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ABSTRACT This paper introduces an improved kinetic model
for the water gas shift reaction catalyzed by an Fe-/Cr-based
catalyst. The improved model is based on a former model
which was developed previously in order to consider the com-
position and the catalyst poisons (H2S) of product gas derived
from dual fluidized bed biomass steam gasification.
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Furthermore, this improved model has been validated with
experimental data. The data was generated by a WGS reactor
which employed a commercial Fe-/Cr-based catalyst and
which processed real product gas from the dual fluidized
bed biomass steam gasification plant in Oberwart, Austria.
Basically, the validation showed good agreement of the mea-
sured and the calculated values for the gas composition (ab-
solute errors of the volumetric fractions of up to 1.5 %) and the
temperature profile (absolute errors of up to 21 °C) of the
WGS reactor. Of all considered gas components, the CO con-
centration showed the highest error.

The results qualify the improved kinetic model for basic
design and engineering of a WGS reactor employing a com-
mercial Fe-/Cr-based catalyst which processes product gas
from an industrial scale biomass steam gasification plant.

Keywords Kinetic model .Water gas shift . Biomass . Steam
gasification . Dual fluidized bed . Product gas

1 Introduction

The water gas shift (WGS) reaction (see Eq. 1) is a proven
method for increasing the hydrogen content in a product gas
generated by gasification. Recent research has extensively in-
vestigated aWGS unit, employing a commercial Fe-/Cr-based
catalyst, which processed product gas from dual fluidized bed
(DFB) biomass steam gasification [8, 16, 17].

COþ H2O↔ H2 þ CO2 ΔH ¼ −41:1 kJ mol−1 ð1Þ

Since the first applications of the WGS reaction catalyzed
by an Fe-/Cr-based catalyst (compare [23]), several kinetic
models, based on power laws, have been proposed by differ-
ent authors, for example, in [2, 3, 9, 13, 20] and [22].
However, most of the investigations of Fe-/Cr-based WGS
catalysts were carried out for product gas derived from coal
gasification [10, 11]. Zhu and Wachs [28] give a comprehen-
sive summary about kinetic models of the WGS reaction cat-
alyzed by Fe-/Cr-based catalysts.

In addition, Fail [7] proposed a kinetic model for the
WGS reaction catalyzed by an Fe-/Cr-based catalyst. This
kinetic model specifically takes the product gas from DFB
biomass steam gasification into account. In the present
paper, this model is referred to as the former kinetic
model.

The main gas components of the product gas are H2, CO,
CO2, and CH4 which makes the product gas a suitable source
for different synthesis reactions, for example, see [19, 21] and
[24]. In addition, it contains about 100 cm3m−3 H2S. This H2S
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content was considered within the former model because H2S
could lead to a performance decrease of the catalyst [26].

In [15], the former model was validated with experimental
data from a WGS reactor which employed commercial Fe-/
Cr-based catalyst disks (diameter about 6 mm and height
about 3 mm, original size) and which processed real product
gas from the industrial scale DFB biomass steam gasification
plant in Oberwart, Austria. The validation showed significant
inaccuracies of the temperature profile along theWGS reactor,
which could be attributed to the fact that the former model was
established with a milled Fe-/Cr-based catalyst, which did not
have the original disk size. Therefore, a higher catalyst surface
was available during the establishment of the former kinetic
model compared to the validation experiments where the cat-
alyst was used in its original size. However, the WGS reactor,
which is located at the site of the gasification plant in
Oberwart employed the catalyst in its original pellet size.
Consequently, the differences between the measured and cal-
culated temperature profile occurred.

The present paper improves the former kinetic model in
order to obtain a better agreement between the experimental
data and the model. Consequently, the improved kinetic model
should be accurate enough to be used for basic design and
engineering ofWGS reactors employing Fe/Cr based catalysts
which process product gas from DFB biomass steam
gasification.

2 Materials and methods

First, this section presents the former kinetic model, which is
based on the previous work carried out by Fail (see [7]) and
which is improved in the present paper. Second, the experi-
mental setup which generated the data material which was
used to improve the former and to validate the improved ki-
netic model is presented. Third, the derivation of the numeri-
cal mass and energy balances of the WGS reactor is intro-
duced, which enables the comparison of the measured data
with the results of the model.

2.1 The former kinetic model

This paper is based on a kinetic model which was derived at
the TU Wien from results obtained with a laboratory scale
chemical kinetics test rig (see [7]). For that kinetic model,
the Fe-/Cr-based catalyst was milled before the kinetic param-
eters were determined. Consequently, the model shows inac-
curacies regarding the reaction rate and, therefore, the temper-
ature profile (compare [15]) if the catalyst is used in its orig-
inal size.

In this paper, the former kinetic model has been improved
in order to meet the requirements for using this model for the

basic design and engineering of a WGS reactor which pro-
cesses product gas from DFB biomass steam gasification.

The starting point for both the former and the improved
kinetic model was the power law in Eq. 2 which is based on
[7] and [15]:
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The reaction rate r(φi, T) is a function of the reactive spe-
cies (CO, H2O, CO2, and H2) and the temperature. Other gas
components which are usually contained in small amounts in
the product gas of the DFB biomass steam gasification are
considered as inert.

The parameters which describe the reaction rate are the rate
constant k0, the activation energy Ea, and the reaction expo-
nents (a, b, c, and d) of each component iwhich is a reactant of
theWGS reaction (see Eq. 1). pi is the partial pressure, R is the
general gas constant, and T is the temperature along the reac-
tor. KMAL is the mass action law and Kg the equilibrium con-
stant calculated from thermo-physical properties.

KMAL ¼ φH2⋅φCO2

φCO⋅φH2O
ð3Þ

Kg ¼ exp
−ΔG Tð Þ

R⋅T

� �
ð4Þ

The partial pressure of each component pi can be expressed
by the overall absolute pressure p and the volumetric
fraction φi.

pi ¼ φi⋅p ð5Þ

The work in [7] led to the following parameters for Eq. 2,
resulting in the former model (see Table 1).

2.2 Setup for the generation of the experimental data

This section provides information about the plants and the
measurement principles which were used for the data

Table 1 Parameters of the former kinetic model (see [7] and [15])

Parameters Values Units

k0 117.8 mol g−1 Pa−(a + b + c + d) s−1

Ea 101.9 kJ mol−1

a 1.77 –

b 0.23 –

c −0.17 –

d −0.12 –
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generation in order to improve the former and to validate the
improved kinetic model.

2.2.1 The dual fluidized bed steam gasification plant

The product gas for the WGS reactor was extracted from the
commercial DFB biomass steam gasification plant in
Oberwart, Austria. The gasification plant is operated as com-
bined heat and power (CHP) plant and generates electricity
and heat for the district. Figure 1 shows a simplified flowchart
of the gasification plant.

For the improvement of the former and the validation of the
improved kinetic model, the product gas was extracted from
two extraction points (see also Fig. 1). The first extraction
point was located before the rapeseed methyl ester (RME)
gas scrubber, and the second extraction point was located after
the RME gas scrubber. The product gas which was extracted
before the RME gas scrubber showed a significantly higher
amount of tar (about 10 g m−3) and steam (about 35 %) com-
pared to the product gas which was extracted after the RME
gas scrubber (about 2 g m−3 tar and about 7 % steam).

Further details of the plant can be found in [6, 15–17].

2.2.2 The water gas shift reactor

Figure 2 shows a simplified flowchart of the cylindrical WGS
reactor located at the site of the gasification plant in Oberwart
which was used for the generation of the experimental data.

The WGS reactor successively processed a partial flow of
the product gas of the gasification plant from the two extrac-
tion points (see Fig. 1). The product gas was mixed with
additional steam which was provided by a steam generator.
The gas inlet temperature was adjusted with a heating section
to about 350 °C. At the bottom of the reactor, a screen plate
was used for carrying the commercial Fe-/Cr-based catalyst
which had been in operation for more than 2000 h at the time
this research was conducted. The catalyst bed was a fixed bed
with a diameter of 9 cm and a height of about 40 cm resulting
in a catalyst bed volume of about 2.5 dm3. The bulk density
of the catalyst bed was 1.24 kg dm−3. The wall thickness of the
reactor was 3 mm and the insulation consisted of stone wool
with a thickness of 10 cm and a thin layer of Al around the
outer surface.

Seven thermocouples were used to measure and to record
the temperature profile along the WGS reactor. The tempera-
ture profile allowed reaching some conclusion about the
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Fig. 1 Simplified flowchart of the gasification plant in Oberwart, Austria
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activity of the commercial Fe-/Cr-based catalyst due to the
exothermic nature of the WGS reaction.

After the product gas was processed in the reactor, it was
recycled back to the gasification plant. A sample flow of the
processed gas extracted before the steam addition, before the
inlet, and after the outlet of the WGS reactor was sent to the
analytical line and, subsequently, to a gas chromatograph
(GC) in order to measure the dry gas composition of the proc-
essed gas.

The WGS reactor operated at ambient pressure and the
pressure drop along the catalyst bed was between 500 and
1000 Pa during the whole operating time.

2.2.3 Measurement of the temperature profile along the water
gas shift reactor

Figure 2 shows the positions of the thermocouples (type J)
along the WGS reactor. Thermocouple T0 was positioned
before the fixed bed Fe-/Cr-based catalyst. Therefore, it was
not in the reactive zone. T1 to T5 were positioned along the
catalyst bed at a distance of 10 cm from each other. T1 was
positioned right at the beginning of the catalyst bed, and T5
was positioned right at the end of the catalyst bed. T6 was
outside the catalyst bed. T1 to T5 enabled the measurement
and recording of the temperature profile along the fixed bed
WGS catalyst.

2.2.4 Measurement of the gas composition at the inlet
and the outlet of the water gas shift reactor

Figure 3 shows the setup of the gas conditioning before the
gas chromatograph (GC) that was used for the determination
of the gas composition.

Before entering the GC, the gas stream passed through two
gas washing bottles filled with glycol at a temperature of about

−5 °C in order to condense and separate the steam. Therefore,
a dry gas stream could be assumed after the gas washing
bottles. The dry gas stream passed through another gas wash-
ing bottle filled with glass wool in order to prevent aerosols
from entering the GC. After the glass wool bottle, a gas meter
recorded the volumetric dry gas flow.

The steam content in the product gas before the addition of
steam, before the inlet of the reactor, and after the outlet of the
reactor was determined with a gravimetrical method. The wet
gas stream passed through the gas washing bottles for a certain
time, where the steam was condensed. Subsequently, the vol-
umetric dry gas flowwas recorded and the gas washing bottles
were weighed. Consequently, the steam content before the
steam addition, before the inlet, and before the outlet of the
reactor could be determined.

The volumetric dry gas flow rate at the inlet of the WGS
reactor was calculated by the water balance of the steam gen-
erator according to the following equation and the known
volumetric flow rate of the steam addition:

V ̇
Dry ¼ V ̇

Wet;In⋅ 1−φH2O;In

� �

¼ V ̇
H2O;Add⋅φH2O;Out−V ̇

H2O;Add

� �
φH2O;In−φH2O;Out

� � ⋅ 1−φH2O;In:

� �

In this paper, all volumetric gas flow rates and gas volumes
are given at standard temperature and pressure (STP, 273.15 K
and 101325 Pa).

A GC (Clarus 500™ from Perkin Elmer) was used to mea-
sure the gas composition at the inlet and at the outlet of the
WGS reactor. A thermal conductivity detector (TCD) enabled
the quantification of the CO, CO2, CH4, N2, and higher hy-
drocarbons in the gas stream with two different columns (7’
HayeSep N, 60/80 1/8B SF and 9' molecular sieve 13× 45/60,
1/8^ SF). The higher hydrocarbons were considered inert and,
therefore, their amount was added to the N2 concentration.
The GC was not able to measure the H2 concentration.
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WGS reactor

Glass wool

FR Gas stream 
to GC

Fig. 3 Setup of the gas conditioning before the GC and the water content
determination

Product gas from
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Fig. 2 Simplified flowchart of the WGS reactor which was used for the
generation of the experimental data

156 Biomass Conv. Bioref. (2017) 7:153–165



Consequently, the H2 concentration was calculated by closing
the overall mass balance. Furthermore, CH4 was also consid-
ered inert for the modeling process.

In addition, the measurements were validated by applying
the least squares method on the elemental balances of C, H, O,
and N describing the WGS reactor.

2.3 Balances and consideration of the heat losses
of the water gas shift reactor

This section describes the derivation of the numerical molar
and energy balances of the WGS reactor which was used for
gathering the experimental data. Furthermore, the approach
for the consideration of the heat losses along the reactor is
shown.

For the derivation of the balances, the assumption of an
ideal plug flow reactor was made.

2.3.1 Molar balance of the water gas shift reactor

Figure 4 shows the derivation of the molar balance of the
WGS reactor.

The molar balance of each reactive component i leads to

ni̇ zþΔzð Þ−ni̇ zð Þ ¼ �r φi; Tð Þ⋅ρs⋅Δz⋅A: ð6Þ

n ̇i is the molar flow of component i and A is the cross
section of the catalyst bed. ρs is the bulk density of the Fe-/
Cr-based catalyst and Δz is the grid step, which was chosen
with 1 mm. ±indicates whether component i is an educt or a
product of the WGS reaction.

The limiting processlimΔz→ 0 leads to the following dif-
ferential equation:

dni̇
dz

¼ �r φi; Tð Þ⋅ρs⋅A: ð7Þ

Replacing the molar flow rate ni̇ of each component i with
the overall molar flow rate n ̇ and the volumetric fractions of
each component i leads to

dφi

dz
¼ �r φi; Tð Þ⋅ρs⋅A⋅

1

n ̇
: ð8Þ

This step is valid because of the equimolar character of the
WGS reaction and the assumption of ideal gas behavior.

Using the finite difference approach (see [25]) leads to

φKþ1
i ¼ �r φK

i ; T
K� �

⋅ρs⋅A⋅
1

n ̇ ⋅
Δzþ φK

i : ð9Þ

Equation 9 enables the calculation of the concentration
profiles of CO, H2O, CO2, and H2 along the catalyst bed
height of the WGS reactor.

2.3.2 Energy balance of the water gas shift reactor

Figure 5 shows a drawing for the derivation of the energy
balance of the WGS reactor.

The energy balance of the differential height element leads
to

ḣ zþΔzð Þ− ḣ zð Þ
¼ �ΔhR φi; Tð Þ:r φi; Tð Þ:ρs:A:Δz−ΔQ̇ zð Þ: ð10Þ

Here, ΔhR(φi, T) is the formation enthalpy of the WGS

reaction, h ̇ is the overall enthalpy flow, and ΔQ̇ zð Þ is the
term which describes the heat losses along each height
element Δz. The limiting process limΔz→ 0 and the overall
molar heat capacity cP(φi, T) of the gas stream lead to

dT
dz

¼ � ΔhR φi; Tð Þ⋅r φi; Tð Þ⋅ ρs⋅A
cP φi; Tð Þ⋅ ṅ −

d Q ̇ zð Þ
cP φi; Tð Þ⋅ ṅ ⋅dz :

ð11Þ

Applying the finite difference approach to Eq. 11 leads to

TKþ1 ¼ � ΔhR φK
i ; T

K� �
⋅r φK

i ; T
K� �

⋅
ρs⋅A

cP φi; Tð Þ⋅ ṅ ⋅Δz−
ΔQ̇K

cP φK
i ; T

K
� �

⋅ n ̇
þ TK :

ð12Þ

Equation 12 enables the calculation of the tempera-
ture profile along the catalyst bed height of the WGS
reactor. It also considers the heat losses which occur
along the WGS reactor.

Equations 9 and 12 form a system of equations which de-
scribes the concentration and temperature profiles along the
WGS reactor. This system of equations was solved using an
algorithm which was written with the numerical software
Scilab™ [27].

The thermo-physical properties of the product gas compo-
nents were calculated by NASA polynomials [18].

Δz

z ni(z)

ni(z+Δz)

Catalyst bed
height element

Fixed bed Fe/Cr
based catalyst with
bulk density ϱs and
reaction rate r(ϕi,T)

Ø dR

.

.
T = const.

Fig. 4 Illustration for the calculation of the molar balance for the WGS
reactor
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The input values for the numerical solution are the

volumetric steam flow rate V ̇
H2O, the volumetric dry gas

flow rate V ̇
Dry, the kinetic model coefficients, the reac-

tor geometry, the gas composition at the reactor inlet φ0
i ,

the reactor inlet temperature T0, and the ambient tem-
perature T0.

With the numerical calculation of the mass and ener-
gy balance of the WGS reactor, the former kinetic mod-
el (see Table 1) was improved and the resulting im-
proved kinetic model (see Table 3) was validated with
experimental data. To acquire the experimental data, the
WGS reactor was operated with real product gas from
the gasification plant.

2.3.3 Consideration of the heat losses along the water gas
shift reactor

The heat losses along the WGS reactor were considered
because they have a significant influence on the energy
balance of the WGS reactor.

The heat losses ΔQ̇ zð Þ are calculated for each Δz along
the WGS reactor according to

ΔQ ̇ zð Þ ¼ T zð Þ � T0ð Þ:RQ zð Þ: ð13Þ

Using the finite difference approach leads to

ΔQ ̇K ¼ TK−T 0

� �
⋅RK

Q: ð14Þ

Here, T(z) is the actual reactor temperature for each z,
T0 is the ambient temperature, and RQ(z) is the overall
heat transfer conductivity for each z; it can be described
by four different single heat transfer conductivity

coefficients (ambient, insulation, reactor wall, and inner
reactor) according to Eq. 15.

1

RQ
¼ 1

α0⋅A0
þ δI

λI⋅AI
þ δS

λS⋅AS
þ 1

αR⋅AR

¼ 1

π⋅Δz
⋅

1

α0⋅d0
þ δI

λI ⋅
dI−dS

ln
dI
dS

� �
þ δS

λS ⋅
dS−dR

ln
dS
dR

� �
þ 1

αR⋅dR

0
BBBBBB@

1
CCCCCCA

ð15Þ

These four terms describe the heat transfer conductivity of
the shell of the reactor (compare Fig. 6). The heat losses of the
bottom surface and the top surface of the reactor are neglected
because the surfaces are significantly smaller than the shell
surface.

In the following, the derivation of the four heat transfer
conductivity terms (ambient, insulation, reactor wall, and in-
ner reactor) is shown.

Ambient This term consists of the heat transfer coeffi-
cients α0 and the outer surface of the reactor A0.

α0 can be calculated with the heat transfer coefficient
caused by the radiation emitted by the insulation surface
(αRad, thin Al layer) and the heat transfer coefficient caused
by natural convection (αConv):

α0 ¼ αRad þ αConv ð16Þ

According to [1], αRad can be calculated with Eq. 17.

αRad ¼ ϵ 0⋅σ⋅
T4
S−T

4
0

TS−T0
¼

¼ 0:09⋅5:67⋅108
W

m2⋅K4 ⋅
50þ 273:15ð ÞKð Þ4− 25þ 273:15ð ÞKð Þ4
50þ 273:15ð ÞK− 25þ 273:15ð ÞK

¼ 0:61
W

m2⋅K

ð17Þ

The convective heat transfer coefficient αConv can be cal-
culated by the Nusselt number Nu with the correlation in
Eq. 18 (see [5]).

Nu ¼ αConv⋅d0
λ

¼ 0:6þ 0:387⋅ Gr⋅Prð Þ16

1þ 0:559⋅Pr−1ð Þ 9
16

h i 8
27

8><
>:

9>=
>;

2

ð18Þ

In this equation, d0 is the outer diameter of the reac-
tor and λ is the heat conductivity of air.

The Grashof number Gr with the gravitational con-
stant g, the thermal expansion coefficient of air β, the

Δz

z h(z)

h(z+Δz)

Catalyst bed
height element

Fixed bed Fe/Cr
based catalyst with

bulk density s,

reaction rate r( i,T),
and reaction

enthalpy ΔhR( i,T)

Ø dR

.

.

ΔQ(z)

T = const.

Fig. 5 Illustration for the calculation of the energy balance for the WGS
reactor
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outer reactor diameter d0, and the kinematic viscosity of
air ν

Gr ¼ g⋅β⋅ TS−T0ð Þ⋅d30
ν2

¼
9:81

m
s2

⋅
1

25þ 273:15ð Þ
1

K
⋅ 25 Kð Þ⋅0:2963 m3

1:6⋅10−5
� �2 m2

s

� �2
¼ 8:33⋅107

¼ ð19Þ

and the Prandtl number of air
Pr = 0.7
lead to
Nu = 47.89
and, consequently, to

αConv ¼ Nu⋅λ
d0

¼
47:89⋅2:6⋅10−2

W
m⋅K

0:296 m
¼ 4:21

W
m2⋅K

: ð20Þ

With Eqs. 17 and 20, the overall heat transfer coefficient for
the ambient can be calculated with

α0 ¼ αRad þ αConv ¼
¼ 0:61

W
m2⋅K

þ 4:21
W

m2⋅K
¼ 4:82

W
m2⋅K

ð21Þ

It can be seen that the heat transfer coefficient which is caused
by the natural convection is about seven times higher than the
heat transfer coefficient of the radiation at this low ambient
temperature.

Furthermore, the outer surface of the reactor can be calcu-
lated with

A0 ¼ d0⋅π⋅Δz ð22Þ

Insulation This term consists of the thickness of the
insulation δI, the heat conductivity of the insulation, λI and

the mean logarithmic surface of the insulation AI. In general,
the mean logarithmic surface (Am) can be calculated using the
outer (Ao) and inner (Ai) surface of a cylindrical object accord-
ing to Eq. 23.

Am ¼ Ao−Ai

ln
Ao

Ai

ð23Þ

Reactor wall This term consists of the thickness of the reactor
wall δS, the heat conductivity of steel λS, and the mean log-
arithmic surface of the inner reactor AR and the outer surface
of the reactor wall AS.

Inner reactor The inner reactor is considered as an ideal pipe
reactor with the inner surface area AR. Therefore, [1] (page
418) gives a Nusselt number of Nu = 3.657. With Nu, the
inner reactor diameter dR, and the estimated heat conductivity
of the product gas λR, the heat transfer coefficient αR can be
calculated.

Hence, the overall heat transfer conductivity RQ for each
Δz is 2.46 ⋅ 10−4 W ⋅K−1 with the chosen parameters. With
this information, the heat losses along the reactor can be cal-
culated according to Eqs. 13 and 14, respectively.

3 Result and discussion

First, this section presents the determination of the pa-
rameters for the improved kinetic model. Second, the
validation results of the improved kinetic model are
discussed.

Table 2 gives an overview of the four different oper-
ating points of the WGS reactor (OP1 to OP4). OP1
was used to improve the former kinetic model, and
OP2 to OP4 were used for the validation of the im-
proved kinetic model with experimental data from the
WGS reactor.

z

Ø dR

T0
α0

Insulation with thickness δI

and heat conductivity λI

Reactor wall with
thickness δs and heat

conductivity λS

Reactor with
inner diameter dR and

heat transfer
coefficient αR

Ambient

Aluminium layer
with emission
coefficient ε0

and
surface temperature TS

Fig. 6 Drawing for the consideration of the heat losses along the reactor
shell

Table 2 Overview of the operating points for the improvement of the
kinetic model and its subsequent validation

OP GHSV STDGR V ̇
Dry Usage

- h−1 – m3 · h‐1 –

1 495 1.6 1.24 Improvement

2 445 1.9 1.11 Validation

3 326 1.6 0.82 Validation

4 414 1.2 1.04 Validation
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The operating conditions of the WGS reactor were de-
scribed by the gas hourly space velocity (GHSV) and the
steam to dry gas ratio (STDGR) in Eqs. 24 and 25.

GHSV ¼ V ̇
Dry

VCat
ð24Þ

STDGR ¼ V ̇
H2O

V ̇
Dry

ð25Þ

OP1, OP2, and OP3 processed product gas which was ex-
tracted before the RME gas scrubber of the gasification plant
and OP4 processed gas which was extracted after the RME
gas scrubber.

3.1 The improved kinetic model

In order to improve the former kinetic model, a new parameter
for the activation energy Ea was sought, one that should con-
sider the fact that the catalyst was used in its original pellet
size during this experimental approach, which was in contrast
to the determination of the former kinetic model, where the
catalyst was milled and, therefore showed a higher specific
surface. Ea was chosen as the parameter to improve because
it significantly affects the temperature profile (compare Eq. 2).
To do so, a variation of Ea with subsequent error calculation
regarding the temperature profile was done.

For each Ea, the temperature profile along theWGS reactor
(thermocouples 1 to 5) was calculated and compared with the
measured values of OP1. Subsequently, the overall error for
each Ea was calculated according to Eq. 26.

Err ¼
X5

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tc;i−Tm;i
� �2q

ð26Þ

The result can be seen in Fig. 7.

The new value for Ea , j was chosen to be that for which the
error Err was a minimum.

The new value of Ea and, consequently, the other parame-
ters for Eq. 2 which were not changed can be seen in Table 3.

Compared to the models in [2, 7, 13, 15] and [22], the
activation energy Ea is higher. In these approaches, the activa-
tion energy values varied between 95 and 118 kJ mol−1.
However, Chinchen et al. [4] give a value of 129.4 kJ mol−1

for the activation energy for WGS catalysts used at industrial
scale and at pressures of up to 3.0 MPa, which is in good
agreement with the value found in this work.

In addition, the presented value of factor a shows that the
influence of the CO partial pressure is also higher (1.77 in this
work versus about 1.0 in [2, 13], and [22]). This could be
explained by the low operating pressure in this work and,
therefore, an even lower adsorption of CO on the catalyst
surface.

In contrast, the reaction exponents b, c, and d are in the
same order of magnitude, which also indicates that the supply
of H2O, CO2, and H2 to the catalyst surface is not limiting the
reaction.

3.2 Validation of the improved kinetic model
with experimental data

The improved kinetic model was validated with temperature
measurements and concentration measurements of all four
operating points where real product gas from the gasification
plant was processed in the WGS reactor.

Figure 8 shows the validation of the kinetic model with the
measured temperature profiles along theWGS reactor from all
four operating points (OP1 to OP4). The temperatures at T1
were the boundary conditions; therefore, the measurements
and the calculations have the same value.

It can be seen that the calculated and measured temperature
profiles have nearly no difference at OP1 because the im-
proved model is based on this operating point.

The temperature profiles of OP2 also have a higher differ-
ence. However, the calculated profile was slightly lower than
the measured profile. Consequently, the chosen activation en-
ergy of Ea = 126.6 kJ mol−1 seems to be too high for OP2.
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nirorrE
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Error = 6.98 °C

Fig. 7 Variation of Ea with corresponding error for OP1

Table 3 Parameters of the improved kinetic model

Parameters Values Units

k0 117.8 mol g−1 Pa−(a + b + c + d) s−1

Ea 126.6 kJ mol−1

a 1.77 –

b 0.23 –

c −0.17 –

d −0.12 –
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For OP3, the temperature profiles show good agreement
for the first three measurement points. However, it seems that
the calculated heat losses in the improved model are too low
compared to the measured values, which explains the higher
calculated temperature profile at measurement points 4 and 5.
Consequently, the highest error occurred at the last measure-
ment point.

OP4 shows the highest gap regarding the calculated
and the measured temperature profile which could be
explained by the fact, that this operating point processed
product gas with a lower STDGR of 1.2 compared to
the other operating points. For this operating point, the
chosen value of Ea was too low, which indicates that a
lower STDGR ratio has a negative effect on the kinet-
ics. This is in agreement with Hla et al. [12], where the
authors observed that higher steam content increased the
reaction rate of the WGS reaction. However, the mea-
surement points 3 to 5 indicate good agreement between
the calculated and measured heat losses.

Table 4 shows the calculated and measured values of the
gas compositions at the inlet and outlet of the WGS reactor.
The measured inlet concentrations were the boundary condi-
tions for the calculation.

Overall, it can be seen that the error of the CO concentra-
tion is the highest of all measured and calculated components.

However, the absolute error is quite low, which indicates a
good agreement of the measured and calculated values.

Taking a look at OP1, it can be seen that the measured and
calculated values show good agreement regarding the concen-
trations of H2, CO2, CH4, and N2. The relative error of CO is
higher than the relative errors of the other gas components.
However, the absolute error is about 1 %.

Looking at OP2, it can be seen that the absolute and relative
errors of the CO concentration are slightly higher than for OP1.
In addition, OP2 has a higher CO2 concentration than the CO
concentration at the inlet of the WGS reactor which can be at-
tributed to a partial load operation of the gasification plant during
this measurement. At partial load operation, a higher steam to
fuel ratio leads to higher CO2 concentrations and, consequently,
to lower CO concentrations (compare [14]).

OP3 shows similar results as for OP1. However, the
overall errors are higher; especially, the CO concentra-
tion shows a higher relative error and a higher absolute
error compared to OP1.

OP4 shows, again, good agreement of the measured
and calculated concentrations at the outlet of the WGS
reactor. It shows again the highest relative error for the
CO concentrations. The absolute error of 0.9 % is also
in the same order of magnitude as for the other operat-
ing points.
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Fig. 8 Temperature profiles
along the water gas shift reactor
for all four operating points
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3.3 Comparison of the improved with the former model

In this section, the improved and the former kinetic model are
compared by using the experimental data from OP1. Figure 9
shows the comparison of the temperature profile between the
measured data, the improved kinetic model, and the former
kinetic model.

It can be seen that the temperature profile, which was cal-
culated with the former kinetic model, shows significant de-
viation compared with the measured data and, therefore, also
with the improved kinetic model.

Table 5 shows the comparison of the volumetric fractions
of the gas components between the measured data, the im-
proved kinetic model, and the former model.

It can be seen that the former kinetic model shows a higher
H2 and CO2 concentration and, consequently, a lower CO
content. This could be explained by the higher reaction rate
of the former kinetic model. In addition, the volumetric frac-
tions of the former kinetic model are very close to the equilib-
rium composition at the given parameters.

In contrast, the CH4 and N2 concentrations of the
former and improved are at the same level, which indi-
cates, that CH4 and N2 did not take part in a reaction
and the error between the measured and calculated
values was caused by a measurement error. The small
deviation can be explained by the slightly higher volu-
metric dry gas flow rate if the former kinetic model is
employed for the calculation.

4 Conclusion and outlook

In this paper, a former kinetic model for the water gas
shift reaction was improved with experimental data from
a water gas shift reactor which processed real product
gas from dual fluidized bed biomass steam gasification
and which employed a commercial Fe-/Cr-based cata-
lyst. Both kinetic models, the former one and the im-
proved one, considered a H2S amount of about
100 cm3 m−3 which is usually contained in the product

Table 4 Concentrations at the inlet and outlet of the WGS reactor for
all operating points. The measured reactor inlet concentrations as well as
the measured and calculated reactor outlet concentrations are shown. The
H2 concentration of the measurements was calculated by closing the mass
balance as H2 could not be detected by the GC. The measurements were
single sample measurements; therefore, no standard deviation can be
given

φH2 φCO φCO2 φCH4 φN2

% % % % %

OP1

Inlet 38.9 25.4 20.7 10.5 4.5

Outlet measured 48.9 3.4 35.0 9.0 3.7

Outlet calculated 49.9 2.9 34.9 8.6 3.7

Rel. error 1.9 % 14.1 % 0.3 % 3.7 % 0.3 %

OP2

Inlet 37.3 23.0 24.1 10.4 5.2

Outlet measured 46.7 4.4 36.0 9.0 3.9

Outlet calculated 46.4 5.1 35.2 8.9 4.4

Rel. error 0.6 % 17.2 % 2.4 % 1.0 % 12.7 %

OP3

Inlet 39.8 25.3 21.1 9.5 4.3

Outlet measured 49.8 5.1 33.3 8.4 3.4

Outlet calculated 50.3 3.6 34.8 7.9 3.6

Rel. error 0.8 % 30.0 % 4.5 % 6.6 % 4.7 %

OP4

Inlet 38.2 23.3 22.7 10.0 5.8

Outlet measured 48.4 3.4 35.2 8.7 4.5

Outlet calculated 48.7 2.5 35.8 8.3 4.8

Rel. error 0.6 % 27.5 % 1.7 % 3.9 % 8.1 %
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Fig. 9 Comparison of the temperature profile along the WGS reactor
between the measured data, the improved kinetic model, and the former
kinetic model using data from OP1

Table 5 Comparison of the volumetric fractions of the gas components
between the measured data, the improved kinetic model, and the former
model using data from OP1

φH2

(%)
φCO

(%)
φCO2

(%)
φCH4

(%)
φN2

(%)

Inlet 38.9 25.4 20.7 10.5 4.5

Outlet measured 48.9 3.4 35.0 9.0 3.7

Outlet improved 49.9 2.9 34.9 8.6 3.7

Outlet former 50.5 1.7 35.7 8.5 3.6
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gas generated from dual fluidized bed biomass steam
gasification.

r φi;Tð Þ ¼ 117:8
mol

g Pa1:71s
⋅exp

−126:6 kJ
mol

R⋅T

� �
⋅p1:77CO ⋅p0:23H2O⋅p

−0:17
CO2 ⋅p

−0:12
H2

⋅ 1−
KMAL

Kg

� �

Furthermore, this improved kinetic model was validated with
the experimental data from four different operating points of the
water gas shift reactor.

In order to enhance the accuracy of the validation, the heat
losses of the water gas shift reactor, which play a significant
part in the energy balance, were also considered.

For the improvement of the former kinetic model and the
validation of the improved kinetic model, the gas composition
at the inlet and the outlet of the water gas shift reactor was
measured. In addition, the temperature profile along the cata-
lyst bed of the reactor was recorded.

Overall, the validation showed good agreement of the
measured and calculated values for the gas compositions
and the temperature profiles of the water gas shift reac-
tor. Of all considered gas components, the CO concen-
tration showed the highest error. However, the highest
absolute error was about 1.5 % (relative error of
30.0 %). The highest absolute error of the temperature
profile was 21 °C (relative error of 4.8 %). In addition,
a low steam to dry gas ratio at the reactor inlet (from
1.2 and below), reduced the accuracy of the model.

Hence, these results qualify the presented improved kinetic
model for basic design and engineering of a water gas shift
reactor which employs a commercial Fe-/Cr-based catalyst
and which processes product gas derived from dual fluidized
biomass steam gasification if the steam to dry gas ratio at the
reactor inlet is set to about 1.5.

Furthermore, future work should focus on an addi-
tional kinetic model which considers a product gas
which is derived from the gasification of alternative
fuels like waste or, for example, plastic residues.

Abs, absolute; BDL, below detection limit; Cat, cat-
alyst; CHP, combined heat and power; d.b., dry basis;
DFB, dual fluidized bed; DL, detection limit; FR, flow
record; GC, gas chromatograph; OP, operating point;
ORC, organic Rankine cycle; Rel, relative; RME, rape-
seed methyl ester; STP, standard temperature and pres-
sure (273.15 K and 101325 Pa); TX, thermocouple X
along the WGS reactor; TCD, thermal conductivity de-
tector; WGS, water gas shift.

Greek Symbols α0 Heat transfer coefficient of the outer reac-
tor wall to the ambient in W m−2 K−1

αConv Heat transfer coefficient of the outer reactor wall
caused by natural convection in W m−2 K−1

αR Heat transfer coefficient of the inner reactor wall in W
m−2 K−1

αRad Heat transfer coefficient of the outer reactor wall
caused by radiation in W m−2 K−1

β Thermal expansion coefficient of air in K−1

φi Volumetric fraction of component i in −
δI Insulation thickness in m
δS Reactor wall thickness in m
∈0 Emission coefficient of the thin aluminum layer in −
ΔG(T) Gibbs enthalpy as function of temperature in kJ

mol−1

ΔhR Enthalpy of formation for a certain temperature in kJ
mol−1

ΔH Enthalpy of formation at 298.15 K and 101,325 Pa in
kJ mol−1

ΔQ̇ zð Þ Heat losses along the reactor in W
λ Heat conductivity of air in W m−1 K−1

λI Heat conductivity of the insulation in W m−1 K−1

λS Heat conductivity of the reactor wall in W m−1 K−1

v Kinematic viscosity of air in m2 s−1

ρS Catalyst bulk density
σ Stefan-Boltzmann constant in W m−2 K−4

Δz Differential height element of the reactor in m

Latin Symbols a Reaction exponent for CO in -
A Cross section of the reactor in m2

A0 Outer reactor surface in m2

Ai General inner cylindrical surface in m
2

AI Mean logarithmic surface of the insulation in m2

Am General mean logarithmic surface in m2

Ao General outer cylindrical surface in m2

AR Inner reactor surface in m2

AS Mean logarithmic surface of the reactor in m2

b Reaction exponent for H2O in −
c Reaction exponent for CO2 in −
d Reaction exponent for H2 in −
d0 Outer reactor diameter in m
dI Inner reactor diameter including reactor wall and insula-

tion in m
dR Inner reactor diameter in m
dS Inner reactor diameter including reactor wall in m
Ea Activation energy in kJ mol−1

Err Error in K
g Gravitational constant in m2 s−1

GHSV Gas hourly space velocity in h−1

Gr Grashof number in −
k0 Rate constant in mol g−1 Pa−(a + b + c + d) s−1

K Control variable for the finite difference approach in −
Kg Equilibrium constant calculated by thermo-physical

properties in −
KMAL Equilibrium constant calculated by the mass action

law in −
n ̇i Molar flow rate of component i in mol s−1

Nu Nusselt number in −
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p Absolute pressure in Pa
pi Partial pressure of component i in Pa
Pr Prandtl number in −
r Reaction rate in mol g−1 s−1

R General gas constant in J mol−1 K−1

RQ Overall heat transfer conductivity in W K−1

STDGR Steam to dry gas ratio in −
T Temperature in K
T0 Ambient temperature in K
TS Surface temperature of the thin Al layer of the insulation

in K
Tc , i Calculated temperature at thermocouple i in K
Tm , i Measured temperature at thermocouple i in K
VCat Catalyst bulk volume in m3

V ̇
Dry Volumetric dry gas flow rate at STP in m3 h−1

V ̇
H2O Volumetric steam flow rate at STP in m3 h−1

XCO CO conversion in −
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