Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

WIEN UB

The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng

DIPLOMARBEIT

Simulation des Zellwachstums in einem Bioreaktor

Ausgeführt am Institut für

Analysis und Scientific Computing der Technischen Universität Wien

und am

Research Center for Pharmaceutical Engineering GmbH

unter Anleitung von Ao. Univ. Prof. Dipl.Math. Dr.techn. Dirk Praetorius und Dipl.-Ing. Dr.techn. Dalibor Jajcevic

durch

David Pavlicek

Hervicus gasse 4/1/6, 1120 Wien

1. August 2013

David Pavlicek

Zusammenfassung

Bei der Erstellung von Therapiemitteln zur Behandlung verschiedener Krebsarten werden genetisch veränderte Säugetierzellen kultiviert. Dieser mehrere Tage andauernde Prozess geschieht in sogenannten Bioreaktoren. Um die Entwicklung der Zellkulturen möglichst effizient zu gestalten, wird versucht, mathematische Modelle zur Simulation des Zellwachstums zu erstellen, von deren Analyse man sich Wissen verspricht, das man sonst - wenn überhaupt nur durch kostenaufwändige Experimente bekommt.

In der folgenden Diplomarbeit wird eine Herangehensweise für die Simulation des Zellwachstums in einem Bioreaktor beschrieben. Die Resultate der ausgeführten Simulationen werden mit schon vorhandenen, aus Experimenten gewonnenen Ergebnissen verglichen. Außerdem werden grundlegende chemische Prozesse, die beim Zellwachstums eine Rolle spielen, erläutert. Nachdem die verschiedenen Formen eines Bioreaktors vorgestellt werden, werden deren wichtigste Eigenschaften mit Hilfe von CFD-Simulatonen berechnet. Die Grundlagen für diese Simulationen bilden die Navier-Stokes-Gleichungen 3.55

$$\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$$
(1)

$$\frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V} - \sigma)(t, \hat{\mathbf{x}}) = \rho \mathbf{F}_{V}(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}})$$
(2)

$$\frac{\partial(\rho\epsilon_{\text{tot}})}{\partial t}(t,\hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho\epsilon_{\text{tot}}\mathbf{v} - \sigma\mathbf{v} + p\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = \rho \ (\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}}), \tag{3}$$

die unter anderem zur Berechnung des Flusses durch den Bioreaktor verwendet werden. Diese Gleichungen werden physikalisch hergeleitet und mathematisch formuliert. Auch wird dargestellt, welche Rolle sie bei den nachfolgenden Simulationen spielen.

Schlussendlich wird in Abhängigkeit der zuvor ermittelten Eigenschaften des Bioreaktors ein Zellwachstumsmodell, welches Aufschluss über den Verlauf des Zellwachstums in einem Bioreaktor bringt, erstellt. Diese Diplomarbeit wurde im Rahmen des Projekts "Entwicklung eines modularen Bioreaktorsystems mit integrierter Routine für Prozesssimulationen" der FTI-Initiative Produktion der Zukunft, durchgeführt. Dieses Programm wird im Auftrag des Bundesministeriums für Verkehr, Innovation und Technologie durch die Forschungsförderungsgesellschaft abgewickelt.

Bundesministerium für Verkehr, Innovation und Technologie

Inhaltsverzeichnis

1	Einl	leitung	6
	1.1	Vorbemerkungen	6
	1.2	Problemstellung	7
	1.3	Überblick	9
2	Zell	wachstum in einem Bioreaktor 10	0
	2.1	Zellkulturen	0
		2.1.1 Kultivierung \ldots	0
		2.1.2 Zellwachstumsphasen	0
		2.1.3 Zellstoffwechsel	2
	2.2	Bioreaktor	4
3	Einf	führung in CFD - Navier-Stokes-Gleichungen	7
0	3.1	Notation 1	7
	3.2	Erhaltungssätze der Kontinuumsmechanik	9
	0.2	3.2.1 Transportsatz von Revnolds	9
		3.2.2 Massenerhaltung	4
		3.2.3 Impulserhaltung	6
		3.2.4 Energieerhaltung	1
	3.3	Navier-Stokes Gleichungen	6
		3.3.1 Navier-Stokes Gleichungen für kompressible Fluide	7
		3.3.2 Euler-Gleichungen für kompressible Fluide	0
		3.3.3 Navier-Stokes Gleichungen für inkompressible Fluide	0
		3.3.4 Euler-Gleichungen für inkompressible Fluide	1
4	Sim	ulation der Bioreaktoreigenschaften 4	3
-	4.1	Überblick 4	3
	4.2	Geometrie und Netzgenerierung	4
	4.3	Fluss durch das Gebiet	6
	4.4	Mischzeit 4	7
		4.4.1 Experiment	8
		4.4.2 Simulation	0
	4.5	Stofftransport	5
		.	

	4.5.1 Kla-Wert	<i>5</i> 5							
	$4.5.2 \text{Experiment} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	57							
	$4.5.3 \text{Simulation} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	57							
	$4.5.4 \text{Resultate} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	30							
5	Simulation des Zellwachstums 5.1 Überblick								
	2 Erstellen des Modells	52							
	3 Implementierung und Resultate 6	<u>;</u> 9							
6	nhang 7	$\mathbf{'2}$							

Kapitel 1 Einleitung

1.1 Vorbemerkungen

In verschiedenen Bereichen der Medizin - insbesonders aber in der Onkologie - werden vermehrt monoklonale Antikörper als Therapiemittel verwendet. Monoklonale Antikörper sind immunologisch aktive Proteine, die von sogenannten B-Zellen produziert werden und sich gegen spezifische Epitope richten. Sie zeigen zum Beispiel bei der Behandlung von Krebsarten weniger Nebenwirkungen als traditionelle zytotoxische Medikamente, da sie extrem hohe Spezifität aufweisen und sie daher ihre Wirkung hauptsächlich an der gewünschten Stelle entfalten. Um solche monoklonale Antikörper kommerziell zu produzieren, werden Säugetierzellen kultiviert, die genetisch so verändert worden sind, sodass sie gewisse Antikörper übermäßig produzieren. Im Speziellen sind es meist Zellen von Eierstöcken des chinesischen Hamsters, die im Folgenden CHO-Zellen genannt werden. Diese werden deswegen genützt, weil sie ein sehr stabiler Wirt sind und weil sie eine große Adaptierungsfähigkeit haben.

Um kosteneffizient monoklonale Antikörper in großem Stile produzieren zu können, muss die Kultivierung der CHO-Zellen ebenfalls in großer Menge erfolgen. Dies geschieht für gewöhnlich in mit komplexen Medien auf wässriger Basis gefüllten zylinderförmigen Rührtankreaktoren. In diesen wird mit Impellern ein Fluss erzeugt, sodass eine homogene Mischung aus Zellen, Gasen und Nährstoffen entsteht. Durch dieses Mischen wird auch sichergestellt, dass die Zellen nicht am Boden des Reaktors liegen bleiben, sowie dass eine gleichförmige Temperatur innerhalb des Reaktors gehalten werden kann. Die Art des Mischens hängt von der Beschaffenheit des verwendeten Impellers ab. Werden beispielsweise sogenannte "Rushton Impeller" verwendet, so wird ein radialer Fluss im Reaktor erzeugt. Im Gegensatz dazu induzieren "Marine Impeller" einen axialen Fluss. Ein radialer Fluss bedeutet hierbei, dass die Flussrichtung der Flüssigkeit normal zur Achse des zylinderförmigen Reaktors verläuft, während bei axialem Fluss die Flussrichtung entlang der Achse des Zylinders verläuft. Siehe Abbildung 1.1.

Trotz der beachtlichen Fortschritte in den letzten Jahrzehnten in der Zellkulturentwicklung gibt es noch einige Probleme. Diese stammen einerseits aus den Verständnisproblemen in der Biologie und Physiologie der CHO-Zellen, andererseits aber gibt es auch noch keine

Abbildung 1.1: Schematische Darstellung des radialen und axialen Flusses aus [San09].

verlässlichen Methoden um charakteristische Eigenschaften für das Zellwachstum in Bioreakturen vorherzusagen. Um diesen Problemen entgegenzutreten kann man zum Beispiel die Überlebensfähigkeit der Zellen durch genetische Manipulationen verbessern. Man kann aber auch versuchen, Eigenschaften des Bioreaktors oder das Medium für die Zellkultur zu verändern. Während bei der ersten Herangehensweise genaues genetisches Wissen über die Organismen notwendig ist, bleibt die Zweite völlig empirisch, und man benötigt teilweise teure Experimente.

Daher ist es für die Vorhersage des Zellwachstums sehr bedeutend, mathematische Modelle zur Verfügung zu haben. Solche Modelle gewähren auch einen größeren Einblick in den Wachstumsprozess. So kann - auch wenn durch Experimente genaue Daten über das Wachstum der Zellen vorliegen - ohne Modelle keine Verbindung zwischen physiologischen Prozessen und Zellwachstum hergestellt werden. Siehe [San09] und [Car10].

Um kostspielige und zeitaufwändige Experimente zu vermeiden und dennoch den Prozess zu optimieren, sind Simulationen dieser Modelle notwendig. So kann man am effizientesten verstehen, inwiefern sich Eigenschaften des Bioreaktors auf das Zellwachstum auswirken. Um die mathematischen und biologischen Modelle zu validieren, werden die Simulationsergebnisse mit den experimentell gewonnen Resultaten aus [San09] verglichen.

1.2 Problemstellung

Um die Effizienz der Produktion von Zellen in einem Bioreaktor steigern zu können, ist es von großer Bedeutung, den Wachstumsprozess in einem Bioreaktor analysieren zu können. Da diesbezügliche Experimente kostspielig sein können, ist es erforderlich mathematische Modelle für die Analyse des Zellwachstums in einem Bioreaktor zu erstellen. Dies geschieht für gewöhnlich mit CFD (Computational Fluid Dynamics)-Simulationen. Die größte Her-

Abbildung 1.2: Darstellung des in [San09] verwendeten Bioreaktors.

ausforderung für das Erstellen eines solchen Modells ist die lange Rechendauer bei CFD Simulationen. So kann - bei einer Elementanzahl von 10^5 bis 10^6 - die Simulationszeit für eine 36-tel Umdrehung des Rotors bis zu einer Minute betragen. Da das bei entsprechender Umdrehungsgeschwindigkeit einer Zeitspanne von zirka 10^{-2} Sekunden entspricht, können nur geringe Zeitspannen simuliert werden. Niemals aber der gesamte Wachstumsprozess. Deswegen werden zunächst nur die grundlegenden Bioreaktoreigenschaften mit Hilfe von CFD simuliert und dann wird – darauf aufbauend – ein Zellwachstumsmodell erstellt.

Ziel dieser Diplomarbeit ist es, die bestehenden Modelle zur Simulation des Zellwachstums in einem Bioreaktor zu verbessern und anhand der in [San09] und [SPBR11] gegebenen Daten zu validieren, sowie die physikalischen und mathematischen Grundlagen, die für die CFD-Simulationen verwendet werden, zu erläutern.

Dazu müssen zunächst die chemischen Prozesse, die beim Zellwachstum auftreten, erforscht und verstanden werden. Außerdem ist es erforderlich die Beschaffenheit von Bioreaktoren und deren Eigenschaften zu kennen. Um verstehen zu können, wie solche CFD-Simulationen, die Aufschluss auf solche Eigenschaften geben können, funktionieren, ist es notwendig, sich mit dem mathematischen Hintergrund dieser – also mit den Navier-Stokes Gleichungen – zu beschäftigen. Nachdem die Bioreaktoreigenschaften durch Simulationen berechnet worden sind, kann schlussendlich basierend auf den Ergebnissen ein Zellwachstumsmodell erstellt und gelöst werden. Diese Ergebnisse müssen dann mit den vorhandenen Daten verglichen werden.

1.3 Überblick

Im Folgenden wird ein kurzer Überblick über den Aufbau dieser Arbeit gegeben.

- In Kapitel 2 wird ein Einblick in die Zellkultivierung und den Wachstumsprozess in Bioreaktoren gegeben. Neben den chemischen Grundlagen des Zellwachstums wird auch ein Überblick über die verschiedenen Formen der Bioreaktoren gegeben.
- Kapitel 3 ist eine mathematische Einführung in die Strömungslehre. Es werden die Euler- sowie die Navier-Stokes-Gleichungen ausgehend von physikalischen Gesetzen hergeleitet, welche während den Simulationen, die im weiteren Verlauf dieser Arbeit vorkommen, gelöst werden.
- In Kapitel 4 werden die zwei wichtigsten Bioreaktoreigenschaften, die für das Zellwachstumsmodell essentiell sind, mittels CFD-Simulationen berechnet und mit den Daten in [SPBR11] verglichen. Diese zwei Eigenschaften sind die Mischzeit eines Bioreaktors sowie der Stofftransportkoeffizient - der sogenannte Kla-Wert. Um diese berechnen zu können, wird zunächst der in [SPBR11] verwendete Bioreaktor möglichst genau nachgebildet. Dann wird die Strömung im Inneren des Bioreaktors durch Lösen der Navier-Stokes-Gleichungen nachgestellt. Dabei wird eine Drehung des Rührers im Bioreaktor, die auf ein Geschwindigkeitsfeld führt, simuliert. Ausgehend von diesem Fluss durch den Bioreaktor wird die Zeit, die ein Stoff braucht, um sich nach Einführung gleichmäßig im Bioreaktor zu verteilen – also die Mischzeit – durch weitere CFD-Simulationen berechnet. Um die Richtigkeit des Strömungsfeldes zu überprüfuen, werden diese Daten mit den experimentell Gewonnenen aus [SPBR11] verglichen. Ebenfalls ausgehend von der Strömung im Bioreaktor wird dann eine Simulation gestartet, in der Sauerstoff in den Bioreaktor geblasen wird. So kann der Stofftransportkoeffizient, also ein Maß wie gut Stoffe an das Medium im Bioreaktor abgegeben werden, berechnet werden. Diese Ergebnisse werden wiederum mit den Daten aus den Experimenten von [SPBR11] verglichen.
- In Kapitel 5 wird ausgehend von den chemischen Grundlagen des Zellwachstums, und basierend auf den in [Car10] und [San09] vorgestellten Modellen, ein Differentialgleichungssystem, das das Zellwachstum in Abhängigkeit des Kla-Wertes (also in Abhängigkeit des Bioreaktors) beschreibt, erstellt und gelöst. Die Ergebnisse werden wiederum mit den Versuchen von [SPBR11] verglichen.

Kapitel 2

Zellwachstum in einem Bioreaktor

2.1 Zellkulturen

In diesem Abschnitt werden die Vor- und Nachteile der Kultivierung von CHO-Zellen, deren Wachstum, sowie die biochemischen Vorgänge bei der Nährstoffaufnahme und der Nebenprodukterzeugung dieser Zellen behandelt.

2.1.1 Kultivierung

Chinesische Hamster haben eine relativ geringe Anzahl von Chromosomen, was sie sehr nützlich für Gewebekulturstudien macht. 1957 wurde so zum ersten Mal eine Zelle der Eierstöcke von einem Chinesischen Hamster extrahiert und kultiviert. Auch danach wurden CHO-Zellen in vielen biomedizinischen Studien benützt, sodass sie als das säugetierische Äquivalent des Bakteriums *Escherichia Coli* gelten. Zunächst geschah die Kultivierung der CHO-Zellen hauptsächlich aus Forschungsgründen. Später erst würde herausgefunden, dass diese Zellen die Fähigkeit besitzen, gewisse Proteine zu produzieren.

Das ist für pharmazeutische Unternehmen, die sich mit der Produktion von Therapiemitteln in großen Mengen beschäftigen, sehr wichtig. Für die kommerzielle Nutzung war es sehr bedeutend, dass sich CHO-Zellen genetisch sehr leicht verändern lassen. Außerdem sind sie sehr anpassungsfähig und können in großer Dichte in Kulturen, die in bis zu 10000 Liter großen Bioreaktoren gezüchtet werden, wachsen.

Ein Nachteil gegenüber der Nutzung von Mikroorganismen ist, dass die Proteingewinnung pro benötigtem Volumen bei Säugetierzellen ungefähr 10-100 mal geringer ist. (Siehe [Car10], Abschnitt 2.1.) Daher ist es zur Zeit notwendig, sehr große und kostenintensive Bioreaktoren zu verwenden. Aus diesem Grund ist das Zellwachstum und die Optimierung der Zellkultivierung in Bioreaktoren von großem Interesse.

2.1.2 Zellwachstumsphasen

Das Zellwachstum ist in 4 zeitlich getrennte Phasen unterteilt. Die Verzögerungsphase, die exponentielle Phase, die stationäre Phase und die Abklingphase. Siehe Abbildung 2.1.

Abbildung 2.1: Die 4 Phasen des Zellwachstums sind in der sogenannten Zellwachstumskurve graphisch dargestellt. (Aus [Car10].)

Verzögerungsphase Nachdem die Zellen in den Bioreaktor gegeben worden sind, müssen sie sich erst an die neue Umgebung - beispielsweise eine andere Temperatur - anpassen. Dadurch werden die Stoffwechselprozesse und auch das Wachstum verzögert. Die Dauer dieser Phase kann von einigen Minuten bis zu wenigen Stunden variieren. Das hängt vor allem von der Anfangszellkonzentration im Medium und von der Veränderung der Umgebung der Zellen ab.

Exponentielle Phase Nachdem sich die Zellen an die neuen Umgebungsbedingungen angepasst haben, vervielfachen sie sich sehr schnell. Die Rate, mit der dieses Wachstum geschieht, ist nahezu unabhängig von der Konzentration der Nährstoffe, solange diese vorhanden sind. Die exponentielle Phase endet, wenn entweder Nährstoffe nicht mehr ausreichend vorhanden sind oder sich zu viele giftige Nebenprodukte angesammelt haben, oder wenn das Sättigungsniveau der Konzentration der Zellen ereicht worden ist.

Stationäre Phase Ab einem gewissen Zeitpunkt ist die Entwicklung giftiger Nebenprodukte hinderlich beim Zellwachstum und sogar schädlich für die Zellen. In dieser stationären Phase sterben durch die Entwicklung solcher Nebenprodukte ungefähr so viele Zellen wie durch das Zellwachstum entstehen. Das kann auch passieren, wenn den Zellen Nährstoffe extern zwar nicht zugeführt werden, aber solche durch die Lyse abgestorbener Zellen entstehen.

Abklingphase Wenn dann die Sterberate größer ist als die Wachstumsrate, befindet man sich in der Abklingphase.

Natürlich sind vor allem Verzögerungsphase und die Wachstumsrate während der exponentiellen Phase sowie der Zeitpunkt des Einsetzens der stationären Phase von speziellem Interesse. Daher wird im weiteren Verlauf kein Wert auf die Modellierung der Abklingphase gelegt.

2.1.3 Zellstoffwechsel

Der Zellstoffwechsel ist eine Abfolge von chemischen Reaktionen, die durch Umwandlung und Transport von Stoffen dafür sorgen, dass die Energieversorgung der Zellen konstant erhalten bleibt. Nur so kann Zellwachstum stattfinden. Diese Stoffwechselwege können in zwei Kategorien - anabolische und katabolische - unterteilt werden. Während anabolische Reaktionen meist Energie benötigen und zur Stoffsynthese führen, setzen katabolische Reaktionen Energie frei, die Moleküle in kleinere Bestandteile teilen. Die Gesamtheit der katabolischen Prozesse in der Zelle, in denen Moleküle zu Kohlendioxid und Wasser oxidieren, wird Zellatmung genannt. Hierbei wird Energie in Form von Adenosintriphosphat erzeugt. Zellatmung geschieht aber nicht nur durch aerobe Stoffwechselvorgänge, sondern auch durch anaerobe, bei denen kein Sauerstoff benötigt wird.

Glykolyse Der erste Schritt der Zellatmung ist die Glykolyse, eine Reihe chemischer Reaktionen, die Glukose $(C_6H_{12}O_6)$ in zwei Moleküle Pyruvat $(C_3H_4O_3)$ verwandelt:

$$Glc + 2ADP + 2P_i + 2NAD^+ \rightarrow 2Pyruvate + 2ATP + 2NADH + 2H^+ + 2H_2O.$$
 (2.1)

Hierbei steht *Glc* für Glukose, ADP für Adenosindiphosphat $(C_{10}H_{15}N_5O_{10}P_2)$, P_i für anorganisches Phosphat (H_3PO_4) , NAD⁺ für die oxidierte Form von Nicotinamidadenindinukleotid $(C_{21}H_{27}N_7O_{14}P_2)$, ATP für Adenosintriphosphat $(C_{10}H_{16}N_5O_{13}P_3)$ und NADH für die reduzierte Form von Nicotinamidadenindinukleotid $(C_{21}H_{29}N_7O_{14}P_2)$.

Anaerobe Zellatmung Ist kein Sauerstoff vorhanden, so wird NAD⁺ durch NADH und Pyruvate generiert. Gleichzeitig entsteht Laktat ($C_3H_6O_3$). Dieser Prozess wird Milchsäureoder Laktatgärung genannt:

$$Pyruvat + \text{NADH} + H^+ \to Lac + \text{NAD}^+, \tag{2.2}$$

wobei mit *Lac* Laktat bezeichnet wird. Nimmt man an, dass sobald Pyruvate, NADH und H^+ durch Glykolyse entstehen, diese sofort durch Milchsäuregärung in Laktat und NAD⁺ umgewandelt werden, so führen (2.1) und (2.2) auf die Reaktionsgleichung der anaeroben Atmung:

$$Glc + 2ADP + 2P_i \rightarrow 2Lac + 2H_2O + 2ATP.$$
 (2.3)

Aerobe Zellatmung Ist Sauerstoff vorhanden, so kann Glukose vollständig oxidieren und es kann im Gegensatz zur anaeroben Zellatmung eine viele größere Menge an Energie freigesetzt werden. Das Pyruvat, das durch die Glykolyse entsteht, wird in Präsenz von Sauerstoff zu den Mitochondrien gebracht und in verschiedenen Prozessen (Citratzyklus oder TCAcycle) in CO_2 und H_2O umgewandelt. Dabei entsteht auch Energie in Form von 38 ATP, welche aber auch für den Transport zu den Mitochondrien gebraucht wird. Vernachlässigt man die benötigten Enzyme und die benötigte Energie, so bekommt man mit (2.1) die vereinfachte Reaktionsgleichung für die anaerobe Zellatmung:

$$Glc + 2O_2 \to 6CO_2 + 6H_2O + 38$$
ATP. (2.4)

Glutaminolyse Glutamin $(C_5H_{10}N_2O_3)$ ist ebenso wie Glukose eine wichtige Energiequelle für die Zelle. Während der Glutaminolyse durchläuft es in Beisein von Sauerstoff drei verschiedene metabolische Reaktionen. Zwei von diesen drei Reaktionen, sind Zwei-Schritt-Reaktionen, die als Zwischenprodukt Alanin bzw Aspartat erzeugen. Wir nehmen aber an, das die Menge dieser Zwischenprodukte immer konstant ist und gelangen - wenn wir andere Enzyme sowie H_2O außer Acht lassen - zu folgenden Reaktionsgleichungen:

$$Gln + 2O_2 \rightarrow 2CO_2 + 2Amm + Lac, \tag{2.5}$$

$$Gln + 3O_2 \rightarrow 3CO_2 + 2Amm + Lac, \tag{2.6}$$

$$Gln + 3O_2 \rightarrow 2CO_2 + 2Amm + Lac, \tag{2.7}$$

wobei Gln Glutamin und Amm Ammoniak $(2NH_3)$ bezeichnet.

Das Zellwachstum hängt aber nicht nur von den Stoffwechselvorgängen ab, sondern auch von anderen Faktoren. So sind die einzelnen chemischen Vorgänge während der Stoffwechelprozesse temperaturabhängig. Laut [Car10] haben Experimente gezeigt, dass die Temperatur auch das Zellwachstum insgesamt nicht unwesentlich beeinflusst. Die größte Wachstumsrate ergibt sich bei zirka 37° Celsius. Da unser Modell nicht temperaturabhängig ist, wird im weiteren Verlauf unserer Simulationen eine konstante Temperatur von 37° Celsius im Bioreaktor angenommen.

Ein weiterer Faktor ist die Sauerstoffkonzentration im Medium. Gibt es keine Sauerstoffzufuhr, so gibt es auch keine aerobe Zellatmung. Da die anaerobe Zellatmung wesentlich weniger Energie in Form von ATP freisetzt, schränkt dieser Fall das Zellwachstum sehr ein. Auch bei einer zu großen Konzentration von Sauerstoff stört laut [Car10] den Zellstoffwechsel. Daher wird meist versucht, eine Sauerstoffkonzentration von 5%-35% sicher zu stellen, die das Zellwachstum und die Überlebensfähigkeit der Zellen nicht einschränkt.

Neben der Sauerstoffkonzentration beeinflusst aber auch der pH-Wert das Zellwachstum. Dieser hängt hauptsächlich von der Menge an Nebenprodukten wie CO_2 und Laktat ab. Sind zu viele davon vorhanden sinkt der pH-Wert und man beobachtet eine geringere Überlebensrate der Zellen. Deswegen werden während der Zellkultivierung Bicarbonate (HCO_3) hinzugefügt, um den pH-Wert weitgehend konstant zu halten. Da kein mathematisches Modell existiert, das Änderungen beim Zellwachstum aufgrund des pH-Wertes simuliert, und da der pH-Wert ohnehin konstant gehalten wird, verzichten wir darauf, den Einfluss des pH-Wertes zu modellieren.

2.2 Bioreaktor

Da die Rate der Nährstoffaufnahme und damit der Zellstoffwechsel und das Zellwachstum sehr von der Konzentration der Nährstoffe abhängt, ist es wichtig, den Bioreaktor und seine Eigenschaften genauer zu betrachten. Eine Veränderung des Systems - wie zum Beispiel eine Erhöhung der Umdrehungsgeschwindigkeit des Rührers im Bioreaktor - kann zu anderen Zellwachstumsraten führen.

Grundsätzlich ist ein Bioreaktor ein zylinderförmiger Behälter, in dessen Mitte sich ein Rührer befindet. Siehe Abbildung 1.2. Dieser Rührer besteht aus einem Stab, an dem meist 2-3 Impeller befestigt sind. Diese können - wie schön in Abschnitt 1.1 erwähnt - verschieden geformt sein. Je nachdem wird ein unterschiedlicher Fluss $F : \Omega \subset \mathbb{R}^3 \mapsto \mathbb{R}^3$ induziert. Während der Zellkultivierung ist der Bioreaktor bis zu einem gewissen Füllstand mit Wasser gefüllt und Sauerstoff wird durch einen sogenannten Sparger eingeblasen, um eine konstant hohe Sauerstoffkonzentration sicher zu stellen. Sobald der Rührer zu rotieren anfängt, werden die Sauerstoffbläschen mit dem Wasser durchmischt. Dasselbe geschieht mit Nährstoffen wie Glukose oder Glutamin, wenn man diese zum Zwecke des Zellwachstums in den Bioreaktor einführt.

Abbildung 2.2: Vergleich eines drilled-tube spargers mit einem ring sparger. Die Löcher, wodurch Nährstoffe eingespeist werden, sind hier nicht zu sehen.

Das Einblasrohr, durch den der Einblasvorgang geschieht - im Englischen auch *sparger* genannt - kann verschiedene Formen haben. Im Wesentlichen wird zwischen einem *ring sparger* und einem *drilled-tube sparger* unterschieden. Ein ring sparger kann am besten als hohles Rohr, das sich vertikal im Bioreaktor befindet und an das unten ein hohler Torus anschließt, beschrieben werden. An der Oberseite des Torus befinden sich einige Löcher, damit Sauerstoff eingeblasen werden kann. Diese Löcher sind meist gleichverteilt und haben einen Durchmesser von 0,5 mm - 1,0 mm. Bei einem drilled-tube sparger dagegen schließt an das vertikale Rohr ein Horizontales an, an dem sich (entweder auf der Ober- oder auf der Unterseite) in regelmäßigen Abständen Löcher befinden. Siehe Abbildung 2.2. Bei beiden Arten sind die Löcher meist gleichmäßig auf dem Rohr verteilt.

Der Rührstab wird von einem Motor angetrieben, daher ist er oben oder unten durch eine Halterung mit dem Bioreaktor verbunden. Der Fluss, den so ein rotierender Rührer erzeugt, hängt nicht nur von der Beschaffenheit der befestigten Impeller ab, sondern auch in welcher Höhe sie sich befnden. Wie schon erwähnt können die Impeller entweder einen axialen oder einen radialen Fluss induzieren. Je nachdem spricht man von Rushton Impellern oder Marine Impellern. Natürlich gibt es auch Mischvarianten. Siehe Abbildung 2.3.

Abbildung 2.3: Ein Rührer mit einem Marine Impeller oben und einem Rushton Impeller unten.

Des Weiteren sind am Zylinder in regelmäßigen Abständen 3-4 dünne Ablenkbleche - sogenannte Baffles - angebracht. Diese dienen dazu, durch Verwirbelungen den Fluss im Wasser ungleichmäßiger werden zu lassen. Dadurch soll eine bessere Durchmischung sicher gestellt werden.

Auch die Größe des Bioreaktors spielt eine entscheidende Rolle. Der Bioreaktor, der für die Versuche in [San09] verwendet wurde, und den wir im Folgenden betrachten werden, hat ein Volumen von 20 Liter. Allerdings wurden die Experimente mit einem Arbeitsvolumen von lediglich 15L ausgeführt.

Die Umdrehungsgeschwindigkeit betrug bei den Zellwachstumsversuchen 95 Umdrehungen pro Minute (kurz: rpm - rotations per minute). Nur bei Versuchen zur Bestimmung der Mischzeit wurde die Umdrehungsgeschwindigkeit variiert. Allgemein gilt, dass bei zu hoher Umdrehungsgeschwindigkeit die Scherspannung zu groß wird und die darauf relativ empfindlichen CHO-Zellen während der Kultivierung beschädigt werden. Aus diesem Grund sind bei CHO-Zellkultivierungen - im Gegensatz zu Versuchen mit mikrobiologischen Organismen die Umdrehungsgeschwindigkeiten mit ungefähr 50rpm bis 150rpm eher gering.

Kapitel 3

Einführung in CFD -Navier-Stokes-Gleichungen

Unter numerischer Strömungsmechanik (engl. Computational Fluid Dynamics - CFD) versteht man die Lösung und Analyse physikalischer Probleme, die mit Flüssigkeiten zu tun haben. Hierüber soll in diesem Kapitel eine Einführung gegeben werden. Dazu werden die physikalischen Grundlagen erläutert. Diese führen auf die Euler- bzw. Navier-Stokes Gleichungen, welche dann mit dem Programm AVL Fire gelöst werden.

3.1Notation

Bevor wir uns den Erhaltungsgleichungen widmen, fassen wir kurz die wichtigsten Variablen und Schreibweisen dieses Kapitels zusammen.

Zunächst definieren wir folgende Schreibweisen, die wir im Verlauf dieses Kapitels verwenden werden.

Definition 3.1. Set $\hat{\mathbf{x}} = \begin{pmatrix} \hat{\mathbf{x}}_1 \\ \hat{\mathbf{x}}_2 \\ \hat{\mathbf{x}}_3 \end{pmatrix} \in \mathbb{R}^3$. Set we iters $v \in \mathbb{R}$, $\mathbf{v}, \hat{\mathbf{v}} \in \mathbb{R}^3$ und set $\mathbf{V} \in \mathbb{R}^{3 \times 3}$ eine symmetrische Matrix. Dann bezeichnet

• $(\mathbf{v} \cdot \hat{\mathbf{v}}) := \sum_{i=1}^{3} \mathbf{v}_i \hat{\mathbf{v}}_i$ das innere Produkt zweier Vektoren,

•
$$\nabla_{\hat{\mathbf{x}}} v := \begin{pmatrix} \frac{\partial v}{\partial \hat{\mathbf{x}}_1} \\ \frac{\partial v}{\partial \hat{\mathbf{x}}_2} \\ \frac{\partial v}{\partial \hat{\mathbf{x}}_2} \end{pmatrix} \in \mathbb{R}^3 \ den \ Gradienten,$$

•
$$\nabla_{\hat{\mathbf{x}}} \mathbf{v}^T := \begin{pmatrix} \frac{\partial \mathbf{v}_1}{\partial \hat{\mathbf{x}}_1} & \frac{\partial \mathbf{v}_2}{\partial \hat{\mathbf{x}}_1} & \frac{\partial \mathbf{v}_3}{\partial \hat{\mathbf{x}}_1} \\ \frac{\partial \mathbf{v}_1}{\partial \hat{\mathbf{x}}_2} & \frac{\partial \mathbf{v}_2}{\partial \hat{\mathbf{x}}_2} & \frac{\partial \mathbf{v}_3}{\partial \hat{\mathbf{x}}_3} \\ \frac{\partial \mathbf{v}_1}{\partial \hat{\mathbf{x}}_3} & \frac{\partial \mathbf{v}_2}{\partial \hat{\mathbf{x}}_3} & \frac{\partial \mathbf{v}_3}{\partial \hat{\mathbf{x}}_3} \end{pmatrix} \in \mathbb{R}^{3 \times 3} den Gradienten eines transponierten Vektors,$$

• $\operatorname{div}_{\hat{\mathbf{x}}}\mathbf{v} := \sum_{i=1}^{3} \frac{\partial \mathbf{v}_{i}}{\partial \hat{\mathbf{x}}_{i}} \in \mathbb{R}$ die Divergenz eines Vektors und

• div_{$$\hat{\mathbf{x}}$$} $\mathbf{V} := \begin{pmatrix} \sum_{i=1}^{3} \frac{\partial \mathbf{V}_{i,1}}{\partial \hat{\mathbf{x}}_i} \\ \sum_{i=1}^{3} \frac{\partial \mathbf{V}_{i,2}}{\partial \hat{\mathbf{x}}_i} \\ \sum_{i=1}^{3} \frac{\partial \mathbf{V}_{i,3}}{\partial \hat{\mathbf{x}}_i} \end{pmatrix} \in \mathbb{R}^{3 \times 1} die Divergenz einer Matrix.$

Welche Größen vorkommen, wovon sie abhängig sind, ihre Bedeutung, die physikalische Einheit, in der sie gemessen werden, und wo im Kapitel eine Größe zum ersten Mal aufscheint ist in Tabelle 3.1 ersichtlich.

Varible	Bedeutung	Einheit	erstes Auftreten
$V_t \subset \Omega_t \subset \mathbb{R}^3$	Volumen	in $[m^3]$	siehe (3.2), Def. 3.7
$\mathbf{v} = \mathbf{v}(t, \hat{\mathbf{x}}) \in \mathbb{R}^3$	Geschwindigkeit	in $[m \ s^{-1}]$	siehe Def. 3.3
$\mathbf{V} = \mathbf{V}(t, \hat{\mathbf{x}}) \in \mathbb{R}^{3 imes 3}$	Matrix $v_i(t\hat{\mathbf{x}})v_j(t,\hat{\mathbf{x}})$	in $[m^2 \ s^{-2}]$	siehe (3.29)
$\rho = \rho(t, \hat{\mathbf{x}}) \in \mathbb{R}$	Dichte	in $[\text{kg m}^{-3}]$	siehe Def. 3.7
$m = m(V_t) \in \mathbb{R}$	Masse	in $[kg]$	siehe Def. 3.7
$\mathbf{p} = \mathbf{p}(V_t) \in \mathbb{R}^3$	Impuls	in $[\text{kg m s}^{-1}]$	siehe Def. 3.11
$\mathbf{F} = \mathbf{F}(t) \in \mathbb{R}^3$	Kraft	in $[\text{kg m s}^{-2}]$	siehe (3.21)
$\mathbf{F}_V = \mathbf{F}_V(t, \hat{\mathbf{x}}) \in \mathbb{R}^3$	Kraft pro Masse	in $[m \ s^{-2}]$	siehe (3.21)
$\mathbf{F}_S = \mathbf{F}_S(t, \hat{\mathbf{x}}, \mathbf{n}) \in \mathbb{R}^3$	Kraft pro Oberfläche	in $[\text{kg m}^{-1} \text{ s}^{-2}]$	siehe (3.21)
$p = p(t, \hat{\mathbf{x}}) \in \mathbb{R}$	Druck	in $[\text{kg m}^{-1} \text{ s}^{-2}]$	siehe (3.23)
$\sigma = \sigma(t, \hat{\mathbf{x}}) \in \mathbb{R}^{3 \times 3}$	Spannungstensor	in $[\text{kg m}^{-1} \text{ s}^{-2}]$	siehe Bem. 3.13
$\lambda = const. \in \mathbb{R}$	Volumensviskosität	in $[\text{kg m}^{-1} \text{ s}^{-1}]$	siehe Bem. 3.13
$\mu = const. \in \mathbb{R}$	Scherviskosität	in $[\text{kg m}^{-1} \text{ s}^{-1}]$	siehe Bem. 3.13
$\epsilon = \epsilon(t, \hat{\mathbf{x}}) \in \mathbb{R}$	spez. innere Energie	in $[m^2 \ s^{-2}]$	siehe (3.37)
$P_S = P_S(t, \hat{\mathbf{x}}) \in \mathbb{R}$	Leistung d. inn. Kräfte	in $[\text{kg m}^2 \text{ s}^{-3}]$	siehe (3.46)
$P_V = P_V(t, \hat{\mathbf{x}}) \in \mathbb{R}$	Leistung d. äuß. Kräfte	in $[\text{kg m}^2 \text{ s}^{-3}]$	siehe (3.47)
$P_E = P_E(t, \hat{\mathbf{x}}) \in \mathbb{R}$	Leistung d. Energiefluss	in $[\text{kg m}^2 \text{ s}^3]$	siehe (3.48)
$\mathbf{E}_S = \mathbf{E}_S(t, \hat{\mathbf{x}}) \in \mathbb{R}^3$	Energiefluss d. Oberfl.	in $[\text{kg s}^{-3}]$	siehe (3.48)
$E_{\text{tot}} = E_{\text{tot}}(t, \hat{\mathbf{x}}) \in \mathbb{R}$	totale Energie	in $[\text{kg m}^2 \text{ s}^{-2}]$	siehe (3.49)
$\epsilon_{\rm tot} = \epsilon_{\rm tot}(t, \hat{\mathbf{x}}) \in \mathbb{R}$	spez. totale Energie	in $[m^2 s^{-2}]$	siehe (3.50)
$U \in \mathbb{R}$	innere Energie	in $[\text{kg m}^2 \text{ s}^{-2}]$	siehe (3.36)
$W \in \mathbb{R}$	Arbeit	in $[\text{kg m}^2 \text{ s}^{-2}]$	siehe (3.36)
$Q \in \mathbb{R}$	Wärme	in $[\text{kg m}^2 \text{ s}^{-2}]$	siehe (3.36)
$V \in \mathbb{R}$	Volumen	in $[m^3]$	siehe (3.36)
$R \in \mathbb{R}$	Gaskonstante	in $[m^2 s^{-2} K^{-1}]$	siehe (3.59)
$T \in \mathbb{R}$	Temperatur	in $[K]$	siehe (3.59)
$c_v \in \mathbb{R}$	Wärmekap. b. konst. ${\cal V}$	in $[m^2 s^{-2} K^{-1}]$	siehe (3.60)
$c_p \in \mathbb{R}$	Wärmekap. b. konst. \boldsymbol{p}	in $[m^2 s^{-2} K^{-1}]$	siehe (3.61)
$\rho_{\infty} = const. \in \mathbb{R}$	konst. Dichte	in $[\text{kg m}^{-3}]$	siehe Def. 3.21

Tabelle 3.1: Zusammenfassung der in Kapitel 3 vorkommenden Variablen.

3.2 Erhaltungssätze der Kontinuumsmechanik

In diesem Abschnitt werden die Erhaltungssätze der Kontinuumsmechanik wie in [Eng02], [KL08] und [Kle12] erläutert.

In der Physik gibt es Aussagen, dass sich eine bestimmte Größe in einem kontinuierlichen Medium (wie z.B. Gas, Wasser) während eines physikalischen Prozesses nicht ändert. Diese Größen werden auch Erhaltungsgrößen genannt. Solche physikalischen Größen sind zum Beispiel Masse, Energie, Impuls, Drehimpuls oder elektrische Ladung.

Vernachlässigt man die molekulare Struktur des kontinuierlichen Mediums, so sind die Erhaltungssätze der Kontinuumsmechanik gültig. Das bedeutet, dass die verwendeten Längen um ein Vielfaches größer sind als die mittlere freie Weglänge (die Länge, die ein Teilchen durchschnittlich zurücklegt ohne dass Wechselwirkungen mit anderen Teilchen stattfinden) und dass die betrachteten Zeiten im Vergleich zu der Zeit, die durchschnittlich zwischen zwei Zusammenstößen eines Teilchens vergeht, ebenfalls sehr groß sind.

Im wesentlichen besagen die Erhaltungssätze, dass

- Masse weder erzeugt noch vernichtet wird,
- eine Impulsänderung nur durch äußere Kräfte geschieht,
- Energie weder erzeugt noch vernichtet wird.

3.2.1 Transportsatz von Reynolds

Eine zentrale Aussage für den Transport des Kontinuums bildet der Transportsatz von Reynolds. Für dessen Beweis benötigen wir folgenden Hilfssatz aus [Kal08].

Lemma 3.2 (Satz über die Umkehrfunktion). Sei $f : D \subset \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar auf der offenen Menge D. Weiters sei $a \in D$ und sei vorausgesetzt, dass

 $\det df(a) \neq 0.$

Setze b := f(a). Dann existieren offene Mengen U und V mit den folgenden Eigenschaften:

- (i) $a \in U$ und $b \in V$.
- (ii) $f|_U$ ist eine Bijektion von U auf V.
- (iii) Die inverse Abbildung $g: V \to U$ von $f|_U: U \to V$ ist stetig differenzierbar mit $dg(f(x)) = df(x)^{-1}$.

Wir gehen nun wie in $[BMSR^{+}11]$ vor.

Sei $\Omega \subset \mathbb{R}^3$ ein beschränktes Gebiet und T > 0. Sei $D := [0, T] \times \Omega$, sei $\overline{D} := [0, T] \times \overline{\Omega}$ und sei $\mathbf{X} \in \mathcal{C}(\overline{D}, \mathbb{R}^3)$ eine Abbildung mit folgenden Eigenschaften:

(T1) $\mathbf{X}(t, \cdot) : \overline{\Omega} \to \mathbb{R}^3$ ist für alle $t \in [0, T]$ injektiv.

- (T2) Die partiellen Ableitungen $\frac{\partial \mathbf{X}}{\partial \mathbf{x}}$ nach \mathbf{x} existieren und sind stetig und beschränkt auf D.
- (T3) Es existiert ein $\varepsilon > 0$, sodass für die Jacobi-Matrix $D_{\mathbf{x}}\mathbf{X}$ der partiellen Ableitungen nach \mathbf{x} gilt: det $D_{\mathbf{x}}\mathbf{X}(t, \mathbf{x}) > \varepsilon \quad \forall (t, \mathbf{x}) \in D.$
- (T4) Die partielle Ableitung $\frac{\partial \mathbf{X}}{\partial t}$ existiert und ist stetig auf \overline{D} , wobei bei t = 0 bzw t = T der rechts- bzw linksseitige Grenzwert betrachtet wird.

Sei eine Abbildung $\Psi : \overline{D} \to \mathbb{R}^4$ durch

 $\Psi(t,\mathbf{x}) := (t,\mathbf{X}(t,\mathbf{x}))$

definiert. Aus (T1) folgt, dass Ψ injektiv ist. Klarerweise gilt:

 $\Psi \in \mathcal{C}(\overline{D}, \mathbb{R}^4) \cap \mathcal{C}^1((0, T) \times \Omega, \mathbb{R}^4).$

Sei $Q := \Psi((0,T) \times \Omega)$. Da mit der Injektivität und Stetigkeit von Ψ gilt

$$\Psi(\overline{D}) = \Psi(\overline{(0,T) \times \Omega}) = \overline{Q},$$

 ist

 $\Psi: \overline{D} \to \overline{Q}$ ein Homöomorphismus.

(3.1)

Folglich ist $\Psi_{|(0,T)\times\Omega}$ eine offene Abbildung. Insbesondere ist Q eine offene Teilmenge von \mathbb{R}^4 . Außerdem ist mit (T3) die Jacobi-Matrix $D_{(t,\mathbf{x})}\Psi(t,\mathbf{x})$ für alle $(t,\mathbf{x}) \in (0,T)\times\Omega$ regulär. Mit Lemma 3.2 folgt, dass $\Psi^{-1} \in \mathcal{C}^1(Q)$ ist und dass gilt $(D_{(t,\hat{\mathbf{x}})}\Psi^{-1})(t,\hat{\mathbf{x}}) = (D_{(t,\mathbf{x})}\Psi(t,\mathbf{x}))^{-1}$, wobei $(t,\mathbf{x}) = \Psi^{-1}(t,\hat{\mathbf{x}}) \quad \forall (t,\hat{\mathbf{x}}) \in Q$. Weiters ist dadurch, und mit (T2) und (T4) $D_{(t,\hat{\mathbf{x}})}(\Psi^{-1})$ beschränkt auf Q.

Sei nun $\Omega_t := \mathbf{X}(t, \Omega)$. Da Projektionen und Einbettungen stetig sind, folgt aus (3.1) für alle $t \in [0, T]$, dass

$$\mathbf{X}(t,\cdot): \overline{\Omega} \to \overline{\Omega}_t$$
 ein Homöomorphismus (3.2)

und Ω_t eine offene Teilmenge von \mathbb{R}^3 ist. Physikalisch betrachtet bezeichnet $\overline{\Omega}$ das Ausgangsgebiet und $\overline{\Omega}_t$ das Gebiet zum Zeitpunkt t. Die Abbildung $\mathbf{X}(t, \cdot)$ gibt an, in welchem Punkt des Gebiets $\overline{\Omega}_t$ sich ein Teilchen befindet, das im Ausgangszustand an einem gewissen Punkt in $\overline{\Omega}$ gelegen ist.

Sei $\mathbf{P}(t, \cdot) : \overline{\Omega}_t \to \overline{\Omega}$ die Inverse von $\mathbf{X}(t, \cdot)$ für alle $t \in [0, T]$. Laut Lemma 3.2 ist die Abbildung $\mathbf{P}(t, \cdot)$ in $\mathcal{C}(\overline{\Omega}_t) \cap \mathcal{C}^1(\Omega_t)$ für alle $t \in [0, T]$. Es folgt mit (3.1) und (3.2), dass

$$\Psi^{-1} \in \mathcal{C}(\overline{Q}) \cap \mathcal{C}^1(Q) \tag{3.3}$$

für alle $t \in [0, T]$ die Form

$$\Psi^{-1}(t, \hat{\mathbf{x}}) = (t, \mathbf{P}(t, \hat{\mathbf{x}})) \quad \forall (t, \hat{\mathbf{x}}) \in \overline{Q}$$
(3.4)

hat.

Da $\frac{\partial \mathbf{X}}{\partial t} \in \mathcal{C}(\overline{D})$ und $\Psi^{-1}(\overline{Q}) = \overline{D}$ ist, können wir nun das Geschwindigkeitsfeld \mathbf{v} definieren.

Definition 3.3. Die Funktion $\mathbf{v} \in \mathcal{C}(\overline{Q})$, definiert durch

$$\mathbf{v}(t,\hat{\mathbf{x}}) := \frac{\partial \mathbf{X}}{\partial t} (\Psi^{-1}(t,\hat{\mathbf{x}})) = \frac{\partial \mathbf{X}}{\partial t} (t, \mathbf{P}(t,\hat{\mathbf{x}})) \qquad \forall (t,\hat{\mathbf{x}}) \in \overline{Q}$$
(3.5)

wird Geschwindigkeitsfeld genannt. Sie kann auch wie folgt geschrieben werden:

$$\mathbf{v}(t, \mathbf{X}(t, \mathbf{x})) = \frac{\partial \mathbf{X}}{\partial t}(t, \mathbf{x}) \qquad \forall (t, \mathbf{x}) \in \overline{D}.$$
(3.6)

Weiters benötigen wir die folgende Eigenschaft:

~---

(T5) Die Ableitungen zweiter Ordnung $\frac{\partial}{\partial t}(D_{\mathbf{x}}\mathbf{X})$ sowie $D_{\mathbf{x}}(\frac{\partial \mathbf{X}}{\partial t})$ existieren und sind stetig auf D.

Laut dem Satz von Schwarz stimmen sie daher auf D überein. Mit (T5) existiert

$$D_{\hat{\mathbf{x}}}\mathbf{v}(t,\hat{\mathbf{x}}) \stackrel{(3.5)}{=} D_{\hat{\mathbf{x}}}(\frac{\partial \mathbf{X}}{\partial t}(\Psi^{-1}(t,\hat{\mathbf{x}})))$$
$$\stackrel{\text{Ketten-}}{=} D_{\hat{\mathbf{x}}}(\frac{\partial \mathbf{X}}{\partial t})(\Psi^{-1}(t,\hat{\mathbf{x}})) \cdot D_{\hat{\mathbf{x}}}\Psi^{-1}(t,\hat{\mathbf{x}})$$

für alle $(t, \hat{\mathbf{x}})$, für die $\Psi^{-1}(t, \hat{\mathbf{x}}) \in D$ ist.

Das bedeutet, $D_{\hat{\mathbf{x}}}\mathbf{v}$ existiert für alle $(t, \hat{\mathbf{x}}) \in Q^{[0,T]} := Q \cup (\{0\} \times \Omega_0) \cup (\{T\} \times \Omega_T)$ und ist wegen (3.3) auf Q stetig.

Außerdem erhält man mit der Vertauschbarkeit der Differentiale in (T5) analog zu obiger Rechnung, dass

$$\left(\frac{\partial}{\partial t}(D_{\mathbf{x}}\mathbf{X})\right)(t,\mathbf{x}) \stackrel{(T5)}{=} D_{\mathbf{x}}\left(\frac{\partial \mathbf{X}}{\partial t}(t,\mathbf{x})\right)$$

$$\stackrel{(3.6)}{=} D_{\mathbf{x}}(\mathbf{v}(t,\mathbf{X}(t,\mathbf{x})))$$

$$\stackrel{\text{Ketten-}}{=} (D_{\hat{\mathbf{x}}}\mathbf{v})(t,\mathbf{X}(t,\mathbf{x})) \cdot (D_{\mathbf{x}}\mathbf{X})(t,\mathbf{x})$$
(3.7)

für alle $(t, \mathbf{x}) \in D$. Man beachte, dass die rechte Seite von (3.7) aus einer Matrix-Matrix-Multiplikation besteht. Für einen Eintrag $(\frac{\partial}{\partial t}(D_{\mathbf{x}}\mathbf{X}))_{i,j}(t, \mathbf{x})$ der 3×3 -Matrix auf der linken Seite der Gleichung folgt daher:

$$\left(\frac{\partial}{\partial t}(D_{\mathbf{x}}\mathbf{X})\right)_{i,j}(t,\mathbf{x}) = \sum_{k=1}^{3} (D_{\hat{\mathbf{x}}}\mathbf{v})_{i,k}(t,\mathbf{X}(t,\mathbf{x})) \cdot (D_{\mathbf{x}}\mathbf{X})_{k,j}(t,\mathbf{x})$$
(3.8)

für alle $(t, \mathbf{x}) \in D$. Für die die Zeitableitung der Determinante dieser Matrix gilt folgende Rechenregel.

Satz 3.4 (Satz von Liouville). *Mit obiger Notation gilt für alle* $(t, \mathbf{x}) \in D$:

$$\left(\frac{\partial}{\partial t}(\det D_{\mathbf{x}}\mathbf{X})\right)(t,\mathbf{x}) = (\operatorname{div}_{\hat{\mathbf{x}}}\mathbf{v})(t,\mathbf{X}(t,\mathbf{x})) \cdot (\det D_{\mathbf{x}}\mathbf{X})(t,\mathbf{x}).$$
(3.9)

Beweis. Sei $(t, \mathbf{x}) \in D$. Mit der Definition der Determinante und (3.8) gilt

$$\begin{split} \frac{\partial}{\partial t} (\det D_{\mathbf{x}} \mathbf{X})(t, \mathbf{x}) &= \left(\frac{\partial}{\partial t} (\sum_{\sigma \in S_{3}} \operatorname{sgn}(\sigma) \prod_{i=1}^{3} (D_{\mathbf{x}} \mathbf{X})_{i,\sigma(i)}))(t, \mathbf{x}) \\ &= (\sum_{\sigma \in S_{3}} \operatorname{sgn}(\sigma) \frac{\partial}{\partial t} (\prod_{i=1}^{3} (D_{\mathbf{x}} \mathbf{X})_{i,\sigma(i)}))(t, \mathbf{x}) \\ \stackrel{\text{Produkt.}}{=} \left(\sum_{\sigma \in S_{3}} \operatorname{sgn}(\sigma) \frac{\partial}{\partial t} ((D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \\ &+ (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot \frac{\partial}{\partial t} ((D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \\ &+ (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot \frac{\partial}{\partial t} ((D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)}))(t, \mathbf{x}) \\ \stackrel{(3.8)}{=} \left(\sum_{\sigma \in S_{3}} \operatorname{sgn}(\sigma) (\sum_{k=1}^{3} (D_{\hat{\mathbf{x}}} \mathbf{v})_{1,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(1)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \\ &+ (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (\sum_{k=1}^{3} (D_{\hat{\mathbf{x}}} \mathbf{v})_{2,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(2)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \\ &+ (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (\sum_{k=1}^{3} (D_{\hat{\mathbf{x}}} \mathbf{v})_{3,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(3)}))(t, \mathbf{x}). \end{split}$$

Durch Aufspalten der inneren Summen ergibt sich

$$= \left(\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (D_{\hat{\mathbf{x}}} \mathbf{v})_{1,1} \cdot (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \right. \\ \left. + (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (D_{\hat{\mathbf{x}}} \mathbf{v})_{2,2} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \right. \\ \left. + (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\hat{\mathbf{x}}} \mathbf{v})_{3,3} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \right) (t, \mathbf{x}) \right. \\ \left. + \left(\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (\sum_{k=2}^3 (D_{\hat{\mathbf{x}}} \mathbf{v})_{1,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(1)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \right. \\ \left. + \sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (\sum_{k=1,3} (D_{\hat{\mathbf{x}}} \mathbf{v})_{2,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(2)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)} \right. \\ \left. + \sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (D_{\mathbf{x}} \mathbf{X})_{1,\sigma(1)} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (\sum_{k=2}^3 (D_{\hat{\mathbf{x}}} \mathbf{v})_{3,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(3)}) \right) (t, \mathbf{x}) \right.$$

Die letzten 3 dieser 4 Summanden können wir wegen der Symmetrie der symmetrischen Gruppe S_3 jeweils zu 0 umformen. Aus Symmetriegründen reicht es, diese Eigenschaft nur

für den ersten dieser 3 Summanden zu zeigen.

$$\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (\sum_{k=2}^3 (D_{\hat{\mathbf{x}}} \mathbf{v})_{1,k} \cdot (D_{\mathbf{x}} \mathbf{X})_{k,\sigma(1)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)}$$

=
$$\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (D_{\hat{\mathbf{x}}} \mathbf{v})_{1,2} \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(1)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)}$$

+
$$\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) (D_{\hat{\mathbf{x}}} \mathbf{v})_{1,3} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(1)}) \cdot (D_{\mathbf{x}} \mathbf{X})_{2,\sigma(2)} \cdot (D_{\mathbf{x}} \mathbf{X})_{3,\sigma(3)}.$$

Da es zu jedem $\sigma \in S_3$ und $k \in \{2,3\}$ genau ein $\tilde{\sigma} \neq \sigma \in S_3$ mit $\operatorname{sgn}(\tilde{\sigma}) = -\operatorname{sgn}(\sigma)$ gibt, sodass $\sigma(1) = \tilde{\sigma}(k)$ und $\sigma(k) = \tilde{\sigma}(1)$ ist, sind sowohl der erste als auch der zweite Term in obiger Gleichung gleich 0. Daher folgt mit einer einfachen Umformung des ersten der 4 Summanden, dass

$$\begin{split} \frac{\partial}{\partial t} (\det D_{\mathbf{x}} \mathbf{X})(t, \mathbf{x}) = & ((D_{\hat{\mathbf{x}}} \mathbf{v})_{1,1} + (D_{\hat{\mathbf{x}}} \mathbf{v})_{2,2} + (D_{\hat{\mathbf{x}}} \mathbf{v})_{3,3}) \cdot (\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) \prod_{i=1}^3 (D_{\mathbf{x}} \mathbf{X})_{i,\sigma(i)}))(t, \mathbf{x}) \\ = & (\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \mathbf{X}(t, \mathbf{x})) \cdot (\det D_{\mathbf{x}} \mathbf{X})(t, \mathbf{x}) \qquad \forall (t, \mathbf{x}) \in D, \end{split}$$

was (3.9) beweist.

Um den Transportsatz von Reynolds beweisen zu können, benötigen wir noch folgende Annahme:

(T6) Für alle $(t, \hat{\mathbf{x}}) \in Q$ ist $\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}(t, \hat{\mathbf{x}})$ beschränkt.

Satz 3.5 (Transportsatz von Reynolds). Wie schon im Verlauf dieses Abschnitts sei $\Omega \in \mathbb{R}^3$ ein beschränktes Gebiet und T > 0. Sei ebenso $\overline{D} := [0,T] \times \overline{\Omega}$ und $\mathbf{X} \in \mathcal{C}(\overline{D}, \mathbb{R}^3)$ eine Abbildung, die die Annahmen (T1)-(T6) erfüllt, wobei \mathbf{v} wie in Definition 3.3 definiert ist. Sei $\Psi(t, \mathbf{x}) := (t, \mathbf{X}(t, \mathbf{x}))$ und $Q := \Psi((0, T) \times \Omega)$. Sei $\sigma \in L^{\infty}(\Omega)$ und $\overline{\sigma}$ auf $\Psi([0, T] \times \Omega))$ durch $\overline{\sigma}(t, \hat{\mathbf{x}}) := \sigma(\mathbf{x})$, wobei $\hat{\mathbf{x}} := \mathbf{X}(t, \mathbf{x})$.

Sei $\phi \in \mathcal{C}(\overline{Q}) \cap \mathcal{C}^1(Q)$, sodass die partiellen Ableitungen $\frac{\partial \phi}{\partial x_i}$, $i = 1, \ldots, 3$ und $\frac{\partial \phi}{\partial t}$ auf Q beschränkt sind. Dann gilt für Lesbesgue-messbare Mengen $V \subset \Omega$ und für alle $t \in (0,T)$, dass

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \phi(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial \phi}{\partial t}(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} \phi)(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}}) + \phi(t, \hat{\mathbf{x}})(\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.10)

wobei $V_t := \mathbf{X}(t, V).$

Beweis. Sei $V \subset \Omega$ und $t \in [0,T]$. Mit V ist auch $V_t := \mathbf{X}(t,V)$ eine Lebesgue-messbare Menge. Mit dem Transformationssatz erhält man, dass

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \phi(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{V} \phi(t, \mathbf{X}(t, \mathbf{x})) \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) d\mathbf{x} \qquad \forall t \in [0, T].$$

Laut Voraussetzung sind für alle $(t, \mathbf{x}) \in (0, T) \times \Omega$ die Terme $\frac{\partial \phi}{\partial t}$ und $\nabla_{\hat{\mathbf{x}}} \phi$ beschränkt, laut (T2), (T4) und (T6) sind auch det $D_{\mathbf{x}} \mathbf{X}$, $\frac{\partial \mathbf{X}}{\partial t}$ und div $_{\hat{\mathbf{x}}} \mathbf{v}$ beschränkt. Daher kann mit dem Satz von der beschränkte Konvergenz die Zeitableitung in das Integral hineingezogen werden, und es ergibt sich mit Satz 3.4

$$\begin{split} &= \int_{V} \frac{\mathrm{d}}{\mathrm{d}t} (\phi(t, \mathbf{X}(t, \mathbf{x})) \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x})) d\mathbf{x} \\ \stackrel{\mathrm{Produkt-}}{=} \int_{V} \frac{\mathrm{d}}{\mathrm{d}t} (\phi(t, \mathbf{X}(t, \mathbf{x}))) \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) \\ &+ \phi(t, \mathbf{X}(t, \mathbf{x})) \frac{\mathrm{d}}{\mathrm{d}t} (\det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x})) d\mathbf{x} \\ \stackrel{\mathrm{Ketten-}}{=} \int_{V} \left(\frac{\partial \phi}{\partial t} (t, \mathbf{X}(t, \mathbf{x})) + \nabla_{\hat{\mathbf{x}}} \phi(t, \mathbf{X}(t, \mathbf{x})) \frac{\partial \mathbf{X}}{\partial t} (t, \mathbf{x}) \right) \cdot \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) \\ &+ \phi(t, \mathbf{X}(t, \mathbf{x})) \frac{\mathrm{d}}{\mathrm{d}t} (\det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x})) d\mathbf{x} \\ \stackrel{(3.9)}{=} \int_{V} \left(\frac{\partial \phi}{\partial t} (t, \mathbf{X}(t, \mathbf{x})) + \nabla_{\hat{\mathbf{x}}} \phi(t, \mathbf{X}(t, \mathbf{x})) \frac{\partial \mathbf{X}}{\partial t} (t, \mathbf{x}) \right) \cdot \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) \\ &+ \phi(t, \mathbf{X}(t, \mathbf{x})) (\dim_{\hat{\mathbf{x}}} \mathbf{v}) (t, \mathbf{X}(t, \mathbf{x})) \cdot \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) \\ &+ \phi(t, \mathbf{X}(t, \mathbf{x})) (\dim_{\hat{\mathbf{x}}} \mathbf{v}) (t, \mathbf{X}(t, \mathbf{x})) \cdot \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) d\mathbf{x} \\ &= \int_{V} \left(\frac{\partial \phi}{\partial t} (t, \mathbf{X}(t, \mathbf{x})) + \nabla_{\hat{\mathbf{x}}} \phi(t, \mathbf{X}(t, \mathbf{x})) \frac{\partial \mathbf{X}}{\partial t} (t, \mathbf{x}) \\ &+ \phi(t, \mathbf{X}(t, \mathbf{x})) (\dim_{\hat{\mathbf{x}}} \mathbf{v}) (t, \mathbf{X}(t, \mathbf{x})) \cdot \det D_{\mathbf{x}} \mathbf{X}(t, \mathbf{x}) d\mathbf{x} \\ &= \int_{V_{t}} \frac{\partial \phi}{\partial t} (t, \hat{\mathbf{x}}) (\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}) (t, \hat{\mathbf{x}}(t, \mathbf{x})) + \phi(t, \hat{\mathbf{x}}) (\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}) (t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}}) + \phi(t, \hat{\mathbf{x}}) (\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}) (t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}, \end{split}$$

wobei die letzte Gleichheit mit (3.6) und dem Transformationssatz folgt.

Bemerkung 3.6. Laut $[BMSR^+11, Bemerkung 2]$ lässt sich (3.10) auch für t = 0 und t = T zeigen, falls die ersten Ableitungen von $\phi \in C(\overline{Q})$ nicht nur auf $Q = \Psi((0,T) \times \Omega)$, sondern auf $\Psi([0,T] \times \Omega)$ stetig und beschränkt sind.

3.2.2 Massenerhaltung

In diesem Abschnitt werden wir die Massenerhaltungs- oder Kontinuitätsgleichung herleiten. Sie lautet:

$$\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$$
für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega).$
(3.11)

Sei T > 0. Zu einem gegebenen Zeitpunkt $t \in [0, T]$ ist die Masse m eines Kontinuums gegeben in der physikalischen Einheit [kg] - definiert als das Integral seiner Dichte $\rho(t, \hat{\mathbf{x}})$ (in [kg m⁻³]) über das Volumen V_t (in [m³]), das die Masse zu dem Zeitpunkt einnimmt.

Definition 3.7. Sei mit den Definitionen aus Abschnitt 3.2.1 die Dichte des Kontinuums $\rho \in \mathcal{C}(\overline{Q}) \cap \mathcal{C}^1(Q)$ und das Volumen $V_t := \mathbf{X}(t, V)$, wobei $V \subset \Omega$. Dann ist die Masse m durch

$$m(V_t) := \int_{V_t} \rho(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.12)

definiert.

Der Erhaltungssatz für die Masse besagt nun, dass die Masse des Kontinuums über die Zeit konstant bleibt, dass bedeutet, dass die zeitliche Ableitung verschwinden muss. Es gilt also

$$\frac{\mathrm{d}}{\mathrm{d}t}m(V_t) = 0. \tag{3.13}$$

Aus der Definition der Masse in Definition 3.7 ergibt sich mit Hilfe von Satz 3.5, also des Transportsatzes von Reynolds,

$$\frac{\mathrm{d}}{\mathrm{d}t}m(V_t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}
= \int_{V_t} \frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} \rho)(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}}) + \rho(t, \hat{\mathbf{x}})(\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$
(3.14)

Da $\nabla_{\hat{\mathbf{x}}} \rho \cdot \mathbf{v} + \rho \operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v} = \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})$ ist, folgt

$$= \int_{V_t} \frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) \, d\hat{\mathbf{x}} \qquad \forall t \in (0, T).$$
(3.15)

Aus (3.13) und (3.15) folgt

$$\int_{V_t} \frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) \, d\hat{\mathbf{x}} = 0 \qquad \forall t \in (0, T).$$
(3.16)

Da das Volumen V bzw. V_t des Kontinuums in Gleichung (3.16) beliebig gewählt werden kann, verschwindet der Integrand in (3.16) und es gilt

$$\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0 \qquad \forall (t, \hat{\mathbf{x}}) \in Q.$$
(3.17)

Das ist aber Gleichung (3.11), die auch Massenerhaltungsgleichung oder Kontinuitätsgleichung in konservativer Form genannt wird.

Analog dazu ergibt sich mit dem totalen Differential $\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + \nabla\rho \cdot \frac{d\hat{\mathbf{x}}}{dt}$ eingesetzt in (3.14) die nichtkonservative Form

$$\frac{\mathrm{d}\rho}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \rho(t,\hat{\mathbf{x}})\mathrm{div}_{\hat{\mathbf{x}}}\mathbf{v}(t,\hat{\mathbf{x}}) = 0 \qquad \forall (t,\hat{\mathbf{x}}) \in Q.$$
(3.18)

der Kontinuitätsgleichung.

Bemerkung 3.8. Falls die Forderungen aus Bemerkung 3.6 erfüllt sind, folgt, dass die Kontinuitätsgleichung (3.17) sowie (3.18) für alle für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$ gilt.

Mit Bemerkung 3.8 folgt die Gültigkeit von Gleichung (3.11).

Bemerkung 3.9. Eine andere ("physikalischere") Herleitung für die Kontinuitätsgleichung (3.11) ist in [Kle12] gegeben. Diese beruht auf einer Sichtweise eines (beliebigen), festen Voluminas $V_0 \subset \Omega$, in dem die Veränderung der Masse $\frac{d}{dt}m(t, \mathbf{x})$ aufgrund der Massenerhaltung gleich dem Fluss der Masse $\rho(t, \mathbf{x})\mathbf{v}(t, \mathbf{x})$ durch den Rand des Gebiets ∂V_0 sein muss. (Hierbei bezeichnet $\mathbf{v}(t, \mathbf{x})$ den Geschwindigkeitsvektor am Punkt \mathbf{x} eines Teilchens zum Zeitpunkt t.) Es ist also für festes $t \in [0, T]$

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}m(t,\mathbf{x}) &= \frac{\mathrm{d}}{\mathrm{d}t} \int_{V_0} \rho(t,\mathbf{x}) \, d\mathbf{x} \\ &= \int_{\partial V_0} \frac{\partial \rho}{\partial t}(t,\mathbf{x}) \, d\mathbf{x} \\ \stackrel{Physik}{=} &- \int_{V_0} \rho(t,\mathbf{x}) \mathbf{v}(t,\mathbf{x}) \cdot \mathbf{n} \, dS, \end{aligned}$$

wobei n den äußeren Normalvektor bezeichnet. Mit dem Satz von Gauß ergibt sich dann

$$= -\int_{V_0} \operatorname{div}_{\mathbf{x}}(\rho(t, \mathbf{x})\mathbf{v}(t, \mathbf{x})) d\mathbf{x}.$$

Da das Volumen V_0 beliebig gewählt werden kann, folgt die Kontinuitätsgleichung

$$\frac{\partial \rho}{\partial t}(t, \mathbf{x}) + \operatorname{div}_{\mathbf{x}}(\rho \mathbf{v})(t, \mathbf{x}) = 0 \qquad \forall (t, \mathbf{x}) \in [0, T] \times \Omega$$

	-	-	-

Bemerkung 3.10. Die Sichtweise (eines für jedes t festen Standortes) in Bemerkung 3.9 wird auch Euler'sche Sichtweise genannt, während die Behandlung desselben Problems (als mitreisender Beobachter) in Q mit Koordinaten in $[0,T] \times \Omega$ als Lagrange'sche Sichtweise bezeichnet wird.

3.2.3 Impulserhaltung

In diesem Abschnitt leiten wir die Impulserhaltungsgleichung her. Sie lautet:

$$\frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V} - \sigma)(t, \hat{\mathbf{x}}) = \rho(t, \hat{\mathbf{x}}) \mathbf{F}_{V}(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}})$$
(3.19)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$.

Wie in Abschnitt 3.2.2 sei T > 0. Zu einem gegebenen Zeitpunkt $t \in [0, T]$ ist der Impuls $\mathbf{p} \in \mathbb{R}^3$ eines Kontinuums - gegeben in der physikalischen Einheit [kg m s⁻¹] - definiert als das Integral von der Dichte $\rho(t, \hat{\mathbf{x}})$ multipliziert mit der Geschwindigkeit $\mathbf{v}(t, \hat{\mathbf{x}})$ (aus Definition 3.3) über das Volumen V_t , das das Kontinuum zu dem Zeitpunkt einnimmt.

Definition 3.11. Sei wie in Abschnitt 3.2.2 die Dichte des Kontinuums $\rho \in C(\overline{Q}) \cap C^1(Q)$ und das Volumen $V_t := \mathbf{X}(t, V)$, wobei $V \subset \Omega$. Dann ist der Impuls $\mathbf{p}(V_t)$ im Bereich (V_t) durch

$$\mathbf{p}(V_t) := \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.20)

definiert.

Bemerkung 3.12. Die Definiton des Impulses \mathbf{p} in (3.20) geht insofern mit der Physik einher, da in der Newton'schen Mechanik $\mathbf{p} = m\mathbf{v}$ gilt.

Das zweite Newton'sche Gesetz besagt, dass eine Veränderung der Geschwindigkeit eines Körpers nur durch eine einwirkende Kraft herbeigeführt werden kann. Das bedeutet, dass die Veränderung des Impulses in einem Gebiet gleich den äußeren Kräften auf das Gebiet sein muss.

Diese Kräfte $\mathbf{F}(t) \in \mathbb{R}^3$ - gegeben in [kg m s⁻²] können in Kräfte \mathbf{F}_S , die auf die Oberfläche einwirken, und in Kräfte $\rho \mathbf{F}_V$, die auf das Volumen wirken, aufgeteilt werden. Hierbei ist \mathbf{F}_S (in [kg m⁻¹s⁻²]) eine Kraft pro Flächeneinheit und \mathbf{F}_V (in [m s⁻²]) eine Kraft pro Masseneinheit. Die Gesamtkraft \mathbf{F} , die auf ein Kontinuum im Bereich V_t wirkt, ist also durch

$$\mathbf{F}(V_t) := \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{F}_V(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} + \int_{\partial V_t} \mathbf{F}_S(t, \hat{\mathbf{x}}, \mathbf{n}) dS$$
(3.21)

gegeben.

Die Oberflächenkraft \mathbf{F}_S muss nicht nur normal auf die Oberfläche ∂V_t wirken, wie das bei Druck p (der nur senkrecht auf die Oberfläche wirkt) der Fall ist, wo $\mathbf{F}_S(t, \hat{\mathbf{x}}, \mathbf{n}) = -p(t, \mathbf{x})\mathbf{n}$ gilt. (Das negative Vorzeichen entsteht dadurch, dass der Druck entgegen der Flächennormale wirkt.) Durch Viskosität (Zähflüßigkeit) des Kontinuums entstehen innere Spannungen, die durch den Cauchy'schen Spannungstensor $\sigma(t, \hat{\mathbf{x}}) \in \mathbb{R}^{3\times 3}$ ausgedrückt werden. Der (i, j)-te Eintrag $\sigma_{i,j}$ des Spannungstensors bezeichnet dabei die *j*-te Komponente der Kraft, die auf das Oberflächenstück mit Normale in Richtung x_i wirkt. Siehe dazu Abbildung 3.1. **Bemerkung 3.13.** Aus physikalischen Gründen ist der Spannungstensor symmetrisch, d.h. es gilt $\sigma = \sigma^T$. Außerdem ist er nur von der Ableitung der Geschwindigkeit abhängig und translations- sowie rotationsinvariant. Aus diesen Forderungen folgt, dass

$$\sigma(t, \hat{\mathbf{x}}) = \lambda(\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}(t, \hat{\mathbf{x}})) E_3 + \mu(\nabla_{\hat{\mathbf{x}}} \mathbf{v}^T(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} \mathbf{v}^T(t, \hat{\mathbf{x}}))^T), \qquad (3.22)$$

wobei E_3 die Einheitsmatrix in \mathbb{R}^3 , λ die Volumensviskositätskonstante und μ die Scherviskositätskonstante bezeichnet, eine allgemeine Form des Spannungstensors darstellt. Handelt es sich beim Kontinuum um ein inkompressibles Fluid, so ist $\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}(t, \hat{\mathbf{x}}) = 0$ und die Volumensviskosität verschwindet.

Abbildung 3.1: Graphische Darstellung der Einträge des Spannungstensors $\sigma(t, \hat{\mathbf{x}})$. Die Komponenten sind hier auf der Oberfläche eines infinitesimal kleinen Volumenelements Dargestellt. Der erste Index beschreibt die Normale des Oberflächenstücks, der zweite die Richtung, in die die Kraft wirkt. Aus [Eng02].

Weil die Gesamtkraft aus Druck und inneren Spannungen besteht, gilt

$$\mathbf{F}_{S}(t, \hat{\mathbf{x}}, \mathbf{n}) = -p(t, \hat{\mathbf{x}})\mathbf{n} + \sigma(t, \hat{\mathbf{x}})\mathbf{n}$$

und damit

$$\int_{\partial V_t} \mathbf{F}_S(t, \hat{\mathbf{x}}, \mathbf{n}) dS = \int_{\partial V_t} -p(t, \hat{\mathbf{x}}) \mathbf{n} + \sigma(t, \hat{\mathbf{x}}) \mathbf{n} dS.$$

Mit dem Satz von Gauß wird daraus

$$= \int_{V_t} -\nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}} \sigma(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.23)

Mit (3.20), (3.21) und (3.23) lässt sich das zweite Newton'schon Gesetz als

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{F}_V(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}}) + \mathrm{div}_{\hat{\mathbf{x}}} \sigma(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$
(3.24)

für alle $t \in [0, T]$ schreiben. Wir wenden nun auf jede Zeile der vektorwertigen linken Seite von (3.24) Satz 3.5, also den Transportsatz von Reynolds, an. Das ergibt für alle $t \in (0, T)$, dass

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) v_i(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial(\rho v_i)}{\partial t} (t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho v_i)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}})
+ (\rho v_i)(t, \hat{\mathbf{x}}) (\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \qquad \text{für } i = 1, \dots, 3,$$
(3.25)

was zu

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial(\rho \mathbf{v})}{\partial t} (t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \mathbf{v}^T)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}})
+ (\rho \mathbf{v})(t, \hat{\mathbf{x}}) (\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \quad \forall t \in (0, T)$$
(3.26)

äquivalent ist. Man beachte dabei, dass $\nabla_{\hat{\mathbf{x}}}(\rho \mathbf{v}^T)(t, \hat{\mathbf{x}})$ eine Matrix mit den Einträgen

$$(\nabla_{\hat{\mathbf{x}}}(\rho \mathbf{v}^T)(t, \hat{\mathbf{x}}))_{i,j} = \frac{\partial(\rho v_j)}{\partial x_i}(t, \hat{\mathbf{x}}) \qquad \forall i, j \in \{1, \dots, 3\}$$

ist. Mit der Produktregel gilt

$$= \int_{V_t} \frac{\partial \mathbf{v}}{\partial t} \rho(t, \hat{\mathbf{x}}) + \frac{\partial \rho}{\partial t} \mathbf{v}(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \mathbf{v}^T)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) + (\rho \mathbf{v})(t, \hat{\mathbf{x}}) (\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \quad \forall t \in (0, T).$$

Da $\rho(t, \hat{\mathbf{x}})(\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) = \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}}\rho(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}})$ folgt für alle $t \in (0, T)$

$$= \int_{V_t} \frac{\partial \mathbf{v}}{\partial t} \rho(t, \hat{\mathbf{x}}) + \left(\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}})\right) \mathbf{v}(t, \hat{\mathbf{x}}) - \left(\nabla_{\hat{\mathbf{x}}} \rho(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}})\right) \mathbf{v}(t, \hat{\mathbf{x}}) + \left(\nabla_{\hat{\mathbf{x}}}(\rho \mathbf{v}^T)(t, \hat{\mathbf{x}})\right)^T \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$

Laut (3.11) ist $\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$ für alle $(t, \hat{\mathbf{x}}) \in Q$. Daraus folgt

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial \mathbf{v}}{\partial t} \rho(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \mathbf{v}^T)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) - \mathbf{v}(t, \hat{\mathbf{x}}) (\nabla_{\hat{\mathbf{x}}} \rho(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \quad \forall t \in (0, T)$$

Da $(\nabla_{\hat{\mathbf{x}}}(\rho \mathbf{v}^{T})(t, \hat{\mathbf{x}}))^{T} = \mathbf{v}(t, \hat{\mathbf{x}})(\nabla_{\hat{\mathbf{x}}}\rho(t, \hat{\mathbf{x}}))^{T} + \rho(t, \hat{\mathbf{x}})(\nabla_{\hat{\mathbf{x}}}\mathbf{v}^{T}(t, \hat{\mathbf{x}}))^{T} \text{ ist, folgt insgesamt}$ $\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_{t}} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_{t}} \frac{\partial \mathbf{v}}{\partial t} \rho(t, \hat{\mathbf{x}}) + \rho(t, \hat{\mathbf{x}})(\nabla_{\hat{\mathbf{x}}}\mathbf{v}^{T}(t, \hat{\mathbf{x}}))^{T} \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \qquad \forall t \in (0, T).$ (3.27) Bemerkung 3.14. Wie eine einfache Rechnung zeigt, kann in (3.27) mit der Notation

 $\nabla_{\hat{\mathbf{x}}} = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} \end{pmatrix} \text{ anstatt der Matrix-Vektor-Multiplikation } (\nabla_{\hat{\mathbf{x}}} \mathbf{v}^T(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) \text{ vereinfacht auch}$ $(\mathbf{v}(t, \hat{\mathbf{x}}) \cdot \nabla_{\hat{\mathbf{x}}}) \mathbf{v}(t, \hat{\mathbf{x}}), \text{ wobei das innere Produkt } (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}}) = \begin{pmatrix} v_1 \frac{\partial}{\partial x_1} \\ v_2 \frac{\partial}{\partial x_2} \\ v_3 \frac{\partial}{\partial x_3} \end{pmatrix} \text{ auf den Vektor } \mathbf{v}(t, \hat{\mathbf{x}})$ "angewandt" wird, geschrieben werden.

Mit Bemerkung 3.14 und mit Hilfe des totalen Differentials $\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}})\mathbf{v}$ lässt sich (3.27) auch als

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \rho(t, \hat{\mathbf{x}}) (\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}(t, \hat{\mathbf{x}}) \cdot \nabla_{\hat{\mathbf{x}}}) \mathbf{v}(t, \hat{\mathbf{x}})) d\hat{\mathbf{x}}$$

$$= \int_{V_t} \rho(t, \hat{\mathbf{x}}) \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} (t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \quad \forall t \in (0, T)$$
(3.28)

schreiben.

Sei $\mathbf{V}_{i,j}(t, \hat{\mathbf{x}}) = \mathbf{v}_i(t, \hat{\mathbf{x}})\mathbf{v}_j(t, \hat{\mathbf{x}})$. Dann gilt $(\nabla_{\hat{\mathbf{x}}}(\rho \mathbf{v}^T)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) + (\rho \mathbf{v})(t, \hat{\mathbf{x}})(\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) =$ $\operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V})(t, \hat{\mathbf{x}})$, wobei die Divergenz der symmetrischen Matrix \mathbf{V} ein Vektor aus $\mathbb{R}^{3\times 1}$ ist, der spaltenweise berechnet wird. Damit kann man (3.26) zu

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial(\rho \mathbf{v})}{\partial t} (t, \hat{\mathbf{x}}) + \mathrm{div}_{\hat{\mathbf{x}}} (\rho \mathbf{V})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \qquad \forall t \in (0, T)$$
(3.29)

umformen.

Bemerkung 3.15. Analog zu Bemerkung 3.8 gilt auch hier, dass falls die Forderungen aus Bemerkung 3.6 erfüllt sind, folgt, dass Gleichungen (3.26)–(3.29) für alle $t \in [0,T]$ gelten.

Mit Bemerkung 3.15, (3.24) und (3.28) (bzw. (3.29)) lässt sich das zweite Newton'sche Gesetz wie folgt anschreiben. Es gilt

$$\int_{V_t} \rho(t, \hat{\mathbf{x}}) \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
$$= \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{F}_V(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}}) + \mathrm{div}_{\hat{\mathbf{x}}} \sigma(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.30)

bzw. äquivalent dazu

$$\int_{V_t} \frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
$$= \int_{V_t} \rho(t, \hat{\mathbf{x}}) \mathbf{F}_V(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}} \sigma(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.31)

für alle $t \in [0, T]$.

Da (3.30) und (3.31) für beliebige Volumen V_t gelten, fallen die Integrale weg und wir erhalten die Impulserhaltungsgleichung in nichtkonservativer Form

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) - \frac{1}{\rho}(t,\hat{\mathbf{x}})\mathrm{div}_{\hat{\mathbf{x}}}(\sigma(t,\hat{\mathbf{x}}))(t,\hat{\mathbf{x}}) = \mathbf{F}_{V}(t,\hat{\mathbf{x}}) - \frac{1}{\rho}(t,\hat{\mathbf{x}})\nabla_{\hat{\mathbf{x}}}p(t,\hat{\mathbf{x}})$$
(3.32)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$, sowie in konservativer Form

$$\frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V} - \sigma)(t, \hat{\mathbf{x}}) = \rho(t, \hat{\mathbf{x}}) \mathbf{F}_V(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}})$$

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$. Das ist genau Gleichung (3.19).

Bemerkung 3.16. Sei folgende Eigenschaft von $\mathbf{v}(t, \hat{\mathbf{x}})$ gefordert

(T7) Die zweiten partiellen Ableitungen nach $\hat{\mathbf{x}}$ von $\mathbf{v}(t, \hat{\mathbf{x}})$ existieren und sind stetig auf \overline{Q} .

Dann ist mit (3.22) aus Bemerkung 3.13 die Divergenz des Spannungstensors

$$div_{\hat{\mathbf{x}}}(\sigma(t, \hat{\mathbf{x}})) = div_{\hat{\mathbf{x}}}(\lambda(div_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}}))E_3) + div_{\hat{\mathbf{x}}}(\mu\nabla_{\hat{\mathbf{x}}}\mathbf{v}^T(t, \hat{\mathbf{x}})) + div_{\hat{\mathbf{x}}}(\mu(\nabla_{\hat{\mathbf{x}}}\mathbf{v}^T(t, \hat{\mathbf{x}}))^T) = \lambda\nabla_{\hat{\mathbf{x}}}(div_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}})) + \mu(\Delta_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}})) + \mu\nabla_{\hat{\mathbf{x}}}(div_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}})) = \mu(\Delta_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}})) + (\mu + \lambda)\nabla_{\hat{\mathbf{x}}}(div_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}})),$$
(3.33)

wobei die Divergenz einer Matrix spaltenweise berechnet wird und $\Delta_{\hat{\mathbf{x}}}$ den Laplace-Operator bezeichnet.

Bemerkung 3.17. Mit (3.19) und (3.33) ergibt sich folgende Form der Impulserhaltungsgleichung

$$\frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V})(t, \hat{\mathbf{x}}) - \mu(\Delta_{\hat{\mathbf{x}}} \mathbf{v}(t, \hat{\mathbf{x}})) + (\mu + \lambda)\nabla_{\hat{\mathbf{x}}}(\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}(t, \hat{\mathbf{x}})) + \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}})$$
$$= \rho(t, \hat{\mathbf{x}}) \mathbf{F}_{V}(t, \hat{\mathbf{x}})$$
(3.34)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega).$

3.2.4 Energieerhaltung

In diesem Abschnitt leiten wir die Energieerhaltungsgleichung her. Sie lautet:

$$\frac{\partial(\rho\epsilon_{\text{tot}})}{\partial t}(t,\hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho\epsilon_{\text{tot}}\mathbf{v} - \sigma\mathbf{v} + p\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = \rho(t,\hat{\mathbf{x}})(\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}}) \qquad (3.35)$$
für alle $(t,\hat{\mathbf{x}}) \in \Psi([0,T] \times \Omega).$

In der Physik besagt der Energie
erhaltungssatz, dass die Gesamtenergie (in [kg · m² · s⁻²] in einem abgeschlossenen System konstant bleibt. Daraus abgeleitet ist der erste Hauptsatz der Thermodynamik. Laut ihm kann die innere Energie U eines Systems nur durch Arbeit W oder Transport von Wärme Q von außen verändert werden. Es gilt also für die Veränderung dU der inneren Energie

$$\mathrm{d}U = \mathrm{d}Q + \mathrm{d}W.$$

Wir betrachten nun ideale Flüssigkeiten. Hier herrscht überall der gleiche Druck. Außerdem gibt es weder innere Reibung noch thermische Zustandsänderungen. Das heißt, es gilt dQ = 0. Da dW durch die Veränderung des Volumens dV multipliziert mit dem Druck p ausgedrückt werden kann, gilt

$$\mathrm{d}U = p\mathrm{d}V. \tag{3.36}$$

Sei $\epsilon := U/m$ (in $[m^2 \cdot s^{-2}]$) die spezifische innere Energie, also die innere Energie pro Masse, welche sich zeitlich nicht verändert. Dann folgt mit $V = m/\rho$ aus (3.36)

$$m\frac{\mathrm{d}\epsilon}{\mathrm{d}t} = \frac{\mathrm{d}U}{\mathrm{d}t} = p\frac{\mathrm{d}V}{\mathrm{d}t} = p\frac{\mathrm{d}(\frac{m}{\rho})}{\mathrm{d}t} = pm\frac{\mathrm{d}(\frac{1}{\rho})}{\mathrm{d}t} = mp\frac{1}{\rho^2}\frac{\mathrm{d}\rho}{\mathrm{d}t}$$

Mit der Kontinuitätsgleichung (3.18) folgt daher

$$\frac{\mathrm{d}\epsilon}{\mathrm{d}t}(t,\hat{\mathbf{x}}) = \frac{p}{\rho^2}(t,\hat{\mathbf{x}})\frac{\mathrm{d}\rho}{\mathrm{d}t}(t,\hat{\mathbf{x}}) \stackrel{!}{=} -\frac{p}{\rho}(t,\hat{\mathbf{x}})\mathrm{div}_{\hat{\mathbf{x}}}(\mathbf{v})(t,\hat{\mathbf{x}}) = -\frac{1}{\rho}(t,\hat{\mathbf{x}})\mathrm{div}_{\hat{\mathbf{x}}}(p\mathbf{v})(t,\hat{\mathbf{x}})$$
(3.37)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$. Die letzte Gleichheit in (3.37) gilt, da der Druck p in idealen Flüssigkeiten ortsunabhängig ist.

Um $\frac{d\epsilon}{dt}$ darzustellen gehen wir genau so vor wie in Abschnitt 3.2.3, um von Gleichung (3.25) zu Gleichung (3.28) zu gelangen. Mit Satz 3.5 gilt

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial(\rho \epsilon)}{\partial t} (t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \epsilon) (t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}})
+ (\rho \epsilon) (t, \hat{\mathbf{x}}) (\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v}) (t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.38)

für alle $t \in (0, T)$. Die Produktregel auf (3.38) angewendet ergibt

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial \epsilon}{\partial t} \rho(t, \hat{\mathbf{x}}) + \frac{\partial \rho}{\partial t} \epsilon(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \epsilon)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) + (\rho \epsilon)(t, \hat{\mathbf{x}}) (\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \qquad \forall t \in (0, T).$$

Da $\rho(t, \hat{\mathbf{x}})(\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) = \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}}\rho(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}})$ folgt für alle $t \in (0, T)$

$$= \int_{V_t} \frac{\partial \epsilon}{\partial t} \rho(t, \hat{\mathbf{x}}) + \left(\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}})\right) \epsilon(t, \hat{\mathbf{x}}) \\ - \left(\nabla_{\hat{\mathbf{x}}} \rho(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}})\right) \epsilon(t, \hat{\mathbf{x}}) + \left(\nabla_{\hat{\mathbf{x}}}(\rho \epsilon)(t, \hat{\mathbf{x}})\right)^T \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$

Laut (3.11) ist $\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$ für alle $(t, \hat{\mathbf{x}}) \in Q$. Daraus folgt

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial \epsilon}{\partial t} \rho(t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \epsilon)(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) - (\nabla_{\hat{\mathbf{x}}} \rho(t, \hat{\mathbf{x}}) \cdot \mathbf{v}(t, \hat{\mathbf{x}})) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$

Da $(\nabla_{\hat{\mathbf{x}}}(\rho\epsilon)(t,\hat{\mathbf{x}}))^T = \epsilon(t,\hat{\mathbf{x}})(\nabla_{\hat{\mathbf{x}}}\rho(t,\hat{\mathbf{x}}))^T + \rho(t,\hat{\mathbf{x}})(\nabla_{\hat{\mathbf{x}}}\epsilon(t,\hat{\mathbf{x}}))^T$ ist, folgt insgesamt

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial \epsilon}{\partial t} \rho(t, \hat{\mathbf{x}}) + \rho(t, \hat{\mathbf{x}}) (\nabla_{\hat{\mathbf{x}}} \epsilon(t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \qquad \forall t \in (0, T).$$
(3.39)

Analog zu Bemerkung 3.14 lässt sich mit Hilfe des totalen Differentials $\frac{d\epsilon}{dt} = \frac{\partial \epsilon}{\partial t} + (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}})\epsilon$ Gleichung (3.39) auch als

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \rho(t, \hat{\mathbf{x}}) (\frac{\partial \epsilon}{\partial t} + (\mathbf{v}(t, \hat{\mathbf{x}}) \cdot \nabla_{\hat{\mathbf{x}}}) \epsilon(t, \hat{\mathbf{x}})) d\hat{\mathbf{x}}$$

$$= \int_{V_t} \rho(t, \hat{\mathbf{x}}) \frac{\mathrm{d}\epsilon}{\mathrm{d}t} (t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \quad \forall t \in (0, T)$$
(3.40)

schreiben.

Bemerkung 3.18. Analog zu Bemerkung 3.8 und Bemerkung 3.15 gilt auch hier, dass falls die Forderungen aus Bemerkung 3.6 erfüllt sind, folgt, dass Gleichungen (3.38)–(3.40) für alle $t \in [0, T]$ gelten.

Wendet man die Produktregel auf die rechte Seite von (3.38) an, so erhält man

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial(\rho \epsilon)}{\partial t} (t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}} (\rho \epsilon) (t, \hat{\mathbf{x}}))^T \mathbf{v}(t, \hat{\mathbf{x}})
+ (\rho \epsilon) (t, \hat{\mathbf{x}}) (\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v}) (t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.41)

$$\stackrel{!}{=} \int_{V_t} \frac{\partial(\rho\epsilon)}{\partial t} (t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}} (\rho\epsilon \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.42)

für alle $t \in (0, T)$. Aus (3.41) und (3.40) ergibt sich mit Bemerkung 3.18

$$\int_{V_t} \rho(t, \hat{\mathbf{x}}) \frac{\mathrm{d}\epsilon}{\mathrm{d}t}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = \int_{V_t} \frac{\partial(\rho\epsilon)}{\partial t}(t, \hat{\mathbf{x}}) + \mathrm{div}_{\hat{\mathbf{x}}}(\rho\epsilon \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \qquad \forall t \in [0, T].$$
(3.43)

Da (3.43) für beliebige Volumen V_t gilt, erhalten wir

$$\rho(t, \hat{\mathbf{x}}) \frac{\mathrm{d}\epsilon}{\mathrm{d}t}(t, \hat{\mathbf{x}}) = \frac{\partial(\rho\epsilon)}{\partial t}(t, \hat{\mathbf{x}}) + \mathrm{div}_{\hat{\mathbf{x}}}(\rho\epsilon\mathbf{v})(t, \hat{\mathbf{x}}) \qquad \forall (t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega).$$
(3.44)

Zusammen mit (3.37) ergibt sich die Energieerhaltungsgleichung für ideale Fluide

$$\frac{\partial(\rho\epsilon)}{\partial t}(t,\hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho\epsilon\mathbf{v})(t,\hat{\mathbf{x}}) = -\operatorname{div}_{\hat{\mathbf{x}}}(p\mathbf{v})(t,\hat{\mathbf{x}})$$
(3.45)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$, welche noch nicht Effekte wie Viskosität oder Wärmeleitung, sondern lediglich die durch Druck entstehende inneren Kräfte miteinbezieht.

Wir betrachten nun nicht mehr ideale Fluide, sondern auch durch Viskosität (innere Reibung) und Wärmeleitung entstehende Leistungsquellen. Diese Leistungen (in $[kg \cdot m^2 \cdot s^{-3}]$) sind

• durch innere Kräfte (wie Druck und Reibung) entstehende Leistungen P_S : Analog zu (3.23) gilt für die durch auf die Oberfläche wirkende Kräfte wie Druck und Spannungen entstehenden Leistungen $P_S(t, \hat{\mathbf{x}})$, dass sie entstehen, wenn man die Kräfte $-p(t, \hat{\mathbf{x}})\mathbf{n} + \sigma(t, \hat{\mathbf{x}})\mathbf{n}$ komponentenweise mit der Geschwindigkeit multipliziert, also das innere Produkt bildet:

$$P_S(t, \hat{\mathbf{x}}) = \int_{\partial V_t} -((\mathbf{v}p(t, \hat{\mathbf{x}})) \cdot \mathbf{n}) + (\mathbf{v}(t, \hat{\mathbf{x}}) \cdot \sigma(t, \hat{\mathbf{x}})\mathbf{n}) dS.$$

Mit dem Satz von Gauß wird daraus

$$= \int_{V_t} -\operatorname{div}_{\hat{\mathbf{x}}}(p\mathbf{v})(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\sigma\mathbf{v}(t, \hat{\mathbf{x}}))d\hat{\mathbf{x}}.$$
(3.46)

• durch äußere Kräfte entstehende Leistungen P_V :

Wie schon bei der Impulsgleichung (3.21) gesehen, gibt es Kräfte $\rho \mathbf{F}_V$, die auf ein Kontinuum im Bereich V_t wirken. Werden diese Kräfte mit der Geschwindigkeit multipliziert, so ergibt sich die durch äußere, auf das Volumen einwirkende Kräfte entstehende Leistung

$$P_V(t, \hat{\mathbf{x}}) = \int_{V_t} \rho(t, \hat{\mathbf{x}}) (\mathbf{v} \cdot \mathbf{F}_V)(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$
(3.47)

• durch äussere Energiezufuhr (wie Strahlungs- oder Wärmetransport) durch die Oberfläche entstehende Leistungen P_E :

Sei $\mathbf{E}_S(t, \hat{\mathbf{x}})$ (in [kg s⁻³]) der Energiefluss durch die Oberfläche ∂V_t . Mit dem Satz von Gauß ist die so entstehende Leistung $P_E(t, \hat{\mathbf{x}})$ dann durch

$$P_E(t, \hat{\mathbf{x}}) = \int_{\partial V_t} -(\mathbf{E}_S(t, \hat{\mathbf{x}}) \cdot \mathbf{n}) dS$$
$$= \int_{V_t} -\operatorname{div}_{\hat{\mathbf{x}}} \mathbf{E}_S(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$
(3.48)

gegeben.

Mit diesen Energiequellen verändert sich die totale Energie E_{tot} in einem Volumen V_t zu

$$E_{\text{tot}} := \int_{V_t} \rho(t, \hat{\mathbf{x}}) \epsilon_{\text{tot}}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}, \qquad (3.49)$$

wobei die spezifische totale Energi
e $\epsilon_{\rm tot}$ als spezifische innere Energie plus kinetische Energie durch

$$\epsilon_{\text{tot}}(t, \hat{\mathbf{x}}) := \epsilon(t, \hat{\mathbf{x}}) + \frac{1}{2} \|\mathbf{v}(t, \hat{\mathbf{x}})\|_2^2$$
(3.50)

definiert ist. So ergibt sich für die Ableitung der totalen Energie nach der Zeit mit Satz 3.5

$$\frac{\mathrm{d}E_{\mathrm{tot}}}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int_{V_{t}} \rho(t, \hat{\mathbf{x}}) \epsilon_{\mathrm{tot}}(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$

$$= \int_{V_{t}} \frac{\partial(\rho\epsilon_{\mathrm{tot}})}{\partial t} (t, \hat{\mathbf{x}}) + (\nabla_{\hat{\mathbf{x}}}(\rho\epsilon_{\mathrm{tot}})(t, \hat{\mathbf{x}}))^{T} \mathbf{v}(t, \hat{\mathbf{x}})$$

$$+ (\rho\epsilon_{\mathrm{tot}})(t, \hat{\mathbf{x}})(\mathrm{div}_{\hat{\mathbf{x}}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}$$

$$= \int_{V_{t}} \frac{\partial(\rho\epsilon_{\mathrm{tot}})}{\partial t} (t, \hat{\mathbf{x}}) + \mathrm{div}_{\hat{\mathbf{x}}}(\rho\epsilon_{\mathrm{tot}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} \quad \forall t \in (0, T).$$
(3.51)

Analog zu Bemerkung 3.18 gilt diese Gleichung unter gewissen Voraussetzungen für alle $t \in [0, T]$. Da die Veränderung der totalen Energie gleich der durch die Quellen entstandenen Leistung sein muss, gilt mit (3.46) - (3.48)

$$\int_{V_t} \frac{\partial(\rho\epsilon_{\text{tot}})}{\partial t} (t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}} (\rho\epsilon_{\text{tot}} \mathbf{v})(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}} = P_S(t, \hat{\mathbf{x}}) + P_V(t, \hat{\mathbf{x}}) + P_E(t, \hat{\mathbf{x}})$$
$$= \int_{V_t} -\operatorname{div}_{\hat{\mathbf{x}}} (p\mathbf{v})(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}} (\sigma\mathbf{v}(t, \hat{\mathbf{x}})) + \rho(t, \hat{\mathbf{x}})(\mathbf{v} \cdot \mathbf{F}_V)(t, \hat{\mathbf{x}}) - \operatorname{div}_{\hat{\mathbf{x}}} \mathbf{E}_S(t, \hat{\mathbf{x}}) d\hat{\mathbf{x}}.$$
(3.52)

Da(3.52)für beliebige Volumina gilt, folgt die Energie
erhaltungsgleichung in konservativer Form

$$\frac{\partial(\rho\epsilon_{\text{tot}})}{\partial t}(t,\hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho\epsilon_{\text{tot}}\mathbf{v} - \sigma\mathbf{v} + p\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = \rho(t,\hat{\mathbf{x}})(\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}})$$

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$.

Um zu einer nichtkonservativen Form zu gelangen, die nur ϵ_{tot} als Erhaltungsgröße beinhält, benötigen wir einige weitere Umformungen. Mit Hilfe des totalen Differentials gilt

$$\frac{\mathrm{d}\epsilon_{\mathrm{tot}}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) = \frac{\partial\epsilon_{\mathrm{tot}}}{\partial t}(t,\hat{\mathbf{x}}) + (\mathbf{v}\cdot\nabla_{\hat{\mathbf{x}}}\epsilon_{\mathrm{tot}})(t,\hat{\mathbf{x}}) \\ = \frac{1}{\rho}(t,\hat{\mathbf{x}}) \left(\frac{\partial(\rho\epsilon_{\mathrm{tot}})}{\partial t}(t,\hat{\mathbf{x}}) - \frac{\partial\rho}{\partial t}\epsilon_{\mathrm{tot}}(t,\hat{\mathbf{x}}) + \rho(\mathbf{v}\cdot\nabla_{\hat{\mathbf{x}}}\epsilon_{\mathrm{tot}})(t,\hat{\mathbf{x}})\right).$$
Und mit der Kontinuitätsgleichung (3.11) gilt weiter

$$= \frac{1}{\rho} (t, \hat{\mathbf{x}}) \left(\frac{\partial (\rho \epsilon_{\text{tot}})}{\partial t} (t, \hat{\mathbf{x}}) + \text{div}_{\hat{\mathbf{x}}} (\rho \mathbf{v}) \epsilon_{\text{tot}} (t, \hat{\mathbf{x}}) + \rho (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}} \epsilon_{\text{tot}}) (t, \hat{\mathbf{x}}) \right).$$

Mit der Energieerhaltungsgleichung (3.35) folgt

$$= \frac{1}{\rho} (t, \hat{\mathbf{x}}) \Big(-\operatorname{div}_{\hat{\mathbf{x}}} (\rho \epsilon_{\operatorname{tot}} \mathbf{v} - \sigma \mathbf{v} + p \mathbf{v} + \mathbf{E}_S)(t, \hat{\mathbf{x}}) + \rho(t, \hat{\mathbf{x}}) (\mathbf{F}_V \cdot \mathbf{v})(t, \hat{\mathbf{x}}) \\ + \operatorname{div}_{\hat{\mathbf{x}}} (\rho \mathbf{v}) \epsilon_{\operatorname{tot}}(t, \hat{\mathbf{x}}) + \rho(\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}} \epsilon_{\operatorname{tot}})(t, \hat{\mathbf{x}}) \Big).$$

Da div_{$\hat{\mathbf{x}}$}($\rho \epsilon_{tot} \mathbf{v}$) = div_{$\hat{\mathbf{x}}$}($\rho \mathbf{v}$) ϵ_{tot} + ($\rho \mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}} \epsilon_{tot}$) ist, gilt weiter

$$= \frac{1}{\rho} (t, \hat{\mathbf{x}}) \Big(-\operatorname{div}_{\hat{\mathbf{x}}} (-\sigma \mathbf{v} + p \mathbf{v} + \mathbf{E}_S)(t, \hat{\mathbf{x}}) + \rho(t, \hat{\mathbf{x}}) (\mathbf{F}_V \cdot \mathbf{v})(t, \hat{\mathbf{x}}) \Big).$$
(3.53)

Insgesamt führt (3.53) auf die Energieerhaltungsgleichung in nichtkonservativer Form

$$\frac{\mathrm{d}\epsilon_{\mathrm{tot}}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \frac{1}{\rho}(t,\hat{\mathbf{x}}) \big(\mathrm{div}_{\hat{\mathbf{x}}}(-\sigma \mathbf{v} + p\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) \big) = (\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}})$$
(3.54)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$.

Bemerkung 3.19. Die hier gegebene Formulierung der Energieerhaltungsgleichung ist nur eine unter vielen. Oft wird auch die Temperatur oder die Enthalpie anstatt der totalen Energie als abhängiger Parameter verwendet. Auf diese Formen gelangt man unter Verwendung der Zustandsgleichung. Siehe Abschnitt 3.3.1. Wir werden aber nicht näher auf diese Varianten eingehen.

3.3 Navier-Stokes Gleichungen

Nachdem Leonhard Euler 1755 die Euler-Gleichungen formuliert hatte, leiteten George Gabriel Stokes und Claude-Louis Navier Mitte des 19. Jahrhunderts (1827 bzw. 1845) unabhängig von einander die Navier-Stokes-Gleichungen her, die die Strömung eines Newton'schen Fluids (also eines Fluids mit linearem Fließverhalten, d.h. die Scherspannung ist proportional zur Schergeschwindigkeit) beschreiben.

Eigentlich bezeichet der Terminus "Navier-Stokes-Gleichungen" lediglich die Impulsgleichungen, doch in der Literatur werden die Impulsgleichungen zusammen mit der Kontinuitätsund der Energieerhaltungsgleichung fast immer als Navier-Stokes-Gleichungen bezeichnet. Für inkompressible Fluide vereinfachen sich die Gleichungen, und die Energieerhaltungsgleichung wird gar nicht mehr benötigt. Siehe Abschnitt 3.3.3.

Die Euler-Gleichungen sind ein Sonderfall der Navier-Stokes-Gleichungen und beschreiben die Strömung reibungsfreier Fluide. Im Gegensatz zu den Navier-Stokes-Gleichungen werden dabei die innere Reibung sowie die Wärmeleitung vernachlässigt.

Um das Strömungsproblem zu formulieren, wird wie folgt vorgegangen:

- Durch den Massenerhaltungs-, Impulserhaltungs- und Energieerhaltungssatz wird die Strömung des Kontinuums beschrieben und die dazugehörigen Erhaltungsgleichungen formuliert.
- Da diese miteinander gekoppelten Differentialgleichungen ein Gleichungssystem mit 5 Gleichungen, aber 6 Variablen sind, sind zur Lösung dessen weitere Beziehungen notwendig. Diese sind durch sogenannte Zustandsgleichungen, wie die kalorische oder die thermische Zustandsgleichung, gegeben.
- Schlussendlich werden Anfangs- und Randbedingungen benötigt, um die Problemstellung eindeutig festzulegen.

Die physiklische Herleitung der Erhaltungsgleichungen durch die Erhaltungssätze ist in Abschnitt 3.2 ausführlich beschrieben worden. Wir wollen diese Gleichungen nun für verschiedene Fälle zusammengefasst darstellen und die dazugehörigen Zustandsgleichungen sowie Anfangs- und Randbedingungen formulieren.

3.3.1 Navier-Stokes Gleichungen für kompressible Fluide

Grundsätzlich gibt es zwei Arten um die Navier-Stokes-Gleichungen zu formulieren. Das sind die konservative Form, die auch Divergenzform genannt wird, und die nichtkonservative Form.

Konservative Form In der konservativen Form schreiben sich die Kontinuitäts-, Impulsund Energieerhaltungsgleichung wie in (3.11), (3.19) und (3.35). Da die in den Gleichungen gesuchten Variblen die konservierenden (d.h. erhaltenen) Größen ρ , ρ **v** und $\rho\epsilon_{tot}$ sind, werden diese drei Differentialgleichungen als Navier-Stokes-Gleichungen für kompressible Fluide bezeichnet.

$$\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$$
(3.55a)

$$\frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V} - \sigma)(t, \hat{\mathbf{x}}) = \rho \mathbf{F}_{V}(t, \hat{\mathbf{x}}) - \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}})$$
(3.55b)

$$\frac{\partial(\rho\epsilon_{\text{tot}})}{\partial t}(t,\hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho\epsilon_{\text{tot}}\mathbf{v} - \sigma\mathbf{v} + p\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = \rho (\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}})$$
(3.55c)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, t] \times \Omega)$. Gegeben sind die sogenannten "Quellterme" $\mathbf{F}_V, \mathbf{E}_S$, also die Volumenskraft und die Energie durch die Oberfläche, sowie die Viskositätskonstanten λ und μ , mit denen sich wie in Bemerkung 3.13 der Spannungstensor σ schreiben lässt. Gesucht sind neben dem Geschwindigkeitsfeld $\mathbf{v}(t, \hat{\mathbf{x}})$, die Dichte $\rho(t, \hat{\mathbf{x}})$ sowie die spezifische totale Energie $\epsilon_{\text{tot}}(t, \hat{\mathbf{x}})$. Ebenfalls gesucht ist der Druck $p(t, \hat{\mathbf{x}})$, der mit einer Zustandsgleichung an die totale Energie gekoppelt ist. Siehe dazu (3.62).

Die Größen $\rho, \rho \mathbf{v}$ und $\rho \epsilon_{tot}$ werden auch Erhaltungsgrößen genannt. Sehr oft wird in der Literatur auch der Druck in die Spannungsmatrix σ miteinbezogen. Daraus ergibt sich eine

leicht vereinfachte Form für die Navier-Stokes-Gleichungen. Sei $\overline{\sigma} := \sigma - pE_3$, wobei $E_3 \in \mathbb{R}^{3\times 3}$ die Einheitsmatrix bezeichnet. Dann sind die Navier-Stokes-Gleichungen durch

$$\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$$
(3.56a)

$$\frac{\partial(\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V} - \overline{\sigma})(t, \hat{\mathbf{x}}) = \rho \mathbf{F}_{V}(t, \hat{\mathbf{x}})$$
(3.56b)

$$\frac{\partial(\rho\epsilon_{\rm tot})}{\partial t}(t,\hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho\epsilon_{\rm tot}\mathbf{v} - \overline{\sigma}\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = \rho \ (\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}})$$
(3.56c)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, t] \times \Omega)$. gegeben.

Nichtkonservative Form Die nichtkonservative Form der Navier-Stokes-Gleichungen beruht auf einer anderen Wahl der Erhaltungsgrößen. Sind ρ , \mathbf{v} und ϵ_{tot} die abhängigen Variablen, so treten Variable als Koeffizienten vor den Divergenzen auf. Außerdem tritt die zeitliche Ableitung als totales Differential $\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}}$ auf, was sich als "substantielle Ableitung in einem mit \mathbf{v} mitbewegten System" interpretieren lässt. Das so aus den Gleichungen (3.18), (3.32) und (3.54) gewonnene Differentialgleichungssystem

$$\frac{\mathrm{d}\rho}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \rho \,\operatorname{div}_{\hat{\mathbf{x}}}\mathbf{v}(t,\hat{\mathbf{x}}) = 0 \tag{3.57a}$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) - \frac{1}{\rho} \operatorname{div}_{\hat{\mathbf{x}}} \sigma(t,\hat{\mathbf{x}}) = \mathbf{F}_V(t,\hat{\mathbf{x}}) - \frac{1}{\rho} \nabla_{\hat{\mathbf{x}}} p(t,\hat{\mathbf{x}})$$
(3.57b)

$$\frac{\mathrm{d}\epsilon_{\mathrm{tot}}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \frac{1}{\rho}\operatorname{div}_{\hat{\mathbf{x}}}(-\sigma\mathbf{v} + p\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = (\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}})$$
(3.57c)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, t] \times \Omega)$ wird als nichtkonservative Form der Navier-Stokes-Gleichungen bezeichnet. Da es sich hierbei nur um eine andere Schreibweise der Navier-Stokes-Gleichungen in konservativer Form (3.55) handelt, sind die gegebenen und gesuchten Größen dieselben wie in (3.55). Mit der Definition von $\overline{\sigma}$ verändert es sich zu

$$\frac{\mathrm{d}\rho}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \rho \operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}(t,\hat{\mathbf{x}}) = 0$$
(3.58a)

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) - \frac{1}{\rho} \operatorname{div}_{\hat{\mathbf{x}}} \overline{\sigma}(t,\hat{\mathbf{x}}) = \mathbf{F}_V(t,\hat{\mathbf{x}})$$
(3.58b)

$$\frac{\mathrm{d}\epsilon_{\mathrm{tot}}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \frac{1}{\rho} \operatorname{div}_{\hat{\mathbf{x}}}(-\overline{\sigma}\mathbf{v} + \mathbf{E}_S)(t,\hat{\mathbf{x}}) = (\mathbf{F}_V \cdot \mathbf{v})(t,\hat{\mathbf{x}})$$
(3.58c)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, t] \times \Omega)$.

Zustandsgleichung Wie schon erwähnt, werden die Navier-Stokes Gleichungen durch eine Beziehung zwischen Druck p und Energie ϵ_{tot} aus (3.50) ergänzt. Diese Beziehung ergibt sich aus

• der thermischen Zustandsgleichung

$$p = \rho RT, \tag{3.59}$$

wobei T die Temperatur (in [K]) und R die Gaskonstante (in $[m^2 s^{-2} K^{-1}]$) bezeichnet,

• der kalorischen Zustandsgleichung

$$\epsilon = c_v T, \tag{3.60}$$

wobei c_v (in [m² s⁻² K⁻¹]) die Wärmekapazität bei konstantem Volumen bezeichnet,

• und der Beziehung

$$R = c_p - c_v, (3.61)$$

wobei c_p (in [m² s⁻² K⁻¹]) die Wärmekapazität bei konstantem Druck bezeichnet.

Aus (3.59) – (3.61) und (3.50) ergibt sich der Zusammenhang zwischen Druck p und totaler Energie $\epsilon_{\rm tot}$

$$p(t, \hat{\mathbf{x}}) = \left(\frac{c_p}{c_v} - 1\right) \rho(t, \hat{\mathbf{x}}) \left(\epsilon_{\text{tot}}(t, \hat{\mathbf{x}}) - \frac{1}{2} \|\mathbf{v}(t, \hat{\mathbf{x}})\|_2^2\right)$$
(3.62)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$.

Anfangs- und Randbedingungen Um das Strömungsproblem zu definieren, müssen zusätzlich noch Anfangs- bzw. Randbedingungen für die Erhaltungsgrößen gegeben werden. Sei $U(t, \hat{\mathbf{x}})$ der Vektor der Erhaltungsgrößen. Dann ist eine Anfangsbedingung durch

$$U(0, \hat{\mathbf{x}}) = U_0(\hat{\mathbf{x}}) \qquad \forall \hat{\mathbf{x}} \in \Omega$$

gegeben.

Die Randbedingungen können durch Dirichlet-Randbedingungen, Neumann-Randbedingungen, Linearkombinationen dieser beiden, oder auch durch periodische Randbedingungen gegeben sein. An einer Wand gibt es beispielsweise keinen Fluss und so entstehen Dirichlet-Randbedingungen

$$\mathbf{v}(t, \hat{\mathbf{x}}) = g_1(\hat{\mathbf{x}}) = 0 \qquad \forall t \in [0, T].$$

Diese Bedingung wird auch "no-slip"- oder "wall"-Randbedingung genannt. Will man, dass der Fluss parallel zur Wand fließen kann, so kann man die Neumann-Randbedingungen

$$\frac{\partial \mathbf{v}}{\partial \mathbf{n}}(t, \hat{\mathbf{x}}) = g_2(\hat{\mathbf{x}}) = 0 \qquad \forall t \in [0, T]$$

verwenden.

3.3.2 Euler-Gleichungen für kompressible Fluide

Die Euler-Gleichungen sind im Grunde genommen die Navier-Stokes-Gleichungen mit dem Spezialfall, dass $\sigma = 0$ und $\mathbf{E}_S = 0$ gilt. Das bedeutet, dass es die innere Reibung sowie der Wärmetransport vernachlässigt wird. Außerdem werden keine äußeren Volumenskräfte \mathbf{F}_V betrachtet. Das bedeutet $\mathbf{F}_V = 0$. Mit diesen Annahmen ergeben sich die Euler-Gleichungen in konservativer bzw. nichtkonservativer Form aus den Navier Stokes-Gleichungen (3.55) bzw. (3.57). In konservativer Form sind die Euler Gleichungen so durch

$$\frac{\partial \rho}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{v})(t, \hat{\mathbf{x}}) = 0$$

$$\frac{\partial (\rho \mathbf{v})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \mathbf{V} + pE_3)(t, \hat{\mathbf{x}}) = 0$$

$$\frac{\partial (\rho \epsilon_{\text{tot}})}{\partial t}(t, \hat{\mathbf{x}}) + \operatorname{div}_{\hat{\mathbf{x}}}(\rho \epsilon_{\text{tot}} \mathbf{v} + p \mathbf{v})(t, \hat{\mathbf{x}}) = 0$$
(3.63a)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, t] \times \Omega)$ gegeben, während die nichtkonservative Schreibweise

$$\frac{\mathrm{d}\rho}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \rho \operatorname{div}_{\hat{\mathbf{x}}} \mathbf{v}(t,\hat{\mathbf{x}}) = 0$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \frac{1}{\rho} \nabla_{\hat{\mathbf{x}}} p(t,\hat{\mathbf{x}}) = 0$$

$$\frac{\mathrm{d}\epsilon_{\mathrm{tot}}}{\mathrm{d}t}(t,\hat{\mathbf{x}}) + \frac{1}{\rho} \operatorname{div}_{\hat{\mathbf{x}}}(p\mathbf{v})(t,\hat{\mathbf{x}}) = 0$$
(3.64a)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, t] \times \Omega)$ ist. Gesucht ist das Geschwindigkeitsfeld $\mathbf{v}(t, \hat{\mathbf{x}})$, die Dichte $\rho(t, \hat{\mathbf{x}})$, die spezifische totale Energie $\epsilon_{\text{tot}}(t, \hat{\mathbf{x}})$ und der Druck $p(t, \hat{\mathbf{x}})$, der mit der Zustandsgleichung (3.62) an die totale Energie gekoppelt ist. Mit den Anfangs- und Randbedingungen ist das Strömungsproblem festgelegt.

Der wohl größte Unterschied zu den Navier-Stokes-Gleichungen (3.55) - (3.58) ist, dass bei den Euler-Gleichungen (3.63) - (3.64) durch das Fehlen der inneren Reibung keine zweiten (Orts-)Ableitungen der Geschwindigkeit **v** vorkommen (siehe dazu (3.34)).

3.3.3 Navier-Stokes Gleichungen für inkompressible Fluide

Analog zu [KL08] unterscheiden wir zwischen inkompressiblen Strömungen und inkompressiblen Fluiden und betrachten dann — wie in [Hän08] — letztere.

Definition 3.20 (Inkompressible Strömung). Wir sprechen von einer inkompressiblen Strömung, wenn sich die Dichte bei konstanter Temperatur entlang ihrer Trajektorie nicht ändert. Das heißt, wenn

$$\frac{d\rho}{dt}(t,\hat{\mathbf{x}}) = 0 \qquad \forall (t,\hat{\mathbf{x}}) \in \Psi([0,T] \times \Omega).$$
(3.65)

Das bedeutet nicht, dass alle Fluidpartikel die gleiche Dichte haben müssen. Diese Bedingung muss lediglich für jedes Fluidpartikel über die Zeit erfüllt sein. Anders ist das bei inkompressiblen Fluiden.

Definition 3.21 (Inkompressible Fluide). Ein Fluid, dessen Dichte konstant ist, bezeichnen wir als inkompressibles Fluid. Das bedeutet, dass für die Dichte

$$\rho_{\infty} := \rho(t, \hat{\mathbf{x}}) = const. \qquad \forall (t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$$
(3.66)

gilt.

Die Bedingung für ein inkompressibles Fluid ist also stärker als die für eine inkompressible Strömung. Es sei noch angemerkt, dass es im strengen Sinne keine inkompressiblen Fluide gibt, allerdings sind zum Beispiel bei Wasser unter Normalbedingungen die Dichteänderungen vernachlässigbar, weshalb es als inkompressibel betrachtet werden kann.

Bei inkompressiblen Fluiden ist also die Dichte $\rho(t, \hat{\mathbf{x}})$ konstant und wird mit ρ_{∞} bezeichnet. Daher folgt mit der Kontinuitätsgleichung (3.11), dass

$$\operatorname{div}_{\hat{\mathbf{x}}}\mathbf{v}(t,\hat{\mathbf{x}}) = 0 \qquad \forall (t,\hat{\mathbf{x}}) \in \Psi([0,T] \times \Omega)$$
(3.67a)

und mit (3.34) ist die Impulserhaltungsgleichung für inkompressible Fluide durch

$$\frac{\partial \mathbf{v}}{\partial t}(t, \hat{\mathbf{x}}) + (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}})\mathbf{v}(t, \hat{\mathbf{x}}) - \mu \rho_{\infty}^{-1}(\Delta_{\hat{\mathbf{x}}}\mathbf{v}(t, \hat{\mathbf{x}})) + \rho_{\infty}^{-1}\nabla_{\hat{\mathbf{x}}}p(t, \hat{\mathbf{x}}) = \mathbf{F}_{V}(t, \hat{\mathbf{x}})$$
(3.67b)

für alle $(t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega)$ gegeben. Gegeben sind die Volumenskraft \mathbf{F}_V , die Viskositätskonstante λ und die konstante Dichte ρ_{∞} . Gesucht ist das Geschwindigkeitsfeld $\mathbf{v}(t, \hat{\mathbf{x}})$ und der Druck $p(t, \hat{\mathbf{x}})$. Die Gleichung (3.67b) gilt, da div $_{\hat{\mathbf{x}}}(\mathbf{V}) = \mathbf{v} \operatorname{div}_{\hat{\mathbf{x}}}\mathbf{v} + (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}})\mathbf{v}$ ist. Der Druck ist nun nicht über eine Zustandsgleichung an die Dichte und innere Energie gekoppelt, wodurch die Energieerhaltungsgleichung von der Kontinuitäts- und Impulsgleichung entkoppelt ist und somit nicht Teil des Gleichungssystems ist. Da die Viskosität μ eigentlich auch geringfügig von der Temperatur T abhängt, besteht nach wie vor eine gewisse Kopplung, welche wir aber vernachlässigt haben indem wir die Viskosität als konstant angenommen haben.

Die Gleichungen (3.67a) – (3.67b) werden zusammengefasst auch als Navier-Stokes-Gleichungen für inkompressible Fluide bezeichnet.

3.3.4 Euler-Gleichungen für inkompressible Fluide

Die Eulergleichungen für inkompressible Fluide erhält man, wenn wir die Navier-Stokes-Gleichungen für inkompressible Fluide (3.67) ohne äußere Volumenskräfte \mathbf{F}_V sowie ohne innere Reibung σ (bzw. Viskosität μ) betrachten. Mit $\mathbf{F}_V = 0$ und $\mu = 0$ ergibt sich aus (3.55) – (3.58) dann

$$\operatorname{div}_{\hat{\mathbf{x}}}\mathbf{v}(t,\hat{\mathbf{x}}) = 0, \qquad (3.68a)$$

$$\frac{\partial \mathbf{v}}{\partial t}(t, \hat{\mathbf{x}}) + (\mathbf{v} \cdot \nabla_{\hat{\mathbf{x}}})\mathbf{v}(t, \hat{\mathbf{x}}) + \rho_{\infty}^{-1} \nabla_{\hat{\mathbf{x}}} p(t, \hat{\mathbf{x}}) = 0 \qquad \forall (t, \hat{\mathbf{x}}) \in \Psi([0, T] \times \Omega).$$
(3.68b)

Gegeben ist nur die konstante Dichte ρ_{∞} . Gesucht ist das Geschwindigkeitsfeld $\mathbf{v}(t, \hat{\mathbf{x}})$ und der Druck $p(t, \hat{\mathbf{x}})$. Die Gleichungen (3.68) werden auch aus Euler-Gleichungen für inkompressible Fluide bezeichnet.

Kapitel 4

Simulation der Bioreaktoreigenschaften

4.1 Überblick

Ziel in diesem Kapitel ist es, die Erstellung der Simulationen zur Berechnung der zwei wichtigsten Bioreaktoreigenschaften zu dokumentieren und die Simulationen auszuführen, um sie dann mit den Ergebnissen der Versuche von [SPBR11] zu vergleichen. Diese zwei Bioreaktoreigenschaften sind die Mischzeit (siehe Abschnitt 4.4) und der Stofftransportkoeffizient (siehe Abschnitt 4.5).

Sie sind unter anderem wichtig, um die Geometrie des Bioreaktors analysieren und verbessern zu können und so den Zellwachstumsprozess effizienter gestalten zu können. Außerdem ist die Berechnung des Stofftransportkoeffizienten wesentlich für das Erstellen eines Zellwachstumsmodells. Das ist wirtschaftlich von großer Bedeutung, weil dadurch effizientere Bioreaktoren hergestellt werden können. Vor allem bei größeren Bioreaktoren verhält sich das Strömungsfeld anders als bei kleineren, weshalb ein einfaches Skalieren nach kostengünstigen Versuchen mit kleineren Bioreaktoren nicht möglich ist.

Um die zwei eben genannten Eigenschaften berechnen zu können, wird zunächst ein Netz auf Grundlage der Geometrie des für die Versuche in [SPBR11] verwendeten Bioreaktors erstellt. Man beachte, dass dieses Netz ist nur eine Approximation an den in [SPBR11] verwendeten Bioreaktor sein kann. Für genaue Berechnungen ist es natürlich dennoch erforderlich, den Bioreaktor hinreichend genau abzubilden. Auf diesem Netz werden dann die Strömung durch Lösen der Navier-Stokes Gleichungen (siehe Kapitel 3) mit geeigneten Randbedingungen, die ein Drehen des Rührers simulieren, gelöst, um so den Fluss im Bioreaktor zu berechnen.

Mit diesem Flüss als Anfangsbedingung werden dann Simulationen durchgeführt, die die Experimente über das Verhalten der Mischzeit bei verschiedenen Umdrehungsgeschwindigkeiten aus [SPBR11] widerspiegeln. Außerdem wird ausgehend von der berechneten Strömung eine Simulation zur Berechnung des Stofftransportkoeffizienten, der auch als Kla-Wert bezeichnet wird, gestartet.

Die Simulation der Bioreaktoreigenschaften gliedert sich also in 4 große Teilabschnitte:

- Erstellen eines Netzes auf dem Bioreaktor,
- Berechnung des Flusses durch den Bioreaktor,
- Berechnung der Mischzeiten,
- Berechnung des Stofftransportkoeffizienten.

4.2 Geometrie und Netzgenerierung

Ziel ist es, den Bioreaktor, der in [SPBR11] verwendet wurde, möglichst genau abzubilden. Der Bioreaktor ist ein 20L Biostat C-DCU (von Sartorius-BBI, Bethlehem,PA) mit einem Arbeitsvolumen von 15 Litern. Er war während der durchgeführten Versuche mit drei Rushton Impellern sowie drei Marine Impellern ausgestattet. Für unseren Zweck haben wir allerdings nur das Mischverhalten mit Rushton Impellern untersucht. Einerseits waren keine genauere Daten für die Abmessungen der Marine Impeller zu erruieren, andererseits unterscheiden sich die experimentell gewonnenen Resultate der verschiedenen Impeller ohnehin nur wenig. Die aus [SPBR11] übernommenen beziehungsweise aus Skizzen geschätzten Daten für die Geometrie des Bioreaktors mit Rushton Impellern sind in Tabelle 4.2 zu sehen. Diese Daten beschreiben bereits eine Approximation an den Bioreaktor, die für eine Netzgenerierung geeignet ist.

Der Wasserstand H des 20L Biostat C-DCU Bioreaktors bei den Versuchen beträgt 400mm. Da für die Berechnung der Strömung des Wassers und auch in weiterer Folge nur der untere Teil im Bioreaktor, in dem sich Wasser befindet, interessant ist und gezeichnet werden muss, ist das Gebiet oberhalb des Füllstandes nicht weiter beachtenswert. Diese Implikation geht davon aus, dass der Wasserstand im befüllten Bioreaktor nicht wesentlich ändert. Das passiert aber nur bei einer niedrigen Umdrehungsgeschwindigkeit, was aber bei unseren Versuchen der Fall ist.

Der Durchmesser T des Reaktors beträgt 115mm. Die Abrundung an der unteren Seite wurde wie in [ÖT06] erzeugt. Bis zu einer Höhe von $h_1 = T/5$ wird dort die Rundung aus zwei Kreisbögen mit Radius $r_1 = T/10$ und $r_2 = T$ konstruiert. Um eine etwas glattere Oberfläche zu konstruieren, verwenden wir die Werte of $h_1 = 46$ mm= T/5, $r_1 = 25.3$ mm $\approx T/10$ and $r_2 = 230$ mm= T.

Die 4 Baffles sind für unsere Berechnungen nicht durch Halterungen am Zylindermantel befestigt, sie schließen gleich an diesen an, und zwar in einer Höhe von $h_2 = 47 \text{mm} \approx T/5$. Sie haben eine Länge von $l_b = 22 \text{mm} \approx T/10$, eine Höhe von $h_b = 300 \text{mm}$ und ihre Breite beträgt $w_b = 5 \text{mm}$. Sie sind außerdem in gleichen Abständen am Zylindermantel angebracht. Siehe die schematische Darstellung in Abbildung 4.1.

Das horizontale Einblasrohr des verwendeten drilled-tube spargers befindet sich in einer Höhe von $h_3 = 38$ mm und ist $l_s = 160$ mm lang. Der Radius beträgt $r_s = 5$ mm. Das vertikale Rohr schließt abgerundet an das Horizontale an und geht bis über den Wasserfüllstand hinaus nach oben. Siehe die schematische Darstellung in Abbildung 4.1. Die 10 Einblaslöcher haben einen Radius von 0.25mm und befinden sich in einem Abstand von zirka 10mm an der Unterseite

Höhe des Bioreaktor	Н	400mm
Durchmesser des Bioreaktor	T	230mm
Beginn der unteren Abrundung	h_1	46mm
Aufhängungshöhe der Baffles	h_2	47mm
Höhe der Baffles	h_b	300mm
Länge der Baffles	l_b	23mm
Breite der Baffles	w_b	$5 \mathrm{mm}$
Aufhängungshöher des Spargers	h_3	38mm
Länge des Spargers	l_s	160mm
Radius des Spargers	r_s	$5 \mathrm{mm}$
Aufhängungshöhe des Rührers	h_4	$75 \mathrm{mm}$
Radius des Rohrs	r_r	$3 \mathrm{mm}$
Höhe der Scheibe	h_d	2mm
Radius der Scheibe	r_d	32mm
Höhe des Rotorblatt	h_{bl}	18mm
Länge des Rotorblatt	l_{bl}	22mm
Breite des Rotorblatt	w_{bl}	2mm
Abstand zwischen den Impellern	d_i	115mm
Radius der Impeller	r_i	42.5mm

Tabelle 4.1: Verwendete Daten für die Erstellung der Geometrie des Bioreaktors. Siehe dazu Abbildung 4.1.

des horizontalen Rohrs. Da sie erst für die Einblasung der Sauerstoffbläschen bei Berechnung des Kla-Wertes interessant sind, werden sie nicht in der Geometrie implementiert. Für die Berechnung der Mischzeit wurde ein ring sparger mit gleichem radius, der ebenfalls an das vertikale Rohr anschließt, verwendet. Der von oben angetriebene Rührer befindet sich in der Mitte des Bioreaktors in einer Höhe von $h_4 = 75$ mm. Das Rohr, auf dem die drei Impeller angebracht sind, hat einen Radius von $r_r = 3$ mm. Die drei Impeller haben einen Abstand von $d_i = 115$ mm zueinander. Der Unterste befindet sich auf der Höhe h_r . Die Impeller bestehen jeweils aus einer Scheibe (engl. disk) mit Radius $r_d = 32$ mm und Höhe $h_d = 2$ mm sowie 4 Rotorblättern (engl. blade) mit Höhe $h_{bl} = 18$ mm, Breite $l_{bl} = 22$ mm und Dicke $w_{bl} = 2$ mm. Sie sind so an der Scheibe befestigt, dass der Gesamtradius des Impellers $r_i = 42.5$ mm beträgt. Siehe Abbildung 4.1.

Mit den beschriebenen Daten wird die Geometrie FreeCAD 012 gezeichnet und zu AVL Fire 2009.3 als .stl file exportiert. Mit dem in AVL Fire 2009.3 integrierten Mesh-Generator wird dann auf dem Gebiet $\Omega \subset \mathbb{R}^3$, das das Innere des Bioreaktors bis zu der Höhe des Füllstandes darstellt, ein Netz generiert. Dieses wird in zwei Teilbereiche, die wir im folgenden mit Ω_{Rotor} und Ω_{Stator} bezeichnen werden, unterteilt. Hierbei gilt $\Omega_{Rotor} \cup \Omega_{Stator} = \Omega$ und $\Omega_{Rotor} \cap \Omega_{Stator} = \emptyset$. Um die Rechenzeit zu minimieren, ist es dabei wichtig darauf zu achten, dass die Gesamtsumme der Elemente eine Anzahl von 1000000 nicht übersteigt. Au-

Abbildung 4.1: Ansicht von oben sowie von vorne auf den Bioreaktor. Die zu den Maßen gehörigen Werte sind in Tabelle 4.2 abzulesen.

ßerdem führen Elemente, deren Verhältnis von Innkreisradius zu Umkreisradius zu gering ist - die also zu "flach" sind - zu numerischen Instabilitäten. Die Generierung erfolgt dann - nach Einstellen von gewissen Kenngrößen wie der maximalen Kantenlänge eines Hexaeders auf der Oberfläche des Gebiets $\partial\Omega$ - mit AVL Fire v2011.1. Da die Elemente automatisch generiert werden, muss bei der Generierung darauf geachtet werden, dass Fehler wie ein negatives Volumen oder Überschneidungen der Elemente nicht vorkommen. Deswegen werden auch nicht alle Details des Bioreaktors dargestellt. Das Gebiet Ω ist aber eine geeignete Approximation an den Bioreaktor, da nur auf Kleinigkeiten, die für die weiteren Simulationen unbedeutend sind - wie zum Beispiel auf die Halterungen von den Baffles oder auf die Abrundung von Kanten - verzichtet wird.

4.3 Fluss durch das Gebiet

Nachdem das Netz generiert wurde, wird durch Lösen der Navier-Stokes-Gleichungen (siehe Abschnitt 3.3.3) für inkompressible Fluide auf dem Gebiet Ω für jede Zelle das Strömungsfeld F berechnet. Dabei wird angenommen, dass der Teilbereich Ω_{Rotor} im mathematisch positiven

Abbildung 4.2: Die Abbildungen zeigen einen Schnitt durch den Bioreaktor. Links kann man das Netz auf der Oberfläche des Gebiets Ω erkennen, rechts das auf den Oberflächen der disjunkten Gebiete Ω_{Rotor} (innen) und Ω_{Stator} (außen).

Sinn mit einer gewünschten Geschwindigkeit rotiert. Durch Iteration gelangt man zu einem quasi-stationären Zustand, der das Strömungsverhalten beschreibt, wenn sich der Rührer während einer Drehung, die lang genug ausgeführt wurde um einen stationäre Strömung zu erzeugen, im Ausgangszustand befindet. Diese quasistationären Strömungen werden als Ausgangszustände für die Berechnungen der Mischzeit und des Stofftransports genommen. Dieser quasi-stationäre Zustand des Flusses wird wie folgt berechnet: Sowohl auf dem Gebiet Ω_{Rotor} als auch auf dem Gebiet Ω_{Stator} werden die Navier-Stokes-Gleichungen für inkompressible Fluide (3.67) gelöst. Allerdings wirken auf das Gebiet Ω_{Rotor} Volumenskräfte \mathbf{F}_V , die sich aus der Umdrehungsgeschwindigkeit des Rotors ergeben. An der Grenze zwischen den beiden Gebieten müssen geeignete Randbedingungen gegeben sein. Das Lösen der Gleichungen wird mit dem neuen Geschwindigkeitsfeld als Anfangsbedingung nun solange wiederholt, bis sich das Geschwindigkeitsfeld F nur mehr unwesentlich verändert. Der Zustand, zu dem man durch so eine Iteration gelangt, wird quasi-stationärer Zustand genannt. Die Methode, um zu diesem quasi-stationären Zustand zu gelangen ist als Multi-Reference-Frame Model bekannt.

4.4 Mischzeit

Während der Zellkultivierung werden Nährstoffe für die Zellen in den Bioreaktor gegeben. Auch Basen werden hinzugefügt, um den pH-Wert zu kontrollieren. All dies geschieht an einer bestimmten Stelle, und es vergeht eine gewisse Zeit, bis diese Stoffe sämtliche Bereiche des Bioreaktors erreicht haben. Diese Zeit, die für ein Durchmischen benötigt wird, nennen wir Mischzeit. Da bei verschiedenen Umdrehungsgeschwindigkeiten auch die Flussgeschwindigkeiten und damit die Mischzeiten variieren, ist es wichtig zu sehen, ob dies auch bei unseren Simulationen der Fall ist. Dazu werden die Experimente aus [San09] mit CFD-Simulationen nachgespielt und es wird beobachtet, ob die Simulationen die experimentell gewonnenen Daten reproduzieren können.

4.4.1 Experiment

Die Mischzeit wird als die Zeit, die benötigt wird um im Bioreaktor ein gewisses Niveau an Homogenität herzustellen, nachdem an einem einzelnen Punkt ein Impuls gesetzt wurde, definiert. Laut [San09] wurde schon gezeigt, dass verschiedene Bioreaktor- sowie Impellergeometrien zu unterschiedlichen Mischzeiten führen. Es stellt sich auch die Frage, was mit Impuls gemeint ist und wie die Homogenität genau gemessen wird.

Abbildung 4.3: Schematische Darstellung des Mischzeitversuches aus [San09].

Bei den Versuchen, die in [[San09], Abschnitt 3.1] beschrieben werden, würde der Reaktor mit zwei Proben - eine am oberen und eine am unteren Ende des Reaktors (siehe Abbildung 4.3) - ausgestattet. Die Mischversuche wurden dann ausgeführt, indem der pH-Wert verändert wurde. Dazu wurde zunächst ein Sodium Phosphat Dämpfer in den Reaktor eingeführt. Dieser dient dazu, dass der pH-Wert sich nicht über eine gewisse Schwankungsbreite hinaus verändert. Dann wurde an einem festgelegten Punkt an der Wasseroberfläche entweder 1mL Natriumhydroxid hinzugefügt um den pH-Wert zu erhöhen oder 1mL Essigsäure hinzugfügt um den pH-Wert zu senken. Der pH-Wert wurde dann mit den Proben gemessen. In jedem der so gemachten Versuche war eine Veränderung des pH-Wertes um 1-1.5 zu erkennen. Die Zeit, die benötigt wurde, um 95% der Differenz zwischen dem Anfangs- und dem Endwert zu erreichen, wurde als Mischzeit genommen. Diese Versuche wurden bei unterschiedlichen Umdrehungsraten des Rührers gemacht.

Da die erbrachte Leistung P (gemessen in Watt) des Rührers im Reaktor nicht nur von der Umdrehungsgeschwindigkeit N (gemessen in Umdrehungen pro Sekunde), sondern auch von der Anzahl der Impeller n, dem Durchmesser des Impellers D (gemessen in Meter), der Leistungszahl $P_0 = 5$ (für Rushton Impeller) und der Dichte des Mediums ρ (gemessen in Kilogramm pro Kubikmeter) abhängt, wurde bei den Versuchen nicht die Umdrehungsanzahl, sondern die Leistung pro Volumen P/V als Maß für verschiedene Mischzeiten genommen. Der Zusammenhang ist wie folgt gegeben:

Abbildung 4.4: Resultate der Versuche aus [San09]. Für uns sind die Experimente, die mit einem Rushton-Impeller durchgeführt worden sind, von Interesse.

$$\frac{P}{V} = \frac{n\rho P_0 N^3 D^5}{V} \tag{4.1}$$

Wie in Abbildung 4.4 zu erkennen, wurden bei P/V-Werten von ca. $0.5 * 10^{-6}$ bis ca. $2 * 10^{-4}$ W/m³ jeweils mehrere Versuche sowohl mit Rushton- als auch mit Marine Impeller durchgeführt. Man erkennt deutlich, dass die Mischzeit bei Rushton Impellern ein wenig höher ist als bei Marine Impellern, und dass bei geringerer Leistung eine längere Zeit für das Mischen benötigt wird. Für Rushton Impeller liegen die so gemessenen Mischzeiten je nach Rührgeschwindigkeit zwischen 20 und 200 Sekunden. Eine Auswertung der Experimente ist in Abbildung 4.4 ersichtlich. Leider gibt es keine genaueren Angaben über die Zeiten.

4.4.2 Simulation

Um die Versuche aus Abschnitt 4.4.1 nachzustellen, wurde zunächst wie in Abschnitt 4.3 der quasistationäre Zustand des Flusses durch den Bioreaktor berechnet. Dies geschah für Umdrehungsgeschwindigkeiten von N = 37, 79, 95, 172 und 370 Umdrehungen pro Minute, was (4.1) P/V-Werten von zirka $10^{-6}, 10^{-5}, 10^{-4}$ und 10^{-3} W/m³ entspricht. Ausgehend von diesem Zustand wird dann in jedem Berechnungsschritt neben den Navier-Stokes-Gleichungen auch die skalare Gleichung (4.2) gelöst. Als Anfangsbedingung ist der skalare Variable $\phi(\hat{\mathbf{x}}, t)$ in einem Bereich $\Omega_{in} \subset \Omega$, in dem das Eintropfen vermutet wird, gleich dem Wert 1 und im restlichen Gebiet gleich 0.

Die skalare Gleichung lautet wie folgt:

$$\frac{\partial \phi(\hat{\mathbf{x}}, t)}{\partial t} + \operatorname{div}_{\hat{\mathbf{x}}}(\mathbf{v}(\hat{\mathbf{x}}, t)\phi(\hat{\mathbf{x}}, t)) = \rho_{\infty}^{-1} S_{\phi}(\hat{\mathbf{x}}, t), \qquad \phi(\cdot, 0) = \chi_{\Omega_{in}}$$
(4.2)

wobei der S_{ϕ} den Quellterm bezeichnet, der zum Anfangszeitpunkt im Gebiet des Eintropfens Ω_{in} gleich Eins ist, und sonst immer verschwindet. Also ist $S_{\phi}(\hat{\mathbf{x}}, t) = \chi_{t=0}\chi_{\Omega_{in}}$. Die Werte für das Geschwindigkeitsfeld $\mathbf{v}(\hat{\mathbf{x}}, t)$ sind in jedem Zeitpunkt aus der Lösung der Gleichungen (3.67) gegeben. Die Variable ρ_{∞} bezeichnet die konstante Dichte des Mediums. Vergleicht man die skalare Gleichung (4.2) mit der Massenerhaltungsgleichung (3.11), so fällt auf, dass bei der Skalargleichung im Gegensatz zur Massenerhaltungsgleichung nicht die Dichte $\rho(\hat{\mathbf{x}}, t)$, sondern ein Skalar $\phi(\hat{\mathbf{x}}, t)$ transportiert wird. Ansonsten sind diese Gleichungen - bis auf den Quellterm \S_{ϕ} - ident.

Durch den Mischvorgang konvergiert der skalare Wert an jeder Stelle des Gebiets gegen einen konstant Wert C_{avg} . Gemessen wird der skalare Wert an einer Stelle im unteren Bereich des Bioreaktors, wo auch im Experiment mit einem pH-Messgerät gemessen wurde. Man erkennt in Abbildung 4.5, dass bei 370 Umdrehungen pro Minute bereits nach einer halben Umdrehung die Werte an der Stelle, wo die Anfangsbedingung des Skalars 1 war, der Wert schon bis auf 0.02 gesunken ist. Die Skalarwerte nach 5, 10 und 20 Umdrehungen sind ebenfalls in Abbildung 4.5 zu sehen und zeigen den Mischvorgang bis zu einer Zeit von 3.24 Sekunden.

Für Umdrehungsgeschwindigkeiten von 370 sowie 95 Umdrehungen pro Minute sind die Werte des Skalars an dieser Stelle in den Abbildungen 4.6 bzw 4.7 im Verlauf der Zeit dargestellt. Man erkennt, dass der skalare Wert wie erwartet gegen C_{avg} konvergiert. Als Mischzeit wurde der Zeitwert genommen, an dem der skalare Wert 95% von C_{avg} erreicht.

Abbildung 4.5: Die Werte des Skalars nach einer halben Umdrehung (links oben) sowie nach 5 (rechts oben), 10 (links unten) und 20 (rechts unten) Umdrehungen. Die Simulation der Mischzeit fand bei 370 Umdrehungen pro Minute in einem Bioreaktor mit ring sparger statt. 20 Umdrehungen entsprechen daher einer Zeit von 3.24s.

Abbildung 4.6: Der an der unteren Stelle gemessene Wert des Skalars im Verlauf der Zeit bei 79 Umdrehungen pro Minute.

Abbildung 4.7: Der an der unteren Stelle gemessene Wert des Skalars im Verlauf der Zeit bei 95 Umdrehungen pro Minute.

Die Ergebnisse in Abhängigkeit der Umdrehungsgeschwindigkeit sind in Tabelle 4.4.2 zusammengefasst.

rpm	Mischzeit
370	23.2
172	45.5
95	97.3
79	128.4
37	318.3

Tabelle 4.2: Die Mischzeiten aus den Simulationen in Abhängigkeit der Umdrehungsgeschwindigkeit zusammengefasst.

Man erkennt, dass sie sich im Bereich der Ergebnisse aus [San09] befinden. Das wird in Abbildung 4.4.2 illustriert. Somit können die experimentell gewonnenen Daten reproduziert werden.

Abbildung 4.8: Die Resultate der Simulationen (schwarze Punkte) verglichen mit denen (weiße Punkte) der Versuche aus [San09].

4.5 Stofftransport

Um ermitteln zu können, wie schnell in einem Bioreaktor Stoffe zu den Zellen transportiert werden, wird als ein Maß dafür der Kla-Wert berechnet. Dies geschieht in einer CFD-Simulation, in der mit der sogenannten Euler-Lagrange Methode nach jedem Berechnungsschritt in einem Zwischenschritt die neuen Blasengrößen und Positionen angegeben werden. Die Blasengröße verändert sich deswegen, weil in jedem Schritt sich eine gewisse Masse des Sauerstoffs im Wasser auflöst. Die Größe dieser in Wasser übergehenden Masse ist im Wesentlichen ausschlaggebend für die Größe des Kla-Wertes. Siehe auch Abschnitt 4.5

4.5.1 Kla-Wert

Da in einem Bioreaktor verschiedene Stoffe in mehreren Aggregatzuständen vorhanden sind, spielt der Stofftransport von einer Phase in eine andere eine entscheidende Rolle. Wir betrachten in diesem Kapitel die Auflösung von Sauerstoff in Wasser, also den Transport eines Stoffes von der Gasphase in die Flüssigphase. In welchem Maße dieser vor sich geht ist für die Aufnahme von Sauerstoff der Zellen sehr wichtig. Um die Auflösung von Sauerstoff zu untersuchen nehmen wir wie in der Zwei-Film Theorie von Lewis Withman (siehe [Car10]) an, dass der Stofftransport an der Grenzschicht zwischen den zwei Phasen nur durch molekulare Diffusion beschrieben werden kann. Es wird angenommen, dass es an beiden Seiten der Grenzschicht jeweils einen dünnen Film gibt. Dieser hat eine Dicke X_g (in m) auf Seite der Gasphase und Dicke X_{ℓ} (in m) auf Seite der Flüssigphase. Das Fick'schen Gesetz sagt, dass der Fluss J_{O_2} (in [Mol/m²/s]) für die molekulare Diffusion des Sauerstoffs durch

$$J_{O_2} = -D \frac{\mathrm{d}C_{O_2}}{\mathrm{d}\mathbf{x}} \tag{4.3}$$

gegeben ist, wobei D der molekulare Diffusionskoeffizient (in $[m^2/s]$) und $\frac{dC_{O_2}}{dx}$ der Gradient der Konzentration von Sauerstoff (in Mol/m⁴) im stationären Zustand ist. (4.3) auf den Massentransport durch die zwei Filme angewandt bedeutet

$$J_{O_2} = D_g \frac{C_g - C_{gi}}{X_g} = D_\ell \frac{C_\ell - C_{\ell i}}{X_\ell},$$
(4.4)

wobei C_g (in Mol/m³) die Konzentration vom Sauerstoff in der Gasphase und C_{gi} die Sauerstoffkonzentration an der Grenzschicht des Gasfilms ist. Analoges gilt für C_{ℓ} und $C_{\ell i}$ in der Flüssigphase. Mit D_g und D_{ℓ} werden die Diffusionskoeffizienten der verschiedenen Filme bezeichnet. Mit Definition der Stofftransportkoeffizienten $k_g := D_g/X_g$ und $k_l := -D_{\ell}/X_{\ell}$ wird aus (4.4)

$$J_{O_2} = k_g (C_g - C_{gi}) = k_\ell (C_{\ell i} - C_\ell).$$
(4.5)

Wird mit *a* die spezifische Grenzfläche (in $[m^2/m^3]$) - also die Größe der Grenzfläche pro Volumen) für den Stoffaustausch gegeben, so folgt aus (4.5) mit der Definition der gesamten Stoffaustauschrate $Q := J_{O_2} a$ (in Mol/m³/s)

$$Q = J_{O_2}a = k_g a (C_g - C_{gi}) = k_\ell a (C_{\ell i} - C_\ell).$$
(4.6)

Da der Stofftransportkoeffizient k_{ℓ} sowie die spezifische Grenzfläche a von den selben physikalischen Eigenschaften des Systems abhängen, werden diese Werte kombiniert und es wird vom $k_{\ell}a$ -Wert gesprochen.

Abbildung 4.9: Skizze der Zwei-Film-Theorie. Die Konzentrationen von O_2 sind im Gas- und Flüssigfilm aufgrund unterschiedlicher Diffusionskoeffizienten verschieden. Aus [Hei11].

Für Gase mit geringer Löslichkeit wie O_2 oder CO_2 in Wasser ist die Konzentration an der Grenzschicht des Gasfilms C_{gi} fast gleich der in der Gasphase C_g . Siehe Abbildung 4.9. Das geschieht, da die Diffusion in der Gasphase schneller als in der Flüssigphase abläuft, sich also der Widerstand für die Diffusion fast ausschließlich im Flüssigfilm findet. Daher wird anstelle des nicht berechenbaren Wertes der Konzentration an der Grenzschicht in der Flüssigphase $C_{\ell i}$ die Gleichgewichtskonzentration C^* verwendet und man bekommt

$$\mathcal{Q} = k_\ell a (C^\star - C_\ell). \tag{4.7}$$

Da die Stoffaustauschrate Q nichts anderes als die Veränderung der Konzentration von O_2 pro Zeiteinheit (in Mol/m³/s) ist, gilt

$$\frac{\mathrm{d}C_{\ell}}{\mathrm{d}t} = \mathcal{Q} = k_{\ell}a(C^{\star} - C_{\ell}). \tag{4.8}$$

Nach Weglassen des Subskripts ergibt sich

$$\frac{\mathrm{d}C}{\mathrm{d}t} = \mathcal{Q} = k_{\ell} a (C^{\star} - C), \qquad (4.9)$$

wobei C die Konzentration von O_2 (in der Flüssigphase) und C^* die Sättigungskonzentration von O_2 in Wasser bezeichnet. Im weiteren Verlauf werden wir für die Konzentration die Einheit kg/m³ verwenden. Die Sättigungskonzentration ist $C^* = 6.71 * 10^{-3} \text{ kg/m}^3$.

4.5.2 Experiment

In [SPBR11] wurde ebenfalls der Stofftransportkoeffizient für Sauerstoff experimentell untersucht. Dabei war von folgender Gleichung ausgegangen worden:

$$\frac{\mathrm{d}C^{O_2}}{\mathrm{d}t} = k_\ell a^{O_2} (C^\star - C^{O_2}) + k_\ell a^{sO_2} (C^\star - C^{O_2}) - our,$$

wobei *our* für die Sauerstoffaufbrauchsrate (engl: oxygen utilization rate) steht und $k_{\ell}a^{sO_2}$ für den Stofftransport durch die Wasseroberfläche. Der Sauerstofftransport durch die Oberfläche ist so gering, dass er vernachlässigt werden kann. Außerdem wurden die Versuche ohne Zellen, die den Sauerstoff aufbrauchen könnten, durchgeführt. Daher kann nicht nur der voletzte, sondern auch der letzte Term weggestrichen werden, und (4.10) kürzt sich zu (4.9), die integriert

$$\ln(C^{\star} - C) = k_{\ell}a t + const. \tag{4.10}$$

ergibt. Daher wurde der Kla-Wert durch Berechnung der Steigung von $\ln(C^{\star} - C)$ zu verschiedenen Zeitpunkten ermittelt.

Der Stofftransportkoeffizient hängt nicht nur von der Beschaffenheit des Mediums und der Umdrehungsgeschwindigkeit des Impellers, sondern vor allem auch von der Einspritzmenge ab. Die Experimente wurden zwar verschiedenen Impellern (Rushton und Marine) durchgeführt, aber die Leistung pro Volumen (siehe (4.1)) wurde stets konstant gehalten. Einzig die Einspritzrate wurde verändert. Außerdem wurden die Experimente wiederholt mit und ohne Schaumverhinderer durchgeführt. Es wurden auch die Koeffizienten des Transports anderer Stoffe – wie Stickstoff oder Luft – berechnet. Siehe dazu Abbildung 4.10. Diese Resultate sind auch in Abbildung 4.11 veranschaulicht. Dabei erkennt man klar, dass sowohl bei Verwendung eines Marine Impellers, sowie auch bei höherer Einspritzrate der Stofftransportkoeffizient größer ist.

4.5.3 Simulation

Für unsere Simulation betrachten wir wie schon früher erwähnt den Bioreaktor nur mit Rushton Impellern und einer Umdrehungsgeschwindigkeit von 95 rpm. Die durch ein Rühren in gewissen Medien möglicherweise entstehende Schaumbildung wird dabei nicht simuliert. Dafür werden die Simulationen mit Einspritzmengen von Sauerstoff von 0.75, 1.875 und 3 lpm durchgeführt.

Um dazu zu gelangen, wird wie in Abschnitt 4.4 der durch die Lösung der Navier-Stokes-Gleichungen für inkompressible Fluide (3.67) entstandene quasi-stationäre Zustand des Strömungsfeldes $\mathbf{v}(\hat{\mathbf{x}}, t)$ als Anfangszustand des Flusses angenommen. Es werden dann nochmals

Impeller	Gas	Sparge rate	Agitation	k _L a _O	k _L a _C	Antifoam
		(sLPM)	(RPM)	(1/hr)	(1/hr)	Present
Rushton Turbine	Air	0.75	95	170	1.1	No
Rushton Turbine	N ₂	0.75	95	1.7	0.9	No
Rushton Turbine	O ₂	0.75	95	2.1	0.9	No
Rushton Turbine	N ₂	3	95	3.4	2.1	No
Rushton Turbine	O ₂	3	95	4.5	2.1	No
Marine	Air	0.75	183	170	1.1	No
Marine	N ₂	0.75	183	1.9	0.8	No
Marine	O ₂	0.75	183	1.9	1	No
Marine	N ₂	3	183	4.4	2.6	No
Marine	O ₂	3	183	4.2	2.5	No
Rushton Turbine	Air	0.75	95		0.9	Yes
Rushton Turbine	N ₂	0.75	95	1.5	0.9	Yes
Rushton Turbine	O ₂	0.75	95	1.1	0.7	Yes
Rushton Turbine	N ₂	3	95	3.4	1.8	Yes
Rushton Turbine	O ₂	3	95	3.1	2.1	Yes
Marine	Air	0.75	183		1.0	Yes
Marine	N ₂	0.75	183	2.1	1.0	Yes
Marine	O ₂	0.75	183	1.6	0.9	Yes
Marine	N ₂	3	183	4.4	2.0	Yes
Marine	O ₂	3	183	5.6	2.5	Yes

Abbildung 4.10: Diese Tabelle aus [SPBR11] zeigt die Ergebnisse der gemachten Experimente für die Ermittlung des Kla-Wertes. Die für uns relevanten Daten sind die $k_{\ell}a_{O}$ -Werte bei Verwendung eines Rushton Impellers und bei Einspritzung von Sauerstoff. Diese betragen ohne Verwendung eines Antischaums bei einer Einspritzrate von 0.75 lpm (liters per minute) 2.1 1/h und bei einer Rate von 3 lpm 4.5 1/h. Bei Verwendung von Antischaum sinken die $k_{\ell}a$ -Werte auf 1.1 bzw. 3.1 1/h.

Abbildung 4.11: Die Ergebnisse aus [SPBR11] sind hier graphisch dargestellt und werden mit den Resultaten aus den Simulationen (schwarze Punkte) verglichen. Siehe Abbildung 4.10 sowie Tabelle 4.5.4.

die Gleichungen (3.67) auf den Gebieten Ω_{Rotor} und Ω_{Stator} gelöst, wobei sich der rotierende Teil Ω_{Rotor} nun mit der in AVL Fire implementierten sliding-mesh-Methode in jedem Zeitschritt um einen bestimmten Winkel dreht.

Zwischen den Zeitschritten wird in einer diskreten Phase die Berechnungen für die Sauerstoffbläschen durchgeführt. Es werden in jedem Zeitschritt bei den Löchern des Spargers je nach Einspritzmenge eine gewisse Anzahl neuer Sauerstoffbläschen generiert. Außerdem wird von schon bestehenden Bläschen die Laufbahn berechnet. Dies geschieht mit Hilfe folgender Formel, die für jedes Bläschen p zu gegebenem Geschwindigkeitsfeld $\mathbf{v}(\hat{\mathbf{x}}, t)$, zu gegebener Dichte ρ_{∞} des Wassers, und zu gegebener Dichte ρ_p des Bläschens die Geschwindigkeit $\mathbf{v}_p(t)$ ermittelt:

$$\frac{\partial \mathbf{v}_p(t)}{\partial t} = \mathbf{F}_D \cdot \left(\mathbf{v}(\hat{\mathbf{x}}, t) - \mathbf{v}_p(t) \right) + g \frac{\rho_p - \rho_\infty}{\rho_p},\tag{4.11}$$

wobei \mathbf{F}_D (in [s⁻¹]) den Strömungswiderstand, der unter anderem von dem Durchmesser des Bläschens d_p und der dynamischen Viskosität μ abhängt, ist und g = 9.81 m/s die Gravitationskraft. Natürlich muss neben dem Durchmesser des Bläschens d_p auch die Anfangsgeschwindigkeit $\mathbf{v}_p(0)$ in einer bestimmten Richtung gegeben sein. Grob gesagt besagt Gleichung (4.11), dass sich die Geschwindigkeit eines Bläschens durch den Strömungswiderstand verringert und dass sich das Geschwindigkeitsfeld durch den (durch den Dichteunterschied entstehenden) Auftrieb verändert.

Zusätzlich wird in jedem Zeitschritt der Stofftransport von den Sauerstoffbläschen in das Wasser simuliert. Hierzu wird die abgegeben Masse berechnet, welche dann in die kontinuierliche Phase übergeht. Die Größe der Masse ist abhängig von der Blasengröße, weswegen die Anfangsgröße der Bläschen für die Berechnung des Kla-Wertes sehr wichtig ist. Auch wird der Radius für jedes Bläschen in jedem dieser Zwischenschritte je nach abgegebener Masse verringert. All diese Berechnungen werden in einem Userfile in AVL Fire gemacht. Durch die aufsummierte abgebene Masse wird dann der Kla-Wert für jede Zelle wie in Gleichung (4.9) berechnet. Diskretisiert man Gleichung (4.9), so ergibt sich

$$k_{\ell}a = \frac{C^{n+1} - C^n}{\Delta t (C^{\star} - C^n)},\tag{4.12}$$

wobei C^n die Konzentration von O_2 (in der Flüssigphase) im n-ten Zeitschritt, Δt die Zeitspanne zwischen zwei Zeitschritten, und C^* die Sättigungskonzentration von O_2 in Wasser bezeichnet. Mit dieser Gleichung wird während der Simulation in AVL Fire in jedem Zwischenschritt für jede Zelle der kla-Wert berechnet. Die Konzentrationen sind hierbei als Variablen intern in AVL Fire gespeichert und es kann auf sie zugegriffen werden. Außerdem wird mit einer Gewichtung des Volumens der Zelle der durchschnittliche Kla-Wert des Bioreaktors berechnet.

Da für diese Berechnungen nicht ein festes Koordinatensystem verwendet wird, spricht man bei der diskreten Phase auch von einer Lagrang'schen Beschreibungsweise - im Gegensatz zu der Euler'schen Formulierungsweise bei den kontinuierlichen Berechnungen. Es wird daher allgemein von einer Euler-Lagrangen Beschreibung der Simulation gesprochen.

4.5.4 Resultate

Die Verteilung des Kla-Wertes im Bioreaktor ist in 4.12 zu sehen. Hierbei war die Einspritzmenge 0.75 lpm. Man erkennt deutlich den erhöhten Kla-Wert entlang des Bläschenverlaufs. Die durchschnittlichen Kla-Werte in Abhängigkeit der Einspritzmengen, die bei den Simulationen berechnet wurden, sind in Tabelle 4.5.4 zusammengefasst.

lpm	Kla-Wert
0.75	1.2
1.875	1.9
3	2.5

Tabelle 4.3: Die Mischzeiten aus den Simulationen in Abhängigkeit der Umdrehungsgeschwindigkeit zusammengefasst.

Vergleicht man diese Werte mit denen aus Abbildung 4.11, so stellt man fest, dass der Kla-Wert bei einer Einspritzmenge von 0.75 lpm (1.2 l/h) im Bereich der experimentell gewonnen

Abbildung 4.12: Die Verteilung des Kla-Wertes im Bioreaktor bei einer Einspritzmenge von 0.75 lpm wird in diesem Querschnitt veranschaulicht.

Werte (1.1 - 2.1 1/h) liegt. Ebenso tut dies der Kla-Wert bei einer Einspritzmenge von 3 lpm (2.5 1/h); Bereich 3.1 - 4.5 1/h). Somit konnten auch hier die experimentell gewonnenen Resultate aus [SPBR11] reproduziert werden.

Kapitel 5

Simulation des Zellwachstums

5.1 Überblick

Ziel dieses Kapitels ist es, ein Modell für das Zellwachstum im Bioreaktor zu erstellen, sodass die in [SPBR11] experimentell gewonnenen Wachstumsraten reproduziert werden können. Hierfür werden in Abschnitt 5.2 zunächst die in Abschnitt 2.1.3 beschriebenen Stoffwechselvorgänge vereinfacht und so die für das Modell relevanten Nährstoffe und Nebenprodukte gefunden. Dann werden Funktionen für die Wachstumsraten dieser Nährstoffe und Nebenprodukte sowie für die Menge an Zellen im Bioreaktor abgeleitet. Das alles geschieht in Anlehnung an die in [Car10] und [SPBR11] präsentierten Modelle. Dabei wird die örtliche Komponente vernachlässigt. Das bedeutet, die Ortskoordinaten von Nährstoffen, Nebenprodukten und Zellen haben keinen Einfluss auf das Modell. Das so gewonnene Differentialgleichungssystem ist also nur zeitabhängig und wird deshalb auch 0D-Modell genannt.

Um nun zu berechnen wieviele Zellen im Verlaufe der Kultivierung im Bioreaktor neu entstehen muss das Differentialgleichungssystems, das aus 8 gekoppelten Gleichungen besteht, gelöst werden. Das geschieht mit dem Vorwärts-Euler Verfahren. In Abschnitt 5.3 wird die Implementierung beschrieben und es werden die numerisch gewonnenen Resultate mit den Experimenten aus [SPBR11] verglichen.

5.2 Erstellen des Modells

Das folgende 8-Gleichungs-Modell beruht auf dem 7-Gleichungs-Modell von [Car10] sowie auf den Annahmen von [SPBR11].

Zunächst ist festzustellen, dass das Verhalten von Organismen von 3 Faktoren abhängt: Der spezifischen Nährstoffaufnahmsrate, der spezifischen Zellwachstumsrate und der spezifischen Rate für die Bildung der Nebenprodukte. Die Größe dieser Raten hängt sowohl von den Eigenschaften der CHO Zellen als auch von äußeren Bedingungen wie der Konzentration der Komponenten im Bioreaktor ab.

Die sogenannten *kinetischen Funktionen*, die beschreiben wie die Raten von den extrazellulären Bedingungen abhängen, basieren auf einigen natürliche Annahmen: Wenn die Nährstoffkonzentration beispielsweise zurückgeht, so nimmt auch die Nährstoffaufnahmsrate und damit die Zellwachstumsrate ab. Außerdem gibt es bei geringerem Zellstoffwechsel auch eine geringere Produktion von Nebenprodukten, was zu einem Rückgang dieser Rate führt.

Außerdem gehen wir davon aus, dass die kinetischen Funktionen zwar von allen Konzentrationen der im Bioreaktor befindlichen Stoffen abhängen, die meisten aber während der Kultivierung konstant bleiben oder so hoch sind (wie zum Beispiel die Konzentration von Wasser) dass eine Einbettung dieser Faktoren in die kinetischen Funktionen vernachlässigbar ist.

Die nicht vernachlässigbaren, limitierten Nährstoffe für das Zellwachstum von CHO Zellen sind:

- Glukose *Glc*,
- Glutamin Gln,
- Sauerstoff O_2 .

Unter der Annahme, dass alle anderen Substanzen, Enzyme und Stoffwechselprodukte aus Kapitel 2.1.3 nicht limitiert vorhanden sind, kann (2.4) für den aeroben Konsum von Glukose zu

$$Glc + 2O_2 \to 6CO_2 + 6H_2O \tag{5.1}$$

und (2.3) für den anaeroben Verbrauch von Glukose zu

$$Glc \rightarrow 2Lac + 2H_2O$$
 (5.2)

vereinfacht werden. Außerdem führt (2.5) für den aeroben Konsum von Glutamin unter den selben Voraussetzungen zu

$$3Gln + 8O_2 \rightarrow 7CO_2 + 6Amm + 3Lac. \tag{5.3}$$

Wasser (H_2O) wurde in (5.3) vernachlässigt, da es im Bioreaktor im Verhältnis zu den Reaktionen quasi unbegrenzt davon gibt. Die für unser Modell relevanten Nebenprodukte sind demnach:

- Laktat *Lac*
- Ammoniak Amm
- Kohlenstoffdioxid CO_2 .

Unser Modell muss also die Konzentrationen der 3 wichtigsten Nährstoffe (Glc, Gln und O_2) und der 3 durch den Zellstoffwechsel entstehenden Produkte (Lac, Amm und CO_2) beschreiben. Diese 6 Komponenten sind durch (5.1), (5.2) und (5.3) miteinander gekoppelt. Außerdem werden die Konzentrationen der lebenden und der toten Zellen im Bioreaktor (X_{viable} und X_{dead}) beschrieben.

Zellen Die Konzentration der lebenden Zellen X_{viable} erhöht sich mit der spezifischen Wachstumsrate μ und senkt sich mit einer Sterberate k_{dead} . Das führt zu folgender Gleichung:

$$\frac{\mathrm{d}X_{\mathrm{viable}}}{\mathrm{d}t} = \mu X_{\mathrm{viable}} - \mathbf{k}_{\mathrm{dead}} X_{\mathrm{viable}},\tag{5.4}$$
$$X_{\mathrm{viable}}(0) = X_0.$$

Die Konzentration der bereits gestorbenen Zellen X_{dead} ist nimmt klarerweise mit sterbenden lebendigen Zellen zu und senkt sich mit einer Lysisrate k_{lys} , was auf

$$\frac{\mathrm{d}X_{\mathrm{dead}}}{\mathrm{d}t} = \mathbf{k}_{\mathrm{dead}}X_{\mathrm{viable}} - \mathbf{k}_{\mathrm{lys}}X_{\mathrm{dead}},$$

$$X_{\mathrm{dead}}(0) = 0$$
(5.5)

führt. Die Konzentration aller Zellen - sowohl der Lebenden als auch der Toten - im Bioreaktor $X_{\text{total}} = X_{\text{viable}} + X_{\text{dead}}$ erhöht sich, wenn sich die X_{viable} erhöht und senkt sich wenn sich X_{dead} senkt. Daraus folgt, falls man einen Überblick über die Gesamtanzahl der Zellen bekommen möchte

$$\frac{\mathrm{d}X_{\mathrm{total}}}{\mathrm{d}t} = \frac{\mathrm{d}X_{\mathrm{viable}}}{\mathrm{d}t} + \frac{\mathrm{d}X_{\mathrm{dead}}}{\mathrm{d}t} = \mu X_{\mathrm{viable}} - \mathbf{k}_{\mathrm{lys}} X_{\mathrm{dead}}, \tag{5.6}$$
$$X_{\mathrm{total}}(0) = X_{\mathrm{viable}}(0) + X_{\mathrm{dead}}(0) = X_0,$$

wobei die spezifische Wachstumsrate μ , die Sterberate k_{dead} und die Lysisrate k_{lys} noch sinnvoll definiert werden müssen.

Wie in [Car10] erläutert, sollte für die spezifische Wachstumsrate folgendes gelten:

- Falls Sauerstoff vorhanden ist, so nimmt die Zelle die Energie von den aeroben Reaktionen von Glukose und Glutamin. Dadurch wachsen die Zellen bei aerober Zellatmung schneller als bei anaeroben Vorgängen.
- Die anaerobe Zellatmung findet immer statt; auch wenn Sauerstoff vorhanden ist.
- Wenn die Nährstoffe ausgehen wachsen die Zellen nicht mehr.
- Die Wachstumsrate μ ist nicht nur vom Sauerstoff, Glukose- und Glutamin-, sonder auch vom Laktat- und Ammoniakgehalt abhängig. Diese zwei Nebenprodukte behindern das Wachstum.

Wir nehmen daher an, dass aerobe und anaerobe Zellatmung auf verschiedene Wachstumsraten führen und spalten die Wachstumsrate μ daher in eine Wachstumsrate μ_{aer} , die mit dem Faktor γ_{aer} gewichtet ist, für aerobes Wachstum und in eine Wachstumsrate μ_{anaer} , die mit dem Faktor $\gamma_{anaer} := 1 - \gamma_{aer}$ gewichtet ist, für anaerobes Wachstum auf. Diese beiden Wachstumsraten, sowie die das Wachstum hemmenden Faktoren k_{Lac} und k_{Amm} können - wie später ersichtlich wird - nur Werte im Intervall [0, 1] annehmen. Daher macht ein Koeffizient μ_{max} , der die maximale Wachstumsrate beschreibt, Sinn. Das führt auf

$$\mu := \mu_{max} \left(\gamma_{aer} \mu_{aer} + \gamma_{anaer} \mu_{anaer} \right) k_{Lac} k_{Amm}, \tag{5.7}$$

wobei $\mu_{\text{aer}}, \mu_{\text{anaer}}, k_{\text{Lac}}$ und k_{Amm} noch zu definieren sind. Die Wachstumsrate μ_{aer} wird – da aerobe Zellatmung durch Glukose und Glutamin induziert wird – in einen (mit dem Faktor γ_{Glc} gewichteten) Teil für aerobes Wachstum durch Glukose und einen (mit dem Faktor $\gamma_{\text{Gln}} := 1 - \gamma_{\text{Gln}}$ gewichteten Teil für aerobes Wachstum durch Glutamin unterteilt. Die Wachstumsraten für aerobes Wachstum durch Glukose bzw Glutamin werden mit μ_{Glc} bzw. μ_{Gln} bezeichnet. Daher definieren wir $\mu_{\text{aer}} := \gamma_{\text{Glc}}\mu_{\text{Glc}} + \gamma_{\text{Gln}}\mu_{\text{Gln}}$ und mit (5.7) gilt

$$\mu := \mu_{max} \left(\gamma_{\text{Glc}} \mu_{\text{Glc}} + \gamma_{\text{Gln}} \mu_{\text{Gln}} \right) + \gamma_{\text{anaer}} \mu_{\text{anaer}} \right) k_{\text{Lac}} k_{\text{Amm}}, \tag{5.8}$$

wobei noch

$$\mu_{\text{Glc}} := \left(\frac{Glc}{K_{Glc} + Glc}\right) \left(\frac{O_2}{C_{O_2} + O_2}\right),$$
$$\mu_{\text{Gln}} := \left(\frac{Gln}{K_{Gln} + Gln}\right) \left(\frac{O_2}{K_{O_2} + O_2}\right),$$
$$\mu_{\text{anaer}} := \frac{Glc}{K_{\text{anaer}} + Glc + \frac{O_2^2}{K_{O_2}}},$$
$$k_{\text{Lac}} := \frac{K_{\text{Lac}}}{K_{\text{Lac}} + Lac} \text{ und}$$
$$k_{\text{Amm}} := \frac{K_{\text{Amm}}}{K_{\text{Amm}} + Amm}$$

zu definieren sind. Hierbei sind K_{Glc} , K_{Gln} , K_{anaer} , K_{Lac} und K_{Amm} Affinitätsparameter für die jeweiligen Stoffe und K_{O_2} ist ein Beschränkunsparameter für Sauerstoff. Man bemerkt, dass wenn entweder Sauerstoff ausgeht oder Glukose auf ein gewisses Level K_{Glc} fällt, es kein Wachstum aufgrund von aerober Zellatmung durch Glukose gibt. Dass die Glukosekonzentration nicht unter den Wert K_{Glc} fällt, wird durch zusätzliche Einführung von Glukose zu gewissen Zeitpunkten (siehe Abschnitt 5.3) sicher gestellt. Analog dazu geht die aerobe Zellatmung durch Glutamin zurück, wenn dieses und Sauerstoff geringer werden. Ähnlich verhält es sich bei anaerober Zellatmung durch Glukose. Weiters ist die auf das Zellwachstum hemmende Wirkung von Ammoniak und Laktat ersichtlich. Je mehr es von diesen beiden Stoffen gibt, desto geringer ist die Wachstumsrate. Mit (5.8) ergibt sich so für die Wachstumsrate

$$\mu := \mu_{\max} \left(\gamma_{\text{Glc}} \left(\frac{Glc}{K_{Glc} + Glc} \right) \left(\frac{O_2}{C_{O_2} + O_2} \right) + \gamma_{\text{Gln}} \left(\frac{Gln}{C_{Gln} + Gln} \right) \left(\frac{O_2}{K_{O_2} + O_2} \right) \right) + \gamma_{\text{anaer}} \left(\frac{Glc}{K_{\text{anaer}} + Glc + \frac{O_2^2}{K_{O_2}}} \right) \left(\frac{K_{\text{Lac}}}{K_{\text{Lac}} + Lac} \right) \left(\frac{K_{\text{Amm}}}{K_{\text{Amm}} + Amm} \right).$$
(5.9)

Wie in [SPBR11] definieren wir die Sterberate k_{dead} abhängig von der maximalen Wachstumsrate μ_{max} und der Laktatkonzentration *Lac* als

$$k_{dead} := \frac{K_{d1}}{\mu_{max} - K_{d2}Lac},$$
(5.10)

wobei K_{d1} und K_{d2} zwei noch zu bestimmende Parameter sind. Die Lysisrate wird abhängig von der Sterberate als

$$k_{lys} := K_{\ell 1} k_{dead} - K_{\ell 2}$$
(5.11)

definiert, wobei $K_{\ell 1}$ und $K_{\ell 2}$ ebenfalls noch zu bestimmende Parameter sind.

Nährstoffe Die Nährstoffaufnahmerate eines Stoffes S hängt stark von der Menge der lebenden Zellen X_{viable} sowie von einem sogenannten Yield-Koeffizienten Y_S ab, der die Menge an Zellen repräsentiert, die durch die Aufnahme einer Einheit des Stoffes S produziert werden. Daher gilt allgemein für die zeitliche Veränderung eines Stoffes

$$\frac{\mathrm{d}S}{\mathrm{d}t} = -\frac{1}{Y_S} \mu_{X|S} X_{\mathrm{viable}} \tag{5.12}$$

$$S(0) = S_0,$$
 (5.13)

wobei S_0 die Nährstoffkonzentration zur Startzeit t = 0 ist, und μ_{X_S} die spezifische Wachstumsrate durch den Nährstoff S ist.

Für die Veränderung von Glukose werden sowohl die aerobe als auch die anaerobe Zellatmung als Verbrauch einzelner Stoffe betrachtet, die dann addiert werden, womit man zu folgender Gleichung gelangt:

$$\frac{\mathrm{d}Glc}{\mathrm{d}t} = -\left(\frac{1}{Y_{\mathrm{Glc}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Glc}}\mu_{\mathrm{Glc}} + \frac{1}{Y_{\mathrm{anaer}}}\mu_{\mathrm{max}}\gamma_{\mathrm{anaer}}\mu_{\mathrm{anaer}}\right)X_{\mathrm{viable}},\tag{5.14}$$
$$Glc(0) = Glc_0,$$

wobei Glc_0 die Anfangskonzentration von Glukose bezeichnet. Da Glutamin nur unter aerober Zellatmung aufgebraucht wird, vereinfacht sich die Gleichung für die Veränderung dieser Konzentration. Allerdings hat der natürliche Abbau von Glutamin im Medium einen großen Einfluss auf die Konzentration, weshalb der Glutaminabbau von der Abbaurate $k_{\rm dgln}$ beeinflusst wird.

$$\frac{\mathrm{d}Gln}{\mathrm{d}t} = -\frac{1}{Y_{\mathrm{Gln}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Gln}}\mu_{\mathrm{Gln}}X_{\mathrm{viable}} - k_{\mathrm{dgln}}Gln, \qquad (5.15)$$
$$Gln(0) = Gln_0,$$

wobei Gln_0 die Anfangskonzentration von Glutamin bezeichnet. Da der Verbrauch von Sauerstoff bei aerober Zellatmung bei Glukose- und Glutaminoxidation geschieht (siehe (2.4) und (2.5)), werden der Verbrauch von Sauerstoff durch Glukose und der Verbrauch von Sauerstoff durch Glutamin ähnlich wie in (5.14) als seperate Verbräuche von Stoffen betrachtet, die dann summiert zur Veränderung des O_2 -Haushalts beitragen. Außerdem muss der Stofftransport $K_L^{O_2}a(O_2^* - O_2)$ von O_2 in das Wasser beachtet werden (siehe Abschnitt INSERT REF). Daher ist die Veränderung der Sauerstoffkonzentration durch

$$\frac{\mathrm{d}O_2}{\mathrm{d}t} = -\left(\frac{1}{Y_{\mathrm{O}_2|\mathrm{Glc}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Glc}}\mu_{\mathrm{Glc}} + \frac{1}{Y_{\mathrm{O}_2|\mathrm{Gln}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Gln}}\mu_{\mathrm{Gln}}\right)X_{\mathrm{viable}} + K_L^{O_2}a(O_2^{\star} - O_2),$$

$$O_2(0) = O_{20}$$
(5.16)

gegeben, wobei O_{20} die Sauerstoffkonzentration am Anfang bezeichnet und $Y_{O_2|Glc}$ (bzw. $Y_{O_2|Gln}$) die Menge von Zellen ist, die durch eine Einheit Sauerstoff durch Glukoseoxidation (bzw. Glutaminoxidation) entsteht. Bei genauerer Betrachtung der Glukoseoxidation in (5.1) bemerkt man, dass für ein Mol *Glc*, das konsumiert wird, 6 Mol O_2 konsumiert werden. Das führt auf

$$Y_{O_2|Glc} = \frac{X_{\text{viable prod.}}}{O_2 \text{ kons.}} \bigg|_{Glc} = \frac{X_{\text{viable prod.}}}{Glc \text{ kons.}} \frac{Glc \text{ kons.}}{O_2 \text{ kons.}} = Y_{Glc} \frac{1M_{Glc}}{6M_{O_2}},$$
(5.17)

wobei M_{Glc} und M_{O_2} die molare Masse von Glukose und Sauerstoff bezeichnen. Da während der Glutaminolyse in (5.3) für 3 Mol Glutamin 8 Mol Sauerstoff verbraucht werden, vereinfacht sich der yield-Koeffizient $Y_{\text{O}_2|\text{Gln}}$ zu

$$Y_{O_2|Gln} = \frac{X_{\text{viable prod.}}}{O_2 \text{ kons.}} \bigg|_{Gln} = \frac{X_{\text{viable prod.}}}{Gln \text{ kons.}} \frac{Gln \text{ kons.}}{O_2 \text{ kons.}} = Y_{Gln} \frac{3M_{Gln}}{8M_{O_2}},$$
(5.18)

wobei M_{Gln} die molare Masse von Glutamin bezeichnet.

Außerdem gehen wir davon aus, dass Yield-Koeffizienten Y_S nicht konstant sind, sondern dass sie sich im Laufe der Zeit verändern und auch von der Menge des Stoffes S abhängen. Siehe 6.22, Zeile 211-217.

Nebenprodukte So wie für die Aufnahme von Nährstoffen gilt für die daraus folgende Produktion von Nebenprodukten, dass diese stark von der Anzahl der Zellen sowie von einem yield-Koeffizienten Y_P , der angibt, wieviel Zellen X_{viable} produziert werden, wenn eine Einheit des Produkts P Produziert wird. Analog zu (5.12) ergibt sich für die Veränderung eines Produktes P

$$\frac{\mathrm{d}P}{\mathrm{d}t} = -\frac{1}{Y_P} \mu_{X|P} X_{\text{viable}}$$

$$P(0) = P_0,$$
(5.19)

wobei P_0 die Nährstoffkonzentration zur Startzeit t = 0 ist, und μ_{X_P} die zu dem Produkt P gehörige spezifische Wachstumsrate ist.

Die Produktion von Laktat geschieht sowohl durch die anaerobe Zellatmung, bei der Glukose verbraucht wird, als auch durch die aerobe Glutaminoxidation. Änlich wie in (5.14) werden

diese zwei Vorgänge als Produktion einzelner Stoffe betrachtet, die dann addiert werden. Mit (5.19) gelangt man zu folgender Gleichung:

$$\frac{\mathrm{d}Lac}{\mathrm{d}t} = \left(\frac{1}{Y_{\mathrm{Lac}|\mathrm{Glc}}}\mu_{\mathrm{max}}\gamma_{\mathrm{anaer}}\mu_{\mathrm{anaer}} + \frac{1}{Y_{\mathrm{Lac}|\mathrm{Gln}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Gln}}\mu_{\mathrm{Gln}}\right)X_{\mathrm{viable}},\tag{5.20}$$
$$Lac(0) = Lac_{0},$$

wobe
i Lac_0 die Anfangskonzentration von Laktat bezeichnet. Analog zu (5.17) gilt für die yield-Koeffizienten
 $Y_{\rm Lac|Glc}$ und $Y_{\rm Lac|Gln}$ nach (5.1)

$$Y_{\text{Lac}|\text{Glc}} = \frac{X_{\text{viable prod.}}}{Lac \text{ prod.}} \bigg|_{Glc} = \frac{X_{\text{viable prod.}}}{Glc \text{ prod.}} \frac{Glc \text{ prod.}}{Lac \text{ prod.}} = Y_{\text{anaer}} \frac{1M_{\text{Glc}}}{1M_{\text{Lac}}},$$
(5.21)

wobei M_{Lac} die molare Masse von Laktat bezeichnet. Für $Y_{\text{Lac}|\text{Gln}}$ gilt mit (5.3)

$$Y_{\text{Lac}|\text{Gln}} = \frac{X_{\text{viable prod.}}}{Lac \text{ prod.}} \bigg|_{Gln} = \frac{X_{\text{viable prod.}}}{Gln \text{ prod.}} \frac{Gln \text{ prod.}}{Lac \text{ prod.}} = Y_{\text{Gln}} \frac{3M_{\text{Glc}}}{3M_{\text{Lac}}}.$$
(5.22)

Die Produktion von Ammoniak geschieht während des Glutaminabbaus. Da wir annehmen, dass dies nicht in gleichem Maße geschieht, werden Vorfaktoren K_{a1} und K_{a2} eingefügt. Daher gilt

$$\frac{\mathrm{d}Amm}{\mathrm{d}t} = K_{a1} \frac{1}{Y_{\mathrm{Amm}|\mathrm{Gln}}} \mu_{\mathrm{max}} \gamma_{\mathrm{aer}} \gamma_{\mathrm{Gln}} \mu_{\mathrm{Gln}} X_{\mathrm{viable}} + K_{a1} k_{\mathrm{dgln}} Gln, \qquad (5.23)$$
$$Amm(0) = Amm_0,$$

und mit (5.3)

$$Y_{\text{Amm}|\text{Gln}} = \frac{X_{\text{viable prod.}}}{Amm \text{ prod.}} \bigg|_{Gln} = \frac{X_{\text{viable prod.}}}{Gln \text{ prod.}} \frac{Gln \text{ prod.}}{Amm \text{ prod.}} = Y_{\text{Gln}} \frac{3M_{\text{Glc}}}{6M_{\text{Amm}}},$$
(5.24)

wobe
i $M_{\rm Amm}$ die molare Masse von Ammoniak bezeichnet. Analog zum Verbrauch von Sauerstoff gilt für die Produktion von Kohlenstoffdioxid

$$\frac{\mathrm{d}CO_2}{\mathrm{d}t} = -\left(\frac{1}{Y_{\mathrm{CO}_2|\mathrm{Glc}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Glc}}\mu_{\mathrm{Glc}} + \frac{1}{Y_{\mathrm{CO}_2|\mathrm{Gln}}}\mu_{\mathrm{max}}\gamma_{\mathrm{aer}}\gamma_{\mathrm{Gln}}\mu_{\mathrm{Gln}}\right)X_{\mathrm{viable}}
+ K_L^{CO_2}a(CO_2^{\star} - CO_2),$$

$$CO_2(0) = CO_{20},$$
(5.25)

wobe
i CO_{20} die Anfangskonzentration von Kohlenstoffdioxid bezeichnet. Mit (5.1) und (5.3) gilt außerdem für die y
ield-Koeffizienten

$$Y_{\rm CO_2|Glc} = \frac{X_{\rm viable} \text{ prod.}}{CO_2 \text{ prod.}} \bigg|_{Glc} = \frac{X_{\rm viable} \text{ prod.}}{Glc \text{ prod.}} \frac{Glc \text{ prod.}}{CO_2 \text{ prod.}} = Y_{\rm Glc} \frac{1M_{\rm Glc}}{6M_{\rm CO_2}},\tag{5.26}$$

sowie

$$Y_{\rm CO_2|Gln} = \frac{X_{\rm viable} \text{ prod.}}{CO_2 \text{ prod.}} \bigg|_{Gln} = \frac{X_{\rm viable} \text{ prod.}}{Gln \text{ prod.}} \frac{Gln \text{ prod.}}{CO_2 \text{ prod.}} = Y_{\rm Gln} \frac{3M_{\rm Gln}}{7M_{\rm CO_2}},\tag{5.27}$$

wobe
i $M_{\rm CO_2}$ die molare Masse von Kohlenstoffdioxid bezeichnet.

5.3 Implementierung und Resultate

Das in 5.2 erstellte Modell wurde in C implementiert, wobei die Werte für X_{total} wie in Gleichung (5.6) berechnet wurden. Siehe Code 6.22. Dabei sind folgende Punkte zu beachten:

- Die Werte für die Anfangskonzentrationen wurden nach den im Experiment ersichtlichen Daten in [SPBR11] übergeben. Siehe Zeile 101-119. Die Anfangswerte für O_2 und CO_2 wurden auf die jeweiligen Sättigungslevel gesetzt. Der in Zeile 120 übergebene Wert für den Stofftransport ist der in Abschnitt 4.5 errechnete Kla-Wert.
- Die verschiedenen Parameter, deren Werte geschätzt wurden, sind in Zeile 123-149 zu finden.
- Die Berechnung erfolgt für eine Zeitspanne von 15 Tagen in Zeitschritten von einer halben Sekunde. Siehe Zeile 165-177.
- Wann welche Mengen an Glukose und Glutamin hinzugefügt wurden, ist in Zeile 189-209 zu sehen.
- Wie die Yield-Koeffizienten von Glukose und Glutamin sich in Abhängigkeit ihrer Konzentrationen und der Zeit verhalten, ist in Zeile 211-218 ersichtlich. Die Berechnung der Yield-Koeffizienten aus (5.17), (5.18), (5.21), (5.22), (5.24), (5.26) und (5.27) geschieht in Zeile 228-237.
- Das vorwärts Euler Verfahren wurde angewendet, um das Differentialgleichungssystem bestehend aus (5.4), (5.5), (5.14), (5.15), (5.16), (5.20), (5.23) und (5.25) zu lösen. Siehe Zeile 239-278.
- Die so gewonnenen Daten werden dann in Zeile 280-284 bzw. 291-389 in Dateien geschrieben.

Die so erstellten Daten werden dann mittels Matlab (siehe Code 6.23) graphisch dargestellt und mit den experimentellen Werten aus [SPBR11] verglichen. Siehe Abbildung 5.1. Ebenso sind in Abbildung 5.2 die Nährstoff- und Nebenproduktkonzentrationen im Verlauf der Zeit zu sehen. Bis auf kleinere Details kann unser Modell die Daten aus den Experimenten reproduzieren.

Abbildung 5.1: Die in [SPBR11] experimentell gewonnenen Werte sowie die Ergebnisse unseres Modells für die Gesamtanzahl von Zellen, den lebendigen Zellen, und den toten Zellen.

Abbildung 5.2: Die in [SPBR11] experimentell gewonnenen Werte sowie die Ergebnisse unseres Modells für die Nährstoffe und Nebenprodukte.
Kapitel 6

Anhang

```
CODE 6.22. (\partial D - Code):
1 #include <stdio.h>
2
  #include <math.h>
3
  void write_data(double time, int new);
4
5
  int new_run;
6
7
  double X;
8
  double X_v;
9
10 double X_d;
11 double X_t;
12 double Glc;
13 double Gln;
14 double O2;
15 double Lac;
16 double Amm;
  double CO2;
17
  double Kla;
18
19
  double muMax;
20
21
  double gammaAer;
22 double gammaAnaer;
23 double gammaGlc;
  double gammaGln;
24
25 double Kglc;
  double Kgln;
26
  double Kanaer;
27
```

28 double KI;

```
double KO2;
29
  double Klac:
30
  double Kamm;
31
  double k_dgln;
32
  double YGlcAer;
33
   double YGlcAnaer;
34
  double YGln;
35
36
   double end_time_d;
37
  double time_step;
38
   double write_fq_sec;
39
  double tsc;
40
  int count_iter;
41
  int count_fq;
42
   double write_fq;
43
   int end_iter;
44
45
  double times;
46
   double timeh;
47
   double timed;
48
49
  double muGlc;
50
   double muGln;
51
   double muAer;
52
   double muAnaer;
53
   double muX;
54
55
  double M_Glc;
56
  double M_Gln;
57
  double M_O2;
58
59
  double M_Lac;
   double MAmm;
60
   double M_CO2;
61
62
  double YO2_Glc;
63
   double YO2_Gln;
64
   double YLac_Glc;
65
  double YLac_Gln;
66
   double YAmm_Gln;
67
   double YCO2_Glc;
68
   double YCO2_Gln;
69
```

```
70
```

```
double X_old;
71
   double X_v_old;
72
   double X_d_old;
73
   double X_t_old;
74
   double Glc_old;
75
   double Gln_old;
76
   double O2_old;
77
   double Lac_old;
78
   double Amm_old;
79
   double CO2_old;
80
81
   double S_X;
82
   double k_d;
83
   double k_lys;
84
   double S_X_v;
85
   double S_X_d;
86
   double S_X_t;
87
   double S_Glc;
88
   double S_Gln;
89
   double S_02;
90
   double S_Lac;
91
   double S_Amm;
92
   double S_CO2;
93
94
   /*--
                                  -MAIN CODE-
95
                                                                          */
   int main(){
96
97
      printf("CellGrowth_Calculation_started!_\n");
98
      new_run = 1;
99
100
101
      //initializing data
      X_v = 5.0e08;
102
             //cells/L
103
      X_d = 0.0;
104
             //cells/L
105
      X_t = 5.0e08;
106
             //cells/L
107
      Glc = 3.9634/15.0;
108
             //g/L
109
      Gln = 0.423806/15.0;
110
             //g/L
111
      O2 = 6.71 e - 03;
112
```

//g/L113 Lac = 0.3232/15.0; 114 115//g/LAmm = 0.03438/15.0; 116 //g/L117 CO2 = 0.055;118//g/L119Kla = 1.2/60.0/60.0; 120//1/s121122//set parameters 123muMax = 2.68 e - 05;124//maximum growth rate in 1/s 125gammaAer = 0.9; 126//weight coefficient Aer 127gammaAnaer = 1.0 - gammaAer;128//weight coefficient Anaer 129gammaGlc = 0.9153; 130 //weight coefficient Glc 131 gammaGln = 1.0 - gammaGlc;132//weight coefficient Gln 133 Kglc = 0.18;134//affinity constant for aerobic consumption of glc in g/L 135Kgln = 0.067;136 //affinity constant for aerobic consumption of gln in g/L 137 Kanaer = 0.18; 138//affinity constant for anaerobic consumption of glc in g/L 139KO2 = 6.71 e - 03;140 //affinity constant for O2 in g/L 141KI = 0.000045;142//inhibition parameter 143 Klac = 0.562;144//affinity constant for lactate in g/L 145Kamm = 0.031; 146 //affinity constant for ammonia in g/L 147 $k_dgln = 6.95e - 07;$ 148 //death rate for glutamine 149150//molar mass [g/mol] 151 $M_Glc = 180.15588;$ 152//molar mass of glucose 153 $M_Gln = 146.15;$ 154

//molar mass of glutmine 155 $M_02 = 32.0;$ 156//molar mass of O2 157 $M_{Lac} = 90.08;$ 158//molar mass of lactate 159 $M_{Amm} = 17.031;$ 160//molar mass of ammonia 161 $M_{CO2} = 44.01;$ 162//molar mass of CO2 163 164//set time and output frequency 165 $end_time_d = 15.0;$ 166//in days 167time_step = 0.5; 168//in seconds 169write_fq_sec = 3600;170//in seconds 171172//set counters 173 $count_iter = 0;$ 174 $count_fq = 0;$ 175write_fq = (int)(write_fq_sec/time_step); 176 $end_iter = (int)(end_time_d *24 *60 *60 / time_step);$ 177178179//loop over time steps do{ 180count_iter++; 181 $count_fq++;$ 182183//set time 184 times = count_iter * time_step; 185timeh = times / 3600.0;186timed = timeh / 24.0; 187 188 //add glucose and glutamine at specific time steps 189 $if(times > (4.0 * 24 * 60 * 60 - time_step)\&\&\$ 190 $times < (4.0 * 24 * 60 * 60 + time_step))$ 191 Glc=Glc+0.06;192} 193 $if(times > (8.0*24*60*60 - time_step)\&\&)$ 194 $times < (8.0 * 24 * 60 * 60 + time_step))$ 195Glc=Glc+0.06;196

} 197 $if(times > (10.0 * 24 * 60 * 60 - time_step)\&\&)$ 198 $times < (10.0 * 24 * 60 * 60 + time_step))$ 199Glc=Glc+0.06;200201} $if(times > (7.0 * 24 * 60 * 60 - time_step)\&\& \$ 202 $times < (7.0 * 24 * 60 * 60 + time_step))$ 203Gln=Gln+0.006;204205 $if(times > (12.5 * 24 * 60 * 60 - time_step)\&\& \$ 206 207 $times < (12.5 * 24 * 60 * 60 + time_step))$ Gln=Gln+0.006;208} 209210//set vield coefficients 211 $YGlcAer = 35e9*gammaAer+(0.4-Glc)*(count_iter/end_iter)*6e11;$ 212//amount of cells produced per glc (aerobic) in #/g213214YGlcAnaer = 35e9*gammaAnaer+(0.4-Glc)*(count_iter/end_iter)*600e9; 215//amount of cells produced per glc (anaerobic) in #/g216YGln = 1.0e09 + (0.03 - Gln) * 4e11;217 //amount of cells produced per gln (aerobic) in #/g218219220 //calculate values for cell growth rate $(dX/dt=mu_X*X)$ muGlc = ((Glc - 0.13)/(Kglc + (Glc - 0.13))) * (O2/(KO2+O2));221muGln = (Gln / (Kgln+Gln)) * (O2 / (KO2+O2));222muAer = gammaGlc * muGlc + gammaGln * muGln;223muAnaer = Glc / (Kanaer + Glc + O2*O2/KI);224 $muX = muMax * (gammaAer*muAer + gammaAnaer*muAnaer)* \$ 225(Klac / (Klac + Lac)) * (Kamm / (Kamm + Amm));226227 228//calculate values for O2 uptake $(dS/dt=-1/Y_S*mu_X|S*X)$ $YO2_Glc = 1.0*M_Glc / (6.0 * M_O2) * YGlcAer;$ 229 $YO2_Gln = 3.0 * M_Gln / (8.0 * M_O2) * YGln;$ 230231// calculate values for prod. form. $(dP/dt=1/Y_P*mu_X|P*X)$ 232 $YLac_Glc = 1.0 * M_Glc / (2.0 * M_Lac) * YGlcAnaer;$ 233 234235 $YCO2_Glc = 1.0 * M_Glc / (6.0 * M_CO2) * YGlcAer;$ 236 $YCO2_Gln = 3.0 * M_Gln / (7.0 * M_CO2) * YGln;$ 237238

239	//update old values
240	$X_t_old = X_t;$
241	X_v_old=X_v;
242	$X_d_old = X_d;$
243	Glc_old=Glc;
244	Gln_old=Gln;
245	$O2_old=O2;$
246	Lac_old=Lac;
247	Amm_old=Amm;
248	CO2_old=CO2;
249	
250	//calculate differential
251	k_d = $1.79 e - 04/(0.1015 - 1.11 e - 02*Lac)/3600;$
252	$k_{lys} = 0.205 * k_{d} - 5.27 e - 07;$
253	$S_X_t = muX * X_v - k_l y s * X_d;$
254	$S_X_v = muX * X_v - k_d * X_v;$
255	$S_X_d = k_d * X_v - k_l y s * X_d;$
256	$S_Glc = -1.0*muMax*(1.0/YGlcAer*gammaAer*gammaGlc*muGlc+)$
257	$1.0/YGlcAnaer*gammaAnaer*muAnaer)*X_v;$
258	$S_Gln = -1.0*muMax*1.0/YGln*gammaAer*gammaGln*muGln*X_v-$
259	$k_dgln * Gln;$
260	$S_O2 = -1.0*muMax*gammaAer*(1.0/YO2_Glc*gammaGlc*muGlc+)$
261	$1.0/YO2_Gln*gammaGln*muGln)*X_v+Kla*(6.71E-03-O2);$
262	$S_Lac = muMax*(1.0/YLac_Glc*gammaAnaer*muAnaer+)$
263	$1.0/YLac_Gln*gammaAer*gammaGln*muGln)*X_v;$
264	$S_{Amm} = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * muGln * X_v + \langle N_{Amm} \rangle = 0.25 * muMax * 1.0 / YAmm_Gln * gammaAer * gammaGln * gamm$
265	$k_dgln * Gln * 0.25;$
266	$S_CO2 = muMax*gammaAer*(1.0/YCO2_Glc*gammaGlc*muGlc+)$
267	$1.0/YCO2_Gln*gammaGln*muGln)*X_v+Kla*(0.055-CO2);$
268	
269	//update new values
270	$X_t = X_t_old + time_step * S_X_t;$
271	$X_v = X_v_old + time_step * S_X_v;$
272	$X_d = X_d_old + time_step * S_X_d;$
273	$Glc = Glc_old + time_step * S_Glc;$
274	$Gln = Gln_old + time_step * S_Gln;$
275	$O2 = O2_old + time_step * S_O2;$
276	$Lac = Lac_old + time_step * S_Lac;$
277	$Amm = Amm_old + time_step * S_Amm;$
278	$CO2 = CO2_old + time_step * S_CO2;$
279	
280	//print data

```
if (count_fq == write_fq || count_iter==1){
281
          write_data(timed, new_run);
282
          new_run = 0;
283
          count_fq = 0;
284
        }
285
      }
286
      while(count_iter <= end_iter || count_iter <30);
287
      return 0;
288
289
    }
290
291
    void write_data(double time, int new){
      char file_name_x [255];
292
      char file_name_x_v [255];
293
      char file_name_x_d [255];
294
      char file_name_x_t [255];
295
      char file_name_Glc [255];
296
      char file_name_Gln [255];
297
      char file_name_O2[255];
298
      char file_name_Lac [255];
299
      char file_name_Amm [255];
300
      char file_name_CO2[255];
301
      FILE *fp;
302
      sprintf(file_name_x, "cell_growth_X.dat");
303
      sprintf(file_name_x_v, "cell_growth_X_v.dat");
304
      sprintf(file_name_x_d, "cell_growth_X_d.dat");
305
      sprintf(file_name_x_t, "cell_growth_X_t.dat");
306
      sprintf(file_name_Glc, "cell_growth_Glc.dat");
307
      sprintf(file_name_Gln, "cell_growth_Gln.dat");
308
      sprintf(file_name_O2, "cell_growth_O2.dat");
309
      sprintf(file_name_Lac, "cell_growth_Lac.dat");
310
      sprintf(file_name_Amm, "cell_growth_Amm.dat");
311
      sprintf(file_name_CO2, "cell_growth_CO2.dat");
312
      if(new = 1)
313
        // Cell concentration viable
314
        fp = fopen(file_name_x_v, "w+");
315
        fprintf(fp, "\%f \ (n", time, X_v);
316
        fclose(fp);
317
        // Cell concentration dead
318
        fp = fopen(file_name_x_d, "w+");
319
        fprintf(fp, "\%f_\%f n", time, X_d);
320
        fclose(fp);
321
        // Cell concentration total
322
```

```
fp = fopen(file_name_x_t, "w+");
323
        fprintf(fp, "\%f_\%f n", time, X_t);
324
        fclose(fp);
325
        // Glc
326
        fp = fopen(file_name_Glc, "w+");
327
        fprintf(fp, "\%f_\%f n", time, Glc);
328
        fclose(fp);
329
        // Gln
330
        fp = fopen(file_name_Gln, "w+");
331
        fprintf(fp, "\%f \ (n", time, Gln);
332
333
        fclose(fp);
334
        // 02
        fp = fopen(file_name_O2, "w+");
335
        fprintf(fp, "\%f \ (n", time, O2);
336
        fclose(fp);
337
        // Lac
338
        fp = fopen(file_name_Lac, "w+");
339
        fprintf(fp, "\%f_\%f n", time, Lac);
340
        fclose(fp);
341
        // Amm
342
        fp = fopen(file_name_Amm, "w+");
343
        fprintf(fp, "\%f_\%f n", time, Amm);
344
        fclose(fp);
345
        // CO2
346
        fp = fopen(file_name_CO2, "w+");
347
        fprintf(fp, "\%f_\%f n", time, CO2);
348
        fclose(fp);
349
      }
350
351
      else {
        // Cell concentration viable
352
        fp = fopen(file_name_x_v, "a");
353
        fprintf(fp, "\%f \ Mr , time, X_v);
354
        fclose(fp);
355
        // Cell concentration dead
356
        fp = fopen(file_name_x_d, "a");
357
        fprintf(fp, "\%f_\%f n", time, X_d);
358
        fclose(fp);
359
        // Cell concentration total
360
        fp = fopen(file_name_x_t, "a");
361
        fprintf(fp, "\%f_\%f n", time, X_t);
362
        fclose(fp);
363
        // Glc
364
```

```
fp = fopen(file_name_Glc, "a");
365
         fprintf(fp, "\%f \ (n", time, Glc);
366
         fclose(fp);
367
         // Gln
368
         fp = fopen(file_name_Gln, "a");
369
         fprintf(fp, "\%f_\%f n", time, Gln);
370
         fclose(fp);
371
         // O2
372
         fp = fopen(file_name_O2, "a");
373
         fprintf(fp, "\%f \ \%f \ n", time, O2);
374
375
         fclose(fp);
         // Lac
376
         fp = fopen(file_name_Lac, "a");
377
         fprintf(fp, "\%f_\%f n", time, Lac);
378
         fclose(fp);
379
         // Amm
380
         fp = fopen(file_name_Amm, "a");
381
         fprintf(fp, "\%f_\%f n", time, Amm);
382
         fclose(fp);
383
         // CO2
384
         fp = fopen(file_name_CO2, "a");
385
         fprintf(fp, "\%f \ \%f \ n", time, CO2);
386
387
         fclose(fp);
         }
388
389
    }
```

CODE 6.23.

```
1 clear all;
2
  close all;
3
4 %loading data
5 load cell_growth_X_v.dat
6 X_v_time=cell_growth_X_v(:,1);
7 X_v_val=cell_growth_X_v(:,2);
8 load cell_growth_X_d.dat
9 X_d_time=cell_growth_X_d(:,1);
10 X_d_val=cell_growth_X_d(:,2);
  load cell_growth_X_t.dat
11
  X_t_time=cell_growth_X_t(:,1);
12
  X_t_val=cell_growth_X_t(:,2);
13
14 load cell_growth_Glc.dat
```

```
Glc_time=cell_growth_Glc(:,1);
15
   Glc_val=cell_growth_Glc(:,2);
16
  load cell_growth_Gln.dat
17
  Gln_time=cell_growth_Gln(:,1);
18
  Gln_val=cell_growth_Gln(:,2);
19
  load cell_growth_O2.dat
20
  O2\_time=cell\_growth\_O2(:,1);
21
  O2_val=cell_growth_O2(:,2);
22
  load cell_growth_Lac.dat
23
  Lac_time=cell_growth_Lac(:,1);
24
25
  Lac_val=cell_growth_Lac(:,2);
  load cell_growth_Amm.dat
26
  Amm_time=cell_growth_Amm(:,1);
27
  Amm_val=cell_growth_Amm(:,2);
28
  load cell_growth_CO2.dat
29
  CO2\_time=cell\_growth\_CO2(:,1);
30
   CO2_val=cell_growth_CO2(:,2);
31
32
   load zerodcode.dat
   res\_time = (1/24).*zerodcode(:,1);
33
   res_glc = (180.15588/1000/15) \cdot serodcode(:,5);
34
   res_gln = (146.15/1000/15) \cdot serodcode(:,7);
35
   res_lac = (90.08/1000/15) \cdot serodcode(:,9);
36
   res_amm = (17.031/1000/15) \cdot serodcode(:, 11);
37
   res_cell = (1e9) \cdot * zerodcode(:, 15);
38
   res_cell_dead = (1e9) \cdot * zerodcode(:, 17);
39
   res_cell_tot = (1e9) \cdot * zerodcode(:,3);
40
41
   cellplot=figure(1);
42
   plot (res_time, res_cell_tot, 'bd', res_time, res_cell, 'kd', ...
43
   res_time, res_cell_dead, 'rd', X_t_time, X_t_val, 'b-', ...
44
   X_v_time, X_v_val, 'k-', X_d_time, X_d_val, 'r-');
45
   legend ("total Cells Experiment", "viable Cells Experiment", ...
46
   "dead Cells Experiment"," total Cells Simulation",...
47
   "viable Cells Simulation"," dead Cells Simulation",...
48
   "location","east");
49
   title ("Number of Cells", "FontSize", 24);
50
   xlabel("time in days","FontSize",24);
51
   ylabel(" cells per liter"," FontSize",24);
52
   print(cellplot," fig_cell_plot.eps", '-depsc');
53
54
   subsprodplot=figure(2);
55
   subplot (2,3,1)
56
```

```
plot (Glc_time, Glc_val, 'b-', res_time, res_glc, 'k.');
57
  title("Amount of Glucose","FontSize",20);
58
  xlabel("time in days","FontSize",16);
59
  ylabel ("glc in g/L", "FontSize", 16);
60
  subplot (2,3,2)
61
  plot (Gln_time, Gln_val, 'b-', res_time, res_gln, 'k.');
62
  title ("Amount of Glutamine", "FontSize", 20);
63
  xlabel("time in days","FontSize",16);
64
  ylabel("gln in g/L","FontSize",16);
65
  subplot(2,3,3)
66
67
  plot (O2_time, O2_val, 'b-');
  title ("Amount of O2"," FontSize", 20);
68
   xlabel("time in days","FontSize",16);
69
  ylabel ("o2 in g/L", "FontSize", 16);
70
  subplot (2,3,4)
71
  plot(Lac_time, Lac_val, 'b-', res_time, res_lac, 'k.');
72
  title ("Amount of Lactate", "FontSize", 20);
73
   xlabel("time in days","FontSize",16);
74
  ylabel ("lac in g/L"," FontSize", 16);
75
  subplot (2,3,5)
76
  plot (Amm_time, Amm_val, 'b-', res_time, res_amm, 'k.');
77
  title ("Amount of Ammonia", "FontSize", 20);
78
   xlabel("time in days","FontSize",16);
79
  ylabel ("amm in g/L"," FontSize", 16);
80
   subplot (2,3,6)
81
  plot (CO2_time, CO2_val, 'b-');
82
  title ("Amount of CO2", "FontSize", 20);
83
  xlabel("time in days","FontSize",16);
84
   ylabel ("co2 in g/L", "FontSize", 16);
85
```

86 print(subsprodplot,"fig_substrate_product_plot.eps", '-depsc');

Literaturverzeichnis

[BMSR ⁺ 11]	Bermudez, Alfredo, Rafael Munoz-Sola, Carlos Reales, Rodolfo Rodriguez, and Pilar Salgada: A proof of the reynolds transport theorem in the space $W^{1,1}(Q)$. extension to cylindrical coordinates. Preprint, 2011.
[Car10]	Carcano, Susanna: A model for cell growth in batch bioreactors. Master's thesis, Politecnico di Milano, 2010.
[Eng02]	Engel, Martin: Numerische Simulation von Strömungen in zeitabhängigen Ge- bieten und Anwendung auf Fluid-Struktur-Wechselwirkungsprobleme. Diplom- arbeit, Friedrich-Wilhelms-Universität Bonn, 2002.
[Hän08]	Hänel, D.: <i>Mathematische Strömungslehre</i> . Technischer Bericht, Aerodynamisches Institut, RWTH Aachen, 2008. Skript zur gleichnamigen Vorlesung.
[Hei11]	Heinzle, Elmar: Gas-flüssig Stoffübergang in Schüttelkolben - Bestimmung des KLa-Wertes - Praktikum Technische Chemie. Diplomarbeit, Universität des Saarlandes, 2011.
[Jaj12]	Jajcevic, Dalibor: CFD-Simulation of High Performance 2-Stroke Engines Applying Multidimensional Coupling Methodologies. PhD thesis, TU Graz, 2012.
[Kal08]	Kaltenbäck, M.: Analysis 2, für Technische Mathematik. Technischer Bericht, Institut für Analysis und Scientific Computing, TU Wien, 2008. Skript zur gleichnamigen Vorlesung.
[KL08]	Kleiser L., Rösgen, T.: <i>Fluiddynamik.</i> Technischer Bericht, ETH Zürich, 2008. Skript zur gleichnamigen Vorlesung.
[Kle12]	Kley, Wilhelm: <i>Theoretische Astrophysik.</i> Technischer Bericht, Universität Tübingen, 2012. Skript zur gleichnamigen Vorlesung.
[ÖT06]	Özcan-Taskin, Gül: <i>Effect of scale on the draw down of floating solids</i> . Chemical Engineering Science, 61:2871–2879, 2006.
[San09]	Sandadi, Sandeepa: Mass transfer, mixing, Chinese hamster ovary cell growth and antibody production characterization using Rushton turbine and marine im- pellers. PhD thesis, Rutgers, The State University of New Jersey, 2009.

[SPBR11] Sandadi, Sandeepa, Henrik Pedersen, John S. Bowers, and Dennis Rendeiro: A comprehensive comparison of mixing, mass transfer, chinese hamster ovary cell growth and antibody production using rushton turbine and marine impellers. Bioprocess Biosyst Eng, 34:819–832, 2011.