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Abstract

Methods for medical image acquisition have rapidly evolved and the amount of digital images
acquired in the daily image production of hospitals has exponentially increased in the last 30
years. Therefore, methods for the efficient automatic localization of anatomical landmarks on
medical images need to be elaborated.

Recent publications addressing this problem use regression models. Despite convenient re-
sults the main shortcomings of most of these models are superfluous time and memory con-
suming computations. Inspired by the memory efficient random regression fern model, the aim
of this thesis is to develop a novel regression model that allows to obtain accurate results with
memory efficient computations.

Based on an exhaustive literature research on existing methods, regression based state of the
art methods are analyzed to enable the development of a novel approach. The accuracy of this
new approach is evaluated using K-fold cross validation on CT head scans, MRI T1 weighted
head scans and CT whole body scans.

The proposed method achieves a mean deviation of 13.05mm on CT whole body scans in
less than a minute.

The contribution of this thesis to the improvement of methods for the efficient automatic
localization of anatomical landmarks on medical images is three-fold: (1) Two novel feature
descriptors tailored to medical images are designed. One of the introduced image features
(cuboidalBRIEF) outperforms all other tested feature descriptors. (2) A robust boosted regres-
sion model inspired random regression ferns is developed. The model stands out through its
significantly higher accuracy as well as time and memory efficient computations. (3) A gen-
eralized multi-phase landmark location system allowing is presented. While the second phase
results turn out to be less accurate than anticipated the first phase results of the system are highly
satisfying.
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Kurzfassung

Die Anzahl der täglich aufgenommen digitaler medizinischen Bilder ist durch die Weiterent-
wicklung bildgebender Verfahren exponentiell gestiegen. Effiziente Verfahren zur vollautomati-
schen Lokalisierung anatomischer Landmarken auf medizinischen Modalitäten gewinnen daher
immer mehr an Bedeutung.

In akktuellen Publikationen werden zu diesem Zweck Methoden auf Basis von Regressi-
onsmodellen verwendet. Trotz zufriedenstellender Resultate dieser Ansätze sind die angewand-
ten Modelle meist zu speicher- und rechenaufwendig um einen hohen Durchsatz zu ermögli-
chen. Inspiriert durch das speichereffizientes random regression fern Verfahren wurde in dieser
Diplomarbeit ein innovatives Regressionsmodell entwickelt, dass Speichereffizienz und exakte
Lokalisierungsresultate kombiniert. Dieser neuartige Ansatze wurde auf Basis einer ausgiebigen
Literaturrecherche über existierende Verfahren ausgearbeitet. Die abschließende Evaluierung er-
folgte mittels K-fold cross validation auf CT und MRI T1 gewichteten Scans des Kopfes sowie
auf CT Scans des ganzen Körpers.

Der Beitrag der vorliegenden Arbeit zu den aktuellen Forschungsbemühungen gliedert sich
in drei Teile: (1) Es wurden zwei neue Merkmalsextraktoren für medizinische Modalitäten ent-
worfen. Die Resultate aller getesteten Merkmalsextraktoren werden durch die Resultate eines
der neuen Merkmalsextraktoren (cuboidalBRIEF) übertroffen. (2) Aufbauend auf das random
regression fern Model wurde ein robustes Regressionsmodell entwickelt, welches sich sowohl
durch Speicher- und Zeiteffizienz als auch durch gute Lokalisierungsresultate auszeichnet. (3)
Im Zuge dieser Arbeit wird ein allgemeines Mehrphasenkonzept zur automatischen Landmark-
lokalisierung vorgestellt. Diese liefert drotz der geringen Verbesserung der Resultate durch die
zweite Phase bereits in der ersten Phase sehr zufriedenstellende Resultate liefert.
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CHAPTER 1
Introduction

In this chapter motivates the topic of this thesis and gives an overview of the state of the art.
Subsequent the contribution of this thesis is discussed. Furthermore, the mathematical notation
used in this thesis is introduced.

1.1 Motivation

Medical image acquisition methods continues to undergo rapid innovation and improvement of
its use in medical diagnosis e.g., examination of the human body evolved from conventional
film radiography imaging developed by Wilhelm Conrad Röntgen in 1895 to digital state of the
art high throughput image production methods [5]. There has been an exponential increase of
image data produced in the medical field during the last decade [55]. As an example the increase
of acquired images at the Radiology Department of the Geneva University hospitals is shown in
Figure 1.1.

Figure 1.1: Daily image production in the Radiology Department of the Geneva University
hospitals, by Müller et al. [55].
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The integrated delivery system consortium Kaiser Permanente acquired about 700 TB of
data by early 2009 and the University Hospital of Vienna reported in 2011, to produce ≈ 100
GB new images per day [20]. In 2010 the European Commission announced that 30% of the
world storage capacity is occupied by medical images [78]. Deserno [20] states that the amount
of images is expected to increase and therefore a pressing need to support the radiologists by
automatically image analysis exists. According to Müller et al. [56], Content Based Image
Retrieval (CBIR) on medical images to support the clinical decision-making were proposed by
several articles. Rehman et al. [66] give a comprehensive survey on CBIR including CBIR in
the medical domain. To approached an automatic retrieval of similar cases the localization of
anatomical landmarks is a crucial aspect, according to Donner et al. [21].

1.2 Problem Statement

The aim of this thesis is to provide a reasonable fast and accurate anatomical landmark predic-
tion system for Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) images.
In this thesis anatomical landmarks are any kind of predefined, not necessarily anatomically im-
portant locations in an image. Even though the landmark prediction system is only evaluated on
CT and MRI T11 weighted images, the method itself is a generic approach for landmark local-
ization on large data using regression analysis. An introduction to CT and MRI images is given
in Section 2.4.

The estimated anatomical landmark positions can act as a basis for morphometric measure-
ments e.g., knee alignment angles [3,27,39,81] or assessment of osteoporosis fractures [31,34].
Moreover, segmentation approaches such as Active Shape and Appearance Models [13, 14],
Graph Cuts [4] or Random Walks [30] require coarse initial positions. The landmark detection
also serves as basis for landmark and image based registration methods [12, 44, 71].

1.3 State of the Art

This section gives an overview on literature in the field of landmark localization in medical im-
ages. The related work to this thesis is grouped into four classes: optimization based approaches,
classification based approaches, marginal space learning based approaches and regression based
approaches.

Optimization based approaches can be separated into heuristic optimization methods and
discrete optimization methods. Cardillo et al. [10] and Inness et al. [38] propose genetic pro-
gramming based approaches for landmark localization on medical images. However, there is
not any further development of genetic programming methods for landmark localization. Until
2013, several publications on landmark detection approaches using discrete optimization tech-
niques are published e.g., [21,24,25,52,70]. Several of those approaches e.g., Major et al. [52],
Donner et al. [21], use a mixture of discrete optimization and machine learning techniques such
as classification or regression to acquire accurate results in an reasonable amount of time.

1To capture different anatomical structures, MRI is usually generates T1 or T2 weighted images.
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Classification using machine learning can be approached by discriminative and generative
models (cf. [57]). Iglesias et al. [37] propose a combination of generative and discriminative
classification models for automatic segmentation of anatomic structures on CT Scans. A random
forest classification approach for lung detection and segmentation is proposed by Montillo et
al. [54].

Until 2013, several publications on landmark localization methods using regression models
for estimating displacement vectors to the landmark positions have been released. One of the first
efficient approaches using random forest regression on CT volumes were published by Criminisi
et al. [15]. Later on the proposed approach were generalized for organ segmentation on CT
series [16] and several related methods for medical image data are published e.g., [11, 18, 21].
Furthermore, Pauly et al. [64] propose a memory efficient alternative method on MR dixon
sequences by using random fern regressors. Donner et al. [21] use a hough forests based two
step approach for accurate landmark localization on CT images.

In addition to the classification and regression approaches there exists work on marginal
space learning for localization of anatomical landmarks by Zheng et al. [83, 85]. The proposed
method were patented by Siemens Corporate Research in 2012 [84].

1.4 Contribution

This work presents a generalized approach for anatomical landmark prediction on medical im-
ages. Moreover, an evaluation of the current state of the art binary feature descriptors tailored to
medical images is given. Two novel binary feature descriptors are presented. The recently pub-
lished approaches on landmark localization use regression analysis. Therefore, a robust boosted
extension of the random fern regression [64] combined with a multi-step procedure allowing fast
and accurate landmark detection in large data is presented. Finally, this work gives an evaluation
of the method described on CT and MRI T1 weighted images.

1.5 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces basic concepts that
are used in this thesis. Chapter 3 presents the novel feature representations which have been
developed in the context of this thesis and Chapter 4 introduces the novel regression model used
for the landmark predictions.

A detailed discussion of the evaluation measurements, methods and an explanation of the
results are given in Chapter 6. Chapter 7 gives a discussion of the results and explains possible
future work. Additional figures and the source code of the feature descriptors developed for this
thesis can be found in the Appendix.

3



1.6 Mathematical Notation

The following mathematical notation is used in this thesis.

B The set {0, 1}.
R The set of real numbers.
N (µ, σ2) A normal distribution with mean µ and variance σ2.
pdf The probability density function of a probability distribution.
E[x] The expectation value of a random variable x.
P (x) The probability of random event x.
P (x|y) The conditional probability of random event x if y occurred.
I The identity matrix.
0 A vector of zeros.
h(x) A hypothesis function.
L(h(x)) Model loss of a hypothesis function.
ε Random noise or error value.
xi The ith vector of independent input variables or a multivariate feature response.
xij The jth component of the ith vector xi.
X The space of independent input variables.
yi The ith vector of conditional output variables.
ŷ The prediction result of conditional output variables.
yij The jth component of the ith vector yi.
Y The space of conditional output variables.
D A training / testing data set.
I A volumetric image.
p A position vector on I.
x,β The inner product of vector x and vector β.
x ◦ β The component wise product of vector x and vector β.
Np The neighborhood of a position vector.
#Np The number of elements in Np.
I(p) The intensity function applied on I.
P A partition of a space.
C A cell of a partition.
F A fern of an ensemble of random ferns.
IG Information gain.
H Information entropy.
β Regression model parameters.
ω, γ Weighting parameters.
ν Confidence value of hypothesis function.
η, θ Threshold parameters.
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CHAPTER 2
Preliminaries

This chapter reviews the basic concepts used in this thesis. General concepts on regression
analysis are given in Section 2.1 and 2.2. Furthermore, basic concepts that are related to discrete
cross-sectional images and medical image modalities are given in Section 2.3 and 2.4.

2.1 Linear Regression Analysis

Regression analysis is a statistical technique for estimating the relationship between indepen-
dent and conditional variables. Linear regression analysis assumes that the relationship is based
on a linear oracle function o(x) and tries to model this relationship based on sampled training
data. Formally, the independent variables are denoted by x and the conditional variable is de-
noted by y. Moreover, we want to estimate the hypothesis function h∗(x) which is the optimal
approximation of o(x).

Let a scalar conditional variable y considered to be linear in x = [x1, . . . , xDx ]>. Moreover,
the differences of y around the expectation value E[y|x1, . . . , xDx ] are assumed to be additive
and Gaussian distributed. According to Hastie et al. [33] the linear regression model can there-
fore be formulated by

h(x) = β0 +
Dx∑
j=1

xjβj + ε (2.1)

where β is a the vector of unknown model coefficients and ε is additive and zero-mean
Gaussian distributed noise.

Furthermore, suppose that the conditional vector y = [y1, . . . , yDy ] depends on x and a
linear model for each yi can be assumed. Equation 2.1 can then be extended to the multiple
multivariate linear regression model:

yi = β0,i +

Dx∑
j=1

xjβj,i + ε (2.2)

5



The linear regression model can be rewritten in matrix notation as:

Y = XB + E (2.3)

The model coefficients of a multiple multivariate linear regression model can be found by
minimizing the least squares error

β = argmin
β∈R

N∑
i=1

Dy∑
j=1

(yij − βjxi)2. (2.4)

The final model can then be used to predict the corresponding conditional variables on un-
seen independent variables x.

2.2 Generalized Regression Analysis

However, in real world problems the relation between y and x is typically not linear. In the case
of non-linear regression models we augment the input vector x with 1, . . . ,M transformations
of x. We can thereby model the relationship between y and x as a linear basis expansion in x.

y =
M∑
m=1

tm(x)βm (2.5)

The transformations tm(x) can be linear, polynomial, non-linear transformations of single
or multiple inputs or indicator functions for piecewise linear models. In the following, the
transformations will be similar to indicator functions for piecewise linear models.

Note that the estimation of the model coefficients for non-linear regression models is not
trivial and the underlying basis functions are unknown.

2.3 Cross-Sectional Volumetric Images

A three-dimensional cross-sectional image I is made up of a matrix of size IX × IY × IZ where
I(p) denotes the intensity value on I at position p. Each cross-sectional image is represented by
a stack of parallel two-dimensional cross sections (planes) through the patient tissue. Therefore,
each plane can be considered to be a rectangular image represented by a matrix of size IX × IY
with equal horizontal ∆x and vertical picture element (pixel) spacings ∆y. Figure 2.1a illus-
trates a two-dimensional image in terms of a uniform grid with origin on the left upper corner.
Each pixel holding an intensity values in the discrete image is illustrated by a grid point on the
lattice.

However, the planes of a cross-sectional image do not necessarily have to be equidistant
and the distances between the planes can differ from the horizontal and vertical pixel spacing
within the planes. Therefore, each volumetric element (voxel) Ix,y,z additionally holds the prop-
erties width, height and depth to the underlying intensity values. Figure 2.1b illustrates a cross-
sectional image as a stack of two-dimensional slices, each voxel is visualized by a grid point
on the three-dimensional lattice. Inspired by the general notation of three-dimensional data, the

6



(a) Illustration of 2D uniform grid. (b) Illustration of cross-sectional grid.

Figure 2.1: Illustration of image data on a discrete grid in the x, y and t domain. Figures created
by author.

third-dimension is illustrated in the time domain with slice spacing ∆t. Please note that Fig-
ure 2.1b shows a equidistant stack which is not necessarily the case for general cross-sectional
images.

2.4 Image Modalities

This section briefly explains two relevant cross-sectional imaging techniques. Both methods
produce three-dimensional volumetric images of living patients in the form of multiple two-
dimensional slices. The resulting volumetric image consists of voxels, each representing the
patient tissue at a given position.

2.4.1 Computed Tomography

CT is a medical imaging technique that uses slice-wise measurements of X-ray transmissions
through a patient to reconstruct a cross-sectional image of axial planes. Measurements of narrow
X-ray beams from different directions will be used to construct the image. An illustration of a
CT scanner is shown in Figure 2.2a.

An algorithm assigns intensity values in Hounsfield unit scale to the captured measurements
of the transmitted X-rays. The Hounsfield unit scale ranges from −1024HU , corresponding to
air, up to 3072HU for very dense bone. Therefore, CT voxel intensity values are well-defined
and directly correspond to the underlying tissue type. However, the actual intensity values of the
tissues vary from one CT scanner to another and the intensities of the images are therefore not
directly comparable. An exemplary whole body CT scan of a patient is shown in Figure 2.2b.
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(a) CT scanner with patient P placed on the ex-
amination table, by Brand and Helms [5].

(b) Exemplary visualization of a CT scan in
the coronal plane, taken from the Whole Body
Morphometry Project [58]. Figure created by
author.

Figure 2.2: Illustration of a CT scanner (a) and an exemplary visualization of CT scan (b).

2.4.2 Magnetic Resonance Imaging

In contrast to CT, which only evaluates X-ray absorption, MRI allows to evaluate multiple tissue
characteristics. Brant and Helms [5] give a detailed discussion on the tissue characteristic that
can be captured by MRI. To evaluate the landmark localization on MRI images the MRI T1
weighted scans acquired by Stephan Wolfsberger from the Medical University of Vienna, in the
context of the development of an intra-operative virtual endoscopy system by Schulze et al. [72],
have been used. However, only MRI T1 weighted and magnetic resonance angiography (MRA)
data has been acquired during the studies. Therefore, only T1 weighted MRI images will be
discussed in this thesis. T1 is a measurement of how quickly a tissue can get magnetized. In
brain images T1 relaxation times are useful to distinguish between white matter and grey matter.
White matter is mostly used to transmit signals from one region to another whilst grey matter
contains neural cell bodies which are not contained in white matter. Figure 2.3 illustrates the
visual difference between white and grey matter on MRI image of the human brain. Areas
marked with (1) and (2) are regions of grey matter and the area marked with (3) is a region of
white matter.
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Figure 2.3: Illustration of a MRI T1 weighted scan in the axial plane, Figure created by author.
Areas (1) and (2) illustrate regions of grey matter whilst area (3) illustrates regions of white
matter.

Another advantage of MRI is that the images can be obtained in any arbitrary plane. How-
ever, in contrast to CT the intensity values vary greatly from image to image and therefore need
to be normalized afterwards if a correspondence between images based on the intensity values
needs to be established. The MRI images of the human brain used for this thesis are affine
registered to a common image but not intensity normalized. However, the feature descriptors
presented in Chapter 3 do not require pre-normalized images.

2.5 Summary

One possibility to estimate the relationship between independent and conditional variables is
linear regression. The optimal parameters of a linear model are found by minimizing the least
squares error of the model (cf. Equation 2.4). By augmenting the independent variables with
transformations of them self, the regression model can be generalized for non-linear problems.

This thesis concerns about medical imaging techniques that reconstruct cross-sectional im-
ages. A three-dimensional cross-sectional images is defined by a grid of intensity values. The
spacings between the grid elements are defined by horizontal, vertical and slice spacings. In the
medical domain those cross-sectional images are not necessarily equidistant.

To obtain cross-sectional images from patient tissue this thesis focuses on the imaging tech-
niques CT and MRI. CT images contain intensity values ranging from 0HU to 3000HU and
have a well defined correspondence to the underlying tissue category. In MRI the correspon-
dence is not well defined and the images produced depend on the weighting of the scans. This
this focuses on T1 weighted scans of the human brain which allow the examination of grey
matter, white matter and tumor tissue.
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CHAPTER 3
Feature Representation

In order to allow the statistical analysis of image data the intensity values for the voxels of
the volumetric image have to be transformed into feature responses. In image processing an
image feature response denotes information about specific structures of the underlying image.
This structures can range from simple features like edges or corners to complex features such
as curvature, structure tensor [43], texture information or binary tests between voxels or image
regions. Jähne [40] gives a comprehensive discussion of different types of feature representation
for digital image processing.

In contrast to high level features like structure tensor, Gabor filter [19] or Tamura [74] in
this thesis two less computationally expensive approaches tailored to medical images are used
and evaluated. The first approach is based on the combination of Local Binary Patterns (LBP)
on 3D asymmetric cuboidal regions [64] and a Multivariate Gaussian LBP feature by Donner et
al. [23]. The second approach combines the idea of LBP on cuboidal regions with the Gaussian
distributed variant of the Binary Robust Independent Elementary Feature (BRIEF) [9].

In the following sections LBP, LBP on 3D asymmetric cuboidal regions and BRIEF are
explained. Furthermore, the two novel feature descriptors used in this thesis are introduced
in Section 3.1 and 3.2. Implementation details on the proposed feature descriptors are given
in Section refsec:featureImplementation. An evaluation of the feature descriptors is given in
Chapter 7.

3.1 Gaussian Distributed Binary Tests on Cuboidal Regions

The LBP are effective descriptors of the textural neighborhood of pixels in an image by using
binary derivations of the intensity values [49]. Moreover, LBP benefit from their computational
simplicity and discriminative power [65]. The following subsections give an introduction to the
previous work and introduce the novel feature GaussLBP.
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3.1.1 Local Binary Pattern (LBP)

The textural feature LBP was first described by Ojala et al. [59] as an extension of the textural
units published by Wang and He [80]. In case of the LBP, the 3 × 3 neighborhood of a pixel
location p is thresholded by the intensity value pixel p and each resulting neighbor response
n = 1, . . . , 8 is multiplied by a exponential weight ωn = 2n−1. Figure 3.1 illustrates the
approach of Ojala et al. [59] using the 3× 3 neighborhood around the center pixel with intensity
value six. Finally, the sum of the multiplied values is obtained.

Figure 3.1: Illustration of local binary patterns, by Ojala et al. [59].

Moreover, Ojala et al. [60] presente an arbitrary circular derivation for the LBP. Therefore,
the symmetric circular neighborhood is defined by p > 0 neighbors with equally spread pixel
spacings and a radius r > 0. The displacement coordinates of the neighboring pixel n are given
by:

[x, y] :=

[
r cos

2πn

p
,−r sin

2πn

p

]
(3.1)

The symmetric circular neighborhood is then captured with the same thresholding and re-
duction steps as described above. Because of the implicit dimension reduction the LBP with a
3 × 3 neighborhood can be efficiently stored using an unsigned 8-bit integer [49]. Therefore,
Fehr and Burkhardt [28] present a variant of the LBP for volumetric data that works on voxels
instead of pixels. Moreover, 3D LBP is shown to be an effective image feature on medical image
data for search and retrieval tasks [8, 65].

3.1.2 LBP on Asymmetric Cuboidal Regions

Pauly et al. [64] propose to use a textural rich adaption of the 3D LBP by considering asymmetric
cuboidal regions. Instead of a single center voxel on voxel location p ∈ R3 a 3D region Rsp at
scale s centered on p is used. In order to capture the neighborhood of p the K neighbors N s

p :=

{Rsq1
, . . . , RsqK

} at voxel positions qi ∈ R3 with 3D regions of different sizes, orientations,
and offsets are extracted. The different sizes, orientations and offsets are chosen randomly.
Moreover, let the function BV be defined as:

BV (a, b) =

{
1, if a < b
0, else

(3.2)

And the mean intensity over any region Rsp on a scale s from any voxel location p is defined
as
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IM(p) =
1

#Rsp

∑
q∈Rs

p

I(q) (3.3)

where I(q) is the intensity value on voxel location q. Therefore, the LBP on 3D asymmetric
cuboidal regions for K neighbors is defined as:

LBP (p) :=
K∑
i=1

2i−1BV (IM(qi), IM(p)) (3.4)

Figure 3.2 shows a 2D example with six neighbors (yellow rectangles) of the voxel location
p and the rectangle Rsp (red rectangle).

Figure 3.2: LBP on 3D Asymmetric Cuboidal Regions (2D example). Figure created by author.

The proposed adaption benefits from the increased number of degrees of freedom i.e., nine
timesK, combined with random sampling. Using regions instead of single voxels also results in
a less noise sensitive feature description and emphasizes textural information to be captured. In
order to reduce the dimensionality of the resulting binary vector Pauly et al. [64] propose to use
the same weighting scheme as used for LBP. As described in [64] this feature descriptor turns
out to be efficient for MRI Dixon sequences. In contrast to common MRI, Dixon published an
imaging technique for water and fat separation. Ma [50] gives further details on MRI Dixon
sequences. To benefit from the separation, the feature response will be computed over the water
and fat channel of the image.

3.1.3 Extending LBP on Gaussian Distributed Cuboidal Regions

Inspired by the multivariate Gaussian distributed binary test feature proposed by Donner et al.
[21] and the good results achieved with the LBP on asymmetric cuboidal regions a combination
of both features is presented is this thesis.

In contrast to the common LBP, Donner et al. [21] propose to compute a binary vector of
gray value differences between the voxel location andK randomly chosen neighbors. In order to
reinforce the local intensity changes a multivariate Gaussian distribution is used to generate the
neighborhood offsets. Combining the feature representation described with the idea of cuboidal
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regions leads to the novel feature descriptor Gaussian distributed binary tests on cuboidal regions
(GaussLBP).

Similar to Equation 3.4 let us consider voxel location p ∈ R3 and K neighbors N s
p :=

{Rsq1
, . . . , RsqK

} located at voxel locations qi ∈ R3 with their rectangular 3D regions with
different sizes, orientations and offsets. The proposedK dimensional feature vector is described
by:

GaussLBP (p) :=

 BV (IM(q1), I(p))
. . .

BV (IM(qK), I(p))

 ∈ BK (3.5)

Using this description allows to combine the benefit of capturing local intensity changes with
the benefit of capturing textural information by using a larger number of degrees of freedom. As
can be seen in comparison to Equation 3.4 for the Gaussian distributed variant only the intensity
value of the voxel location p is used instead of the mean intensity over a randomly defined
cuboidal region around p. By using this simplification the degrees of freedom are reduced but
the property of capturing the surrounding textural information will be kept.

In contrast to the LBP based approach of Pauly et al. [64] reducing the binary vector by using
their decimal representation is not used for this approach. Instead, the feature is represented by
the computed binary vector which is similar to the approach proposed by Donner et al. where
(K = 100) neighbors are used to describe the texture. Furthermore, the representation of 100-
dimensional binary vectors as decimal values is not feasible using Matlab as the largest positive
value that can be represented for 64-bit unsigned integers is 264 − 1.

A visualization of exemplary feature responses of the feature descriptor proposed by Donner
et al. [21] and the modified feature descriptor using 3D cuboidal regions on a synthetic 3D image
and a real CT full body scan are shown on Figure 3.3 and Figure 3.4. The visualizations show
one slice of the volumetric datum and in case of the feature responses the voxel intensities
correspondent to the sum of the binary vector computed in voxel location.

(a) (b) (c)

Figure 3.3: Middle XY-Slice of: synthetic 3D image (a), feature response by Donner et al. [21]
(b), feature response using GaussLBP (c). Figures created by author.
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(a) (b) (c)

Figure 3.4: 215th axial plane of a downsampled CT full body scan (a), taken from the Whole
Body Morphometry Project [58]. Feature response by Donner et al. [21] (b) and feature response
using GaussLBP (c). Figures created by author.

It can be seen that the proposed descriptor gives a smoother and more global response over
the image than the feature descriptor by Donner et al. [21] which results in a better partitioning of
the feature space, see Chapter 7. On the other hand GaussLBP suppresses small local differences
which might lead to an unintentional loss of information. Figure 3.4 shows an exemplary case of
GaussLBP with K = 15 neighbors sampled from a multivariate Gaussian distribution N (p,Σ)
with Σ = I ∗10 and I is the 3 × 3 identity matrix. The regions are sampled from a uniform
distribution with µ = 0 and σ2 = 5. It can be seen that GaussLBP is with this configuration
too rough to capture small structures for the 127 × 127 × 430 image. It is important to note
that for simplicity the implementation of GaussLBP given in Appendix A.1 computes the sum
of intensity values inside a region bidirectional using the same offset. Therefore, the cuboidal
region dimensions are twice the sampled values which leads in the case of Figure 3.4 to region
dimensions of up to 10× 10× 10.

3.2 Binary Tests on Cuboidal Region Pairs (cuboidalBRIEF)

An alternative to the common LBP for 2D images was proposed by Calonder et al. [9] in 2010.
As described by Heinly et al. [35] who evaluated the performance of several binary features
in terms of robustness against each other, BRIEF outperforms other binary feature descriptors
for keypoint recognition. The following subsections discuss BRIEF in detail and introduce the
novel feature cuboidalBRIEF which extends BRIEF by using cuboidal regions.

3.2.1 Binary Robust Independent Elementary Features (BRIEF)

BRIEF follows the assumption that image patches can be classified using 512 pairwise binary
tests inside a region [35]. In contrast to LBP which computes point wise descriptions of the
neighboring texture the BRIEF descriptor computes a decimal representation for a region located
at center pixel p ∈ R3 of size S × S by evaluating pair wise differences of tuples (q′,q′′) with
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q′,q′′ ∈ R2 inside the region. BRIEF is therefore defined as:

BRIEF (p) :=
K∑
i=1

2i−1BV (I(q′i), I(q′′i )) (3.6)

Moreover, Calonder et al. [9] evaluated different neighborhood functions to select the test
locations (q′k,q

′′
k). Calonder et al. [9] propose to choose the test locations in BRIEF using

(Q′,Q′′) ∼ N (µ,Σ). The tests are sampled from an multivariate Gaussian distribution with
mean on the region center µ = p and the covariance Σ = I ∗ 1

25S
2 where I is the identity

matrix. Moreover, Calonder et al. [9] propose to use 128, 256 or 512 sampled tests for the
BRIEF descriptor.

3.2.2 Extending BRIEF with cuboidal regions

Influenced by the BRIEF descriptor and the proposed GaussLBP an extension of BRIEF using
cuboidal region pairs is implemented. In contrast to BRIEF each pair wise binary test (q′,q′′)
is augmented by the intensity mean (cf. Equation 3.3) calculated over the regions around q′ and
q′′. The feature response of the binary test feature on cuboidal region pairs (cuboidalBRIEF) for
a region located on voxel location p ∈ R3 of size S × S × S with K pair wise tests is defied as:

cuboidalBRIEF (p) :=
K∑
i=1

2i−1BV (IM(q′), IM(q′′)) (3.7)

Similar to LBP on asymmetric cuboidal regions by Pauly et al. [64] the dimensions of the
cuboidal regions are sampled from an uniform distribution. Moreover, the proposed extension
implicitly solves the noise-sensitivity issue of BRIEF described by Calonder et al. [9] and ad-
ditionally captures the textural information around each test pair. In contrast to the 128, 256
or 512 binary test used for BRIEF in this thesis only a small amount of binary tests have been
used. This is done to reduce the amount of required memory and to keep the computation of the
decimal representation feasible.

3.3 Implementation Details

The feature descriptors proposed, GaussLBP and cuboidalBRIEF, depend on the computation of
summed cuboidal regions. In order to efficiently compute those sums a summed-area table also
known as integral image is used.

3.3.1 Summed-Area Tables

The summed-area table has first been published in 1984 by Crow [17] and became prominent
in 2001 through Viola and Jones [79]. The basic idea is to replace the intensity values on an
image by a value that represents the sum of the intensities of all pixels above and to the left of
the pixels. More formally the value at pixel location (x, y) is defined as:
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T (x, y) =
x∑

x′=x0

y∑
y′=y0

I(x′, y′) (3.8)

Representing an image by the summed-area table allows to compute the sum of intensities
over an arbitrary region in constant time by evaluating

S(x, y, w, h) = T (x, y) + T (x− w, y − h)− T (x, y − h)− T (x− w, y) (3.9)

where (x, y) denotes the lower right corner of a rectangle with width w and height h. In
2005 Ke et al. [41] generalized the summed-area table for volumetric data. The summed-area
table for volumes will be computed by:

T (x, y, z) =

x∑
x′=x0

y∑
y′=y0

z∑
z′=z0

I(x′, y′, z′) (3.10)

In order to retrieve the sum of intensities over an arbitrary cuboidal region the eight region
corners have to be evaluated. Tapia [75] generalizes the computation of a sum of intensities for
a region given a n-dimensional integral image with the equation

S :=
∑
b∈Bn

(−1)n−|b|1T (pb) (3.11)

where b is a binary vector from the set of binary values B and pb corresponds to the region
corners e.g., p{0,0,0} corresponds to corner I(x0, y0, t0) in Figure 3.5 and p{0,1,0} corresponds
to corner I(x0, y1, t0).

In the implementation of summed-area tables an additional padding is necessary such that
single voxels on the edges of the volume can also be evaluate using Equation 3.3.1. Moreover,
due to the commutative computation of the summed-area table the numerical error accumulates
over the table. In this thesis the summed-area tables are therefore always computed using double
precision values.

The pseudo codes of GaussLBP and cuboidalBRIEF are depicted in Appendix A.1 and A.2.
Both implementations use summed area tables to efficiently estimate the intensity mean inside a
region.
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Figure 3.5: Illustration of a region in a 3D summed-area table, by Tapia [75].

3.4 Summary

Inspired by textural rich adaption of the 3D LBP by Pauly et al. [64] and the feature descriptor
by Donner et al. [21] this thesis derives the feature descriptor GaussLBP. In the notion of LBP
GaussLBP uses binary derivations of the sum of intensity values of randomly sampled cuboidal
regions around center voxel. The response is computed by applying Equation 3.5. In contrast to
LBP the binary vector obtained using GaussLBP is not represented by its decimal value, as the
number of binary tests are too many, K = 100.

In addition to GaussLBP, the BRIEF feature descriptor is extended in a similar manner. As
BRIEF describes image patches using binary tests, the extension cuboidalBRIEF describes sub
volumes using binary tests between cuboidal regions using Equation 3.7. In order to efficiently
compare the sum of intensity values of two regions the n-dimensional generalization by Tapia
[75] of the summed-area table is used for GaussLBP and cuboidalBRIEF.
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CHAPTER 4
Regression Model

Several articles present methods to localize anatomical landmarks on medical images by apply-
ing machine learning techniques on extracted image features. Especially the use of multiple
multivariate regression analysis to predict landmark position is proposed by several publications
until 2013 e.g., [11, 15, 16, 18, 21, 23, 64]. Inspired by the, in comparison to [16, 21], less accu-
rate but memory efficient random regression ferns by Pauly et al. [64] a boosted variant of the
random regression fern approach is introduced.

Section 4.1.1 introduces the basic concepts of random ferns for classification problems. In
Section 4.1.3 the random regression ferns approach is described. The first derivation of boosted
random regression ferns are given in Section 4.2. In the last section the extension of robust
boosted random regression ferns, which are used for the anatomical landmark prediction, are
introduced.

4.1 Random Regression Ferns

The random fern classifier is a memory-efficient alternative to random forest and were first
published by Özuysal et al. [62]. The idea of using random ferns for key point recognition is
based on the observation that image patches can be recognized on the basis of randomly chosen
binary tests. Lepetit et al. [46] use simple, randomly chosen binary tests in combination with
decision trees (random trees). However, as decision trees are known to overfit the training set
and therefore result in a high generalization error, pruned trees or ensembles of trees are used,
cf. Rokach [67]. Therefore, Lepetit et al. [46] propose to use an ensemble of random trees and
to average the votes of the individual random trees.

4.1.1 Random Ferns for Classification

Random ferns classify test observations based on the binary features in a naïve Bayesian manner.
The aim of classification is to assign an unknown observation x to a class of a predefined set of
classes. The relation between input observations and classes will be learned during the training
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of the model. Formally, the ith feature consisting of D low-level features obtained using a
feature descriptor e.g., first eigenvalue of an eigenvalue decomposition of the Hessian matrix, is
defined by xi ∈ X D where X D ⊂ R. Furthermore, yi ∈ Y denotes the ith class. Therefore,
the training dataset D train for the supervised learning problem overN training observations can
be formulated as follows:

D train := {(x1, y1), . . . , (xN , yN )} ⊂X D ×Y (4.1)

Model Derivation. Given an unseen observation with feature x. In order to classify x the
maximum a posterior probability is evaluated as follows:

ŷ := argmax
y∈Y

P (y|x) (4.2)

According to Bayes’ theorem P (y|x) can be rewritten as follows:

P (y|x) =
P (x|y)P (y)

P (x)
(4.3)

By assuming the prior to be positive uniform and since the denominator is a scaling factor
that is independent from the class, the problem reduces to the following equation:

ŷ := argmax
y∈Y

P (x|y) (4.4)

Similar to Lepetit et al. [46], Özuysal et al. [62] use weak binary features depending on the
pixel intensity values. In order to strengthen the discriminative power Özuysal et al. [62] use
xi := [xi1, . . . , x

i
D]> with D ≈ 300. As computing the joint probability (cf. Equation 4.4) for

a large number of binary features is not feasible, Özuysal et al. [62] assume complete indepen-
dence between the features and therefore reduce the problem. In order to keep the correlation
between features but still have a traceable problem Özuysal et al. [62] partition the features into
M groups of size S = D

M called ferns. Please note that the groups itself are modeled to be inde-
pendent from each other, which leads to a naïve Bayesian formulation of the model. Therefore,
the conditional joint probability over all ferns can be computed as follows

P (x|y) =
M∏
k=1

P (F k|y) (4.5)

where F k := {xσ(k,1), xσ(k,2), . . . , xσ(k,S)} represents the kth fern and σ(k, s) is a random
permutation function with range 1, . . . , D. It can be seen that the problem complexity is reduced
from 2D, which is not traceable for large D, to M × 2S . This reduction makes the problem
traceable while some of the dependencies between the features are still modeled.
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4.1.2 Comparison to Random Forest

Random forest is an ensemble of independent trained random decision trees and was first in-
troduced by Breiman [7]. For classification problems, the training set D train is separated into
individual subsets using bagging to improve the generalization and robustness.

Bagging, also called bootstrap aggregating, was first presented by Breiman [6] in the context
of random forests. According to Hastie et al. [33], bagging is a general machine learning tech-
nique to improve unstable methods and prevent overfitting. Given a training set D train, bagging
generates M new training sets by sampling from D train uniform and with replacement.

After the generation of individual training sets, each of the M decision trees is trained using
the corresponding training set Dm

train. The basic building block of decision tree training are
iterative binary separation of the training data and class distribution estimation at each tree leaf
node. To estimate which input variable should be used for optimal separation of the training
data, the reduction in uncertainty, also known as information gain, is computed. Information
gain for decision forests is defined as

IG(D train) = H(D train)−
∑

i∈{L,R}

|D i
train |

|D train |
H(D i

train) (4.6)

where DL
train and DR

train denote the training subsets propagated to the left and right branch
and H() denotes the information entropy which is a measure of uncertainty. If the optimal
separation is found and the information gain is sufficiently large, the training set is separated
into DL

train and DR
train to compute the optimal separations for the next tree depth. According to

Breiman [7], this iterative splitting is continued until the tree is fully grown. Hastie et al. [33]
describes several approaches for pruning trees to reduce the effect of overfitting.

Random forest differs from random ferns by the following aspects: In contrast to random
ferns, where the class distributions at each node are computed using all observations, random
forest estimates the class distributions at each leaf node only over a small subset of training
observations. This is due to the hierarchical structure of random forests which is different to
the flat structure of random ferns. Moreover, in random ferns the probabilities are multiplied
in a naïve Bayesian manner whilst the probabilities for random forests are averaged over the
trees. Figure 4.1a and 4.1b illustrate the feature spaces of random ferns and random forest
which can be evaluated using two nodes or a tree-depth of two. The theoretic expressive power
of both methods is similar even though the feature space of trees seems at first glance to be much
higher dimensional. Özuysal et al. [61] give a detailed discussion on the differences of random
ferns and random forests and conclude that random ferns are competitive classifiers for keypoint
recognition.
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(a) Feature space for ferns
with two nodes.

(b) Feature space for trees with tree-
depth two.

Figure 4.1: Illustration of the feature spaces that can be evaluated by the different methods.
Figure adapted by author from Özuysal et al. [61].

4.1.3 Random Ferns for Regression

Random regression ferns based multiple organ detection on MR Dixon sequences were first
published by Pauly et al. [64] in 2011. In order to localize anatomical landmarks on MR Dixon
sequences, Pauly et al. [64] propose to use the same problem formulation as earlier published by
Criminisi et al. [15] on CT images.

The multiple multivariate regression model estimates the relationship between features ex-
tracted on the images (independent variables) xi ∈X D with X D ⊂ RD and relative displace-
ment vectors to K landmark positions (dependent variables) yi ∈ Y 3K with Y 3K ⊂ R3K .
Each feature xi consist of D concatenated low-level features. Moreover, Each yi is denoted by
concatenating the relative displacement vectors to all K landmarks. Therefore, x is the input of
the regression model and the aim is to regress the corresponding relative displacement vector ŷ.

In order to estimate the relationship between features and there corresponding relative dis-
placement vectors, Pauly et al. [64] propose to use an ensemble of random regression ferns
denoted by F = {F 1, . . . , FZ}. Similar to the previous definition of random ferns each fern
consists of a set of L of nodes. Furthermore, each node is associated with a randomly chosen
vector βzl ∈ RD with l = 1, . . . , L and a randomly chosen threshold θzl ∈ R. Please note that
the feature vector x and the vector βzl are of the same dimensionality and therefore the inner
product x,βzl is defined. After successfully training the random regression ferns each fern F z

is associated with a partition Pz = {Cz
1, . . . ,C

z
2L−1} of the feature space and simple hypothesis

functions as well as multivariate Gaussian distributions for each cell Cj whose parameters are
obtained during the training.

4.1.4 Training

The training set computed over N training observations obtained from all training images is
formulated as:
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D train := {(x1,y1), . . . , (xN ,yN )} ⊂X D ×Y 3K (4.7)

As a first step of the training of random regression ferns, for each node of a fern the vector
βzl and threshold θzl will be randomly chosen and fixed. Pauly et al. [64] propose to sample
βzl from a multivariate Gaussian distribution with zero mean and the D × D identity matrix
as covariance. Moreover, Pauly et al. [64] propose to select θzl from a Gaussian distribution as
well. However, this does not guaranty to result in expedient separations of the feature space.
Therefore, in this thesis θzl will be randomly selected for each node from a uniform distribution.
The interval of the uniform distribution is defined by:

δmin := min
x∈Dtrain

x,βzl (4.8)

δmax := max
x∈Dtrain

x,βzl (4.9)

Therefore, the probability density function is defined as:

g(θ) =

{ 1
δmax−δmin

, if δmin ≤ θ ≤ δmax
0, else

(4.10)

Moreover, let the function BV (c, d) be defined by:

BV (c, d) =

{
1, if c ≤ d
0, else

(4.11)

During training the random regression fern model obtains a binary vector bi ∈ BL of each
feature xi by concatenating the binary values bil obtained using:

bil := BV ( xi,βzl , θ
z
l ) (4.12)

Each binary vector bi implicitly encodes the index of the cell Cz
j of partition Pz in which the

feature vector falls. Therefore, each binary vector is converted into its decimal representation
using:

DEC(b) =

L∑
l=1

2l−1bl (4.13)

Moreover, let the indexing function IDX : BL → Pz be defined by:

IDX(b) := Cz
DEC(b) (4.14)

To simplify the modeling of the posterior probabilities P (y|x) of the high dimensional data
Pauly et al. [64] propose to model the posterior probabilities based on a mixture of posterior
distributions. Moreover, Pauly et al. [64] propose to use for each cell a multivariate Gaussian
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distribution whose parameters are estimated over the feature vectors that fall into the cell. In
order to estimate the parameters each cell is associated with

Dz
j := {xi ∈X D |IDX(bi) = Cz

j} (4.15)

where the components of binary vector bi are chosen according to Equation 4.12. Therefore,
the mean and the covariance of the multivariate Gaussian distribution N (µzj ,Σ

z
j ) for cell Czj

are estimated by calculating the mean and the covariance over Dz
j . Therefore, the posterior

probability in each cell Cz
t is modeled by:

P (y|x ∈ Dz
j ,P

z) ∼ N (µzj ,Σ
z
j ) (4.16)

In order to model the relationship between the feature vectors xi and there corresponding
relative displacement vectors yi, simple hypothesis function ht(x) e.g., a linear function, a ro-
bust linear function or a constant function, are estimated for each cell based on the corresponding
Dz
j . Finally, each fern is associated with a partition of the feature space and the corresponding

2L − 1 multivariate Gaussian distributions and 2L − 1 simple hypothesis function. Figure 4.2
illustrates the approach on one-dimensional toy data.

Figure 4.2: Illustration of one-dimensional toy example using linear functions for each cell, by
Pauly et al. [64].

4.1.5 Prediction

In order to predict the relative displacement vector y ∈ Y 3K for a training observation x ∈X D

the weighted predictions of all ferns are considered. Therefore, the conditional output variable
ŷ ∈ Y 3K is estimated using all fern models and posterior estimates from the different partitions
are then combined using averaging. According to Pauly et al. [64] the probability distribution of
y over the full feature space according to partition Pz is defined as:

P (y,Pz) =
2L−1∑
j=1

P (y|Dz
j ,P

z)P (Dz
j ) (4.17)

Formally the weight ψ ∈ R of the random regression ferns for y is defined by
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ψ =

Z∑
z=1

P (y|Pz) (4.18)

and the confidence ν ∈ R with
∑N

i=1 ν
i = 1 of for the prediction y is denoted by:

ν =
ψ

N∑
i=1

ψn
(4.19)

Therefore, ŷ is calculated as

ŷ =
1

ψ

Z∑
z=1

h(x)z P (h(x)z|Pz) (4.20)

where h(x)z defines the hypothesis function for partition Pz of the cell where the feature
vector x falls into according to Equation 4.14 with components of the binary vector b chosen
according to Equation 4.12. After estimating the displacement vectors the landmark locations
are computed by shifting each voxel location used for feature extraction by their corresponding
relative displacements. Moreover, Pauly et al. [64] propose to discard all predictions with low
confidence value to average over all estimated locations with high confidence e.g., ν ≥ 0.5.

4.2 Boosted Random Regression Ferns

In machine learning, a prominent classifier using boosting is called AdaBoost by Freund and
Schapire [29]. In contrast to randomized techniques like random forests or random ferns, Ad-
aBoost refers to a machine learning technique that combines the output of many weak learners to
an effective committee [33]. The main idea is to iteratively train weak learners (simple models)
and update a distribution of weights over the trainings set in each iteration. The weight on the
nth training observation at iteration t is denoted by γit ∈ R+. Initially all training observations
are equally weighted and on each round the weights will be updated according to the model
loss of the weak learner. For binary classification Freund and Schapire [29] propose to use the
following update rule for the distribution of weights where yi ∈ {−1, 1} and xi ∈X D:

γit+1 :=
γit exp(−νtyiht(xi))

Zt
(4.21)

Please note that νt ∈ R+ is the confidence of the weak learner ht(x) and the denominator
Zt is a positive normalization factor ensuring that

∑N
i=1 γ

i
t+1 = 1.

In the context of regression analysis using AdaBoost, an update rule similar to Equation
4.21 can be formulated. In 1997 Bertoni et al. [1] introduced AdaBoost-R∆ and propose to use
Equation 4.24 as an update rule for regression problems. Please note that yi ∈ Y with Y ⊂ R
and xi ∈X D. Moreover, please note that the name of AdaBoost-R∆ reveals that this approach
allows some ∆-deviation to the actual data. The indicator function HS is denote by:

HS(a) =

{
1, if a ≥ 0
0, else

(4.22)
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Moreover, the training error is defined as:

εt :=
N∑
i=1

νt HS(||ht(xi)− yi|| −∆) (4.23)

where νt ∈ R+ is the confidence weight of the weak learner ht(x) and ∆ ∈ R+ defines the
allowed deviation. Therefore, γit+1 ∈ R+ is defined as:

γit+1 := γit

[
εt

1− εt

]1−HS(||ht(xi)−yi||−∆)

(4.24)

It has to be mentioned that Bertoni et al. [1] do not use the computed weights γit for the weak
learners directly but rather assess the training data using ωit :=

γit∑N
j=1 γ

j
t

.

Inspired by AdaBoost-R∆ and the performance of AdaBoost in the field of face recognition
e.g., Viola-Jones face detector by Viola and Jones [79], a boosted variant of the random regres-
sion ferns is developed. The boosted random regression ferns effectively combine the intuition
of AdaBoost-R∆ with the stochastic approach of random regression ferns.

4.2.1 Training

Besides the combination of boosting with random regression ferns the partitioning procedure of
random regression ferns is modified. In the case of boosted random regression ferns each node
N z
l of a fern F z consists of a randomly chosen vector βzl ∈ RD sampled from a multivariate

Gaussian distribution with zero mean and the D × D identity matrix as covariance and two
threshold values ηzl ∈ R and θzl ∈ R with ηzl < θzl . Evaluating an observation xi on node N z

l

is done by deciding if ηzl ≤ xi, βzl ≤ θzl . Therefore, the previously defined Equation 4.11 is
substituted by:

BV (c, d, e) =

{
1, if c ≤ d ≤ e
0, else

(4.25)

Moreover, please note that therefore each component of the binary vector b is defined by
Equation 4.26 instead of using Equation 4.12. Equation 4.26 is defined by:

bil := BV ( xi,βzl , θ
z
l ) (4.26)

Therefore, the proposed extension allows to augment random regression ferns by an adap-
tive boosting procedure. Therefore the Equation 4.24 used as update rule for AdaBoost-R∆ is
substituted by:

γit+1 := γit

[
εt

1− εt

]1−HS(|ht(xi)−yi|1−∆)

(4.27)

where xi ∈ X D and yi ∈ Y 3K and |x|1 defines the L1 norm of vector x. Algorithm 4.1
illustrates the training of boosted random regression ferns.
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input : A set of trainings data D train containing N observations.
output: An ensemble of boosted random regression ferns.

// Initialize weight distribution
1 γ ← 1;

2 for i← 1 to Z do
// set weight distribution

3 for n← 1 to N do
4 ωn = γn∑N

j=1 γj
;

5 end
// create nodes for fern i

6 for j ← 1 to L do
7 βij ∼ N (0, I);
8 Dboost ← RandSampleWithReplacement (D train, ω);
9 δmin ← min

x∈Dboost

x,βij ;

10 δmax ← max
x∈Dboost

x,βij ;

// ensure that ηij < θij
11 ηij ∼ uniform distribution using Equation 4.10;
12 δmin ← ηij + ε;

// ε ∈ R+ is small and ensures that ηzl < θzl
13 θij ∼ uniform distribution using Equation 4.10;
14 end

// estimate distributions
15 for (x, y) ∈ D train do
16 b← components are computed using Equation 4.26 ;

// calculate cell id based on binary vector
17 k ← Decimal (b);
18 update estimations for P (y|x ∈ Di

k,P
i);

19 update estimations for hik(x);
20 end
21 update γ using Equation 4.27;
22 end

Algorithm 4.1: Training: Boosted Random Ferns

Please note that the boosting weights only effect the selection of thresholds ηzl and θzl . For-
mally, the thresholds are sampled from a uniform distribution using the probability density func-
tion described in Equation 4.10. However, instead of using the minimum and maximum values
of all projected training data for δmin ∈ R and δmax ∈ R a subset Dboost ⊆ D train consisting of
with replacement randomly sampled training observations are used. The probability of a training
observation xi to be selected for Dboost in the tth iteration is related to the boosting weight ωit.
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4.2.2 Prediction

The procedure for predicting ŷ ∈ Y 3K of a unseen observation x ∈X D using boosted random
regression ferns differs to those of random regression ferns only by the calculation of the cell id
using thresholds ηzl ∈ R and θzl ∈ R (cf. Algorithm 4.2). Even though the algorithm described
only processes one observation at a time, the prediction algorithm is implemented in a way that
allows a matrix of unseen observations to be processed. Similar to Pauly et al. the result can be
refined by removing predictions with a low confidence.

input : A test observation x.
output: A predicted output value ŷ.

1 ŷ← 0;
2 ω ← 0;
3 for i← 1 to Z do
4 b← components are computed using Equation 4.26 ;

// calculate cell id based on binary vector
5 k ← Decimal (b);

// add estimate of fern

6 ŷ← ŷ + hik(x)P (hik(x)|Pi);
7 ψ ← ψ + P (hik(x)|Pi) ;
8 end
9 ŷ← ŷ

ψ

Algorithm 4.2: Prediction: Boosted Random Ferns

4.2.3 Conclusion

As shown in Algorithm 4.1, in the context of boosted random regression ferns each weak learner
refers to a randomly chosen regression fern. The boosting weights only influence the separation
of the feature space whilst the coefficients of the models are still chosen in a random manner. As
illustrated in Figure 4.3 choosing a upper θ ∈ R and lower threshold η ∈ R for each fern node
instead of only one threshold allows the boosted random regression ferns to build a specific par-
titioning of the feature space. Therefore, the prediction loss is significantly lower for boundary
values, cf. corresponding error values to x ∈ [6, 6.5] in Figure 4.3.

The effect of extending random regression ferns by using a upper and lower bound is illus-
trated in Figure 4.3. The Residual Error (RE) values used in Figure 4.3 are computed according
to

RE(ŷ,y) :=

3K∑
j=1

(ŷij − yij)2 (4.28)

which is equivalent to computing the Residual Sum of Squares (RSS) without summation
over all i = 1, . . . , N predictions. It has to be noted that RE is computed based on the test
data, which is different to the common use of the RSS. Moreover, the training set is produced
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by applying a one-dimensional synthetic oracle function with additional noise. In order to get
a representative estimate of the error for the different models, the mean RE values over 100
independent training and prediction runs has been used. In the case of Figure 4.3 both model
types have been trained using an ensemble of 20 ferns each with 8 nodes. It should be noted
that the effect of lower error values for the last input values carries through all synthetic tests
independent of the signal-to-noise ratio and the model quality.

Figure 4.3: Illustration of the mean RE over a synthetic oracle function. The ordinate axis shows
the RE-values whilst the abscissa axis shows the one-dimensional input space. Green = model
with lower and upper threshold, red = model with only one threshold. Figure created by author.

By applying the proposed boosting approach and using the promising modification of lower
and upper thresholds for feature space separation the error values can be dramatically reduced.
Figure 4.4 illustrates how the proposed boosting variant outperforms random regression ferns on
a one-dimensional synthetic oracle function defined by

f(x) = sin(x) + 10 + ε (4.29)

where ε is noise sampled from a uniform distribution with values between −0.4 ≤ ε ≤ 0.4
and x ∈ R.

The plots in Figure 4.4 are generated by evaluating 10 individual training and prediction runs
using the boosted random regression ferns using lower and upper thresholds and the random
regression ferns proposed by Pauly et al. [64]. Moreover, for each fern ensemble a number of
20 ferns and 8 nodes are used. The regularization term ∆ ∈ R+ is set to ∆ = 2 for all runs.

As can be seen in Figure 4.4a even the boosted model with the highest error value outper-
forms the model of Pauly et al. [64]. The corresponding mean RE values computed over the 10
runs are visualized in Figure 4.4b. The boosted random regression ferns model is only an inter-
mediate model. However, an exhaustive evaluation of the overall model performance is beyond
the scope of this thesis.
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(a) Estimations of models with highest testing
error.

(b) Mean RE with ordinate and abscissa similar
to Figure 4.3.

Figure 4.4: Comparison of boosted random regression ferns with random regression ferns on an
one-dimensional toy example. Green = boosted random regression ferns, red = ordinary random
regression ferns, and blue = ground truth. Figures created by author.

4.3 Robust Boosted Random Regression Ferns (RobustBRRFerns)

Despite the promising results of the boosted random regression ferns it is possible that the model
overfits the training data and underperforms on edge cases. Therefore, a robust modification
which prevents overfitting on the training data has been developed.

4.3.1 Overfitting and Underfitting

The statistical field of overfitting and underfitting deals with the trade-off between model com-
plexity and prediction error. The aim is to select a model such that the prediction error over
the training set and over the test set will be minimized. Overfitting occurs if a statistic model
describes the random noise contained in the training set. On the contrary, underfitting describes
the effect of using a statistical model with too low expressive power. Figure 4.5 illustrates over
and underfitting of statistical models.

Models with complexity lower than the optimal model h∗ will underfit whilst models with
higher complexity will overfit the data, cf. Rockach [67]. As can be seen in Figure 4.5, estimat-
ing the model performance only based on the training error does not guarantee the selection of
h∗. Therefore the model performance needs to be estimated using a different error estimation.
The generalization error of a statistical model is defined as an estimate of the testing error by:

L(h)Dtest =
N∑
i=1

RE(h(xi),yi) (4.30)

For simplification purposes, it is assumed that all test observations are drawn from a uniform
distribution we do not need to weight the prediction errors according to the density of x. As
described by Bishop [2] one way to estimate the generalization error is to use cross-validation.
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Figure 4.5: Trade-off between prediction error and model complexity. Figure adapted by author
from Rockach [67].

Therefore, the available data will be split into a training and an evaluation set and the model
quality will be measured based on the evaluation set. A more detailed description is given in
Chapter 6.

As the proposed boosted random regression ferns iteratively adapt according to the train-
ing error the model tends to overfit greatly. Vezhnevets and Barinova [77] discuss the problem
of overfitting in boosting and propose to avoid overfitting by removing confusing observations
that build border cases between two classes. In the case of regression problems it is not pos-
sible to compute probability values for strict classes, as there are not classes. In boosting
regression approaches overfitting can be reduced by using a learning rate to lower the effect
of confusing observations [67]. However, as the main idea of Vezhnevets and Barinova [77]
is closely related to cross-validation a similar approach is developed. More precisely Vezh-
nevets and Barinova [77] propose to separate the training set D train into three strict subsets
D1
train ∪D2

train ∪D3
train = D train to detect and remove confusing observations. Please recall

that D train is defined according to Equation 4.7. In contrast to use all training observations
for estimating the model parameters and computing the boosting weights Vezhnevets and Bari-
nova [77] propose to use the subset D1

train to estimate the model parameters, D2
train to compute

the model probabilities and D3
train to update the boosting weights. In this thesis the separation

approach is used for the whole training phase to provide a robust estimation of the training error.

4.3.2 Robust Training

In order to prevent the proposed model to overfit the training data the robust boosted random
regression ferns (RobustBRRFerns) are developed. Analogously to cross-validation the training
set is separated into strict subsets. As the probabilities of the weak learners are implicitly given
by the model itself the training set is only split into two strict sets D1

train ∪D2
train = D train.

The model parameters are estimated using D1
train whilst the boosting weights are computed on

D2
train. Algorithm 4.3 illustrates the training of robustBRRFerns by extending Algorithm 4.1
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with D1
train and D2

train. Moreover the training is extended by introducing an additional learning
rate δ ∈ R+.

In addition to splitting the training set the weak learners are replaced by robust weak learn-
ers. In this thesis a robust weak learner is denoted by a robust hypothesis function and a confi-
dence value. Formally, a robust weak learner is defined by the tuple (h(x),α) where α ∈ R3K

and every component 0 ≤ αi ≤ 1 with i = 1, . . . , 3K. The robust hypothesis function can be
any kind of robust estimator. Furthermore, a simple estimation based on a constant function is
used. The definition of robust weak learners with a constant function as hypothesis function is
defined by

(med(X), exp(−0.5
iqr(X)

κ
) (4.31)

where med is the median vector and iqr is the vector of interquartile ranges of the matrix
X ∈ X D×M containing M features xi ∈ X D. Moreover, κ ∈ R+ is a positive weighting
factor. According to Huber [36] the median is a robust measure of scale whilst the interquartile
range is a robust measure of statistical dispersion.

input : A set of trainings data D train containing N observations.
output: An ensemble of robustBRRFerns.

// Initialize weight distribution
1 γ ← 1;

2 for i← 1 to Z do
// randomly separate training set

3 D1
train ∪D2

train = D train

// set weight distribution
4 for n← 1 to N do
5 ωn = δ γn∑N

j=1 γj
;

6 end
// create nodes for fern i

7 CreateFern (D1
train, ω)

// estimate distributions

8 for (x, y) ∈ D1
train do

9 b← components are computed using Equation 4.26 ;
// calculate cell id based on binary vector

10 k ← Decimal (b);
11 update estimations for P (y|x ∈ Di

k,P
i);

12 update estimations for (hik(x),αik);
13 end
14 update γ based on D2

train using Equation 4.27;
15 end

Algorithm 4.3: Training: RobustBRRFerns
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input : Training set D train and weights ω.
output: A set of nodes.

1 for j ← 1 to L do
2 βij ∼ N (0, I);
3 Dboost ← RandSampleWithReplacement (D train, ω);
4 δmin ← min

x∈Dboost

x,βij ;

5 δmax ← max
x∈Dboost

x,βij ;

// ensure that ηij < θij
6 ηij ∼ uniform distribution using equation 4.10;
7 δmin ← ηij + ε;

// ε ∈ R+ is small and ensures that ηzl < θzl
8 θij ∼ uniform distribution using equation 4.10;
9 end

Algorithm 4.4: CreateFern

4.3.3 Robust Prediction

The prediction phase of RobustBRRFerns directly benefits from the confidence values of the
robust weak learners introduced. Algorithm 4.5 illustrates how the new confidence values are
used.

input : A test observation x.
output: A predicted output value ŷ.

1 ŷ← 0;
2 ω ← 0;
3 for i← 1 to Z do
4 b← components are computed using Equation 4.26 ;

// calculate cell id based on binary vector
5 k ← Decimal (b);

// add estimate of fern, please note that ◦ defines the
component wise multiplication of vectors.

6 ŷ← ŷ + hik(x) P (hik(x)|Pi) ◦αik;
7 ψ ← ψ + P (hik(x)|Pi) mean(αik) ;
8 end
9 ŷ← ŷ

ψ

Algorithm 4.5: Prediction: RobustBRRFerns

The idea of augmenting each hypothesis function with a confidence value is based on the
observation that some regions in CT images may contain homogenous textures. Especially if
features with a low spread (high locality) are used the feature descriptor can have the same
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response on voxel locations spread over the whole image. In CT images this mainly occurs
if the feature describes voxels which are located in homogenous regions e.g., lung or air sur-
rounding the patient, where the mean intensity values of the cuboidal regions are the same.
Because RobustBRRFerns build a partitioning in the feature space those feature responses are
summarized into one cell of the partition. However, as the posterior probabilities are estimated
using Equation 4.16 and predictions are computed based on constant functions the prediction
for feature observations x describing air act like noise with high influence. The illustration of
a two-dimension toy example in Figure 4.6 explains the problem of homogenous regions. The
red circle visualizes the landmark location whilst the yellow stars are positions in the image that
share the same feature response.

Figure 4.6: Two-dimensional toy example containing homogenous regions. Yellow stars illus-
trate critical pixels with similar feature patterns, the red circle illustrates the landmark position.
Figure created by author.

Assuming that random regression ferns construct a constant function for the feature response
visualized as yellow stars by averaging their displacement vectors during training phase. The
resulting constant function is therefore ≈ 0 for all dimensions. Moreover, the computed poste-
rior probability for the cell containing the feature responses of the yellow stars is close to one.
During the prediction phase random regression ferns weight the displacement vector (0, 0) with
high probability and therefore falsify the estimated landmark position. It has to be noted that it
is not possible to reject this votes by simply constraining the posterior probability.

In the case of constant functions, introducing additional confidence values allows to suppress
cell predictions which contain depending variables with high variation. If linear regression func-
tions are used instead of constant functions the confidence values allow to suppress predictions
which are based on poor approximations.

4.3.4 Advantages

The proposed RobustBRRFerns effectively combine the benefits of random regression ferns and
boosting while preventing overfitting and reducing noise sensitivity. Table 4.1 shows a com-
parison of random regression ferns, random forests1 and RobustBRRFerns for different signal-

1implementation by Liaw and Wiener [47]
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to-noise ratio cases on a synthetic one-dimensional sinus function. The signal-to-noise ratio is
measured in dB calculated by SNR := 20 log10

Asignal
Anoise where A ∈ R is the amplitude of the

signal. In this thesis the amplitude is calculated using Root Mean Squares over all observations.
Therefore, if the SNR value is high, the amount of noise in the signal is low. To get repre-
sentative error estimations the mean RSS values used for the comparisons are computed over
100 independent training and prediction runs with equal configurations for both random ferns
models. For the random forest the default settings has been used.

Regression Model 11.50 dB 11.14 dB 10.37 dB

Random Regression Ferns 46.40 49.55 62.73
Random Forest 8.26 23.01 99.33
RobustBRRFerns 6.55 14.23 26.49

Table 4.1: Mean RSS values for random regression ferns and RobustBRRFerns computed based
on oracle Function 4.29 with different signal-to-noise ratios.

It can be seen that the testing error of all models increases by decreasing signal-to-noise
ratio whilst the RobustBRRFerns still outperforms the random regression ferns and the random
forest on very low signal-to-noise ratios. As shown in Table 4.2 this observation also holds if
the dimensionality of the independent and the conditional variables are increased. To get rep-
resentative error estimations the mean RSS values over 50 independent runs (cf. Table 4.2) are
computed for the multivariate unnormalized sinc(x) function and the norm of the independent
variables x ∈ R2 computed with:

y1 =
sin(||x||)
||x||

+ 10 + ε (4.32)

y2 = ||x||+ ε (4.33)

Please note that the ε-noise is sampled from a univariate Gaussian distribution with zero-
mean. The RobustBRRFerns have only been tested against the random regression ferns because
the random forest implementation by Liaw and Wiener [47] allows only single multivariate
regression. As the problem is more complex than the estimation of the one-dimensional synthetic
function a larger ensemble size, i.e. Z = 25, and a higher amount of nodes, i.e. L = 10, for both
models are used. Please note that the selected parameters are found empirically. One interesting
effect is the decreasing RSS values for both models. This is based on the fact that the frequency
of the sinc(x) function on low amplitudes is to high to correctly estimate the underlying function
if a high amount of noise is visible. Therefore, both models heavily adapt to the Gaussian noise
but luckily are still able to estimate values with low amplitude.
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Regression Model 11.50 dB 11.14 dB 10.37 dB

Random Regression Ferns 107.34 101.88 103.73
RobustBRRFerns 30.56 29.41 29.31

Table 4.2: Mean RSS values for random regression ferns and RobustBRRFerns computed based
on oracle function 4.32 with different signal-to-noise ratios.

In view of the promising results on synthetic data the proposed RobustBRRFerns are used
to automatically predict anatomical landmarks based on the feature descriptors explained in
Chapter 3. As a global view on the image gives a good but rough estimations of the landmark
locations whilst a local view gives precise estimations of the landmark locations but can only act
on a local scale the next logical step is a multi-step prediction procedure.

4.4 Summary

Özuysal et al. [62] published in 2007 a memory-efficient alternative to random ferns for keypoint
recognition: random ferns. In contrast to random forest the random fern classifier evaluates the
independent variable using lists of nodes (ferns) instead of tree hierarchies. Subsequent Pauly
et al. [64] published in 2011 a multivariate regression model based on random ferns to localize
anatomical landmarks in MR Dixon sequences. Random regression ferns partition the feature
space by evaluating the features against random test. Those random test are defined by applying
random linear functions on the features and test the results against a randomly selected threshold.

By considering the previous work on boosted regression models e.g., AdaBoost-R∆ by
Bertoni et al. [1], a boosted variant of random regression ferns is derived. In contrast to ran-
dom ferns the boosted variant evaluates binary test on the features using intervals instead of
single thresholds. As illustrated in Figure 4.3 this allows boosted random regression ferns to
build specific clusters in the feature space and therefore reduces the error loss on the boundaries.
To prevent the model to overfit on the data RobustBRRFerns are derived from the boosted ran-
dom regression ferns. In contrast to the boosted variant of random regression ferns the training
set will be separated into two strict sub set at each individual fern training. The separation of
the training set and an additional learning rate guarantee that RobustBRRFerns does not adapt
to noise during training. As shown in Table 4.32 and 4.2 the RobustBRRFerns outperform ran-
dom regression ferns on synthetic data in all test cases and random forests on one dimensional
synthetic data.
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CHAPTER 5
Multi-Pass Landmark Prediction

According to Suykens [73], two-pass or multi-pass methods are successful approaches to de-
velop robust and fast global illumination systems. Those approaches distribute the computation
of light transport in a scene over multiple passes [73]. In the context of image processing, im-
age pyramids are used to detect stable regions in the image. However, in contrast to multi-pass
algorithms image pyramids do not tackle the problem of computational complexity but improve
the robustness of detection a pattern of interest only.

The proposed multi-pass method roughly estimates the landmark locations in the first step
and computes a refined result based on local textural information. Moreover, the multi-pass
method allows to estimate the landmark locations fast and memory-efficient. The proposed
method therefore combines robustness, similar to image pyramids, with efficiently distributed
computations.

5.1 Global Localization

The first pass produces global predictions on downsampled volumes by evaluating sparse sam-
pled feature descriptor responses on the image. In this thesis images have been downsampled
by using convolution of the image, with a Gaussian kernel. Formally, the new image I1 will be
calculated by

I1 = I0 ∗G(x, y, z) (5.1)

where G(x, y, z) denotes the Gaussian kernel. Afterwards every even-numbered row and col-
umn will be removed to reduce the image resolution. Based on the reduced volumes a sparsely
sampled training set D train is composed. Similar to the approach of Pauly et al. [64] for the
global landmark localization only at every fourth voxel a feature response is computed. It has
to be mentioned that Pauly et al. [64] do not downsample the image and therefore compute sig-
nificantly more features per image. Moreover, the RobustBRRFerns are trained to predict all
landmark locations in a single prediction step.
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The depending variables y := (d1, . . . ,dK)T ∈ Y 3K of D train consist of the displacement
vectors dk ∈ R3 with k = 1, . . . ,K for each of the K landmarks.

In order to predict the locations of anatomical landmarks on an unseen image, the image
is downsampled and a sparse representation are extracted. The RobustBRRFerns are used to
compute the estimated positions on the downsampled image. To obtain a sparse representation,
similar to Pauly et al. [64] the features for the prediction procedure are extracted on each fourth
voxel. Note that the estimated locations are computed on the downsampled image and therefore
have to be transformed back into the original image space I0. A simple way to achieve this is to
multiply the predicted locations with the downsampling rate used for the Gaussian kernel.

5.2 Local Refinement

The rough estimations will be refined by using the second pass of the multi-pass algorithm. This
is achieved by training individual RobustBRRFern models for each landmark on the feature
response of the adjacent voxel in the original images I0. Defining the neighborhood for the
training is crucial, therefore the neighboring voxels of the landmark location pk ∈ R3 are defined
by:

Npk ∼ N (pk,Σ) (5.2)

where Σ = I ∗2 E[Lk(h(x))] and I denotes the 3×3 identity matrix. Furthermore, E[Lk(h(x))]
denotes the expectation value of the generalization error of the kth landmark location for the first
pass. By training an ensemble of RobustBRRFerns each estimated landmark location can be re-
fined by the corresponding regressor. The regressor ensemble for K landmarks is denoted by
H = {h1(x), . . . , hK(x)}. In order to predict the exact landmark positions, features in the
vicinity of the rough estimates are extracted. The neighborhood for the feature extraction is de-
fined by random samples q ∈ R3 drawn from a uniform distribution with offset values between
−E[Lk(h(x))] ≤ qi ≤ E[Lk(h(x))]. The refined locations will then be estimated by each
RobustBRRFerns regressor individually. Please note that in contrast to the approach of Pauly
et al. [64] only a small set of randomly sampled feature responses is extracted on the original
image. To acquire higher accuracy, analogously to Donner et al. [21] the local refinement is it-
eratively repeated multiple times on robust estimations of the new predicted landmark locations.
Alternatively, the iterative convergence to the landmark positions using a regression model can
also be replaced by voxels-wise classification in the vicinity of the rough estimates. To enhance
the accuracy and robustness of the refinement, in this thesis multivariate outlier detection is used
to identify and remove prediction that falsify the estimated landmark location.

5.2.1 Outlier Removal

The robust Mahalanobis distance is used in several statistical methods for multivariate outlier
detection over a set XD ⊂ RD is defined by

MDi :=
√

(xi − T (X))>C(X)−1(xi − T (X)) (5.3)
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where T (X) is the robust dimension-wise mean estimate and C(X) is the corresponding
robust covariance matrix. Because the Mahalanobis distanceMDi is chi-square distributed with
respective degrees of freedom, the result can be used to measure if observations are outliers. It
can be seen in Equation 5.3 that the Mahalanobis distance measures the span of an observation
to the estimated mean with respect to the covariance of the observations.

Based on this observation and the previously published Minimum Covariance Determinant
(MCD) method of Rousseeuw [68] in 1999 Rousseeuw and Driessen [69] present a fast MCD
estimator (FAST-MCD) for outlier removal. The basic procedure of FAST-MCD is described in
Algorithm 5.1 where a random subset ZDold ⊂ XD with cardinality of z is given parameter. The
output after L iterations is the new subset ZDnew with minimum covariance determinant.

input: Initial random subset Zold.
1 T ← estimate robust mean of subset;
2 C ← estimate robust covariance of subset;

3 for i← 1 to L do
4 compute distances using T , C with Equation 5.3 ;
5 sort observations ascending in distance ;
6 Znew ← first z observations ;

7 T ← estimate robust mean of subset ;
8 C ← estimate robust covariance of subset ;
9 end

Algorithm 5.1: FAST-MCD

For simplicity reasons, in this thesis the FAST-MCD implementation included in the Library
for Robust Analysis (LIBRA) by Verboven and Hubert [76] is used to remove outlying predic-
tions. Figure 5.1 visualizes landmark predictions for the entry point of the right optical nerve
computed on a CT image of the human head. Predictions colored in grey are outliers detected
by FAST-MCD whilst blue dots are acceptable predictions. The correct position of the right
optical nerve is colored in red. Please note that Figure 5.1 shows a two-dimensional projection
of three-dimensional prediction. Therefore, grey colored predictions, which are visually close
to the landmark position, might actually lie behind or in front of the landmark.
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Figure 5.1: Two-dimensional projection of three-dimensional landmark location predictions
(blue) with detected outliers (grey). The ground truth landmark location is colored in red. Figure
created by author.

5.3 Multi-Pass Model

The complete multi-pass landmark localization pipeline for medical images is illustrated in Fig-
ure 5.2. The approach is a generic model tailored to landmark detection of large medical images.
The hypothesis functions shown in Figure 5.2 can be any arbitrary regressor or classifier.

I0 I1 = I0 ∗G(x, y, z) sparse feature extraction in I1

X Ŷ

compute for each landmarkN (pk, I ∗2 E[Lk(h(x))])

Xk Ŷk remove outlier Ŷ∗
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h(X)

hk(Xk)

repeat refinement multiple times

Figure 5.2: Multi-pass model for automatically medical landmark localization. Figure created
by author.
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As shown in Figure 5.2 the initial volume I0 represents the entry point of the multi-pass
pipeline. After convolving the initial volume with a Gaussian kernel and reducing the resolution
of the resulting image every 64th voxel will be described by a feature response. Applying the
global prediction phase directly results in coarse guesses of all landmark locations. The follow-
ing steps are individually applied for each landmark. For each new refinement the estimations
of the last refinement step will be used to sample the features for the next iteration. Please note
that the number of repetitions of the refinement step can be either defined by a fixed number
of iterations or depend on a stopping criterion e.g., the difference between the old and the new
estimates. Due to the performance of RobustBRRFerns in synthetic test cases, in this thesis
RobustBRRFerns are used as a hypothesis functions for all passes.

5.4 Summary

To provide a fast and robust prediction system, the landmark localization approach is separated
into different passes. The global localization initially estimates all landmark locations at once.
To allow a fast estimation, the volume is downsampled and only a sparse set of feature responses
is extracted and used for the localization.

The predicted positions are then used as initial guesses for the refinement passes. The refine-
ment will be computed for each landmark individually. Each refinement phase extracts feature
responses in the vicinity of the initial guess on the original volume. The initial location is
updated according to the output of the hypothesis function on the extracted feature responses.
Please note that a robust sub set of predictions, estimated using FAST-MCD, is used instead of
all predictions. The multi-pass model is outlined in Figure 5.2.
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CHAPTER 6
Evaluation and Results

This chapter introduces the evaluation methods used in this thesis. The results achieved by
state of the art methods are given. Subsequent the results achieved by the proposed landmark
prediction system are presented.

6.1 Evaluation Methods

In machine learning evaluating models aims to determine how well a model computed by a
specific algorithm fits the data. If a certain loss function used for the evaluation produces a high
value, the model can be considered to provide a bad representation of the data. Section 6.1.2
gives an overview of the loss functions used to estimate the model error. A second topic in the
field of machine learning is feature analysis, i.e. to evaluate how discriminative a certain feature
is. Methods used to evaluate the proposed features are described in the following section.

6.1.1 Feature Evaluation

Machine learning techniques follow the garbage in – garbage out principle (cf. Lidwell et
al. [48]) and therefore the prediction accuracy of the learning system depends on the discerni-
bility and the signal-to-noise ratio of the independent variables [53]. Therefore, a discriminative
and low-noise representation of the image space improves the model accuracy. Whilst for clas-
sification problems the feature class correlation is a criterion for feature selection (cf. Hall [32]),
for regression problems a strong correlation between the independent and the conditional vari-
ables is desired. In the context of this thesis, it is desirable that the feature descriptor responses
are correlated their relative displacement vectors. Therefore, statistical estimates of the rela-
tive displacement vectors depending on the features are used to evaluate the effectiveness of the
feature descriptors.
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Maximum Dependent Variable Variance. Computing the Maximum Dependent Variable
Variance (MDVV) where the variances of each dimension of the dependent variables D over
all feature vectors N are evaluated gives a insight into the performance of the features. The
MDVV is defined by:

MDV V :=
N

max
i=1

D
max
j=1

σ2
i,j (6.1)

Please note that low MDVVV value indicates that compact distributions of displacement
vectors are related to the feature.

Maximum Kernel Density. Furthermore, the maximum density of a kernel density estimation
is used to measure the performance of the feature. One possibility to estimate a non-parametric
distribution is the univariate Parzen window estimator by E. Parzen [63] for kernel density es-
timation which is defined for xi ∈ R iid samples with i = 1, . . . , N drawn from a unknown
density function by:

f(x) =
1

Nω

N∑
i=1

K

(
x− xi

ω

)
(6.2)

where ω ∈ R+ denotes a smoothing factor and K(x) is a given kernel function e.g., Gaus-
sian kernel. The maximum density of a kernel density estimation is therefore defined by the
maximum of f(x). If the maximum density value for the jth dimension with j = 1, . . . , 3K
is large, close to or larger than 0.5, a compact distribution over the displacement vectors in
dimension j is assumed.

Noise Sensitivity. To ensure stable correlations between features and the output space it is
crucial that features are noise-insensitive. Especially in the field of medical image analysis it
is important to allow robustness against specific types of noise. In MRI scans noise is usually
modeled by observations sampled from a Rice distribution [51] whilst noise in CT images can be
modeled using the Poisson distribution. To test the robustness of the different features a synthetic
image affected by different types of noise are used. The two test cases used for the evaluation of
stability are robustness against Rice distributed noise and robustness against Poisson distributed
noise in the synthetic test image. Figure 6.1 shows three slices of the synthetic test image used
for the evaluation. The noisy volumes are shown in Figure 6.2 and 6.3. Please note that dynamic
noise models are used and therefore the amount of noise depends on the underlying intensity
values of the original test volume.
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(a) Slice 33 of 100. (b) Slice 66 of 100. (c) Slice 99 of 100.

Figure 6.1: Illustration of the synthetic test volume used for evaluating the noise sensitivity.
Figures created by author.

(a) Slice 33 of 100. (b) Slice 66 of 100. (c) Slice 99 of 100.

Figure 6.2: Illustration of the Poisson noisy volume used for evaluating the noise sensitivity.
Figures created by author.

(a) Slice 33 of 100 (b) Slice 66 of 100. (c) Slice 99 of 100.

Figure 6.3: Illustration of the Rice noisy test volume used for evaluating the noise sensitivity.
Figures created by author.

6.1.2 Model Evaluation

As described in Chapter 4 due to the effect of overfitting the model performance can not be eval-
uated by using the training error. In this thesis the model loss is therefore defined by computing
the generalization error over multiple folds of cross validation.
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K-fold Cross Validation

Hastie et al. [33] formally describe K-fold cross validation by an indexing function

κ : {1, . . . , N} → {1, . . . ,K} (6.3)

that indicates the random partitioning of all N samples from D train into K distinct parts.
The generalization error is estimated over K runs or folds. For each fold all parts except the kth
part are used to train the model hk(x) and the model loss function L(hk(x)) is evaluated only
using the kth part. Figure 6.4 illustrates the idea of cross-validation with five folds.

Figure 6.4: Schematic illustration of 5-fold cross-validation at the k = 4 fold. Figure adapted
by author from Hastie et al. [33].

After computing the error values of each fold using L(hk(x)), the error values are averaged
to obtain an estimate of the generalization error for h(x) over D . Hastie et al. [33] describe that
common selections for K are K = 5 and K = 10. Because of the low number of observations
per dataset in this thesis either 4-fold cross validation or leave one out validation is used. In the
case of leave one out validation all observations except one observation are used for training and
the excluded observation will be used to evaluate the model performance. Therefore, leave one
out validation is only feasible if the number of observations in the training set is low such that
K = N folds can be realized.

Loss Functions

The following loss functions are used in this thesis to evaluate the goodness of the fitted re-
gression model. Please note that those measures are used due to their simplicity and expressive
power. The Least Absolute Deviation (LAD) provides a robust estimate for the loss and is de-
fined by:

LAD :=
N∑
i=1

|yi − h(xi)|1 (6.4)

The Residual Sum of Squares (RSS), also known as Sum of Squares Error (SSE), provides
more expressive estimation of the model loss then the LAD but is considered to be less robust.
The RSS is defined by:

RSS :=

N∑
i=1

D∑
j=1

(yij − h(xi)j)
2 (6.5)
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Please also note the the R2-loss function has not been used in this thesis because this mea-
surement assumes a generalized linear regression model. The following sections present the
results of the evaluation.

6.2 Datasets

The following three datasets are used for the evaluation. Please note that dataset 3 is not used to
evaluate the feature descriptors because the images from dataset 1 and 3 are from the same image
modality and therefore the evaluation of the feature descriptors would lead to similar results.

6.2.1 Dataset 1: Head CTs

The CT head dataset consists of six different scans taken from patients with different stages of
brain tumor and terms of quality and resolution. The images were acquired in the course of the
development of an intra-operative virtual endoscopy system, published by Schulze et al. [72].
The resolution of the scans ranges from 512×512×94 to 512×512×208 voxels per volume with
voxel sizes of approximately 0.45mm×0.45mm×1mm. This dataset contains five anatomical
landmarks for each scan. All landmarks were annotated by a medical expert. Furthermore,
the annotations label anatomical features that are visible in CT and MRI T1 images. More
specifically, the following anatomic structures are annotated: right optical nerve exit point, left
optical nerve exit point, cerebellum, caput mandibulae right and caput mandibulae left. Figure
6.5 illustrates the landmarks colored green, red, blue, magenta yellow with the corresponding
maximum intensity projection of the CT scan from the first patient. The maximum intensity
projections of all patients is shown in Appendix C.1.

Figure 6.5: Maximum intensity projection of the first datum of dataset 1 with corresponding
landmarks. The skullcap has been removed to see the interior of the brain. Figure created by
author.
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6.2.2 Dataset 2: Head T1 weighted MRIs

The T1 weighted MRI dataset contains the corresponding MRI T1 scans from the patients used
in dataset 1. Because MRI T1 weighted scans help to see the soft tissue of the brain their
variation in texture and quality are expected to be high. In contrast to the CT images, the scans
have a lower resolution which ranges from 256 × 256 × 80 to 256 × 256 × 120 voxels. The
average voxel size for the MRI scans is 0.89mm×0.89mm×2mm. The anatomical landmarks
correspond to those used for dataset 1 and were also annotated by a medical expert. Figure
6.6 illustrates the landmark positions on the maximum intensity projection of the first patient.
Appendix C.2 shows maximum intensity projections of the whole dataset.

Figure 6.6: Maximum intensity projection of the first datum of dataset 2 with corresponding
landmarks. Figure created by author.

6.2.3 Dataset 3: Whole-Body CTs

The whole-body CT dataset is the largest dataset containing 20 different scans with 57 annotated
landmarks. The dataset is taken from the Whole Body Morphometry Project [58]. The CT scans
have an average size of 512× 512× 1900 voxels with voxel sizes of 1.3mm× 1.3mm× 1mm.
The manually annotated landmarks were provided by Rene Donner from the Computational
Imaging Research Lab of the Medical University of Vienna. To localize all major body parts the
landmarks have been distributed throughout the whole body. Those annotations are also used
by Donner et al. [21] for evaluation purposes on the whole body scans. To ensure comparability
with the results of Donner et al. [21] the whole body scans are also downsampled by the factor
two. Figure 6.7 illustrates the landmarks on one of the CT scans. The complete dataset illustrated
using maximum intensity projections can be found in Appendix C.3.
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Figure 6.7: Exemplary volumetric visualization of dataset 3, Donner et al. [21].

6.3 Evaluation of Feature Descriptors

This subsections presents the results achieved by the feature descriptors described in Chapter
3. Subsequent to the experimental setup used for the evaluation, the statistical evaluation and a
discussion about the robustness of the different approaches is given.

6.3.1 Experiment Setup

In order to evaluate the feature descriptors the following configurations are used. Please note
that the setups are either empirically chosen or selected according to the related publication. In
case of the empirically chosen setups, no parameter optimization like grid search is used.

Donner et al. [21] According to Donner et al. [21] the multivariate Gaussian distributed binary
test feature uses K = 100 randomly chosen neighbors sampled from the zero-mean multivariate
Gaussian Distribution N (0,Σ) where the covariance is defined by Σ = I ∗10mm where I is
the 3× 3 identity matrix.

BRIEF. In contrast to Calonder et al. [9] the feature vector consists of 10 independently chosen
responses with K = 8, 10 independently chosen responses with K = 16, and 10 independently
chosen responses with K = 32 pairwise binary test to keep the evaluation feasible. Therefore,
each image patch is described by a 30 dimensional feature vector. The mean is defined by
µ = (0, 0, 0)T and the covariance of the multivariate uniform distribution is set to Σ = I ∗5mm
where I is the 3× 3 identity matrix for all responses.

gaussLBP. Similar to the feature of Donner et al. [21], K = 100 randomly chosen neighbors
from N (0,Σ) are used. The mean is defined by µ = (0, 0, 0)T and the covariance Σ =

49



I ∗10mm of the multivariate Gaussian distribution where I is the 3 × 3 identity matrix is used
for the offsets and the covariance matrix Σ = I ∗3mm where I is the 3× 3 identity matrix used
for the cuboidal dimensions.

cuboidalBRIEF. For cuboidalBRIEF a setup similar to the configuration of BRIEF is used.
The covariance matrix of the multivariate Gaussian distribution used for the offsets of each of the
30 responses is defined by Σ = I ∗5mm where I is the 3× 3 identity matrix whilst the cuboidal
dimensions are sampled from a multivariate uniform distribution with the covariance matrix
Σ = I ∗3mm where I is again the 3× 3 identity matrix. The mean is defined by µ = (0, 0, 0)T

for both cases.

6.3.2 Statistic Evaluation Results

To keep the statistic evaluation using MDVV and maximum density of the feature descriptors
feasible the evaluation measurements are computed over a random subset of all feature vectors
of a complete training set. More detailed, 10% of all vectors over all images on dataset 1 and 2
are used. The size of the random subset are empirically chosen. To get univariately distributed
responses over the complete image space, the samples are sampled using a univariate distribu-
tion. To get a better understanding of the evaluation results and to prevent results to be falsified
by the dimension sizes, the measurements are performed according to all X-displacements, all
Y-displacements and all Z-displacements separately.

MDVV Results

In order to evaluate the MDVV of the different approaches, the median over the MDVV values
are calculated. In contrast to the mean the median is insensitive against outliers to some extend
as explained by Huber [36]. Table 6.1 shows the results achieved by the individual feature
descriptors in terms of the MDVV. Please recall that small values for the MDVV are desirable.
Numbers written in bold illustrate the best result per column. Please note that because of the
heterogeneous feature descriptor responses of BRIEF it is not possible to estimate proper MDVV
values for BRIEF on dataset 1.

It can be seen that the proposed approaches, GaussLBP and cuboidalBRIEF, slightly outper-
form the approach of Donner et al. [21] and BRIEF on dataset 2. Please note that cuboidalBRIEF
generally outperforms BRIEF and the approach by Donner et al. [21] on dataset 2 whilst Gaus-
sLBP outperforms the other approaches only in the X and Y directions. In the case of dataset 1
GaussLBP outperforms all other evaluated feature descriptors.
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Table 6.1: Median values for maximum dependent variable variance, groups with variance = 0
are ignored.

Method Dataset 1 Dataset 2
X Y Z X Y Z

Donner et al. [21] 9383.56 9334.82 76.20 2090.92 1699.17 38.84
BRIEF - - - 2100.96 1699.17 43.37
GaussLBP 8075.78 7498.09 10.15 1883.81 1549.52 43.37
cuboidalBRIEF 81142.73 7666.04 94.67 2044.33 1660.59 30.98

Maximum Density Results

To evaluate the maximum density of fitted kernel density estimations, similar to the evaluation of
MDVV, the median over the maximum densities are calculated. To estimate the non-parametric
distributions a Gaussian kernel is used for the Parzen window estimator. More specifically the
Matlab function ksdensitywith the default configuration is used. Table 6.2 shows the median
values of the maximum densities for the different approaches. Please recall that a high maxi-
mum density value reflects narrow density estimations which is a desirable property. Similar to
the evaluation using MDVV it is not possible to estimate maximum density values for BRIEF
responses on dataset 1.

Table 6.2: Median values for maximum density estimations calculated using kernel density esti-
mation with Gaussian kernel, groups with maximum density = 0 are ignored.

Method Dataset 1 Dataset 2
X Y Z X Y Z

Donner et al. [21] 48.18 63.78 48.91 20.41 118.83 29.77
BRIEF - - - 6.10 328.81 19.72
GaussLBP 55.81 74.00 86.39 48.22 63.78 44.65
cuboidalBRIEF 28.08 34.22 58.62 14.65 76.76 47.62
All numbers are in the notation of ×10−3.

It is interesting to note that for dataset 2 gaussLBP outperforms BRIEF and the approach
by Donner et al. [21] in all displacement dimensions except the Y-dimension. In general the
novel descriptors perform less good in the Y-dimension for this dataset. Figure 6.8 visualizes
the distributions of maximum density values for BRIEF and cuboidalBRIEF. It can be seen that
the samples size of BRIEF is much smaller then of cuboidalBRIEF, this is due to the fact that the
maximum density can only be estimated if a non-parametric distribution can be estimated over
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the output space of a specific feature vector. However, BRIEF results in many distinct vectors
which results in a small number of possible distribution estimations. Which is the reason for the
large maximum density value in the Y-dimension of BRIEF. Furthermore, it can be seen in Table
6.2 that GaussLBP outperforms all other evaluated feature descriptors on the first dataset.

(a) (b)

Figure 6.8: Visualization of maximum density distributions in the Y-dimension for BRIEF (a)
and cuboidalBRIEF (b). The red line indicates the median value. The ordinate shows the obser-
vations of feature vector categories and the abscissa shows the maximum density values of the
feature vector categories. Figures created by author.

6.3.3 Noise Sensitivity Results

The robustness of the different feature descriptors are evaluated based on the L1 difference
between the feature vectors on the original image and a noisy volume. The L1 difference values
are obtained by computing the L1 distance between the corresponding feature vectors at each
voxel location. In order to obtain noisy volumes in the first test case a Poisson distribution is
used and in the second test case a Rice distribution is used. Because the ranges of the feature
vectors for LBP based approaches and BRIEF based approaches are different two independent
result tables are used.

Table 6.3 shows the comparison of the approach proposed by Donner et al. [21] and Gaus-
sLBP. It can be seen that the extension using cuboidal regions gives additional stability for both
noise classes. Moreover, GaussLBP captures the main features of the image more robust for
Rice noisy images than the approach of Donner et al. [21]. It should be noted that GaussLBP
captures the neighboring texture relative to the intensity of a single voxel but still achieves an
improvement of stability.

As shown in Table 6.4 the extension of BRIEF with cuboidal regions improves the noise
robustness significantly. In contrast to the LBP based approaches that benefit from the large
number of neighbors and the direct use of the binary vector BRIEF is highly sensitive to noise.
Due to the dimension reduction step in the case of the test configuration the response can change
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Table 6.3: L1 comparisons of LBP based features of Poisson noisy volume and Rice noisy
volume to original volume.

Method Poisson Noisy Rice Noisy
Mean Median Variance Mean Median Variance

Donner et al. [21] 0.1514 0.00 0.1710 0.2033 0.00 0.2454
GaussLBP 0.0994 0.00 0.1222 0.0725 0.00 0.0960

by 232. The response of cuboidalBRIEF benefits from the intensity averaging which dramatically
reduces the effect of Poisson distributed noise.

Table 6.4: L1 comparisons of BRIEF based features of Poisson noisy volume and Rice noisy
volume to original volume.

Method Poisson Noise Rice Noise
Mean Median Variance Mean Median Variance

BRIEF 16.04 0.00 3288.66 30.57 8.00 4467.47
cuboidalBRIEF 0.24 0.00 4.08 15.72 2 7.58

6.3.4 Conclusion

Based on the statistical measurements presented it can be concluded that the proposed features,
especially GaussLBP, outperform the approach by Donner et al. [21] and BRIEF. However,
it should be mentioned that this does not guarantee a better performance if used in combina-
tion with a regression model. In the case of BRIEF it can be seen that the cuboidal extension
(cuboidalBRIEF) almost always outperforms the original feature descriptor. Because medical
images are always affected by noise and the scanned tissues can strongly vary in terms of shape,
location and intensity it is important that the feature descriptor is robust against noise and im-
age variation. CuboidalBRIEF outperforms BRIEF regarding noise insensitivity and therefore
represents a reasonable candidate as medical image feature descriptor.

6.4 Evaluation of the Landmark Prediction Approach

This subsections stepwise presents the results of the anatomical landmark prediction system. At
first the results of state of the are methods are introduced and the following subsection discusses
the results of the parameter optimization used to analyze the effect of the learning rate and the
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∆-deviation on the RobustBRRFerns. Subsequently the results on the global prediction model
using the four feature descriptors discussed are given. The last subsections present the results
achieved by the local refinement step and discuss the run times of the presented approach. Please
note that for the local refinement only the most promising feature descriptor according to the
global prediction results is used.

6.4.1 State of the Art Results

This subsection introduces the results achieved by the approach of Pauly et al. [64], Cuingnet
et al. [18], and Donner et al. [21]. To compare the multi-pass anatomical landmark prediction
approach with the state of the art methods the technical details and results of the different ap-
proaches are briefly discussed.

Pauly et al. [64]

The approach by Pauly et al. [64] introduces random regression ferns for multiple organ detec-
tion and localization. Pauly et al. [64] present a novel regression based method for automatic
prediction of positions and bounding boxes of multiple organs on MR Dixon channels. Pauly et
al. [64] compute features over two channels and combine the feature vectors for each voxel to
one feature vector. Instead of evaluating every voxel only every fourth voxel will be described
using the 3D LBP computed over 26 cuboidal regions on three different scales. Moreover, the
results are obtained using 14 individual random regression ferns each with six nodes. The ap-
proach of Pauly et al. [64] achieve a mean localization error for the organs head, left lung, right
lung, liver and heart of 14.95mm with a standard deviation of 11.33mm. Donner et al. applied
the approach by Pauly et al. [64] on dataset 3 using the same annotations used in this thesis.
Therefore, the prediction error values on dataset 3, published by Donner et al. [21], can be di-
rectly compared to those of this thesis and are shown in Table 6.5. The approach by Pauly et
al. [64] takes in average 0.7 sec for an average volume with a size of 192× 433.

Table 6.5: Prediction results of four-fold cross-evaluation on dataset 3 published by Donner et
al. [21] (in mm).

Method Mean Median Std

Random Regression Ferns 54.80 43.37 86.98

Cuingnet et al. [18]

Cuingnet et al. [18] published an automatic segmentation approach for kidneys shown on CT im-
ages. The approach is based on a multi-hypothesis approach using random forest for localizing
the kidneys. The approach uses random forest for regressing the coarse positions of the kidneys
and for refining the regions of interest by fitting an ellipsoid. The approach is evaluated using
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multiple forests, each consisting of seven trees with a depth of 15. Cuingnet et al. [18] achieve
in the landmark detection phase a mean deviation of the coarse kidney location of 23mm for the
left kidney and 26mm for the right kidney. The refined locations deviate by 11mm for the left
and 10mm for the right kidney.

Donner et al. [21]

The method of Donner et al. [21] proposes a global localization of anatomical structures using
Hough forests [82] and Markov random fields [42] for model based estimation of the landmark
positions. The approach uses three steps to estimate the landmark positions. In the first step
random forest classifiers obtain regions of interest which are rough estimates of the landmark
locations. The second step uses Hough forest for regressing the landmark locations based on
the local neighborhood. A Markov random field is used to obtain the accurate locations of
the landmarks. The random forest classifier and the Hough forest regressor are trained using
32 extremely randomized trees. The tree depth has not been limited. To efficiently predict the
landmark locations the approach uses downsampled volumes instead of the full resolution scans.
The results achieved by Donner et al. [21] on dataset 3 are shown in Table 6.6. The average run
time for a volume from dataset 3 using the approach of Donner et al. [21] is 120 sec.

Table 6.6: Prediction results of four-fold cross-evaluation on dataset 3 published by Donner et
al. [21] (in mm).

Method Mean Median Std

Donner et al. [21] 5.25 2.71 15.08

6.4.2 Parameter Estimation

To asses effective values for the learning rate δ and the allowed ∆-deviation the parameters are
optimized using grid search evaluated on dataset 1 and 2. This thesis does not provide an ex-
haustive parameter space evaluation of the whole body dataset because the parameter space is
assumed to be similar to the one of the first dataset. Therefore, in this thesis the optimal con-
figuration for dataset 1 is also used for tests on dataset 3. Lengyel et al. [45] first introduced an
approach for optimizing the configuration space for robot motion planning which is comparable
to grid search for parameter optimization. The effect of the learning rate is evaluated for values
between δ = 0.4 and δ = 0.9 with a step size of 0.1 and the ∆-deviation is evaluated between
∆ = 10 and ∆ = 40 with a step size of 10.

Figure 6.9 illustrates the parameter space with the corresponding loss values colored from
dark blue (small loss) to red (high loss) evaluated on dataset 1 using LAD and RSS as loss
functions. Please note that the figures shown are interpolated versions of the original grids. It
can be seen that the region around the configuration of δ = 0.5 and ∆ = 30 is a stable area with
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small loss. Therefore, this configuration is used for further evaluations. Moreover, it can be seen
that increasing the learning rate up to a value of 0.9 has a negative effect on the performance if
the ∆-deviation values lie above or underneath ∆ = 30.

(a) (b)

Figure 6.9: Visualization of the parameter space on dataset 1 with LAD as loss function (a) and
with RSS as loss function (b). Small loss values are mapped dark blue color whilst high loss
values are mapped to red colors. Figures created by author.

Figure 6.10 illustrates the evaluation of the parameter space on dataset 2 using LAD and
RSS as loss functions. In contrast to the configuration space evaluated on dataset 1 a learning
rate of δ = 0.7 with ∆ = 10 outperforms other configurations on dataset 2. Please note that the
parameter space for dataset 1 also shows low loss values around δ = 0.7 if ∆ = 30. Because the
region around δ = 0.8 and ∆ = 20 is the most stable region with low loss for further evaluations
on dataset 2 the learning rate is set to δ = 0.8 and the ∆-deviation of ∆ = 20 is used.
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(a) (b)

Figure 6.10: Visualization of the parameter space on dataset 2 with LAD as loss function (a)
and with RSS as loss function (b). Small loss values are mapped dark blue color whilst high loss
values are mapped to red colors. Figures created by author.

Outlier Removal Configuration

The configuration for the FAST-MCD were selected empirically without exhaustive parameter
optimization. For the second dataset the size of the quantile of the observations used to minimize
their covariance determinant is set to h = 20 which is similar to the example configuration given
in the documentation.

6.4.3 Global Prediction Results

Results of the global prediction phase are computed using the following setups. According to the
definition of the multi-pass landmark prediction model in Chapter 5 all prediction are estimated
using sparse sampled features on downsampled volumes. For the purpose of this evaluation,
all volumes are by the factor of two. Moreover, the features are only computed at every fourth
voxel in the X-dimension, every fourth voxel in the Y-dimension and every fourth voxel in
the Z-dimension which makes every 64th voxel in the downsampled volume. All tests have
been performed using the loss functions introduced in Subsection 6.1.2. Please note that for
evaluation purposes the mean and the median of the model loss values are used. To get a better
understanding of the depicted deviations the standard deviation values and the median absolute
deviation values are given respectively in the tables. Please note that the loss values used in the
following comparison tables denote the deviations of the predictions after transformation to the
original volumes. The transformed predictions are obtained by multiplying their positions by
two.
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Experiment Setup

In the case of dataset 1 the optimal model parameters δ = 0.5 and ∆ = 30 are used for the leave
one out evaluation. For dataset 2 the stable model parameters δ = 0.8 and ∆ = 20 are used for
each of the six folds of the leave one out evaluation. In the case of dataset 3 the same parameter
configuration as for dataset 1 is used in each fold of the four-fold cross-validation. To obtain the
results for the different test the number of ferns is set to Z = 14 and the number of nodes is set
to L = 6 which is similar to the configuration proposed by Pauly et al. [64]. Please note that
this setup is used for random regression ferns and RobustBRRFerns. Moreover, the a weighting
factor of κ = 100 is used. Location predictions with confidence lower than 0.5 are removed.

Results: Dataset 1

Table 6.7 shows the results achieved on dataset 1 measure in mm. It can be seen that cuboidal-
BRIEF outperforms all analyzed feature descriptors on this dataset. Moreover, it should be men-
tioned that a mean deviation of 9.34mm is significantly smaller than the mean localization error
of 14.95mm published by Pauly et al. [64]. Moreover, by comparing the best results achieved
by RobustBRRFerns and by random regression ferns it can be seen that the RobustBRRFerns
generally outperform the random regression ferns (cf. Table 6.8). Please note that the outlier
removal using FAST-MCD is applied on all test cases.

Table 6.7: Global prediction results of leave one out evaluation on the original volumes of
dataset 1 using RobustBRRFerns measured in mm.

Feature Descriptor LAD RSS
Mean Median Mean Median

Donner et al. [21] 15.06± 4.92 15.20± 4.16 11.08± 4.26 10.84± 3.72
GaussLBP 18.84± 7.22 18.04± 5.80 12.88± 5.54 11.84± 4.30
BRIEF 18.86± 6.88 17.70± 5.42 13.80± 6.12 12.66± 4.74
cuboidalBRIEF 12.54± 7.02 11.28± 5.28 9.34± 5.96 7.86± 4.28
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Table 6.8: Global prediction results of leave one out evaluation on the original volumes of
dataset 1 using random ferns measured in mm.

Feature Descriptor LAD RSS
Mean Median Mean Median

Donner et al. [21] 23.16± 7.38 22.50± 5.68 16.28± 5.96 14.22± 5.12
GaussLBP 24.86± 11.28 21.46± 9.30 17.48± 8.82 14.58± 6.90
BRIEF 26.42± 11.70 24.18± 9.35 20.94± 11.10 18.42± 8.68
cuboidalBRIEF 24.94± 7.82 26.34± 5.94 18.44± 6.54 18.28± 5.40

Results: Dataset 2

The results for the global prediction phase on dataset 2 are shown in Table 6.9. The results
obtained using random ferns are depicted in Table 6.10. No loss values are shown in Table 6.10
for the BRIEF response, because the random fern model is not able to successfully cluster the
feature space. Please note that the location errors are significantly higher then those for dataset
1. One reason for the high deviations is the small amount of intensity variations on the MRI T1
scans, which results in large textural homogenous areas. Another reason is the smoothing of the
texture due to downsampling.

Table 6.9: Global prediction results of leave one out evaluation on the original volumes of
dataset 2 using RobustBRRFerns measured in mm.

Feature Descriptor LAD RSS
Mean Median Mean Median

Donner et al. [21] 72.60± 63.64 49.66± 47.50 64.08± 61.06 42.18± 45.52
GaussLBP 93.28± 70.78 75.68± 56.44 79.16± 66.34 55.80± 53.38
BRIEF 76.18± 61.94 44.90± 45.26 57.82± 59.08 38.58± 43.22
cuboidalBRIEF 67.64± 87.40 30.84± 63.38 49.60± 64.42 22.18± 46.88
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Table 6.10: Global prediction results of leave one out evaluation on the original volumes of
dataset 2 using random ferns measured in mm.

Feature Descriptor LAD RSS
Mean Median Mean Median

Donner et al. [21] 112.00± 50.42 85.70± 40.04 101.52± 50.40 79.76± 40.76
GaussLBP 117.74± 62.02 99.88± 49.38 104.92± 58.38 87.86± 46.28
BRIEF − − − −
cuboidalBRIEF 211.08± 126.42 135.16± 106.82 134.74± 70.14 110.84± 56.66

Results: Dataset 3

For the whole body dataset only the most promising feature descriptor variant is used for the
cross-validation. Table 6.11 shows the results obtained on the downsampled volumes using
cuboidalBRIEF as feature descriptor. Moreover, Figure 6.11 illustrates the distribution of the
deviations for the 57 individual landmarks obtained using RobustBRRFerns and cuboidalBRIEF
on dataset 3. Please note that the deviation values depicted in Figure 6.11 correspond to RSS
values measured in mm

2 . The groups shown in the boxplot can be interpreted as follows: 1-10
= left and right finger tips, 11 - 20 = left and right toe tips, 21 - 57 = landmarks spread over
the whole body e.g., left knee, right knee. It can be seen that the landmarks 21 - 57 show low
deviation than the landmarks 1 - 20. This effect is interesting because it is reasonable to assume
that the prediction of single finger or toe tips is difficult in a global context.

Table 6.11: Global prediction results of four-fold cross-evaluation on dataset 3 using RobustBR-
RFerns measured in mm.

Feature LAD RSS
Mean Median Mean Median

cuboidalBRIEF 25.34± 12.36 23.56± 9.58 15.72± 8.20 14.46± 6.44
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Figure 6.11: Boxplot of landmark deviations obtained using four-fold cross-evaluation on
dataset 3 measured in mm

2 with RSS. Outliers are indicated using red crosses on the box plot.
The ordinate shows the 57 anatomical landmarks (1-10 = left and right finger tips, 11 - 20 =
left and right toe tips, 21 - 57 = landmarks spread over the whole body) and the abscissa the
deviation from the ground truth data. Figure created by author.

Conclusion

The tests on the three different datasets using the global prediction stage show that cuboidal-
BRIEF outperforms all feature descriptors discussed in this thesis. However, the results of Gaus-
sLBP are unexpectedly bad. According to the feature evaluation using MDVV and maximum
density a much lower loss was expected. The outstanding performance of cuboidalBRIEF leads
to the decision that this feature descriptor is used in further evaluations. Because cuboidalBRIEF
describes image patches located at each of the voxel locations this finding correlates with the re-
sults described by Donner and Bishop [22] on 2D medical images. Moreover, on average the
RobustBRRFerns produce prediction errors which are half the prediction errors of the original
random regression fern model. The achievements of the global prediction phase are summarized
in Table B.2.

6.4.4 Local Prediction Results

This subsection presents the results achieved by the local refinement stage of the multi-step
procedure for anatomical landmark localization. According to the results of the global prediction
phase only the feature descriptor cuboidalBRIEF is used for the evaluation. Moreover, the local
refinement is only applied and evaluated on dataset 3 and partially on dataset 1. In contrast
to those datasets, the second dataset contains a very high average deviation and therefore a
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local refinement will not improve the results sufficiently. For this dataset it is more reasonable
to enhance the discriminativity of the feature descriptor responses instead. Dataset 1 contains
landmarks that are visible in CT and MRI images. However, only two of the five landmarks
contain enough expressive texture information in their vicinity. Therefore, only the landmarks
for the left and right optical nerve are used. Please note that in contrast to the global phase the
local refinement uses the original volumes.

Experimental Setup

For dataset 1 and 3 the same optimal model parameters δ = 0.5 and ∆ = 30 are used. To
evaluate the local refinement on dataset 2 the model parameters δ = 0.8 and ∆ = 20 are used.
Similar to the global prediction tests Z = 14 individual ferns with L = 6 nodes have been used
for the RobustBRRFerns. To train the regressors, N = 10000 randomly sampled image patch
descriptions from a multivariate Gaussian distribution with mean µ = pk where pk ∈ R3 is
the position of the kth landmark and covariance Σ = I ∗2 E[Lk(h(x))] where I is the 3 × 3
identity matrix and E[Lk(h(x))] is the expectation value of the model loss for the kth landmark
of the global prediction phase are used to build the model. The features for each image patch
are computed using cuboidalBRIEF with K = 30 individually chosen responses of randomly
sampled binary tests of different scales. More precisely, multivariate uniform distributions with
Σ = I ∗5mm, Σ = I ∗7.5mm and Σ = I ∗10mm where I denotes the 3 × 3 identity matrix
are used. The setup is chosen empirically out of different feature scales and regression model
configurations. For the robust weak learner the weighting factor is set according to κ = 10.
Similar to the approaches of Pauly et al. [64] and Donner et al. [21], predictions with confidence
lower than 0.5 are removed.

Additionally, the refinement step is also evaluated using a local classification step in the
vicinity of the estimates with random ferns. For the classification Z = 60 trees are used. In
this thesis the random forest implementation of Liaw and Wiener [47] is used without further
modifications. In order to train the trees, a random set of feature vectors whose corresponding
voxel positions are very close, L2-distance < 4mm, are used as positive observations whilst
more distant responses are considered to be negative observations. More precisely, N = 10000
randomly sampled observations are extracted from each training volume. To obtain the obser-
vations the multivariate Gaussian distribution N (pk,Σ) with Σ = I ∗2 E[L(hk)] with I being
the 3× 3 identity matrix is used. The refined landmark positions are estimated by first applying
particle filtering (cf. Doucet and Johansen [26]) with a sphere of radius r = 10mm on the pre-
diction volume to obtain a density volume. After applying minimum density suppression on the
density volume the landmark position are estimated by calculating the mean position over the
remaining 10% predictions with highest density. Using this approach allows a robust and outlier
insensitive estimation of the locations. In contrast to the mean location of all positive samples,
outlying samples will be suppressed by their neighborhood. Please note that the initial position
is kept if the random forest classifier is not able to classify at least one sample as positive sample.
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Results

Table 6.12 and 6.13 compare the local refinement results obtained using RobustBRRFerns and
randomForest using cuboidalBRIEF to the global prediction errors, bold value indicate the best
result per row. The results achieved using the local refinement phase are unexpectedly similar to
those of the global prediction phase. Especially in the case of dataset 3 a much higher decrease
of the model loss is expected.

Table 6.12: Comparison of global and local refined prediction results obtained using RobustBR-
RFerns, randomFerns and cuboidalBRIEF on dataset 1 measured in mm.

Dataset 1
global global & local (regression) global & local (classification)

L
A

D Mean 12.54± 7.02 11.56± 7.24 11.24± 6.00
Median 11.28± 5.28 10.10± 5.30 9.52± 4.75

R
SS Mean 9.34± 5.96 8.61± 6.15 8.37± 5.09

Median 7.86± 4.28 7.52± 4.30 7.09± 4.03

Table 6.13: Comparison of global and local refined prediction results obtained using RobustBR-
RFerns and cuboidalBRIEF on dataset 3 measured in mm.

Dataset 3
global global & local (regression) global & local (classification)

L
A

D Mean 25.34± 12.36 25.12± 13.89 21.03± 17.81
Median 23.56± 9.58 22.95± 10.92 19.55± 15.44

R
SS Mean 15.72± 8.20 15.59± 8.62 13.05± 11.05

Median 14.46± 6.44 14.24± 6.78 12.00± 9.58

Discussion

In the approach presented in this thesis the initial guesses for the local refinement depend on
the previous predictions of the global phase. The global model allows location votes for all
landmarks from every selected voxel, i.e. every 64th voxel. However, this does not guaranty that
the landmark prediction lies in a texture rich voxel location. Therefore, it is possible that initial
guesses are located in areas that make a local optimization difficult. Moreover, some landmarks
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- especially the finger or toe tips - seem to converge in approximately 50% of the cases to a local
optimum by moving to a neighboring finger or toe tip.

As shown in Table 6.12 and 6.13 the local refinement using the proposed regression model
does not change the results significantly. Especially on dataset 3, only approximately 60% of
all landmark position deviations decreased. The local models that deteriorated the predicted
positions tend to move faster away from the actual landmark location than those that converged
towards the actual positions. Therefore, the gain of the local refinement phase using the regres-
sion approach is only very small. The local refinement using a classification model however,
generally improved the results. Please note that for dataset 3 the classification model is not able
to detect the landmark in approximately 60% of all cases and therefore, the location is only
adapted in 40% of all cases. For those landmark locations where a refined location is possible
to calculate, an average decrease of the RSS loss of 16.94mm is achieved. Please note that in
approximately 90% of the cases where all samples are classified as negative samples the ini-
tial deviation is smaller than the neighborhood used for the classification. Because the local
refinement using a classification model reduced the model loss more than the refinement using
the regression approach, the local refinement based on local classification is suggested. The
achievements of the local refinement phase are summarized in Table B.1.

Outlook

Possible solutions to improve the results of the local refinement stage are the following. Using
a multi-hypothesis global prediction approach can provide multiple initial guesses for the local
optimization. In order to distinguish between guesses that converge to the landmark location
and those that do not, the trajectory of the optimization can be analyzed. By iteratively apply-
ing the regression model to predict displacement vectors the mean length of the displacement
vectors should decrease if the landmark prediction approaches the real landmark position. In
the empirical evaluation of the local refinement behavior this assumption was true in more than
80% of the cases whilst the mean length of the displacement vector for wrong optimizations
tend to increase. Alternatively, a multi-hypothesis global prediction approach could also be used
to estimate multiple density volumes and computing an intersection density map that provides a
more robust estimation of the global landmark positions.

Additional to the modifications of the prediction procedure the cuboidalBRIEF feature with
the described setup smoothes the texture too much. In contrast to the global prediction phase, in
which cuboidalBRIEF outperforms all evaluated feature descriptors, this feature is not optimal
for capturing local changes of the medical images. Therefore, a more sensitive feature could
increase the refinement accuracy.

6.5 Run times

The run times of the approach described in this thesis are obtained on a computer with an Intel
Core i7 processor with 8 cores and 16 GB ram. The run times are determined by the prediction
time for the global prediction phase and the local refinement phase. Please note that the training
time for the RobustBRRFern models is significantly higher than those for random ferns. This is
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mainly because of the reweighting scheme which requires a repeated computation of the depend-
ing variables and an evaluation of the model loss. Because the models need to be trained only
once and the training can be carried out very efficiently on a large scale CPU cluster the training
timings are been analyzed in detail. However, it is reasonable to assume that on the mentioned
computer the training of each local model used for dataset 3 takes approximately 10 min.

Dataset 1 The global prediction of all landmark locations on the first dataset takes an average
running time of 3 sec. The refinement of each of the two landmarks used in the local stage
takes on average only 0.3 sec per landmark. This implies that the whole pipeline for a common
volume from dataset 1 takes less than 4 sec. If all five landmarks are used in the local refinement
the multi stage approach takes approximately 6 sec for one volume.

Dataset 2 On the second dataset only the global prediction times are captured and evaluated
because a local refinement will not improve the results sufficiently. The regression model esti-
mates all landmark locations on average in less than 2 sec.

Dataset 3 The global prediction phase using every 64th voxel on the downsampled volumes of
dataset 3 takes on average 7 sec to estimate all landmark locations. The local refinement phase
using iterative adjustment with three iterations of local predictions by applying a RobustBR-
RFern ensemble takes for one landmark an average time of 0.7 sec. This sums up to 40 sec for
an average volume of dataset 3. Therefore, the whole multistage landmark prediction method
has an approximate running time of 50 sec.

6.6 Summary

The performance of machine learning algorithms depends on the quality of the features used
for the classification or regression (cf. Mayer [53]). To estimate the quality of the feature
descriptor the discernibility is evaluated using the MDVV and the maximum kernel density. The
robustness of the descriptors is evaluated against Poisson and Rice distributed noise. The feature
descriptor response of the GaussLBP and the cuboidalBRIEF show significant improvements
in comparison to the approach used by Donner et al. [21] and BRIEF. Especially the feature
descriptor GaussLBP outperforms the other feature descriptors according to the MDVV and the
maximum kernel density values.

In order to obtain estimates of the model loss the performance is calculated using K-fold
cross validation. The proposed approach is evaluated on three datasets. The first two dataset are
CT and MRI T1 weighted scans of the human head, whilst the last dataset contains 57 annotated
landmark in whole body CT scans. It can be summarized, that the global prediction phase of the
proposed multi-pass model achieves a mean deviation of 9.34mm on the first dataset, 30.84mm
on the second dataset and 15.72mm on the whole body dataset. Because of the high deviations
on dataset 3 local refinement phase is only evaluated on dataset 1 and 3. However, the local
refinement improved the initial results only little, from 9.34mm to 8.37mm on dataset 1 and
from 15.72mm to 13.05mm on dataset 3.
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CHAPTER 7
Discussion and Future Work

This chapter discusses the results achieved by the multi-pass anatomical landmark prediction
system and compares the achievements to three state of the art approaches. Furthermore, a
conclusion of the thesis and a perspective on future work is given in Section 7.3.

7.1 Discussion

The experimental results demonstrate the performance of the proposed generic approach for
anatomical landmark prediction. A detailed discussion of the approach and a comparison to
other state of the art methods is given in subsection 7.1.1. Moreover, the limitations of the
proposed approach are discussed in subsection 7.1.2.

7.1.1 Comparison to State of the Art

The results and the technical details of three state of the art approaches are introduced in Chap-
ter 6. This subsection gives discusses the achievements of the approach by Pauly et al. [64],
Cuingnet et al. [18] and Donner et al. [21] to those of this thesis.

Pauly et al. [64]

Table 7.1 shows the results of Pauly et al. [64], the global prediction phase only and the multi-
pass model with local refinement on dataset 3. Because Donner et al. [21] applied the approach
of Pauly et al. [64] on dataset 3, the achievements can be directly compared to those of this
thesis. It can be seen that the proposed approach clearly outperforms the Random Regression
Ferns by Pauly et al. [64] on this dataset. Please note that the approach of his thesis downsamples
the volumes for sparse feature extraction in the global prediction phase and still outperforms the
approach by Pauly et al. [64].
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Table 7.1: Prediction results of four-fold cross-evaluation on dataset 3 published by Donner et
al. [21] (in mm).

Method Mean Median Std

Random Regression Ferns 54.80 43.37 86.98
RobustBRRFerns (global) 15.72 14.46 8.20
RobustBRRFerns (local) 13.05 12.00 11.05

Cuingnet et al. [18]

The segmentation approach by Cuingnet et al. [18] is evaluated on 233 CT scans from 89 pa-
tients. Because this publication discusses an automatic localization and an automatic segmenta-
tion approach only the first part of the paper can be compared with the approach of this thesis.
Considering the whole body dataset the RobustBRRFerns achieve a mean deviation of 12.00mm
which is close to the refinement deviation of 11mm for the left and 10mm for the right kidney.
It should be noted that the refinement phase is a model based approach to give a starting point for
the kidney segmentation. The approach of this thesis does not induce anatomical knowledge by
using e.g., a model based representation of the shape of anatomical structures or a graph based
representation of the relation between the landmarks.

Donner et al. [21]

The approach of Donner et al. [21] is a complex approach to estimate proper landmark locations.
As shown in table 7.2, Donner et al. [21] obtain a mean deviation of 5.25mm with a standard
deviation of 15.08mm on the third dataset. Using the method described in this thesis a larger
mean deviation of 13.05mm is achieved. Please note that Donner et al. [21] follow a similar
approach including classification of promising regions and refining the locations using Hough
forests. Donner et al. [21] describe that the prediction accuracy improved especially during the
refinement step. However, in this thesis a significant improvement due to the refinement phase
using the described setup can not be observed. Therefore, further research of the refinement
phase is necessary. Even though the accuracy of the approach by Donner et al. [21] outperforms
the method described in this thesis, it should be emphasized that Donner et al. [21] need 120 sec
for an average volume of dataset 3 whilst the proposed approach estimates all landmark locations
in less than a minute.
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Table 7.2: Prediction results of four-fold cross-evaluation on dataset 3 published by Donner et
al. [21] (in mm).

Method Mean Median Std

Donner et al. [21] 5.25 2.71 15.08
RobustBRRFerns (global) 15.72 14.46 8.20
RobustBRRFerns (local) 13.05 12.00 11.05

7.1.2 Limitations

In contrast to the original random regression ferns the RobustBRRFerns adjust the clustering of
the input space according to the last trained fern which results in a non-parallelizable algorithm.
Therefore, it is not possible to train the individual ferns of the RobustBRRFerns ensemble at once
to reduce the training run time. Moreover, the described feature descriptors are not rotation- or
scale-invariant and therefore the trained model is rotation- and scale-variant which is also an
implicit limitation of the approaches by Pauly et al. [64], Cuingnet et al. [18] and Donner et
al. [21]. Especially the cuboidalBRIEF and the GaussLBP features suffer from the fact that
the response is implicitly effected by the corners of the cuboidal regions. Due to the limitation
of the integral volumes to cuboidal regions an efficient implementation of cuboidalBRIEF and
GaussLBP using ellipsoids is not possible with the methods described.

7.2 Conclusion

Inspired by previous work of Pauly et al. [64] a novel robust boosted regression approach for
automatic landmark localization on medical images is introduced: RobustBRRFerns. This ap-
proach is more accuracy than the model proposed by Pauly et al. [64] while keeping advantages
of the random fern approach in terms of memory efficiency. On the synthetic test cases and
RobustBRRFerns outperformes the random fern model. It has been shown that in general the
RobustBRRFerns produce a model loss which is only half the loss of the random fern.

After a discussion of state of the art gray value difference features used in medical images
has been given two novel feature descriptors tailored to medical volumetric images have been
designed and evaluated.

A discussion of state of the art gray value difference feature used in the medical domain is
given. Furthermore, to novel feature descriptors are introduced: cuboidalBRIEF and GaussLBP.
The noise-sensibility and the suitability for regression approaches are evaluated to facilitate the
effectiveness of the introduced feature descriptors. The novel feature descriptor cuboidalBRIEF
turned out to outperform the other feature descriptors in the global prediction phase.

The generic system for multi-pass landmark prediction described allows memory and time
efficient estimation of landmark locations on any kind of medical image modalities. The perfor-
mance of the automatic landmark prediction approach is assessed by evaluating the method on
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three different datasets. In order to provide direct comparability to state of the art approaches
the CT Whole Body Morphometry Project [58] dataset is used as one of the datasets.

The results are compared to three state of the art approaches for automatic landmark lo-
calization. The proposed approach achieved significant better results on the CT Whole Body
Morphometry Project [58] dataset than the approach by Pauly et al. [64]. The accuracy of the
method published by Cuingnet et al. [18] is comparable to the accuracy of the model developed
in this thesis. However, the complexity of the model by Cuingnet et al. [18] is significantly
higher and therefore requires more memory and computation time. Although the approach by
Donner et al. [21] outperformed the system developed in this thesis on the CT Whole Body
Morphometry Project [58] dataset the computation time for the approach by Donner et al. [21]
on an average dataset is more than twice the computation time of the model presented.

Despite the only modest improvements in the local refinement phase the proposed approach
provides a memory and time efficient solution that achieves satisfying results in the global pre-
diction phase.

7.3 Future Work

As mentioned in Chapter 6 further research will be done regarding the local refinement phase. A
promising idea is the extension of the global prediction phase by multiple individual predictions
which provide several initial guesses for the local refinement phase. Moreover, similar to the
paper of Pauly et al. [64] the feature responses for MRI scans could be extracted over the T1
weighted and the T2 weighted images at once. As T1 and T2 images taken from the same patient
in the same scan are implicitly co-registered to each other the responses can be concatenated.
Combining the responses will lead to a significant improvement on datasets of a similar type as
dataset 2. The next logical step to extend the illustrated approach will the combination with a
higher order graphical model e.g., conditional random field or Markov random field. This will
allow to introduce contextual knowledge on the relationship of different anatomical landmarks.
An interesting extension of the regression model and the feature extraction would be the use of
fuzzy regression models and fuzzy image processing. Especially the replacement of the hard
input space clustering used in the fern models by fuzzy clustering approaches will improve the
model’s expressiveness.
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APPENDIX A
Feature Descriptors

A.1 Pseudo code of GaussLBP

input : An image I , the position vector p ∈ R3, the offset matrix of the k neighbors
Q ∈ R3×K of p and the dimension Matrix of the neighbors D3×K .

output: An binary vector b ∈ BK .

// Initialize binary vector
1 b← 0;
// where 0 is the zero vector of dimensionality K

// create summed-area table
2 T ← using Equation 3.10

3 for i = 1, . . . ,K do
// compute intensity mean

4 q ∈ R3 ← Qi;
5 d ∈ R3 ← Di;
6 IM ← T (q1,q2,q3,d1,d2,d3)

d1d2d3
;

// update binary vector
7 if IM < I(p) then
8 bi ← 1;
9 end

10 end
Algorithm A.1: GaussLBP
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A.2 Pseudo code of cuboidalBRIEF

input : An image I , the offset matrix of the k tuples Q ∈ R6×K of p and the dimension
Matrix of the tuples D6×K .

output: A decimal value x ∈ R.

// Initialize binary vector
1 b← 0;
// where 0 is the zero vector of dimensionality K

// create summed-area table
2 T ← using Equation 3.10

3 for i = 1, . . . ,K do
// compute intensity means

4 q ∈ R6 ← Qi;
5 d ∈ R6 ← Di;
6 IM ′ ← T (q1,q2,q3,d1,d2,d3)

d1d2d3
;

7 IM ′′ ← T (q4,q5,q6,d4,d5,d6)
d4d5d6

;
// update binary vector

8 if IM ′ < IM ′′ then
9 bi ← 1;

10 end
11 end
12 x← Decimal(b)

Algorithm A.2: cuboidalBRIEF
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APPENDIX B
Results

81



Ta
bl

e
B

.1
:L

oc
al

re
fin

em
en

tr
es

ul
ts

on
al

ld
at

as
et

s
in
m
m

.

R
efi

ne
m

en
tA

pp
ro

ac
h

Fe
at

ur
e

D
at

as
et

1
D

at
as

et
2

D
at

as
et

3
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

-
cu

bo
id

al
B

R
IE

F
9
.3

4
±

5.
96

7.
86
±

4
.2

8
49

.6
0
±

64
.4

2
22

.1
8
±

46
.8

8
15
.7

2
±

8
.2

0
1
4.

4
6
±

6
.4

4
cl

as
si

fic
at

io
n

cu
bo

id
al

B
R

IE
F

8.
37
±

5
.0

9
7.

09
±

4
.0

3
-

-
13
.0

5
±

1
1.

0
5

1
2.

0
0
±

9
.5

8
re

gr
es

si
on

cu
bo

id
al

B
R

IE
F

8
.6

1
±

6.
15

7.
52
±

4
.3

0
-

-
15
.9

5
±

8
.6

2
1
4.

2
4
±

6
.7

8
D

on
ne

re
ta

l.
[2

1]
D

on
ne

re
ta

l.
[2

1]
-

-
-

-
5.

25
±

1
5.

0
8

2.
71
±
−

Pa
ul

y
et

al
.[

64
]

Pa
ul

y
et

al
.[

64
]

-
-

-
-

54
.8

0
±

4
3.

3
7

8
6.

9
8
±
−

82



Ta
bl

e
B

.2
:G

lo
ba

lp
re

di
ct

io
n

re
su

lts
on

al
ld

at
as

et
s

in
m
m

.

A
pp

ro
ac

h
Fe

at
ur

e
D

at
as

et
1

D
at

as
et

2
D

at
as

et
3

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n

R
ob

us
tB

R
R

Fe
rn

s

D
on

ne
re

ta
l.

[2
1]

11
.0

8
±

4.
26

10
.8

4
±

3.
72

64
.0

8
±

61
.0

6
42
.1

8
±

45
.5

2
-

-
G

au
ss

L
B

P
12
.8

8
±

5.
54

11
.8

4
±

4.
30

79
.1

6
±

66
.3

4
55
.8

0
±

53
.3

8
-

-
B

R
IE

F
13
.8

0
±

6.
12

12
.6

6
±

4.
74

57
.8

2
±

59
.0

8
38
.5

8
±

43
.2

2
-

-
cu

bo
id

al
B

R
IE

F
9.

34
±

5.
96

7.
86
±

4.
28

49
.6

0
±

64
.4

2
22

.1
8
±

46
.8

8
15
.7

2
±

8.
20

1
4.

4
6
±

6.
4
4

D
on

ne
re

ta
l.

[2
1]

D
on

ne
re

ta
l.

[2
1]

-
-

-
-

5.
25
±

15
.0

8
2.

71
±
−

Pa
ul

y
et

al
.[

64
]

Pa
ul

y
et

al
.[

64
]

-
-

-
-

54
.8

0
±

43
.3

7
8
6.

9
8
±
−

83





APPENDIX C
Datasets

C.1 MIPs of Dataset 1: CT Heads

Figure C.1: Maximum intensity projection of the first and second datum of dataset 1.
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Figure C.2: Maximum intensity projection of the third and fourth datum of dataset 1.

Figure C.3: Maximum intensity projection of the fifth an sixth datum of dataset 1.

C.2 MIPs of Dataset 2: MRI T1 Heads
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Figure C.4: Maximum intensity projection of the first and second datum of dataset 2.

Figure C.5: Maximum intensity projection of the third and fourth datum of dataset 2.
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Figure C.6: Maximum intensity projection of the fifth and sixth datum of dataset 2.
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C.3 MIPs of Dataset 3: CT Whole Body

Figure C.7: Maximum intensity projection of the 1. datum of dataset 3.

Figure C.8: Maximum intensity projection of the 2. datum of dataset 3.

Figure C.9: Maximum intensity projection of the 3. datum of dataset 3.
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Figure C.10: Maximum intensity projection of the 4. datum of dataset 3.

Figure C.11: Maximum intensity projection of the 5. datum of dataset 3.

Figure C.12: Maximum intensity projection of the 6. datum of dataset 3.
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Figure C.13: Maximum intensity projection of the 7. datum of dataset 3.

Figure C.14: Maximum intensity projection of the 8. datum of dataset 3.

Figure C.15: Maximum intensity projection of the 9. datum of dataset 3.
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Figure C.16: Maximum intensity projection of the 10. datum of dataset 3.

Figure C.17: Maximum intensity projection of the 11. datum of dataset 3.

Figure C.18: Maximum intensity projection of the 12. datum of dataset 3.
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Figure C.19: Maximum intensity projection of the 13. datum of dataset 3.

Figure C.20: Maximum intensity projection of the 14. datum of dataset 3.

Figure C.21: Maximum intensity projection of the 15. datum of dataset 3.
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Figure C.22: Maximum intensity projection of the 16. datum of dataset 3.

Figure C.23: Maximum intensity projection of the 17. datum of dataset 3.

Figure C.24: Maximum intensity projection of the 18. datum of dataset 3.
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Figure C.25: Maximum intensity projection of the 19. datum of dataset 3.

Figure C.26: Maximum intensity projection of the 20. datum of dataset 3.
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