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0.1 Abstract

Extensions of the Standard Model (SM) of elementary particle physics like the Minimal
Supersymmetric Standard Model (MSSM) can potentially contain new sources of quark
flavour violation (QFV). Since these possible non-minimal QFV effects can influence
various MSSM particle decays they can have a significant impact on MSSM particle
searches at the Large Hadron Collider (LHC), among other things. Thus calculating
these general QFV decays with high precision is necessary.

In this thesis we calculate for the first time all squark and gluino two-body decay
widths in the MSSM with general QFV at full one-loop level. We follow the SPA
convention using the DR renormalisation scheme and include soft and hard photon/gluon
bremsstrahlung to our decays. Based on our calculations we develop the first publicly
available program package called FVSFOLD (Flavour Violating Squark Full One Loop
Decays), which computes automatically all aforementioned non-minimal QFV decays at
full one-loop level and uses the SLHA2 input/output format. We present a case study
consisting of two scenarios to demonstrate the QFV functionality and usefulness of
our code by comparing our full one-loop results with our supersymmetric-QCD (SUSY-
QCD) and tree-level calculations and with the results from the program SPheno. In both
scenarios we assume non-minimal QFV mixing between the second and third up-type
squark generations and take the most important experimental constraints into account.
We obtain significant deviations of decay widths and branching ratios from the quark
flavour conserving case up to ∼ 54% (∼ 23%) in squark (gluino) decays, depending
on the QFV parameters. Moreover, we observe that the electroweak contributions can
become even larger than the SUSY-QCD corrections (sometimes with opposite sign)
and thus cannot be neglected. We conclude that it is important to account for possible
non-minimal QFV effects in squark and gluino decays since they can have an influence
on the squark and gluino searches at the LHC. Furthermore, it is necessary to include
also electroweak corrections when calculating these QFV decays to attain an adequate
accuracy.

We further present an additional aspect of QFV decays by studying the uncertain-
ties in the calculation of the rare B meson decay B → Xsγ (an important constraint
for general studies of the MSSM). In particular, we assess the uncertainties caused by
different implementations via a numerical study comparing various public codes within
the phenomenological MSSM (pMSSM). The impact of these uncertainties on global
parameter fits of the pMSSM is explored via a global Bayesian analysis using Markov
Chain Monte Carlo (MCMC) techniques. We obtain relative differences of the various
BR(B → Xsγ) MSSM predictions of ∼ 10%. When comparing the SUSY contributions
alone the relative differences drop down to ∼ 3%, since the discrepancies in the SM
predictions are quite large. When comparing programs with similar implementations
we observe that the impact on global fits of the pMSSM is rather small (i.e. probability
predictions differ only slightly).
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0.2 Zusammenfassung

Erweiterungen des Standardmodells (SM) der Elementarteilchenphysik wie dem Mi-
nimal Supersymmetrischen Standardmodell (MSSM) können prinzipiell neue Quellen
für Quark-Flavour-Verletzungen (QFV) enthalten. Da diese möglichen nicht-minimalen
QFV Effekte verschiedene MSSM Teilchenzerfälle beeinflussen können, können sie unter
anderem einen erheblichen Einfluss auf die Suche nach MSSM Teilchen am Large Hadron
Collider (LHC) haben. Deshalb ist die Berechnung dieser allgemeinen QFV Zerfälle mit
hoher Genauigkeit notwendig.

Wir berechnen in dieser Doktorarbeit zum ersten Mal alle Squark und Gluino Zwei-
körperzerfallsbreiten im MSSM mit allgemeiner QFV auf vollem Einschleifenniveau. Wir
berücksichtigen die SPA Konvention, benutzen das DR Renormierungsschema und bezie-
hen die weichen und harten Photon/Gluon-Bremsstrahlungsprozesse mit ein. Basierend
auf unseren Berechnungen entwickeln wir das erste öffentlich verfügbare Programmpaket
namens FVSFOLD (Flavour Violating Squark Full One Loop Decays), welches automa-
tisch alle bereits erwähnten nicht-minimalen QFV Zerfälle auf vollem Einschleifenniveau
berechnet und dabei das SLHA2 Eingabe-/Ausgabeformat benutzt. Wir präsentieren ei-
ne Fallstudie bestehend aus zwei Szenarien, um die QFV Funktionalität und Nützlichkeit
unseres Programms anhand eines Vergleichs unseres kompletten Einschleifenresultats
mit unseren supersymmetrischen-QCD (SUSY-QCD) und Born Resultaten sowie mit
den Ergebnissen des Programms SPheno zu demonstrieren. In beiden Szenarien neh-
men wir eine nicht-minimale QFV Mischung zwischen der zweiten und dritten Squark-
Generation an und berücksichtigen die wichtigsten experimentellen Einschränkungen.
Wir erhalten signifikante Abweichungen bei Zerfallsbreiten und Verzweigungsverhältnis-
sen von dem Fall mit Quark-Flavour-Erhaltung, welche abhängig von den QFV Para-
metern bis zu ∼ 54% (∼ 23%) bei Squark (Gluino) Zerfällen betragen können. Darüber
hinaus beobachten wir, dass die elektroschwachen Beiträge sogar größer als die SUSY-
QCD Korrekturen werden können (manchmal mit umgekehrtem Vorzeichen) und man
sie somit nicht vernachlässigen kann. Wir schließen daraus, dass es wichtig ist, mögliche
nicht-minimale QFV Effekte in Squark und Gluino Zerfällen zu berücksichtigen, da sie
einen Einfluss auf die Suche nach Squarks und Gluinos am LHC haben können. Au-
ßerdem ist es notwendig, auch die elektroschwachen Korrekturen bei den Berechnungen
dieser QFV Zerfälle miteinzubeziehen, um eine angemessene Genauigkeit zu erreichen.

Des Weiteren präsentieren wir einen zusätzlichen Aspekt von QFV Zerfällen, indem
wir die Unsicherheiten in der Berechnung des seltenen B-Meson Zerfalls B → Xsγ un-
tersuchen. (Dieser Zerfall dient als wichtige Einschränkung für allgemeine Studien des
MSSM.) Insbesondere schätzen wir die Unsicherheiten aufgrund der unterschiedlichen
Implementierungen mittels einer numerischen Studie ab, welche verschiedene öffentlich
verfügbare Programme innerhalb des phenomenologischen MSSM (pMSSM) miteinan-
der vergleicht. Die Auswirkungen dieser Unsicherheiten auf globale Parameterfits des
pMSSM werden über eine globale Bayes-Analyse unter Verwendung von Markov-Ketten-
Monte-Carlo-Verfahren (MCMC) untersucht. Wir erhalten relative Unterschiede der ver-
schiedenen BR(B → Xsγ) MSSM Berechnungen von ∼ 10%. Beim Vergleich der allei-
nigen SUSY-Beiträge fallen die relativen Unterschiede auf ∼ 3%, da die Unterschiede in
den SM Berechnungen recht groß sind. Beim Vergleich von Programmen mit ähnlichen
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0.2. ZUSAMMENFASSUNG vii

Implementierungen beobachten wir, dass die Auswirkungen auf globale Parameterfits
des pMSSM gering ausfallen (d.h. die Wahrscheinlichkeitsprognosen unterscheiden sich
kaum).
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Chapter 1

General introduction

The study of quark flavour violating (QFV) particle decays is an excellent probe for
the flavour structure of the Standard Model (SM) of elementary particle physics and
beyond.

In particular is the study of general QFV decays within the promising SM extension
called Minimal Supersymmetric Standard Model (MSSM) quite relevant, since its flavour
structure can contain possible new QFV sources which can become quite large (despite
very strong constraints from experimental data on B mesons). Especially possible non-
minimal QFV effects in squark and gluino decays are of importance since they can have
a significant influence on the squark and gluino searches at the Large Hadron Collider
(LHC). In order to accurately predict any deviations from the flavour conserving MSSM
particle decays a precise calculation of these arbitrary QFV decays at full one-loop level
is necessary.

In this dissertation we calculate for the first time all squark and gluino two-body
decay widths in the MSSM with general QFV at full one-loop level (i.e. including all
electroweak corrections). We follow the SPA convention using the DR renormalisation
scheme and include soft and hard photon/gluon bremsstrahlung to our processes. Based
on our calculations we develop the first publicly available program package in Fortran
called FVSFOLD (Flavour Violating Squark Full One Loop Decays), which computes
fully automatically all above-mentioned non-minimal QFV decays. We conclude with a
case study demonstrating the QFV functionality and usefulness of our code by comparing
our full one-loop results with our SUSY-QCD and tree-level calculations and with the
results from the program SPheno.

Furthermore, we present an additional aspect of QFV decays by studying the uncer-
tainties in the calculation of the rare B meson decay B → Xsγ, which is an important
constraint for general studies of the MSSM. In particular, we assess the uncertainties
caused by different implementations via a numerical study comparing various public
codes within the phenomenological MSSM (pMSSM). The impact of these uncertainties
on global parameter fits is explored via a global Bayesian analysis using Markov Chain
Monte Carlo (MCMC) techniques.
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Part I

Quark flavour violating two-body
decays at full one-loop level
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Chapter 2

Introduction

The Standard Model (SM) of elementary particle physics is an exceptionally successful
theory of the currently known particles as well as electroweak and strong forces. However,
the are several theoretical and phenomenological problems that cannot be addressed by
the SM, resulting in the need to extend the SM to resolve these issues. A very promising
extension of the SM is to introduce supersymmetry (SUSY) in the simplest form as
Minimal Supersymmetric Standard Model (MSSM), which can solve many of the open
problems.

The MSSM introduces many new particles and interactions with a large number of
new model parameters. These parameters can induce possible new flavour violating
effects which can become quite large (despite very strong constraints from experimental
data on B mesons). Especially possible general (i.e. non-minimal) quark flavour violating
effects in squark and gluino decays are of importance since they can have an influence on
the squark and gluino searches at the Large Hadron Collider (LHC) [1, 2, 3, 4], among
other things.

Furthermore, due to the precision measurements done at the LHC and especially at
any future linear collider, all calculations of various observables within the MSSM need to
be carried out with matching precision. This generally involves the elaborate calculation
of radiative corrections at one-loop level and beyond. There are a few program packages
and tools available for the computation of various processes at one-loop level in the
renormalised flavour conserving MSSM: SFOLD [5] and HFOLD[6] are both program
packages for calculating fully automatically all sfermion and all Higgs boson two-body
decay widths at full one-loop level within the MSSM. FeynArts [7, 8] and FormCalc [9]
are Mathematica tools which – combined – provide the squared matrix element of a given
process at full one-loop level within the complex MSSM. GRACE/SUSY-loop [10, 11]
is a program package for the automatic calculation of amplitudes of various processes
at full one-loop level in the MSSM. SloopS [12, 13] is an automatised program package
which computes various processes at one-loop level in the MSSM.

However, there is currently no program package publicly available which provides
precision calculations at full one-loop level (i.e. including all electroweak corrections) in
the MSSM with general quark flavour violation. This situation was the starting point
and the motivation of our work.

In this thesis we calculate for the first time all squark and gluino two-body decay

5



6 CHAPTER 2. INTRODUCTION

widths in the MSSM with general quark flavour violation (QFV) at full one-loop level.
We follow the SPA convention using the DR renormalisation scheme and include soft
and hard photon/gluon bremsstrahlung to our processes. Based on our calculations we
develop the first publicly available program package called FVSFOLD (Flavour Violating
Squark Full One Loop Decays), which computes fully automatically all above-mentioned
QFV decays at full one-loop level and makes use of the SLHA2 input/output format.
Furthermore, we present a case study to demonstrate the QFV functionality and general
usefulness of our code by comparing our full one-loop results with our SUSY-QCD and
tree-level calculations and with the results from the code SPheno.

The work is organised as follows: in Chapter 3 we present the SM and its limitations,
introduce SUSY as a possible extension and conclude with supersymmetric Lagrangians.
In Chapter 4 we introduce the MSSM along with the relevant mass matrices and their
rotation matrices. In Chapter 5 we present the concept of regularisation and renormal-
isation and derive renormalisation constants needed for our work. Chapter 6 contains
our calculation of all squark and gluino two-body decay widths at full one-loop level.
In Chapter 7 we present our QFV case study and conclude our results. Appendix A
comprises all Feynman diagrams contributing to the exemplary g̃ → ũi ūg decay. At last,
in Appendix B we provide further details about our program package, its installation
and basic usage, and list our extensive checks.



Chapter 3

Supersymmetry

In this chapter we briefly introduce the Standard Model, supersymmetric theories as
promising candidates for physics beyond the Standard Model, and supersymmetric La-
grangians.

3.1 The Standard Model and beyond

The Standard Model (SM) of elementary particle physics [14, 15, 16] is a remark-
ably successful theory of the presently known particles as well as electroweak and
strong forces. The SM is a specific quantum field theory, where the gauge group
SU(3)C × SU(2)L × U(1)Y is spontaneously broken to SU(3)C × U(1)EM by the non-
vanishing vacuum expectation value (VEV) of the fundamental scalar Higgs field at
energies O(100 GeV).

The successful discovery of the associated Higgs boson by the CMS [17] and AT-
LAS [18] collaboration in July 2012 (with subsequent studies indicating that it is cur-
rently a SM-like Higgs boson, see e.g. [19, 20, 21, 22]) with a mass of mh = 125.9 ±
0.4 GeV [23] and many more experimental results further confirm the SM as a correct
description of particle physics at currently accessible energy scales.

Despite these successes there are theoretical and phenomenological issues that the
SM cannot address properly [24]:

• Electroweak symmetry breaking. In the SM electroweak symmetry breaking is
achieved by setting µ2 < 0 in the Higgs potential V = µ2|h|2 + λ|h|4 by hand,
which is rather artificial and dissatisfying.

• Hierarchy problem. Radiative corrections to the Higgs boson mass are quadrat-
ically dependent on the ultraviolet cutoff Λ, leading to a “natural” value of the
Higgs mass of O(Λ) instead of ∼ 126 GeV. The destabilization of the Higgs mass
and the hierarchy of the mass scales can be prevented by fine-tuning the scalar
mass-squared parameter of the ultraviolet theory with very high precision, which
is considered unnatural.

• Fermion masses and family structure. The SM cannot explain the hierarchical val-
ues of the quark and lepton masses. Furthermore it does not explain the existence

7



8 CHAPTER 3. SUPERSYMMETRY

of three generations of fermions. Since the SM only contains massless, left-handed
neutrinos it has to be extended to allow for massive neutrinos and their mixing.

• Gauge coupling unification. The idea of grand unified theories (GUTs) is that the
gauge couplings undergoing renormalisation group evolution meet at a point at a
high energy scale. However, the SM cannot describe gauge coupling unification
precisely enough (see e.g. [25]) to connote that it is more than pure chance.

• Cosmology. The SM does not provide a viable candidate for the cold dark matter
of the universe, nor a viable inflaton. Furthermore, it cannot explain the baryon
asymmetry of the universe and does not include the fourth fundamental force,
gravity.

As a result, the SM needs to be extended to resolve the aforementioned open prob-
lems. One very strong candidate for physics beyond the SM are theories with low energy
supersymmetry. The main concept behind supersymmetry (SUSY) is a fundamental
symmetry between bosons and fermions. In the simplest case, each SM particle obtains
a superpartner which differs only in the spin by 1/2 and is related to the SM particle by
a supersymmetry transformation. Not having discovered superpartners yet means that
they must have a significant higher mass than their SM partners, which can be explained
by breaking SUSY.

Supersymmetric extensions of the SM can solve many of the previously mentioned
issues: it provides an explanation of the origin of electroweak symmetry breaking by
deriving rather than assuming the “Mexican hat” potential of the Higgs field, its super-
partners protect the Higgs mass by (partly) cancelling large radiative corrections coming
from heavy particles, it allows for the unification of the gauge couplings at an energy
scale O(1016 GeV), the lightest stable supersymmetric particle is an ideal nonbaryonic
cold dark matter candidate (with its relic density matching the observed amount in the
universe), and it may help explain the baryon asymmetry of the universe by providing
additional sources of CP violation.

Certainly, these successes may just be remarkable coincidences since there is up to
now no direct experimental evidence for SUSY (see for example the experimental SUSY
mini review from September 2013 in [23]). However, since the life span of the Large
Hadron Collider (LHC) at CERN is expected to end in 2030 (with several planned up-
grades in energy and luminosity), the searches for SUSY and other possible extensions
of the SM are still in an early stage. It is also important to note that all recent exper-
imental results and especially the discovery of the currently SM-like Higgs boson with
its mass of 125.9 GeV are still consistent with many SUSY models.

In our work we use the Minimal Supersymmetric Standard Model (MSSM), a N = 1
supersymmetry with the smallest particle content possible. The single-particle states
fall into irreducible representations of the SUSY algebra called supermultiplets. Each
supermultiplet contains an equal number of fermionic and bosonic degrees of freedom
which are called superpartners. There exist in total two possible types of supermultiplets,
the so called chiral supermultiplet (consisting of a two-component spin-1/2 Weyl fermion
and a complex spin-0 boson) and the gauge supermultiplet (including a spin-1/2 Weyl
fermion named gaugino and a spin-1 gauge boson). These particles inhabiting the same
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irreducible supermultiplet possess the same mass and are in the same representation of
the gauge group. We will provide more details about the MSSM in the next chapter
but first briefly introduce the general supersymmetric Lagrangian density and the soft
SUSY breaking terms.

3.2 Supersymmetric Lagrangians

We briefly comment on the derivation of the complete Lagrangian L = LSUSY + Lsoft

of a realistic and renormalisable supersymmetric theory with the full supersymmetric
Lagrangian LSUSY as well as the soft supersymmetry breaking Lagrangian Lsoft (for a
detailed derivation see [26, 27]), and simply quote the final Lagrangian with a short
description of the relevant terms.

The basic approach is always to write down a Lagrangian and derive the appropriate
SUSY transformations so that the action is invariant under these transformations. Fur-
thermore, it is important to ensure that the SUSY algebra closes (i.e. the commutator
of two SUSY transformations is another symmetry of the theory) on-shell as well as
off-shell.
One usually begins with the massless, non-interacting Wess-Zumino model [28] which
describes a single chiral supermultiplet. In order to close the SUSY algebra also off-shell
one has to add an auxiliary (complex) scalar field F , which is later eliminated using
its classical equation of motion. Then one takes a collection of these supermultiplets
and adds masses as well as non-gauge interactions to arrive at a general renormalisable
(and supersymmetric) interaction Lagrangian Lint. This Lagrangian can be expressed
by the superpotential W , a single function which encodes all mass and Yukawa inter-
action terms. The Lagrangian is further rewritten to define the scalar potential V .
Then one adds gauge supermultiplets with auxiliary (real) scalar fields Da (again to
close the SUSY algebra also off-shell), which are later eliminated using their equations
of motion like in the Fi case. Adding supersymmetric gauge interactions by replacing
ordinary with covariant derivatives in chiral supermultiplets couple the vector bosons
in the gauge supermultiplets to the scalars and fermions in the chiral supermultiplets.
Finally, one adds additional possible gauge invariant and renormalisable interactions
which couple the gauginos in the gauge supermultiplet to the scalars and fermions in
the chiral supermultiplets, and arrives at the full supersymmetric Lagrangian LSUSY.
In order to obtain a phenomenologically realistic theory one further adds general soft
SUSY breaking terms in the Lagrangian Lsoft at a low energy scale (since the exact
spontaneous SUSY breaking mechanism at high energies is still unknown). Since broken
SUSY is still providing a solution to the hierarchy problem it is named “soft” SUSY
breaking.

The full SUSY Lagrangian of the complete Lagrangian L = LSUSY + Lsoft takes the
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form

LSUSY = iψ†iσ̄µDµψi +Dµφ∗iDµφi −
1

4
F a
µνF

µνa + iλ†aσ̄µDµλ
a

−V (φ, φ∗)− 1

2
M ijψiψj −

1

2
M∗

ijψ
†iψ†j − 1

2
yijkφiψjψk −

1

2
y∗ijkφ

∗iψ†jψ†k

−
√

2g
(
(φ∗T aψ)λa + λ†a(ψ†T aφ)

)
. (3.1)

The first line shows the kinetic terms of fermions ψi and scalars φi as well as the self-
interaction of gauge fields F a

µν and the kinetic term of gauginos λa. The second line
contains the scalar potential V as well as fermion mass M ij and Yukawa coupling yijk

terms derived from the superpotential W . The last line contains additional supersym-
metric gauge interactions with gauginos.
The scalar potential reads

V (φ, φ∗) = W ∗
i W

i +
1

2

∑
a

g2
a(φ
∗T aφ)2 , (3.2)

where we already eliminated the auxiliary fields Fi and Da using their classical equa-
tions of motion. W i denotes the derivative W i = δW/δφi of the superpotential W ,
which contains the most general case of mass and non-gauge interaction terms of chiral
supermultiplets in a single function:

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk . (3.3)

The associated interaction Lagrangian can be written as

Lint =

(
−1

2
W ijψiψj −W iW ∗

i

)
+ c.c. (3.4)

with W ij = δ2W/δφiδφj.
Finally, the soft SUSY breaking Lagrangian in its general form at low energy reads

Lsoft = −
(

1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj

)
+ c.c.− (m2)ijφ

j∗φi (3.5)

with gaugino masses Ma, scalar masses (m2)ji and bij, and couplings of three scalars aijk.



Chapter 4

The Minimal Supersymmetric
Standard Model

In this chapter we introduce the particle spectrum of the Minimal Supersymmetric Stan-
dard Model (MSSM) and further present the relevant mass matrices and their rotation
matrices needed for our work.

4.1 Particle spectrum

The MSSM expands the particle content of the SM by enlarging the Higgs sector with
two complex Higgs doublets and by introducing a superpartner to each particle [26, 27].

Particles and their superpartners are distributed in the chiral and gauge supermul-
tiplets as shown in Table 4.1 and 4.2, with the naming convention adding the prefix “s”
(scalar) for spin = 0 and the suffix “-ino” for spin = 1/2 superpartners to the names of
the SM particles.

Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q̃ (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L̃ (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H1
2 H2

2 ) (H̃1
2 H̃2

2 ) ( 1, 2 , +1
2
)

Hd (H1
1 H2

1 ) (H̃1
1 H̃2

1 ) ( 1, 2 , −1
2
)

Table 4.1: Chiral supermultiplets in the MSSM. The spin = 0 fields are complex scalars
and the spin = 1/2 fields are left-handed two-component Weyl fermions.

11
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Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons λ̃± λ̃3 W± W 0 ( 1, 3 , 0)

bino, B boson λ̃′ B0 ( 1, 1 , 0)

Table 4.2: Gauge supermultiplets in the MSSM.

Due to spontaneous electroweak symmetry breaking are the mass eigenstates no
longer identical to the gauge eigenstates but mixtures of them. As a result one has
to account for this mixing of the fields and derive mass matrices, which are then di-
agonalised by rotation matrices in order to obtain mass eigenstates. In addition, we
assume general quark flavour violation (QFV) in the squark sector and derive as well
as rotate all relevant mass matrices in the following sections (for detailed derivations
see again [26, 27]). In Table 4.3 we present the mass eigenstates and corresponding
interaction eigenstates of the new particles introduced by the MSSM.

Names Spin PR Gauge Eigenstates Mass Eigenstates

Higgs bosons 0 +1 H0
2 H0

1 H+
2 H−1 h0 H0 A0 H±

squarks 0 −1 ũL ũR c̃L c̃R t̃L t̃R ũ1 ũ2 ũ3 ũ4 ũ5 ũ6

d̃L d̃R s̃L s̃R b̃L b̃R d̃1 d̃2 d̃3 d̃4 d̃5 d̃6

ẽL ẽR ν̃e ẽ1 ẽ2 ν̃e

sleptons 0 −1 µ̃L µ̃R ν̃µ µ̃1 µ̃2 ν̃µ

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 −1 λ̃′ λ̃3 H̃2
2 H̃1

1 χ̃0
1 χ̃

0
2 χ̃

0
3 χ̃

0
4

charginos 1/2 −1 λ̃± H̃1
2 H̃2

1 χ̃±1 χ̃±2

gluino 1/2 −1 g̃ g̃

Table 4.3: Mass eigenstates and corresponding interaction eigenstates of the additional
particles including QFV in the squark sector in the MSSM.

4.2 Squark sector

Within the SM, the only source of quark flavour violation (QFV) stems from the ro-
tation of up-type (down-type) quark interaction eigenstates q0

L,R to their physical mass
eigenstates qL,R

u0
L = Vu uL , d0

L = Vd dL , u0
R = Uu uR , d0

R = Ud dR , (4.1)



4.2. SQUARK SECTOR 13

causing the charged-current interactions to be proportional to the unitary CKM matrix
VCKM = V †uVd. Within the MSSM, the squark interaction eigenstates undergo the same
rotations at high energies as their quark partners, so that their charged-current interac-
tions are proportional to the SM CKM matrix as well. However, softly broken SUSY can
induce a misalignment of quarks and squarks in flavour space at low energies, rendering
the squark mass matrices to effectively become non-diagonal. This general QFV can be
conveniently expressed in the super-CKM basis with the Lagrangian

Lq̃ = −ũ†0M2
ũ ũ0 − d̃†0M2

d̃
d̃0 , (4.2)

where ũ0 = (ũL, c̃L, t̃L, ũR, c̃R, t̃R) and d̃0 = (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R). The relevant terms
for the 6× 6 squark mass matrices are derived from the soft SUSY breaking terms and
the auxiliary field terms. The matrices read [29, 3]

M2
ũ =

 VCKM M̂2
Q̃
V †CKM + m̂2

u +Dũ LL v2T̂
†
U/
√

2− µ m̂u cot β

v2T̂U/
√

2− µ∗ m̂u cot β M̂2
ū + m̂2

u +Dũ RR

 , (4.3)

M2
d̃

=

 M̂2
Q̃

+ m̂2
d +Dd̃ LL v1T̂

†
D/
√

2− µ m̂d tan β

v1T̂D/
√

2− µ∗ m̂d tan β M̂2
d̄

+ m̂2
d +Dd̃ RR

 . (4.4)

The matrices m̂u (m̂d) are the diagonal up-type (down-type) quark masses, µ is the
higgsino mass, and tan β = v2/v1 is the ratio of the vacuum expectation values of
the two neutral Higgs fields defined as v1,2 =

√
2
〈
H1,2

1,2

〉
. In the equations above we

introduced the 3× 3 matrices (given in the super-CKM basis)

M̂2
Q̃
≡ V †d M

2
Q̃
Vd , M̂2

ū ≡ U †uM
2
ū
T
Uu , M̂2

d̄ ≡ U †dM
2
d̄

T
Ud , (4.5)

T̂U ≡ U †u T
T
U Vu , T̂D ≡ U †d T

T
D Vd , (4.6)

where the un-hatted M2
Q̃,ū,d̄

are the hermitian soft SUSY breaking mass matrices and

the un-hatted TU,D are the soft SUSY breaking trilinear coupling matrices (defined as
Lsoft ⊃ −(TUαβũ

∗
RαũLβH

2
2 + TDαβd̃

∗
Rαd̃LβH

1
1 ) with α, β = 1, 2, 3), both given in the

interaction basis. The terms Dq̃ LL,RR are defined as

Dq̃ LL = cos 2β m2
Z

(
T 3
q −Qq sin2 θW

)
1l3 , (4.7)

Dq̃ RR = cos 2β m2
ZQq sin2 θW1l3 , (4.8)

where Qq and T 3
q are the electric charge and the third component of the weak isospin

of the quarks/squarks, respectively, and θW denotes the weak mixing angle. The squark
mass matrices are diagonalised by the 6×6 unitary rotation matrices Rq̃ (q̃ = ũ, d̃) such
that

Rq̃M2
q̃R

q̃† = diag(m2
q̃1
, . . . ,m2

q̃6
) (4.9)

with mq̃i < mq̃j (i < j). The physical mass eigenstates q̃i are then given by q̃i = Rq̃
ij q̃0j.
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For our case study in Chapter 7 we define the QFV parameters δuLLαβ , δuRRαβ , δuRLαβ ,
and δuLRαβ (α, β = 1, 2, 3 denoting the quark flavours u, c, t) for up-type squarks as

δuLLαβ = M̂2
Q̃αβ

/
√
M̂2

Q̃αα
M̂2

Q̃ββ
, (4.10)

δuRRαβ = M̂2
ūαβ/

√
M̂2

ūααM̂
2
ūββ , (4.11)

δuRLαβ = δuLR∗βα = (v2/
√

2)T̂Uαβ/
√
M̂2

ūααM̂
2
Q̃ββ

. (4.12)

As an illustrative example, the parameters δuRR23 and δuRL23 characterise the c̃R − t̃R and
c̃R − t̃L mixing, respectively.

4.3 Neutralino sector

The neutral gauginos λ̃′ and λ̃3 as well as the neutral higgsinos H̃1
1 and H̃2

2 mix to form
four mass eigenstates called neutralinos. We denote them with χ̃0

i (i = 1, . . . , 4) in the
Majorana representation with the convention mχ̃0

i
< mχ̃0

j
(i < j).

The relevant terms for the neutralino mass matrix are obtained from the soft SUSY
breaking terms, the SUSY gauge interaction terms and the Yukawa interaction terms
(which can be derived from the superpotential). The combined mass term in the basis

ψ0 = (−iλ̃′,−iλ̃3, H̃1
1 , H̃

2
2 ) reads

Lχ0 = −1

2
(ψ0)TY ψ0 + h.c. (4.13)

with the mass matrix

Y =


M1 0 −mZsθW cβ mZsθW sβ

0 M2 mZcθW cβ −mZcθW sβ

−mZsθW cβ mZcθW cβ 0 −µ
mZsθW sβ −mZcθW sβ −µ 0

 , (4.14)

using the abbreviations sα := sinα and cα := cosα. M1 and M2 are the SUSY breaking
mass parameters of the gauginos λ̃′ and λ̃3, respectively, and the parameter µ denotes
the higgsino mass. The matrix is diagonalised using the unitary rotation matrix Z

YD = Z∗Y Z−1 = diag(mχ̃0
1
,mχ̃0

2
,mχ̃0

3
,mχ̃0

4
) . (4.15)

Applying the rotation matrix Z to the gauge eigenstates ψ0
j one obtains the mass eigen-

states χ0
i and vice versa:

χ0
i = Zijψ

0
j ψ0

j = Z∗ijχ
0
i . (4.16)

Finally, we define the neutralinos as Majorana spinors

χ̃0
i =

(
χ0
i

χ̄0
i

)
. (4.17)
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4.4 Chargino sector

The charged gauginos λ̃± as well as the charged higgsinos H̃1
2 and H̃2

1 mix to form two
mass eigenstates with charge ±1 called charginos. We denote them with χ̃±i (i = 1, 2) in
the Dirac representation with the convention mχ̃±

1
< mχ̃±

2
.

The relevant terms for the chargino mass matrix are obtained from the soft SUSY
breaking terms, the SUSY gauge interaction terms and the Yukawa interaction terms
(which can be derived from the superpotential). The combined mass term in the basis

ψ+ = (−iλ̃+, H̃1
2 ), ψ− = (−iλ̃−, H̃2

1 ) reads

Lχ± = −1

2
(ψ+ ψ−)T ·

 0 XT

X 0

 · (ψ+

ψ−

)
+ h.c. (4.18)

with the mass matrix

X =

 M2

√
2mW sin β

√
2mW cos β µ

 . (4.19)

The matrix is diagonalised using two unitary rotation matrices U and V

XD = U∗XV −1 = diag(mχ̃±
1
,mχ̃±

2
) . (4.20)

Applying the rotation matrices U and V to the gauge eigenstates ψ±j one obtains the
mass eigenstates χ±i and vice versa:

χ+
i = Vijψ

+
j χ−i = Uijψ

−
j (4.21)

ψ+
j = V ∗ijχ

+
i ψ−j = U∗ijχ

−
i . (4.22)

Finally, we define the charginos as Dirac spinors

χ̃+
i =

(
χ+
i

χ̄−i

)
χ̃−i =

(
χ−i
χ̄+
i

)
. (4.23)
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Chapter 5

Renormalisation

When calculating higher order radiative corrections to physical observables in quantum
field theory one usually encounters ultraviolet (UV) and infrared (IR) divergences. The
systematic treatment to cure these divergences is a two-step process called regularisation
and renormalisation, which we introduce in this chapter. Ultimately we will provide here
a minimal set of ‘building blocks’ (so called renormalisation constants), which we will
use for our calculation of quark flavour violating squark and gluino decays (as well as
on-shell masses) at full one-loop level in the following chapter.

5.1 Regularisation

The first crucial step to cure divergences occurring in higher order radiative corrections
is to properly define otherwise divergent Feynman integrals over internal loop momenta.
This step is called regularisation and should ideally preserve all symmetries (e.g. Poincaré
group, gauge invariance, supersymmetry) of the theory. There are two types of diver-
gences which need different regularisation techniques and different second steps to arrive
at a physically meaningful result.

The IR divergence arises as soon as a massless particle (photon, gluon) appears in
a closed loop, causing the integral to diverge when the loop momentum approaches
zero. This can be prevented by introducing a small, nonzero regulator mass for the
photon/gluon. The second step consists of adding photon/gluon radiation from the
initial and final states (so called bremsstrahlung) to the process so that one obtains an
IR convergent result independent of the regulator mass. We provide more details about
the soft and hard photon/gluon bremsstrahlung of our decays in Section 6.2.4 and 6.2.5.

The UV divergence arises when the integral diverges because of the integration mo-
mentum approaching infinity. Several regularisation procedures have been formulated.
For supersymmetric quantum field theories like the MSSM the dimensional reduction
regularisation scheme (DR) is widely used, because it does not spoil supersymmetry.
The DR regularisation scheme [30] lowers the dimension of the integration momenta
to D = 4 − ε dimensions and by that renders the Feynman integrals finite. The UV
divergences arise as poles in the limit ε → 0. Since all other tensors and vector fields
are kept 4-dimensional the number of bosonic and fermionic degrees of freedom in each
superfield remains equal and thus supersymmetry is preserved. The second step then

17
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consists of reparameterising the parameters in the Lagrangian to give them a physical
meaning. This step is called renormalisation and is covered in detail in the next section.

For the actual calculation of Feynman integrals we use the technique of Passarino-
Veltman integrals (PaVe) [31, 32] at one-loop level. A generic one-loop integral can be
written as

TNµ1...µM (p1, . . . , pN−1,m0, . . . ,mN−1) =
(2πµ)4−D

iπ2

∫
dDq

qµ1 . . . qµM
[q2 −m2

0 + iε][(q + p1)2 −m2
1 + iε] . . . [(q + pN−1)2 −m2

N−1 + iε]
, (5.1)

where N denotes the number of particles in the loop and M the order of the tensor.
The mass parameter µ has been introduced to retain the initial dimensionality of the
integral. The scalar integrals up to three particles in the loop are defined as

T 1 = A0(m2
0) , (5.2)

T 2 = B0(p2
1,m

2
0,m

2
1) , (5.3)

T 3 = C0(p2
1, (p1 − p2)2, p2

2,m
2
0,m

2
1,m

2
2) . (5.4)

The tensor integrals (N ≤ 3 and M = 1, 2) are defined via tensor reduction as

Aµ = pµA1 , (5.5)

Aµν = gµνA00 + pµpνA11 , (5.6)

Bµ = pµ1B1 , (5.7)

Bµν = gµνB00 + pµ1p
ν
1B11 , (5.8)

Cµ = pµ1C1 + pµ2C2 , (5.9)

Cµν = gµνC00 + pµ1p
ν
1C11 + pµ2p

ν
2C22 + (pµ1p

ν
2 + pµ2p

ν
1)C12 . (5.10)

The coefficient functions A1, A00, A11, B1, B00, B11, C1, C2, C00, C11, C22, and C12 can
be expressed in terms of the scalar integrals A0, B0 and C0. For a detailed analytic
derivation and useful relations we refer to [33].

The UV divergence is denoted with the parameter ∆ and is defined as

∆ =
2

ε
− γE + ln 4π (5.11)

analogue to the modified minimal subtraction scheme (MS). The parameter γE ∼
0.577216 is known as the Euler-Mascheroni constant. A listing of all UV divergent
parts of these PaVe one-loop integrals can be found in [33].

5.2 Renormalisation of the MSSM

We employ the DR renormalisation scheme at one-loop level, where the tree-level input
parameters (masses, fields, and parameters in couplings) in the Lagrangian are UV finite
but defined on the scale Q, and where the divergence ∆ is set to zero everywhere. As
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a result, the tree-level couplings and its parameters therein are exactly defined at the
above-mentioned scale and thus do not receive any finite shifts due to loop corrections.
The DR masses and fields are then reparameterised to be the scale-independent physical
masses and fields (needed for the LSZ reduction formula, see e.g. [34]) via on-shell (OS)
renormalisation conditions. Please note that these OS renormalisation conditions within
the DR renormalisation scheme are not to be confused with the OS renormalisation
scheme itself, where the input parameters in the Lagrangian are UV divergent bare
quantities whose divergences are canceled with UV divergent renormalisation constants.

We derive the renormalisation constants (RCs) of the MSSM in detail for scalar
particles and for the sfermion sector along the lines of [33]. The RCs for fermions and
for the neutralino and chargino sector are briefly quoted from [33, 35]. Since we currently
calculate decays into Higgses at tree-level only we omit the RCs of the Higgs sector. For
the remaining RCs of the SM we again refer to [33, 35].

5.2.1 Renormalisation of scalars

We begin with the tree-level Lagrangian in the DR renormalisation scheme

LDR = f̃ ∗DR
i δij(∂µ∂

µ −m2 DR
f̃i

)f̃ DR
j (5.12)

where the unrenormalised scalar fields f̃ DR and masses m2 DR
f̃

are UV finite but implicitly

dependent on the scale Q. The field f̃ represents all flavour violating up- and down-
type squarks ũi and d̃i (i = 1, . . . , 6) as well as all flavour conserving sleptons l̃i and ν̃l
(l = e, µ, τ , i = 1, 2). Then we reparametrise these fields and masses via multiplicative
wave function and mass renormalisation at one-loop level (always implicitly summing
over recurring indices):

f̃ DR
j =

√
Z f̃
jk f̃k = (δjk +

1

2
δZ f̃

jk)f̃k , (5.13)

f̃ ∗DR
i = f̃ ∗l

√
Z f̃∗
li = f̃ ∗l (δli +

1

2
δZ f̃∗

li ) , (5.14)

m2 DR
f̃i

= m2
f̃i

+ δm2
f̃i
. (5.15)

We denote the renormalised (i.e. now scale-independent) fields and masses with f̃ and

m2
f̃
, respectively. The wave function renormalisation (WFR) constants δZ f̃ and the mass

renormalisation constants δm2
f̃

are both UV finite but scale-dependent and are defined so

that they cancel the scale dependence of the DR input parameters and furthermore give
the renormalised parameters a physical meaning (see below). Expanding the Lagrangian,
keeping the terms up to O(δZ, δm2), taking proper care with all Kronecker deltas and
renaming free indices yields

LDR = f̃ ∗i

[
δij(p

2 −m2
f̃i

) +
1

2
(p2 −m2

f̃i
)δZ f̃

ij +
1

2
(p2 −m2

f̃j
)δZ f̃∗

ij − δijδm2
f̃i

]
f̃j . (5.16)

Now we use the renormalisation ansatz LDR = Lren+δL and define the contribution com-
ing from the selfenergy as δL = −f̃ ∗i Πf̃

ij(p
2)f̃j. Transforming this ansatz and inserting
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LDR and δL results in the renormalised, physical Lagrangian

Lren = LDR − δL
= f̃ ∗i

[
δij(p

2 −m2
f̃i

)

+ Πf̃
ij(p

2) +
1

2
(p2 −m2

f̃i
)δZ f̃

ij +
1

2
(p2 −m2

f̃j
)δZ f̃∗

ij − δijδm2
f̃i︸ ︷︷ ︸

Π̂f̃ij(p
2)

]
f̃j

= f̃ ∗i

[
δij(p

2 −m2
f̃i

) + Π̂f̃
ij(p

2)︸ ︷︷ ︸
Γ̂f̃ij(p

2)

]
f̃j (5.17)

where we have defined the renormalised selfenergy Π̂f̃
ij as well as the renormalised two-

point vertex function Γ̂f̃ij. By inverting this two-point vertex function we obtain the

renormalised propagator −(Γ̂f̃ij)
−1.

We fix the renormalised masses to be the physical, on-shell masses. Since the propagator

−(Γ̂f̃ij)
−1(p2) has a pole at p2 = m2

f̃ ph
, and since we set m2

f̃
= m2

f̃ ph
, we arrive at the

on-shell renormalisation condition

R̃e Γ̂f̃ij(p
2)
∣∣∣
p2=m2

f̃j

= 0 . (5.18)

This condition determines all masses and all off-diagonal WFR constants. We introduced
the operator R̃e which takes the real part of the PaVe integrals so that the above
condition is also fulfilled for unstable particles (which develop an imaginary part in
the selfenergy). Now we fix the renormalised fields to be the physical fields. This means
that the probability of a scalar propagating from one point to another needs to remain
exactly one. In other words, we set the residue of the propagator at the pole to one:

lim
p2→m2

f̃i

1

p2 −m2
f̃i

R̃e Γ̂f̃ii(p
2) = 1 . (5.19)

This is the second on-shell renormalisation condition which fixes the remaining diagonal
WFR constants.
Inserting Γ̂f̃ij and Π̂f̃

ij from Eq. (5.17) into Eq. (5.18) and setting i = j yields the mass
renormalisation constants

δm2
f̃i

= R̃e Πf̃
ii(m

2
f̃i

) = R̃e Πf̃
ii(m

2 DR
f̃i

) +O(two− loop) . (5.20)

In the last step we substituted the derived on-shell masses m2
f̃i

with the DR input

parameters m2 DR
f̃i

. This replacement is allowed since it produces a discrepancy at two-

loop level1. If we set i 6= j we obtain the off-diagonal WFR constants

δZ f̃
ij =

2

m2 DR
f̃i
−m2 DR

f̃j

R̃e Πf̃
ij(m

2 DR
f̃j

) (i 6= j) (5.21)

1Since Πf̃
ii is calculated at one-loop level, we see by looking at Eq. (5.15) and (5.20) that the difference

between m2
f̃i

and m2DR
f̃i

is also at one-loop level. Thus replacing m2
f̃i

with m2DR
f̃i

as the argument of

Πf̃
ii results in a deviation at two-loop level.
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where we used the same mass substitution as before. In order to derive the diagonal

WFR constants we expand the diagonal, renormalised selfenergy Π̂f̃
ii in a Taylor series

around m2
f̃i

:

R̃e Π̂f̃
ii(p

2) = R̃e Π̂f̃
ii(m

2
f̃i

)︸ ︷︷ ︸
=0 (Eq.(5.18))

+
∂

∂p2
R̃e Π̂f̃

ii(p
2)|p2=m2

f̃i

(p2 −m2
f̃i

) +O(two− loop) . (5.22)

Inserting this expansion into Eq. (5.19) and using Γ̂f̃ii as well as Π̂f̃
ii from Eq. (5.17)

results in the diagonal WFR constants

δZ f̃
ii = −R̃e Π̇f̃

ii(m
2 DR
f̃i

) (5.23)

where we used the abbreviation Π̇f̃
ii(m

2 DR
f̃i

) = (∂Πf̃
ii(p

2)/∂p2)
p2=m2DR

f̃i

and the mass sub-

stitution as before.
At last, we renormalise the sfermion rotation matrix Rf̃ in Section 5.2.3.

5.2.2 Renormalisation of fermions

We reparametrise the DR fermion fields and masses at one-loop level as

f DR
i = (δij +

1

2
δZf L

ij PL +
1

2
δZf R

ij PR)fj , (5.24)

mDR
fi

= mfi + δmfi . (5.25)

The field f stands for all gluinos g̃, neutralinos χ̃0
i , charginos χ̃+

i , as well as all (flavour
conserving) SM quarks and leptons. Inserting these substitutions into the tree-level

Lagrangian LDR, expanding it and taking the renormalisation ansatz LDR = Lren + δL
(where δL denotes the contribution coming from the unrenormalised selfenergy Πf

ij)
yields the renormalised Lagrangian Lren. This Lagrangian can be further expressed in
terms of the renormalised selfenergy Π̂f

ij as well as the renormalised two-point vertex

function Γ̂fij

Γ̂fij(p) = δij(/p−mfi) + Π̂f
ij(p) , (5.26)

Π̂f
ij(p) = /pPLΠ̂f L

ij (p) + /pPRΠ̂f R
ij (p) + PLΠ̂f,S L

ij (p) + PRΠ̂f,S R
ij (p) (5.27)

with the left- and right-handed parts

Π̂
f L/R
ij = Π

f L/R
ij +

1

2
(δZ

f L/R
ij + δZ

f L/R †
ji ) , (5.28)

Π̂
f,S L/R
ij = Π

f,S L/R
ij − 1

2
(mfiδZ

f L/R
ij +mfjδZ

f R/L †
ji )− δijmfi . (5.29)

We require the on-shell renormalisation conditions to be

R̃e Γ̂fij(p)uj(p)
∣∣∣
p2=m2

fj

= 0 , (5.30)

lim
p2→m2

fi

1

/p−mfi

R̃e Γ̂fii(p)ui(p) = ui(p) . (5.31)
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These conditions determine the mass and wave function renormalisation constants to be

δmfi =
1

2
R̃e

(
mDR
fi

(
Πf L
ii (mDR

fi
) + Πf R

ii (mDR
fi

)
)

+Πf,S L
ii (mDR

fi
) + Πf,S R

ii (mDR
fi

)

)
, (5.32)

δZ
f L/R
ij =

2

m2 DR
fi
−m2 DR

fj

R̃e
(
m2 DR
fj

Π
f L/R
ij (mDR

fj
) +mDR

fi
mDR
fj

Π
f R/L
ij (mDR

fj
)

+mDR
fi

Π
f,S L/R
ij (mDR

fj
) +mDR

fj
Π
f,S R/L
ij (mDR

fj
)
)

(i 6= j) , (5.33)

δZ
f L/R
ii = −R̃e Π

f L/R
ii (mDR

fi
) +

1

2mDR
fi

R̃e
(

Π
f,S L/R
ii (mDR

fi
)− Π

f,S R/L
ii (mDR

fi
)
)

−mDR
fi

R̃e

(
mDR
fi

(
Π̇
f L/R
ii (mDR

fi
) + Π̇

f R/L
ii (mDR

fi
)
)

+Π̇
f,S L/R
ii (mDR

fi
) + Π̇

f,S R/L
ii (mDR

fi
)

)
, (5.34)

where we substituted the on-shell with the DR mass.
Since we define both SM quarks and leptons to be flavour conserving (i.e. we set the
CKM and PMNS matrix diagonal), we only need to renormalise the rotation matrices
of the neutralinos and charginos. We perform this renormalisation in Section 5.2.4.

5.2.3 Sfermion sector

We renormalise the sfermion rotation matrix Rf̃ DR in the DR renormalisation scheme
in a similar way to the CKM matrix by starting with the equation

f̃ I DR
j = Rf̃∗DR

kj f̃ DR
k (5.35)

which relates the interaction eigenstates f̃ I DR
j to the mass eigenstates f̃ DR

k . The matrix

Rf̃ generally denotes both squark and slepton rotation matrices. However, for our quark
flavour violating squark and gluino decays we need to focus solely on the 6× 6 rotation
matrices Rũ and Rd̃ of the flavour violating up- and down-type squarks which we defined
in Eq. (4.9). Then we use the following substitutions:

Rf̃∗DR
kj = Rf̃∗

kj + δRf̃∗
kj , (5.36)

f̃ DR
k = (δki +

1

2
δZ f̃

ki)f̃i . (5.37)

Please note that in the DR scheme the tree-level couplings (and thus also the rotation
matrices) are exactly defined at the scale Q, implying that there are no finite shifts.
And since the DR renormalisation condition sets the divergence zero (∆ = 0) every-

where there are also no divergences in the renormalisation constants. Therefore, δRf̃ in
Eq. (5.36) is actually zero and its calculation can be omitted. However, we initially keep
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∆ 6= 0 and calculate δRf̃ since it is a useful possibility to check for RGE invariance of
the DR scheme (for more details see the remark in Section 6.2).
We insert these two substitutions into Eq. (5.35) and obtain (for now omitting the DR
label to reduce clutter)

f̃ Ij = Rf̃∗
kj f̃k

= (Rf̃∗
kj + δRf̃∗

kj )(δki +
1

2
δZ f̃

ki)f̃i

= Rf̃∗
kj f̃k +

1

2
Rf̃∗
kj δZ

f̃
kif̃i + δRf̃∗

ij f̃i +O(two− loop) . (5.38)

Since every squared matrix can be divided into a hermitian and an anti-hermitian part
we take δZ = 1

2
(δZ + δZ†) + 1

2
(δZ − δZ†) and arrive at

f̃ Ij = Rf̃∗
kj f̃k +

1

4
Rf̃∗
kj (δZ

f̃
ki + δZ f̃∗

ik )f̃i +
1

4
Rf̃∗
kj (δZ

f̃
ki − δZ f̃∗

ik )f̃i + δRf̃∗
ij f̃i

=
(
Rf̃∗
kj +

1

4
Rf̃∗
ij (δZ f̃

ik + δZ f̃∗
ki )
)
f̃k +

(
δRf̃∗

ij +
1

4
Rf̃∗
kj (δZ

f̃
ki − δZ f̃∗

ik )
)
f̃i (5.39)

where we swapped the free indices k ↔ i in the second term of the first line. Now we
demand that the rotation of sfermions from interaction to mass eigenstates remains the
same at one-loop level. This can be achieved by compensating any additional rotation
induced by the WFR constant δZ via δR, i.e. we cancel the anti-hermitian part of δZ
with δR and thus set the second term of Eq. (5.39) zero. As a result the renormalisation
constant for the sfermion rotation matrix is defined as

δRf̃
ij =

1

4
(δZ f̃ ∆

ik − δZ f̃∗∆
ki )Rf̃ DR

kj . (5.40)

Here we denote with δZ∆ that one has to take only the UV divergent part of the WFR
constant so that the DR renormalisation condition (∆ = 0 and thus δRf̃ = 0) is always
fulfilled.

5.2.4 Neutralino and chargino sector

We renormalise the neutralino and chargino rotation matrices analogue to the sfermion
rotation matrix in Section 5.2.3, i.e. we cancel the anti-hermitian part of the WFR
constant with the rotation matrix renormalisation constant. For the neutralino rotation
matrix Z defined in Eq. (4.15) we get

δZij =
1

4
(δZ χ̃0,L∆

ik − δZ χ̃0,L∗∆
ki )ZDR

kj (5.41)

with k = 1, . . . , 4 and for the chargino rotation matrices U and V defined in Eq. (4.20)
we have

δUij = (δZ χ̃−,L∆
il − δZ χ̃−,L∗∆

li )UDR
lj (5.42)

δVij = (δZ χ̃−,R∗∆
il − δZ χ̃−,R∆

li )V DR
lj (5.43)

with l = 1, 2. We again take only the UV divergent part of the WFR constants to fulfill
the DR renormalisation condition.
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Chapter 6

Squark and gluino two-body decays

In this chapter we calculate all squark and gluino two-body decay widths in the MSSM
with general quark flavour violation at full one-loop level.1 Since these decays involve
hundreds of Feynman diagrams it is necessary to use tools which (at least partially)
automate the generation of the respective amplitudes. We use the Mathematica pack-
ages FeynArts 3.7 (FA) [7] for the generation of Feynman diagrams and amplitudes,
FormCalc 7.3 (FC) [9] for the further evaluation of these amplitudes and for comput-
ing the squared matrix element for a given process, and LoopTools 2.7 (LT) [9] for the
evaluation of the Passarino-Veltman (PaVe) one-loop integrals.2

Since calculating decays at next-to-leading order lead to UV and IR divergent results
we compensate these divergences automatically with our original approach. For this
we adopt the SPA convention [36] with the DR renormalisation scheme and use the
renormalisation constants (RCs) defined in the previous chapter. To obtain an IR finite
result we include soft and hard bremsstrahlung to our decays. Please note that the
general quark flavour violation (QFV) in our decays refers to the squark sector only,
since we set the Cabibbo-Kobayashi-Maskawa (CKM) matrix diagonal.

Based on our calculations we developed the first publicly available program package
FVSFOLD (Flavour Violating Squark Full One Loop Decays), which computes fully au-
tomatically all above-mentioned QFV decays at full one-loop level (for further details,
especially about our original work, see Appendix B).

6.1 Decay patterns

In Table 6.1 we present all possible squark and gluino decays in the MSSM which we
implemented in our program. The squark mass indices i, j and the quark generation
index g indicate that the decays are quark flavour violating. If the squark decay into a
gluino is kinematically allowed it will dominate due to the strong interaction.

1Currently all decays into Higgses are calculated at tree-level only.
2Since FA 3.9 [8] an implementation of the renormalised complex MSSM is now available. However,

UV-finite one-loop calculations in that version are still limited to flavour conserving processes.

25



26 CHAPTER 6. SQUARK AND GLUINO TWO-BODY DECAYS

ũi → ug χ̃
0
k d̃i → dg χ̃

0
k g̃ → ũi ūg

ũi → dg χ̃
+
l d̃i → ug χ̃

−
l g̃ → d̃i d̄g

ũi → ug g̃ d̃i → dg g̃

ũi → ũj Z
0 d̃i → d̃j Z

0

ũi → d̃j W
+ d̃i → ũj W

−

ũi → ũj h
0 d̃i → d̃j h

0

ũi → ũj H
0 d̃i → d̃j H

0

ũi → ũj A
0 d̃i → d̃j A

0

ũi → d̃j H
+ d̃i → ũj H

−

Table 6.1: All possible squark and gluino decays which are implemented in our code.
The indices are i, j = 1, . . . , 6, k = 1, . . . , 4, l = 1, 2, and g = 1, 2, 3.

6.2 Calculation at full one-loop level

We will demonstrate the general procedure of calculating a renormalised two-body decay
at full one-loop level by using the g̃ → ũi ūg decay as an illustrative example. We start
with the tree-level interaction Lagrangian in the DR renormalisation scheme

LDR
g̃ u ũ = g̃

DR
(gDR
L PL + gDR

R PR)uDR
g ũ∗DR

i (6.1)

with the coupling matrices

gDR
L = −

√
2 gDR

s TRũDR
i g and gDR

R =
√

2 gDR
s TRũDR

i g+3 . (6.2)

gDR
s is the strong coupling constant, T denotes the generator of the SU(3)C group, and

RũDR is the squark rotation matrix defined in Eq. (4.9). Then we insert the following
substitutions due to multiplicative wave function and coupling renormalisation:

ũ∗DR
i = ũ∗j(δji +

1

2
δZ ũ∗

ji ) , (6.3)

g̃
DR

= g̃(1 +
1

2
δZ g̃R∗PL +

1

2
δZ g̃L∗PR) , (6.4)

uDR
g = (δgl +

1

2
δZuL

gl PL +
1

2
δZuR

gl PR)ul , (6.5)

gDR
L,R = gDR

L,R + δgcL,R . (6.6)

The wave function renormalisation constants δZ ũ, δZ g̃L,R, and δZuL,R can be deduced
from Section 5.2.1 and 5.2.2. We calculate the coupling counter term δgcL,R (which is

actually zero in the DR scheme with ∆ = 0, see below) in Section 6.2.2. Expanding the
Lagrangian, keeping the terms up to O(δg, δZ), using the relations P 2

L,R = PL,R as well
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as PL,RPR,L = 0, taking proper care with all Kronecker deltas and renaming free indices
in the last step yields

LDR
g̃ u ũ = g̃

((
gDR
L + δgcL +

1

2
(δZ g̃R∗ + δZ ũ∗

ij + δZuL
lg )gDR

L︸ ︷︷ ︸
δgwL

)
PL

+
(
gDR
R + δgcR +

1

2
(δZ g̃L∗ + δZ ũ∗

ij + δZuR
lg )gDR

R︸ ︷︷ ︸
δgwR

)
PR

)
ugũ

∗
i . (6.7)

We define the coupling corrections δgwL,R which contain all wave function corrections of

our decay.3 Now we use the renormalisation ansatz LDR = Lren + δL and define the
contribution coming from all vertex corrections as

δL = −δLv = −g̃(δgvLPL + δgvRPR)ugũ
∗
i . (6.8)

Transforming this ansatz and inserting Eq. (6.7) and (6.8) results in the renormalised,
physical Lagrangian

Lren = LDR − δL
= g̃

((
gDR
L + δgvL + δgwL + δgcL︸ ︷︷ ︸

∆gL

)
PL +

(
gDR
R + δgvR + δgwR + δgcR︸ ︷︷ ︸

∆gR

)
PR

)
ugũ

∗
i (6.9)

with the renormalised coupling constants

gren
L,R = gDR

L,R(Q) + ∆gL,R(Q) , (6.10)

defined as the sum of the DR coupling constants gDR
L,R and its finite one-loop shifts ∆gL,R

(both at the same scale Q) induced by all vertex and wave function corrections as well
as all coupling counter terms. We calculate these coupling corrections δgvL,R, δgwL,R, and
δgcL,R for our specific g̃ → ũi ūg decay in the subsequent sections.

Before relating the renormalised interaction Lagrangian Lren to the decay width Γ
we have to remark on these coupling corrections, on the DR renormalisation scheme and
on UV finiteness. Since we are working in the DR scheme (where the divergence ∆ is set

to zero everywhere) the tree-level couplings gDR
L,R are exactly defined at the scale Q and

thus do not receive any finite shifts due to loop corrections. As a result, the coupling
counter term δgcL,R is zero and its calculation can be omitted. However, we initially keep
∆ 6= 0 so that the terms proportional to ∆ in δgcL,R as well as in δgvL,R and δgwL,R remain.
By keeping all UV divergent parts in all contributions we have a possibility to check for
RGE invariance of the DR scheme (i.e. that physical quantities like masses are invariant
under RG shifts). Since at one-loop level both the divergence ∆ and the (log of the)
scale Q always share the same prefactor β(∆ + logQ), checking for RGE invariance is

3Please note that this definition is simplified for the sake of brevity and strictly speaking only
applies to the case of diagonal wave function corrections δZ. In the case of off-diagonal corrections see
Section 6.2.3.
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equivalent to showing that ∆gL,R is UV finite when ∆ � 1. In our program one can
perform this UV check numerically by setting ∆ to a very high value (e.g. 107 instead of
the default zero); the value of the decay width should remain the same except for small
numerical deviations O(10−7) (see also Appendix B).

Using Lren in Eq. (6.9) of our exemplary g̃(k0) → ũi(k1) ūg(k2) decay we derive the
matrix elementM =M0 +M1 of the process, the sum of the tree-level amplitude and
the renormalised one-loop contribution (see Figure 6.1 for a schematic illustration of
M1):

M0 = i ū(k0)(gDR
L PL + gDR

R PR)v(k2) , (6.11)

M1 = i ū(k0)(∆gLPL + ∆gRPR)v(k2) . (6.12)

= + +

M1 Mv Mw Mc

Figure 6.1: Schematic calculation of a renormalised one-loop contribution to an 1 → 2
process, including vertex corrections Mv, wave function corrections Mw and coupling
counter termsMc. The graph forMw is understood as the sum of three diagrams each
with a wave function renormalisation constant sitting on an external leg.

Finally, the two-body decay width can be written as

Γ =
κ(m2

0,m
2
1,m

2
2)Nc

16πm3
0

(
|M0|2 + 2 Re(M†

0M1)
)

(6.13)

with the Källen function κ(x, y, z) =
√

(x− y − z)2 − 4yz and the colour factor Nc. For
a fermion-scalar-fermion (FSF) decay we have

|M0|2 = (m2
0 −m2

1 +m2
2)(|gDR

L |2 + |gDR
R |2) + 2m0m2(g∗DR

L gDR
R + gDR

L g∗DR
R ) . (6.14)

We set for our g̃ → ũi ūg decay the physical on-shell masses m0 = mg̃, m1 = mũi ,
m2 = mug as well as Nc = 1/8. We defined the coupling constants already in Eq. (6.2).
For the other decay patterns we have for |M0|2

SSS : |gDR|2 ,
SSV : |gDR|2

(
m4

0 − 2m2
0(m2

1 +m2
2) + (m2

1 −m2
2)2
)
/m2

2 ,

SFF : (m2
0 −m2

1 −m2
2)(|gDR

L |2 + |gDR
R |2)− 2m1m2(g∗DR

L gDR
R + gDR

L g∗DR
R ) . (6.15)

This whole procedure of calculating a renormalised g̃ → ũi ūg decay can be straightfor-
wardly used to calculate all other two-body decays listed in Table 6.1.
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However, the decay width Γ in Eq. (6.13) is UV finite but still IR divergent. We
cancel these IR divergences by adding soft photon/gluon or hard photon/gluon radiation,
see Section 6.2.4 and 6.2.5. But first we calculate the coupling corrections δgvL,R, δgcL,R,
and δgwL,R.

6.2.1 Vertex corrections

All vertex corrections which contribute to the coupling corrections δgvL,R (see Eq. (6.8))
can be easily calculated within FA/FC. In our exemplary g̃ → ũi ūg decay we have
4 vertex diagrams in SQCD and 11 electroweak vertex diagrams, see Figure A.1 in
Appendix A.

6.2.2 Coupling renormalisation

We calculate the coupling renormalisation constants δgcL,R by performing the shift gDR
L,R =

gDR
L,R + δgcL,R in Eq. (6.6) for every parameter which appears in the coupling matrices.

That way we reach a set of pre-defined renormalisation constants (RCs) which do not
depend on further RCs any more. Then we expand the whole expression and keep the
terms linear in the RCs.

Using our gluino decay again as an example, shifting the coupling constants (defined
in Eq. (6.2)) along with all occurring parameters, expanding the results and keeping the
terms up to O(δ) yields

gDR
L = gDR

L + δgcL

= −
√

2 (gDR
s + δgs)T (RũDR

i g + δRũ
i g)

= −
√

2 gDR
s TRũDR

i g︸ ︷︷ ︸
gDR
L

−
√

2T (δgsR
ũDR
i g + gDR

s δRũ
i g)︸ ︷︷ ︸

δgcL

+O(δ2) (6.16)

and analogously

gDR
R =

√
2 gDR

s TRũDR
i g+3︸ ︷︷ ︸

gDR
R

+
√

2T (δgsR
ũDR
i g+3 + gDR

s δRũ
i g+3)︸ ︷︷ ︸

δgcR

+O(δ2) . (6.17)

We defined the RC δRũ in Eq. (5.40). Please note that δgcL,R is exactly zero in the DR
scheme but we nevertheless calculate this RC in order to check for RGE invariance /
UV finiteness, see the remark in Section 6.2.

We perform this calculation of δgcL,R automatically for every decay via a self-written
function in Mathematica within the FA/FC environment. We further define all ‘ba-
sic’ RCs (like the above δgs and δRũ) which we use as building blocks in a separate
Mathematica file, using the file content shown in Appendix B.1 of [35] as a starting
point.
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6.2.3 Wave function renormalisation

We calculate the coupling corrections δgwL,R (defined in Eq. (6.7) for our gluino decay)
induced by all wave function corrections separately for diagonal and off-diagonal wave
function renormalisation (WFR) constants δZ.

In the diagonal case we have

δgw,diag
L =

1

2
(δZ g̃R∗ + δZ ũ∗

ii + δZuL
gg )gDR

L , (6.18)

δgw,diag
R =

1

2
(δZ g̃L∗ + δZ ũ∗

ii + δZuR
gg )gDR

R . (6.19)

Since the tree-level couplings gDR
L,R are the one from our g̃ → ũi ūg decay we can directly

calculate the amplitude Mdiag
w by substituting the couplings in the tree-level matrix

element M0

Mdiag
w =M0(gDR

L,R → δgw,diag
L,R ) . (6.20)

We implemented a Mathematica routine which automatically generates and inserts these
substitutions into the respective tree-level matrix elements of each decay. All relevant
WFR constants are defined within a separate counter term Mathematica file (see end of
last section) using available FC routines for their calculation. A listing of all contributing
diagrams can be found in Figure A.2 in Appendix A.

In the off-diagonal case ((i 6= j) and (l 6= g)) we instead have (cf. the simplified
version in Eq. (6.7) including the diagonal-only δZ g̃ L,R∗)

δgw, off−diag
L =

1

2
(δZ ũ∗

ij g
jDR
L + δZuL

lg g
lDR
L ) , (6.21)

δgw, off−diag
R =

1

2
(δZ ũ∗

ij g
jDR
R + δZuR

lg g
lDR
R ) . (6.22)

It is important to note that the tree-level couplings gjDR
L,R and glDR

L,R are not the same
couplings as in our g̃ → ũi ūg decay but the coupling constants of the tree-level decays
g̃ → ũj ūg and g̃ → ũi ūl, respectively. In other words, because of the particle transitions

induced by δZ ũ∗
ij (changing ũi with ũj) and δZuL,R

lg (changing ūg with ūl) we have to
deal with different tree-level decay amplitudes and thus cannot use our simple trick in
Eq. (6.20) for the off-diagonal case.

We instead use the following approach: we make use of the fact that the off-diagonal
WFR constant δZij of a particle is related to the real part of its selfenergy Πij. This
can be clearly seen for a scalar particle in Eq. (5.21) but holds true for fermions (see
Eq. (5.33)) as well as vector and Higgs bosons as well. We thus simply calculate all
‘transition’ diagrams where at least one of the external particles undergoes a transition
due to its selfenergy. It is straightforward to calculate these diagrams with one-loop
selfenergies in FA/FC, and we show all contributing diagrams of our gluino decay in
Figure A.3 and A.4. By taking only the real part of the PaVe integrals of these ‘tran-
sition’ graphs we automatically obtain all contributions coming from off-diagonal wave
function corrections.



6.2. CALCULATION AT FULL ONE-LOOP LEVEL 31

6.2.4 Soft bremsstrahlung

Our squark and gluino two-body decays still suffer from IR divergences which arise as
soon as a massless photon/gluon appears in a closed loop. However, these decays are
not of any direct physical relevance since one cannot distinguish them experimentally
from those involving an additional soft external photon/gluon due to the finite energy
resolution of any detector. Adding these so called soft photon/gluon bremsstrahlung
from the initial and final states not only renders the decay to be an observable process
but also cancels all IR divergences of the original two-body decay [32].

We define the additional photon/gluon to be soft when its energy is below a certain
cutoff parameter |k| ≤ ∆E (for a hard photon/gluon with |k| > ∆E see the next
section). This cutoff parameter ∆E should be small compared to all energy scales in
the process. Furthermore, for the validity of the soft photon/gluon approximation the
detector resolution ∆E/E needs to be sufficiently small. Then it can be shown that
the bremsstrahlung diagrams are proportional to the tree-level diagrams [32]. The soft
photon/gluon cross section (or equally decay width) reads(

dσ

dΩ

)
s

= −
(
dσ

dΩ

)
0

4πα

(2π)3

∫
|k|≤∆E

d3k

2ωk

∑
ij

±pipjQiQj

pikpjk
CijCF (6.23)

with ωk =
√

k2 + λ2, the small regulator mass λ, and α = αem, αs for the photon/gluon
bremsstrahlung. The momentum and (colour) charge of the i-th external particle is
pi and Qi, respectively, and the ± sign stems from charges flowing in and out of the
diagram. Cij denotes a symmetric 3 × 3 colour factor matrix which encodes the traces
of the respective generators of the SU(3)C group. For the soft gluon bremsstrahlung of
our exemplary g̃ → ũi ūg decay we obtain

C =


12 6 −6

6 16/3 −2/3

−6 −2/3 16/3

 (6.24)

with the overall colour factor CF = 3/16 × 4/3 = 1/4. (Please note that for the soft
photon bremsstrahlung both C and CF are set to one.) The basic integrals over the
photon/gluon phase space

Iij =

∫
|k|≤∆E

d3k

2ωk

2pipj
pikpjk

(6.25)

can be found in [37]. Finally, adding the soft photon/gluon decay width to the full
one-loop two-body decay width results in an IR convergent process, independent of the
regulator mass λ so that the limit λ→ 0 can be safely taken.

6.2.5 Hard bremsstrahlung

Even though soft photon/gluon bremsstrahlung is sufficient to obtain an IR convergent
result, the requirements for the soft photon/gluon approximation are often not fulfilled
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with realistic detectors due to their bigger resolution ∆E/E. Thus one also has to
consider hard photon/gluon bremsstrahlung with |k| > ∆E.

For each distinct decay pattern (scalar-scalar-scalar, scalar-fermion-fermion, scalar-
scalar-vector) of our 1 → 2 squark decays (see Table 6.1) the analytic squared matrix
element of the corresponding complete photon/gluon 1→ 3 bremsstrahlung process can
be found in [35]. For our gluino decays with its fermion-scalar-fermion structure we
briefly derive the according complete (i.e. including both soft and hard) bremsstrahlung
process here.

The diagram depicting the bremsstrahlung process of a single photon is shown in
Figure 6.2 (for the gluon bremsstrahlung see below). For our exemplary g̃ → ũi ūg decay

we have defined the tree-level couplings gL,Rt already in Eq. (6.2). The couplings of the
γf̃ f̃ - and γff -vertices are defined as gi = −eQi with e =

√
4παem and the charge Qi

of the particle on leg number i = 0, 1, 2. The matrix elements of each single photon

k0

0
k0 − k3

k3

t

k1 + k3

k2 + k3

k2

k3

k1

k3

1

2

t : i(gLt PL + gRt PR)

0 : ig0γ
µ

1 : ig1(2k1 + k3)µ

2 : ig2γ
µ

Figure 6.2: The combination of three Feynman diagrams showing the 1 → 3
bremsstrahlung process of a single photon from a fermion-scalar-fermion structure.

bremsstrahlung process are

M0 = v̄(k0)ig0γ
µε∗µ(k3)

i

/k0 − /k3 −m0

i(gLt PL + gRt PR)v(k2) , (6.26)

M1 = ig1(2k1 + k3)µε∗µ(k3)
i

(k1 + k3)2 −m2
1

iv̄(k0)(gLt PL + gRt PR)v(k2) , (6.27)

M2 = iv̄(k0)(gLt PL + gRt PR)
i

/k2 + /k3 −m2

ig2γ
µε∗µ(k3)v(k2) . (6.28)

Squaring the sum of these matrix elements, averaging over incoming spins and summing
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over outgoing spins results in

|M|2 = g2
0

[ (
−2αm2

0 − 2βm2m0

)
I0 − αI2

0

+
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−2α
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0 −m2
1 +m2

2

)
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3
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)
I00

]
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2
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(6.29)

where we defined α = |gLt |2 + |gRt |2 and β = gLt g
R∗
t + gL∗t gRt for simplicity. I denotes the

bremsstrahlung phase space integrals which can be found in [32].
The squared matrix element of the complete gluon bremsstrahlung can be easily

derived from the photon bremsstrahlung case in Eq. (6.29) by substituting the couplings

gi gj → gs i gs j Cij (6.30)

where gs i = −gsQs i with gs =
√

4παs and the colour charge factor Qs i = +1(−1) for
particles carrying colour (anti-colour). Cij is the colour factor matrix containing the
results of the traces of SU(3)C generators which we already defined in Eq. (6.24) for our
g̃ → ũi ūg decay.

Finally, adding the decay width of the complete soft and hard photon/gluon 1 → 3
bremsstrahlung process to the full one-loop two-body decay width results in an IR
convergent process, independent of the regulator mass λ and also independent of a
cutoff parameter ∆E as opposed to the soft bremsstrahlung case.
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Chapter 7

Results and conclusions

In this chapter we present a case study to demonstrate the QFV functionality and general
usefulness of our program package FVSFOLD (see Appendix B). We compare our squark
and gluino two-body decay widths at full one-loop level with our SUSY-QCD (SQCD)
and tree-level calculations and with the results from SPheno 3.2.3 [38, 39]. We present
our comparison in tables depicting the decay widths and branching ratios of all squark
and gluino decays as well as in various plots as a function of the most important QFV
parameters. For the generation of these plots we use the parameter scan functionality
of the Mathematica package SSP 1.2.0 (SARAH Scan and Plot) [40].

7.1 Two scenarios for squark and gluino decays

Our case study consists of two scenarios, one for the QFV squark decays and one for
the QFV decays of gluinos. In both scenarios we assume general QFV mixing in the
second and third up-type squark generations. In all of our results hard bremsstrahlung
is included to achieve IR finiteness.

We study the QFV squark decays using ‘scenario A’ defined with the input parame-
ters in Table 7.1. The resulting mass spectrum can be found in Table 7.2.1 The flavour
decomposition of the two lightest up-type and down-type squarks is given in Table 7.3.

For the study of the QFV gluino decays we slightly modify scenario A by setting
M3 = 1300 GeV, resulting in heavier gluino masses (mSPheno

OS = 1437.7 GeV, mFVSFOLD
OS =

1419.4 GeV, mFVSFOLD
DR

= 1300.0 GeV) and otherwise rather negligible changes in the
mass spectrum as well as in the flavour decomposition. We denote this modified reference
point ‘scenario B’.

We take into account the experimental constraints found in Table 7.4. The con-
straints stem from B-physics experiments, from the Higgs boson search and from direct
searches for SUSY particles at the LHC. We chose the B-physics observables which are
most relevant for our QFV mixing setup.

In Figure 7.1 we present two plots showing the lightest Higgs boson mass mh0 from
SPheno as a function of TU33 and µ using both scenarios as reference points. The light

1Please note that our calculation of mh0 is at one-loop level only whereas SPheno also includes the
most important two-loop contributions.

35
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blue (green) region denotes the excluded values of mh0 (BR(B → Xsγ)), whereas the
other experimental constraints are all fulfilled.

Furthermore, we define measures like

∆Full vs SQCD ≡
BR(ũ1 → t χ̃0

1)Full − BR(ũ1 → t χ̃0
1)SQCD

BR(ũ1 → t χ̃0
1)Full

, (7.1)

which determines the relative contribution of the EW corrections to the full one-loop
result. We define the remaining measures analogously to quantify the relative differences
of the branching ratios (BRs) and decay widths when comparing the full one-loop cal-
culation with the tree-level calculation from FVSFOLD as well as with the calculation
from SPheno.

Regarding the comparison of our full one-loop results with SPheno we note that,
although its decay width formulas are calculated at tree-level only, SPheno improves its
results by incorporating full one-loop corrections to the masses and the rotation matrices
along the lines of [41]. In short, this is achieved by first adding the respective (diagonal
and off-diagonal) one-loop selfenergy contributions to each already diagonalised mass
matrix at tree-level in the DR scheme. This new mass matrix is then transformed using
the tree-level DR rotation matrix, resulting in an effective on-shell mass matrix. At last,
this effective mass matrix is re-diagonalised with an effective on-shell rotation matrix
(which now intrinsically contains one-loop selfenergy contributions).

M1 M2 M3 µ tan β mA0

250 GeV 500 GeV 1000 GeV 2200 GeV 20 1500 GeV

αβ = 11 αβ = 22 αβ = 33 αβ = 23 αβ = 32

M2
Qαβ

[GeV2] (2400)2 (2360)2 (1450)2 (287)2 (287)2

M2
Uαβ

[GeV2] (2380)2 (939.24)2 (903.12)2 (504.54)2 (504.54)2

M2
Dαβ

[GeV2] (2380)2 (2340)2 (2300)2 0 0

M2
Lαβ

[GeV2] (500)2 (500)2 (600)2 0 0

M2
Eαβ

[GeV2] (500)2 (500)2 (600)2 0 0

TUαβ [GeV] 0 0 −2160 0 0

δuLL23 δuRR23 δuRL23 δuLR23 δuRL33

0.024 0.300 0 0 −0.284

Table 7.1: Weak scale MSSM DR input parameters at Q = 1 TeV (except for the pole
mass mA0) in the SPA convention [36] for scenario A. All other MSSM input parameters
not shown here are zero. For completion also the derived QFV parameters δuLL23 , δuRR23 ,
δuRL23 and δuLR23 as well as the QFC parameter δuRL33 are shown.
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mSPheno
OS [GeV] mFVSFOLD

OS [GeV] mFVSFOLD
DR

[GeV]

ũ1 760.3 758.4 739.1

ũ2 1055.1 1051.9 1028.8

ũ3 1495.3 1495.0 1493.8

ũ4 2387.3 2382.5 2359.9

ũ5 2401.2 2397.6 2379.7

ũ6 2427.2 2422.3 2399.4

d̃1 1448.7 1449.0 1449.4

d̃2 2322.2 2318.8 2300.8

d̃3 2363.6 2359.9 2340.1

d̃4 2388.5 2383.7 2361.1

d̃5 2403.7 2400.0 2380.1

d̃6 2428.3 2423.4 2400.7

g̃ 1144.3 1130.1 1000.0

χ̃0
1 248.4 248.4 249.8

χ̃0
2 522.1 521.4 499.1

χ̃0
3 2185.2 2185.8 2201.4

χ̃0
4 2186.8 2187.4 2202.5

χ̃+
1 522.3 521.6 499.1

χ̃+
2 2187.3 2187.9 2203.0

h0 125.5 120.8 89.2

Table 7.2: Mass spectrum of the particles in scenario A derived using SPheno (physical
OS masses) and FVSFOLD (OS and DR masses).
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ũL c̃L t̃L ũR c̃R t̃R

ũ1 0 0 0.042 0 0.310 0.648

ũ2 0 0 0.040 0 0.687 0.273

d̃L s̃L b̃L d̃R s̃R b̃R

d̃1 0 0.001 0.999 0 0 0.001

d̃2 0 0 0.001 0 0 0.999

Table 7.3: Squared coefficients of the flavour decomposition of ũ1,2 and d̃1,2 in scenario A
using the squark rotation matrix from SPheno.

Observable Constraint

|∆MBs| [ps−1] 17.73± 3.30

BR(B → Xsγ) (3.37± 0.64)× 10−4

BR(b→ s µ+µ−) (1.60± 1.00)× 10−6

BR(Bs → µ+µ−) (3.00± 1.00)× 10−9

BR(B+ → τ+ν) (1.15± 0.23)× 10−4

∆ρ (SUSY) < 0.0012

mh0 [GeV] 126± 3

mg̃ [GeV] ≥ 1000

Table 7.4: Experimental constraints from B-physics experiments, from the Higgs boson
search and from direct searches for SUSY particles at the LHC (for further details and
references see the appendix in [3]).
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Figure 7.1: The lightest Higgs boson mass mh0 taken from SPheno as a function of
TU33 and µ using scenario A (left) and scenario B (right) as a reference point (marked
with ‘X’ in each plot). The light blue (green) region denotes the excluded values of mh0

(BR(B → Xsγ)).
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7.2 Gluino decays

In Table 7.5 we present the total decay width Γ(g̃) as well as all branching ratios (BRs)
of our QFV gluino decays into squark-quark pairs using reference point B, comparing
the results from SPheno with FVSFOLD. Furthermore, we show the relative differences
∆Full vs SPheno, ∆Full vs Born, and ∆Full vs SQCD of Γ(g̃) and of the various BRs as defined in
Eq. (7.1). The relative differences can get as high as 13.1% for reasonable large BRs, and
for the highest BR (i.e. BR(g̃ → t̄ ũ1) + c.c.) we obtain differences of −4.5% (+5.0%)
when comparing the full one-loop calculation from FVSFOLD with SPheno (SQCD
from FVSFOLD). In this decay g̃ → t̄ ũ1 the electroweak (EW) corrections counteract
the SQCD contributions in such a way that the simple tree-level result matches the full
one-loop result best. The decay g̃ → c̄ ũ1 also shows this inverse feature with even bigger
EW than SQCD corrections. In the decays into ũ2 the EW corrections have the same
sign as the SQCD contributions, but again with a higher magnitude. Thus one can
clearly see that the EW corrections to the gluino two-body decays cannot be neglected
at all!

SPheno FVSFOLD

Born SQCD Full

Γ(g̃) [GeV] 20.357 19.591 20.620 20.463

BR(g̃ → c̄ ũ1) + c.c. 0.251 0.288 0.293 0.263

BR(g̃ → t̄ ũ1) + c.c. 0.463 0.439 0.421 0.443

BR(g̃ → c̄ ũ2) + c.c. 0.222 0.205 0.219 0.236

BR(g̃ → t̄ ũ2) + c.c. 0.061 0.068 0.067 0.058

∆Full vs ... [×10−2]

SPheno Born SQCD

0.52 4.26 -0.77

4.56 -9.51 -11.41

-4.51 0.90 4.97

5.93 13.14 7.20

-5.17 -17.24 -15.52

Table 7.5: Total decay width and all branching ratios (including charge conjugated
decays) of g̃ in scenario B, comparing the results from SPheno with FVSFOLD (tree-
level, SUSY-QCD, full one-loop corrections). In addition the relative differences of this
comparison are shown for convenience.

In Figures 7.2-7.5 we show 2D contour plots of the branching ratios BR(g̃ → t̄ ũ1) +
c.c. and BR(g̃ → c̄ ũ1)+c.c. from SPheno as a function of doublets of the QFV parameters
δuRR23 , δuRL23 , δuLL23 and the quark flavour conserving (QFC) parameter δuRL33 . In each figure
scenario B is used as a reference point, and the parameter regions yielding excluded
values for mh0 , BR(B → Xsγ) and |∆MBs| are highlighted in different colours. We
provide these plots as a broad overview of the QFV and QFC parameter dependences,
so that we can pick the most interesting parameters (mainly δuRR23 but also δuRL23 in this
scenario) for a detailed comparison of SPheno with FVSFOLD (see Figures 7.6-7.11
below). The dependence on δuRR23 (affecting the t̃R - c̃R mixing) is most prominently seen
and understood in the g̃ → c̄ ũ1 decay, where the BR rapidly rises from almost zero (at
δuRR23 ∼ 0, i.e. ũ1 is basically t̃R-like) to more than 35% with higher (absolute) values of
δuRR23 indicating a sizeable admixture of c̃R to ũ1 (see also Table 7.3). The reason for this
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dependence is rooted in the g̃ c ũ1 coupling (see Eq. (6.2)), where the dominant term
proportional to Rũ

15 is due to the t̃R - c̃R mixing. The dependence on δuRL23 (encoding the
t̃L - c̃R mixing) is much less pronounced in these plots since we present decays into ũ1

which are dominantly t̃R-like. We also studied the dependence on δuLR23 (t̃R - c̃L mixing)
which is however irrelevant in our scenario since the c̃L part in ũ1 remains basically zero.
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Figure 7.2: The branching ratios BR(g̃ → t̄ ũ1) + c.c. (left) and BR(g̃ → c̄ ũ1) + c.c.
(right) from SPheno as a function of δuRR23 and δuRL23 using scenario B as a reference point
(denoted with ‘X’ in each plot). The light blue region shows the excluded values of mh0

with 95% CL.

In Figure 7.6 we present the total decay width Γ(g̃) as a function of δuRR23 comparing
the result from SPheno with the tree-level, SQCD and full one-loop calculation from
FVSFOLD. For better comparison also the relative differences of the full one-loop result
with the other partial results are shown. Γ(g̃) increases about 23% with higher (absolute)
values of δuRR23 due to the g̃ → c̄ ũ1 decay becoming more enhanced (see explanation in
previous paragraph). We observe a good agreement with SPheno, partly because the
EW corrections to the full calculation remain with just ∼ 1% rather small.

In Figure 7.7 we show the branching ratio BR(g̃ → t̄ ũ1) + c.c. as a function of
δuRR23 comparing the result from SPheno with the tree-level, SQCD and full one-loop
calculation from FVSFOLD. We also present the relative differences of the full one-loop
result with the other partial results for convenience. The EW corrections counteract the
SQCD contributions and amount up to 6% to the full one-loop result. Thus the EW
corrections cannot be neglected in our scenario.

Figure 7.8 shows the branching ratio BR(g̃ → c̄ ũ1) + c.c. as a function of δuRR23

comparing again the result from SPheno with the tree-level, SQCD and full one-loop
calculation from FVSFOLD and again showing the relative differences for better com-
parison. Please note that we focus on a smaller interval of δuRR23 since both plots are
symmetric and small |δuRR23 | correspond to vanishing BR which lead to numerically un-
stable relative differences. Once more the EW corrections cannot be neglected, since
their relative contribution can be as high as ∼ 20% for weaker t̃R - c̃R mixing and still
remain at ∼ 5% for stronger mixing.
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Figure 7.3: The branching ratios BR(g̃ → t̄ ũ1) + c.c. (left) and BR(g̃ → c̄ ũ1) + c.c.
(right) from SPheno as a function of δuRL23 and δuRL33 using scenario B as a reference point
(denoted with ‘X’ in each plot). The light blue region shows the excluded values of mh0

with 95% CL.
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Figure 7.4: The branching ratios BR(g̃ → t̄ ũ1) + c.c. (left) and BR(g̃ → c̄ ũ1) + c.c.
(right) from SPheno as a function of δuRR23 and δuRL33 using scenario B as a reference point
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Figure 7.5: The branching ratios BR(g̃ → t̄ ũ1) + c.c. (left) and BR(g̃ → c̄ ũ1) + c.c.
(right) from SPheno as a function of δuRR23 and δuLL23 using scenario B as a reference point
(denoted with ‘X’ in each plot). The green (red) region shows the excluded values of
BR(B → Xsγ) (|∆MBs|).
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Figure 7.6: Left: Total decay width of g̃ as a function of δuRR23 using scenario B as a
starting point, comparing the results from SPheno with FVSFOLD (tree-level, SQCD,
full one-loop corrections). Right: Relative differences of this Γ(g̃), comparing the
full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born) and SQCD
(∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calculation from
SPheno (∆Full vs SPheno).



44 CHAPTER 7. RESULTS AND CONCLUSIONS

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
0.42

0.44

0.46

0.48

0.50

0.52

∆23
uRR

B
R

Hg�
®

t
u�

1L
+

B
R

Hg�
®

tu
�

1*
L

Full
SQCD
Born
SPheno

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.04

-0.02

0.00

0.02

0.04

0.06

∆23
uRR

D
F

U
L

L
vs

...

SQCD
Born
SPheno

Figure 7.7: Left: The branching ratio BR(g̃ → t̄ ũ1) + c.c. as a function of δuRR23 us-
ing scenario B as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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Figure 7.8: Left: The branching ratio BR(g̃ → c̄ ũ1) + c.c. as a function of δuRR23 us-
ing scenario B as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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In Figure 7.9 we present the total decay width Γ(g̃) as a function of δuRL23 comparing
the result from SPheno with the various results from FVSFOLD. Relative differences
of these results are again shown for better comparison. As already anticipated the
dependence on δuRL23 is much weaker, and we observe just ∼ 1% relative contribution of
EW corrections to the full one-loop result.
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Figure 7.9: Left: Total decay width of g̃ as a function of δuRL23 using scenario B as a
starting point, comparing the result from SPheno with FVSFOLD (tree-level, SQCD,
full one-loop corrections). Right: Relative differences of this Γ(g̃), comparing the
full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born) and SQCD
(∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calculation from
SPheno (∆Full vs SPheno).

Figure 7.10 displays BR(g̃ → t̄ ũ1) + c.c. as a function of δuRL23 comparing SPheno
with FVSFOLD, and shows relative differences of the BRs for better comparison. The
EW corrections basically cancel the SQCD contributions and amount up to 6% to the
full one-loop result. Therefore, the EW corrections cannot be neglected at all.

At last, in Figure 7.11 we present BR(g̃ → c̄ ũ1)+c.c. as a function of δuRL23 comparing
SPheno with FVSFOLD, and show relative differences of the BRs for better comparison.
The relative contribution of the EW corrections to the full result can rise up to 15% and
hence cannot be neglected.
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Figure 7.10: Left: The branching ratio BR(g̃ → t̄ ũ1) + c.c. as a function of δuRL23 us-
ing scenario B as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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Figure 7.11: Left: The branching ratio BR(g̃ → c̄ ũ1) + c.c. as a function of δuRL23 us-
ing scenario B as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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7.3 Squark decays

In Table 7.6 we present the total decay widths and all branching ratios (BRs) of QFV ũ1

and d̃1 two-body decays as well as all partial decay widths of ũ2 in scenario A, comparing
the results from SPheno with FVSFOLD. Furthermore, we show the relative differences
∆Full vs SPheno, ∆Full vs Born, and ∆Full vs SQCD of this comparison as defined in Eq. (7.1).
Please note that currently decays into Higgses are calculated at tree-level only, hence
for ũ2 decays only partial decay widths are a meaningful comparison. The relative
contribution of EW corrections to the full one-loop result (i.e. ∆Full vs SQCD) can get as
high as −24.4%, but even in less extreme cases the EW corrections cannot be neglected
at all!

In Figures 7.12-7.15 we show 2D contour plots of the branching ratios BR(ũ1 → t χ̃0
1),

BR(ũ1 → c χ̃0
1), BR(ũ1 → b χ̃+

1 ), BR(d̃1 → ũ1W
−) and the partial decay width Γ(ũ2 →

ũ1 Z
0) from SPheno as a function of doublets of the QFV parameters δuRR23 , δuRL23 , δuLL23

and the quark flavour conserving (QFC) parameter δuRL33 . In each figure scenario B is
used as a reference point, and the parameter regions yielding excluded values for mh0 ,
BR(B → Xsγ) and |∆MBs| are highlighted in different colours. We provide these plots
again as a broad overview of the QFV and QFC parameter dependences, so that we can
select the most promising parameters (mostly δuRR23 but also δuRL23 in this scenario) for a
detailed comparison of SPheno with FVSFOLD (see Figures 7.16-7.26 below).

In Figures 7.16-7.19 we present the total decay width of ũ1 as well as the branching
ratios BR(ũ1 → t χ̃0

1), BR(ũ1 → c χ̃0
1) and BR(ũ1 → b χ̃+

1 ) as a function of δuRR23 (t̃R - c̃R
mixing), comparing the result from SPheno with the tree-level, SQCD and full one-loop
calculation from FVSFOLD. For better comparison also the relative differences of the
full one-loop result with the other partial results are shown. We note that Γ(ũ1) increases
significantly up to ∼ 54% within the QFV parameter range of δuRR23 . The EW corrections
to the full calculation can be rather parameter-independent and small (∼ 3% in Γ(ũ1))
but also strongly dependent on δuRR23 with values of more than 20% as in BR(ũ1 → c χ̃0

1)
for weaker mixing. We can thus clearly see that we cannot neglect the EW contributions
in our scenario, since their contributions can be quite large! The relative differences of
the full result compared to SPheno varies and can be as high as 9% as in Γ(ũ1) for
negligible t̃R - c̃R mixing.

In Figure 7.20 we show the partial decay width Γ(ũ2 → ũ1 Z
0) as a function of δuRR23

comparing the result from SPheno with the results from FVSFOLD, and presenting the
relative differences for better comparison. The EW corrections to the full calculation
are quite small with 2−5% and show a weak dependence on the parameter. As a result,
the rather poor performance of SPheno in this decay channel comes as a surprise.

In Figures 7.21-7.24 we present the total decay width of ũ1 as well as the branching
ratios BR(ũ1 → t χ̃0

1), BR(ũ1 → c χ̃0
1) and BR(ũ1 → b χ̃+

1 ) as a function of δuRL23 (t̃L - c̃R
mixing), comparing the result from SPheno with the tree-level, SQCD and full one-loop
calculation from FVSFOLD. For better comparison also the relative differences of the
full one-loop result with the other partial results are shown. The EW corrections to
the full calculation can become large, ranging 9 − 15% for the BR(ũ1 → c χ̃0

1) or even
16 − 27% for the BR(ũ1 → b χ̃+

1 ) (which is however a decay channel with small BR).
In comparison, the EW corrections in the remaining BR and the total decay width are
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SPheno FVSFOLD

Born SQCD Full

Γ(ũ1) [GeV] 1.363 1.355 1.347 1.313

BR(ũ1 → c χ̃0
1) 0.319 0.365 0.376 0.335

BR(ũ1 → t χ̃0
1) 0.600 0.564 0.554 0.580

BR(ũ1 → t χ̃0
2) 0.019 0.016 0.017 0.020

BR(ũ1 → b χ̃+
1 ) 0.062 0.054 0.054 0.066

Γ(ũ2 → c χ̃0
1) [GeV] 1.501 1.401 1.386 1.473

Γ(ũ2 → t χ̃0
1) [GeV] 0.575 0.658 0.605 0.486

Γ(ũ2 → t χ̃0
2) [GeV] 0.099 0.102 0.097 0.093

Γ(ũ2 → b χ̃+
1 ) [GeV] 0.219 0.226 0.214 0.214

Γ(ũ2 → ũ1 Z
0) [GeV] 0.061 0.056 0.061 0.064

Γ(ũ2 → ũ1 h
0) [GeV] 0.971 0.971

Γ(d̃1) [GeV] 62.489 60.924 62.018 59.057

BR(d̃1 → b χ̃0
1) 0.003 0.003 0.003 0.003

BR(d̃1 → b χ̃0
2) 0.071 0.073 0.065 0.071

BR(d̃1 → t χ̃−1 ) 0.136 0.140 0.124 0.132

BR(d̃1 → b g̃) 0.194 0.216 0.233 0.242

BR(d̃1 → ũ1W
−) 0.475 0.437 0.443 0.434

BR(d̃1 → ũ2W
−) 0.120 0.131 0.131 0.118

∆Full vs ... [×10−2]

SPheno Born SQCD

-3.78 -3.20 -2.55

4.56 -9.06 -12.24

-3.50 2.67 4.48

4.68 16.60 14.88

6.31 17.49 18.25

-1.85 4.90 5.94

-18.29 -35.45 -24.39

-5.95 -9.27 -3.67

-2.34 -5.62 0.14

5.38 13.61 4.42

-5.81 -3.16 -5.02

-11.05 -13.58 -2.08

-0.66 -3.38 7.36

-3.33 -6.10 5.55

19.79 10.73 4.00

-9.42 -0.49 -1.95

-1.60 -11.10 -11.61

Table 7.6: Total decay widths and all branching ratios of ũ1 and d̃1 as well as all partial
decay widths of ũ2 in scenario A, comparing the results from SPheno with FVSFOLD
(tree-level, SUSY-QCD, full one-loop corrections). In addition the relative differences of
this comparison are shown for convenience. Note that currently decays into Higgses are
calculated at tree-level only.



7.3. SQUARK DECAYS 49

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

∆23
uRR

∆
23uR

L

BRHu�1 ® t Χ
�

1
0L

X

mh0 < 123 GeV

0.5
0.55

0.6

0.7

0.8
0.7

0.6

0.55

0.5

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

∆23
uRR

∆
23uR

L

BRHu�1 ® c Χ
�

1
0L

X

mh0 < 123 GeV

0.45 0.4
0.3

0.2
0.1

0.1
0.2

0.3
0.4

0.45

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

∆23
uRR

∆
23uR

L

BRHu�1 ® b Χ
�

1
+L

X

mh0 < 123 GeV

0.02
0.04

0.06 0.1

0.14

0.14

0.1 0.06
0.04 0.02

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

∆23
uRR

∆
23uR

L

BRHd�1 ® u�1 W -L

X

mh0 < 123 GeV
0.2

0.3

0.4

0.5

0.6

0.7

0.7

0.6

0.5

0.4

0.3

0.2

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.10

-0.05

0.00

0.05

0.10

∆23
uRR

∆
23uR

L

GHu�2 ® u�1 Z0L @GeVD

X

mh0 < 123 GeV

0.05
0.25

0.5
0.75

1.
1.25

1.5

Figure 7.12: The branching ratios BR(ũ1 → t χ̃0
1) (top left), BR(ũ1 → c χ̃0

1) (top right),
BR(ũ1 → b χ̃+

1 ) (center left), BR(d̃1 → ũ1W
−) (center right) and the partial decay width

Γ(ũ2 → ũ1 Z
0) (bottom) from SPheno as a function of δuRR23 and δuRL23 using scenario A

as a reference point (denoted with ‘X’ in each plot). The light blue region shows the
excluded values of mh0 with 95% CL. In the Γ(ũ2 → ũ1 Z

0) plot we use a wider interval
for δuRR23 and focus on the positive axis since the plot is quasi-symmetric.
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Figure 7.13: The branching ratios BR(ũ1 → t χ̃0
1) (top left), BR(ũ1 → c χ̃0

1) (top right),
BR(ũ1 → b χ̃+

1 ) (center left), BR(d̃1 → ũ1W
−) (center right) and the partial decay width

Γ(ũ2 → ũ1 Z
0) (bottom) from SPheno as a function of δuRL23 and δuRL33 using scenario A

as a reference point (denoted with ‘X’ in each plot). The light blue region shows the
excluded values of mh0 with 95% CL.
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Figure 7.14: The branching ratios BR(ũ1 → t χ̃0
1) (top left), BR(ũ1 → c χ̃0

1) (top right),
BR(ũ1 → b χ̃+

1 ) (center left), BR(d̃1 → ũ1W
−) (center right) and the partial decay width

Γ(ũ2 → ũ1 Z
0) (bottom) from SPheno as a function of δuRR23 and δuRL33 using scenario A

as a reference point (denoted with ‘X’ in each plot). The light blue region shows the
excluded values of mh0 with 95% CL. In the Γ(ũ2 → ũ1 Z

0) plot we use a wider interval
for δuRR23 and focus on the positive axis since the plot is quasi-symmetric.
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Figure 7.15: The branching ratios BR(ũ1 → t χ̃0
1) (top left), BR(ũ1 → c χ̃0

1) (top right),
BR(ũ1 → b χ̃+

1 ) (center left), BR(d̃1 → ũ1W
−) (center right) and the partial decay width

Γ(ũ2 → ũ1 Z
0) (bottom) from SPheno as a function of δuRR23 and δuLL23 using scenario A

as a reference point (denoted with ‘X’ in each plot). The green (red) region shows the
excluded values of BR(B → Xsγ) (|∆MBs|). In the Γ(ũ2 → ũ1 Z

0) plot we use a wider
interval for δuRR23 and focus on the positive axis since the plot is quasi-symmetric.
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Figure 7.16: Left: Total decay width of ũ1 as a function of δuRR23 using scenario A
as a starting point, comparing the results from SPheno with FVSFOLD (tree-level,
SQCD, full one-loop corrections). Right: Relative differences of this Γ(ũ1), comparing
the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born) and SQCD
(∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calculation from
SPheno (∆Full vs SPheno).
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Figure 7.17: Left: The branching ratio BR(ũ1 → t χ̃0
1) as a function of δuRR23 using

scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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Figure 7.18: Left: The branching ratio BR(ũ1 → c χ̃0
1) as a function of δuRR23 using

scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno). Please note that we focus on a smaller interval of
δuRR23 since both plots are symmetric and small |δuRR23 | correspond to vanishing BR which
lead to numerically unstable relative differences ∆.
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Figure 7.19: Left: The branching ratio BR(ũ1 → b χ̃+
1 ) as a function of δuRR23 using

scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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Figure 7.20: Left: The partial decay width Γ(ũ2 → ũ1 Z
0) as a function of δuRR23 us-

ing scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this de-
cay width, comparing the full one-loop calculation from FVSFOLD with the tree-level
(∆Full vs Born) and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as
with the calculation from SPheno (∆Full vs SPheno).

rather small and depend weakly on the QFV parameter. We can thus see that we again
cannot neglect the EW contributions in our scenario. The comparison with SPheno
shows an overall good agreement with 2 − 5% relative difference compared to the full
one-loop result.

Finally, in Figures 7.25-7.26 we show the total decay width of d̃1 and the branching
ratio BR(d̃1 → ũ1W

−) as a function of δuRL23 comparing the result from SPheno with the
results from FVSFOLD, again presenting the relative differences for better comparison.
The EW corrections to the full result can be sizeable, ranging 2−8% for the total decay
width and even 5− 15% for the BR. Thus once again we conclude that EW corrections
are quite relevant in our scenario. Comparing with SPheno reveals a relative difference
of ∼ 10% for the BR (with no relevant dependence on δuRL23 ) and 3 − 9% for the total
decay width.
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Figure 7.21: Left: Total decay width of ũ1 as a function of δuRL23 using scenario A
as a starting point, comparing the results from SPheno with FVSFOLD (tree-level,
SQCD, full one-loop corrections). Right: Relative differences of this Γ(ũ1), comparing
the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born) and SQCD
(∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calculation from
SPheno (∆Full vs SPheno).
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Figure 7.22: Left: The branching ratio BR(ũ1 → t χ̃0
1) as a function of δuRL23 using scenario

A as a starting point, comparing the results from SPheno with FVSFOLD (tree-level,
SQCD, full one-loop corrections). Right: Relative differences of this BR, comparing the
full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born) and SQCD
(∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calculation from
SPheno (∆Full vs SPheno).
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Figure 7.23: Left: The branching ratio BR(ũ1 → c χ̃0
1) as a function of δuRL23 using

scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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Figure 7.24: Left: The branching ratio BR(ũ1 → b χ̃+
1 ) as a function of δuRL23 using

scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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Figure 7.25: Left: Total decay width of d̃1 as a function of δuRL23 using scenario A
as a starting point, comparing the results from SPheno with FVSFOLD (tree-level,
SQCD, full one-loop corrections). Right: Relative differences of this Γ(d̃1), comparing
the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born) and SQCD
(∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calculation from
SPheno (∆Full vs SPheno).
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Figure 7.26: Left: The branching ratio BR(d̃1 → ũ1W
−) as a function of δuRL23 using

scenario A as a starting point, comparing the results from SPheno with FVSFOLD
(tree-level, SQCD, full one-loop corrections). Right: Relative differences of this BR,
comparing the full one-loop calculation from FVSFOLD with the tree-level (∆Full vs Born)
and SQCD (∆Full vs SQCD) calculation (both from FVSFOLD) as well as with the calcu-
lation from SPheno (∆Full vs SPheno).
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7.4 Conclusions

In this thesis we calculated for the first time all squark and gluino two-body decay widths
in the MSSM with general quark flavour violation (QFV) at full one-loop level. We used
the DR renormalisation scheme as specified in the SPA convention and included soft
and hard photon/gluon bremsstrahlung to our processes. Based on our calculations we
developed the first publicly available program package called FVSFOLD (Flavour Violating
Squark Full One Loop Decays), which computes fully automatically all above-mentioned
QFV decays at full one-loop level and makes use of the SLHA2 input/output format.
We made extensive cross-checks with SPheno and SFOLD and rigorously checked for
UV and IR finiteness.

We presented a case study consisting of two scenarios to demonstrate the QFV
functionality and general usefulness of our code. In both scenarios we assumed general
QFV mixing between the second and third up-type squark generations and took the most
important experimental constraints into account. We compared our full one-loop results
with our SUSY-QCD and tree-level calculations and with the results from SPheno. For
convenience we also showed the relative differences of these partial results with our full
one-loop result. We presented our comparison in tables depicting the decay widths and
branching ratios of all squark and gluino decays as well as in various plots as a function
of the most important QFV parameters.

We obtained significant deviations of decay widths and branching ratios from the
quark flavour conserving case up to ∼ 54% (∼ 23%) in squark (gluino) decays, depending
on the QFV parameters. Moreover, we observed that the electroweak contributions can
become even larger than the SUSY-QCD corrections (sometimes with opposite sign) and
thus cannot be neglected. The comparison with SPheno showed partly good agreement
with small relative differences compared to our full one-loop results (primarily in the
gluino decays) and partly bigger deviations from the full calculations (mainly in the
squark decays).

In view of these results we conclude that it is important to account for possible QFV
effects in squark and gluino decays since they can have an influence on the squark and
gluino searches at the LHC. Furthermore, it is necessary to include also electroweak
corrections when calculating these QFV decays in order to attain an adequate accuracy.
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Chapter 8

Introduction

The inclusive rare meson decay B → Xsγ is a loop-induced flavour changing neutral
current (FCNC) process which is widely regarded as a sensitive probe for the flavour
structure of the Standard Model (SM) and beyond [42, 43]. A possible deviation from
the SM prediction can give clues to new physics in the energy range even far beyond the
electroweak scale currently accessible by high energy experiments like CMS and ATLAS.
Thus studying this rare decay is an important indirect search via virtual corrections and
is complementary to the direct searches for new particles and forces.

One of the plausible extensions of the SM is to introduce supersymmetry (SUSY) in
the simplest form as Minimal Supersymmetric Standard Model (MSSM). While the SM
contributions to the branching ratio BR(B → Xsγ) are only mediated by a W± boson
in penguin loops, additional MSSM contributions involving a charged Higgs boson H±,
a chargino χ̃±, a neutralino χ̃0, or a gluino g̃ can lead to sizeable deviations from the
SM prediction. However, when one compares the latest experimental value [44]

BR(B → Xsγ)Eγ>1.6 GeV
exp = (3.43± 0.21± 0.07)× 10−4 (8.1)

with the theoretical SM prediction [45] (including NNLO corrections in pertubative
QCD)

BR(B → Xsγ)
Eγ>1.6 GeV
SM = (3.15± 0.23)× 10−4 (8.2)

one observes a good agreement within a comparable uncertainty, thus already severely
constraining (the flavour structure of) many new physics scenarios. When taking an
even more recent SM prediction [46]

BR(B → Xsγ)
Eγ>1.6 GeV
SM = (3.28± 0.23)× 10−4 , (8.3)

the result is in even better agreement with the experimental value.
Because of the sensitivity of this rare decay to new physics this observable is an

important constraint for global fits on SUSY models and for general studies of the
MSSM [43, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56]. It is therefore very important to have
a good assessment of the theoretical and computational uncertainties involved in the
complex calculation of the SM and MSSM contributions to BR(B → Xsγ), including the
differences in the implementations and/or approximations used in public computational
BR(B → Xsγ) tools.
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We study these uncertainties and their impact on SUSY parameter fits by employ-
ing two detailed numerical studies comparing the public codes SuperIso, SusyBSG,
SPheno, and micrOMEGAs. We perform both studies within the phenomenological MSSM
(pMSSM) with a reduced parameter set. In the first study, we employ a uniform ran-
dom scan in the reduced pMSSM parameter space in order to quantify the relative
differences of the BR(B → Xsγ)MSSM values as a function of the input parameters and
relevant sparticle and Higgs masses. In the second study, we evaluate the implication of
different BR(B → Xsγ) values on SUSY fits by performing a global Bayesian analysis
using Markov Chain Monte Carlo (MCMC) techniques, resulting in posterior probabil-
ity density functions (PDFs) of parameters and derived observables. By comparing the
posterior PDFs obtained from different BR(B → Xsγ) calculations one can demonstrate
the sensitivity of these global fits on this uncertainty.

The work is organised as follows: in Chapter 9 we summarise the current status of the
SM and MSSM predictions for BR(B → Xsγ) as well as the various implementations
found in the public codes. In Chapter 10 we explain in detail the setup of the two
numerical studies. In Chapter 11 we present the results of our two studies and conclude
our findings.



Chapter 9

Calculation of BR(B → Xsγ)

In this chapter we review the current status of the SM and MSSM predictions for the
branching ratio BR(B → Xsγ) as well as the various implementations found in the
computer programs.

9.1 Status of BR(B → Xsγ) calculation

The calculation of the pertubative QCD corrections to BR(B → Xsγ)SM is compli-
cated by the presence of different mass scales which induce large logarithms at each
order in fixed-order pertubation theory, making this approach not applicable. Instead,
one uses an effective field theory approach by way of the Operator Product Expansion
(OPE) in order to set up an expansion in RG improved pertubation theory. The Wil-
son coefficients Ci of the effective Lagrangian are obtained at a high scale µ ∼ MW

by matching between the full SM and the effective theory, and then evolved via RGEs
down to a low scale µ ∼ mb. The Wilson coefficients and the anomalous dimensions for
the RG evolution required for the most recent NNLO calculation have been obtained
in [57, 58] and [59, 60, 61], respectively. The calculation of BR(B → Xsγ)SM from this
effective Lagrangian with a cut on the photon energy is completely known at NLO [62],
whereas at NNLO the result is only partly exact with an estimate of the remaining
NNLO corrections [63]. The final result for SM after taking into account all previ-

ously mentioned NNLO pertubative QCD calculations is BR(B → Xsγ)
Eγ>1.6 GeV
SM =

(3.15 ± 0.23) × 10−4 [45], including the leading non-pertubative and electroweak ef-
fects as well. The total uncertainty stems from non-pertubative (5%), parametric (3%),
pertubative (3%), and charm quark mass interpolation uncertainties (3%), which are
added in quadrature. By re-evaluating the non-pertubative parameters one obtains a
slightly higher value BR(B → Xsγ)

Eγ>1.6 GeV
SM = (3.28± 0.23)× 10−4 [46], in even better

agreement with the experimental value.

In the MSSM new contributions to BR(B → Xsγ)MSSM mediated by a charged Higgs
boson H±, a chargino χ̃±, a neutralino χ̃0, or a gluino g̃ can be absorbed into the Wilson
coefficients Ci of the above SM-only calculation. Currently a NLO calculation [64, 65,
66, 67, 68, 69] is available for the MSSM under the simplifying assumption of Minimal
Flavour Violation (MFV), according to which the quark and squark mass matrices can
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be simultaneously diagonalised and the only source of flavour violation is the CKM
matrix. At present only a LO calculation is available for MSSM scenarios beyond MFV.
Some of the corrections are tan β-enhanced and need to be resummed if applicable.

9.2 Public BR(B → Xsγ) codes

Several computer programs include calculations of BR(B → Xsγ). We choose the follow-
ing codes because they are publicly available, widely used and employ dedicated routines
for the calculation: SuperIso 3.4beta [70, 71], SusyBSG 1.5 [72], SPheno 3.2.3 [38,
39], and micrOMEGAs 3.1 [73]. We compare the implementations separately for SM and
SUSY contributions within the MSSM.

9.2.1 SM contributions

• SuperIso includes the full implementation of the NNLO calculation [45]. This
leads to BR(B → Xsγ)SM = (3.08 ± 0.24) × 10−4 with the updated PDG inputs
values.

• SusyBSG implements a NLO calculation [74] but improves it by adjusting the renor-

malisation scale µc (at which mc(µc)
MS enters the SM contributions to the Wil-

son coefficients) to reproduce the NNLO result [46] with BR(B → Xsγ)SM =
3.28× 10−4.

• SPheno currently has no dedicated calculation implemented but directly takes the
NNLO result of [45, 75] by setting BR(B → Xsγ)SM = 2.98×10−4 as a fixed value.

• micrOMEGAs [76, 77] includes a NLO calculation [78] but improves it by appro-
priately choosing the scale for the c quark mass to reproduce the NNLO re-
sult [45, 63, 46]. With updated default values for the experimentally determined
quantities the SM result is BR(B → Xsγ)SM = 3.27× 10−4.

9.2.2 SUSY contributions

• SuperIso incorporates the NNLO charged Higgs contributions [79], as well as
partial NNLO calculation in the MSSM with MFV, using an effective field theory
approach based on [80], [68] and [45].

• SusyBSG [72] implements a NLO calculation [74, 64] in the MSSM with MFV
(as well as a LO calculation in MSSM scenarios with a generic non-MFV flavour
structure), including the complete NLO SUSY-QCD corrections along with full
gluino contributions [69]. Large tan β-enhanced contributions are properly taken
into account. Optionally the code comprises additional LO contributions from
diagrams with gluinos as well as charginos that become relevant when the MFV
condition is imposed at a scale much higher than the electroweak scale.
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• SPheno implements the NLO calculation of [81, 82, 83] in the MSSM with MFV,
as well as a LO calculation in MSSM scenarios with a generic non-MFV flavour
structure.

• micrOMEGAs [76, 77] includes charged Higgs contributions at NLO based on [74]
as well as LO contributions from charginos following [66] which are improved by
taking into account ∆mb corrections and large tan β effects. Currently no contri-
butions with MFV squarks are implemented and the only flavour violation stems
from the CKM matrix in the quark sector (thus only the SUSY Les Houches Accord
(SLHA1) [84] input format is supported).
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Chapter 10

Analysis

In order to compare the public BR(B → Xsγ) codes as well as to assess the implication
for SUSY fits, we employ two numerical studies which are explained in detail below.

We perform both studies within the phenomenological MSSM (pMSSM) with a re-
duced parameter set. The pMSSM is a 19-dimensional parametrisation of the MSSM
with real parameters that captures most of its phenomenological features, going beyond
more constrained SUSY models. However, when focusing on the relevant parameters for
the BR(B → Xsγ) calculation one can reduce the parameter set down to six dimensions:
tan β (ratio of the Higgs VEVs), mA0 (pseudo-scalar Higgs pole mass), µ (higgsino mass
parameter), M1(= 1

2
M2 = 1

6
M3) (gaugino mass parameters with approximate gaugino

mass unification relation), At (top trilinear coupling), and MQ̃3
(= MŨ3

= MD̃3
) (3rd gen-

eration squark mass parameters with simplifying relation applied). In both studies we
vary these six parameters over broad ranges and keep the remaining parameters fixed
(see Table 11.1 in the next chapter).

Since micrOMEGAs currently cannot handle the SLHA2 input format (needed for MFV
in the squark sector) we resort to the SLHA1 input standard for both studies. As a result
flavour violation via the CKM matrix is only found in the quark sector and the squark
mass matrix remains flavour diagonal.

10.1 Comparison of BR(B → Xsγ)MSSM

In order to compare the different BR(B → Xsγ)MSSM values we perform a random scan
in the reduced pMSSM parameter space.

First we generate 5.5 × 106 pMSSM parameter points chosen by a uniform random
number generator within the intervals given in Table 11.1. Then we successively take
one parameter point at a time, combine it with our default SM parameter set and feed
this information via a SLHA I/O tool [85] to the RGE code SPheno. The output at
the electroweak scale in SLHA1 format is then forwarded as an input to the programs
SuperIso, SusyBSG, and micrOMEGAs. If at any step a program produces an error or
the result violates an existing experimental constraint given in Table 10.1, the algorithm
discards the currently chosen parameter point and picks the next one. If nothing fails,
the values of BR(B → Xsγ)MSSM of all programs are saved along with the current
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parameter point and the algorithm continues until all pMSSM parameter points have
been processed. Finally we end up with 226733 data points (∼ 4.1% of the originally
generated amount) for our analysis. This steep drop in numbers of “surviving” data
points stems mainly from the stringent Higgs mass constraint.

Observable Constraint

ml̃, mχ̃±
1

LEP bounds

LSP χ̃0
1

mg̃ ≥1 TeV

mh0 [121, 129] GeV

Table 10.1: Relevant experimental constraints coming from LEP (mass bounds for
charged leptons and charginos), SUSY/cosmology (CDM candidate needs to be the
lightest neutralino) and LHC [23, 86] (gluino mass bound and Higgs mass range).

Finally, to quantify the relative differences of the BR(B → Xsγ)MSSM values we
define the measures

∆MSSM ≡
Max(BR(B → Xsγ)iMSSM)−Min(BR(B → Xsγ)iMSSM)

Mean(BR(B → Xsγ)iMSSM)
(10.1)

when comparing all programs at once and

∆MSSM ≡
BR(B → Xsγ)AMSSM − BR(B → Xsγ)BMSSM

BR(B → Xsγ)AMSSM

(10.2)

when comparing two programs A and B. In addition, we modify the above definitions
and specify

∆MSSM/SM ≡
Max(BR(B → Xsγ)iMSSM/SM)−Min(BR(B → Xsγ)iMSSM/SM)

Mean(BR(B → Xsγ)iMSSM/SM)
(10.3)

as well as

∆MSSM/SM ≡
BR(B → Xsγ)AMSSM/SM − BR(B → Xsγ)BMSSM/SM

BR(B → Xsγ)AMSSM/SM

. (10.4)

By taking the ratio of the MSSM over SM value of each program, the differences in
BR(B → Xsγ)SM as well as in the hadronic parameters cancel, enabling us to compare
the SUSY-only contributions to BR(B → Xsγ).1

1Alternatively, one could also take the difference MSSM minus SM, but that way the different
hadronic parameters do not cancel and ∆MSSM−SM can become numerically unstable.
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10.2 Impact on SUSY fits

We evaluate the implication of different BR(B → Xsγ) values on SUSY fits by per-
forming a global Bayesian analysis (see e.g. [87]), obtaining posterior probability density
functions (PDFs) of parameters θ and derived observables µ(θ).

First we combine our parameters and observables to φ ≡ θ, µ where θ denotes the six
pMSSM parameters tan β, mA0 , µ, M1(= 1

2
M2 = 1

6
M3), At, and MQ̃3

(= MŨ3
= MD̃3

)
as well as the two SM parameters mt and αs(MZ) (which are both treated as nuisance
parameters). The derived observables µ ≡ µ1, . . . , µ6 with their associated measurements
D ≡ D1, . . . , D6 and likelihood functions L(Di|µi) are specified in Table 10.2. Since

i Observable µi Experimental result Di Likelihood function L(Di|µi)
1 BR(B → Xsγ) (3.43± 0.22)× 10−4 Gaussian

2 ∆aµ (23.9± 7.9)× 10−10 Gaussian

3 mt 173.5± 1.0 GeV Gaussian

4 αs(MZ) 0.1184± 0.0007 Gaussian

5 mh0 125.7± 0.42 GeV Gaussian

6 mg̃, ml̃, see Table 10.1 L6 = 1 if allowed,

mχ̃±
1

, LSP L6 = 10−12 if excluded

Table 10.2: Experimental results [44, 23, 86] from various observables and their respec-
tive likelihood functions, e.g. for the Gaussian case L(Di|µi) ∝ exp(−0.5((µi−Di)/σi)

2).

these measurements are independent we can construct the likelihood function L(D|µ) =∏
i L(Di|µi). Finally, we compose the joint likelihood function L(D|φ) = L(D|θ)L(D|µ),

choose a flat2 prior π(φ) and use Bayes theorem to derive the posterior PDF p(φ|D) ∝
L(D|φ)π(φ).

We approximate p(φ|D) by drawing a sample of 1.68 × 106 parameter points using
the Markov Chain Monte Carlo (MCMC) Metropolis-Hastings algorithm [89]. Our pa-
rameter scan employs 24 Markov chains (length of 70000 each) in parallel to sample
the eight dimensional parameter space θ within the pMSSM (Table 11.1) and SM in-
tervals (Table 10.2). After discarding the first 30000 steps of each chain (“burn-in”)
and checking that they converged3, we mix all chains together to summarise the target
distribution. At each step in every chain we use the RGE tool SPheno and interface the
output via SLHA1 to SuperIso, SusyBSG, and micrOMEGAs to calculate the observables
listed in Table 10.2.

Finally, since we are interested in the impact of different BR(B → Xsγ) values
(=µ1) on SUSY fits we run two exemplary MCMC scans, one with the BR(B → Xsγ)

2Note that for a Gaussian density the reference prior is a flat prior (see e.g. [88] and references
therein).

3We monitor the level of convergence using within/between chain analyses like trace plots, quantile-

quantile plots and the “potential scale reduction factor” R̂ [90].
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computation coming from SuperIso and one from SusyBSG. We analyse the outcome of
these separate samples by marginalizing each posterior PDF p(φ|D) to directly compare
these PDF predictions of parameters p(θ|D) and observables p(µ|D).



Chapter 11

Results and conclusions

We now present the results of our two analyses introduced in detail in the previous
chapter and conclude our findings.

In Table 11.1 we summarise our SM [23] and reduced pMSSM input parameter values
which we use in our studies. All pMSSM parameters except tan β are defined at the
electroweak scale Q =

√
mt̃1mt̃2 .

11.1 Comparison of BR(B → Xsγ)MSSM

11.1.1 Comparing all programs

In Figure 11.1 we show the distribution of data points as density histograms compar-
ing the programs SuperIso, SusyBSG, SPheno, and micrOMEGAs as a function of ∆MSSM

and ∆MSSM/SM as well as the mean of BR(B → Xsγ)MSSM from each program. The
68% (95%) probability contours1 are drawn in grey (cyan). As already anticipated, the
programs agree much better with each other when taking the ratio ∆MSSM/SM, since
that way not only the differences in BR(B → Xsγ)SM but also the hadronic parameters
of each program cancel. We can further quantify this feature by taking the favoured
data points where the mean of BR(B → Xsγ) lies within the experimental value ±3σ
in Eq. (8.1) and marginalise over BR(B → Xsγ). For ∆MSSM the resulting probabil-
ity histogram has a maximum at 10.3% and the 68% (95%) probability intervals are
[8.1, 13.1]% ([5.1, 24.5]%). For ∆MSSM/SM the maximum is at 2.7% and the 68% (95%)
probability intervals are [1.3, 6.9]% ([0.7, 19.5]%).

Figure 11.2 shows density histograms comparing all codes as a function of ∆MSSM/SM

and of the reduced pMSSM input parameters. Here we only accept data points when at
least one program yields a BR(B → Xsγ) value within the experimental value ±3σ at
that point. The 68% (95%) probability contours are again drawn in grey (cyan). The
distinct gaps in the plots as a function of M1, µ and At can be explained as follows: due to
the approximate gaugino mass unification relation M1 : M2 : M3 = 1 : 2 : 6 and mg̃ ∝M3

together with the lower mass limit mg̃ ≥ 1 TeV small |M1| values are disallowed; small

1We calculate the contours by choosing the minimal area that contains the 68% or 95% of the total
volume.
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SM Parameter Value

α−1
em(MZ) 127.932319

GF 1.16637× 10−5 GeV−2

αs(MZ)MS 0.1184

MZ 91.1876 GeV

Mt 173.5 GeV

mb(mb)
MS 4.18 GeV

mc(mc)
MS 1.275 GeV

λ 0.22535

A 0.811

ρ 0.131

η 0.345

pMSSM Parameter Value

tan β(MZ) [2, 50]

mA0 [100, 2000] GeV

µ [−3000, 3000] GeV

M1(= 1
2
M2 = 1

6
M3) [−1500, 1500] GeV

At [−9000, 9000] GeV

MQ̃3
(= MŨ3

= MD̃3
) [300, 3000] GeV

Ab, Aτ 0 GeV

ML̃1,2
,MẼ1,2

,MQ̃1,2
,MŨ1,2

,MD̃1,2
5000 GeV

ML̃3
,MẼ3

1000 GeV

Table 11.1: All relevant SM and reduced pMSSM input parameter values used in our
analyses.
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Figure 11.1: Density histograms comparing the programs SuperIso, SusyBSG, SPheno,
and micrOMEGAs with ∆MSSM (left) and ∆MSSM/SM (right) as a function of the averaged
BR(B → Xsγ)MSSM of the four programs. The 68% (95%) probability contours are
drawn in grey (cyan). The three vertical lines denote the experimental value BR(B →
Xsγ)exp ± 3σ.

|µ| values are forbidden because of the chargino mass bound mχ̃±
1
≥ 103 GeV and

small |At| values are disfavoured because of the necessary stop mass splitting needed to
obtain a Higgs mass in the desired [121, 129] GeV mass range. The main contributions
to BR(B → Xsγ) stem from chargino/stop loops and charged Higgs/top loops, with
corrections from gluinos. These contributions become larger for lighter masses and
larger tan β. Larger contributions can in turn lead to larger discrepancies, which is
exactly what can be observed in these plots: larger discrepancies correspond to large
tan β, small M1 (M2 = 2M1 ∼ mχ̃±

1
and M3 = 6M1 ∼ mg̃) and small µ (∼ mχ̃±

1
),

moderate At (for sufficient large stop mass splitting), small MQ̃3
(∼ mt̃1), and small

mA0 (∼ mH±).
In Figure 11.3 we present density histograms comparing all programs as a function of

∆MSSM/SM and of some sparticle and Higgs masses. Again we only take data points when
at least one program yields a BR(B → Xsγ) value within the experimental value ±3σ.
The 68% (95%) probability contours are drawn in grey (cyan). As already explained in
the interpretation of the previous figure, larger contributions due to lighter masses in
the loops can cause larger discrepancies between the programs. This assumption can
be again confirmed by examining the good agreement between larger discrepancies and
lighter masses (especially the masses for χ̃±1 , t̃1, and H± since they belong to the main
contributions) in these plots.
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Figure 11.2: Density histograms comparing all programs as a function of ∆MSSM/SM and
of the pMSSM input parameters. Only data points where at least one program yields
a BR(B → Xsγ) value within the experimental value ±3σ are shown. The 68% (95%)
probability contours are drawn in grey (cyan). Note that the relations M1 = 1

2
M2 = 1

6
M3

and MQ̃3
= MŨ3

= MD̃3
are always implied.
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Figure 11.3: Density histograms comparing all programs as a function of ∆MSSM/SM and
of some sparticle and Higgs masses. Again only data points where at least one program
yields a BR(B → Xsγ) value within the experimental value ±3σ are shown. The 68%
(95%) probability contours are drawn in grey (cyan).
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11.1.2 Comparing two programs

Now we focus on the comparison of the programs and compare the SuperIso results
with the results of SusyBSG, SPheno, and micrOMEGAs, respectively.

Figure 11.4 shows a density histogram comparing SuperIso with SusyBSG as a func-
tion of ∆MSSM/SM and of BR(B → Xsγ) from SuperIso. As always the 68% (95%) prob-
ability contours are drawn in grey (cyan). We can see that for most data points the agree-
ment between these two programs with dedicated and up-to-date BR(B → Xsγ) routines
is quite good. Taking again only the favoured data points where BR(B → Xsγ)SuperIso

lies within the experimental value ±3σ and marginalise over BR(B → Xsγ) we ob-
tain for the ∆MSSM/SM probability histogram a maximum at 2.2% and the 68% (95%)
probability intervals at [0.2, 4.2]% ([−4.6, 7.8]%).

SuperIso
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Figure 11.4: Density histogram comparing SuperIso with SusyBSG as a function of
∆MSSM/SM and of BR(B → Xsγ) from SuperIso and showing the 68% (95%) probability
contours in grey (cyan). The three vertical lines denote the experimental value BR(B →
Xsγ)exp ± 3σ.

In Figure 11.5 we plot density histograms comparing SuperIso with SPheno and with
micrOMEGAs as a function of ∆MSSM/SM and of BR(B → Xsγ) from SuperIso. The 68%
(95%) probability contours are again drawn in grey (cyan). For most data points the
agreement between these programs is reasonably good but slightly worse than compared
with SuperIso and SusyBSG, since both SPheno and micrOMEGAs do not have the latest
BR(B → Xsγ) contributions implemented. Again selecting on the favoured data points
where BR(B → Xsγ)SuperIso lies within the experimental value ±3σ and marginalise
over BR(B → Xsγ) we obtain for the ∆MSSM/SM probability histogram the following
measures: for the comparison with SPheno ∆MSSM/SM has a maximum at 0.6% and the
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68% (95%) probability intervals at [−1.8, 4.2]% ([−9.8, 11.0]%) and for the comparison
with micrOMEGAs the maximum is at 1.0% and the 68% (95%) probability intervals at
[−2.6, 5.4]% ([−11.8, 14.2]%).
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Figure 11.5: Density histograms comparing SuperIso with SPheno (left) and with
micrOMEGAs (right) as a function of ∆MSSM/SM and of BR(B → Xsγ) from SuperIso,
showing the 68% (95%) probability contours in grey (cyan). Again, the three vertical
lines denote the experimental value ±3σ.
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11.2 Impact on SUSY fits

At last we study the impact of BR(B → Xsγ) uncertainties on SUSY fits. In Figure 11.6
we show marginalised 2D posterior PDFs as density histograms derived from our MCMC
scans, using ∆aµ from SuperIso and BR(B → Xsγ) either from SuperIso or from
SusyBSG. The gap in ∆aµ ∝ µ stems from the chargino mass bound mχ̃±

1
≥ 103 GeV

which forbids small |µ| values. The 68% (95%) Bayesian credible regions (BCR) are
shown in grey (cyan). Since both programs use dedicated and up-to-date BR(B → Xsγ)
routines with similar results the impact on SUSY fits is rather small. However, we also
compared SuperIso with SPheno having more differing routines which results in a larger
influence of BR(B → Xsγ) uncertainties on these fits.
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Figure 11.6: Marginalised 2D posterior PDFs using ∆aµ from SuperIso and BR(B →
Xsγ) from SuperIso (left) or from SusyBSG (right). The 68% (95%) Bayesian credible
regions (BCR) are shown in grey (cyan). The ±3σ interval of ∆aµ is [0.02, 4.76]× 10−9

(see Table 10.2).

In Figure 11.7 we demonstrate the influences on our SUSY fit in more detail by pre-
senting the marginalised 1D posterior PDFs as a function of the pMSSM input param-
eters, obtaining different predictions when using BR(B → Xsγ) from SuperIso (blue)
or from SusyBSG (green). The distinct gaps in the plots with µ, At and M1 emerged al-
ready in Figure 11.2 and have been explained there. One can observe differing posterior
PDF predictions for the parameters mA0 , At and µ as well as good agreement for the
remaining parameters. The predictions for At and µ are negatively correlated for each
program because of the off-diagonal stop mass matrix element mt(At − µ/tan β). As a
result, even though one obtains different predictions for At and µ the posterior PDFs
for mt̃1 (as seen in Figure 11.9) are in good agreement with each other. The discrepancy
in the prediction for mA0 (∼ mH± , see also Figure 11.9) may be related to the fact that
SuperIso and SusyBSG are not at the same order for the charged Higgs contributions
(NNLO for SuperIso vs. NLO for SusyBSG).

Figure 11.8 shows additional marginalised 2D posterior PDFs as a function of some
pMSSM input parameters, using BR(B → Xsγ) from SuperIso (left column) or from
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Figure 11.7: Marginalised 1D posterior PDFs as a function of the pMSSM input param-
eters, using BR(B → Xsγ) from SuperIso (blue) or from SusyBSG (green). Note that
the relations M1 = 1
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are always implied.
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SusyBSG (right column). Again one can observe different posterior PDF predictions for
the parameters µ, At and mA0 when using distinct BR(B → Xsγ) as already seen in
somewhat clearer detail in Figure 11.7.
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Figure 11.8: Marginalised 2D posterior PDFs as a function of some pMSSM input
parameters, taking BR(B → Xsγ) from SuperIso (left column) or from SusyBSG (right
column). The 68% (95%) Bayesian credible regions (BCR) are shown in grey (cyan).

At last we show in Figure 11.9 the influences on the marginalised 1D posterior PDFs
of some sparticle and Higgs masses, taking BR(B → Xsγ) from SuperIso (blue) or from
SusyBSG (green). One can see that the mass predictions are in good agreement with
each other, except for the Higgs masses. As already mentioned in the interpretation
of Figure 11.7, these discrepancies in the mass predictions for the Higgses H± and H0

(both ∼ mA0) are likely due to different levels of accuracy in the implementation of the
charged Higgs contributions.
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Figure 11.9: Marginalised 1D posterior PDFs as a function of some sparticle and Higgs
masses, using BR(B → Xsγ) from SuperIso (blue) or from SusyBSG (green).
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11.3 Conclusions

The rare decay B → Xsγ is a sensitive probe for the flavour structure of the SM and
beyond and is thus often used as an important constraint for global fits on SUSY models
and for general studies of the MSSM. A good assessment of the theoretical and computa-
tional uncertainties of this process is therefore very important. In this work we studied
these uncertainties and their impact on SUSY fits by way of a detailed comparison of the
public BR(B → Xsγ) codes SuperIso, SusyBSG, SPheno, and micrOMEGAs. For this we
employed two numerical studies in the reduced pMSSM parameter space to assess the
following aspects: an in-depth comparison of BR(B → Xsγ)MSSM via a random scan,
and the impact on SUSY fits by way of a global Bayesian analysis using Markov Chain
Monte Carlo (MCMC) techniques.

The SM predictions BR(B → Xsγ)SM of all programs show a notable discrepancy
ranging from 2.98 to 3.28 × 10−4 with a relative difference of 9.5%. These differences
are mainly due to different hadronic parameters.

When comparing the MSSM predictions BR(B → Xsγ)MSSM of all programs in
our random scan we obtain relative differences ∆MSSM with a maximum at 10.3% and
68% (95%) probability intervals at [8.1, 13.1]% ([5.1, 24.5]%). However, when comparing
the SUSY-only contributions via ∆MSSM/SM the maximum is at 2.7% and the 68% (95%)
probability intervals are [1.3, 6.9]% ([0.7, 19.5]%). This better agreement is expected
since the discrepancies in the BR(B → Xsγ)SM predictions are quite large.

Comparing the different BR(B → Xsγ)MSSM predictions of all programs as a function
of the pMSSM input parameters and some sparticle and Higgs masses confirm that larger
contributions indeed lead to larger discrepancies. This can be clearly seen from the main
contributions (i.e. chargino/stop loops and charged Higgs/top loops, with corrections
from gluinos) which become larger for lighter masses and larger tan β.

When comparing two codes at a time we obtain good agreement between SuperIso

and SusyBSG since these two programs employ dedicated and up-to-date routines. The
associated ∆MSSM/SM probability histogram has a maximum at 2.2% and the 68% (95%)
probability intervals are [0.2, 4.2]% ([−4.6, 7.8]%). When comparing SuperIso with the
other codes the agreement is reasonably good but slightly worse.

We studied the influence of these BR(B → Xsγ) uncertainties on global SUSY fits
by performing two MCMC scans contrasting SuperIso with SusyBSG and comparing
the resulting posterior probability density functions (PDFs) of parameters and derived
observables. We observe differing posterior PDF predictions for the input parameters
mA0 , At and µ. However, only mA0 affects the prediction of the mass spectrum with
different probabilities formH± andmH0 . This discrepancy may be related to the fact that
SuperIso and SusyBSG are not at the same order for the charged Higgs contributions.

The impact on SUSY fits is thus rather small since both programs employ similar
routines. However, when comparing programs with more differing routines results in a
larger influence of BR(B → Xsγ) uncertainties on these fits. We thus conclude that
for SUSY fits it is important to use a program that calculates not only the SUSY but
certainly also the SM part of BR(B → Xsγ) as precisely as possible.



Appendix A

Contributions to g̃ → ũi ūg

Here we specify the complete list of all processes at full one-loop level contributing to
the exemplary g̃ → ũi ūg decay which we calculated in detail in Section 6.2.
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ũi

ug

ũd
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ũd

ug

A0

g̃

ũi
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Figure A.1: All vertex contributions to the g̃ → ũi ūg decay. The first row contains the
contributions from SQCD only, whereas the remaining diagrams are due to electroweak
corrections.
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ũi

ũi
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ũd

g̃

ũi
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ũi

ugg̃
dl

d̃d

g̃

ũi
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Figure A.2: All diagrams which are needed to calculate all contributions to the g̃ → ũi ūg
decay coming from diagonal wave function corrections. The first row contains the SQCD
contributions and the remainder contains the electroweak corrections.
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ũj

H0

ũe
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Figure A.3: All ‘transition’ diagrams which are used to obtain all contributions to the
g̃ → ũi ūg decay coming from off-diagonal wave function corrections. The first row
contains the SQCD contributions (including the two graphs with four vertices having
both SQCD and electroweak couplings) and the remainder contains the electroweak
corrections (Part 1).
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ũi

ug

ũj
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ũd

.

g̃

ũi
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Appendix B

Flavour Violating Squark Full One
Loop Decays

In this appendix we provide further details about our program package, about the in-
stallation procedure and the basic usage, and list our exhaustive checks which ensure
the correctness of the results produced by our code.

B.1 Details

Based on our calculations of all squark and gluino two-body decay widths in the MSSM
with general quark flavour violation (QFV) presented at length in Chapter 6 we devel-
oped the first publicly available program package called FVSFOLD (Flavour Violating
Squark Full One Loop Decays) written in Fortran, which computes automatically all
above-mentioned QFV decays at full one-loop level.1 For this purpose we adopted the
SPA convention along with the DR renormalisation scheme.

For the generation of parts of our Fortran code we used the tools FeynArts 3.7 (FA)
and FormCalc 7.3 (FC), which provide the squared matrix element separately for each
decay channel. But after this step many crucial parts for the automatic calculation at
full one-loop level are still missing!

First and foremost, since FA/FC initially just provide all vertex corrections of a
specific process, all remaining coupling and (diagonal and off-diagonal) wave function
corrections which are essential for a UV finite result need to be added in a non-trivial way.
We include these missing contributions via our original work and our novel approaches
already explained in Section 6.2.2 and 6.2.3. For this task we could build upon our
extensive set of original renormalisation constants (RCs) derived and rigorously checked
in our group over the past years. However, to include also QFV effects in our two-
body decays, we had to generalise our set of RCs to include non-minimal QFV in the
squark sector. The updated set of RCs including their derivation can be looked up in
Section 5.2. Since we included the calculation of coupling renormalisation corrections

1Currently all decays into Higgses are calculated at tree-level only. We intend to include full one-
loop corrections to these decays in the next release. Since we further considered from the beginning the
inclusion of CP violating effects we will incorporate them in a later version.
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along with the required RCs we provide a possibility to check if the result is truly UV
finite, see the remarks in Section 6.2 and below.

Furthermore, to obtain an IR finite result we include soft and hard photon/gluon
bremsstrahlung to our decay widths, based on our original work described in Sec-
tion 6.2.4 and 6.2.5. For this task we build upon previous work done in our group,
work that resulted in the development of the bremsstrahlung code in the program pack-
age SFOLD [5]2. However, since we implemented for the first time QFV gluino decays
we had to derive the missing soft and hard bremsstrahlung contributions for this novel
decay pattern as detailed in the aforementioned sections.

For the convenient usage of our program package we adopt the widely used SLHA2 [29]
format for the input and output files. The input file is read in via the SLHA2 I/O tool
SLHALib 2.2 [85] and further processed by self-written routines to correctly translate
from the SLHA2 parameter convention to the internal convention used by FA/FC. The
output file as well as the output on the screen (properly translated back to the SLHA2
convention) are generated by self-written code.

Finally, for an easy-to-use program which automatically calculates all kinematically
allowed decays of a given sparticle, we developed an overall framework which executes all
necessary steps from the initialisation and calculation of all RCs and all on-shell masses,
the calculation of each decay channel, to the final output of the results. For this purpose
we could partly reuse the overall framework of the program package SFOLD.

For the execution of our code we use, in addition to the aforementioned SLHA2
I/O library, the LoopTools 2.7 (LT) library for the evaluation of the Passarino-Veltman
one-loop integrals.

We want to emphasise that, although we could reuse some general code pieces from
the program SFOLD, our code FVSFOLD has been generated and written completely
new to incorporate the more general case of QFV in the squark sector, the novel gluino
two-body decays, and many improvements mostly related to the calculation of the off-
diagonal wave function corrections and of the whole set of RCs. As a result, FVSFOLD
contains automatically the quark flavour conserving (QFC) limit of all squark decays as
implemented in SFOLD.

B.2 Installation and basic usage

The latest version of FVSFOLD can be obtained from

www.hephy.at/tools/fvsfold

by downloading the most recent fvsfold-m.n.tar.gz file. The archive can be unpacked
with tar -xvzf fvsfold-m.n.tar.gz. The program itself and its required tools (LoopTools
and SLHALib) can be quickly installed and set up following the instructions found in
the README file.

2SFOLD is the first publicly available program package for calculating all sfermion two-body decay
widths at full one-loop level within the flavour-conserving MSSM which has been developed in our
group.

http://www.hephy.at/tools/fvsfold/
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FVSFOLD is controlled via the input file fvsfold.in. Apart from defining the SLHA2
input and output file name and the decaying sparticle one can also control the brems-
strahlung and resummation as well as a lower bound on the branching ratios to display.

We provide two exemplary SLHA2 input files named fvsfold input example 1.slha2
and fvsfold input example 2.slha2, containing the general QFV input parameters of sce-
nario A and scenario B from Chapter 7, respectively. These files each contain a com-
plete, minimal and thus mandatory set of parameters which are read in and used by
FVSFOLD. All possible other SLHA2 parameters not used in these files are ignored.
The associated SLHA2 output files fvsfold output example 1.slha2 (ũ1 decay) and fvs-
fold output example 2.slha2 (g̃ decay) provide a simple check if the installation and
operation of FVSFOLD is successful. The results in these files should be identical to
the results of the respective calls of FVSFOLD except for small numerical deviations
depending on the compiler/platform.

In the main file fvsfold.F one can further check for IR and UV convergence of the
decay widths as well as define the masses of external and loop particles to be either
on-shell or DR. Furthermore, the output of the SM and MSSM parameters and mass
spectra as well as a simple exclusion limit check can be controlled.

For an UV check one sets the divergence ∆ (delta in) to a very high value (e.g. 107

instead of the default zero) and then compares the resulting decay widths with the default
case when ∆ = 0; the relative differences should not exceed small numerical deviations
of O(10−7). Please note that for this check resummation needs to be switched off and
the masses of loop particles need to be DR.

For an IR check one sets the quadratic regulator mass λ2 (lambda in) for the pho-
ton/gluon to a very high value (e.g. 1030) and then compares the resulting decay widths
with the default case when λ2 = 1; the relative differences should again not exceed small
numerical deviations. Please note that for this check all masses of both external and
loop particles need to be DR.

B.3 Checks

We performed rigorous checks to ensure the correctness of our results produced by our
code. First and foremost, we successfully checked the SQCD and full one-loop decay
widths of all squark and gluino decay channels for UV and IR finiteness (see the previous
section) using various QFV parameter points.

For various QFC parameter points we compared all masses as well as the tree-level,
SQCD and full one-loop decay widths of all squark decay channels from FVSFOLD
with the results from SFOLD 1.2, since FVSFOLD automatically (and non-trivially!)
contains the QFC limit of all squark decays as implemented in SFOLD. Both programs
are in excellent agreement with each other in the QFC limit.

Furthermore, for the same QFV parameter points as above we directly compared
the tree-level decay widths of all squark and gluino two-body decays from SPheno 3.2.3
with our tree-level results using the following modifications: since SPheno improves its
tree-level decay width formulas by incorporating one-loop corrections into its rotation
matrices, we simply take these effective on-shell rotation matrices from the squark,
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neutralino, and chargino sector from SPheno instead of our tree-level rotation matrices
in the DR scheme. For even better agreement we also set the on-shell masses of all
sparticles in our code to the values obtained from SPheno. This direct comparison can
be easily enforced by defining the preprocessor variable SPHENO COMPARISON in
the main file fvsfold.F. Both programs are in very good agreement with each other.

At last we compared all masses as well as the tree-level, SQCD and full one-loop
decay widths of all squark and gluino decay channels from FVSFOLD with the results
from SPheno without any modifications. The results and conclusions of this extensive
comparison by way of two QFV scenarios can be found in Chapter 7.
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