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Abstract

Mechatronics is an interdisciplinary field which combines software, electronics, mechanic and
control theory. It is applied in different areas like industrial assembly, robotics and consumer
products.

Each of the interdisciplinary fields has a high complexity which requires engineers with knowl-
edge of specific area of expertise. Additionally the development of interfaces between the dif-
ferent fields requires a high communication effort of the engineers which results in even higher
costs of time and money. In the product development cycle prototypes are used for solving
technical problems and usability issues in an early development phase. Technical problems and
usability issues which are not discovered and solved in this prototyping stage are causing higher
costs in the later stages.

This work evaluates development environments which can be used for designing mechatronic
applications in a rapid prototyping approach. Thereby the focus is set on virtual development
environments which simulate kinematic behavior. The environments differ in their focus on cer-
tain aspects of mechatronics and in their benefit of doing rapid prototyping.
In summary, the development environments are either too complex for rapid prototyping of
mechatronics, or are lacking important features.

Therefore a rapid prototyping development environment for simulating and controlling mecha-
tronics is designed. In comparison to the presented environments, it allows to rapidly design
mechatronic applications without the need of programming and electronic skills. It implements
a simulation environment programmed with the Unity game engine for simulating fischertechnik
components. Additionaly, the mechatronic behavior of the virtual prototype can be transmitted
to the physical prototype via an arduino board.

Keywords: mechatronics; virtual simulation in 3D; rapid prototyping; kinematic design; fis-
chertechnik, arduino, Unity game engine.

iii



Kurzfassung

Mechatronik ist ein interdisziplinäres Forschungs- und Anwendungsgebiet aus den Feldern Soft-
ware, Elektronik, Mechanik und Regelungstechnik. Sie findet heutzutage Anwendung in unter-
schiedlichen Bereichen wie der industriellen Fertigung, Robotik und Konsumentenprodukte.

Jedes der interdisziplinären Felder weist eine hohe Komplexität auf und erfordert Spezialis-
ten aus den entsprechenden Gebieten. Durch die Notwendigkeit der Schnittstellenentwicklung
zwischen den Feldern entsteht zwischen den Fachspezialisten ein erhöhter Kommunikations-
aufwand. Diese Faktoren führen zu hohen Entwicklungs- und Zeitkosten bei der Entwicklung
mechatronischer Systeme. Im Produktenwicklungszyklus ist die Prototypenentwicklung die ers-
te technische Entwicklungsphase in denen potentielle Probleme gelöst, und Benutzbarkeit va-
lidiert werden. Technische Probleme welche in dieser Phase nicht erkannt werden verursachen
höhere Kosten in den nachgelagerten Entwicklungsphasen.

In dieser Arbeit werden Entwicklungsumgebungen für mechatronische Prototypen evaluiert.
Der Fokus liegt dabei auf virtuellen Entwicklungsumgebungen welche kinematisches Verhal-
ten simulieren. Die Entwicklungsumgebungen unterscheiden sich in ihrem Fokus auf bestimmte
Aspekte der Mechatronik, Komplexität und in ihrer Möglichkeit Rapid Prototyping zu betrei-
ben. Eine Evaluierung dieser Umgebungen führt zum Ergebnis dass die virtuellen Simulations-
umgebungen entweder eine zu hohe Anwendungskomplexität besitzen, oder zu wenig Features
aufweisen.

Daher wird eine Entwicklungsumgebung entworfen, welche den Aufbau und eine virtuelle Si-
mulation von mechatronischen Anwendungen ermöglicht. Verglichen mit den evaluierten Ent-
wicklungsumgebungen erlaubt es diese, mechatronische Anwendungen mittels Rapid Prototy-
ping zu entwickeln ohne dass dabei Programmier oder Elektronikkentnisse benötigt werden.
Die Implementation erfolgt mit der Unity game engine, Arduino und Fischertechnik. Der virtu-
elle Prototyp kann zusätzlich an den realen Prototypen gekoppelt werden. Somit lässt sich das
kinematische Verhalten aus der virtuellen Simulation heraus direkt auf den physikalischen Pro-
totypen übertragen.

Schlagworte: Mechatronik; Virtuelle Simulation in 3D; Rapid Prototyping; Kinematisches De-
sign; Arduino; Unity game engine.
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CHAPTER 1
Introduction

1.1 Motivation

Figure 1.1: Spot welding on an assembly line with KUKA robots
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Mechatronic applications are widely used in the manufacturing industries. Since the industrial
revolution the degree of human work in the manufacturing process decreases while the degree
of machine work increases. The product life cycles are getting shorter and the market asks for
increasingly faster innovation cycles. In mass production these products are often assembled by
mechatronic robots which are part of a mechatronic assembly line. Further, the product itself
might also be a mechatronic application (figure 1.1).

Advancing technology, new products ideas and changing customer demands results in new
products and therefore in continuous changes of the assembly process. To shorten the entire
product development cycle, solutions to increasing the speed of all product development and
product manufacturing stages are requested. When developing new products or manufacturing
processes, specific problems and challenges have to be solved early. The earlier problems are
discovered and solved the lower are the costs to handle them in the later developing stages.
Therefore prototypes are used. Since manufacturing lines are mechatronic system and the prod-
ucts can be mechatronic applications as well, appropriate prototypes are increasing the speed of
the development- and manufacturing process.

“Mechatronics is an interdisciplinary field of engineering that integrates design techniques
in precision mechanical engineering, control theory, computer science, and electronics into the
overall design process“. [58]
Each of these fields itself is complex and requires highly skilled professionals. Developing new
mechatronic applications is cost and time intensive. When these fields are combined for de-
veloping mechatronic applications, the complexity increases significantly. The impact of errors
is increased because one dysfunctional field blocks all the others. Besides the accumulating
complexity of technology, due to the requirement of technical interfaces between the fields, the
communication expenditure between people also increases.

Simulation for Mechatronic Design

“The mechatronic system can exist in reality or as the complex system of a simulation model“.
[7]. Banks defines Simulation as: “... the imitation of the operation of a real-world process or
system over time. Simulation involves the generation of an artificial history of the system and
the observation of that artificial system that is represented.“ [4]

2



Figure 1.2: Simulation model for mechatronics which visualizes simulated sensors, amplifiers,
mechanics and motors (actuators). [32]

In figure 1.2 the sensor, amplifier, mechanics and motor are representing this imitation of the
real world. Ideally the control system can be used for simulated, as well as for physical sensors
and motors. In a simulation a visualization is required which can range from simple text logs to
real time graphic representations in 3D.

Simulated Mechatronic Systems

Medics, pilots or employees of automated factories are examples of people who are using mecha-
tronic applications in their job. Errors executed on these mechatronic applications can cause ma-
jor risk for human life. Therefore virtual simulations for training and education of such mecha-
tronic systems are developed. Figure 1.3 depicts the virtual cockpit view of an air plane. The
purpose of the simulation in figure 1.4 is to train for advanced navigation in surgeries. Figure
1.5 depicts a controllable underwater glider in a virtual simulation.

Figure 1.3: flight simula-
tor [52] Figure 1.4: medical

surgery [2]

Figure 1.5: underwater
glider [59]
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Rapid Prototyping

A Prototype, as a result of prototyping, is defined as “Prototype: an early or original form; ...
(in engineering) a full-scale model of a structure or piece of equipment, used in evaluating form,
design, fit, and performance.“ [46]. The Oxford Advanced Learner’s Dictionary defines a Pro-
totype as “the first design of something from which other forms are copied or developed“. [29]

Figure 1.6: Example prototype of a Segway [28]

In contrast Virtual Prototyping does not produce a physical object. Wang defines a Virtual
Prototype as: “... a computer simulation of a physical product that can be presented, analyzed,
and tested from concerned product life-cycle aspects such as design/engineering, manufacturing,
service, and recycling as on a real physical model. The construction and testing of a virtual pro-
totype is called virtual prototyping (VP).“ [55] An example of virtual prototyping for industries
is figured in 1.7.
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Figure 1.7: In this example the required movement of industrial robot arms is discovered by
rapid prototyping in a virtual environment. On the left: Automated Car Painting Scene where
the robot arm follows a path over the car body while avoiding obstacles. On the right: Assembly
Line Planning Scene where the robot arm avoids the moving pipes to reach a moving part passing
on the conveyer belt. [19]

Costs in the Development Process

Figure 1.8 depicts the stages of product development. The blue line indicates that changing re-
quirements or occurring obstacles in later stages requires an additional iteration of the previous
stages. Therefore, the later product changes are demanded, the higher are the production costs
and time of development. The first three steps (organization & planning, design space explo-
ration, roadmap) are defining the organizational aspects, the development environment and the
product specifications. At stage four the technical development starts by creating prototypes for
solving technical problems and for doing first user tests. In the fifth stage the outcomes of the
prototyping stage are taken for generating a detailed and full production plan. The last stage
defines a validation of the product and the process. The product development is the most cost
intensive stage. Therefore problematic issues which have not been solved in the prototyping
stage are generating enormous costs in the production stage.
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Figure 1.8: The product development cycle. [24]

1.2 Research Question

Concluding, costs can be saved by recognizing and solving problems in the beginning of the
product development cycle. Prototyping is the first step where features are brought into a func-
tional version of the product. Further, prototyping is also used in development and setup of
manufacturing applications. Besides physical prototyping, virtual prototyping is a step further
into saving costs and is also used for training and education. This leads to follow reasearch
question:

In which ways can rapid prototyping and simulation be applied for mechatronic design?

1.3 Aim of the Work

On the one hand developing mechatronic applications is costs intensive due to its interdisci-
plinarity. And on the other hand solving problems in the prototyping stage saves a lot of costs
for the detail planning and the production stage of a product. The costs for prototyping can be
decreased further by having an environment for developing virtual prototypes. “Virtual prototyp-
ing is described as a prototyping process, in which a product or a product concept, its behavior
and usage situation is simulated as realistically as possible by using computer models and virtual
reality techniques“. [38]

Therefore the goal for this work is to come up with different ways of prototyping mecha-
tronic applications. The focus lies on environments which support the development of virtual
prototypes. To meet also the requirements in the sector of education and training, the usability
and complexity of these environments have to be suitable for users which are not experts in the
field of mechatronics.

6



1.4 Methodological Approach and Structure of the Work

The Introduction 1 gives a motivation for the requirement of having a design environment for
mechatronic prototypes. The required features for a development environment for mechatronic
applications are defined in the section Evaluation Criteria 2.2.

Literature and work in the field of mechatronics, rapid prototyping, simulation, robotics or phys-
ical interface that covers the required features is collected and summarized in the chapter Survey
of Prototyping Approaches 2.

The summarized literature and work is evaluated based on the evaluation criteria and the out-
come of this evaluation leads to suggestions for environments that feature rapid prototyping for
mechatronic applications (section Comparison and Summary of Existing Approaches 2.4).

A new development environment for developing mechatronic prototypes is presented and de-
scribed in chapter Concept for a Mechatronic Design Environment 3). This concept for a new
mechatronic design environment id then be implemented (section Design and Implementation
3.1). To evaluate the implemented concept a 2D plotter is designed as a virtual and physical
prototype and evaluated in chapter Evaluation and Critical Reflection 4.

7



CHAPTER 2
Survey of Prototyping Approaches

This chapter gives an overview and evaluation of the current state-of-the-art in the field of rapid
prototyping for mechatronic design. The section State of the Art (2.1) describes work of science
and industry which covers mechatronics in combination with rapid prototyping or virtual sim-
ulation. From the section State of the Art the Evaluation Critearia (2.2) for rapid prototyping
environments for mechatronic applications are concluded. These evaluation criteria cover the
integral components of rapid prototyping systems for mechatronic applications. In section 2.3
several applications that already feature rapid prototyping are discussed. Section 2.4 presents a
detailed evaluation of available applications where the criteria were applied onto the prototyping
environments.

2.1 State of the Art

Focus on the Prototyping Process

“Reflective practice, the framing and evaluation of a design challenge by working it through,
rather than just thinking it through ...“ is the key aspect in prototyping, concluded by Hart-
mann [26]. Hartmann describes iterations as a central concern in a design process which comes
up with prototypes in every iteration. The environment d.tools enables early stage prototyping
and an evaluation of the prototyping process of physical interfaces. [26]
Digital mock-ups (DMU), i.e. “...a realistic computer simulation of a product with the capabil-
ity of all required functionalities...“ [12], are used in the car manufacturing in combination with
virtual reality and virtual prototyping [12] [18].
In [22] a cooperate assembly environment for designing virtual mechatronic prototypes is pre-
sented. It includes a 3D virtual reality environment for evaluation and a 2D touchscreen work-
bench where the mechatronic control (with Matlab/Simulink) is defined.
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Focus on Simulation and Control

In the manufacturing industries 3D software environments are used for prototyping and sim-
ulation (e.g. computer aided robotic (CAR) [11]) for industrial robot cells). Such software
environments are used to prepare workflows for robot workcells on the software side. A general
solution for automatic code generation for physical robot workcells resulting from the simu-
lations is currently not available. Engineers have to implement the workflow of the simulated
control again on the physical side. [44]. Moore presents an integration of the simulation envi-
ronment and control system environment where simulated control can be transferred seamlessly
to the control system. The control logic is defined by a programming environment [31] within
the simulation environment. [44]
Jönsson et.al describes, implements and validates the concept of a real time simulation of com-
puterized numerical control (CNC) machine tools. It encompasses a control system, simulation
models of the kinematics and a 3D visualization. For validation a simulation of a water jet cut-
ting machine was chosen. The 3D simulation is based on the computer aided design (CAD)
document of the manufacturer. A validation of the simulated cutting machine compared to the
physical cutting machine indicates deviations up to 0.5 mm. [32]

Focus on Interfaces

Greenberg [23] states that developing simple interfaces between physical devices and the pro-
gramming language on the PC is still an obstacle. Using simple hardware devices (e.g. sen-
sors, switches, motors) requires basic knowledge in electronics. In comparison devices for the
commercial mass market are working with plug & play but offer no application-programming
interface (API). Hacking and reverse engineering are methods to achieve programming access to
these hardware devices (e.g. Microsoft’s Actimates hacked [35]; Lego Mindstorms RCX docu-
mentation [40]). Greenberg also states that on the other hand some devices (like programmable
logic controllers) offer an API but the required programming skill can be very specific. Develop-
ers may also not have the required devices on hand. Due to shipping delays, costs or limited units
developers may be able to design their applications only within a software environment. [23]

Focus on Education

A low-cost and low level mechatronics prototyping environment for education is presened in
[25]. It aims laboratory courses where programming and electronics are combined for building
mechatronic prototypes.
Another prototyping environment for student courses which is build upon existing modules
(Matlab/Simulink, Arduino, iRobotCreate) is described in [20]. Xie et. al. describes a vir-
tual 3D design environment for Fischertechnik in [61]. A simulation software (Pro/E software)
is used for defining the motion behavior. Its purpose is to learn students the process of mechan-
ical design.

9



2.2 Evaluation Criteria

In section State of the Art (2.1) the development of prototypes is achieved with frameworks
or environments which encompasses specific methods and components. These methods and
components can be reformulated to evaluation criteria for prototyping environments. The main
criteria are: prototyping process, prototyping of mechatronic systems, hardware components and
software environment.
The prototyping processes may be enhanced by various framework features as: the option to
simulate the kinematic behavior in a virtual simulation environment (virtual simulation); the
option to transmit the simulated kinematic behavior to the physical prototype (transmission of
kinematic behavior). Further aspects are interfaces of the system architecture, and usability,
price, availability, popularity and user support of a prototyping environment.

Prototyping Process

This core criterion checks if the evaluated prototyping environments can fulfill the prototyping
process defined by Warfel [56].

Figure 2.1 depicts the iterative and evolutionary prototyping process. Sketching is the pro-
cess to bring the ideas on media like paper, software simulation or whiteboards. A sketch is then
evaluated with critique and possible approve from one or more persons. Prototyping is the part
where an approved sketch is built as a physical model. This model is then being validated.

Figure 2.1: Prototyping process [56]

An exemplified process run is: “We sketch, present and critique, prototype, present and
critique, sketch, present and critique, prototype, present and critique, prototype, and test. Then
we do it all again.“ [56]

10



Prototyping of Mechatronic Systems

The prototypes in this thesis result from rapid prototyping environments, which are not static. So
this criterion states that the prototyping environment will be evaluated on the possibility to build
mechatronic prototypes. The environments must therefore feature an intuitive way to arbitrarily
combine pieces that are static and pieces that can execute or support motion (e.g. motor, hinge).

Hardware Components

The criteria for hardware components evaluate the features and complexity of the electronic
environment. Actuators and sensors are connected to an electronic control unit (e.g. circuit board
with processor, A/D converter, pins). This control unit executes reading and writing operations
on actuators and sensors. For this criterion the following factors come into play: complexity
and variation of electronic interfaces (e.g. I2C, A/D converter, wireless interface), role and
complexity of processors (amount of processors, programming language, is the processor a data
exchanger or does it fully control the prototype), extensions to hardware (additional electronics
like amplifier, capacitor or transistor) and portability (e.g. the complexity of a new hardware
setup with PC, circuit board with processor, power supply).

Software Environment

Actuators and sensors are controlled by software either running on a PC, a microcontroller or on
a PC together with a microcontroller. The software environment as a criteria include the factors:
complexity as a feature (i.e. in which amount, variation and detail actuators and sensors can be
controlled), complexity in usability (i.e. programmable control vs. GUI control) and portability
(the complexity of software setup on a new PC and a microcontroller)

Interfaces of the System Architecture

The software engineering institute (SEI) defines system architecture as: “... describing the el-
ements and interactions of a complete system including its hardware elements and its software
elements“. [53] Interactions within hardware and software are done via interfaces. Therefore
the interfaces of the system architecture are evaluated in terms of extensibility (is it possible to
extend parts of the system with less effort), simplicity (the effort of attaching hardware or soft-
ware parts to the provided interfaces) and robustness (e.g. can hardware be destroyed by wrong
connections; does the software behave comprehensible and expected on use of interfaces).

Visual Authoring

One aim of the Rapid Prototyping process is to simulate the prototype on the computer. This re-
quires a software which features construction of 3D prototypes with kinematic behavior, physics
simulation and the possibility to control the kinematic behavior. Furthermore it is evaluated if
the software on the PC features 3D modeling and 3D control of the prototype. 2D control (e.g.
statecharts) and a feedback system which responses events to the user are also evaluated.
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Transmission of mechatronic behavior

Mechatronic behavior for sensors and actuators can be programmed, designed in a visual tool
(2D/3D) or controlled in real-time. The behavior is then stored in a digital format and has
to be transmitted to the physical prototype. This criteria evaluates the complexity and effort
for users to transmit simulation behavior onto prototyping environments. An example for high
complexity and high effort is a prototyping system where written code has to be compiled first
and then loaded on a microcontroller. A low complexity system executes mechatronic behavior
in real-time on the physical prototype.

Usability

Setting up a virtual prototype with a 3D software requires two features: first, a way to build
the virtual prototype and second, a way to give kinematic instructions and behavior for sensors
to the virtual prototype. The evaluation of this criteria involves understandability (does the
user understand the use of the system), operating options (how intuitive is the realization of the
prototyping process ) and attractiveness (aesthetic appearance of the software’s components like
buttons or layout; look and feel of the hardware)

Economic Criteria

The economic criteria comprises price (of software and hardware), availability (e.g. delivery
times of hardware, download sources of software), popularity (how well known the software or
hardware is) and support (does software or hardware provide future bug-fixes or versions).

2.3 Prototyping Environments

The environments, published papers, products and tools presented in this section support, de-
scribe, or fully integrate rapid prototyping for mechatronic simulations. For each prototyping
environment, evaluation criteria factors described in section 2.2 are taken into account and as-
sessed in the section comparison2.4.

Fischertechnik

Published by the company Fischertechnik GmbH1, the product fischertechnik is a construction
set with programmable mechatronics. The span of application includes playing for kids, educa-
tion in school, courses in university, or academic and industrial research.

Building a Model

Most of the single components to build fischertechnik applications are called blocks, which
are made of polymers [49]. Few components (axles) are made of aluminum. Axles come in
different lengths and are used for fixation or as rails. For connecting components together,

1www.fischertechnik.de, 27.11.2013
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the blocks, girders and mechatronic components (motors, sensors) can have channels, pegs and
holes. Figure 2.2 shows the connection principles for components.

Figure 2.2: Connection rules for fischertechnik (green: connectable, red: not connectable)

Transferring mechatronic Behavior to the Model

A built model, as in figure 2.3, is controlled by the “ROBO TX Controller“. This controller has a
programmable processor, inputs and outputs. Sensors and actuators also provide the connection
principles from figure 2.2. Reading and writing operations are transmitted over cables, which
are connecting the “ROBO TX Controller“ with the sensors and actuators. The programming
environment “ROBO Pro Software“ features visual programming. An example model with the
corresponding visual program is depicted in figure 2.3.
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Figure 2.3: Model of a hand dryer: The visual program starts by switching on the photo tran-
sistor M2. To adapt the photo transistor to the light the program waits for one second. Then
it enters a loop and waits till something is triggering the photo sensor in front of the fan. On
trigger, the fan blows for 5 seconds. After this the program enters the loop for reading data from
the photo transistor again.

Fischertechnik Designer

The commercial software fischertechnik designer2 is a virtual building and simulation environ-
ment for fischertechnik parts. Models can be build with more than 500 different parts, which are
kept up to date by regular updates. The spectrum of parts include static parts, motors, sensors
and pneumatic hoses.

Building a Model

Placing a part with fischertechnik designer is done by moving a part from the selection menu
into the 3D window by Drag & Drop (see figure 2.4). The position of the new part is indicated
only by an arrow. While dragging, the part is invisible. After releasing the mouse button, the
part is connected to the other part. In case that the part was not placed correctly, as described in
the connection rules (figure 2.2), a window opens which allows translation and rotation of the
placed part (figure 2.5).

2www.3dprofi.de, 27.11.2013
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Figure 2.4: Attaching two parts together by
Drag & Drop.

Figure 2.5: Changing position and rotation of
the black part.

Physical Behavior of a Model

The environment of fischertechnik designer features: different rotation bindings (gear rotation,
rotation/translation binding), motor control, firm binding for parts placed on moving parts and
collision detection. The physical consequences of these kinematic parts are not detected auto-
matically, and therefore have to be set by the user. By the example of a gear wheel on a toothed
shaft, figure 2.6 depicts how to set kinematic behavior.

Figure 2.6: Setting physical behavior: First it has to be selected that these two parts join a
rotation/translation relation. Then the driver and driven part are assigned. Finally the translation
speed of the toothed shaft has to be set in relation to the rotation speed of the gear wheel.

When the physical behavior of the parts is set, the user can simulate a control flow with the
“Logic Manager“. Similar to to “Robo Pro Software“ from the fischertechnik set, the “Logic
Manager“ is a visual programming environment which features motor control, conditions and
loops. The control of mechatronics stays in the virtual simulation, therefore no interface to
actuators and sensors of a physical model is provided.
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Creo Parametric Software simulating Motion

The Creo Parametric3 is a 3D computer aided design (CAD) modeling software. It features a 3D
environment for modeling three-dimensional parts for mechanical engineering. Static models
can be enriched with motion behavior which requires deeper knowledge of the software.

Xie described in [61] how to use Pro ENGINEER (a former version of Creo Parametric)
for teaching the basics of mechanics. The example was to model virtual representations of
fischertechnik components to simulate a gear wheel and a gear rack. The task for the student
was to transfer rotational motion (gear wheel) to linear motion (gear rack). The paper does
not tell about the complexity to define kinematic behavior. A video4 explains how to transfer
rotational motion to linear motion. The user has to set and adjust parameters which are required
for executing the motion behavior (e.g. rotation center, rotation axis, object boundaries, linear
motion for the gear rack...).

Figure 2.7: The simulating model [61].

Figure 2.8: The verification
model [61].

The verification of the virtual model is done by building and simulating the model with real
fischertchnik pieces (figure 2.7 and 2.8).

Arduino

“Arduino is an open-source prototyping platform based on flexible, easy-to-use hardware and
software.“5 The published derivates feature a programmable microcontroller, digital input/output

3www.ptc.com, 27.11.2013
4www.youtube.com/watch?v=7leLhYQj3qo, 2013.11.27
5http://arduino.cc, 27.11.2013
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pins and analog input/output pins. The programming language for the microcontroller is “Ar-
duino programming language“, based on C/C++.

Figure 2.9: Ardunio Uno circuit board with microcontroller (Atmel) and peripheral connections.

Developing with Arduino

Developing mechatronic applications with Arduino requires basic skills in designing hardware-
electronics and programming.
Figure 2.10 depicts how to connect a switch for reading digital signals. More complex in com-
parison is the layout in figure 2.11: The motor requires an external power source, and therefore
also other electronics (transistor, diode and resistor). To change the behavior of the connected
hardware the code for the microcontroller has to be reprogrammed. Another way is to develop a
code and a hardware setup which is well enough implemented to allow changes of the behavior
during run-time (e.g. by remote control [42]). But such a design could not provide the same
features as reprogramming.
Writing code with the Arduino programming language can be avoided by using visual program-
ming languages [14] [37].
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Figure 2.10: A switch as input of the Arduino
board. [42]

Figure 2.11: High power motor with external
source, controlled by Arduino. [5]

Phidgets

“PhidgetsTM, or physical widgets, are building blocks that assist in constructing physical user
interfaces. The philosophy behind phidgets is: ... just as widgets make GUIs easy to develop,
so could phidgets make the new generation of physical user interfaces easy to develop.“ [13]
In this context, a physical user interface is a hardware device (actuator, sensor) that fulfills two
goals: First, users should be able to design and control these hardware devices without working
on low-level electronics. Second, programmers should be able to extend the physical interfaces.

Plug & Play Architecture

Greenberg summed up the architecture of Phidgets: “... a phidget comprises a device, a software
architecture for communication and connection management, a well-defined software API for
device programming, a simulation capability, and an optional onscreen component for interact-
ing with the device.“ [23]
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Figure 2.12: Phidget Architecture [23]

The phidget architecture consists of the packages physical device, wire protocol and com-
puter software.

Physical Device The end user who is in the role of a physical designer wants to use the phys-
ical devices by Plug & Play, without concerning electronical design. In Phidgets the primitive
devices like motors, sensors or switches are extended by a microcontroller-based circuit board
and a communication layer. The microcontroller-based circuit board translates the communica-
tion between primitive devices and the wire protocol.

Wire Protocol The wire protocol is a standard USB protocol which is implemented on the
communication layer of the microcontroller and the Phidget Manager. A plugged-in phidget
(primitive device + microcontroller) sends its name, a number and the state of the device over
USB to the host computer.

Computer Software On the computer software side the Phidget Manager provides an API to
the end programmer. The end programmer can look up from this API the phidgets name and
index number. When a physical device is plugged or unplugged, events create a reference for the
programmer to identify the device. Reading and writing operations on phidgets are instructed
on the Phidget-specific COM6 object. Each device corresponds to a specific COM object. The
Phidget Manager handles the communication between a COM object and its physical device.

6www.microsoft.com/com/default.mspx, 27.11.2013
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Figure 2.13: General COM interface defini-
tion (has to be implemented for every physical
device).

Figure 2.14: Specific COM interface for a
motor (implementation is optional).

At last, the ActiveX control7 visualizes the phidget and its status on screen (Example in
Figure 2.15). If a physical device is not present, a COM object can be generated for simulation.
This simulated COM object also serves for visualizing via ActiveX.

Physical device and Simulation

Figure 2.15: Servodrives, as physical device (left) and visual representation (right). [23]

By the example of two servo drives, figure 2.15 depicts the physical device on the left, and the
visualized ActiveX control on the right. A rotation on a physical servo drive lets the connected
microcontroller instantiate and send a COM object, which is then received by the Phidget Man-
ager and further processed to a visual representation in the ActiveX control.
If a physical device is unplugged during operation, the Phidgets environment can replace imme-
diately the “unplugged“ COM object by a simulated one.

d.tools

d.tools is a rapid prototyping toolkit for user interfaces with a focus on the design part. The
intention is to quickly produce many prototypes in an iterative-design-centered approach. Barry
observes: “the companies that want to see the most models in the least time are the most design-
sensitive; the companies that want that one perfect model are the least design sensitive.“ [51]

7www.microsoft.com/security/resources/activex-whatis.aspx, 27.11.2013
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Figure 2.16: d.tools, visual and physical representation of a prototype. (1) device designer; (2)
statechart editor; (3) source-code editor; (4) image browser; (5) hardware interface; (6) hardware
inputs; (7). support for small LCD screens. [26]

Figure 2.16 illustrates the authoring environment of d.tools and hardware devices. With the
visual, statechart-based prototyping model, the authors intent to provide a low threshold for early
stage prototyping. The source-code editor augments the features of the statechart editor with
textual programming. For software developers, the control of the hardware (physical interfaces)
via the source-code editor is eased by providing library components. These library components
shield away the low-level electronics from the user. Furthermore the physical user interfaces in
d.tools provide extensible architecture: first, the interface between hardware and PC; second, the
communication level between hardware devices; and third, the electronics on the circuit level.
To analyze the prototyping process, the d.tools environment implements recording of the users
progress with video and log files.

Visual Design Tool

Usually the designer starts with plugging the hardware devices to the PC. Then the d.tools au-
thoring environment recognizes the new devices on the USB port and creates virtual representa-
tions of the devices in the authoring environment. Featured devices are buttons, switches, sliders,
knobs, RFID readers, LCD screens, LEDs and speakers. If a hardware device is not available,
the virtual representation can be selected by Drag & Drop from the device editor’s palette. Then
the designer adds functionality to the devices in the statechart editor.
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Figure 2.17: Statechart design with d.tools [26]

Figure 2.17 depicts an implementation example of a visual statechart formalism to control
the behavior of virtual or physical devices based on digital data. In this example, a Liquid Crystal
Display (LCD) device is either in state 1 (ON) or state 2 (OFF). The goal is to set the state to 1
after the next transition step. So any possible state of the LCD devise has to change to 1 in the
transition step (see top-right part). Bottom-right of figure 2.17 visualizes this transition with an
OR symbol. Additionally the d.tools authoring tool provides timer for controlling the time of
state changes.
Analog data from sensors (e.g. accelerometer) has continuous characteristics, but states are
representing discrete data. Therefore the designer can assign user-defined thresholds of analog
data (which spectrum can be visualized in the authoring tool) to states.
If the virtual devices do not fulfill the functionality of the hardware device, the Java code that
represents the functionality of a device can be edited.

The Prototyping Process with Video Recording

In d.tools, a video recording feature enhances the prototyping process. This feature is present
in test mode, where parallel to the design process, the captured video is enriched with log data.
Since the design process on the statecharts is also recorded on a data level, single video segments
which correspond to statechart actions can be analyzed afterwards.

System Architecture

The hardware devices feature Plug & Play, which is operated by cooperation of I2C protocol
[30], hardware devices, a microcontroller, Open Sound Protocol (OSC) [60], Universal Serial
Bus (USB) and a PC running d.tools software (see figure 2.18).
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Figure 2.18: Phidget Architecture [26]

At the hardware side the master microcontroller, an ATmega1288, implements an I2C proto-
col that allows to plug multiple hardware devices on the I2C bus. The devices have to implement
I2C slave protocols for being visible and controllable by the master microcontroller. Every hard-
ware device consists of the basic I/O device (e.g. slider) and a microcontroller (ATtiny45) that
implements the slave protocol. By design, the plugs of the hardware devices only allow correct
plugging. Audio and video devices (LCD, speaker) are supported by the PC, therefore they are
not addressed by the master microcontroller. Communication between the microcontroller and
the PC is done by the OpenSoundProtocol (OSC).

The d.tools software on the PC side is written in Java JDK 5 [47] using Eclipse IDE9. The visual
editors of the authoring environment are provided by the Eclipse Graphical Editing Framework
(GEF). The video viewer is programmed in C#, and the synchronization between a video and its
corresponding statechart is done by XML over UDP.

Phybots

With Phybots [34] the authors provide a rapid prototyping environment for locomotive appli-
cations. It is argued that in rapid prototyping environments for physical user interfaces, only
thin wrappers around the hardware devices are provided. But a complex locomotive application
would require solutions to set the control behavior of sensors and actuators. The authors note
also that in the field of robotics, solutions describe mostly specific robotic applications which
require expensive sensors and actuators.
Therefore Phybots “... enable the rapid prototyping of user experiences with locomotive robotic
things.“ [34] “Robotic things“ outlines the support of Ikimo [15], LEGO Mindstorms NXT10,
iRobot Roomba and iRobot Create11.

8www.atmel.com/Images/doc2467.pdf, 27.11.2013
9www.eclipse.org, 27.11.2013

10www.lego.com, 27.11.2013
11www.irobot.com, 27.11.2013
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Prototyping Constraints

Due to the focus on robotics, the Phybots environment consists of certain hardware and software.
The hardware is limited. A webcam, a robot, visual markers for obstacle detection and a PC
underlines that the environment is developed for moving the robot automatically through a room.
Also the software tool features APIs for 2D locomotion.

Software Environment

The focus lies on users with programming skills. A software API is provided that supports
localization and navigation of a robot. With use of vector fields (figure 2.19) robots can navigate,
push objects or avoid obstacles. For example The API for move depends on a vectorfield where
all vectors point to the destination.

Figure 2.19: Vector fields for navigation. [36]

The software environment provides software services which represent tasks like “move“
or “push“. The capabilities of a single robot (e.g. wheels for driving and steering) are called
resources. The tasks for complex robotic controls are using these basic resources. This works
for every supported robot. Depending on the robot, resources have to be implemented differently
to provide consistent interfaces for tasks. With this abstraction, tasks can be assigned to different
robots.
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Figure 2.20: Hierarchical software abstraction model [36]

Sequential operations are provided by the data structure workflow. It is a kind of directed
graph where abstracted tasks denote nodes. Nodes for timeouts are also available. Workflows
can be saved for later re-runs. The status of the robot and services are logged for debugging. [34]

LEGO Mindstorms NXT

LEGO Mindstorms NXT, produced by The LEGO Group12, is a product series for creating
programmable robots. In 1985, the Lego Company began sponsoring the MIT MediaLab13.
This resulted in the development of the first programmable brick by MediaLab researchers.
Nowadays the programmable brick is continuously developed and improved by the LEGO group
(EV3, the next mindstorm platform is planned to be released in fall 2013). Due to its complex
possibilities LEGO Mindstorms NXT is favored by a wide range of users (e.g. fanpages with
user projects1415, education16).

12http://education.lego.com, 27.11.2013
13www.media.mit.edu, 27.11.2013
14www.thenxtstep.blogspot.co.at, 27.11.2013
15www.mindstormsforum.de, 27.11.2013
16www.lego.com, 27.11.2013
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Figure 2.21: A Lego Mindstorms example which can carry objects, can move and has sensors
attached.

Building a Model

The single Lego components are called bricks. They are made of the thermoplastic acrylonitrile
butadiene styrene (ABS), polycarbonate (PC) or polyamide [10]. Also the NXT microcontroller
is referred as a programmable brick. The standard bricks have studs and holes for connection.
The diameter of a stud (4.8 mm) is the basic unit in Lego and defines also the rules for connection
of Lego Technic components like axles or gear wheels.
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Figure 2.22: Patent for a Lego toy building
brick. [9]

Figure 2.23: Standard dimensions of a Lego
brick. [43]

Figure 2.24: Interfaces and connection rules of Lego Technic.

27



System Architecture

The System Architecture consists of three main parts. At first a PC software to write programs
for LEGO MINDSTORMS NXT robotic behavior. Second, the programmable brick that con-
tains the microcontroller. And third, MINDSTORMS NXT devices (e.g. sensors, actuators)
which take the commands from the main hardware for reading sensor data and executing actua-
tor operations. The actuators and sensors of LEGO MINDSTORMS NXT provide the standard
LEGO slots for plugging LEGO bricks on them. [39] and [48] provide knowledge and techniques
to build mechatronic applications with LEGO.

Figure 2.25: System Architecture, LEGO Mindstorms NXT

In figure 2.25 the system architecture of the LEGO MINDSTORMS NXT17 is visualized.
The NXT main hardware device communicates with the PC via USB or Bluetooth. Inside
the main hardware device are two processors. The main processor, an ATMEL ARM718, is
supported by a ATMEL AVR19, which serves the main processor as co-processor. The data
communication with the PC is handled by the ATMEL ARM7 main processor. This processor
communicates with its co-processor via an I2C bus. The main processor also provides an I2C
connection to the ultrasonic sensor, while commanding rotation of motors and reading analog
sensor data is executed by the co-processor. The motors are controlled with Pulse-width mod-
ulation(PWM) [57]. The data from the sensors is analog, so it has to be converted to digital

17lejos− osek.sourceforge.net, 27.11.2013
18http://arm.com, 27.11.2013
19www.atmel.com, 27.11.2013
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format by an analog-to-digital converter [21]. Devices from different companies which connect
to the NXT main hardware can be found at www.generationrobots.de.20.

Software

NXT-G LEGO MINDSTORMS NXT is delivered with the programming environment NXT-
G. It follows the visual programming approach [33]. The NXT-G environment is limited in its
size of features. It is not possible to debug the code and the mathematics is limited by basic
arithmetic operations. Therefore users often take a third-party programming environment (for
example the Microsoft Robotics Studio 2.3).

Figure 2.26: NXT-G Visual code example. The loop (orange) iterates till a button (yellow) is
pressed. While no button is pressed the motor (green) is running. [3]

Virtual Simulation The Lego Digital Designer 21 is a virtual construction environment for
Lego applications in 3D. Building is done by dragging and dropping bricks from a selection
menu to the 3D space. Applications are static, and therefore animation is not supported.

Two master thesis from the Universität Paderborn are describing the Lego Mindstorms Simula-
tor (LMS). It takes leJOS22 code (leJOS is a software for programming mindstorms applications
with java) and simulates a mindstorms robot in a 3D environment. The 3D environment where
the robot operates is described by a XML document, and it has no GUI editor for building 3D
environments.

20www.generationrobots.de, 27.11.2013
21http://ldd.lego.com, 27.11.2013
22http://lejos.sourceforge.net, 27.11.2013
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Microsoft Robotics Developer Studio

In the magazine Scientific American Bill Gates stated: “I can envision a future in which robotic
devices will become a nearly ubiquitous part of our day-to-day lives.“ [6] He also argued then
that the robotic industry is lacking standardization in terms of operating system, hardware or
programming language. Consistent with Bill Gates request’ for standardization, Microsoft de-
veloped a software environment for programming robots named Microsoft Robotics Developer
Studio (MRDS)23. Several robotic systems are supported (e.g.: LEGO MINDSTORMS NXT,
Parallax24, KUKA25. Besides, advanced users can control yet unsupported robots by creating a
new hardware interface.

Software Architecture and Services of MRDS

The software architecture of MRDS is a service oriented architecture, where services represent
basic features of robots which can be orchestrated for complex applications.

23www.microsoft.com/robotics, 27.11.2013
24www.parallax.com, 27.11.2013
25www.kuka-robotics.com, 27.11.2013
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Figure 2.27: A service with its seven elements: Main Port, Service Handlers, Event Notifica-
tions, Service State, Service Patterns, Contract Identifier and Universal Resource Identifier. [8]

The interface of a service is the Main Port. It can be connected to other services, actuators
or sensors. In figure 2.27 the Main Port is depicted as one out of seven service components.
Depending on the received message type on the Main Port, the correspondent Service Handler
operates (read/write) on the Service State. The Service State contains several state informa-
tion like speed, distance or color. If the state is subscribed to other services, the Subscription
Handlers inform other states about the current state change or state request. These subscribed
services receive the message also on the Main Port. The Service Partners define the “wiring“
between services and therefore allow complex orchestration of services. For uniquely identifi-
cation, services have a dynamical Universal Resource Identifier (URI) and a Contract Identifier.
The Contract Identifier is unique for each defined service, provided that only one instance of a
service exists. To distinguish two instances of the same service, the dynamical Universal Re-
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source Identifier (URI) provides a unique URI for each service instance. [8]
The MRDS software architecture, depicted in figure 2.28, is based on the .NET [41] framework
which allows to use any of .NET supported languages like C# or Visual Basic .NET (VB.NET).

Figure 2.28: Robotics Studio Architecture [54]

The Concurrency and Coordination Runtime (CCR) is a .NET library which allows asyn-
chronous operations on the robot. This means that the robot can perform two or more operations
in parallel (for example reading a distance sensor input while moving forward). The program-
ming model of the CCR supports this parallelism without the use of complex principles like
manual multi-threading, semaphores or mutual exclusions. Reading/Writing operations on sen-
sors/actuators are called messages, which are transferred on so-called PortSets. When a PortSet
gets a message from the Main Port of a service, the receiver transmits it to the arbiter which dis-
patches it to the multi-threading pool (Dispatcher). From this multi-threading pool the messages
are dispatched to sensors, actuators or services. [8].

The Decentralized Software Service (DSS) is built on top of the CCR, which loads services
and manages the communication between services via the Service Forwarder. The communi-
cation is based on Representational State Transfer (REST) [17] by using Hypertext Transfer
Protocol (HTTP) [16] as a communication protocol and Extensible Markup Language (XML)26.
As transport protocol, Simple Object Access Protocol (SOAP)27 is used. It is extended with the

26www.w3.org/XML, 27.11.2013
27www.w3.org/TR/soap, 27.11.2013
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feature of subscriptions. Subscriptions allows a service A to be notified by another service B if
the state of service B changes.

The robotic behavior is programmed with one of the supported language C# or Visual Pro-
gramming Language (VPL). The programmed implementation uses services for orchestrating
(i.e. a workflow of services) the robotic behavior. With the use of generic services the user
can run its coded application on different robots and in simulation mode. But a generic service
is abstract and may use different services from different robots, which are listed in the service
repository. So “lower level“ services are translated to generic services before a simulation or
“real robot operation“ starts. The service synonyms and translation information are described
in “manifest“ XML configuration files. [54] It allows programmers to use existing services with
new hardware.

Visual Simulation Environment

With the Visual Simulation Environment (VSE) users can develop robot applications without
hardware. It uses DirectX 9 and Microsoft XNA28 for 3D rendering in real-time. For simulating
physical behavior VSE includes the PhysX engine29. MSRS provides several prearranged sim-
ulations (e.g.: KUKA LBR3 Arm simulation, LEGO NXT Tribot simulation). In the simulation
a 3D object is described as an entity. Entities can be arranged hierarchically, which is necessary
for simulating robotic behavior. The simulator offers an edit mode, where entities can be loaded
and edited in terms of behavior, position, rotation and parent/child relationship. Entities which
are sensors or actuators can then be coupled with a service. The textbox in figure 2.29 shows the
complex possibilities of arranging a joint to another.

28msdn.microsoft.com, 27.11.2013
29http://www.geforce.com/hardware/technology/physx, 27.11.2013
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Figure 2.29: Editing a robotic arm in MSRS: In the left pane a segment, embedded in a hierar-
chical structure, is selected. The position and rotation of the segment can be changed arbitrarily.
In the 3D view the selected segment is highlighted with a transparent sphere. The right pane
displays segments which have multiple detailed options to adjust. Connection points to other
segments can be defined. For example textures of objects can be changed or physical mass
information is editable. [45]

Programming

The Visual Programming Language (VPL) is based on statecharts and works therefore similar to
the LEGO MINDSTORMS NXT-G environment. MSRS is embedded in the .NET framework,
so software for robots can also be created with supported programming languages like C#.

2.4 Comparison and Summary of Existing Approaches

This section evaluates the prototyping environments (section 2.3) on the basis of the evaluation
criteria (section 2.2). First, an evaluation overview of criteria on prototyping environments is
given in table 2.30. Second, the detailed argumentation for each prototyping environment is
given afterwards in section 2.4. At last in the Research Conclusion 2.4, the best matching proto-
typing environments are named, and also an optimal prototyping environment is sketched. This
“optimal“ prototyping environment is a pick and choose from the evaluation criteria, and gives
a wishlist for a prototyping environment.
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Overview

Figure 2.30: Evaluation of Prototyping Environments

Detailed Evaluation

Fischertechnik

The Fischertechnik construction kit, including the ROBO TX controller and software, features
support for rapid prototyping for mechatronic applications very well. Models can be build and
tested step-wise. But it lacks of a virtual 3D modeling and simulation environment. Therefore
the user has to know which 2D representation matches to the analogical model parts. During
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execution, the programs (“flowcharts“) coded with its visual programming language are giving
visual feedback by marking the current state (in online mode). The purpose of the Fischertechnik
environment is made clear to the user. Due to its focus on children, the environment is usability
friendly and operating options are clear.
The cables from ROBO TX controller to actuators/sensors have to be connected correctly in
terms of postive/negative power supply. I2C devices from third party manufacturers can be
connected and used with the software. New plugged-in devices are not automatically recognized
by the software. Hardware devices from Fischertechnik are not complex, because “data“ and
“instructions“ are mostly handled with the level of voltage. Extending the system with third
party devices or software is possible, but requires skills in software and hardware design. Both,
the hardware and software is well portable.
A set which includes the software, the hardware controller, actuators, sensors, an accumulator
and static building pieces costs about 400C30. It is available worldwide in various stores. Since
it is very popular (e.g schools, universities, fanpages on the web), it is also well supported by
Fischertechnik, third party manufactures (sensors), and users.

Fischertechnik Designer

The fischertechnik designer features only 3D simulation for Fischertechnik models. Since the
Plug & Play does not work as expected and the physical behaviors have to be set by the user,
the prototyping process takes too much time with settings that goes beyond rapid prototyping.
The use of the logic manager (visual programming tool) requires also a predefinition of physical
behavior by the user. The purpose of the software is not obvious in the first moment and the
usability is not intuitive. The 3D environment features rendering quality options for different
computer hardware. Also the 3D models of Fischertechnik components are well shaded and
have a high polygon count.
The software can not be extended by the user and features also no interface to hardware like
motors or sensors. In the simulation, use of sensors is limited. It has more features than ROBO
TX software, and is therefore more complex.
A free demo version is available, and the price of the full version of fischertechnik designer is
about 120C. It has a fanbase (about 80 designs are listed at www.ftcommunity.de31) and is also
used in schools. The software is regularly supported with updates.

Creo Parametric Software

The software features design of models which can be used for manufacturing. The complexity of
usability hinders virtual rapid prototyping for mechatronic applications. A interface to control a
real prototype is not provided. The visual authoring environment is powerful but requires a deep
knowledge of the software. Dependency of motion of more than one object is not recognized
automatically and has to be defined in detail. The software can be purchased by download and
the license costs about 200C per year.

30Estimated with prices at: www.amazon.com, 27.11.2013
31www.ftcommunity.de, 27.11.2013

36



Arduino

Prototyping with Arduino requires programming skills. But due to its open design, a wide range
of applications can be developed. For mechatronic applications, actuators and sensors need to
be purchased from third party publishers. Also the first setup, calibration, configuration and data
communication has to be developed by the user. But the user may find already coded parts in lit-
erature or the internet. The software from Arduino features only textual programming, but third
party software allows visual programming. Programs can be coded to listen on the input and
display status to the user. Also the feature of interactive status changes can be coded. Hardware
status can therefore be read and set in real time. Users without programming experience may
not understand the purpose and benefits of Arduino. But if skills in programming are present,
the prototyping process can be executed accordingly. The programming environment features
syntax highlighting but no auto completion.
The Arduino board is connected to the PC via USB, were compiled programs are transmitted
to the microcontroller on the circuit board. The complexity of Arduinos input and output pins
depends on the used actuators or sensors. Since a wide field of interfaces can be used, the rating
is good. The hardware complexity is high, but it can be extended. The same applies for the
programming environment.
The Arduino Starter Kit costs about 80Cand includes: Arduino Uno, power supply, USB cable,
software (free to download), wires, sensors, actuators and further electronic components.

Phidgets

The Phidgets tool was given to students with programming skills with the task of developing
creative applications. Then they had to give feedback about the development process. They
reported that most of the time was spent on designing kinematic functions. Programming took
less time and development on low level electronics was done just by a few students. [23] There-
fore prototyping of mechatronic systems works quite well with Phidgets. It features simulation
of devices that are unplugged or not available, but the ActiveX representations in the software
environment are two-dimensional and require additional programming. Visual authoring is not
provided, programming skills are required. Since changes on devices are transmitted back to the
software environment (for updating the 2D ActiveX representation), the hardware and software
are operating parallel in real time. Featured devices are designed for correct plugging. Hardware
knowledge is required, especially when extending the current system with new devices.
Phidgets supports a wide range of programming libraries and hardware devices. A starter kit
starts at 230C.32.

d.tools

Feedback for the d.tools environment was gathered in three evaluations.
First, in a 90 minutes long controlled laboratory study, tasks were given to students who where
mostly in design related field of studies. The automatic recognition of devices and the authoring
with visual statecharts were perceived intuitively. But changing the properties of statecharts was

32www.phidgets.com, 27.11.2013
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less intuitive. After some time of learning the environment students were able to spent their time
on the interface design. Afterwards, a survey which asked for the opinion of students resulted
in: mean value µ = 4.3 (out of 5) for time savings in prototyping; µ = 4.6 in usability testing;
and µ = 4.25 in helping to understand the user experience during the design process. But it was
criticized that no software simulation exists which works without attached hardware. It was also
claimed by the students that sensor ranges had to be set textually instead of graphically. [26]
In a second evaluation the capability of expressions of the visual authoring environment (state-
charts) was evaluated. Therefore the interface functions of three electronic devices (MP3 player,
digital camera, PDA) were recreated with statecharts in d.tools. The outcome was, that on the
screen up to 50 states are visually understandable. In this evaluation, the design part took about
70% and implementation took about 30%. [26]
Third, students of a HCI (human computer interaction) course were free to choose d.tools for
their final project. The purpose of the project was to design a tangible interface. Students that
used d.tools were able to extend d.tools (sensor that was not part of the library). [26]
The software is free under the open source BSD license, well documented and regularly updated.
Hardware for d.tools has to be purchased from third party developers (wiring hardware platform,
arduino). At sourceforge, d.tools was downloaded over 3900 times since 2006. It was rated by
just three users, which has no explanatory power. Since it has Arduino support, the price of 80C
is based on the Arduino starter kit.

Phybots

Phybots is a robotics toolkit, where prototypes are limited to navigation of the robot, on the
basis of camera detection and with help of visual markers. Mechatronic prototypes like a 2D
plotter can hardly be developed. The software side requires programming skills and features no
visual programming. For new robots, the software model is extendable by programmers. An
Ikimo Robot Platform costs about 50C and the Phybots software is free under GNU GPLv3.
The software receives regular updates and the documentation on the webpage is japanese.

LEGO Mindstorms NXT

Similar to Fischertechnik, LEGO Mindstorms NXT let enhance bricks with visual programming.
Having a commercial product for children results in well intuitive usability. Virtual modeling
and controlling in 3D is not supported (the LEGO Digital Designer features 3D modeling, but
no interface to Mindstorms NXT). Programs have to be compiled, so no real-time behavior
is supported. Feedback from programs can be realized by doing some workaround on virtual
sensor components. But real debugging is not supported. Sensors and actuators which fit to the
interface are available also from third party producers. But extending hardware at low level side
is not supported. The programming software NXT G is closed and can not be extended, but it
can be replaced by third party development environments. A Mindstorms roboter costs about
500C.
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Microsoft Robotics Developer Studio

The MRDS is a development environment, not a prototyping environment. Indeed, features
like visual programming, virtual simulation, physics implementation or an interface to sensors
and actuators are present. But it requires certain knowledge from the user to work with it.
This knowledge contains service oriented architecture, XSD, limits of the physics engine and
microsoft visual studio framework. MRDS provides only the software environment to control
or simulate robots. Robots have to be purchased from third party companies. Building of virtual
applications in 3D requires parameter setting of each component (e.g. position, rotation). The
correct mechatronic behavior of components requires an assignment of the correct service and
also parameter settings. When the configuration is finished, the control (navigation) of the robot
is done by a usability friendly interface. The power of the software environment makes the usage
and its operating options not clear to the user in the first moment.
On a technical point of view, MRDS with its service oriented architecture features extendability
at hardware and software side. The complexity of hardware relies on the used third party devices.
The development environment is free, and the price of 500C includes the calculation for a LEGO
Mindstorms hardware set. The community is quite active. But the underlying game engine XNA
for developing 3D applications will not further be supported [50].

Research Conclusion

A physical functional 2D pen plotter, developed in a prototyping process, can be achieved with:

• Fischertechnik

• Arduino (with use of actuators, sensor and static pieces)

• Phidgets

• d.tools

• LEGO Mindstorms NXT

• MRDS (with use of third party hardware)

A simulated (virtual) 2D pen plotter, developed in a prototyping process, can be achieved
with:

• Fischertechnik Designer

• Creo Parametric Software

• MRDS

Therefore the Microsoft Robotics Developer Studio (MRDS) environment is the only tool
which features both, physical and virtual prototyping for applications in 3D. But MRDS is rather
more a development environment, than a rapid prototyping environment for mechatronic appli-
cations. The marking characteristics of the MRDS environment are: high complexity, integration
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from different frameworks (Visual Studio, XNA, PhysX, VPL) and average ratings in the key
criteria for prototyping. Furthermore is does not argue for MRDS that the game development
environment XNA is phased out.

40



CHAPTER 3
Concept for a Mechatronic Design

Environment

Since the presented environments are not fulfilling the criteria in the evaluation catalog, a design
and implementation for a development environment for mechatronics in a rapid prototyping
approach is proposed. The concept for a mechatronics design environment is given in section 3.
Second, the design and implementation for this rapid prototyping environment is given.3.1.
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3.1 Concept

Figure 3.1: Main components of the concept and a concrete implementation for a mechatronic
design environment

For this mechatronic design environment the goal is to develop prototypes in a virtual envi-
ronment where no programming or electronics knowledge is required. The whole mechatronic
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design environment consists of three blocks: First, a virtual 3D design environment. Second,
a physical design environment. And third a communication interface which transmits data be-
tween the virtual and the physical environment.
Figure 3.2 depicts that the main knowledge and core functionality lies in the 3D design environ-
ment. It is assumed that a physical environment including sensors and actuators already exists.
Although this physical environment may has its own control environment which would not be
used. The communication interfaces passes signals between the PC and the physical environ-
ment. These signals are controlled from the 3D design environment where the most development
effort is required.

Figure 3.2: Weighting of the main components (top red weights most) in terms of system com-
plexity, control logic and implementation effort.

3D design environment

The 3D design environment is a virtual interaction environment where the user can prototypical
build and control mechatronic applications.

Building with pieces: It features pieces which are enriched with connection information based
on connection rules (e.g. in figure 2.2 and 2.24). So it is possible to build any possible static
three dimensional application. Of course, the visual impression of the build application is de-
fined (or limited) by the form, connection rules, polygon size and texturation of the single pieces.

Building environment: The user can navigate the virtual camera through the 3D design en-
vironment during the prototyping process. Built applications or prototypical fragments can be
saved and loaded anytime. The building process is derived from real construction environment
like LEGO or Fischertechnik. A ground plate (the floor) with connection slots is present in the
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bottom center of the environment. Choosable Pieces for building are located on the side, top or
bottom of the viewing are (e.g. computer screen, 3D glasses, virtual reality headset). During
navigation through the 3D environment, the pieces still stick to the defined section of the screen.
This way the user can take a piece and move it to the ground plate or already placed pieces (by
e.g. drag & drop with the mouse, hand arm gestures in virtual/augmented reality).

Mechatronic pieces: Actuators (e.g. Motors, LEDs), sensors (e.g. button, light sensor) and
kinematic components (e.g. gear wheel, screw thread) are also pieces with connection rules
and can therefore be connected with other pieces. The features of the mechatronic pieces are
calculated after placing them, gear wheel transmissions, screw thread functionality, sensors).
The source of motions are motors. For rapid prototyping motors are enriched with buttons for
rotation. Immediately after a motor is placed these buttons are displayed and usable. Attached
kinematic components does not require a setup by the user. They rotate or translate physically
correct from start (also chains of gear wheels behave correct). Sensor states can be coupled to
actuators behavior also in the 3D environment.

Mechatronic design: The prototypical mechatronic design enables the setup of a control flow
for the mechatronic pieces where programming skills are not required. In the 3D environment
timing panels next to the mechatronic pieces are displayed where the user can set actions for
each defined timeframe. A timeframe is defined as a constant time span(e.g one second). This
way an actuators status can be set for each second. By Drag & Drop sensors can be attached to
actuators. Then the actuators status is definable depending on the sensor status. Defined control
flows can be started, paused and reset in the 3D view.

Figure 3.3: A timing panel for a motor depending on a sensor. In this configuration the motor
rotates clockwise while the sensor is set to ON. Otherwise the motor is stopped.

Communication interface

The defined control behavior of mechatronic prototypes built in the virtual 3D environment
need to be transmitted to a physical implementation of the prototype. status of actuators is sent
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from the 3D environment to the physical actuators, and sensor status sent by physical sensors
is received by the 3D environment. Therefore a communication interface which passes through
the signals to the right pins and ports is required. The mapping of virtual actuators and sensor to
their corresponding physical actuators and sensors can be done in the virtual 3D environment.

Physical design environment

It is assumed that the physical prototyping environment already exists (e.g. LEGO, Fischertech-
nik). Prototypes built in the 3D design environment can then be realized as physical models.
Its sensors and actuators are then connected to the defined pins (set in the 3D environment) on
the communication interface. When the control flow is started in the 3D environment, it is syn-
chronously transmitted to the physical prototype. This way the virtual and physical prototype
are running in parallel and behaving the same.

3.2 Design and Implementation

Main Components of the proposed Environment

Unity game engine as Software Framework: A suitable software framework which can
be used for developing a virtual rapid prototyping is required. MRDS provides services for
controlling robotic systems like fischertechnik or LEGO Mindstorms. Its game engine XNA,
where the simulation environment for MRDS is implemented, could be used for developing a
new simulation environment to fulfill the requirements from section 2.2. As mentioned before,
future support of XNA is not provided. It also has no 3D editor integrated into the devolpment
environment. Loading assets like polygon models can only be done via code lines.1. A game
engine is requested which enhances rapid loading of polygon models and which makes these
polygon models extendable with physical functions. Also GUI development and connection to
external hardware has to be supported. A game engine that fulfills these features is the Unity
game engine 2.

Arduino as Communication Hardware: A direct connection of the PC to actuators and
sensors of the construction is hardly possible. Somewhere in between must be space for chang-
ing physical connections (wire plugging) or providing power for actuators. The arduino board,
described in section 2.3, provides these features to serve as an interface between a PC and the
construction set.

Fischertechnik as Construction Set: LEGO Mindstorms and Fischertechnik are two pos-
sible construction sets. In the requested rapid prototyping environment the sensors, actuators
and static pieces of the construction have to provide precise animation. Also the 3D polygon
models of construction pieces are required to avoid 3D modeling. The polygon models of the
fischertechnik designer3 can be exported for the use in Unity. The community favors plotters

1www.microsoft.com/en-us/download/details.aspx?id=23714, 27.11.2013
2http://unity3d.com, 27.11.2013
3www.3dprofi.de
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built with fischertechnik instead of LEGO mindstorms4. Therefore, the chosen construction is
Fischertechnik.

Classification within the Engineering Model

The engineering model by Moore et al. describes four levels of which an engineering application
can be classified. [44] The new mechatronic design environment is called Fischertechnik Sim-
ulator and can be used for developing mechatronic prototypes in the composite component level
and the modular machine level. These levels are abstractions from the device component level.
The Fischertechnik Simulator already implements devices from the device component level
(e.g. static pieces, motor, button) and its to the user to design applications in the two overlying
levels.

Figure 3.4: Engineering model by Moore et al. [44]

4http://www.kinder-technik.de/fischertechnik/eigene-modelle/modell-plotter.html, 27.11.2013
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Principles of the Unity Game Engine

Unity is an engine for developing multiple platform games. But a software developed with
Unity does not necessarily have to be a game. Unity provides rapid development of virtual
applications in 3D. Applications can be exported to Windows PC, Apple iOS, MAC, Linux,
XBox 360, Playstation 3 (PS3), Wii U and various browsers (requires a browser plugin). The
free version is limited in its features (e.g. no mobile phone publishing, no real time shadows),
but provides all development tools required for this implementation. Unity Technologies also
operate an online Asset Store where developer can offer plugins and additional content for Unity
(e.g. code libraries, textures, 3D models).
The next section is showing the principles of 3D model importing and coding behavior in Unity.

Properties and Behavior of 3D Models

Figure 3.5: Unity development environment: The asset is the gear wheel, selected in the hier-
archy view. It is depicted also in the 3D view and its details are listed in the detail view. Two
classes (scripts), Piece and Gear, are attached to the gear wheel.
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First, polygon models are not created in Unity. Therefore modeling software like Blender5 or
3D Studio Max6 are used. Common file formats for 3D models are wavefront (.obj)7, 3D Studio
Max (.max, .3ds) or STereoLithography (.stl) [1]. These polygon models are loaded into the
Asset view of a Unity project via Drag & Drop (see figure 3.5).

Assets (e.g. 3D model, sound, light) are moved into the game by dragging it from the asset
view to the 3D view or the hierarchy view. In the hierarchy view, parent-child relations can be
defined. The inspector view shows the properties of a loaded asset. The properties are: trans-
formation information (position, rotation, scaling), surface properties (texture, color, shader),
physical properties, animation settings and attached scripts. Attached scripts are describing the
behavior of the asset with the source code (written in C#, JavaScript or Boo). To provide a main
loop, a script (main.cs) can be attached to the camera or an empty object. Empty objects are
placeholders for scripts. Attached classes which inherit from the Unity class MonoBehaviour
are providing predefined methods like OnMouseOver or OnCollision. OnMouseOver is called
when the user moves the mouse cursor over the 3D object, and OnCollision is called when an-
other 3D object collides with the current 3D object. Important is the method Start which works
as the constructor, and the method Update which is called every drawing frame. These methods
are override-able.

Specification of the Simulation Environment

The simulation environment is the virtual “playground“, where mechatronic Fischertechnik ap-
plications can be built and simulated. The components of the simulation environment (menu,
camera movement, build mode, control mode, new, load, save) are specified with sketched fig-
ures, use cases and user stories.

The Menu

Figure 3.6 sketches the start screen of the Fischertechnik Simulator. On the right in a vertical
slider bar, the Fischertechnik construction pieces are placed for selection (only visible in build
mode). The base plate in the 3D view is empty and provides slots for plugging pieces with knobs
on it. The underlying features of the menu options New, Load, Save, Build, Control, Arduino
and textitRun are described in the next sections. The menu option Filename is a placeholder for
showing the name of the current simulation project.

5www.blender.org
6www.autodesk.de
7http://people.sc.fsu.edu/ jburkardt/data/mtl/mtl.html, 27.11.2013
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Figure 3.6: Menu of the Simulation: Building Mode

Navigation

The navigation of the 3D screen is inspired from the Unity development environment. The user
can adjust the view by:

• Scrolling the mouse wheel: Zoom in/out.

• Pushing the mouse wheel while moving the mouse: Strafe left/right or up/down.

• Holding right mouse button while moving the mouse: turn left/right or up/down.

Build: Placing Fischertechnik Pieces

The pieces follow the connection principles depicted in figure 2.2. Pieces from the selection box
are placed on the base plate or on other pieces. Placing a piece consists of the following steps:
First, the user selects a piece from the slider by clicking on it. Second, a copy of this piece is
generated. Third, the copy can be navigated with the mouse and scroll wheel over the 3D screen.
Fourth, a left click places it on the current position or a right click deletes the copy (figure 3.7).
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Figure 3.7: Use Case: Placing a static object in the 3D view of the simulation environment.

Control: Configuring Actuators and Sensors

Actuators and sensors can be controlled directly in the building menu, and can also be configured
for orchestration behavior in the control mode. The direct control is for an explorative trial and
error development of the prototype. This way the user can simply turn actuators on and off, or
also can see immediately the status of the sensors (figure 3.8 and 3.9)

Figure 3.8: Explorative actuator control on
the example of a motor: When moving the
mouse over the motor, buttons for rotations
pop up in front of the motor. The user can
then rotate the gear on the motor by clicking
these buttons.

Figure 3.9: Explorative sensor read on the
example of a distance sensor: A textbox
which is visible in the 3D view shows the
measured distance. The user can also choose
if the distance is measured in the virtual envi-
ronment, or originates from a physical sensor.

For scheduling and orchestration in the 3D view, the actuators of a prototype are visually
enriched by interactive timing diagrams. In these timing diagrams, the behavior of the actuator
can be defined over a timespan (figure 3.10). If a sensor is attached to an actuator, a control
behavior for each possible status of the sensor can be set (figure 3.12). In the GUI menu, the
defined schedule plan can be started, paused and reset.
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Figure 3.10: Planing actuator status over the time on the example of a motor: A time frame
covers 5 seconds of motor behavior. With the indicated arrow right of the time frame, further
time frames can be added. By clicking a status box within a time frame, the status of rotation
can be defined for a specific second. In the above example, the motor turns counter clockwise
in the first two seconds, then stops for one second and then turns clockwise forever. The most
right status box has always the indication of endless continuation.

Figure 3.11: Setting an actuator in dependency of a sensor: Here, a digital sensor (button) is
attached to the motor by drawing a line between the button and the motor in the 3D view. The
GUI has an option to show or hide the sensor/actuator connections.

Figure 3.12: Actuator status depending on the sensor: In the 3D view, the user can attach a
sensor to an actuator. In the picture the behavior is similar to the hand dryer depicted in figure
2.3 from section Prototyping Environments2.3. If the sensor is triggered to ON, the motor runs
clockwise for 9 seconds. On sensor status OFF, the motor does not rotate.
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Synchronizing virtual and physical devices

To achieve a synchronous run of the virtual and the physical environment, the devices have to be
assigned to each other. After a connection to the Arduino board is established, the user can assign
the virtual devices to the physical pins of the Arduino board in a drop down menu. Following
this choice the user then has to connect the physical device to the corresponding hardware pin
on the Arduino board.

Figure 3.13: Selecting a pin for the virtual motor will configure the corresponding pin on the
hardware side as output pin. It remains to the user to connect a physical motor to this pin on the
Arduino board.

Implementation of the Simulation Environment

This section gives a software design for an implementation of the simulation environment. Each
important feature referes to a use case from section 3.2 and is described separately in a subsec-
tion. For each feature, first a class diagram is given, and second a sequence diagram explains
how the use case can be implemented. The given class diagrams do not show all its methods.
Only methods required for the use case are given. The following sequence diagram is depicting
the flow of the use case implemented by object oriented classes and methods.

Placing 3D Objects

The class diagram in figure 3.14: Each 3D model implements (uses) an object of the class
Piece. The methods of Piece provide input operations (via mouse) on the 3D models. Main,
Builder and Piece inherit from the Unity class MonoBehaviour. Methods which first letter is
capitalized are overridable methods from MonoBehaviour. Main is also implemented by a object
in the 3D space. But this object is an empty game object, which means that it has no polygon
model and is not visible to the user. Since Main serves as main-loop for the simulation, the loop
cycle can only be run by the method Update if Main is implemented by a game object. Builder
is a singleton class that provides helper methods for Main.
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Figure 3.14: Class diagram for building a static prototype

The sequence diagram in figure 3.15: The GUI represents the 3D screen where the user nav-
igates with the mouse. First, a 3D object is selected from the selection menu (OnMouseEnter and
OnMouseUpAsButton). Main is always waiting for appearing objects in the 3D view. The class
Piece (attached to the 3D object) calls a Main method creating two clones of the 3D object. The
transparentClone is for visualizing the GUI navigation of placing the new item. In a loop, Main
continuously calculates the closest correct connection of the transparentClone to an yet already
placed 3D object. The object clone is positioned at the closest possible calculated connection.
(A working plate with connection slots for initial connections is always placed in the 3D view).
The closest possible connection is determined in a loop which contains three steps: First, it is
calculated which slot from an already placed 3D object is closest to the transparentClone. In
the second step the closest slot from the transparentClone to the previously found closest slot is
calculated. The third step determines if the calculated two slots are following a fischeretchnik
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connection principle. If yes, the clone is rendered at the matching position. A final mouse click
by the user places the clone at the current position and deletes the transparentClone

Figure 3.15: Sequence diagram for building a static prototype

Connection with slots in detail: A slot is the abstract description of all types of connec-
tion interfaces (e.g. pegs, holes, channel, axle described in figure 2.2). In the 3D environment a
slot is generally a two dimensional plane. This planes are enriching the 3D objects and defining
therefore the possible connections to other 3D objects. The name of a 2D plane is used for exact
identification of the slot type.
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Figure 3.16: Slot connection detail.

For placing the red 3D object on the black one, the red 3D object has to be rotated and trans-
lated till the axis orientation and position of the channel and the peg are the same.

objectRed.angle = objectBlack.slots.peg.angle−(objectRed.slots.channel.angle−objectRed.angle)
(3.1)

objectRed.pos = objectBlack.slots.peg.pos−(objectRed.slots.channel.pos−objectRed.pos)
(3.2)

Hierarchical placing in detail: When a 3D object is placed by releasing the mouse but-
ton, it has to be attached to the correct position in the hierarchy model of Unity. The method
placeObjectInHierarchy knows that for translating 3D objects, new 3D objects have to be at-
tached as a child to the translating object. This is required because a motion of the translating
object results in the same motion of the child objects. (see figure 3.17)
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Figure 3.17: Hierarchy model detail: The 3D object horizontal mover (framed blue) is an object
that translates on gear rotation. So all the 3D objects connected to horizontal mover are also
translating because they are attached as child objects to the horizontal mover.

Calculate Motion

Class Diagram of 3D motion objects: Different types of 3D objects are carrying out motion
operations. The source of motion is always an engine with an attached gear wheel which results
in rotational motion. Translations of fischertechnik 3D objects can be achieved with use of gear
rails or screw threads. Both transfer rotation from gear wheels to translation. Figure 3.18 depicts
the classes attached to the 3D objects.
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Figure 3.18: 3D objects which handle motion: The class Engine is responsible for turning the
engine and its further attached gear wheel ON and OFF. GearWheel operates rotations in the
method Update and GearRail. Update() handles translations. The class ScrewThreadMover
also calculates translation on the 3D object screw thread.

Class Diagram of Motion Calculation: The singleton Kinematics with its attributes and
methods is responsible for motion calculations. In the attributes the already placed 3D mo-
tion objects are stored. They work as a lookup repository for new 3D motion objects that need
to know if they are inflicted by motion of these 3D objects.
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Figure 3.19: Essential classes and methods for motion calculation

Sequence Diagram of Motion Calculation: The method calculateEngineGearConnections
calculates and sets all motion parameters. The call of this method is required before a motor
is switched ON. The class Kinematics then calls for each gear wheel attached to a motor the
following procedure:
Every other gear wheel in the 3D scene is checked if it collides with the gear wheel on the motor.
On collision, the rotation speed of the colliding gear wheel is calculated based on the gear wheels
diameter and the rotation speed of the motor gear wheel. This new found gear wheel works as
a starting point for searching other colliding gear wheels. This algorithm is depicted in the
sequence diagram 3.20. Figure 3.21 displays two gear wheels with their bounding boxes and
axis orientation.
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Figure 3.20: Sequence diagram for gear wheel rotation calculation.
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Figure 3.21: Two gear wheels with bounding box and axis orientation: The tow light green
boxes are the bounding boxes of the gear wheels. In this setting they are colliding and are
therefore taken into the rotation calculation. Both rotate around their local x-axis (red vector).
By construction both x-axis vectors are parallel, but the angle between these two vectors can
be 0 degrees (depicted in this figure) or 180 degrees. On 0 degrees the rotation speed has to be
multiplied by -1 to let the gear wheel rotate in the other direction. On 180 degrees the correct
rotation direction results immediately.

Calculating the motion of translating pieces (gear rail, screw thread) follows the same prin-
ciple. But the difference lies in the interval of recalculation. For translating pieces, it has to be
checked periodically (in every frame) if the piece with translation motion still collides with the
gear wheel or the screw thread mover.

Orchestrate a Simulation

A simulation run can either be designed for fully automatic runs like the control of a plotter, or
can be designed in a reactive way which involves sensors (e.g. fan control from section 2.3.

Class Diagram for defining an automatic simulation run: When moving the mouse over a
motor, the simulation instrument for orchestrating control flows is popping up. This simulation
instrument consists of EngineControlWindow’s. One EngineControlWindow holds five Rota-
teElement’s. A RotateElement defines the motor status for the duration of one second. In the 3D
screen an EngineControlWindow has on the right an arrow button to generate a further control
window. The class RotateButtonOrchestrate is attached to the visualization for a one-second
motor control (rotating arrow) and holds a reference to the motor, a control window, and a rotate
element.
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Figure 3.22:

Sequence Diagram for defining a automatic simulation run: The method OnMouseOver is
called when the user enters with the mouse the bounding box of the motor. Clickable rotate but-
tons (RotateButtonOrchestrate) are rendered over the motor. Initially five rotate buttons which
are assigned to one EngineControlWindow are rendered. If the user has previously extended
more engine control windows by clicking on the arrow on the right, the number of rotate buttons
is extended by the number of engine control windows multiplied by five. Clicking on a Rotate-
ButtonOrchestrate changes the state to rotateClockwise, rotateCounterClockwise or stop. Then
the reference is set to the motor, engine control window and the position in the engine control
window (RotateElement). When the final simulation run is triggered by the user, the defined
rotation behavior in the engine control windows is executed for each motor.
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Figure 3.23: Sequence diagram for a planned simulation run.

Class Diagram for adding sensor behavior: An engine behavior depending on a sensor is
displayed visually via a direct connection line between the sensor and the actuator in the 3D
screen. Depending on the sensor, different states are available. Here, the digital sensor im-
plements the states ON and OFF. The SensorActuatorRegister stores the connections between
sensors and actuators. The Engine has a new data structure called StateControlWindow for stor-
ing control flows for each possible sensor state. The Sensor can periodically (in each frame)
check by SensorActuatorRegister.getSensor() if the sensor state has been changed. On change,
the engine switches the control flow by changing the StateControlWindow.
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Figure 3.24:

Sequence Diagram for registering a sensor: The SensorActuatorRegister stores a connection
between a sensor and an actuator. This happens by dragging a line from a sensor to an actuator.
OnMouseUp finally registers the connection.
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Figure 3.25:

Specification of Fischertechnik Synchronization

The goal is to transmit the motion and control information of the virtual prototype to the real
prototype. The configuration which pin of the arduino board corresponds to a certain virtual
representation of an actuator or a sensor has to be set via a drop down menus.

Implementation of Fischertechnik Synchronization

Class Diagram for synchronization: To connect the virtual sensors and actuators to its phys-
ical representations via the Arduino board, the Unity asset Uniduino8 is used. It lets the virtual
environment connect to the arduino board via USB. The GUI features a pin assignment mode
where visual pin selection menus pop up on OnMouseOver() on a sensor or an actuator. The
method readVirtualInput calls sensor data directly from the state of the virtual sensor. On the

8www.uniduino.com
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other hand the method readPhysicalData reads the sensor data from the physical device via the
Uniduino package.

Figure 3.26: Class diagram for synchronization.

Sequence Diagram for synchronization: Before using the pin assignment, the user has to
establish a connection to the arduino board via the Uniduino package. A successful connection
returns the available pins for reading and sending data. OnMouseOver on a sensor renders the
pin selector menu. Selecting a pin assigns the pin to the chosen sensor. Physical sensor data can
then be read via the Uniduino package and be used for further progress.
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Figure 3.27: Sequence diagram for synchronization.
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CHAPTER 4
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Evaluation and Critical Reflection

4.1 Evaluation on the Example of a 2D Plotter

Overview of the Prototyping Process

Figure 4.1: The prototyping process of designing the 2D plotter which plots a house in the
virtual and physical environment.
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Figure 4.1 depicts the whole prototyping process with its iterations and steps. After sketching the
plotter and the desired plooting object (a house) a physical version of the plotter is build. Then
the virtual prototyping starts. Each functional component is tested in the virtual environment
after building (e.g testing the transmission of the gear rail via motor rotation). When the virtual
plotter is designed similar to the sketch a motion definition for plotting a house is designed and
tested iterative. In case that no motion definition can achieve the correct plot, the 2D plotter has
to be redesigned.

Preparation

Figure 4.2: A hand drawing sketch of a 2D pen plotter including thoughts about the axis move-
ment.

In figure 4.2 a top view of the 2D pen plotter with the axis x and y is sketched. For movement
along the x and y axis two possibilities are suggested. First, a gear wheel rotates along a gear
rail which is fixed on the ground. In this case the motor would be rotating the gear real directly
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or via a transmission. Or second, a screw thread (rotated by a motor) which moves a nut along
the axis. In this case the motor would be fixed to the ground.

Figure 4.3: A physical 2D plotter built with Fischertechnik.

To validate the implementation of the mechatronic design environment, a physical 2D plotter
built with Fischertechnik serves as reference. Both versions for movement along the axis (see
figure 4.2) are built into this first prototypical reference. The goal is to build this 2D plotter in
the virtual environment, define a motion control and execute the motion (resulting in a plot) on
the virtual and the physical 2D plotter. The motion control should be configured to draw a two
dimensional house (see figure 4.4). The 2D plotter consists of static elements, actuators, hier-
archical motion representation, different gear wheel transmissions, horizontal gears and screw
threads.
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Figure 4.4: The goal for the virtual and physical 2D plotter: Plotting a two dimensional
schematic of a house. It requires motion of only one motor for the straight lines and motion
of two motors (results in hierarchical representation) for the diagonal rooftop lines. The motors
have to be able to rotate clockwise and counterclockwise.

First prototypical Iteration

Figure 4.5: Placing the first motor. The buttons for rotation or defining a motion control flow
are immediately available.
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Figure 4.6: Screw threads are connected to the motor via a gear wheel.

Figure 4.7: Base plate which is movable in one axis is placed.
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Figure 4.8: Preparing for the second motor and horizontal gear rails.

Figure 4.9: Horizontal gear rails where the pen is attached are placed. To lower the speed,
the motor drives the gear rail via a gear wheel with a large diameter. This picture shows a first
prototypical plot.
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Figure 4.10: The red block is the power source (accumulator) for the motors. The blue elec-
tronic circuit board is an Arduino Uno which server as the communication interface bewteen
the virtual simulation environment (PC) and the physical prototype (two motors). Its provided
power is too low for rotating the motors. Therefore the accumulator powers the motors via a
H-Bridge integrated circuit [27]
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Figure 4.11: In a first try the motor on the top is rotated for one second counterclockwise, which
results in a straight line. The problem is that the transmission does not lower enough the speed
of the horizontal gear real. For the rooftop (diagonal lines) it is required that the motor can rotate
two second in one direction.

Figure 4.12: The physical 2D plotter shows the same problematical result as the virtual 2D
plotter. Therefore a second design iteration for the plotter is required.
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Summary of the first iteration: The time required for the virtual prototype of the 2D plotter
were 30 minutes. Time delays occurred for estimating the right slots for placing two gear wheels
next to each other.
For the physical 2D plotter with Fischertechnik 60 minutes of time were invested. Building the
plotter stable and solid took time which is not required in the virtual environment. Fixing the
pen took also more time than estimated. The clue is to have the pen not fixed too tight. The
pressure of the pen on the paper results from the pens weight.

Second prototypical Iteration

Figure 4.13: The transmission with horizontal screw thread worked fine in the first iteration.
Therefore also for the motor on the top a screw thread transmission is attached.
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Figure 4.14: Most of the construction on the top is removed. The engine is now placed on the
side and its attached gear wheel drives a screw thread.

Figure 4.15: On the screw thread a construction for the pen is placed. Also the control flow is
already defined for the two motors.
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Figure 4.16: This screen depicts the connection interface to the Arduino Uno board. For each
pin various configuration exists (e.g. input, output, digital, analog, value).

Figure 4.17: Starting the control flow results in the desired result, the two dimensional house.
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Figure 4.18: The physical 2D plotter, connected to the virtual 2D plotter via the Arduino Uno
board, plots also the desired house. But the result is not as accurate as in the virtual simulation.
The mechanical resistance of the construction lowered the speed of one engine.

Summary of the second iteration: Removing pieces from the virtual prototype and rebuild
the top part of the plotter took 15 minutes. Rebuilding the physical 2D plotter took also 15
minutes.
The task to plot a schematic house was achieved for the virtual and the physical prototype.
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4.2 Comparison with Related Work

Figure 4.19: Comparison with related work.

Figure 4.19 is based on the evaluated criteria figure from section 2.4. It is enriched with the new
designed and developed rapid prototyping environment Fischertechnik Simulator. The prototyp-
ing process is well supported by the option of immediately letting motors rotate. Therefore also
the prototyping of mechatronic systems is well supported. Kinematic motions can be initiated by
one click on the motors rotation buttons (3.2). The hierarchical representation is recognized by
the virtual part of the Fischertechnik Simulator automatically (3.2). In the virtual simulation en-
vironment Virtual prototyping is provided by the feature of intuitively build and control virtual
applications. These applications can be saved and loaded for later continuation of the virtual
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prototype. It is only one step from the virtual prototyping to the physical prototyping. If the
virtual and real environment is connected via the arduino board, the physical prototype operates
automatically the same as the virtual prototype (3.2). The visual authoring tool does provide
3D modeling and 3D control of the virtual prototype. A 2D control is not implemented. The
Fischertechnik Simulator does not have a fully implemented feedback system for debugging.
Devices that are plugged on or off are not detected automatically. The operating options are
clear to the user because the virtual environment is similar to the real environment. Only the
graphical design is not state of the art. Some parts of the environment are still in a prototypical
state. Connecting hardware is straight forward, therefore the hardware complexity is very low.
But this has the side effect that the hardware is not very well extendable. To do so, new program
code has to be written and additional electronic design have to be done. The software can only
be extended by new program lines. It does not feature software services. The price of 250C
is about the fischertechnik hardware price without the control kit, but including a arduino set.
Right now, this presented development kit is in beta, and therefore not yet available. It is planned
to further develop the tool and also provide regular updates after a release of the Fischertechnik
Simulator.
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CHAPTER 5
Summary and future work

The goal of this thesis was to come up with various environments that feature rapid prototyping
of mechatronic applications. Therefore the focus was set on virtual environments for developing
and simulating mechatronic applications.

In the Introduction [1] mechatronic systems and applications from the manufacturing industries
are given which implement software, electronics and mechanical hardware. The development of
such systems is highly time consuming and costly. Also, people have to learn to operate with
such complex industry applications. The goal of saving time and money leads to the requirement
of having an environment that allows to develop prototypical mechatronic applications rapidly.

In the section Survey of Prototyping Approaches first, a criteria catalog for evaluating rapid
prototyping environments is given and second, various rapid prototyping environemnts are pre-
sented. The presented environments have their focus in different areas. Fischertechnik and
Lego Mindstorms NXT are visually programmable customer construction sets with actuators
and sensors. Arduino is an programmable circuit board where actuators and sensors can be con-
nected. Phidgets and d.tools are environments for rapidly developing physical interfaces. Their
hardware and software model focuses on standardization for extendability and reuse. Phybots
provides a programmable robotic development environment. Microsoft Robotics Developer Stu-
dio features a complex virtual simulation and real control of robotic applications. Applying the
criteria catalog on these environments results in two findings: First, environments which feature
easy to use rapid prototyping are lacking either the simulation part or the the implementation
part. And second, environments which feature a virtual simulation and real mechatronic control
are confronting the user with too much complexity.

Therefore the suggested solution is to come up with a new environment that covers virtual
simulation and real control of mechatronic applications in a rapid prototyping process. This
newly designed and developed environment is called Fischertechnik Simulator and allows to
construct fischertechnik applications in a 3D virtual environment. The mechatronic behavior
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of fischertechnik- actuators and sensors can be intuitively defined in the 3D environment. This
defined mechatronic behavior can be transmitted to an analogue real fischertechnik construc-
tion via an arduino board. This was showed by designing a functional 2D plotter which plots a
schematic house in the simulation of the 2D plotter and the corresponding physical implemen-
tation of the 2D plotter.
The Fischertechnik Simulator compared with the other environments showed that the features of
the Fischertechnik Simulator are fulfilling the requirements from the criteria catalog by offering
less complexity to the user. Therefore the Fischertechnik Simulator enables to rapidly develop
prototypes for industrial applications with low costs.

For future work the Fischertechnik Simulator provides a good implementation of a mecha-
tronic design environment. Open features for future updates are:

• High power actuators (motors) requires an external power supply and additional control
logic. An optimal solution would be to attach the additional control logic on the motor
and hide it from the user.

• Provide analog data for actuators and sensors. In the current release only digital values (5
Volt or 0 Volt) are implemented.

• Implementing a visual programming language. For complex mechatronic applications the
control via the motors timing diagram can be difficult. Therefore an improvement for the
visual control logic would speed up the prototyping process.

• Extend for Lego Mindstorms NXT bricks. Still, only a small set of fischertechnik pieces
is implemented. The environment can be enriched with various pieces from all kind of
construction sets.
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