Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Fault Analysis in Reactive
Systems Using Log Data

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Software Engineering & Internet Computing
eingereicht von

Fabian Exenberger, BSc.
Matrikelnummer 00951919

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Asst.-Prof. Dr. Ezio Bartocci
Mitwirkung: DI Dr. Cristinel Mateis
Dr. Dejan NiCkovi¢

Wien, 15. August 2019

Fabian Exenberger Ezio Bartocci

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Fault Analysis in Reactive
Systems Using Log Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Software Engineering & Internet Computing
by

Fabian Exenberger, BSc.
Registration Number 00951919

to the Faculty of Informatics

at the TU Wien

Advisor: Asst.-Prof. Dr. Ezio Bartocci
Assistance: DI Dr. Cristinel Mateis
Dr. Dejan Nickovi¢

Vienna, 15" August, 2019

Fabian Exenberger Ezio Bartocci

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 » www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Fabian Exenberger, BSc.
Wiedner HauptstraBe 54/8, 1040 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstdndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstédndig angegeben habe und dass ich die Stellen der
Arbeit — einschliellich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. August 2019

Fabian Exenberger

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Danksagung

Ich mochte meine Dankbarkeit ausdriicken gegeniiber Prof. Dr. Ezio Bartocci, dem Be-
treuer meiner Masterarbeit. Er hat sich immer wieder Zeit genommen, um mir wichtiges
Feedback und Ratschlége zu geben, insbesondere zur Erhchung der Wissenschaftlich-
keit meiner Arbeit. Weiters hat er wichtige Ideen beigetragen. Ich mdchte Dr. Cristinel
Mateis und Dr. Dejan Nickovié am Austrian Institute of Technology danken fiir wertvol-
le Ratschldge, Feedback und Unterstiitzung. Sie haben sich immer viel Zeit genommen
um mir zu helfen, und auch sie haben wichtige Ideen zum Projekt beigetragen. Auch
dem AIT selbst bin ich dankbar. Es hat mich wéhrend der Masterarbeit finanziell unter-
stitzt, und — was noch wichtiger ist — hat mir einen Arbeitsplatz in unmittelbarer Ndhe
zu Dr. Mateis und Dr. Nickovié zur Verfiigung gestellt, sodass ich umso mehr von ihrem
Rat profitieren konnte. Ebenfalls danken moéchte ich dem Industriepartner des AITs fiir
dieses Projekt und insbesondere unserer Kontaktperson in diesem Unternehmen, welche
Daten und Feedback im Verlauf des Projekts geliefert haben. Zu guter Letzt mdchte
ich meinem Arbeitgeber willhaben danken, der mir erlaubt hat auf Bildungskarenz zu
gehen, um mich ganz auf die Masterarbeit zu konzentrieren.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Acknowledgements

I would like to express my gratitude towards my thesis advisor Prof. Dr. Ezio Bartocci.
He took time out of his schedule to give important feedback and advice, especially
for increasing the scientific rigor of the thesis. And he contributed important ideas to
this project. I would like to thank Dr. Cristinel Mateis and Dr. Dejan Nickovi¢ at
the Austrian Institute of Technology for their invaluable advice, feedback and support.
They were always generous with their time, and they too contributed important ideas to
this project. My gratitude also goes to the Austrian Institute of Technology itself, which
supported me financially while I was writing the thesis, and more importantly, provided
me with a workspace close to Dr. Mateis and Dr. Nic¢kovié¢ so that I could benefit from
their advice even more. I would also like to thank AIT’s industry partner on this project
and in particular our contact person there for providing data and feedback over the
course of the project. Furthermore I would like to thank my employer, willhaben, which
allowed me to go on educational leave to concentrate on this thesis.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Kurzfassung

Die Identifizierung der Ursachen von Systemausféllen ist ein wichtiger Bestandteil der
Entwicklung und Wartung von reaktiven Systemen. Aufgrund der Komplexitét solcher
Systeme kann dies eine sehr anspruchsvolle Aufgabe sein. Logdaten kénnen bei der Ana-
lyse von Fehlern helfen, aber die Unstrukturiertheit dieser Daten sowie ihre schiere Menge
machen eine manuelle Analyse oft unmoglich. Automatisierte Verfahren zur Analyse von
Logdaten, um die Ursachen von Systemausfillen zu finden, sind daher notwendig. Ich
entwickle vier verschiedene solche Methoden, die Hidden Markov Models, Supervised
Learning, Automata Learning und eine Visualisierung verwenden, die ich einen "Weigh-
ted Sequence Tree'nenne. Ich bewerte die Leistung dieser Methoden anhand von drei
verschiedenen Datensétzen, von denen zwei synthetische Datensétze mit unterschiedli-
chen Eigenschaften sind und einer reale Daten von einem Industriepartner umfasst.

X1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

Identifying the causes of system failures is an important part of the development and
maintenance of reactive systems. Due to the complexity of such systems, this can be a
very challenging task. Log data can help analyze failures, but the unstructured nature of
this data, as well as its sheer volume, often makes manual analysis infeasible. Automated
methods for analyzing log data to find the causes of system failure are therefore necessary.
I develop four different such methods, which respectively employ hidden Markov models,
supervised learning, automata learning, and a visualization I call a "weighted sequence
tree". I evaluate the performance of these methods on three different datasets, of which
two are synthetic datasets with different properties, and one is real-life data from an
industry partner.

xiil

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

Kurzfassung
Abstract

Contents

1 Introduction

2 Background

3 Literature Review

4 Methods
4.1 Preprocessing
4.2 Weighted Sequence Tree,
4.3 Supervised Learning oL oo
4.4 Automata Learning o

4.5 Hidden Markov Model

5 Results
5.1 Synthetic Data Type 1 o
5.2 Synthetic Data Type 2 L
5.3 Industry Data
54 Summary of Results o o

6 Conclusion
Bibliography
Appendices

A Code for generating synthetic data
A.1 Synthetic data type 1
A.2 Synthetic data type 2

xi

xiii

Xv

25
25
30
34
41

45

47

51

53
53
56

XV

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

In the development and maintenance of most complex reactive systems (e.g. interactive
software), finding and removing errors takes up a large part of engineers’ time. Finding
errors is especially difficult when those tasked with doing so are not familiar with the
internal structure of the system, for example in the case of legacy software. In such a
situation, it is very helpful to have a method for narrowing down the potential causes of
the error even without any knowledge about the program’s internals, so that the engineer
can focus on understanding only a smaller fragment of the program. In theory, log data,
which is commonly used in software systems, can provide such information, and it is
indeed often used for this purpose. But just reading the log output may not be enough
to gain insight into the causes of an error, because of the following issues:

Cryptic error messages Sometimes the same lack of system specific knowledge that
makes the program difficult to debug also makes the error messages difficult to
interpret.

Proximate and ultimate causes The error message usually only tells us the proxi-
mate, but not the ultimate cause of the error message. For example, it may tells
us that a program crashed in a particular location because of a division by zero
(proximate cause), but the bug that should be fixed is that the divisor was set
to zero in a completely different part of the program beforehand (ultimate cause).
Even if the log contains information about the events that ultimately led to the
error, it may not be possible for a human to see the connection to the error message
in the mass of data.

Lack of information Finally, there may just not be enough information in the log data
to find out much about an error even in principle.

Computer algorithms might be fruitfully applied to this problem roughly in the following
way: We can find out which kinds of event often occur in the program before a certain

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.

INTRODUCTION

error happens, and given some assumptions or supplementary domain knowledge we can
make statements about causal relations within the program, e.g. an error is caused by
a certain action or event described by a preceding log statement, or by a combination
of different actions or events occurring in a certain order. This can be useful for dealing
with some, but not all, of the problems with a purely human analysis of logs I described
above:

Cryptic error messages The log lines that have been found to often precede the error
line could be less cryptic than the error message, and may shed some light on the
nature of the error.

Proximate and ultimate causes By getting information about what lines (or com-
binations thereof) precede the error lines, we might gain insight into what combi-
nations of circumstances cause the error, i.e. the ultimate causes of the error.

Lack of information This problem cannot be solved with any data analysis technique
by itself. If the log data has this problem, the methods described in this thesis will
fail.

There are many possible ways to implement this basic idea or variations thereof. But
there is currently not a body of publicly available best practices engineers could draw
from regarding which algorithms are fit for this purpose and in what way they should be
applied. The goal of this thesis is to lay the foundation for such a body of knowledge.
To this end, it describes four different methods for performing fault analysis using log
data and evaluates their performance on three different kinds of log data — two types of
synthetic data with different properties, and a dataset from industry.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Background

The higher the complexity of a system, the more difficult it is to avoid errors in the
construction of the system, and the more difficult it is to identify the cause of a failure.
We can distinguish two types of complex system [HP85]:

Transformative systems generally take inputs and transform them to produce out-
puts. Sometimes they may ask for additional inputs or produce some outputs
during the transformation.

Reactive systems "are repeatedly prompted by the outside world, and their role is to
continuously respond to external inputs" [HP85].

Compared to transformative systems, developing reactive systems poses a variety of
additional challenges. Of particular interest for this thesis is that of finding the cause
of a system failure. In a transformative system, when we encounter such a failure, we
can simply re-run the transformation with the same inputs, and observe how the error
occurs. But in a reactive system, there are many different ways for a system to interact
with its environment, so it is hard to identify the exact circumstances under which the
failure occurred, and therefore hard to reproduce it. One way to mitigate this problem,
commonly used in software systems, is to use log files. These are text files to which the
system writes information about various inputs, outputs, and internal state information
on an ongoing basis, as well as "warnings" about possible problems during executions
and messages chronicling errors. Typically, each entry occupies a line in the log file,
and contains a time stamp indicating when it was created as well as a human-readable
message about an event that occurred in the system. Often it also contains a "severity",
which indicates how problematic the logged event is. For example the scale might have
the levels "info" (meaning the event is not problematic), "warning" (something odd has
happened, and it may or may not be a problem) and "error" (something has definitely

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

BACKGROUND

03/03/2019 08:21:55 INFO system started

03/03/2019 08:21:55 INFO establishing network connection...
03/03/2019 08:21:56 INFO connection established

03/03/2019 08:21:56 INFO Requesting info from server...

03/03/2019 08:22:01 WARNING Request timed out, retrying...
03/03/2019 08:21:06 ERROR Server could not be reached

Figure 2.1: FExample excerpt of a log file. Fach line refers to a different event, and
contains a timestamp, a severity level and a human-readable log message.

gone wrong). Depending on the system, there can be additional fields. For an example
of a log file, see Fig. 2.1.

In case of a failure, one can search the log entries preceding the error for clues about what
may have caused it. And monitoring the log may alert operators to errors they may not
otherwise have noticed or may have noticed only much later. However, the system only
logs information it has been explicitly instructed to log by the system’s programmers.
Providing such instructions is time-consuming, and so there is typically a large portion
of events in a complex system that is not reflected in the accompanying log, or that is
reflected only in the form of cryptic messages that do not allow the reader to understand
what is happening in the system. However, if all events are logged, this might also not be
helpful, since the events relevant to a particular error would be hard to identify among
the myriad of irrelevant ones, like needles in a haystack. Thus, while analyzing log data
is often the only feasible way to find the causes of a reactive system failure, doing so
"by hand" is often more art than science, and can be very time-consuming. Automating
parts of this analysis could be quite helpful. Since often the same kind of error will
occur many times, we can use statistical methods to find patterns in the logged events
and state of the system leading up to occurrences of the error we are investigating.
The data in the log may not be detailed enough to identify the root cause of an error
definitively even with the best possible method of analysis, but even then we can use
the identified patterns as a point of departure for further analysis — e.g. we can cause
a "suspected" pattern to occur in the system and observe if the error also occurs. If so,
we can observe the system in this configuration in detail (e.g. with a debugger) to find
the exact mechanism behind the error. The events that are part of the pattern before
an error can serve as clues about what parts of the system we should investigate to find
the root cause of the error.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Literature Review

While there are many papers on using machine learning to extract information from log
data, there is little existing literature on using log data for fault analysis in particular.

Fronza et al. [FSST13] describe an approach to predict failures based on log data using
Support Vector Machines.

Sipos et al. [SFMW14] also use SVMs to predict system failures. Their data consists
of log data, which features are extracted from, and service notifications (i.e. customer
complaints) which is used as the source of labels. They use Multi-Instance Learning
[DLLP97] to model the problem, so that the labeled instances are intervals of log state-
ments (e.g. all logs from one week) that are labeled negative if there were no failures
in the relevant interval according to the service notifications. They perform feature
selection by training multiple L1 regularized classifiers on subsamples of the data, sum-
ming the weight of features across models, and using the features with the highest total
weights in the final model.

Zhang et al. [ZXM™"16] also use log data to predict system failures. They first cluster
log statements with similar format and content. Then they divide the observations into
epochs of fixed length. The frequency of each pattern in an epoch (specifically the "term
frequency - inverse document frequency" [SB88|, with the patterns used as terms and the
epochs as documents) is then used as a feature of that epoch. The resulting data is fed
to a Long Short-Term Memory neural network to predict failures. Some of the authors
of this paper later filed a patent application [XZCN19] that appears to describe largely
the same method, but extended with explanations for individual error predictions by
showing "the reason for the prediction with feature weights via a local-faithful surrogate
model for every selected time bin". Though the application document does not go into
detail, this appears to refer to explainable machine learning methods such as SHAP
[LL17].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

LITERATURE REVIEW

Du et al. [DLZS17] use log data and an LSTM neural network for anomaly detection. In
contrast to [ZXM™16] their system is designed to also detect unknown types of anomaly.

Fu et al. [FLWL09] use unstructured log data for anomaly detection. They attempt to
cluster the free-form log messages by the log statement in the source code they origi-
nated from. Using training log sequences from normal operations, they first perform the
aforementioned clustering and use the output to train a Finite State Automaton of the
system. Additionally they use the timing data from the logs to model the performance
characteristics of the system under normal operation. Using these models, they can
detect anomalies in new log data.

Brown et al. [BTHN18] also perform anomaly detection using log data. They use a
Recurrent Neural Network, which they augment with attention [BCB15] to aid inter-
pretability.

Pitakrat et al. [POvHG18] attempt to enhance real-time failure predictions of software
systems by leveraging knowledge of the system’s architecture. They use information
about the dependencies between subsystems to propagate predictions of failures of one
subsystems to the dependent subsystems. The relationship between the subsystems and
the propagation of failures is modeled via a Bayesian network. The necessary architec-
tural knowledge is extracted automatically from monitoring data and execution traces of
user requests. The described approach is agnostic about the way the initial predictions
of failure for individual subsystems are performed; it only specifies how they are to be
propagated through the system.

Nagaraj et al. [NKN12] present a system for diagnosing performance problems using log
data. Log data from normal and performance-impaired periods or nodes are analyzed
separately, and a Dependency Network [HCM™'00] is learned for each. The divergences
between the two models are analyzed and the most salient ones are presented to the user
for further analysis.

There are a number of papers on the related topic of finding software bugs using not
log data but more fine-grained information such as execution traces and/or the code
of the program itself: Befrouei et al. [TWW16] use sequential pattern mining [ME10)]
to analyze concurrency bugs from execution traces. In [JM11], Jose et al. describe
BugAssist, a tool that takes C-programs annotated with assertions and, using model
checking, locates errors in the program leading to assertion violations. Ermis et al.
[ESW12] introduce the concept of an "error invariant’, and use it to localize faults in
programs by minimizing error traces.

Wong et al. [WGL™16] survey the literature on software fault localization. The sections
on machine learning and data mining-based techniques are of particular interest for the
thesis.

Some companies such as Loom Systems [Sys| offer commercial services for fault analysis
using log data, but they do not publish their methodologies. Many others (e.g. [Spl19,
Sum19]) offer products in the related but distinct field of anomaly detection or predictive

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

analytics using machine learning on log data. None of them seem to have published
their methodologies in detail. Nevertheless, the extent of commercial activity in this
area indicates that it is of considerable practical relevance.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Methods

I evaluate four different methods in this thesis. Log files typically record a sequence
of events generated by the system. There is often a causality relation between events
recorded in the log file — if an event e; causes another event es in the system, e; will
precede es in the log file. I sometimes abuse the vocabulary and say that the log recording
of e; causes the log recording of es.

4.1 Preprocessing

The methods expect as their input a set of one or more sequences of symbols, L =
{T1,Ta,...,T,}, where each sequence T; = (s1,S2,...,$,) represents the temporally
ordered log output of an independent run of the underlying system. In practice, the raw
log data might not be temporally ordered, e.g. because there are multiple concurrent
threads in the system which write to the same log file, flushing write buffers at different
times. Since a log line normally contains a timestamp indicating when it was produced,
the lines can be brought into a temporal order. Then, each line is mapped to a symbol
of some finite alphabet that can represent that line.

4.2 Weighted Sequence Tree

The goal of this method is to find out if there are sequences of events that frequently occur
immediately before an error. From the preprocessed log data in L (c.f. Section 4.1)), for
each sequence element with an error of interest errorX, we create a sequence consisting
of that element together with k& previous elements (or, if there are fewer than k previous
elements, as many as there are). We now have a set of n sequences, each of them ending
with errorX, which we turn into a weighted sequence tree. Fig 4.1 shows an example
of such a tree being constructed from a set of sequences. The weighted sequence tree is
defined as follows:

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4. METHODS

a, a, a, b, err
a, a, b, b, err
c, a, a, b, err

(a) example sequences (b) tree created from example sequences

Figure 4.1: weighted sequence tree example

Definition 4.2.1. weighted sequence tree. For an alphabet X, and a set of sequences
L' = {Ty,Ta,...,Ty}, where each sequence T; C X¥, and each ends with the same
symbol s., the weighted sequence tree is the tree that fulfills the following conditions:

1. Each node is labeled with a symbol from X

2. If we follow the path from any node v to the root and form a sequence of symbols
from the labels of the nodes we traverse, that sequence is a suffix of at least one
of the sequences in L'. We say that this sequence is "the suffix starting at v".

3. The first edge on the path from any node v to the root has a weight that equals
the proportion of sequences in L’ with the suffix starting at v.

Once constructed, a weighted sequence tree can easily be visualized. By visually em-
phasizing frequent suffixes, we can see at a glance what sequences typically occur just
before an error. There are some disadvantages of this method:

e [t cannot distinguish between sequences that are only frequent before errors and
ones that are always frequent. This is because the method considers only data in
the neighborhood of errors and makes no attempt to compare and contrast it with
data from other parts of the log.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Supervised Learning

e It cannot detect patterns that are interspersed with irrelevant messages. If, for
example, a certain warning always occurs 2 lines before an error, but the statement
in between is completely random (e.g. because a different thread is writing to the
same log file at the same time), instances of this phenomenon with different in-
between symbols will be treated as completely separate.

Nevertheless, it is a simple and computationally inexpensive way to explore the data
and see if something "jumps out".

4.3 Supervised Learning

Supervised learning [JWHT13] is an area of machine learning which deals with the
following problem: We are given a set of example observations drawn from some proba-
bility distribution P(the "training set"), each consisting of one or more "feature" variables
x1,%2, ..., X, and one "label" y. Our task is to learn a function f(x1, 9, ..., x,) that maps
the features to a predicted label 3. This function should then perform as well as possible
on observations that are drawn from the same distribution P as the training set, but not
part of the training set. Performance is measured in different ways depending on the
problem at hand, but it is generally related to minimizing the difference between actual
values of labels y and predicted values §j. Supervised learning can be divided into two
main areas:

e Regression deals with data where the labels have quantitative (cardinally scaled)
values. An example of such a label would be a person’s age.

e (lassification is concerned with data where each label falls into one of a finite
number of categories, e.g. the label might refer to a person’s country of residence.

Our labels will indicate whether or not a certain error occurred on a given line, and
therefore ours is a classification problem. More specifically, it is a so-called binary
classification problem, meaning that there are only two categories — the error either
occurred or it did not.

In practice, supervised learning algorithms generally take the feature and label data as
two separate inputs: The feature data is given in the so-called feature matrix, denoted
by convention as X, in which each row corresponds to an observation in the sample, and
each column corresponds to a different feature. The second is the label vector, denoted
as ¢/, which contains the label for a different observation on each row. For a binary
classification problem such as ours, % is a binary vector — for example in our case, an
observation has label True if it corresponds to a line where errorX occurred, and label
False otherwise.

The basic idea behind using supervised learning to explain errors is to learn a classifier
model that, for each line in the log file, "predicts" whether or not the line contains a

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

METHODS

12

given type of error based on the contents of some number of preceding lines. In contrast
with many other applications of supervised learning, here we are not primarily interested
in the prediction itself (we already know the true value, since it is part of the data), but
in the parameters of the learned model, which give us information about the effect of
different features (i.e. different kinds of preceding lines). To learn the causal effect
of each feature, I estimate several different models following the literature on causal
inference and the back-door criterion (see Subsection 4.3.3).

4.3.1 Combining Lines Into the Feature Matrix

How then do we construct our feature matrix and label vector from the preprocessed log
data described in Section 4.17 As mentioned, the preprocessed log data consists of a set
of sequences L = {T1,Ta,...,T,}. I will first describe how to generate X and ¢ from
a single sequence of symbols T = (11,75, ...,T,) of length n, before describing how to
handle multiple sequences. Each sequence element T; indicates what type of event was
logged at the corresponding ¢th line of the log sequence. To create the feature matrix X,
for each of its rows we need to combine multiple elements of T, since we want to estimate
the effects of preceding lines at different distances from the line in question. When we
are discussing how the probability of an error on each line is affected by the line that
comes some given number of lines before it, I will call that distance between the lines
its "shift". For example, if an error of interest errorX occurs at line k£ then the line at
shift ¢ w.r.t. errorX is the line k — 4. If we want to include the effects of lines with shift
j to lines up to and including shift j + & in the model (where j > 0,k > 0,5 + k < n),
we have to transform the sequence T as follows:

T Ty o Ten
X/ — Ty T3 o Thto
Tojk Thjrrr - Thy

X’ has k + 1 columns. Each of them corresponds to a different shift value - the ith
column maps to a shift of j + k4 1 —i. Each row corresponds to a different observation.
Nevertheless, the matrix does not have n elements as the symbol sequence T it was
generated from, since for the first j+k elements of T" there are not enough previous values
to generate a matrix row from. Hence X’ only has n — j — k rows, and its ith row maps
to T4 j4+k. Since it can be expected that j+k << |T|, we only lose a minuscule fraction
of the data to this issue. The resulting feature matrix consists entirely of categorical
variables (i.e. variables that can take on one of a finite number of values), with the values
for each column / variable showing the event at a different "shift" from the line indicated
by the row index. Most classifiers cannot use categorical features with more than two
values directly. Instead, each such feature needs to be converted into one or more binary
"dummy" features in the following way: For a feature x; which can take on ¢ different
categories, ¢ binary features are created. The ith of these binary features then indicates
if the original feature xy took on the value of the ith category. For many classifiers, it is

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Supervised Learning

important that no feature be a linear combination of any other features. With a feature
for each category, this condition is violated, since each is True if and only if all the
other binary features are False. To fulfill the condition, we can drop one of the binary
variables from the feature matrix. However, for the classifier we will be using (regularized
logistic regression) this is not necessary [OA00]. The entire procedure is generally known
as dummy encoding or one-hot encoding. Performing dummy encoding on X’ results in
our final feature matrix X. Constructing the label vector § is considerably simpler: We
check if the error of interest errorX occurred at each index, shifted so that the indices
of ¢ fit together with the row indices of X:

Tiqjyr == errorX
. Toqjir == errorX
y =
T, == errorX

In Fig. 4.2, you can see an example of the transformation procedure described above.

So far we have discussed how to transform one sequence into feature matrix and label
vector. For multiple sequences, the overall feature matrix is simply the concatenation
of the feature matrices of the individual sequences, and analogously the overall label
vector is the concatenation of the individual label vectors. The order in which they are
concatenated is arbitrary, as long as the order for the matrices is the same as the one
for the vectors, so that the ith row of the feature matrix still corresponds to the same
observation as element y; of the label vector.

4.3.2 Choosing a Classifier

In principle, many different classification algorithms could be used. Ideally, the chosen
algorithm would make highly accurate predictions, giving us confidence in the learned
coefficients, while also allowing an easy interpretation of said coefficients. In the super-
vised learning part of this thesis, I focus on logistic regression. This and other types of
linear classifier yield easily interpretable coefficients. However, they cannot completely
capture the causal structure in situations where an error is caused by a combination of
different events — e.g. an error becomes very likely if event A occurs directly after event
B, but the probability of an error does not change if only one of these events occurs.
Depending on the data, in most cases there will still be a correlation between each of
the events and the error (since each of them occurring is a necessary condition for both
of them occurring), so the learned coefficients will suggest a causal connection between
A and the error as well as B and the error, but the specific interaction causing the er-
ror will not be captured. New features could be generated as polynomial combinations
of existing features. However, there might be hundreds of different kinds of log state-
ments in a single dataset (as in our industry data), which together with some number
of previous lines means we already have thousands of features. Generating features for
all interactions of two preexisting features would therefore lead to millions of features,
and even more for combinations of more different features. This would take up a lot

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

4. METHODS

Message Code

info 1

info_ 2
warning_ 1
error of interest
info 1

(a) Preprocessed log data

X’ iy
Message Code shift 3 Message Code shift 2 Message Code shift 1
info 1 info 2 warning_ 1 True
info 2 warning_ 1 error_of interest False

(b) matriz X’ and label vector i generated from (a)

err. of i. .. info 1 err._of i. warning 1 info 2 info 1
shift 3 shift 2 shift 1 shift 1 shift 1 shift 1
False ... False False True False False
False .. False True False False False

(¢) Final feature matriz X created by dummy-encoding X' from (b)

Figure 4.2: Ezample for transformation of preprocessed log data into feature matrix and
label vector

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Supervised Learning

of computational resources. Nonlinear models such as gradient boosted trees or neural
networks are better suited to capturing interaction effects. However, such models are
notoriously hard to interpret [LWLZ17]. They can nevertheless be useful as benchmarks
for more easily interpretable models by comparing against their predictive performances.
And they can be used in combination with tools for explainable machine learning such
as SHAP [LL17] to provide explanations for individual occurrences of an error.

4.3.3 Inferring Causal Effects

I am using the coefficients of logistic regression models to gain information about the
causal effects of certain events. However, without additional assumptions, a causal
interpretation is not necessarily correct. I use Pearl’s Structural Causal Model (SCM)
[Pea09] to identify the right logistic regression equations for estimating causal effects.

Why is it that we cannot use logistic regression alone to estimate causal effects? To
review, the general form of a logistic regression is:

C=Po+ P+ X1+ ... 4 B x X (4.1)

where X1, ..., X,,, are the values of the different features, 3; is the coeflicient for feature
1, and ¢ are the log odds for the label being positive given the feature values. The odds
0, which we can of course easily get from the log odds, can further be converted to a

probability by using the formula
0

o+1
Intuitively, we can express the odds as a pair of numbers and say that something has
odds of e.g. 5:1 or "a million to one". We can also compare the likelihood of different
events using the ratio of their odds o01/0s.

p= (4.2)

To interpret the influence of different features, we must understand the meaning of their
respective coefficient values. These values state how much the log odds of a positive
label change when we change the corresponding feature by 1. Equivalently, a coefficient
value (; is the log of the odds ratios for a positive label when we change X; by 1. A
large magnitude of coefficient §; therefore means a strong association between X; and
the label. However it does not necessarily mean that X; has any causal effect on the
label. And conversely, a near-zero |3;| does not necessarily imply the absence of a causal
effect between the two variables. There are several phenomena we need to account for
before we can make such causal claims.

Reverse Causation Instead of X; causing Y, Y might be causing X;. However, in
our case, the features are events from log statements preceding Y, and since effects
cannot precede causes, we can rule out reverse causation.

Confounding Bias There might be a third variable, Z, causing both X; and Y, while
there is no direct causal relationship between X7 and Y. If this variable is omitted
from the model, |f;1| will be increased and might lead us to mistakenly assume a

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

METHODS

16

ONONOBORONO

I I I I I
I I I I I
I I I I I
Y A4 4 A4 Y

OnOnONO G%@

Figure 4.3: DAGSs depicting an intervention (adapted from [Pea09]). (a): The DAG
corresponding to the structural model of Eq. (4.3). (b): The DAG corresponding to a
modified model representing the intervention do(X = xg)

causal relationship between X; and Y. To mitigate this problem, we must include
potential common causes in the regression. In our case, these are events preceding
both X; and Y. However, there might be important events in the system that are
not reflected in any log statements, and these unobserved variables could still bias
the results.

Mediation There might be a third variable M, where X; causes M and M causes Y.

If M is also included in the model, and there is no direct causal effect of X; on
M, the expected value of f3; is 0, even though there is a causal effect. This is
because (; indicates the association between X; and Y, all else — including M —
being equal. But the causal effect is defined as what happens if we intervene and
change X;, and in that case all else is not equal, since this affects M. To account
for this phenomenon, we should exclude potential mediators from the regression
equation. In general, this might conflict with the prescription to include potential
common causes, but luckily in our case the two sets are disjoint - while potential
common causes are events that occur before X; and Y, potential mediators happen
in between the two.

We can use the Structural Causal Model [Pea09] as a framework to show more rigorously

what

controls we must include in the regression to correctly estimate causal effects. In

the SCM, we start with a directed acyclic graph (DAG) depicting the possible causal
relationships between different variables — for example, in Fig. 4.3(a), Z might influence
X which might influence Y. The errors only indicate that a causal relationship is possible,
not that there definitely is such a relationship. The absence of an arrow, on the other

hand,

means that there definitely is no causal relationship. We can state the relationships

in the model by using equations:

z= fz(uz)
x = fx(z,ux) (4.3)
Yy = fY(xauy)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Supervised Learning

A causal effect is defined via the so-called do-operator do(x), which "simulates physical
interventions by deleting certain functions from the model, replacing them by a constant
X = z'". For example, to simulate an intervention which sets X = xg, we replace the
equation for z in Eq. (4.3) with z = zy. The graphical representation of this model
can be seen in Fig. 4.3(b). The causal effect can then be obtained from the controlled
distribution function

P(Y =yldo(z)) = P(z,y|do(z))

In our case, both the label and the features are binary, so we need only compare the
probabilities of Y = True for setting X = True vs. setting X = False But can we
estimate such causal relationships from observational data? It depends on our causal
assumptions as depicted in our DAG. If we can find a set of covariates that fulfills the
so-called back-door criterion with respect to X and Y, comparing treated and untreated
data points having the same values for the covariates gives us the correct treatment
effect. We call such a set of covariates an admissible set. The back-door criterion is
defined as follows [Pea09]:

Definition 4.3.1. The back-door criterion. A set S is admissible for adjustment if two
conditions hold:

1. No element of S is a descendant of X

2. The elements of S "block" all "back-door" paths from X to Y, namely all paths
that end with an arrow pointing to X

Luckily, such an admissible set is available to us. To see this, we must look at the DAG
depicting the possible relationships between our variables (Fig. 4.4). Recall that it is
the absence of an arrow that makes a definitive claim, namely that there is no causal
effect between two variables. I have excluded arrows that would imply effects preceding
causes. In a sense, variables of the same shift value also affect each other, since if one
of them is True, all others must be False — after all, if a log statement is of one type, it
cannot be of another. Since this is always trivially true and does not change the choice
of regression model, I have omitted these arrows as well. Given the resulting DAG, for
each variable X, an admissible set is the set of all variables that come before X, i.e.
all variables with a higher shift value than X;. Note that the DAG does not show any
unobserved variables. By definition, I cannot account for such variables, and if there are
any that significantly and directly affect both a feature and the label, this will bias the
estimate of the causal influence for the feature upwards. The reliability of the estimates
therefore depends on important events consistently being logged.

Given all these considerations, we can estimate the causal effects of different events
at different lines the following way: Say for line; at position i, we want to estimate
the effects of various possible events at line;_;. Then we learn a model that includes
events at line;_j_j, to line;_;. The learned coefficients for line;_j are then a good causal

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

METHODS

18

shift 3

shift 2

shift 1

Figure 4.4: DAG showing the possible causal relationships between features and label for
a hypothetical dataset with three different message codes and only looking at variables
with shift values 1-3. A wvariable can potentially affect all variables with a lower shift
value, but not ones with a higher shift value.

estimate — they do not include the potential mediators in lines ¢ — j to ¢, and they include
potential confounders from the previous lines. The classifier we are using learns good
values of some parameters for us, but since k is already set when we start the learning
process, we cannot find the optimal value of k£ the same way. In machine learning,
parameters that need to be set before training, as opposed to be learned during training,
are called hyperparameters. Finding the optimal values of hyperparameters is called
"hyperparameter tuning'. During tuning, many models with different values for the
hyperparameters are learned and compared using some numeric optimization criterion.
To tune k, we therefore need such an optimization criterion. Since the ratio of positive
to negative examples is very small, accuracy is a misleading metric of model performance
— we could get a very high accuracy by simply predicting a negative label every time.
Instead I use a metric called "average precision” (AP), which does not suffer from this
issue. AP is defined in terms of two other metrics, precision and recall, which in turn
are defined as follows:

true__positives (4.4)

precision = — —
true_ positives + false_ positives

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.3. Supervised Learning

true__positives
recall =

— . (4.5)
true_positives + false negatives

The classifier itself only outputs a probability for each sample being positive. We need
a threshold probability above which a prediction is classified as positive to get values for
precision and recall of a classifier on some sample. There is a trade-off between precision
and recall — by increasing the threshold, we can increase precision, but lower recall. We
can plot precision p(r) as a function of recall r. By taking the integral of this function
over the interval from r = 0 to r = 1, we obtain the average precision value:

AP — /0 () (4.6)

The maximum value of AP is 1, while the expected value for a dummy classifier predict-
ing the same probability for all observations or ranking them randomly would have an
AP close to the proportion of positive observations in the sample [Bes15]. An important
problem in supervised learning is overfitting, the tendency of models with many param-
eters to learn idiosyncratic characteristics of the training data which do not generalize
to additional data. A standard remedy, known as regularization, is to penalize large
parameter magnitudes during learning. The penalty is commonly either linear ("lasso
regression") or quadratic ("ridge regression") in the size of each parameter. In both cases,
there is a coefficient that adjusts the strength of regularization. I employ regularization
to combat overfitting, and I treat both the choice between lasso and ridge regulariza-
tion and the size of the coefficient as a hyperparameter. To estimate the causal effects
of n previous lines, I simply estimate n separate models of the type described above,
with j varying from 1 to n. To make the coefficients from different lines comparable,
I need to use the same hyperparameters for the different models. I therefore tune the
hyperparameters for all these models together, and try to optimize the average average
precision (sic, meaning the average of the different average precision values) over the
different models. This leaves the question of how to choose n. I use the raw odds ratios
between error occurrence and events at different shifts as determined by a Fisher exact
test to decide. These odds ratios are upper bounds on the sizes of the causal effects,
since they are not adjusted for either mediators or confounders. So if at some distance
from line;, the coefficients for all event types are either insignificant or just too small
to matter in practice, we can assume that events at this distance have no or negligible
causal effect on Y. Since calculating the odds ratio is computationally much cheaper
than estimating full logistic regression models, we can do this test for a reasonably large
number of previous lines. If we do this for e.g. 30 lines and conclude that there are
potential causal effects in lines at shift 1 to 20, but not from 21 to 30, we can decide
to estimate logistic regression models only for lines 1 to 20. However, this rests on the
assumption that the strength of the causal connection between lines decreases somewhat
monotonically with their distance to each other. In theory, there might be no causal
effect of lines i — k to i — k — 1000, but a strong causal effect of line i — k — 1001.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

METHODS

20

A= ({QO, q1, Q2}, {Oa 1}7 57 qo, {QI})

Figure 4.5: Example of a deterministic finite automaton. (a): Definition. (b): Visual-
1zation.

4.4 Automata Learning

Deterministic finite automata (DFAs) are mathematical constructs that have different
states which they transition between depending on the inputs which they receive. There
are clear parallels between DFAs and real-world reactive systems, and so in the approach
described in this section, I use the former to model the latter. I interpret the logged
events as inputs, while the states are inferred using an automata learning algorithm
based on the minimum description length principle.

4.4.1 Deterministic Finite Automata

Definition 4.4.1. Deterministic Finite Automaton. A Deterministic Finite Automaton
is a 5-tuple, (@, %, d, qo, A) where

1. @ is a finite set of states

2. Y is the alphabet, a finite set of input symbols
3. 0:Q x X — @ is the transition function

4. qo € @ is the initial state

5. A C @ is the set of accept states

The automaton starts in state gy and reads from a sequence of input symbols € . When
it consumes a symbol a € ¥ while in state ¢ € @, it changes to state d(q,a). It then
proceeds with the next symbol in the sequence. When the complete input sequence has
been consumed, if the current (and last) state is an element of the set of accept states

A, the automaton is said to accept the input sequence. See Fig 4.5 for an example of a
DFA.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.4. Automata Learning

4.4.2 Generating Automata from Data

Now that we have established what a DFA is, how can we use our log data to model
the underlying system as one? The basic idea is that we have a black box system (the
"system under learning" / SUL), for which we only know some sequences of symbols
we model as inputs to the automaton). Our goal is to learn an automaton as a model
for the internal structure of the black box, so that we can find out what sequences of
symbols can occur in the system, and which lead to an error. In the learned automaton,
sequences that occur are modeled as ones that are accepted, and an error is simply a
state transition that has the error of interest as the input symbol.

The task of generating automata from data is known as automata learning [SHM11].
There are different subfields: In active learning, we have access to the system under
learning during the learning process, and can therefore test hypotheses about the sys-
tem — we form a hypothesis in the form of an automaton, test if the real system behaves
like the automaton, and if it does not, we refine the hypothesis and test again. Passive
learning, in contrast, concerns the case where we have data from the system under learn-
ing, but cannot test hypotheses on the system under learning for additional information.
Within passive learning, another distinction is whether we have positive and negative
examples or only positive examples. A positive example in this context is a sequence
of symbols that can occur in our SUL, and hence one that should be accepted by our
automaton, while negative sequence cannot occur and should be rejected. We must use
passive learning with positive examples only, which poses some additional challenges
compared to other kinds of automata learning. Mainly, there are many different au-
tomata that accept all our examples, and not all of them are useful. For example, an
automaton with one state which is both start state and accept state and has self loops
for all symbols will accept any possible symbol sequence from the alphabet, and thus will
accept all our examples. Since this is always the case, clearly this tells us nothing about
the SUL. So we want to find an automaton that not only accepts all positive examples
and symbol sequences that the SUL could produce but that are not part of the example
set, but also rejects sequences that cannot be produced by the SUL. We cannot fulfill
the second two conditions with 100% accuracy (this would be essentially equivalent to
solving the problem of induction), but we can try to do as good a job as possible. One
way to do this is to use the principle of minimum description length.

4.4.3 Minimum Description Length

Minimum description length (MDL) [Ris83, GMPO05] is a general principle for model
selection, that is for deciding among competing explanations for data given limited
observations. It starts from the insight that any regularity in the data can be used to
compress it. It then equates finding regularity with learning, so that the more we can
compress some data, the more we have learned about it. Compressing data means to
describe it in a shortened way that enables us to restore the original data. The result
therefore also must include a description of how to accomplish this decompression step.
Thus, to compress data D with length L(D), we first encode a hypothesis H in the set

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

METHODS

22

of considered hypotheses H. We then encode the data with the help of H. The overall
length is the sum of the two encodings: L(D) = L(H) + L(D|H). And, as the name
"minimum description length" suggests, the best hypothesis out of H is the one with
which the data can be described with the shortest length, i.e. the one which minimizes
L(H)+L(D|H). MDL is closely related to Occam’s razor — when two models fit the data
equally well, MDL will choose the simpler one. This is also a built-in protection against
overfitting. For a description of how to use MDL in the context of passive automata
learning, see [dIH10].

4.4.4 Implementation

To accomplish the learning task laid out above, I use the automata learning software
Learnlib [IHS15]. Specifically, I use the included BlueFringeMDLDFA algorithm, which
utilizes the MDL principle for passively learning DFAs from positive examples. Learnlib’s
implementation is based on [dIH10]. The set of sequences L we obtain after preprocessing
(c.f. Section 4.1) can be used without any further transformations.

4.5 Hidden Markov Model

Another method I explore is using the log data to learn a hidden Markov model. This
gives us insight into patterns occurring before an error. In contrast with automata
learning, it includes information about probabilities, allowing us to focus on the most
prominent patterns.

Definition 4.5.1. Hidden Markov Model. A hidden Markov model is a 5-tuple consist-
ing of the following components:

1. a set of states Q = ¢q1,q2, ..., qN

2. a transition probability matrix A;;, where element a;; represents the probability
of moving from state ¢; to state g;

3. a set of observation sequences, with each observation drawn from alphabet ¥ =
81,82, ..., Ssg

4. an emission probability matrix Fj;;, where element e;; represents the probability
of emitting symbol s; while in state g;

5. an initial probability distribution over the hidden states, m = my, w9, ..., 7y, where
m; represents the probability that the process will start in state ¢

The parameter learning task for HMMs is to find the optimal transition and emis-
sion probability matrices as well as the initial probability distribution, given a set of
observations, an alphabet Y, and the desired number of hidden states N. Maximum
likelihood is usually used as the optimization criterion, meaning that we attempt to find

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.5. Hidden Markov Model

Q = {Rainy, Sunny}
0.7 0.3

A= <0.4 0.6)

Y = {Walk, Shop, WatchTV'}
0.1 04 0.5

E= (0.6 0.3 O.l)

= [0.6,0.4]

(a) Formal specification (b) Visualization

Figure 4.6: Fzample of a hidden Markov model

structure of the example taken from Wikimedia Commons:
https://commons.wikimedia.org/wiki/File:HMMGraph.svg

the parameters under which the model is most likely to generate the observed data.
The Baum-Welch algorithm [BPSW70] is used for this purpose. The number of hidden
states needs to be specified in advance, so ideally we would have domain knowledge
about what number of states makes sense for our problem. Otherwise, we can perform
hyperparameter tuning. When tuning the number of states, we should not just optimize
for maximum likelihood, since this tends to lead to overfitting. We need a criterion
that penalizes a model for having a high number of states. For this purpose, I use the
Bayesian Information Criterion (BIC) [Sch78], which incorporates both factors. If we
have some knowledge about what the learned model should look like, we can also set
some parameters in advance. Fig. 4.6 shows an hidden Markov model.

As described in Section 4.1, our input after preprocessing consists of a set L of sequences
of symbols representing independent runs of the underlying system. For the purposes
of this method, we assume that the system resets after an error of interest errorX.
Therefore, what happens after such an error is independent of what came before, and
should be in a different sequence. Hence all the occurrences of errorX occur at the ends
of their sequences. We now take only those sequences that end with an errorX. We first
reverse the order of these sequences, so that they start with the error. Since we know
that the first emission will always be errorX, we can encode this in the model by picking
a state g. as the error state, setting its probability to emit errorX to 1 (and its other
emission probabilities to 0), and setting the initial probability distribution 7 so that

1 72=¢
T, —
0 else

Fitting the remaining parameters results in an HMM where we go to the error state first,

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

METHODS

4.

and can then see what states we are most likely to have come from, and what emissions

are typical for these other states.

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

<t
a

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Results

To evaluate the methods described in Chapter 4, I use three different types of data —
two synthetic ones and one from industry. The following sections describe these types
of data and how the various methods perform on them.

5.1 Synthetic Data Type 1

The first type of synthetic data is produced by the probabilistic deterministic finite
automaton (PDFA) in Fig. 5.1. A PDFA is a DFA that, for each state, has a probability
distribution over the outgoing transitions. The script that implements the automaton
prints the label of every transition it goes through. Test data of size n is generated by
simply running this script (i.e. going through the automaton) over and over again until
it has produced n lines. Some important features of this type of data are:

e There are few different symbols (4 including the error symbol)

start

Figure 5.1: Probabilistic deterministic finite state machine used to generate synthetic
data type 1

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

REsuULTS

26

e Interactions between the symbols matter. "req" by itself never creates an error,
but if it is preceded by "gnt" or three other "req's, it always does.

e Errors are deterministic. There is enough information in the data to in principle
always predict with certainty whether the next line will be an error. This is a
stronger condition than the occurrence of errors being deterministic in the un-
derlying system, since it additionally requires that all the relevant information be
logged.

Two specific sequences of events lead to an error: four "req"s in a row, and a "req" directly
after a "gnt". The performance of a method for fault analysis should be judged by its
ability to find these patterns.

The analysis of the generated data was conducted in a blinded fashion — my advisors
came up with the data generation process, and generated the data. I then analyzed this
data, with my only additional piece of information being that the underlying system
resets after each error. This enabled us to better simulate real-world conditions where
the underlying causal structure of the data would also not be known in advance. The
data I analyzed initially had only 10,000 lines. However, for consistency with the other
synthetic data, the results I present are for another set of data I generated with 1,000,000
lines. There is no substantial difference in results between the two.

5.1.1 Supervised Learning

Fig 5.2 shows the results of supervised learning for synthetic data type 1. The odds
ratios for some symbols are highly significant even for shifts up to 25. However, the ratios
themselves are very close to 1 at shifts above 10, and the high significance level seems
to be caused only by the large sample size (since there are few different symbols, each
one occurs much more often than in the other types of data). I therefore chose 10 as the
maximum shift for the logistic regression models. The average precisions of the models
go from perfect precision at shift 1 down to 0.049, which is only a slightly better than
the expected average precision of a dummy classifier at 1/nyositive;nstances = 0.034.
The log odds for the different combinations of symbols and shifts — the core result of
the method — does not really give insight into the causes of the error. For example, we
can see that req at shift 1 makes an error much more likely; that’s true (in fact, it is a
necessary condition for an error), but it does not help us figure out why the errors occur.
If we took it as an indication that there is something wrong with the implementation
of req, we would be mistaken, and would probably waste time searching for the error in
the wrong place. All this is despite the fact that for shift 1 the model makes perfectly
precise predictions. All in all the supervised learning method does not perform all that
well on this data compared to other methods. Intuitively, this is because the method
tells us which symbols are relevant at which shifts. But in this data, all symbols are
relevant, and it is their interactions that are the key to understanding the errors.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1. Synthetic Data Type 1

symbol shift log odds

ack 1 -9.08

req 1 7.41

gnt 4 -3.37

req 3 3.35

- — gnt 3 -3.23
shift avg. precision req 5 9.84
1 1.000 ack 2 -2.07
2 0.100 gnt) 1.99
3 0.097 gnt 7 -1.72
4 0.074 ack 3 -1.68
5 0.074 req 8 -1.45
6 0.063 ack 4 1.20
7 0.059 gnt 1 -1.12
8 0.058 gnt 10 -1.12
9 0.051 ack 6 -1.08
10 0.049 req 4 1.06

(a) (b)

Figure 5.2: Results of supervised learning for synthetic data type 1

5.1.2 Automata Learning

Using automata learning on synthetic data type 1 produces the DFA in Fig. 5.3(a). It
gets the underlying structure mostly, but not completely, correct. It correctly shows one
of the sources of errors, "gnt"->"req". It is less successful in identifying four "req"s in a
row as the other error source — it only shows that after 0 or more repetitions of "req"
from the start state there can be an error — which is not wrong, but imprecise. The
automaton also does not show that every run must start with a "req". However, with
this automaton together with manually looking at the data, I was able to reconstruct the
correct automaton, as shown in Fig. 5.3(b) (which, as I described above, I did not know
in advance). This raises the question of why the chosen automata learning algorithm was
unable to do what I did. The principle of minimum description length should, I think,
make the true automaton optimal for a large enough sample size. It could be that the
sample size was too small, however the learned automaton did not substantially change
between samples of size 10,000 and 10,000,000. There might also be a limitation in the
specific implementation of the algorithm in Learnlib. All in all, however, the automata
learning approach still performed well for data of this type.

5.1.3 Hidden Markov Model

Fig. 5.4 shows the hidden markov model for synthetic data type 1. The number of states
— 14 — was chosen because it gave the best BIC during hyperparameter optimization.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

5. RESULTS
start
@ req
‘— req
ack gnt
error
req
@ error @
(a)
Figure 5.3: Automata learning result for synthetic data type 2. (a): Raw automata
learning output. State & is an end state because "ack" was the last printed symbol when
the requested sample size was reached during data generation, so the last run happens to
end with "ack". (b): Enhanced by manually looking for additional patterns in the data.
It is equivalent to the generating PDFA in Fig. 5.1, except that it does not give any
probabilities on the transitions
28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1. Synthetic Data Type 1

0
0.09 req®°00
req®%0 010
/A 0.09_~
‘0.17ack®.00
0,20, ~/
N
0:05
S 0.05 s
0.03 PR ' \‘ r?q.ogo
0.03 7 A
0.10” ‘
1 -+
078 | o 029 048 AN ack®.00
| 1 v 0.05 S 042
7o 008 ‘ \
¥—1 - 0.02 0.02
req®@%0 / 0,08 005
) | <053 <
\ 041 / 0.12
\ 0#r 02564 ¢ 01
/ 0.24
073} #0.25
V! 0.09.01 ofb
[0.02
' 0.24 | ’ 064 ,
ack®.00 “1 4 o4 0.24 gnt® .00
\ 025 /' /
| 0126 -
0.18\ ' &) Y 045 013
XX ’ J
068 N
: 013
req®%0 oz '
. ack: 0.07%eq: 0.93
0:13 4 X A
\ F P
QB ot 023
gntﬂ?@? SN\ 55 -
525 eq®.00
M J :
gnt®.00
0.82
errof®1.00
1.00
sfart

Figure 5.4: Hidden markov model for synthetic data type 1 with 14 states.

However given what we know about how the data is generated, it seems that the number
of states is too high, and that the BIC is not penalizing additional states enough to
prevent overfitting in this instance. Having this many states also makes it hard to
intuitively grasp what is happening by looking at the visualization. Still, one can figure
out that "gnt' —> "req" leads to an error. On the other hand, it seems very difficult
without prior knowledge to figure out that repeated 'req's lead to an error as well.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.

REsuULTS

30

0.64 0.14 0.05 0.05

dnit ack rey ack

Figure 5.5: Weighted sequence tree for synthetic data type 1. Only sequences above 1%
frequency and up to 5 symbols long are shown.

5.1.4 Weighted Sequence Tree

Fig. 5.5 shows the weighted sequence tree for synthetic data type 1. It shows both
patterns that lead to the error — "gnt" —> '"req" as well as four times 'req'. And it
shows that the former is much more frequent before an error than the latter. However
as always with this method, we cannot be sure whether these patterns are frequent only
before the error or in general, let alone whether or not the patterns are causal.

5.2 Synthetic Data Type 2

The second type of data is generated in the following way: There is a base probability for
each line being one of 100 different "irrelevant” symbols. They are irrelevant in the sense
that they do not change the probability distribution over events in any subsequent lines.
There are also some special events that do affect this probability distribution. They
each have their own base probability, and one or more other symbol that they cause to
occur with some probability on a subsequent line. If this effect triggers, the distance in
lines from cause to effect is also random. More specifically, it follows a truncated normal

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.2. Synthetic Data Type 2

symbol__causing_error_causing symbol

p=0.8
d~ Mrunc(ga 25)

Y

error__causing_ symbol

p=20.5
d ~ Mrunc(& 16)

p=0.7
d ~ -/\/;Srunc(4a 16)

symbol__caused_ by_ error_ causing_symbol

(a)

symbol base probability
error 0.001
error__causing_ symbol 0.001
symbol__causing_error__causing symbol 0.001
symbol__caused__by_ error_ causing_symbol 0.001
irrelevant__symbol_n (1-100) each 0.01004

(b)

Figure 5.6: Synthetic data type 2. (a) An arrow from symbol A to symbol B means that
when symbol A occurs on line n, with probability p it will cause symbol B to occur on
line n + d, where d has a normal distribution truncated from below at 1. The symbols
on any lines not affected by such effects are instead determined according to the base
probability distribution given in (b).

distribution (modeling a system where many different independent factors determine
this delay). See Fig 5.6 for details, and see Appendix A for the code.

This second type of synthetic data has some important differences to the first:
e It has a much larger number of event types (about 100), most of which are "ir-
relevant" events that do not cause any other events and, for the purposes of fault
analysis, are mostly noise.

e All causal effects are strictly additive — there are no interactions causing a larger
or smaller total effect than the sum of the individual effects.

e Errors are probabilistic. There is not enough information in the data to predict
errors with certainty. While in our case the underlying data generation process is
(pseudo-) random as well, data like this could also be generated by a deterministic
system that just does not log the necessary data to predict errors with certainty.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

REsuULTS

32

As for the first type of synthetic data, the system resets when an error is encountered.
1,000,000 lines were generated to evaluate the methods against.

5.2.1 Supervised Learning

Fig. 5.7 shows the results of supervised learning for the synthetic data type 2. The
range of shift values was chosen by taking all the shift values for which there were sym-
bols with positive odds ratios for a positive label at p < 0.05 (Bonferroni-corrected).
The average precision values are quite low even for low shift values, and for the highest
shift values they diminish to about the value expected by pure chance (which is ap-
proximately the frequency of the positive label in the sample, 0.002). Thus it seems
that the models with the very highest shift values should not be taken at face value.
And indeed, the coefficients from these models do not appear among the symbol-shift
interactions with the highest impact in Table 5.7(b). This table shows exactly what it
should: "error_ causing_symbol" has the highest impact on average, with a peak close to
the real peak of 8. It is followed by "symbol causing_error_causing_symbol". "Sym-
bol__caused_by_error_causing symbol" meanwhile is not shown as having any unusual
causal impact — it appears among the "irrelevant" symbols so far down that it is not dis-
played in the table, which only shows the lines with the largest coefficients. This clearly
shows that the approach was able to distinguish between causation and mere correlation.

5.2.2 Automata Learning

Figure 5.8 shows the learned DFA for synthetic data type 2. It does not contain much
insight — only that the sequences end with an error, errors never occur before the end,
and that there are no further constraints on what can happen. All of that is true, but
not very helpful for finding the causes of errors. Since the automaton only shows what
is possible, not what is probable, it is not a good fit for this type of data, where almost
anything is possible.

5.2.3 Hidden Markov Model

One might think that a hidden markov model would be a good fit for synthetic data
type 2. After all, the process by which it is generated is quite similar to a hidden markov
model — there is a probability distribution over emissions, and this distribution changes
when certain events occur. The only property that does not seem to fit are the normally
distributed distances from cause to effect, but even that could be modeled by an HMM,
albeit with a lot of states. In practice however, the HMM approach did not perform
well. Hyperparameter optimization with BIC yielded an HMM with only two states (see
Fig. 5.9), which gives the same trivial information as the automata learning approach,
with the only (also unhelpful) addition being the overall frequencies of the non-error
symbols in the sample. Manually adding more states also did not help: I tried 8 states,
but did not gain any additional insights.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Synthetic Data Type 2

symbol shift log odds ratio

error__causing_ symbol 6 3.57

- — error__causing symbol 7 3.28
shift avg. precision symbol__causing_error_ causing_ s. 15 3.26
1 0.024 error__causing symbol 5 3.14
2 0.025 error_ causing symbol 8 3.06
3 0.027 symbol__causing_ error_ causing_ s. 10 3.03
4 0.026 error_ causing symbol 9 2.97
5 0.025 error__causing symbol 4 2.97
6 0.027 symbol__causing_ error_ causing_ s. 12 2.90
7 0.025 symbol__causing_error__causing_ s. 11 2.90
8 0.020 symbol__causing_ error_ causing_ s. 14 2.87
9 0.017 symbol__causing_error_ causing_ s. 16 2.74
10 0.012 error__causing symbol 11 2.70
11 0.010 symbol__causing_error_ causing_ s. 13 2.69
12 0.011 symbol__causing error_ causing_ s. 18 2.68
13 0.008 symbol__causing_ error_ causing_ s. 17 2.67
14 0.007 error_ causing_symbol 3 2.66
15 0.004 error_causing symbol 12 2.56
16 0.004 symbol_ causing_error_ causing_ s. 9 2.55
17 0.003 error_ causing symbol 10 2.49
18 0.003 symbol__causing_error_ causing_ s. 20 2.36
19 0.003 error_ causing symbol 2 2.29
20 0.003 symbol__causing_error_ causing_ s. 8 2.28
21 0.002 symbol_causing error_causing_ s. 19 2.27
22 0.002 error_ causing symbol 1 2.15

(a) (b)

Figure 5.7: Supervised learning results for synthetic data 2. (a) shows the average pre-
cisions for the models estimating the causal effects at the given shifts. (b) shows the
causal effects of the different symbols at different shifts. Only the symbol-shift combina-
tions with the strongest impact are depicted, down to an (arbitrary) log-odds cutoff of
2.

¥\ error

Start — & error @

Figure 5.8: Learned automaton for synthetic data type 2. The transition label ¥\ error
signifies that this transition is valid for all symbols of the alphabet ¥ except error.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

REsuULTS

34

symbol__causing__error__causing__symbol ‘

0.0009 -~
1 0.0017 .
777777777 | error__causing__symbol ‘
0.0020~-_
~ 0.01 each ’ symbol__caused__by error__causing__symbol ‘
irrelevants |

Figure 5.9: 2-state hidden markov model for synthetic data type 2. The emissions for
the 100 "irrelevant” symbols are not shown separately, but consolidated for visual clarity.

5.2.4 'Weighted Sequence Tree

The weighted sequence tree method is not a good fit for synthetic data type 2. Between
a symbol with causal significance and its effect, there are usually several irrelevant,
completely randomly selected symbols. For example, when an "error_ causing_symbol"
causes an error, the mean and modal distance to the error is 8, with a standard deviation
of 4. For the modal case of distance 8, there are 7 irrelevant symbols in-between. As
there are 100 different irrelevant symbols with the same probability and with an overall
probability of one of them occurring at any given line of almost 1, there are 1007 = 100
trillion different paths with the same probability, so it is quite unlikely that one of
them will occur multiple times in a sample, let alone enough to jump out by clearing
some weight threshold necessary to keep the visible paths to a manageable level. For
smaller distances the chances are better, but these smaller distances are themselves less
likely. Fig 5.10 shows the weighted sequence tree results for the synthetic data type
2 dataset. All the sequences above the 1% frequency level have a length of only one
element. All but three of them are irrelevant symbols at 1% frequency. The first of
the three is another irrelevant symbol that reached 2% by chance. The second is the
error__causing_symbol, which is the one that should be featured most prominently in a
causal analysis, but which does not quite escape the noise floor at 2%. And the third
is the symbol caused_by_error causing symbol, which is more prominent at 4% and
reflects a real correlation between that symbol and errors, but as we know does not cause
the errors. All in all, as theoretical considerations predicted, the weighted sequence tree
method does perform very well on this data.

5.3 Industry Data

The third type of data is real-life data from an industry source. The system that gener-
ated the log data is a test automation system for the automotive industry. The dataset

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Industry Data

83%% H%,; e%gqta@nt 27

irrele

irrelevant_35) Irrelelrrele‘\ég)mt 64
imelevant_84 wrele%%%& 001 irrelev@nt_57

irrele

irrelevant_13 001 00901 %0%0111 Ireleint_43
0.01 :
irrelevant 74 001 @ 0.01 irrelevant 31
irelevant_ 7 Y — 5 0.0% ogeral fant_42
0.01 0.01--Hrele
irrelevant_61 opr 001 0.01 §.01 irrelev@nt 10

irrelel@nt ﬁ\g{:e,%rfg@%gg 0.01 0-01 |rrele t 36
irrelevant 8 002 irrefed@ntAe@nt 79

irelevant_44 0.02 wrele@nt 95
0.04 ' wrele@nt

|rrele\@nt_63
error_causing_symbol

irrelevant_75
symbol_caused_by_@ror_causing_sym bol

Figure 5.10: Weighted sequence tree for synthetic data type 2. Only sequences above 1%
frequency are shown.

used for this thesis contains the log output from a single customer using the system over
about six months, from November 2017 to May 2018. It comprises around 9.2 million
individual log statements. Each log statement consists of the following data points:

Timestamp given down to the millisecond level.
Severity in ascending order: Info, Warning, Error, Alarm

Process The use of different processes does not necessarily indicate parallelism. "Pro-
cesses" in this context are better understood as functional components of the soft-
ware, akin to modules.

Message Code There is a limited number of message codes, and each log line must
use one of them.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

REsuULTS

36

Message Text Contains additional, specific information about the error in natural
language.

I use the "Message Code" for my analysis. I also experimented with using the "Process"
field in addition, but I judged that the marginally better results did not justify the
additional complexity. I elected not to use the "Message Text", which would need to be
parsed in some way to be useful for machine learning (but see [FLWL09] for one way
to do this). In the original logfiles, the lines are mostly, but not always, arranged in
the order indicated by the timestamp. I suspect that such discrepancies occur when
parallel processes aggregate log data in separate buffers and flush them to the log file
at different times. I used the timestamp to order the log statements, which should
arrange the log statements in the order in which the underlying events actually occurred.
Statements with the same timestamp are left in the order in which they occurred in the
logfiles. The most severe errors, and therefore the most interesting ones from a fault
explanation perspective, are the ones with severity "Alarm"'. There are a number of
different error types with this severity, but many of them do not appear often enough
to make a statistical analysis feasible. I concentrate on the single most frequent error
of this category. I also filter out all statements of severity "Info" during preprocessing,
on the advice of a domain expert from our industry partner. From the same source, we
learned that after an alarm the system has to be reset, and we also learned which log
lines indicate this reset. Since further alarms between an alarm and the next reset are
probably just followup errors caused by the same cause as the first alarm, and behavior
after the reset not affected by what has happened before, all the lines between an alarm
and the next reset are considered irrelevant and are also filtered out. This leaves about
2.6 million lines, of which 2.3 million are warnings, 0.3 million are errors, and 2181 are
alarms. Of the alarms, 931 are instances of errorX. There are 1580 different message
codes, of which 207 appear in warnings, 1368 in errors, and 9 in alarms (four of the codes
appear in two categories). As mentioned, there are certain lines in the log that indicate
a reset of the system, which enables me to split the log data into 13506 independent
sequences, of which 931 end with an instance of errorX and 1251 end with another
alarm.

Judging the accuracy of fault analysis results for this dataset is somewhat challenging,
since in contrast to the synthetic datasets, nobody, including my industry partner, knows
the exact underlying causal structure. Nevertheless the industry partner is in a position
to compare our results to their domain knowledge and give feedback on whether the
results are expected or unexpected, and in the latter case investigate further to confirm
or refute the findings. As it turns out, all my results were judged by the industry partner
to be consistent with their knowledge of the system, but not significantly add to it. I
will further discuss the implications of this outcome in Chapter 6

At the request of our industry partner, I have anonymized sensitive parts of the data
shown in this paper: All the message code names, which normally contain some human-
readable information about the type of event that occurred, have been replaced with
generic names with the pattern "messageCode<number>". Everything else is unchanged.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.3. Industry Data

5.3.1 Supervised Learning

Fig. 5.11 shows the results of supervised learning on industry data. I estimated 20
different logistic regression models to estimate the causal effects of symbols at shifts 1
through 20. As shown in Table 5.11(a), the average precision monotonically decreases
with increasing shifts, but always remains clearly above the level expected by chance,
which, as laid out in Section 4.3, is approximately equal to the proportion of positive
observations, 931/2, 600,000 = 0.0004. I elected to treat the data as one long sequence,
instead of splitting it at the "reset' log statements, since with supervised learning it is
not necessary to have multiple sequences, and I could not be sure that the reset was
total. And in fact there is some indication in the results that the reset really is not total,
or that there is some cause of errors that is external to the system: One of the symbols
listed as causing errorX is errorX, which should not be possible if after each error the
system completely resets.

5.3.2 Automata Learning

Fig 5.12 shows the learned DFA for industry data. Since we are interested in how errorX
occurs, rather than the complete structure of the system, I only used sequences ending
with errorX as input. I also only use the last few observations of each sequence, both
because when using the full sequences the learning algorithm does not terminate in an
acceptable amount of time, and to keep the result legible. In fact, even when using only
the 10 last observations for each sequence, the result is already quite large and hard to
interpret. For a large majority of symbols, including errorX, there is also a self-loop at
the start state, so the automaton does not constrain possibilities by much. If there is
any usable information for finding the cause of the error in this result, I cannot see it.

5.3.3 Hidden Markov Model

Fig. 5.13 shows the learned hidden Markov model for industry data. Due to the large
number of states, the model is hard to grasp as a whole, but it is encouraging that there
is quite a bit of structure: Most states have only one or two emissions with probabilities
above 10%, and there are three transitions out of the error state that clearly dominate.
However, the model appears to either not show any symbol interactions that cause
errors or to be too complex for them to be clearly visible, so using it to investigate
root causes of errors might boil down to investigating individual message codes that are
frequently emitted by states frequently transitioned to from the error state in the model.
It seems to me that the supervised learning approach is better suited to this task, since
it can distinguish causality from mere association. However there may be some value in
seeing which message codes are closely related, such as when they both occur with high
probability in the same state, and that state has a high probability of transitioning to
itself.

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5. RESULTS

symbol shift log odds ratio occurrences

msg_ code_ 1411 2.0 6.67 33

msg_ code_ 1414 2.0 6.44 497

msg_ code_ 1222 1.0 6.27 120

msg_ code_ 1409 1.0 5.58 1291

msg_code_ 1145 2.0 4.71 114

msg_ code_ 1414 1.0 4.68 497

msg_ code_ 1222 5.0 4.49 120

msg_ code_ 1650 5.0 4.41 29

msg_ code_ 1145 1.0 4.25 114

msg_ code_ 1414 3.0 3.93 497

msg_ code_ 1601 2.0 3.65 199

- — msg_ code_ 1145 3.0 3.54 114

shift avg. precision msg code 1222 7.0 3.04 120

1 0.360 msg_ code_ 1414 4.0 2.97 497

2 0.181 msg_ code_ 1213 2.0 2.96 959

3 0.040 msg_ code_ 1637 4.0 2.92 806

4 0.035 msg_ code_ 1753 7.0 2.80 25

5 0.027 msg_ code_ 1294 6.0 2.75 164

6 0.014 msg_ code 1409 2.0 2.60 1291

7 0.014 msg_ code_ 1676 4.0 2.53 29

8 0.007 msg_code_1654 18.0 2.53 114

9 0.007 msg code_ 1222 8.0 2.46 120

10 0.008 msg_ code_ 1417 1.0 2.40 5

11 0.007 msg code_ 1665 7.0 2.40 29

12 0.007 msg_code_ 1669 3.0 2.38 4398

13 0.007 msg_code_ 1654 20.0 2.29 114

14 0.006 errorX 2.0 2.26 931

15 0.005 msg_ code_ 1624 3.0 2.17 215

16 0.005 msg_ code_ 1616 4.0 2.15 48

17 0.005 msg_ code_ 1666 3.0 2.14 112

18 0.005 msg_code_ 1463 13.0 2.13 138

19 0.005 msg_ code_ 1411 1.0 2.11 33

20 0.004 msg_code_ 1654 19.0 2.08 114

(a) (b)
Figure 5.11: Results of supervised learning for industry data. Table (a) shows the average
precisions for the models estimating the causal effects at the given shifts. Table (b)
shows the causal effects of different symbols at different shifts. Only the symbol-shift
combinations with the strongest impact are depicted, down to an (arbitrary) log-odds
cutoff of 2. The "occurrences” column shows how often each symbol occurs in the sample,
to indicate how relevant each effect might be in practice.
38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.3. Industry Data

Figure 5.12: Learned automaton for industry data. Only sequences that end with errorX
were used. Furthermore only the last 10 observations of each sequence were used, both
for performance reasons and for legibility. The start state (S12, in the middle) has self
loops for 182 out of 209 symbols in 3. I do not show each of them in the figure explicitly,
again for legibility.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

5.

REsuULTS

40

mgg_code@P390: 0.99

3g_codef@$390: 0.99
msg_code@f390; 0.99 002 02
0 00a
003 msg_code®@P390: 0.99
‘so’ O.OZM o 0.02
msg_code@#390: 0.97 008 oo 0% N
0.03 \ 0.08
o0 0% oo 0o o]
oo %%‘%saemsgonwo %“3'0"1 ¥
gy MUO o gaogw TR msg_codefE390: 0. 99
0050% 0p 008 0.02
msg codeQ90:098 g boe s S UEER gt et
007 B880s o s oomm 0¥
B m,ma@ssgwwago 98, o
0.02 007~ 007 08 0686 g5 msg_code®390: 0.99
msg_¢ ogdpgl’gﬂﬂ “I”oo 95%0.06 s, o ohecs
| ougopo 0% 00 e coae@r38D: 1.00
o “%amu “o0s 0,02 003,
rq;g_code@??-%: 0.99 %mewm&agf? Ve soooos a
e 002, .08

ot
omi g n&ﬂz ooe 0ot
003 0.02 9y 00802

002 002msg_ wgﬁgﬂ{ﬁg?

oo 002 oo 005 mggdewmw 099
04 083

g0 020002 0% S A\Wi7
oospgg OB 02.0dmsg_code@390: 0.99
008

003

003 o,
002 005 004 ooy 0020004 msg_cada®@?390: 099
00 003 g, 005 202 006
002 oot 08 oo
003 002 40
903 004 003 %o °% ofs
3 005
001
092 8.04 003 003 7(A
002 oo /004
002
s om
msg_code®P390:0.91 . ! 00300

0: 0.93 s
msg_goreOtsa % msg_code®#390: 0.95

msg_code@P390: 087

003
03
0 msg_code%%: 0.86

003

003

002 095

006

msg_codg,,1548: Q48%isg_code_1390: 0.31

0.80
msg_code_1390: 0.43Pisg_code_1548: 0.16
008
msg_code_1587: 0.29%isg_code_1390: 0.19
002
013 008

008
msg_code_1585: 0.30, msg_code@#834: 0.1 Bpnsg_code_1726:0.14
005

003
msg_code_1609: 0.42%isg_code_1825: 0.32
003
014
msg_code@t800: 0.11 003
msg_code_1 60%: 0.53, msgiut;ode%%: 0.16, msg_code_1320: 0.10

msg_code_1544: 0.1780Hsg_code_1883: 0.12
i

errorX? 1.00

100

strt

Figure 5.13: The learned hidden Markov model for industry data. It has 37 states, as
suggested by hyperparameter tuning. For the sake of visual clarity, transitions with a
probability below 2% are not shown, as are emissions with a probability below 10%.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.4. Summary of Results

5.3.4 Weighted Sequence Tree

Fig. 5.14 shows the result of the weighted sequence tree method described in Section 4.2
applied to our industry data set. Given the large number of different message codes,
it is striking that there are some long subsequences - of up to seven message codes -
that appear before more than 1% of the errors of interest. A caveat is that in some of
the subsequences, the same message is repeated many times. It is possible that in such
cases we are not seeing a sequence of multiple events leading to an error, but one event
being reported multiple times. We must look at the distribution of message codes in the
overall log files to make sure that the message codes and sequences in the tree are frequent
specifically before errorX rather than simply frequent in general. msg_code_ 1390 does
occur very frequently — 1.7 million times, which is actually the majority of lines in the
data. And when it occurs, it seems to often occur in many repetitions. In light of this
fact, its long branch in the weighted sequence tree probably does not hint at a causal
connection to the error. The other message codes all occur orders of magnitude less
frequently. While it is still possible that for some of them the association is spurious, we
can take the sequences in the tree as a point of departure for investigating within the
underlying system.

5.4 Summary of Results

There is no single measure on which to compare the quality of the different results
or methods. Measures such as predictive accuracy are not well suited to the problem
because only supervised learning makes discrete predictions that could be measured this
way, and because we are not actually interested in predicting anything. Rather, a result
must fulfill multiple, somewhat qualitative criteria to be useful:

e It must be interpretable, i.e. by studying it one must be able to learn some-
thing about the system and why it produces a particular error without being
overwhelmed by the complexity of the result.

e It should discover patterns that are relevant.

e It should not misleadingly show patterns that are not relevant.

Some results, namely those produced using hidden Markov models and automata learn-
ing on industry data, failed on the criterion of interpretability. Admittedly, the question
of how much complexity and detail is too much is somewhat subjective, and there are
edge cases. The result of using the hidden Markov model on synthetic data type 1 might
be such an edge case. I could see one pattern that causes errors, but not the other. But
it is possible that someone else might see more or less.

Some results clearly failed to discover relevant patterns — mainly when analyzing syn-
thetic data type 2. The ones using hidden Markov model and automata learning did not
really produce any results at all, having collapsed into small models that only showed

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.

REsuULTS

42

msg_c[?g{éi 1390 (W)
msg_codé® 1390 (W)
0.02

msg_codé® 1390 (W)

msg_cod@_%%%o (E) msg_cod® 1414 (E) oo

0.02
msg_cod@_1030220 (E) msg_cod® 1414 (E) msg_codé® 1390 (W)
0.02

0.02
msg_cod&. 1320 (E) msg_codé® 1390 (W)
msg_codé& 1320 (E) msg_cod@ 1411 (E) 0.03

0:05
0.02 msg_codé® 1390 (W)
msg_codé& 1320 (E)

00s msg_codé 1145 (W) 0% msg_codé 1414 (E)

msg_cod® 1320 (), M9-0dEL 1390 (M) 10 1414 ()
0:06 0.07 002

msg_cod® 1825 (E) 0.msg_cod&® 1411 (E)

errofX (A
msg_codé 1409 (E) Vg ,MSg_codé 1213 (E)

0
ms%_oczod@_1 409 (E) 0.02
oritsg_code® 1609 (W
msg_codé 1601 (E) 9.Code2 1609 (W) - 1o code® 1669 (W)
0.02 y

msg_codé& 1585 (E) msg_cod& 1414 (E)
0.02 msg_codé® 1669 (W) 1,

msg_cod® 1637 (E) msg_code® 1145 (W)’

0.01

msg_cod& 1414 (Elysg codé 1414 (E)

0:02
0.61 0.01

msg_cod® 1813 (E) *%msg_cod® 1825 (E)
msg_codée? 1390 (W)
001 msg_codé 1145 (W)

msg_codé® 1390 (W)

Figure 5.14: The weighted sequence tree for industry data. Edges with a weight below
0.01 (corresponding to suffixes occurring in less than 1% of sequences) have been filtered
out for the sake of legibility. Next to each message code, its severity is shown — "(W)"
for warning, "(E)" for error, and "(A)" for alarm

truisms. The weighted sequence tree result found one relevant pattern, but it was barely
more prominent than random irrelevant patterns, and less prominent than a real, but
non-causal pattern.

It seems like most results that were interpretable preformed well on the last criterion (not
misleadingly showing irrelevant patterns), with the exception of the weighted sequence
tree on synthetic data 2, which shows many random irrelevant patterns as mentioned.

On synthetic data type 1, all the methods did somewhat well. The weakest here was
supervised learning, which cannot show the interactions that are important for this data
type. Automata learning did best here. For the other two data types, supervised learning
performed best, while the other methods mostly failed. There is however a caveat for any
claims of good performance on industry data: I do not know what actually causes the
error, and can only say that the results are plausible and consistent with my industry
partner’s domain knowledge. Table 5.1 shows a summary of the results for different
combinations of results and data types.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

5.4. Summary of Results

synthetic data type 1 synthetic data type 2

industry data

weighted poor (error-causing sym-
sequence bol did not rise above
tree noise floor, could not dis-
tinguish between causal
and non-causal associa-
tions)
hidden poor (collapsed into a 2-
Markov state model with no use-
model ful information)
automata poor (collapsed into a
learning single state with no use-

ful information)

supervised ok (could predict errors

learning very accurately, but
gives no information
about interactions)

ok!

poor (too com-
plex to see pat-
terns)

poor (too com-
plex to see pat-
terns)

Table 5.1: Summary of the results for different combinations of methods and data types.
I have each result a grade on a scale of poor-ok-good-very good. The grading is somewhat
subjective, but since the performance differences are mostly very clear, I think it is far
from arbitrary. The most salient characteristics of each result are also given.

!The results could not be fully verified

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

In this thesis, I present several methods for fault analysis using log data. In contrast
with previous works using machine learning methods on log data, which largely make
predictions of failures and in some cases give explanations for individual errors, I attempt
to give unified explanations for whole classes of errors. Each of the four methods I present
is evaluated using three different types of data, revealing the strengths and weaknesses
of each method. There are several possibilities for future work:

e This work uses data that already comes "pre-clustered" — the industry data and
synthetic data have a limited set of message codes and symbols respectively. How-
ever, log data often lacks such a preexisting clustering, and even the industry data
used here additionally contains unstructured data that would potentially allow for
more fine-grained clustering, akin to the clustering described in some of the papers
I cite in the literature chapter. By adopting such a clustering approach, the pre-
sented methods could be extended to unstructured log data, and their performance
could be improved for log data which is only partially structured.

e The strengths and weaknesses of the different methods are such that it might be
useful to combine some of them. For example, the supervised learning method
works well for finding some relevant types of events among a large number of irrel-
evant ones (the "needles in the haystack", e.g. synthetic data type 2), while hidden
Markov models or automata learning is works well at showing the interactions of a
few event types that are all more or less relevant (e.g. synthetic data type 1). For
data where there are both many irrelevant messages and the interactions between
the relevant ones are important, it might be useful to first filter out the irrelevant
ones with supervised learning and then analyze the interactions of the relevant
ones with one of the other approaches.

e The synthetic data used in this thesis is relatively simple, so it is not clear whether
the good results some of the methods achieved on it would extend to real-world

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6.

CONCLUSION

46

datasets. As for the industry data, I lacked sufficient information about the true
causes of errors to make definitive claims about the quality of the results of the
analyses. And I also did not have access to the system that generated the data
to confirm or refute my results. It would be useful to test the methods developed
in this thesis on more complex synthetic data and / or real-world data where the
causes of errors are known in advance or where the results of analyses can be
checked directly in the system that generated the log data.

e As mentioned in Section 5.4, the measures employed to compare results are some-
what subjective. It would be good to find or develop an objective metric for such
comparisons.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[BCB15]

[Bes15]

[BPSW70]

[BTHN18]

[d1H10]

[DLLP97]

[DLZS17]

[ESW12]

Bibliography

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Proceedings of the
International Conference on Learning Representations, 2015.

Yves Bestgen. Exact expected average precision of the random baseline
for system evaluation. The Prague Bulletin of Mathematical Linguistics,
103(1):131-138, 2015.

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maxi-
mization technique occurring in the statistical analysis of probabilistic func-
tions of markov chains. Ann. Math. Statist., 41(1):164-171, 02 1970.

Andy Brown, Aaron Tuor, Brian Hutchinson, and Nicole Nichols. Recurrent
neural network attention mechanisms for interpretable system log anomaly
detection. In Proceedings of the First Workshop on Machine Learning for
Computing Systems, MLCS’18, pages 1:1-1:8, New York, NY, USA, 2018.
ACM.

Colin de la Higuera. Grammatical Inference: Learning Automata and Gram-
mars. Cambridge University Press, 2010.

Thomas G. Dietterich, Richard H. Lathrop, and Tomé&s Lozano-Pérez. Solv-
ing the multiple instance problem with axis-parallel rectangles. Artificial
Intelligence, 89(1):31 — 71, 1997.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’17, pages 1285-1298, New York, NY, USA, 2017.
ACM.

Evren Ermis, Martin Schaf, and Thomas Wies. Error invariants. In Dimitra
Giannakopoulou and Dominique Méry, editors, FM 2012: Formal Methods,
pages 187-201, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

BIBLIOGRAPHY

48

[FLWLOY]

[FSS+13]

[GMPO05]

[HCM*00]

[HP85]

[IHS15)

[JM11]

[JWHT13)]

[LL17]

[LWLZ17]

[ME10]

[NKN12]

Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. Execution anomaly
detection in distributed systems through unstructured log analysis. In Data
Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pages
149-158. TEEE, 2009.

Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, and Jelena
Vlasenko. Failure prediction based on log files using random indexing and
support vector machines. Journal of Systems and Software, 86(1):2-11,
2013.

Peter D Griinwald, In Jae Myung, and Mark A Pitt. Advances in minimum
description length: Theory and applications. MIT press, 2005.

David Heckerman, David Maxwell Chickering, Christopher Meek, Robert
Rounthwaite, and Carl Kadie. Dependency networks for inference, col-

laborative filtering, and data visualization. Journal of Machine Learning
Research, 1(Oct):49-75, 2000.

David Harel and Amir Pnueli. On the development of reactive systems. In
Logics and models of concurrent systems, pages 477-498. Springer, 1985.

Malte Isberner, Falk Howar, and Bernhard Steffen. The open-source learn-
lib. In Daniel Kroening and Corina S. Pasareanu, editors, Computer Aided
Verification, pages 487-495, Cham, 2015. Springer International Publishing.

Manu Jose and Rupak Majumdar. Bug-assist: Assisting fault localization
in ANSI-C programs. In Ganesh Gopalakrishnan and Shaz Qadeer, edi-
tors, Computer Aided Verification, pages 504509, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An
introduction to statistical learning. Springer, 2013.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model
predictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 4765—4774. Curran Associates, Inc., 2017.

Shixia Liu, Xiting Wang, Mengchen Liu, and Jun Zhu. Towards better
analysis of machine learning models: A visual analytics perspective. Visual
Informatics, 1(1):48 — 56, 2017.

Nizar R Mabroukeh and Christie I Ezeife. A taxonomy of sequential pattern
mining algorithms. ACM Computing Surveys (CSUR), 43(1):3, 2010.

Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured compar-
ative analysis of systems logs to diagnose performance problems. In Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

Bibliography

[OA00]

[Pea09]

[POVHG18]

[Ris83]

[SBSS]

[Sch78]

[SFMW14]

[WGL*16]

Implementation, NSDI'12, pages 2626, Berkeley, CA, USA, 2012. USENIX
Association.

Fikri Oztiirk and Fikri Akdeniz. Ill-conditioning and multicollinearity. Lin-
ear Algebra and its Applications, 321(1):295 — 305, 2000. Eighth Special
Issue on Linear Algebra and Statistics.

Judea Pearl. Causal inference in statistics: An overview. Statist. Surv.,
3:96-146, 2009.

Teerat Pitakrat, Dusan Okanovié¢, André van Hoorn, and Lars Grunske.
Hora: Architecture-aware online failure prediction. Journal of Systems and
Software, 137:669 — 685, 2018.

Jorma Rissanen. A universal prior for integers and estimation by minimum
description length. The Annals of Statistics, 11(2):416-431, 1983.

Gerard Salton and Christopher Buckley. Term-weighting approaches in
automatic text retrieval. Information processing € management, 24(5):513—
523, 1988.

Gideon Schwarz. FEstimating the dimension of a model. Ann. Statist.,
6(2):461-464, 03 1978.

Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. Log-
based predictive maintenance. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
'14, pages 1867-1876, New York, NY, USA, 2014. ACM.

Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to Active
Automata Learning from a Practical Perspective, pages 256—296. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

Splunk Inc. Modernize your IT monitoring with predictive analytics.
Brochure, 2019.

Sumologic. Devops unleashed. Company website, https://www.
sumologic.com/solutions/operations—analytics/, 2019.

Loom Systems. Sophie’s Al - engine overview. Brochure.

Mitra Tabaei Befrouei, Chao Wang, and Georg Weissenbacher. Abstrac-
tion and mining of traces to explain concurrency bugs. Formal Methods in
System Design, 49(1):1-32, Oct 2016.

W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A
survey on software fault localization. IEFEE Transactions on Software FEn-
gineering, 42(8):707-740, 2016.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

BIBLIOGRAPHY

50

[XZCN19]

[ZXM™16]

Jianwu Xu, Hui Zhang, Haifeng Cheng, and Bin Nie. Log-based system
management and maintenance. Patent Application US 2019 / 0095313 A1,
2019.

Ke Zhang, Jianwu Xu, Martin Renquiang Min, Guofei Jiang, Konstantinos
Pelechrinis, and Hui Zhang. Automated it system failure prediction: A deep
learning approach. In 2016 IEEE International Conference on Big Data,
pages 1291-1300, Dec 2016.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

o1

Appendices

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg V_QF_H.O__B__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“regBnpian 3ayiolgig Usip NL Jap ue 1si liaglewoldiq Jasalp uoisiaAfeulBuO aponipab ausiqoidde aiq v_ﬂ_-_u.o__n__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
|
rk

U W N =

-~

Al

APPENDIX

Code for generating synthetic
data

Synthetic data type 1

import
import
import
import

import

java.io.FileNotFoundException;
java.io.PrintWriter;
java.io.UnsupportedEncodingException;
java.util.Random;

static java.nio.charset.StandardCharsets.UTF_8;

public class ErrorTraceGenerator ({
public static void main(String[] args) throws FileNotFoundException,

< UnsupportedEncodingException {

//Random number generator initialized with a different seed
Random rand = new Random(System.currentTimeMillis());

int tracelen = 1000000;

PrintWriter writer = new PrintWriter(
"data/synthetic_traces/trace" + String.valueOf (tracelen) +
"_" + String.valueOf (System.currentTimeMillis()) + ".txt",
UTF_38

)i
int state = 0;

while (tracelen != 0) {
tracelen——;
switch (state) {
case 0:

// You do a request with probability 1
writer.println("req");
state = 1;
break;

case 1:
// Request with probability 0.2 (state 2)
// Grant with probability 0.8 (state 3)
if (rand.nextDouble() <= 0.2) {

writer.println("req");

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

A. CODE FOR GENERATING SYNTHETIC DATA

33 state = 2;

34 }

35 else {

36 writer.println("gnt");

37 state = 3;

38 }

39 break;

40 case 2:

41 // Request with probability 0.2 (state 4)
42 // Grant with probability 0.8 (state 3)
43 if (rand.nextDouble() <= 0.2) {

44 writer.println("req");

45 state = 4;

46 }

47 else {

48 writer.println("gnt");

49 state = 3;

50 }

51 break;

52 case 3:

53 // Ack with probability 0.9 (state 0)

54 // Req with probability 0.1 (state 5)

55 if (rand.nextDouble() <= 0.9) {

56 writer.println ("ack");

57 state = 0;

58 }

59 else {

60 writer.println ("req");

61 state = 5;

62 }

63 break;

64 case 4:

65 // Request with probability 0.2 (state 5)
66 // Grant with probability 0.8 (state 3)
67 if (rand.nextDouble () <= 0.2) {

68 writer.println ("req");

69 state = 5;

70 }

71 else {

72 writer.println("gnt");

73 state = 3;

74 }

75 break;

76 case 5:

7 writer.println("error");

78 state = 0;

79 break;

80 }

81 }

82 writer.close();

83 }

84 11}

85 | import java.io.IOException;

86 | import java.io.PrintWriter;

87 | import java.util.Random;

88

89 | import static Jjava.nio.charset.StandardCharsets.UTF_8;

90

91 |public class ErrorTraceGenerator {

92 public static void main(String[] args) throws IOException {
93 //Random number generator initialized with a different seed
94 Random rand = new Random(System.currentTimeMillis());

o4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Al

Synthetic data type 1

int tracelen = 1000000;
PrintWriter writer = new PrintWriter(

"data/synthetic_traces/trace" + String.valueOf (tracelen)
"_" + String.valueOf (System.currentTimeMillis ())

UTF_38
)i
int state = 0;

while (tracelen != 0) {
tracelen——;
switch (state) {
case 0:

// You do a request with probability 1
writer.println ("req");
state = 1;
break;

case 1:
// Request with probability 0.2 (state 2)
// Grant with probability 0.8 (state 3)
if (rand.nextDouble() <= 0.2) {

writer.println ("req");

state = 2;

}

else {
writer.println("gnt");
state = 3;

}

break;

case 2:

// Request with probability 0.2 (state 4)

// Grant with probability 0.8 (state 3)

if (rand.nextDouble() <= 0.2) {
writer.println("req");

state = 4;

}

else {
writer.println("gnt");
state = 3;

}

break;

case 3:
// Ack with probability 0.9 (state 0)
// Req with probability 0.1 (state 5)
if (rand.nextDouble() <= 0.9) {
writer.println("ack");

state = 0;

}

else {
writer.println("req");
state = 5;

}

break;

case 4:
// Request with probability 0.2 (state 5)
// Grant with probability 0.8 (state 3)
if (rand.nextDouble() <= 0.2) {
writer.println("req");

state = 5;

}

else {
writer.println("gnt");
state = 3;

"oExt",

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

CODE FOR GENERATING SYNTHETIC DATA

56

157 }
158 break;
159 case 5:
160 writer.println("error");
161 state = 0;
162 break;
163 }
164 }
165 writer.close();
166 }
167 |}
A.2 Synthetic data type 2
1 | import os
2 | import random
3 | import string
4 | from typing import Dict
5
6 | import numpy as np
7 | import pandas as pd
& | from scipy import stats
9
10 | from src.constants import DATA_DIR
11
12
13 | class SymbolInfluence:
14 def __init__ (self, origin: "SpecialSymbol",
15 target: "SpecialSymbol",
16 probability_of_causation: float,
17 mean_distance_in_case_of_causation: int,
18 std_dev_in_case_of_causation: int
19) :
20 self.origin = origin
21 self.target = target
22 self.probability_of_causation = probability_of_ causation
23 self.mean_distance_in_case_of_causation = mean_distance_in_case_of_causation
24 self.std_dev_in_case_of_causation = std_dev_in_case_of_causation
25
26
27 | class Symbol:
28 def __init__ (self, name: str):
29 self.name = name
30
31
32 | class SpecialSymbol (Symbol) :
33 def __init__ (self, name: str,
34 base_probability: float = 0.001,
35 influenced_symbols: Dict["SpecialSymbol", SymbolInfluence] = None
36) :
37 super () .__init__ (name)
38 self.base_probability = base_probability
39 self.influenced_symbols = influenced_symbols if influenced_symbols is not None
— else {}
40
41 def __hash__ (self):
42 return hash (self.name)

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

"

ot SIS
SRS D o

ot

SIS
SN

n

S\
© o

60
6]

62
63

64
65
66

67
68
69
70

80

83
85
86
87
89
90

A.2. Synthetic data type 2

def eq__ (self, other):

return isinstance (self, type(other)) and self.name == other.name

ERROR = SpecialSymbol ("error", base_probability=0.001)

ERROR_CAUSING_SYMBOL = SpecialSymbol ("error_causing_symbol", base_probability=0.001)
ERROR_CAUSING_SYMBOL.influenced_symbols [ERROR] = SymbolInfluence (ERROR_CAUSING_SYMBOL,
<~ ERROR, 0.5, 8, 4)

SYMBOL_CAUSED_BY_ERROR_CAUSING_SYMBOL = SpecialSymbol ("
< symbol_caused_by_error_causing_symbol", base_probability=0.001)

ERROR_CAUSING_SYMBOL.influenced_symbols [SYMBOL_CAUSED_BY_ERROR_CAUSING_SYMBOL] = \
SymbolInfluence (ERROR_CAUSING_SYMBOL, SYMBOL_CAUSED_BY ERROR_CAUSING_SYMBOL, 0.7,
< 4, 4)

SYMBOL_CAUSING_ERROR_CAUSING_SYMBOL = SpecialSymbol ("
<~ symbol_causing_error_causing_symbol", base_probability=0.001)

SYMBOL_CAUSING_ERROR_CAUSING_SYMBOL.influenced_symbols [ERROR_CAUSING_SYMBOL] = \
SymbolInfluence (SYMBOL_CAUSING_ERROR_CAUSING_SYMBOL, ERROR_CAUSING_SYMBOL, 0.8, 3,
— 5)

def generate(n_lines, n_irrelevant_symbols) :

irrelevant_symbols = [Symbol ("irrelevant_" + str(i)) for i in range(
— n_irrelevant_symbols)]
special_symbols = \

[ERROR, ERROR_CAUSING_SYMBOL, SYMBOL_CAUSED_BY_ERROR_CAUSING_SYMBOL,
<~ SYMBOL_CAUSING_ERROR_CAUSING_SYMBOL]

p_special_symbol = sum(special_symbol.base_probability for special_symbol in
— special_symbols)

p_irrelevant_symbol = (1 / n_irrelevant_symbols) * (1 - p_special_symbol)

symbols = irrelevant_symbols + special_symbols

base_probabilities = \

n_irrelevant_symbols * [p_irrelevant_symbol] + [symbol.base_probability for
< symbol in special_symbols]

file_path = os.path.join (DATA_DIR, "synthetic_traces", "many_symbols", "
< many_symbols_trace_" + str(n_lines)
+ "_lines_" + '’ .join(random.choices (string.

<~ ascii_uppercase + string.digits, k=5)) + ".txt"
)
with open(file_path, "w") as file:
special_symbol_to_distance_to_next_occurrence = {symbol: None for symbol in
<~ special_symbols}
for _ in range(n_lines):
for symbol in special_symbols:
if special_symbol_to_distance_to_next_occurrence[symbol] is not None:

special_symbol_to_distance_to_next_occurrence[symbol] -= 1
imminent_symbols = \
[symbol for symbol, distance in
< special_symbol_to_distance_to_next_occurrence.items () 1if
< distance == 0]
if len(imminent_symbols) != 0:
current_symbol = np.random.choice (imminent_symbols)
special_symbol_to_distance_to_next_occurrence[current_symbol] = None

imminent_symbols.remove (current_symbol)
for symbol in imminent_symbols:
special_symbol_to_distance_to_next_occurrence[symbol] = 1
else:
current_symbol = np.random.choice (symbols, p=base_probabilities)

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

A. CODE FOR GENERATING SYNTHETIC DATA

o8

91
92
93
94

Qo ©
[SXING}

98
99
100
101
102
103

104
105

106
107

108

109
110
111
112
113
114
115
116
117
118
119
120

def

print (current_symbol.name, file=file)

on error, all probabilities reset (simulating the system going back to
<~ the initial state)
if current_symbol == ERROR:
special_symbol_to_distance_to_next_occurrence = {symbol: None for
< symbol in special_symbols}
elif current_symbol in special_symbols and len(current_symbol.
<~ influenced_symbols) > 0:
for symbol_influence in current_symbol.influenced_symbols.values() :
if random.random() < symbol_influence.probability_of_ causation:
mean = symbol_influence.mean_distance_in_case_of_causation
std_dev = symbol_influence.std_dev_in_case_of_causation
distance_to_next_occurrence = \
stats.truncnorm((0 - mean) / std_dev, np.inf, loc=mean,
< scale=std_dev)\
.rvs () .round() .astype (int)
old_distance = special_symbol_to_distance_to_next_occurrence [
— symbol_influence.target]
if old_distance is not None:
distance_to_next_occurrence = min(old_distance,
— distance_to_next_occurrence)
special_symbol_to_distance_to_next_occurrence[symbol_influence.
— target] = \
distance_to_next_occurrence

return file_path

read (file_path) :
with open(file_path, "r") as file:
lines = [line.rstrip(’\n’) for line in file]

df = pd.Series(lines, name="symbol") .to_frame ()
df["is_error"] = df["symbol"] == "error"
return df

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Background
	Literature Review
	Methods
	Preprocessing
	Weighted Sequence Tree
	Supervised Learning
	Automata Learning
	Hidden Markov Model

	Results
	Synthetic Data Type 1
	Synthetic Data Type 2
	Industry Data
	Summary of Results

	Conclusion
	Bibliography
	Appendices
	Code for generating synthetic data
	Synthetic data type 1
	Synthetic data type 2

