for simulation of the continuous part

gamma ..... parameter for simulation of the continuous part

kappa ..... parameter for simulation of the continuous part

rho ....... parameter for simulation of the continuous part

output: OUTPUT_beta_hat ....... m times n matrix giving the mean of

the estimation of beta hat

OUTPUT_beta_hat_std ... m times n matrix of corresponding

standard deviations
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syntax: [OUTPUT_beta_hat, OUTPUT_beta_hat_std] = ...

calcSampleMeanStd(dt,tail_pr,beta,N,T,om,alph,eta,gamma,kappa,rho)

references:

[1] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

Matlab code:

function [OUTPUT_beta_hat, OUTPUT_beta_hat_std] = calcSampleMeanStd(dt,...

tail_pr,beta,N,T,om,alph,eta,gamma,kappa,rho)

% adjusting time to be counted in days

dt_days = dt/(6.5*60^2);

% defining the length

alph_n = length(alph);

tail_pr_n = length(tail_pr);

if tail_pr_n ~= length(dt)

error(’error:input:lenght’, [’You need to provide two vectors of’ ...

’the same length for dt and tail_pr.’])

end

beta_m = length(beta);

% initializing variables

OUTPUT_beta_hat = zeros(beta_m,tail_pr_n);

OUTPUT_beta_hat_std = zeros(beta_m,tail_pr_n);

cut_off = alph*dt_days.^om; % an alpha_n times tail_pr_n matrix

theta = 0;

U = zeros(alph_n,1);

for m=1:beta_m % first main loop: for rows

for n=1:tail_pr_n % second main loop: for columns

% theta is adapted to fit the tail probability - see [1] p. 2220

if beta ~= 0

% for a stable process: reach 2*stblcdf(-cut_off(1,n)/theta,

% beta(m),0,dt_days(n)^(1/beta(m)),0) = taip_pr, is required

theta = cut_off(1,n)/stblinv(1-tail_pr(n)/2,beta(m),0,...

dt_days(n)^(1/beta(m)),0);

else

% for a poisson process adjust the arrival rate to obtain P(next

% arrival < dt)= theta

theta = -log(1-tail_pr(n))/dt_days(n);
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end

% set the estimator back to zero

beta_hat = zeros(1,N);

for j=1:N % third main loop: for simulation runs

jump_Y = simulateStable(dt(n),T,beta(m),theta);

Y = simulateCont(dt(n),T,eta,gamma,kappa,rho)+jump_Y;

diff_Y = diff(Y);

% assign the statistics U only considering big enough jumps

for k=1:alph_n

U(k) = sum(abs(diff_Y)>cut_off(k,n));

end

% by convention the estimator is set to be zero, if either of

% the statistics U is zero (see p.2211 of [1]).

if (U(1)~=0)*(U(2)~=0)

beta_hat(j) = log(U(1)/U(2))/log(alph(2)/alph(1));

end

end

% store the mean and standard deviation

OUTPUT_beta_hat(m,n) = mean(beta_hat);

OUTPUT_beta_hat_std(m,n) = std(beta_hat);

end

end

end

A.1.4 sBasicTable

Matlab help:

Script to create own version of table 1 on p.2221 of [1]. We do not implement a bias

correction here, as we stick to the the mathematical results only.

Matlab script:

% if output shall be put in a set excel file set print=1, else print=0

print=1;

% fixing the step sizes and tail probabilities (per column)

dt =[1,1,1,1,5];
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tail_pr = [.0025,.005,.01,.025,.01];

% fixing the assumed values of beta (per row)

beta = [1.5,1.25,1,.75,.5,.25];

% simulation runs

N = 5000;

% input parameters of the model

T = 1;

om = 0.2;

eta = 1/16;

alph = [5;10].*eta;

gamma = 1/2;

kappa = 5;

rho = -1/2;

% calculating the mean and standard deviation of the estimator beta hat

[OUTPUT_beta_hat, OUTPUT_beta_hat_std] = calcSampleMeanStd(dt,tail_pr,...

beta,N,T,om,alph,eta,gamma,kappa,rho)

% if print==1, then the output is written into the stated excel file

if print

filename = ’00_Trial_Output’;

xlswrite(filename,OUTPUT_beta_hat,’MATLAB’,[’C4:G9’]);

xlswrite(filename,OUTPUT_beta_hat_std,’MATLAB’,[’K4:O9’]);

end

A.1.5 makeHistNorm

Matlab help:

This function calculates the possible values of beta hat in simulations and plots a

histogram to compare the empirical outcome to the theoretical normal distribution.

input: dt ........ time interval stating the frequency of observations

in seconds

tail_pr ... set tail probability

beta ...... jump activity index beta

N ......... no. of simulation runs

T ......... no. of 6.5 hour trading days observed

om ........ value for scaling the truncation level

alph ...... value for scaling the truncation level

eta ....... parameter for simulation of the continuous part
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gamma ..... parameter for simulation of the continuous part

kappa ..... parameter for simulation of the continuous part

rho ....... parameter for simulation of the continuous part

syntax: makeHistNorm(dt,tail_pr,beta,N,T,om,alph,eta,gamma,kappa,rho)

references:

[1] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

Matlab code:

function makeHistNorm(dt,tail_pr,beta,N,T,om,alph,eta,gamma,kappa,rho)

% adjusting time to be counted in days

dt_days = dt/(6.5*60^2);

% test for scalar input

if 1-(length(tail_pr) == length(dt) == length(beta) == 1)

error(’error:input:lenght’, [’You should only provide scalar input’ ...

’for dt, tail_pr and beta.’])

end

% initializing variables

cut_off = alph*dt_days^om;

theta = cut_off(1)/stblinv(1-tail_pr/2,beta,0,dt_days^(1/beta),0);

U = zeros(2,1);

beta_hat = zeros(1,N);

beta_hat_norm = zeros(1,N);

% run simulations for beta hat

for j=1:N % one main loop: for simulation runs

jump_Y = simulateStable(dt,T,beta,theta);

Y = simulateCont(dt,T,eta,gamma,kappa,rho)+jump_Y;

diff_Y = diff(Y);

% assign the statistics U only considering big enough jumps

for k=1:2

U(k) = sum(abs(diff_Y)>cut_off(k));

end

% by convention the estimator is set to be zero, if either of the

% statistics U is zero (see p.2211 of [1]), further for not dividing by

% zero in beta_hat_norm, we need to exclude the case U(1)==U(2)
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% making sqrt(1/U(2)-1/U(1))=0 (in this case beta_hat = 0, so we do

% not need to set it to zero)

if (U(1)~=0)*(U(2)~=0)*(U(1)~=U(2))

beta_hat(j) = log(U(1)/U(2))/log(alph(2)/alph(1));

beta_hat_norm(j) = log(cut_off(2)/cut_off(1))/...

sqrt(1/U(2)-1/U(1))*(beta_hat(j)-beta);

end

end

% get the sample mean of the standardized variables

mu = mean(beta_hat_norm);

% plot the histogram resulting from the normalized beta hat

bin = 0.25;

[h, x] = hist(beta_hat_norm,[-4:bin:4]);

h = h/(bin*N); % change the values from absolute to percentage

bar(x,h,’hist’);

xlim([-4 4])

ylim([0 0.6])

str0=sprintf(’Sample mean %.2f\ n’, mu);

xlabel(str0,’Fontsize’,12);

% add the density function of a normal rv and include a vertical line for

% the mean of the normalized samples

hold on

plot([-4:0.01:4],normpdf([-4:0.01:4]),’Color’,’red’)

plot([mu mu], [0 normpdf(mu)], ’Color’, ’cyan’)

hold off

end

A.1.6 sBasicHistNorm

Matlab help:

Script to create own version of figure 3 on p.2224 of [1]. We do not implement a

bias correction here, as we stick to the the mathematical results only.

Matlab script:

% fixing arbitrary amount of sampling times and one tail probability

dt = [30,10,1];

dt_n = length(dt);
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tail_pr = 0.01;

% fixing the assumed values of beta

beta = [1.5,1,0.5];

beta_n = length(beta);

% simulation runs

N = 5000;

% input parameters of the model

T = 1;

om = 0.2;

eta = 1/16;

alph = [5;10].*eta;

gamma = 1/2;

kappa = 5;

rho = -1/2;

% calculate the possible values of beta hat in simulations and plot histograms

for k=1:beta_n

for j=1:dt_n

subplot(beta_n,dt_n,(k-1)*dt_n+j)

makeHistNorm(dt(j),tail_pr,beta(k),N,T,om,alph,eta,gamma,kappa,rho);

end

end

A.2 Code for Discussion of certain Simulation Results

For completeness we include the code we used to simulate the mean of β̂ and of its normalized

version, for a fixed β but different values of ω and θ. We described the outcome in Section 4.2

but did not include any tables. Such tables could be created using the following function

calcTestFixedBeta(dt,tail pr,beta,N,T,om,alph,eta,gamma,kappa,rho,print) and a

corresponding script file sTextFixedBeta. For running the simulations we always changed

the values of beta, dt and om accordingly, wherein the latter represents ω. It works in such

a way that one sample path of the continuous and the jump part is simulated once and that

these are used to create two versions of an underlying process. These versions only differ by

a different factor θ. Onto these versions we then apply the estimator β̂. We again use two

versions. This time with two different values of ω. Proceeding in this way, gives out four

versions of the estimator corresponding to two different underlying processes. Any thoughts

we had with regard to these simulations can be found in the aforementioned section.
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A.2.1 calcTestFixedBeta

Matlab help:

This function considers four scenarios for one set level of beta. In the first omega

is 0.2 and the value theta is fixed. Comment one part of the code to either make

theta = 1 or to being the value resulting out of dt=1 and omega=0.2. In the second

we have the same fixed theta but omega is the value given as input. In the third

we again have omega=0.2 but the value of theta is always calculated using the tail

probability given as input and in the way it is desribed in the paper [1] on p.2220.

The fourth varies theta but leaves omega the set input value. In all cases the mean

of beta hat and the mean of the normalized beta hat is calculated and written into

an excel file if the variable print=1.

input: dt ........ n time intervals stating the frequency of

observations in seconds

tail_pr ... one set tail probabilities

beta ...... one value for the jump activity index beta

N ......... no. of simulation runs

T ......... no. of 6.5 hour trading days observed

om ........ a second value for omega, which will be compared to

the value 0.2 from the paper

alph ...... value for scaling the truncation level

eta ....... parameter for simulation of the continuous part

gamma ..... parameter for simulation of the continuous part

kappa ..... parameter for simulation of the continuous part

rho ....... parameter for simulation of the continuous part

print ..... if set to 1, then the means of the estimators will be

written into an excel file - this assumed n=6, i.e. 6

diffterent sizes of time steps; if 0 nothin happens

syntax: calcTestFixedBeta(dt,tail_pr,beta,N,T,om,alph,eta,gamma,kappa,...

rho,print)

references:

[1] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

Chapman & Hall / CRC Press, 2003

Matlab code:

function calcTestFixedBeta(dt,tail_pr,beta,N,T,om,alph,eta,gamma,kappa,...
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rho,print)

% use the input to define the second value, which omega should take; the

% first one is as in the paper om = 0.2

om = [0.2, om];

% initialize output wrtiten into excel file, first line gives mean of

% normalized beta hat, second line gives mean of beta hat:

n = length(dt);

% 1st: fixed theta, omega (1)

mean_thetaFix_om1 = zeros(2,n);

% 2nd: fixed theta, omega (2)

mean_thetaFix_om2 = zeros(2,n);

% 3rd: changing theta, omega (1)

mean_thetaVar_om1 = zeros(2,n);

% 4th: changing theta, omega (2)

mean_thetaVar_om2 = zeros(2,n);

% calculate fixed value for theta (which comes from dt=1 and om=0.2), in

% the first two entries of theta

theta = zeros(1,4);

dt_days = 1/(6.5*60^2);

cut_off = alph*dt_days.^0.2;

theta([1,2]) = cut_off(1)/stblinv(1-tail_pr/2,beta,0,dt_days^(1/beta),0)...

*ones(1,2);

% or set it to be one

% theta([1,2])=ones(1,2)

U = zeros(2,1);

% for varying values of theta we need these parameters

dt_days = dt./(6.5*60^2);

% put the values coming from the second value of omega behind the n entries

% coming from the first, i.e. 2x2n matirx

cut_off = [alph*dt_days.^om(1), alph*dt_days.^om(2)];

for j=1:n

% second two entries of theta depend on the time and the value of omega

theta(3) = cut_off(1,j)/stblinv(1-tail_pr/2,beta,0,dt_days(j)^(1/beta),0);

theta(4) = cut_off(1,n+j)/stblinv(1-tail_pr/2,beta,0,dt_days(j)^(1/beta),0);

% clear values of beta

beta_hat = zeros(4,N);

beta_hat_norm = zeros(4,N);
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for k=1:N

jump_Y = simulateStable(dt(n),T,beta);

cont_X = simulateCont(dt(n),T,eta,gamma,kappa,rho);

for l=1:4

Y = cont_X + theta(l)*jump_Y;

diff_Y = diff(Y);

% assign the statistics U only considering big enough jumps,

% with the cutoff level coming from the right omega

for m=1:2

U(m) = sum(abs(diff_Y)>cut_off(m,j+(mod(l+1,2))*n));

end

% by convention the estimator is set to be zero, if either of the

% statistics U is zero (see p.2211 of [1]), further for not dividing

% by zero in beta_hat_norm, we need to exclude the case U(1)==U(2)

% making sqrt(1/U(2)-1/U(1))=0 (in this case beta_hat = 0, so we do

% not need to set it to zero)

if (U(1)~=0)*(U(2)~=0)*(U(1)~=U(2))

beta_hat(l,k) = log(U(1)/U(2))/log(alph(2)/alph(1));

beta_hat_norm(l,k) = log(cut_off(2,j+(mod(l+1,2)))/...

cut_off(1,j+(mod(l+1,2))))/sqrt(1/U(2)-1/U(1))...

*(beta_hat(l,k)-beta);

end

end

end

% 1st: fixed theta, omega (1)

mean_thetaFix_om1(1,j) = mean(beta_hat(1,:));

mean_thetaFix_om1(2,j) = mean(beta_hat_norm(1,:))

% 2nd: fixed theta, omega (2)

mean_thetaFix_om2(1,j) = mean(beta_hat(2,:));

mean_thetaFix_om2(2,j) = mean(beta_hat_norm(2,:))

% 3rd: changing theta, omega (1)

mean_thetaVar_om1(1,j) = mean(beta_hat(3,:));

mean_thetaVar_om1(2,j) = mean(beta_hat_norm(3,:))

% 4th: changing theta, omega (2)

mean_thetaVar_om2(1,j) = mean(beta_hat(4,:));

mean_thetaVar_om2(2,j) = mean(beta_hat_norm(4,:))

end

% if print==1, then the output is written into the stated excel file

if print

filename = ’00_Trial_Output’;

xlswrite(filename,mean_thetaFix_om1,[’testBeta=’, ...



A.2. Code for Discussion of certain Simulation Results 89

sprintf(’%.2f’, beta)],[’C4:H5’]);

xlswrite(filename,mean_thetaFix_om2,[’testBeta=’, ...

sprintf(’%.2f’, beta)],[’C7:H8’]);

xlswrite(filename,mean_thetaVar_om1,[’testBeta=’, ...

sprintf(’%.2f’, beta)],[’C10:H11’]);

xlswrite(filename,mean_thetaVar_om2,[’testBeta=’, ...

sprintf(’%.2f’, beta)],[’C13:H14’]);

end

end

A.2.2 sTestFixedBeta

Matlab help:

Script to test convergence of fixed beta with changing or fixed value of theta and

for different omega. For testing different values, change the level of beta or ’the

second value’ omega should take, as the first is set to be 0.2.

Matlab script:

% fixing the assumed value of beta

beta = 1.75;

% we compare the outcome for two different values in omega, one will be

% left to be om = 0.2 as in the paper and the other one can be set here

om = 0.12;

% if output shall beta put in excel file set print=1, else print=0

print=1;

% fixing the sampling times

dt =[10,5,1,1/2,1/4,1/8];

% simulation runs

N = 5000;

% for calculating theta, we set the tail probability to

tail_pr = .01;

% input parameters of the model

T = 1;

eta = 1/16;
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alph = [5;10].*eta;

gamma = 1/2;

kappa = 5;

rho = -1/2;

% store the values in an excel file

calcTestFixedBeta(dt,tail_pr,beta,N,T,om,alph,eta,gamma,kappa,rho,print)

A.3 Code for other Figures

In this last section we display the code for creating the other figures within the thesis. We

first provide two functions plotting graphs. The function plotStable(dt,T,beta,theta)

produces a figure depicting one sample path of a β-stable process. In the same manner

plotContDis(dt,T,eta,gamma,kappa,rho) creates the continuous part of the model stated

in equation (4.1). Using these two functions we created Figure 3.1, showing sample paths of

β-stable processes, and Figure 4.1, showing one sample path of the considered model within

the implementations. The corresponding script files are included below.

A.3.1 plotStable

Matlab help:

This function plots one sample path created by simulateStable. The assumptions

regarding time (e.g. 1 day has 6.5 trading hours) are taken from [1], p.2220.

input: dt ...... time interval in seconds

T ....... no. of 6.5 hour trading days observed

beta .... beta, making the process beta-stable

theta ... OPTIONAL parameter: with two different functions:

1) if 0 < beta < 2, then we multiply the process with

this value, i.e. we return a multiplr of the stable

process

2) if beta = 0, this gives the

arrival rate of a Poisson process with fixed jump

size of 0.1

output: Y ...... a vector of all values of the process starting at 0 and at

all multiples of the time interval till T

syntax: Y = plotStable(dt,T,beta,theta)

references:
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[1] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

Matlab code:

function Y = plotStable(dt,T,beta,theta)

% calculating no. of required simulations

n = floor(T*(6.5*60^2)/dt);

% initializing variables

Y = zeros(1,n+1);

time = [0:dt/(60^2):n*dt/(60^2)]; % time in hours

% simulating the beta-stable process

if nargin < 4

Y = simulateStable(dt,T,beta);

else

Y = simulateStable(dt,T,beta,theta);

end

% plotting the sample path

plot(time,Y,’.’,’MarkerSize’,1);

xlabel(’Time in hours’,’Fontsize’,12);

xlim([time(1),time(n+1)]);

str1 = sprintf(’\\ alpha’,’interpreter’,’latex’);
str2 = sprintf(’ = %.1f’, beta);

str = strcat(str1,str2);

title(str,’Fontsize’,12);

grid on

end

A.3.2 plotCont

Matlab help:

This function plots one sample path of X:=int 0^T sigma t dW t as generated by sim-

ulateStable. The assumptions regarding time (e.g. 1 day has 6.5 trading hours) are

taken from [1], p.2220.

input: dt ...... time interval in seconds

T ....... no. of 6.5 hour trading days observed
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eta ..... parameter as in the equation above

gamma ... parameter as in the equation above

kappa ... parameter as in the equation above

rho ..... parameter as in the equation above

output: X .... a vector of all vales of the process starting at 0 and at

all multiples of the time intervall till T

syntax: X = plotContDis(dt,T,eta,gamma,kappa,rho)

references:

[1] Ait-Sahalia, Y., and Jacod, J. Estimating the Degree of Activity of

Jumps in High Frequency Data. Ann. Statist. (37), 2009

Matlab code:

function X = plotCont(dt,T,eta,gamma,kappa,rho)

% calculating no. of required simulations

n = floor(T*(6.5*60^2)/dt);

% initializing variables

X = zeros(1,n+1);

time = [0:dt/(60^2):n*dt/(60^2)]; % time in hours

% simulating the beta-stable process

X = simulateContDis(dt,T,eta,gamma,kappa,rho);

% plotting the sample path

plot(time,X,’.’,’MarkerSize’,.5);

xlim([time(1),time(n+1)]);

xlabel(’Time in hours’,’Fontsize’,12);

str=sprintf(’Continuous part’);

title(str,’Fontsize’,12);

grid on

end

A.3.3 sPlotStable

Matlab help:
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Script to plot one sample path of a stable process for three different values of

beta.

Matlab script:

% initializing variables

beta = [0.1,1,1.9];

dt=1;

T=1;

% creating the three plots next to each other

for j=1:3

subplot(1,3,j)

Y=plotStable(dt,T,beta(j));

end

A.3.4 sContJumpSum

Matlab help:

Scrit to generate one sample path of the model stated in [1], p.2220, by fist sim-

ulating the continuous part, then the jump part and then adding them together. We

generate 3 plots.

Matlab script:

% input parameters of the model

beta = 1;

dt=1;

T=1;

eta = 1/16;

gamma = 1/2;

kappa = 5;

rho = -1/2;

% calculating the scale parameter theta

tail_pr = 0.01;

om = 0.2;

alph = 5*eta;

cut_off = alph*(dt/(6.5*60^2))^om;

theta = cut_off/stblinv(1-tail_pr/2,beta,0,(dt/(6.5*60^2))^(1/beta),0);
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% needed values for the third figure

n = floor(T*(6.5*60^2)/dt);

time = [0:dt/(60^2):n*dt/(60^2)]; % time in hours

% generating 3 subplots: 1) continuous part

subplot(1,3,1)

X = plotCont(dt,T,eta,gamma,kappa,rho);

% 2) jump part

subplot(1,3,2)

Y = plotStable(dt,T,beta,theta);

% overwrite title

str0 = sprintf(’Jump process, with ’);

str1 = sprintf(’ \\ beta’,’interpreter’,’latex’);

str2 = sprintf(’ = %.1f’, beta);

str = strcat(str0,str1,str2);

title(str,’Fontsize’,12);

% 3)sum of the two processes

subplot(1,3,3)

plot(time,(X+Y),’.’,’MarkerSize’,1);

xlabel(’Time in hours’,’Fontsize’,12);

xlim([time(1),time(end)]);

title(’Combined processes’,’Fontsize’,12);

grid on
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[4] Äıt-Sahalia, Y., and Jacod, J. Is Brownian motion necessary to model high-

frequency data? Ann. Statist. 38, 5 (2010), 3093–3128.
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[6] Äıt-Sahalia, Y., and Jacod, J. Analyzing the Spectrum of Asset Returns: Jump and

Volatility Components in High Frequency Data. J. Econ. Lit. 50, 4 (2012), 1007–1050.

[7] Aldous, D. J., and Eagleson, G. K. On mixing and stability of limit theorems.

Ann. Probability 6, 2 (1978), 325–331.
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