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Abstract

The Colour Glass Condensate is a model that describes high energy nuclei in
the framework of a classical field theory. When two such nuclei collide, they can
create the Glasma, which is the non-equilibrium precursor state of the Quark Gluon
Plasma.

Jet quenching occurs when a jet or the parton that produces the jet interacts
strongly with a medium so that a part of the jet cannot escape to reach the detector.
The jet is therefore highly suppressed. Such interactions can be investigated by
analysing momentum changes of the parton or the jet. Momentum broadening
characterises changes in momentum of the parton that produces the jet. It describes
the change in time of the average momentum squared of a test particle in said
medium and has already been investigated in various media. It is the central part
of this master’s thesis.

After a review of the description of the colliding high energy nuclei in the Colour
Glass Condensate framework, the boost invariant Yang-Mills equations are stated.
Together with the corresponding initial conditions, they determine the dynamics of
the Glasma. Then, their known solution up to second order is verified. This solution
serves as the basis for the following analysis of the momentum broadening in the
Glasma, which is the focus of the remaining part of this work.
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Zusammenfassung

Das ,,Colour Glass Condensate® ist ein Modell, das hochenergetische Kerne im
Rahmen einer klassischen Feldtheorie beschreibt. Bei der Kollision zweier solcher
Kerne entsteht das sogenannte Glasma. Es ist ein Nichtgleichgewichtszustand, aus
dem sich nach kurzer Zeit das ,Quark Gluon Plasma“ entwickelt.

Wenn durch starke Wechselwirkungen eines Teilchenstrahles oder des ihn erzeu-
genden Partons mit einem Medium der Strahl nicht vollsténdig aus dem Medium
entkommen und somit den Detektor nur teilweise erreichen kann, spricht man von
»jet quenching®. Diese Wechselwirkungen konnen durch die Untersuchung von Im-
pulsdnderungen des Strahles oder des Partons analysiert werden. Die Impulsverbrei-
terung charakterisiert die Impulsénderung des Partons, das den Strahl erzeugt. Sie
beschreibt die zeitliche Anderung des gemittelten Impulsquadrates eines Testteil-
chens im betrachteten Medium und bildet den zentralen Teil dieser Arbeit.

Nach einer Wiederholung der bereits bekannten Beschreibung hochenergetischer
Kerne im Rahmen des ,Colour Glass Condensate* werden die boostinvarianten
Yang-Mills-Gleichungen vorgestellt, die gemeinsam mit den zugehérigen Anfangsbe-
dingungen die Dynamik des Glasmas festlegen. Danach wird ihre bereits bekannte
Losung bis zur zweiten Ordnung verifiziert. Diese Losung dient als Ausgangsbasis
fiir die Analyse der Impulsverbreiterung eines Testteilchens im Glasma, der sich der
restliche Teil der Arbeit widmet.

iii
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Chapter 1

Introduction

Nucleus-nucleus interactions are governed by the strong force. QCD calculations
can be inaccessible, which is why models are developed that describe some aspects
of QCD. One such model is the Colour Glass Condensate (CGC). It is an effective
theory that describes high energy scattering in QCD [1] and will be used in this
work to analyse high energy collisions of two nuclei. “Colour” in CGC states that
the theory describes partons, which are coloured. They are also disordered and
frozen, like in a “Glass”. This system contains many gluons. For a saturated gluon
density, it corresponds to a multi-particle Bose “Condensate”.

A main idea of the CGC is the distinction between hard partons that carry high
momentum, i.e. valence quarks and high energy gluons, and soft partons with lower
momentum, i.e. lower energy gluons. The effective degrees of freedom in this classical
field theory are therefore the colour charge density p, which describes the former,
and the gauge field A,,, which describes the latter [2]. The hard partons are affected
by time dilation. Therefore, their colour configuration does not change much and
is considered to be frozen with respect to QCD time scales. It is specified by some
distribution function, for which the MV model is chosen in this master’s thesis. It
is presented in Section 2.3.

High-energy nuclei are strongly Lorentz contracted [3], hence usually they are
treated as infinitely thin [4]. This assumption leads to boost invariance and conse-
quently an effectively 2 4+ 1 dimensional system, in which all observable quantities
are independent of the spacetime rapidity 7. In this work, all quantities are taken
to be rapidity independent, not only the observable ones.

After a high energy nucleus-nucleus collision a state called “Glasma” is created [5].
It is described by a classical field and treated in terms of classical field theory.
Its name originates from the “Glass” in CGC and the “Plasma” in Quark Gluon
Plasma (QGP), which is the successor state of the Glasma [6]. The classical field
that describes the Glasma is the vector potential A,. In [7], it is expanded in orders
of the particle density p in a certain gauge and solved for the lowest non-vanishing
order. The lowest non-vanishing order itself is a good approximation for a strongly
diluted Glasma, whereas higher order terms become more significant for a denser
Glasma.
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Chapter 1. Introduction

In a high energy nuclei collision, high momentum parton pairs can be created,
which move in opposite directions and lose energy whilst travelling through the
Glasma. They produce jets of particles, which can be observed by particle detectors.
If such a high momentum parton pair is created near the edge of a medium, it is
possible that one parton and its corresponding jet lose much energy so that only a
part of the jet escapes the medium. The jet produced by the other parton loses less
energy, thus a higher portion of it is detected. Due to the jet of the former parton
being partially missing, this phenomenon is called jet quenching. The interaction
between such a parton, which will be called test parton, and the medium in question
is therefore of interest. The momentum broadening of a test particle is a quantity
of interest in the study of said interaction. [8] and [9] explore interactions between
particle jets and the Quark Gluon Plasma, whereas the focus of this work is the
Glasma.

The field A, determines the strong force acting on test particles in the Glasma.
One parameter that can be extracted from this information is the transport coeffi-
cient ¢, which is also called “momentum broadening” parameter and describes the
radiative energy loss of a test particle [10]. It is discussed in two different media
in [11], namely in a QED plasma and in a QCD plasma.

In Chapter 2, I will explain how one high energy nucleus is described in the
CGC framework. Then, I will discuss two high energy nuclei moving in opposite
directions, which resemble the system that creates the Glasma. Afterwards, I will
present the equations of motion that govern the evolution of the Glasma and their
boundary conditions. At the end of this chapter, I will give a short overview of
the MV model, which is used to solve occurring ensemble averages. The content of
Chapter 2 has already been well established by former works and is only to be taken
as a foundation for the rest of this master’s thesis. More information on this topic
can be found e.g. in [12, 13].

In Chapter 3, I will expand the equations of motion and the corresponding initial
conditions given in the previous chapter and solve them in close analogy to [7].
Afterwards, I will discuss whether the choice of gauge of p that is used as expansion
parameter is special or interchangeable.

In Chapter 4, I will use the solution of the previous chapter and discuss the
momentum broadening of a test parton in the Glasma. It depends on the trajectory
of the test particle, hence I will start by deriving a formula for (p?) that depends
on the trajectory. Then I will discuss two different trajectories, leading to the two
momentum broadening parameters ¢ and k.

In Appendix A, I clarify my notations and conventions, in Appendix B, I discuss
the coordinates that I use in this work and derive the Yang-Mills equations in Milne
coordinates. In Appendix C, I list some properties of the Bessel differential equation
and explain how they are applicable in this master’s thesis, and Appendix D contains
a detailed analysis of some integrals that arise during the calculation.
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Chapter 2

Description of the Glasma

The Colour Glass Condensate is the description of choice of nuclei at high energy
in this work. Their partons are described by classical colour fields and currents, and
their dynamics is governed by the classical Yang-Mills equations. In this chapter,
I will discuss one such high energy nucleus moving in z direction, then two nuclei
moving in opposite directions, +z and —z, so that they collide at z = 0, t = 0.
Afterwards, I will present the equations of motion of the Glasma, which is produced
by this collision, in the appropriate coordinates as well as the corresponding initial
conditions. Finally, I will give an overview of the MV model.

2.1 Single Nucleus

The focus of this section is the description of one nucleus moving at the speed of
light ¢ in z direction. The four current J#(x) of particles, of which such a nucleus
consists, has only one non-vanishing component in light cone coordinates, namely
the JF component. Different coordinate systems are discussed in Appendix B. The
current can be written in terms of the particle density p,(x) as

Jit(x) = 0" pa(), (2.1)

or equivalently, with the generators ¢, of the associated symmetry group in the
fundamental representation

JH(x) = 0" po(2)ta. (2.2)

Said symmetry group is SU(3), nevertheless the formulas in this work will also be
given for SU(N,) with arbitrary N..

Due to the assumption that the particles move at the constant speed c in z direc-
tion, their dynamics is infinitely time dilated. They are thus considered to be static
in 2%, which means that J*(z) does not depend on ™

JH(z™ xr) = 0" pa(x, Ty )t (2.3)

Furthermore, the particles are infinitely Lorentz contracted and the current can be
written as

JH(z™ xr) = 0"6(27 ) palr)ty. (2.4)
Their distribution in the transversal plane is described by a probability functional
introduced in Section 2.3.
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Chapter 2. Description of the Glasma

The Yang-Mills equations
D,F* = J" (2.5)

provide the link between the particles in question and the fields they create. The
definitions of the covariant derivative D, and the field strength tensor F),, are given
in Appendix A. To solve these equations of motion, a gauge and an ansatz are
chosen, viz. the Lorentz gauge

0, A" =0, (2.6)

which is also known as covariant gauge, and
AM(x™ xp) = MTAT (27, 2t (2.7)

This ansatz turns out to be general enough because it does not lead to any conditions
for JH(x™, x7).

The only non-zero component of A* is the + component, hence the imposed gauge

condition becomes
0, AT =0. (2.8)
It is already respected by the chosen ansatz and thus does not lead to any additional

conditions.

The field strength tensor is needed, so that the ansatz can be inserted into the
Yang-Mills equations. Due to the fact that A™ is the only non-zero component, the
only possibly non-vanishing independent components of the field strength tensor are
F*~ and F*

Fr=—-0"A"=—-n10,A" =0,
Fr=—0'A%, i=1,2 (2.9)

with the metric 7, which is defined in Appendix B.

The left-hand side of the Yang-Mills equations for the + component is
D F"* = DiF'™" = 0,F™ +ig|A;, F't| = ,0'A* = ~Ag AT, (2.10)

again with ¢ = 1, 2. The definition of the Laplace operator in the transverse plane A
can be found in Appendix A, as well as the definition of the partial Fourier transform,
which will be used in the following. The resulting Yang-Mills equation is

— Ap AT (27, 2p) = 6(27 ) p(a7), (2.11)
and its solution reads
Phr (x7)p(kr)
At (z™, 2p) = gthrer, 2.12
(=7, 2r) /(27r)2 k3 (212)

Due to the form of Eq. (2.12), AT (z~, zr) can be split up and AT (x7) is defined
via

AT (2™ xp) = 6(27 ) AT (27). (2.13)

4
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2.1. Single Nucleus

Now, the solution is transformed into the light cone gauge

1
AZOU<I_, JIT) — A£C<l’_, (L’T) = V(Q}_, IT) (AZOU(ZE_,ZL'T) + 'L‘g6#> VT(ZL'_,ZL'T).
(2.14)

The covariant gauge and the light cone gauge are denoted by the superscripts cov
and LC, respectively. The light cone gauge condition is

ATLC = 0 ALY = 0. (2.15)
The transformation matrix V' (z) is chosen to be independent of ™ because then
AT = AL =, (2.16)

as can be seen by inserting V' into Eq. (2.14) and by keeping in mind that A"
vanishes. Note that Eq. (2.16) is the light cone gauge condition of the second nucleus,
which will be introduced in Section 2.2, and that Eq. (2.15) follows from the choice
of an x~ independent transformation matrix for the second nucleus.

V' can be calculated using Eq. (2.15)
0=V(z™,ap) (A“’”(x_, rr) + iq&)v*(x—, x7),
O_Vi(x™, xp) = —igA“ (2™, 27)V (z™, 27)
= —igAT (7 ap) V(@™ 2p),
Vi(a™, op) = Pe 9/ oude AT ) (2.17)

P denotes the path ordering operator. Equation (2.17) can be simplified further by
inserting Eq. (2.13) and integrating the ¢ function

Vi, ap) = e 90@)AT @) (2.18)
The two components of Aﬁc that are yet to be calculated are
AL (g ) =V (™, :BT);@VT(:E_,:ET). (2.19)
Equation (2.19) can be rewritten using the result of Eq. (2.18) as

AKC (o wp) = Z,lgwx—, 27)0y(~igB(x) AT (ap)) V1 (2, )

_ H(fg)wxwﬂ@-(—z‘g@(w)A+’C°”<xT))V*<x,xT)
= H(ng)V(x_,xT)@VT(x_,xT) (22())

If 2= <0, AX¢ = 0. If = > 0, the 0 function in the exponents of V and VT equals
to one. Therefore, AX® can be expressed by

9({6*)

tg
V(zr) equals to V(z~,zr) in Eq. (2.18) with the 0 function omitted.

ALC (2= ap) = V(2p)0V i (zp). (2.21)

5


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
knowledge

i
r

Chapter 2. Description of the Glasma

ALY consists of one factor that only depends on x~ and of one that only depends
on xr, so it can be split up

AYC (27 xp) = 0(27) o (), (2.22)

with .
ol (zr) = 5V(:J:T)aivf (z7). (2.23)

The colour current Eq. (2.4) obeys the transformation law

JEEC (27 wp) = V() J (a7, 2p)V(27). (2.24)

The relation between J™¢ and p”“ is the same as the one between J and pc

JHEC (2™ ap) = Vi(wg) J T (a7, 2p) VT (2r)
2 )WV (wr) p* (o) Vi (ar)
0 (ar). (2.25)

The components F~H5¢ and F**LC¢ are needed to obtain the + component of the
Yang-Mills equations in the light cone gauge. The former vanishes because A+*¢
and A=%¢ vanish. The latter reads

FH—,LC — —8+Ai’LC, (226)

where again ¢ = 1,2. The left-hand side of the aforementioned Yang-Mills equation
is
D, FrHLC = g Frhle 4 g {Aﬁc, Fu—i—,LC}
— 9,9t AVLC
— _0,0_AVLC
= —0;(0-0(x")a' (z1))
= —0(z7)0;a (7). (2.27)

The commutator term vanishes because of

AL, FretC] = (AL —0_ APMC) = 0(27)0(2 7)oy, au) = 0. (2.28)

Combining the right-hand side of Eq. (2.27) and the right-hand side of Eq. (2.25)
of the + component of the Yang-Mills equations in the light cone gauge yields

i (wp) = —pt© (z7). (2.29)

Summing up, one nucleus viewed as CGC moving at ¢ in z direction can be
described by the vector potential Eq. (2.12) in the covariant gauge. In the light
cone gauge, the vector potential produced by this nucleus is given by Eq. (2.21).
The other components vanish.
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2.2. Two Nuclei

2.2 Two Nuclei

In this section, a second nucleus enters the picture. It moves at ¢ in —z direction.
The resulting system thus consists of two nuclei, one moving in +z direction, which
is discussed in Section 2.1, and one moving in —z direction. The formulas associated
with the latter are analogous to the ones for the former. As an example, the current
describing only the second nucleus is given by

JH(x" xp) = 86 (x) p(xr). (2.30)

The only non-zero component of the vector field in the covariant gauge describing
the second nuclei is

A= (g ) = /Ej;:)j; (5(x+lz%ﬁ(k:r) gikror (2.31)
and the non-vanishing components in the light cone gauge are
ALt ) = Py v (), (2.32)
with
Vi(ag) = e7od7 0, (2.33)

Note that Eq. (2.29) also holds for the second nucleus.

The currents for both nuclei can be obtained by superimposing the single nu-
cleus currents. The subscripts denote the nucleus, 1 refers to the one moving in
+z direction, 2 to the one moving in —z direction. The current for both nuclei thus

reads
JH(z) = J (2™, xp) + JE (2T, 27). (2.34)

In the abelian case the vector potential A, is simply the sum of the vector poten-
tials of the single nuclei. To obtain the field describing both nuclei in the non-abelian
case, which is the relevant one in this calculation, consider the spacetime diagram
drawn in Figure 2.1. Nucleus 1 moves along the ™+ axis, nucleus 2 along the 2~ axis.
The collision takes place at the intersection point of these two axes.

Figure 2.1: Spacetime diagram for the nuclei collision. The zy coordinates are
suppressed.
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Chapter 2. Description of the Glasma

The collision splits the spacetime diagram into four regions. Region [ is its past.
The two nuclei cannot influence anything in this region and the vector field van-
ishes. Region IT is only influenced by the nucleus travelling along the ™ axis. The
vector field can therefore be described by Eq. (2.21). Likewise, region [71 is only
influenced by the nucleus moving along the = axis and the vector field is described
by Eq. (2.32). Region IV is the future of the collision, it is the region in which
the Glasma is created. There the vector potential depends on the currents of both
nuclei, which move along the boundary of the forward light cone, and is yet to be
calculated.

Inregions IT and I1I, A* = 0and A~ = 0 are selected as conditions. In region I7,
the former equation is the light cone condition and the latter holds because the
transformation matrix V' is chosen to be independent of x*. In region 11, they
change their roles. The latter equation is the light cone condition, whereas the
former holds because the transformation matrix is chosen to be independent of x~.
In region IV, the Fock-Schwinger gauge

zTAT + 2 AT =0 (2.35)

is the gauge of choice. At the boundaries from region I'V to the regions I1 and 11,
this gauge can be connected smoothly to the light cone gauge in these two regions.

Coordinates that reflect the symmetries of the problem at hand are the Milne
coordinates, to which will also be referred as (7, 7) or (7,7, zr) coordinates. They are
introduced in Appendix B. In these coordinates, the Fock-Schwinger gauge condition
becomes

AT =0. (2.36)

A boost invariant ansatz for the whole spacetime reads

Al(z) = 0(a")0(a7)a' (7, 27) + 0(=2")0(z" )ai (27) +0(2")0(—2" )y (wr),
A'(z) = 0(z)0(z7 ) (1, x7), (2.37)

region IV

with
Olplar) = SValen)0'ViGar),
Vi (wp) = emioAT " @),
Vi (wp) = emioAs o)

m=1,2. (2.38)

o' (7, zr) and (7, z7) describe the Glasma, which only exists in region IV. They
are determined by the Yang-Mills equations (B.28), (B.30) and (B.31)

1 ,
—387(73870/7) + D;D'a =0,
-

igr*[a", 0.a"] — Di0;a' = 0,
—0,(10:a") + TD;F7 +igr’[a", D;a"] = 0 (2.39)
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2.3. MYV Model

and the boundary conditions [12]

(T — O+ , T (JJT) + CY;(QJT>,

ool (1 — 0" arp

al(r— 0%, ap [al(xT) ozé(xT)],

) =
) =
) =
) =

Oyt = 0%, 2 (2.40)

They are matching conditions at the boundary between regions I/ and IV and
regions 1] and IV. Due to the fact that (7,71) coordinates are used and the fact
that this boundary corresponds to the equal time surface 7 — 071, they are also
called initial conditions. The Yang-Mills equations (2.39) are source-free in this
region because all the sources are located on its boundary. They are derived in
Appendix B.

2.3 MYV Model

The so-called MV model was developed by McLerran and Venugopalan [14, 15].
It requires the particle density in the nucleus to be large compared to the QCD-
scale p > Agcp, so that weak coupling methods are applicable and a classical
approximation is valid. The valence quarks are treated as recoilless classical charge
sources p(z) that move at the speed of light. They are called hard partons. The
soft partons are represented by a classical colour field A, (x). The link between the
hard partons and the soft ones is given by the classical Yang-Mills equations.

Due to the assumption that the velocity of the hard partons is ¢, the corresponding
current has only a + component in light cone coordinates if it moves in z direction.
In the transverse plane, the nuclei are considered to be infinitely large. There, the
exact position of each hard parton is unknown, which is why they are described by
a probability functional W{p]

1 1 ez x z
Wlp| = Z@ 29252 Jd2@r pa(@r)pal T)7 (2.41)

with the average charge density squared per unit area p? and the normalisation

constant Z ) ,
Z — /Dp G_W fd xTPa(mT)Pa(ZCT)‘ (242)

The particle density p can be given in any gauge because W {p] is gauge invariant [1].

Ensemble averages of observables O can be calculated via

(014,]) = [ DoOLAIW . (2.43)
This leads to
<pa<xT)> = 07
(pa(zr)po(yr)) = 9°1*6u0 P2 — Y1),
<ﬁa(kT)> =0,
(Pa(kr)Bo(Ir)) = (27)? 9% 12600 P by + L), (2.44)

9


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

Chapter 2. Description of the Glasma

Equation (2.44) needs to be modified to yield finite results for the momentum
broadening parameters, which are introduced in Section 4.2 and then used through-
out the rest of the chapter.

i k2
pu(kr) = 2w +Tm2/)a(kT)@(AUV — |kr]),
G = TG ) )YO (Ao — ke O (Ao — [ir])
Pa\FT)Pp\lT TR m2 B m Pa\rT)Po\lT uv T uv T
it
= —(k% n m2)2 (27T)2g2/1,2(5ab(5<k"1’ + lT)@(AUV - |]€T|) (245)

Ayy is an ultraviolet cut-off, m is an infrared regulator.

10
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Chapter 3

Solution of the Equations of the
Glasma up to Second Order

In this chapter, I will analytically expand the initial conditions of the Glasma,
which are given by Eq. (2.40), and the Yang-Mills equations that govern its prop-
agation. They are listed in Eq. (2.39). Both expansions will be in the particle
density p*“. Then, I will solve them up to second order, i.e. I will give an analyt-
ical solution for a'(7,x7) and o/(7, z7) up to second order. Finally, T will discuss
the choice of p*“ as expansion parameter and examine if particle densities in other
gauges could have been chosen instead. Large parts of this calculation are analogous
to [7].

Before starting with the expansions, some formulas will be rewritten in a useful
way. The first four ones have already been given in Eq. (2.38) in a different way

g, (T7) = i m(2r)0'V (), (3.1)
Von(g) = 9o, (32)
7 (wr) = AT (), (3.3)
5 (wr) = Ay (), (3.4)
¢ = ¢1+ @2, (3.5)
p=p1+ pa, (3.6)

1

N 1
Om = @pm. (3.8)

The last four formulas are valid in any gauge. Equation (3.7) contains the inverse
Laplace operator A;' = 1/Ar, Eq. (3.8) is the same relation, but in momentum
space. m = 1,2 and refers to the quantities of the first or second nucleus. Note
that in Section 2.1 only one nucleus was discussed and therefore there was no index
needed to distinguish between different nuclei. From now on ¢ and p without indices
refer to the whole system of nuclei, indicated by Egs. (3.5) and (3.6).

11
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Chapter 3. Solution of the Equations of the Glasma up to Second Order

3.1 Expansion of the Initial Conditions

In the following expansion, there will be terms containing factors of ¢ or its deriva-
tives. It is assumed that these factors are of order p, which is why the expansion
can also be thought to be in orders of ¢. With the help of Eq. (3.8), this assumption
can be translated to one for k7. When the results of this expansion are used in
Chapter 4, one introduces an infrared regulator m and and ultraviolet cut-off Ay,
with which one can fulfil said assumption.

According to Eq. (3.1), one can find an expansion for o' in terms of p¢ by
seeking an expansion for V,, first. Equation (3.2) gives V}, in terms of ¢’. With
the transformation law for p, which is used in Eq. (2.27), one finds

o’ = o’ + O(da). (3.9)

With this relation one can start with an expansion of V,,, in terms of ¢
2

Vm =14+ ig¢cov _ %¢2cov + O(¢3cov) (310)
VTL —1— 2ggzscov _ ¢260’U 4 O(ngCO’v) (311)
az‘/n’[1 Zgaz¢cov . 7{az¢cov ¢$§v} 4 O(¢§ﬂcov) (312)

and later translate it to one in ¢Z¢. Inserting Egs. (3.10) and (3.12) into Eq. (3.1),
one obtains

= 0l + Do o] + O). (3.13)
Calculating the divergence of a!, ylelds
duad, = Mg + Sofores o] + 065 (3.14)
Here, Eq. (A.3) was used. Equations (2.29) and (3.14) lead to
_ PTE@C = Apg®® + ga {aqucov ¢cov} + O3, (3.15)

and after applying the inverse Laplace operator Az' = 1/Ar and taking advantage
of Eq. (3.7), one obtains

LC COv 7 [ COU COvV 3 cov
brC = g + 2] A ', o] + O6h). (3.16)
From Eq. (3.16), the negative gradient of ¢ can be calculated
_ ai¢c0v o az¢LC + Zg@zA [aj¢cov QZS?C?(;U} + O(gb?ncov)‘ (317)
T

After inserting Eq. (3.17) into Eq. (3.13), one gets

a;n:_az¢7léc’+gg<nm+azA ag)[ cov ¢cov]+o<¢3cov) (318)

and after making use of Eq. (3.16), the desired expansion of o/ in terms of ¢ is
found
- A
00+ 2 (7 + 01107 (0161, 01 + O(63), (3.19)
2 Ar

12
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3.2. Expansion of the Equations of Motion

Now, it is possible to write the right-hand side of Eq. (2.40) in orders of ¢'¢,
but not yet the left-hand side. To change that, an expansion of the vector fields in
powers of ¢FC is made

a1, xr) = a?n) (1, 27). (3.20)

afyy (T =0,27) = d'ptC,
drafyy (T =0,27) = 0, (3.21)
aly(T=0,27) =0,
Oraly (T =0,27) =0, (3.22)
and the ones to second order read
0/22)(7' =0,27) = Zzg(n” + 8Z 22: [ QSLC}
O,y (T = 0,27) = 0, " (3.23)
ajy (T =0,27) = 9 {8’@5 ¢ 0oy },
Oraly (T =0,27) = 0. (3.24)

3.2 Expansion of the Equations of Motion

With the help of Egs. (2.39) and (3.20), the equations of motion can be written
in powers of “. The first order equations are

1
—50- (7*0-a))) = Araly, =0, (3.25)
di0raly) = 0, (3.26)
—0,(r0-afy)) + 7(8} Az + 0;0") o)) = 0. (3.27)

Note that they are decoupled. Equation (3.25) is a differential equation for 0/(71),
whereas Eqs. (3.26) and (3.27) are differential equations for af,.

For the second order equations, one obtains

7_1387<7'38704 ) Aral, +zg([ afyy, 0/(71)} — [a'él),aia?l)]) =0,
0idraly) —igr?|afy, Oy | —iglafy, rafy| =0,
~0:(70:0y) + 7 (A7 + 80" )y + igr;|afy), oy
—ig([ady. 0aly] — [odhy. ¥aly)]) +igr® [alyy. B0l = 0. (3.28)

13
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Chapter 3. Solution of the Equations of the Glasma up to Second Order

Using the solution of the first order, which will be discussed in Subsection 3.3.1, this
simplifies to

1

—50- (7*0-a)) — Araly =0, (3.29)
0,0,y = 0, (3.30)
~0,(r0:0ly)) + 7(6 A7 + 0;0)oly) + igTd; [aly), oy | = 0. (3.31)

Equations (3.29) and (3.30) have the same structure as their respective first order
counterpart, but Eq. (3.31) contains an extra term of first order fields.

3.3 Solution of the Equations of Motion

3.3.1 Solution to First Order

The problem at hand can be solved via Fourier transformation. The Fourier
transform of Eq. (3.25) is

1 _ _
gé?T(T?’aTo/gl)) + kady = 0. (3.32)

The Fourier transforms of the first order initial conditions for o, which are given
by Eq. (3.22), are

(T =0,kr) =0,
0 &y (T = 0,kr) = 0. (3.33)

The unique solution of Eq. (3.32) with the initial conditions given by Eq. (3.33) is
alhy(r,kr) = 0, (3.34)

and the solution of the original equation, which is nothing but the inverse Fourier
transform of Eq. (3.34), is therefore

aly(r,2r) = 0. (3.35)

The Fourier transform of Eq. (3.26) reads

Or(krdifyy + kadify)) = 0. (3.36)
This leads to
k
~1 2409 ~2
0r0qy) = —7-0ray),
- ko
04%1)(73 kr) = _é&a)(ﬂ kr) + C(kr). (3.37)

The Fourier transforms of the first order initial conditions for o, which are given
by Eq. (3.21), read

B,y (T = 0,kr) = 0. (3.38)
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3.3. Solution of the Equations of Motion

With the help of Eqgs. (3.37) and (3.38), C' can be determined
C = —z(kl + (kz)” >¢>LC (3.39)

Equation (3.27) becomes

—0,(10; %1 ) ( (k) Oz(l) + k‘gk‘la?l ) 0,

Inserting Eq. (3.37) into Eq. ( 40) yields the same equation twice
- (97-(7'(97-&(1 T( (kQ)Z&%l + kleC - (k1>2&21 ) =0. (341)

)+
The unique solution of Eq. (3.41) with the initial conditions given by Eq. (3.38) can
be written as B
gy (7, kr) = ike¢™ (k). (3.42)
Due to the symmetry of the equations and their associated initial conditions, one
obtains the solution of &%1) by exchanging 1 <» 2 in Eq. (3.42). Hence, the solution
of the original equation reads

afyy (7, 27) = —0'¢" (27). (3.43)

This solution is pure gauge, as will be shown explicitly in Subsection 3.3.2 by choos-
ing the residual gauge freedom in a way that the new field in Eq. (3.43) vanishes.

3.3.2 Solution to Second Order

There is still some residual gauge freedom left in the chosen Fock-Schwinger gauge.
It will be fixed in this subsection. Not only will the first order solution turn out to
be pure gauge, but also the second order equations will become easier to solve with
said gauge fixing. Thus, a gauge transformation of the fields o and a” is done

1
e = Ulzp)(a” + —0"\U (z7), (3.44)

g
with a transformation matrix U(zr) that is independent of 7 so that the 7 component
vanishes in the new gauge as well and independent of n because there shall be no
rapidity dependencies in this problem, as explained in Chapter 1. The new field is

e =0,
" = U(zp)a"U'(xr),
) . 1 ..
¢ =U(zp)(af + gaZ)UT(a:T). (3.45)

The next thing to do is to expand e* and U(x7) in powers of ¢2¢

€l = Z 67(7”),
n=1
61, = Z:l 67(71)7
Ul(zy) = 99L@r) (3.46)
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Chapter 3. Solution of the Equations of the Glasma up to Second Order
with
¢L(xr) =D drwm(rr), (3.47)
n=1

which is also expanded in powers of ¢

Making use of

2
. . g
U=1+1igpia)+igdie) — §¢i(1) +0(6°H),
2
. . g
Ul =1—1ig¢.q) —igdLe — 5@%(1) +0(6°1),
2

UO'UT = —igd'p) a1y — igd'p1 2y + % [¢¢(1)> 3i¢¢(1)} + O(¢*9), (3.48)

Eq. (3.45) can be written in orders of ¢¢. The first order reads

= =0
€ = o) — 9oL, (3.49)
and the second order is
€y = s, (3.50)
i i i g i
o) =~ 0o+ [%(1)7 9 mu)] (3.51)

Now, part of the residual gauge freedom is used, i.e. the first order of ¢ is chosen.
The equations of motion are gauge invariant, so they can be written in terms of €*
by replacing a* in the old equations by e”. Equation (3.31) contains a commutator
term of first order terms. Equation (3.49) states that one can set ¢, to 0 if one
finds a ¢ (1) that satisfies

Opry = afy). (3.52)

This would show that the first order solution is in fact pure gauge and it would
make the second order equations easier to solve.

0610y = afyy = —0'¢"C,
b1y = —o"C. (3.53)

In the last step, the fact that ¢, depends neither on n nor on 7 is used. Overall
constants are ignored as usual.

The new second order equations of motion are

1

—0:(7°0r€)) — Ay =0, (3.54)
0;0-€(9) = 0, (3.55)
—0,(10r€(g)) + T(55 A7 + 0;0")€ly) = 0. (3.56)
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3.3. Solution of the Equations of Motion

The initial conditions, given by Eq. (3.24), remain the same for 67(72) because of
Eq. (3.50), but Eq. (3.23) changes. One obtains with the help of Eq. (3.51)

€lo)(T = 0,27) = afy) (1 = 0,27) + [%(1)7 b1 } P (3.57)
8T6é2) (7— = 07 xT) = 07 (358)
€y (T=0,27) = Eg[%fcﬂz 51, (3.59)
Orely (T =0,27) = 0. (3.60)
Note that
O, e = .ot (3.61)
for the first and the second order because ¢, does not depend on 7.
With the last gauge condition, ¢ (2) will be fixed. One demands
Oie' (Tt =0,27) =0, (3.62)
which means that '
Di€ay (T =0,27) =0 (3.63)

and obtains the following equation for ¢ (5) by calculating the divergence of Eq. (3.57)
0= iﬁa' {Ch(l), 8i¢J_(1)} + A7 (2
PLi2) = —Ei@z [m iqﬁm)] (3.64)
Inserting Eq. (3.64) into Eq. (3.57) yields

€(2)(T = 0,27) = o) (T = 0,27) + 29<77” + 818]) [¢J_(1)7 3j¢¢(1)}
) 1
9 (o + aZATaﬂ)< 65,61 + 0,05, 04

o+ 0.0, (o1 )D

9 (v +aZA1TaJ) ) +[ 5, 0,04¢])

2o [ S

)
1
zg(n”—i—az af) ¢1L O (3.65)
Ar
In the last step, the fact that
ij i LC LC _ @ % LC LC| __
(7 + 0 - 0) s[4 0] = (0= 0) 6400t =0 (360)

and the product rule were used. Equation (3.55) is an ordinary differential equation
for 61-6’('2). Together with the initial condition Eq. (3.58), one can deduce that

Di€lyy =0 V7. (3.67)
Therefore, €(,) can be written as rotation of another field x (7, 1)
€lyy = €70, X, (3.68)

with the two dimensional epsilon tensor €.

17
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Chapter 3. Solution of the Equations of the Glasma up to Second Order

Equation (3.56) can be rewritten in terms of x
€10;(~20,(r0,) + Arx) =0,
0;(~~0.(r0) + Arx) =0,
iaT(Tam ~ Ay = al7). (3.69)

The function a(7), which is nothing but an integration constant with respect to zr,
is set to 0 now. The reason why this is possible without changing the observables is
explained in detail in Appendix C. The initial condition that is given by Eq. (3.65)
becomes in terms of y

€795x(r = 0,27) = ig(n"j + 8113j> 01, 9,057,
Ar
1
Ox(T = 0,27) = igei (77” + aZAaj> {¢%Cu 9; gc})
T
ATX(T = 07 xT) = del] [aqufC’ a] §C:|7
X(T = 0,27) = AgTe” [0i61°, 0,05 (3.70)

The first line was multiplied by €;, to get the second one, on which was acted by
—9* to come to the third. Finally the inverse Laplace operator A" was applied to
both sides. The initial condition that is given by Eq. (3.58) can be written as

€70;0,x(t = 0,27) =0,
0;0-x(1 =0,27) =0,
O-x(t=0,zr) =0. (3.71)
In the last step, an overall constant was ignored again. The remaining equations of

motion are given by

1

3
1
—0-(10-x) — Arx =0, (3.73)
-

and their initial conditions read

€y (T = 0,27) = izg{ainqu 8i¢50]’
Orely (T = 0,27) = 0.
o — 00— 0 (3.74)

The solution is obtained by Fourier transforming the spatial part of the problem.
The equations of motion become

1

ﬁaT(TSaTE}EE)) + k%gzg) - O, (375)

1
—0:(10:X) + kX =0, (3.76)

18
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3.4. Expansions in p in Other Gauges

and the associated initial conditions are

E4(72)(7— = 0 kT) ([ qufc az QC})
=- K (ks — )R [ Q1€ (b — k), 05 (k)]
0-€lyy (T =0,kr) =0 (3.77)

and

- ige - -
kX (1 = 0,kr) = W /dzk/T (ki — k;)ké[ 1€ (ke — k), gc(ké“)L
O-X(1=0,kr) =0. (3.78)

F denotes the Fourier transform. The solution of the problem in Fourier space is,
as is shown in Appendix C,

2J;(wr)
el (7 kr) = — ;T ey (T =0,kr), (3.79)

X(7,kr) = Jo(wT)X(T = 0, kr), (3.80)

with the Bessel functions of the first kind J,, and

(lﬁ)Z + (k2)2. (381)

The solution of the original problem is therefore

67(72)(7-7 TrT :/d2kT Jl(f;}_T)eikTmTfe(kT>’ (382)
x(, 1) /d by ( )“WTf (kr), (3.83)
with
felkr) = (22'7?)4 [ @i (s — KR [BEC (e — k), 67 (R)], (389)
Z.geij 211 Nt | L / 7L /
Fulkr) = g [k (b = KO [51C o — k), B5°05)]. - (3.89)

3.4 Expansions in p in Other Gauges

The expansions that were made in the preceding sections were in p*“. Although
this may be motivated by the fact that one could make use of Eq. (2.29), it was still
an arbitrary choice. One could expand all quantities in p®" or in p in any other
gauge. In this section, the differences between these choices will be investigated.

Any expansion of fields, e.g. ozfl)(T, x7), was of the form
(1, 27) Z (1, 2r), (3.86)
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Chapter 3. Solution of the Equations of the Glasma up to Second Order

i.e. p"© did not explicitly appear, but the fields af, (7, zr) are understood to be of
order n in p*“. If the expansions shall be in p® or any other p, the form of the
formulas does not change, only the interpretation of the fields, as they are to be
understood to be of order n in the particular p that is used as expansion parameter.
The only thing that changes if another p is used as expansion parameter are the

initial conditions because there, p¢, or equivalently ¢*“, appears explicitly.

Before investigating a general p, the initial conditions are expanded in p®", or
equivalently ¢, because this particle density appears naturally due to Eq. (3.2).

Ccov

3.4.1 Expansion in p

Because of p® = pl¢ + O(p*LC), the interpretation of the first order of the fields
does not need to change. Also, the initial conditions in first order can be obtained
by replacing ¢*¢ with ¢°. Due to the fact that the initial condition for O‘?2) only
depends on the first order of af , it can also be obtained via ¢L¢ — ¢°°. The
only initial condition that remains to be calculated is therefore the one for o/@). In
order to do that, the expansion of a! in terms of ¢° is needed. Conveniently, it
has already been found during the search for an expansion of a! in terms of ¢*¢,
namely in Eq. (3.13). The missing initial condition becomes

M\S‘

22: o', 6. (3.87)

m=1

(2)(7' =0,z7)

Now, one performs the same gauge transformation as before, namely the one given
in Eq. (3.44). The field ¢, (1) can be obtained by ¢*¢ — ¢ because it is of first
order. For the second order, the starting point is Eq. (3.57)

€ty (T = 0,27) = o) (T = 0,27) + g [Qhu), a’@ﬂm} — 'L
— % ( |:8Z ¢§O’U’ ¢§OU:| |:8Z ¢CO’U ¢§OU]
+|: COvV _"_ (b;OU, a’t( COov ¢§0’U):|) o 82¢L(2)
— %([Qﬁov? aigbgov} [¢cov aiqﬁov]) o az¢L(2) (388)

The result for ¢ (2) can be obtained by imposing the same gauge condition as before,
Eq. (3.62). It states that the divergence of Eq. (3.88) has to vanish

Arore =~ Lo [, 008] + [og. 00,
¢L(2) — _% AlT ( |:¢§O'U a’t¢COUi| |:¢CO'U a’t¢COUi| > . (3.89)

The initial condition becomes

j . 1] 7 1 j cov cov
ey (7 = 0,7) = ig (nﬂ L0 AT0J> (657, 9,05, (3.90)

This is the same initial condition for el@ expanded in p“ as for el@ expanded in

pt¢ Eq. (3.65).
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3.4. Expansions in p in Other Gauges

Summing up, the equations of motion and all the initial conditions have the same
form in both considered expansions up to second order. Hence, the solutions have
the same form as well up to that order. However, their interpretation is different
because one is an expansion in terms of p*“, whereas the other is an expansion in
terms of p®”. Now the question arises if the solution up to second order might be
the same for expansions in p in other gauges as well.

3.4.2 Expansion in a More General p
For an expansion in some other p, one can gauge transform p’“
P = Wnp Wi, (3.91)
with
W(zh) = eigam(m“)7
am = O(pm). (3.92)
One obtains
P = P + g |am, i | + O(}1), (3.93)
and from Eqs. (2.29) and (3.13) one can conclude

P = —Agger — 9 {81 cov (bcov} +iglam, —Ard] + O
— A =9 |:az oo ¢cov] +igd, [am,alqb“’”} + O(¢*e)
= —Ap? — = {azqscov P+ QGm] + O(¢§ncov)

R Al P05 5+ 2] + O, (3.94)

In the last step, Eq. (3.7) was used. Note that

am = O(P25) (3.95)
leads to
P = PEC + O($5) (3.96)
and
Ay = — ¢cov +O(¢20m}) (397)
to R
O = 65"+ O(S3). (3.98)
Calculating the gradient of Eq. (3.94) one can deduce
, i
_ 82¢COU _ _al¢m galfa][ ]¢CO'U ¢$;Z'U+ 2am] + O<¢3mCO'U)' (3'99>

Inserting Eq. (3.99) into Eq. (3.13), one gets

Z
— _az¢m g z][ J¢cov ¢COU] gazfaj[ J¢cov Qfgv‘f' 2am]+(9(¢§ncov)7 (3100)
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Chapter 3. Solution of the Equations of the Glasma up to Second Order

and due to R R
B = Gy + O(02) (3.101)

one finds

. o~ ) . ~ o~ ] . ~ o~ ~
ol = — Gy + 2 (n” (056 6] + O~ —0 [0, D + 2am}) +0(4y,). (3.102)
2 Ar

With the same argument as for ¢“, only one initial condition needs to be calcu-

lated, the rest can be obtained by replacing ¢=C with ¢

2
bj = [aj$17 &51 + 2am} + {aj$2a $2 + 2am:|>

i i g i i
€(2)(T = 0,27) = o) (T = 0,27) + 5 {(Mu), 0 QSJ_(l)} —0'¢1(2)

= (5 (5.0 + (B2 05]) + 0 ) 00, (3108

alyy (7 = 0,27) = ig(ﬁ‘f ([0,61, 1] + 0,02, 8] + afAlTajbj),

Again, one imposes the gauge condition Eq. (3.62) and finds
— Y (5i(1a. 0.3] + (3. 0:3.1) — b,
Artse =~ 208,05 + [Bn0,8]) - o)
i P SNV Iy .
—0'¢12) = 50 Ea <[¢173j¢2} + [¢2,57¢1} - b])a
< ol N -
622) (T =0, LUT) =19 (77 7+ 0 AT83> {(ﬁl, aj(ﬁg} . (3104)
This is once again the same initial condition as Eq. (3.65).
In conclusion, the expansion can be made in any p for which one can write
Pm = WipECW! with W,, = €9 and for which it is possible to expand a,, in

powers of ¢¢°”. This means that the solution found in this chapter is not restricted
to an expansion in p in one specific gauge, but more general.
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Chapter 4

Momentum Broadening in the
Glasma

The momentum broadening of a test parton is a quantity of interest in the study
of jet quenching, which is a phenomenon that can happen after a high energy nuclei
collision. When two high energy nuclei collide, the creation of high momentum
partons can occur. They move in opposite directions and lose energy on their way
through the Glasma, while they also produce jets of particles, which can be observed
by particle detectors. If such a high momentum parton pair is created near the edge
of the Glasma, it is possible that one parton and its corresponding jet lose much
energy so that only a part of the jet escapes the Glasma and the jet produced by the
other parton predominates. Due to one jet being partially missing, this phenomenon
is called jet quenching.

In addition to the momentum broadening parameters ¢ and x in a medium them-
selves, the quantity p? of a test particle in said medium, more precisely some aver-
age (p?), is of interest. It changes in time (p?)(t) and the aforementioned momentum
broadening parameters can be derived by performing its time derivative d(p®)(t)/dt.
In the Glasma, the test particle can be a quark or a gluon. The vector potentials
that exist in the Glasma are calculated in Chapter 3. They lead to forces that act on
the test parton and consequently influence its momentum. These forces depend on
its trajectory, which is why the latter has to be specified to calculate its momentum
broadening.

In this chapter, I will derive a formula for (p?) before choosing a particular tra-
jectory for the test parton. Then, I will study two special trajectories. The first
one describes a resting quark or gluon; I will refer to the corresponding quantity
as (p*). because its time derivative is k. The second trajectory describes the test
parton moving at the speed of light in some direction in the plane perpendicular
to the axis of the two colliding nuclei, which remains the z axis. This transverse
plane is then the (z,y) plane and the interior coordinate system is chosen in a way
that the x axis coincides with the direction of the test parton. I will refer to the
quantity (p®) corresponding to this trajectory as (p?); because its time derivative
is g.
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Chapter 4. Momentum Broadening in the Glasma

The formulas corresponding to the aforementioned parameters that describe the
momentum broadening of a test parton contain the vector potentials calculated in
Chapter 3. These vector potentials are the result of an expansion in the particle
density p. Therefore, the results of the momentum broadening parameters in this
chapter will also be in some order of the chosen p. Due to the fact that the smallest
non-vanishing order of the vector potentials in Chapter 3 is two, the smallest non-
vanishing order of the momentum broadening parameters will be four. This will
be explained as soon as I present the relevant formulas. Higher orders are not
considered in this master’s thesis, thus the results are only valid for a highly diluted
Glasma.

The average (...) that is used in this chapter is explained in detail in Section 2.3.
The infrared parameter and the ultraviolet cut-off parameter that are introduced to
obtain final results are also discussed in Section 2.3. In this chapter, I will analyse
the dependence of the momentum broadening parameters on them. Then, I will
give the asymptotic behaviour of (p?), ) for large t. The subscript (4) refers to the
order in p. Afterwards, I will discuss numerical results of the momentum broadening
parameters. Finally, I will present an alternative way of calculating the momentum
broadening parameters, namely with the help of correlators.

4.1 Formula for (p?)

The equations of motion for a test parton in a non-Abelian background field are
the Wong equations [16]

dpt
% = gQuF"™u,, (4.1)
dQ,

dr = _gfabcuuAchy (42)

with the four momentum p*, the proper time 7, the coupling constant g, the colour
charge (),, the field strength tensor F!¥, the four velocity u*, the structure con-
stants fope of SU(N.) and the vector potential A¥. In terms of algebra elements,
Egs. (4.1) and (4.2) can be written as

Cg’: 29 TH(QF™u,), (4.3)
d
2~ iglu,ar. Q). (4.4)

To get the momentum broadening in terms of ¢, instead of 7, one makes use of

4 _d
dr ~
ut = ot (4.5)

with

v = (d}ci)u (46)
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4.1. Formula for (p?)

and obtains

dp"

TR 29 Tr(QF*v,), (4.7)
d
dcf =iglv, A", Q. (4.8)

Equation (4.8) is an ordinary differential equation. Together with a given Q(to)
as initial condition, it has a unique solution. The ansatz

Q(t) = Ult, to)Q(to)U'(t, to). (4.9)
is made to translate said differential equation to one for U(t, ), namely

au. |
e igv, AU, (4.10)

This can be obtained by plugging Eq. (4.9) into Eq. (4.8). The initial condition
reads

It ensures that Eq. (4.9) is consistent. This new differential equation, Eq. (4.10),
together with its initial condition, Eq. (4.11), has the unique solution

; t /v ! ’
U (L, to) = Te'* Jig® 14 ®) (4.12)

Y

with the time ordering operator 7. Note that this solution states that the colour
charge Q(t) rotates in charge space.

The Lorentz force
F' = F''y, (4.13)

and its parallel transported version
Fi @), ) = Ulto, ) F' (27 ('), Ut to) (4.14)

permit the solution of the spatial components of Eq. (4.7) to be written as

() =29 [ dt THQUOF @ (0). 1)
_y ttdt’ THU(E, t0)Q(t0) U (¢, 1) F' (27 (), 1)
= QQQ:(tO) /t zdt’ Tr(t,Uto, t')F (2 (t'), Ut to))
— 20Qu(ta) [ d Te(ta ). (4.15)

In the first step, Eq. (4.9) was used.
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Chapter 4. Momentum Broadening in the Glasma

One obtains for the square of one component of the momentum

. t t . ,
Pt = 492Qu (1) Qy(to) /t dt' [ dt" Tt ) Tr(t ). (4.16)
0 0
where the summation convention is not applied to underlined indices. This expres-

sion depends on the colour of the test parton, which is not an observable quantity.
The quantity of interest is therefore an average over the colours

A [1Quint =464 [aQQuto)@ults) [t [ae Te(taf) Trlay ). (4.17)

A is a normalisation constant that depends on whether the test parton in question
is a quark or a gluon. More precisely, as is stated in [17],

1 1
— == for quarks,
N. 3

A —
Ll g (4.18)
— = o ons. .
NP1 8 r gluon

where N, corresponds to the gauge group SU(N,.). Performing the average yields,
as is shown in [18],

[4QQuQs = Cat, (4.19)
with the quadratic Casimir Cs,
L fi k
or quarks
N.=3  for gluons. (4.20)
One defines -
A= ACs, (4.21)
hence
1 1
N 5N, =3 for quarks,
A=Y N 3
o1 =3 for gluons. (4.22)

With Egs. (4.14), (4.19) and (4.21), Eq. (4.17) becomes
o ~ [t i . )
A / dQ pipt = 4g?A [t [ dt" Tr(to f2) Tr(tof2)
to to

~ rt t o
—og2A [t [ @t Te(fif)
to

to
_ rt t . . . .
— 2?4 [dt [ A Te(U te, ) FL(ad (#), YU (¢, ") Fi (2 (), YU (¢ 10)).
to to
(4.23)

In the first step, Eq. (A.11) was used. The fact that U(t',to)U (to,t") = U(t',t") was
exploited in the last step.
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4.1. Formula for (p?)

In Chapter 3, the quantities in question were expanded in powers of the particle
density p. In order to use those results, one needs to do the same here. The only
order of interest in this master’s thesis is the lowest non-vanishing one. The vector
fields are of order two in a specific gauge, so the field strength tensor is of order two
in this gauge as well. Due to the fact that Eq. (4.23) is gauge invariant, one can
plug the previous results in without the need to transform them to another gauge.
U(to,t) needs to be expanded as well

Ulto,t) =1+ O(A") =14+ O(p?). (4.24)

The lowest non-vanishing order is therefore four

o ~ rt t . . . .
A /d@ﬁp@):zgm dt' [ At Te(Fly (@ (¢), 1) Foy (27 ("),8). (4.25)

to to

The field strength tensors and consequently the forces in Eq. (4.25) depend on
the specific p that is chosen. However, one does not want to work with one configu-
ration of particle densities, but use an ensemble of them. Thus, one is interested in
ensemble averages of the left-hand side of Eq. (4.25). Here, the MV model, which
was developed in [14, 15], is used and adapted by introducing an infrared regulator
and an ultraviolet cut-off. This leads to Eq. (2.45), which is used to perform these
averages. One defines

W) = (A [aQpip). (4.26)

that means, when talking about (p?), the already colour averaged quantity is always
meant. One obtains

etk () = 20°A [t [ ad" (Te(FS (), ) Fy (0 (), ). (4.27)

to to

The next step is to calculate the forces in Eq. (4.27). Equation (B.10) together
with
F,=E;+¢'%i, By (4.28)

makes it possible to calculate the force in terms of the field strength tensor in
(1,1, 1) coordinates; the convention of the epsilon tensor is specified in Appendix A.
The result is

1
-Fi = FTZ'(COShn — jfg sinh 77) — *Fm'(SiHh’f] — .Ztg cosh 77) — Gijgi‘jFlQ,
T
1 2 , 1
F3 = -F,, — Z T4 <F,~T sinhn + —F,,; cosh 77>. (4.29)
T T

=1

Note that & denotes dx/dt, not dz/dr and that i = 1,2 because there are only two
dimensions in the transverse plane.

After the collision of the two nuclei, which are moving in +z and —z direction,
the created particles propagate in every direction. The test parton in question is
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Chapter 4. Momentum Broadening in the Glasma

considered to be and to remain in the (z,y) plane, which can also be described by
n =0 and 7 = t. There, Eq. (4.29) becomes

T
Fi=F,+ 73Fm' — €ij3T Fa,
1 2 i
F3 == *F‘rn - E 7F7]i7 (430)
T T

i=1

where again ¢ = 1,2. The field strength tensor in terms of the fields €’ and €” reads

Fri = 0.6, — 06, +igler, 6] = —0r€,

F,; = 0y6; — Oiey +iglen, €] = 720;€" +igr? {e”, ei],

Fig = 0169 — Os€1 +igleq, €a] = D169 — Oae1 + ig {61, 62},

Fr, = 0-€) — Oper +igler, €y) = —0- (72677). (4.31)

With Eq. (3.68), the field strength tensor to second order in terms of € and x can
be written as

Frip) = —€ij0:0; X,
Foio) = 72&67(72),

F12(2) = Ary,

Fryo) = —(97(7'26?2)). (4.32)

To further calculate Eq. (4.30), the trajectory has to be specified. A resting
test parton yields (p?) pertaining to , which will be called (p?)., a test parton

propagating at the speed of light perpendicular to the axis of the colliding nuclei,
which will be the z axis, yields (p?) corresponding to ¢, which will be called (p?);.

4.2 Resting Test Parton: (p?), and x
Equations (4.30), (4.32) and the trajectory z7(t) = x}, @/ = 0 yield

Fio)(t,or) = —€;;0,0;x| = —€;;0:0;x, i=1,2

T=t
1 1

F; (2) (t, {ET) = _;87-(7_26(2)) = —;at(tQE(Q)). (4.33)

T=t

Using Egs. (3.82) to (3.85), Eq. (4.33) becomes

Jo(wt) .
E(2)(t7 IT) = —Eijataj /dsz OLQ)(kaTfox(kT)

== eij /deJT %Jl(wt)€ZkTwaX(l€T), (434)

1 t ;
Fo(tar) = =50 [ ke = Ji(wt)e™r ™ £, (k)

:_/ym%@mﬂmﬁ@ﬂ. (4.35)
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4.2. Resting Test Parton: (p?), and k

4.2.1 Longitudinal Component: (p?), and k.,

The first thing that will be calculated is (p3); ) = (p2)s(a). Equations (4.27)
and (4.35) with ¢ty = 0 lead to

. t t
(P2 @y (t;0) = 29214/ dt,/ dt” /dsz /ko‘/T Jo(wt') Jo(w't")
0 0
x e®Tr0 T T (Ty( £ (k) fo(Ky))). (4.36)

The trace and the ensemble average commute, as is shown in the following proof,
which makes use of Equation (2.43).
Proof:

T(0[4,)) = Te( [Dp O[4, W]
— [ Do T(O[A W)

_ / Dp Tr(O[A,])W ]
— (TR(O[A,])). (4:37)
[

The next thing that will be calculated is (Tr(f.(kr)fc(k7))), or equivalently, as
shown in Proof (4.37), Tr({f.(kr)f.(k’))). With the definition of f., which is given

in Eq. (3.84), one gets
) /dZZT/dQZ' (K, — 1)l
<[¢1<kT —Ir), a(lr)] [¢1<k'T — 1), oa(l)]). (4.38)
With the help of Eq. (3.8), one obtains
<[$1<kT —Iy), MT)] [w 1), &2<ze>}>

() £.0) (

The two point function can be calculated in the fundamental representation with
Eq. (2.45)

{71 (kr = lr), po(I)] [P (R — Ur), Po(lz)])
= (Pralkr = l2) o (Ir) Pre (R — Up)Pa(l)[tas to][te; La])
= fabe feartet 1 (Pra (ke — Ur) (K = U7)) Py (1) Poa(U7))
(kr — Ir)* I
—Ip)? 4+ m?)? (I3 +m?)?
X (27) g 110 ue0pad (ki + k)6 (I + 1)0(Apy — |kr — Lr))0(Apy — |lz]). (4.40)

- _fabefcdftetf ((kT

From the second to the third line the relation [t,, )] = i fuet. was used. The trace
was omitted until now. It neither affects the prefactor nor the integral on the right-
hand side of Eq. (4.38), nor does it affect the prefactor on the right-hand side of
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Chapter 4. Momentum Broadening in the Glasma

Eq. (4.39). It only acts on the ensemble average of p' and can thus be reinserted
now. The relation Tr(t.t;) = 3. leads to

Te([py (ke — br), py(In)][2y (K — 1), gy (I)])

% (2) 4 126 0800 (ke + K )8 (lr + 10wy — [kr — )0 Ay — |1r))

(
1 (kr —I7)* I3

Qfabcfabc((kT — ZT)Q + m2)2 (l% + m2)2

x (2m) g 16 (kr + K)o (I + U)0(Ayy — kr — Ip))0(Apy — |I7])  (4.41)

and the fully contracted structure constants f,;. of SU(3) yield

fabcfabc = 3! Z .fabcfabc

a<b<c

= 3!((f123)2 + (f147)” + (f156)> + (faae)® + (fos7)? + (faa5)*+
+ (f367)” + (fass)* + (f678)2)

1 3
:3!<1+6><4+2><4):24. (4.42)

Taking advantage of
facdfbcd = Nc 5ab7 (443)

which is stated in [19], one obtains for the fully contracted structure constants for
SU(N,)
fabcfabc = (N2 - 1) (444)

Going from the formulation in p back to the one in ¢, the denominator in Eq. (4.39)
cancels the numerator in Eq. (4.41) due to the § functions

Tr( |61 (kr — Ur), Ga(lr)] [ 61 (K — 1), 62(07)])
CN(NZ-1) (2m)'g*pt

2 ((kr — l7)? + m?)%(1% + m?)?
x 0(Apy — |kr — lr)0(Agy — |ir)). (4.45)

S(kr + kyp)o(lr + 1)

Putting everything together and integrating one 0 function, one obtains

Tl k) = 2 ) k)

> (ki = L)Li(kj — 1))l
x /d I o o2 2 e = o = tr)O(Ay — lirl). (440

The definitions

ki — W)Lk, = 1)L
g.(kr) = /d2 kT —Ir)? 2])2(15 J:m2)29(AUV = |kr = lr)0(Auy — |Z(T4|)47)
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4.2. Resting Test Parton: (p?), and k

and B B
Ne(NE = Dg*u'A_ 24g°u*A

(2m)t o @emt
together with Eqgs. (4.46) and (4.36), lead to

B= (4.48)

t t
(2 (tiz0) = B [k go(ke) [t [ at" [@®hi Jo(wt) Jo(w't")
x ehre0 kT T 5 (o 4 kL)
t t
:B/&m%@ﬂ/mjﬁﬂ%ww%@m
0 0
t 2
:B/ﬁm%wﬂghﬁmmﬂ
0

2

:B/ﬁm%wﬂtnhwwmww+%@w@—memf,@@)

n
with the Struve functions H,. Note that the z( dependence drops out, hence (p?),; (4
and x4y do not depend on it.

If one defines
fo(wt) = C;t(7TJI(cut)[—]o(cuzf) + Jo(wt)(2 — mHy(wt))), (4.50)

the quantity (p2)(1)/B can be written more concisely

<pzz;<4> _ /dzk:ng(kT){;fz(Wt)Q- (4.51)

Note that f, is a function of wt, not a function of w and t separately.

Up until now, there was no need for an ultraviolet cut-off or an infrared regulator,
but they are key to make the substitution

possible. Afterwards, polar coordinates are introduced

(P /dsz /dle 0 (ki — L)Lk — 1)l

B —lT>2+m2)2(l%+m2)2
1
x 0(Apy — |kr — Ir])0(Apy — |l:r’|)ﬁfz(uﬂf)2
— dZZ /d2 Ql 147%]
et [P iyt
1
x 0(Avv — |gr])0(Avy — |lT|)Efz(W?5)2

Avy Aoy 2w 2m 1 73r}cos* (v, — @1)
_[d / d / d dg, — —1 a (wt)?. (453
/0 " 0 "a 0 v 0 Ya w? (7"3 +m?)2(r? + m2)2f (wt) ( )

Another substitution,
SO - Spq - 8017 (454)
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Chapter 4. Momentum Broadening in the Glasma

is made, which leads to

4) /A[](i/ /AU(i/ /27Td /27|' <Pl ’]”qu COSs @ f( t) 2
o Tty Tafy (2 +m?) (2 + m2)

Avy Aoy p2m 2 (7“ Tl)?) cos @ 2
~ (74 /d / d dp (wh) ) |
Jo e e S e

P (t) / O / A[iivrq rm)g( 20 )fZM)) S

27TB w?  \ (12 +m?2)(rf + m?

Note that the above substitutions change w in Eq. (3.81) to

W(rg, 11, p) = \/7’12 + 7’2 + 211, cos p. (4.56)

From Eq. (4.55), one can calculate k, 1) = d{(p2), (1)/dt

2
K (4) /AUV /AUV Tqu)3 COS
=2 d d Jo(wt) f,(wt).
27rB " " w  \(r2+m?)(rf + m?) o(wt) f-(wt)
(4.57)

4.2.2 Transversal Component: (p3), and k7

The next thing that will be calculated is (p3). 4y = (P} ) (4); to is again set to be 0.
Equations (4.27) and (4.34) lead to

, ik ik} '
(P2 1y (8 70) = 2g2A/ dt’ /dt//d%T/d?kT Lt L h W)
x e T (Tr( £, (kr) fy (k7)) (4.58)

A comparison between Eq. (3.84) and Eq. (3.85) leads to the conclusion that
Eq. (3.84) can be written as

Filhe) = ysie! [k (b = K[O1 (e — k). G5°k)] (0.59)

and that Eq. (3.85) can be reproduced by 5? — €. Therefore, the calculation is
analogous to the one above and one obtains

<fx<kT>fx<k' ) = 1(229 )’“‘ S(kr + k)

2 ; B B -
o L o e E O DR LR )

_ 12¢%¢ /
= “an) S(kr + k)

k:T — 1) — (ks — 1)y — L)1,
d?l : L0(Auy — [kr — I2])0(Agy — |ir]).(4.60
ety s P oy — [kr — )P~ J5]).(460)

The definition
(kr) = [ br — )13 — (ki — 1)li(k; — )L
e ! ((kr — I7)? +m?2)2(I1% + m?)?

J@(AUV — |kT - lTl) (AUV - |ZT|)
(4.61)
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4.2. Resting Test Parton: (p?), and k

highlights the similarity of Eq. (4.49) to

(P2 ay (8 20) = B/d kr gr(kr) /dt /dt”/ko’ g )Zk/J( )

x T 6 (i 4 k)

2
—B / &k gr(kr) / dt’ / a ¢ ) Ty (wt') s (wt”)

(/dtht)

- B/koTgT(kT) <k1) (1 — Jo(wt))*. (4.62)

wi

= B/dQICTgT ]{JT

The xo dependence drops out again. Therefore, <p§>,€ (4) does not depend on it as
well. Due to the fact that one gets (p2), (1) by replacing ki — ko, (p2). (1) does not
depend on zq either and consequently their sum

Py = Pi @y + Py (4.63)

and its time derivative k7 (1) = d(pF), (1)/dt neither. The definition
fr(wt) =1— Jo(wt) (4.64)

permits to write (p7.), 1)/ B in a similar way to Eq. (4.51), namely

(p2T>n (4)

= [@hr grhr)— fr(wn) (4.65)

The same coordinate changes as before lead to the results

/AU(ji/rl /AU(i/rq Tqu)g << sin ¢ fT(wt)>2 (4.66)

27rB w2 \ (r2 +m?)(rf +m?)
and
Auvy Ayv 7“ ’/“l)3 SiIlgO 2
—2/ d / d 4 Ji(wt t).
27TB r T(] W (/rg + mQ)(rlQ +m2) l(w )fT(w )

(4.67)

4.2.3 Dependence on Ultraviolet Cut-Off and Infrared Reg-
ulator

An ultraviolet cut-off Ay and an infrared regulator m were introduced to provide

finite results. Ultimately, the limit Ayy — oo or the limit m — 0 are desired to be

taken, if possible. At least the dependence of the results on these two parameters
should be explored. The integrand of Eq. (4.55) can be made independent of m by
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Chapter 4. Momentum Broadening in the Glasma

substituting 7, ; = r,;/m

Auy AUv 7r (ryr1)? COS ¢ 2
d / 4 (Wt
SN ot \GTrm) 7+t )

G(T’r{):” cos , 2
- / mdrl/ mdr m2w? \mA(r2 +1)(rp + 1)fz(mw v
P (t) / e (rgry)? cos i
: - 7 / " / do : (W)
27TB Tl T 12 (7“;2 + 1)(7‘[2 + ]_)f (w )
(4.68)

with W’ = w(ry, 77, ), analogous to Eq. (4.56), and ¢ = mt. That means that if the
limit Ay — oo is taken, (p2), 4ym? becomes independent of not only the ultraviolet
cut-off but also the infrared regulator if the rescaled time ¢’ is used. The same thing
is done with (p%),. 4), k=) and k7). The integration variables are renamed and
the result is

< (4) TqT’l COS ¢ , 2
27 B / drl/ drq/ de w? ((r2+1)(rl2+1)fz(Wt )> ;o (4.69)
2
Tqu Cos , ,
27TB —2/ d'f’l/ dT’q/ de ((7‘2—1—1)(7”?—{—1)) Jo(wt )fz(wt),
(4.70)
(P ) (4) (rqr7) sin ¢ / 2
27 B / d”/ drq/ R ((rg+1)(r?+1)fT(“t)> INCEY
. 2
liT(4 Tqu sin @ , )
o _2/ ar [ drq/ dy <(T3+1)(rl2+1)> Tu(wt') fr(wt').
(4.72)

4.2.4 Asymptotic Behaviour for Large Times

To determine the behaviour of (p2), (1) and (p7.). (1) for large ¢, the limit ¢ — oo is
taken in Eqs. (4.49) and (4.62) by replacing f; with [5°

& / ! 2 1
(/0 dt Jo(wt)> ==

( / ar Jl(wt’)>2 - L (4.73)

w

The rest of the calculation works as before, thus one can simply replace f, — 1 and
fr — 1 in the result. One obtains

2
. T'qT'l COS @
tlir?o 27rB / d”/ dTQ/ de ((rg+1)(rl2+1)>’ (474)

. 2
. (4) rqu sin
lim / d / d / d . 4
tLoo 27r T " Y ((T2 + 1)(Tl2 + 1)) ( 75)

q
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4.2. Resting Test Parton: (p?), and k

2
<pz©>
=z 72

2B

(a) (P2 (1) (b) K2 (4
<pr? >m2 KT
2B 2an
08 it '~ 08:""«

o6 f o6k -«
04l ¢ o finite t oal
;: t> o
02 0.2 5

[ Y,
. N .

L L L
0.5 1.0 15 20 k 0.5 1.0 15 2.0

(©) (PF)x (a) (d) K (a)

Figure 4.1: (p?). (1) Kz (1) (P2 (1) and K7 1), Ayy — 00

In Appendix D, it is shown that Eq. (4.74) diverges whereas Eq. (4.75) has a finite
result. If the limit Ayy — oo is not taken, but only ¢ — oo, this result is given by
Eq. (D.17) and if the former is taken as well, one obtains

PPy o
=T 4,
5% 2B U T 4 (4.76)

4.2.5 Numerical Results

The plots in this subsection are given in terms of the rescaled time ¢ and the di-
mensionless quantities (p?) m? /27 B and x m /27 B. The rescaled time ¢’ is measured
in fm x GeV, which is a pure number in natural units with 2~ =1 and ¢ = 1. This is
shown in Eq. (A.1). More information on the choice of units is given in Appendix A.

In Figure 4.1, the numerical results of Egs. (4.69) to (4.72) are plotted. Equa-
tion (4.69) was approximated by the logarithmic function that fits the data for
t' € [1.5,2.0] fm x GeV best, namely

3.86 4+ 1.06Int’, (4.77)

and for Eq. (4.75), the analytical result given by Eq. (4.76) was taken. A comparison
between Ay = 10 GeV and Ayy — oo is not shown here because the difference is
too small to be visible in such a plot. Furthermore, numerical errors, which can be
different for various Ayy have to be taken into account. Therefore, there will be
made no distinction between Ay = 10 GeV and Ayy — oo in the following plots.
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Chapter 4. Momentum Broadening in the Glasma

2
<pz©>
=z 72

m
1B 2nB

(a) <p§ )i (4) (b) k. (4)

2
<Pt >mz KT m
2nB 2nB

08 T T i
0.8

g * m=1GeV
061 L .
; oer m=0.1GeV
04t * m=1GeV 04l
. m=0.1GeV

0.2F 0.2

05 10 15 20 s T e 0
(©) (D7) () (d) K7 (4

Figure 4.2: (p2)q(4), Kza), (P7)e() and Kr(y), comparison between two different
values of m

In Figure 4.2, the numerical results of Egs. (4.69) to (4.72) are compared to those
calculated for m = 0.1 GeV, given by Eqs. (4.55), (4.57), (4.66) and (4.67). The
numerical results of the latter are rescaled so that they can be compared to the ones
of the former, where the rescaling was performed analytically in Subsection 4.2.3,
before the numerical evaluation. From this figure, one can perceive the numerical
error for some calculated points by graphical inspection, but overall, it seems to
be small. Note that the comparison shown in Figure 4.2 can also be seen as a
comparison of Egs. (4.55), (4.57), (4.66) and (4.67) for two different values of m,
namely m = 0.1 GeV and m = 1 GeV.

In his thesis [12], David Miiller simulated a Glasma on a lattice. Figure 4.3 shows
the difference between the numerically calculated integrals in this work, Eqgs. (4.69)
to (4.72), and the momentum broadening extracted from David Miiller’s simulation
for two different values of u, a parameter of the MV model, which is introduced in
Section 2.3. On the lattice, a very diluted Glasma is described by a small p. In
this work, the Glasma is naturally diluted because of the expansion in the particle
density p, which is made in Chapter 3, and the neglect of all higher orders. Thus, the
difference between the two mentioned ways to calculate the momentum broadening
in the Glasma is smaller for g = 0.01 than for 4 = 0.1. The other parameters of
the lattice simulation were g = 1, m = 0.2GeV and Ayy = 10 GeV. Furthermore,
the used symmetry group in the simulation was SU(2), not SU(3). To account for
this, the value of B, which is introduced in Eq. (4.48), is chosen accordingly. The
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4.3. Test Parton Moving at the Speed of Light: (p*); and §

p=0.01GeV p=0.1GeV
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2B 2B
0.8 g e = 0.8 o 2
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t t
05 1 15 2.0 05 1.0 15 20
2
(@) (P7)s (1) (b) P7)s (1)
p=0.01GeV p=0.1GeV
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2B 2B
p— | .
4 // * /
3 3
.// [ //
Jf ;,"{ © <p,?> viaIntegrals ) f I,'/ * <p,?> via Integrals
P4
<p2> from the Simulation [ <pz2> from the Simulation
1} 1
‘ ‘ ‘ Lop ; t
05 1.0 15 20 05 1.0 15 20
2 2
(¢) (P2 (a) (d) (P2 (a)

Figure 4.3: (p7.). (1) and (p2)y (1), comparison to the Glasma simulation done in [12]

different values of p change B as well. Note that the relation

P = @?” (4.78)

comes into play in Figures 4.3a and 4.3b.

4.3 Test Parton Moving at the Speed of Light:
(p*); and

In this section, the trajectory of the test parton is z;(t) = té}, T = 5}, thus
Egs. (4.30) and (4.32) lead to

= (—eij&ﬁj + 63AT)X, Z = 1, 2

T=t

1
F300)(t,x7) = — (8T(T26(2)) + 72516(2))

Fi (2) (t, QTT) = —el-j&@jx + 512ATX

_ _1@ +0)(Pew).  (479)

T=t

With the help of Egs. (3.82) to (3.85), Eq. (4.79) becomes

Jo(wt)
Fi (2) (t, .ITT) = (—Qjataj + 512AT) /deT 0512)62kaTfX(l€T>
= /d2kT <€Z‘jzjj(]1(wt> - 53J0(wt)> eikltfx(kT), (480)
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Chapter 4. Momentum Broadening in the Glasma

Fyo(tor) = =50+ 04) [ @kr S ) £ (kr)
= /koT (Jo(wt) s iclzlJl(wt)>eik1tf6(kT). (4.81)

Note that Fo)(t, vr) in Eq. (4.80) becomes Fj(9)(t,x7) in Eq. (4.81) if f,(kr) is
replaced by f.(kr).

4.3.1 Component Transversal to Test Parton and Nuclei:
<pg2/>c? and ¢,

Firstly, (p2); will be calculated, to = 0 as usual. Equations (4.27) and (4.80) lead
to

~ rt t
i (t) = 274 / di [ at" [ahe [k et ke, k%)
x e R (Te( (k) o (K7), (4.82)

with n
c(t, kr) = Jo(wt) + %Jl (wt). (4.83)

With the help of Egs. (4.48), (4.60) and (4.61), one obtains
t t
Wit = B [hrgr(hr) [t [[at” [k et kr)e(t', k%)
x eF1t R 5 (Jop 4+ kD)
¢ ¢ ) 7. 41
- B / Ekpgr(kr) / dt’ / A" e(t!, kp)e(t”, —kp)e™? et (4.84)
o Jo

The same coordinate changes as before are made, but ¢; and ¢, are kept as inte-
gration variables, i.e. the substitution given by Eq. (4.54) is omitted. The result

1S
(Ppla(t) _ phoy phoy pzm e sin(p, — ) )’
MyldW\") [Ty / d / d d 3 g
iz /0 T ) Tq ) P 0 ©q (1471) (rg+m2)(7"l2+m2)

y /tdt/ /tdt”<’i(rq COS (g + 17 COS SOZ)Jl(wt’) +J0(wt’)>
0 0

W

X (_i(rq COS(Pq; T COS(pl)Jl(wt//) —|-J()(wt”>>

> ei(rq cos g+ cos pp) (' —t"")

A A 27 27 i —_ 2
:/ (a/rl/ [ﬁ/rq/ degr | de, (rqu)3< sin(ey = 1) )
0 0 0 0 )

(r2 + m?2)(r? + m?

t t *
X /0dt’/odt”c(t’,kT(rq,rl,gaq,gpl))(c(t",kT(rq,rl,gpq,gol))>

) . *
% 61(rq cos g+ cos )t (ez(rq COS (pq+T] COS gol)t”)

A A 27 27 i _ 2
:/ Uci/rl/ Uci/rq/ de; | deg, (rqu)3< siniy = 1) )
0 0 0 0 ( )

r2 4+ m?)(rf +m?
2

, (4.85)

t . ’
% / dt’ C(t/a kT(TfP Tl Vg, Spl))el(rq cos partricos i)t
0

with * denoting the complex conjugate.

38


https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Test Parton Moving at the Speed of Light: (p*); and §

The y component of the momentum broadening parameter ¢, §,, is the time
derivative of (p?); and reads

t Ayvy AUV 27 27 sin _ 2
):/0 d?"l/ / d@l d<,0q (Tqu)3<( 5 (Spq 2@[) ))

72 +m?)(ry +m?

2

d , ,
X e / dt’ c(t’,k‘T(rq,'rl,@q,@l))e’(wowq*rl"(’s“’l)t (4.86)
0
4.3.2 Component Longitudinal to Nuclei: (p?); and ¢,
Next, (p?); is calculated. In analogy to Eq. (4.82), one gets
() (1) = 20°A / at’ / dt” / Aky / AR et kp)e(t" k)
x e (T (f (kp) fo (k) (4.87)
hence
/d krg. (k) /dt /dt"/d%' (t', kp)e(#", k)
% ezklt’ zk’t”5 kT"—kT)
AUV AUV 2 2 Cos((p — (pl) 2
— [ / d / dey [ d 3 a
/0 T o T'q 0 Pu o ©q (Tq71) ((rg+m2)(7"l2+m2)
t . e
X / dt’ e(t', kr(rq, m1, 04, gol))el("? 008 g+ cOs 1)t (4.88)
0
and
2
q. (4 /AUV /AUV /27rd 27rd 3 COS(QOq - ng)
2 Jy Yo\ oy o7 g )
C(t/, kT(Tqa Tl P, SOl))ei(rq cos pg+r; cos g )t! (489)

The sum (p? g4 = (P)s(4) + (P2)q(a) yields

(t) AU&, AUCi/ 27rd 27rd , 1 2
—/0 Tl/o Tq/o 2 0 Pq (Tqu) (7‘3+m2)(7“12+m2)

2

i(rq cos pg+r; cos ) )t’

(4.90)

(rqv T1, Pgy ng))e

because of cos? ¢ +sin? ¢ = 1, and the result for the momentum broadening param-
eter ¢ is

R 2
q(4) (t) /AUV /AUV /271' 27 3 1
= d d d do
B o Wl drajy ey S G e

d| rt ' 2
% dt / dt’ C(t,> kT(rqv T, P @l))ez(rq €S gty Cos @y )t
0

(4.91)
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Chapter 4. Momentum Broadening in the Glasma

4.3.3 Component Longitudinal to Test Parton: (p2);

Lastly, (p2); is calculated. It does not contribute to ¢ because the latter is defined
as the time derivative of (p? );, i.e. perpendicular to the trajectory of the test parton,
but due to the similarity to the other ones, the z component is not laborious to
calculate and shall be given here. In analogy to Egs. (4.82) and (4.87), one obtains

() 0 (t) = 292A / dt’ / dt” / Ahep / 2K, 2]“2 2wt h(Wt)
X eI T £, (o) o (), (1.92)

therefore

2
ok
/ krgr(kr) / dt’ / dt” / d2kT 2 2J1(wt)J1(w’t”)

/ //
% ezk:lt 1k t ]{Z + kT

Ayvy Ayvy 2 21 Sln((p _Sol> 2
:/0 d’rl/O drq/o dy; ; dnpq(rqu)?’(( i )

7’2 + m?2)(r? + m?
2

. . 2
" (rysin o, + 1 8in @)
2

(4.93)

/tdt/ Ji (wt/)ei(rq cos pq+r; cos )t
0

4.3.4 Dependence on Ultraviolet Cut-Off and Infrared Reg-
ulator

The dependence of (p?); (1) and @; 4y on Ayy and m can be examined analogously
to the dependence of the respective x quantities, (p?). (1) and K; (1), in Subsec-
tion 4.2.3. The integrand of Eq. (4.85) can be made independent of m by substituting

:;,l = Tq,l/m

yq / /drq/ dy; dsoq(rqrz)3< 5 (g 2901) >

(r2 +m?2)(rf + m?)

r

/ dt’' ¢ t kT<rq7 1, g (Pl)) i(rq cos g+ cos )t

2m 2m Sjn(gp — SOZ) 2
6 3 q
N / mdrl/ de /0 der 0 dpgm(ryr) <m4(r{f +1)(r? +1)

2

) )ez‘m(r; €os g+ cos )t

X / dt’ C(t,, ]CT<m7";, mrf, Paq> L1
0

AUTV AUTV o 27 sin(g& _Sol) ’
A dr;/ o o (G S )

2

)) i(rg cos pg+r] cos g )mt’

(Tq7 rla Pq> L1

2T 2T SIH(QD — gpl) 2
_ d / d / d d !/ \3 q
/ T r 0 2 ) Pq (rqu) (7’512 T 1)(7,22 +1)

2

B el k(g )b pureons? (194)

In the last step, the substitution ¢ = mt was made. If one takes the limit Ay — 0o
and uses the rescaled time, which is now called ¢ because t' is reserved for the
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4.3. Test Parton Moving at the Speed of Light: (p*); and §

integration variable, (pi)Q ym? is independent of both the ultraviolet cut-off and the
infrared regulator. (In Subsection 4.3.5, the rescaled time will be called ' again to
keep it consistent with Subsection 4.2.5.) The other quantities corresponding to the
momentum broadening can be treated analogously. After renaming the integration
variables, one obtains

. 2
p sin —
< yfI(4) / d?”l/ qu/ dSOZ d<,0q 7’qu>3<( (90‘1 QSOZ) >

r2+1)(rf + 1)
2

(%ﬂ"l,%y@l)) i(rq cos pg+r; cos )t (495>
sin(p, — 1)\’
dr/dr / d d ror)> d !
/ o sy gy St (( ERES
(Tq7rl;90qa90l)) i(rq cos pg+r cos gy )t ’ (496)
2
<pz Q(4) m _/ d?"l/ dr / d@l d(p 7’7’1) COS(QOQ_QOD
! RN V(Y
2
/dt & t kT(Tq,’T‘l,(Pq,QOl)) Z(T’qcosgoq—i—ncoscpl) (497)
/dr/dr / de dgp rr)3 cos(pq — 1) 2
Do o Ty TR 03+ D0+ 1)
(g, 11, @q, 1) )€'7a 08 Partricos )t (4.98)
2
<qu<4) =12 —/ drl/ drq/ dey dgoq (rgr)? ( : L 5 )
(rz +1)(rf +1)
2
(' kp(1g, 71, g, 1) )€ e 08 atTicos et | (4.99)
2
q(“ ®,, /d /d /d A 1
71 Jy Ara fy Ao ) A (rar)” (2 + 1)(r? +1)
/dt c(t', kr(rq, 1,94, 1)) € Z(T‘ICOS‘FW”COS“‘””/ (4.100)
) 2
<pa: Q(4) /dﬁ/ dr / dSOZ d(p 7"7"[)3< Sln(goq_gpl) >
' NG RGN
) ) 2
« (rq SII ©q +2Tl Sl 901> /tdt/ Ji (wt/)ei(rq €cos g+ cos )t
w 0
(4.101)

4.3.5 Numerical Results

The plots in this subsection are given in terms of the rescaled time ¢’ and the
dimensionless quantity (p?) m?/27B. As explained in Subsection 4.2.5, the rescaled
time ¢’ is measured in fm x GeV, which is a pure number in natural units with 7 =1
and ¢ = 1.
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The numerical results of Eqgs. (4.85), (4.88), (4.90) and (4.93) are plotted in Fig-
ure 4.4 for m = 0.2GeV. The y component, which describes the direction that is
transversal to not only the trajectory of the test parton, but also to the axis de-
fined by the colliding nuclei, is the only one with a maximum in the analysed time
interval. This behaviour is analogous to (p®)(4) in Figure 4.1. There, it was also
the transversal component that had a maximum. However, the whole transversal
plane showed the same behaviour because there was no second special direction,
given that the test parton was at rest. Figure 4.4d shows (p? );(4) calculated in two
different ways, once by calculating it as per Eq. (4.90) and once by adding up the
results for (p2); ) and (p2);(4). Neither way leads to a smooth plot for large #'. The
plot for the z component, Figure 4.4b, looks similar to Figure 4.4d for large ¢'. This
behaviour seems to stem from numerical errors during the integration process.
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Figure 4.4: (p3);(a), (P2 (a), (P2)a(e) and (p)g(), m = 0.2GeV

Figure 4.5 substantiates the idea that the z component and the 1 component
of (p*);(1) should not be trusted for large ¢. It shows a comparison between two
different values for m, namely m = 0.1GeV and m = 0.2GeV. If one wants to
rescale data for m = 0.1 GeV, one needs data for a twice as large t = t//m than to
rescale data for m = 0.2GeV, i.e. data for ¢t € [0, 10] fm, as opposed to t € [0, 5] fm
in the present case. Figure 4.5b and Figure 4.5d show a larger numerical error for
the smaller m at ¢’ > 0.5 fm x GeV because the calculation is less precise for larger ¢.

Figure 4.6 shows the difference between the momentum broadening of a test parton
in the Glasma simulated on a lattice for m = 0.2 GeV and the numerically calculated
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4.4. Correlators
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Figure 4.5: (p2); (), (P2)q @), (P2)sa) and (p? )4 (4), comparison between different val-
ues of m

integrals for two different values of p. The simulation of the Glasma was done
n [12], as explained in Subsection 4.2.5. This figure shows a good agreement of
these two distinct ways of calculating the momentum broadening parameters in a
highly diluted Glasma, especially for the x and z component. The difference is again
slightly smaller for smaller pu.

4.4 Correlators

The quantity (p?) can be calculated in two ways. One way is to perform the time
integration before the momentum integration, as is done in the previous sections,
for k analytically, for ¢ numerically. The other way is to perform the momentum
integration numerically before the time integration. The quantities obtained in this

intermediate step are the correlators of the fields £ and B. They are discussed in
the following.

4.4.1 Correlators Corresponding to «

The starting point is Eq. (4.27)
o ~ rt ) ; )
(o (t) = 29°A dt dt" <TY(F( (@ (), ) F gy (27 ("), £")))

—22A / dt’ / At (Te(EL (1, 00) By (¢, 20))). (4.102)
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Chapter 4. Momentum Broadening in the Glasma
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Figure 4.6: (p})q(4), (P2)3(4) and (p3)q(4), comparison to the Glasma simulation done

in [12]
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4.4. Correlators

In the last step,
i =0 (4.103)

and therefore
F,=E;+¢€"i;B, = E; (4.104)

were used.

The calculation works completely analogously to the one in Section 4.2, but this
time, the ¢ integrations in Eqgs. (4.49) and (4.62) are not performed. The result is,
in analogy to Eq. (4.55),

M — /OAUdVrl /OAU(ifrq /O%d(P (71;77)3(( o ))2

2rB r2 4 m?2)(r? + m?

t t
x / dt’ / dt" Jo(wt') Jo(wt"). (4.105)
0 0

From Eqgs. (4.102) and (4.105) one can deduce
Tr(E, (2) (t"E. (2)(t”)>

B Auy Aoy 2w Ccos ?
= —~/ drl/ drq/ de (ryr)? Jo(wt') Jo(wt”). (4.106)
g?AJo 0 0 ( )

rg +m?)(rf + m?

The argument xy is dropped because these correlators do not depend on it.

Analogously one obtains
Tr(Er o) () Er ) ("))

7B Ayv Auv 2 sin @ 2
=3/ 4 / d / d ’ Jy(wt') i (wt”)  (4.107
92A /0 T 0 Tq 0 2 (rqu) ((Tg T mQ)(rlZ n m2)> 1(&) ) 1(w ) ( )

and the x and y component of the correlators are

TI“(Ex (2) (t/)Ex (2) (t”)) = TI(Ey (2) (t,)Ey (2) (t”)) = ;Tr(ET(2)<t,)ET (2) (t”)>. (4108)

4.4.2 Correlators Corresponding to ¢
The starting point is again Eq. (4.27)

i 4 = [t t ) Y / % (4l "
PP (t) =2g°A | dt’ | dt" (Te(F) (27 (¢'), ") Fpy (a7 (1), 1")))

to to

-~ rt t . .
—20%A /0 dt’ /0 At (Te(Fy (', 2 () Fly (¢ 2o (t)),  (4.109)

with

or(t) = ( é ) (4.110)
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Chapter 4. Momentum Broadening in the Glasma

The force is in terms of E and B
Fy2) = Ey@) + €°&B2) = Ey2) — B.3) (4.111)
and becomes for n =0

Ey(2) = F72(2) = 0;01X,
B, (9) = —Fi22) = —Arx, (4.112)

as can be seen with the help of Eqs. (4.30) and (4.32).

From Eq. (4.80), it can be deduced that

Zk . ’
Byt ar(t)) = = [ ke D (wt)e ™ £y (k)

B. ooyt wr(t')) = / Ahop Jo(wt)e™ £, (k). (4.113)

Equation (4.111) leads to

Te(Fy @ Fy2) = Tr(Ey 2) By 2)) + Tr(B. ) B= 2)) — Tr(Ey 2)B: (2)) — Tr(B. 2) By @)
(4.114)
with

Tr(Ey 2 (t', fCT(t’))Ey@)(t" zr(t")))
— / Aky / @k, I g ) 1) R T (k) £ (R)

Ayv AUV 27 27 sin(gp — (pl) 2 (]{31)2
__b M / d / d d 3 d
gng o A1)y drafy den ) dealrar) ((r§+m2)(r?+m2) w?

x Jy(wt')Jy (wt”)etkrt e=tkat” (4.115)

Te(B. o) (t', 27 (1)) B. o (¢", 27 ("))
— / ke / A2k Jo(wt') Jo (W't et et Te( £, (kr) fro (k)
B Ayv Ayvy 2T 27 Sln((p _Spl) 2
-2 [ / d / dp, [ d 3 a
292A A T 0 Tq 0 2 0 Pq (7"q7"l) <(r§+m2)(r?+m2)
x Jo(wt') Jo(wt")ekrt e=tkat" (4.116)

— Tr(Ey 2)(t', 20(t')) Bz 2)(t", 21 (t")))
- / d*kr / d*Ff @Jl wt') Jo(w/t")e™1 MY Te(f, (k) fi (k7))

Auy AUV 2m 2m sin(p, — ¢1) 2 1k
[ / d / dg, [ d 3 “ o
292A o Wl drafy e gy dealn) <(’”3+m2)(ﬁ2+m2)

x Jy (wt') Jo(wt")e*rt —”ﬂt”, (4.117)
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4.4. Correlators

= Te(B. ) (', 22 (t) Ey ) (¢", 22 (t")))
a /d2kT /ko/ ik — - Jo(wt') Jy (@)™ e * T T (f, (k) f(K7))

AUV AUV 27 27 Sln((p _ @l) 22]{;1
-2 [ / d / do [ d 3 a il
292/1 o Ty Ty )y P (rer) ((7“2+m2)(7“12+m2) w

x Jo(wt')Jy (wt")ekrt e=ikit" (4.118)

and
k1 = rycos g, + 1 c08 . (4.119)

The z component of the force can be written in terms of £ and B as follows
Foo) = E.9 + ngi"Bk @ = E. @2+ By2)- (4.120)

For n =0, E and B can be written as

1 1
E.@2 = ;Ftn(2) = ta (t2€(2))
1 1
By =—7Fne = —;@(tze’@)). (4.121)

One can make use of Egs. (4.30) and (4.32) to verify this. Note that 7 = ¢ for n = 0.
From Eq. (4.81), one can deduce
Bt 2p(t) = — / Ak Jo(wt et £ (ky),
Byt wr(t / Aky @J )™ . (ky). (4.122)

Equation (4.120) leads to

Tr(F, o) F2 2)) = Tr(E. o) Bz (2)) + Te(By 2) By (2)) + Tr(E. 2 By ) + Tr(By 2 Bz 2))

(4.123)
with

Tr(E. o) (', 20 (t') Bz o) (8", 27 ("))

— / Ak / A2k Jo(wt') Jo(w't") e et Te(fo(kp) fo (k)
AUV AUV 21 21 COS(QO _(pl) 2

- 2 _[74 / d / dg, [ d 3 “

2g2A Jo ")y Tajy G, ¥ (rqr) ((7‘2+m2)(r12+m2)

x Jo(wt') Jo(wt")e*rt e=tkit" (4.124)

Te(By o) (t', 27 (t) By 2 (t", 22 (t")))
2
- / Ak / 42k ik, LTy (wt) Ty (W) e™ e Tr( f (k) fo(K))
ww

Avv Aoy 2 o cos(, — 1) 2(7%'1)2
I | / d / d d ’ :
292/1 o Ta i P (rart) <(T§ +m?)(rf +m?) ) w?

X Jy (wt')Jy (wt")ert —%W, (4.125)
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Chapter 4. Momentum Broadening in the Glasma

Tr(E. o) (¢, 2 () By ) (¢, 2 (1))
— [@r / 2Ky ") () T ) o)

AUV AUV 271' 271' COS(SO p— Qol) 22k1
___Z [T / d / d d 3 7 il
292A 0 " 0 " 0 v 0 #q (1a71) ((r§+m2)(r?+m2) W

x Jo(wt')Jy (wt")etkrt e=tkat” (4.126)

Tre(By o) (', w1(t) E- o) (1", 21(1")))
_ / &k / d%T@Jl (wt') Jo(w't")e*r! e Te(f. (kr) fo(K))

Ayvy Ayvy 2T 2T COS(QO _ SOZ) 22'/{;1
-2 [ / d / d d 3 4 Rl
292A o )y Tafy Sy G (rar) <(r§+m2)(r?+m2) w

x Jy(wt') Jo(wt")ekrt =ikt (4.127)

The force component that is yet to be discussed is the x component
Fo2) =B+ €"iBy(2) = Bz (2).- (4.128)

Setting n = 0 leads to
E, ) = Fri2) = —0;02, (4.129)

see Eqs. (4.30) and (4.32), with
By (', a(t)) / A2k @J Wt et £ (k). (4.130)
The correlator reads
T (B o) (¢, 21 (t) Ba o (", 27(t")))
B / Ak [k I g ot () S T (k) £, )

A A 27 27 : _ 2 2
Udvrl/o lavrq/o der | d§0q<7"q7“l)3< sin(e, — 1) ) (2)

N 2g2f~1 0 (r2+m?)(r} +m?) ) w?
x Jy(wt') Jy (wt")etkrt e=tkat” (4.131)
with
kg = rgsin g + 7 8in . (4.132)

4.4.3 Numerical Results
The axes of the three dimensional plots in this subsection are

_ t/ t”
t= i ,
2

At =t —t" (4.133)

in the region 0 < #,t” < ¢ and the dimensionless quantity ¢2?A/7B x Tr(FF),
Tr(FF) denoting some correlator. In this region, the correlators are needed for the
integrand in Eq. (4.102). The two dimensional plots in this subsection are given in
terms of the rescaled time ¢’ and the dimensionless quantity (p?)m?/27B.
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4.4. Correlators

Figure 4.7 displays the correlators corresponding to x, which are given by Eqs. (4.106)
and (4.107). Figure 4.7b only shows the negative values of (Er(t')Er(t")). These
negative values explain the decrease of (p7), (s in Figure 4.1c after a finite time.
(E.(t')E.(t")) is non-negative everywhere and (p?), s in Figure 4.1a grows indefi-
nitely.

Figure 4.7: (Erp(t')Er(t")) and (E,(t')E.(t")), m = 0.1 GeV

If one integrates the x correlators with respect to ' and t”, one obtains per def-
inition the respective (p?),4). The results for the correlators in Figure 4.7 were
numerical for a finite number of ¢/, ¢, hence the ¢ and t” integrations have to be
replaced by some integration rule for discrete data points. Figure 4.8 compares the
trapezoidal rule applied to the numerical results for the correlators to directly cal-
culating (p*), (1) by numerically solving the three integrals in Egs. (4.55) and (4.66).
These two ways lead to similar results, which allows for the conclusion that numerical
errors in the calculation are not too significant.

Figure 4.9 shows the real part of the correlators corresponding to ¢,. Figure 4.9b
sets the focus on the negative values and explains why <p§>q (4) in Figure 4.6 decreases
after a finite time. Figure 4.9c displays the imaginary part. Due to the fact that
the latter should vanish, it can be taken as a measure of the accuracy of the results
presented here.
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4.4. Correlators

To convince oneself that the imaginary part should indeed vanish, one can take
the correlator in Eq. (4.115). In the intermediate step, one has

Tr(Ey @) (', 27 (t') Ey @) (t", 20 (t")))

k kJ : ! 21,0 411
— [ ke [@k L) B ) T f () (). (4134)

Before proving that this quantity is real, one can inspect Eq. (4.60) and see that the
quantity Tr(f, (kr)f,(k})) is real and that

Te(fy(— ) o (—Ky)) = 1(229)“ 5(—(r + ki)

2 k:T+lT 22 — (K + 1)Lk + 1)
e (Uor+ 1+ 22 (B + iy OWov = ke £ 1x)0(Auy = liz)
1(229) (5((kT+k’T))
= Tr( fx(k?T)f (k/ ). (4.135)

Here, the fact that the § function is even and the substitution [ — —Ir were used.
The complex conjugate of Eq. (4.134) is

Tr(Ey @) (', o (t') By @) (t", 21 (t")))"
( / P / &hy kl N (wt) S (Wt et et Tr<fx<kT>fx<k’T>>>

k k - ! S 1.0 41!
— = [ ke [@®hp Tt ) B e T (k) £ (K)

k k/ . ! 2 1.0 411
S / dky / A2 L T (wt) Jy () e e T f, (— k) o (—K)

(.U/
/ d*kr / k= by N (wt) S (Wt )e ™ e T () £y (R)
= Tv(E, o (', o (t ))Ey @ " zp(t")), (4.136)

which means that this correlator is indeed real. The substitutions kr — —kp and
k% — —kl. were used. The proofs for the other correlators work analogously.

The real part of the correlators corresponding to ¢, and (p2); are presented in
Figure 4.10. There are no negative values deviating from 0 big enough that they
could not be numerical errors, and (p?); 1) and (p2); () in Figure 4.6 grow indefinitely.

One can integrate the ¢ correlators with respect to t’ and ¢” to obtain the respective
(p*)s (1. Their results are compared to the numerical solution of five integrals, which
are given by Eqs. (4.85), (4.88) and (4.93) in Figure 4.11. In Figure 4.11a, the result
obtained with the help of the trapezoidal rule deviates from the numerical solution
given by Eq. (4.85). Due to the fact that the latter shows a decline of (p);4), in
analogy to the result on the lattice, which is presented in Figure 4.6, the error of
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Chapter 4. Momentum Broadening in the Glasma

.
L ARS(Tr<FyFy>)
B

L ARe(Tr<F, F,>)
nB

(a) RAEL () F=(t")) (b) R(F, (1) Fx (1"))

Figure 4.10: R(F,(t)F,(t")) and R(F,(t')F.(t")), m = 0.1 GeV
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Figure 4.11: (p?)q(4), (P2)q (4 and (p2) 4y, m = 0.1 GeV, comparison between directly
calculating (p?) and computing the correlators first
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4.4. Correlators

the calculation via the correlators and the trapezoidal rule seems to become too
large. Similarly, the calculation method that uses the trapezoidal rule yields too
large values for (p2); () for large ¢, as can be seen in a comparison of Figures 4.11b
and 4.6. The erratic behaviour of the numerical solution of Eq. (4.88) for large ¢
stems from numerical errors. The difference between the two calculation methods
for (p2); (4 is small, as is shown in Figure 4.11c.
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Conclusion and Outlook

The main part of this master’s thesis is the calculation of the momentum broad-
ening of a test parton in the Glasma. A prerequisite for this task is the description
of the Glasma, for which the model of choice is the Colour Glass Condensate. In
the framework of the Colour Glass Condensate, one nucleus moving at the speed
of light is discussed. Then, two nuclei moving at the speed of light towards each
other are analysed. Before the collision, they do not influence each other because
they are causally separated and can be described by the superposition of two single
nucleus solutions. After the collision, in other words, in the forward light cone of
the collision, the Glasma is created. There, non-linear effects occur due to self in-
teraction, and the solution can no longer be obtained by superposition of the single
nucleus solutions. The Yang-Mills equations, which are the equations of motion
of the Glasma, are derived in Milne coordinates, and the initial conditions of the
Glasma are stated.

To find a solution of the Glasma, the Yang-Mills equations and the corresponding
initial conditions are analytically expanded. The expansion parameter is the particle
density p of the colliding nuclei in the light cone gauge. It is shown that the lowest
non-vanishing order of the vector potential A, that describes the Glasma is two, and
its solution is given. Then, it is analysed if this solution is different if one chooses
the expansion parameter in another gauge, e.g. the covariant gauge. It turns out
that the solution remains the same not only for the particle density in the covariant
gauge, but for a more general particle density p, as explained in Subsection 3.4.2.

Equipped with a solution of second order of the vector potential that describes
the Glasma, a formula for the momentum broadening parameters x and § is derived,
more precisely a formula for (p?). It depends on the trajectory of the test parton. &
and § are then obtained by taking the time derivative of (p?); the former corresponds
to a resting test parton, the latter to a test parton moving at the speed of light
perpendicular to the direction, in which the colliding nuclei that created the Glasma
travelled. The MV model is slightly altered by introducing an ultraviolet cut-off and
an infrared regulator. It is used to calculate the ensemble averages (...) that occur
during the derivation of the formula for (p?).

Due to the lowest non-vanishing order of the vector potential A, being two, the
lowest non-vanishing order of (p?) is four. At this order each of the components of
(p?) is discussed for both of the aforementioned trajectories of the test parton. The
corresponding formulas contain multidimensional integrals, which are evaluated nu-
merically using Mathematica. The numerical results are compared to (p?) extracted
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Conclusion and Outlook

from a lattice simulation of the Glasma, which was done in [12]. The results of these
two different approaches are in good agreement.

If one performs only the momentum integrals describing (p®), but not the time
integrals, one obtains correlators of the electric and magnetic fields. These corre-
lators are calculated and plotted. As a check of validity, the time integration of
the correlators is performed with the help of the trapezoidal rule and the results
are compared to the ones of (p?) calculated directly. The good agreement of these
results suggests that the numerical errors are small.

As an outlook, let me propose some ideas and possible extensions. The description
of the Glasma in this work limits it to be rapidity invariant because the MV model,
which is presented in Section 2.3, describes a nucleus as an infinitely thin colour
sheet moving at the speed of light. Ultimately, one wants to incorporate rapidity
dependencies to better approximate a realistic Glasma, thus each nucleus needs some
finite longitudinal structure. That means that the nucleus moving in 2 direction
would no longer be infinitely thin in z~ direction. Due to the finite extent of
pa(x~,x7) in 2~ direction, there would no longer be a boundary condition that is
confined to the x™ axis, like in Eq. (2.40), and a different approach than the one in
this work has to be chosen to calculate the vector field and the forces in the Glasma.

The momentum broadening was calculated to the lowest non-vanishing order in
the particle density p. An obvious extension would be the calculation of the next
order. Maybe it can explain why <p§>d (1) in Figure 4.6 fits the simulation on the
lattice worse than the x and z component. Note that a fifth order solution of the
momentum broadening requires a third order solution of the vector potential.

The high dilution of the Glasma, which justifies the focus on the lowest vanishing
order of the momentum broadening, does not resemble a realistic Glasma. In the
future, it is therefore of interest to set the focus on the lattice simulation of the
Glasma, which has been done with SU(2) as gauge group, and redo it for SU(3).
There, a denser Glasma can be analysed as well. The results can be compared to the
ones given in this master’s thesis because the gauge group only affects the prefactor
B defined in Eq. (4.48), not the occurring integrals.
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Appendix A

Notations and Conventions

In this work, natural units ¢ = 1 and A = 1 are chosen. Furthermore, energies
are measured in GeV. The unit of time is fm and the unit of momentum is GeV.
The ultraviolet cut-off Ay and the infrared regulator m are measured in GeV as
well. The unit of the rescaled time ¢’ = mt is fm x GeV, which is a pure number in
natural units with A =1 and ¢ = 1. This can be checked by verifying the relation

1GeV x 1fm ~ 5.08 hc. (A1)

The average momentum squared (p?) is given in GeV?, the momentum broadening
parameters & and § in GeV?®, the unit of z is GeV and the one of B due to Eq. (4.48)
GeV?*. The quantities (p?) m?/B, km/B and ¢m/B are thus dimensionless.

The metric that is used in this master’s thesis reads
My = diag(l,—l,—l,—l)w (A.2)

in (t,z,y,z) coordinates.

The Laplace operator in the transverse plane Ay is defined as

0,0 = —Arp, i=1,2. (A.3)

The covariant derivative D, acting on a vector field B, yields
DB, = 0,B, + igl Ay, By, (A4)
and the field strength tensor F),, is given by
Fo = 044, — 0,4, +ig[A,, A,]. (A.5)
The partial Fourier transform in the transverse plane is defined as
a(r, kr) = /d2xT T, xp)e FreT (A.6)
with )
krer =Y ki, (A.7)
i=1
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Appendix A. Notations and Conventions

and the inverse Fourier transform is given by

1
()

/ A2k & (7, ky)e®ror (A.8)

a(r,zr) =

That fixes the normalisation factor in the Convolution Theorem

1
9= omp

FHF(f) * Flg))- (A.9)

F and F~! denote the Fourier transform and its inverse, respectively, and * marks
the convolution

(f +9)ar) = [@yr flar = yr)g(ur). (A.10)
The Fierz identity for SU(N,) can be written in the following form [13]

Tr(t, A) Te(t, B) — ;(Tr(AB) - ; Tr(A) Tr(B)). (A11)

An integral of the form [d2kze*7%7 is to be understood as [[podk,dk,e!Faz k),

The epsilon tensor with all lower case indices in ascending order is defined to be
equal to one in three dimensions as well as in the two dimensional case

€123 = 1,
€12 = 1. (A12>
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Appendix B

Coordinate Systems

In addition to Cartesian coordinates, two other coordinate systems are used, light
cone coordinates and Milne coordinates. They are discussed in the following.

B.1 Light Cone Coordinates

Light cone coordinates are defined by

1
l’+ = ﬁ(t + Z),
1
ro= ﬁ(t - z),
T
T = . B.1
(1) B.1)
The line element is
ds® = Nudztdr” = 2dzdr™ — da? — dy?, (B.2)
with the metric
01 0 0
10 0 O
=100 -1 0 (B:3)
00 0 -1
v
The volume form reads
d*r = dztde~d*zr. (B.4)

B.2 Milne Coordinates

The definition of Milne coordinates, to which are also referred as (7,7) or (7,7, z7) co-
ordinates, is given by

T=V2rtr =-—=(t* - 2%,
1. (a7 t+z
":21“(93—): (=)
T = < y > (B.5)
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Appendix B. Coordinate Systems

The range of the proper time 7 and the spacetime rapidity 7 is

T € (0,00),
1 € (—00,00). (B.6)

The line element written in these coordinates reads

ds® = gudatda” = dr? — dz? — dy2 — 7'2d772, (B.7)
with the metric
1 0 0 0
0 -1 0 0
=10 0 -1 0 |’ (B:8)
0 0 0 —72
72

and the volume form is
d*z = rdr d*zp dn. (B.9)

The electromagnetic fields in (¢, z,y, z) coordinates and the field strength tensor
in (7,7, x7) coordinates are connected by

1
E; = F;;coshn — —F,;sinhn, i=1,2
T
1
E :7FT7
3 - n

1
B = ei (Fjr sinhn) 4+ —F; COShTI), i,j=1,2
T
By = —I». (B.10)

B.2.1 Yang-Mills Equations in Milne Coordinates

A similar calculation to the one presented in this subsection can be found in [12].
The Yang-Mills action reads

_ _1 4 uy
$=—3 /d z Te(F,y FH7). (B.11)

The term F),, F'* can be written in (7,7) coordinates

E,, F" = 2F, F™ + 2F,;F™ + 2F,;F" + F;; "I
= 2FTnFTngTTg7m + 2FTiFTngTgij + 2FniF17jgnngij + Eijlgikgjl
2
= 5 (Fn)’ = 2(F) + 5(F)" + (Fy)’ (B.12)

and inserted into Eq. (B.11)

1
s = [ar e dy Tr(T(Fm)Q +7(Fn)? = () = (mjf), (B.13)
where Eq. (B.9) has already been used.
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B.2. Milne Coordinates

The action, which is given by Eq. (B.13), will now be varied with respect to A,
to obtain the first equation of motion

1
0,S=04.5=2 /dT d*zpdn Tr(Fm(STFm + TFTi5TFTi>- (B.14)
T

The variations of the two separate terms are

5. Fpy = —0,0A, +igs,[A,, A,]
— —0,0A, +ig[dA,, A,],

and the variation of the action becomes
1

5.5 =2 [dr dapdy Tr(TFm(—ﬁndAT igloA,, A,))
© T F(—00 A, +ig[sA,, Ai]))
=2 [dr o dy TrC(anFmdAT 1 FiglsA,, A))
b (O Fb Ay + igFoSA,, Ai])>
=2 /dT Az dn Tr<i(0nFm +ig[A,, Frp))0A: + 7(0: Fr; + ig[A,, Fﬂ»])éAT)
=2 [dr dardy TerDnFT,7 4 TDZ-FTZ') 5A,. (B.16)

In the first step, integration by parts was used, in the second step, the cyclicity of
the trace was exploited. Demanding that the variation of the action vanishes for all
possible variations leads to

1
=D, F,, +7D;F,; = 0. (B.17)
=

Before the variation with respect to the other coordinates is done, the Fock-
Schwinger gauge can be employed because A, is a constant factor in these variations
and would be set to zero afterwards anyway. The terms multiplied by it can therefore
be neglected from the beginning of the calculation. Also, the assumption of boost
invariance 0,A" = 0 is exploited. After setting A, = 0, the action takes the form

1 1
5= / dr &z dy Tr<(aTAn)2 L (0, A — (DA — ;(E.)Q). (B.18)
T T
Varying Eq. (B.18) with respect to A, yields
1 1
5,5 = 64,5 =2 [dr dardy Tr(aﬂzlnaﬂm?7 - Dl-AnDidAn>
T T
1 1
=2 [dr dardy Tr<—87(8TAn> 4 D?An> 5A,. (B.19)
T T
From this variation, the following equation of motion can be deduced

1 .
af(aTATJ +2D,D'A, = 0. (B.20)
T T
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Appendix B. Coordinate Systems

The variation that is yet to be performed is the one of Eq. (B.18) with respect
to Ak

1
55 = 64,5 =2 [dr Rapdy Tr (T@TAiaT(SkAi DA GDA, — ;Fijakmj).
T

(B.21)
The variations of the three separate terms give
0kA; = 0r;0 Ay
0k DAy = ig0yi[0 Ak, Ay
Fj0nF;; = Fij(01;0;0 A — 6300 Ay, + i9(0ri [0 Ak, Aj] + 0k [Ai, 0Ax]))
= Fip(0:0Ax — ig[0 Ay, Ai) + Fiej(—0;0 Ay + ig[0 Ay, Aj])
= 2F},;(—0;0 Ak + 1g[0 Ak, Aj]). (B.22)

Using integration by parts and the cyclicity of the trace, the last term can be rewrit-
ten as

/dT A*zp dn Tr(2F,(—0;0 Ay, +ig[0Ax, Aj])) = /dT d*zp dn Tr(2D;Fy;6a, ).
(B.23)
Plugging the relations given in Egs. (B.22) and (B.23) into Eq. (B.21) yields

(SkS =-2 /dT d23?T d77 Tr <8T<7'87—Ak)514k —+ Lg DkAn[éAk, Aﬁ] + TDijj(sAk)
T
=-2 /dT d*zpdn Tr <8T(7'87Ak) +Y [A,, DiA,| + TDijj)(SAk, (B.24)
T
and setting this equal to 0 leads to

0, (10, A;) + %[An, DA, + 7D, Fi = 0. (B.25)

The three equations of motion, listed in Eqgs. (B.17), (B.20) and (B.25), can be
written in terms of o7 and o', which is done in Eq. (2.39). With the metric given
by Eq. (B.8), the following relations can be found in region IV of Figure 2.1

1
ol =g"MA, = _ﬁAm

The separate terms of Eq. (B.20) can be written as
1 1
0.(-0:4,) = 0r (S 0n(~7%a7))
Lo,4,) = 0. (Lo, (~ra)
1
:8T< —97a" — 28T n)
T( Tam — 720, )
= -30.a" — 7830/7

— _i (37-2(()Ta77 + 7'3(()72_0/7>

T2
1 3
= —ﬁa»r (T 870/1),
1 . )
-D,D'A, = —7D;D"'a". (B.27)
T
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B.2. Milne Coordinates

and the whole equation thus becomes
1 3 U] [/
ﬁ&r(?’ Oy« ) + D;D'a" = 0.
The separate terms of Eq. (B.17) are
1 1 .
;DnFm = ;(317FT77 +ig[Ay, Fry))

tg
— 2[A,. 0. A
1Ay 0:4,)

=1igT [o/’, 0, (7'20/’)}
= igr®[a", 0,a"],
7D Fri = T(0iFr +ig[As, Fri)
= 7(0;0- A; + ig|A;, 0- A;))
= 7D,;0; A;
= —7D,0,;0",

and the whole equation reads

igr?[a’, 0.a"] — Di0-a' = 0.

Equation (B.25) becomes

— 0, (T@To/) + TDJ-F” + z'g7'3[0/7, D;a"] = 0.
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Appendix C

Bessel Functions

In Chapter 3, the search for a solution of the vector potential A, that describes the
Glasma leads to Bessel differential equations. They are discussed in this appendix.

C.1 Transformation of the Bessel Differential Equa-
tion

The Bessel differential equation for 7(&) reads

dQ
& + e+ (€~ =0 ()
or, equivalently
d (. dn
G RGRT (€2)
Its solution is
77(5) = AJn(g) + BYn(@? (C'3)

with the Bessel functions of the first kind J,, and the ones of the second kind Y,,.

Consider the transformation of variables [20]

)= y(fj)’
x
£ = pa’. (C4)
The solution is
y(z) = 2%(AJ,(Bx7) + BY,(B27)), (C.5)

and the corresponding differential equation reads

d?y 1dy o —n’y? 2.2,.2
Y (a1 (T G-1 )y =0, C.6
- o= DL (S ) (o)

In the following, two special cases of this differential equation will be analysed. They
are obtained by fixing the values for «, 3, v and n.
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Appendix C. Bessel Functions

C.1.1 First Special Case: a=0,=w,vy=1,n=0
With « =0, f =w, v=1and n =0, Eq. (C.6) becomes
d*y  1dy 2
Its solution is

y(x) = AJy(wzx) + BYy(wx). (C.8)

Equation (C.7) is of the same form as the differential equation (3.76) for the
field Y. One of the initial conditions, which are given in Eq. (3.78), is

j‘z(x =0)=0. (C.9)
This yields, after differentiating Eq. (C.8),
dy
Y o Awi(wr) — BuYi(wa),
B=0 (C.10)

because Y (wz) — —oo for £ — 0 and J;(0) = 0. The solution respecting Eq. (C.9)

is therefore
y(x) = Ady(wx). (C.11)

Due to the fact that Jy(0) = 1, the remaining constant A is simply the function y(x)
at x = 0. The solution is therefore

y(x) = y(0)Jo(wz). (C.12)

This is exactly what was used to get Eq. (3.80).

C.1.2 Second Special Case: a=—-1,=w,vy=1,n=1
fa=-1,=w,y=1and n =1, Eq. (C.6) becomes

d2y 3 dy 9
— 4+ ——= =0. C.13
dz? + z dz twy ( )

Its solution is ]
y(x) = ;(AJl (wz) + BY:(wz)). (C.14)

Equation (C.13) is of the same form as the field €4 in Eq. (3.75). One of the
initial conditions, which are given in Eq. (3.77), reads

dy

dx(I =0) =0. (C.15)

The derivate of y(z) is calculated in the following

Iy _ (- lon) | wldfen) — ter)) p( Yilon) | wltler) Vo))

der 2 2x 2 2x

(C.16)
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C.2. The Inhomogeneous Bessel Differential Equation and its Transformation

Due to the fact that

iﬁ}%(‘ Jlg;zx) N w(Jo(wx)Q; Jg(wx))> o, (C.17)

B = 0. If one wants to give the solution in terms of y(0), the value of the function
at x = 0, one gets

2y(0)J; (wx)
=7 7 C.18
yla) = L2 (C.18)
The factor of 2 occurs due to
. Ji(wz) 1
1 = . 1
xlg(l) wx 2 <C 9)

This was used to obtain Eq. (3.79).

C.2 The Inhomogeneous Bessel Differential Equa-
tion and its Transformation

The inhomogeneous Bessel differential equation

d? d
52(152 n 5d2’ 24 a(€) =0 (C.20)

has the solution

(&) = (&) + np(8),
(&) = AJo(§) + BYo(§),

T [¢ T (€
(&) = h(©)F [ dCalO¥o(0) = ¥e(©)F [ ACalQhl0):  (C21)

The same transformation of variables as before in Eq. (C.4) is made. One obtains

1d a? — n?~?
Ly (o =0y
xdx 2

d?y

- 527%2(7_1))?; +a(Bz") =0 (C.22)
and fora=0,=w,vy=1,n=0

¥y 1dy
oz g TYYt a(wz) = 0. (C.23)

If the function a(7) is not set to 0 during the calculation for x one remains with
Eq. (3.69)

iaT(TaTX) — Arx = a(7). (C.24)

Its partial Fourier transform is
1
;aT(Tasz) + w?x = (2m)%a(7)d (k)6 (k2), (C.25)
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Appendix C. Bessel Functions

with w = 4/k%. This equation is not of the form of Eq. (C.23) because of the
additional w appearing in the argument of a. To solve this problem, Eq. (C.20) is
written in a different way

§
d§2+5f§+g +a(3)=0 (C.26)

Analogous steps to before lead to

¢

d?y  1dy 9
- + + = 2
Az T zdz VY a(z) =0, (C.27)

without w in the argument of a and with the solution

yn(x) + yp(x),
yn(z) = AJy(wz) + BYy(wx),

wle) = hiwn)s [TacaC 0 ~vown] [TacaCin@.  ©29)
The solution of Eq. (C.25) is therefore
R(r.kr) = Ady(wr) + BYa(wr) — (2m)%(k1)o(k2)
x (Jo<w>;r fcfca(i)%(o ~Yo(wn) 3 [d¢ a(i) Jo<<>>. (C.29)

The constants A and B have to be determined by the initial conditions, which are
given in Eq. (3.78),

1ge”

" /d2k:’T (ks — k) [ @1 (hr — Kip), 95€ (7))

k%%(T - 07 kT) -

The force on the test parton of interest is determined by the field strength tensor,
which is, to second order, determined by the fields € and eéz). The latter is
determined by spatial derivatives of the field x. Hence, the function a(7) has no
influence on the forces that act on the test parton and can therefore be set to 0 to
simplify the calculation.

The initial conditions of x, which are derived from the initial conditions of 6%2),
also contain spatial derivatives. They can be neglected if a(7) is set to 0, else they
have to be kept to act on the inhomogeneous part of the solution of Eq. (C.29). In
Fourier space, they produce a factor of the form of zd(x), which vanishes. This way,
the constants A and B can be determined even if a(7) is not set to 0 because it
drops out during the evaluation of the constants. The solution is

R k) = (0, he)Jo(wr) — (2m)5(k)0 (k)
< (aten)g [[dco( £ ) - vawn [dea(E) a0, can
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Appendix D

Analysis of Occurring Integrals

In this appendix, some integrals that appear in this master’s thesis are discussed
in detail.

The ¢ integral of Eq. (4.74) reads
2r  cos? 2m cos?
d = ["a
/0 L 907"2—1-7"[2—1-27“(177 cos ¢
/27r cos? L costp
B a+ bcos p

/2” cos? _cos"p (D.1)
) ¢+ cose’ '

with

2 2
a =7, +1],

b = 2r,r,
a
= —. D.2
=4 (D.2)
c > 1, because
r? 4+ r?
c=-2—L>16(ry—r)?>0. (D.3)

2ryn
The integrand of Eq. (D.1) is plotted in Figure D.1 for some ¢ > 1. It is finite
Ve > 1, but infinite for ¢ = 1, for which it has a pole of the form ﬁ. c=11is

realised in the diverging outer integrals of Eq. (4.74) because there, r, = r; occurs.
Therefore, (p?), (1) diverges for t — oo.

The ¢ integral of Eq. (4.75) is

2” sm (p /277 sin? _sin“p (D.4)
) c+cosp’ '

0

The integrand of Eq. (D.4) is plotted in Figure D.2 for some ¢ > 1. It is finite
Ve > 1, but for ¢ = 1, there is an undefined point at ¢ = 7. This point is defined
by identifying it with its limit

. 2 2 .
lim — " = im 2P g, (D.5)
= 1 4+ cos © pom —Sm e
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Appendix D. Analysis of Occurring Integrals

— =2
— ¢=15
— ¢=1
: C052
Figure D.1: Tcos%
gl e
F o
i p \
151 !f \\
/ — cat
— =12
—_ =1
: COS2
Figure D.2: Tcos%
Due to the symmetry of the integrand, one can write
27 12 T s 02
/ d(psm—gozz/ dgpsm—w. (D.6)
0 c+cosp 0 c+cosp
For ¢ =1, Eq. (D.6) yields
Q/ﬂd sty _ (D.7)
—— =27 )
o P17 cos 7 ’

for ¢ > 1, the result is

™

—1
2/ dp sin’ B —2<ch 2V c? — 1arctan<c—1tan g) —singp)

c+ cos c? —

=0
= 271(0 — Vet — 1). (D.8)
Taking the limit ¢ — 17
; V1) =
cl_lfﬂ 277(0 c 1) = 2m, (D.9)

it can be seen that Eq. (D.8) — Eq. (D.7) for ¢ — 17. Therefore, Eq. (D.8) can not
only be used for ¢ > 1, but for ¢ > 1.
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Inserting Eq. (D.8) into Eq. (D.4) yields

/2” sin? _sin"p - 2m (c _Jao 1)
b c+cosp b

o 4y 241} 2 |

N rgri\ 2ryn \ 2rqry

o 4y r2 —rf 2

g\ 2rgm \ 2ryn

o1 2 2 2 2

= 57(%”)2 (rq + 7y — ‘rq — 7] D (D.10)

To get the second line from the first one, Eq. (D.2) was used.

Now, one plugs Eq. (D.10) into Eq. (4.75), but before the limit Ayy — 0o was
taken

(P / R
" / "d . D.11
% 27B 27TB T2 & G2 T (2 )2 (D-11)

The integrand is split to get rid of the absolute value

2 2, ,2 2 2
rq =T = >7“l = Tq—l—Tl—‘T —Tl‘:27“l,

2
"q q

2 _ 2 2 2 |2 2] _ o2
re<m = ry<r = Tq+7”z—‘7‘q—7“1’—27“q7 (D.12)

and one obtains

2 Ly r 273 Auv. g2
lim P 2 z/ dry s / dry +/ dry o0 ).
tooo 278 2 Jo (rf +1)* \Jo (rz+1)2  Jn (rz+1)2

(D.13)
The inner integrals are evaluated. The first one yields
T 27“3 7"2
d 1 _ = In(1 +r} D.14
Jy et = ey ) (D.14)
and the second one gives
A
T 2rfrg r? r? (D.15)

Ty —————— = .
VY e

Note that the first term of Eq. (D.14) and the second term of Eq. (D.15) cancel
each other. That leaves two terms in the outer integral remaining to be calculated

Ayy ) 1 + 11](1 + (ATIiLV)Z)
/ dTl =
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Appendix D. Analysis of Occurring Integrals

Putting everything together, one gets

. <p?”>”(4)m2 _ 12(%)2 + (%)4 - 2(1 + (Aiml)z> 111(1 + (%4)2> |

i—woo 27 B 2 2<1+ (M>2>2

(D.17)
This expression is finite VAyy. Thus, (p2.). (4) remains finite even for large times ¢,
in contrast to (p?), (), which diverges for t — oo.
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