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Abstract (English)

Mach-Zehnder interferometry with interacting Bose-Einstein
condensates in a double-well potential

Particle-wave duality has enabled the construction of interferometers for massive parti-
cles such as electrons, neutrons, atoms or molecules. Implementing atom interferometry
has required the development of analogues to the optical beam-splitters, phase shifters
or recombiners to enable the coherent, i.e. phase-preserving manipulation of quantum
superpositions. While initially demonstrating the wave nature of particles, atom interfer-
ometers have evolved into some of the most advanced devices for precision measurement,
both for technological applications and tests of the fundamental laws of nature. Bose-
Einstein condensates (BEC) of ultracold atoms are particular matter waves: they exhibit
a collective many-body wave function and macroscopic coherence properties. As such,
they have often been considered as an analogue to optical laser fields and it is natural to
wonder whether BECs can provide to atom interferometry a similar boost as the laser
brought to optical interferometry.
One fundamental difference between atomic BECs and lasers fields is the presence of
atomic interactions, yielding an intrinsic non-linearity. On one hand, interactions can
lead to effects destroying the phase coherence and limiting the interrogation time of
trapped BEC interferometers. On the other hand, they can be used to generate non-
classical (e.g. squeezed) states to improve the sensitivity of interferometric measurements
beyond the standard quantum limit (SQL).
In this thesis, we present the realization of a full Mach-Zehnder interferometric sequence
with trapped, interacting BECs confined on an atom chip. Our interferometer relies
on the coherent manipulation of a BEC in a magnetic double-well potential. For this
purpose, we developed a novel type of matter-wave recombiner, an element which so far
was missing in BEC atom optics.
We have been able to exploit interactions to generate a squeezed atomic state with
reduced atom number fluctuations that could potentially yield a sensitivity improvement
beyond the SQL. We used this state to study the interaction-induced diffusion of the
quantum phase. For the first time we directly evidenced the link between fundamental
atom number uncertainty and phase diffusion, and demonstrated extended coherence
times by the use of a non-classical state. This constitutes an important step towards the
use of BECs for quantum-enhanced matter-wave interferometry and contributes to the
understanding of interacting many-body quantum systems. It opens new possibilities for
the generation, manipulation and detection of non-classical atomic states, and calls for
further studies of the role of interactions as a resource for matter-wave interferometry.



Zusammenfassung (Deutsch)

Mach-Zehnder Interferometrie mit wechselwirkenden Bose-Einstein
Kondensaten in einem Doppel-Mulden-Potential

Der Welle-Teilchen Dualismus ermöglicht die Konstruktion von Interferometern mit
massiven Teilchen wie Elektronen, Neutronen, Atomen oder Molekülen. Die Atom-
interferometrie erfordert die Entwicklung von Komponenten analog zu den optischen
Strahlteilern, Phasenschiebern, Kombinierern für die kohärente bzw. phasenstabile Ma-
nipulation quantenmechanischer Überlagerungszustände. Während Atominterferometer
ursprünglich die Welleneigenschaften von der Materie untersucht haben, gehören sie
heute zu den am weitesten entwickelten Präzisionsmessgeräten, die für technologische
und fundamentale Fragestellungen verwendet werden.

Bose-Einstein-Kondensate (BEK) aus ultrakalten atomaren Gasen stellen besondere Ma-
teriewellen dar: sie verfügen über eine kollektive Wellenfunktion und makroskopische
Kohärenzeigenschaften. Dementsprechend werden Sie oft als Analog zu Laserlicht be-
trachtet und es stellt sich die Frage, ob BEKs einen ähnlichen Entwicklungsschub für
Materiewelleninterferometrie bewirken können wie einst der Laser für optische Interfer-
ometrie.

Ein grundlegender Unterschied zwischen BEKs und Laserlicht stellen die atomaren
Wechselwirkungen dar, welche zu einer intrinsischen Nichtlinearität führen. Auf der
einen Seite führen atomare Wechselwirkungen zu Dekohärenz und Dephasierung, die die
Beobachtungszeit des Interferometers reduzieren. Auf der anderen Seite ermöglichen die
Wechselwirkungen die Erzeugung nicht-klassischer (z. B. gequetschter) Zustände, welche
die Sensitivität der BEK Interferometer über das Schrotrausch-Limit hinaus verbessern
können.

In dieser Dissertation wurde experimentell ein Mach-Zehnder Interferometer für Bose-
Einstein-Kondensate realisiert, welche auf einem Atomchip gefangen sind. Das Inter-
ferometer basiert auf der kohärenten Manipulation des BEKs in einem Doppel-Mulden-
Potential. Es wurde insbesondere ein neuartiger Materiewellen-Kombinierer realisiert,
das bisher fehlende Element in der Materiewellenoptik mit BEKs. Wir nutzten atom-
are Wechselwirkungen, um einen gequetschten Quantenzustand mit reduzierten An-
zahlfluktuationen zu realisieren, der gegenüber dem Schrotrausch-Limit eine erhöhte
Sensitivität aufweist. Mit Hilfe dieses Zustandes untersuchten wir die Phasendiffusion,
welche wiederum durch atomare Wechselwirkungen erzeugt wird. Zum ersten Mal wurde
auf eindeutiger Weise die Verbindung von Anzahlfluktuationen und der Phasendiffusion
aufgezeigt. Die Verwendung eines gequetschten Zustandes erlaubte es uns, die Beobach-
tungszeit des Interferometers um mehr als das Doppelte zu verlängern. Dies stellt einen
entscheidenden Schritt in Richtung BEK Interferometrie mit nichtklassischen Zuständen
dar und erweitert unser Verständnis über die Auswirkungen atomarer Wechselwirkun-
gen in Vielteilchen-Quantensystemen. Die entwickelten Methoden sind geeignet, weit-
ere komplexe Quantenzustände zu erzeugen und zu charakterisieren und es besteht die
Hoffnung, dass die atomaren Wechselwirkungen letztlich die Leistungsfähigkeit der Ma-
teriewelleninterferometrie verbessern können.
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Résumé (Français)

Interférométrie de Mach-Zehnder avec des condensats de
Bose-Einstein en interaction dans un double puits de potentiel

La dualité onde-corpuscule a rendu possible le développement d’interféromètres faisant
intervenir des particules massives telles que des électrons, des neutrons, des atomes
ou des molécules. Pour réaliser des interféromètres atomiques, il a fallu inventer des
analogues aux lames séparatrices, déphaseurs ou recombineurs optiques afin de pouvoir
manipuler des superpositions d’états quantiques de manière cohérente, c’est-à-dire en
préservant leur phase. D’abord employés pour mettre en évidence la nature ondulatoire
des particules de matière, les interféromètres atomiques sont désormais des appareils de
pointe pour la métrologie, aussi bien à des fins technologiques que pour les tests des lois
fondamentales.
Les condensats de Bose-Einstein (CBE) d’atomes ultra-froids sont des ondes de matière
particulières qui se manifestent par une fonction d’onde collective et des propriétés
de cohérence macroscopique. Pour cette raison, ils ont souvent été comparés à des
lasers à atomes. Il est donc légitime de se demander si les CBE peuvent apporter à
l’interférométrie atomique l’élan que les lasers ont conféré à l’interférométrie optique.
Une différence fondamentale entre les CBE et les lasers réside dans la présence
d’interactions entre les atomes, qui rendent le système intrinsèquement non linéaire.
D’une part, les interactions sont responsables d’effets qui détruisent la cohérence de
phase et limitent le temps d’interrogation des interféromètres avec des CBE confinés.
D’autre part, elles peuvent être exploitées pour générer des états non classiques (par
exemple des états comprimés de la matière) et ainsi réduire l’incertitude des mesures
interférométriques en-deçà du bruit de grenaille.
Au cours de cette thèse, nous avons mis au point un interféromètre de Mach-Zehnder
pour des CBE piégés à l’aide d’une puce atomique. Notre interféromètre repose sur la
manipulation cohérente de CBE dans un double-puits de potentiel magnétique. Il nous
a fallu pour cela développer un nouveau type de recombineur pour CBE piégés, qui
faisait jusqu’ici défaut à l’optique atomique. Nous avons exploité les interactions pour
générer un état comprimé du CBE avec des fluctuations réduites en nombre d’atomes qui
potentiellement pourrait permettre des mesures interférométriques avec une incertitude
plus faible que le bruit de grenaille. Nous avons utilisé cet état pour étudier la diffusion
de la phase quantique induite par les interactions atomiques. Pour la première fois, nous
avons apporté une preuve directe du lien entre l’incertitude fondamentale sur le nombre
et la diffusion de phase. L’utilisation d’états non classiques nous a permis d’accrôıtre le
temops de cohérence de notre interféromètre de plus d’un facteur deux.
Nos recherches constituent un pas important vers l’emploi de CBE pour l’interférométrie
avec des ondes de matière et étendent notre compréhension du rôle des interactions
dans les systèmes quantiques à N corps. Elles ouvrent de nouvelles possibilités pour la
génération, la manipulation et la détection d’états atomiques non classiques, et laissent
à penser que les interactions vont devenir une ressource pour améliorer la précision des
mesures interférométriques avec des ondes de matière.
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1. Introduction

An interferometer is a device that makes use of the effect of wave interference. Optical
interferometers rely on the interference of light waves. Since the middle of the XIXth

century, interferometry has become a key technique in physics, bringing new insight into
the nature of light and the laws of nature. The celebrated interferometry experiment
conducted by A. Michelson and E. Morley in 1887 is generally considered to have ruled
out the theory of aether and indirectly contributed to the founding of special relativity.
The development of lasers since the early 1960’s has renewed the field of optics and
considerably enhanced the power of interferometers by providing a bright, directed and
coherent source of light for interferometry. Today, optical interferometers range among
the most sensitive measurement devices, both for fundamental (gravitational wave detec-
tion, astrophysics ...) and technical (inertial sensing for navigation of planes, satellites,
...) applications.
Particle-wave duality, stated at the beginning of the XXth century, enables the construc-
tion of interferometers for matter waves. Since the first observations demonstrating
the wave nature of massive particles, ground-breaking interferometry experiments with
electrons, neutrons, atoms or molecules have allowed studying quantum phenomena,
investigating the properties of matter, testing the fundamental laws of physics and per-
forming precision measurements [57].
Over the last decades, in particular with the progress of laser cooling and frequency
combs, atom interferometers have evolved into devices at the leading edge of precision
measurements. Long-lived coherent superpositions of internal atomic states have been
used in atomic clocks to measure time with unprecedented accuracy, providing the defi-
nition of the second since 1967. Interferometers using quantum superposition of atomic
motional states can also measure accelerations and rotations to high precision. It has
been argued that due to the high rest mass of atoms, compared to the energy of an
optical photon, atom interferometers could yield a considerable gain in sensitivity to
inertial forces.
Bose-Einstein condensates (BEC) are particular matter waves. Since the first realization
of a BEC in an atomic vapor in 1995 [10], ultracold gases of bosons have been inten-
sively studied as a unique example of a well-controllable system with enhanced quantum
properties. In this context, matter-wave interferometry with BECs has proven to be
a powerful tool to explore the rich physics of these many-body quantum systems. In
particular, it is a unique probe to access the quantum phase of the condensate wavefunc-
tion and study its macroscopic coherence, i.e. the existence of a well-defined condensate
phase in space and time.
Because of this macroscopic coherence, beautifully demonstrated by the first interference
experiments from 1997 on [13], BECs have often been compared to atom lasers [143].
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Indeed, like lasers, BEC are characterized by the macroscopic occupation of a single
spatial mode. For this reason, it is natural to wonder whether BECs can provide to
atom interferometry a similar boost as the laser brought to optical interferometry.
Because BECs are extremely sensitive probes of their environment, they are also fragile.
In fact, only the development of ultrahigh vacuum techniques as well as “contract-free”
methods to manipulate and trap atoms with optical and magnetic fields at the micro-
scopic level have enabled the experimental realization of BECs. Developing techniques
to preserve the phase coherence of atomic quantum superpositions is a challenging re-
quirement for BEC interferometry.
One fundamental difference between atomic BECs and laser fields rises from the presence
of interactions. Atom-atomn interactions drive the physics of confined BECs, leading
to a rich quantum phase diagram. In the context of atom interferometry, the impact of
interactions is ambivalent. On the one hand, interactions are responsible for intrinsic
phase diffusion effects which ultimately limit the coherence time of BEC interferome-
ters. On the other hand, they can be exploited to generate non-classical correlations
between atoms and produce entangled states. Atomic squeezed states are an example
of such non-separable states, and have been shown to potentially reduce the effect of
interaction-induced phase diffusion or improve the sensitivity of interferometric mea-
surements beyond the sentivity limit for uncorrelated particles, the standard quantum
limit (SQL). For these reasons, studying the effect of atomic interactions is crucial to
perform precise interferometric measurement with trapped BEC as well as to understand
the physics of complex many-body quantum systems.
Condensates in a double-well potential implement the textbook case of a two-mode
BEC. In the same time, they provide a prototypical configuration for matter-wave
interferometry, reminiscent of Young’s double-slit experiment. For these reasons, they
have stimulated great theoretical interest [154]. It was recognized very early that a
BEC in a double well implements a cold atom analogue of a superconducting Josephson
junction, where the Cooper pairs are replaced by neutral atoms and the thin insulating
layer by a potential barrier, justifying the name of “bosonic Josephson junction” (BJJ).
A tunable BJJ offers a conceptually simple playground to investigate the interplay of
tunnel coupling and atomic interactions in BECs, yielding a rich variety of dynamical
regimes. Most importantly, tuning the parameters of a BJJ also offers a handle to
engineer the many-body state of the BEC.

In this thesis, we present the implementation of a Mach-Zehnder interferometer for
BECs on an atom chip setup, and its use for the study of interactions in our trapped,
interacting BECs.

Since the first demonstration of the phase-preserving splitting of a BEC in 1998 [109],
various techniques have been developed to build atom-optics analogues to beam split-
ters, phase shifters or recombiners. Our scheme relies on the coherent manipulation
of a condensate in a tunable double-well potential. The splitting was implemented by
smoothly deforming the potential from a single to a double well. An adjustable phase
shift was applied by imposing an energy difference between the two wells. In order to
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close the interferometeric sequence, we developed two novel phase-sensitive recombiners
for trapped BECs, the first one relying on controlled tunneling through the BJJ, the
second on a fast manipulation of the confining potential.
Taking advantage of interactions during the splitting, we were able to produce and char-
acterize a non-classical “squeezed” atomic state featuring reduced number fluctuations
with respect to a coherent state. We showed that the state produced in the interferom-
eter could potentially yield a significant metrology gain beyond the SQL.
We used this state to study interaction-induced phase diffusion in our interferometer.
For the first time, we could unambiguously evidence the link between fundamental atom
number uncertainty and the rate of diffusion of the quantum phase, and demonstrated
a coherence time extended by more than a factor two by the use of a non-classical state.
This work constitutes an important step towards the use of BECs for quantum-enhanced
matter-wave interferometry and contributes to the understanding of interactions in
BECs. It opens new possibilities for the generation, the manipulation and the detection
of non-classical quantum states, and calls for further studies of the role of interactions
as a resource for matter-wave interferometry.

The manuscript is structured as follows:

• In chapter 2, the theoretical framework which forms the basis for the results of
this thesis is introduced. It comprises mainly a basic description of interacting
BECs, with emphasis on elongated geometries, followed by a presentation of the
two-mode model describing the physics of a condensate in a double-well potential.

• Chapter 3 is devoted to a description of the apparatus on which the experiments
were conducted, with focus on the techniques of magnetic trapping on an atom
chip, in particular the radio frequency-dressing used for the creation of double-well
potentials, as well as the imaging systems used to probe the atoms.

• Chapter 4, which is the central part of this thesis, presents each stage of the
Mach-Zehnder interferometric sequence and the corresponding results.

• Finally, chapter 5 gives an outlook on effects beyond the two-mode description of
the BJJ in the light of new experimental observations.





2. Theoretical framework

The aim of this chapter is to set the framework and give the theoretical tools to analyze
the experiments presented in this thesis. It is organized as follows:

• The first part introduces some basic concepts of the theory of atomic Bose-Einstein
condensates. In particular, the many-body Hamiltonian for a system of bosons in
the weakly interacting regime is presented. A mean-field picture, leading to the
Gross-Pitaevskii equation, is studied with particular emphasis on the ground state
properties of elongated condensates. The Bogoliubov approach is described with
the aim of obtaining a classical field picture of elementary excitations.

• The second part is devoted to the two-mode description of a condensate in a
double-well potential. The two-sites Bose-Hubbard Hamiltonian is derived from
the full many-body Hamiltonian, and its different regimes are studied with focus
on the fluctuations of the physical observables. A connection is established to
the collective spin formalism to introduce the notion of atomic squeezed states.
A mean-field picture is derived and used to describe the dynamics of the bosonic
Josephson junction.

2.1. Elements of the theory of Bose-Einstein
condensation in atomic gases

The experimental realization of an atomic Bose-Einstein condensate (BEC) in 1995 [10]
has been a striking demonstration of the phase transition predicted by Albert Einstein
in 1925 [68], as a direct consequence of the statistics Satyendra Nath Bose had proposed
one year before for photons [24]. Einstein showed that at fixed temperature, increasing
the density of a uniform ideal Bose gas would cause the bosons to pile up in the quantum
state with the lowest kinetic energy while all the other excited states would be saturated,
in analogy with the condensation of water in a saturated vapor. The order parameter
of this transition is the fraction of particles in the ground state. The occupation of one
quantum state by a non-negligible fraction of the total number of bosons is at the center
of the enhanced quantum properties of Bose-Einstein condensates.
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2.1.1. Condensation of the ideal Bose gas

2.1.1.1. Uniform ideal Bose gas

The simple case of an ideal Bose gas in a uniform potential already contains some of the
essence of the phenomenon of Bose-Einstein condensation1. Let us consider N identical,
non-interacting bosons in a square box of size L3 with periodic boundary conditions
(PBC). The single particle eigenstates in this uniform potential are plane waves with
quantized wave vectors and energies given by:

~k~l =
2π

L
(lxx̂+ lyŷ + lz ẑ) , (2.1)

ε~l =
~2|~k|2
2m

=
2~2π2

mL2

(
l2x + l2y + l2z

)
. (2.2)

where (lx, ly, lz) are the three integers labeling the state ~l, ~ is the reduced Planck
constant (see appendix B for the list of symbols used in this manuscript), and m the
mass of one boson. At thermal equilibrium in the grand-canonical ensemble, the mean
number of particles in the state ~l is given by the Bose statistics

N~l =
1

e(ε~l−µ)β − 1
=

z

eε~lβ − z . (2.3)

Here β = 1/kBT where kB is the Boltzmann constant and T the temperature. The
chemical potential µ is implicitely defined by the constraint of the fixed total atom
number through

∑
~lN~l = N . In the right hand side, we have introduced the fugacity z

defined as

z ≡ eβµ. (2.4)

z must be between 0 and 1 to ensure that for any state ~l, N~l ≥ 0. z → 0 corresponds to
the classical limit where Maxwell-Boltzmann statistics is recovered. Conversely, Eq. (2.3)
shows that in the limit z → 1, the occupation number N0 of the ground state diverges2.
Since N~l is an increasing function of z, one sees that this can be achieved by increasing
the density of the gas at constant temperature.

More precisely, Bose-Einstein condensation corresponds to a saturation of the excited
states: since for any state ~l, the occupation number is always smaller than e−βε~l , the total
population of the excited states N ′ is bounded. In the thermodynamic limit (N → ∞,
L→∞ but the density n0 ≡ N/L is kept constant), we can find a simple upper bound

1Among the many general references on Bose-Einstein condensation in atomic gases, the books by L.
Pitaevskii and S. Stringari [197] and C. J. Pethick and H. Smith [188] as well as the Yvan Castin’s
lecture notes for the Les Houches Physics Summer School [42] have been widely used in this section.

2Here, ε0 = 0. If the origin of the energies is chosen differently, the ground state energy can be
absorbed in the chemical potential : µ→ µ− ε0.
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for the number of particles in the excited states:

N ′ ≡
∑

~l 6=0

N~l

≤
∑

~l 6=0

e−βε~l ≈
∫ ∞

k=0

L3

2π2
k2e−~2k2β/2mdk

= 23/2L3

(
mkBT

2~2π

)3/2

. (2.5)

This means that when the number of particles (or equivalently the density) of the gas is
increased, the population of the excited states saturates at a given value depending on
the temperature. If the density is further increased, the particles pile up in the ground
state. The exact maximum for N ′ can be computed using the Riemann ζ function and
gives the prefactor ζ(3/2) ≈ 2.61 instead of 23/2 ≈ 2.83, see for example [189].
Introducing the de Broglie thermal wavelength

ΛT =

√
2π~2

mkBT
(2.6)

gives a physical interpretation to Eq. (2.5): the BEC forms when the typical de Broglie
wavelength of the bosons becomes of the order of the mean inter-particle distance:

n0Λ3
T ∼ 1. (2.7)

It can be related to the notion of phase space density [251]. In quantum mechanics, the
Heisenberg uncertainty relation

∆x∆p ≥ ~
2

(2.8)

sets the lower bound V = (2π~)3 to the volume a quantum state can occupy in phase
space. The phase space density

f(~r, ~p) =
N

(2π~)3

1

Z1

e−ε(~r,~p)/kBT (2.9)

represents the mean number of particles in an elementary cell of phase space of volume
V around (~r, ~p). The partition function Z1 is a normalization constant which can be
related to the density in real space n0 through

n0 =

∫
f(~r, ~p)d~p =

N

Λ3
TZ1

. (2.10)

The condition (2.7) means that the phase space density at the origin f(0, 0) is of the order
of V −1. In other words, condensation occurs when there is on average more than one
boson per elementary cell of phase space. More generally, this condition corresponds
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- even for a gas of fermions - to the quantum degeneracy limit beyond which the
classical description is no more appropriate.
Equation (2.7) defines the critical temperature of the Bose-Einstein condensation in a
non interacting gas of bosons in a uniform three-dimensional potential

Tc =
2π~2

mkB
n

2/3
0 . (2.11)

2.1.1.2. Other geometries.

The exact form of the criterion (2.7) for condensation depends — if applicable — on
the geometry of the system. For example, for an ideal Bose gas trapped in a harmonic
potential, the condensation threshold becomes [42]:

n0Λ3
T ≈ ζ(3/2) ≈ 2.61 (2.12)

where in contrast to the uniform case, n0 is the density at the minimum of the potential.
In chapter 5, we will see that in certain geometries, Bose-Einstein condensation is not
possible, and that a degenerate Bose gas may form a quasi-condensate with reduced
phase-coherence, affecting the tunneling properties of BJJs.

2.1.2. The weakly interacting Bose gas

The ideal Bose gas model, assuming non-interacting particles, predicts Bose-Einstein
condensation and gives for instance fair estimates for the critical temperature Tc, or the
condensate fraction, see for example [42, 197, 188]. Nevertheless, interactions are a key
ingredient to explain many features of trapped BECs.
We will first briefly present a model for atomic interactions steming from the quantum
theory of elastic scattering in a dilute gas and then use it to express the Hamiltonian in
second quantized form for an ensemble of bosons in the weakly interacting regime.

2.1.2.1. Ultracold collisions

This section is largely inspired by the lecture notes by J. Walraven on the Thermo-
dynamics and Collisional Properties of Trapped Atomic Gases [251]. For a review on
ultracold collisions, see Ref. [253]. A key result of the quantum scattering theory is
that, at sufficiently low energy, and looking at a sufficiently large distance with respect
to the range of the interaction potential, the collision between two identical bosons can
be described as an isotropic scattering event (s-wave scattering). More precisely, the
wavefunction describing the motion of two bosons, written in the relative coordinate
system, can be expressed as the sum of an incoming and a scattered wave (see Fig. 2.1).
The wavefunction of the scattered wave is given by

ψsc ≈
r→∞

eikr

kr
sin η0e

iη0 , (2.13)
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Figure 2.1.: Schematics of s-wave scattering. Adapted from Walraven ([251]). Schematic of the
s-wave scattering in the center-of-mass coordinate system of the two bosons. k denote the wave vector
of the relative motion and ~r is the relative coordinate.

k is the wave vector of the relative motion of the colliding particles, while r is the relative
distance between the two bosons. Here η0 represents the phase shift of the wave emerging
from the scattering center. This is the key quantity describing the scattering process,
because far from the origin, this phase shift is the only track left by the collision. It is
used to define the s-wave scattering length:

as ≡ −
η0

k
. (2.14)

The s-wave scattering length is related to the collisional cross-section by

σs = πa2
s (2.15)

which underlines the role of as as the measure of the interaction strength in the s-wave
regime. The result of Eq. (2.13) is crucial, as it allows to describe the whole scattering
process through a single quantity, regardless of the details of the interaction potential.
This description of the asymptotic effect of the collision is expected to hold as long as
the “collisional size” as is much smaller than the typical interparticle distance (weakly
interacting regime):

n|as|3 � 1. (2.16)

The physical meaning of the sign of as becomes clear when looking at how the total
energy of a pair of atoms is affected by interactions. Considering two atoms confined in
a sphere of radius L, it is shifted by an amount [251]

δE ≈ ~2π2

2mL3
as. (2.17)
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For as > 0, the total energy is increased, meaning that the interactions are repulsive,
while as < 0 corresponds to attractive interactions. Remarkably, in some special cases,
Feshbach resonances [45] allow tuning both the magnitude and the sign of as by changing
an external parameter such as the magnetic field.
For the species used in this thesis, the 87Rb isotope in its F = 1, mF = −1
state, the repulsive contact interaction is associated with the scattering length as =
100.4(1) a0 = 5.3 nm [249], where a0 is the Bohr radius. It means that the weakly-
interacting regime is achieved for a density lower than ∼ 1018 atoms/cm3, which is
always the case in the experiments presented in this thesis.
A notable consequence of the s-wave scattering description is that there is no need to
know the real interaction potential Vint (~r − r′) to describe the effect of interactions. It
can be replaced by a pseudo-potential defined in order to yield the same asymptotic
behavior as Eq. (2.13). The simplest mathematical form satisfying this condition is
given by the delta-function potential [251]:

U(~r) =
4π~2

m
as

︸ ︷︷ ︸
g3D

δ(~r) (2.18)

where δ is the Dirac delta function. The choice of the delta function reflects the as-
sumption of a contact interaction, which only affects the atoms when they are close
to each other. The prefactor defines the 3D interaction constant g3D, which mea-
sures the strength of the contact interaction. For 87Rb in the F = 1,mF = −1 state,
g3D/h = 7.77× 10−12 cm3 · Hz. This sets the typical energy scale of interactions: for a
typical peak density of n0 = 1.3 × 1014 atoms/cm3 in our condensates, the associated
energy3 g3Dn0 is of the order of h× 1 kHz.

2.1.2.2. Hamiltonian for weakly interacting bosons

To describe a system with a large number (typically N ∼ 1000 in our experiments)
of identical bosons, we work in the formalism of second quantization. For a tutorial
introduction to the second quantization, see for example Refs. [58] or [28].
Let us first consider the Hamiltonian ĥ(1) for a single particle in an external potential
V (~r):

ĥ(1) =

[
− ~2

2m
∆ + V

]
. (2.19)

Its eigenstates {|l〉} define a basis of modes for the system. We use this single-particle
basis to define the operators in second quantization.
The creation and annihilation operator â†l and âl, describing the creation (respectively
the destruction) of one boson in the mode |l〉, obey the bosonic commutation relations:

[âl, âl′ ] = 0,
[
â†l , â

†
l′

]
= 0,

[
âl, â

†
l′

]
= δll′ . (2.20)

3We will see in section 2.1.3.2 that this energy is precisely equal to the chemical potential in the
Thomas-Fermi approximation (Eq. (2.45)).
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One also defines the field operators Ψ̂† and Ψ̂ corresponding respectively to the creation
or annihilation of one boson at position ~r :

Ψ̂(~r) =
∑

l

〈~r|l〉âl (2.21)

Ψ̂†(~r) =
∑

l

〈l|~r〉â†l (2.22)

where |~r〉 are the eigenvectors of the position operator. They also obey a bosonic com-
mutation relation:[

Ψ̂(~r), Ψ̂(~r ′)
]

= 0,
[
Ψ̂†(~r), Ψ̂†(~r ′)

]
= 0,

[
Ψ̂(~r), Ψ̂†(~r ′)

]
= δ(~r − ~r ′). (2.23)

The many-body Hamiltonian can be separated into a sum of single-particle terms like
h(i) describing the kinetic energy and the potential energy of the ith particle on the one
hand, and interaction terms involving several particles on the other hand. In the weakly
interacting limit, where binary interactions dominate, and using the pseudo-potential of
Eq. (2.18), the full Hamiltonian can be written:

Ĥ =

∫
Ψ̂†(~r)

−~2

2m
∆Ψ̂(~r)d~r

︸ ︷︷ ︸
Ĥkin

+

∫
Ψ̂†(~r)V (~r)Ψ̂(~r)d~r

︸ ︷︷ ︸
Ĥpot

+
g3D

2
Ψ̂†(~r)Ψ̂†(~r)Ψ̂(~r)Ψ̂(~r)d~r

︸ ︷︷ ︸
Ĥint

. (2.24)

The Heisenberg equation of motion gives the time evolution of the field operator:

i~
∂Ψ̂

∂t
= −

[
Ĥ, Ψ̂

]

=
−~2

2m
∆Ψ̂ + V Ψ̂ + g3DΨ̂†Ψ̂Ψ̂ (2.25)

Note the absence of factor 1/2 in front of the interaction term due to the commutation
rule for the field operators.
Equation (2.25) allows in principle to compute the full dynamics of the many-body
system. In practice, methods to compute the full many-body wavefunction are extremely
demanding and it is necessary and useful to resort to approximations.

2.1.3. Mean-field model: the Gross-Pitaevskii equation

Here, we will first consider the case of an almost pure condensate where N is large and
most of the atoms occupy the same single-particle wavefunction. If we replace the field
operator Ψ̂ and its conjugate by a complex function ψ, we can derive a classical field
model:

Ψ̂(~r, t) −→
√
Nψ(~r, t),

Ψ̂†(~r, t) −→
√
Nψ∗(~r, t). (2.26)
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We have chosen to normalize ψ to unity:
∫
|ψ|2d~r = 1. Inserting the functions (2.26) in

the Hamiltonian (2.24), we find the Gross-Pitaevskii energy functional:

E[ψ] =

∫
d~r

[
~2

2m
N |∇ψ|2 +NV |ψ|2 +

g3D

2
N2|ψ|4

]
. (2.27)

As for the Hamiltonian (2.24), we identify the three contributions to the total energy of
the gas:

Ekin =
~2

2m
N

∫
|∇ψ|2d~r (2.28)

Epot = N

∫
V (~r)|ψ|2d~r (2.29)

Eint =
g3D

2
N2

∫
|ψ|4d~r. (2.30)

Note that these three terms have to be divided by N to obtain the mean energy per
particle. Provided that the origin of energies is fixed at the minimum of V , both kinetic
and potential energies are positive. The sign of the interaction term depends only on
the sign of g3D = 4π~2as/m, and confirms that repulsive interactions are associated with
a positive scattering length while attractive interactions are associated with a negative
scattering length.
The ground-state wavefunction ψ0 can be found by minimizing the Gross-Pitaevskii
energy functional with a constraint on the norm of ψ. With the Lagrange multiplier µ
for the constraint

∫
|ψ|2d~r = 1, minimizing the functional

F [ψ] = E[ψ]− µN
∫
|ψ|2d~r (2.31)

yields the Gross-Pitaevskii equation (GPE), independently derived by Gross [98] and
Pitaevskii [196]:

− ~2

2m
∆ψ + V (~r)ψ + g3DN |ψ|2ψ = µψ. (2.32)

In analogy with the Schrödinger equation, we identify the interaction term g3DN |ψ|2
to a potential proportional to the local atomic density n(~r) ≡ N |ψ|2. This mean-field
energy can be seen as an effective potential each particle is subjected to because of the
interaction with all other atoms. The Lagrange multiplier µ has the dimension of an
energy and can be identified with the chemical potential, as can be seen from deriving
the energy functional with respect to N [42]:

µ =
∂E

∂N
. (2.33)

Inserting Eq. (2.26) into the Heisenberg equation (2.25) yields on the other hand the
time-dependent GPE

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V (~r)ψ + g3DN |ψ|2ψ. (2.34)
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Validity of the mean-field treatment As we will see next, the GPE is a powerful tool
to describe many aspects of the equilibrium properties of the condensate as well as its dy-
namics. The mean-field treatment crucially relies on the assumption that all atoms share
the same single-particle wavefunction. An equivalent derivation of the GPE consists in
finding an approximate dynamical equation for the one-body density matrix ρ1 = Ψ̂†Ψ̂
by replacing the higher-order terms by some function of ρ1 (see for example [42]). In
the presence of a large condensate fraction, one can drop the contribution of all ex-
cited states and ρ1 becomes essentially the projector onto the condensate single-particle
wavefunction:

ρ1 = N0|ψ0〉〈ψ0|+ ρ′1 ≈ N |ψ0〉〈ψ0|. (2.35)

From this, we see that the mean-field approximation is expected to hold when the
condensate fraction is large, which at thermal equilibrium means that T/Tc is small.
This is essentially a classical field approximation, in the sense that it neglects quantum
correlation. We will see that it cannot describe many-body correlations, or fluctuations.
In the next sections, we will briefly present some cases where the time-independent GPE
has (at least approximate) analytical solutions and mention the numerical resolution
methods that have been used in this thesis. We will treat only the case of repulsive
interactions (g3D > 0).

2.1.3.1. Uniform potential:

The simplest case is that of a uniform potential V (~r) = 0. Let us consider a uniform
potential of size L3 with periodic boundary condition. Although PBC do not correspond
to most of the realistic trapping geometries, they offer a simplified description of the
bulk of a trapped gas, without caring about the edges. The ground state wavefunction
of Eq. (2.32) is simply:

ψ(~r) =

√
1

L3
(2.36)

with the uniform density n0 = N/L3. The ground state energy E0 reads:

E0 = Eint =
1

2
g3D

N2

L3
(2.37)

and the chemical potential:

µ =
∂E0

∂N
= g3Dn0 (2.38)

An important property of the mean-field interaction is that it will generally disfavor
density fluctuations. Assuming repulsive interactions (g3D > 0), a density modulation
δn(x) = δn sin kx on top of the uniform density n0 will increase the energy by a rela-
tive amount (δn/n0)2. Repulsive interactions therefore generally tend to smoothen the
density profile.
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2.1.3.2. The Thomas-Fermi limit

In general, the time-independent GPE cannot be solved analytically for an arbitrary
potential. A useful case is however the Thomas-Fermi (TF) limit, for which the interac-
tion and the potential energy dominate over the kinetic energy. In this case, Eq. (2.32)
becomes

V (~r)ψ + g3DN |ψ|2ψ ≈ µψ. (2.39)

The general solution is:

ψ(~r) =

√
µ− V (~r)

g3DN
(2.40)

for ~r such that µ>V (~r) and 0 elsewhere. For a harmonic potential

V (~r) =
1

2
m
[
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
]
, (2.41)

we find that the density profile in each direction is parabolic:

n (~r) = n0

[
1−

(
x

Rx

)2

−
(
y

Ry

)2

−
(
z

Rz

)2
]
. (2.42)

The extension of the trapped condensate in each spatial direction is given by its Thomas-
Fermi radius:

Ri =

[
15N

as~2ω̄3

m2ω5
i

]1/5

(2.43)

where ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trap frequencies and i = x, y, z.

Note that the TF radii are increasing functions of N : if atoms are added, the repulsive
interactions tend to inflate the condensate. The chemical potential µ is related to the
number of atoms and to the trap parameters through

µ =
1

2
~ω̄

(
15N

as
aho

)2/5

(2.44)

where aho =
√

~/mω̄ is the harmonic oscillator length. A simple relation links µ to the
density n (0) at the center of the cloud:

µ = g3Dn (0) . (2.45)

We can check a posteriori the consistency of the TF approximation by evaluating the
different contribution to the total energy using Eq. (2.40). We find using Eq. (2.29) and
(2.30) that:

Epot =
3

7
Nµ (2.46)

Eint =
2

7
Nµ (2.47)
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Figure 2.2.: Schematics of an elongated condensate. The z axis corresponds to the direction of
shallow confinement V (z) while in the transverse (x, y) plane, the potential V⊥(~ρ) is strongly confining.

The kinetic energy cannot be self-consistently evaluated using (2.40) because the integral
in Eq.(2.28) diverges. We can however estimate it for each spatial direction using the
TF radii as typical sizes of the condensate:

Ekin,i ≈ N
~2

mR2
i

(2.48)

(i = x, y, z). The condition for the Thomas-Fermi approximation becomes, for each
spatial direction :

Ekin

Eint

≈
(

~ωi
µ

)2

� 1. (2.49)

The TF approximation is expected to be valid as long as the chemical potential is higher
than the typical energy associated with the trapping potential.

2.1.3.3. Condensates in elongated harmonic potentials

Most of the experiments presented in this thesis were performed in elongated traps with
aspect ratio λ ≡ ω⊥/ω‖ up to ∼ 300 (see Fig. 2.2). Typical trapping frequencies for the
experiments presented in this thesis are ω⊥ ≈ 2π×1.3 kHz in the radial, tightly confined
direction and ω‖ ≈ 2π× 12 Hz in the longitudinal direction. If we evaluate the chemical
potential using Eq. (2.44) for N = 1200 atoms, we find µ ≈ 2π~ × 1 kHz. While this
value clearly satisfies condition (2.49) in the longitudinal direction, the kinetic energy
cannot be neglected in the transverse direction.
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1D Thomas-Fermi regime The simplest way to describe such an elongated condensate
in the mean-field regime is to assume that due to the the large difference in energy scales,
the wavefunction is separable into a radial and a longitudinal part [169, 213]

ψ(~r) ≡ φ(~ρ)ϕ(z). (2.50)

Here both ϕ and φ are normalized to unity. We also assume a separable potential

V (~r) = V⊥(~ρ) +
1

2
mω2

‖z
2. (2.51)

The GPE (2.32) reads

− ~2

2m

∂2ϕ

∂z2
φ+

1

2
mω2

‖z
2ϕφ+ g3DN |φ|2|ϕ|2φϕ =

[
µ+

~2

2m
∆⊥φ− V⊥φ

]
ϕ. (2.52)

By integration over the radial coordinate ~ρ, we get an effective 1D TF equation for the
longitudinal wavefunction:

− ~2

2m

∂2ϕ

∂z2
+

1

2
mω2

‖z
2ϕ+ g1DN |ϕ|2ϕ = µ1Dϕ (2.53)

with

g1D = g3DN

∫
|φ|4d~ρ, (2.54)

µ1D = µ−
∫ (−~2

2m
φ∗∆⊥φ+ V⊥|φ|2

)
d~ρ = µ− E0

⊥. (2.55)

g1D is the effective 1D interaction parameter. The effective 1D chemical potential µ1D is
simply obtained by subtracting the ground-state energy of the radial wave-function E0

⊥
from the true chemical potential µ. The ground state wavefunction reads

ϕ(z) =

√
µ1D

g1DN

√
1−

(
z

R1D

)2

(2.56)

Integrating (2.32) over z, we get a similar result for the radial wavefunction

−~2

2m
∆⊥φ+ V⊥φ+ g⊥N |φ|2φ = µ⊥φ. (2.57)

If we assume that radially, the kinetic energy dominates over the interaction energy, we
can assume that the radial wavefunction is in the non-interacting ground state. For a
radial harmonic potential V⊥ = mω2

⊥ρ
2/2, the non-interacting ground state reads

φ(~ρ) =
1

a⊥π1/2
e−ρ

2/2a2
⊥ . (2.58)
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and we get

g1D = 2~ω⊥as, (2.59)

µ = ~ω⊥


1 +

(
3

2
√

2
Nas

a⊥
a2
‖

)2/3

 , (2.60)

where we have defined the harmonic oscillator lengths in radial and axial direction
a⊥,‖ =

√
~/mω⊥,‖. a⊥ ≈ 300 nm is a typical value for the experiments presented in

this thesis. Note that in the 1D Thomas-Fermi limit, the chemical potential and the
Thomas-Fermi radius have a different scaling with the atom number N . The 1D Thomas
Fermi radius explicitely read

RTF1D =

(
3

2

g1DN

mω2
z

)1/3

, (2.61)

As pointed out in [169, 83], the dimensionless parameter

χ = Nasa⊥/a‖2 =
g3DN/a

2
⊥a‖

~2/ma2
⊥

(2.62)

appearing in the chemical potential roughly represents the ratio between the interaction
energy and the kinetic energy in the radial direction: We can use it to recast the chemical
potential in the 3D and in the 1D TF cases

µTF3D =
1

2
~ω⊥ (15χ)2/5 , (2.63)

µTF1D =
1

2
~ω⊥

[
2 + (3χ)2/3

]
. (2.64)

Physically, χ allows to distinguish between the validity range of the 1D and the 3D
Thomas-Fermi models. χ � 5 corresponds to the 3D Thomas-Fermi limit - sometimes
referred to as three-dimensional cigar [197] - where the interaction energy dominates over
the kinetic energy in all directions. Conversely, when χ� 5, the condensate is in the 1D
mean-field regime where the transverse motion is “frozen” and the radial wavefunction
is very close to the non-interacting radial ground state, up to some corrections of order
asn1D, where n1D is the linear density (see next section). For the typical parameters
given above, we find χ = 0.2, and µTF1D = 2π~×1.8 kHz, meaning that the experiments
have been performed close to the TF 1D limit.

Crossover between 1D and 3D Thomas-Fermi regime In the previous section, we
have assumed that the radial and longitudinal degrees of freedom are decoupled. This is
of course a crude assumption, since interactions couple all directions. It is still possible
to derive a semi-analytical model to find the mean-field ground state wavefunction in
the crossover between 1D and 3D Thomas-Fermi regime, where most of the experiments
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in this thesis take place. Instead of assuming a separable wavefunction, the idea is to
compute the radial wavefunction locally, at each position along the longitudinal axis.
Following Refs. [213, 83], we assume local equilibrium in each slice of the elongated con-
densate (local density approximation). For a harmonic radial potential V⊥ = 1

2
mω2

⊥ρ
2,

it is legitimate to assume that the radial wavefunction is not very different from the
non-interacting ground state and to make the following Ansatz

φ(~ρ) =
1

2πw (n1D)
e
− ρ2

2w2(n1D) (2.65)

whose width w is kept as a variational parameter depending on the local 1D density
n1D(z) =

∫
n(~r)d~ρ. The expression for w(n1D) is found by minimizing the local energy

functional and reads:

w (n1D) =

√
~

mω⊥
(1 + 2asn1D)1/4 (2.66)

(note that in Ref. [83], the author minimizes the local chemical potential, which yields a
factor 4 instead of 2 before in the square root). This means that the local width differs
from the non-interacting ground state size by a correction term of the order of asn1D,
which is small but not negligible for the typical 1D densities of the experiment presented
in this thesis (n1D ≈ 30 atoms/µm). Repulsive interactions tend to inflate the cloud
transversely, and this effect is stronger in the center of the condensate, where the density
is higher. The local-equilibrium chemical potential reads [213]

µle(z) = ~ω⊥

(
1 + 3asn1D(z)√
1 + 2asn1D(z)

)
≈ g1Dn1D(z) (2.67)

and the longitudinal density profile for a harmonic potential is given by [83]4

n1D(z) =
α

16as

[
α
(

1− z

L

)2

+ 4

](
1−

( z
L

)2
)
. (2.68)

Here L = a2
‖
√
α/a⊥ is the longitudinal radius of the condensate (for our typical param-

eters, L ≈ 25 µm, to be compared to a⊥ ≈ 0.3 µm ) and the value of α = 2 (µ/~ω⊥ − 1)
is found by solving numerically the equation:

α3 (α + 5)2 = (15χ)2 . (2.69)

α is equal to twice the ratio between the chemical potential (after subtraction of the
radial zero-point energy ~ω⊥) over the radial zero-point energy. For the typical param-
eters given in section 2.1.3.3, α = 2 × 0.33. and µ − ~ω⊥ = 2π~ × 0.44 kHz. One can
check that depending on the value of χ, the model smoothly interpolates between the
predictions of the 1D and 3D TF approximations (see Fig. 2.3). Furthermore, it has
been checked [83] that it gives very good agreement with numerical resolution of the 3D
GPE for µ and of the axial density profile throughout the crossover.

4Note that two numerical factors are wrong in equation (5) of Ref. [83].
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Figure 2.3.: Comparison between the models for elongated condensates. Left pannel:
chemical potential µ evaluated using the 3D Thomas-Fermi (red), the 1D Thomas-Fermi (blue) or the
cross-over model (black). N=1200 atoms, ω⊥ is kept constant at 2π× 1.3 kHz while the aspect ratio λ
is changed by varying ω‖. Black dashed line : λ = 105 (ω‖ = 2π × 12.4 Hz), corresponding to typical
experimental parameter for the experiments in this thesis. Right pannel: Linear density profile n1D(z)
computed using each model (same color code) for the parameters of to the black dashed line of left
panel.

How strong are the interactions transversely ? In the rest of this thesis, we will
be mostly concerned by the transverse dynamics of a condensate in a double-well po-
tential. Indeed, the geometry of our radio-frequency dressed double wells implies that
the splitting occurs transversely, and thus that the tunneling dynamics occurs mostly
along one direction. For this reason, we will often resort to approximations or numerical
calculations restricted to the transverse dimension.
This is partly motivated by the large aspect ratios of our traps: while the transverse
motion of the condensate occurs on the ms timescale, longitudinal oscillations have a
typical period of 50 to 100 ms. Moreover, we have seen that the transverse kinetic energy
largely dominates over the interaction energy (χ ≈ 0.2).
We can evaluate the impact of the interactions on the transverse wavefunction in a
(single) harmonic potential from Eqs. (2.66) and (2.68). Using the radial GPE (2.57), we
see that in the perturbative approach of Ref. [213], the kinetic, potential and interaction
energies (per particle) in the transverse plane read

Ekin = ~ω⊥ × [1− asn1D(z)] , (2.70)

Epot = ~ω⊥ × [1 + asn1D(z)] , (2.71)

Eint = ~ω⊥ × asn1D(z), (2.72)

to the first order in asn1D. For a peak linear density of 30 atoms/µm such as in our
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condensate before they are split, asn1D(0) = 0.16, meaning that interactions are respon-
sible by a ∼ 7% increase of the transverse radius and a 14% increase of the transverse
energy compared to the non-interacting ground state. Transversely, the interaction en-
ergy amounts for about 10% of the total energy. The correction is even weaker after
splitting, when the linear density is divided by two.
This justifies why, when the motion of the condensate is excited along one transverse
direction only, it is fair to assume that it does not strongly couple to the other transverse
directions and to resort to one-dimensional GPE simulations along this direction. In ap-
pendix A, we explain how we compute the corresponding effective transverse interaction
constant.
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2.2. Bose-Einstein condensate in a double well :
two-mode theory of the bosonic Josephson junction

The aim of this section is to provide the basic theoretical tools to describe the physics of a
Bose-Einstein condensate in a double-well potential. Such a bosonic Josephson junction
(BJJ), consisting of two superfluids weakly tunnel-coupled through a thin potential bar-
rier shows strong similarities with a superconducting Josephson junctions [132, 154]. In
this section, we will first introduce the two-mode approximation which allow to simplify
the many-body description of an interacting condensate in the double well to a two-sites
Bose-Hubbard (BH) model. We will see that within the two-mode approximation, all
observables can be computed numerically. We will present the two conjugated macro-
scopic observables — number difference and relative phase — describing the state of the
BJJ and compute their fluctuations in different regimes. We will eventually introduce
a mean-field picture which is valid in the limit of large atom numbers and which allows
describing the dynamics of the BJJ by mapping it to that of a single fictitious particle.

It is interesting to note that many results presented in this chapter hold for other types
of two-mode systems, such as a condensate in a superposition of two internal states
(internal BJJ, in contrast to the external BJJ in a double well), as implemented and
studied in Refs [23, 262]. A comprehensive topical review of the two-mode theory of the
BJJ can be found in [59].

2.2.1. Two-mode approximation

A natural approximation to describe an ensemble of atoms in a double-well potential is
to restrict its wavefunction to a superposition of two static, localized spatial modes, from
now on referred to as left and right mode φL,R (~r). This has the effect of limiting the
dimension of the Hilbert space which contains all the possible states of the BJJ to 2N .
Furthermore, we will see that if we assume that the particles cannot be distinguished,
as in a BEC, the dimension of the Hilbert space is N + 1, allowing exact calculations
even for realistic atom numbers N ∼ 1000 such as in the experiments presented in this
thesis.

In a symmetric double-well potential, the two modes can be built as a linear combination
of the ground and the first excited state (see Fig. 2.4) :

φL =
φg + φe√

2
(2.73)

φR =
φg − φe√

2
(2.74)

In a single-particle picture, we can use the two lowest-energy solutions of the Schrödinger
equation in the double-well potential:

ĥ(1)φg,e = Eg,eφg,e. (2.75)
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Since φL,R are not eigenstates of the system, an atom prepared in one of these two
modes will oscillate between left and right at the angular Rabi frequency ΩRabi = (Ee−
Eg)/~ [51].
For an interacting system, the definition of the spatial modes is less obvious: first, it
is not possible to assume static spatial modes since their shape will depend on their
occupation. This will be addressed in more detail in 5. A possible choice is to take
the two first stationary solutions of the GPEs5. They correspond to a situations where
all the atoms are in the ground (respectively the first excited) state. In principle, this
choice is not critical as long as the interactions do not significantly modify the spatial
modes. As discussed in section 2.1.3.3, this is likely to be a good approximation in the
case of elongated double-well potentials.
Secondly, as time evolves, a linear superposition of ground and excited state will not
remain in the subspace spanned by φg and φe. Still, it is reasonable to restrict the
dynamics to the two lowest-lying states as long as no higher-energy state is accessible.
This will typically be true as long as the temperature and the energy scale associated
with interactions are lower than the energy spacing to the second excited state (see
Fig. 2.4).
In an asymmetric double well, there is no general way of defining two localized modes. If
the two lowest energy eigenstates are localized each in a different well, it seems reasonable
to define label them as φL,R, meaning that in this case, no tunneling will spontaneously
occur when the system is initialized in one mode.
In any case, we will derive a two-mode model (2MM) without assumption on the nature
of the two modes, and show that all the parameters of the models can be expressed as
functions of the spatial modes φL,R (~r).

2.2.2. Two-mode Bose-Hubbard Hamiltonian

2.2.2.1. Derivation from the full many-body Hamiltonian

We want to derive a full many-body description assuming that the atoms can only
populate two arbitrary static modes. We start from the Hamiltonian (2.24) and follow
the derivation presented for example in Refs. [171, 233, 133, 8] (double-well potential)
or [49, 236] (internal states). An excellent presentation of the model can be found in the
topical review by R. Gati et al. [79].
The first step consists in writing the field operator as a superposition of the left and
right modes only6:

Ψ (~r) = φL (~r) aL + φR (~r) aR. (2.76)

We assume without loss of generality that φL and φR are real functions. Here again,
we omit the hats on the operators aL and aR. They obey the bosonic commutation

5Which can be readily computed numerically knowing the potential.
6Note that although the modes are labeled left and right, we don’t need at this stage to assume that

they are localized.
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Figure 2.4.: Two-mode approximation. Typical level structure in a symmetric double-well poten-
tial. Provided all the energy scales (energy, chemical potential, temperature) are small with respect to
the energy of the higher excited states, the dynamics of the system can be restricted to the the two
lowest energy levels Eg and Ee. The left and right modes can be constructed from the ground state
(φg, symmetric) and first excited state (φe) wavefunctions.

relations:

[aL, aR] = 0, [a†L, a
†
R] = 0, [aL, a

†
L] = [aR, a

†
R] = 1 (2.77)

Following Ref. [171], we insert Eq. (2.76) into the Hamiltonian (2.24) and reorder the
terms using the number operators ni = a†iai

Ĥ2M = E0
LnL + E0

RnR +
1

2
I(4,0) nL (nL − 1) +

1

2
I(0,4) nR (nR − 1)

− J
(
a†LaR + a†RaL

)

− I(3,1) a†LaR − I(1,3) a†RaL + I(3,1) nL

(
a†LaR + a†RaL

)
+ I(1,3) nR

(
a†LaR + a†RaL

)

+ 2I(2,2) nLnR +
1

2
I(2,2)

(
a†La

†
LaRaR + a†Ra

†
RaLaL

)
(2.78)

where E0
i is the sum of the mean kinetic and potential energy in the mode i and I(i,j) =

g3D

∫
φiLφ

j
Rd~r. Note that each term of the Hamiltonian conserves the total atom number

N = nL +nR. The first line corresponds to the total energy of the left and right modes,
including interactions. The second line describes the tunneling of one particle between
the two modes, with the coupling strength:

J = −
∫

d~r

(
~2

2m
∇φL∇φR + φLV φR

)
. (2.79)



26 Theoretical framework

J does not explicitly depend on the interaction strength g3D, but the wavefunctions φL
and φR usually do. The minus sign is chosen such that J is positive, as will appear
below.
The last two lines correspond to interaction-induced transfers of particle between the two
modes. In Ref. [8], the authors derived a consistent “improved” two-mode description of
the BJJ where they retained all these terms, showing that they could be responsible for
significant deviations from the “standard” 2MM generally used in literature. Here we
motivate why we can generally neglect these terms. However, it is useful to take them
into account to make quantitative predictions over the BJJ (see section 2.2.5.4).
To compare the magnitude of the different terms responsible for particle transfer, we
can approximate the double-well potential by two harmonic potentials of frequency ω0

centered in±x0 (see Fig. 2.5) [171]. For simplicity, we treat the problem in one dimension
with the effective interaction parameter g in the direction of the double well. We define
the left and right mode as the two non-interacting Gaussian ground states centered at
±x0. The integrals in (2.78) and (2.79) can be perfomed and we find [171]

J =
~ω0

2

(
x2

0

a2
ho

− 1

)
e−x

2
0/a

2
ho , (2.80)

I(1,3) = I(3,1) =
g√

2πaho

e−(3/2)x2
0/a

2
ho , (2.81)

I(2,2) =
g√

2πaho

e−2x2
0/a

2
ho , (2.82)

where aho =
√

~/(mω0) is the the harmonic oscillator length. From this we see that
the ratio between the tunnel coupling term and the (dominant) term responsible for
interactions-induced particle transfer scales as:

J

I(1,3)
∝ ~ω0aho

g
ex

2
0/2a

2
ho . (2.83)

We find that interaction-induced particle transfer is negligible as long as the kinetic
energy dominates over the interaction energy in the direction of the double well, which
is precisely one of the condition of validity of the two-mode approximation. Moreover,
as discussed in section 2.1.3.3, this condition is generally satisfied for the elongated
double-well potentials used in this thesis. Additionally, Eq. (2.80) shows that the tunnel
coupling strength J is positive for a large enough x0 and exhibits a Gaussian decay as a
function of the well spacing x0 on the length scale of the condensate wavefunctions. In
practice, the exact dependence of J will depend on the geometry of the barrier, but this
scaling has to be kept in mind to evaluate how much the tunneling properties depend
on the tuning of the double-well parameters (see section 4.4.4).
Neglecting the interaction-induced transfer terms from the Hamiltonian (2.78) we obtain
the two-mode Bose-Hubbard Hamiltonian

ĤBH = −J
(
a†LaR + a†RaL

)
+

∆

2
(nL − nR)

+
UL
2

[nL (nL − 1)] +
UR
2

[nR (nR − 1)] , (2.84)
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Figure 2.5.: Double well in the harmonic approximation. When the separation is large enough,
the double-well potential can usually be approximated by two harmonic potentials, which yields ana-
lytical expressions for the tunneling term and the interaction-induced transfer terms.

where

∆ = E0
L − E0

R, (2.85)

UL,R = g3D

∫
φ4
L,Rd~r. (2.86)

2.2.2.2. Link between UL,R and the chemical potential

From the definition (2.30), it is clear that the terms in factor of UL and UR correspond
to the interaction energies in each mode. In the limit where J = 0, we can take φL and
φR as the ground state of the GPE (2.32) in each well, with the corresponding chemical
potentials:

~2

2m

∫
∇φ2

L,Rd~r +

∫
V (~r)φ2

L,Rd~r + g3DNL,R

∫
φ4
L,Rd~r = µL,R. (2.87)

Neglecting the implicit dependence of the mode wavefunctions with the atom number,
we have

UL,R ≈
∂µ

∂N

∣∣∣∣
N=NL,R

. (2.88)

The interaction constant is equal to the derivative of the chemical potential with respect
to the atom number, evaluated for each mode. The meaning of this expression will
become clearer in section 4.5.2.
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Figure 2.6.: Schematics and notations for the 2-mode BH model. The two sites are denoted

left and right, and are associated to the corresponding bosonic operators aL,R and a†L,R. φL,R are
the wavefunctions associated to the left and right mode (we assume that they do not depend on the
occupation of the modes). J represents the strength of tunnel coupling, UL and UR are proportional to
the interaction energies in each site. ∆ is the zero-point energy difference between the two wells.

2.2.2.3. Diagonalization in the basis of Fock states

Since the BH Hamiltonian (2.84) conserves the total atom number N , a natural basis to
describe the wavefunction is that of the Fock states, containing a well-defined number
of atoms in each mode:

{|NL = 0, NR = N〉, |1, N − 1〉 ... |N, 0〉} . (2.89)

It spans a Hilbert space of dimension N + 1. This means that withing the two-mode
approximation, the full many-body problem can be solved exactly for reasonable total
atom numbers (such as N ∼ 1200 for the experiments carried out in this thesis). All
operators can be written as simple (N + 1)× (N + 1) matrices on this basis (see [79] for
details). For example, the tunneling operator reads

a†LaR + a†RaL =




0
√
N 0 · · · 0

√
N 0

√
2 (N − 1) · · · ...

0
√

2 (N − 1)
. . . . . .

...

0 0
. . . . . .

√
N

0 0 · · ·
√
N 0



. (2.90)

The full Hamiltonian can be diagonalized numerically [171, 79]. A typical spectrum is
represented in Fig. 2.7, as well as some of the corresponding eigenstates (Fig. 2.8). It is
linear at low energy (like the spectrum of a harmonic oscillator) and quadratic at high
energy, where the levels are pairwise (almost) degenerate, corresponding to localized
states where most of the atoms are either in the left well or in the right well.
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Figure 2.7.: Typical energy spectrum of the two-mode BH Hamiltonian. N=41 atoms,
γ = U/2J = 0.25 (Josephson regime, see 2.2.3.2). Blue crosses: Energy of the eigenstates in increasing
order. Red lines: approximate expressions in the low energy (linear) part and in the high energy
(quadratic part) of the spectrum. The states surrounded by a red circle are represented on Fig. 2.8

2.2.2.4. Time evolution

Using the eigenstates |ψi〉 of the Hamiltonian and the corresponding energies Ei, the
state of the BJJ can be computed at any time from its initial state |Ψ(0)〉 through the
linear evolution7

|Ψ(t)〉 =
N+1∑

i=1

〈ψi |Ψ(0)〉e−iEit/~ |ψi〉 . (2.91)

Equivalently, the time evolution of any operator Â built using the creation and annihila-
tion operators in the left and right mode can be computed from the Heisenberg equation
of motion

i~
∂Â

∂t
= −

[
Ĥ, Â

]
. (2.92)

We will use this result in section 2.155 to compute the dynamics of the full many-body
wavefunction and the physical observables.

7Note that in the many-body picture of the BH model, the evolution of the N + 1-dimensional vector
representing the state of the BJJ obeys the linear Schrödinger equation, even in presence of interac-
tions. This is different from the mean-field picture, where the interactions act as a non-linear term
in the GPE.
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Figure 2.8.: Four eigenstates of the two-mode BH Hamiltonian in number distribution.
N=40 atoms, γ = U/2J = 0.25. Probability distribution of the half number imbalance n = (nL−nR)/2
for four eigenstates of the Hamiltonian (2.112). The four eigenstates corresponds to the red circles on
Fig. 2.7. Note that the low energy states (linear part of the spectrum) are localized around n = 0 while
the high energy state are localized pairwise in the left or the right well.

2.2.2.5. Macroscopic observables

In the two-mode approximation, the state of the condensate is characterized by two key
observables, similar to a position and a momentum variable: the population imbalance
and the relative phase. As we will see in section 4.2, our setup allows accessing both
observables experimentally.

Number difference: The corresponding observable is defined as the half-number dif-
ference operator:

n̂ ≡ nL − nR
2

(2.93)
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which is diagonal in the Fock basis, with eigenvalues ranging from −N/2 (all atoms in
the left well) to N/2 (all atoms in the right well)8. We can label the Fock states using
the eigenvalues of n̂

|n〉 ≡
∣∣∣∣
N

2
− n, N

2
+ n

〉
. (2.94)

Relative phase: Defining an operator for the phase difference between left and right
is less obvious. This relates to the more general problem of defining a phase operator
in quantum mechanics. For a historical (and entertaining) discussion on this topic, see
Ref. [179]. Considering for example a single mode of the electromagnetic field, it seems
natural to define a Hermitian phase operator φ̂ such that:

a =
√
N̂eiφ̂, (2.95)

a† = e−iφ̂
√
N̂ . (2.96)

Here N̂ = a†a The commutation relation
[
a, a†

]
= 1 imposes that φ̂ would verify the

Lerner criterion:
[
eiφ̂, N̂

]
= eiφ̂ (2.97)

or the commutation relation proposed by Dirac [63]

[
φ̂, N̂

]
= i. (2.98)

However, this leads to a contradiction: to ensure (2.98), the matrix elements of φ̂ in the
basis of Fock states would have to verify:

(m− n) 〈n| φ̂ |m〉 = iδm,n (2.99)

which doesn’t make sense. Furthermore, the commutation relation (2.98) would imply
the uncertainty product ∆N̂∆φ̂ ≥ 1/2, which would impose that ∆φ̂→∞ when ∆N̂ →
0, which is not obvious as the phase is defined on [−π, π].
It is therefore difficult to rigorously define a phase operator. Still, it is possible to define
operators for periodic functions of the phase such as eiφ or the quadratures cosφ and
sinφ [159, 242].
While the notion of the phase of a single mode of the electromagnetic field, or that of a
single Bose-Einstein condensate, remains a delicate question, the experiments in matter-
wave interferometry with BECs since the work by Andrews et al. [13] have allowed
probing the relative phase between two condensates [43]. They have also shown that in
practice, one always measure a quadrature of the phase.

8The choice of the factor 1/2 is motivated by the fact that conversely to NL −NR, n is incremented
or decremented by 1 when an atom tunnels from one well to the other
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We can try to give a theoretical description of the relative phase between the two modes
of the field, following the work by Paraoanu et al. [183], based on the phase states defined
by Pegg and Barnett [184]

|φp〉 =
1√
N + 1

N/2∑

n=−N/2
e−inφp |n〉 . (2.100)

They are only defined for discrete values of the phase φp = 2πp/(N + 1), p =
−N/2, ..., N/2. Note that when N → ∞, we recover a continuous phase over [−π, π].
The {|φp〉} form a complete basis of the Hilbert space. The probability distribution of
the phase for any state Ψ =

∑
n cn |n〉 is given by the modulus of the discrete Fourier

transform of Ψ

p (φp) = |〈φp|Ψ〉|2 =
1

N + 1

∣∣∣∣∣∣

N/2∑

n=−N/2
einφpcn

∣∣∣∣∣∣

2

. (2.101)

Note that in the continous limit (N →∞), we can replace the discrete sums on number
or phase states by integrals

N/2∑

n=−N/2
. . . |n〉 −→

∫ ∞

−∞
dn . . . |n〉 ,

N/2∑

p=−N/2
. . . |φp〉 −→

N + 1

2π

∫ ∞

−∞
dφ . . . |φp〉 . (2.102)

The phase states can be used to define the phase exponential operator

êiφ ≡
N/2∑

p=−N/2
eiφp |φp〉 〈φp| (2.103)

which satisfies the Lerner criterion (2.97). Similarly, the quadrature operators are defined
by

ĉosφ =
1

2

(
êiφ + ê−iφ

)
, (2.104)

ŝinφ =
1

2i

(
êiφ − ê−iφ

)
. (2.105)

Even if we have not defined an operator for the relative phase that would satisfy the
commutation relation [φ̂, n̂] , let us introduce the phenomenological uncertainty relation
between relative phase and half-number difference9

∆n̂∆φ̂ ≥ 1

2
. (2.106)

9Note that in the following, unless stated, ∆F 2 represents the variance of the quantity F , and ∆F its
standard deviation.
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In section 2.2.4, we will show that a N-particle two-mode system can be described by an
effective spin verifying angular momentum commutation relations. These commutation
relations imply uncertainty relations between certain observables and we will motivate
they are consistent with the formal uncertainty relation (2.106) when the number and
phase spread are small enough. In section 2.2.5, we will present a mean-field model
valid in the “continous limit” N →∞ and show that the half-number difference and the
phase are canonical conjugate variables linked by

n = −i ∂
∂φ
. (2.107)

which by the correspondence principle also motivates Eq. (2.106).
Physically, the uncertainty relation (2.106) implies that the number difference and the
relative phase of the BJJ cannot be measured simultaneously with arbitrary accuracy.

2.2.2.6. Bose-Hubbard Hamiltonian in number-phase representation

There is a link between the tunneling operator and the operator for the cosine of the
phase (2.104). In the Fock basis, the matrix elements of the tunneling operator read
(see Eq. (2.90))

〈m| a†LaR + a†RaL |n〉 =

√(
N

2
+m

)(
N

2
−m+ 1

)
δm,n+1

+

√(
N

2
−m

)(
N

2
+m+ 1

)
δm,n−1 (2.108)

while that of the cosine operator read

〈m| ĉosφ |n〉 =
1

2
(δm,n+1 + δm,n−1) . (2.109)

We see that for n,m� N/2, one can identify both operators:

〈m| a†LaR + a†RaL |n〉 ≈ N 〈m| ĉosφ |n〉 . (2.110)

Therefore, an approximate expression for the BH Hamiltonian in number-phase repre-
sentation (dropping a constant energy offset for clarity) is given by

ĤBH ≈ −J
√
N2 − 4n̂2ĉosφ+ Un̂2 + εn̂ (2.111)

with the interaction constant U ≡ (UL + UR) /2 and the detuning10 ε = (UL−UR)(N −
1)/2 + ∆.

10We distinguish between the difference in zero-point energy ∆ and the detuning ε which contains also
a difference of interaction energy coming for example from different confinement frequencies in the
two wells.
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The tunneling term takes the form of a Josephson energy, which associates a flow of
particles between the two wells to the cosine of the relative phase between the sites. We
will see in section 2.2.5.3 that the analogy with the Josephson effect appears even more
clearly in the dynamics of number imbalance and phase. The term in factor of U is
quadratic in n̂ and represents the interactions energy and corresponds to the cost (for
repulsive interactions) of putting more atoms on one side than on the other. The linear
term is due to the energy difference between the sites caused by the detuning ∆ on one
hand, and by the difference of ∂µ/∂N on the other hand (see section 2.2.2.2 ).

2.2.3. Regimes of the two-mode Bose-Hubbard model

In the following, we assume a symmetric double well, such that ∆ = 0 and UL = UR = U :

ĤBH =− J
(
a†LaR + a†RaL

)
+
U

2
[nL (nL − 1) + nR (nR − 1)] (2.112)

≈− J
√
N2 − 4n̂2ĉosφ+ Un̂2 +

UN

4
(N − 2) . (2.113)

In this case, the properties of the BH Hamiltonian depend only on the atom number N
and the dimensionless parameter

γ ≡ U

2J
(2.114)

which represents the ratio of the interaction energy per particle over the total tunneling
energy.

2.2.3.1. Two limiting cases

It is useful to look at the two limiting cases U = 0 and J = 0 [101, 133]:

In the absence of interactions (U=0): in this case, the BH Hamiltonian is diagonal
in the basis of the non-interacting ground and first excited states of the double-well
potential (see Fig. 2.4):

Ĥ = Ega
†
gag + Eea

†
eae (2.115)

and J = (Ee − Eg) /2 = ~ΩRabi/2. At zero temperature, the particles all condense in the
single-particle ground state φg. In the basis of the left and right mode, this corresponds
to the product state

|Ψ〉 =
1√
N !

(
a†L + a†R

)N
|0〉 (2.116)

where |0〉 is the vacuum state. This is an atomic coherent state [14], with relative
phase 0 (it is clear from Eq. (2.111) that the phase minimizing the energy is 0). In the
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Fock basis, it reads11 [133]:

|Ψ〉 =
1√
2N

N/2∑

n=−N/2

√(
N

N/2 + n

)
|n〉 . (2.117)

This shows that the (half-)population imbalance of the ground state follows a binomial
distribution between −N/2 and N/2. This has a simple interpretation: in absence of
interactions, the ground state (2.116) is a product state of each atom being in a symmet-
ric superposition of left and right mode. When the number imbalance is measured, each
atom is independently projected with equal probability either on the left or the right
mode, yielding a binomial distribution. In particular, the variance of the half-number
difference in the ground state reads:

∆n̂2 =
N

4
(2.118)

(or equivalently, the variance of the number difference ∆ (nL − nR)2 = N). The proba-
bility distribution of n and φ are represented in Fig. 2.9 for a coherent state with N = 40
atoms. In the limit N → ∞ where n̂ and φ̂ have a continuous spectrum, the binomial
distributions tend towards normal distributions and the probability distributions for n
and the φ are given respectively by:

p(n) =
1√

2πσn
e−n

2/(2σ2
n), (2.119)

p(φ) =
1√

2πσφ
e−n

2/(2σφ2 ), (2.120)

with σ2
N = N/4 and σ2

φ = 1/N . Note eventually that the coherent state is a minimum
uncertainty state, i.e. it saturates the Heisenberg uncertainty relation:

∆n∆φ =
1

2
. (2.121)

In absence of tunneling (J=0): In this case, the BH Hamiltonian (2.113) is diagonal
in the Fock basis and one immediately sees that the state minimizing the energy is the
twin Fock state12

11We use the binomial coefficients
(
n

k

)
=

n!

k!(n− k)!

12We have assumed an even N . Otherwise, the ground state is

1√
2

(|(N − 1)/2, (N + 1)/2〉+ |(N + 1)/2, (N − 1)/2〉) (2.122)
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Figure 2.9.: Ground state in absence of interactions. N = 40 atoms, U = 0. Grey bars:
Histogram of the half-number difference distribution (left) and the relative phase distribution (right)
in the ground state. Blue lines: probability distribution in the continous approximation. Note that
already for 40 atoms, it matches well the discrete probability distribution.

|Ψ〉 = |n = 0〉 = |N/2, N/2〉 (2.123)

with well-defined, identical atom number left and right. It has zero number-difference
fluctuations, and its phase distribution is uniform (as that of any Fock state), meaning
that the phase is completely random. It is a limiting case for the uncertainty rela-
tion (2.106), implying infinite variance of the phase (which for a circular variable is to
some extent a matter of definition, see below).

2.2.3.2. In-between : Rabi, Josephson and Fock regimes

Between these two cases, the regimes of the two-mode Bose Hubbard model can be
characterized by looking at the number and phase fluctuations of the ground state (see
Fig. 2.10). The number fluctuations are quantified by the variance of the half-number
imbalance ∆n̂2. For the phase distribution, the usual definition of the variance can be
extended to angular variables [74]. Here we define the variance of the phase as the square
of the circular standard deviation S in the state |Ψ〉

S2 [φ] = −2 ln
[∣∣∣
〈
eiφ̂
〉∣∣∣
]

= −2 ln



∣∣∣∣∣∣

N/2∑

p=−N/2
|〈φp|Ψ〉|2 eiφp

∣∣∣∣∣∣


 . (2.124)
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Figure 2.10.: Variance of number and phase difference in the ground state. N=1000 atoms.

Light blue line : variance of n̂, in units of the variance for a coherent state ∆n =
√
N/2, as a function of

γ = U/2J . Red line: circular variance S2 [φ] of the relative phase as a function of γ. The black vertical
dashed lines correspond respectively to γ = 1/N and γ = N , identifying the Rabi, Josephson and Fock
regimes. Note that the harmonic approximation (red and blue dashed lines) describes extremely well
the fluctuations of n and φ in the ground state in the Rabi regime and deep into the Josephson regime.

For a gaussian state, i.e. a state with normally distributed number difference and phase,
such as for instance a coherent state with N sufficiently large, we have

∫ π

−π
cosφe−φ

2/2σ2

dφ ≈ e−σ
2/2, (2.125)

implying that the circular standard deviation coincides with the usual definition of the
standard deviation, while that of a Fock state is infinite.
Interestingly, in the case of repulsive interactions, the ground state is always number-
squeezed, meaning that the half number difference fluctuations in the ground state are
always smaller than ∆ncoh =

√
N/2, and that all the more as U/2J → ∞ [236]. Intu-

itively, this can be understood by the fact that interactions disfavor number differences,
as they are energetically costly. The ground state fluctuations show that three different
regimes appear, depending on the the value of γ:

Rabi regime: As long as

U

2J
� 1

N
(2.126)
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tunneling dominates over atomic interactions. The physics of the bosonic Josephson
junction does not significantly depart from the non-interacting case. The ground state
is close to a coherent state with well-defined phase and binomial number difference
fluctuations. The many-body spectrum is essentially linear, like that of a harmonic
oscillator, with energy levels evenly spaced by the Rabi energy 2J .

Fock regime:

U

2J
� N (2.127)

Conversely, when atomic interactions dominate over tunneling, the ground state exhibits
strongly suppressed number difference fluctuations while the phase is almost random.
In Ref. [133], an approximate analytical expression for the half-number difference fluc-
tuations in the ground state is derived and reads

∆n̂ =
1

8
√

2

2JN

U
� 1 (2.128)

The energy spectrum is essentially quadratic (Ĥ ≈ Un̂2) with pairwise (almost) degen-
erate states with opposite imbalance (|NL, NR〉 , |NR, NL〉, see Fig. 2.8). These states
are often said to be fragmented, meaning that they cannot be written as a product of
single-particle states.

Josephson regime:

1

N
� U

2J
� N (2.129)

In the intermediate regime, both contributions are comparable and the energy spectrum
exhibits both a linear and a quadratic part (see Fig. 2.7). For high energy eigensates,
the interaction term dominates in the Hamiltonian

Ĥquad
BH ≈ Un̂2 +

UN

4
(N − 2) , (2.130)

and the energy spectrum is quadratic while at low energy, it is linear. As long as the
the low-energy eigenstates have small fluctuations of number-difference and phase (we
will check this afterwards), the BH Hamiltonian (2.113) can be linearized and reads

Ĥharm
BH =

~ωJ
2

(
φ̂2

2σ2
φ

+
n̂2

2σ2
n

)
. (2.131)

with:

~ωJ = 2J
√

1 + Λ, (2.132)

σ2
φ =

√
1 + Λ

N
, (2.133)

σ2
n =

N

4
√

1 + Λ
, (2.134)

Λ = UN/2J. (2.135)
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We identify the Hamiltonian of a 1D harmonic oscillator where the phase plays the role
of the position, and the number difference corresponds to the momentum. The dimen-
sionless parameter 1 � Λ � N2 in the Josephson regime represents the ratio between
interaction energy and tunneling. The energy scale is given by the Josephson frequency
ωJ, which is the frequency of the tunneling oscillations in presence of interactions13 (see
section 2.2.5.3). Equivalently, it is the frequency of the lowest Bogoliubov mode of the
bosonic Josephson junction [183]. σ2

n and σ2
φ are respectively the variance of n and φ in

the ground state and their product saturates the Heisenberg uncertainty relation (2.106).
The fluctuations of n and φ in the k-th excited state scale as

√
2 (k + 1/2)σn,φ, their

product as k + 1/2.

Figure 2.7 shows a comparison between the fluctuations of n and φ in the ground state
computed by the exact numerical diagonalization of (2.112) and the harmonic approx-
imation. This approximation is expected to be valid in the linear part of the energy
spectrum, i.e. for state whose energiy is smaller or of the order14 of JN . This in turn
sets a limit to the maximal phase and number spread for which the harmonic approxi-
mation is valid

∆φ2 . 1, (2.136)

∆n2 .
N2

4 (1 + Λ)
. (2.137)

The condition on ∆n2 simply tells us that the description of the BJJ as a harmonic
oscillator in number and phase difference breaks down when entering the Fock regime.
Equivalently, in terms of normalized population imbalance z = (NL − NR)/N , it reads
∆z . 1/

√
Λ + 1.

2.2.3.3. Link between phase fluctuations and coherence

The fluctuations of the relative phase can be directly connected to the notion of first-
order coherence between the two modes [79, 101]. Provided there is no significant spatial
overlap between the two wavefunctions and nL ≈ nR, the first-order coherence function
between the left well and the right mode reads

g(1)(~rL, ~rR) ≡
〈
Ψ†(~rL)Ψ(~rR)

〉
√
〈Ψ†(~rL)Ψ(~rL)〉 〈Ψ†(~rR)Ψ(~rR)〉

≈ 〈a
†
LaR + a†RaL〉

N

≈ 〈cos φ̂〉. (2.138)

13Sometime refereed to as plasma oscillations
14More precisely, when N is sufficiently large, as it is always the case in our experiments, the crossover

energy between the linear and the quadratic part of the spectrum (see Fig. 2.7) occurs between
0.07×JN (Λ = 1) and 2×JN (Λ = N2), where the origin of the energies is set to the ground state
energy minus ~ωJ/2, like in a harmonic oscillator.
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From the definition of the circular standard deviation (2.124) and assuming a symmetric
phase distribution,

S2 [φ] = −2 ln
(〈

ĉosφ
〉)

≈ −2 ln
[
g(1)(~rL, ~rR)

]
(2.139)

〈cosφ〉 is often called the coherence factor. It measures the visibility of the average
of interference fringes obtained by matter wave interferometry .

2.2.4. Collective spin representation

In this section, we will introduce the concept of a collective spin mapped to an ensemble
of two-level atoms. We will show the link between the uncertainty product of n and φ
and the commutation relations for an angular momentum operator. We will see that
the collective spin is a useful tool to study and visualize many-body states of the BJJ
and introduce the concept of atomic squeezed states. A comprehensive introduction to
the notion of collective spins and spin squeezing, particularly in the context of atom
interferometry is given in the tutorial by C. Gross [97].

2.2.4.1. Collective spin associated to an ensemble of atoms

Spin 1/2 associated to a single two-level system A single two-level system can

associated to a fictitious spin 1/2 ~̂s [52]. Considering an atom in a double-well potential,
the left and right modes can be mapped onto the two eigenstates of ŝz with eigenvalues
respectively ±1/2. Any coherent superposition of the two modes

|ψ〉 = cos
θ

2
e−iφ/2 |L〉+ sin

θ

2
eiφ/2 |R〉 (2.140)

can be represented as a point on the Bloch sphere (see Fig. 2.11).
The effect of a linear Hamiltonian Ĥ acting on the two-level system can be represented
by an effective external magnetic field ~B the spin is coupled to

Ĥ ∝ ~B.~̂s = Bxŝx +Byŝy +Bz ŝz. (2.141)

Collective spin N/2 for N identical two-level systems Similarly, an ensemble of N
identical two-level systems can be associated with the collective spin N/2

~̂S =
N∑

i=1

~̂s(i), (2.142)

The connection to a two-mode many-body system in the formalism of second quan-
tization has been established by J. Schwinger [222, 212]. When all operations done
on the spin ensemble act on each spin in the same way, the full Hilbert space of
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Figure 2.11.: Bloch sphere The north and south poles correspond respectively to |L〉 and |R〉.
The latitude is proportional to the probability of measuring the atom in the left or the right mode,
and the angle φ of the projection onto the equatorial plane corresponds to the phase of the quantum
superposition

dimension 2N can be reduced to the (N + 1)-dimensional subspace corresponding to
Ŝ2 = (N/2)(N/2 + 1) [97]. The spin components read15

Ŝx =
1

2

(
a†LaR + a†RaR

)
, (2.143)

Ŝy =
1

2i

(
a†RaL − a†LaR

)
, (2.144)

Ŝz =
1

2

(
a†LaL − a†RaR

)
. (2.145)

Importantly, they obey the circular commutation relations for angular momentum op-
erators16

[
Ŝk, Ŝl

]
= iεklmŜm, (2.146)

and must therefore satisfy the corresponding uncertainty relations

∆Ŝk∆Ŝl ≥
1

2

∣∣∣
〈
Ŝm

〉∣∣∣ . (2.147)

N -particle spin states can be visualized employing the Husimi Q-representation on a
generalized Bloch sphere [152, 97] (see Fig. 2.12).

15We chose to denote the spin components Ŝi to avoid confusions with the coupling energy J .
16εklm denotes the Levi-Civita symbol.



42 Theoretical framework

Figure 2.12.: Spin states on the generalized Bloch sphere. Adapted from http://www.

stanford.edu/group/kasevich/cgi-bin/wordpress/?page_id=57. N-particle collective spins can be
visualized as a density distribution on a generalized Bloch sphere of radius N/2. The fuziness of the
red spot represents the uncertainty on the different spin components. Left: coherent state. Right:
number-squeezed state.

.

2.2.4.2. How do we recover the number-phase representation?

The spin picture, through the circular uncertainty relations (Eq. (2.146)) between the
components of the spin, contains all the uncertainty relations between the physical ob-
servables. How does it relate to the number-phase representation introduced in section
2.2.2.5? First, n̂ = Ŝz. The basis of Dicke states and the Fock basis are exactly the
same (the Dicke state with the eigenvalue n for Ŝz coincides with the Fock state |n〉.)
The link to the phase is less straightforward. Let us first note that Sx is equal to the
tunneling operator (2.90). For a state which is well-localized around a given position on
the Bloch sphere17, such as that of Fig. 2.12, we see from Eq. (2.108) and (2.109) that
the phase quadrature operators are approximately given by

Ŝx ≈
1

2

√
N2 − 4 〈n̂〉2ĉosφ, (2.148)

Ŝy ≈
1

2

√
N2 − 4 〈n̂〉2ŝinφ. (2.149)

As in the single particle case, the relative phase corresponds to the angle of the projection
of the spin onto the equatorial plane with respect to the x axis.

The link to the phase-number uncertainty can be established (at least formally) if we

take such a localized spin state and linearize 〈∆ĉosφ〉2 and 〈∆ŝinφ〉2 close to the mean
orientation of the spin, we can write

17For example, a coherent state with N large enough, see section 2.2.4.4.

http://www.stanford.edu/group/kasevich/cgi-bin/wordpress/?page_id=57
http://www.stanford.edu/group/kasevich/cgi-bin/wordpress/?page_id=57
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∆Ŝz

(
∆Ŝx + ∆Ŝy

)
≥ 1

2

(∣∣∣〈Ŝx〉
∣∣∣+
∣∣∣〈Ŝy〉

∣∣∣
)

⇔ 1

2

√
N2 − 4 〈n〉2∆n̂

(∣∣∣〈ŝinφ〉
∣∣∣∆φ+

∣∣∣〈ĉosφ〉
∣∣∣∆φ

)
≥ 1

4

√
N2 − 4 〈n̂〉2

(∣∣∣〈ĉosφ〉
∣∣∣+
∣∣∣〈ŝinφ〉

∣∣∣
)

⇔ ∆n∆φ ≥ 1

2
. (2.150)

This has a simple geometrical interpretation : when the spin state is well-localized, it
is sufficient to consider its immediate vicinity on the generalized Bloch sphere and the
problem can be reduced from a 3D representation to a 2D representation on the plane
tangent to the mean orientation of the spin. The projection of the state in this plane
can be described by only two conjugated observables, for example n̂ and φ̂, verifying the
uncertainty relation (2.106). But strictly speaking, only the commutation relations and
the uncertainty products for the spin components are well-defined.

2.2.4.3. Bose-Hubbard Hamiltonian in spin representation

In spin representation, the BH Hamiltonian (2.84) reads

ĤBH = −2JŜx + εŜz + UŜ2
z (2.151)

(a constant energy offset has been dropped). The time evolution of an arbitrary state
|ψ〉 under this Hamiltonian follows

|ψ(t+ dt)〉 = ei(2JŜx−εŜz−UŜ2
z)dt/~ |ψ(t)〉 . (2.152)

The tunneling term can therefore be seen as a rotation around the x axis of the Bloch
sphere18 at the angular velocity 2J/~. In the same way, the detuning term represents
a rotation around the z axis at the angular velocity ε/~. Note however that as soon as
both terms are acting, the motion of the collective spin is not a rotation anymore.
The interaction term on the other hand represents a shearing transformation. It can be
seen as a rotation around the z axis, but with an angular velocity ∼ Un/~ depending
on the latitude on the Bloch sphere.
The time evolution of the spin components is obtained from the Heisenberg equation
of motion (2.92), making use of the commutation relations (2.146). It yields the three
equations [171]

dŜx
dt

= − ε
~
Ŝy −

U

~

(
ŜyŜz + ŜzŜy

)
, (2.153)

dŜy
dt

=
2J

~
Ŝz +

ε

~
Ŝx +

U

~

(
ŜxŜz + ŜzŜx

)
, (2.154)

dŜz
dt

= −2J

~
Ŝy. (2.155)

18A rotation of angle θ around the i axis reads Ri (θ) = e−iθŜi .
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They will be used in section 2.2.5.3 to compute the time evolution of the macroscopic
observables n and φ in the classical limit.

2.2.4.4. Some many-body states in the spin representation

The spin representation is a convenient tool to study and visualize many-body states
of the bosonic Josephson junction. Two types of states are particularly relevant for the
work presented in this thesis:

Coherent Spin States (CSS). CSS are product states obtained from putting all the
atoms in the same superposition of the two modes [14]

|θ, φ〉coh =
1√
N !

(
cos

θ

2
e−iφ/2a†L + sin

θ

2
eiφ/2a†R

)N
|vac〉 (2.156)

(|vac〉 denotes the vacuum state).The ground state of the BJJ in absence of interactions
(see Eq. (2.116)) is a CSS with θ = π/2 and φ = 0. Without loss of generality, let
us consider |π/2, 0〉coh. The spin points along x (〈Ŝy〉 = 〈Ŝz〉 = 0) with the length

〈Ŝx〉 = N/2. Transversely to the mean spin direction x, the fluctuations are isotropically
distributed (see Fig. 2.12, left panel)

∆Ŝ2
y = ∆Ŝ2

z = ∆Ŝ2
⊥ = N/4, (2.157)

where Ŝ⊥ = cosαŜy + sinαŜz. CSS are miminum uncertainty states saturating the
product (2.147)

∆Ŝy∆Ŝz =
1

2

∣∣∣〈Ŝx〉
∣∣∣ . (2.158)

Figure. 2.13 (a), taken from Kitagawa et al. ([144]), illustrates this result: the variance
of the orthogonal components of a single spin 1/2 pointing in x direction are given by
∆ŝ2
⊥ = 1/4. Summing up N such uncorrelated spins, the variances simply add up to

N/4. CSS are minimum uncertainty states with isotropic fluctuations in the direction
orthogonal to the mean spin orientation.

squeezed states In 1993, M. Kitagawa and M. Ueda introduced the concept of spin-
squezed states to describe states such that the variance of one spin component normal
to the mean spin vector is smaller than the standard quantum limit [144]. Such states
involve an anisotropical redistribution of the fluctuations of the collective spin, which
still has to satisfy the uncertainty relation (2.147). This means that noise reduction for
one spin component implies excess noise in another direction.
A state such that ∆Ŝ2

z ≤ N/4, or equivalently ∆ (NL −NR)2 ≤ N , is said to be number
squeezed (see Fig. 2.12, right panel). The number squeezing factor

ξN ≡
∆Ŝz√
N/2

=
∆ (NL −NR)√

N
(2.159)
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Figure 2.13.: Schematic illustration of a collective spin. Taken from Kitagawa et al. ([144]).
(a) Coherent spin state constructed from 2S uncorrelated spin 1/2. (b) Squeezed state constructed
from 2S correlated spin 1/2.

quantifies the amount of number squeezing by comparing the fluctuations of the num-
ber difference to that of a coherent state. Number squeezed states are characterized by
ξN < 1. A Fock state for example is perfectly number-squeezed (it can be represented
by a circle of latitude on the Bloch sphere). As pointed out by Kitagawa et al. ([144]),
correlations between the atoms are necessary to produce number squeezing (see Fig. 2.13
(b)). However, these correlations can be classical: for example, the state of two conden-
sates produced independently with a given finite number of atoms (in each condensate)
is number-squeezed, although there exists no phase coherence between both.
Importantly, as mentioned in section 2.2.3.2, the ground state of the BH Hamiltonian
in presence of repulsive interactions is always number-squeezed (see Fig. 2.10). In the
Rabi and the Josephson regimes, the square of the number squeezing factor reads

ξ2
N =

1√
Λ + 1

≤ 1. (2.160)

By extension, one can also define phase-squeezed states as states with a phase spread
smaller than 1/

√
N . They are characterized by the phase squeezing factor

ξφ ≡
∆φ

1/
√
N
. (2.161)

Because it is saturating the Heisenberg number-phase inequality, the ground state of the
two-modes BH Hamiltonian with repulsive interaction is always anti phase-squeezed. In
the Josephson and Rabi regimes, it reads

ξ2
φ =
√

Λ + 1 ≥ 1. (2.162)
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coherent spin squeezed state (CSSS) In 1994, D. Wineland et al. defined a particular
class of atomic squeezed states characterized by the measure of useful (or coherent) spin
squeezing [258]

ξS =
√
N

∆Ŝ⊥,min

〈 ~̂S〉
< 1. (2.163)

ξS measures the ratio of the minimal fluctuations transversely to the spin mean direction
over the spin mean length. In particular, for a spin pointing along x and where the
direction of minimal uncertainty is z, this definition translates into

ξS =
∆n̂√

N/2〈ĉosφ〉
=

ξN

〈ĉosφ〉
(2.164)

Not all atomic squeezed states satisfy the definition (2.163), as it requires a high co-
herence together with suppressed fluctuations of one observable. The Fock states, for
which ∆n̂ = 0 and 〈ĉosφ〉 = 0 are a particular case for which the amount of useful
spin squeezing is not defined. Importantly, the ground state of a BJJ with repulsive
interactions and finite tunnel coupling is always spin-squeezed [236]. In the Rabi and
the Josephson regime (Λ� N2), the square of the useful squeezing factor reads

ξ2
S =

1√
Λ + 1

exp
(√

1 + Λ/N
)
≤ 1. (2.165)

We will show in section 4.4.3 that the state that we produce by coherently splitting a
Bose-Einstein condensate is also a coherent spin squeezed state.

2.2.4.5. Spin squeezing and interferometry

The concept of atomic spin squeezing has been largely investigated as a potential resource
for enhanced precision in interferometry. The idea of enhancing the sensitivity of an
interferometric measurement by engineering the noise fluctuations of the quantum state
in the interferometer originated in the field of quantum optics with photons [250].
A prototypical interferometer is the Ramsey/Mach-Zehnder interfometer (MZI, see
Fig. 4.1). In section 4.1, we will come back to the distinctions between the different
schemes investigated in literature, but conceptually, they are all based on the same prin-
ciple : an ensemble of particles is prepared in a coherent superposition of two modes by
means of a first π/2 pulse (separation beam splitter). They are allowed to evolve for a
given time during which the superposition picks up a relative phase φ. A second π/2
pulse (recombination beam-splitter) eventually maps the phase φ onto the population of
the two modes. The phase φ can be inferred from the measured population imbalance.

The non-interacting case In the collective-spin picture, and assuming no interactions,
the Ramsey/MZI sequence can be represented by a series of rotations on the generalized



2.2 Bose-Einstein condensate in a double well : two-mode theory of the
bosonic Josephson junction 47

Bloch sphere. The beam-splitters correspond to rotations of angle π/2 around the (x)-
axis, while the phase accumulation corresponds to a rotation of angle φ around the
(z)-axis (see section 2.2.4.3). For example, if the atoms initially all share the same
mode, which is similar to illuminating only one input port of an optical MZI, the initial
state corresponds to the Dicke state located on one of the poles of the Bloch sphere. The
first π/2 pulse brings the spin onto the equator, then the phase accumulation rotates it
by an angle φ in the equatorial plane. The second π/2 pulse eventually rotates the spin
in a way such that φ is mapped onto the projection of the spin along the vertical axis
of the Bloch sphere.
Alltogether, in absence of interactions, the MZI sequence is equivalent to a rotation of
angle φ around the y-axis of the Bloch sphere19 [260]:

|Ψout〉 = ei
π
2
Ŝze−iφŜze−i

π
2
Ŝx |Ψin〉

= e−iφŜy |Ψin〉 . (2.166)

The phase picked-up during the phase accumulation stage is mapped onto the population
imbalance in the output state

〈Ŝz〉out = − sinφ〈Ŝx〉in + cosφ〈Ŝz〉in. (2.167)

In classical wave optics, it is common to present MZI setups where only one input port
is illuminated, yielding 〈n̂〉out = cosφ. In a double-well matter-wave interferometer, the
input state is generally a symmetric superposition of left and right mode (〈Ŝz〉 = 0), in
which case

〈n̂〉out = −〈Ŝx〉in sinφ. (2.168)

The imbalance of the output state varies sinusoidally with the accumulated phase. In
an ideal interferometer, the contrast20 of the interference fringes is determined only by
the degree of coherence 〈Ŝx〉 of the input state. If an atomic coherent state is sent into
the interferometer, the contrast is maximal and equal to one.
The sensitivity of the MZI to phase shifts, i.e. its ability to detect a small deviation ∆φ
from a given phase φ0, is commonly estimated from Eq. (2.168) by error propagation to
the first order21 and reads

∆φ =
∆n̂out(φ0)

|∂〈n̂out〉/∂φ|φ0

(2.169)

19Note that the choice of the axes and the orientation of the rotations may differ depending on the
conventions and on the exact procedure. For example, in traditional optical MZI built with half-
silvered mirrors, care has to be taken about the fact that reflexions on the front or the rear face of
the beam-splitters have a different phase shift.

20In the following, we will use equivalently the terms contrast and visibility.
21For φ0 = π/2, it is not a meaningful quantity since both numerator and denominator are equal to

zero.
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S

shown in figure
finally limiting the precision of a Ramsey interferometer is

the spin directions but excess noise in another direction can
be present either due to a non-Heisenberg-limited quantum
state or due to an incoherent mixture of several quantum
states. The former might limit precision in standard Ramsey
interferometry, but specific correlated quantum states enable
even enhanced interferometric precision in a generalized
interferometer [
precision at a level above the standard quantum limit and
experimentally it requires a large e�ort to prevent decoherence
due to technical noise from the environment or due to

S

Figure 2.14.: Phase sensitivity in Mach-Zehnder interferometry. Adapted from C. Gross ([97]).
Comparison between the phase sensitivity achieved with a coherent state, and with a spin-squeezed
state. The visibility V of the MZI/Ramsey fringes is higher with a coherent state (V = 1) than with
a spin-squeezed state. Nevertheless, the precision of the phase estimation with a spin-squeezed state
outperforms that of a coherent state, because the projection noise is suppressed by a larger amount (see
caption).

Fig. 2.14 illustrates the meaning of Eq. (2.169): the sensitivity to small phase shifts is
equal to the ratio of the uncertainty on the population imbalance over the slope of the
averaged fringe.
The variance of n̂out is given by

∆n̂2
out = sin2 φ(∆Ŝ2

x)in + cos2 φ(∆Ŝ2
z )in − 4 sinφ cosφ〈ŜxŜz〉in, (2.170)

where we have assumed that the input state is symmetric (〈Ŝz〉in = 0) and that its
spin is aligned along x (〈Ŝy〉in = 0) [260]. The last term is linked to the correlations
between number and phase fluctuations of the input state. If we assume that they are
independent22, we get

∆φ2 =
sin2 φ0(∆Ŝ2

x)in + cos2 φ0(∆Ŝ2
z )in

〈Ŝx〉2in cos2 φ0

. (2.171)

In an ideal, i.e. noise-less and interaction-free MZI, the sensitivity depends only on the
input state and the working point φ0. Equation 2.171 is minimal at the points of steepest
fringe slope φ0 = 0 and φ0 = π, and reads

∆φ2
min =

(∆Ŝ2
z )in

〈Ŝx〉2in
. (2.172)

22Such a state can be represented by a noise ellipse with eigenaxes parallel to (y) and (z), such as
displayed in Fig. 2.12.
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If the input state of the interferometer is a coherent atomic state, Eq. (2.172) yields the
standard quantum limit (SQL), also referred to as quantum projection noise:

∆φSQL =
1√
N
. (2.173)

This result simply reflects the fact that the absence of correlation between the atoms
implies a binomial number distribution between the two output ports (shot noise). The
SQL represents the best sensitivity achievable with uncorrelated atoms.
On the other hand, Eq. (2.172) indicates that sub-shot noise sensitivity can be achieved
with coherent spin-squeezed states. The condition ∆φmin < ∆φSQL corresponds precisely
to the definition of useful squeezing introduced in Ref. [258]. The value of ξS expresses
the potential sensitivity gain achievable with the resource of a given spin-squeezed state.
As shown in Fig. 2.14, the states defined by Eq. (2.163) yield reduced fluctuations of
the output imbalance (number squeezing) at the expense of a moderate loss of fringe
contrast, allowing for an overall sensitivity gain.
The sensitivity defined in Eq. (2.172) is fundamentally limited by the fact that the
number of atoms in each mode can be at best counted one by one, while the coherence
is smaller or equal to 1. This defines the Heisenberg limit

∆φH =
1

N
, (2.174)

which is believed to be the best precision achievable by an interferometric measure-
ment [127]. Note however that the simple expression (2.169) for the phase sensitivity
assumes Gaussian probability distributions, which is not in general the case for non-
classical states. Finding the best possible sensitivity requires to find both an optimal
input state and an optimal estimation method [214, 194, 46].

The interacting case The above discussion is however only valid in the non-interacting
limit. If interactions are present, the Hamiltonian describing the evolution of |Ψ〉 is not
linear anymore, and the sensitivity of the interferometer depends also on the details of the
interferometer sequence. It was recognized in Ref. [129] that sub-shot noise sensitivity
could be achieved in a double-well interferometer by taking advantage of the strong
correlations appearing in the Fock regime. In Ref. [192], the authors derived the scaling
of the sensitivity for a MZI with interacting BECs in the Rabi (∆φ ∝ N−1/2), Josephson
(∆φ ∝ N−3/4) and Fock regimes (∆φ ∝ N−1).
Experimentally, interferometric measurements beyond the SQL have been recently
achieved in internal BJJ [96, 180]. In Ref. [96], controlled interaction during the first
π/2 beam-splitter resulted in the creation of a strongly spin-squeezed state. It yielded
a 15% metrology gain over a similar sequence in which the first beam-splitter was well
into the Rabi regime.
Whether or not such a scheme is extendable to an external BJJ in a double-well poten-
tial is still an open question. Several aspects of this question will be discussed in the
next chapters. Nevertheless, numerical simulations of the full many-body dynamics in
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a realistic 1D double well, together with the use of Bayesian phase estimation proto-
cols, suggest that sub shot-noise measurements should be achievable with an interacting
BEC [92].

2.2.4.6. Spin squeezing and entanglement

Entanglement in many-body systems is defined as the non-separability of the density
matrix (see the review [7]), meaning that the density matrix of the system cannot be
written as a product of single-particle density matrices

ρ =
∑

k

pkρ
(1)
k ⊗ . . .⊗ ρ

(N)
k . (2.175)

The difficulty in characterizing many-body entanglement comes from the exponentially
increasing number of measurements necessary to reconstruct the full density matrix.
However, entanglement criterions based on collective measurements were proposed.
Sørensen et al. [230] showed that for distinguishable bosons, the same criterion that
quantifies useful (or coherent spin-) squeezing (Eq. (2.163)) detects entanglement. The
same year, a criterion to quantify the depth of entanglement from a measurement of two
collective operators was derived in Ref. [229].
The idea of this criterion is that, for a collection of spin-S particles, there exists a lower
bound for the fluctuation of one component of the associated collective spin, given the
value of its mean projection onto an orthogonal direction [229]:

∆Ŝ2
z ≥

1

2

[
S(S + 1)− 〈Ŝx〉2 −

√(
S(S + 1)− 〈Ŝx〉2

)
− 〈Ŝx〉2

]

≡ FS

(
〈Ŝx〉

)
. (2.176)

In other words, this inequality sets a lower bound to the fluctuations of n̂ for a given
coherence 〈cosφ〉 and a given atom number N . It can be used to estimate the opti-
mal spin-squeezed state for an interferometric measurement, given the requirement of a
certain contrast. F is not a tight bound but is close to the actual minimum when the
coherence is large.
Inequality (2.176) can be used to define a measure of the extent to which a system of
distinguishable bosons is entangled. Any separable state of M spin-J particles (~ji, i =
1...M) verifies

∆J 2
z ≥MJ FJ [〈Jx〉/(MJ)] (2.177)

where ~J ≡ ∑M
i=1
~ji [229]. For example, with J = 1/2, we recover the coherent spin-

squeezing condition Eq. (2.163). For two values M and J such that MJ = N/2, if
the measured values of ∆J 2

z /(MJ) = ξN and 〈Jx〉/MJ ≈ 〈cosφ〉 do not satisfy the
inequality (2.177), the degree of spin-squeezing excludes that the density matrix of the
system can be written as a direct product of blocks all involving less than M particles.



2.2 Bose-Einstein condensate in a double well : two-mode theory of the
bosonic Josephson junction 51

It must be however underlined that originally, the criterion (2.177) has been derived for
distinguishable particles [97]. The question of whether atoms in a BEC are distinguish-
able, has been heavily debated and is beyond the scope of this thesis manuscript. A
discussion of entanglement and spin-squeezing in BECs can be found in the tutorial by
C. Gross [97] .

2.2.5. Mean-field model in the Josephson regime

The aim of this section is to derive a mean-field version of the BH Hamiltonian to
gain more insight into the dynamics of the macroscopic observables as well as their
fluctuations.

2.2.5.1. Continuous limit

We have seen in section 2.2.2.5 that in the limit N → ∞, the (half-)number difference
operator and the phase quadrature operators have a continuous spectrum. In this “con-
tinous limit”, we assume that there exist real functions n and φ such that the creation
and annihilation operators in the left and right mode can be replaced by the complex
numbers [183]

âL −→
√
N + ne−iφ/2, (2.178)

âR −→
√
N − neiφ/2. (2.179)

This approximation is expected to hold as long as the fluctuations on the number differ-
ence and the phase spread are small enough, as it is typically the case in the Josephson
and in the Rabi regime when N � 1.
In the continuous limit, the spin components read

Ŝx −→
1

2

√
N2 − 4n cosφ, (2.180)

Ŝy −→
1

2

√
N2 − 4n sinφ, (2.181)

Ŝz −→ n, (2.182)

and the full BH Hamiltonian (2.84) becomes

HMF = −J
√
N2 − 4n2 cosφ+ Un2 + εn. (2.183)

Inserting Eqs. (2.180) to (2.182) into the Heisenberg equations of motion (2.153) to
(2.155) yields the two coupled differential equations for the time evolution of the macro-
scopic observables

ṅ = −J
~

√
N2 − 4n2 sinφ, (2.184)

φ̇ =
ε

~
+

2U

~
n+

4J

~
n√

N2 − 4n2
cosφ. (2.185)
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On the other hand, partial derivation of HMF with respect to n and φ shows that they
obey Hamilton’s equations

∂HMF

∂n
= ~φ̇, (2.186)

∂HMF

∂φ
= −~ṅ. (2.187)

This proves that in the continuous limit, n and φ are two canonical conjugated variables
and motivates the uncertainty relation (2.106) between n and φ in the quantum limit.
Furthermore, it implies that

n = −i ∂
∂φ
. (2.188)

φ can be identified to a position variable and n to a momentum variable.

2.2.5.2. Effective Schrödinger equation in phase representation

Considering the BJJ in the continous limit allows to developing an intuitive mean-field
picture for the dynamics and the fluctuations of the full many-body wavefunction. The
state of the system can be described by an effective single-particle wavefunction |ψ〉
evolving under the mean-field Hamiltonian (2.183). It can be either written in phase or
in half-number difference representation, both beeing linked by Fourier transform

ψn(n, t) =
1√
2π

∫
ψφ(φ, t)e−inφdφ. (2.189)

The wavefunction in phase representation ψ(φ, t) obeys the effective Schrödinger equa-
tion23

i~
∂ψ

∂t
=

(
−U ∂2

∂φ2
− J

√
N2 + 4

∂2

∂φ2
cosφ− iε ∂

∂φ

)
ψ. (2.190)

Equation (2.190) maps the evolution of the many-body wavefunction to the motion of
a fictitious particle of mass ∝ 1/2U in a cosine potential with the unusual feature that
its steepness depends on the momentum of the particle. It is often compared to the
motion of a classical momentum-shortened pendulum, i.e. a pendulum, the length of
which decreases as a function of its angular momentum.
Neglecting this term, which is possible when ∆n� N/2, and rewriting Eq. (2.190) using
the dimensionless time24 τ = 2Ut/~ yields

i
∂ψ

∂τ
=

(
−1

2

∂2

∂φ2
− η cosφ− iε̃ ∂

∂φ

)
ψ, (2.191)

23(from now on, we consider only the wavefunction in phase representation and omit the subsript φ)
24In the following, we will sometimes also use the dimensionless time τ = 2J/~t. In one case, it mean

measuring the time in units of ~/2J , in the other, in units of ~/2U . Which variable is used depends
on whether one is interested respectively in the limit U → 0 or J → 0
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with

η =
NJ

2U
=
N2

4Λ
, (2.192)

ε̃ =
ε

2U
. (2.193)

For large values of η, the effective potential Veff (φ) = η cosφ is deep, corresponding
to localized ground state with a narrow phase width (see Fig. 2.15). It illustrates the
fact that tunneling tends to lock the relative phase between the condensates. On the
contrary, when η is small, interactions cause a spread of the phase distribution, giving
rise to interaction-induced phase diffusion (see section 4.5.2, where the crossover value
of η is discussed).
In the case of an inbalanced double well, the term containing ε̃ represents a constant
momentum applied to the fictitious particle. We can perform the transformation

φ− ε̃τ −→ φ, (2.194)

ψ(φ− ε̃τ) −→ ψ(φ), (2.195)

to get

i
∂ψ

∂τ
=

(
−1

2

∂2

∂φ2
− η cos (φ− ε̃τ)

)
ψ. (2.196)

It corresponds to going to a frame moving with the velocity ε̃. In this frame, the fictitious
particle is evolving in a time-dependent cosine potential shifting at the velocity ε̃.
When n� N/2 and φ� 1, we can develop the Hamiltonian (2.183) to the second order
to recover the harmonic approximation25 of section 2.2.3.2

i~
∂ψ

∂t
=

[
−
(
U +

2J

N

)
∂2

∂φ2
+
JN

2
φ2

]
ψ (2.197)

(we have assumed ε = 0). This the Schrödinger equation of an effective particle of mass

∝
(
U + 2J

N

)−1
in a harmonic potential of frequency ωJ = 2J

√
1 + Λ/~. The harmonic

approximation consists in restricting the motion of the fictitious particle to the quadratic
part of the cosine potential26. The validity condition E � JN ensures that this condition
is satisfied.

2.2.5.3. Dynamical modes in the mean-field regime

Without resorting to the small imbalance approximation, Eqs. (2.184) and (2.185) can be
used to describe the dynamics of the BJJ by computing the time evolution of the mean

25Actually, the condition on n is more stringent, as we have seen from the many-body results (section
2.2.3.2) that the harmonic approximation breaks down already when n ∼ N/2 · (1 + Λ)−1/2.

26Note that if the momentum-shortening term is neglected, one gets ωJ = 2J
√

Λ. In the Josephson
regime (1� Λ� N2), both expression coincide
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Figure 2.15.: Effective potential and some eigenstates in the mean-field approximation.
Effective potential Veff (φ) = η cosφ (continuous black line) and harmonic approximation (dashed black
line) for the mean-field Hamiltonian (η = 40). Gray lines : energies of the ten lowest eigenstates. red,
blue, green lines : phase distribution (non normalized) for the three lowest eigenstates. Note that the
picture of an effective potential is only meaningful for small population imbalances.

phase and number difference. It is convenient to rewrite them using the dimensionless
time τ = 2Jt/~ and the normalized population imbalance z ≡ (nL−nR)/N = 2n/N . In
dimensionless form, they read

ż = −
√

1− z2(τ) sinφ(τ), (2.198)

φ̇ =
ε

2J
+ Λz(τ) +

z(τ)√
1− z2(τ)

cosφ(τ). (2.199)

These equations can also be derived directly from a mean-field picture by inserting a
two-mode Ansatz in the time-dependent GPE [200]. The dynamics of z(t) and φ(t)
result from the interplay between tunneling, detuning and interactions. Let us review
three dynamical modes which have been studied in the experiment presented in this
thesis.

Josephson oscillations. Here and in the following paragraph, we assume ε = 0. To
treat small oscillations close to the minimum of Veff (see Fig. 2.15), we can linearize
Eqs. (2.198) and (2.199) to find the oscillatory solutions

z(t) ≈ z (0) cos [ωJt+ φ (0)] , (2.200)

φ(t) ≈ z (0)

(Λ + 1)
sin [ωJt+ φ (0)] (2.201)
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Figure 2.16.: Phase portraits of the classical BJJ. Trajectories of the state of the symmetric BJJ
in phase space {n, φ} for four different values of Λ. In absence of interactions (Λ = 0), all trajectories
are closed paths around the two fixed points (0, 0) (blue) and (0, π) (green, corresponding to the π-
modes). The black lines correspond to the maximum-amplitude oscillation between z = −1 and 1.
Interactions change the topology of the phase portrait. When Λ exceeds 1, a bifurcation occurs: the
point (0, π) bifurcates in two new stable fixed points with opposite population imbalances, while (0, π)
becomes a hyperbolic fixed point. For even larger interactions (Λ > 2), self-trapped modes appear with
a free running phase (red lines) while the π-phase mode are wedged in the corners of the phase portrait
(green lines). MQST modes and π-modes are parted from the Josephson oscillations (blue lines) by a
separatrix (black line).

(see Fig. 2.17, blue lines). Physically, this represents small-amplitude tunneling oscilla-
tions of the atoms between the two wells at the Josephson angular frequency ωJ given
by Eq. (2.132). Note that in presence of interactions, the Josephson frequency can be
significantly larger than the Rabi frequency 2J/~ for the tunneling of non-interacting
atoms.
At higher amplitude, the tunneling oscillation become increasingly anharmonic, and their
period increases, as the system undergoes a critical slowing-down with a logarithmic
divergence [200]. It means in particular, as we will see in section 4.6.1.3, when tunneling
oscillations are initiated with φ(0) close to π and z(0) = 0, their period diverges like
ln(1/ |φ(0)− π|).
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Figure 2.17.: Josephson oscillations and self-trapping. Evolution of the population imbalance
z(t) and the relative phase φ(t) from the dynamical equations (2.198) and (2.199) in two different modes:
Josephson oscillations (red) and Macroscopic Quantum Self-Trapping (red). Λ = 10, ε = 0.

Macroscopic Quantum Self-Trapping (MQST). Solving Eqs. (2.198) and (2.199) for
a stronger initial population imbalance (red lines) shows that z and φ do not undergo
symmetric oscillations around zero. Instead, z exhibits small amplitude oscillations
around a non-zero value z̄ while φ essentially winds up linearly (see Fig. 2.17, red lines).
Making the corresponding approximations in Eqs. (2.198) and (2.199) yields

z(t) ≈ z̄ −
√

1− z̄2

Λ
cosφ(t), (2.202)

φ(t) ≈ z̄UNt/~ + φ(0). (2.203)

We can understand MQST by looking at how the (conserved) total energy is distributed
between the tunneling energy Etun and the interaction energy Eint (see Fig. 2.17, right
pannel). At any time, the Hamiltonian (2.183) imposes that

− JN < Etun < JN, (2.204)

0 < Eint <
1

4
UN2. (2.205)

This means that as long as the total energy (which is determined by Λ and the initial
conditions z(0), φ(0)) is smaller than the maximum value allowed by the tunnel cou-
pling, it will oscillate between the tunneling term and the interaction term, resulting
in oscillations of φ and z which are symmetric around 0. In the opposite case, only a
fraction of the interaction energy can be converted into tunneling energy, resulting in
oscillations of z around an non zero value. This sets the condition for self-trapping [200]
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Figure 2.18.: Energetical interpretation of self-trapping. For any given initial conditions allowed
by the parameters of the BJJ (inside the dashed box), the total energy E = Etun + Eint must be
conserved, meaning that the state of the BJJ evolves along lines of slope -1 on the graph. Below the
self-trapping threshold, the whole energy can oscillate between tunneling and interactions (blue lines).
Above the self-trapping threshold, only a fraction of the total energy can be transferred. The black line
corresponds to the self-trapping condition.

(see Fig. 2.18)

Λ

2
z(0)2 −

√
1− z(0)2 cos [φ(0)] > 1. (2.206)

In particular, this condition determines the maximum amplitude of the Josephson oscil-
lations (see Fig. 2.16)

|zc| = 2

√
Λ− 1

Λ
. (2.207)

Note that Macroscopic Quantum Self-Trapping, despite its name, is an effect of interac-
tions already contained in the mean-field description.

Since the first prediction of an “oscillatory exchange of atoms between two trapped
condensates” in 1986 [132], Josephson oscillations between BECs have been intensively
studied theoretically (see for example [171, 227]). The concept of MQST has been
introduced in Ref. [227]. Both effects were observed for the first time by M. Albiez et al.
in 2005 [3] in an optical double well. A comprehensive experimental study of the modes
of an internal BJJ has been carried out in [262], demonstrating a classical bifurcation
when Λ = 1.
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Running phase. Let us now assume a double well with an arbitrary detuning ε and no
tunnel coupling (J = 0). In this case, the phase evolves linearly at a rate depending on
the energy difference

φ(t) ≈
(
ε

~
+
UN

~
z̄

)
t. (2.208)

It contains both the difference in zero-point energy between the wells and differential
terms due to interactions.

2.2.5.4. Improved two-mode model

In the derivation of the Hamiltonian of the BJJ in the two-mode approximation, we have
neglected the “mixed terms” involving overlap integrals between the two modes of order
higher than one I(1,3), I(3,1) and I(2,2). It has allowed us deriving a simple two-mode
Bose Hubbard Hamiltonian where the strength of the tunnel coupling J and the on-site
interaction energy U are expressed as integrals of the wavefunctions of the two modes.
For static orbitals, these two parameters are constant and do not depend on the state
of the BJJ.
Retaining all the terms in the two-mode expansion, D. Ananikian and T. Bergeman de-
rived a refined version of the mean-field two-mode model, often refereed to as “improved
two-mode model” (I2MM) [8]. It contains corrections from the standard two-mode model
(S2MM). In particular, the coupling terms responsible for the transfer of atoms between
the two mode becomes explicitly dependent on the time-dependent occupation of the
two orbitals and read

JI2MM,L =
∆µ

2
− ∆γ

4
|ψR(t)|2 − Cψ∗R(t)ψL(t) (2.209)

(similar expression for JI2MM,R) where ∆µ is the chemical potential difference between
the ground and the first excited GPE eigenstate in the potential, γ and C are time-
independent factors involving integrals of the ground and first excited state wavefunc-
tions and i = L,R [8]. The complex numbers ψi(t) represent the occupation of the two
modes and a linked to the total mean-field wave function through

ψ(t) =
√
N [ψL(t)φL(~r) + ψR(t)φR(~r)] . (2.210)

Although it relies on the assumption of two static orbitals, the I2MM turns out to repro-
duce the predictions of the full multimode mean-field dynamics (GPE) much more accu-
rately than the S2MM. Figure 2.19 shows for example a comparison between the Joseph-
son oscillation frequency in different double wells (labeled by the parameter RFAmp)
computed with the standard two-mode model, the improved two-mode model as well
as the one-dimensional GPE in the transverse potential and the 3D GPE. In the rest
of this manuscript, we have been mostly using the standard version of the two-model
model, because it yields much insight into the interplay between tunneling and interac-
tions. However, when quantitative predictions are needed, the I2MM often gives reliable
results.
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Figure 2.19.: Josephson oscillation frequency in different double wells Comparison between
measured Josephson oscillation frequencies in different double wells (data of Fig. 5.2) and the frequencies
computed using the standard two-mode model (S2MM), the improved two-mode model (I2MM), a 1D
GPE simulation in a transverse cut of the potential and a full 3D GPE simulation in the double-well
potential. The parameter RFAmp represents the intensity of the splitting (a higher value means a weaker
tunneling and thus a lower Josephson oscillation frequency)

2.3. Conclusion of the theoretical part

In the first part of this chapter, we have reviewed some basic concepts of Bose-Einstein
condensation and sketched the framework for the description of a system of interacting
bosons. We have applied the GPE to give a mean-field description of our elongated
condensates in the ground state. The main result is that, for our typical parameters,
the cloud is well within the 1D Thomas-Fermi regime. It implies that while interactions
determine the longitudinal shape of the condensate, transversely, the system is close to
its non-interacting ground state. Aspect ratio of the order of several hundreds allow
us very often to restrict the dynamics of the BEC during the experimentally relevant
timescales to one or two dimensions.

Interestingly, although interactions appear transversely as a perturbative term, we have
seen that not only they are a key feature to understand the physics of the condensate in
a double well, but very often they drive the evolution of the many-body wavefunction.

In the second part of this chapter, we have seen that the state of a condensate in a
double-well potential can be described in a two-mode approximation, assuming that
its wavefunction can only occupy two static spatial modes φL(~r) and φR(~r). In the
formalism of second quantization, this approximation allows restricting the system to a
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N + 1-dimensional Hilbert space in which all observables can be computed exactly. In
particular, the quantities n (half number difference) and φ (relative phase) appear like
two natural conjugate observables defining the many-body state of the BJJ. In fact, care
has to be given to the exact definition of φ, and it is generally preferable to work instead
with the coherence factor.
We have seen that within this approximation, the many-body problem could be solved
exactly. In particular, the two-mode Bose Hubbard Hamiltonian can be diagonalized,
yielding the eigenstates of the BJJ and allowing to compute the time-evolution of any
initial state. An important feature of the symmetric BJJ with repulsive interactions
is that its ground state is always number- and spin- squeezed. We have seen that the
2MM can be recast in a collective spin formalism which illustrates more precisely the
number-phase uncertainty and turns out to be particularly adapted for interferometry.
In the limit of large atom numbers, and provided the number imbalance is sufficiently
small, it is possible to derive a mean-field picture in the Josephson regime which allows
gaining insight into both the equilibrium properties and the dynamics of the BJJ.
However, it is crucial to keep in mind that by writing the state of the BEC as a time-
dependent superposition of the two static “orbitals” φL(~r) and φR(~r), we ignore its
spatial dynamics. In fact, the motion of the wavefunction is absorbed in the time-
evolution of the amplitudes of the two static modes. This model, which is very powerful
to describe the tunneling dynamics of the BJJ, cannot capture its coupling to the spatial
degree of freedom. This is true both for the external BJJ, where the 2MM ignores the
motion of the condensate in the double well [151], as for the internal BJJ, where it for
example fails to describe the demixing dynamics observed in superpositions of internal
states [11]. In chapter 5, we will present observations which clearly go beyond the
two-mode approximation, and discuss extensions to the theoretical models.



3. Experimental setup and techniques

Most of the experiments presented in this thesis have been performed on the Vienna
atom chip setup internally labeled as “Rb2”. The current setup has been developed in
Heidelberg starting from 2002 and moved, rebuilt and extended in Vienna from 2006.
The first section will be devoted to a brief description of the apparatus. The second
section will focus on the techniques used to create, control and characterize magnetic
double-well potentials on our atom chip setup. The last section will present the imaging
systems used to probe the atoms.

3.1. Experimental setup
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Figure 3.1.: Overview pictures of the Rb2 setup. Adapted from from Ref. [30]. Left: front
view, right: side view. a: science area, surrounded by Helmholtz coil pairs, b: chip mounting flange, c:
Ti-sublimation pump, d: LIAD viewport, e: cluster flange with vacuum valve and ion gauge, f (behind
panel): ion getter pump, g: NEG pump, h: light sheet illumination optics, j: light sheet objective
(facing upwards), k: various fiber couplers for optical pumping beams, m: fiber coupler for absorption
imaging, n (behind panel): absorption imaging camera. Inset: science area (octagon) with viewports
and dispenser current feedthrough (left).

As in most BEC experiments, a different atomic sample (a cold thermal cloud or a Bose-
Einstein condensate) is prepared at each experimental cycle, before it is manipulated
and eventually released and destructively imaged. A Magneto Optical Trap (MOT) is
used to trap Rubidium atoms from the background gas. The atoms are optically cooled



62 Experimental setup and techniques

down by an optical molasses an then optically pumped and confined in a magnetic Ioffe-
Pritchard-type trap created by a macroscopic copper structures behind the atom chip.
After a first step of radio-frequency evaporative cooling, the atoms are transferred into
the actual chip trap and further cooled down. Eventually, the condensate is released from
the trap and imaged in time of flight (tof), either by an absorption or a fluorescence
imaging system. Each experimental cycle of the Rb2 machine lasts about 37 seconds,
including 18 seconds in the MOT and 10 seconds of cooling and trapping in the the two
magnetic traps. The aim of this section is to present the main steps of the experimental
cycle and the hardware used to realize them. Figure 3.1 shows an overview of the Rb2
setup.
The status of the experiment, as presented in this thesis, shows little difference to that
described in the previous theses of the students who worked on the experiment, in
particular the PhD thesis of Robert Bücker [30] (2013). The following sections will
briefly recapitulate the most important features of our setup, with emphasis on the
techniques used in the experiments presented in this thesis. More specific information
can be found in the PhD and diploma theses of the students who worked on the Rb2
experiment in Heidelberg and Vienna, as well as in the publications of the Rb2 team:

• initial design and general aspects of atom chip experiments : P. Krüger [146], S.
Wildermuth [255], H. Gimpel [86], C. Becker [17], S. Haupt [117] and S. Hoffer-
berth [121]

• radio-frequency dressed potentials, in particular double wells: T. Schumm [221],
S. Hofferberth [122], T. Betz [20] and Refs. [21, 34, 33, 19]

• chip manufacturing and characterization : S. Groth [99], S. Manz [164] and
Ref. [245]

• upgrades performed after the move to Vienna : S. Manz [164], T. Betz [20], R.
Bücker [30, 29]

• imaging systems : R. Bücker [29, 30] and Refs. [31, 163, 185].

• micro-wave and radio-frequency systems : C. Koller [145], T. Plisson [198].

• experiment control : M. Bradjic [26], W. Rohringer [208] and Ref. [209]

3.1.1. Vacuum chamber and Rubidium source

The experiments take place in a single stainless steel ultrahigh vacuum chamber. It
contains the atom chip and its mounting, which is suspended by a large vacuum flange
at the top of the vessel. The vacuum pumps (an ion pump1, a passive non-evaporative
getter pump2 and a Titanium sublimation pump (TSP), the filaments of which are heated
every few weeks) are mounted in the chamber on dedicated flanges. The chip is located

1Varian StarCell, 500L/s
2SAES Getters
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in the lower half of the chamber and is surrounded by an octagonal vessel equipped with
anti-reflection coated viewports (≥ 1 inch clear aperture diameter) on seven of its faces,
providing optical access for the MOT, optical pumping and imaging beams, as well as
the Rubidium dispensers on the eighth face. Another dispenser is placed directly behind
a viewport to be used as a Light Induced Desorption source (LIAD, not implemented
yet). The bottom flange is a large viewport used for two of the MOT beams as well as
the fluorescence imaging.
On the one hand, experiments with BECs require a low background pressure (of the
order of 10−11 mbars) to ensure a good lifetime, but on the other hand, a background
pressure of 10−9 mbars is necessary to load the MOT from the ambient Rb vapor. This
means that the pressure changes by two order of magnitude during each experimental
cycle. This is achieved by pulsing the current in the dispensers for about 17 seconds
at the beginning of each cycle to desorb gaseous Rb. The MOT is held for another
∼ 1.5 s with dispenser off to allow the pumps to capture the remaining hot background
gas before the rest of the cooling sequence starts.

3.1.2. External coils

Coils Uniform magnetic fields are required throughout the sequence. They are created
by six pairs of coils located outside the vacuum chamber. For each spatial direction, each
of the two pairs is operated close to Helmholtz configuration to produce a homogeneous
magnetic field close to the center, but with opposite orientation, labeled as Big and
Small Bias field in the horizontal x direction, Big and Small Ioffe field in the horizontal
z direction and Big and Small Up-Down field in the vertical y direction (see Fig. 3.1 for
the orientation of the axes). For each direction, one pair of coils is made of thick copper
wires (Big-) to create fields up to tens3 of Gauss, while the other pair (Small-) is made
of thinner wires to provide smaller fields of a few G. This configuration with two sets
of coils is advantageous when changes in field magnitude and direction are needed on
a timescale which cannot be met by the current sources. It also allows using unipolar
current supplies and matching the current and voltage ranges to the requirements of
each coil.

Current sources The current sources4 are operated in current-stabilized mode to out-
put a constant current and avoid long-term thermal drift. The current target is set
by an analog control voltage from the sequencer. The only exception is the offset field
providing the trap bottom in the final chip trap (small Ioffe field, see section 3.2.1.2). In
particular for extremely cold samples obtained by radio-frequency evaporative cooling
close to the trap bottom, the stability of the small Ioffe field determines the reproducibil-
ity of the BEC production. It is also crucial for the stability of the dressed double wells,
because fluctuations of the small Ioffe field translate into fluctuations of the RF dressing

3Fields magnitude larger than 100 G should be achievable but not required in the current experimental
cyclee.

4HP/Agilent 65xx series, excepted for the small Up-Down field, where a bipolar supply (High-Finesse
BCS-5/5) is used
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detuning (see section 3.2.2.2), and hence of the shape of the potential. Particularly in
the kHz regime (of the order of the transverse trapping frequency), noise at the mG level
has to be suppressed, because it would result in a technical heating of the BEC.

To take advantage of the fact that the supply for the small Ioffe turns out to be less
noisy in controlled-voltage mode, it is voltage-stabilized on a 1 Ohm precision resistor5

(temperature coefficient < 1 ppm/K) connected in series with the coil, yielding a relative
current stability better than 10−5 at 0.5 G. Details of the small Ioffe stabilization setup
and noise characteristics can be found in R. Bücker’s PhD thesis [30].

Switches Fast switching (< 0.1 ms) is achieved using home-made field-effect transistor
(FET) switches to stand currents up to 60 A and induced voltages uo to 400 V. Still, the
coils switches are among the devices which break more frequently on the experiment.

3.1.3. Chip mounting and copper structure

Confinement wires

Z wire

U/large Z wire

ba

c

Figure 3.2.: The atom chip and its mounting. Adapted from Ref. [30]. (a) Chip mounting. At
the bottom, the vacuum flange with feedthroughs for high-current copper rods and chip wires is seen.
The steel tube in the center can be used for water cooling. Near the top, the copper rods and chip
connection pins are guided by a ceramic (Shapal) block. When mounted, the copper structrue hangs
upside down. (b) Atom chip, glued to ceramic mounting block. Near the edges of the atom chip, bond
wires between connection pins and pads on the chip are seen. (c) Copper structures underneath the
atom chip. Z-, U- and outer confinement wires are traced in green, blue, and red, respectively.

5Isabellenhütte RUG-Z
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The chip mounting (see Fig. 3.2, a) hangs upside down in the vacuum chamber so that
the atoms can levitate below the chip surface (see Fig. 3.2, b), allowing to perform tof
measurements. The chip mounting consists of 10 copper rods and ceramic spacers, as
well as ”macroscopic” copper wires (∼ 1 mm thickness) embedded in a ceramic block
ensuring electrical insulation as well as heat conductivity. These copper wires form an
additional layer of current carrying structures approx. 1 mm behind the chip surface in
order to produce non-homogenous magnetic fields (see Fig. 3.2, c):

• a broad H-shaped structure, electrically connected as a U wire, is used together
with the big Bias field and the big Up-Down field to create the MOT quadrupole
approximately 1 cm below the chip surface, in a region where the MOT beams
intersect [75, 256, 17]. In contrast to the standard MOT configuration with three
pairs of counterpropagating beams, the mirror MOT is created by replacing two
beams by reflection of the beams impinging on the surface of the atom chip, tilting
the beam configuration by 45◦ with respect to the chip surface [256]. Scanning
the magnitude of the two external fields allows changing the position of the MOT
as well as the orientation of the quadrupole axes, in order to match the beam
configuration. It is often necessary to optimize iteratively these parameters, for
example to ensure that the MOT is not located in the shadow of one of the chip
wire.

Besides, the copper U is also used as a radio-frequency antenna for evaporative
cooling.

• a Z-shaped wire is used together with the big Bias field and the small Ioffe field
to create a Ioffe-Pritchard magnetic trap [75, 107, 218]. After the molasses phase,
the atoms are optically pumped into the magnetically trappable state F = 1,
mF = −1 (see 3.2.1.1) and transferred into the Z trap located a few mm below the
chip surface, where the RF evaporative cooling starts.

• any of the two I shaped wires perpendicular to the long axis of the chip trap can
be used to create a longitudinal gradient for Stern and Gerlach separation of the
magnetic spin states during tof (see section 4.2).

The copper mounting is connected to the top vacuum flange which is equipped with
electrical high current feedthroughs (up to 60A) for the macroscopic copper wires, as
well as pins for the Kapton wires connected to the atom chip ( I ≤ 1 A).

3.1.4. Atom chip

The chip currently used on the Rb2 setup has been designed and manufactured by
S. Groth in the group of I. Bar-Joseph at the Weizmann institute [246]. Details of
the manufacturing can be found in Ref. [246] and in the PhD thesis of S. Groth [99],
characterization in the PhD thesis of S. Manz [164]. It consists of a double-layer gold
surface on a silicon substrate (see Fig. 3.3). The current-carrying structures are gold
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50 µm

200 nm

Figure 3.4.: (a) Atom chip layout. The blue and green wires going from left to right are
fabricated in the first layer. The second layer contains the horizontal wires
(gray). The light gray area is coated with gold as well, compare fig. 3.1 b. (b)
Wire in the second layer climbing up a Polyimide pad. (c) SEM image of the
chip center showing the six wires in the second layer. The small structures
below are fabricated in the very first step with e-beam lithography.

for electrical insulation.
The wires on the other hand are created by gold lithography. Other materials as sil-
ver and copper might have a lower resistivity and better heat conductivity, but gold
showed to build wires with clean edges and (as noble metal) is less affected by rest gas
during fabrication and later in the vacuum chamber. Apart from the wires, the large
area chip surface is coated with gold as well and can be used as mirror. The chip build
into our experiment is apart from details in the layout very similar to the one described
in ref. [85]. Details of the fabrication process, choice of materials and properties can be
found in ref. [35]. Fabrication and layout will be described here only briefly.

In the first step of fabrication, a field of 600 x 600 µm was filled with small wire struc-
tures from 2 µm to 20 µm in the center of the chip. To obtain such small structures
- the smallest grooves are only 300nm wide - a new techniques had to be employed.
Compared to standard UV lithography, an electron beam (e-beam) is applied to struc-
ture the wires. In the second step all wires of the ground layer, the connection pads

Figure 3.3.: Layout and of the Rb2 chip. Adapted from Ref. [164]. Left: The blue and green
wires (perpendicular to the long axis of the trap) belong to the first layer (deepest with respect to the
chip surface). The black and gray wires (parallel to the long axis of the trap) belong to the second
layer (closest to the surface). The light gray area is coated with gold as well, and serves as a mirror
for the MOT beams. Top Right: Wire in the second layer climbing up an insulation pad. Bottom
right: electron microscope image of the central part of the chip showing six wires in the second layer,
in particular the main trapping wire (80 µm wide) and the two wires used for the RF dressing (10 µm
wide).

wires on two levels separated by an insulating layer to allow wire crossings. The rest of
the surface is coated with gold and serves as a mirror for the MOT. A simplified sketch
of the layout can be found in section 3.2.

Currents up to 1A (depending on the wires) are sent through connection pads placed
all around the chip, excepted in the middle of each edge to ensure good optical access.
Each pad is bonded with a copper pin connected to an electrical feedthrough on the
base flange. The atom chip is directly glued onto the mounting. The heat produced by
current flowing in the microwires is evacuated through the substrate into the mounting,
which is water cooled.

Despite insulation pads at the position of the wire crossing, it turned out that some of
the wires were electrically in contact. To avoid current leaks, the current driver for each
wire is floating and connected to an independent set of car batteries (±12 V) to supply
the wire and the current source. Great care has to be taken to avoid grounding of the
wire. In the long run, the heat dissipated by the microwires slightly bends the chip
surface, which affects the position of the mirror MOT and the molasses. To operate the
experiment in steady state, current is always sent in the wires during the same amount
of time at each experimental cycle, implying a buffer time at the end of the sequence.
When used continuously, the car batteries have to be reloaded every week.
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3.1.5. Optics and laser system
3. Experimental implementation
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Figure 3.5.: Hyperfine levels of the Rubidium-87 D2 line. Red lines indicate the tran-
sitions addressed by the different laser beam paths. (updated version of fig. 3.3 in
ref. [216]).

depicts the frequencies of the beam paths. In sec. 3.2.3 the application of each of the
beams will be explained.

3.1.4. External fields

During all phases of the experimental sequence, homogeneous offset fields are needed
to complement the inhomogenoeus fields created by the chip and copper structure
wires. Those are provided by external Helmholtz coil pairs.

Coil setup Around the science area of the chamber, two complete sets of coil pairs
along each spatial direction are mounted (amounting to 12 coils in total, see fig. 3.1).
One of those sets is fabricated from thick (cross sections of tens of mm2) wires and
allows to create homogeneous offset fields up to some tens of Gauss. The second set
uses thin wires and is used to provide small offset fields up to a few Gauss. Having two
sets of coils is convenient especially during points in the experiment cycle, where fast
switching between field configuration (both in magnitude and direction) are required
on a time scale that cannot be met by the output regulation of the current sources,
given the high inductive load. Also, it allows to use unipolar supplies,5 and a good
matching of their voltage and current ranges to the requirement for the respective coil.
A fast switch-off time of the coils (typically below 0.1ms) is achieved using additional
solid-state (FET) switches [222], which can stand up to 60A of continuous current,
and induced voltages up to 400V during rapid switch-off.

5HP/Agilent 65xx series, with the exception of the small vertical coil, where a bipolar supply (High-
Finesse BCS-5/5) is still advantageous.

36

Figure 3.4.: Hyperfine structure and lasers. Adapted from Ref. [30]. Hyperfine structure of the
D2 line of Rubidium 87 and laser frequencies used on the experiment.

Lasers are used for the MOT, repumping, optical pumping and imaging of the atoms (see
Fig. 3.4). One laser source is used for each of the transitions between the two hyperfine
states F = 1 and 2 of the 87Rb electronic ground state (52S1/2) and the excited state
52P3/2 (D2 line). Their wavelength is approximately 780.2 nm (the frequencies of the
lasers differ by ν ≈ 6.85 GHz). Both lasers are external-cavity diode lasers (ECDL).
Each is locked on the corresponding line (or crossover line) of a Rb vapor in a cell at room
temperature through a Doppler-free saturated spectroscopy scheme (the description of
a locking system similar to the one used on our experiment can be found in the diploma
thesis of M. Wilzbach [257]). The structure of the laser system is sketched on Fig. 3.5.

Cooler laser The cooler laser6 is mounted in a Master Oscillator Power Amplifier
(MOPA) configuration. The Tappered Amplifier (TA) produces up to 1W optical power
which is launched into a single-mode, polarization-maintaining (SMPM) fiber. About
90 % of the optical power at the output of the fiber is transferred to a second fiber which
outputs about 240 mW. Most of it is used for imaging, allowing to tune the intensity of
the absorption imaging system up to 8 times the saturation intensity (see section ??).
The rest (a few mW) is used to drive the transition7 F = 2, F ′ = 2. It has been used
in the past to optically pump atoms into the magnetically trapped (F = 2,mF = 2)

6Toptical Photonics TA100
7The notation F = n denotes a hyperfine state of the ground state while F ′ = m denotes a hyperfine

state of the excited state.
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Figure 3.5.: Laser setup Updated from Ref. [30]. Red and orange lines indicate F = 2 (cooler) and
F = 1 (repumper) beam paths, respectively. The greyed-out parts belong to the former longitudinal
imaging, which is not in use currently. The upper part of the drawing shows the laser spectroscopy
setups for the F = 1 (left) and F = 2 (right) lasers, which are placed in a separate box to provide
better thermal and acoustic isolation from the environment. The F = 2 laser uses a dual spectroscopy
setup to simultaneously provide a normal Doppler-free spectroscopy and an additional path for Pound-
Drever-Hall locking using an electro-optical modulator (EOM) for sideband modulation. Both lasers are
coupled into single-mode polarization-maintaining fibers and brought to the BOOSTA amplifier (right)
and to the AOM and beam distribution setup shown in the lower part. Finally the beams are guided
to their destinations by free-field beam lines (MOT) or single-mode fibers (imaging, optical pumping).

state. Currently, since we trap the atoms in (F = 1,mF = −1), we only employ this line
to “repump” atoms from the F = 2 state into F = 1 after the molasse phase, before
optically pumping them with the F = 1 ↔ F ′ = 1 transition. The remaining output
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power of the TA (∼ 40 mW) is used to seed a second laser amplifier8, which is also
coupled to a SMPM fiber (about 600 mW available optical power at the output of the
fiber). It is used exclusively for the MOT beams.

Repumper Since repumping and optical pumping on the other hand do not require
large intensities, the repumper9 consists of a single ECDL coupled into a SMPM fibre,
yielding an output power of 40 mW. It is used for standard repumping during the MOT
+ molasse phase as well as to bring the atoms into the imaging transition. A small
fraction of the light is used for the optical pumping into (F = 1,mF = −1).

Frequency shifting The hyperfine splittings in the excited state of 87Rb are small
enough (tens of MHz) to be addressed by Acousto-Optical Modulators (AOM) down-
stream in the beam paths (see Fig. 3.5) and in the same time large enough to be well-
resolved. The cooler (MOT + molasses) beams, the detuning of which need to be dy-
namically changed during the cycle, as well as the imaging beam, are frequency-shifted
by a double-pass AOMs. Typical detunings (with respect to the F = 2↔ F ′ = 3 tran-
sition) lie between -15 MHz (MOT) and -70 MHz (molasse). The other beams are sent
through single-pass AOMs and are frequency shifted by a fixed amount to be resonant
with the corresponding transitions.

3.1.6. Radio-frequency evaporative cooling

Radio-frequency cooling electronics The radio-frequency (rf) source used for evap-
orative cooling is a digital arbitrary waveform generator10. The rf field frequency has
to range from several MHz down to the Larmor frequency at the center of the trap
(typically a few hundred kHz). This is achieved in Direct Digital Synthesizer (DDS)
mode by concatenating waveforms consisting of a single period of a cosine wave at dif-
ferent frequencies spanning the desired range. This way, no phase jump occurs, but
the frequency changes by discrete steps. The size of the frequency steps is chosen to
decrease exponentially as the frequency approaches the trap bottom. While loading all
the wave forms into the memory of the signal generator can take several minutes, the
instruction sequence sent at each experimental sequence only contains the order of the
basic waveforms and the number of times they have to be looped, and can be uploaded
in a few s, during the MOT loading phase. This way, arbitrary frequency ramps can be
produced and optimized in order to improve the cooling process.

The rf field is radiated onto the atoms through the macroscopic copper U-wire on the
chip mounting (see Fig. 3.2 (c)). The waveform generator produces a constant-amplitude
voltage and is not current-stabilized.

8Toptica Photonics BoosTA
9Toptica Photonics DL100

10Tabor Electronics, WonderWave Series
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Cooling sequence Forced rf evaporative cooling starts after the atoms have been op-
tically pumped to the (F = 1, mF = −1) state and loaded into the Z trap. After the
first ramp (3 s), the Z trap is compressed and brought closer to the chip. Approximately
2 million atoms at T ∼ 50 mK are transferred into the chip trap. Further evaporation
is performed in the chip trap for another 3 s, before the chip trap is compressed and
brought to its final position ∼ 60 µm below the surface of the chip. A final evaporation
ramp (2 s) is performed to reach degeneracy and produce a Bose-Einstein condensate
with typically a few thousand atoms.

Other oscillating fields Note that besides rf evaporative cooling, time-varying mag-
netic fields in the kHz to GHz frequency range are used on the Rb2 setup for rf dressing of
the potential (∼ 900 kHz), controlled displacement of the trap (∼ 3 kHz) and addressing
of the ground state hyperfine transition (6.834 GHz). While the rf dressing electronics
will be addressed in detail in 3.2.2, a description of the electronics for the trap position
modulation (”shaking”) can be found in R. Bücker’s PhD thesis [30] and Refs. [32, 248].
A description and a characterization of the rf/microwave setup which has been used in
particular to address the clock states F = 1,mF = −1 and F = 2,mF = 1 can be found
in C. Koller’s PhD thesis [145] and in T. Plisson’s Master thesis [198].

3.1.7. Computer control and acquisition

The sequencer11 is the spinal cord of the experiment. It is a stand-alone, real-time com-
puter controlling 32 analog voltage channels (16 bits, ±10 V) and 64 digital Transistor-
Transistor Logic (TTL) channels (0-5 V) used a triggers. The whole experimental cycle
is coded as a matrix describing a sequence of values for each channel — in a similar
fashion as a musical score [216] — with a minimal time step size of 25 µs. The sequence
is transmitted from a dedicated computer through an link at the beginning of each cycle.
Programming the sequence occurs through a Matlab interface which is also used to ad-
dress devices which are not controlled by the sequencer, including the imaging cameras
and the rf sources. The acquisition also relies on a Matlab interface for the read-out
of analog control probes12, the read-out and the storage of camera pictures and the
real time preprocessing of the data. Informations are exchanged between the computers
(currently 6 different computers + the sequencer) through a local network by shared
Windows drives and TCP/UDP connections.

11Jäger ADwin Pro
12National Instruments USB-6218
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3.2. Trapping atoms magnetically with an atom chip

In this section, we will present the techniques used to trap atoms with magnetic fields
on our atom chip setup. In particular, we will describe how the technique of rf dressing
can be employed to create a tunable double-well potential.

3.2.1. Magnetic trapping with static fields

3.2.1.1. Magnetic trapping of neutral atoms

Magnetic trapping of neutral atoms relies on the local interaction between the magnetic
field and the magnetic moment of the atoms. When the magnetic field is sufficiently weak
so that the Zeeman shift is small compared to the hyperfine splitting (see Ref. [235] for

the 87Rb data), the total angular momentum ~F is a good quantum number to describe
the coupling of an atom to the field and the interaction Hamiltonian reads

H = ~µF · ~B. (3.1)

In the 87Rb ground state (52S1/2), the hyperfine splitting between F = 1 and F = 2 is
approximately 6.8 GHz. For typical magnetic fields of a few G, the Zeeman shift is of
the order of a few MHz. Furthermore, if the Larmor angular frequency ωL = gFµB| ~B|/h,
where µB is the Bohr magneton, is large compared to the rate at which the field probed
by the atoms changes

|∂ ~B/∂t| < ωL| ~B|, (3.2)

the magnetic moment aligns adiabatically to the local magnetic field, so that the inter-
action takes the form of a potential

Vmag(~r) = mFgFµB| ~B (~r) |. (3.3)

In the F = 1 hyperfine state, the Landé factor gF ≈ −1/2. Since Wing’s theorem forbids
the existence of a local field maximum in free space [50], the only Zeeman substate of
F = 1 which can be trapped is mF = −1. The conversion factor between potential
energy and field magnitude is κ ≡ |gF|µB = h× 0.7 MHz/G. Note that atoms in F = 2,
mF = 1, 2 can also be trapped. The choice of F = 1 on the Rb2 setup was partly
motivated by observations showing that the three-body loss rate in a BEC was higher
for F = 2 [37, 231]. Experiments coupling the two clock states (F = 1, mF = −1 ;
F = 2, mF = 1), which experience the same potential, with a two-photon (microwave +
rf) transition were also performed on the Rb2 setup [198].

For an atom oscillating in a trap at the angular frequency ω⊥ (amplitude of the order
of a⊥ =

√
~/mω⊥) around the potential minimum characterized by the Larmor angular

frequency ωL, the adiabaticity criterion (3.2) imposes ω⊥ � ωL.
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Figure 3.6.: Chip wires layout and schematics. Left: Layout of the chip wires (at scale). Red:
main trapping wire (width: 80 µm), flanked by the two RF wires (blue, width: 10 µm). Green: the
two H-wires responsible for the longitudinal confinement (width: 500 µm). The dimple wire (width:
18 µm), located at 290 µm from the origin, can be used to locally deform the longitudinal potential
for measurements of ωz. The orange arrows indicate the orientation of the DC currents. The purple
arrows indicate the orientation of the uniform external fields. The trap is located close to the origin.
The typical length (in the z direction ) of a BEC is 50 µm. The height of the wires (in y direction) is
about 1 µm Right. Schematics of the configuration to create a double well. The DC current in the
main trapping wire, together with the Bias field ~Bb, creates a magnetic quadrupole ∼ 60 µm below the
chip. The external Ioffe field ~B0 completes the Ioffe-Pritchard configuration. AC currents in the two
RF wires located at 55 µm on each side of the main trapping wire create a linearly polarized RF field.
Its orientation (angle α) can be tuned by changing the current balance and the relative phase between
the RF wires. They produce a tunable double well oriented along an axis tilted by the angle −α with
respect to the horizontal direction (red spots).

3.2.1.2. Static trap

A few years after the first demonstration of atom trapping with a free-standing wire [217],
microfabricated structures were developed to trap atoms [203, 76], before Bose-Einstein
condensation on an atom chip was achieved in 2001 [113, 182]. Atom chips can produce
strong confinements in the vicinity of the current carrying microstructures, while offering
a high degree of control and robustness. Besides the review by R. Folman et al. [75], the
book edited by J. Reichel and V. Vuletic [204] gives a comprehensive overview on atom
chips and their applications for cold atoms, ions and molecules.

The Vienna Rb2 setup implements the so-called side guide trap [75] geometry to create
a single elongated harmonic potential a few tenths of microns below the chip surface.
Figure 3.6 sketches the layout of the chip structures used to produce the trapping po-
tential. The following sections describe how the confinement is obtained and discuss the
details of the implementation.

Transverse confinement An elongated magnetic guide for atoms can be created using
a DC current I in a single microwire in combination with a uniform bias field ~Bb = Bbêx
orthogonal to the wire. In the following, we always assume Bb > 0 and the current I
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Figure 3.7.: Static transverse confinement. Left. The uniform bias field (blue) and the field
created by the trapping wire (green) cancel each other in only one point, defining the center of the
guide (black dot). The direction of the current in the trapping wire is indicated by the cross. Right.
Field magnitude (colorscale) and field lines using the infinite wire approximation. In the vicinity of
the point of zero-field, the magnetic field can be approximated by a quadrupole field tilted by 45◦ with
respect to the (x, y) axis (red lines).

oriented in the same direction as z. In the plane (x, y) orthogonal to the wire, both
fields cancel each other in only one point (see Fig. 3.7, left panel). This defines a line of
zero-magnetic field parallel to the wire, at a distance

d =
µ0I

2πBb

(3.4)

(we have assumed a infinitely long and thin trapping wire). For typical parameters
Bb = 29.5 G and I = 1 A, we find d = 68 µm. Expanding the field to the first order in
the vicinity of the field minimum yields the quadrupole configuration (the origin of the
coordinate system is chosen at the point where the magnetic field vanishes)

Bx = −Gr sin θ = −Gy,
By = −Gr cos θ = −Gx, (3.5)

with the magnetic gradient at the origin

G ≡
∣∣∣∇ ~B

∣∣∣ =
Bb

d
(3.6)

(see Fig. 3.7, right panel). This elongated guide does not allow confining atoms efficiently
because close to the line of zero-field, they have a high probability to undergo spin flips
into non-trapped states [18]. The guide hence has to be plugged by adding a constant
offset field B0 in z direction (Ioffe field). In the vicinity of the potential minimum, the
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potential reads

V⊥ (x, y) = V0 +
1

2
mω2

⊥
(
x2 + y2

)
(3.7)

with

V0 = κB0 (3.8)

ω⊥ =

√
κ

m

G√
B0

=

√
κ

m

2πB2
b

µ0I
√
B0

∝ B2
b

I
√
B0

. (3.9)

For B0 = 1.17 G, the Larmor frequency at the trap bottom13 V0/h ≈ 820 kHz and
ω⊥ ≈ 2π×3.5 kHz, satisfying the adiabaticity criterion (3.2). Note that atom chips allow
much higher field gradients, and therefore higher trapping frequencies than magnetic
trapping geometries using only external coils. In practice, the transverse confinement is
varied by changing the Bias field, which also shift the position of the trap.

Longitudinal confinement The geometry presented so far creates a cylindrical guide
with an isotropic harmonic confinement in the (x, y) plane. To create a confinement
in all three directions, the translational invariance along z is broken by a pair of wires
(H-wires) located at a distance L/2 = 1 mm on each side of the main trapping wire (see
Fig. 3.6) and orthogonal to the main trapping wire. When a current Ih is sent in each
wire (both with the same orientation), a field oriented along z is produced, creating a
harmonic potential Vz (z) = VTB + 1

2
mω2

zz
2 with

VTB = κ

(
B0 +

4dµ0Ih
πL2

)
, (3.10)

ωz =

√
κ

m

4µ0

πL2

Ih√
B0

∝ Ih√
B0

, (3.11)

provided z, d� L. Since L is much larger than the other length scales, the longitudinal
potential is very shallow. The resulting 3D trap is in good approximation an elongated
harmonic potential. For a typical current Ih = 0.5 A, the correction to the trap bottom
due to the H-wires is of the order of 10% and the expected longitudinal frequency is
approximately ωz ≈ 2π × 15 Hz, yielding an aspect ratio ω⊥/ωz ∼ 200. In practice,
however, it is difficult to control the longitudinal frequency close to the chip, as will be
explained in the next section.

3.2.1.3. Realistic static trap

Finite size wires The model of infinitely long and thin wires presented above gives fair
estimates of the trap frequencies and of the trap bottom. In practice, the finite size of
the wires cannot be neglected, in particular when d becomes comparable to the width

13Simply referred to as: the trap bottom.
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and height of the wires. The dimensions of the wires are given in the caption of Fig. 3.6.
In Ref. [122], an analytical expression is given for the field produced by a rectangular
wire in three dimensions. We use it to model the chip layout and compute the static
field. The parameters of the computation (fields, currents) are calibrated with measured
trap parameters (see section 3.2.3). The trap frequencies along the three eigen-axes of
the potential are computed by diagonalizing its Hessian matrix at the center of the trap.
The trap frequency is proportional to the field gradient as the position of the trap. As
explained in Ref. [220], for a square wire of width and height a, the gradient of the field
saturates at a value proportional to I/a. The maximal current applicable is limited by
the heat transfer out of the wire, and scales as a3/2 [100], so that the maximal gradient
scales as 1/

√
a, motivating the interest in miniaturized structures.

Gravity The effect of gravity can also be accounted for in the simulations. It is respon-
sible for a shift of the potential minimum downwards (gravitational sag) of the order
of ∆y = g/ω2

⊥ ∼ 30 nm for typical parameters. For comparison, the half-width of the
radial wavefunction is a⊥ ≈ 200 nm.

Corrugation An effect which cannot be easily accounted for is the corrugation of the
longitudinal potential [69, 220, 221, 147]. Bulk inhomogeneities in the wires, as well as
the roughness of the wire surface and edges distort the current flow into directions or-
thogonal to the wire orientation z. This produces a spatially disordered but temporally
constant magnetic field along z, and hence a disordered longitudinal potential V (z).
This effect is particularly deleterious close to the chip, where it causes the longitudinal
fragmentation of cold atomic clouds when their temperature is of the order of the po-
tential roughness (µK), and sets a limit to the highest achievable aspect ratios of chip
traps. For our parameters, corrugation is already dominant in the longitudinal direction,
yielding measured trap frequencies significantly higher than the one computed from the
finite-size-wire simulations. It seems that the condensate forms in a potential dip cre-
ated by the corrugation. Still, the additional field in z direction caused by corrugation
remains negligible compared to the offset Ioffe field, so that the trap bottom is hardly
affected.
It is possible to attenuate the effect of corrugation averaging it out through a rapid
modulation of the wire current [244]. This requires however a trapping geometry based
on microwires only, since the high inductance of external coils forbids modulation in the
kHz range.

3.2.2. Double-well potentials created by radio-frequency dressing

The dressing of the internal states of an atom by a strong laser field has been studied
extensively and is at the foundation of optical trapping techniques [88]. Using strong rf
magnetic fields to couple different internal states of an atom, that experience different
spatial potentials, is at the heart of the concept of rf-dressed adiabatic potentials. The
spatial dependence of the new energy eigenstates (dressed states) emerging from the
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coupling of the bare atomic states to the rf field can be engineered to create new trapping
geometries. A tutorial introduction to rf dressed adiabatic potentials can be found in
the Les Houches summer school lecture notes by H. Perrin [186]

The first rf-dressed adiabatic potentials were proposed in 2001 [263] to realize a 2D
curves sheet at the bottom of a magnetic “shell”-potential, and implemented three years
later [54]. The approach of Ref. [263] was extended by accounting for the vector nature
of the magnetic field to propose various trapping geometries including double wells [155],
ring traps [155, 174] and periodic arrays of microtraps [56].

The most promiment application of radio-frequency dressing has been the realization
of tunable double-well potentials on atom chips. They were used for BEC interferom-
etry [219, 125, 136, 16, 19] and to study the dynamics of a superfluid junction [151].
Elongated rf-dressed double wells served as a playground to study pairs of indepen-
dent [124, 90] or tunnel-coupled [21] 1D quasicondensates. In Ref. [34, 33] and [248],
we used rf-dressing to control the anharmonicity of a single elongated potential in order
to manipulate coherently motional states of a trapped BEC. Very anisotropic dressed
magnetic traps have also been used to study 2D degenerate Bose gases [170].

In section 3.2.2.3, we present the electronics used to radiate the rf fields on the atoms.
In section 3.2.2.1, we describe the coupling of a 87Rb atom to an oscillating magnetic
field. In section 3.2.2.2, we use the rotating wave approximation (RWA) to derive an
approximate expression of the adiabatic potential and show how rf dressing can be used
to create a double-well potential. Eventually, we explain how the potential can be
computed beyond the RWA (Section 3.2.2.4).

3.2.2.1. Coupling of an atom to an oscillating field

Following I. Lesanovsky et al. [155], we describe the coupling of a 87Rb atom in F = 1,
mF = −1 to a combination of a static, spatially varying magnetic field, and a uniform
oscillating RF field

~B = ~Bs (~r) + ~BRF cos (ωt) . (3.12)

Since the coupling term (3.1) is local, the Hamiltonian has to be diagonalized for each
position in space. For an arbitrary point ~r, it is convenient to use a local coordinate
system {x′, y′, z′} such that ~Bs = Bsêz′ and ~BRF = BRF,‖êz′ + BRF,⊥êx′ . In this coor-
dinate system, as a consequence of the adiabaticity hypothesis (3.2), the total angular

momentum ~F is also oriented along z′. It means that only the component of the RF
field which is orthogonal to z′ can couple the different Zeeman states. We introduce the
Rabi frequencies for the static and the oscillating field

Ωs (~r) =
κ

~
Bs, (3.13)

ΩRF (~r) =
κ

~
BRF,⊥. (3.14)
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In the basis of the mF states ({−1, 0, 1}), the wavefunction obeys the time-dependent
Schrödinger equation

i
∂

∂t



c−1(t)
c0(t)
c1(t)


 =




Ωs
ΩRF√

2
cos (ωt) 0

ΩRF√
2

cos (ωt) 0 ΩRF√
2

cos (ωt)

0 ΩRF√
2

cos (ωt) −Ωs






c−1(t)
c0(t)
c1(t)


 . (3.15)

In absence of RF coupling, the stationary solution of (3.15) are the three bare mF states
({−1, 0, 1}) with the corresponding energies {~Ωs, 0,−~Ωs}. The off-diagonal terms mix
the bare states into new states dressed by the RF field, which are solution of Eq. (3.15).

3.2.2.2. Rotating Wave Approximation

The simplest way to solve Eq. (3.15) consists in making the substitution

c−1(t) = c̃−1(t)e−iωt, (3.16)

c0(t) = c̃0(t), (3.17)

c1(t) = c̃1(t)eiωt, (3.18)

which is equivalent to moving to a frame rotating at the frequency of the rf photons.
Provided the rf Rabi frequency ΩRF and the detuning δ (~r) ≡ ω − Ωs are both small
compared to the static Rabi frequency Ωs, the “rapidly oscillating terms” at ∼ 2ω can
be neglected (rotating wave approximation, RWA). This yields the time-independent
Hamiltonian

HRWA,rot.fr. = hbar ·



−δ ΩRF
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√
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ΩRF
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2
√

2
δ


 . (3.19)

The new “dressed” energy levels

V (~r) = m′F~

√
δ2 (~r) +

1

4
Ω2

RF (~r). (3.20)

arising from the coupling of the atom to the magnetic field are found by diagonalizing
the RWA Hamiltonian. Their are labeled by the new quantum number m′F ∈ {−1, 0, 1}.
Inserting the approximate expression for the static field

~Bs (~r) = −Gr (sin θêx + cos θêy) +B0êz, (3.21)

the RWA potential reads, in polar coordinates [155]:

VRWA (r, θ) = m′Fκ

√(
Bs −

~ω
κ

)2

+

(
BRF

2 |Bs|

)2 [
B2

0 +G2r2 (cosα sin θ + sinα cos θ)2],

(3.22)
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Figure 3.8.: Dressed double-well potential within the RWA. All energies are given in kHz, polar
representation in the transverse (x, y) plane (polar radius in µm, polar angle in ◦). Left. Detuning
term. For a negative detuning (ω < Ωs), it simply corresponds to the transversely isotropic parabola of
the static potential. Center. RF Rabi frequency. Blue line: direction of polarization of the RF field
(α = −30◦). The coupling to the RF breaks the polar symmetry by creating a potential barrier oriented
along −α with respect to the y axis. Right. The resulting RWA potential (Eq. (3.22)) exhibits two local
minima along an axis (red line) tilted by an angle −α with respect to the x axis. The origin of energies
is chosen at the minima of the potential. Same parameters as in Section 3.2.1.2 and δ = −2π× 30 kHz
and BRF = 0.85 G.

where α is the angle between the direction of the rf magnetic field and the vertical axis:

~BRF = BRF (− sinαêx + cosαêy) . (3.23)

(see Fig. 3.8).

The static potential is approximately harmonic and transversely isotropic. If the rf am-
plitude is increased (keeping the rf frequency constant), the potential smoothly becomes
anisotropic and flattens along a direction tilted by −α with respect to the x-axis. In
Refs. [34, 33, 248], we took advantage of the anisotropy and anharmonicity induced by
weak rf dressing to single out the two lowest vibrational levels and manipulate non-
classical motional states of a trapped BEC. The axis of splitting (red line in Fig. 3.8)
corresponds to the direction where the quadruopole component of the static magnetic
field is parallel to the rf field [125].

Above a certain critical value Bc of the rf dressing amplitude, a potential hump emerges
at the center of the trap, creating two minima along the splitting axis. If the rf intensity
is further increased, the distance between the minima gets larger while the potential
barrier rises. This geometry hence allow to create a tunable double well controlled by
the amplitude14 of the rf field. In Ref. [155], I. Lesanowsky et al. give useful approximate
expressions for the position ±r0 of the potential minima, the angular trap frequency
ωdw of each well along the splitting axis, the correction to the trap bottom BTB and the

14It is also possible to split the potential by ramping the rf frequency towards the Larmor frequency of
the static trap, as was done for example originally in Ref. [219].
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critical splitting field Bc:

r0 =
1√
2G

√
B2

RF −B2
c , (3.24)

ωdw =

√
κ

mBTB

G2r0

B0

, (3.25)

BTB =
BRF

2

√
1− ~δ0

κB0

, (3.26)

Bc = 2

√
−B0

~δ0

κ
(3.27)

(δ0 ≡ ω−κ/~B0 is the detuning at the minimum of the static trap. For our parameters,
δ0 < 0). Equations (3.24) to (3.27) do not always give accurate quantitative predictions,
but they capture the right dependence on the rf amplitude BRF and the detuning δ0.
Conveniently, the transverse double-well potential can generally be well approximated
by the simple polynomial [125]

VDW = bx2 + dx4. (3.28)

It is important to keep in mind that when tuning the double well with one control
parameter only (in our case the rf dressing amplitude), r0 and ωdw cannot be adjusted
independently. We will see in sections 4.4.1 and 4.6.1 that this sets some constraints on
ensuring adiabatic motion of the condensate in the double well.
It is also interesting to note that Eq. (3.22) allows also to realize a double well with
positive detuning (~ω > κB0). The main difference is that the spatial dependence of the
detuning term has the shape of the bottom of a bottle-of-wine, with a “resonant ring” of
points where the detuning term vanishes (Ωs (~r) = ω). This causes a larger well spacing
than in the negative detuning case, for the same rf amplitude (see Eq. (3.24)), but also
a higher sensitivity of the well position to noise on the Ioffe field. For a full analysis of
the effects of noise on the double well, see the PhD thesis of T. Schumm [221].

3.2.2.3. Implementation

The rf magnetic field is induced by AC currents sent through two wires (width: 10 µm)
parallel to the main trapping wire, located on each side at a distance of l = 55 µm (see
Fig. 3.6, right panel). Peak-to-peak intensities up to ∼ 100 mA can be sent through
each wire, resulting in rf field amplitudes up to ∼ 2.5 G. In first approximation, the
rf field can be considered uniform over the region where the atoms are trapped. Its
polarization can be tuned by varying the relative intensity between both wires as well
as their relative phase

IRF1 = I1 (cosωt) ,

IRF2 = I2 (cosωt+ φ12) , (3.29)

where ω is the angular frequency of the RF (by convention, the amplitudes I1, I2 ≥ 0).
To create double-well potentials with an arbitrary splitting axis in the (x, y) plane, the
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Figure 3.9.: Schematics of the rf electronics. The two rf microwires, with resistance R1,2 ≈ 44 Ω
are connected each to one output of the digital arbitrary waveform generator through a low-pass filter
(LP1,2), a rf switch (MiniCircuits ZX80-DR230-S+) and a 1:1 rf isolation transformer (MiniCircuits
T1-1T) to ensure a floating ground. The rf source is controlled digitally through an Ethernet link and
can be triggered with a TTL signal. Both channels (RF1,2) can be controlled independently. Two low
pass filters (cutoff frequency: 1.9 MHz) are used to suppress higher harmonics of the DDS generator.
The rf switches can also be triggered, bust most of the time the switching on and off was performed
using the rf output. Two alternative current probes (Tektronix CT-6, CP1,2) were used to monitor the
rf currents on an oscilloscope. Note that although the two rf circuits are in principle identical, they
may have different response functions, so that the current balance and the relative phase have to be
adjusted carefully on a common probe.

rf field must be linearly polarized, meaning that φ12 = 0 or π. To rotate the double well
in the (x, y) plane by an angle −α with respect to the horizontlal (x)-axis (see Fig. ??),
~BRF must be rotated by an angle +α with respect to the vertical (y)-axis (see Fig. 3.6,
right panel). To keep the well spacing constant when changing α, the amplitudes I1, I2

and the relative phase φ12 must obey

I1 = I0

∣∣∣∣cosα− sinα

tan β

∣∣∣∣ ,

I1 = I0

∣∣∣∣cosα +
sinα

tan β

∣∣∣∣ ,

φ12 = 0 if α mod [π] ∈ [β, β + π/2] , φ12 = π otherwise. (3.30)

Here tan β = d/l = 42.5◦ and I0 is the amplitude in each wire for a vertical polarization
(α = 0), as required for a horizontal double well: I1 = I2 = I0, φ = π. Note that the
polarization axis can be rotated on [0, 2π] without discontinuity of the current because



3.2 Trapping atoms magnetically with an atom chip 81

each time φ12 jumps between 0 and π, either I1 or I2 is equal to 0.

To achieve full control over amplitudes and phase, each rf wire is connected to a sepa-
rate output of the digital arbitrary waveform generator. Although it can be programmed
to generate arbitrary signals, we used it only to produce sinusoidal signals with time-
dependent amplitudes. Figure 3.9 shows a schematics of the RF control electronics.
The main limitation to the complexity of the rf control sequence is set by the capacity
of the memory of the digital RF source. Although basic patterns, such as a period of
a sine wave at constant amplitude, can be indefinitely looped, the rf amplitude ramps
had to be programmed point by point. To allow decreasing the sampling rate of the
arbitrary waveform generator without distorting the signal, low-pass filters (cutoff fre-
quency: 1.9 MHz) were added at the output of each rf channel. The maximum ramp
duration for our rf dressing carrier frequency of 880 kHz allowed a maximum total ramp
duration (for each channel) of more than 55 ms, limited by the size of the memory. An
analog control of the amplitude of the RF source is also available, but it doesn’t allow
tuning each output independently, as needed to turn the polarization of the RF field,
and it is expected to be noisier than the sole digital control.

For the experiments presented in the next chapters, RF currents up to Imax
0 = 79.5 mA pp

(in the case of horizontal splitting, α = 0) were used. In the rest of this thesis, instead of
giving the absolute value of the current in mA pp, we will often refer to the RF amplitude
RFAmp in units of Imax

0 (0 ≤ RFamp ≤ 1). The corresponding values of I1,2 and φ12 for a
tilted RF polarization are given by Eq. (3.30).

3.2.2.4. Beyond the Rotating Wave Approximation

For the dressed potential presented in this thesis, |δ| = 30 kHz � Ωs = 910 kHz at the
center of the trap. Nevertheless, high rf amplitudes, up to ΩRF & Ωs are commonly used
to achieve large splitting distances (2r0 ∼ 4 µm). It is therefore necessary to compute
the dressed potential beyond the RWA. The standard method to solve a Schrödinger
equation with any periodic, time-dependent Hamiltonian has been given by J. Shirley
in 1965 [224]. In our case, it consists in transforming the system of three differential
equations (3.15) into an infinite system of linear equations with time-independent coeffi-
cients. This is achieved by expanding the time-dependent coefficients of the wavefunction
as Fourier series

c−1(t) =
∑

n∈Z
c

(n)
−1e

−i(n+1)ωt, (3.31)

c0(t) =
∑

n∈Z
c

(n)
0 e−inωt, (3.32)

c1(t) =
∑

n∈Z
c

(n)
1 e−i(n−1)ωt. (3.33)
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Solving Eq. (3.15) (for each point of space) is then exactly equivalent to diagonalizing
the infinite-dimension matrix

M =




. . .

0 0 0 a+ ω b 0 0 0 0 0 b 0 0 0 0
0 0 0 b 0 b 0 0 0 0 0 b 0 0 0
0 0 0 0 b −a+ ω 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 a b 0 0 0 0 0 b 0
b 0 0 0 0 0 b 0 b 0 0 0 0 0 b
0 b 0 0 0 0 0 b −a 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 a− ω b 0 0 0 0
0 0 0 b 0 0 0 0 0 b 0 b 0 0 0
0 0 0 0 b 0 0 0 0 0 b −a− ω 0 0 0

. . .




,

(3.34)

with

a ≡ Ωs, (3.35)

b ≡ ΩRF

2
√

2
. (3.36)

M consists of 3×3 diagonal blocks (for example, red block in the center) and off-diagonal
terms (blue). M has an infinite number of eigenvalues which, due to the invariance by
the transformation ω → p+ ω (for any integer p) are all equal to one of three principal
eigenvalues, modulo ω. In practice, it can be diagonalized approximately by truncating
M to a finite sized matrix and keeping the three central eigenvalues.

The physical meaning of these blocks becomes obvious when writing the magnetic field
in the formalism of second quantization (see for example Ref. [187]). They are associated
to processes implying the exchange of more than one rf photon. Diagonalizing the full
quantum-mechanical Hamiltonian shows that the dressed states are grouped into three-
state manifolds separated by one rf photon energy (see Fig. 3.10, taken from H. Perrin’s
lecture notes [187]). The summation over Z in the Fourier series expansion implicitly
means that the field is assumed to contain an infinite (very large) number of photons, as
it is the case with a classical coherent field. Retaining only one Floquet multiplicity (red
central block in (3.34)) is equivalent to applying the RWA, see Eq. (3.19) for comparison.
It implies neglecting the non-resonant coupling terms to the n+2 and n−2 multiplicities
(blue terms in (3.34) and blue arrows in 3.10.). This is valid as long as the detuning
is small enough so that the multplicities do not overlap, and as long as the rf Rabi
frequency is weak enough to neglect the coupling between different multiplicities. In
practice, for our parameters, it is enough to retain up to nF = 5 Floquet multiplicities
for the numerical computations (see Fig. 3.11).
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Figure 4: Coupling terms between unperturbed states. The Ω+ terms couple states inside
a given EN manifold, whereas the Ω− terms couple states from different EN manifolds.

changing the photon number accordingly to stay in the EN manifold. The eigenstates are
the dressed states |m′, N〉 with energies

E′m′ = m′~
√
δ2 + |Ω+|2.

The spin states are dressed by the rf field, in such a way that the eigenstates are now
combining different spin and field states, and cannot be written as a product spin⊗field.
The dressed states are connected to the uncoupled states for |δ| � 1. The effect of the
coupling is to repel the states inside the multiplicity, the frequency splitting going from
|δ| to

√
δ2 + |Ω+|2.

References
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16

Figure 3.10.: Schematics of the dressed states picture. Taken from H. Perrin’s lecture notes [187].
The dressed states of the atom and the electromagnetic field can be groupped into three-state manifolds
separated by one photon energy ~ω. In the RWA, only the coupling terms within one manifold are
retained (red arrows and red terms in Eq. 3.34), and each manifold can be treated independently (blue
bubble). The blue terms (blue arrows) couple the nth manifold to n+ 2 and n− 2 and are responsible
for beyond RWA effects, which cannot be neglected when ΩRF or ∆ become comparable to Ωs and the
manifolds are not clearly decoupled.

3.2.3. Characterization of the potential and calibration of the
simulations

The quantitative description of the dynamics of the condensate in the double well re-
quires a precise knowledge of the shape of the potential. This is achieved by computing
it as explained in the previous section. The parameters of the simulations are adjusted
using measurements of the trap. This section describes the whole calibration procedure
which has been used to simulate the traps in which the experiments of chapter 4 have
been performed. The good agreement between measurement and simulations of many
different quantities is a convincing demonstration of the reliability of the calibration
procedure. This section is organized as follows : first, the calibration of the static trap
is presented, then that of the rf dressing and of the dressed potentials.
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Figure 3.11.: Beyond RWA calculation of the dressed potential. Left. Potential computed
retaining nF = 1, 2, 3 Floquet multiplicities at a moderate rf intensity. Taking into account the first
order correction to the RWA (nF = 2) differs significantly from the RWA result (nF = 1). However,
increasing nF above 2 doesn’t improve much the result. Right. (For each nF, both m′F = ±1 are
represented by a full and dashed line respectively). For even higher rf intensities, needed for the
full separation of the clouds, the coupling between the multiplicities leads to avoided crossings which
complicate the calculation of the potential experienced by the atoms. Whether or not the atoms see
the avoided crossing depends on their velocity (see section 3.2.1.1).

3.2.3.1. Static trap

To calibrate the static trap, we use the fact that the trap bottom VTB depends essen-
tially on the Ioffe field B0 and the current in the longitudinal confinement wires Ih (see
Eq. 3.10), while the radial trap frequency depends mainly on the bias field Bs and the
current I in the main trapping wire (with a weak dependence on the Ioffe field, see
Eq. 3.9). The trap bottom is measured by means of rf spectroscopy, while the trap
frequencies along the three eigenaxes of the potential are measured by exciting dipolar
oscillations of a condensate (see Fig. 3.12)

Trap bottom spectroscopy The value of the Larmor frequency at the center of the trap
νTB = VTB/h is probed by means of rf spectroscopy [165]. We use the same rf electronics
as for the evaporative cooling, but strongly reduce the rf intensity to resonantly couple
atoms between the trapped state mF = −1 and the untrapped state mF = 0 without
dressing the potential. We apply a T = 20 ms pulse rf pulse at constant frequency νRF

onto the trapped condensate. At resonance, i.e. when νRF = νL, atoms are maximally
coupled to mF = 0 and fall off the trap. After a few ms of holding time ensuring that
the outcoupled atoms leave the imaging region, the remaining atoms are released and
counted. The trap bottom is inferred from the frequency of the loss dip in the number
of remaining atoms when νRF is scanned (see Fig. 3.12 a.).
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Figure 3.12.: Static trap characterization. (a) Trap bottom spectroscopy. A weak rf pulse is
applied to resonantly outcouple atoms from the trap. The maximum losses (dip) is achieved when the
rf frequency is equal to the Larmor frequency in the center of the trap. The red line is a guide to
the eye. (b,c,d) Trap frequencies in transverse horizontal (b), transverse vertical (c) and longitudinal
(d) direction, obtained by exciting dipolar oscillations (sloshing) and measuring the position of the
center-of-mass after expansion. Note the difference of time scale between transverse and longitudinal
oscillations, as well as the damping of the longitudinal sloshing. It is probably due to the anharmonicity
of the longitudinal potential caused by corrugation, as well as technical heating. The values of the trap
parameters are summarized in Tab. 3.1.

The width of the loss dip is influenced by several effects, including: power broadening
(the intensity of the rf spectroscopy pulse has to be chosen weak enough), the resolution
in frequency (the pulse duration T = 20 ms imposing ∆ν = 1/T = 0.05 kHz was
chosen in order to average over one period of the characteristic 50 Hz electric noise), the
stability of the trap bottom (dominated by the stability of the Ioffe field B0, see [30]),
the chemical potential of the condensate (µ/h ∼ 1 kHz) and the gravitational sag [22].
For most experiments, the typical rms width of the static trap spectroscopy was about
4 kHz.

Note that the same technique can be used in rf dressed trap to measure the effective
trap bottom by coupling atoms between the trapped dressed state and m′F = 0. In
Ref. [123], this technique has been used to demonstrate the existence of beyond RWA
resonances between different Floquet multiplicities. We observe that resonances in the
dressed potentials are typically twice narrower than in the static trap (see Fig. 3.14,
upper panel). This might come from the fact that the effective trap bottom is twice
less sensitive to fluctuations of B0 (see Eq. (3.26)), because a variation of B0 is partly
compensated by a variation of the detuning, similarly to what has been investigated in
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Ref. [247].

trap frequencies The trap frequencies are probed by exciting dipolar (sloshing) os-
cillations of the condensante along each of the three eigenaxis of the nearly harmonic
potential.
In the vertical transverse direction (y), a small kick is applied by suddenly (< 25µs)
varying the current in the main trapping wire by ∼ 1 %. It excites a center-of-mass
oscillation of amplitude approximately four times the transverse oscillator length. The
motion is recorded by imaging the atoms in the (z,y) plane with the absorption imaging
system (see section 3.3.1) after 17 ms tof (see Fig. 3.12 b).
In the horizontal transverse direction (x), the condensate is prepared in one well
of a horizontal (dressed) double-well potential (this is achieved by slowly splitting the
condensate in the vertical direction, and then leveling the double well). The rf current
is then rapidly ramped off so that the position of the cloud does not change. The atoms
find themselves displaced horizontally with respect to the center of the static trap and
start oscillating (see 4.2.2.1. The motion is recorded by imaging the atoms with the
“light sheet” imaging system [?] in the (x,y) horizontal plane after 46 ms of tof (see
Fig. 3.12 c.).
The longitudinal frequency ωz is measured by slowly, slightly distorting the longi-
tudinal potential, and returning abruptly to the original potential. This is achieved by
means of a weak current pulse produced by a wire (see Fig. 3.6) orthogonal to the main
trapping wire. The measurement of the slow longitudinal sloshing (typical frequency :
20 Hz) is limited by its damping time (typically 200 ms, see Fig. 3.12 d.), associated to
the heating of the cloud and the anharmonicity caused by potential corrugation.

Calibration of the static trap simulations The currents in the main trapping wire and
in the longitudinal confinement wire I and Ih are measured with a precision multimeter
meter15 and the values are used for computation of the potential. The value of B0 for
the simulation is adjusted to match approximately the measured trap bottom. Both
values of B0 and Bb are iteratively fine-tuned to reproduce exactly the measured radial
trap frequencies and trap bottom. This leaves some indeterminacy between B0 and Bb,
which can then be lifted from the measurements of the dressed trap (see next section).
The potential simulations usually strongly underestimate the longitudinal trap frequency
(typically by a factor 4) because they do not take corrugation into account. Table 3.1
summarizes the values of the measured trap parameters and the corresponding settings
for the simulations.

3.2.3.2. RF dressing

Once the static trap has been characterized, the rf dressing must be calibrated. The
first step is to characterize and adjust the rf amplitudes I1 and I2 in each wire as well
as the relative phase φ12 (see Eq. (3.29)). The second step is to adjust and check these

15Keithley 2000 digital Multimeter
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Measured parameters
Trap bottom VTB/h 910± 1 kHz
horizontal transverse trap freq. ωx/2π 2.97± 0.01 kHz
vertical transverse trap freq. ωy/2π 2.98± 0.01 kHz
longitudinal trap freq. ωz/2π 22.3± 0.3 Hz

Settings used for simulations
Current in main trapping wire I 1 A
Current in longitudinal confinement wires Ih 0.5 A
Bias field Bb 29.5 G
Ioffe field B0 1.17 G
Max. rf current (in each wire) Imax

0 79.5 mApp
rf relative phase φ12 −2◦

Table 3.1.: Trap calibration. Upper part: measured trap parameters, with the corresponding
experimental uncertainty. Lower part: Parameters used in the chip trap simulations.

parameters in the simulation by comparing them to measurements of the effective trap
bottom, trap frequencies, well spacing etc. in a series of dressed potentials obtained for
different rf intensities.

Balance of the RF currents in the two wires The rf generator produces a given AC
voltage. Since the resistance of each wire (including the leads and the rf electronics for
each output port) may be different, the currents have to be balanced using a common
probe. The high-frequency current probes mounted on each wire give an estimate of the
currents, but the atoms are a much more precise probe of the magnetic field. For some
arbitrary intensity I0, the effective trap bottom is measured by rf spectroscopy with one
rf wire on at a time. The voltage of each output port of the rf source is tuned to equalize
the trap bottoms (see Fig. 3.13, left panel), ensuring I1 = I2. Furthermore, comparing
the measured value of the trap bottom to simulations enables to calibrate the absolute
values of I1,2.

Relative phase between the RF wires The control of the relative phase between the
two rf wires is important to ensure the right linear polarization to turn the axis of the
double well. Different delays due to different filtering in the rf leads may shift φ12 with
respect to the value defined by the rf generator. This effect is accounted for by correcting
the phase difference between the two output of the rf generator by an amount which is
determined by measuring the dependence of the trap bottom with respect to the relative
phase (see 3.13, right panel). The dependence of the effective trap bottom with φ12 is
not trivial but can be simulated. It is related to the relative contribution of the σ+ and
σ− polarization which couple the different mF states. Note that the geometry of the
dressed potential can change between a double well and a ring trap, depending on φ12

[155]. We found that φ12 had to be corrected by 6◦ with respect to the nominal value to
get a linear polarization. For the experiments presented in chapter , this value has been
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Figure 3.13.: Adjustment of the RF intensity balance and the relative phase. Left. The
trap bottom spectroscopies for a trap dressed by only RF wire at a time overlap, ensuring that I1 = I2.
Right. The effective trap bottom is measured as a funtion of the relative phase φ12 between the
two wires (blue dots).The result of the simulations has to be shifted by approximately 6◦ to match
the measurement. This is probably caused by some differential filtering in the RF electronics of each
channel.

slightly over-corrected. For this reasons, all simulations of the potential were performed
with φ12 = −2◦.

Additional checks In principle, the calibration procedure presented above is sufficient
to constraint all parameters of the static trap and of the rf dressing. Nevertheless, a
series of additional measurements were performed to benchmark the simulations of the
potential.
The dependence of the effective trap bottom with the rf amplitude was checked, re-
covering the linear behaviour given by Eq. (3.26) (see Fig. 3.14). The transverse trap
frequencies in each well of the dressed potentials were also compared to simulations (see
Fig. 3.15, left pannel). The vertical trap frequency was measured in the same way as in
section 3.2.3.1. The horizontal trap frequency ωdw (Eq. (3.25)) was measured by slightly
changing the rf amplitude to excite an oscillation of the spacing between the two parts
of the condensate in the double-well. This results in an oscillation of the fringe spacing
of the interference pattern measured after tof (see 4.2.1). Note that in this strongly
anharmonic direction, the notion of trap frequency is less obvious, explaining partly the
poor agreement of experiment and simulation.
The spacing d = 2r0 between the two wells (Eq. (3.24)) was also inferred from the fringe
spacing of the interference patterns. Assuming Gaussian wave packets and a ballistic
expansion during a time t, the fringe spacing is

λ ≈ ht

dm
. (3.37)



3.2 Trapping atoms magnetically with an atom chip 89

0.9 0.94 0.98 1.02 1.06 1.1 1.14 1.18

0

1

2

x 10
4

νrf [kHz]

a
to
m

n
u
m
b
er

[a
.
u
.]

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
900

1000

1100

1200

1300

RFamp

V
T
B
/
h
[k
H
z]

static
trap

dressed traps

Figure 3.14.: RF amplitude calibration. The effective trap bottom VTB is measured by rf spec-
troscopy for different values of the amplitude of the rf current (I1 = I2). Top panel: rf spectroscopies
for 5 values of RFAmp between 0 and 0.65 (five first points of bottom panel). Note that the loss dips
are narrower in the dressed potentials as compared to the static trap. Bottom panel: effective trap
bottom VTB/h as a function of RFAmp, showing good agreement with the beyond RWA simulations.
Note that the RWA prediction (dashed curve) underestimates the trap bottom by a few kHz only.

It shows a very good agreement with the simulations for strongly split double wells,
where the effect of interactions is less significant [219].
Note that for both d and ωdw, the beyond-RWA simulations are in excellent agreement
with the dependence on the rf dressing amplitude expected from the approximate RWA
expressions (3.24) and (3.25). Fitting them to the data of Fig. 3.15, we found that the
critical splitting point is reached for RFc

Amp = 0.42.
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Figure 3.15.: Transverse trap frequencies and well spacing. Left. Transverse trap frequencies
(quadratic term in the Taylor expansion of the potential) in the double-well (red: ωdw in the direction of
splitting, blue: orthogonal direction) as a function of the rf amplitude. Points : measurements. Lines:
beyond RWA simulations. Black dashed : fit of the beyond RWA simulation with the approximate
expression (3.25). Note the typical kink of ωdw at the critical value RFc

Amp = 0.42, corresponding to the
splitting point. Right. Spacing between the potential wells, inferred from (4.2). Points : measurement.
Blue line: beyond RWA simulation. Black dashed line : fit of the beyond RWA simulation with the
approximate expression (3.24). Note that both quantities are very well described qualitatively by the
RWA approximate analytical expressions.
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3.3. Imaging systems

Most of the experimental information gathered on Bose-Einstein condensates in atomic
gases has been obtained by optical measurements, that is to say photographs of the
atoms. Notable exceptions are for example the temporally and spatially resolved de-
tection of a BEC of metastable Helium with a microchannel plate [207] or the use of
scanning electron microscopy (SEM) [84].
Among the various optical imaging methods used to probe ultracold gases [142], two
independent systems are implemented on the Rb2 setup (see Fig. 3.16):

• an absorption imaging system,

• and a fluorescence imaging (often referred to as Light Sheet).

Both allow imaging destructively the atom cloud in tof, meaning that for each exper-
imental cycle, the atomic sample can be observed only once. Fig. 3.17 shows typical
images of condensates taken with both imaging systems. The following section briefly
presents both imaging systems, with emphasis on the methods we used to determine the
absolute atom number in our condensates. A more detailed description of the hardware
as well as the characterization of both imaging systems can be found in the diploma and
PhD thesis of R. Bücker [29, 30] as well as in the PhD theses of S. Manz [164] and T.
Betz [20].

3.3.1. Absorption imaging

Absorption imaging is probably the most commonly used imaging technique in cold
atom experiments [142]. A comprehensive discussion of absorption imaging on atom chip
setups can be found in Ref. [228]. The PhD theses of M. Gring [89] and T. Jacqmin [130]
contain detailed descriptions of absorption imaging systems implemented in different
configurations on atom chip experiments similar to our setup.
The absorption imaging system implemented on Rb2 is oriented along the x-axis to image
the atoms in the (y, z) plane. It allows inferring the integrated column density ñ(y, z) =∫
n(~r)dx from the attenuation of a laser beam passing through the atomic cloud [142].

The shadow cast by the atoms is imaged onto a back illuminated Charge Coupled Device
camera16 (CCD) through an objective consisting of two doublet lenses, each operating at
near-infinite conjugate ratio. The optics is adjusted to obtain a magnification of × 3.78.
The corresponding pixel size (in object space) is 3.44×3.44 µm2. The numerical aperture
(NA) of 0.12 determines the diffraction limit, which lies slightly below 4 µm. The field
of view (3× 3 mm) allows for tofs up to ∼ 25 ms. When the cloud is imaged too close to
the chip (tof . 2 ms), unavoidable reflection and refraction of the imaging light on the
surface of the chip cause distortions of the image [228]. The fast frame-transfer readout
enables taking the absorption and the reference picture within tens of ms, in order to
mitigate the effect of mechanical vibrations.

16Princeton Instruments MicroMax 1024 BFT
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Figure 3.16.: Schematics of the two imaging systems. The absorption beam is oriented along
the x-axis to image the atoms in a plane parallel to the long axis of the trap (z). The shadow cast
by the atoms is imaged through an objective on a CCD camera. The fluorescence imaging is oriented
along the y-axis to image photons scattered by the atoms while falling through the light sheet. Light
is collected by an objective located below the chamber and detected by a EMCCD camera. When
the BEC is released from a horizontal double well, imaging along (x) integrates over the matter-wave
interference pattern, while the fringes can be resolved with the fluorescence imaging system.
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Figure 3.17.: Images of quasi-condensates. Pictures of quasi-BECs with ∼ 1000 atoms taken 6 ms
(absorption imaging system,left) and 46 ms ( fluorescence imaging systems,right) after release from
a (in this case single-well) trap. The axes are the same as in Fig. 3.16: (z) is the axis of shallow
confinement and gravity is oriented along (y). Note that both pictures exhibit characteristic patterns
perpendicular to the (z)-axis. They correspond to density fluctuations emerging in tof as a result of
the initial longitudinal phase fluctuations [164].
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The absorption imaging system can be used to image thermal clouds (after short tofs)
or BECs. We use it routinely to monitor center-of-mass oscillations in order to measure
trap frequencies (see section 3.2.3.1), image BECs after short tofs (2 ms) to access their
in-situ density profile, and to measure the atom number in our BECs (see next section).
In Ref. [163], it was used to measure density fluctuations (density ripples) of expanding
1D quasi-condensates. The fast frame-transfer readout has also been used to image
successively atoms in the two hyperfine states F = 2 (without repumper) and F = 1
(with repumper), which would be necessary for experiments with internal states of a
BEC (see section 4.1.2.1).
Note that it cannot be used to image the matter-wave interference patterns obtained
from releasing a BEC from a horizontal double well (see section 4.2.1) since the fringes,
which are parallel to the (y, z) plane, are integrated out (see Fig. 3.16).

3.3.1.1. Atom number calibration by saturation absorption imaging

As we will see in section 4.4.3, precise number-squeezing measurements imply a correct
estimation of the absolute atom number in our BECs. So far, N can only be inferred
from absorption pictures. For this reason, it is absolutely necessary to characterize our
absorption imaging system to obtain a reliable estimation of N .
We followed the approach proposed in Ref. [205], comparing the optical density of iden-
tical atomic samples measured at different intensities, well below and above saturation.
At resonance, the photon scattering rate of a two-level atom reads

Ṅph =
Γ

2

I/Isat

1 + I/Isat

, (3.38)

where Γ is the natural line width of the optical transition. For the optical transitions of
the D2 line of 87Rb, Γ = 2π× 6.07 MHz [235]. The saturation intensity Isat is connected
to the resonant cross section σ0 through

Isat = Γ
~ω
σ0

. (3.39)

To maximize the absorption signal, we chose to work in the configuration yielding the
highest cross section, namely by using σ+ polarized light to address the cycling transition
F = 2,mF = 2 ↔ F ′ = 3,mF = 3. For this transition, σ0 = 2.91 × 10−9 cm2 and Isat =
1.67 mW/cm2 [235]. Note that to access this transition, we must first repump the atoms
(see section 3.1.5) from F = 1 to F ′ = 2. The repumper light, which is superimposed to
the path of the imaging beam, is shone for ∼ 200 µs right before the imaging pulse.
In practice, however, the actual cross section is likely to be smaller than this value,
depending on the exact configuration of the beam direction, polarization and the ori-
entation of the magnetic field defining the quantization axis. To ensure that the atoms
experience a σ+ polarization, we use the small Bias coil (see 3.1.2) to apply a uniform
magnetic field parallel to the optical axis (see Ref. [30]). Nevertheless, besides the im-
perfect alignment of the quantization field with respect to the optical axis, transient
pumping effects are also expected to slightly reduce the effective cross section.
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Following Ref. [205], we take into account the specific configuration of our absorption
imaging by defining an effective cross section

σeff =
σ0

α
(3.40)

with α ≥ 1 and the corresponding effective saturation intensity Ieff
sat = αIsat.

From the scattering rate (3.38), we can express the attenuation of a laser beam passing
through an atomic cloud. After it has traveled through an infinitesimal distance dx in
a cloud of density n(~r), the intensity of the imaging beam drops by

dI = −σeff
I

1 + I/Ieff
sat

n(~r)dx. (3.41)

Integrating Eq. (3.41), we can express the optical density (OD) σ0ñ as the sum of two
terms:

σ0ñ(y, z) = α ln

(
Ii

If

)

︸ ︷︷ ︸
log

+
Ii − If

I0
sat︸ ︷︷ ︸
sat

, (3.42)

where Ii and If are respectively the intensity of the imaging beam before and after
propagation through the atomic cloud. Far below the saturation intensity (Ii � Isat),
the logarithmic term dominates. This is the regime where most absorption imaging
systems are operated. The column density is given by the Beer-Lambert law

ñ(y, z) = σeff ln

(
Ii
If

)
, (3.43)

which has the important property that ñ, and hence the total atom number
N =

∫ ∫
ñdydz do not depend on the intensity of the imaging beam, provided it is

sufficiently small17. However, it depends linearly on α, meaning that the atom num-
ber computed by absorption might be systematically underestimated when using the
theoretical value σ0 of the resonant cross section.
The second term becomes dominant above saturation, i.e. when Ii, If � Isat. It does
not depend on the effective cross section, because if all the atoms are saturated, their
scattering rate is simply equal to Γ/2.
The method proposed in Ref. [205] consists in inferring α from absorption pictures of
identical atomic clouds taken at different intensities, spanning a large range below and
over Isat. It relies on the assumption that a) the atom number of all the observed atomic
samples is the same, b) the correction factor α is independent on the intensity of the
probe beam. While the first assumption depends on the atom number stability of the
experiment, which for us is of the order of 10%, the second one was checked within our
group by solving the optical Bloch equations for different imaging configuration close to
ours.

17Typically, this is true as long as I . Isat/10.
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We calibrated our absorption imaging system by taking images of a BEC with
∼ 6000 atoms at different intensities ranging from 0.02 Isat to 8 Isat. The number of

scattered photons Nph was kept approximately constant by adjusting the imaging pulse
duration. We also checked experimentally that no significant Doppler shift was reducing
the effective cross section even for the largest number of photons (Nph ≈ 300)18.
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Figure 3.18.: Calibration of the absolute atom number in absorption. Measured atom number
N in a BEC for different imaging beam intensities. For each intensity, the atom number was computed
using Eq. (3.42). Black points: atom number assuming α = 1. Red points: atom number corrected for
α = 1.12, in order to ensure a constant N regardless of I/Isat (note that the points corresponding to the
two lowest intensities, for which the pictures were very noisy, were not used to estimate α). Continuous
lines: logarithmic (lavender blue) and saturation (medium turquoise) terms (the logarithmic term has
been computed for α = 1.12). Both contributions are equal for I = Ieff

sat.

Fig. 3.18 shows an example of the atom numbers computed with the full Eq. (3.42). As-
suming α = 1 (black points), we observed that the computed N was slightly increasing
with increasing intensity, indicating that the logarithmic term in Eq. (3.42) was under-
estimated. Repeating the measurement for different values of Nph, we found that the
values of α ensuring a constant atom number (red points) was lying between 1.05 and
1.15. Furthermore, independent measurements of the axial Thomas-Fermi radius of a
trapped condensate (see section 2.1.3.3) confirmed that we can exclude underestimating
the atom number by more than 20%.

3.3.2. Fluorescence imaging system (light sheet)

Most of the data presented in the next chapters has been acquired with our fluorescence
imaging system [31, 29, 30]. It is aligned along the vertical y-axis to image atoms in the

18It needs approximately 350 scattered photons for a 87Rb atom to be Doppler-shifted by Γ/2.
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horizontal (x, z) plane. It consists of a thin (waist radius: 20 µm) horizontal “sheet”
of resonant (or slightly red-detuned) laser light located roughly 1 cm below the atom
chip. When atoms are released from the trap, they expand and fall through the light
sheet (LS) after a ∼ 46 ms tof. Each atom typically scatters hundreds of photons during
the ∼ 100µs it spends in the LS. A small fraction (around 2%) of the fluorescent light
is captured by an objective located below the vacuum chamber, and detected by an
electron multiplying CCD camera19 (EMCCD), yielding a typical sensitivity of p̄ = 15
detected photons per atom on average.

The LS is created by superimposing two identical counter-propagating laser beams,
each of them coupled out of an optical fiber outside the chamber and sent through a
cylindrical lens to obtain a highly anisotropic “flat” sheet of light (waist in horizontal
direction: 4.5 mm). The optical axis of the LS is rotated by 45◦ with respect to the x and
z-axis. A lin-⊥-lin polarization configuration was chosen to avoid creating an intensity
grating, resulting in a polarization grating perpendicular to the optical axis. The total
optical power (a few µW) can be adjusted to tune p̄. It is actively stabilized against slow
drifts by sampling a fraction of the optical power and readjusting the AOM amplitude
accordingly every second experimental cycle, i.e. once per minute.

The custom objective [30] was sized in such a way that the geometric spot size and the
diffraction limit remain smaller than the object space camera pixel size (4× 4µm2) over
the whole field of view (2 × 2 mm2). An advantage of the LS configuration is that the
depth of field can be matched to the thickness of the LS. This allows imaging thermal
clouds after long tofs, which are generally larger than the depth of field set by our
relatively high NA of 0.34 and would otherwise look blurred. The vertical position of
the LS determines the tof. It can be adjusted by means of a translation stage, but
changing the tof implies refocussing the optics, so that in practice, conversely to the
absorption imaging system, we have to work with a fixed tof (46 ms), although we can
adjust the duration of the LS pulse to image slices of the atomic cloud [185]. Imaging
several slices of the same atomic cloud should be in principle possible, but is currently
limited by the readout speed of the camera.

Currently, the main factor limiting the resolution of our fluorescence imaging system
is the diffusion of the atoms in the LS [29]. The atoms perform a random walk in
momentum space due to the stochastic absorption and re-emission events. This result
in a real-space spot size for the fluorescence signal coming from each atom of typically
10 µm rms size, whereby the shape of the anisotropic fluorescence pattern depends on
the detail of the scattering events.

The main asset of our fluorescence imaging system is its high sensitivity together with a
high dynamical range [29], allowing us to detect single atoms as well as dense BECs. For
each atom crossing the LS, we detect on average a number of photons sufficiently large so
that the probability of not detecting an atom can be made vanishingly small. The mean
number of detected photons per atom p̄ can be increased by increasing the LS intensity,
at the expense of the spatial resolution. We usually worked with p̄ ≈ 15. Together
with an extremely low background noise (the CCD chip is thermoelectrically cooled

19Andor iXon+ 897
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down to −90◦ C), our single-atom sensitivity has been a crucial condition to detect
strong number squeezing [34, 19], as will be detailed in section 4.2.2.2. It should be
noted however that single-atom sensitivity does not mean the ability to resolve atoms
in dense clouds, because of our limited resolution. Nevertheless, high signal-to-noise
ratio associated with a relatively long tof are particularly advantageous to probe the
high-k tails of the momentum distribution of thermal clouds and BECs, and has allowed
studying the emission of high-momentum correlated atom pairs [34, 35].
The LS imaging system is oriented as to image the atoms from below, which is well-
suited to image matter-wave interference patterns emerging from the recombination of
a horizontally split condensate (see section 4.2.1). In particular, it allowed probing the
spatial phase correlations of a 1D BJJ [21]. It was also used to demonstrate Hanbury
Brown and Twiss (HBT) correlations across the BEC threshold [185].

3.3.2.1. Calibration of fluorescence picture

In an EMCCD camera, each photon impinging on a pixel of the CCD chip is converted
into a primary electron, which is amplified to a large number (up to about 1000) of
secondary electrons. To calibrate the raw fluorescence picture, the gain of the electron
multiplying unit is calibrated from a second picture taken immediately afterward, but
without light. The second picture hence only contains technical noise, which is essentially
due to clock-induced charges, i.e. charges created before the amplification process and
therefore indistinguishable from real photons. Nevertheless, since the EM amplification
is a stochastic process, the distribution of counts per pixel in the calibration picture
can be fitted to retrieve the amplification gain (see Fig. 3.19, left pannel) [31]. It also
provides information on the background level and the additional noise added by the
readout stage. The fitted values are used to compute the processed fluorescence picture
(in photon number/pixel) from the raw picture. An important consequence from the
stochastic amplification is that it adds extra shot noise: the variance of the signal on a
camera pixel with on average s̄ photons is two times s̄ (see section 4.4.3.1).
An additional background contribution is caused by stray light from the LS beams.
When working with cold condensates well-located in the center of the picture, this usu-
ally uniform background can be calibrated from the edges of the images and subtracted.
Another, non-uniform, contribution is due to etaloning, i.e. the interference of coherent
light on the CCD chip acting as a non uniform Fabry-Perot etalon. While this does not
affect significantly the signal integrated over a sufficiently large area, it leads to local
distortions of the image. It can be highlighted by averaging hundreds of pictures of a
sufficiently hot thermal cloud (to ensure a uniform illumination), see Fig. 3.19.Fortu-
nately, as it doesn’t change over time, it can be corrected for, for example to fit the
profile of a cloud.
So far, the absolute column density (in atom/pix) cannot be easily deduced from the
fluorescence pictures only, although alternative schemes based on the correlation prop-
erties of the fluorescence signal are currently being investigated. The average number
of detected photons per atom p̄ is hence inferred from imaging a series of (typically
20) condensates prepared in the same conditions, alternating between fluorescence and
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Figure C1. Distribution of the number of counts per pixel in a single image
acquired without any light (p1 = 1 − p0 � 0.02). The detected signal is only due
to CIC. The plot is in semilog scale. The red line is a fit of the distribution (see
text). The dotted line corresponds to the threshold of the readout cut off. The
inset shows the same distribution in linear scale.

distribution for ns can be written [21]

D
(
ns; np,g

)
= P

(
nS = x |np,g

)
=

xnp−1 exp (−x/g)

gnp(np − 1)!
. (C.1)

It is worth noting that a good estimate of np knowing ns is given by ns/g [21].

• The readout noise σro. It is a random noise with a zero mean value and a standard deviation
of about 2 counts for our usual settings.

• The reference baseline b. This contribution is just an offset set by the RU in order to avoid
negative values of S0. It can be considered constant for each pixel of a given image but may
fluctuate from image to image.

In order to retrieve an accurate estimate of np out of the signal S0, a careful calibration
of the three parameters g, σro and b is necessary. To obtain these values, one can fit the
distribution of the number of counts per pixel on a single image. This distribution can generally
be approximated by

S (S0; b, σro, g, pi) =N (b, σ 2
ro) ∗

(
p0δ (x) +

∑
i>0

piD (nS; i,g)

)
, (C.2)

where pi represents the probability to have np = i primary electrons in a pixel, N (b, σ 2
ro) is a

normal distribution of mean b and variance σ 2
ro which accounts for the effect of the readout

noise and ∗ is the convolution product. In the case of an image with very low signal level
(p0 � p1 � pi , i > 1), one can neglect every pi for i > 1 in equation (C.2). S can then be
calculated analytically and in turn be used to fit experimental distributions. A typical result is
shown in figure C1.
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Figure 3.19.: Calibration of the fluorescence pictures. Left: Taken from Ref. [31]. Distribution
of the number of counts per pixel in a single image acquired without any light. The detected signal is
only due to CIC. The red line is a fit of the distribution (see Ref. [31] for the fit model) allowing to
extract the EM gain, the baseline and the readout noise. The dashed line marks the threshold of the
readout cutoff. The inset shows the same distribution in linear scale. Right: Etaloning. Reflections
between the nearly parallel front and back surface of the narrow, back-illuminated CCD chip interfere,
causing distortions of the images. Since it is constant over time, etaloning can be characterized from
averaging hundreds of images of a hot thermal cloud to ensure uniform illumination, and accounted for
as a position-dependent gain factor.

absorption imaging. It yields an uncertainty on p̄ of the order of 10%.

3.4. Conclusion of the experimental part

In this chapter, we have presented the apparatus on which the experiments presented in
this thesis have been conducted. The main features of our compact 87Rb BEC machine
are

• the atom chip, which enable the creation of elongated magnetic traps with trans-
verse frequencies in the kHz range and longitudinal frequencies between 10 and 20
Hz,

• the possibility to apply rf-dressing to manipulate the transverse confinement and
realize a tunable double-well geometries,

• a light sheet fluorescence imaging system which allows probing the BECs with
single-atom sensitivity.



4. A Mach-Zehnder interferometer for
trapped, interacting Bose-Einstein
condensates

In this chapter, we present the main results of this thesis :

• the implementation of a Mach-Zehnder interferometer (MZI) for trapped, inter-
acting BECs on our atom chip setup, including the development of a novel type of
BEC recombiner,

• the generation of number- and spin-squeezed states of a BEC with N ≈ 1200 atoms
in a double-well potential,

• the first direct experimental demonstration of the link between number fluctuations
and interaction-induced phase diffusion, underlining how the use of a non-classical
state can help extending the interrogation time of a matter-wave interferometer.

These results have been summarized in our 2013 publication [19]. Here we motivate
our research, explain in detail how our results have been achieved, discuss their physi-
cal meaning and consider them in the light of related findings reported on other BEC
experiments.

4.1. Introduction

4.1.1. A prototypical interferometer

The BEC interferometer implemented on our atom chip is meant to be a matter-wave
analogue of the prototypical interferometer developed by Ludwig Mach and Ludwig
Zehnder at the end of the XIXth century (see Fig. 4.1). An optical interferometer is a
device that makes use of the effect of interference of light waves. Most interferometers
rely on the splitting of one input beam on a beam-splitter (separation BS ). Each beam
is exposed to a different external influence, such as transmission through media with
different refractive indices, or propagation along paths of different length, and picks up
a certain phase. The two beams are recombined on a second beam-splitter1 (recombiner).
The differential phase between the two beams is read out either from the difference of

1Some interferometers, like the Michelson interferometer, make use of the same BS to split and re-
combine the light.
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Figure 4.1.: Mach-Zehnder interferometer. Photons (or atoms, neutrons, molecules...) entering
each of the two input ports are coherently split by the separation beam-splitter. The two paths pick
up a phase difference φ before beeing recombined on the second beam-splitter. The atoms exiting the
interferometer are counted separately by two detectors. Generally, particles enter only from one input
port.

intensities between the two output ports (number fringes) or from the spatial distribution
of the intensity (spatial fringes).

Note that the MZI can be operated in both ways: if the interferometer is perfectly aligned
(full mode overlap), the phase information is encoded in the intensity difference between
the two output ports only. For example, it can be adjusted in a way such that all the
power exits through one single output port. If the beams are slightly misaligned, both
outputs will exhibit spatial fringe patterns. The phase will be encoded in the spatial
intensity distribution, while the total power in each output-port will be hardly phase-
dependent. MZI can also be used for white-light interferometry, i.e. using a broad-band
source, in which case interference is observed in a narrow range around the point of zero
arm length difference.

4.1.2. Interferometry with Bose-Einstein condensates

Particle-wave duality enables the construction of interferometers for matter-wave [57].
Atom interferometry requires the ability to manipulate coherently the internal and ex-
ternal (motional) state of atoms, making use of techniques developed for atom optics [1]
and atomic spectroscopy [201]. It is a key experimental technique to probe quantum
properties of matter and fundamental laws of nature, and yields rich application in
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metrology.
Bose-Einstein condensates are particular matter waves with macroscopic coherence prop-
erties. They have often been compared to atom lasers [143]. It is natural to wonder
whether macroscopic spatial coherence and high phase density would make BECs an
ideal bright, single-mode source for atom interferometry. In particular in the context of
Bragg interferometers (see next section), the narrow momentum spread δp� ~k, where
k is the wave vector of the light, allows achieving close to 100% contrast [243]. It has
also been underlined that trapped BECs could constitute a small, localized probe for
weak shot-range interactions such as the Casimir-Polder force [39], and recently, a BEC
has been used as a scanning probe to map out the microwave field near the surface of
an atom chip [180].
However, the analogy between lasers and BECs should not conceal the fact that they
are two very different physical systems. A fundamental distinction is the presence of
atom-atom interactions. While they can usually be neglected in freely expanding atomic
clouds, interactions dominate the physics of confined BECs, leading to mean-field shifts
and dephasing effects, which ultimately limit the coherence time of interferometers [11,
128, 138, 19]. On the other hand, we have seen in sections 2.2.4.4 and 2.2.4.5 that
interactions can be utilized to generate non-classical correlations between the atoms,
which can be used to improve the phase sensitivity of a BEC interferometer beyond the
SQL. We will show that it can also reduce the effect of interaction-induced dephasing
and extend the interrogation time of an interferometer (see section 4.7). The question
still remains open how and to which extent the detrimental effects of interactions can be
overcome and whether precision measurements can be performed with trapped BECs.
However, as we will motivate below, a BEC interferometer certainly is as a powerful tool
to probe interacting quantum many-body systems.
In the next sections, we give a brief review on the techniques that have been used to
realize BEC interferometry and list some examples of the physical questions that have
been addressed with BEC interference experiments. Many examples of BEC interfer-
ometers are given in the 2009 review on atom interferometry by A. Cronin et al. [57],
as well as in the 2014 Varenna lecture notes by J.F. Schaff et al. [215], with focus on
double-well interferometers.

4.1.2.1. BEC interferometry experiments: state of the art

BEC interferometry has been a very active field of research on ultracold atoms since
the first demonstration of the macroscopic coherence of a Bose-Einstein condensate in
1997 [13].
BEC interferometer rely on the coherent splitting and recombination of a BEC between
(at least) two external and/or internal modes, and on the possibility to apply and read
out a phase shift. This basic scheme, illustrated schematically in Fig. 4.1 should not
conceal one fundamental difference between interferometers based on the interaction
of a two-level atom with an electromagnetic field (for example Bragg interferometers,
or interferometers with internal-state labeling, see below), and interferometers where
splitting and recombination are carried out by transforming the confining potential (for
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example double-well interferometers).

In the first case, the electromagnetic (rf, microwave or laser) coupling drive has also the
function of a reference oscillator [112]. Once the first π/2 pulse has put the BEC in
a coherent superposition of the two modes, the phase between them evolves at a rate
proportional to their energy difference. During this time, the coupling drive also accu-
mulates a certain phase. The second π/2 pulse eventually recombines the two halves,
comparing the phase accumulated by the condensates to that accumulated by the drive.
The resulting phase-dependent number or spatial fringes stem from the beat note be-
tween the condensate and the reference oscillator. This has the important consequence
that such interferometers can serve locking the reference oscillator on the atomic transi-
tion (like in atomic clocks) or measuring a shift of the atoms with respect to a moving,
standing wave (like in Bragg gravimeters).

Several denominations are used concurrently in literature to distinguish the different
types of interferometer: while many schemes where the two modes are spatially sepa-
rated are called Mach-Zehnder interferometers (including in particular the interferome-
ter presented in this thesis), some authors prefer calling Michelson interferometer sys-
tems where the separation and recombination BS are at the same spatial position [252].
The term Ramsey interferometer generally refers to schemes with internal-state labeling,
but we also chose to refer to the vibrational-state interferometer presented in Ref. [248]
as a (temporal) Ramsey-like interferometer, to underline the fact that both modes are
located in the same (single-well) potential.

Although the denominations are sometime not consistent, the main distinction concerns
schemes involving a finite enclosed area, i.e. where the center-of-mass of the two modes
are spatially separated and recombined, such as for example the Mach-Zehnder, Ramsey-
Bordé or spatial Ramsey interferometer; and the schemes where the center-of-mass of
the two modes stay essentially at the same location (temporal Ramsey interferometers).
While the first can be used to measure inertial forces (acceleration and rotations), the
latter are only sensitive to effects that cause the two states to acquire phase at different
rates, such as an intrinsic energy difference (hyperfine splitting in clocks) or different
Zeeman or Stark shifts.

Most BEC interferometers to date can be assigned to one of these three broad categories:

Interferometers with internal-state labeling A first group consists of “time-domain
separated-oscillatory-field” Ramsey interferometers [201], where rf or microwave fields
are used to drive coherent transitions between internal atomic states. Following the first
measurement of the relative phase in a two-component BEC in 1998 [112], several inter-
ferometers with internal-state labeling (ISLI) were implemented with optically trapped
condensates [96, 5, 67]. Ramsey interferometry has also been performed with magneti-
cally trapped BECs, using rf pulses to couple the different Zeeman states [172], enabling
the realization of multi-path interferometers [191]. A related approach, inspired by the
progress on atom lasers [22] has consisted in using rf pulses to coherently outcouple and
recombine atoms from a BEC [44, 162], with the distinction that interference is detected
in spatial fringes instead of number fringes.
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Even if the recoil due to rf or microwave photons can generally be neglected in ex-
periments with trapped condensates, the transition between internal states is always
accompanied by a modification of the external wavefunction. The coupling between in-
ternal and external degrees of freedom is particularly spectacular in experiments where
the two internal states experience different external potentials. This is for example the
case in Ref. [23] where a bimodal condensate was confined in a microwave-dressed state-
dependent potential. In Ref. [162], free-falling as well as trapped condensates were split
and recombined using Stern-Gerlach field-gradient BS. Another example of the coupling
between internal and external dynamics is the dramatic loss of Ramsey contrast in two-
components BECs caused by demixing effects [11] as well as (in magnetic traps) the
relative center-of-mass motion of the different Zeeman states [172, 191].

Stimulated Raman transitions can also serve as BS between low-lying internal states.
Although Raman interferometers have been widely used with non-condensed atoms since
1991 [141], there are very few examples of BEC Raman interferometers. One exception
is the interferometer described in Ref. [64], where atoms coherently rf-outcoupled from
a BEC fall through two Raman BS implemented using copropagating beams, resulting
in a negligible momentum-transfer.

Bragg interferometers Bragg interferometers (BI) rely on the coherent splitting of a
matter-wave in momentum space, i.e. the diffraction on a light grating caused a momen-
tum transfer, which then translates into a spatial shift. Along with the first experiments
on temporal [109] and spatial [226] coherence of BECs, the first BIs for condensates
were developed around 2000 [243, 62], resorting to the three light grating configuration
already implemented with cold atoms [202, 85]. Three optically induced Bragg pulses
(π/2-π-π/2), created by two off-resonant (to avoid spontaneous emission) counterprop-
agating laser beams with different wave vectors are used to coherently split, reflect and
recombine a BEC. Owing to the possibility of large momentum transfer using nth-order
Bragg pulses [61, 168] and long expansion times [175], the two arms of the interferometer
can be separated by hundreds of µm. Extensions to this scheme included asymmetric
MZI [226, 175], where a temporal mismatch causes a partial spatial overlap of the wave-
functions and encodes the relative phase into spatial interference fringes; a three-path
interferometer [104], where the phase is encoded into the contrast of the spatial inter-
ference pattern; or guided Michelson interferometers [252, 78], where the BECs are split
and recombined at the same location in space. While some condensate BIs — together
with most of the BIs using cold, non-condensed atoms — are operated with free falling
BECs, including the extreme case of BECs in microgravity [175], experiments were also
performed with trapped [226, 118, 128], or guided [226, 252, 78, 128, 168, 148] conden-
sates.

A related approach, also based on the diffraction of a matter wave on a light grating,
is the Bloch oscillation interferometer (BOI) [9, 71, 77, 105], where the macroscopic
interference between different Wannier states gives rise to oscillations of the density
pattern at a frequency proportional to the applied phase shift.
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Double-well interferometers The interferometer presented in this chapter belongs to
the category of double-well interferometers (DWI), i.e. trapped BEC interferometers
where the atoms share the same internal state while their external wavefunction is in a
superposition of two localized modes in a double-well potential [215]. Coherent splitting
is achieved by smoothly deforming the external potential from a single well to a double
well. Splitting occurs in position space, in contrast to Bragg interferometers, where it
happens in momentum space.

A few years after the observation of interferences from independent condensates in an
optical double well [13], the first DWI was realized in 2004 with an optically trapped
BEC [223]. One year later, the first magnetic DWI was implemented on an atom
chip [219], using the same technique of rf dressing as in the experiments presented
in this thesis (see section 3.2.2). Double wells created by rf dressing have been widely
used for BEC interference experiments, owing to their high degree of control allow-
ing to access different regimes of tunnel coupling [125, 138, 16, 19]. In particular,
many experiments were performed with phase fluctuating BECs in elongated double
wells [136, 124, 126, 21, 90].

BEC interference experiments have also been performed in double wells, or arrays of
wells in one [239], two [108] or three [3] dimensions created using optical lattices.

Most DWI rely on time-of-flight recombination: the condensates are released, expand
and overlap in tof, creating a fringe density pattern similar to a double slit interference
experiment, from which the phase can be extracted (see section 4.2.1). Some exceptions
are for example the technique presented in Ref. [137], where the phase was inferred from
a phase-dependent heating when the two halves of the condensate are merged, and the
trapped recombiners presented in this thesis (see section 4.6) [19].

Other types of BEC interferometers Besides these three categories, one should also
mention a BEC interferometer based on the coherent diffraction of a BEC on a magnetic
lattice [103]as well as the Ramsey-like interferometer with vibrational states of a trapped
BEC that we recently developed on our experiment [248].

4.1.2.2. Example of BEC interference experiments

Matter-wave interferometry (MWI) has proven to be a powerful tool to probe many-
body quantum systems. In particular, it is the only experimental technique which allows
accessing the quantum phase, nearly without equivalent in other fields of physics.

MWI has been performed to demonstrate the temporal [109] and spatial [226] coherence
of BECs and has allowed probing the phase fluctuations of degenerate Bose gases in low
dimensions [118, 136, 126, 21]. It has also been used to observe phase defects such as
vortices [166, 44] or solitons [62] in BECs.

Since the first observation of Bloch oscillations as a macroscopic quantum interference
effect [9], MWI has been used to observe Josephson oscillations and macroscopic quan-
tum self-trapping through the evolution of the phase between two condensates in an
optical double-well potential [3], illustrate the difference between independently created
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and coherently split BECs [125] and study the thermal phase fluctuations at equilibrium
in a pair of coupled condensate in 1D [21], 2D [108] and 3D [80].

Atomic interactions, which seem currently to be the main factor limiting the inter-
rogation time of BEC interferometers, have been studied by means of MWI. Mean-
field effects have been observed in trapped or guided BECs, including the demixing
dynamics of coherent superpositions of two internal states with slightly different scat-
tering lengths [112, 11] and spatially inhomogeneous, density-dependent phase dynam-
ics [128, 67]. Many-body effects, such as interaction-induced phase diffusion, which will
be discussed in detail in section 4.5.2, have been studied in Ref. [138, 19]. It has also
been experimentally demonstrated that these effects could be limited by controlling in-
teractions with a Feshbach resonance [71, 105, 148]. Magnetic dipolar intractions have
also been studied by MWI [72].

MWI has allowed characterizing non-classical many-body states of a BEC in a double
well [70, 206, 19]. Quantum enhanced interferometry was demonstrated with internal
states of a BEC [96, 180].

Recently, in our group, a series of MWI experiments with a pair of 1D quasi-condensates
has brought new insight in the physics of out-of-equilibrium quantum systems, high-
lighting the mechanisms of prethermalization [124, 90, 2] and the emergence of thermal
correlations [149, 150] after a quench.

Although currently most matter-wave metrology experiments such as clocks or inertial
sensors use cold, non-condensed atoms, the three-path Bragg contrast interferometer of
Ref. [104] has been used to measure precisely the photon recoil energy.

4.1.3. The Vienna BEC Mach-Zehnder interferometer

The design of our BEC interferometer is based on previous work of our group in Heidel-
berg and Vienna [219, 125, 21]. It relies on the coherent splitting and recombination of
a BEC in a tunable rf-dressed double-well potential, where the matter wave is confined
at all times. Fig. 4.2 shows a schematics of the interferometric sequence: a single BEC is
first coherently split by smoothly transforming the single well into a double well. Thanks
to a spatial separation of ∼ 2µm between the two wave packets, our setup is sensitive to
inertial forces. A relative phase between the two arms is imprinted by tilting the double
well. By adjusting the time during which the double well is tilted out of the horizontal
plane, we can tune the relative phase between the two interferometer arms. The two
condensates are then recombined by reducing the splitting between the two wells in a
way such that the double well acts an atomic beam splitter, transforming the relative
phase into a population imbalance. We have implemented two different strategies based
on a slow, adiabatic deformation of the double-well potential (Josephson recombiner)
and on a fast, non-adiabatic deformation of the potential (non-adiabatic recombiner).
After recombination, the atom clouds are separated and the particle number is read out
using our fluorescence imaging system. The state of the condensate can be characterized
at each step of the interferometric sequence by interrupting the MZI transformation and
measuring the two macroscopic observables number and phase difference.
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Figure 4.2.: Schematics of the Mach-Zehnder interferometric sequence. A Bose-Einstein
condensate is coherently split by transforming a single trap into a double-well potential. A relative phase
φ between the two arms is imprinted by tilting the double well during a time tφ (phase accumulation
time). A phase sensitive recombination, similar to the action of a beam-splitter, is performed during
the time tBS, to transform the phase φ into a population imbalance between the two wells. The atoms
are eventually separated and the atom number in each well is read out by fluorescence imaging.

In the following sections, we describe, characterize and discuss each stage of the inter-
ferometric sequence. We start by presenting the methods used to probe the state of the
BEC (section 4.2). We then turn to the matter-wave source (section 4.3). In section 4.4,
we present the splitting stage and show that the output state is strongly spin-squeezed
and features reduced number fluctuations compared to a classical coherent state. In
section 4.5, we study the evolution of the phase during the phase accumulation stage
and show that the deterministic phase accumulation is accompanied by a randomization
of the phase distribution that we attribute to interaction-induced phase diffusion. In
particular, we compute the phase diffusion rate and connect it to the number fluctua-
tions of the BEC in the interferometer. In section 4.6, we present and compare the two
BEC recombiners. Eventually, in section 4.7, we present and discuss the interferometric
signal resulting from the full MZI sequence, underlining the effect of phase diffusion and
demonstrating how the use of a number-squeezed state extends the interrogation time
of our interferometer by more than a factor of 2.
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4.2. Number and phase estimation

During each experimental run, we can interrupt the sequence at any stage to mea-
sure either one or the other conjugate observable phase and number difference (see sec-
tion 2.2.2.5). This way, we can characterize the state of the condensate after each step
of the interferometric sequence. The fact that we can experimentally infer the relative
phase for each individual realization is an important feature of bosonic Josephson junc-
tions, which has no counterpart in superconducting Josephson junctions or superfluid
helium. One should however keep in mind that beyond the two-mode approximation,
the two macroscopic observables are not enough to characterize the state of the BEC.

The following section discusses the methods used on our setup to estimate both phase
and number difference, and evaluates the sensitivity of each.

4.2.1. Relative phase measurement

4.2.1.1. Principle

We have seen in section 2.2.2.5 that it is not obvious to give an unambiguous definition of
the relative phase between the two parts of a Bose-Einstein condensate. Nor is it to relate
the concept of a quantum phase to the outcome of a phase measurement process. An
enlightening discussion has been led in the 1997 article by Y. Castin and J. Dalibard [43],
where the authors showed that no measurement, nor series of measurements, could allow
distinguishing between a coherent state with random phase and a Fock state. In this
section, we assume that the BEC has been prepared in a coherent state with a well-
defined phase φ = 0 (see section 2.2.4.4).

The relative phase between two condensates cannot be directly measured. Instead, it
can be inferred from observables which are functions of the quadratures of the phase.
For this, some kind of beam-splitter is needed. In section 4.6, we will discuss some
of the techniques which have been used to recombine BECs and read-out their phase.
Here, we focus on the time-of-flight recombination method, which is the BEC analogue
of the famous Young’s double-slit experiment. It was first used in 1997 to observe the
interference between two independently created BECs [13].

Although recombining a split double-well allows the readout of the relative phase as a
population imbalance between the two modes, as we will show in section 4.6, interac-
tions make this operation hard to control. Because the free expansion reduces strongly
the non-linearity, tof recombination has generally been preferred in double-well inter-
ferometers [223, 219]. Time-of-flight recombination has also been used in asymmetric
Bragg MZIs [226], particularly in the drop tower setup Ref. [175], where the choice of a
method where interference can be seen at each single shot was justified by the expense
of the experiment. Local information can be extracted from the spatial fringes, particu-
larly with quasi-condensates in low dimensions [108, 124, 136, 21, 90], or to demonstrate
phase defects [44]. For all the experiments presented in this chapter, although our ex-
periment provides sufficient resolution to probe axial phase fluctuations [21], we chose
to discard all spatial information by integrating the interference pattern along the longi-
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Figure 4.3.: Double-slit experiment with Bose-Einstein condensates. (a) Schematics of the
time-of-flight recombination. After 46 ms, the transverse width of each cloud is much larger than the
distance between the two wells and an interference pattern emerges in the density profile imaged with
the Light Sheet. (b) Fluorescence image (averaged over 20 identical experimental runs) of the three mF

components after time of flight. The Stern & Gerlach separation is achieved by applying a magnetic field
gradient along the longitudinal z-direction. Only the central cloud (mF = 0, insensitive to magnetic
fields), which contains up to half of the atoms, is used for phase analysis. Color scale: 2D density
in atoms/pixel. (c) Zoom on the central cloud (blue box in pannel b) showing a typical interference
pattern. Black line: density profile after integration along z, as used for the phase estimation. The
bright fringe in the center of the cloud indicates a phase close to 0. The contrast is of the order of 80%.

tudinal direction of the cloud (z). In chapter 5, we will discuss what information could
be extracted from spatial phase fluctuations.

Implementation In our setup, tof recombination is achieved by abruptly switching
off the double-well potential to release the atoms, letting them expand for 46 ms and
imaging them with the LS fluorescence detector (see Fig. 4.3 a). Due to the high trans-
verse trapping frequency in the direction of splitting (several kHz), the two BEC clouds
quickly expand and overlap. A characteristic interference pattern emerges in the density
distribution in tof (see Fig. 4.3 c). Assuming that the double well can be approximated
by two harmonic potentials (see Fig. 2.5) of frequency ω, located in ±d/2, and that the
transverse wavefunctions remain Gaussian during expansion with the time-dependent
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rms width σ(t), the transverse density profile reads

|ψ(t)|2 ≈ N√
πσ2(t)

e−x
2/2σ2(t)

︸ ︷︷ ︸
envelope


1 + cos (k0(t)x+ φ)︸ ︷︷ ︸

interference term


 , (4.1)

where φ denotes the relative phase and N is the total atom number. The interference
pattern consists of a Gaussian envelope modulated by an interference term. The phase
appears as a shift in the position of the fringes with respect to the envelope. Note
that for two spatially phase-coherent BECs, and in absence of any technical noise, the
contrast of each single realization, i.e. the amplitude of the interference term, is expected
to be maximal and equal to 1. We will see in section 5 that this is also true for 1D quasi
condensates immediately after splitting, as long as the axial phase fluctuations are equal
in each cloud. The time-dependent fringe spacing

λfr(t) ≡
2π

k0(t)
=

h

tdmω2

(
1 + ω2t2

)
≈

t2�ω−2

ht

dm
, (4.2)

is a decreasing function of the splitting distance d. Atomic interactions during the early
stage of the expansion tend to increase the fringe spacing compared to Eq. (4.2), but this
effect becomes negligible when d is sufficiently large [221]. To ensure a constant fringe
spacing regardless of the actual working trap, we chose to always ramp the rf dressing
intensity to the same final value RFAmp = 0.65 (corresponding to the splitting trap, see
Fig. 4.11) before releasing the atoms. Given the 46 ms tof, and d = 2 µm, it yields
a fringe spacing λfr ≈ 105 µm, to be compared to the rms width of the optical point
spread function, which is of the order of 10 µm, and to the transverse extension of the
expanded BEC (4σ = 360 µm), so that about 5 bright fringes fit into the envelope (see
Fig. 4.3 c).

Because of unavoidable mismatches between the switch-off time of the rf dressing and
the trapping wire (< 1µs) on the one hand, and that of the bias field (0.1 ms) on
the other hand, the atoms experience a rapidly varying magnetic field. When their
Larmor frequency becomes lower than the rate of change of the local magnetic field, the
adiabaticity hypothesis (Eq. (3.2)) breaks down and the atoms are projected onto the
three mF states. We observe that the transverse positions of the three clouds are slightly
shifted, probably under the effect of spurious magnetic gradients during the tof. This
reduces the contrast of the interference pattern after integration along z. Furthermore,
since the projection depends on the exact configuration of the fields at switch off, the
ratio between the mF states occupation, and hence the contrast of the fringes, depends
on the experimental parameters.

To mitigate this issue, we chose to deliberately apply a magnetic field gradient in the
longitudinal direction (z) by pulsing current in one of the I-shaped copper wires (see
Fig. 3.2). This realizes Stern and Gerlach separation of the three Zeeman components.
Furthermore, we chose to perform phase analysis only on the magnetic-field insensitive
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mF = 0 state (see Fig. 4.3b). When possible, the switch off was optimized2 to maximize
the population in mF = 0 (up to 50% of the total atom number). Adiabatic rapid
passage (ARP) of all the atoms into a field insensitive state using a rf or microwave
pulse [38] is currently under study.

4.2.1.2. Analysis of the interference pattern

Two methods to extract the relative phase from the interference patterns have been
tested and compared. In both cases, the phase is extracted from the transverse density
profile n(x) obtained from integrating the fluorescence picture along the z-axis of the
cloud , so that no information about the local axial phase is retained, and axial phase
fluctuations are integrated out (see Fig. 5.1).
It is important to note that since the phase is a 2π periodic angular variable, the usual
definitions of ensemble average, standard deviation etc. have to be adapted to extract
meaningful statistical quantities [74]. Considering a set of phases {φn} , n = 1...m, the
following quantities will be used throughout this thesis:

• the resultant R = 1
m

∑m
n=1 e

iφn is a complex number inside the trigonometric
disc, the argument of which corresponds to the average phase, while its modulus
is a measure of the coherence (see section 2.2.3.3). For a sample of m uniformly
distributed phases, the mean modulus of R scales like 1/

√
m.

• the circular mean is defined as 〈φ〉 ≡ argR.

• the circular standard deviation ∆φ ≡
√
−2 ln |R| is defined in such a way that

it coincides with the rms width for a circular normal distribution. For a sample of
m uniformly distributed phases, the mean circular standard deviation scales like√

lnm.

Fit The first method consists in fitting the density profile n(x) with a model following
Eq. (4.1)

nfit(x) = Afite
−(x−x0,fit)

2/2σ2
fit [1 + Cfit cos (kfit(x− xref) + φfit)] . (4.3)

Details of the implementation can be found in T. Betz’s PhD thesis [20]. The contrast
term 0 ≤ C ≤ 1 accounts for finite imaging resolution, averaging over spatial fluctua-
tions of φ(z) as well as a slight angle between the camera and the splitting axis. xref is
not a fit parameter but a fixed reference point on the camera image (see discussion in
section 4.2.1.3). Figure 4.4, left panel, displays an example of the fit of the interference
pattern obtained from a single experimental realization. An advantage of the fit proce-
dure is that most fitting routines readily give confidence intervals and estimators of the
goodness of the fit which can be used to automatically reject some realizations when
analyzing large amount of data.

2The projection ratio onto the three mF states can be tuned by changing the phase of the rf dressing
field at the moment when the potential is switched off.
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Figure 4.4.: Interference pattern analysis. left: fit. Black: interference pattern obtained from
a single experimental realization (N ≈ 600 atoms, retaining only the atoms in mF = 0). Note that
the central bright fringe is shifted with respect to the center of the envelope, indicating φ 6= 0. Red
line: fit with the model of Eq. (4.3), yielding φfit = −0.73 rad. Blue: Gaussian envelope only. Gray:
residual (shifted by -0.5 for clarity). right: Fourier transform. Red line: complex argument of the
Fourier transform G(k) of the same density profile as in the left panel, displaying three plateaus. The
central plateau, with value around 0, corresponds to the envelope of the cloud, while the side plateaus
with opposite argument around k = ±0.05 µm−1 stem from the interference term. The relative phase
is extracted from one of the side plateau by averaging G(k) in the region defined by the two vertical
black lines. This yields φFT = −0.72 rad (dashed red lines). Pale blue line: modulus |G(k)|.

Fourier transform The main drawback of the fit model (4.3) is that it relies on a
harmonic approximation of the double-well and neglects interactions in the trap and in
tof. One could in principle simulate numerically the whole expansion, but it wouldn’t
yield a simple analytical model. A less model-dependent method consists in extracting
the phase from the complex argument of the Fourier transform of n(x). Assuming that
a generic interference pattern consists of an generic envelope g(x) modulated by an
interference term

n(x) = g(x) [1 + C cos (k0x+ φ)] , (4.4)

the Fourier transform of n reads

F (k) =
√

2πG(k) ∗
[
δ(k) +

C

2

(
eiφδ(k − k0) + e−iφδ(k + k0)

)]
(4.5)

where G(k) is the Fourier transform of the envelope, δ(k) is the Dirac distribution and
∗ denotes the convolution product. The pale blue line in Fig. 4.4, right panel, shows the
modulus of G(k). It consists of three peaks corresponding to the envelope and the two
sidebands around ±k0. The phase is computed by averaging the complex argument of



112
A Mach-Zehnder interferometer for trapped, interacting Bose-Einstein

condensates

the Fourier transform over one side band

φFT = arg

[∫ k0+∆k/2

k0−∆k/2

G(k)

]
. (4.6)

As long as the side bands can be resolved from the central peak (in other words: as
long as a sufficiently large number of fringes fit within the envelope), the result does not
crucially depend on ∆k. The choice of the origin of the x axis however is not incidental,
since a shift in real space corresponds to a phase gradient for the complex argument. In
practice, it is chosen as the center of the envelope.

4.2.1.3. What is the best way of extracting the phase?
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Figure 4.5.: Comparison between the phase extraction procedures. Left. Blue dots: phase
extracted from the Fourier transform procedure vs phase extracted from the fit procedure for 2000
experimental interference patterns (Nd ≈ 600 atoms in mF = 0) with different phases spanning the
interval [0, 2π]. Red line: y = x. The width of the blue trace indicates the average discrepancy between
the two methods ∆ (φFT − φfit) = 0.018 rad. In both cases, the phase was defined with respect to a
fixed pixel on the camera. Right. Red dots: phase defined with respect to a fixed reference pixel
on the camera φref vs. phase defined with respect to the center of the envelope (for each realization)
φenv, for 234 experimental interference patterns created in the same conditions (φ ∼ 0). In both cases,
the phase was extracted from the Fourier transform. φenv exhibit larger fluctuations than φref . Blue:
same for the data of the left panel (φ ∈ [0, 2π]). The pale blue area shows the average discrepancy
∆ (φref − φenv) = 0.44 rad between both methods. Black line y = x.

The measured value of the phase always depends on the estimation method. The phase
can be extracted from a fit or from the Fourier transform of the interference pattern.
In either case, it can be defined with respect to a fixed pixel on the image or with
respect to the center of the cloud (center of mass, or center of the envelope...) for each
realization. To the best of our knowledge, there is no definite argument as what method
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is more appropriate. It probably depends on what source of technical noise (vibrations
of the double-well, momentum kick when the cloud is released...) dominates during
the formation of the interference pattern. Arguably, this issue relates to the distinction
between phase shift and envelope shift discussed for example in Ref. [15]. In Ref. [223],
the phase was defined with respect to a fixed position, while in Ref. [16], the authors
chose to define it with respect to the fitted center of the Gaussian envelope.
Both fit and Fourier transform methods were tested by estimating the phase of over
2000 experimental interference patterns (see Fig. 4.5, left panel). They yielded similar
results, with an average discrepancy between both methods ∆ (φFT − φfit) = 0.018 rad,
to be compared to the SQL (see section 2.2.4.5) for Nd = 600 detected atoms,
∆φSQL = 0.041 rad. Besides being faster than the fit, the Fourier transform procedure
proved also to be more robust (fewer outliers) and was preferred for phase analysis.
To decide whether to use a fixed reference pixel on the camera or the center of the enve-
lope as the origin of phases, over 200 interference patterns recorded in the same experi-
mental conditions (φ ∼ 0) were compared, yielding ∆φref = 0.16 rad, ∆φenv = 0.26 rad
and

√
covar (φref , φenv) = 0.07 rad (see Fig. 4.5, right panel). The discrepancy between

both definitions of the phase, computed on over 2000 realizations with different phases
amounts to 0.44 rad, which is ten times larger than ∆φSQL.
A possible reason why the phase defined with respect to the envelope displays stronger
fluctuations is that it relies on an extra fitted parameter (x0,fit). For these reasons, we
chose to always define the phase with respect to an absolute reference point on the
camera

4.2.1.4. Noise of the phase estimation

In order to observe non-classical states of a bosonic Josephson junction, one must be
capable of measuring precisely phase fluctuations. One way of stating the question is:
what is the most narrow phase distribution which is measurable by our setup? One
difficulty is that the phase spread depends on the state of the BEC. Assuming that
there is an intrinsic readout noise ∆φd of the phase extraction procedure, one could
think of measuring it using a perfectly phase squeezed state. Since we cannot produce
such a state, we chose to resort to numerical simulations. Instead of a non-classical
state, which involves computing the (N + 1)× (N + 1) density matrix, we estimated the
detection noise ∆φd for a coherent state.

Simulation of the interference patterns We assume that the BEC is in a product state
where all atoms share the wavefunction of Eq. (4.1). The intrinsic phase uncertainty for
such a state is ∆φSQL = 1/

√
N (see Fig. 2.9), which sets the fundamental limit for the

sensitivity of the phase inference procedure. We estimate ∆φd from applying our phase
extraction procedure on a large number of artificial interference patterns with φ = 0.
The simulated interference patterns are generated stochastically in the following way,
extending the simulations performed by T. Betz [21]:

• The position xi of each of the Nd detected atoms is picked up independently by



114
A Mach-Zehnder interferometer for trapped, interacting Bose-Einstein

condensates

−0.5 0 0.5
0

200

400

600

800

1000

φ [rad]

n
u
m
b
er

o
f
ev
en
ts

−400 −200 0 200 400

0

50

100

150

200

250

300

350

x [µm]

p
h
o
to
n
s/
p
ix
el

Figure 4.6.: Simulation of the phase estimation procedure. Left: Numerical simulation of
interference patterns for typical experimental parameters. Black: one single numerical realization, blue:
average over 2000 realizations. Right: Histogram of the phases estimated from the 2000 numerical
runs. Red: Gaussian fit to the histogram, yielding ∆φd = 0.078. Black: Gaussian distribution with
RMS width ∆φSQL.

sampling the spatial probability distribution (4.1).

• For each atom, the number of detected photons ni is picked up from a normal
distribution with average p̄ and variance σp = 2p̄ reflecting both photon shot noise
and the amplification noise of the camera.

• the position xi,j at which each photon is detected is picked up from a normal
distribution of width σLS = 10 µm centered around xi, crudely modeling the
diffusion of the atoms in the Light Sheet and the finite optical resolution.

• Eventually, all the photon positions are binned on a grid with a camera object
space pixel size of 4 µm

Figure 4.6, left panel, shows an example of such a simulated interference pattern. For
each numerical realization, the phase is estimated using the Fourier routine3. The circu-
lar standard deviation ∆φd is computed over the results of the estimation4 (see Fig. 4.6,
right panel ). Table 4.1 shows the cumulative error budget for typical experimental pa-
rameters. The main contribution turns out to be the fit error linked to the atomic shot
noise on the grid, i.e. the fact that when the condensate wavefunction is sampled, the
number of atom ni in the ithpixel has

√
n̄i fluctuations. Computing ∆φd for different

3Note that the fit procedure yields slightly lower phase uncertainty since the artificial interference
patterns precisely implement the fit model.

4Note that the error of the estimation process is actually ∆φd/
√
m (standard error of the mean),

where m is the number of measurement.
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∆φd

Standard quantum limit (N=1100) 1/
√
N =0.030 rad

Standard quantum limit (Nd=550) 1/
√
Nd = 0.043 rad

Atom shot noise (Nd = 550)... 0.073 rad
... + photon shot noise 0.076 rad
... + diffusion in LS 0.078 rad

Table 4.1.: Noise of the phase estimation method. Circular standard deviation of the phase
estimated from 4000 simulated interference patterns with φ = 0, taking into account successively (a)
the atom shot noise (b) the photon shot noise (c) the diffusion of the atoms in the Light Sheet.

numbers of detected atoms yields ∆φd ≈ 2/
√
Nd (see Fig. 4.7). In particular, assuming

we perform the phase estimation on half of the atoms, ∆φd ≈ 2.8×∆φSQL. Increasing
the fraction of detected atoms (for example by ARP transfer to mF = 0) would improve
the sensitivity by a factor

√
2 to ∆φd = 0.55 rad.

Optimal sensitivity It is not obvious to obtain an analytical expression to see how
the phase sensitivity scales with the different parameters of the model. Nevertheless,
neglecting photon and camera shot noise, as well as imaging resolution, we can estimate
the best sensitivity for a phase estimation strategy based on a fit of the interference
pattern [48]. We assume that for each pixel ∆xi (i = 1, ...,M) on the spatial grid, the
probability distribution of the number of detected atoms ni (φ) conditional to the phase
φ is known. This is in particular the case for a coherent state when the single particle
wavefunction is known. For example, the expectation value of ni reads

n̄i(φ) = N

∫

∆xi

|ψφ(x)|2 dx (4.7)

where ψ(φ) is the wavefunction of Eq. (4.1). In this case, the best sensitivity is obtained
from a fit of the density profile, because this method precisely implements the maximum
likelihood estimator for the phase [119]. The best sensitivity is given by the Cramer-
Rao bound ∆φ2 = F−1 where F is the Fisher information (see Ref [48] and references
therein)

F ∼
m�1

m
M∑

i=1

1

∆n2
i

(
∂ 〈ni〉
∂φ

)2

. (4.8)

Equation (4.8) reflects the fact that the sensitivity is improved when a) the average
density n̄i on each pixel is more sensitive to a variation of the parameter φ b) when the
statistical fluctuations in each pixel are reduced5. In Ref. [47], the authors evaluate F and
find that for a coherent state, it precisely corresponds to the SQL: F = mN . The fact

5The prefactor m simply indicates that the standard error scales as 1/
√
m for m independent mea-

surements
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that our estimation method is still at least twice less sensitive than the optimal method
comes from technical limitations as well as the fact that in practice, the wavefunction
(conditional to φ) is not known in advance. It has been proposed [47] to first conduct
a calibration where the actual interference patterns would be recorded for different,
well-controlled values of φ, before proceeding to the phase estimation for an unknown φ.

Increasing the pixel size, for example by binning adjacent pixels, decreases the atom
shot noise fluctuations but also decreases the sensitivity of the mean profile to the fit
parameter (in the limit where all the data is binned in one pixel, no phase can be
extracted). This suggests that there is an optimal pixel size. However, our numerical
simulations (see Fig. 4.7, right panel) do not indicate any improvement above the (object
space) camera pixel size ∆x = 4 µm, which was therefore kept for the analysis.

Note eventually that the model did not take into account effects such as the finite
contrast of the interference pattern (e.g. due to phase axial fluctuation), fluctuations of
Nd or of the fringe spacing etc... which would further deteriorate the phase sensitivity.
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Figure 4.7.: Sensitivity of the phase estimation procedure (simulations). Left: Black dots:
Noise on the phase measurement ∆φd computed for different values of the number of detected atoms
Nd. Red: standard quantum limit (∆φSQL = 1

√
Nd). Blue: fit to the data, yielding y = 1.91x−0.51.

Right. Noise on the phase measurement ∆φd computed for different pixel sizes (Nd = 550). Red:
y = ∆φSQL. Blue: pixel size (4 µm).

4.2.2. Number difference measurement

4.2.2.1. Methods

Conceptually, at least, it is more obvious to measure the number difference between
the two modes of the BEC than their relative phase. It consists, ideally, in projecting
the many-body wavefunction on the basis of Fock states (see section 2.2.2.5). For this,
tunnel coupling must be instantaneously turned off. When J = 0, the Fock states are
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Figure 4.8.: Atom clouds separation a. Left: Method 1. The RF dressing amplitude is raised to
RFamp = 1 within 0.1 ms in order to apply a transverse kick in opposite direction for each cloud. The
potential is switched off immediately after, and the two clouds separate during tof. Right: Typical
fluorescence picture (averaged over 10 realizations with identical settings). When they are imaged, the
two clouds are separated by about 1mm. Note that due to stray magnetic gradients during tof, the three
mF components of each cloud are slightly shifted longitudinally. b. Left: Method 2. The RF dressing
is rapidly switched off (360 µs), so that the atoms find themselves shifted with respect to the minimum
of the bare harmonic potential and start accelerating towards the center. The potential is switched off
when they have gained maximum velocity. The two clouds cross each other while expanding and can
be resolved after tof. Right: Typical fluorescence picture (averaged over 10 realizations), exhibiting a
population imbalance of the order of 40%. Note that for method 2 the position of the left and right
clouds are swapped.

the eigenstates of the system, so that the number difference distribution p(n) cannot
evolve.
In practice, this is achieved by ramping up the barrier between the two wells non-
adiabatically with respect to the inverse Josephson frequency and then increasing the
separation between the two clouds so that they can be resolved on the camera pictures
after tof. The atom number difference can then be deduced from the difference of
fluorescence intensity from each cloud. We have used to different techniques to separate
the clouds:

• Method 1 (see Fig. 4.8 a). It consists in rapidly increasing the splitting between
the two potential wells by ramping up the rf dressing amplitude. This gives a
transverse kick with opposite outward momentum to each cloud. Then the poten-
tial is switched off and the two clouds fly away from each other. After a 46 ms tof,
they are imaged with the LS detector.

• Method 2 (see Fig. 4.8 b) [16]. This method is inspired from a technique used
to produce collisions between condensates [36]. It consists in rapidly switching
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off the RF dressing, so that the atoms find themselves in the static (harmonic)
potential, but displaced from its minimum. For that, the switch off must be non-
adiabatic with respect to the motion in the static trap. On the other hand, it
must be adiabatic with respect to the variation of the Larmor frequency, to avoid
projecting some of the atoms onto non-trapped mF states. In practice, we ramped
down the dressing in 360 µs. After the first quarter of an oscillation in the static
trap, i.e. when the clouds have attained maximal inwards velocity, the potential is
switched off. The clouds cross each other, separate and can be resolved once they
fall through the LS.

The main advantage of method 1 is that the two clouds do not need to cross each other
and that the overlap between the two clouds, as well as their transverse extension after
tof, turns out to be smaller (see Fig. 4.9, right panel). For this reason, it was preferred
for measurements where a precise counting of the atoms in each cloud was needed (see
section 4.4.3.1). On the other hand, when the splitting between the two wells is too
weak, method 1 fails because of the atoms which remain on the tunnel barrier while it
is ramped up and end up between the two clouds after expansion. Method 2 proved to
be robust for a large variety of initial double-wells, and was used for all measurements
were atom counting was not critical.

Collisions Furthermore, atom collisions while the two clouds cross each other turn
out not to be a limitation. The two parts of the BEC cross each other with a relative
velocity vrel ≈ 40 mm/s, ensuring that collisions occur in the s-wave regime (as×vrel < ~,
see 2.1.2.1). A rough estimate of the total number of collisions when the BEC cross is [36]

ncol =
1

2
Nn0πa

2
svrelτcol (4.9)

where N is the total atom number, n0 the peak density of one cloud and τcol =
2
√

2a⊥/vrel ≈ 20 µs is the time during which the two clouds overlap. For an elongated
condensate in the 1D Thomas-Fermi regime (see 2.1.3.3),

ncol =
(3N)2/3

2
√

2
a5/3

s a
−1/3
⊥ a

−4/3
‖ (4.10)

where a⊥ and a‖ are the harmonic oscillator lengths in transverse and longitudinal
direction respectively. For typical parameters, ncol ≈ 2. This relatively low value (note
that it is an upper bound, because the density is overestimated) is a consequence of the
elongated geometry of the cloud in the direction orthogonal to the collision, as well as
the relatively small atom number.
It was checked experimentally (by not switching off the static trap and letting the clouds
undergo several oscillations through each other) that the first hints of atom scattering
events appeared only after ∼ 10 consecutive collisions. Note that by increasing ncol,
BEC collisions could be studied, benefiting from the high detection efficiency of the
Light Sheet imaging.
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4.2.2.2. Analysis and noise
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Figure 4.9.: Number difference measurement. Left: Region of integration of the fluorescence
signal from each of the two cloud for atom counting. Right: Fluorescence signal (integrated along z -
integration length: 80 pixels). The black lines correspond to the x-boundaries of the integration regions
defined in the left panel. Blue: signal from the left panel, obtained with separation method 1 (without
crossing). Between the two integration regions, the signal is close to its background level. Red: signal
from Fig. 4.8, a, obtained with separation method 2 (with crossing). The overlap is more significant,
as well as the fraction of atoms outside the field of view, which would increase the measured number
fluctuations.

To estimate the number difference from the fluorescence images, a region of integration
(ROI) is defined around each cloud (see Fig. 4.9). Note that to keep the area of the ROI
small and minimize background intensity, no Stern-Gerlach gradient was applied. In
our setup, the precise determination of the number difference benefits from the almost
background-free fluorescence imaging. It has to be stressed that single atom sensitivity is
crucial for number-squeezing measurements (see below). It has already allowed demon-
strating strong number squeezing between correlated atom pairs in our experiment [34].
We will show in section 4.4.3.1 how we could aslo show number-squeezing in a double
well.
as well as in a double well, as will be shown in this thesis.
The model to describe the fluorescence signal has been described extensively in the PhD
thesis of R. Bücker [30]. Let us review it here briefly to estimate the noise on a number
difference measurement. The starting point are raw fluorescence camera pictures, namely
a 512×512 matrix of counts. Using the values for the gain gcam and the baseline c0 fitted
on the background image (see section 3.3.2.1), the fluorescence signal (in photon/pixel)
is reconstructed by computing

I(x, y) = [c(x, y)− c0] /gcam. (4.11)

Calling the number of atoms in the left (respectively: right) ROI NL,R, the total fluo-
rescence signal in each ROI is modeled by assuming that:
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• for each atom, a certain number of photons pi is detected. We model the pi’s by
independent realization of a random process of mean p̄ and variance σ2

p. Due to
the amplification noise of the camera, the variance is σ2

p ≈ 2p̄ [29].

• electronic noise on the CCD as well as stray light from the Light Sheet and flu-
orescence light reflected on the chip are responsible for a non-zero background.
Assuming that the background is uniform6, we model it by a random noise b̂
(average b̄, variance σ2

b ) and assume that each pixel implements an independent

realizations bi of b̂.

The total fluorescence signal SL,R ≡
∫
A
I(x, y) dx dy in each ROI reads

SL =

NL∑

i=1

pi +
A∑

j=1

bj, (4.12)

SR =

NR∑

i=1

p′i +
A∑

j=1

b′j, (4.13)

where A is the number of pixels in each ROI. This allows to estimate the noise on the
fluorescence signal difference s ≡ SL − SR. In the case of a perfectly number-squeezed
sample (NL = NR = N/2), the variance of s reads

∆s2 = 2Np̄+ 2Aσ2
b . (4.14)

This shows that the ROI must be kept as small as possible to minimize background.
On the other hand, assuming a perfect background-free detector and exactly p̄ detected
photons per atoms, the signal variance would be

∆s2 = p̄2∆ (NL −NR)2 . (4.15)

The detection noise scales like
√
p̄ while the signal scales like p̄. For most of the experi-

ments presented in this thesis, p̄ ≈ 16 photons/atom, but higher values can be achieved,
at the expense of a reduced spatial resolution. Eventually, this sets a limit to the best
observable squeezing. Equating (4.14) to (4.15), we get the estimate

ξ2
N,d =

2

p̄
+

2Aσ2
b

Np̄2
. (4.16)

For p̄ = 16 photons/atom and N = 1200 atoms, the second term is almost negligible and
ξd ≈ 0.38. Equation (4.16) shows that owing to its high sensitivity and low background,
fluorescence imaging can give access to number fluctuations beyond the standard quan-
tum limit. It also suggests that for squeezing measurements, we should crank up the LS
intensity, as long as the two clouds remain clearly separated on the images. It also

6Background photons are out of focus.
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4.2.3. Conclusion on number and phase measurements

We have seen in this section that different detection methods exist for the two macro-
scopic observables. Importantly, they can be used at any time in the sequence to char-
acterize the state of the condensate at each step of the interferometric sequence. We
modeled our fluorescence imaging system to estimate the detection noise on each mea-
surement, showing that while detecting number fluctuations below the standard quantum
limit should be possible, the noise on the phase measurement using interference pattern
is more than two times above the SQL.
This doesn’t tell us how strongly phase-squeezed a BEC should be for us to be able to
detect sub-shot noise phase fluctuations, but answering this question requires simulations
of the full density matrix, which are beyond the scope of this thesis. Furthermore, this
analysis underlines the fact that, owing to the highly sensitive detection methods already
currently available, counting atoms can be much more precise than inferring the phase
from an interference pattern [70, 31, 160]. It motivates the search for new recombination
methods for double-well interferometers allowing to map a phase difference into a number
difference, as will be discussed in section 4.6.
How the sensitivity of both phase and number difference measurements vary with the
atom number is currently being investigated. It raises interesting questions about how
a measurement performed on a fraction of the atoms impacts the state of the quan-
tum superposition. Furthermore, while so far either one or the other observable could
be measured in each experimental cycle, one could think of methods to measure both
number and phase in the same time, for example by changing the switch off procedure.
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4.3. Matter wave source

The matter wave source for the BEC interferometer is a single quasi-condensate in a
slightly anharmonic trap. Instead of preparing the condensate in the static, harmonic
trap, we chose to perform the last stage of the rf evaporative cooling in a weakly dressed
trap (RFAmp = 0.3), below the splitting point RFc

Amp = 0.42, in order to minimize
excitations of the collective modes during the splitting (see Fig. 4.11). The potential
is essentially harmonic along the longitudinal (z) and transverse vertical (y) direction,
while it has a significant quartic component in the horizontal (splitting) direction (see
schematics in Fig. 2.2). Table 4.2 summarizes the trap parameters.

Preparation trap (RFAmp = 0.3)
Horizontal transverse single-particle level spacing (simulated) Ex/h = 1.02 kHz
Vertical transverse trapping frequency ωy/2π = 1.75 kHz
Longitudinal trapping frequency ωz/2π = 12.4 Hz

Table 4.2.: Preparation trap parameters. Unless stated, all parameters have been directly mea-
sured.

The atom number N ≈ 1200 is controlled by the final frequency of the rf evaporation
knife (10% fluctuations from shot to shot). For these parameters, the condensate is well
described by a 1D Thomas-Fermi model (see Fig. 2.3) and µ ≈ h×450 Hz 7. The temper-
ature of about 20 nK is estimated from the longitudinal profile after expansion using a
stochastic model to describe the phase fluctuations along the quasi-condensate [237] (see
Fig. 4.10). This rough estimate is compatible with the absence of an isotropic thermal
fraction and excludes a temperature higer than 50 nK.
The fact that kBT, µ ≤ hνx,y indicates that the cloud lies in the weakly interacting
1D quasi-condensate regime [199, 190]. The corresponding phase coherence length []
(computed from the peak 1D density of 35 atoms/µm) lies between 10 and 20 µm,
which is less than the length of the cloud L ≈ 50µm. However, as will be discussed in
section 4.4.5, it seems that for matter-wave interferometry, only the coherence properties
of the relative phase between the two halves of the condensate are relevant, regardless
of the phase coherence of a single BEC.
For this reason, in the following, we will most of the time refer to our quasi-1D condensate
simply as a Bose-Einstein condensate, and apply tools which, strictly speaking, have been
developed for true condensates. In section 5, we will question this simplistic assumption
and discuss the implications of the multimode nature of our matter-wave source.

7Here, the zero-point energy is substracted from the chemical potential.
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Figure 4.10.: Temperature estimation. The temperature of the initial quasi-condensate is esti-
mated from its longitudinal profile (averaged over several realizations) after expansion, using a stochastic
model to model the thermal axial phase fluctuations and assuming ballistic expansion. Blue, orange,
red lines: density profiles computed for T=5, 20 and 50 nK respectively. Dashed line: computed in situ
profile. Note that in the longitudinal direction, the expansion is much slower than in the transverse,
tightly confined directions. The wings of the density distribution are compatible with a temperature of
20 nK, yielding an axial phase coherence length of 20 µm at the center of the cloud.
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4.4. Coherent splitting and generation of atomic
squeezed states

The first step of the interferometer sequence consists in splitting a single condensate into
a quantum superposition of two spatially separated, localized modes with a well-defined
(i.e. reproducible) relative phase. The dynamics of splitting must be always be consid-
ered with respect to different timescales: on the one hand, the timescales associated to
the external degree of freedoms (motion of the condensate along the different spatial
directions in the trap), on the other hand, that associated to the tunneling of the par-
ticles. Adiabaticity or non-adiabaticity of the splitting always refers to one particular
timescale.

In section 4.4.1, we explain how adiabatic splitting of the external wavefunction of the
BEC is achieved on our atom chip using rf dressed potentials. In section 4.4.2, we show
how near-to-adiabatic splitting of the interacting many-body wavefunction of the BEC
inherently produces a spin-squeezed state. In section 4.4.3, we present the results of the
measurements of the number and phase distributions to characterize the state of the
BEC right after splitting, and we evaluate the achieved degree of squeezing. Eventually,
in section 4.4.4, we compare our results to the prediction of a simple model for the
evolution of the many-body wavefunction in the two-mode approximation.

4.4.1. Coherent splitting of a condensate

4.4.1.1. Coherent splitting techniques

Coherent splitting of a BEC is achieved by means of an atomic beam splitter. Different
types of BS have been developped for BEC interferometry. In interferometers with
internal-state labeling, the BS consists generally in a π/2 rf and/or microwave pulse,
see for example Ref. [112], or in a two-photon Raman coupling pulse [64]. In Bragg
interferometers, coherent splitting relies on the diffraction of the atoms by a moving
light grating, which acts as a phase grating for the atomic de Broglie waves and creates
coherent, displaced copies of the BEC [85, 243]. A related approach relies on the coherent
diffraction of a BEC on a magnetic phase grating created by the superposition of a static
lattice potential and an oscillating field on an atom chip [102].

In double-well interferometers, coherent splitting is achieved by smoothly deforming the
confining potential from a single well to a double well. In the limit where the rate of
transformation of the potential is slow compared to the timescale of the transverse mo-
tion (typically the inverse transverse trap frequency), a BEC prepared in the transverse
ground state of the initial single-well potential will adiabatically follow the instantaneous
ground state and end up in the ground state of the double-well potential8. Hence, in
a symmetric double well, adiabatic splitting produces a superposition of two localized
states (one in each well) with the same phase. In a sense, this is merely a consequence

8Note that, at least for a non-interacting system, this argument remains true for any eigenstate of the
potential and has motivated the proposal of a multimode interferometer [12].
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of the definition of the two modes: we have seen in section 2.2.1 that in a symmetric
double well, it is natural to define the left and right modes as the sum and the difference
of the to first eigenstates. In this case, the ground state corresponds necessarily to a
symmetric superposition of left and right modes with φ = 0. Restricting the dynamics
of the BEC to the two lowest-lying eigenstates also underlines the fact that an adiabatic
separation BS realizes a unitary operation. The second input port of a “Y-shaped beam
splitter” such as the one presented in this thesis corresponds to the first excited state.
Note that the situation is different in an asymmetric double well, where the eigenstates
“collapse” in the left and right mode when the energy difference between the trap minima
becomes comparable to the energy difference between the two lowest eigenstates (see
Ref. [215] for a discussion of the sensitivity of adiabatic splitting to potential asymmetry
in the non-interacting case.). Asymmetric splitting can instead be used to prepare a
BEC with a finite population imbalance [247]. Adiabatic splitting of an interacting
BEC in a double-well created using the corrugation of a magnetic film has even been
used to characterize the potential asymmetry [111].
A beam splitter for cold atoms realized with a Y-shaped magnetic guide was demon-
strated in 2000 [40]. Coherent, i.e. phase-preserving splitting of a BEC was first achieved
in 2004 with an optical double-well implemented with a focused laser beam passed
through an AOM driven by two rf signals [223]. One year later, the first DWI using
rf-dressed potentials was demonstrated on atom chip [219]. The same year, the first BJJ
was realized by superimposing a 1D optical lattice to an optical harmonic potential,
realizing a single weak link [3].
In Ref. [248], we were able to demonstrate symmetric coherent splitting of a BEC be-
tween the ground and the first excited state of a single well through a non-adiabatic
manipulation of the potential (“shaking”). In principle, in a given anharmonic trap (for
example a double well) where two modes can be singled-out, it is possible to create any
coherent superposition by appropriately manipulating the confining potential, if needed
by means of optimal control methods [27]. Arguably, this is similar to the splitting
methods used in Ramsey or Bragg interferometers, where the phase of the coherent
superposition is imprinted by the driving field (rf, microwave or laser).

4.4.1.2. Implementation in our setup

As explained in section 3.2.2, we use essentially the same splitting technique as in
Ref. [219], with the minor difference that we tune the rf dressing intensity instead of
the rf detuning. Figure 4.11 shows how the rf dressed potential is smoothly transformed
from a single well to a double well as RFAmp is increased. Transversely, the potential
first flattens until a point where the quadratic term completely vanishes. At the splitting
point RF c

amp = 0.42, a local maximum emerges in the center. As the dressing amplitude
is further increased, the height of the barrier, the well spacing and the trapping frequency
increase in each well (see section 3.15). Table 4.3 summarizes the parameters of the final
double well used in most of the experiments presented in this thesis (RFAmp = 0.65).
To prepare a population imbalance, the splitting axis is tilted by an angle α with respect
to the horizontal plane (see Figs. 3.8) by scaling the intensities in each RF wire following
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Figure 4.11.: Splitting the rf dressed potential. Left: 1D cut along the splitting axis (x) of the
simulated potential for different values of the rf dressing intensity. In absence of dressing (RFamp = 0),
the potential is harmonic. When the RF amplitude is increased over the critical value RFc

amp = 0.42
(green line), two minima appear which are separated by a potential barrier. The blue lines represent
respectively the preparation trap (RFAmp = 0.3), the trap used for the recombination (RFamp = 0.55)
and the splitting trap (RFAmp = 0.65). Right: 2D cut of the RFamp = 0.65 potential in the transverse
(x, y) plane (z = 0, gravity is pointing downwards). The white line represents the trajectory of the
potential minima from RFAmp = 0 to 0.65 (White cross: static trap, green and blue crosses: same as in
left panel). Note the downward sag before RFc

Amp is reached, which is mostly caused by gravity. The
typical transverse rms size of the ground state wavefunction is of the order of 200 nm. Color map (in
both panels): potential in kHz.

Splitting double well (RFAmp = 0.65)
Horizontal trap frequency (in each well) ωx/2π = 1.44 kHz
Vertical transverse trap freq. (in each well) ωy/2π = 1.84 kHz
Longitudinal trap freq. (in each well) ωz/2π = 13.2 Hz
Well spacing (simulated, in agreement with fringe spacing) 2.1 µm
Barrier height (simulated) h× 3.7 kHz
Tunnel coupling energy (simulated) J/h ≈ 0.1 Hz

Table 4.3.: Parameters of the double well at the end of the splitting ramp. Unless stated,
all parameters have been directly measured. Note the finite value of the estimated coupling.
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Eqs. (3.30). This way, a larger fraction of the wavefunction is localized in the lowest
potential well (see Fig. 4.12).
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Figure 4.12.: Splitting with imbalance. Normalized population imbalance as a function of the
splitting angle (α parameter used in Eq. (3.30)). Note that for this particular measurement, α is offset
by 2◦, probably because of a slight asymmetry of the currents in the supposedly balanced configuration
(α = 0). This offset was carefully checked and readjusted whenever needed. The linear fit (red) yields
a sensitivity for the number difference preparation of 53± 2 atoms by degree (N = 1200).

4.4.1.3. Motion of the condensate during splitting

Adiabaticity in the direction of splitting. One common requirement for coherent
splitting is that the deformation of the potential should be adiabatic with respect to the
motion of the trapped condensate. Otherwise, excitations in the BEC will cause heating
and decoherence. In Ref. [223], axial breathing modes excited by the splitting led to a
strong curvature of the spatial interference fringes, eventually rendering phase readout
impossible after a few ms.

Our elongated geometry is characterized by two timescales: transversely, trapping fre-
quencies in the kHz range impose to manipulate the potential at the ms timescale.
Longitudinally, the trapping frequency is of the order of 10 to 20 Hz, corresponding to
hundreds of ms. Considering a system initially in the eigenstate |n〉 of the Hamiltonian
(energy En), a commonly used criterion for adiabaticity is

∑

m6=n

∣∣∣∣
~ 〈m|ṅ〉
En − Em

∣∣∣∣� 1, (4.17)

where the summation is performed over all other eigenstates [55]. For a single particle
initially in the ground state of a harmonic trap with a time-dependent frequency ω(t)
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and position x0(t), it translates into

1

4
√

2

|ω̇(t)|
ω2(t)︸ ︷︷ ︸

(de)compression

+ |ẋ0(t)|
√

m

2~ω(t)︸ ︷︷ ︸
displacement

� 1. (4.18)

This criterion can never be fulfilled during the entire splitting because when RFAmp =
0.42, the transverse trapping frequency vanishes (ω → 0 )9 while in the same time, x0

grows like the square root of the dressing amplitude (see Fig. 3.15).
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Figure 4.13.: Splitting a Bose-Einstein condensate. Left: Transverse density profile (in
atoms/µm) as a function of time (1D GPE simulation, the initial state is the ground state of the
preparation trap RFamp = 0.3). Starting at t = 0, the RF intensity is ramped up linearly for 5 ms,
and then held at the final value RFamp = 0.65. The green dotted line indicates the splitting point
(RFamp = 0.42), the blue one the end of the splitting ramp. The black line indicates the position of
the minima of the potential at each time. Note the small residual transverse oscillation after the end
of the splitting. Right: Breathing of the longitudinal density profile (in atoms/µm) of one cloud after
symmetric splitting, obtained by solving numerically the scaling equation (4.19). The dotted lines show
the evolution of the Thomas-Fermi Radius. Between a maximum and a minimum of the axial breathing
oscillation, the length of each cloud shrinks by 40% while its peak density is increased by 80%.

We chose to minimize the excitations by starting from an already dressed potential and
increase linearly the dressing amplitude in 5 ms from RFamp = 0.3 to the final value
RFamp = 0.65. We checked that no transverse excitation was detectable after the end
of splitting, in agreement with simulations predicting an overlap better than 90% with
the instantaneous ground state at all times (see Fig. 4.13, left panel). In contrast, for
ramps shorter than 1 ms, a strong heating of the cloud was observed. Optimal control
techniques may enable faster splitting with high fidelity[248].

9Strictly speaking, at the splitting point, the transverse potential becomes quartic so that the crite-
rion (4.18) does not apply anymore. Nevertheless, the adiabaticity constraint becomes more stringent
since the spacing between the energy levels diminishes.
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Axial breathing. The splitting occurs on a time scale much shorter than the longi-
tudinal motion. This results in an axial breathing mode (see Fig. 5.1). Two effects
contribute unequally to the breathing: first, each part of the condensate has only half
of the initial atom number (or any other proportion, depending of the choice of the
imbalance). Secondly, the longitudinal frequency of the final trap (ωz = 2π × 13.2 Hz)
is slightly different from the initial one. After splitting, each condensates initially sees
its shape unaffected, while its atom number and the potential it experiences suddenly
changes. The cloud is thus “too long” compared to its new equilibrium size, and it
begins to breath inwards, as could be observed in tof.
More precisely, using the explicit expression for the 1D Thomas-Fermi radius at equilib-
rium (Eq. (2.61)) with the number Ni atoms (i = L,R) in each well, we see that in the
case of a symmetric splitting (NL = NR = N/2), the cloud is 25% too long. Following
the scaling approach of Refs. [41, 139, 140], the evolution of the Thomas-Fermi radius
can be described by a scaling factor b(t) ≡ R(t)/RTF which in 1D evolves according to

b̈+ ω2
zb =

ω2
z

b2
(4.19)

(see Fig. 4.13, right panel). For a small perturbation (b(t) = 1 + ε(t) with ε � 1),
the oscillation of the TF radius is close to harmonic at the frequency ωQ =

√
3ωz ≈

2π× 22.8 Hz (we measured ωb = 23± 5 Hz). Importantly, it implies that after splitting,
both condensates are out-of-equilibrium, causing the phase to evolve both in space and
time (see section 4.5.3). One way of mitigating this effect would be to take advantage of
the dependence of ωz with the dressing amplitude. By choosing a preparation trap such
that the change of trap frequency compensates the change of interaction energy after
the atom number has been divided by two, we hope to strongly suppress the breathing
mode.

4.4.2. Squeezing and adiabatic splitting

We now turn to the dynamics of the many-body wavefunction during the splitting. As
we have seen in section 2.2.3, the ground state of a bosonic Josephson junction with
repulsive contact interaction is always number-squeezed (see Fig. 2.10). The basic idea
of number squeezing generation by adiabatic splitting is to reduce fluctuations of the
number imbalance by increasing the ratio Λ = UN/2J – generally by decreasing J –
between interaction energy and tunnel coupling.
Number squeezing in a BEC was observed in an array of weakly linked traps (optical
lattice) in 2001 [181]. In 2008, the number and the phase distribution of a condensate
in an optical double well (as well as an optical few-well potential) were measured to
demonstrate number and spin squeezing [70]. Sub-binomial numer fluctuations were
also observed in a cloven BEC in a magnetic double well on an atom chip [167]. In the
last years, number or spin squeezing between internal states of a BEC was reported in
various setups [96, 206]. An extreme case of number-squeezing is the generation of twin
atomic states, for example in our setup using collisions in an elongated BEC [34], or spin
exchanging collisions [160, 95].
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Figure 4.14.: Parameters of the bosonic Josephson junction. Result of numerical simulations of
the BJJ for different rf dressing amplitudes and N = 1200 atoms. Pale blue line: tunnel coupling energy,
black line: interaction energy, red: Josephson frequency. The dashed blue line is a fit to the simulated
coupling energy with the analytical model (4.31). The splitting point, where a second potential minimum
appears, corresponds to RFAmp = 0.42. At the end of the splitting ramp, RFAmp = 0.65 (the blue circle
shows the expected final value of the coupling J/h ≈ 0.1 Hz). The vertical dotted line represents the
crossover between Rabi and Josephson regimes Λ = 1 (purple) and the point where the chemical
potential µe of the first excited state is equal to the barrier height Vb, setting a lower bound for the
validity range of the two-mode approximation. Note that the crossover between the Josephson and the
Fock regime is outside the plotting range.

Figure (4.14) shows how the characteristic energy scales of our BJJ depend on the control
parameter of the double well (the dressing amplitude RFAmp). How these parameters
were computed is detailed in appendix A. As RFAmp is increased, the tunnel coupling
energy drops by several orders of magnitude while the interaction energy varies by less
than a factor of 2. Note that our simulations indicate that as long as RFAmp ≤ 0.53
(vertical black dotted line), the chemical potential of the first excited state is larger than
the barrier height, meaning that the two-mode approximation is not expected to give
accurate quantitative results. According to the simulations, the transition between the
Rabi and the Josephson regime occurs around RFAmp ≤ 0.48 (vertical purple dotted
line). Importantly, it means that our BJJ can essentially be tuned in the Josephson and
Fock regimes. This is an important limitation of our BJJ: for our typical atom numbers
(N ∼ 1000), the interaction energy (roughly measured by the chemical potential) and the
oscillation frequencies are both of the order of 1 kHz. For this reason, it is impossible
to reach the Rabi regime within the validity range of the two-mode approximation.
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One could think of strongly reducing U by reducing the atom number, but besides
the technical challenge of preparing a stable, low number of atoms, at some point, the
mean-field description of the BJJ would break down.
We recall here the expressions given in section 2.2.4.4 for the number-, phase- and spin
squeezing factors in the ground state of the BJJ, in the Rabi and Josephson regimes:

ξ2
N =

1√
Λ + 1

, (4.20)

ξ2
φ =
√

Λ + 1, (4.21)

ξ2
S =

1√
Λ + 1

exp
(√

1 + Λ/N
)
≈ ξ2

N (4.22)

In the final RFamp = 0.65 double well,
√

Λ ≈ 2400, so that the spin squeezing factor is
approximately equal to the number-squeezing factor.
Starting from the ground state of a BJJ with finite (and usually small) Λ, an arbitrarily
high amount of number squeezing could be in principle achieved as long as the system
adiabatically follows its instantaneous ground state. In the limit J = 0, the ground state
is nothing else than the perfectly number-squeezed twin Fock state [129]. Of course, this
would require splitting infinitely slowly because in this limit, the inverse Josephson
frequency ω−1

J diverges. In practice, splitting can be adiabatic in the beginning, until a
point where it breaks down and the number distribution is frozen (no atom can tunnel).
Note that in this regard, the breakdown of adiabaticity is necessary to achieve coherent
splitting, since the relative phase of the twin Fock state is completely undetermined.
We expect this to happen in our double well, where simulations predict that the final
value of the coupling energy is J/h ≈ 0.1 Hz, corresponding to a Josephson period of the
order of 100 ms, much longer than the splitting time. We will come back in section 4.5.2.4
on the implications of the fact that the final coupling has a finite value.

4.4.3. Results: state of the BEC after splitting

To characterize the state of the condensate right after splitting, we measured the dis-
tribution of the two conjugated macroscopic observables number difference and relative
phase (see Fig 4.15). This was achieved by inferring either number or phase for a large
number of condensates prepared in the same conditions, using the methods explained in
section 4.2.

4.4.3.1. Number distribution

The number difference distribution was computed from fluorescence images of the two
clouds after separation (see Fig. 4.8). For each picture, the total fluorescence com-
ing from each of the two cloud (SL, SR) was integrated over a region located around
the cloud (see Fig. 4.9). Figure 4.15, top pannel, shows the histogram of the fluores-
cence signal difference s ≡ SL − SR from around 230 independent experimental realiza-
tions. We observed a bell-shaped distribution centered around 0 with a sample variance
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Figure 4.15.: Number and phase distributions after splitting. Top, Histogram of the difference
between the fluorescence signals of the left and right clouds s = SL − SR, in units of the standard
deviation expected for a coherent state ∆scoh. The curves indicate a normal distribution corresponding
to the measured number squeezing factor ξN = 0.41±0.04 (solid black); the distribution expected in the
limit ξN = 0, where only detection noise is responsible for fluctuations (dotted red); and the distribution
expected for a coherent state in the absence of detection noise (dashed blue). The inset shows a typical
fluorescence picture used for measuring SL and SR. Bottom, Histogram of the measured relative
phases φ in units of the circular standard deviation of a coherent state ∆φcoh. The curves indicate a
normal distribution with the measured standard deviation ∆φ = 5.4±0.5×∆φcoh (solid black); and the
distributions expected for a coherent state in the absence (dashed blue) and in the presence (dash-dot
green) of detection noise. The inset shows a typical matter-wave interference pattern from which the
phase is extracted. Each histogram was obtained from ∼ 230 independent experimental realizations.

∆s2 = 8.5× 104. The statistical uncertainty on the variance was estimated to be of
the order of ± 0.8 × 104. To deduce the fluctuations of n from that of s, we resorted
to the model presented in section 4.2.2.2. Assuming a fixed total number of atoms
N = NL +NR and using the law of total variance, the variance ∆s2 of the fluorescence
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signal is connected to ∆(NL −NR)2 by

∆s2 = 2Aσ2
b︸ ︷︷ ︸

background noise

+ 2Np̄︸︷︷︸
photon detection noise

+ p̄2∆ (NL −NR)2 . (4.23)

(see Ref. [30] for a more detailed and comprehensive analysis of number fluctuation
measurements). The first two terms correspond to the detection noise (dashed red curve
of Fig. 4.15, see also Eq. (4.14)), while the third term describes the actual quantity we
want to measure. The mean number of photons per atom p̄ = 15.6 ± 1.3 is estimated
by comparing images of condensates prepared in the same conditions taken either with
the absorption or the fluorescence imaging. We replace N by the average atom number
N̄ = 1110. The background noise is estimated from a region of area 2A containing
no atom, and amounts to 6% of the total variance, while the photon detection noise
contributes to about 40%. This sets an upper bound to the atom number fluctuations.
If we first neglect the background noise and assume that we detect exactly p̄ photons
per atom, the non-corrected number squeezing factor is

ξN,unc ≡
√

∆s2

p̄2N̄
= 0.56± 0.04. (4.24)

Correcting for detection noise, we get from Eq. (4.23)

ξN =

√
∆s2 − 2N̄ p̄− 2Aσ2

b

p̄2N̄
= 0.41± 0.04. (4.25)

It is also common to express the number squeezing factor in decibel: ξ2
N = −7.8± 0.8 dB.

It indicates that the fluctuations of the atom number difference ∆ (NL −NR) = 13 atoms
are more than a factor of two smaller than that expected for a classical coherent state
(dashed blue curve in Fig. 4.15). This proves that the splitting process generates a
number-squeezed state. However, this value is about three times higher than the value
expected in the ground state of the split trap (ξN ≈ 0.14), suggesting that the splitting
is not truly adiabatic and/or that the BEC is not initially in the ground state.

The uncertainty on ξN was computed by error propagation, assuming that the measured
parameters (∆s2, p̄, ...) were uncorrelated. The main contribution comes from the uncer-
tainty on ∆s2, which scales like 1/

√
k, k beeing the number of measurements. The main

potential source of systematic error is the value of p̄ (or equivalently the mean number
of atoms), which is calibrated using the absorption imaging system (see section 3.3.1.1).
Overestimating p̄ by 20% yields a higher value ξN ≈ 0.46. It would be useful to compare
the measured fluctuations to a binomial distribution, such as the fluctuations expected
from splitting a non-interacting cloud. A method to mimic this situation, for example
by performing a rf or microwave Rabi π/2 pulse between two internal states, is currently
under investigation.
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4.4.3.2. Phase distribution

Here as well, the phase distributions was reconstructed from the results of the analysis of
∼ 230 independent interference patterns obtained in the same conditions (see Fig. 4.15,
bottom panel). The phase was extracted by Fourier transform (see section 4.2.1.2). It
displays a bell-shaped distribution with vanishing average and circular standard devia-
tion

∆φ = 0.16± 0.01 rad, (4.26)

(black curve, the error reflects the uncertainty on the sample variance). The phase
spread is larger than the intrinsic phase uncertainty for a classical coherent state
∆φSQL = 0.03 rad (dashed blue curve). It is also larger than the circular standard devia-
tion expected for a coherent state, taking into account our detection noise ∆φd = 0.08 rad
(dashed green curve, see 4.2.1.4). Unlike the atom number difference, there is no easy
way to correct the phase distribution for detection noise. Still, the phase fluctuations
are smaller than that expected in the ground state of the split trap (∆φ ≈ 0.22 rad),
indicating again that the splitting is not fully adiabatic.
The coherence α = 〈cosφ〉 = 0.987± 0.001 is very close to 1, due to the relatively small
phase fluctuations10.

4.4.3.3. Uncertainty product and spin squeezing

From the measured values of the phase and number-difference spread, we compute the
uncertainty product

∆ (NL −NR) ∆φ = 2.3± 0.4, (4.27)

which is about twice the minimal value allowed by the Heisenberg uncertainty relation.
Altogether, the state of the condensate exhibits reduced number fluctuations and a high
coherence, yielding a spin squeezing factor (see Eq. 2.164)

ξS =
ξN
〈cosφ〉 = 0.41± 0.04. (4.28)

Note that the value of ξS is here identical to that of ξN thanks to the large coherence
factor.
It proves that the output state of the separation beam splitter is a spin-squeezed state
with a potential metrology gain of 7.8 ± 1 dB over the standard quantum limit (see
section 2.2.4.5). It also demonstrates that splitting produces a non-separable state (see
section 2.2.4.6). According to the criterion (2.177), the measured fluctuations and the
coherence factor imply that our BEC contains ∼ 150 entangled particles. We can exclude
entanglement of less than 67 atoms with more than 90% probability (see Fig. 4.15).
This figure can be compared to depth of entanglement reported in different experiments
with BECs. In Ref. [96], M = 170-atom entanglement was demonstrated in a BEC

10Note that α is insensitive to ∆φ to the first order.
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containingN = 2300 atoms following the one-axis twisting scheme proposed in Ref. [144].
The same year, M = 4-atom entanglement for N = 1250 was reported in an experiment
using state-dependent potentials [206]. Very recently, Dicke states with at least 28
entangled atoms (out of 8000) [161] and 13 (out of 40) [106] were demonstrated.
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Figure 4.16.: Depth of entanglement. Each curve displays the lower bound Eq. (2.177) for ξN as
a function of the coherence factor 〈cosφ〉, for a collection of spin N/2 particles. Our measured number
and phase fluctuations (black points) exclude that the density matrix of the system can be written as
a direct product of blocks all involving less than ∼ 150 atoms. The error bars indicate two times the
standard error of the mean, allowing to exclude entanglement of less than 67 atoms with more than
90% probability.

4.4.4. A simple model to describe adiabatic splitting

The main hurdle when trying to get a quantitative description of adiabatic splitting lies
in the fact that the parameters of the BJJ can vary over several orders of magnitude dur-
ing splitting, making direct dynamical simulations strenuous [133]. Involved numerical
methods have been used to compute [192] and optimize [94] number squeezing.
In order to get an intuition about the amount of squeezing we expect from adiabatic
splitting, we make a simple two-step model following that proposed by A. Legget and F.
Sols [153] and extended by J. Javanainen and M. Ivanov [133]. We assume that, initially,
the BEC is in the ground state of the BJJ for RFAmp = 0.42, i.e. the point where the trap
starts to split in two wells. At this stage, tunnel coupling dominates over interaction
(Λ . 1). As the dressing intensity is increased, the system follows adiabatically its
instantaneous ground state, meaning that the number fluctuations decrease while the
phase fluctuations increase. We assume that, at some point, adiabaticity breaks down
and that the number fluctuations are immediately frozen at their current value (at this
stage, conversely to Ref. [192] we neglect further evolution of the phase fluctuations.
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We will come back to this in section 4.5.2). With this model, the amount of number
squeezing is hence fully determined by the point at which adiabaticity breaks down.

Adiabaticity condition To define a condition for the breakdown of adiabaticity, we
apply the criterion (4.17) to the Hamiltonian of the BJJ in the mean field description
(see section 2.2.5.2). In the Josephson regime (1 � Λ � N2), the Hamiltonian (2.197)
reads

Hharm =
JN

2
φ2 + Un2. (4.29)

It is the Hamiltonian of a harmonic oscillator of angular frequency ωJ ≈
√

2JUN and
(effective) mass M = 1/2U (see Fig. 2.15). In our setup, J varies over almost four
orders of magnitude while U stays essentially constant (see Fig. 4.14). The splitting is
thus formally equivalent to the decompression of a harmonic trap, and the adiabaticity
criterion (4.18) becomes

A(t) =
1

8
√

2

1

ωJ(t)

∣∣∣J̇(t)
∣∣∣

J(t)
� 1. (4.30)

To model the variation of J with the control parameter (amplitude of the rf dressing),
we consider its dependence as a function of the well spacing and well frequencies in the
harmonic approximation (Eq. (2.80)) and resort to the description of the dressed double-
well potential in the RWA (Eqs (3.24) and (3.25)) to find that the coupling should scale

∝ exp[−
(
I2

RF − I2
RF,c

)3/2
], where IRF is the dressing intensity and IRF,c is its value at

the point where the second minima appears. This motivates the Ansatz

J (IRF) = J0 exp

[
−
(

IRF − IRF,c

σRF

)5/2
]

(4.31)

which we find to be in fair agreement over four orders of magnitude with the numerical
simulations of the double well beyond the RWA (see Fig. 4.14) with J0 = h × 355 Hz,
Ic
RF = 0.39 and σRF = 0.11 (both intensities are given like RFAmp in units of Imax

0 =
79.5 mA pp). Note that this dependence reflects both the effect of the increasing spacing
between the wells and that of the compression of each well during splitting, and is
therefore stronger than the exponential decay assumed for example in Refs. [133, 192, 94].

Linear splitting ramp We consider a linear ramp of the dressing intensity

IRF = IcRF + αt (4.32)

at the splitting rate α to give an explicit expression for the degree of adiabaticity as a
function of time

Alin(t) =
5

16
√

2

(
α

σRF

)5/2
t3/2

ωJ(0)
exp

[
1

2

(
αt

σRF

)5/2
]
. (4.33)
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Figure 4.17 shows how A varies for different splitting rates. Assuming that adiabaticity
suddendly breaks down when A(t) = 1 (dashed line in left panel), this sets the level
of number and phase fluctuations at the end of the splitting process. We find a rough
agreement with the amount of number squeezing that we have measured, suggesting that
for our 5 ms splitting ramp, adiabaticity breaks down after 4.2 ms, at RFAmp = 0.6. On
the other hand, phase fluctuations are underestimated by our model, suggesting that
other effects contribute to their broadening (see next section). However, to really assess
the model, we would need to measure number and phase fluctuations for different ramp
durations, which we have not yet done.
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Figure 4.17.: Breakdown of adiabaticity during splitting. Left: Measure of adiabaticity A(t)
(Eq. (4.33)) as a function of time for different ramp durations evenly spaced from 1 ms (left) to 57 ms
(right). The blue line corresponds to the experimental value of 5 ms. The ramp are linear and the
duration includes the whole splitting process between RFAmp =0.3 and 0.65 (all ramps starting at
t = 0), although A is only computed from the splitting point RFc

Amp=0.42 on. The black dashed line
A = 1 corresponds to the expected breakdown of adiabaticity. Right: Evolution of number- (top) and
phase- (bottom) squeezing factor as a function of RFAmp (note that for a linear ramp, the time axis
is proportional to the RFAmp axis.). Black lines: adiabatic prediction (number and phase squeezing
factor in the ground state. The black circles correspond to the final trap RFAmp = 0.65). Red lines:
final squeezing values for the same ramp durations as in the left panel, assuming sudden freezing of the
fluctuations when A reaches unity. The plots can be understood in this way : the state of the system
first follows the black curve, until adiabaticity breaks down (A ≈ 1) after which number and phase
fluctuations are frozen. The black points with the error bars show the measured amount of number
and phase squeezing and the corresponding uncertainty. Our model overestimates slightly the degree
of number squeezing, and underestimates the phase spread.

We can use this model to estimate how long it would take to achieve a given amount of
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number squeezing with a linear splitting ramp. By imposing that Alin(t) is smaller than
1 at all times during the splitting, we find that the ramp duration diverges ∝ − ln ξN/ξ

2
N

when ξN → 0. It means that it would need over 200 ms to achiveve ξN = 0.1, suggesting
that a linear splitting ramp is not the best protocol to achieve strong number squeezing,
especially as other effects like atom losses and technical heating might interfere, as
observed in Ref. [167].
Equation. (4.33) could be used to infer an Ansatz for the optimal IRF(t). In Ref. [94], the
authors applied optimal control theory to a many-body, time-dependent description of a
realistic condensate to propose tailored squeezing protocols much faster than adiabatic
splitting. Simulating the many-body dynamics still remains a difficult task when trying
to include finite temperature effects and the coupling to the motion in the two directions
orthogonal to the splitting direction. Furthermore, it relies on a precise knowledge of the
double-well potential. Implementing such protocols on our setup to achieve enhanced
squeezing is currently under study.

4.4.5. Discussion

Altogether, we have seen that the transformation of the potential acts as a coherent
beam-splitter for our Bose-Einstein condensates, creating a superposition of two spatial
modes separated by 2 µm, still retaining a high phase coherence (〈cosφ〉 = 0.987± 0.01).
While the deformation of the trap is almost adiabatic with respect to the transverse
motion, it triggers a collective breathing excitation in the longitudinal direction.
The interplay between tunnel coupling and atomic interactions during the splitting gen-
erates strong number squeezing (ξN = 0.41± 0.04), which together with the high phase
coherence yields a spin-squeezing (or useful squeezing) factor ξS = 0.41 ± 0.04. This
implies a potential metrology gain of 7.8 ± 1 dB beyond the standard quantum limit.
In other words, feeding this state into an ideal, noiseless Mach-Zehnder interferometer
would allow measuring a phase shift with a sensitivity twice better than obtained with
a coherent state. Fig. 4.18 shows how our result compares to other measurements of
spin-squeezed states of Bose-Einstein condensates reported in litterature.
We conjecture that the relatively high degree of spin-squeezing that we observed — one
of the highest ever observed with external states of a BEC — is linked to the elongated
geometry of our double well, which ensures that the system is initially in its transverse
ground state. Although the energy difference between ground and first excited state
shrinks considerably during splitting, we believe that the occupation of the transverse
states mimics an extremely low temperature, much lower than that associated to the
occupation of the many accessible longitudinal modes, hence approaching the ideal zero-
temperature limit.
We also observe that the product of the uncertainties on the conjugated variables n and
φ is about two times larger than the minimum allowed by the Heisenberg uncertainty
relation. Although the amount of number squeezing seems consistent with our simple
model for adiabatic splitting, the phase fluctuations are stronger than expected. Note
that while the measured number fluctuations can be corrected for detection noise, the
intrinsic phase fluctuations are probably overestimated.
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Figure 4.18.: Squeezing in Bose-Einstein condensates. Some measured number squeezing and
phase coherence factors reported in literature (the uncertainty is displayed when available). For the
results labeled in italic letters, one of the two quadrature was indirectly inferred. The continuous
black line corresponds to ξN = 1, the dashed lines to constant values of the spin-squeezing factor
ξS ≡ ξN/ 〈cosφ〉. Red: experiments with external states. MIT 2007: adiabatic splitting in a rf-dressed
double well [138] (ξN was infered from the phase diffusion rate); Heidelberg2008: adiabatic splitting
in an optical few-well potential [70]; Paris 2010: adiabatic splitting in a magnetic double well [167]
(coherence computed from a theoretical model); Vienna 2013: our result. Blue: experiments with
internal states. Munich 2010: control of interactions in state-dependent potentials [206]; Heidelberg
2010: interaction control with a Feshbach resonance [96].

In any case, our zero-temperature model cannot explain deviation from the minimum un-
certainty product (unless it is assumed that the system is not initially in the many-body
ground state). In Ref. [195], L. Pitaevskii and S. Stringari evaluated the reduction of
coherence due to both quantum and thermal fluctuations. In the classical regime, where
both number and phase fluctuations are small, the coherence at thermal equilibrium at
the temperature T reads

αcl =

∫ π
−π cosφ exp (JN cosφ/kBT ) dφ∫ π
−π exp (JN cosφ/kBT ) dφ

. (4.34)

These results were successfully applied by R. Gati et al. to infer the temperature of the
thermal phase fluctuations in a BJJ [80]. In their experiment, the phase coherence was
measured after the BEC was slowly split by ramping up the tunnel barrier over hundreds
of ms. This temperature showed fair agreement with that given by an independent
thermometry method. Evaluated immediately after splitting, Eq. (4.34) yields in our
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case an effective temperature of the phase fluctuations Teff ∼ 0.2 nK, using the simulated
value of the tunnel coupling in the split trap (J = h × 0.1 Hz). This is two orders of
magnitude below the initial temperature of the condensate, indicating that the system
is strongly out of equilibrium. If the atoms are held in the symmetric RFAmp = 0.65
double well, the phase coherence factor then relaxes within a few ms to a plateau value
∼ 0.8 (Teff ∼ 2 nK, see Fig. 4.26, right). As we will see in section 4.5.2, the high value
of the coherence factor for tens of ms can be attributed to the spurious tunnel coupling
(J/h ≈ 0.1 Hz). We also observe that the contrast of the interference patterns integrated
along the direction remain also very high for tens of ms.
These observations seem to go along the lines of the investigations performed in our
group on the relaxation of split 1D quasi-BECs to a prethermalized state [90, 2]. The
authors showed that the spatial coherence properties of the relative phase of two quickly
split 1D quasi BEC exhibited a seemingly thermal behaviour associated to an effective
temperature determined by the relative number fluctuations after splitting. Indeed, for
our parameters, which are very close to that of Ref. [90], the effective temperature in
presence of number-squeezing is roughly given by

Tpreth =
ξNg1Dn1D

2kB
≈ 6 nK, (4.35)

where g1D = 2~asω⊥ is the 1D effective interaction constant and n1D = 35 atoms/µm
is the peak density of the initial unsplit BEC. The corresponding 1D phase correlation
length [173]

λpreth =
2n1D~2

mkBTpreth

≈ 60 µm, (4.36)

exceeds the length of the cloud, in agreement with the high contrast we observe af-
ter integration of individual interference patterns along the longitudinal direction (see
Fig. 4.21).
For these reasons, we believe that at short times, it is legitimate to resort to a two-
mode description ignoring the axial fluctuations of the relative phase. At long times
(t > 80 ms), a reduction of contrast is observed, caused by axial phase fluctuations
in the individual interference patterns, which will be discussed in chapter 5. Taking
the multimode nature of the quasi BECs into account when studying their squeezing
properties is an extremely interesting task, that is beyond the scope of this thesis.
However, we are confident that further experiments on our setup will contribute to the
understanding of squeezing, and in particular clarify the role of finite temperature.
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4.5. Phase evolution

The second element needed to build an atom interferometer is a phase shifter, i.e. an
element capable of imprinting a controlled phase shift to the quantum superposition. As
our interferometer is symmetric, the phase shift is applied by deliberately introducing
an energy difference between the two modes. By varying the time tφ during which the
two modes are subjected to this energy difference, we can adjust its relative phase φ.
Additionally, we observe that the deterministic phase accumulation was accompanied
by a dephasing which eventually causes the relative phase between the two halves of the
BEC to become completely random.
In section 4.5.1, we explain how a deterministic phase shift can be applied, and discuss
the measured phase accumulation rate. In section 4.5.2, we describe our observations
of the evolution of the interference fringes after splitting in a symmetric and in a tilted
double well and motivate why we the randomization of the phase in the tilted double wells
can be attributed to interaction-induced, many-body phase diffusion. In section 4.5.2, we
investigate phase diffusion in absence and in presence of tunnel coupling. In section 4.5.3,
we compute the phase diffusion rate in two independent ways, and compare it to the
results of our measurements.

4.5.1. Phase accumulation

4.5.1.1. Phase shifts in BEC interferometers

In quantum mechanics, the phase picked up by an atom traveling along a certain trajec-
tory in phase space is equal to the integral of its Lagrangian L along the path [73]. To
compute the phase shift between the two arms of an interferometer, it is often sufficient
to estimate the action integrals along the classical trajectories [240, 215]

φ(~r, tφ) =

[∫ tφ

0

L
~

dt

]

path 1

−
[∫ tφ

0

L
~

dt

]

path 2

. (4.37)

The differential phase in an interferometer may come from an energy difference between
the two arms11. It can be the energy difference between two internal states, for example
the hyperfine splitting in Ramsey interferometers [112], or a difference in kinetic or
potential energy. The phase can be adjusted either by changing the energy difference or
the time during which it is acting on the atoms.
Various effects have been used to apply controlled phase shifts in BEC interferometers.
In Bloch oscillation interferometers such as the one presented in Ref. [9], the phase shift
comes from an external force, for example gravity. In the guided Bragg interferometer
of Ref. [252], a differential phase shift was applied either taking advantage of the Zee-
man effect with a magnetic field gradient, or with an initial condensate velocity. The
corresponding fringes were observed by scanning either the amplitude of the gradient,

11In general, the differential phase is also position-dependent (Eq. (4.37)). It means for example that in
a magnetically trapped Ramsey-interferometer, the accumulated phase varies at a rate proportional
to the local difference in chemical potential [112].
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or the propagation time in the waveguide. In Ref. [223], inhomogeneous AC Stark shifts
were applied by pulsing off the optical power generating the double-well potential. In
Ref. [219], the evolution of the relative phase was controlled by deliberately tilting the
double-well. The same technique was employed for example in Refs. [138, 16] as well
as in the experiments presented in this thesis [19]. We will come back to the origin of
the energy difference induced by this technique below. In the vibrational-state interfer-
ometer that we recently implemented [248], the phase evolution rate is essentially equal
to the difference of chemical potential (including the single-particle motional energy)
between the ground and the first excited eigenstates of the confining potential.

Interestingly, even when using a BEC with thousands of atoms, we always measure
a one-atom phase shift (up to the corrections due to interactions). For example, if a
differential gravitational potential energy is applied by lifting one half of the BEC with
respect to the other by a height ∆z, the phase will evolve at the rate mg∆z/~, where
g = 9.81 m/s2 and m is the mass of one 87Rb atom.

However, when an oscillating field is driving the BS transitions, there is an additional
contribution from the interaction of the atom with the drive. In fact, as shown by
P. Storey and C. Cohen-Tannoudji [240], in a symmetric π/2 − π − π/2 configuration
such as the three-grating Bragg or Raman MZI used in gravimetry experiments [141],
in absence of a perturbation, the two arms are expected to pick up the same phase, so
that the differential phase comes only from the interaction with the laser beams. This
allows scanning the interferometer phase shift by varying the phase of the recombination
BS pulse with respect to that of the separation BS [141, 243]. This is also the case in
Ramsey interferometers where the interference signal is obtained from the beating note
between the coherent atomic superposition and the drive. In this case, the phase of
the interference signal can be varied by changing the Ramsey time between the two BS
pulses [112], the detuning of the drive with respect to the atomic transition [64] or the
phase difference between the BS pulses [96].

4.5.1.2. The phase shifter

Once the condensate has been split in two, it starts accumulating a relative phase at a
rate proportional to the difference in chemical potentials between the two halves (includ-
ing the zero-point energy). Note that depending on the details of the splitting, the phase
evolution can be driven by the difference in potential energy between the two minima of
the double well (assuming for example the same number of atom in each well, as in this
section), by the difference in chemical potential between two BECs with different atom
number (in a symmetric double well, see section 4.28) or, as in earlier experiments [219],
by a combination of both.

To apply a well-defined phase shift, we tilt the double well out of the horizontal plane
in order to create a difference of potential energy ε. After a time tφ spent in the tilted
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trap, the BEC accumulates a relative phase [215]

φ ≈
[

1

~

∫
V (x(t))dt

]

left path

−
[

1

~

∫
V (x(t))dt

]

right path

(4.38)

=
εtφ
~

+ ϕ0. (4.39)
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Figure 4.19.: Phase shifter. Linear evolution of the mean phase for various energy differences ε
induced by tuning the angle α of the splitting axis with respect to the horizontal plane (each curve
corresponds to one of 7 values of α evenly spaced between −9◦ and +12◦). Each point corresponds to
the circular mean of the phase over a few realizations (error bars : one circular standard deviation).
The values of ε shown in the legend are obtained from linear fits to the data (black dashed lines). Inset:
”Carpet” obtained from integrating the interference patterns for ε/h = −349 Hz along the longitudinal
direction and concatenating them to show the time evolution.

Fig. 4.19 shows the linear evolution of the mean phase for different tilt angles, yielding
different phase evolution rates. For each measurement, we start with the coherent su-
perposition obtained after splitting (〈n〉 = 0, 〈φ〉 = 0) and tilt the double well by an
angle α between −9◦ and +12◦ by ramping linearly the current in each rf wire to its
final value given by Eq. (3.30). This way, the well spacing is kept constant while the
axis of the double well is tilted. The duration of the tilt ramp was set to 3 ms to ensure
adiabaticity with respect to the transverse motion in the trap. Given a well spacing of
2 µm, the tilt velocity is much smaller than the velocity spread of each individual BEC.
Indeed, no vertical sloshing excitation was observed. After the phase has accumulated
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for a variable time tφ, the tilt is reversed in another 3 ms. Note that the phase evolution
starts already during the tilting ramp, which is responsible for the phase offset ϕ0(α),
independent of tφ, which has been substracted in Fig. 4.19.
Eventually, the atoms are released and the phase is read out from the interference
patterns in tof (see section 4.2.1). The data of Fig. 4.19 proves that the phase evolution
is linear for all angles and the high reproducibility of the mean phase for tφ < 10 ms
allows to determine the phase evolution rate for each value of α with less than 2 Hz
uncertainty. Note that similarly to Ref. [252], we can chose to adjust φ by changing
either ε or tφ.

4.5.1.3. Origin the phase accumulation rate

From a linear fit to the values of ε(α) obtained in Fig. 4.19, we can estimate the “slope”
of the phase shifter

∣∣∣∣
dε

dα

∣∣∣∣
exp

= h× 44± 2.9 Hz/ [◦] (4.40)

We expect the main contribution to ε to stem from the difference of gravitational po-
tential energy due to the difference of height between the two wells. The gravitational
potential energy gradient for one 87Rb atom is mg/h = 2.14 Hz/nm. For small angles,
using the well spacing d = 2.1 µm given by the trap simulations, in agreement within
10% with the value deduced from the measured fringe spacing (see Fig. 3.15), we expect

∣∣∣∣
dε

dα

∣∣∣∣
grav

= mgd = h× 75 Hz/ [◦] , (4.41)

which is significantly higher than the experimental value.
In fact, as studied in Ref. [16], a double-well interferometer on an atom chip does not
only measure the gravity gradient. Because of the small distance to the chip wires,
introducing a height difference causes the two halves of the BEC to experience different
rf fields. In Ref. [16], the difference in magnetic energy between the two wells, measured
by rf spectroscopy, was found to be twice larger than the difference in gravitational
potential energy.
Performing beyond-RWA simulations of our rf-dressed potential to include this effect,
we found |dε/dα| = h× 70.1 Hz/ [◦], still 60% above the measured value. Furthermore,
the correction due to the magnetic field difference in Ref. [16] was found to add up to the
gravity gradient, yielding a stronger dependence of ε with the height difference, while
we measure of weaker dependence than expected from gravity only.
The contribution to ε due to the slight difference in radial trap frequencies between the
two wells, which modifies both the zero-point energy and the chemical potential differ-
ence [16], cannot be held responsible for this discrepancy, as it should not account to
more than 2% of the energy difference. The variation of the longitudinal trapping fre-
quencies (for which the trap simulations can not be trusted due to potential corrugation,
see section 3.2.1.3) when the double well is tilted has not been measured. However it
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seems extremely unlikely that they would vary by the factor ∼ 2.4 needed to explain
the discrepancy with the measured value of |dε/dα|.
We currently don’t have an explanation for the fact that we observe a slope |dε/dα|
significantly lower than expected from the gravity gradient. Unfortunately, conversely
to Ref. [125, 16], we are missing an imaging system parallel to the long axis of the trap,
which would allow us to directly measure the splitting angle α, and hence infer the height
difference between the wells. Furthermore, other systematic effects may contribute to
the energy difference, such as uncontrolled inhomogeneous electric fields close to the
chip.

4.5.2. Phase diffusion

4.5.2.1. Evolution of the phase and contrast distributions

C

(a) (b) (c)

Figure 4.20.: Phase and contrast distribution. Adapted from Ref. [149]. The distribution of the
phase and the contrast (full distribution function, FDF) of the matter-wave interference patterns can be
displayed as a polar plot. For each individual realization, the phase φ and the contrast C are extracted
from the longitudinally integrated interference fringes and plotted as a point in polar coordinates (a).
The whole process is repeated up to 50 times and the scatter plot (b) is smoothed to produce a density
plot (c).

We now turn to the evolution of the phase distribution. It can be conveniently displayed
using the full distribution function (FDF) sketched in Fig. 4.20 [149]. Furthermore,
it provides information on the intensity of the axial phase fluctuations along the BJJ,
revealing 1D effects which we have ignored so far. It has been used in our group to
evidence the multimode dynamics arising in the relative phase profile of coherently split
1D quasi BECs [149].
We resorted to this representation to monitor the evolution of the phase and contrast
distribution in the symmetric (Fig. 4.21) and in the tilted (Fig. 4.22) RFAmp = 0.65
double well (ε/h = 350 Hz, orange curve in Fig. 4.19). Each FDF is the result of the
analysis of about 50 interference pattern obtained in the same experimental conditions.
Note that conversely to Ref. [149], we always integrated the fringes over the whole cloud
length12.
After splitting into the symmetric RFAmp = 0.65 double well, we observed a peaked
phase distribution associated to a high coherence and a high fringe contrast for all

12i.e. L ≈ 100µm, depending on the axial breathing, see Fig. 5.1
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Figure 4.21.: Evolution of the FDF in the symmetric double well. Measured FDF of the
contrast and the phase as a function of the phase accumulation time tφ in the symmetric RFAmp = 0.65
double well (estimated coupling strength: J/h ≈ 0.1 Hz). Note that a time offset of 6 ms has been
substracted to the total holding time in the symmetric double well to enable comparison with the data
in Fig. 4.22, where tilting and leveling back the potential took 6 ms. The two white circles indicate 50%
and 100% contrast. In the symmetric double well, the phase distribution remains peaked at all times
(∆φ ≈ 0.6 rad), while its mean undergoes slow oscillations. The contrast of the interference patterns
remains higher than 50% up to tφ ≈ 80 ms.

individual realizations. The phase spread remained roughly constant (circ. standard
deviation ∆φ ≈ 0.6 rad) over more than 90 ms, while the mean phase underwent small
amplitude oscillations at a frequency f ≈ 16 Hz. The contrast of the interference fringes,
which we found to be close to 85% immediatly after splitting, slowly decreased to about
50% after more than 80 ms holding time in the symmetric double well.

In the tilted RFAmp = 0.65 double well, on the other hand, we observed that the deter-
ministic, linear evolution of the mean phase at the rate ε/h = 350 Hz was accompanied
by a broadening of the phase distribution. After 30 ms, the phase distribution was found
to be essentially isotropic, implying that the phase coherence between the two halves of
the BEC was completely lost. Strikingly, the loss of phase coherence did not imply a loss
of contrast: even after 60 ms in the tilted double well, the BEC exhibited interference
patterns with on average more than 60% contrast.

At longer times (tφ & 70 ms), we observed a significant drop of contrast both in the
symmetric and the tilted double wells. We will come back to the mechanisms that are
responsible for the degradation of contrast in section 5.
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Figure 4.22.: Evolution of the FDF in the tilted double well. Measured FDF of the contrast
and the phase as a function of the phase accumulation time tφ in the tilted RFAmp = 0.65 double well
(ε/h = 350Hz). At short times, the deterministic linear evolution of the phase at the rate ε/h can still
be seen. The phase spread increases until the FDF is isotropic, indicating a random relative phase after
tφ ≈ 30 ms. The characteristic ring shap of the FDF is a signature of phase diffusion: although the
phase is random, each interference pattern exhibits a high contrast. Only after ∼ 75 ms, the contrast
of individual fringe patterns start to drop significantly.

We observed a similar behaviour (phase randomization within 20-30 ms associated to a
high contrast of the individual interference patterns) for all tilted double wells used in
Fig. 4.19. The broadening of the phase distribution can be quantified by measuring the
circular standard deviation of the phase ∆φ (see section 4.2.1.2) as a function of tφ (see
Fig. 4.24). At short times, we observed a linear increase of the phase spread. The dashed
line in Fig. 4.24 corresponds to the average value for the circular standard deviation
expected from k = 50 phases sampled from a uniform distribution, ∆φunif =

√
ln k,

showing that the measured phase spread is compatible with a random distribution.
We attribute the randomization of the relative phase to atomic interactions. It is well-
known that atom-atom interactions dramatically affect the evolution of the phase of a
confined BEC. Currently, they represent a fundamental limitation for both the accuracy
and the sensitivity of trapped BEC interferometers. An excellent discussion of the
impact of interactions in Ramsey and Bragg interferometers can be found in the thesis
of P. Altin [6].
Interactions affect the performance of BEC interferometers in essentially two ways:

• Mean-field interactions modify the energy of the two modes and give rise to a
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Figure 4.23.: Evolution of contrast during the phase accumulation stage. Mean fringe contrast
of the tof interference patterns as a function of the holding time tφ in the symmetric (blue) and tilted
(red) RFAmp = 0.65 double well. The black point at -6 ms displays the constrast measured immediatly
at the end of the splitting ramp (see section 4.4.3). The sudden drop of contrast at tφ ≥ 70 ms is not
fully understood yet. It is probably essentially caused by axial phase fluctuations, although the axial
breathing mode and the fact that the number of atoms in the mF = 0 state used for phase analyzes
depends on tφ (see section 4.2.1)might play also a role.

systematic shift limiting the accuracy of trapped atoms interferometers. Mean-
field shifts are one of the main source of systematic errors in trapped atomic
clocks [116]. In our vibrational-state interferometer [248], it was responsible for
a shift of the phase accumulation rate of the order of 5%. Interactions are also
responsible for a degradation of the interferometric contrast comparable to an
inhomogeneous broadening effect: in Ramsey interferometers, for example, the in-
homogeneous mean-field energy causes the phase between the two modes to precess
at a spatially-dependent rate [112]. This results in a loss of contrast when averag-
ing over the whole BEC. Furthermore, the mean-field driven demixing dynamics in
binary mixtures leads to a variation of the overlap between the states, and hence
to a degradation of the contrast [11]. A similar effect was observed [252] and in-
vestigated [128] in guided Bragg interferometers. Importantly, mean-field shifts
are deterministic and could be in principle accounted for. The “spatial dephas-
ing” caused by mean-field interactions is still compatible with a perfect contrast
in each point in space, meaning that by not discarding the spatial dependence of
the output signal in Ramsey or Bragg interferometers, one could retrieve all the
information.

• In an interacting many-body quantum system, the fundamental phase uncertainty
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Figure 4.24.: Randomization of the phase. Top: Phase distributions measured at three different
phase accumulation times tφ for ε/h = −349 Hz (orange curve of Fig. 4.19). It exhibits phase diffusion:
at short times tφ . 30 ms the mean phase is well defined (blue points); on the contrary, for longer
times the phase distribution cannot be distinguished from a random distribution. Bottom: Evolution
of the circular standard deviation of the phase ∆φ. The red line is a fit to the blue points with the
model of Eq. (4.57). Shaded area: theoretical prediction without free parameter, taking into account
the measured number squeezing (see (4.69)). Black line: expected behaviour if the initial state were
classical (i.e. not number-squeezed). Note that at tφ = 0 phase diffusion has already started.

is known to increase in time as a result of the initial number uncertainty. This effect
of interaction-induced phase diffusion will be detailed in the following sections.
Importantly, it causes a randomization of the relative phase between the two arms
of the interferometer and cannot be captured by a mean-field description, while
still being compatible with a high contrast for each experimental realization. In
the Bloch oscillations interferometer of Ref. [105], the dephasing effect due to the
inhomogeneous mean-field shift was compensated by applying a external potential.

Because we observe that the contrast of individual realizations is preserved while the
coherence is completely lost after averaging over identical realizations, we attribute the
observed randomization of the phase to interaction-induced phase diffusion. The ran-
domization of the phase between two superconductors after suppression of the Josephson
coupling has been studied as early as 1994 [232]. In the context of atomic Bose-Einstein
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condensates, the question of how the phase of a single BEC with a fixed atom num-
ber is defined has been the subject of intense theoretical investigations, see for example
Refs. [259, 157, 154]. It was shown in 1997 that the relative phase between the two
halves of a split BEC should undergo a characteristic diffusion under the effect of in-
teractions [43, 134]. The link between the rate at which the phase randomizes and
the initial relative number uncertainty was highlighted in Refs. [153, 135], where it was
conjectured that reduced number fluctuations would imply a lower phase diffusion rate.
Experimentally, the difficulty in studying phase diffusion comes from the fact that it
is difficult to disentangle interaction-induced phase diffusion from the technical shot-
to-shot fluctuations which are believed to have limited the coherence time of the first
double-well experiments [223, 219]. In 2007, coherence times a factor of ten longer than
expected from a coherent state with binomial number fluctuations were reported, and
attributed to strong number squeezing in a Sodium BEC [138]. The link between phase
diffusion and interactions was demonstrated in Bloch oscillations experiments, where
the coherence time was massively extended by tuning the s-wave scattering by means a
Feshbach resonance [71, 105]. The link between phase diffusion and number fluctuations
was also studied in optical lattices, where extended coherence times were observed, in
agreement with the inferred degree of number squeezing [158].
In section 4.5.3, we will show that the measured diffusion rate is compatible with the
rate expected from many-body phase diffusion. In section 4.5.2.2, we describe the effect
of phase diffusion and show how the evolution of the phase spread in absence of tunnel
coupling can be computed. In section 4.5.2.4, we include the effect of a weak spurious
tunnel coupling and of a finite energy detuning.

4.5.2.2. Phase diffusion in absence of tunnel coupling

Interaction-induced phase diffusion is a consequence of the fact that, in a two-mode BEC
with repulsive interactions, it costs more energy to have different numbers of atoms in
each mode. Trivially, if the interaction energy in each mode is Eint,i = U/2×N2

i , where
i = L,R, the total energy reads

Eint =
1

2
U
(
N2
L +N2

R

)
=

1

8
UN2 + Un2, (4.42)

(n ≡ (NL −NR)/2) and is minimal for NL = NR.
Each Fock state with a well-defined n has a different energy. Hence, any state which
is in a superposition of different Fock states will see its different components dephase,
leading to a broadening of its phase distribution.
To describe the evolution of the phase distribution of the BEC after the end of the
splitting, we follow the lines of Refs. [43, 134, 153]. We start from the Bose-Hubbard
Hamiltonian (2.111) in absence of tunnel coupling

ĤBH = Un̂2 + εn̂. (4.43)

with the interaction constant U ≡ (UL + UR) /2 and the detuning ε = (UL − UR)(N −
1)/2 + ∆ ≈ ∆. Note that here, we assume that there is no residual coupling in the
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split trap, which is not strictly true in our case. However, we will show in the following
section that as soon as ∆ is sufficiently large, the results of this section remain valid.
When J = 0, the Fock states are the eigenstates of the many-body Hamiltonian. We can
decompose any initial state in this basis and compute its time evolution using Eq. (2.91).
It reads

|Ψ(t)〉 =

N/2∑

n=−N/2
cne
−iEnt/~ |n〉 . (4.44)

where cn = 〈n| Ψ(t = 0)〉 and En = Un2 + εn. Note that in the absence of tunneling,
the number distribution cannot change (only the phases wind up). For simplicity, we
assume that p(n) is symmetric around zero (no net imbalance).
Because of interactions, the energy of the Fock state varies quadratically with n. Note
that in Refs. [43, 134, 153], this quadratic dependence is obtained by expanding the
energy of the Fock states up to the second order in n. Here, the quadratic dependence is
already contained in the approximations leading to the two-mode Bose Hubbard Hamil-
tonian.
To compute the evolution of the phase distribution, we write the many-body wave-
function in the basis of the phase states (see section 2.2.2.5), which corresponds to
computing the discrete Fourier transform of Eq. (4.44). To obtain a simple analytical
result, we take the continuous limit (N → ∞, cn → c(n)) and replace the sums by in-
tegrals (Eq. (2.102)). The wavefunction in phase representation is given by the Fourier
transform of the wavefunction in number representation

c̃(φ, t) ≡ 1√
2π

∫ ∞

−∞
c(n)e−iUn

2t/~

︸ ︷︷ ︸
g(n)

e−iεnt/~e−iφndn (4.45)

= G (φ− εt/~) (4.46)

where G(φ) is the Fourier transform of g(n). We immediately identify the overall phase
shift at the rate ε/~ driven by the energy difference (see also section 2.2.4.3 and 2.2.5.2).
Note that the linear detuning term is responsible for a shift of the whole phase distribu-
tion (and hence of its mean) but cannot broaden it nor squeeze it.
We rewrite the product in the Fourier transform Eq. (4.45) as a convolution product

c̃(φ, t) =
1√

4iπUt/~

∫ ∞

−∞
c̃(φ′, t = 0) exp

[
−(φ− εt/~− φ′)2

4iUt/~

]
dφ′ (4.47)

to see that the interaction term is responsible for a Gaussian broadening of the initial
phase probability distribution. This shows that interactions tend to broaden the phase
distribution at a rate ∝ U .
The mean-field model presented in section 2.2.5 gives a good picture of phase diffusion,
even if it has to be used carefully in the limit of zero coupling. Assuming an initially
well-localized wave packet in phase representation (see Fig. 2.15), J = 0 means that
the effective potential experienced by the wavefunction is flat. The kinetic energy term,
which is proportional to U (see Eq. (2.197)), causes the spread of the wavefunction.
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A particular case: Gaussian ground state We first treat the particular case of a
system initially in a Gaussian, minimal-uncertainty state, such as the ground state of
the bosonic Josephson junction at finite coupling strength. This would correspond for
example to the output state of the splitting model of section 4.4.4, where we assume that
the BEC follows adiabatically the instantaneous ground state until adiabaticity breaks
down. The initial half-number difference and phase distributions read

p(n) =
1√

2πσn
e−n

2/2σ2
n (4.48)

p(φ) =
1√

2πσφ(0)
e−φ

2/2σ2
φ(0) (4.49)

with σn = ξN
√
N/2 and σnσφ (0) = 1/2. Inserting Eq. (4.49) in Eq. (4.47), we find that

the phase distribution remains Gaussian with a time-dependent variance [43, 153]

σ2
φ(t) ≡

(
ξ2
NN
)−1

+R2t2 (4.50)

where the phase diffusion rate R is

R ≡ ξN
√
N
U

~
. (4.51)

R is proportional to both the interaction constant U and the initial number fluctuations.
In particular, as pointed out in Ref. [153], the phase diffusion can be significantly slowed-
down in presence of number squeezing (ξN < 1). At long times (t2 � ~2/(σ4

nU
2)), the

phase spread grows linearly with time, which actually resembles more a dispersive than
a diffusive behaviour, as pointed out in Ref. [134]. The coherence can also be computed
by averaging over the phase distribution. It exhibits a typical Gaussian decay [154]

〈cosφ〉 (t) = exp
[
−σ2

φ(t)/2
]

= exp
[
−σ2

φ(0)/2
]

exp
[
−t2/2τ 2

coh

]
(4.52)

where the phase coherence time is defined as τcoh ≡ R−1.

Extension to a non-minimal-uncertainty Gaussian state In practice, however, we
do not start in a minimum-uncertainty state (we have measured σnσφ ≈ 1.2 > 0.5, see
section 4.4.3.3). We lift this assumption, still assuming Gaussian distributions for n and
φ, and introduce the discrepancy β ≥ 0 defined as

β ≡
√

4σ2
nσ

2
φ(0)− 1. (4.53)

In this case, the variance of the phase distribution follows

σ2
φ(t) ≡ σ2

φ (0) +
4Uβt

~
+R2t2. (4.54)

Note that this does not affect the phase diffusion rate, which depends only on the initial
number fluctuations. At long times, we recover the same behaviour as in Eq. (4.50).
The term in factor of β is usually neglected (see Fig. 4.25), but can be significant if the
initial state is far from a minimum-uncertainty state.
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4.5.2.3. Full many-body treatment: collapses and revivals
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Figure 4.25.: Phase diffusion: numerical simulation. Circular standard deviation of the relative
phase (left) and coherence factor (right) as a function of time after suppression of tunnel coupling
(J = 0). The initial state was chosen such as to have the same number and phase fluctuations as
the state characterized in section 4.4.3. The interaction parameter U = h × 0.57 Hz was adjusted
to yield the same phase diffusion rate as observed experimentally. Red: full numerical resolution of
Eq. (4.44). Dotted blue: analytical prediction (Eq. (4.54)). Dotted black: same, omitting the term in
factor of β. The analytical prediction for the phase spread is in good agreement with the numerical
result up to times where ∆φ ≈ 2π, after which the circular standard deviation ceases to be a relevant
estimator of the phase spread. The effect of the linear term in Eq. (4.54) remains below ∼ 0.15 rad at
all times, which is of the order of the experimental uncertainty. Conversely to the analytical model, the
numerical simulation displays a revival of the coherence every Trev ≈ 0.9 s (note the difference of time
scales between the two panels). So far, though, no revival has been experimentally observed.

In the above section, we have resorted to the continuous approximation (N → ∞)
to obtain analytical results. However, the integrals computed in the continuous limit
N → ∞ only make sense when the phase spread is much smaller than 2π. Otherwise,
the periodic nature of the phase cannot be neglected. Still, numerical computation of
Eq. (4.44) for typical parameters shows good agreement with Eq. (4.54) up to times
where the phase distribution could not be experimentally distinguished from a uniform
random distribution (see Fig. 4.25, left panel).
The passage to the continuous limit conceals however one interesting phenomenon,
namely that for a finite number of particles, the collapse of coherence should al-
ternate with revivals, where a high value of the coherence factor should be ob-
served [232, 259, 43, 154], similar to that observed in Ref. [87]. Revivals occur when the
phases of all the Fock states in the superposition (4.44) resynchronize. For the quadratic
Hamiltonian (4.43), this happens periodically every Trevival = h/U (for an initial state
with a symmetric distribution of n, Trevival = h/2U , see Fig. 4.25, right panel). So far, no



154
A Mach-Zehnder interferometer for trapped, interacting Bose-Einstein

condensates

revivals could be observed in our setup, possibly because of the effects of 1D dephasing,
losses or technical heating over such a long timescale.

4.5.2.4. Phase diffusion in presence of (weak) tunnel coupling
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Figure 4.26.: Phase diffusion with and without tunnel coupling. Coherence factor as a function
of the phase accumulation time in the RFAmp = 0.65 trap (left) and in the RFAmp = 0.86 trap (right),
for which simulations of the double-well potentials yield respectively J/h ≈ 0.1 Hz and J/h ≈ 4 ×
10−11 Hz. In presence of residual tunnel coupling (left), phase diffusion occurs only when the detuning
ε is sufficiently large. When J is vanishingly small, phase diffusion occurs regardless of the detuning.
Continous lines: fit to the data, see Table 4.4. Dotted gray line in the right panel: same as the blue
line in the left panel, for comparison. The slightly faster phase diffusion in the RFAmp = 0.86 double
well could be due to the higher transverse trap frequency, yielding a larger interaction energy.

So far, we have considered phase diffusion in the limit where tunnel coupling is switched-
off and the broadening of the phase distribution is governed by interactions only. In
fact, we estimate from the simulations of the double-well potential that there should be
a residual tunnel coupling in the RFAmp = 0.65 trap of the order of Jsplit/h ≈ 0.1 Hz
(see Fig. 4.14). Indeed, when the condensate is held in the untilted double well (ε = 0),
no phase diffusion was observed (see Fig. 4.26, blue curve of left panel). Still, as soon
as a tilt was applied to drive the phase accumulation, we observed phase diffusion and
full randomization of the phase after ∼ 25 ms (red curve). Repeating the experiment
for the different tilt angles of Fig. 4.19 yielded essentially the same diffusion rate.

Symmetric double well. This behaviour can be understood looking at the mean-field
model for the BJJ (section 2.2.5), where the many-body wavefunction is identified to
that of a single fictitious particle of mass ∝ 1/U in a cosine potential of depth ∝ JN .
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It illustrates the fact that tunnel coupling tends to confine (or lock) the phase distribu-
tion, counteracting the effect of interactions. We can use the harmonic approximation
(Eq. (2.197)) to derive a boundary between the phase-locking regime and phase-diffusion
regime (here we assume a balanced double well, ε = 0). Imposing that the depth 2JN of
the cosine potential be larger than the zero-point energy in the harmonic approximation
~ωJ/2, which roughly sets the condition for having at least one bound state, yields that
no phase diffusion occurs as long as

J � Jc ≡
U

2N
(4.55)

This is the condition for entering the Fock regime (see 2.2.3.2). For our parameters, we
estimate Jc/h ≈ 2 × 10−4 Hz, which is compatible with the absence of phase diffusion
in the RFAmp = 0.65 trap. Full numerical simulation of the two-mode Bose-Hubbard
Hamiltonian confirm that phase diffusion is inhibited for J/h� 10−3 Hz (see Fig. 4.27,
left panel). We checked this by repeating the experiment in a more split trap (RFAmp =
0.86), for which simulations predict a negligible coupling, and indeed observed clear
evidence of phase diffusion (see Fig. 4.26, right panel).
It is interesting to note that although the ratio of interaction and tunnel coupling in
the RFAmp = 0.65 trap strongly suppresses Josepshon oscillations (the self-trapping
threshold |zc| is estimated to about 40 atoms, see (2.206)) and that the Josephson
period should be of the order of 100 ms (2MM prediction), tunnel coupling is still strong
enough to lock the relative phase and inhibits phase diffusion. Interestingly, the improved
2MM (see section ??) predicts a period of 72 ms (in agreement with 1D transverse GPE
simulations), which could match that of the observed low-amplitude oscillations of the
mean phase, f = 15.6± 4 Hz (see Fig. 4.21)13.
It sheds light on a distinction between the Josephson and the Fock regime: in the
Josephson regime (1/N � U/2J � N), the interactions are strong enough to modify or
even strongly suppress tunneling, but conversely to the Fock regime, they are sufficient
to maintain low phase fluctuations, allowing for a classical (or mean-field) description
of the many-body wavefunction.

Tilted double well. However, since the currents in the wire are changed in a way to
keep the spacing between the wells constant, the coupling energy is not expected to
vary much when the trap is tilted. The observed phase diffusion, which seems to be
compatible with an absence of coupling, is triggered by the energy detuning, similar
to the way tunneling can be frustrated in an optical lattice by applying a large energy
gradient [158]. In section 2.2.5.2, we have seen that ε acts as a drive for the mean
phase. In the mean-field picture, it corresponds to a constant momentum applied to the
fictitious particle. In a time-coordinate system evolving at the rate ε/h, the fictitious
particle experiences a time-dependent cosine potential shifting at the velocity −ε/h.
When |ε| is sufficiently large, the wavefunction cannot adiabatically follow the drive and

13Note that other effects, such as the slow axial breathing and the different projection onto the Zeeman
substates at switch off also affect the interference pattern on a comparable timescale.
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feels a time-averaged, flat potential, as in the zero-coupling limit. We can once again
resort to the adiabaticity criterion (4.18) (this time, we use the shift term) to estimate
that the detuning will overcome the effect of the tunnel coupling as soon as

ε� εc ≈
√

2U~ωJ . (4.56)

In the RFAmp = 0.65 trap, this implies that εc/h� 4 Hz. This a) confirms that even for
the smallest tilts in Fig. 4.19, the tunnel coupling is too weak to prevent phase diffusion
b) the fact that we observe no phase diffusion in the horizontal double well indicates that
it is balanced to better than h× 4 Hz, which is compatible to the precision we have on
the phase accumulation rate (2 Hz, see section 4.5.1). The physical interpretation of this
behaviour is that while tunnel coupling favors a relative phase close to zero with little
spread (because it is energetically favorable), it cannot maintain φ ∼ 0 adiabatically in
presence of a strong drive. Full numerical simulation of the two-mode Bose-Hubbard
Hamiltonian at finite tunnel coupling strength J/h = 0.1 confirm that at short times
(t < 25 ms), the evolution of ∆φ in presence of a tilt cannot be distinguished from phase
diffusion in absence of tunnel coupling. Interestingly, it implies that in order to cut the
tunneling link between the BECs, it is sufficient to apply a detuning, without splitting
the double well further apart.

4.5.3. Estimation of the phase diffusion rate

To extract a phase diffusion rate from the data of Fig. 4.24, we compared the measured
evolution of phase spread to that expected at short times from the theoretical prediction
for a Gaussian state (Eq. (4.54)). We used a Rayleigh non-uniformity test [74] to distin-
guish the points compatible with a uniform phase distributions from the others. Only
the points with a P -value below 5%, indicating a probability below 5% to be compatible
with the distribution of k = 47 samples drawn from a uniform random distribution, were
retained (blue points), similarly to what was done in Ref. [138].
The data of Fig. 4.24 was fitted with

∆φ2(tφ) = ∆φ2
0 +R2(tφ − ti)2, (4.57)

yielding

Rexp = 51± 4 mrad/ms, (4.58)

∆φ0 = 300± 90 mrad (4.59)

(red line). ti = −6 ms is a constant offset accounting for the 3 ms used before and after
the phase accumulation stage to incline and level the double well, during which phase
diffusion is also expected to occur. The uncertainties correspond to the 95 % confidence
interval of the fit. Note that retaining the linear term in Eq. (4.54) does not change the
fit result within the uncertainty, as expected from Fig. 4.25.
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Figure 4.27.: Phase diffusion in presence of tunnel coupling. Coherence factor as a function
of time for different values of the tunnel coupling J in a symmetric double well (ε = 0) (left); and for
different values of the detuning ε at J/h = 0.1 Hz (results of numerical resolution of the Bose-Hubbard
Hamiltonian, U = h × 0.57 Hz). Dotted black line: analytical prediction in absence of coupling. The
oscillations of coherence appearing in the right panel at low detuning correspond to a slow ”‘breathing”’
mode of the many-body wavefunction at twice the Josephson frequency. It is due to the fact that the
initial phase distribution is initially more narrow than the ground state at this coupling. Such a
breathing is expected to occur at the moment where adiabaticity breaks down during the splitting but
was not observed experimentally.

Alternatively, one can extract the phase coherence time τφ ≡ 1/R from the Gaussian
decay of the coherence factor (Eq. (4.52)) with the fit model

〈cos (φ− 〈φ〉)〉 (tφ) = exp
[
−∆φ2

0/2
]

exp
[
− (t− ti)2 /2τ 2

coh

]
. (4.60)

This has the advantage that no points must be excluded for the fit. Table 4.4 summarizes
the phase coherence times measured for different couplings and different detunings (see
Fig. 4.26).

RFAmp J/h [Hz] |ε/h| [Hz] τcoh = 1/R [ms]
0.65 0.1 3 195± 95
0.65 0.1 349 20± 3
0.86 < 10−10 10 17.4± 2.5
0.86 < 10−10 175 15.1± 2

Table 4.4.: Phase coherence times. Phase coherence times extracted from the phase diffusion
model of Eq. (4.57), for two different dressing amplitudes (data of Fig. 4.26). The coupling J was
estimated from simulations of the double well, the detuning was measured as in section 4.5.1.

To give a quantitative prediction for the phase diffusion rate, we estimated R in two
independent ways.
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4.5.3.1. Ab initio calculation

In absence of coupling, the phase diffiuson rate is expected to be proportional to U , i.e.
to the derivative of the chemical potential with respect to the atom number, evaluated
for N/2 in the case of a symmetric splitting (see section 2.2.2.2).

U =
∂µ

∂N

∣∣∣∣
N=N/2

. (4.61)

In case of asymmetric splitting (NL 6= NR), UL,R is different in each well, and the partial
derivative must be evaluated at the corresponding atom number (see Eq. 2.88).
However, on our setup, splitting is not adiabatic with respect to the longitudinal motion.
This triggers a slow axial quadrupole mode and the condensates are not at equilibrium
during phase accumulation (see 4.4.1.3). More precisely, right after splitting, each con-
densate conserves the longitudinal profile of the initial BEC, while its suddenly sees its
atom number divided by two (in the case of a symmetric splitting). It implies that
immediately after the end of splitting, the effective chemical potential of each breathing
condensate is different from that of a BEC at equilibrium in the same trap and with the
same atom number.
Consequently, the chemical potential entering the term ∂µi/∂N is not the correct quan-
tity describing the phase evolution. It must be replaced by an effective chemical potential

µeff
i = ~

dφi
dt
, (4.62)

where i = L,R and φi(t) is the time-dependent global phase of each breathing BEC.
An expression for the time-dependent wavefunction is given by the scaling approach
of Refs [41, 139, 140]. It shows that the axial wavefunction of each BEC subjected to
breathing obeys

ϕi(z, t) =
1√
bi(t)

ϕTF,i

(
z

bi(t)

)
exp

[
−i
(
µ1D,i

~
τi(t)−

m

~
ḃi(t)

2bi(t)
z2

)]
, (4.63)

where ϕ1D,i is the 1D Thomas-Fermi ground-state wavefunction in the new trap (see
Eq. (2.56)), with the corresponding equilibrium chemical potential µ1D,i (Eq. (2.64)).
The scaling parameter bi(t) follows Eq. (4.19) and the rescaled time τi is defined by

τi(t) =

∫ t

0

du

bi(u)
. (4.64)

Right after splitting (t = 0), the axial profile of each condensate is still equal to that of
the initial unsplit BEC, but with a lower atom number. Each condensate starts breathing
inwards, as shown on Fig. 4.13. Using the explicit expression for the 1D Thomas-Fermi
radius (2.61), and taking into account the fact that the longitudinal frequency in the
final trap ω′z is slightly different from that of the initial trap ωz, we find

bi(0) =

(
ω′z
ωz

)2/3(
N

Ni

)1/3

≈ 1.04×
(
N

Ni

)1/3

> 1, (4.65)

ḃi(0) = 0. (4.66)
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At times short compared to the breathing period Tb ≈ 40 ms, we can assume b constant
and the phase of each condensates follows

φi(t) ≈
µ1D,i

~
t

bi(0)
=

1

~
g1Dni(0)︸ ︷︷ ︸

µeff
i

t, (4.67)

where g1D is the 1D interaction constant in the new trap (we assume that transversely,
the splitting is adiabatic) and ni(0) is the initial peak linear density of each (out-of-
equilibrium) BEC.
In case of a sudden splitting, the longitudinal profile of each cloud first remains unaffected
so that ni(0) = n(0)Ni/N , where n(0) is the peak linear density of the unsplit cloud.
Because of this linear dependence of µeff

i with the number of atoms Ni in the condensate,

∂µeff

∂N =
g1D

N
n(0). (4.68)

From the estimated peak linear density in the initial BEC n(0) = 36 atoms/µm and the
transverse trap frequencies in each individual well, we get Ueff/h = 0.52 Hz. Note that
this value differs significantly from that estimated from the the equilibrium chemical po-
tential of the initial unsplit BEC (U/h = 0.33 Hz) or the equilibrium chemical potential
in each single well (U/h = 0.40 Hz).
Using the measured squeezing factor ξN = 0.41, the expected phase diffusion rate is

Rth = 46± 4 mrad/ms, (4.69)

or equivalently τcoh = 22± 2 ms. The uncertainty on Rth is computed by error propaga-
tion from the experimental uncertainty on each parameter. This theoretical prediction
with no free parameter, represented as a gray shaded area in Fig. 4.24, is in fair agreement
with the experimental value, suggesting that the axial breathing cannot be ignored.

4.5.3.2. Chemical potential measurement

To further confirm our understanding of phase diffusion, we performed an independent
measurement of ∂µeff/∂N . This was done by measuring the rate of phase accumulation
driven by a difference of chemical potential between the two condensates. For that, we
split the BEC with an angle in order to prepare a well-controlled population imbalance
(see Fig. 4.12). The double well was then leveled (∆ = 0) and we observed a linear
phase evolution with a rate dependent on 〈z〉.
In a symmetric double well (∆ = 0), the energy difference which drives the phase accu-
mulation stems from the difference of interaction energy14 U (NL −NR) (see Eq. (2.208)).
Assuming that both wells are identical,

〈φ〉 (t) =
1

~
UN 〈z〉 t, (4.70)

14Strictly speaking, the phase accumulation rate is proportional to the difference of ∂µ/∂N multiplied
by the corresponding atom number. For a Hamiltonian such as that of the Bose-Hubbard mode,
which is quadratic in n, this is equivalent to the difference of chemical potential.
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according to Eq. (4.71). The horizontal error bars are ±1 standard error of the mean. The vertical
error bars representing ±1 standard error of the fitted energy difference are smaller than the points.

where 〈z〉 is the average population imbalance.
Here also, we have to take into account the fact that the condensates are not at equilib-
rium. For t� Tb, Eq. (4.67) yields

〈φ〉(t) =
1

~
g1Dn(0) 〈z〉 t. (4.71)

The phase accumulation rate is simply proportional to ∂µeff/∂N . Repeating this mea-
surement for 6 different values of the imbalance 〈z〉, we indeed observed that the phase
accumulation rate depends linearly on the population imbalance and extracted the slope
g1Dn(0)/h = 763± 53 Hz (see Fig. 4.28). This yields a third value of the phase diffusion
rate

Rµ = 57± 5 mrad/ms, (4.72)

(τcoh = 17.5± 2 ms), in agreement with both previous values.

4.5.4. Conclusion on the phase evolution

In this section. we have shown how to apply a reproducible phase shift to our condensate
by tilting the double well. This triggers a deterministic linear evolution of the mean
phase with a rate that we can measure with a precision of the order of 2 Hz. If ε
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were only equal to the difference of gravitational potential energy, this sensitivity would
allow detecting the energy gained by one 87Rb atom lifted 1 nm. However, we cannot
explain quantitatively this rate from the known sources of phase drive. We speculate
that the ∼ 60% discrepancy between the expected and the measured values of the phase
accumulation rate comes from a an unknown behaviour of the tilted trap. For this
reason, performing a precision measurement of gravity with a double-well interferometer
on chip seems challenging.
We observe a randomization of the relative phase within a few tens of ms as soon as
the two wells are detuned, even in presence of tunnel coupling. The high interfero-
metric contrast observed in single realizations long after the coherence has been lost
indicates a phase diffusion process. Both the theoretical value of the interaction-induced
dephasing rate and the value inferred from measurement of the interaction-driven phase
accumulation are in agreement with the observed diffusion rate, strongly suggesting that
atom-atom interactions are responsible for the decay of phase coherence. Importantly,
the fact that the BECs are out-of-equilibrium after the end of the splitting has to be
taken into account.
The measured phase diffusion rate is in agreement with the measured fluctuations of
the relative atom number in our two-mode BEC. Through the use of a number-squeezed
state, we report a coherence time τcoh = 20 ± 3 ms, twice longer than expected with a
coherent, uncorrelated state (τcoh ≈ 9 ms). Extended coherence times have already been
observed and attributed to number squeezing [138, 158], but without directly measuring
the number fluctuations. To the best of our knowledge, our measurement constitutes
the first direct evidence of the link between number uncertainty and phase diffusion. It
calls for the improvement of methods to produce controlled number squeezing, in order
to systematically verify the way how phase diffusion varies with the amount of number
squeezing. The development of these methods is currently in progress on our experiment.
Moreover, this result shows that the interrogation time of our interferometer is currently
limited by atomic interactions, and not by technical noise. The use of number-squeezed
states is a first way by which to extend the coherence time. The control of atomic
interactions, for example by the use of a Feshbach resonance, seems a more promising
option. By strongly reducing the s-wave scattering length in a 39K BEC, coherence times
up to ∼ 1 s, limited by technical noise, were demonstrated [71]. Similarly, both inhomo-
geneous mean-field shifts and interaction-induced phase diffusion could be reversed by
interaction control together with the application of a spin-echo-like technique, enabling
the observation of a revival of the interferometric contrast [105]. The high degree of con-
trol of interactions offered by Feshbach resonances motivate the strive for high-precision
BEC interferometers, such as the ones which are currently being built in Canberra [148]
or Florence15.

15https://sites.google.com/a/lens.unifi.it/quantum-interferometry/

https://sites.google.com/a/lens.unifi.it/quantum-interferometry/
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4.6. Two phase-sensitive condensate recombiners

The last element needed to close the interferometric sequence is a phase-sensitive re-
combiner (see Fig. 4.2). In an optical Mach-Zehnder interferometer, this operation is
realized by means of a recombination beam splitter, such as a half-silvered mirror or a
fiber coupler. Its function is to transform the phase difference between the two paths of
the interferometer into a measurable signal: usually an intensity difference between the
two output ports.

Conceptually, this operation is exactly symmetric to the separation beam splitter. In-
deed, Bragg or Ramsey interferometers use essentially identical16 rf, microwave or laser
pulses to split and recombine the matter waves. In contrast, most trapped BEC inter-
ferometers rely on the tof recombination scheme detailed in section 4.2.1. The fact that
tof expansion greatly reduces the interactions when the condensates overlap is generally
put forward as an advantage of this method.

Different techniques have been suggested to read out the phase between trapped BECs.
In Ref. [137], the phase-dependent heating at the merging of two condensates has been
used to infer their relative phase. Recently, we have developed a scheme to read-out
the phase from a trapped BEC prepared in a superposition of vibrational states by
monitoring the evolution of its momentum distribution [248].

Here we have explored new methods to recombine trapped BECs in a way to map their
relative phase into a population imbalance between the two wells. One motivation to seek
for such a scheme has been mentioned in section 4.2.1.4: while the sensitivity of our phase
readout from the spatial interference fringes seems incompatible with measurements
beyond the SQL, our fluorescence imaging already enables atom counting with a precision
better than the shot noise. More generally, it has been shown that even though phase
estimation based on a fit to the tof interference pattern can in principle reach sub-shot-
noise sensitivity(∆φ < 1/

√
N) [91], it is fundamentally bounded by N2/3 and hence

cannot reach the Heisenberg scaling of the sensitivity[46].

A related motivation is the development of methods to manipulate coherently the state of
an external BJJ. We have seen in section 2.2.4.3 that in the collective spin representation,
the coherent manipulation of the many-body wavefunction requires rotations around
the axes of the Bloch sphere. Such techniques have been already implemented with
high performance in internal BJJ, making use of rf and microwave pulses. While the
energy detuning applied during the phase accumulation stage (see section 4.5.1) acts as
a rotation around the (z)-axis, tools to perform rotations around the (x) and (y) axis
efficiently are still to be developed.

Several interferometric schemes based on the splitting and recombination of trapped
atoms have been proposed. In Ref. [114], a “conveyor belt” was implemented on an
atom chip and used to merge two clouds of thermal atoms. This experiment motivated
the proposal for a trapped-atom interferometer using a time-varying magnetic poten-
tial [115]. A similar multimode interferometer consisting in two Y-shaped beam splitter
was proposed in 2002 [12].

16Up to the relative phase of the two BS pulses, which can be tuned to vary the interferometric phase.
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Several authors have suggested to make use of the controlled tunneling of atoms in
a double well potential in order to read out the phase either directly from the mean
population imbalance [192, 92] or from its fluctuations [65]. Although it was discussed
that the effect of interactions during the recombination procedure would degrade the
performance of the beam splitter [193, 91], it has been pointed out that controlled
interactions could in contrary allow for phase estimation beyond the standard quantum
limit. Even more, J. Grond et al. showed that the Heisenberg scaling of the phase
sensitivity could be reached in a fully trapped double-well interferometer [92].
On our experiment, we explored two different approaches to perform a phase-sensitive
recombination, i.e. to transform a state with a given phase φ0 and no population im-
balance into another state, whose imbalance is a function of φ0 (see Fig. 4.29). The
first method (section 4.6.1) consists in using Josephson oscillations to achieve controlled
phase-dependent tunneling. The second approach (section 4.6.2) relies on a fast trans-
formation of the potential to make use of the double well as a semi-reflective barrier.
The population imbalance of the output state is the result of the interference between
the reflected and the transmitted parts of the matter wave. For each case, we will ex-
plain the principle of the recombiner, present its implementation and discuss some of its
limitation. This section will finish by a comparison of the two schemes.
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Figure 4.29.: Josephson and non-adiabatic recombiner. Normalized population imbalance z
of the output state of the Josephson (left) and non-adiabatic (right) recombiner, as a function of the
phase φ0 of the input state. Each black dot corresponds to the ensemble average over ∼ 18 independent
experimental realizations (error bars: standard error of the mean). The phase of the input state is
varied by scanning the phase accumulation time over ∼ 3 ms (phase accumulation rate: ε/h ≈ 350 Hz).
Continuous lines: fit to the data with a two-harmonic model (see text). Dashed line: Lowest harmonic
of the fit (sine).



164
A Mach-Zehnder interferometer for trapped, interacting Bose-Einstein

condensates

The inverse recombiner Following Refs. [115, 12], the most straightforward recom-
bining beam splitter for our Mach-Zehnder interferometric scheme is to time-reverse
the splitting 4.4.1, i.e. to ramp down the tunnel barrier and to merge the two conden-
sates into a single one. Provided the transformation of the potential can be performed
adiabatically with respect to the transverse motion, the state of the condensate prior
recombination should be mapped onto a superposition of the ground and first excited
state of the single-well potential [115]. The population of these two states, as well as
their relative phase, could be inferred from monitoring the evolution of the wavefunction
during a holding time after the end of the merging, as was already done in our experiment
to analyze superpositions of vibrational states [34, 32, 248]. The value of the relative
phase prior merging could also be inferred from the position of the center-of-mass of the
merged cloud.

However, the merging of two interacting Bose-Einstein condensates is expected to result
in a phase-dependent heating, due to the decay of excitations which are created at the
phase discontinuity [261]. When φ0 = π, the merged condensate is even expected to
contain a dark soliton. It has been pointed out that enhanced phase sensitivity could
be achieved by observing the dynamics of the soliton [176]. By monitoring the phase-
dependent reduction of the condensate fraction, Jo et. al could obtain an interferometric
signal with up to ∼ 20 % contrast [137]. Our first attempts to merge the condensates
indeed produced highly excited clouds. We could even observe indications of the decay of
transverse excitations into longitudinal modes, probably following the same mechanism
as in Ref. [34].

4.6.1. Josephson recombiner

4.6.1.1. Principle

The idea of using Josephson oscillations as a way to coherently transform a state with
no imbalance and a given relative phase into a state whose imbalance is a function of the
phase has been studied in various publications [192, 193, 92]. A Josephson beam-splitter
is conceptually very similar to a π/2 Rabi pulse between two internal states coupled by
a radio-frequency field, as used for example in Ramsey interferometry [201]. It is also
not without similarity with fiber couplers used in laser optics.

Let us assume that initially, the BEC is in a coherent superposition of left and right
mode with vanishing average imbalance (〈z〉 = 0) and a mean relative phase φ0. This
corresponds for example to the state of the BEC after the phase accumulation stage.
If the tunnel coupling energy J is suddenly set to a finite value17, by lowering the
potential barrier, the phase difference triggers an oscillating tunnel current of atoms
between the two condensates (see section 2.2.5.3). Neglecting interactions, we find by
solving Eqs. (2.198) and (2.199) for Λ = 0 and ε = 0 that z undergoes sinusoidal Rabi

17We assume here that initially, J=0, although in practice there is a slight residual coupling even before
recombination.
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oscillations, the amplitude of which is equal to the sine of the initial phase18

z(t) = sinφ0 sin (2Jt/~) . (4.73)

After a quarter of a Rabi oscillation (TBS = h/8J), the final population imbalance is
simply equal to the sine of the initial phase. In particular, when φ0 = π/2, the maximal
value z (TBS) = 1 is reached. The evolution of z can then eventually be frozen by ramping
up the barrier again (J → 0).
In the collective spin representation (see section 2.2.4), the beam-splitter operation pre-
cisely corresponds to a rotation of angle π/2 around the x-axis of the Bloch sphere (see
Fig. 2.12). In absence of interactions, Eq. (2.152)) reads

|ψ(TBS)〉 = exp

(
i
2J

~
TBSŜx

)
|ψ(0)〉 , (4.74)

where the coupling J is applied during the beam-splitter time TBS.
In practice, the tunnel coupling is dynamically varied by ramping up and down the rf
dressing intensity. For a non-interacting system, the condition for a π/2 pulse becomes

1

~

∫ TBS

0

2J(t)dt =
π

2
, (4.75)

namely that the area of the pulse should be equal to π/2.

4.6.1.2. Implementation

We implemented the Josephson beam-splitter by ramping down the dressing intensity
in 3 ms from its initial value RFAmp = 0.65 (J/h ≈ 0.1 Hz) to a lower value RFBS

Amp,
corresponding to a more coupled trap (see Fig. 4.14 and 4.35). The duration of the
recombination ramp was chosen as to avoid excitations of transverse modes of the BEC.
The condensates were then held for an adjustable time tBS in the coupled trap, before the
barrier was raised again to separate the atoms for counting as described in section 4.2.2.1.
The beam-splitting procedure is illustrated in Fig. 4.33.
To find the optimal recombiner parameters, i.e. maximize the contrast of the read out,
we prepared a state with 〈φ0〉 = π/2 at the input of the recombiner and repeated
the operation for different values of RFJBS

Amp. For each value, we scanned the beam-
splitter time tBS, looking at the extrema of the Josephson oscillations. Figure 4.31
shows Josephson oscillations recorded in the RFAmp = 0.55 trap, for which we obtained
the highest amplitude 〈zm〉 ≈ 0.2 at tBS = 0.225 ms. From the measured frequency of
the Josephson oscillation, we estimate J/h ≈ 40 Hz and Λ ≈ 7. Repeating the whole
procedure for different values of the initial phase, we observed a sine-like dependence of
the final imbalance, as displayed in Fig. 4.29, left panel.
The contrast of the recombiner is given by the amplitude of z(φ0). Note that because
of phase diffusion, 〈zm〉 is not the right quantity to infer the recombiner contrast, as

18Note that φ(t), on the other hand, has a non trivial time-dependence. For instance, when φ0 = π/2,
φ(t) flips between ±π/2 every half-period (square oscillations).
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Figure 4.30.: Simulation of the Josephson recombiner. Evolution of the transverse density
profile during the beam-splitter operation (tBS = 0.225 ms), for an initial state with z = 0, φ0 = 0
(top) and z = 0, φ0 = π/2 (middle), obtained by solving numerically the 1D GPE in the transverse
potential. The continuous black lines indicate the position of the potential minima at each time. The
vertical dotted lines show the duration of the recombination ramp, the beam-splitter time tBS and the
separation ramp (t = 0 corresponds to the beginning of the recombination ramp). While for φ0 = 0, the
density profile is symmetric at all times, an imbalance builds up when φ0 = π/2. Note the transverse
excitations for t > 4 ms caused by the separation ramp. Bottom: Evolution of the normalized
population imbalance during the beam-splitter operation (gray area: beam-splitter time tBS). Atoms
already start tunneling through the potential barrier during the 3 ms recombination ramp, explaining
why the maximal final imbalance is obtained for a very small value of tBS.

we will see in section 4.7.2: the measured final imbalance is the result of the averaging
over different initial phases, which has the effect of decreasing the contrast. However,
correcting for this effect, we still find a contrast of the order of 20% (see section 4.7.2.1).

The fact that the final imbalance differs from zero even when tBS = 0 shows that atoms
have already started to tunnel before the end of the recombination ramp. Indeed, sim-
ulations show that most of the tunneling occurs while the barrier is beeing lowered (see
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Fig. 4.33). We also observed a strong damping of the Josephson oscillations over ∼ 10 ms
(see chapter 5), which sets a drastic limit to the duration of the recombiner sequence.
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Figure 4.31.: Optimization of the Josephson recombiner. Final population imbalance z as a
function of the beam splitter time tBS in the RFAmp double well, showing damped Josephson oscillations
triggered by the initial phase difference φ0 ≈ π/2 (no initial population imbalance). Black: ensemble
average over up to 5 single individual realizations (gray dots). Red: fit with a sine multiplied by
a Gaussian damping, yielding a rms decay time of 14 ± 7 ms. The arrow indicates the maximum
amplitude z = 0.23 obtained for the optimal beam-splitter time tBS = 0.225 ms, which was used for
the recombiner sequece. Note that even for tBS = 0, atoms have already tunneled through the barrier
during the 3 ms recombination ramp.

4.6.1.3. Limitations of the Josephson recombiner

Maximum contrast Interactions modify the functioning of the Josephson recombiner.
First, in presence of interactions, the period of (low-amplitude) Josephson oscillations,
T = h/

(
2J
√

1 + Λ
)

(see Eq. (2.132)), is shorter than that of the Rabi oscillations
T = h/2J . Secondly, the maximum imbalance that can be achieved starting from a
zero-imbalance initial state is set by the self-trapping threshold and reads (see Eq. 4.76)

|zc| = 2

√
Λ− 1

Λ
. (4.76)

For RFAmp = 0.55, we find |zc| ≈ 0.7 while for RFAmp = 0.6, |zc| is already lower than 0.2
(see Fig. 4.41). This shows that in order to achieve a high contrast, the recombination
must be performed in a strongly coupled double well. Ideally, this would impose lowering
the dressing down to a trap where Λ < 2 and entering the Rabi regime. In our double
well, however, this would imply ramping the dressing amplitude down to a potential
where the barrier is lower than the ground state energy, which effectively means merging
the two condensates.
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Adiabaticity Moreover, our two-mode description of the Josephson recombiner relies
on the assumption that at each time, the wavefunction can be written as a superposition
of the two modes of the double well, as introduced in section 2.2.1. When the transverse
motion is fast with respect to the transverse trap frequency (ωx/2π ∼ 1 kHz), this
assumption breaks down. It means that in order to reach low values of Λ while still
remaining adiabatic at all times, the recombination must be carried out slowly, probably
over tenths of ms. This however seems challenging, given the strong damping observed
over a few ms.

Anharmonicity Interactions are also responsible for a non-linearity of the response of
the recombiner (see Fig. 4.29, left panel). In absence of interactions, the final imbal-
ance is at all times proportional to the sine of the initial phase (see Eq. (4.73)). For
an interacting system, however, the simulations of the recombiner show that z(φ0) is
anharmonic, with a steeper slope around φ0 = π (see Fig. 4.32, left panel)19.
We can understand the shape of z(φ0) by looking at the phase portrait of the BJJ in
presence of interactions (Fig. 4.32, right panel). It suggests that, conversely to the non-
interacting case, the best contrast is obtained by following the separatrix (black line),
i.e. for φ0 = π. However, (z = 0, φ0 = π) is a hyperbolic fixed point, meaning that
the system cannot evolve from this point. For φ0 close to, but different from π, the
trajectories are close to the separatrix but the period of the oscillations of z diverges as
− ln |φ0 − π| [200] (see Fig. 4.42 ).
The final imbalance z(φ0) is a periodic function of φ0. Accounting for the symmetry
z(−φ0) = −z(φ0), we can express it as a Fourier series

z(φ0) =
M∑

n=1

an sin (nφ0) . (4.77)

Note that since it relies only on the periodicity and symmetry of z(φ0), this decomposi-
tion is very general and can describe the signal of any phase-sensitive recombiner. The
anharmonicity of the data in Fig. 4.29, left panel, is already reasonably accounted for
by retaining the two first harmonics (M = 2, blue line). However, as we will see in
section 4.7.2.1, it is necessary to characterize the phase distribution of the input state
of the recombiner to infer the amplitude of the harmonics of the recombiner response.
Although φ is a 2π-periodic variable, it is scanned in practice by varying the phase accu-
mulation time. The mere fact that the time-evolution of the BEC is not linear indicates
that the final imbalance is not likely to be a periodic function of time.
Anharmonicity also implies that the value of the phase maximizing the imbalance de-
pends on the beam-splitter duration. Strictly speaking, this invalidates the procedure
that we used to find the optimal parameters by keeping the initial phase equal to π/2.
It is thus not straightforward to find the parameters maximizing the contrast of the

19The central symmetry around φ = π comes from the fact that the whole BJJ equations are invariant
under the transformation z → −z,φ0 → φ0 = φ0 + π, which is simply equivalent to swapping the
left and the right mode



4.6 Two phase-sensitive condensate recombiners 169

Josephson recombiner. For a given value of RFJBS
Amp, both tBS and φ0 must be varied to

find the best working point. The simulations displayed in Fig. 4.42 show that in the
RFAmp = 0.55 double well, up to 80% contrast can be achieved, while for a more split
trap (RFAmp = 0.6), the oscillations of z do not exceed 25%.
The discrepancy between the highest values of the contrast we could observe (of the
order of 20%) and the theoretical mean-field predictions shows that effects beyond the
zero-temperature, 1D dynamics are limiting the contrast, as suggested by the strong
damping of the Josephson oscillation we observed. These effects, in particular the cou-
pling between the different spatial directions, are currently being investigated by Bruno
Juliá-Dı́az and Artur Polls at the University of Barcelona.
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Figure 4.32.: Effect of interactions. Left: Final population imbalance z as function of the phase
φ0 of the state at the input of the Josephson recombiner, in absence (red) and in presence (blue) of
interactions (full 1D GPE simulation of the recombiner sequence). Interactions are responsible for the
anharmonicity of the blue curve. Note the steep slope close to φ0 = π. Right. Classical phase portrait
of the BJJ for Λ = 10 (gray lines). The blue points on the z = 0 axis correspond to input states of the
recombiner with different initial phases. The blue lines represent the trajectory each state travels in
phase space during a fixed time equal to π/2ωJ , i.e. a quarter of a Josephson oscillation. Note that ωJ
represents only the period of the small amplitude Josephson oscillations. As the initial state gets closer
from the hyperbolic fixed point (φ0 = π, z = 0), the oscillations become increasingly slow and approach
asymptotically the separatrix (black line).

4.6.2. Non-adiabatic recombiner

Because it requires adiabaticity with respect to the transverse motion of the condensate,
the Josephson recombiner cannot simultaneously meet the constraints of high contrast
and fast operation. A slow transformation of the potential, however, does not allow for
a high contrast, because of the fast damping observed on a few ms timescale.
Instead, we decided to lift the adiabaticity constraint and to seek for a fast beam-splitter
operation. Rather than slowly ramping down the rf dressing to tunnel-couple the two
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halves of the condensate, we tried to abruptly launch them on the potential barrier. As
we will see, this mimics the operation of a half-silvered mirror in optics: a wave packet
impinging on the beam splitter is split between a reflected and a transmitted wave.
The intensity at each output port is the result of the interference between reflected and
transmitted waves, and hence depends on the initial phase difference.

4.6.2.1. Implementation

Instead of slowly ramping down the rf dressing amplitude, we abruptly20 decreased it
to a lower value RFFBS

Amp. This had the effect of simultaneously reducing the height of
the potential barrier and the distance between the two wells (see Fig. 4.35). The clouds
were accelerated towards the barrier and after an adjustable time tBS, the barrier was
raised again to separate the atoms for counting. Figure 4.33 shows simulations of the
complex, phase-dependent dynamics of the wavefunction during the recombination.
Here also, we prepared a state with vanishing imbalance and a phase close to π/2 and
scanned both the time tBS and the dressing amplitude RFFBS

Amp to find the optimal working
point for the recombiner. We recorded the highest final imbalance z ≈ 0.42 for RFFBS

Amp =
0.55 and tBS = 2.25 ms (see Fig. 4.34). It is interesting to note that the optimum was
found for the same value of the dressing amplitude as for the Josephson recombiner.
Simulations indicate a spacing of 1.5 µm and a barrier height Eb/h ≈ 1 kHz in this
potential (see Fig. 4.35). Repeating the procedure for different values of the initial
phase, we also observed a sine-like dependence of the output imbalance (see Fig. 4.29,
right panel).

4.6.2.2. Propagation of two non-interacting wave packets in a symmetric
potential

To gain some insight into the working principle of the non-adiabatic recombiner, it
is useful to first consider the propagation of two non-interacting wave packets with a
given relative phase φ0. We assume a 1D symmetric potential V (−x) = V (x) and the
wavefunction initially to read

ψ (x, t = 0) =
1√
2

[
ψL(x) + eiφ0ψR(x)

]
, (4.78)

where ψL(−x) = ψR(x). This implies in particular that the two wave packets have op-
posite momenta 〈p̂〉L = −〈p̂〉R, for example both heading towards x = 0. Equation 4.78
describes for example the initial configuration in the recombiner, right after the dressing
amplitude has been abruptly decreased (see Fig. 4.35).
If we assume no interaction, the evolution of the wave packets is governed by the linear
Schrödinger equation. The superposition principle and the parity of the potential allow
to write at all times

ψ (x, t) =
1√
2

[
ψL(x, t) + eiφ0ψR(x, t)

]
, (4.79)

20within 0.25 µs, which is much lower than the inverse transverse trap frequency.
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Figure 4.33.: Simulation of the non-adiabatic recombiner. Evolution of the transverse density
profile during the beam-splitter operation (tBS = 2.25 ms), for an initial state with z = 0, φ0 = 0
(top) and z = 0, φ0 = π/2 (middle), obtained by solving numerically the 1D GPE in the transverse
potential. The continuous black lines indicate the position of the potential minima at each time. The
vertical dotted lines show the duration of the recombination ramp, the beam-splitter time tBS and
the separation ramp (t = 0 corresponds to the beginning of the recombination ramp). While for
φ0 = 0, the density profile is symmetric at all times, an imbalance builds up when φ0 = π/2. Note
that conversely to the Josephson recombiner, the transverse profile exhibits a complex structure due
to the multiple reflections and transmissions in the double-well potential. Bottom: Evolution of the
normalized population imbalance during the beam-splitter operation (gray area: beam-splitter time
tBS).

where ψR(x, t) = ψL(−x, t). The time-dependent population imbalance, which we define

as z(t) ≡
∫ 0

−∞ |ψ|
2 dx−

∫∞
0
|ψ|2 dx hence reads

z(t) = C(t) sinφ0, (4.80)

where C(t) = 2

∫ ∞

0

Im [ψ∗R(x, t)ψL(x, t)] dx, (4.81)
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Figure 4.34.: Optimization of the non-adiabatic recombiner. Measured final population
imbalance z as a function of the beam splitter duration tBS. The input state was prepared to have
〈z〉 = 0 and 〈φ0〉 = π/2. Each black dot is an ensemble average over a few realizations. The uneven
shape of z(tBS) reflects the complex dynamics of the wave packet in the RFAmp = 0.55 double-well
potential. The arrow indicates the optimal beam-splitter time tBS = 2.25 ms, for which the maximum
imbalance 〈z〉 ≈ 0.42 was observed. Dashed red line: result of a 3D Gross-Pitaevskii simulation of the
BEC dynamics in the recombiner (without the separation ramp). Plain red line: result of the same
simulation, multiplied by a Gaussian damping term and time-shifted to fit the experimental points (rms
time σ: 2.7 ms, time shift: 0.12 ms) to heuristically account for the observed relaxation mechanisms
and the evolution of the condensate during the separation. The 3D GPE simulations were performed
by Bruno Juliá-Dı́az at the University of Barcelona (preliminary).

Im [] denoting the imaginary part. At each time, the population imbalance is propor-
tional to the sine of the initial phase φ0 of the superposition. The contrast C(t) is, for
each time, a constant number independent of φ0, and the Cauchy-Schwartz inequality
ensures that |C(t)| ≤ 1. It is interesting to note that this simple result relies only on
the symmetry of the potential, that of the initial wavefunction, and the linearity of the
Schrödinger equation, without other assumptions on the shape of V [215].

Altogether, the propagation in a symmetric potential for a fixed time t transforms an
initial state which has equal populations on both sides of the barrier and a relative phase
φ0, into a state whose population imbalance is proportional to the sine of the phase φ0.
For φ0 = 0 and φ0 = π, the wavefunction is even (respectively odd) at all times and
no imbalance can appear. Conversely, when φ0 = ±π/2, the imbalance is maximal
|z| = |C(t)|.
The contrast C(t) depends on the overlap between ψL (x, t) and ψR (x, t). It is useful to
look at a few particular cases to understand how it can be maximized.
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Figure 4.35.: Initial and final double-well potentials. Cut along the splitting direction of the
double-well potential prior recombination (RFAmp = 0.65, blue) and that used for the non-adiabatic
recombiner (RFAmp = 0.55, red). The horizontal lines correspond to the chemical potential of the
ground and first excited state in each potential (for RFAmp = 0.65, the spacing between the levels is
smaller than the width of the line). The density distributions of left and right modes of the RFAmp =
0.65 double well are also represented. When the dressing intensity is abruptly lowered to 0.55, it confers
to the atoms a potential energy equal to the height of the barrier.

Flat potential The simplest situation is that of a flat potential V (x) = 0. This de-
scribes for example the tof recombiner of section 4.2.1, just after the potential has been
switched off. In this case, it is reasonable to neglect interactions during expansion. Eval-
uating the contrast with (4.81), we find that, at all times and regardless of the shape of
the modes, parity imposes that C(t) = 0.

The absence of imbalance does not mean however that the wave packet is symmetric
at all times. We have seen in section 4.2.1.2 that φ0 can be deduced from the position
of the interference fringes. It has even been shown that the phase could be inferred
from the position of the center of mass of the interference pattern with sub-shot noise
sensitivity [47].

Square potential barrier The previous result suggests that a potential barrier is needed
for an imbalance to build up. A simple textbook case is that of a square potential barrier
(see for example Ref. [53]). A wave packet impinging on the barrier is split between a
transmitted and a reflected wave. For a plane matter wave of momentum ~k impinging
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Figure 4.36.: Transmission and contrast of the square beam splitter. Left: Transmission
probability for a plane wave of energy E impinging on a potential barrier of heigth V0/h = 4 kHz and
width d = 0.4, 1 or 2 µm. Note the oscillations of T associated with the transmission resonances for
E > V0. Dashed black line: lower bound for T in the classical regime (E > V0). Gray shaded area:
uncertainty on the kinetic energy of the initial state in the double well ∆E = ±~ω/2. The red dotted
line corresponds to the transmission of a semi-reflective mirror T = 0.5. Right: Contrast of a square
beam splitter when two plane matter waves of opposite momentum and equal intensities are impinging
on it. High contrast can be achieved in the tunneling regime (E < V0) provided the barrier is sufficiently
narrow and in the classical regime when E ≈ V0. At higher energy, secondary maxima can be observed
when a transmission resonance is reached. 100% contrast is obtained for E = V0 and d = 2L (white
point).

on a potential barrier of height V0 and size d, the the transmission coefficient reads

T =
4ε (ε− 1)

4ε (ε− 1) + sin2
[√

(ε− 1)d/L
] if E > V0 (4.82)

T =
4ε (1− ε)

4ε (ε− 1) + sinh2
[√

(1− ε)d/L
] if E < V0 (4.83)

where ε = V0/(~2k2/2m) is the kinetic energy of the plane wave in units of the barrier
height and L(V0) = ~/

√
2mV0 is the tunneling length associated to the energy V0. L

corresponds to the extension of a wave packet of kinetic energy V0, and is a typical
measure of the penetration depth of an evanescent matter wave into a potential barrier
of height V0 at low energy [53]. For V0/h = 1 kHz, L = 1.5 µm gives the typical length
scale of a tunneling barrier.
Fig. 4.36, left panel, shows how the transmission probability T depends on the energy
and the barrier. Two regimes must be distinguished:

• E > V0 corresponds to a situation where classically, the particles would pass over
the barrier. Quantum mechanically, the wave packet is partly transmitted and
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partly reflected. The transmission probability oscillates between [1 + 4ε (ε− 1)]−1

(dashed line) and 1. Transmission resonances occur whenever the energy of the
incoming wave corresponds to the existence of a standing wave in the barrier. To
build a 50:50 beam-splitter, one must achieve T = 0.5. The lower bound for T
imposes the (necessary) condition

E ≤ 1 +
√

2

2
V0. (4.84)

In other words: a 50:50 beam-splitter can only be achieved in the classical regime
(E > V0) if the energy is of the order of the barrier height (V0 ≤ E . 1.2× V0).

• E < V0 corresponds to a situation where the atoms can only tunnel through the
barrier. The transmission probability is a monotically decreasing function of E.
T = 0.5 can only be achieved as long as

d < 2L(V0). (4.85)

This second condition simply means that in the tunneling regime, the transmission
drops when the barrier is much larger than the penetration depth.

Still, 〈E〉 ≈ V0 is not sufficient to achieve a high contrast. The mode-matching condition
of Eq. (4.81) shows that in order for C to be large, there must be a good overlap between
the reflected and the transmitted wave on each side of the barrier (see Fig. 4.37).
In the case of a square barrier, we can derive an explicit expression for the contrast from
the model of Ref. [53]. Assuming that two plane waves of equal intensity and opposite
momentum are impinging on the square barrier, the contrast reads

C =
4
√
ε (ε− 1) sin

[√
(ε− 1)d/L

]

4ε (ε− 1) + sin2
[√

(ε− 1)d/L
] if E > V0,

C =
4
√
ε (1− ε) sinh

[√
(1− ε)d/L

]

4ε (1− ε) + sinh2
[√

(1− ε)d/L
] if E < V0. (4.86)

The result is displayed in Fig. 4.36, right panel. As expected, the maximal contrast
C = 1 is achieved when

E = V0, (4.87)

and d = 2L(V0) =

√
2~2

mV0

. (4.88)

When the kinetic energy is larger than the barrier height, the contrast is approximately
equal to V0/E. In the tunneling regime (E < V0), high contrast can be achieved, provided
the barrier is made narrow enough. For a given energy E of the incoming waves, taking
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the limit d → 0 imposes that V0 must diverge like 1/d to ensure a contrast of unity.
This corresponds to the limit of an ideal δ potential, or, in optics, to an infinitely thin
half-silvered mirror.
In practice however, the wave packets are not plane waves, they have instead a finite
momentum spread which is non-negligible compared to V0 (gray shaded area in Fig. 4.35).
It means that the atoms tunnel through the barrier as much as they cross it classically.
The potential barrier in our double wells also has a finite extension, which is always
comparable to the width of wave packets (see Fig. 4.35).
Furthermore, in our rf dressed double wells, the well spacing and the barrier height are
not independent21: V0 increases roughly like d4. From simulations of the double wells,
we find that it should be possible to fulfill d < 2L up to RFAmp = 0.6. Interestingly,
the best contrast was precisely achieved in the double well RFAmp = 0.55, for which
simulations predict that the barrier height is equal to the potential energy of the clouds
(see Fig. 4.35).

4.6.2.3. Dynamics of an interacting condensate in the non-adiabatic recombiner

1D GPE simulations To understand the complex dynamics of the BEC in the dou-
ble well during the recombination stage, we simulate it by solving the 1D GPE in the
RFAmp = 0.55 potential (see Fig. 4.38). It exhibits a complex density pattern arising
from the multiple reflections and transmissions of the matter wave on the potential bar-
rier, the outer edges of the trap as well as from the interference between the condensates.
Solving the classical equations of motion for a point-like particle initially at the same
position as the center of mass of one of the BEC shows anharmonic oscillations in each
single well at the period Tanh ≈ 1.2 ms (νanh ≈ 800 Hz, note that the oscillating pattern
in the GPE simulations has a higher frequency than the classical oscillation).
For an initial phase of π/2, imbalance seems to build up after an integer number of
center-of-mass oscillations. The final imbalance can be maximized by separating the
clouds when they are at a classical turning point, i.e. when the distance between the
clouds is maximal. Indeed, the evolution of the final imbalance shows a sequence of
bumps and dips spaced by roughly 1 ms. How many center-of-mass oscillations are
necessary to reach the maximum imbalance is not obvious from the GPE simulations,
but in practice, the structure we observed experimentally (see Fig. 4.34) suggests that
already after a few ms, unknown relaxation mechanisms completely damp the coherent
evolution.

Comparison to experiment To validate the simulations of the BEC dynamics in the
recombiner, we monitored the evolution of the wavefunction for seven different initial
phases prepared using the phase shifter (see section 4.5.1). For each phase, we abruptly
reduced the splitting as explained before and let the condensates evolve for a variable
time tBS. Eventually, instead of ramping up the barrier to separate the clouds, we

21At least, they cannot be tuned independently with only one control parameter (the dressing ampli-
tude). It has not yet been checked whether adding a new degree of freedom, such as the RF dressing
detuning, could allow tuning d and V0 independently.
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Figure 4.37.: Beam-splitting with a square potential barrier. Simulation of the dynamics
of two non-interacting Gaussian wave packets with a phase difference of π/2 impinging on a square
potential barrier for two different barrier widths (left: d = 0.5 µm, right: d = 3 µm). In both case, the
height of the barrier is equal to the mean kinetic energy of each wave packet. Top: Density profile as a
function of time. The dotted lines denote the edges of the barrier. Middle: Population imbalance as a
function of time. Bottom: The final wavefunction (filled shapes with outgoing arrows) are the result
of the constructive or destructive interference between the reflected and transmitted waves originating
from the left (blue) and right (red) incoming wave packet. When d = 0.5 µm, the overlap is good and
the final imbalance is significant. When d = 3 µm, there is little overlap between the reflected and the
transmitted wave and the contrast is low.

switched off the potential and imaged the atoms after tof. Due to the high transverse
confinement, the transverse density distribution after 46 ms expansion is almost ho-
motetic to the momentum distribution of the atoms in the trap. This gives us access to
the momentum distribution at any time during the recombiner sequence.

Fig. 4.40 shows the comparison between the measured transverse density profiles in
expansion (top) and the result of the GPE simulations (the computed momentum dis-
tributions were rescaled by a factor t/m, where t = 46 ms is the tof and m is the mass
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Figure 4.38.: Dynamics of the BEC in the recombiner. Transverse density profile of the
BEC in the recombiner (top, 1D GPE simulation. φ0 = π/2) and corresponding population imbalance
(bottom). At t = 0, the splitting is abruptly reduced. An oscillating feature emerges in the complex
dynamics of the density pattern. It roughly corresponds to the center-of-mass oscillations of the atoms
in each well. At regular intervals, imbalance builds up. Vertical dashed line: time at which the barrier is
raised in the normal recombining procedure in order to separate the atoms for counting (tBS = 2.25 ms).
It corresponds to the turning point of the second oscillation period.

of one 87Rb atom, to be compared to the experimental data). Each experimental profile
is the result of the average over 3 to 5 experimental realizations. The results of the
simulations were convoluted with a 10 µm rms Gaussian function to account for the
finite imaging resolution.

For all phases, the simulations reproduce the coarse features of the measured profiles.
The beating patterns we observed are a direct proof of the coherence of the evolution in
the recombiner. The contrast of the experimental data is systematically lower than in the
simulations, probably indicating beyond mean-field effects. At long times (tBS & 2 ms),
we observe a blurring of the density pattern, resembling the decay of coherence we
observed in the evolution of a superposition of vibrational states [248]. We conjecture
that this blurring is due to the same relaxation mechanism as the one responsible for
the damping of the Josephson oscillations (see Fig. 4.31) and the one suspected from
the evolution of z in the non-adiabatic recombiner (Fig. 4.34).

Interestingly, for the longest times (tBS & 5 ms), we observed features in the longitudinal
momentum distribution reminiscent of the highly excited axial modes we studied in
Ref. [34]. It suggests that the damping is connected to the decay of the transverse
excitations into longitudinal modes. Such damping mechanisms are currently being
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investigated.
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Figure 4.39.: Hints of longitudinal excitations appearing after the fast recombination.
Fluorescence picture after expansion of a BEC having evolved in the non-adiabatic recombiner for
∼ 4 ms. Symmetric pattern appear in the longitudinal (along (z)) density profile, showing hints of
the excitation of high-energy momentum modes (white boxes). The spacing between these symmetric
features and the center of the main cloud indicates a kinetic energy in longitudinal direction comparable
to the transverse energy scale. The relaxation of the transverse excitations created during the fast
recombination into longitudinal modes might be a reason for the fast decay of the recombiner contrast.
Note that a logarithmic colormap has been chosen to enhance the visibility of the longitudinal features.

4.6.3. Comparison of the two recombiners

We have implemented two different schemes to achieve the phase-sensitive recombination
of a trapped Bose-Einstein condensate. Both rely on a controlled modification of the
confining potential. In the first case, it aims at being adiabatic with respect to the
transverse motion of the wavefunction while enabling controlled tunneling between the
two wells, in a similar fashion as a fiber coupler in laser optics. In the second case,
the manipulation of the potential was deliberately non-adiabatic, in order to launch the
atoms onto the semi-reflective potential barrier, as in an optical half-silvered mirror.

The difficulty in disentangling the timescales associated to the tunneling dynamics from
that of the motion of the wavefunction sheds light on the link between tunneling, or su-
perfluid oscillations, and the motion of the wavefunction in a tunable bosonic Josephson
junction in a double well, as already pointed out in Ref. [151].

Both recombiners are affected by atomic interactions. Interactions are responsible for
the anharmonicity of the response z(φ) of the recombiners. In section 4.7.2, we will
show that the anharmonicity of z(φ0), defined as the ratio of the amplitude of the two
first harmonics η ≡ |a2/a1|, is twice larger for the Josephson recombiner (η ≈ 0.26) than
for the non-adiabatic recombiner (η ≈ 0.12). This behaviour is only partially captured
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Figure 4.40.: Dynamics of the condensates in the recombiner monitored in tof. Time-
evolution of the density profile in expansion (t = 46 ms tof) during the non-adiabatic recombination, for
seven different initial phases. Top: experimental profiles, averaged over 3 to 5 independent realizations.
Bottom: Simulated momentum distributions (1D GPE), rescaled by t/m and convolved with a 10 µm
rms Gaussian function to account for finite imaging resolution. The vertical dashed line at tBS = 2.25 µm
indicates the time at which the barrier is normally ramped up to separate and count the atoms. At
short times, the 1D transverse mean-field simulations correctly reproduce the observed patterns. After
a few ms, the measured profiles appear blurred, conversely to the simulated ones.



4.6 Two phase-sensitive condensate recombiners 181

0.5 0.55 0.6 0.65 0.7
0

0.2

0.4

0.6

0.8

1

JR

nAR

|zc|

RFAmp

|z
m
a
x
|

Figure 4.41.: Contrast of the BEC recombiners Maximum achievable imbalance at the out-
put of the recombiner as a function of the dressing amplitude (black: Josephson recombiner, blue:
non-adiabatic recombiner, see next section). Squares: best result of the 1D GPE simulations (see
Fig. 4.42).Circles: experimentally measured contrast. Red line: critical imbalance (self-trapping thresh-
old) predicted by the 2MM.

by our 1D GPE simulations which predict η = 0.28 (Josephson) and η = 0.23 (non-
adiabatic) respectively22. One possible explanation for the fact that the non-adiabatic
recombiner seems to be less affected by interactions is that the wavefunction is streched
during the non-adiabatic motion, implying a lower mean-field energy.
The anharmonic shape of the recombiner response shows a steeper slope around φ0 = π.
It is not clear yet whether this feature might yield enhanced interferometric sensitivity
to small deviations from φ0 = π, or whether the loss of amplitude of z(φ0) caused by
interactions dominates. Exploiting interactions to improve the sensitivity close to φ0 = π
has been proposed in Ref. [176].
It is difficult to make any general statement about the best contrast achievable with
each scheme, because it depends on the details of the control sequence as well as on the
role of interactions. We believe that the contrast — defined as the maximal amplitude
of z(φ) — of the Josephson recombiner is ultimately limited by the onset of self-trapping
(see Fig. 4.41), which suggests that we should work in the Rabi regime. However, this
condition is difficult to meet in our double wells, as it requires going down to a very
weak splitting, which in turn implies slow ramps.
This constraint has been lifted in the non-adiabatic recombiner. Here, it is not clear
what ultimately limits the contrast, but the finite position and momentum spread of the
wave packets, which have to be compared to the size and the energy of the barrier, are
believed to hinder this scheme to approach the performance of an ideal, infinitely thin

22We found that the simulated recombiner response z(φ0) was better described by three harmonic. In
this case, the anharmonicity was defined η = (|a2|+ |a3|) /a1
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Figure 4.42.: Comparison of the two recombiners. Evolution of the population imbalance for
50 different initial phases φ0 during the non-adiabatic recombiner sequence (top) and the Josephson
recombiner sequence (bottom) in two different double wells (left: RFAmp = 0.55, for which we obtained
the best result; right: less coupled RFAmp = 0.6 double well). Note that the final separation was not
simulated. The origin of the time axis corresponds to the end of the recombination ramp (vertical
dashed line). The values of φ0 are evenly spaced between 0 (pale yellow) and 2π (dark red). The
thick black lines, corresponding to the time-dependent maximum of |z| over all phases, indicates the
recombiner contrast. The Josephson recombiner enables up to 85% contrast for RFAmp = 0.55, and
up to 20% for RFAmp = 0.6. Note how, in the Josephson recombiner, z(t) oscillates at a rate which
is all the more slow than φ0 is close to π, explaining the anharmonicity of the response z(φ0). With
the non-adiabatic recombiner, up to 75% contrast are reached for RFAmp = 0.55, and up to 30% for
RFAmp = 0.6. The vertical blue dashed line at t = 2.25 ms shows the duration for which the best
contrast of 42% was observed. In any case, it shows that for each beam-splitter duration, the value φ0

maximizing the final imbalance is different, underlining the difficulty of optimizing the recombination
procedure.



4.6 Two phase-sensitive condensate recombiners 183

δ-potential barrier.
In any case, it seems that the most stringent limitation to the contrast comes from re-
laxation mechanisms which are not captured by our simple 1D mean-field models. In
principle, our 1D GPE simulations indicate similar performances for both schemes, with
contrasts up to 75-80% (see Fig. 4.42), much higher than what we observed: C ≈ 20%
(Josephson recombiner) and C ≈ 42% (non-adiabatic recombiner) (see section 4.7.2.1).
Our data indicate that both schemes are subjected to a strong damping of z(tBS) over
a time scale of a few ms. We suspect these effects to arise from the coupling to the
other spatial directions as well as effects beyond mean-field. Understanding these relax-
ation mechanisms is a necessary step to succeed in the robust implementation of such
recombination schemes.
Alternatively, it also suggests that a fast recombiner operation is necessary. The slightly
lower total duration of the non-adiabatic procedure (3.3 ms) compared to the adiabatic
procedure (4.3 ms) might be a hint why it achieves a better performance. Further
reducing the duration of the recombination could be achieved by means of optimal-
control of the motion of the BEC [248].
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4.7. Interferometer signal

After having characterized independently each stage of the interferometric sequence, we
combined them as depicted in Fig. 4.2 and recorded the output signal using either the
Josephson recombiner or the non-adiabatic recombiner23. In section 4.7.1, we describe
the measured interference fringes, which we then compare to a theoretical model (sec-
tion 4.7.2). In particular, we show in section 4.7.2.1 how to use the interferometric signal
to infer the contrast of each recombiner. Eventually, we evaluate the sensitivity of our
interferometer and discuss the observed decay of coherence (section 4.7.3).

4.7.1. Mach-Zehnder fringes

After having adjusted the phase shifter tilt to ε/h ≈ 350 Hz, we recorded the normalized
imbalance z = (NL −NR)/(NL +NR) at the output of the recombiner, as a function of
the phase accumulation time tφ. This is similar to scanning the phase shift of an optical
interferometer by varying the difference of lengths between both arms. For each value
of tφ, we repeated the whole sequence up to 18 times (with each of the two recombiners)
in order to accumulate more statistics. Given our experimental cycle time of 37 s, a
complete fringe set such as that of Fig. 4.43 involves about 20 hours of data taking.
Achieving the according degree of stability of the experiment has been the result of
many improvements carried on over the last years.

The imbalance for each of the ∼ 2×2000 individual realizations is displayed as a grey dot
on Fig. 4.43 (Josephson recombiner) and 4.44 (non-adiabatic recombiner). As expected,
a periodic fringe structure is observed, similar to the modulation of intensity difference
between both output ports of an optical Mach-Zehnder interferometer. As the phase
accumulation time is scanned, the structure gets increasingly blurred, while its envelope
remains essentially constant (z ≈ ±0.45) for both recombiners.

Computing for each phase accumulation time the ensemble average 〈z〉 (tφ) and the
standard deviation ∆z, we observe that the mean imbalance undergoes damped oscilla-
tions over a timescale of approximately 20 ms, while the fluctuations of z increase. After
∼ 40 ms (see Fig. 4.45), the average imbalance is essentially equal to zero, while ∆z ≈ 0.3
(for the non-adiabatic recombiner) and an imbalance larger than 0.4 is observed on more
than 5% of the individual realizations.

This interferometric signal is a direct illustration of the dynamics of the relative phase
between the two halves of the condensate: while the deterministic phase accumulation
is responsible for the oscillations of 〈z〉 at the frequency ε/h, phase diffusion causes the
spread of z to increase, until the phase is completely random, yielding a random output
imbalance with vanishing average.

To be more quantitative, we make use of the results of the previous sections to derive a
model of the interferometric signal.

23In the following, we will refer to them as “trapped recombiners”, in contrast to the time-of-flight
recombiner.
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Figure 4.43.: Mach-Zehnder interferometric fringes obtained with the Josephson recom-
biner. Normalized population imbalance z as a function of the phase accumulation time tφ obtained
using the Josephson recombiner. It exhibits interference fringes which are anharmonic under the effect
of interactions in the recombiner and a damping caused by phase diffusion. Grey dots: imbalance of
individual experimental realizations. Black dots: ensemble average 〈z〉 at each phase accumulation time
(the error bars denote ± one standard error of the mean). Red: fit with the theoretical model.

4.7.2. Model for the interferometric signal

We have seen in section 4.5 that the distribution of the relative phase is subjected to a
linear drive (phase accumulation) at rate ε together with a linear dispersion caused by
interactions, meaning that the phase spread grows linearly in time at the phase diffusion
rate R = τ−1

coh. We assume that at all times, the phase distribution is Gaussian with
time-dependent mean and variance given by (see Eqs. (4.39) and (4.57))

〈φ〉(tφ) = φ0 + ε (tφ − ti) /~, (4.89)

∆φ2 (tφ) = ∆φ2
0 +R2(tφ − ti)2. (4.90)

The offset time ti accounts for the fact that phase diffusion and phase accumulation
already start during the time needed to tilt and level the double well (see section 4.5.3).
We model the action of the recombiner, taking into account the effect of interactions,
by writing the output imbalance as the Fourier series (see Eq. (4.77))

z(φ) =
M∑

n=1

an sin (nφ) = a1 sin (φ) + a2 sin (2φ) + ... , (4.91)
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Figure 4.44.: Mach-Zehnder interferometric fringes obtained with the non-adiabatic re-
combiner. Normalized population imbalance z as a function of the phase accumulation time tφ obtained
using the non-adiabatic recombiner (note that the scale is the same as in Fig. 4.43 for both axes). The
contrast of the fringes is higher and the anharmonicty is less obvious than with the Josephson recom-
biner. Grey dots: imbalance of individual experimental realizations. Black dots: ensemble average 〈z〉
at each phase accumulation time (the error bars denote ± one standard error of the mean). Red: fit
with the theoretical model of Eq. (4.93). Dashed blue: fit with the same model, using values of the
parameters measured independently or self-consistently extracted from the data, with only c and φ0 as
free parameters.

where M is the number of harmonics. After integration over the Gaussian phase distri-
bution, we find that the average imbalance at the output of the recombiner reads

〈z〉(tφ) =
M∑

n=1

ane
−n2∆φ2

0/2 e−n
2(tφ−ti)

2
/2τ2

coh sin [n (ε (tφ − ti) /~ + φ0)] . (4.92)

The mean interferometric signal 〈z〉(tφ) is a sum of harmonics. The contribution of each
harmonic to the total signal consists of a sine term oscillating at a multiple of the phase
accumulation rate ε/h (Mach-Zehnder fringes) and a Gaussian damping associated to
the rms time τcoh/n. Note that in this context, the word fringe refers to the oscillations
of 〈z〉 as a function of the phase accumulation time and not to the interference pattern
which appears in the density profile after tof recombination in each single realization
(see for example Fig. 4.3).
For a weak non-linearity, we expect the weight of the harmonics to rapidly decrease with
n. Moreover, the contribution of the nth harmonic drops within the time τcoh/n. We
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checked by fitting the fringes with up to 5 harmonics that only the contribution of the
two lowest harmonics is statistically significant within our measurement uncertainty.
The Gaussian damping of the Mach-Zehnder interference fringes is a direct illustration
of the Gaussian decay of the coherence factor due to phase diffusion (see Eq. (4.52)). It
is the consequence of ensemble averaging over rising fluctuations of the phase when tφ
is increased. It must be distinguished from the damping of the Josephson oscillations
observed by scanning the evolution time tBS in the recombiner for a constant input phase
(see Fig. 4.31), although both effects might be linked.

The prefactor ane
−n2∆φ2

0/2e−n
2(tφ−ti)

2
/2τ2

coh represents the amplitude of each harmonic in
the Mach-Zehnder signal. Compared to the “bare” visibility an, which is intrinsic to the
recombiner, the amplitude of the fringes after ensemble averaging is reduced by a) the
fluctuations of the phase already present at t = ti b) the increase in phase spread due
to phase diffusion. For this reason, we always slightly underestimate the contrast of the
recombiner when we look only at the mean output imbalance 〈z〉 for input states which
- necessarily - have a finite phase uncertainty. We will show in next section how the
“true” contrast of the recombiner can be inferred from the statistical distribution of z.
Table 4.5 summarizes the result of fitting the two-harmonic model

〈z〉(tφ) = A1e
−(tφ−ti)

2
/2τ2

coh sin [ε (tφ − ti) /~ + φ0]

+ A2e
−2(tφ−ti)

2
/τ2

coh sin [2ε (tφ − ti) /~ + 2φ0] + c (4.93)

to the interferometric signal obtained with either the Josephson recombiner or the non-
adiabatic recombiner. In both cases, the time offset ti was set to -6 ms. The parameters
a1,2 and ∆φ2

0 in Eq. (4.92) are collinear and were merged into the two fit parameters

An = ane
−n2∆φ2

0/2, (4.94)

(n = 1, 2). c is a constant offset accounting for imperfect balancing of the double well.
We found that the values for ε and τcoh obtained from the fit to the Mach-Zehnder
fringes were consistent with that measured independently using the tof recombiner24.
The amplitudes a1,2, which we suppose to be intrinsic to the recombiner, could be in-
ferred from the initial phase spread measured independently with the tof recombiner
(see section 4.4.3.2). They were found to be very close to A1,2 because of the high initial
coherence. The fits confirmed that the Josephson recombiner (η = |a2/a1| ≈ 0.26) is
more strongly anharmonic than the non-adiabatic recombiner (η ≈ 0.12).
We found that the damping of the Mach-Zehnder interference fringes was correctly de-
scribed by a Gaussian decay25 and that the corresponding coherence time was consistent
with that extracted from the phase diffusion data in tof (see section 4.5.3).

24We attribute the discrepancy between the value of ε measured with the Josephson recombiner and
that measured with the two other methods to the fact that this measurement was carried out about
one week later and that ε had not been readjusted in the meanwhile.

25In fact, to discriminate between a Gaussian damping model and, for example, an exponential decay,
we would need to measure 〈z〉 at very short times, which is not possible due to the finite tilting and
levelling time of the double well.
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Josephson BS non-adiabatic BS indep. meas.
A1 0.18± 0.02 0.38± 0.02
A2 −0.04± 0.02 −0.05± 0.03
φ0 −0.32± 0.19 rad −0.16± 0.16 rad
c 0.03± 0.01 −0.01± 0.01
τcoh 25± 7 ms 17.1± 2.2 ms 20± 3 ms
ε 363± 3 Hz 349± 2 Hz 349± 2 Hz
∆φ0 — 160± 20 mrad
a1 0.18± 0.02 0.39± 0.03
a2 −0.05± 0.02 −0.05± 0.03
η = |a1/a2| 0.26± 0.13 0.12± 0.09

Table 4.5.: Parameters of the model for the interferometric signal. Values of the parameters
fitted to the interferometric signal obtained with the Josephson recombiner (left column) or the non-
adiabatic recombiner (central column) with the model of Eq. (4.92). The third column recapitulates
the values of the coherence time, energy difference and initial phase spread measured with the tof
recombination method. The uncertainties indicate either the 95% confidence of the fit or 2 σ.

For consistency, we re-fitted the data obtained with the non-adiabatic recombiner with
the model of Eq. (4.93), using the values of ε and τcoh measured with the tof recombiner.
We also fixed the value of A1 using the initial phase spread ∆φ0 measured with the tof
recombiner and the contrast C = 0.42 extracted from the distribution of imbalance (see
next section), and set A2 to zero, leaving only c and φ0 as free fit parameters. The good
agreement of the model with the measurement confirms that the data taken with the
non-adiabatic recombiner is consistent with that based on the tof recombiner.
Fig. 4.45 displays data obtained with the non-adiabatic recombiner over longer phase
accumulation times (up to 90 ms). It shows that while dephasing is responsible for the
complete scrambling of the fringes within 40 ms, the noise envelope only starts to shrink
after ∼ 90 ms. This decay is consistent with the onset of the loss of contrast observed
on individual interference patterns with the tof recombiner (see Fig. ).linklink
As mentionned in section 4.5.3, the fact that we measured a phase diffusion rate com-
patible with the measured amount of number squeezing shows that the use of a number-
squeezed state in our interferometer more than doubles its interrogation time. The blue
curve in Fig. 4.45 shows the signal expected in the absence of number squeezing. In this
case, coherence would be already lost after ∼ 15 ms.

4.7.2.1. How to extract the recombiner contrast from the number distribution

Model The difficulty in estimating the contrast of the trapped recombiners stems from
the fact that we must disentangle the reduction of fringe visibility caused by phase
diffusion from that intrinsically present due to the finite contrast of the recombiners.
The ensemble-averaged imbalance 〈z〉(tφ) alone does not allow inferring precisely the
contrast of the recombiners.
Instead, we can estimate it from the full distribution of z by resorting to a method used
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Figure 4.45.: Dephasing and the onset of relaxation of the Mach-Zehnder fringes. Nor-
malized population imbalance z as a function of the phase accumulation time tφ obtained with the
non-adiabatic recombiner (same data as Fig. 4.44 at short times). The spread of the grey dots (imbal-
ance of individual realizations) shows that while z is completely random after ∼ 40 ms under the effect
of phase diffusion, high contrast can still be obtained on individual realizations after up to tφ ≈ 70 ms.
At tφ = 90 ms, we see first hints of a drop of contrast, probably due to relaxation mechanisms. Black
points: ensemble average for a given phase accumulation time. For tφ ≥ 45 ms, the error bars indicate
± one standard deviation. Red: fit with the model for phase diffusion (dahsed red: envelope showing
the Gaussian decay of coherence). Blue: prediction for 〈z〉 in absence of squeezing. Dashed black line:
± contrast of the recombiner C ≈ 0.42, extracted from the full distribution of z. Note that the time
axis starts at ti = −6 ms.

in atom interferometry [81] to disentangle phase and amplitude noise (see in particular
the comprehensive discussion on the robustness of the method in Ref. [82]). We observe
that even at long phase accumulation times, high imbalance can be achieved in single
realizations, and that up to ∼ 70 ms, the noise envelope is almost constant. We make
the assumption that during the phase accumulation stage, φ uniformly samples the
interval [0, 2π] under the combined effect of deterministic phase accumulation and phase
diffusion. It means that by “histogrammizing” the outcome of all individual realizations,
binning over all times26, we can reconstruct the probability distribution function of the
output imbalance z corresponding to a uniform input phase.

Fig. 4.46 shows the corresponding histograms obtained with the non-adiabatic recom-
biner (left) and the Josephson recombiner (right). The variance of the distribution of z is
connected to the contrast of the recombiners. By integrating Eq. (4.91) over a uniformly

26Restricting ourselves to the data at tφ > 40 ms, where the phase is completely random, yields essen-
tially the same distribution. We decided to integrate over all times to accumulate more statistics.
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Figure 4.46.: Distribution of the population imbalance. Histogram of the single-run population
imbalance z obtained at all times with the non-adiabatic (left) and the Josephson recombiner (grey
dots of Fig. 4.43 and 4.45, excepted tφ > 80 ms). The histogram of the non-adiabatic recombiner data
exhibits the characteristic double structure expected from sampling the sine of a uniformly distributed
phase, while that of the Josephson recombiner data is single-peaked. The contrast and the amplitude
noise of the recombiners are estimated from convolving the probability distribution function given in
equation (4.96) (dotted blue) with a Gaussian noise (dotted black). The red line shows the resulting
distribution fitted to the data.

distributed phase, we get

∆z2 =
1

2

M∑

n=1

a2
n. (4.95)

Neglecting the anharmonicity of the recombiner (an = 0 for n > 1), we simply obtain
Cvar ≈ a1 = 0.43 for the non-adiabatic recombiner and 0.31 for the Josephson recom-
biner. However, this is assuming no noise on z (amplitude noise), in which case the
output imbalance is expected to be distributed according to

p(z) =
1

π

1√
z2 − C2

if |z| < C,

= 0 elsewhere, (4.96)

(pale blue dotted lines in Fig 4.46). p(z) has a characteristic double-peaked shape due
to the fact that the probability density of z diverges at the two turning points z = ±C.
In practice, these sharp peaks are broadened by amplitude noise coming for example
from technical noise of the recombiner as well as detection noise. We assumed that the
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noise is independent of the value of z and took it into account by convolving p with a
normally distributed Gaussian noise of constant variance σ2

d (dashed black curve) to fit
the two histograms in Fig. 4.46 (red curves).

Non-adiabatic recombiner The distribution of z from the non-adiabatic recombiner
is well described by our model, yiedling C = 0.42 and σd = 0.07.
The convolution with a Gaussian noise independent from z is a simplistic model for
the amplitude noise. In fact, feeding an interaction-free, noiseless beam-splitter of finite
contrast C with a N -atom coherent state of phase φ, should yield an output distribution
of z with mean 〈z〉(φ) = C sinφ and variance

∆z2(φ) =
1− C2 cos2 φ

N
. (4.97)

∆z2(φ) simply represents the beam-splitter shot noise at a given finite atom number
and reflection/transmission ratio. Even in absence of technical noise, the variance of z
depends on 〈z〉. At the points of steepest slope (φ = 0 or π), we find that ∆z2 = 1/N
regardless of the contrast, while at the turning points (φ = ±π/2), ∆z2 = (1− C2)/N .
With C = 0.42 and N = 1200 atoms, the beam-splitter shot noise varies between
∆z = 0.29 rad (φ = 0) and ∆z = 0.22 rad (φ = π/2). The shot noise is much smaller
than the noise extracted by the fit27, which seems to imply that we are currently limited
by technical noise in the beam-splitter operation and read out. Since we know that
our imaging system is sensitive enough to detect sub-shot noise fluctuations, we assume
that the extra noise comes mostly from the violent manipulation of the cloud during the
recombiner procedure.

Josephson recombiner The distribution of z for the Josephson recombiner on the other
hand does not exhibit a double-peaked structure, which makes it difficult to fit with our
model. Imposing C ≈ 0.2, we find rough agreement with the measured distribution for
σd = 0.15, but the result of the fit is not robust with respect to the initial guess for C. We
attribute the failure of our fit model to a) the low contrast of the Josephson recombiner
fringes, b) their higher anharmonicity. We also compared the measured distribution to
artificial distributions of z generated by sampling the anharmonic recombiner function
(Eq. (4.91)) with a uniform random phase and adding a random Gaussian noise to the
result. We found a strong correlation between a1 and σd, indicating that it is difficult
to distinguish between a low recombiner contrast and a high amplitude noise. Yet, the
comparison to the experimental data indicates that C ≈ a1 . 0.2 and σd & 0.15.
Why the non-adiabatic recombiner yields a higher visibility than the Josephson recom-
biner is still to be understood. We find it surprising that apparently, the reduced contrast
of the Josephson recombiner goes together with a stronger amplitude noise, so that the
envelope of the fringes in Fig. 4.43 and Fig. 4.44 are of similar amplitude (z ≈ ±0.45).
These issues, as well as a full characterization of the two recombiners, are currently

27Uncorrelated errors add up quadratically.
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beeing theoretically investigated in collaboration with Bruno Juliá-Dı́az and Artur Polls
at the University of Barcelona.

4.7.3. Discussion of the interferometric signal

4.7.3.1. Sensitivity of the BEC interferometer

Sensitivity to small phase shifts One figure of merit to evaluate the performance of
the interferometer is its ability to detect small phase shifts. It is common to resort to
the first-order sensitivity to phase shifts introduced in Eq. (2.169):

δφ =
∆z

|∂〈z〉/∂φ|φ=φ0

. (4.98)

It is determined by the noise on the measured imbalance (be it projection noise, technical
noise...) and the slope of the average interferometric signal atthe working point φ0. For
a coherent state, the best sensitivity of a phase measurement is limited by the standard
quantum limit ∆φSQL = 1/

√
N . For N = 1200 atoms, ∆φSQL = 0.03 rad.

We can estimate the maximal sensitivity intrinsically allowed by the trapped BEC re-
combiners, independently on the state of the BEC in the interferometer, by evaluating
Eq. (4.98) using the amplitude noise and the contrast fitted from the distribution of z
at all times (see Fig. 4.46)

δφ ≈ σd/C. (4.99)

It yields δφ ≈ 0.18 rad (non-adiabatic recombiner) and δφ & 0.75 rad (Josephson re-
combiner). The poor performance of the Josephson recombiner is due to both a high
amplitude noise and a low contrast.
In practice however, both amplitude and phase noise must be taken into account. Be-
cause of interactions, the slope of the averaged fringes is steeper for φ0 = π than for
φ0 = 0 (see Fig. 4.29). We interpolate the measured fluctuations of z to estimate ∆z at
the time of the first zero-crossing and compute the derivative of z(φ0) using the model
of Eq. (4.91) to find that with the non-adiabatic recombiner, δφ = 0.56 rad, while with
the Josephson recombiner, δφ = 0.98 rad.

Sensitivity on the determination of the energy difference Besides the sensitivity
to absolute phase shifts, it is also meaningful to ask ourselves what is the smallest
measurable phase shift relatively to the total accumulated phase, or equivalently: what
is the smallest detectable change of the phase accumulation rate ε? The value of ε is
inferred from the evolution of z as a function of tφ, and depends therefore on the available
interrogation time. The uncertainty on an estimation of ε/~ scales like 1/τcoh. From the
expression of the phase diffusion rate, the uncertainty on ε therefore scales like

∆ε ∝ ξN
√
NU. (4.100)
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This result underlines the simple fact that increasing the interrogation time of the inter-
ferometer enhances proportionally the precision at which the energy difference between
the two paths can be read out. For example, the 95 % confidence interval on the esti-
mation of ε/h from the fit to the data of Fig 4.45 is ± 2 Hz, consistent to the results
of the fits from the tof recombination data (Fig. 4.19). It also shows that the use of
a number-squeezed state allows enhancing the interrogation time of the trapped BEC
interferometer beyond what would be possible with a classical coherent state.

Comparison with the time-of-flight recombiner We can compare our estimations of
the intrinsic sensitivity of the two trapped BEC recombiners to the estimated sensitivity
of the tof recombination for a coherent state with N = 1200 atoms, ∆φ ≈ 0.08 rad (see
section 4.2.1.4). The intrinsic noise of the non-adiabatic recombiner is still currently
about twice larger than that of the tof recombiner. This is partly due to the moderate
contrast of the trapped recombiners: were its contrast increased to 100 %, the sensitivity
of the non-adiabatic recombiner would be comparable to that of the tof recombiner.

It must also be underlined that phase estimation based on atom counting is more robust
than phase extraction from interference patterns. First, it does not require high imaging
resolution; second, using a recombiner to convert the relative phase into a population
imbalance allows the use of the precise atom counting techniques already available [70,
160, 31].

A more fundamental distinction between both methods is their potential sensitivity
limits. Even though phase estimation based on a fit to the tof interference pattern can
reach sub-shot-noise sensitivity [91] (∆φ < 1/

√
N), it is fundamentally bounded by

N2/3 [46]. This lower bound holds for any entangled state used in the interferometer.
This result underlines that the Heisenberg scaling of the phase sensitivity ∆φ = 1/N will
not be accessible to atom interferometers using this phase estimation strategy. On the
contrary, theoretical studies suggest that trapped BEC schemes can reach the Heisenberg
scaling of the phase sensitivity [192, 92].

Towards scalable quantum-enhanced interferometers? Although we could demon-
strate an extension of the interrogation time by the use of a number-squeezed state, our
interferometer is far from being shot noise limited. The best sensitivity on the phase
estimation is achieved using the tof recombiner. The measured phase spread right after
splitting yielded ∆φ = 0.16 rad, more than 5 time above the SQL. Using a coherent
state, though, it should be possible to measure a phase noise twice as large as the SQL.

Because the state of the BEC in the interferometer is number-squeezed and not phase-
squeezed, our Mach-Zehnder scheme is currently not optimized to yield the best sensi-
tivity. Although the two trapped BEC recombiners that we implemented constitute a
further step in the controlled manipulation of the state of a BEC in a double well, a
generic tool to perform efficiently rotations around the (x)-axis of the Bloch sphere is
still missing.

Since 2010, quantum-enhanced measurements, as well as the generation of spin-squeezed
states that could potentially yield a sensitivity gain beyond the SQL, have been recently
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reported in internal-state Ramsey BEC interferometers [96, 206, 180]. In every case,
the BEC contained a few thousands of atoms (approx. 2300 atoms in Ref. [96]). While
quantum enhancement is an asset for measurements where a high spatial resolution
is required, because the number of atoms in a small volume must be kept small to
avoid collisional losses [180], it is still an open question whether the schemes currently
under investigation are scalable up to atom numbers where sub shot-noise measurements
become competitive with current shot-noise limited atom interferometers. A promising
step in this direction has been achieved in 2010 with the demonstration of a shot-noise
limited Ramsey interferometer with N & 104 freely propagating atoms extracted from a
BEC.

4.7.3.2. Decoherence of the quantum superposition

The evolution of the interferometric signal with the phase accumulation time seems to
reveal the existence of two timescales resembling the T1 and T2 times commonly referred
to in Nuclear Magnetic Resonance (NMR) spectroscopy [178]: the first timescale (T2

time), of the order of τcoh ≈ 20 ms, is due to an interaction-induced dephasing effect.
Currently, this timescale is limiting the interrogation time of our interferometer. In
principle, one could think of reversing this dephasing through a spin echo-like proce-
dure [110], for example by performing a π-Rabi pulse to swap the occupation number of
the two wells. One could also think of switching either the sign of interactions through a
Feshbach resonance, or modulating the tunnel coupling to implement a negative effective
coupling [66].
On a longer timescale (T1 time), of the order of hundreds of ms, even the contrast
of individual realizations is lost, suggesting that relaxation mechanisms are at work.
Conversely to the dephasing mechanism, they imply a redistribution of energy from the
degrees of freedom relevant to the 2-mode dynamics to other modes, possibly in the
other spatial directions, as will be discussed in chapter 5.



5. Outlook: bosonic Josephson
junctions beyond the two-mode
approximation

Throughout this thesis manuscript, we have analyzed our experimental observations of
the dynamics of a BEC in a double-well potential resorting to a two-mode description
of the BJJ. We believe that the 2MM is an appropriate description at short times in
our elongated double-well geometry. Furthermore, the good agreement of the data with
the 2MM predictions, for example to infer the amount of squeezing in our BEC, or the
phase diffusion rate, shows how surprisingly well it describes our system.

Nevertheless, the 2MM is not expected to capture the complexity of a real-world BJJ,
realized with a finite temperature BEC in an elongated, three-dimensional double-well
potential. In this outlook, we present some observations that cannot be explained within
the standard two-mode model and argue that a more elaborate picture is needed to model
the rich physics of a BEC in an elongated double-well potential.

The two-mode formalism that we have presented in chapter 2 relies on the two-site Bose
Hubbard Hamiltonian, giving insight into the interplay between tunnel coupling and
on-site interactions in the double well. It allows restricting the many-body dynamics of
the BEC to a finite-dimensional Hilbert space, enabling exact calculations. The 2MM
has proven to be extremely powerful to compute the fluctuations of the macroscopic ob-
servables (number and phase) and describe non-classical many-body states (in particular
squeezed states) as well as the many-body phase diffusion. The associated collective-
spin picture appears to be a generic framework for atom interferometry. The mean-field
version of the two-mode model describes the non-linear dynamics of the BJJ, including
Josephson oscillations and macroscopic quantum self-trapping.

However, many features of a real-world BJJ cannot be captured by this simplified model.
We have shown in section 2.2.5.4 that the standard 2MM was not always able to give reli-
able quantitative predictions for the Josephson oscillation frequency or the self-trapping
threshold, nor could it explain the moderate contrast of our trapped BEC recombin-
ers. On several occasions, we resorted to mean-field descriptions beyond the standard
2MM, including the improved two-mode model presented in section 2.2.5.4 and the one-
dimensional Gross-Pitaevskii equation in the transverse direction.

It is crucial to extend the existing theoretical models to take into account the complexity
of a real-life BJJ and explain effects beyond two mode that we are already able to observe.
In the following, we present some experimental observations that cannot be explained
within the two-mode picture and discuss what processes might be at work, highlighting
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Figure 5.1.: Evolution of the axial relative phase after splitting Fluorescence images of
individual interference patterns in tof for different holding times in the tilted RFAmp = 0.65 potential
(ε/h = 350 Hz, J/h ≈ 0.1 Hz). The holding times are computed from the end of the 5 ms splitting
ramp. A strong axial breathing can be observed, caused by the fact that the atom number drops by
a factor of two in each condensate after splitting in a much shorter time than the axial dynamics (see
section 4.4.1.3). First, the contrast remains high for tens of ms, although the global phase is random
∼ 30 ms after the end of splitting. At longer times, axial phase fluctuations (wavy fringes) are believed
to scramble the axial relative phase, causing a loss of contrast of the integrated interference patterns in
every individual realizations (white lines).

the rich physics in our elongated BJJs.

5.1. Observations beyond the two-mode picture

Emergence of 1D axial phase fluctuations

In section 4.5.2, we observed that the “global” relative phase of the BECs (after integra-
tion along the longitudinal direction) underwent a fast randomization process although
individual interference patterns exhibited a high contrast long after the phase coherence
was lost, suggesting that a phase-diffusion process was at work. High fringe contrast
was recorded for tens of ms after splitting in a symmetric (Fig. 4.21) as well as in a
tilted double well (Fig. 4.22). At longer times, though, a significant drop of contrast was
observed in single images (see Fig. 4.23), which seems consistent with the loss of contrast
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of the Mach-Zehnder number fringes (see Fig. 4.45). We attribute this decay of contrast
to the emergence of fluctuations of the local relative phase along the long axis of the
double well, as can be seen in Fig. 5.1, where individual interference patterns obtained
for various holding times in the tilted RFAmp = 0.65 trap are displayed. The loss of the
spatial coherence of the relative phase in split 1D quasi BECs has been intensely studied
in our group [124, 90]. The observation of wavy interference fringes is a clear sign that
many axial modes contribute to the dynamics of the relative phase.

Damping of the Josephson oscillations

We have studied the oscillations of the population imbalance in symmetric double wells
with different tunnel coupling strengths. The BEC was initially prepared either with
a finite phase difference or with a finite population imbalance. The phase difference
was adjusted by splitting a BEC symmetrically and then applying a detuning for a
given time, as explained in section 4.5.1.2. The number imbalance was prepared by first
splitting the BEC asymmetrically (i.e. with a finite tilt angle, see Fig. 4.12) and then
leveling back the double well1. In both cases, the manipulation of the potential was
near-to-adiabatic with respect to the transverse dynamics, although strict adiabaticity
cannot be ensured.
The number or phase difference triggered oscillations of the population imbalance sym-
metric around zero, as first observed in 2005 with a BEC in a single optical double
well [3]. As expected, we observed that the frequency of the oscillations of z(t) decreases
with increasing splitting of the double well (see Fig. 5.2). We could only record such
oscillations in strongly coupled double wells, where the barrier height was of the order of
the chemical potential2. In Ref [151], the authors monitored the continuous transition
between hydrodynamic superfluid oscillations and Josephson oscillations in a strongly
coupled double well through the emergence of a second frequency component3.
Comparing the oscillation frequencies measured for different values of the rf dressing
amplitude to theoretical predictions computed using the simulated double-well poten-
tials, we found fair agreement with the results of the two-mode model computations,
particularly when using its refined version [8] (see Fig. 2.19). The even better agreement
obtained by simulating the whole 3D mean-field dynamics builds a strong case for our
knowledge of the double well potential (the 3D GPE simulations were performed by
B. Juliá-Dı́az in Barcelona).
Additionally, we systematically observed a damping of the oscillations of the population
imbalance over a few periods. Fitting z(t) with an exponentially damped sine yielded
decay times of the order of 4 to 9 ms with an uncertainty of a few ms. Looking at the tof
interference patterns obtained in the same conditions (without separating the atoms for
counting), we also saw that the oscillations of φ(t) decayed to zero over a few periods.

1Note that in this case, the evolution in the tilted double well may also cause a phase difference.
2In the least coupled double well where we observed Josephson oscillations, we estimate that the

barrier height was 1.5 larger than the chemical potential of the first excited state (including zero-
point energy), corresponding to Λ ≈ 12.

3Note that we did not see any obvious second frequency component in our data for strong coupling.
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Figure 5.2.: Damped Josephson oscillations. Time evolution of the normalized population
imbalance z = (NL − NR)/N in different double wells. Conversely to the data displayed in Fig. 4.31,
the Josephson oscillations were triggered by preparing a finite initial population imbalance: the BEC
was first split asymmetrically into the RFAmp = 0.65 trap to prepare z(0) ≈ 0.2. The rf dressing
was then lowered in 5 ms to an adjustable value, and raised again after a variable time t to separate
the atoms for counting. As expected, the Josephson oscillations become slower for decreasing tunnel
coupling strength. Continuous line: fit with an exponentially damped sine, yielding 1/e damping
times comprised between 4 and 8 ms. The error bars (standard error of the mean) do not indicate a
randomization of z at long times. A similar behaviour was observed for the phase of the integrated tof
interference patterns.
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A similar behaviour was reported in two other experiments where Josephson oscillations
were observed between a single pair of condensates [3, 151]. The decay observed in
Ref. [3] was attributed to a shot-to-shot dephasing caused by the technical fluctuations
of the initial state, as well as heating. Importantly, we observed that both z(t) and φ(t)
were damped to zero in all individual realizations at long time, while the contrast of tof
interference patterns also decayed.

Decay of the macroscopic quantum self-trapping

In another series of experiments, we studied the transition between Josephson oscillations
and macroscopic quantum self-trapping. In a double well with finite tunnel coupling, the
population imbalance may become “self-trapped” above a certain threshold under the
effect of interactions (see section 2.2.5.3). MQST was observed for the first time in 2005
in an optical double-well potential, together with the first Josephson oscillations [3].
In 2007, MQST was monitored with a BEC in a magnetic trap split with an optical
potential barrier using non-destructive phase contrast imaging [156].

By varying the initial splitting angle before leveling back the trap, we prepared BECs
with different population imbalances (up to z(0) = 1, where all the atoms are in the
same well) in a given symmetric double-well potential. Figure 5.3 shows the evolution
of z(t) in the RFAmp = 0.54 double well, for which simulation predict J ≈ 60 Hz. While
at low initial imbalance, z(t) underwent symmetric Josephson oscillations, we observed
that for the strongest initial imbalances, z monotonously decayed to zero. A Gaussian
fit to the curve with the highest initial imbalance yielded a 1/e2 time of 10.8 ± 1 ms.
The corresponding tof interference patterns exhibited a strong loss of contrast with
increasing initial imbalance. A fast decay of the population imbalance was also reported
in Refs. [3, 156]. In Ref. [156], a faster decay of MQST was observed when increasing
the non-condensed fraction.

5.2. Discussion

None of the effects presented above can be explained within the two-mode model. The
mean-field version of the 2MM (even in its refined form [8]), expected to be valid for suffi-
ciently large number of atoms, predicts a periodic evolution of the system (see Fig. 2.16).
While the coupled equations (2.184) and (2.184) for the conjugate variables n and φ con-
tain non-linear dynamics such as bifurcations or anharmonic oscillations, they cannot
explain the damping of the Josephson oscillations and the decay of MQST. The many-
body version of the 2MM contains dephasing effects, such as phase diffusion, and could
explain a damping of the expectation value of the imbalance (see for example Ref. [171]).
However, our data does not seem to indicate that the fluctuations of z increase in time.
Incidentally, this observation also rules out the effect of technical shot-to-shot fluctua-
tions of the initial state. Moreover, the observation of axial phase fluctuations, and the
corresponding loss of contrast of the integrated interference patterns indicates a mul-
timode dynamics, necessarily absent from the 2MM, which assumes static orbitals and
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Figure 5.3.: Transition between Josephson oscillations and macroscopic quantum self-
trapping. Normalized population imbalance as a function of time in the symmetric RFAmp = 0.54
double well (J ≈ 60 Hz). Different initial population imbalances were prepared by splitting the initial
condensate asymmetrically at different angles, before leveling back the double well (here again, the
evolution in the tilted double well may cause a different initial phase for the different imbalances).
Josephson oscillations are clearly seen for the lowest initial imbalances (blue line: fit with a sine to the
curve with the lowest initial imbalance, yielding the frequency f = 315± 22 Hz), while for the strongest
initial imbalances, z(t) monotonously decays to zero. Dark red line: fit with a Gaussian decay to the
curve with the highest initial imbalance, yielding a 1/e2 time τ = 10.8± 1 ms. The error bars indicate
±1 std. err. of the mean (they have been omitted from the other curves for clarity). Interestingly, the
shot-to-shot fluctuations of z grow in time for the data with the highest initial imbalance, conversely
to that exhibiting Josephson oscillations.

absorbs the spatial dynamics into time-independent coefficients.
These observations call for more elaborate models to describe our BJJ. In the last section
of this outlook, we discuss mechanisms that could explain the observed deviations from
the two-mode dynamics and propose avenues for the study of beyond two-mode effects
that we already see, or could readily observe with our setup.

Transverse modes The decay of the Josephson and MQST dynamics could in principle
arise from excitations in the transverse plane. Indeed, the timescale of the damping of
the tunneling dynamics (5—10 ms) is not fully incompatible with that of the transverse
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Figure 5.4.: Mean-field simulation of the Josephson oscillations. Red: numerical resolution
of the 1D GPE in the transverse double-well potential. Blue: numerical resolution of the 3D GPE in
the (3D) double-well potential, performed by B. Juliá-Dı́az at the university of Barcelona. While the
1D GPE simulation does not show hints of damping, the 3D GPE simulation exhibits a damping over
many periods followed by revivals.

motion (∼ 0.5 ms). In section 4.6, we already resorted to 1D GPE simulations in the
direction of splitting to describe the evolution of the wave function in the recombiners. In
the non-adiabatic recombiner, in particular, the complex evolution of the wave function
involved several transverse excited states (see Fig. 4.35). Yet, our 1D transverse GPE
simulations of the Josephson oscillations did not indicate any damping (see Fig. 5.4).
We conjecture that this is due to the fact that the high transverse energy scale ensures
that only a few discrete transverse modes are populated. Even 1D GPE simulations
of the non-adiabatic recombiner did not suggest a “damping” of z(t) (see Fig. 4.38), in
agreement with the fact that only a few transverse states are energetically accessible (see
Fig. 4.35). We believe that this is a consequence of our elongated trapping geometry,
which ensures that the wave function is close to the transverse ground state.

So far, we resorted only to mean-field simulations of the transverse dynamics. Interest-
ingly, new methods are now available to compute the many-boson Schrödinger equation
in one (transverse) dimension, enabling access to the fluctuations and the correlations
between the transverse modes [4, 241, 211, 210]. Although we think that we are not
affected by the many-body dephasing studied in Ref. [211], owing to our relatively high
atom number, such methods are very powerful for example to study the generation of
non-classical states in a double well [94, 93].

Longitudinal modes The wavy interference patterns displayed in Fig. 5.1 indicate
unambiguously the appearance of longitudinal fluctuations in the relative phase profile
between the condensates after splitting. It seems likely that longitudinal excitations also
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come into play when the BECs are recoupled. We suspect that the decay of the Josephson
oscillations and of the MQST are associated to the coupling between the tunneling
dynamics and longitudinal modes: the essentially transverse tunneling dynamics may
act as a drive from which energy would be “pumped” into axial excitations.
Due to the huge difference of energy scales (our typical aspect ratios are of the order
of 100), many longitudinal modes are energetically accessible. In fact, the longitudi-
nal modes almost appear as a continuum, making multimode many-body simulations
extremely strenuous. Preliminary 3D GPE simulations of the BEC in the double-well
potential suggest a redistribution of the energy from the transverse tunneling dynam-
ics to the axial momentum modes (see Fig. 5.4). The 3D mean-field, zero-temperature
model seem nonetheless to underestimate the damping rate, and predicts revivals that
we did not observe so far.
We believe that much insight into our physical system could be gained by modeling our
elongated BJJ by a pair of coupled, truly 1D condensates [254, 25]. This would imply
discarding the transverse spatial dynamics, which seems fair as long as the temperature,
the interaction energy and the coupling strength are much smaller than the transverse
confinement energy [254]. Such a formalism has already been applied in our group to
describe the axial phase fluctuations of a BJJ at thermal equilibrium [21] as well as the
non-equilibrium dynamics following the sudden splitting of a 1D quasi BEC [124, 90].
In absence of coupling between symmetric and antisymmetric modes, the dephasing
between the asymmetric axial momentum modes was shown to cause a rapid loss of
coherence and a relaxation to a state with thermal-like properties [90, 2, 149, 150].
Interestingly, the effective temperature of such a prethermalized state was shown to
depend on the initial number fluctuations, regardless of the initial temperature. We
believe that our strong number squeezing is responsible for the high contrast observed
over tens of ms after splitting (see discussion in section 4.4.5). Our ability to prepare and
detect number squeezing allow us studying prethermalization. In particular, it would
be extremely interesting to probe the squeezing and the coherence properties of axial
excitations, for example by means of condensate focusing [225, 60, 131].
At longer times, the 1D BJJ is expected to thermalize under the effect of the coupling
of the symmetric and antisymmetric longitudinal modes [238]. The transition from the
prethermalized to the thermalized state is currently under investigation in our group. It
might shed some light into the role of the finite temperature of the initial unsplit BEC
in the relaxation of the relative phase.
So far, we have not applied this 1D formalism to describe the tunneling dynamics of
coupled elongated BECs. It was shown that in a pair of coupled 1D systems, modu-
lational instabilities would cause the uniform Josephson oscillation mode to decay into
axial excitations [25]. Revivals were also predicted in Ref. [25], arguably resembling that
displayed by the 3D GPE simulations (see Fig. 5.4). The same mechanism was invoked
to show that in 1D, the MQST mode should decay into correlated pairs of elementary
axial excitations [120], and to predict the appearance of localized defects in the relative
phase profile of coupled 1D quasi BECs [177].
A pair of coupled elongated BECs is a complex quantum system. It is an exciting
playground to control and directly probe the rich interplay between tunnel coupling,
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interactions, 1D physics and many-body dynamics. We believe that our observations of
effects beyond the two-mode picture will contribute to the understanding of the dynamics
of coupled BECs and stimulate the development of more elaborate theoretical models.





A. One-dimensional Gross-Pitaevskii
simulations in the transverse
potential

A.1. Effective interaction constant for the transverse
GPE simulations

Because of our elongated geometries (see section 2.1.3.3) and also because the dynamics
of the BEC in the double wells occurs essentially in the direction of splitting, it is often
sufficient to resort to 1D simulations in the transverse horizontal direction. The 1D
Gross-Pitaevskii equation in the (x)-direction reads

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂2x
+ V⊥(x)ψ + g⊥N |ψ|2ψ (A.1)

where ψ(x) denotes the transverse wave function and g⊥ is the effective transverse inter-
action constant. We want to derive an analytical expression for g⊥ at short times right
after splitting.
We begin by assuming that the wave function is separable, and that the initial unsplit
cloud is described by a 1D Thomas-Fermi profile ϕ0(z) for N atoms at equilibrium in the

initial (close-to) harmonic trap (frequencies ω
(0)
x,y,z). The splitting process, which occurs

within ms, can be seen as non-adiabatic with respect to the slow axial dynamics. We
therefore that immediatly after splitting, the axial profile remains unchanged. In the
transverse direction, on the other hand, we assume that the wave function is close to the
non-interacting transverse ground state. In particular, we assume that in the vertical
transverse direction, the potential after splitting is harmonic with the frequency ωy and
that the wave function φ(y) in (y)-direction is in the non-interacting Gaussian ground
state.
Under these assumptions, the effective transverse interaction constant reads

g⊥ ≡ g3D

∫
|ϕ0(z)|4 dz

∫
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For usual parameters, g⊥/h = 0.30 Hz.µm (to be compared for example to the axial
1D effective interaction constant g1D = 2~ω⊥ = h × 17 Hz.µm . It means that in the
transverse direction, where kinetic energy dominates, the effect of non-linearity is rather
weak.

A.2. Parameter estimation of the BJJ

The parameters of the BJJ, such as displayed in Fig. 4.14, are calculated by comput-
ing the left and right mode wave functions in the one-dimensional transverse potential
obtained from the rf-dressing simulations beyond the RWA. More precisely:

• The ground and the first excited state wavefunctions φg(x) and φe(x) of the 1D
GPE equation in the transverse potential are computed using the effective interac-
tion constant introduced above. We resorted to an imaginary-time evolution using
the standard split-operator method (with a symmetrized time step, ensuring that
the local error at each time step is of order O(∆t3) and the global error on the
final result is of order O(∆t2)) [234].

• The left and right mode wavefunctions are defined as linear combinations of φg
and φe:

φL(x) =
φg + φe√

2
(A.4)

φR(x) =
φg − φe√

2
(A.5)

• the parameters of the BJJ in the standard two-mode model (tunnel coupling and
on-site interaction energies) are numerically computed using the integrals

J = −
∫ (

~2

2m
∇φL∇φR + φLV φR

)
dx, (A.6)

UL,R = g⊥

∫
|φL,R|4dx. (A.7)

To compute the spatial derivatives, we make use of the fact that the ∇ operator
is diagonal in momentum representation and compute the Fourier transforms of
φL,R.

• the parameters of the improved two-mode model (see Ref. [8]) can also be numer-
ically computed using φg and φe.

Great care has to be given to the choice of the space and time steps. Typical values
are ∆x = 5 nm (to be compared to the radial harmonic oscillator length ∼ 250 nm) and
∆t = 5µs (to be compared to the typical transverse oscillation period ∼ 0.5 ms).
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The same propagation method can be used to compute the GPE dynamics in the 1D
potential. It can be adapted to the case of a time-dependent potential, for example to
simulate the splitting and recombination ramps.





B. List of symbols

The numerical values specific to Rubidium 87 are given for the F = 1,mF = −1 hyperfine
level of the ground state (52S1/2).

Physical constants

~ reduced Planck constant: 1.05× 10−34 m2 · kg · s−1

kB Boltzmann constant: 1.38× 10−23 m2 · kg · s−2 ·K−1

a0 Bohr radius: 5.29× 10−11 m
µB Bohr magneton: 9.27× 10−24 J · T−1

µ0 vacuum permeability: 4π × 10−7 V · s · A−1 ·m−1

The ideal Bose gas

n0 ground state uniform density
~l quantum numbers ~k = 2π

L
(lxx̂+ lyŷ + lz ẑ)

ε~l kinetic energy of plane (matter-)wave
β inverse temperature in units of kB
ΛT thermal de Brolie wavelength
Tc critical temperature for Bose-Einstein condensation

The weakly interacting Bose gas

m mass of one boson: 1.44× 10−25 kg
as s-wave scattering length : 5.32× 10−9 m

a†l , al bosonic creation and annihilation operator in the mode |l〉.
Ψ̂†, Ψ̂ bosonic field operators.
V (~r) external potential
g3D = 4π~2as/m 3D interaction constant: 5.14× 10−51J ·m3 =

Elongated condensates

a⊥, a‖ harmonic oscillator length in the transverse (longitudinal) direction
χ = Nasa⊥/a‖2 χ-parameter (ratio of interaction energy over radial kinetic energy)
g1D = 2~ω⊥as effective 1D interaction constant
RTF1D 1D Thomas-Fermi radius
µTF1D 1D Thomas-Fermi chemical potential
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Two-mode Bose-Hubbard model

N total atom number
NL,R number of atoms in the left (right) mode
φL (~r) spatial wave function for the left (right) mode

a†L,R, aL,R bosonic creation and annihilation operator

Energies
J tunnel coupling energy
UL,R on-site interaction energy constant in the left (right) mode
U = (UL + UR) /2 averaged on-site interaction energy constant
∆ = E0

L − E0
R difference of zero-point energies between the modes

ε = (UL − UR)(N − 1)/2 + ∆ full energy detuning

dimensionless parameters: ratio of tunneling and interaction energy
Λ = UN/2J MQST threshold: Λ > 2
γ = U/2J Rabi: γ � 1/N , Josephson: 1/N � γ � N , Fock: γ � N
η = NJ/2U Phase diffusion threshold: η � 1/4

macroscopic observables
n = (NL −NR)/2 half-number imbalance
z = (NL −NR)/N normalized population imbalance
φ = (φL − φR)/2 half-number imbalance
φ = (φL − φR)/2 half-number imbalance
〈cos(φ− 〈φ〉)〉 coherence factor

squeezing factors

ξN = ∆(NL −NR)/
√
N number-squeezing factor

ξφ = ∆(φ) ·
√
N phase-squeezing factor

ξS = ξN/〈cosφ〉 (coherent, or useful) spin-squeezing factor

Magnetic trapping and rf-dressed potentials

gF Landé factor: 2.00
κ = |gF|µB Linear Zeeman shift: h× 0.7 MHz/G
VTB trap bottom
ωx,y,z angular trap frequencies
Ωs Static field magnetic energy (over hbar)
ΩRF Radio-frequency field Rabi angular frequency
ω rf frequency
δ = ω − Ωs rf detuning
α tilt angle
RFAmp rf dressing intensity (in each wire) in unit of Imax

0 = 79.5 mA pp
RFc

Amp critical splitting intensity (appearance of second minimum)

Imaging
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Γ = 2π × 6.07 MHz natural line width
σ0 = 2.91× 10−9 cm2 absorption cross section
Isat = 1.67mW · cm−2 saturation intensity
α = σ0/σeff absorption cross section correction factor
p̄, σp number of detected photons per atom, (mean, std. dev)
b̄, σb number of background photons per pixel (mean, std. dev.)

Sensitivity limits

∆φSQL = 1/
√
N standard quantum limit (or shot noise limit, quantum proj. noise)

∆φH = 1/N Heisenberg limit
∆φd phase noise on tof phase estimation for coh. states
ξN,d minimum detectable number squeezing

Miscellaneous

phase diffusion
R Phase diffusion rate
τcoh = 1/R Phase coherence time

timings
tφ phase accumulation time
tBS duration of the beam-splitter operation
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[32] Robert Bücker, Tarik Berrada, Sandrine van Frank, Jean-François Schaff, Thorsten
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lattice on an atom chip. Optics letters, 34(22):3463–5, November 2009.

[78] O. Garcia, B. Deissler, K. Hughes, J. Reeves, and C. Sackett. Bose-Einstein-
condensate interferometer with macroscopic arm separation. Physical Review A,
74(3):031601, September 2006.

[79] R Gati and M K Oberthaler. A bosonic Josephson junction. Journal of Physics
B: Atomic, Molecular and Optical Physics, 40(10):R61–R89, May 2007.

[80] Rudolf Gati, Börge Hemmerling, Jonas Fölling, Michael Albiez, and Markus
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lapse and revival of the matter wave field of a Bose-Einstein condensate. Nature,
419(6902):51–4, September 2002.

[88] Rudolf Grimm, Matthias Weidemüller, and Yurii B. Ovchinnikov. Optical Dipole
Traps for Neutral Atoms. Advances In Atomic, Molecular, and Optical Physics,
42:95–170, 2000.



222 Bibliography

[89] M Gring. Prethermalization in an Isolated Many Body System. PhD thesis, Vienna
University of Technology, 2012.

[90] M Gring, M Kuhnert, T Langen, T Kitagawa, B Rauer, M Schreitl, I Mazets,
D Adu Smith, E Demler, and J Schmiedmayer. Relaxation and prethermalization
in an isolated quantum system. Science (New York, N.Y.), 337(6100):1318–22,
September 2012.

[91] Julian Grond, Ulrich Hohenester, Igor Mazets, and Jörg Schmiedmayer. Atom
interferometry with trapped Bose Einstein condensates: impact of atom atom
interactions. New Journal of Physics, 12(6):065036, June 2010.

[92] Julian Grond, Ulrich Hohenester, Jörg Schmiedmayer, and Augusto Smerzi. Mach-
Zehnder interferometry with interacting trapped Bose-Einstein condensates. Phys-
ical Review A, 84(2), August 2011.

[93] Julian Grond, Jörg Schmiedmayer, and Ulrich Hohenester. Optimizing num-
ber squeezing when splitting a mesoscopic condensate. Physical Review A,
79(2):021603, February 2009.

[94] Julian Grond, Gregory von Winckel, Jörg Schmiedmayer, and Ulrich Hohenester.
Optimal control of number squeezing in trapped Bose-Einstein condensates. Phys-
ical Review A, 80(5):053625, November 2009.

[95] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill, G. Kurizki, and M. K.
Oberthaler. Atomic homodyne detection of continuous-variable entangled twin-
atom states. Nature, 480(7376):219–223, November 2011.

[96] Christian Gross. Spin squeezing and non-linear atom interferometry with Bose-
Einstein condensates. PhD thesis, Ruperto-Carola University of Heidelberg, 2010.

[97] Christian Gross. Spin squeezing, entanglement and quantum metrology with
Bose-Einstein condensates. Journal of Physics B: Atomic, Molecular and Opti-
cal Physics, 45(10):103001, May 2012.

[98] E. P. Gross. Structure of a quantized vortex in boson systems. Il Nuovo Cimento,
20(3):454–477, May 1961.

[99] S. Groth. Development, fabrication, and characterisation of atom chips. PhD
thesis, University of Heidelberg, 2006.
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for Transporting and Merging Trapped Atom Clouds. Physical Review Letters,
86(4):608–611, January 2001.

[115] W. Hänsel, J. Reichel, P. Hommelhoff, and T. Hänsch. Trapped-atom interferom-
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[129] M. Jääskeläinen, W. Zhang, and P. Meystre. Limits to phase resolution in matter-
wave interferometry. Physical Review A, 70(6):063612, December 2004.

[130] T. Jacqmin. Mesures de corrélations dans un gaz de bosons unidimensionnel sur
puce. Phd thesis, Université Paris Sud, 2012.
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