
Visualization of a Multi-Agent
System

MAGISTERARBEIT

zur Erlangung des akademischen Grades

Magister

im Rahmen des Studiums

Informatikmanagement

eingereicht von

Matthias Rodler

Matrikelnummer 0425692

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ. Prof. Dipl.-Ing. Dr. Georg Schitter

Mitwirkung: Dipl.-Ing. Dr. Munir Merdan

Wien, 29.07.2013

(Unterschrift Matthias Rodler) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der Arbeit

Matthias Rodler

Oberlisstraße 133/2, 8232 Grafendorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Matthias Rodler)

iI

Abstract

Current batch process systems have a limited capability concerning agile adap-
tation in a dynamic environment. Distributed intelligent control systems based
on agent technologies are seen as a promising approach to handle the dynamics
in large complex systems. However, although seen as a promising approach,
its wide application in industry is still missing. Lack of trust in the idea of
delegating tasks to autonomous agents is recognized as one of the main reasons
for this. This master thesis presents a visualization tool for an agent-based
batch process system able to o�er the human user the complete overview in
the agents activities as well as a possibility to supervise its actions through an
adequate Human Machine Interface. The visualization is also compatible with
the standard ISA-88. The system is currently being tested and evaluated in
the Odo Struger Laboratory at the Automation and Control Institute.

i

Kurzfassung

Zurzeit werden Batch-Prozesse sehr häu�g in der chemischen und pharmazeutis-
chen Industrie eingesetzt. Durch die festgelegten Vorgaben im Ablauf haben
sie aber nur sehr eingeschränkte Möglichkeiten um sich einem stetig ändern-
den Umfeld anzupassen. Der Einsatz von autonomen Agenten bietet hier eine
neue Möglichkeit um Prozesse bei Veränderungen im Umfeld zu adaptieren und
deren Vorgänge zu optimieren. Leider hat sich dieser neue Ansatz noch nicht
durchgesetzt. Dies wird vor allem darauf zurückgeführt, dass die Steuerung
komplexer Anlagen - durch autonome Agenten - für den Anwender schwer
durchschaubar ist und dadurch das nötige Vertrauen in autonome Agenten
noch nicht gewonnen werden konnte. Um ein Multi-Agentensystem jedoch
verstehen zu können sollte der Anwender zum einen das Verhalten jedes einzel-
nen Agenten und zum anderen das Verhalten des Gesamtsystems überblicken
können. Im Zuge dieser Magisterarbeit wurde eine Visualisierung entwickelt,
welche das Verhalten und die Kommunikation eines Multi- Agentensystems
für den Anwender verständlich gra�sch wiedergibt. Das Institut für Automa-
tisierungs- und Regelungstechnik (ACIN) nutzt Automationsagenten, um die
physikalischen Komponenten einer Anlage zu steuern und die Batchprozesse
zu optimieren. Ein Automationsagent, das Kernstück ihrer Architektur, agiert
selbstständig basierend auf seinem Wissen, indem er Produktionsumfeld und
-bedingungen analysiert und einen Schlussfolgerungsprozess auslöst. Diese An-
lage wurde als Referenz herangezogen um die Funktionstauglichkeit der Visu-
alisierung zu testen und soll im weiteren gemeinsam mit der Visualisierung
dazu dienen, um Studenten Multi-Agentensysteme näher zu bringen.

ii

Acknowledgement

My sincere thanks are given to Dr. Munir Merdan who was a great help
during the writing of this thesis by supporting me with his technical knowl-
edge and constructive feedback. I would like to thank Wilfried Lepuschitz
who supported me with his technical competence throughout my thesis. I am
also very thankful to Prof. Dr. Georg Schitter for the supervision of this thesis.

I want to thank Benjamin Grössing who does a good job at the Odo Struger
Laboratory by developing autonomous agents and made my life much easier
by producing great lines of code. I also want to mention my friend Rene
Rieger who supported me by proofreading this thesis. Furthermore I would
like to express my gratitude to Ekkehard Grübl director of the Grübl Au-
tomatisierungstechnik GmbH who gave me the opportunity and �exibility to
arrange my studies with my work.

I want to thank my family specially my wife Karin who has contributed an
invaluable part to this thesis and made it possible to write this master thesis
and �nish my studies beside a fulltime work. I also want to mention my two
lovely children Iris and Atina for their patience and I want to apologize myself
for so many hours which I could not spent with them cause of writing this
thesis.

Matthias Rodler

iii

Contents

1 Introduction 1

1.1 Problem Outline . 2
1.2 Objectives of the Thesis . 3
1.3 Visualization Requirements . 3

1.3.1 Tasks . 5
1.4 Structure of the Thesis . 6

2 State of the Art 9

2.1 Agent Technologies . 9
2.2 Applications of Agent Technology and Ontologies in Industrial

Process Control . 10
2.3 Current Visualization Tools . 11

2.3.1 MAST . 12
2.3.2 VizScript . 14
2.3.3 AgentFly . 15

2.4 Web Based Visualization . 16
2.5 Conclusion . 21

3 Design 23

3.1 General Design Approach . 23
3.1.1 Architecture . 23
3.1.2 Data Model . 25
3.1.3 Data Collection Layer 28
3.1.4 Data Exchange Layer . 30
3.1.5 Graphical User Interface 32

3.2 Summary . 38

4 Implementation 41

4.1 JADE Framework . 41
4.2 Test Equipment at the Odo Struger Laboratory 44
4.3 Framework Decision . 48
4.4 Eclipse based Technologies . 51

v

4.5 Data Model . 54
4.6 Data Collection Layer . 61
4.7 Data Exchange Layer . 64
4.8 Graphical User Interface . 69
4.9 Summary . 77

5 Case Study 79

5.1 Visualization in Practice . 82
5.2 Code Analysis . 91
5.3 Summary . 93

6 Conclusion 95

vi

List of Figures

1.1 Requirements for a productive and usable visualization 4
1.2 Experimental plant at the Odo Struger Laboratory 6

2.1 Graphic within a human machine interface. 12
2.2 Multi-Agent Simulation Tool (MAST) 13
2.3 VizScript's agent load view . 15
2.4 VizScript's visualization of agents availability 15
2.5 Generic concept of simulation levels 17
2.6 Implementation progress of HTML5 and CSS3 18
2.7 Browser statistics . 19
2.8 SVG support of web browsers 20
2.9 Web-based monitoring . 21
2.10 Ontovis . 22

3.1 Architecture of the design approach 24
3.2 Design class diagram . 26
3.3 Datamanager functioning . 28
3.4 Conceptional agent communication 29
3.5 Data exchange class diagram . 30
3.6 Architecture of the design approach 33
3.7 Illustration of a Tank . 35
3.8 Visualization of routes . 36
3.9 Transformation of a single point and an object 37
3.10 Visualization creation work�ow 39

4.1 System architecture of JADE 42
4.2 Agent life-cycle . 43
4.3 Architecture of agents . 45
4.4 Topology of the test equipment 46
4.5 Possible states of automation agents 48
4.6 Popularity of di�erent Java IDEs 51
4.7 Eclipse architecture . 52
4.8 Application architecture splitted into plugins 54

vii

4.9 Possible sources for EMF code generation 55
4.10 Mapping of EMF classes to Java code 56
4.11 Data model of the implementation 57
4.12 Property Sheet generated by EEF 60
4.13 Sequence diagram - JADE noti�cation 63
4.14 Connect/Disconnect buttons . 64
4.15 Graphiti framework . 73
4.16 Images used to illustrate noti�cations 75
4.17 Button images . 77

5.1 Experimental plant at the Odo Struger Laboratory 79
5.2 Illustrations of functional agents 82
5.3 Available Features at the Update Site 83
5.4 Sequence diagram of the test case 84
5.5 Screenshot of an MAS diagram 87
5.6 Visualization screenshot shortly after online mode activation . . 88
5.7 Visualization of a proposed route 88
5.8 Visualization in online mode with started recipe 89
5.9 Visualization of the agent states in online mode 90
5.10 Diagram of the source code fragmentation 92

viii

List of Tables

2.1 E�ectiveness by using VizScript in lines of code 14

4.1 A�ected attributes by MAS implementation 49
4.2 Comparison of the most popular IDEs 50

5.1 System speci�cation of a Windows based test system 80
5.2 System speci�cation of a Linux based test system 80
5.3 Software speci�cation of the test system 81
5.4 Comparison of total lines of code 91

ix

Abbreviations

ACC Agent Communication Channel
ACIN Automation and Control Institute
AID Agent Identi�er
AJAX Asynchronous JavaScript and XML
AMS Agent Management System
API Application Programming Interface
BDI Belief, Desire, Intention
CDDL Common Development and Distribution License
CSS Cascading Style Sheets
DF Directory Facilitator Agent
ECMA European Computer Manufacturers Association
EEF Extended Editing Framework
EMF Entity Modeling Framework
EMF-MT Entity Modeling Framework - Modeling Transaction
EMFT Eclipse Modeling Framework Technology
EPL Eclipse Public License
FIPA Foundation for Intelligent Physical Agents
GEF Graphical Editing Framework
GMF Graphical Modeling Framework
GPL General Public License
Graphiti Graphical Tooling Infrastructure
GUI Graphical User Interface
GWT Google Web Toolkit
HLC High Level Control
HMI Human Machine Interface
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
IEC International Electrotechnical Commission
ISO International Organization for Standardization
JADE Java Agent DEvelopment Framework
LLC Low Level Control
MAS Multi-Agent System
MAST Multi-Agent Simulation Tool
OLE Object Linking and Embedding
OPC UA OPC Uni�ed Architecture
OSGI Open Services Gateway Initiative

xi

OTN Oracle Technology Network
PLC Programmable Logic Controller
RCP Rich Client Platform
SCADA Supervisory Control And Data Acquisition
SDK Software Development Kit
SMIL Synchronized Multimedia Integration Language
SVG Scalar Vector Graphics
SWT Standard Widget Toolkit
UI User Interface
UML Uni�ed Modeling Language
W3C World Wide Web Consortium
XML Extensible Markup Language

xii

1 Introduction

Automation is already well established in the industry. It has reached nearly
every area of the market from production to logistics. Most automation facil-
ities use a centralized control architecture at which computations are mainly
executed in a central computing unit. However current demands of the market
require a high �exibility and adaptability of production lines to be able to cope
with fast changing circumstances within the industry. Continuous changes of
an in�exible system can cause unexpected high costs within a life cycle of a
production line. To avoid this drawback of current automation solutions in
future development the introduction of arti�cial intelligence techniques is seen
as promising trend in the process industry [SL07]. In correlation with process
automation multi-agent technology is identi�ed as a major tool for developing
highly �exible, robust and recon�gurable industrial solutions in this �eld of
application [VM10, La09]. The technology is able to handle dynamics in large
complex systems, decentralizes the control, decreases the complexity, raises the
�exibility and improves the fault tolerance of a system [JB03a]. Based on these
facts, agent technology is suggested for usage in the process domain according
to analysis of its advantages and disadvantages as presented in [MP11].

Agents can be seen as autonomous units in a de�ned environment. They
are able to interact and communicate with other agents depending on their
responsibilities and duties. Because of their capabilities agents can have a
positive impact on the e�ciency and reliability of production lines. This can
be achieved through an agile failure monitoring and automatic recovery which
furthermore shortens the reaction on upcoming disturbances and minimizes
the occurrence of system shutdowns respectively extensive downtimes because
of a possible faster recovery caused by resource breakdowns [VMLK11]. The
integrated operational safety which is part of a well organized multi-agent
system can increase the overall value of a production line. Furthermore this
can lead to shorter production times and more �exibility at the variation of
produced products and their needed processes.

1

1 Introduction

1.1 Problem Outline

Though the �rst multi-agent systems appeared in the mid-1980s [Syc98b] and
agent-based concepts were con�rmed as a promising approach and deployed
in a number of di�erent applications throughout the last few years, their
widespread adoption by industry is still missing. Lack of awareness about
the potentials of agent technology [PM08b] and paradigm misunderstanding
[CBJC10] due to the lack of real industrial applications, missing trust in the
idea of delegating tasks to autonomous agents [Syc98a] as well as concerns
regarding the stability, scalability and survivability [HTW04] are identi�ed
as the main reason for the underestimation and refusal of multi-agent sys-
tems. Besides, the speci�c nature of software agents, which are designed to be
distributed, autonomous, and deliberative, makes it di�cult to apply existing
software testing, monitoring, and diagnostics techniques to them. For instance,
agents operate asynchronously, in parallel and concurrently, which can lead to
non-reproducible e�ects [NPB+11]. It is not ensured that two executions of
the systems will result in the same state, even if the same inputs are used. As
a consequence, looking for a particular error is di�cult, as it is usually impos-
sible to reproduce in a systematic fashion [HD04]. Also the possibility to use
a MAS for development of automated systems is hardly known by developers
and also not well supported by the hardware manufacturer who usually de-
liver their own developer tools in conjunction with their devices. These facts
complicate the switch from common task oriented programming to an agent
based development. To overcome these barriers multi-agent systems need an
appropriate representation of their communication and behaviour to represent
their proper strength: distribution, collaboration and intelligence [zuk].

The introduction of tools, techniques and methodologies, which ensure eas-
ier and more abstract ways of agent system development, modi�cation and
management, will lead to a higher rate of acceptance as well as understanding
of the concept. In this context it is of vital importance to o�er the human user
the complete overview of the agent's activities as well as a possibility to super-
vise their actions using an adequate Human Machine Interfaces (HMI). A user
has to be able to follow and understand the current state of the process. This
will on one side improve safety and risk grade and on the other side enhance
trust in the idea of delegating tasks to autonomous agents. The assurance of
security and trust in agents is a signi�cant aspect to be considered in future
solutions [PM08b].

Currently the market is �lled with a bulk of HMI and Supervisory Control and

2

1.2 Objectives of the Thesis

Data Acquisition (SCADA) systems. They commonly represent values of vari-
ables (called tags) bound into a graphic of a Programmable Logic Controller
(PLC). Beside of their good capabilities to bind tags of PLCs and represent
them in real time within a nicely animated graphic, they are still not prepared
to visualize the communication of agents within a multi-agent system. The
reason for their mean interest to develop a connection to popular MAS frame-
works and to �nd feasible ways for visualization can be found in the marginal
interest of the industry to use agents to control their production lines. The
missing con�dence leads to a backslide to old fashioned PLC programming
which is the common procedure nowadays.

1.2 Objectives of the Thesis

Visualization is the representation of abstract facts and information in general.
The main task is to increase the cognitive abilities of the mind with external
mechanisms. Using visualization, software processes can be made visible, cre-
ating cognitive images for the viewer that support the understanding [Die03]
and through this reduce the complexity [BE96]. The advantage of visualization
is that it can enable a fast interpretation of a wide range of information by
the human. Visualization systems have to ful�ll the following tasks: support
for the understanding of large amounts of information; perception of emergent
behaviours which are not predictable; fast discovery of errors by means of the
visualized data and shorter time and lower cost solutions to problems through
timely and intuitive access to visual data.

1.3 Visualization Requirements

A usable and easy to handle visualization of a multi-agent system should be
able to ful�ll several conditions to achieve a high acceptance in the user's and
developers point of view. These prerequisites should be achieved by the appli-
cation and reached through the conception phase.

Following attributes should be included to ful�ll its requirements:

Expandability The application should provide an interface for a simple ex-
tension to be prepared for possible future scenarios and to be able to
connect to di�erent multi-agent systems through the simple integration
of new interfaces.

3

1 Introduction

Integration It should be able to integrate the following approach seamlessly
into the current development process or development tools to enlarge the
usability and handling of the used MAS at the Odo Struger Laboratory.
This requirement also depends on the chosen technology.

Usability It should o�er a simple GUI which can be easily handled without
the need of much knowledge about the agents' underlying technology.

Autonomy The source code of the agents should not be touched by creating
a visualization which requires the ability to gather data from agents
without changing the existing system and source code.

Transformation The application should provide a plain possibility to create
an XML-based ontology out of a graphical representation from an exist-
ing plant. The outcome should ful�ll the test plant's requirements and
should be the basic ontology-information for the used MAS.

Visualization

Expand-
ability

Integra-
tion

Usability
Auto-
nomy

Trans-
formation

Figure 1.1: The Figure shows the main attributes of a productive and us-
able/reusable visualization.

4

1.3 Visualization Requirements

By the achievement of the points mentioned above, MAS systems should
be able to reach a higher acceptance, a better understanding by users and a
reduced initial barrier for students respectively developers to work with multi-
agent systems. An important point is the integration into tools which are
already used to develop agents. This could simplify the rapid development of
MAS for testing purposes.

1.3.1 Tasks

This master thesis deals with the development and implementation of a user
friendly and easy to handle graphical user interface which is able to represent
the state and behaviour of a multi-agent system. The presented visualization
technique should enable a better supervision and understanding of an agent-
based batch process with the focus on the usability and short training period
for users who are not aware of MAS. The graphical representation of the agents
should be based on the ISO standard 14617 and open for customized illustra-
tions. Additionally, features for simpler creation and management of MAS are
incorporated in the approach. The Automation and Control Institute (ACIN)
at the Vienna University of Technology uses the Java Agent DEvelopment
Framework (JADE) to control an experimental plant (see Figure 1.2). It is
the aim to gather data through the agent framework itself and the OPC UA in-
terface to visualize the information in a user friendly graphical interface and to
perform the proof of concept tests on the existing test plant in the laboratory.
Following tasks will be discussed throughout this master thesis:

• Analysis of existing frameworks concerning the visualization of multi-
agent systems and discussing the upcoming web technologies for visual-
ization purposes in the automation industry.

• The design of general architecture for an MAS independent and expand-
able visualization.

• Analysis of the Java Agent DEvelopment Framework (JADE) [Jada]
which is used to automate the test plant assembled at the Odo Struger
Laboratory.

• The development or expansion of a visualization framework to accom-
plish the expected goals.

• The developed framework has to be tested with the existing plant and
its agents at the Odo Struger Laboratory.

5

1 Introduction

Figure 1.2: Experimental plant in the Odo Struger Laboratory at the Vienna
University of Technology.

• Discussion of the test results and possible future work.

1.4 Structure of the Thesis

This thesis is structured as follows:

Chapter 2 will �rst discuss the term agent and di�erent technologies used by
multi-agent systems. Afterwards the Chapter will give an overview of current
state of the art visualizations of multi-agent systems. Furthermore web based
visualization and existing web technologies - their advantages and disadvan-
tages - will be discussed. Finally current available frameworks and visualization
tools which are able to o�er a graphical representation of the communication
of agents that already use web technologies will be mentioned.

A �exible and generic approach of a visualization for MAS is introduced in
Chapter 3. Each layer of the presented tier based architecture will be de-
scribed and an abstract design of a data model and its functionality will be
discussed.

Chapter 4 presents the implementation of the introduced approach presented
in the previous Chapter. A decision for a suitable technology will be discussed

6

1.4 Structure of the Thesis

and the integration in an available IDE will be clari�ed throughout this Chap-
ter.

The tests of the visualization at the plant in the Odo Struger Laboratory
and its results will be discussed in Chapter 5. Furthermore a real world use
case "student - tutor" will be run through and its results presented.

Chapter 6 summarizes the output of this thesis and gives a brief overview
of possible future work based on the discussed results.

7

2 State of the Art

This Chapter will give a short introduction into agent technologies and com-
mon terms in conjunction with MAS followed by an overview of possible vi-
sualization tools for multi-agent systems and available options to visualize the
exchange of information by the agents within an MAS. The second part of this
Chapter will give an overview of the new upcoming HTML5 technology which
is also seen as possible base for visualizations of multi-agent systems. For this
reason the advantages and disadvantages of HTML5 are discussed in detail.

2.1 Agent Technologies

Ahead of detailed analysis of state of the art visualization tools a brief overview
of existing agent technologies will be given throughout this Section. The
term agent is widely spread in information technology literature and is not
exactly associated with an intelligent software part in automation processes.
Wooldridge expressed a suitable de�nition for autonomous agents:

�An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet its
design objectives.� [Wei99]

Wooldridge also mentioned that this de�nition leaves some place for own in-
terpretation. As this description is kept general the possibilities for the usage
of agents also has a wide �eld of application. The broad spectrum of appli-
cations demands for di�erent technologies of agents that will be described in
this Section. In general two di�erent approaches are used for agent design the
functional and physical decomposition approach [Mad07, SN99].The functional
decomposition approach de�nes agents depending on their tasks (e.g. order,
task agent). The physical decomposition approach de�nes agents in correla-
tion with its counterpart in the physical world (e.g. pump, tank). The choice
of an approach always depends on the demands on agents, though functional
decomposition allows a more e�cient management and limited interaction by
di�erent agents, a more modular software and an easier redeployment with less

9

2 State of the Art

code changes which leads to a drop of costs for software recon�guration and a
higher reusability of developed agents [Wei99].

In general agents can be divided into four main types of agents depending
on the used architecture [FBG07, Mer09, Wei99]:

• Reactive agents observe their environment, recognize changes and react
corresponding to their objectives. They are commonly used in environ-
ments which require real time behaviour. They do not save any historical
information or internal states which makes further reaction based on ex-
perience impossible.

• Logic-based agents' decision making is based on logical deduction. This
represents the traditional approach to create arti�cially intelligent sys-
tems. Its behaviour is based on a symbolic knowledge base which is
manipulated by using reasoning mechanisms.

• BDI (Belief, desire, intention) based agents are able to decide which
objectives they want to ful�ll and how they are going to achieve them.
This architecture is seen as most popular agent architecture. It still has
a drawback which is the decreasing reliability with increasing complexity
that might be a handicap by achieving goals under real time conditions.

• Layered (hybrid) architecture allows the usage of both reactive and de-
liberative agents. Two types of layering are possible: horizontal and
vertical layering. At horizontal layering each layer is connected to the
input devices and for each behaviour a new layer has to be implemented.
In contrary vertical layering forwards the information from the bottom
layer - that is connected to the sensors - to the top layer which produces
the output.

2.2 Applications of Agent Technology and

Ontologies in Industrial Process Control

The automation in the industrial domain is already well established and a
common practice. The leading approach in industry is still the usage of cen-
tralized systems but due to the fact of increasing complexity and the restricted
fault tolerance of centralized systems, decentralized systems become more ap-
propriate [MM05]. To increase the fault tolerance and reliability decentralized

10

2.3 Current Visualization Tools

techniques have been researched to reach the desired goals. Multi agent sys-
tems are seen as adequate technology to ful�ll the required demands [JB03b].
[HYJY10] describes the usage of a MAS based approach to improve the pro-
duction e�ciency for ore grinding. In [MSD+07] an MAS is used as shipboard
system to eliminate single point of failures and to achieve a higher robustness
of the system. Another reason for the usage of agent technology is the assis-
tance at fault detection and decision making in di�erent �eld of application
[MP11]. [FR09] describes the usage of software agents to optimize the elec-
trical output of an Hydro-generating plant. The above mentioned examples
demonstrate the broad �eld of application in the industry still the distribution
of agent technology is at the beginning. An extensive literature review has re-
cently been conducted by Metzger and Polakow with the focus on applications
of agent technology in industrial process systems [MP11].

The above mentioned examples illustrate the successful usage of multi-agent
systems in real world scenarios. To achieve a proper collaboration of deployed
agents a common base of knowledge is needed. An appropriate representa-
tion of shared information can be utilized through ontologies. It is seen as
a practicable way to share knowledge among agents within an MAS and as
information base for decision-making and reasoning [MMH13]. Ontologies can
be seen as "speci�cation of a conceptualization" [Gru93] which means "speci-
fying the structure of a domain of knowledge in a generic way that can be read
by a computer (formal speci�cation) and presented in a human-readable form
(informal speci�cation)" [MEP10].

2.3 Current Visualization Tools

This Section will give an overview of existing visualization applications and
tools for multi-agent systems which help to debug, test or visualize an existing
MAS system.

Concerning visualization tools following two points must be considered and
are important for each user which are [NNLC99]:

• to understand, control and analyze the behaviour and

• debug an existing multi-agent system.

The most currently running visualizations are based on HMI applications.
The main part of HMI software are client based applications but the new

11

2 State of the Art

HTML5 standard already gains more attention and popularity and is seen as
emerging trend for HMI applications [Hec]. Nevertheless even if nowadays
HMI products have the ability to visualize smooth and gentle graphical rep-
resentations (see Figure 2.1) of industrial facilities they are currently not able
to handle agent based automation systems.

Figure 2.1: A visualization of a wood gasi�er boiler. Tag values are mapped
into a graphic and represent the state of the equipment.

Their structure is still in�exible and justi�ed to represent the values of tags
which are gathered from connected PLCs. This fact makes them unusable
for the representation of the information which is exchanged within an MAS.
The wide spread of HMI and SCADA systems and their disability to handle
agent based information probably also in�uences the acceptance of multi-agent
systems in the industry. Despite the o�ered graphical options HMI systems
will not be discussed in detail due to the lack of functionality with MAS.

2.3.1 MAST

The Multi-Agent Simulation Tool (MAST) is a Java based and often mentioned
simulation tool for multi-agent systems. It was developed by the Rockwell

12

2.3 Current Visualization Tools

Automation Research Center with the aim to show the potential of agent-
based solutions. The focus lies on transportation and routing of products
[Jadb] (see Figure 2.2).

Figure 2.2: Screenshot of the Multi-Agent Simulation Tool (MAST) developed
by Rockwell Automation Research Center [MOR].

A great bene�t of MAST is the ability to simulate the behaviour of agents
and to provide real-life physical control [MR]. The agents used by the MAST
tool are based on the FIPA1 [FIP] compliant JADE framework. The simu-
lation environment is already used in several laboratories (e.g. Odo Struger
laboratory at Vienna University of Technology, DIAL laboratory at Univer-
sity of Cambridge [VMK12]) for simulation, testing and the visualization of
transportation systems.
The MAST consists of 4 parts [MMW+08]:

• The �rst part contains the library of JADE based agent classes

• The second part implies the simulation engine which emulates the be-
haviour of the physical system.

• The third part contains the graphical user interface which provides the
visualization of the simulation.

1Foundation for Intelligent Physical Agents

13

2 State of the Art

• The fourth part contains the control interface which represents the link
between the agents and their simulation objects.

Although the architecture of the application is a tier based application it
does not seem to be meant for an easier extension of the application. The main
purpose for MAST is still to simulate, manage and visualize transportation
systems which limits its area of application.

2.3.2 VizScript

VizScript is a visualization tool developed to understand and debug multi-
agent systems. The aim of the developers was to create a tool with which
other MAS developers are able to create visualizations in a generic way. It
allows the creation of graphs and diagrams by using a scripting language. The
information which is visualized is gathered from log scripts generated by each
agent itself in a speci�c - for VizScript usable - format. It uses the information
from each agent's log to build a knowledge base and in conjunction with speci�c
scripts written in its own scripting language it interprets the data (by pattern
matching) to create the graphics for further analysis by the user [JSMS08].
VizScript is an interpreted language and allows very e�cient code to create
di�erent kind of graphics (Figure 2.3 and 2.4 show two examples) in comparison
to Java that needs much more coding e�ort for the same visualization(see Table
2.1 for detailed information). In addition VizScript supports online and o�ine
mode to view the agents' data in its visualization.

Table 2.1: The e�ort to create a visualization for collected data decreases dra-
matically by using VizScript's e�cient scripting language for data
representation [JSMS08]. The original code is written in Java.

Lines of Code Savings
Visualization Original VizScript Factor
Quality View 122 5 24.40
Agent View 190 47 4.04
Probability View 258 18 13.57
Execution View 1214 93 13.05

An existing Eclipse plugin to create and edit VizScript �les in Eclipse with
the support of syntax coloring, code completion and assistant support [Jin]
eases the development of scripts.
Though the application is built up in tiers it is not supposed to be extended

for other usage. Another main drawback is the fact that VizScript gathers its

14

2.3 Current Visualization Tools

Figure 2.3: This Figure shows the amount of workload for each agent generated
by VizScript [JSMS08].

Figure 2.4: A visualized graph created by VizScript. It represents the avail-
ability of agents within an MAS [JMSS07].

information from log �les which must be generated by every agent itself. This
implies a modi�cation of the existing source code which can be a major e�ort
to gather the information that is used by VizScript for interpretation. The im-
plementation of VizScript support should already be considered at design and
implementation time of an MAS. This could minimize the e�ort for involving
VizScript for debugging and testing purposes. Although the creation of views
is very simple with VizScript scripting language, the provided views are mainly
for developers and advanced users who want to debug and analyze an existing
system that they are already aware of and which is already equipped with the
needed logging required by VizScript.

2.3.3 AgentFly

AgentFly is a simulation system for air tra�c developed at the agent tech-
nology center at the Czech Technical University. Its main subjects are to be

15

2 State of the Art

able to run large scale simulations of civilian and unmanned air tra�c. It
supports advanced �ight path planning, decentralized collision avoidance and
a graphical representation of the air planes and the environment [age]. The
simulation is based on the A-Globe agent platform whose focus lies on real
world simulations with a high number of fully autonomous agents. Although
this platform supports most features of the FIPA standard it is not fully com-
pliant to the speci�cation. To reach a better system performance features like
interoperability where left behind [PvPU06]. The visualization is based on the
CrystalSpace open source 3D engine and provides a 2D (see Figure 2.5 (a))
and 3D view of the simulation. Due to performance issues the visualizer is
written in C++. It also provides a remote web client (see Figure 2.5 (b))
which is created in Java and allows remote access to view the �ight simula-
tion. Nevertheless the application scope is limited to �ight simulations and is
not applicable to industrial applications.

2.4 Web Based Visualization

The current main players at the software market who develop applications
for the mass market try to force the development of online software products
(e.g. O�ce365 [o�], Google Docs [goo],. . .). New upcoming technologies as
HTML52, CSS33 and AJAX4 based frameworks accelerate the development of
web based applications. Upcoming trends as cloud services enforce the arising
of new supportive tools and frameworks. Global players as Google boost the
development of web applications by providing development tools as the Google
Web Toolkit (GWT) for developing web applications. Nevertheless HTML5 is
not yet approved by the W3C5 and the implementations of the new standard
(also of the older ones) di�er in their implementation by commonly used web
browsers (Figure 2.6) and complicate the development of new web applications.

Furthermore the used web browsers are (see Figure 2.7):

• from di�erent vendors mainly from Google (Chrome), Mozilla (Firefox),
Microsoft (Internet Explorer), Opera (Opera) and Safari (Safari)

• and by each vendor fragmented in di�erent versions.

2Hypertext Markup Language
3Cascaded Style Sheet
4Asynchronous Javascript and XML
5World Wide Web Consortium

16

2.4 Web Based Visualization

(a) AgentFly 2D View

(b) AgentFly remote web access

Figure 2.5: AgentFly provides several ways to visualize a simulation. One way
is through local access which allows a 2D (a) and 3D representation
of a simulation. The second possibility is an available remote access
(b) to the visualization [PvPU06].

Also other proprietary web frameworks as Flash and ActiveX are either
bound to a speci�c platform or not supported by other vendors (e.g. Flash is
not supported on IOS6 [�a]).

Another promising technology in interactive web animations are scalar vec-
tor graphics (SVG). It provides its own declarative scripting language named

6Operating system of IPhone and IPad

17

2 State of the Art

Figure 2.6: Implementation progress of HTML5 and CSS3 standard in the 5
most popular web browsers [Yak].

Synchronized Multimedia Integration Language (SMIL) to perform animations
within an SVG graphic. Furthermore it o�ers the ability to create an inter-
active drawing. The scripting itself is directly integrated into the SVG XML
sheet. In addition Javascript can also be used in combination with SVG graph-
ics. This opportunity enlarges the possible �eld of application for SVG graph-
ics. Nevertheless SVG is a declarative description of what should be drawn and
all commands have to be supported by the web browsers. Also this language
- even if the SVG 1.1 speci�cation is approved by the W3C - has to battle
with the same problems as the HTML standard (see Figure 2.8 for a graphical
representation of implementation lacks concerning the o�cial recommendation
of W3C).

However in some papers web based technologies especially HTML5 are seen
as possible technology for visualization applications for multi-agent systems in
the future [VKJ+11]. Games often act as pioneer for new technologies. Possi-
ble opportunities can already be seen in HTML5 games which use a great part
of the HTML5 functionality and Javascript. The games are already intended
for single player and multiplayer [HTM].

18

2.4 Web Based Visualization

Figure 2.7: The diagram represents the segmentation of the browser usage for
Internet consumption at September 2012. The inner circle gives
an overview of the di�erent kinds of browsers used, the outer circle
represents the fragmentation of di�erent browser versions within
one trademark. Darker colors represent older and lighter colors
newer versions of a browser. The more often used version is labeled
(data from [bro]).

The gaming industry is not the only business in which these technologies
are already involved. A few prototypes already exist for the visualization of
MAS (or at least their ontologies) which use web technologies:

• [PM08a] introduces an application for monitoring a multi-agent system.
The communication is based on web services which o�er XML data
through the HTTP7 protocol. It uses AJAX for communication and
SVG documents in combination with an embedded ECMAScript8 for
the graphical representation (see Figure 2.9 for a screenshot of the ap-
plication).

• OntoVis is a web based tool which visualizes ontologies based on HTML5.
It's built on Google's GWT and uses HTML5 canvas and SVG for graph-

7Hyper Text Transfer Protocol
8Client side scripting language for web

19

2 State of the Art

Figure 2.8: This graphic represents the implementation status dated on the
24 of March 2011 of the SVG 1.1 speci�cation. The �rst column
represents the names and versions of di�erent web browsers. The
second column contains the release date of the particular version.
The last three columns represent the implementation status of the
SVG speci�cation. Even if this standard became an o�cial recom-
mendation of W3C in January 2003 it is still not fully implemented
by any web browser. The performed tests are part of an o�cial test
suite provided by the W3C [svg].

ical representation [VKJ+11] (Figure 2.10 shows an example of a visual-
ized ontology).

The basement for most dynamic and interactive web applications represent
Javascript frameworks. There is already a wide range of frameworks present on
the market. They take care about the di�erences between web browser versions
and vendors [KZ12]. Another supportive tool for web development is GWT.
It was introduced in 2006 and is currently available in version 2.5 (released on
26th of October 2012) [gwt]. It contains a Cross-Compiler which allows the
development of web applications with Java and the compiler translates the code
into HTML and Javascript which eases the development of web applications.
Furthermore parts of HTML5 are already supported. HTML5 (by using the
canvas element) combined with GWT already allows sophisticated drawing
applications with less e�ort [Sta12, Vog].

20

2.5 Conclusion

Figure 2.9: The web browser visualizes the created SVG based interactive dy-
namic block diagram. The logic is implemented with ECMAScript
and its data exchange with the backend is done through AJAX
[PM08a].

2.5 Conclusion

The �rst part of this Chapter has listed used agent technologies and has
given an extraction of existing visualization tools for multi-agent systems.
The MAST visualization has great abilities to support the development of
transportation systems supported by the Jade framework but its area of ap-
plication is limited due to the fact that its visualization is �tted to this special
scope. VizScript with its scripting language provides a wide range of options
to analyze and visualize information provided by the agents' log �les with less
coding e�ort but more time consumption by execution than a native imple-
mentation in Java. Furthermore it provides online and o�ine visualization of
the provided information but the information must be provided by each agent
itself which implies a manipulation of the source code to be able to collect
the needed information for visualization. This can be a handicap by analyzing
existing multi-agent systems due to the fact that subsequently executed code
manipulation can be a time intensive process. The second part of this Chapter
has given a brief overview of the possibilities of the new HTML5 standard

21

2 State of the Art

Figure 2.10: The Google Web Toolkit is used to implement Ontovis. The
graphical representation of the Ontology is done by using
HTML5's canvas element [VKJ+11].

recommendation. Furthermore it discussed the support of HTML5 and SVG
elements by the most popular web browsers and mentioned already existing
visualizations based on this technology. Over the years the support for the
mentioned standards has been increased by every vendor. Nevertheless there
is still a huge gap between the supported features of the main players of the
browser market. Furthermore there exists a fragmentation of di�erent browser
versions within one trademark. These facts complicate the creation of a web
application for a wide range of customers. However there exist already a few
frameworks who take care about the distinctions between di�erent vendors and
browser versions which takes a lot of workload from the application developer.
Also the type of usage should by kept in mind by choosing a technology which
refers mainly to the di�erence between stand alone applications and server
based applications (e.g. web applications).

22

3 Design

This Chapter describes the general approach for a visualization with which
a user is able to create an illustration of a multi-agent system based on the
ISO Standard 14617. At �rst the requirements - that should be ful�lled by
the concept - will be presented. Afterwards the application design approach
will be described in detail starting with the introduction of the architecture
followed by the description of the Data Model and each layer contained by
the tier architecture. This includes the free de�nition of the illustration of
each agent as well as the creation of an ontology stored in an XML �le. The
information should be gathered out of the created diagram that should be
the knowledge base for the agents' behaviour and decisions. Furthermore this
Chapter includes the description of the general approach for almost real-time
state representation of the illustrated MAS created with the visualization. It is
the intention that the design of the architecture should ease the implementation
and integration of interfaces to other multi-agent systems.

3.1 General Design Approach

This Section will present the general design approach of a multi-agent system
visualization which should be able to ful�ll the requirements mentioned in
Section 1.3. At �rst an overview of the architecture from the application
design will be given. Afterwards the structure of each tier will be described in
detail.

3.1.1 Architecture

This Section de�nes the architecture of the visualization application. A general
approach for each layer will be presented. The application structure itself is
divided into following layers (see Figure 3.1):

Data Collection Layer - collects the information from the multi-agent system
respectively its agents and implements the Interfaces provided by the
upper layer. The implementation represents the gateway for noti�cations

23

3 Design

Figure 3.1: This Figure shows the general architecture from the design ap-
proach of the visualization.

by upcoming events generated of gathered information from the observed
MAS.

Data Exchange Layer - provides the gateway de�nition for MAS link lay-
ers, converts the information from the Data Collection Layer - provided
through the implemented gateway - to the internal format and processes
these events. The information gathered through the noti�cations of the
lower layer is transmitted to the Data Model.

Data Model - contains the logical de�nition of the available agents and their
connections and can be seen as key turning point for all MAS relevant
data. Its design is also based on the observer model which implies prop-
erty change support for other classes. It can be seen as part of the
Visualization Layer because this layer has to create the model entities in
conjunction with the visualization itself (depending on the user input).

Graphical User Interface - is responsible for the direct interactions with the
user. In o�ine mode it provides an editor which allows the creation of
diagrams that should re�ect the real world relationships of the agents.
It furthermore provides the creation of the ontology description and the
modi�cation of the object attributes. In online mode it illustrates the
communication and state transitions within the visualized MAS. In ad-
dition attributes with a dynamic value (OPC UA variables) should be
displayed in almost realtime.

24

3.1 General Design Approach

It is intended, that the Data Exchange Layer does not have any references to
the Data Collection Layer. This allows a simple change of the Data Collection
Layer to a di�erent implementation of the provided gateway. This approach
allows the usage of the same visualization to connect to di�erent multi-agent
systems with varying programming APIs by keeping the same user interface.

3.1.2 Data Model

This Section will describe a possible structure of the Data Model. The model
contains all objects that are required to map a multi-agent system. This
includes both physical and functional agents and physical connections. At-
tributes that are contained by the model's objects are divided into internal
attributes that are used for internal data exchange and public attributes that
should also be noticed and available for modi�cation by the user. The pre�x
"_" is used to mark each attribute for its purpose and - according to its usage
- will be added to the private attributes' name to distinguish both types from
each other. This allows a simple identi�cation of internal and public attributes.
An automatic code generation could further be achieved through UML - Tools
which are able to generate source code out of UML diagrams. The usage of
re�ections (that should be available in modern third generation programming
languages) allows the distinct identi�cation of the attribute's context.
In the following the base classes that represent the visualized objects will be

described (Figure 3.2 illustrates the class diagram):

• The IConnectableObject Interface has to be implemented by all objects
which should be able to be connected through an AgentConnection.

• The abstract class InspectableObject implements all necessary at-
tributes and methods to support all derived classes with functionality
needed to support the observer pattern which means the ability for other
objects to register itself and to be noti�ed if any changes occur at the
observed object.

• Basic functionality (respectively attributes) that every agent should be
able to provide is bundled in the Agent class. This class contains the stor-
age of incoming and outgoing messages, the current state of an agent and
a unique name that identi�es the agent within the visualization and the
agent platform which allows a mapping between both through the agent's
name. Furthermore the class includes enumeration attributes that can
be used for the distinction between one and several incoming or outgo-
ing messages and the actual state of an agent (online, o�ine, . . .). The

25

3 Design

Figure 3.2: This Figure illustrates the conceptional class diagram of the visu-
alized objects.

detailed usage of these attributes (_messageSend, _messageReceived,
_onlineState) is described in Section 3.1.4 and 3.1.5. Classes directly
derived from Agent represent functional agents that do not have any
physical part and can not be connected to other agents. This ability is
reserved for the PhysAgents.

• An agent with a physical component is represented through a class de-
rived from PhysAgent and can contain speci�c implementations or ad-
ditional attributes depending on the characteristic of the agent. This
can either be static information or a connection path for an OPC UA
variable whose value should be visualized (see Section 3.1.5 for further
details). Attributes which are part of all PhysAgents could be added to
the PhysAgent base class.

• The Message class represents a message that can be sent from one agent

26

3.1 General Design Approach

to at least one other agent. It contains the information of a message and
a timestamp. Furthermore the sender and all its receivers are stored in
the message.

• A physical connection between at least two PhysAgents is represented
through an AgentConnection class. Every connection is identi�ed by its
unique name and can be connected to one or more agents with a physical
part. A route can also be suggested for a possible route of a medium.
For this proposal the _proposed attribute is used (for details see Sec.
3.1.4 and 3.1.5) to notify the visualization that a speci�c connection is
part of a route proposal. The "_" pre�x marks the attribute as internal
and will not be shown to the user.

• A Link symbolizes the endpoint of an AgentConnection in conjunction
with a PhysAgent. It stores the information concerning the possible �ow
direction at a speci�c endpoint of a connection. This can be one of the
available literals in the Direction enumeration.

• The Direction enumeration o�ers the possible �ow direction options for
an AgentConnection endpoint (Link). In this case the possible options
are IN,OUT and BOTH.

• The OnlineState enumeration o�ers the possible state options for an
agent. Available states are ONLINE, OFFLINE and UNSPECIFIED.

• Three di�erent message states can occur at every agent. This can either
be no message (NONE), one message (SINGLE_MESSAGE) or several mes-
sages (MULTIPLE_MESSAGE) available for both corresponding attributes
(_messageSent, _messageReceived). This applies for incoming and out-
going messages and can be set with one of the available literals of the
MessageState enumeration.

Agent and PhysAgent represent the base classes of the visualization and can
not be mapped to a physical or functional agent. The mapped classes have
to be derived from Agent or PhysAgent to be able to be recognized by the
visualization as available agent de�nition (in conjunction with the graphical
de�nition - see Listing 3.1).

Somehow a reference must be kept to all objects of the model to be able
to access them from other parts of the application. This can be achieved by
a ModelManager singleton which holds a connection to each created object.

27

3 Design

The objects' references can be kept in a simple list. Depending on the de-
mands a separation by class type can be implemented. The mapping between
Data Model and visualization is done by the manager. Also the saving of data
could be realized through this manager because it has access to all entities
that belong to the Data Model.

ModelManager

+mapDiagrams : HashMap

...

Diagram1

...

Agent Class

AgentConnection Class

...

Agent1

Agent2
Diagram
Mapping

Class
Mapping

Object
References

Figure 3.3: The DataManager handles the Mapping between the visualization
and the included Data Model objects. It keeps the diagrams as key
of a hash map and uses as value an other map of class de�nitions
(as key). The value in turn is a list of corresponding objects.

A possible structure of the mapping can be seen in Figure 3.3. The refer-
ences of the objects are hold as weak references. This saves the work from
deregistration of objects. The memory of objects which are no longer in use
will be collected by the garbage collector automatically and the next time at
accessing the list the null references can be deleted.

3.1.3 Data Collection Layer

This Layer is responsible for acquisition of relevant data occurring within a
multi-agent system. Ideally existing agents respectively the MAS itself do not
need to be modi�ed to gather information of concern. In the worst case each
agent's source code has to be extended with additional functionality to provide
the necessary data as by the usage of VizScript (see Section 2.3.2 for further
details) that collects its information directly from each agent respectively each
agent has to provide the logging information on its own. This can cause exten-
sive code changes if the multi-agent system is already implemented and could
also in�uence the temporal behaviour at detailed logging. Nevertheless the

28

3.1 General Design Approach

realization of the data collection always depends on the underlying MAS and
its provided functionality.

A1

A2

A5
A3

A4

Data Exchange Layer

Notification

born

born

Data Collection Layer

Register Agents

Multi-Agent System

Figure 3.4: The Data Collection Layer represents the interface between a
multi-agent system and the Data Exchange Layer. All agents which
are relevant for the visualization will be registered at the lowest
layer. This allows a reduction of information at the Data Col-
lection Layer. The kind of data acquisition of the layer always
depends on the supported features of the MAS.

In general the Data Collection Layer has to collect information from agent
events (e.g. born, dead, . . .) and messages exchanged by the agents (see Figure
3.4). To minimize the amount of data tra�c and to keep a high performance
the layer should only collect data that is in matter of concern for the visualiza-
tion. To achieve this behaviour the Data Collection Layer receives the names
of the agents for which information should be collected from the upper layer.
This o�ers the possibility to downsize the amount of data at the lowest layer.
During data acquisition the Data Collection Layer forwards - via noti�cations
- the gathered information to the upper layer. The connection between both
layers is done through a prede�ned interface which is described in the next
Section.

29

3 Design

3.1.4 Data Exchange Layer

This Layer is responsible for the data exchange between the Data Collection
Layer and the Data Model. The provided architecture should allow a simple
replacement of the Data Collection Layer without changing any other parts of
the application. This makes the application more �exible to be used with dif-
ferent multi-agent systems. But to achieve a loose coupling between the lower
two layers an interface has to be provided. This allows the communication
with the Data Collection Layer without referencing any classes of the lower
layer.

In the following the classes and their responsibilities of the provided gateway
de�nition(contained in Figure 3.5) will be described in detail:

Figure 3.5: The class diagram represents the base interfaces and classes which
are involved into the data acquisition and data model feeding.

• The DataCollector is responsible for the data acquisition from the cor-
responding multi-agent system. The implementation varies depending
on the used MAS. Through the method registerAgents agents can be

30

3.1 General Design Approach

indexed with their names. This allows data �ltering at the lowest layer
and minimizes the appearing data. Furthermore the interface provides
methods to register listeners for message and agent events. The listeners
will be noti�ed at the occurrence of relevant data referring to the indexed
agents. Through the start and stop methods the data collection from
the underlying multi-agent system can be started or stopped.

• An IMessageListener implementation is registered at the Data-

Collector and should be noti�ed at any message sent by one of the
inspected agents. The listener itself forwards the information to the
Data Model and sets the messageReceived and messageSend �ags at
the a�ected agents (see Figure 3.2). The appearance of multiple incom-
ing or outgoing messages is also recognized by the listener because an
occurrence of multiple messages sent or received by the same agent has
to be re�ected in the visualization. Nevertheless the message �ag has to
be cleared after a speci�ed amount of time which can be done by creating
a MessageTimer which is responsible for resetting the �ags. The noti-
�cation of the Visualization Layer for any changes is done by the Data
Model itself. This allows the visualization to stay passive and only react
on changes occurring at theData Model to avoid the need of direct impact
from the Data Exchange Layer to the Visualization Layer. The usage
of a Hashmap as parameter of both noti�cation methods allows a �exible
transfer of message content from a DataCollector to the listener. Fur-
thermore an enhancement to support new message content can be easily
reached through new key-value pairs in the hash map. Due to the fact
that messages sent by an agent and received by another agent will be the
same a recognition of identical messages will be necessary. This could
also be ful�lled by a Hashmap which stores a generated hash code out of
the message content. Both methods sentMessage and receivedMessage

will use this map to recognize �duplicate� messages. If a sent message
event has already occurred for a speci�c message and an entry in the
map has been done then the processing of the received event can use the
same stored message and just needs to set the messageReceived �ag of
the e�ected agents.

• An IAgentEventListener is responsible for all state changes of the
agents within the MAS. It is registered at the DataCollector and han-
dles the noti�cations about born and terminated agents. The informa-
tion is stored in the Data Model which triggers a noti�cation for the
Visualization Layer.

31

3 Design

• For the possibility to visualize multiple diagrams within the same ap-
plication a mapping has to be provided between the diagram and the
agent who listens to the MAS. This is achieved by the usage of an
ExchangeManager singleton that maps the diagram and the correspond-
ing agent by holding its references within the DAMapping class. The map-
ping could also be done through an ordinary Hashmap but the storage
within a separate class allows the possibility to add additional functional-
ity and the storage of supplemental information. This for example could
be graphical information that is changed between o�ine and online mode
(e.g. background color, zoom factor, . . .). To reset the proper values the
information has to be stored temporary related to the diagram and can
be retrieved at switching back to o�ine state to restore previous settings.

The registration of listeners at the DataCollector is not restricted to one
listener which o�ers the possibility to register several IMessageListener with
varying responsibilities. An additional listener could manage route proposal
messages that contain the information of the included connections and forward
this information to the Data Model. The usage of a timer to highlight and reset
the proposed route (using the _proposed attribute of a connection) would be
suitable. Furthermore this approach allows a better separation of concern, an
easier replacement of existing implementations and for further development a
better readability and maintainability.

3.1.5 Graphical User Interface

The graphical user interface is the main item which has the most in�uence on
the acceptance by users. A smooth handling of the user interface eases the
creation and con�guration of a visualization diagram. It is important that
a provided editor supports common functionality by working with graphical
objects.

This implies:

• standard keyboard shortcuts to create, delete and move items

• standard mouse functionality as drag-and-drop, resizing and rotating of
objects

• a context menu for each item which o�ers additional functionality

32

3.1 General Design Approach

Graphical
Definition

Verifi-
cation

Data
Model

Graphical
Editor

Figure 3.6: A graphical editor gathers its information for available agents -
that are available within a visualization - from the Data Model
combined with the graphical de�nition stored in an XML �le. The
mapping between both is done through the agent's class name.

For a higher �exibility of a user interface and to minimize source code
changes, the information for graphical representation named graphical de�-
nition is separated from the Data Model information (see Figure 3.6). The
structure of a graphical de�nition, the selection of needed data from the Data
Model and the handling of graphical key features will be described in detail
in this Section. The implementation of an editor itself and an achievement of
a smooth handling for users always depends on the used underlying technol-
ogy and will be discussed in Section 4.8. Still it has to be considered that the
same visualization has to be used for the creation of the diagram and for the vi-
sualization of the online state within an MAS and the logical state of an agent.

At the developers side the re-usability also has an important impact on the
acceptance of a visualization. For that reason an editor has to collect its in-
formation for the agents' representation from external sources which can be
modi�ed without any needed modi�cation of source code.
The visual part - which means the presentation of an agent - is stored in an

33

3 Design

external source (e.g. XML �le - see Listing 3.1) This includes the de�nitions
of all agents that are available within the editor. A graphical de�nition can be
modi�ed without any intervention into other parts of the application. An agent
- identi�ed with its name attribute - can contain di�erent types of shapes and
corresponding attributes. Nested objects can either be additional information
for the de�ned shape (e.g. de�ned points of a polygon) or another shape.

<agent name="Tank">
<shape name="polygon" f i l l e d=" f a l s e " l ineWidth="2">

<point x="0" y="0"/>
<point x="0" y="100"/>
<point x="100" y="100"/>
<point x="100" y="0"/>

</shape>
</agent>

Listing 3.1: An example of the de�nition for the graphical representation of an
agent within the visualization.

The agent Tank de�ned in Listing 3.1 is illustrated through a polygon
that contains multiple attributes. The polygon's sub-objects de�ne the points
within the polygon. The de�ned points' coordinates are given as absolute pos-
itive values with the initial point of 0/0 and the maximum of 100/100. This
allows simple resizing and rotation of objects. Further nesting of other shapes
(e.g. line, circle, . . .) could be an option for sophisticated agent graphics.
The provided information should be su�cient to draw, rotate and resize ev-
ery graphical agent object. This can be simple objects as a tank up to more
complex illustrations (e.g. valve, pump,. . .). Noti�cations about incoming or
outgoing messages can be realized through decorators at the illustration (see
Figure 3.7 for an example). The a�ected messages can be visualized through
tooltips of the decorator. A supplemental view for the message history has to
be provided which lists a speci�c number of messages of the past. At least all
objects from the ISO standard 14617 should be able to be de�ned by supported
shapes to represent all possible agents within an MAS.
Additional information concerning the logical part (e.g. agent types, at-

tributes,. . .) can be gathered from the Data Model (see Section 3.1.2 for
further information). The combination of both parts (see Figure 3.6) pro-
vide the required information for an editor to represent each agent and its
attributes. Basically all changes of information concerning agents can be rec-
ognized through the Data Model. The visualization tier will register at all
attributes of importance an AttributeChangeListener to recognize every rel-
evant data modi�cation. That way any attribute change within the Data Model

34

3.1 General Design Approach

Tank

Figure 3.7: This Figure illustrates a Tank de�ned in Listing 3.1. The mail
symbol appears at incoming messages for this agent. Another color
can represent outgoing messages. Furthermore other events could
be visualized by other symbols (e.g. critical state of an agent,
speci�c state changes, . . .). The color of an agent can give an
information about the agent's state (e.g. online, o�ine, waiting,
. . .).

can cause an impact on the graphical illustration. It must be distinguished
between the manipulation of data at con�guration time that should allow all
types of values whether static or OPC UA path information. A string recogni-
tion will be necessary for online illustration to decide whether the attribute's
value or the content of an OPC UA variable has to be expressed. The neces-
sary access to variables could be realized through re�ections.

The creation of an agent should follow a common editor behaviour which im-
plies a free de�nition of the size of an object. With the values stored in the
con�guration the real size of an object can be calculated.
An important part of drawing a visualization diagram is the creation of

connections between agents. The connections represent pipes that are available
for route proposals from one object to another and that can be physically used
for transportation of �uids between di�erent physical objects (e.g. tanks).
Beside the fundamental functionality of connecting to PhysAgents with each
other following additional features should be included to enlarge the scope
of graphical representations (see Figure 3.8 for a possible illustration of the
features):

a.) The creation of vertices which can be freely added and customized de-
pending on the user's need to create a better overview and to refurbish
the graphical representation.

b.) The possibility to create connections with several endpoints through de-
�ned branches.

35

3 Design

a.
b.c.

Figure 3.8: In order to create attractive illustrations routes should not just
be straight lines but the editor should allow the creation of indi-
vidual paths (a.) (e.g. with corners) and the possibility to pro-
duce branches (b.). Another important aspect is the de�nition
and graphical representation of �ow directions (c.) (e.g. for the
creation of routing tables).

c.) A graphical representation of �ow directions at endpoints of a connection.

The recognition of a route proposal happens in the middle layer (see Sec. 3.1.4
for further details) but the illustration has to be done by this tier. As already
mentioned connections between agents are also mapped in the Data Model and
a change of data can be induced by the Data Exchange Layer. The graphical
change as reaction on attribute changes happens in the same way as for agents.
For route proposals the visualization has to react on changes at the _proposed
attribute. A boolean value of true means a proposal for a route - that includes
the speci�c connection - has been generated.

A simple placement of objects within an editor is not enough to draw a
usable schema of a multi-agent system. Rotations of drawings are needed to
justify the right direction of placed objects. The rotation is realized through
the rotation of each de�ned point of one �gure around a �xed point in a co-
ordinate system. The assumption that every object is drawn within its own
coordinate system eases the handling of transformations of a drawing. Fig-
ure 3.9(a.) illustrates the rotation of a point. The result of a calculation can
also lead to negative coordinates which must be corrected for a proper graphi-
cal illustration of an object. This is reached through a translation of the object
depending on its minimum extrema on the x and y axis and to add the extrema

36

3.1 General Design Approach

P(x,y)
x

y

P'(x',y')

φ

(a) Rotation of a single
point

x
x

x x

y

y

y

y

(b) Rotation of an object within the entire drawing

x

y
1.

2.

(c) Translation of a ro-
tated object

Figure 3.9: Figure (a.) illustrates a rotation of a point around a �xed point
with the angle of ϕ in the coordinate system. The calculation is
done with the equation shown at 3.1. (b.) every object in the
diagram has its own coordinate system in which it is drawn and
that is used to calculate transformations. (c.) If one point obtains
a negative coordinate the whole object has to ful�ll a translation
into the positive quadrant.

as o�set to all included points in a drawing (Figure 3.9 (c.)).

37

3 Design

The new coordinates of the rotated point result out of:

x′ = cos(ϕ) ∗ x− sin(ϕ) ∗ y
y′ = sin(ϕ) ∗ x+ cos(ϕ) ∗ y

(3.1)

In that way it is possible to rotate every drawn �gure in a visualization
diagram independent of the size of a drawn agent.
As illustrated in Figure 3.9(b.) each object has its own coordinate system

that is used to calculate transformations of an object. The transformation
is calculated with those values de�ned in the graphical XML de�nition (see
Listing 3.1). The real size of an object is calculated with width and height of
an object in a diagram in conjunction with the de�ned size.

3.2 Summary

Chapter 3 presented a new approach of a possible multi-agent system visual-
ization. It should ease the creation of new visualizations independent from the
underlying multi-agent system. Three autonomous tiers constitute a �exible
architecture that allows a simple change and extension from layers of the vi-
sualization without in�uencing other parts of the application.

Section 1.3 listed the requirements which should be ful�lled by the presented
approach. A multi tier architecture with three tiers has been chosen for de-
signing the visualization. This guarantees a higher reusability with di�erent
MAS. Dependencies to other layers are avoided for a better replaceability. The
de�nite implementation of the Data Collection Layer always depends on the
underlying multi-agent system with which this layer has to interact. The Data
Model presented in Section 3.1.2 is fed with information by the Data Exchange
Layer introduced in 3.1.4. The Data Model provides other layers with noti�-
cations of data changes.
The top most layer is responsible for the representation of a graphical user

interface. This implies an editor for the creation of a diagram, the con�guration
of all producible objects and the generation of the ontology in an XML format
to feed the physical agents with the needed information to operate in the
right manner. In addition the same visualization acts as online view for a
almost real-time representation of the connected multi-agent system. This
should allow a rapid prototyping for visualizations and furthermore for multi-
agent systems without much knowledge of the underlying framework of the
visualization and MAS. The optimal procedure of the visualization creation
and its usage is presented in Figure 3.10.

38

3.2 Summary

Create Diagram

Create Graphical Definition for Agents

Enhance Class Diagram to suit MAS

Figure 3.10: The activity diagram illustrates the work�ow of the creation from
a visualization. The graphical and logical de�nition of an agent
are separated from each other. The creation of a diagram is based
on the information de�ned before. Each agent and connection
can be con�gured. The information is the base for the agents'
ontology. After the con�guration of the agents the visualization
can go online and visualize the condition of the MAS. The dashed
line surrounds those actions that can be done by a developer (or
for example tutor at the university). The user (or student) can
get familiar with the MAS by performing the remaining steps.

39

4 Implementation

This Chapter describes the implementation of the represented approach in
Chapter 3. At �rst the framework decision for the implementation will be
discussed. After that the chosen technologies will be described and the imple-
mentation of the application will be illustrated.
Due to the fact that the multi-agent system developed by the ACIN Institute

at the Vienna University of Technology is based on the JADE framework a
short introduction to this speci�c MAS will be given.
According to the desired goals the integration in an already existing devel-

opment platform is aspired to reach a seamless cooperation with already used
development tools.

4.1 JADE Framework

This Section will give an overview of the JADE framework. As base of the MAS
which is used at the Odo Struger Laboratory JADE also plays an important
part for a visualization. It's entire implementation is compliant to the FIPA
standard for multi-agent systems. The information which is exchanged by the
agents must be somehow displayed to give the user the opportunity to follow
the information �ow within a multi-agent system. Also the current state of
each agent (online, o�ine,. . .) is an important information which should be
reported to the user. For better understanding the main parts of the JADE
architecture will be introduced (see Figure 4.1):

• A Platform comprises all virtual components which belong to an MAS.
This implies the containers, Agent Management System (AMS), Direc-
tory Facilitator Agent (DF) and all agents. The platform is not limited
to one physical device. It can also be spread over several machines.

• Every platform has a single Main Container. The unique agents AMS
and DF are contained in this container.

• Beside the Main Container several other Containers can exist. Nor-
mally the location of additional containers is on other physical machines.
They register itself at the Main Container.

41

4 Implementation

Jade Platform

Message Transport System

Figure 4.1: This Figure illustrates the architecture of the JADE framework.
The platform consists of at least one Main Container which is in
charge of an Agent Management System (AMS) and a Directory
Facilitator (DF). Additional containers can be registered at the
Main Container. Every container can hold multiple agents. The
communication is done through the Message Transport System.

• The Agent Management System (AMS) is also an implementation
of an agent but with special purposes. This agent is unique in the entire
platform and every agent has to register itself at the AMS to gather a
unique Agent Identi�er (AID). Furthermore the AMS agent provides a
white-page and life-cycle service from all agents. At startup it is always
immediately created and lives in the Main Container of the platform.

• The Directory Facilitator (DF) is also kept in the Main Container
and acts as yellow-pages service for other agents. The DF is aware of all
available services provided by other agents. Together with the AMS it is
directly started after the platform startup.

• Agent is the overall name of all actors within a platform. Of the pro-
grammers point of view the Agent class represents the base of all user
de�ned agents. The agents life-cycle is coherent to the FIPA speci�ca-
tion. This implies (see Figure 4.2 for possible states and their transitions)
[BCTR]:

Initiated The agent is created but not registered at the AMS. It has no ad-
dress and is unable to communicate with other agents.

42

4.1 JADE Framework

Figure 4.2: This state diagram represents the life-cycle of an agent within the
JADE multi-agent system [BCTR].

Active The agent is registered at the AMS, has a corresponding AID and
full access to all JADE features.

Waiting The agent is sleeping and waiting for events to execute further op-
erations. This can also be messages from other agents.

Deleted The agent has been stopped and its thread is terminated. The
registration at the AMS has been removed.

Transit An agent enters this state while it is moved to another location. All
messages directed to this agent will be bu�ered while the agent is
transferred.

The agents communicate through the Message Transport System also called
Agent Communication Channel (ACC). It is responsible for the exchange of
all messages within the platform and to remote platforms. The structure of a
message is compliant to the FIPA 2000 "FIPA ACL Message Structure Spec-
i�cation" speci�cations [acl] but the complexity of the creation and access of

43

4 Implementation

the content is encapsulated through the ACLMessage class.

An agent executes its tasks within behaviours. The framework provides several
di�erent standard behaviours which ful�ll most of the requirements of tasks
an agent should perform. An abstract of this behaviours includes the three
primary behaviour types that are available in JADE [FBG07]:

• An OneShotBehaviour can be used for tasks that should be executed
only one time.

• The CyclicBehaviour is used for tasks that should be executed contin-
uously and which will never complete. Each time it is called the same
operation will be executed.

• Generic behaviours are classes derived from the base class
jade.core.behaviours.Behaviour, contain a status trigger and ful�ll
di�erent operations depending on the value of the trigger. After a speci�c
status value is reached the behaviour is completed.

The package jade.core.behaviours contains several other prede�ned be-
haviours which allow among others scheduled operations (WakerBehaviour,
TickerBehaviour). The combination of di�erent behaviours allow the execu-
tion of complex tasks and conversations with other agents.

4.2 Test Equipment at the Odo Struger

Laboratory

It is the aim of this master thesis to provide an application which eases intro-
duction and development of multi-agent systems. The focus lies on the MAS
technology used for the test plant at the Odo Struger Laboratory. This Section
will give an overview of the architecture used for the agents and afterwards an
introduction to agent's communication among each other.
A multi-agent system consists of at least one but mostly of multiple agents

which can represent physical (e.g. tank, pump, . . .) and non physical compo-
nents (e.g. order agent, task agent). Primarily the agent's software components
are divided into two parts (see Figure 4.3) [MLA11]:

• High Level Control (HLC) - this part is responsible for the interaction
with other agents. It is able to perform high level diagnostics and uses
an ontology based world model which o�ers the agent an overview of its

44

4.2 Test Equipment at the Odo Struger Laboratory

immediate neighborhood and subsequent the ability to coordinate itself
with agents near by. As a result of possible longer calculation times and
interactions with other agents the HLC does not act in real-time.

• Low Level Control (LLC) - this layer executes its tasks in realtime and
is responsible for controlling the hardware. It is able to collect sensor
data and to send commands to the actuators. The design of the LLC
is based on the IEC61499 standard. It is normally directly executed on
a programmable logic controller (PLC) which is wired to the hardware
controlled by the agent.

Figure 4.3: This Figure illustrates the architecture of an agent. The software
component of the agent is divided into two layers - the high level
and low level control [MLA11].

Agents who are in charge of a physical hardware (e.g. valve) are named
automation agents. The automation agents itself can be responsible for one
entity or either a group of entities. The agent registers itself and its available
services at the Directory Facilitator Agent (DF Agent). The DF agent acts as
registry of all agents and their corresponding services which they o�er to other
agents. The functionality and its behaviour of the DF agent is de�ned in the
FIPA standard which is the base for the implementation of JADE.
The second type of agents is called functional agent (e.g. task or order

agents) which have the same design but miss the LLC Layer which is not re-

45

4 Implementation

quired for this type of agents. The ontology of the physical agents for the test
plant is represented in Figure 4.4.

It consists of following automation agents:

• two tanks T101 and T102 which can be �lled with some liquid respec-
tively can o�er liquid which will be transported to the other tank

• one pump P101 which is able to pump the liquid (depending on the
condition of the valves) from one tank to another

• six valves V101-V106 which are able to impact the used direction of the
liquid depending on their condition

• several pipes L101-L108 which connect the devices with each other.

T101T102

V101

V106

V107

V102

V109 V104 P101

L101

L102

L103L104

L105

L106

L107

L108

Figure 4.4: This Figure illustrates the test topology of the equipment at the
Odo Struger Laboratory. It represents the hardware which is used
by the test plant in Figure 1.2. The symbols are based on the
IEC Standard 14617 that describes the graphical representation of
devices which are used for a representation of batch oriented plants.

The graphical representation of the ontology is based on the IEC Standard
14617 which describes the graphical representation of the devices used in the
ontology. The implementation of a visualization should follow the same stan-
dard to be able to provide consistent illustration of the equipment within a
plant.

46

4.2 Test Equipment at the Odo Struger Laboratory

Furthermore following functional agents (without a physical part) are used
to manage the physical agents included in the ontology [MLSV10]:

• The Order Agent represents the interface to an external source. The
agent o�ers the ability to generate new orders either by a human or an
external application. It identi�es the corresponding recipe to generate
the ordered product, creates a new job and noti�es the Task Agent to
process the new order.

• The Task Agent is responsible for the execution of new jobs. It eval-
uates the agents at the Directory Facilitator that provide the accurate
equipment to perform the requested job. The recipe is splitted in tasks
and passed through to the Work Agents which will perform the tasks.
After all tasks are �nished the agent noti�es the Order Agent about the
completion of the batch process.

• The Work Agent is responsible for the execution of the tasks. It makes
decisions for possible routing paths and sends commands to the automa-
tion agents which control the needed equipment (or indirectly through
Recipe Agents). Calculated route proposals are made public through a
prede�ned message sent by the work agent (the content is described in
table 4.1). After �nishing a task the Work Agent informs the Task Agent
and waits for new tasks to perform.

• A full set of commands (recipe) is executed by the speci�c Recipe Agent.
It receives its commands from the Work Agent to perform its underling
process.

• A Failure Handling Agent monitors the system - by receiving failure
noti�cations - for a possible appearance of anomalies - and is able to
execute supervisory functions to bring the system back into a nearby
optimal state.

Those agents are not included in the ontology because they do not have any
physical part which could have a possible impact on routing path decisions of
the medium that has to be transported. Nevertheless these agents are essential
for a successful interaction and cooperation of all agents.

Beside the multi-agent system's point of view an agent can also represent (see
Section 4.1 for details) di�erent logical states that re�ect the current condition

47

4 Implementation

OnStart
Offline Idle Running

Off

Start

Over

F
ailure

Failure

Aborted

Stop
R
es
et

Reserved

Completed

R
eserveC

an
ce
l

Pause

Pa
us
ed

Re
su
m
e

Reinstate

Held

H
old

R
es
ta
rt

St
ar
t

Figure 4.5: The state diagram �gures possible states of an automation agent
and the relations between the states.

of an agent. Possible states and their transitions are visualized in Figure 4.5.
The noti�cation for changes of states is done through messages sent by the
e�ected agent. The determining message content is illustrated in table 4.1.

4.3 Framework Decision

This Section will describe the decision process for the underlying technology
of the implementation. In the choice of technology, great importance has been
attached to platform and manufacturer independence. Platform independence
is mostly provided by Java based IDEs but to avoid licensing con�icts in the
future the underlying licenses have also been included by making the decision.

48

4.3 Framework Decision

Message Values for

Property Route Proposal Agent State Change

Sender any mapped agent a�ected agent
Receiver any mapped agent a�ected agent
Performative 'inform' 'inform'
Content names of the proposed routes number of the new state

separated by a comma
Ontology 'route-proposal' 'status-update'

Table 4.1: This table lists a�ected attributes that are used by two specialized
messages provided by the MAS implementation.

The following list roughly compares the �ve most popular IDEs1 (see Table
4.2 for details):

• Eclipse2 is a product of the Eclipse Foundation and licensed under the
terms of the Eclipse Public License. The Eclipse Foundation is a not-for-
Pro�t organization which provides services to the community but does
not employ any developers. Source Code for eclipse projects is developed
by volunteers and organizations for no charge [ecla]. The Eclipse IDE
roughly consists of a base and many plugins which provide the function-
ality. Furthermore it can be used to develop own applications on top of it
(or by using the Rich Client Platform (RCP) for standalone applications
without any need of IDE functionality).

• IntelliJ IDEA3 is a product of JetBrains and available under two di�er-
ent licenses. The community edition is open source and licensed under
the Apache 2.0 license. The second edition is commercial and can be
purchased under di�erent licenses depending on the �eld of application.
The two versions di�er in their range of functions [int] and in its covered
support. IntelliJ IDEA is based on Swing, also supports the usage of
plugins to enhance the functionality of the IDE and can be used as base
for own applications.

• NetBeans4 is completely open source and developed by Oracle. It is cur-
rently available under two di�erent licenses, the GPL5 and the CDDL6.

1Integrated Development Environment
2http://www.eclipse.org/
3http://www.jetbrains.com
4http://netbeans.org/
5Gnu Public License
6Common Development and Distribution License

49

4 Implementation

NetBeans also supports - as Eclipse and IntelliJ - the usage of Plugins
and can be used as base for own applications. NetBeans itself is based
on Swing.

• MyEclipse7 is a product of genuitec and is based on the Eclipse Platform.
MyEclipse is - in contrast to Eclipse - a commercial product and o�ered
in di�erent versions which vary in their range of supported functional-
ity. Technically MyEclipse o�ers the same features as the Eclipse IDE
regarding the usage of Plugins but the standard coverage of functionality
varies depending on the edition.

• JDeveloper8 is - as NetBeans - a product developed by Oracle but cov-
ered by a proprietary license (OTN9 JDeveloper License). The software
can freely be used to develop applications for non commercial usage.
Any commercial usage of products developed with JDeveloper presume
another license [jde]. The development platform targets the development
of applications which are in conjunction with other Oracle products and
is not suited for the production of own products on top of it.

Eclipse IntelliJ IDEA NetBeans MyEclipse JDeveloper
Technology SWT Swing Swing Eclipse based Swing
Developer The Eclipse JetBrains Oracle genuitec Oracle

Foundation Corporation Corporation
License EPL Apache 2.0 GPL Commercial OTN JDeveloper

License/ License
Commercial (Proprietary)

Table 4.2: Comparison of the most popular IDEs

Note that through the acquisition from Sun through Oracle the company
became responsible for NetBeans. Since this purchase Oracle has to develop
and maintain two development platforms (JDeveloper and NetBeans). Be-
side these two IDEs - as Eclipse Foundation Member - Oracle has committed
support of 6 fulltime developers to the Eclipse Foundation and JDeveloper
is still heavily integrated into Oracle's tool chain which is seen as strategic
development tool for Oracle's applications. Nevertheless Oracle has assured
that the support of all three development platforms will be continued but the
focus of supported �gures and technologies in JDeveloper and NetBeans will
di�er [net]. Nevertheless the further development progress of NetBeans has to

7http://www.myeclipseide.com/
8http://www.oracle.com/technetwork/developer-tools/jdev/overview/index.htm
9Oracle Technology Network

50

4.4 Eclipse based Technologies

be followed to be able to decide if it could be used as platform for possible
future development.

Figure 4.6: Comparison of IDE popularity from a survey of over thousand Java
developers [ide].

Based on a survey among more than thousand developers Eclipse is by far
the most popular development platform (see Figure 4.6) used by developers
(not only Java) and furthermore the only platform which is by whole developed
by the community. It is seen as �rst choice for developing a new visualization
with a considered integration into the agent development process.

4.4 Eclipse based Technologies

Due to the fact that Eclipse is the most popular development platform it is
desirable to integrate the proposed approach in Chapter 3 into the development
process of the agents to achieve a shortened time of development.
Eclipse (respectively the Eclipse SDK) that is built on top of the Rich Client

Platform (which is based on the OSGI10 framework) framework o�ers a fea-
ture rich fundament for an expandable platform. This fact can be utilized

10Open Services Gateway initiative

51

4 Implementation

Figure 4.7: Architecture of the Eclipse IDE on top of the RCP framework.
Furthermore the possible enhancement through plugins is illus-
trated [Eclc].

to integrate the presented approach into existing Eclipse IDEs. Already im-
plemented features as the update feature can be very helpful to provide the
following implementation as extension via an Eclipse update site (Figure 4.7
gives an overview of the Eclipse SDK and its comprised features). An impor-
tant fact is the usage of the plugin pattern from the Eclipse architecture:

• A plugin represents a component that can provide a certain type of
service to others. It de�nes among others it's classes' visibility, its exten-
sions, extension points and dependencies through a manifest �le (XML
document) which is interpreted by the Eclipse runtime.

• A plugin can provide extension points which can be used by other
plugins to hook an extension into an existing plugin. This can be
seen as a kind of enhancement of an existing plugin or as interface for
other plugins to achieve a higher replaceability and �exibility through
independent software parts.

52

4.4 Eclipse based Technologies

• Plugins which belong to the same type of context can be combined to a
feature (e.g. visualization feature) that can be o�ered - through an up-
date site - to other developers for a simple integration into their existing
IDE.

The clari�ed characteristic already ful�lls parts of the requirements from the
presented approach. The proposed design principals of Eclipse enhancements
are used to de�ne the design of the implementation of the approach presented
in Chapter 3 and is structured as follows:

• at.rodler.graphiti contains the graphical editor which provides all func-
tionality to create a diagram of a multi-agent system. Furthermore it
represents the re�ection of the data within the Data Model in o�ine and
online mode and o�ers the possibility to view the data gathered through
the OPC UA interface in online mode.

• at.rodler.emf.model involves the de�nition and the corresponding
classes of the data model.

• The plugin at.rodler.emf.model.edit adds additional functionality to
display and modify the data within the model through generated prop-
erty sheets.

• at.rodler.dataexchange handles incoming data provided by the Data
Collection Layer and writes the data to the Data Model. Furthermore it
informs the Visualization Layer to refresh the content on demand.

• at.rodler.datacollection.jade is responsible to gather data from an
existing MAS (in case of the implementation - from JADE).

Figure 4.8 illustrates the tiers of the architecture and their corresponding
plugins mentioned above.
It is pursued to use as much standardized software components as it is

possible. This practice should minimize the code maintenance and should
produce a better code quality with less bugs to ease further development.
Furthermore it minimizes the need for developer resources to enhance the
existing functionality of underlying frameworks. The following Sections include
a short overview of the used external features to achieve the desired goals beside
the usage and implementation details of the presented approach in Chapter 3.
The presented implementation is based on the Eclipse Version 3.8.1 with the
corresponding build id: M20120914-1540.

53

4 Implementation

at.rodler.feature

OPC UA

at.rodler.dataexchange

MAS

at.rodler.feature

OPC UA

at.rodler.dataexchange

MAS

Figure 4.8: The application is splitted into several plugins which are allocated
to a speci�c layer depending on its responsibilities. All plugins are
combined to a feature. The middle layer o�ers an extension point
for data collection interfaces.

4.5 Data Model

An important component of the design approach is the generation of the Data
Model. This should be achieved without much e�ort by the developer. Eclipse
provides amongst its projects (a full list of all projects is available under [eclb])
the Entity Modeling Framework (EMF) that o�ers - in combination with other
EMF based frameworks - a well developed base for the needed features of data
handling and visualization tasks. The EMF framework is an Eclipse based
modeling framework which automates code generation based on information
that can be provided through several di�erent sources (see Figure 4.9). Fur-
thermore the Eclipse Modeling Framework Technology (EMFT) project pro-
vides a rich set of components to create, edit and maintain EMF models within
a graphical environment. The EMF Core part of the EMF projects consists of
three major parts [emf]:

EMF core features contain a meta model for describing EMF models. One of

54

4.5 Data Model

EMF-
Model

UML

XML

Annotierten
Interfaces

Source Code

Figure 4.9: This Figure illustrates possible sources which can be used to gen-
erate code with the EMF framework.

the main components are (Figure 4.10 illustrates the component map-
ping) EClass, EAttribute, EReference and EDataType. They already
cover a great part of the needed meta data components to create an EMF
meta model.

EMF.edit contains several features which eases the manipulation of EMF
models. This includes prede�ned JFace11 components and property sheets,
label providers and property source support for the generation of a
generic UI that allows the modi�cation of a generated EMF model. A
further part is a command framework that automatically supports undo
and redo of data manipulations.

EMF.codegen compromises all features that support code generation of:

• the models itself which includes interfaces, class implementations,. . .

• Adapters which adapt the model classes for editing and illustration

• Editors which support the modi�cation of model elements

Write access on entities is executed through the EMF Transaction Model12

which prohibits access violations through concurrent write operations at at-
tributes. Additionally the Extended Editing Framework (EEF) - currently

11Eclipse UI Toolkit that supports the model view controller pattern
12http://eclipse.org/modeling/emf/?project=transaction

55

4 Implementation

part of the EMFT project - is used to generate visual editing components and
property sheets based on SWT13 and JFace to manipulate the data contained
in the Data Model.

Figure 4.10: The diagram shows the mapping between EMF classes end the
equivalent java classes [Hel].

Figure 4.11 illustrates the class diagram that is implemented with the EMF
framework and based on the concept presented in Section 3.1.2. It is extended
with following objects:

• Valve, Tank and Pump are application speci�c agent implementations
that have a physical component and can be connected within a diagram.
They are derived from the PhysAgent class and their graphical represen-
tation is de�ned in the XML con�guration �le.

• TaskAgent, OrderAgent, WorkAgent and FailureHandlingAgent are
functional agents which means that their counterpart in an MAS does
not have a physical component and they do not have the ability to be
connected with other agents.

The abstract class InspectableObject used in the design approach (see Sec.
3.1.2) has not been implemented because the needed features to support the
observer pattern are implemented automatically by EMF at the generation of
the source code. Furthermore all instances of an EMF domain model are kept
together by an EResource object that keeps references of all created objects.

13Standard Widget Toolkit

56

4.5 Data Model

PhysAgent

medium : EString
transferState : EString
functionalState : EString
unit : EString

AgentConnection

name : EString
medium : EString
transferState : EInt
length : EInt
diameter : EFloat
unit : EString
routing : EInt
_proposed : EBoolean

Valve

serviceState : EString
routing : EString

Tank

capacity : EString
currentLevel : EString

Pump

serviceState : EString
routing : EString

<<enumeration>>
Direction

IN
OUT
BOTH

Link

direction : Direction

ConnectableObject

Agent

name : EString
_messageSend : MessageState
_messageReceived : MessageState
_onlineState : OnlineState
_agentState : AgentState

Message

content : EString
performative : EString
timeStamp : EDate
_status : EBoolean

<<enumeration>>
OnlineState

OFFLINE
ONLINE
UNSPECIFIED

<<enumeration>>
MessageState

SINGLE_MESSAGE
MULTIPLE_MESSAGES
NONE

<<enumeration>>
AgentState

OFFLINE
IDLE
RUNNING
PAUSED
HELD
COMPLETED
RESERVED
ABORTED
FAILURE

OrderAgentTaskAgent

WorkAgentFailureHandlingAgent

sent

0..*

received

0..*

links

0..*

agent

0..1

sender

0..1

receiver

0..*

connection

0..1

Figure 4.11: The diagram represents the data model created with the EMF-
Editor in Eclipse.

This allows a simple access to all objects in di�erent parts of the application
(an example of gathering objects from a resource can be seen in Listing 4.1)
and makes the creation of a ModelManager (presented in the design approach
at Sec. 3.1.2) obsolete.

1 /∗∗
2 ∗ Searches f o r ob j e c t s in a diagram with the g iven EClass .
3 ∗
4 ∗ @param diagram Diagram
5 ∗ @param e c l a s s EClass o f the ob j e c t s which should be

searched f o r
6 ∗ @return L i s t o f ob j e c t s with the cor re spond ing EClass
7 ∗/
8 pub l i c s t a t i c L i s t ge tOb j ec tL i s t (Diagram diagram , EClass

e c l a s s) {

57

4 Implementation

9 Co l l e c t i on<Object> l i s tOb j ;
10 // get Resource
11 Resource r = diagram . eResource () ;
12 // r e t r e i v e ob j e c t s
13 l i s tOb j = EcoreUt i l . getObjectsByType (r . getContents () ,

e c l a s s) ;
14
15 re turn new ArrayList (l i s tOb j) ;
16 }

Listing 4.1: Any kind of objects derived from de�ned EClass (e.g. Agent,
AgentConnection, . . .) can be gathered through a simple
command from a resource (line 13) The whole functionality - to
gather objects from a diagram - is encapsulated into a helper
method.

The following work�ow generates the source code for the entire Data Model :

• Generation of the UML diagram within the provided EMF editor.

• Generation of the model source �les through EMF features.

• Generation of the edit code through EMF features.

• Additional generation of the properties pages through EEF. For devel-
opment purposes all features have been left within the properties pages.
In practice at least internal features would be removed.

The Data Model respectively the instances of the contained classes can be
seen as key turning point of all agent relevant data. The only source code
modi�cations that have been performed by hand - at the generated source
code by EMF - concerns the toString method (see Listing 4.2) which is used
as central access point to gather the textual content representation of a class.
The method is marked as modi�ed by removing the @generated entry in the
comment of a method (see line 5). Further modi�cations of the class diagram
and new generation of modi�ed source code through EMF to not override
manual code modi�cations. This can be seen as important feature and allows
the extension of generated source code and further administration of the class
diagram through the provided graphical EMF diagram editor and the usage of
source code generation utilities provided by the framework.

58

4.5 Data Model

1 /∗∗
2 ∗ <!−− begin−user−doc −−>
3 ∗ Customized toS t r i ng method
4 ∗ to r ep r e s en t the content o f a message in the r i g h t
5 ∗ manner .
6 ∗ <!−− end−user−doc −−>
7 ∗
8 ∗ @generated
9 ∗/
10 @Override
11 pub l i c S t r ing toS t r i ng () {
12 i f (eIsProxy ())
13 re turn super . t oS t r i ng () ;
14
15 S t r i ngBu f f e r r e s u l t = new St r i ngBu f f e r () ;
16 // add sender
17 i f (sender != nu l l) {
18 r e s u l t . append (sender . getName ()) ;
19 }
20 // Add a l l r e c e i v e r s
21 i f (r e c e i v e r != nu l l) {
22 i f (! r e c e i v e r . isEmpty ()) {
23 r e s u l t . append ("−>") ;
24 f o r (Agent agent : r e c e i v e r) {
25 r e s u l t . append (agent . getName ()) ;
26 r e s u l t . append (" , ") ;
27 }
28
29 r e s u l t . deleteCharAt (r e s u l t . l ength () − 1) ;
30 }
31 }
32 r e s u l t . append (" (") ;
33 //add per fo rmat ive
34 r e s u l t . append (per fo rmat ive) ;
35 //add content
36 r e s u l t . append (" , ") ;
37 r e s u l t . append (" content : ") ;
38 r e s u l t . append (content) ;
39 r e s u l t . append (') ') ;
40
41 re turn r e s u l t . t oS t r i ng () ;

59

4 Implementation

42 }

Listing 4.2: The listing illustrates the modi�ed toString method of the
MessageImpl class generated by EMF. The @generated entry in
line 5 has to be removed to prevent the method of overriding
through EMF source code generation.

As already mentioned above all data content can be modi�ed through prop-
erty sheets generated by the EEF framework (see Figure 4.12 for an example).

Figure 4.12: This illustration represents the property sheet for a selected
AgentConnection generated through the EEF framework. The
headline AgentConnection at the top is provided through a cus-
tomized implementation of the PropertiesEditionSelection

class.

But to be able to use their features with the Graphiti framework (see Section
4.8 for details) several modi�cations had to be ful�lled:

• The creation of a customized property sheet label provider that repre-
sents the correct name of the corresponding domain model member of
an entity (e.g. Tank for a tank object).

• Adaption of the contributorId to the corresponding id used in combi-
nation with Graphiti (see Section 4.8).

• The implementation of a customized object �lter which only accepts ob-
jects of the Graphiti editor that have an underlying EObject as business
object behind a pictogram element and

60

4.6 Data Collection Layer

• a customized PropertiesEditionSelection class which returns the cor-
responding domain model entity to the selected object in the editor. The
two last points are based on the work done at [SeB].

• The generated property sheet class (LinkPropertiesEditionComponent)
of the Linkmodel had to be modi�ed due to concurrent write transaction
violations. Furthermore a manual call of the update feature was required
to update the content of the visual editor.

The �rst four described modi�cations have also in�uenced the extensions (which
are de�ned in the plugin.xml �le) that have been automatically generated by
the EEF framework.

4.6 Data Collection Layer

This layer implements the provided interfaces de�ned in the Data Exchange
Layer. Furthermore it uses the provided extension point of the upper layer to
register the implementation of the DataCollector as extension (see Listing 4.3
for details) that provides a connection to the JADE multi-agent system.

<extens i on
po int="at . r o d l e r . dataexchange . da taCo l l e c t o r ">

<dataCo l l e c t o r
c l a s s="at . r od l e r . jade . d a t a c o l l e c t i o n .

d a t a c o l l e c t o r . JadeDataCol lector "
masName="JADE">

</dataCo l l e c to r>
</extens ion>

Listing 4.3: The extension for the de�ned extension point is de�ned in the
plugin.xml �le of a plugin. The de�nition contains the fully
quali�ed class name (attribute class) and the name of the
supported MAS (attribute masName).

The JADE framework already provides additional plugins that ease the in-
tegration and connection of an agent within an OSGI14 framework (Eclipse
is based on OSGI) to the JADE platform (see [QC] for details). A sample
implementation of a Sni�er [sni] is used as base for a customized Sni�er imple-
mentation. It has been modi�ed according to the requirements of this layer.

14Open Services Gateway Initiative

61

4 Implementation

1 @Override
pub l i c void s t a r t () throws DataCol l ectorExcept ion {

3 // throw except ion i f s n i f f e r a l r eady e x i s t s
i f (s n i f f e r == nu l l) {

5 BundleContext context = Act ivator . getBundleContext () ;
// Ret r i eve the JRS s e r v i c e

7 St r ing jrsName = JadeRuntimeService . c l a s s . getName () ;
Se rv i ceRe f e r ence<JadeRuntimeService> j r sRe f = (

Serv i ceRe f e rence<JadeRuntimeService >) context
9 . g e tSe rv i c eRe f e r enc e (jrsName) ;

JadeRuntimeService j r s = (JadeRuntimeService) context
11 . g e tS e r v i c e (j r sRe f) ;

13 t ry {
// c r e a t e s n i f f e r agent and r e g i s t e r l i s t e n e r s

15 s n i f f e r = new Sn i f f e r () ;
s n i f f e r . addAgentEventListener (new

IJadeAgentEventListener () {
17 .

.
19 .

21 }) ;
s n i f f e r . addMessageListener (new IJadeMessageListener

() {
23 .

.
25 .

}) ;
27

// Make JADE accept the new agent
29 jade . wrapper . AgentContro l l e r ac ;

ac = j r s . acceptNewAgent (GRAPHITI_CONTAINER, s n i f f e r
) ;

31 ac . s t a r t () ;
} catch (Exception e) {

33 // except ion occurred during c r e a t i on and
r e g i s t r a t i o n o f agent

throw new DataCol lectorExcept ion (e) ;
35 }

} e l s e {

62

4.6 Data Collection Layer

37 throw new DataCol lectorExcept ion (ERROR_ALREADY_STARTED
) ;

}
39 }

Listing 4.4: This Listing contains the source code from the start method of
the implemented DataCollector interface provided by the upper
layer.

The start method of the JadeDataCollector is responsible for the cre-
ation and registration of a sni�er agent at the JADE platform. The Jade-

RuntimeService takes care about the creation of a container and the registra-
tion of the agent (line 30 at Listing 4.4) after the creation of a Sniffer and the
corresponding listeners for noti�cations (line 15 to 26). The methods of the
listeners simply forward the noti�cation to an internal method that translates
the JADE ACLMessage respectively the AID of an agent into a de�ned format
that can be managed by the upper layer. This procedure releases all other
parts of the application form dependencies concerning the JADE framework.
The message content of a JADE message is transfered into a HashMap to reach
a higher �exibility for the implementation of new features and supported mes-
sage content (as proposed in 3.1.4). The data�ow from an upcoming event
within JADE for a registered agent (the Sniffer has to be registered for all
agents for which noti�cations should be received) until the information arrives
at the Data Exchange Layer is described in Figure 4.13.

Figure 4.13: The sequence diagram illustrates the noti�cation path from
JADE to the Data Exchange Layer through the implemented
JadeDataCollector. The implemented DataCollector can be
seen as gateway and encapsulates the JADE framework from the
rest of the application.

63

4 Implementation

4.7 Data Exchange Layer

The plugin at.rodler.dataexchange contains all necessary classes that are needed
to provide the interface to the Data Collection Layer described in Section
3.1.2. This implies a provision of the DataCollector and its corresponding
interfaces. The implementation follows the approach proposed in Section 3.1.4.
Furthermore this layer uses the extension point feature of the eclipse frame-
work to register an extension point that allows the registration of multiple
DataCollectors of di�erent multi-agent system interfaces.
The Extension Point requires following information for registration by other

plugins:

masName - the name of the multi-agent system to which the registered ex-
tension belongs to.

class - the full quali�ed class name of the implementation from the IData-

Collector interface.

The ability to start online monitoring is also provided by this layer. It
registers two buttons to connect and disconnect from an MAS at the Eclipse
platform which is shown in the toolbar of the IDE (see Figure 4.14 for the
graphical representation). At the activation of this button all registered ex-

(a) Connect (b) Disconnect

Figure 4.14: These buttons are provided to connect and disconnect to a multi-
agent system.

tensions are gathered from the system (see Listing 4.5 at line 2) and - if there
exists more than one registration - visualizes available Datacollectors to the
user to select the corresponding one (from line 17 to line 38). The name of the
MAS is used for the selection of an extension (the masName attribute of the
extension contains the name of the MAS to which the DataCollector corre-
sponds to). After choosing the MAS the corresponding DataCollector will
be created (see line 37).

64

4.7 Data Exchange Layer

1 // get r e g i s t e r e d d a t a c o l l e c t o r implemenations
2 IConf igurat ionElement [] c o l l e c t o r s = He lpe rUt i l
3 . ge tDataReg i s t e redDataCo l l ec to r s () ;
4
5 // r e g i s t r a t i o n s e x i s t
6 i f (c o l l e c t o r s . l ength != 0) {
7
8 IDataCo l l e c to r dc = nu l l ;
9
10 // the re e x i s t s only one r e g i s t r a t i o n
11 i f (c o l l e c t o r s . l ength == 1) {
12 // c r e a t e d a t a c o l l e c t o r
13 dc = He lpe rUt i l . g e tDataCo l l e c to r (c o l l e c t o r s [0]) ;
14 } e l s e {
15 //mul t ip l e r e g i s t r a t i o n s e x i s t
16 // c r e a t e s e l e c t i o n d i a l o g
17 E l ementL i s tSe l e c t i onDia l og d i a l o g = new

ElementL i s tSe l e c t i onDia l og (
18 PlatformUI . getWorkbench ()
19 . getActiveWorkbenchWindow () . g e t Sh e l l () ,
20 new LabelProvider () {
21
22 @Override
23 pub l i c S t r ing getText (Object element) {
24 //show MAS name as l a b e l
25 IConf igurat ionElement c on f i g = (

IConf igurat ionElement) element ;
26 re turn con f i g . g e tAt t r ibute ("masName") ;
27 }
28 }) ;
29
30 d i a l o g . setBlockOnOpen (t rue) ;
31 d i a l o g . s e tMu l t i p l e S e l e c t i o n (f a l s e) ;
32 d i a l o g . setElements (c o l l e c t o r s) ;
33 i f (d i a l o g . open () == ElementL i s tSe l e c t i onDia l og .OK) {
34 Object [] r e s u l t = d i a l o g . ge tResu l t () ;
35 i f (r e s u l t . l ength == 1) {
36 // c r e a t e s e l e c t e d d a t a c o l l e c t o r
37 dc = He lpe rUt i l
38 . ge tDataCo l l e c to r ((IConf igurat ionElement)

r e s u l t [0]) ;

65

4 Implementation

39 }
40 }
41 }

Listing 4.5: This is an extract of the source code from the connect button (see
Figure 4.14(a)) handler. All registered DataCollector extensions
are fetched. If there is more than one registration than the user
will be able to select the corresponding MAS by its name. The
instance will be created after a successful selection.

The transfer of information provided by the multi-agent system - through
sni�ed messages or noti�cations - is achieved through listeners registered at
the DataCollector.

• AgentEventListener is derived from a default implementation of IAgent-
EventListener. It is responsible to transfer agent relevant state noti�-
cations - related to the MAS - to the Data Model.

Following classes implement the IMessageListener interface and gather
their information from sni�ed messages:

• AgentStateListener - transfers state updates of agents to the corre-
sponding entity in the Data Model. The identi�cation of relevant mes-
sages containing state changes is based on the information presented in
Table 4.1.

• MessageListener - embeds sni�ed messages of mapped agents into the
Data Model and sets the corresponding internal attributes of each agent
(_messageSent or _messageReceived - depending on the demands) and
sets an _status �ag of those messages which are new. A MessageTimer

is used to reset changed attributes after a speci�c amount of time. The
listener uses a HashMap to recognize �duplicate� messages (as proposed
in Sec. 3.1.4. Those messages can occur if they are sent and received by
observed agents. To prevent double entries a hashcode is generated and
stored in the mentioned map. If a second event with the same message
occurs only the internal attributes will be set without the creation and
saving of the message itself.

• RouteProposalListener - is responsible to handle route proposals sent
by one of the mapped agents. It changes the _proposed attribute of
all listed connections and activates an AttributeTimer which resets the
a�ected attributes after a speci�c amount of time. This is a universal

66

4.7 Data Exchange Layer

timer and can be used with any attribute of the Data Model. The iden-
ti�cation of relevant messages containing route proposals is based on the
information presented in table 4.1.

All above mentioned listeners use the transaction framework provided by
the EMF Model Transaction (EMF-MT) project to execute their write opera-
tions at entities who are part of the domain model. This should avoid access
violations through concurrent write access at attributes.
The recognition and and forwarding of a route proposal created by one of

the sni�ed agents and processed by the RouteProposalListener is used as
showcase to explain the procedure processing an incoming event. Listing 4.6
illustrates the treatment of an incoming �sent message� event. First of all at
line 7 the method will check if the incoming message is from interest through
the equation of the ontology attribute (its expected value is de�ned in table
4.1). If the value matches with the expected value the method will gather all
proposed agent connections from the message content (at line 8 and 9). At last
the _proposed �ag will be set at all contained connections (from line 12 to 14).

The method named setRouteProposed is presented in Listing 4.7 and sets
the corresponding �ag at the a�ected connection. The Transaction Model
framework is used to change the value (from line 11 to 17). From line 20 to
26 a AttributeTimer is created which resets the �ag after a speci�c amount
of time. Only one timer will be created in this time span for each connection
independently of the incoming proposals. The task will delete itself from the
map after it has been executed.

1 @Override
2 pub l i c void sentMessage (Map<Str ing , Str ing> msg , Date date)
3 {
4 St r ing onto logy = msg . get (MessagePropert i e s .ONTOLOGY) ;
5
6 // check onto logy
7 i f (onto logy != nu l l) {
8 i f (onto logy . equa l s (MessagePropert i e s .

ONTOLOGY_ROUTE_PROPOSAL)) {
9 St r ing [] proposedRoutes = msg . get (MessagePropert i e s

.CONTENT)
10 . s p l i t (MessagePropert i e s .

SEPARATOR_ROUTE_PROPOSAL) ;
11
12 // walk trough a l l conta ined connect ions
13 f o r (S t r ing route : proposedRoutes) {

67

4 Implementation

14 setRouteProposed (route , t rue) ;
15 }
16
17 ed i t o r . r e f r e shContent () ;
18 }
19 }
20 }

Listing 4.6: The sentMessagemethod of the RouteProposalListener handles
incoming route proposals and forwards the information to the Data
Model. Attribute values are modi�ed in the setRouteProposed

method called at line 13 for every proposed agent connection
(explained in Listing 4.7).

1 p r i va t e void setRouteProposed (S t r ing routeName , f i n a l
Boolean value) {

2 f i n a l AgentConnection connect ion = He lpe rUt i l .
getConnect ion (diagram ,

3 routeName) ;
4
5 // check i f connect ion e x i s t s
6 i f (connect ion != nu l l) {
7 // get e d i t i n g domain
8 f i n a l Transact ionalEdit ingDomain domain = ed i t o r .

getEditingDomain () ;
9
10 // c r e a t e command
11 Command cmd = domain . createCommand (
12 SetCommand . c l a s s ,
13 new CommandParameter (connect ion , ModelPackage .

eINSTANCE
14 . getAgentConnection__proposed () , va lue)) ;
15
16 // execute command
17 domain . getCommandStack () . execute (cmd) ;
18
19 // only c r e a t e t imer i f no one e x i s t s
20 i f (! mapTimer . containsKey (routeName)) {
21 Attr ibuteTimer task = new Attr ibuteTimer (connect ion

, ed i to r ,
22 ModelPackage . eINSTANCE.

getAgentConnection__proposed () ,
23 mapTimer , new Boolean (f a l s e)) ;

68

4.8 Graphical User Interface

24 mapTimer . put (connect ion , task) ;
25
26 t imer . s chedu le (task , PROPOSAL_DELAY) ;
27 }
28 }
29 }

Listing 4.7: This method is called within the sentMessage method of the
RouteProposalListener and changes the _proposed �ag of
a AgentConnection to the given value by using the EMF
Transaction Model (line 11 to 17). Furthermore a TimerTask is
created - only if no one exists for the speci�c connection - which
resets the �ag after a speci�c amount of time (from line 20 to 26).

All other listeners use the same approach as illustrated with the example
above and as proposed in Section 3.1.4.

4.8 Graphical User Interface

This Section will describe the implementation of the Visualization Layer with
the aid of the Graphical Tooling Infrastructure (Graphiti) project. It will give
a short introduction to the Graphiti project and furthermore detailed informa-
tion about the implementation to reach the desired goals presented in Section
3.1.5.

Several frameworks have been tested to �nd the ideal framework for the de-
sired demands. Particular attention was also paid to the Graphical Editing
Framework (GEF) and the Graphical Modeling Framework (GMF) and were
also tested through the implementation of a simple editor but Graphiti (which
is based on GEF and Draw2D but hides its complexity) �ts best do the desired
demands which are re�ected in the main goals of the project [graa]:

• to hide the platform speci�c technologies from the developer

• to provide a rich set of default implementations within the framework

• and to provide a de�ned look and feel that has been designed in close
cooperation with usability specialists.

These goals can be seen as bene�t for the realization of the designated ob-
jectives de�ned in 3.1.5.

69

4 Implementation

The Graphiti project was founded by developers of the SAP AG and was
at �rst only designated for internal use. In the year 2007 SAP decided to give
the project under the Eclipse Public License and handed the source code over
to the Eclipse Foundation [jax]. Nevertheless over 90 percent of the commits
within the last three months are still done by employees of SAP (there have
been 65 commits within this time span) [graa]. The activity of an project can
also be seen as an indicator of its health and potential life time and should be
observed prior of the decision for a particular open source framework.
Graphiti's basic approach is to isolate the graphical and logical informa-

tion. Figure 4.15 (b) illustrates the separation of concern. The domain model
based on EMF is responsible for the logical information and linked through the
Link Model with the corresponding Pictogram Model that keeps the graph-
ical information (but is still platform independent) for the visualization of
an object. Due to the integrated support of EMF models Graphiti takes
also care about the saving and restore of the diagram and domain model in-
formation. This could also be separated if other storage destinations (e.g.
database) are required. As illustrated in Figure 4.15 (a) inputs by the user
are forwarded by Graphiti to the DiagramTypeAgent. This class contains
the DiagramTypeProvider and corresponding FeatureProvider with the cus-
tomized features. Thanks to Graphiti there are already plenty of standard
implementations of features that - if at all - only need to be extended. In this
case the DiagramTypeAgent provides the customized FeatureProvider which
is responsible to return the adequate feature for the given user input.

@Override
pub l i c ICreateFeature [] ge tCreateFeatures () {

// automatic gene ra t i on o f the c r e a t e f e a tu r e e n t r i e s
depending on the

// c on f i g
t ry {

// get c on f i g u r a t i on
IMemento memento = Conf igHelper . getReadRoot () ;

L i s t<ICreateFeature> eL i s t = new ArrayList<
ICreateFeature >() ;

// search f o r agents in the data model which are
de f ined in the

// g raph i c a l c on f i g u r a t i on
f o r (IMemento ch i l d : memento . getChi ldren (

Conf igConstants .AGENT)) {

70

4.8 Graphical User Interface

St r ing clsName = ch i l d
. g e tS t r i ng (Conf igConstants .

AGENT_ATTRIBUTE_NAME) ;
EClass c l s = (EClass) ModelPackage . eINSTANCE

. g e tEC l a s s i f i e r (clsName) ;
// i f the agent e x i s t s in the g raph i c a l

c on f i gua r t i o n and in the
// model an Create Feature w i l l be c rea ted
i f (c l s != nu l l) {

eL i s t . add (new CreateAgentFeature (th i s , c l s)) ;
}

}

re turn eL i s t . toArray (new ICreateFeature [0]) ;
} catch (Exception e) {

e . pr intStackTrace () ;
}

re turn nu l l ;

}

Listing 4.8: The FeatureProvider reads the graphical de�nition and will
create a CreateAgentFeature for the speci�c agent if it exists
in the de�nition in the Data Model. All agents that occur in both
de�nitions are available for the user in the diagram.

The implemented FeatureProvider creates Create Features dynamically
by matching the names of agents de�ned in the graphical de�nition stored in
an XML �le (see Listing 4.9 for an example) with the Data Model (see List-
ing 4.8 for details). The graphical de�nition has mainly followed the approach
presented in Section 3.1.5 and has been enhanced to be able to use additional
graphical capabilities provided by Graphiti (as shown in Listing 4.9 the before
and after attributes allow the creation of rounded edges).

<agents>
<agent name="Tank">

<shape name="polygon" f i l l e d=" f a l s e "
l ineWidth="2">

<point x="0" y="0" be f o r e="20" a f t e r
="20" />

71

4 Implementation

<point x="0" y="100" be f o r e="20"
a f t e r="20" />

<point x="100" y="100" be f o r e="20"
a f t e r="20" />

<point x="100" y="0" be f o r e="20"
a f t e r="20" />

</shape>
</agent>

</agents>

Listing 4.9: The Listing shows an example of a graphical de�nition from an
agent in the de�nition �le. The agent tag holds a name attribute
which contains the agent name. The graphical de�nition is done
with shapes. The name of the shape de�nes the type of the graphic
(in this case a polygon). Child objects of the polygon de�ne the
edges of it (before and after can be used to form rounded edges).

In following the used features are described in their general functionality:

• Create Features are responsible for the creation of the model entity. It
creates an entity and if necessary can request user interactions (to request
a name for an object). After a successful creation of the business object
the feature forwards the information to the Add Feature (only if the
business object has a graphical representation).

• The Add Feature creates the graphical part of a new object. It initializes
the so called shapes which represent di�erent kinds of graphical objects
(rectangle, ellipse, polygon, text, . . .). The initial graphical representa-
tion of a business object is created in this Feature. Furthermore it links
business objects with the corresponding graphical objects.

• Update Features are responsible to transfer changes from the Data Model
to the Pictogram Model. At �rst the Feature can decide whether an
update is needed. If so it transfers necessary data from the business
object to its graphical object. this is done automatically or by user
request depending on the update strategy.

• The Layout Feature takes care about the accurate layout of the graphical
representation. In most cases this Feature will be called if the graphical
object is resized and the Shapes' sizes have to be recalculated.

• The Remove Feature deletes the graphical objects from a diagram but
the corresponding business objects remain unchanged.

72

4.8 Graphical User Interface

Link
Model

Domain
Model

Rendering
Engine

Interaction
Component

Graphiti

R

Screen
R

(a) Basic architecture of Graphiti

Domain Model Link Model ResultPictogram Model

Domain Links Hierarchy
Pictogram Elements

Visualization
Graphics Algorithms

Link

Link

Shape

Shape

Container Shape

Text

PredefinedClass
EClass

(b) Graphiti Diagram Type Agent

Figure 4.15: Figure (a) illustrates the basic architecture and information �ow
of the Graphiti framework. (b) represents the relations between
the EMF Domain Model, the Link Model that holds the con-
nection between Domain Model and Pictogram Model which
is responsible for - an OS independent - graphical representa-
tion [grab].

• The Delete Feature deletes the business object of a corresponding graph-
ical object. The according remove Feature is normally called in this
Feature to delete the corresponding graphical part.

73

4 Implementation

The default implementations of the Features (especially remove and delete)
are fair enough to cover all needed standard functionality. Only by special
purposes (as by agent connections) a custom implementation is needed.

The procedure to create new objects within the visualization is exemplarily
explained by the creation of a new agent that is done by the execution of
following steps:

• The user creates a request for creation of an agent.

• Graphiti forwards this request to the DiagramTypeAgent which in addi-
tion returns a customized implementation of a FeatureProvider.

• The FeatureProvider returns the corresponding Feature which is the
CreateAgentFeature for the creation of an agent.

• The CreateAgentFeature creates the requested data model entity (e.g.
tank, pump,. . .) and requests a name through an input dialog from the
user. In the end the AddAgentFeature is called to create the graphical
representation of the entity (the calling of one feature within another one
is done indirectly).

• AddAgentFeature creates the appropriate graphical objects of the agent.
The graphical de�nition is gathered from an XML �le that contains the
de�nition. At last the Add Feature calls the LayoutAgentFeature.

• The LayoutAgentFeature calculates the corresponding sizes of the agent
graphic depending on the de�nition and the drawing created by the user
at the agent generation. This Feature is also responsible for the correct
rotation of an object according to the approach in Sec. 3.1.5. The
objects current rotation status is stored as property through a provided
functionality of Graphiti.

The noti�cation about incoming or outgoing messages follows the approach
presented in Sec. 3.1.5 and uses decorators - which are automatically em-
bedded into the drawing of an agent - to notify the user about incoming
and outgoing messages. The used graphics are illustrated in Figure 4.16.
The ToolBehaviorProvider is responsible for the visibility of the noti�ca-
tion images. Depending on the values of _receivedMessage respectively
_sentMessage attribute and the number of Messages related to the agent
with a _status value of true is used to identify the corresponding decorators.
The appearance of multiple decorators results in a string of decorators side by

74

4.8 Graphical User Interface

side.

Additionally to the provided diagram editor following views have been added:

• A MessageView which lists all received and sent messages of an agent
selected in the diagram.

• A PropertyView which is able to recognize an OPC UA path stored as
value of an attribute. If the visualization is in online mode the view will
list all attributes of an entity selected in the diagram editor. Static values
will be illustrated as plain text and OPC UA path values will be used
to create connections to an OPC UA Server to gather the corresponding
values stored with the given path. This allows direct access to values
used in the PLC in behind of an speci�c agent. The separation between
static values and OPC UA path variables is done by the pronto.comm

framework provided by the ACIN Institute at the Vienna University of
Technology.

(a) Message sent (b) Message
received

(c) Multiple mes-
sages sent

(d) Multiple mes-
sages received

Figure 4.16: (a) and (b) represent a single outgoing (red) and incoming (blue)
message. Multiple messages are illustrated through (c) and (d)
by using multiple envelopes with the same colour as for single
messages.

In the following additional functionality will be described which is provided
through buttons registered as extensions. The diagram o�ers the possibility to
show the agent state in online mode through colours but is unable to visualize
the state within the MAS and the logical state of an agent at one time. This
problem is bypassed through a switch (illustrated in Figure 4.17(c)) which
changes the actual view type of the visualization. Through manually triggering
an update event for all contained agents the colour of the agents changes to
the actual view type (MAS state or logical state). The creation of a diagram

75

4 Implementation

is provided through a registered button with Figure 4.17(b). This eases the
creation of a new diagram by the user. The registered button with the Figure
4.17(a) represents the creation and export of the ontology into an XML �le.
The used framework already provides additional functionality which simpli�es
the generation of XML �les. Listing 4.10 lists an abstract from the source code
which is responsible for the generation of the ontology con�guration �le. The
Resource holds a reference to all objects of the Data Model which simpli�es the
generation of a list with all agents (line 6). The XMLMemento class provides all
necessary functionality to create a well formed XML �le (line 9). From line 15
to 26 the tags are created for all automation agents contained in the diagram.
Internal attributes should not be included in the ontology con�guration. They
are sorted out by searching for the "_" pre�x at each attribute (line 21). All
other attributes are added as attributes to the XML tag.

1 // get r e s ou r c e from diagram
2 Resource r = diagram . eResource () ;
3 // get EClass i n s t ance o f type PhysAgent
4 EClass c l s=ModelPackage . eINSTANCE. getPhysAgent () ;
5 // r e t r i e v e ob j e c t s with the g iven type (agent) from the

content o f the g iven r e sou r c e
6 List<Agent> l i s tA = EcoreUt i l . getObjectsByType (r . getContents

() , c l s) ;
7
8 // c r e a t e XML f i l e with " onto logy root tag
9 XMLMemento memento = XMLMemento . createWriteRoot (" onto logy ") ;
10
11 // c r e a t e "components root tag
12 IMemento componentsM = memento . c r ea t eCh i ld ("components") ;
13
14 // run through a l l agents
15 f o r (Agent agent : l i s tA) {
16 // c r e a t e f o r each agent a new tag − named by i t s c l a s s

name
17 IMemento agentM = componentsM . c r ea t eCh i ld (agent . eClas s ()
18 . getName ()) ;
19 // i n s e r t c l a s s a t t r i b u t e s as tag a t t r i b u t e s − except

i n t e r n a l a t t r i b u t e s (l e ad ing "_")
20 f o r (EAttr ibute a t t r i b u t e : agent . eClas s () .

g e tEAl lAt t r ibute s ()) {
21 i f (! a t t r i b u t e . getName () . s tartsWith ("_")) {
22 Object va lue = agent . eGet (a t t r i b u t e) ;
23 agentM . putStr ing (a t t r i b u t e . getName () ,

76

4.9 Summary

24 value != nu l l ? va lue . t oS t r i ng () : "") ;
25 }
26 }
27 }

Listing 4.10: The Listing contains an abstract of the method responsible for
the generation of the ontology con�guration �le. Encapsulated
functionality has been embedded for better con�rmability.

(a) Export topol-
ogy con�guration

(b) Create new dia-
gram

(c) Switch between
Agent State and
MAS State view

Figure 4.17: The illustrated images are used for buttons registered at the
Eclipse IDE. The framework integrates them automatically into
the existing toolbar. The images are from existing and used
Eclipse projects and reused for similar functionality to stay in
line with the Eclipse design and for a better understanding of the
meaning from the buttons.

4.9 Summary

This Chapter represented the implementation of the approach proposed in
Chap. 3. At �rst a short introduction was made from the basics of JADE
(Sec. 4.1) followed by a presentation of the test equipment at the Odo Struger
Laboratory (Sec. 4.2). Out of several technologies - Eclipse SDK has been
chosen as underlying technology to implement the presented approach. The
decision is based on analysis of the licenses, contributors and popularity of
available frameworks (see Sec. 4.3). The plugin pattern used by this platform
supported the development of a tier based application. Furthermore several
other frameworks (e.g. Graphiti, EMF,. . .) provided by the Eclipse Foun-
dation have been found as suitable to maintain the development of the given
approach. This should decrease the costs for code maintenance and enhance
the code quality of the developed application. The Data Model (Sec. 4.5)
of the application could be generated with minor e�ort by using the EMF
framework. Property sheets that are available for data modi�cation could also
be generated through a subproject (EEF). The Data Collection Layer (Sec.

77

4 Implementation

4.6) represents the link to the JADE framework used at the test plant at the
Odo Struger Laboratory. Due to the designed modularity of the application
this layer can be simply exchanged to connect to another multi-agent system.
The middle layer (Data Exchange Layer - Sec. 4.7) passes the information
through from the lowest layer to the Data Model. The Graphiti framework
has been used to integrate the GUI (in Sec. 4.8). Plenty of work is already
done by the framework because it has integrated support for EMF data mod-
els. Furthermore it provides a ready to use diagram editor that can be used
to create topologies with the provided �gures. The graphical information is
gathered from an XML de�nition which allows the de�nition of graphical rep-
resentations without changing any source code. The same editor is also used
to visualize the online state of agents with sni�ed data from the underlying
MAS that is integrated into the existing Data Model. The generation of an
ontology XML �le is based on the information from the created diagram with
the Graphiti editor.

78

5 Case Study

This Chapter discusses the usage of the implementation presented in Chapter
4 with the test plant at the Odo Struger Laboratory (see Figure 5.1). This in-
cludes a report about the processed work�ow which should be used in practice
by a tutor and students in a course about multi-agent systems. Furthermore
the creation of the diagram with the implemented diagram editor will be illus-
trated and the handling (the behaviour should follow the approach described
in Sec. 3.1.5) analyzed. The analysis of the visualization in online mode will
follow after the creation of the graphical mapping from the physical plant. The
results of the online demonstration will be described in detail. At last a com-
parison of the written lines of code and the generated will be explained. This
also includes a discussion about the e�ort that would arise by implementing
graphical representations pure in Java.

Figure 5.1: Experimental plant in the Odo Struger Laboratory at the Vienna
University of Technology.

The following results of di�erent simulation runs are made with a HP Elite-
book 8540w (for detailed hardware speci�cation please refer to Table 5.2). The

79

5 Case Study

Table 5.1: System speci�cation of the test system used in conjunction with the
test plant.

Operating System: Microsoft Windows 7 Professional Service Pack 1
System Type: 64 - Bit Operating System

Processor: Intel Core i5 processor M 520 @ 2.40GHz
Codename Arrandale

Graphics: NVIDIA Quadro FX 880M 1024MB
Network: Intel 82577LM Gigabit Network Connection

Ram: DDR3 PC3-10600 SDRAM (1333 MHz)
dual-channel memory

Ram Size: 8192 MB
Hard Drive: Seagate Momentus, SATA-II 3.0Gb/s, 7200rpm

Hard Drive Size: 320 GB
Filesystem: NTFS

Table 5.2: System speci�cation of the linux based test system.
Operating System: Ubuntu 12.04.2 LTS Codename precise

Processor:
Intel Pentium M processor Codename Dothan
1.70 GHz 6 Model 13 Stepping

Ram: DDR PC2700 (166MHz)
Ram Size: 1024 MB

Hard Drive: Hitachi Travelstar, PATA Interface, 7200 rpm
Hard Drive Size: 60 GB

Filesystem: ext4

tests where performed with an Eclipse IDE version 3.8.1. For testing purposes
JADE with the version 4.1.1 has been used. Details about the particular soft-
ware framework versions can be seen in Table 5.3. The JADE main container,
all agents (physical and functional) and the visualization where running on
the same machine. The connection to an OPC UA-Server had been tested
separately and was not included in the proof of concept with the test plant.
The visualization has also been tested with a Linux based operating system
(for a detailed system speci�cation refer to Table 5.1).
But instead of the test plant dummy agents have been used to simulate

the communication between agents. The behaviour has been compared with
the outcome of the tests with the Windows based operating system. At this
comparison no divergent behaviour could be determined and the implemented
visualization operated as expected. Also the graphical representation and user

80

Table 5.3: Software speci�cation of the test system.
Framework Version Build id

Eclipse SDK 3.8.1 M20120914-1540
Ecore Tools 1.1.0.201205150811

Eclipse Modeling Framework -

2.8.3.v20130125-0826 R201301250826

Runtime and Tools
EMF Code Generation

EMF Ecore Code Generator
EMF Ecore Edit

EMF Ecore Mapping
EMF Edit

EMF ECore 2.8.3.v20130125-0546 R201301250546

EMF Model Transaction Core
1.6.0.v20120328-0001-

201205171405
377-8s734C3E7D15D6B

Graphical Editing
3.9.0.201212170307 3.9.0.201212170307

Framework GEF
Graphical Editing

3.9.0.201212170307 3.9.0.201212170307
Framework Draw2d

Graphiti UI (Incubation) 0.9.2.v20130211-0913

handling was identical on both operating systems and in spite of the weaker
hardware the visualization was operating regular without much delay. To
achieve this no source code changes have been required.
To install the test system probably following steps have been processed:

• The graphical representation of the agents (de�ned in the XML �le) has
been modi�ed to con�rm the ISO standard 14617. This includes a graph-
ical representation of a Tank, Pump, Valve, Task-Agent, Order-Agent
respectively Recipe-Agent, Work-Agent and Failure Handling Agent (see
Figure 5.2 for the agent illustrations). The drawing of functional agents
should also identify possible restrictions of the de�nition from agents.
However the de�nition from the graphical representations of functional
agents - which have the most complex illustrations - could be made with-
out any limitations or workarounds.

• All necessary Plugins have been integrated into a Feature. Also the
dependencies to Eclipse Project Frameworks have been included into the
Feature. Furthermore an Update Site with the generated Feature has
been created.

• The created Update Site with the provided Feature and its Plugins has
been uploaded to the student webspace of the Vienna University of Tech-
nology.

81

5 Case Study

Order/Receipe
 Agent

Work AgentTask Agent Failure Handling
Agent

Figure 5.2: This Figure shows the illustrations of the functional agents. The
graphical representations also demonstrate the possibilities to draw
agents.

• Through the link to the provided Update Site - in this case http:

//web.student.tuwien.ac.at/~e0425692/updatesite/ - the visual-
ization Feature could be installed with the aid of the installation wiz-
ard of eclipse (see Figure 5.3 for the displayed Update Site information).
Due to the fact that all dependencies to other Features had been de-
�ned in the Visualization Feature, the installation wizard was also able
to download and install all needed dependencies without any need of a
user interaction or manual con�guration (this will only be successful if
all de�ned and currently not installed dependencies can be found at the
Update Sites registered within the Eclipse IDE installation).

• After a restart of the IDE all necessary plugins had been installed suc-
cessfully without any con�icts and were ready to use by the developer.

The above ful�lled work�ow represents the presented procedure in Section
3.2 that illustrates a possible use case from preparation of the visualization
by a tutor until the usage of the provided application by a student. The
presented approach has been proved as applicable for real world scenarios
within university courses. Furthermore the above executed steps could be
accomplished without the need of changing any source code (in spite of the
graphical de�nition which is not seen as source code).

5.1 Visualization in Practice

After the preparation of the Eclipse IDE, the tests of the visualization have
been started. The sequence diagram in Figure 5.4 illustrates the work�ow of

82

http://web.student.tuwien.ac.at/~e0425692/updatesite/
http://web.student.tuwien.ac.at/~e0425692/updatesite/

5.1 Visualization in Practice

Figure 5.3: The Update Site that has been uploaded to the student webspace
is used with the installation wizard of Eclipse to install the multi-
agent system visualization and its dependencies at the used IDE.

the test. The generation of the diagram could be done without much e�ort
through the provided wizard. The creation of the illustration itself is - thanks
to the Graphiti framework - straight forward. The illustration presented in
Section 4.2 is used as template to create the graph in the diagram editor.
Disregarding the functional agents which are not included in the template,

the editor enabled the creation of an exact copy of the topology in the sample
graphic. The modi�cation of the diagram to achieve a handsome adjustment
of the created agents and connections was straight forward and could be easily
achieved. Figure 5.5 illustrates the created topology with the added functional
agents. The naming of the agents and connections was either done through
the input dialog at creation or through the available property pages. Also the
con�guration of the �ow direction that can be clearly identi�ed in the diagram
has been con�gured through the property pages. The creation of the agent
diagram could be performed in less than 10 minutes just through the help of
visual tools without writing any code. The diagram could be saved, closed and

83

5 Case Study

Figure 5.4: The sequence diagram illustrates the process of the test case.
The references to the corresponding screenshots are added to the
diagram.

reopened without any complications with the same adjustment of the objects
and with no data loss.

At �rst the JADE main container and the test plant application has been
started. Afterwards the visualization was able to go online without any con-
�icts. The activation of the online mode has been carried out through the
actuation of the Connect button at the top of the application (see Figure
4.14(a) for an illustration of the button). The JADE events for existing agents
where received successfully after the activation of the online mode. JADE was
sending the born agent event sequentially to the sni�er agent of the visualiza-
tion. The result can be seen in Figure 5.6. Parts of the agents included in the
topology are already online (green coloured agents) for others the online event
is still missing (red coloured agents). The removed grid in the background
increases the visibility of the agent diagram during the online mode. The in-
coming events can be seen in the Event Log view of Eclipse at the bottom
of the application (also in the console window). This process had a duration
about approximately 3 seconds until all agents have been displayed as online.

Figure 5.8 shows a screenshot of the visualization after the start of a recipe has
been triggered. The message exchange is made visible through the decorators
of the agents (red and blue envelopes). The Log View also lists the sent and
received messages of each agent. The actual display illustrates the communi-
cation between the three functional agents (order, work and Evac_101to102
agent) after a recipe has been started and the communication between recipe

84

5.1 Visualization in Practice

agent (Evac_101to102) and physical agents (T101,T102 and V101) which
changed their agent state to working.

Through switching to the agent state view (by using the button with the
image of Figure 4.17(c)) the agents' states are represented as colours of the
agents (all possible states are represented in the state diagram in Figure 4.2).
Currently the three physical agents - T101, T102 and V101 - are in working
state (see Figure 5.9). The information to switch to working state is sent by
the Recipe agent (Evac_101to102) to all physical agents which concerns the
state change. To switch back to the o�ine view the disconnect button (illus-
trated in Figure 4.14(b)) is used. After disconnecting the visualized diagram
switched back to the state represented in Figure 5.5.

The last test of the visualization concerns the generation of the topology con-
�guration �le. The creation of the con�guration �le is triggered through the
con�guration button represented in Figure 4.17(a) and is also positioned at
the toolbar at the top of the IDE. By activating the button and choosing the
destination �le through a standard Save as dialog the creation of the �le is
completed. An extract of the generated �le can be seen in Listing 5.1 and
matches with the existing con�guration of the test plant. Especially the au-
tomatic creation of the topology has a high potential to save a lot of time
and to prevent from con�guration failures because existing failures are easier
recognized in the graphical representation of the topology than in the textual
format.

<Valve f un c t i o na l S t a t e="" medium="" name="V104" rout ing=""
s e r v i c e S t a t e="" t r a n s f e r S t a t e="" un i t=""/>

<Valve f un c t i o na l S t a t e="" medium="" name="V106" rout ing=""
s e r v i c e S t a t e="" t r a n s f e r S t a t e="" un i t=""/>

<Valve f un c t i o na l S t a t e="" medium="" name="V101" rout ing=""
s e r v i c e S t a t e="" t r a n s f e r S t a t e="" un i t=""/>

</components>
<pipes>
<pipe diameter=" 0 .0 " l ength="0" medium="" name="L101"

rout ing="0" t r a n s f e r S t a t e="0" un i t="">
<l i n k d i r e c t i o n="OUT">T101</l ink>
<l i n k d i r e c t i o n="IN">P101</l ink>
</pipe>
<pipe diameter=" 0 .0 " l ength="0" medium="" name="L107"

rout ing="0" t r a n s f e r S t a t e="0" un i t="">
<l ink>T102</l ink>

85

5 Case Study

<l ink>V102</l ink>
</pipe>
<pipe diameter=" 0 .0 " l ength="0" medium="" name="L108"

rout ing="0" t r a n s f e r S t a t e="0" un i t="">
<l ink>V102</l ink>
<l i n k d i r e c t i o n="IN">T101</l ink>
<l ink>V107</l ink>
</pipe>

Listing 5.1: The Listing contains an extract of a generated topology
con�guration �le by the visualization. The output matches with
the existing con�guration of the test plant.

86

5.1 Visualization in Practice

a
.)

b
.)

d
.)

c
.)

F
ig
ur
e
5.
5:

A
sc
re
en
sh
ot

of
a
cr
ea
te
d
di
ag
ra
m

fr
om

th
e
te
st
pl
an
t.

T
he

av
ai
la
bl
e
bu

tt
on
s
ar
e
in
te
gr
at
ed

se
am

le
ss
ly

in
to

th
e
ex
is
ti
ng

to
ol
ba
r
of
th
e
E
cl
ip
se
ID

E
(a
.)
.
(b
.)
fr
am

es
th
e
ed
it
or

ar
ea

in
w
hi
ch

th
e
ag
en
t
di
ag
ra
m

is
cr
ea
te
d.

O
n
th
e
ri
gh
t
si
te

(c
.)

th
e
pa
le
tt
e
w
it
h
th
e
av
ai
la
bl
e
A
ge
nt
s
an
d
th
e
C
on
ne
ct
io
n
is
vi
si
bl
e

(a
s
pa
rt

of
th
e
ed
it
or
).

A
t
th
e
bo
tt
om

(d
.)

av
ai
la
bl
e
vi
ew

s
fo
r
da
ta

m
an
ip
ul
at
io
n
an
d
lo
gg
in
g
ar
e

av
ai
la
bl
e.

T
he

us
ua
l
be
ha
vi
ou
r
of

E
cl
ip
se

w
ou
ld

al
so

al
lo
w

a
di
�e
re
nt

ad
ju
st
m
en
t
of

th
e
av
ai
la
bl
e

vi
ew

s
re
sp
ec
ti
ve
ly

th
ey

co
ul
d
al
so

be
cl
os
ed

an
d
op
en
ed

de
pe
nd

in
g
on

th
e
us
er
s
re
qu
ir
em

en
ts
.

87

5 Case Study

Figure 5.6: This screenshot illustrates the visualization shortly after switching
to the online mode. Red coloured agents are in o�ine state, for
green coloured agents an online event has already been received.
The log entries at the bottom list the incoming events.

Figure 5.7: This screenshot illustrates the visualization of a proposed route
by the route agent (upper right). The sent message of the route
agent contains the proposed route. All pipes that are involved
in the proposal are blue coloured for a de�ned period of time
(L101,L102,L105),

88

5.1 Visualization in Practice

F
ig
ur
e
5.
8:

T
he

co
m
m
un

ic
at
io
n
be
tw
ee
n
ag
en
ts
ca
n
be

cl
ea
rl
y
id
en
ti
�e
d
af
te
r
st
ar
ti
ng

a
re
ci
pe

th
ro
ug
h
a
fu
nc
ti
on
al

ag
en
t.

T
he

3
ph
ys
ic
al

ag
en
ts

T
10
1,

T
10
2
an
d
V
10
1
re
ce
iv
e
in
fo
rm

at
io
n
fr
om

th
e
R
ec
ip
e
A
ge
nt

E
va
c_

10
1t
o1
02

(b
lu
e
en
ve
lo
pe
).

T
he

E
va
c_

10
1t
o1
02

ag
en
t
no
ti
�e
s
th
e
w
or
k
ag
en
t
w
it
h
an

ag
re
e

m
es
sa
ge

to
st
ar
t
th
e
re
ci
pe
.
T
he

w
or
k
ag
en
t
fo
rw
ar
ds

th
e
no
ti
�c
at
io
n
to

th
e
or
de
r
ag
en
t.

M
ul
ti
pl
e

re
d
en
ve
lo
pe
s
at

th
e
re
ci
pe

ag
en
t
re
pr
es
en
t
se
ve
ra
l
ou
tg
oi
ng

m
es
sa
ge
s.

89

5 Case Study

F
igure

5.9:
T
his

screenshot
illustrates

the
visualization

after
sw

itching
to

the
agent

state
view

.
T
he

current
agent

states
are

represented
through

colours
used

in
the

state
diagram

in
F
igure

4.2.
T
he

blue
colour

identi�es
the

agents
T
101,

T
102

and
V
101

in
w
orking

state.
R
eferring

to
the

illustrated
m
essage

decorators,
the

M
A
S
situation

is
the

sam
e
as

in
F
igure

5.8.

90

5.2 Code Analysis

5.2 Code Analysis

This Section will analyze the source code of the developed application. Fur-
thermore di�erent enhancement scenarios and its in�uence on the generated
and manually written source code will be discussed. For the comparison of
lines of code only the source code lines have been counted without any blank
lines or comments.

Provided that the used frameworks are mature and well tested the usage of
generated code can minimize the amount of failures within the source code.
The following lines will discuss the proportion between generated and man-
ually written code due to the fact that already existing Eclipse frameworks
have been used and that code generation can be seen as key functionality for
a great part of the integrated frameworks.
Figure 5.10 illustrates the relation between the automatically generated code

by used frameworks in comparison to redeveloped code (refer to table 5.4 for
a result in numbers). The code generation primarily applies to the generated
code from parts of the EMF framework which is responsible for the data model
and its property sheets for data manipulation. The amount of newly devel-
oped code is less than 20 percent of the generated code. Furthermore only a
fractional amount of the generated code had to be customized. A customiza-
tion of generated code is always critical due to the fact that a regeneration of
source code evokes an update of the code with those parts who have already
been customized. Thanks to the features of the EMF framework there is no
need to rewrite the generated code every time because the framework is able
to recognize modi�ed code and leaves customized code as is (as described in
Sec. 4.5). This allows a repetitive change of the data diagram without the
need to modify the generated code every time. This is seen as great bene�t
by considering the proportions of the source code in Figure 5.10. The total
number of lines of code (LoC) is listed in Table 5.4.

Table 5.4: This Table compares the total lines of code contained by the project.
The �rst three columns represent pure Java Source Code (illustrated
as Pie Chart in Figure 5.10). The last column contains the LoC
contained in the XML �le for the graphical de�nition of the agents.

Generated Customized Redeveloped XML Graphic De�nition
22597 165 5063 154

The following comparison of the graphical de�nition of one of the used agents
with the equal outcome written in Java should illustrate possible advantages

91

5 Case Study

81%

1%

18%

Source Code Analysis

Generated
Customized
Redeveloped

Figure 5.10: The diagram illustrates the fragmentation of source code into
automatic generated, customized and redeveloped source code.
Through the usage of frameworks a great part of the source code
could be generated.

through the usage of the proposed XML de�nition. Listing 5.2 contains the
de�nition of the Pump agent used in this use case. The whole de�nition covers
8 lines of code. The readability of the code is still under good condition. In
comparison Listing 5.3 contains an equal de�nition written directly in Java
Code.

1 <agent name="Pump">
2 <shape name=" e l l i p s e " f i l l e d=" f a l s e " width="100"

he ight="100" l ineWidth="2"/>
3 <shape name=" po l y l i n e " l ineWidth="2">
4 <point x="50" y="0" />
5 <point x="100" y="50" />
6 <point x="50" y="100" />
7 </shape>
8 </agent>

Listing 5.2: The Listing contains the de�nition of the pump agent used in this
use case. The total number of lines is 8.

92

5.3 Summary

1 E l l i p s e e l l i p s e = Graphit i . getGaCreateServ ice () .
c r e a t eE l l i p s e (con ta ine r) ;

2 e l l i p s e . s e t F i l l e d (f a l s e) ;
3 e l l i p s e . setLineWidth (2) ;
4 e l l i p s e . s e tHe ight (100) ;
5 e l l i p s e . setWidth (100) ;
6 Po l y l i n e p o l y l i n e = Graphit i . getGaCreateServ ice () .

c r e a t ePo l y l i n e (conta ine r) ;
7 p o l y l i n e . setLineWidth (2) ;
8 i n t pointArray []=new in t [6] ;
9 pointArray [0]=50 ;
10 pointArray [1]=0 ;
11 pointArray [2]=100 ;
12 pointArray [3]=50 ;
13 pointArray [4]=50 ;
14 pointArray [5]=100 ;
15 EList<Point> po in t s=po l y l i n e . ge tPo int s () ;
16 List<Point> newPoints=gaServ i e . c r e a t ePo in tL i s t (pointArray) ;
17 po in t s . addAll (newPoints) ;

Listing 5.3: The Listing contains the equivalent of Listing 5.2 implemented in
Java Code. Some of the instructions could be combined (e.g. �lling
the array from line 9 to 14) but the total number of lines would
not fall below 9. Furthermore the readability of the code would
su�er under a combining of the code.

In practice the needed creation of pictogram objects (see Sec. 4.8 for details)
would also need to be added as well as the mapping to the corresponding
domain model element. But only considering the graphical de�nition in XML
and Java allows rough conclusions about the amount of code which can be
saved. The proportion of the listed code fragments is 1:2. Even if the code
in Listing 5.3 is combined to achieve a lower number of lines it would still be
higher in comparison to the XML de�nition. Furthermore this action would
decrease the readability and thereby the maintainability of the code as well
as changes of the source code would require a recompilation of the modi�ed
source �les.

5.3 Summary

This Chapter presented the outcome of tests from the visualization combined
with the test plant in the Odo Struger Laboratory. The tests demonstrated

93

5 Case Study

a successful usage of the visualization with the existing multi-agent system
JADE. A possible scenario of a preparation from the visualization by the tutor
and the installation and usage by the student has been run through during the
tests. The usage of the visualization could also improve the comprehensibility
of the existing agents. A possible bug in the Recipe agent could also be located
with the aid of the visualization through the tests with the available plant. The
link to an OPC UA Server and the representation of OPC UA tags has also
been successfully tested. Furthermore a successful usage under a Linux based
operating system could also be performed which proves the interoperability to
other than Microsoft bases operating systems. At last the amount of generated
source code has been compared with the modi�ed and developed code. This
comparison demonstrated that most of the code could be generated through
used frameworks which also increases the quality of code. Only marginal parts
of the generated source code had to be customized. An equation of the XML
de�nition of the graphical representation with an implementation in Java for an
equivalent representation illustrated the bene�ts of the implemented approach
related to readability and maintainability.

94

6 Conclusion

A fast moving market demands for a �exible and dynamic industry. Automa-
tion aided production lines and the transportation and supervision of goods is
a common practice nowadays. These requirements claim for new methods to
stay competitive on the market. To reach this aim the industry has to uncou-
ple from the traditional way of industrial automation - especially by ful�lling
batch processes - by using centralized computing units and needs to forward
to a more agile approach of multi-agent systems. But due to missing trust in
this technology MAS could not a�rm its strength on the market yet. Partic-
ularly the missing traceability and lack of understanding are main reasons for
its niche existence. Chapter 2 has illustrated current possibilities of di�erent
agents and their �eld of application. Furthermore it examined current existing
visualization tools for multi-agent systems and covered its pros and cons. In
this context new emerging possibilities for visualizations based on web tech-
nologies have also been investigated. But the current state of the art o�ers
hardly fundamentals for a �exible and easy to handle visualization of di�erent
multi-agent systems especially not for integration into an existing development
process of an MAS by o�ering a high �exibility.

Due to this fact Chapter 3 presented an approach for a new visualization
which ful�lls the demands listed in Sec. 1.3. The approach consists of a 3-tier
based architecture - visualization, data exchange and data collection - that
should ful�ll the demands on a modern and �exible visualization framework.
Moreover a layered architecture should o�er the possibility to use the same
visualization for di�erent multi-agent systems by exchanging the lowest layer
of the framework. A generic data model and a �exible graphical de�nition
should provide a high adaptiveness by modifying the preset data to ful�ll the
required demands by an illustration of an MAS.

Chapter 4 presented the proof of concept by integrating the introduced ap-
proach into the Eclipse IDE with a fundament of projects powered by the
Eclipse Foundation. The implementation could be built on well developed and
approved projects named Graphiti and EMF. Both o�er essential features for
the integration of the approach and raise the quality of the outcome because

95

6 Conclusion

of their proper code quality. The usage of existing Open Source projects has
to be well considered because discontinued projects could lead to increasing
costs by maintaining the developed framework. However the chosen frame-
works can lean on a living community which push the development process
of the projects. This has lead to several bug �xes and improvements of the
provided code during the composition of this master thesis.

A test plant at the Odo Struger Laboratory has been used as test case and
the results of the tests are discussed in Chapter 5. The presented outcome de-
scribes a successful usage of the implementation from the presented approach.
A "tutor - student scenario" (see Chapter 5.1 for details) has been used to run
through a real world setting to test the usability beginning from the prepa-
ration of the visualization to �t the requirements of the plant onward to the
distribution of the visualization by using the internet till testing the online
behaviour of the visualization in conjunction with the test plant.

The successfulness of the tests have approve the design approach in Chap-
ter 3, the technology decisions in Section 4.3 followed by the implementation
afterwards. Future work could enhance the existing code base to provide more
possibilities to extend the existing functionality without touching the base
source code. Moreover other Eclipse frameworks are worth for an evaluation
for a possible integration in the current implementation (e.g. Spray [spr] as
another sophisticated way to provide a graphical representation). Also a more
generic approach for the visualization (o� from agents) would open other �elds
of application (not only agents can be sni�ed). The de�nition of illustrations
from agents is no restriction due to the generic approach of de�ning the graphi-
cal de�nition. Yet another possibility would be an even more generic approach
which would allow the de�nition of the agent structure in con�guration �les.
Furthermore the implementation of a web based user interface could be eval-
uated. As mentioned the outcome of this master thesis can provide a base
for extensive future work to enhance the acceptance and usage of multi-agent
systems among students and developers in the automation industry.

96

Bibliography

[acl] Class aclmessage. http://jade.cselt.it/doc/api/jade/lang/
acl/ACLMessage.html. Accessed Mar. 16, 2013.

[age] Agent�y. http://agents.felk.cvut.cz/projects#agentfly.
Accessed Jan. 5, 2013.

[BCTR] Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, and Giovanni
Rimassa. Jade programmer's guide. http://jade.tilab.com/

doc/programmersguide.pdf. Accessed Mar. 15, 2013.

[BE96] T. Ball and S.G. Eick. Software visualization in the large. Com-
puter, 29(4):33�43, 1996.

[bro] Browser statistics. http://www.w3schools.com/browsers/

browsers_stats.asp. Accessed Oct. 24, 2012.

[CBJC10] Gonçalo Cândido, José Barata, François Jammes, and Ar-
mando W. Colombo. Applications of dynamic deployment of ser-
vices in industrial automation. In Luis M. Camarinha-Matos,
Pedro Pereira, and Luis Ribeiro, editors, DoCEIS, volume 314 of
IFIP Advances in Information and Communication Technology,
pages 151�158. Springer, 2010.

[Die03] S. Diehl. Softwarevisualisierung. In Informatik Spektrum, pages
257�260, 2003.

[ecla] About the eclipse foundation. http://www.eclipse.org/org/.
Accessed Nov. 28, 2012.

[eclb] Eclipse projects list. http://projects.eclipse.org/list-of-
projects. Accessed Feb. 12, 2013.

[Eclc] The java developer's guide to eclipse. http://www.jdg2e.com/

ch08.architecture/doc/index.html. Accessed Nov. 23, 2012.

97

http://jade.cselt.it/doc/api/jade/lang/acl/ACLMessage.html
http://jade.cselt.it/doc/api/jade/lang/acl/ACLMessage.html
http://agents.felk.cvut.cz/projects#agentfly
http://jade.tilab.com/doc/programmersguide.pdf
http://jade.tilab.com/doc/programmersguide.pdf
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.eclipse.org/org/
http://projects.eclipse.org/list-of-projects
http://projects.eclipse.org/list-of-projects
http://www.jdg2e.com/ch08.architecture/doc/index.html
http://www.jdg2e.com/ch08.architecture/doc/index.html

Bibliography

[emf] Eclipse modeling framework project (emf). http://www.

eclipse.org/modeling/emf/?project=emf. Accessed Feb. 13,
2013.

[FBG07] Giovanni Caire Fabio Bellifemine and Dominic Greenwood. devel-
oping multi-agent systems with JADE. John Wiley & Sons, Ltd,
2007. Public Available Speci�cation.

[FIP] FIPA. Foundation for intelligent physical agents. http://www.

fipa.org/. Accessed Nov. 10, 2012.

[�a] Thoughts on �ash. http://www.apple.com/hotnews/thoughts-
on-flash/. Accessed Oct. 04, 2012.

[FR09] C. Foreman and R.K. Ragade. Coordinated optimization at a
hydro-generating plant by software agents. Control Systems Tech-
nology, IEEE Transactions on, 17(1):89�97, 2009.

[goo] Google docs. http://docs.google.com. Accessed Oct. 23, 2012.

[graa] Graphiti. http://projects.eclipse.org/projects/

modeling.gmp.graphiti. Accessed Mar. 01, 2013.

[grab] Overview of graphiti. http://www.eclipse.org/graphiti/

documentation/overview.php. Accessed Nov. 23, 2012.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology
speci�cations. Knowl. Acquis., 5(2):199�220, June 1993.

[gwt] Google web toolkit blog. http://googlewebtoolkit.blogspot.
co.at/. Accessed Nov. 03, 2012.

[HD04] Marc-Philippe Huget and Yves Demazeau. Evaluating multiagent
systems: A record/replay approach. In IAT, pages 536�539. IEEE
Computer Society, 2004.

[Hec] Steven A. Hechtman. Web-based hmi: An emerging trend?
http://www.automation.com/resources-tools/articles-

white-papers/hmi-and-scada-software-technologies/web-

based-hmi-an-emerging-trend. Accessed Dec. 15, 2012.

[Hel] Jonas Helming. What every eclipse developer should know about
emf. http://eclipsesource.com/blogs/2011/03/22/what-

every-eclipse-developer-should-know-about-emf-part-

1/. Accessed Nov. 24, 2012.

98

http://www.eclipse.org/modeling/emf/?project=emf
http://www.eclipse.org/modeling/emf/?project=emf
http://www.fipa.org/
http://www.fipa.org/
http://www.apple.com/hotnews/thoughts-on-flash/
http://www.apple.com/hotnews/thoughts-on-flash/
http://docs.google.com
http://projects.eclipse.org/projects/modeling.gmp.graphiti
http://projects.eclipse.org/projects/modeling.gmp.graphiti
http://www.eclipse.org/graphiti/documentation/overview.php
http://www.eclipse.org/graphiti/documentation/overview.php
http://googlewebtoolkit.blogspot.co.at/
http://googlewebtoolkit.blogspot.co.at/
http://www.automation.com/resources-tools/articles-white-papers/hmi-and-scada-software-technologies/web-based-hmi-an-emerging-trend
http://www.automation.com/resources-tools/articles-white-papers/hmi-and-scada-software-technologies/web-based-hmi-an-emerging-trend
http://www.automation.com/resources-tools/articles-white-papers/hmi-and-scada-software-technologies/web-based-hmi-an-emerging-trend
http://eclipsesource.com/blogs/2011/03/22/what-every-eclipse-developer-should-know-about-emf-part-1/
http://eclipsesource.com/blogs/2011/03/22/what-every-eclipse-developer-should-know-about-emf-part-1/
http://eclipsesource.com/blogs/2011/03/22/what-every-eclipse-developer-should-know-about-emf-part-1/

Bibliography

[HTM] Html5 games. http://html5games.com. Accessed Nov. 01, 2012.

[HTW04] A. Helsinger, M. Thome, and T. Wright. Cougaar: a scalable,
distributed multi-agent architecture. In Systems, Man and Cyber-
netics, 2004 IEEE International Conference on, volume 2, pages
1910�1917 vol.2, 2004.

[HYJY10] Zhao Hongwei, Qi Yiming, Zhang Jiye, and Zhao Yuanheng.
Based on multi-agent model for grinding process control research.
In Frontier of Computer Science and Technology (FCST), 2010
Fifth International Conference on, pages 576�581, 2010.

[ide] Java ee productivity report 2011. http://zeroturnaround.com/
java-ee-productivity-report-2011/. Accessed Nov. 23, 2012.

[int] Intellij idea editions comparison. http://www.jetbrains.com/

idea/features/editions_comparison_matrix.html. Accessed
Nov. 28, 2012.

[Jada] Jade java agent development framework. http://jade.tilab.

com/. Accessed Oct. 04, 2012.

[Jadb] Who is using jade. http://jade.tilab.com/application-who.
htm. Accessed Nov. 10, 2012.

[jax] Das modeling-framework eclipse graphiti. http://it-

republik.de/jaxenter/artikel/Das-Modeling-Framework-

Eclipse-Graphiti-3551.html. Accessed Apr. 16, 2012.

[JB03a] N.R. Jennings and S. Bussmann. Agent-based control systems:
Why are they suited to engineering complex systems? Control
Systems, IEEE, 23(3):61�73, 2003.

[JB03b] N.R. Jennings and S. Bussmann. Agent-based control systems:
Why are they suited to engineering complex systems? Control
Systems, IEEE, 23(3):61�73, 2003.

[jde] Oracle technology network developer license terms for jdevel-
oper. http://www.oracle.com/technetwork/licenses/jdev-

license-152012.html. Accessed Nov. 28, 2012.

[Jin] Jing Jin. Vizscript editor plug-in for eclipse. http://www-scf.

usc.edu/~jingjin/VizScriptEditor/. Accessed Nov. 17, 2012.

99

http://html5games.com
http://zeroturnaround.com/java-ee-productivity-report-2011/
http://zeroturnaround.com/java-ee-productivity-report-2011/
http://www.jetbrains.com/idea/features/editions_comparison_matrix.html
http://www.jetbrains.com/idea/features/editions_comparison_matrix.html
http://jade.tilab.com/
http://jade.tilab.com/
http://jade.tilab.com/application-who.htm
http://jade.tilab.com/application-who.htm
http://it-republik.de/jaxenter/artikel/Das-Modeling-Framework-Eclipse-Graphiti-3551.html
http://it-republik.de/jaxenter/artikel/Das-Modeling-Framework-Eclipse-Graphiti-3551.html
http://it-republik.de/jaxenter/artikel/Das-Modeling-Framework-Eclipse-Graphiti-3551.html
http://www.oracle.com/technetwork/licenses/jdev-license-152012.html
http://www.oracle.com/technetwork/licenses/jdev-license-152012.html
http://www-scf.usc.edu/~jingjin/VizScriptEditor/
http://www-scf.usc.edu/~jingjin/VizScriptEditor/

Bibliography

[JMSS07] Jing Jin, Rajiv T. Maheswaran, Romeo Sanchez, and Pedro
Szekely. Vizscript: visualizing complex interactions in multi-agent
systems. In Proceedings of the 12th international conference on
Intelligent user interfaces, IUI '07, pages 369�372, New York, NY,
USA, 2007. ACM.

[JSMS08] Jing Jin, Romeo Sanchez, Rajiv T. Maheswaran, and Pedro
Szekely. Vizscript: on the creation of e�cient visualizations for
understanding complex multi-agent systems. In Proceedings of
the 13th international conference on Intelligent user interfaces,
IUI '08, pages 40�49, New York, NY, USA, 2008. ACM.

[KZ12] Karsten Krieg and Stefan Zilch. Javascript-frameworks. Javam-
agazin, pages 96 � 102, Nov 2012.

[La09] Paulo Leitão. Agent-based distributed manufacturing control: A
state-of-the-art survey. Eng. Appl. Artif. Intell., 22(7):979�991,
October 2009.

[Mad07] Janusz Madejski. Survey of the agent-based approach to intelli-
gent manufactoring. Journal of Achievements in Materials and
Manufacturing Engineering, 21(1):67�70, 2007.

[MEP10] E. Muñoz, A. Espuña, and L. Puigjaner. Towards an onto-
logical infrastructure for chemical batch process management.
Computers & Chemical Engineering, 34(5):668 � 682, 2010.
<ce:title>Selected Paper of Symposium {ESCAPE} 19, June 14-
17, 2009, Krakow, Poland</ce:title>.

[Mer09] Munir Merdan. Knowledge-based Multi-Agent Architecture Ap-
plied in the Assembly Domain. PhD thesis, Technical University
of Vienna, Vienna, 2009.

[MLA11] M. Merdan, W. Lepuschitz, and E. Axinia. Advanced process
automation using automation agents. In Automation, Robotics
and Applications (ICARA), 2011 5th International Conference
on, pages 34 �39, Dec. 2011.

[MLSV10] M. Merdan, W. Lepuschitz, B. S�ahovi¢, and M. Vallée. Failure
detection and recovery in the batch process automation domain
using automation agents. In Advances in Computing, Control
and Telecommunication Technologies (ACT), 2010 Second Inter-
national Conference on, pages 113�117, 2010.

100

Bibliography

[MM05] V. Marik and D. McFarlane. Industrial adoption of agent-based
technologies. Intelligent Systems, IEEE, 20(1):27�35, 2005.

[MMH13] B. Grössing M. Merdan, W. Lepuschitz and M. Helbok. Process
rescheduling and path planning using automation agents. Recent
Advances in Robotics and Automation, Series: Studies in Com-
putational Intelligence, 2013.

[MMW+08] M. Merdan, T. Moser, D. Wahyudin, S. Bi�, and P. Vrba. Simu-
lation of work�ow scheduling strategies using the mast test man-
agement system. In Control, Automation, Robotics and Vision,
2008. ICARCV 2008. 10th International Conference on, pages
1172 �1177, dec. 2008.

[MOR] Vladimir Marik Marek Obitko, Pavel Vrba and Miloslav
Radakovic. Semantics in industrial distributed systems.
http://tc.ifac-control.org/5/3/activities/tc5-3-

sessions-at-wc2008/c24-presentations/obitko-ifac2008-

semantics-final.pdf. Accessed Nov. 10, 2012.

[MP11] M. Metzger and G. Polakow. A survey on applications of agent
technology in industrial process control. Industrial Informatics,
IEEE Transactions on, 7(4):570�581, 2011.

[MR] Marek Obitko andPavel Vrba Miloslav Radakovic. Ar-
chitecture for explicit speci�cation of agent behavior.
http://tc.ifac-control.org/5/3/events/incom2009-

folder/presentations-at-the-ein-track/session-th-

a6/2-incom09d.pdf. Accessed Nov. 10, 2012.

[MSD+07] F. Maturana, R. Staron, F. Discenzo, D. Carnahan, and K. Hall.
Agent virtual machine for shipboard automation systems. In
Power Engineering Society General Meeting, 2007. IEEE, pages
1�8, 2007.

[net] Kommentar: Aufatmen bei netbeans? http://it-

republik.de/jaxenter/artikel/Kommentar-Aufatmen-bei-

NetBeans-2858.html. Accessed Dec. 3, 2012.

[NNLC99] Divine T. Ndumu, Hyacinth S. Nwana, Lyndon C. Lee, and
Jaron C. Collis. Visualising and debugging distributed multi-
agent systems. In Proceedings of the third annual conference on

101

http://tc.ifac-control.org/5/3/activities/tc5-3-sessions-at-wc2008/c24-presentations/obitko-ifac2008-semantics-final.pdf
http://tc.ifac-control.org/5/3/activities/tc5-3-sessions-at-wc2008/c24-presentations/obitko-ifac2008-semantics-final.pdf
http://tc.ifac-control.org/5/3/activities/tc5-3-sessions-at-wc2008/c24-presentations/obitko-ifac2008-semantics-final.pdf
http://tc.ifac-control.org/5/3/events/incom2009-folder/presentations-at-the-ein-track/session-th-a6/2-incom09d.pdf
http://tc.ifac-control.org/5/3/events/incom2009-folder/presentations-at-the-ein-track/session-th-a6/2-incom09d.pdf
http://tc.ifac-control.org/5/3/events/incom2009-folder/presentations-at-the-ein-track/session-th-a6/2-incom09d.pdf
http://it-republik.de/jaxenter/artikel/Kommentar-Aufatmen-bei-NetBeans-2858.html
http://it-republik.de/jaxenter/artikel/Kommentar-Aufatmen-bei-NetBeans-2858.html
http://it-republik.de/jaxenter/artikel/Kommentar-Aufatmen-bei-NetBeans-2858.html

Bibliography

Autonomous Agents, AGENTS '99, pages 326�333, New York,
NY, USA, 1999. ACM.

[NPB+11] Cu D. Nguyen, Anna Perini, Carole Bernon, Juan Pavón,
and John Thangarajah. Testing in multi-agent systems. In
Marie Pierre Gleizes and Jorge J. Gómez-Sanz, editors, Agent-
Oriented Software Engineering X, volume 6038 of Lecture Notes
in Computer Science, pages 180�190. Springer, 2011.

[o�] Microsoft o�ce 365. http://www.microsoft.com/en-us/

office365/. Accessed Oct. 23, 2012.

[PM08a] Grzegorz Polaków and Mieczyslaw Metzger. Web-based monitor-
ing and visualization of self-organizing process control agents. In
Karin Hummel and James Sterbenz, editors, Self-Organizing Sys-
tems, volume 5343 of Lecture Notes in Computer Science, pages
325�331. Springer Berlin / Heidelberg, 2008. 10.1007/978-3-540-
92157-8_33.

[PM08b] M. P¥chou£ek and V. Ma°ík. Industrial deployment of multi-agent
technologies: review and selected case studies. In Autonomous
Agents and Multi-Agent Systems, volume 17, pages 397�431, Dec.
2008. http://dx.doi.org/10.1007/s10458-008-9050-0.

[PvPU06] Michal P¥chou£ek, David �i²lák, Du²an Pavlí£ek, and Miroslav
Uller. Autonomous agents for air-tra�c decon�iction. In Pro-
ceedings of the �fth international joint conference on Autonomous
agents and multiagent systems, AAMAS '06, pages 1498�1505,
New York, NY, USA, 2006. ACM.

[QC] Elena Quarantotto and Giovanni Caire. Jade osgi guide. http:

//jade.tilab.com/doc/tutorials/JadeOsgiGuide.pdf. Ac-
cessed Apr. 1, 2013.

[SeB] SeB. use eclipse eef as a property sheet for the graphiti ed-
itor. http://eclipsercpdev.blogspot.co.at/2011/10/use-

eclipse-eef-as-property-sheet-for.html. Accessed Apr. 1,
2013.

[SL07] Jämsä-Jounela Sirkka-Liisa. Future trends in process automation.
In Annual Reviews in Control, volume 31, pages 211 � 220, 2007.

102

http://www.microsoft.com/en-us/office365/
http://www.microsoft.com/en-us/office365/
http://dx.doi.org/10.1007/s10458-008-9050-0
http://jade.tilab.com/doc/tutorials/JadeOsgiGuide.pdf
http://jade.tilab.com/doc/tutorials/JadeOsgiGuide.pdf
http://eclipsercpdev.blogspot.co.at/2011/10/use-eclipse-eef-as-property-sheet-for.html
http://eclipsercpdev.blogspot.co.at/2011/10/use-eclipse-eef-as-property-sheet-for.html

Bibliography

[SN99] W. Shen and D. Norrie. `Agent-Based systems for intelligent man-
ufacturing: A State-of-the-Art survey. Knowledge and Informa-
tion Systems: An International Journal, 1(2):129�156, 1999.

[sni] Jade sni�er. http://jade.tilab.com/doc/tools/sniffer/.
Accessed Mar. 15, 2013.

[spr] Spray - a quick way of creating graphiti. http://code.google.

com/a/eclipselabs.org/p/spray/. Accessed May. 27, 2013.

[Sta12] Stefan Starke. Gwt meets html5. Javamagazin, pages 60 � 66,
Jan 2012.

[svg] Svg test suite results. http://www.codedread.com/svg-

support.php. Accessed Oct. 27, 2012.

[Syc98a] K. P. Sycara. Multiagent systems. In AI MAGAZINE, volume 19,
pages 79�92, 1998.

[Syc98b] Katia P. Sycara. Multiagent systems. AI Magazine, 19:79�92,
1998.

[VKJ+11] Pavel Vrba, Petr Kadera, Václav Jirkovský, Marek Obitko, and
Vladimír Ma°ík. New trends of visualization in smart production
control systems. In Proceedings of the 5th international confer-
ence on Industrial applications of holonic and multi-agent systems
for manufacturing, HoloMAS'11, pages 72�83, Berlin, Heidelberg,
2011. Springer-Verlag.

[VM10] P. Vrba and V. Marik. Capabilities of dynamic recon�guration of
multiagent-based industrial control systems. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions
on, 40(2):213�223, 2010.

[VMK12] P. Vrba, V. Marík, and P. Kadera. Mast: From a toy to real-life
manufacturing control. In Software Engineering, Arti�cial Intel-
ligence, Networking and Parallel Distributed Computing (SNPD),
2012 13th ACIS International Conference on, pages 428 �433,
aug. 2012.

[VMLK11] M. Vallee, M. Merdan, W. Lepuschitz, and G. Koppensteiner. De-
centralized recon�guration of a �exible transportation system. In-
dustrial Informatics, IEEE Transactions on, 7(3):505�516, 2011.

103

http://jade.tilab.com/doc/tools/sniffer/
http://code.google.com/a/eclipselabs.org/p/spray/
http://code.google.com/a/eclipselabs.org/p/spray/
http://www.codedread.com/svg-support.php
http://www.codedread.com/svg-support.php

Bibliography

[Vog] Lars Vogel. Gwt tutorial. http://www.vogella.com/articles/
GWT/article.html. Accessed Nov. 03, 2012.

[Wei99] Gerhard Weiss, editor. Multiagent systems: a modern approach
to distributed arti�cial intelligence. MIT Press, Cambridge, MA,
USA, 1999.

[Yak] Masataka Yakura. Html5 & css3 readiness. http://

html5readiness.com/. Accessed Oct. 24, 2012.

[zuk] Die zukunft der automatisierung. http://www.openautomation.
de/883-0-die-zukunft-der-automatisierung.html. Accessed
Oct. 06, 2012.

104

http://www.vogella.com/articles/GWT/article.html
http://www.vogella.com/articles/GWT/article.html
http://html5readiness.com/
http://html5readiness.com/
http://www.openautomation.de/883-0-die-zukunft-der-automatisierung.html
http://www.openautomation.de/883-0-die-zukunft-der-automatisierung.html

	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1 Problem Outline
	1.2 Objectives of the Thesis
	1.3 Visualization Requirements
	1.3.1 Tasks

	1.4 Structure of the Thesis

	2 State of the Art
	2.1 Agent Technologies
	2.2 Applications of Agent Technology and Ontologies in Industrial Process Control
	2.3 Current Visualization Tools
	2.3.1 MAST
	2.3.2 VizScript
	2.3.3 AgentFly

	2.4 Web Based Visualization
	2.5 Conclusion

	3 Design
	3.1 General Design Approach
	3.1.1 Architecture
	3.1.2 Data Model
	3.1.3 Data Collection Layer
	3.1.4 Data Exchange Layer
	3.1.5 Graphical User Interface

	3.2 Summary

	4 Implementation
	4.1 JADE Framework
	4.2 Test Equipment at the Odo Struger Laboratory
	4.3 Framework Decision
	4.4 Eclipse based Technologies
	4.5 Data Model
	4.6 Data Collection Layer
	4.7 Data Exchange Layer
	4.8 Graphical User Interface
	4.9 Summary

	5 Case Study
	5.1 Visualization in Practice
	5.2 Code Analysis
	5.3 Summary

	6 Conclusion
	Bibliography

