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Abstract

Fingerprinting digital data is a method of embedding a traceable mark into the data
to verify the owner and identify the specific recipient a certain copy of data set has
been released to. This is crucial for releasing data sets to third parties, especially if
the release involves a fee, or if the data contains sensitive information due to which
further sharing and potential subsequent leaks should be discouraged and deterred from.
Fingerprints generally involve distorting the data set to a certain degree, in a trade-off to
preserve the utility of the data versus the robustness and traceability of the fingerprint.
Different types of data require different approaches. Most of the state-of-art techniques
are designed specifically for the numerical type of data. In this thesis, we will propose an
approach for fingerprinting data sets containing categorical data. We further compare
several approaches for fingerprinting according to their robustness against various types of
attacks, such as subset or bit-flipping attacks, and evaluate the effects the fingerprinting
has on the utility of the datasets, specifically for Machine Learning tasks.
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CHAPTER 1
Introduction

1.1 Motivation

Over the last decades, the trends of sharing and processing digital data have vastly
increased. Data is a valuable asset to its owner, therefore any type of unauthorised
distribution or usage by the third parties violates the rights of the owner and authorised
buyers. It is the interest of the data owner to detect data leakages and to prove the
ownership of the data.

When the owner wants to share the digital data and at the same time keep her rights
to it, as an attempt to prevent the unintended sharing or use in the data, one can think
of a piece of information to be added to this data so that, when seeing a copy of the
data, it is possible to extract the mark that verifies the owner. This piece of information
is called a watermark. One type of watermarks are the visible ones, commonly seen in
the domain of pictures, videos or PDF files as a visual mark overlaying a part of the
data. These watermarks are easy to spot and, with a little bit of skill and effort, removed.
However, watermarks can be constructed such that it is nearly impossible for the human
observer to see them. Consider choosing a few pixels in an image and slightly changing
their intensities. The naked eye will hardly notice any changes, however, the owner can
still extract the mark. The model that defines the watermark embeds it in the data and
extracts it from the data is called the watermarking technique. Such a technique provides
ownership protection for the distributed data.

One step further in ownership protection is detecting the source of unauthorised leakage,
i.e. the party that distributed the data without the owner’s authorisation. Fingerprinting
is another class of steganography, i.e. information hiding techniques, which strengthens
the ownership protection by adding the property of leakage source detection and therefore
is usually in the literature considered as an extension to watermarking. By fingerprinting
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1. Introduction

a small piece of information that represents a buyer’s identification is incorporated into
the data, producing a distinct copy of the data for each of the data receivers. This
buyer-specific piece of information is called fingerprint. This area has been widely studied
in the domain of multimedia data, while in the area of relational databases there are a
rather few proposed approaches.

Usually, the fingerprint is embedded in the database such that the values are slightly
altered, which can affect the quality of the data. Once embedded in the data, the
fingerprint should be detectable only by the data owner, and it should not be easily
removed from the data by any operations on the database, such as removing or adding
tuples. Altering the data might sound like a limitation for the buyer, but according to
the majority of the proposed techniques, both for watermarking and fingerprinting, this
is mandatory to achieve the watermark/fingerprint robustness. Therefore, one has to
start with the assumption that for the potential buyers and users of the data these small
alterations introduced by watermark or fingerprint are acceptable. The challenge is to
find a good trade-off between robustness and data quality and utility.

The technique of fingerprinting is used to protect digital data. Digital data inside of a
file can be compared, shuffled, deleted, modified, etc., therefore one must address the
problems of different attacks on the fingerprint detection process. The attack may be
originating from a malicious attacker who wants to, for example, remove the fingerprint
from the data and distribute it illegally without consequences, or wants to falsely claim
the ownership of the data, or confuse the fingerprint detection such that some other
innocent buyer is accused.

All of the proposed fingerprinting techniques generally imply changes in the values.
The errors are usually minor, however, in some settings, this might cause significant
violations of the result accuracy made by observation of the data. For example, using a
fingerprinted dataset in data mining and knowledge extraction might affect the learning
process and the predictions. Since Machine Learning plays a big role in technical progress
of today’s data-driven economies, it is important to show that these changes in data do
not affect the insights inferred from data or a prediction-making process in a way that
they significantly reduce the performance of the data mining algorithms.

The alterations have a significant impact on categorical values, which makes fingerprinting
categorical data a separate case study. In these settings, it is hard to speak about "minor"
error or a scalable measurement for information loss, i.e. the changes are more perceptible.
Area of fingerprinting categorical data is not as well studied as fingerprinting numerical
data because of the mentioned limitations, even though fingerprinting categorical data is
no less important than fingerprinting numerical values.

The fingerprint scheme should satisfy the following properties:

2
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1.2. Problem Statement and Research Questions

Detectability The owner should be able to detect and distinguish a fingerprint
from the dataset. The fingerprint should be detectable also from a subset of the
data, as well as the modified version of the dataset.

Imperceptibility The utility of the data should not be significantly affected by
modifications caused by fingerprinting. In the literature, this is usually measured
by changes in mean and variance of the numerical attributes. Besides mean and
variance, we measure data imperceptibility by measuring the performance of the
fingerprinted data on a classification task using different classifiers and comparing
it to the performance of classifiers trained using unmarked data.

Robustness Fingerprinting schemes should be robust against benign operations on
a dataset and malicious attacks that may remove or modify embedded fingerprint.
Benign database operations are those with no aim of unauthorised usage or release
of the database, such as deleting, adding and updating tuples. Malicious attacks
include selective modifications of the fingerprinted database, releasing a subset of a
database or modifying and erasing the embedded fingerprint. The malicious attacks
that we consider in the thesis, as commonly mentioned in the literature, are:

1. Subset attack: the attacker releases only a subset of the fingerprinted dataset

2. Superset attack: the attacker adds additional tuples to the fingerprinted
dataset

3. Bit-flipping attack: values of some bits in the fingerprinted data are inverted
so that fingerprint cannot be detected correctly

4. Additive attack: a special case of bit-flipping attack where the attacker adds a
fingerprint on the fingerprinted data that might distort the initial fingerprint

5. Collusion attack: attackers with access to multiple copies of fingerprinted data
(with different fingerprints) create a new copy of the data where neither of the
embedded fingerprints might be detectable, thus no member of the malicious
coalition might be implied as a source of leakage

The evaluation also provides insight into relations between different robustness, imper-
ceptibility and detectability levels.

1.2 Problem Statement and Research Questions

Embedding a mark in data is achieved by changing its values. While the fingerprinting
technique must assure visibility of a fingerprint to the data owner and imperceptibility
to all the other users, it is also important that utility of the data is preserved as much as
possible, otherwise, data loses its value. Loss in utility can be analysed in the aspect of
changes within the dataset and from the data application point of view, such as training
Machine Learning models. Fingerprinting scheme should contain evaluation on both
robustness of a fingerprint and utility of fingerprinted data.
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1. Introduction

The type of data in the dataset can also be a crucial aspect of evaluating fingerprinting
scheme effectiveness. Categorical data are shown to give rise to more problems with
embedding the fingerprint compared to numerical data, yet an appropriate fingerprint-
ing scheme for categorical data is necessary, otherwise, the domain of fingerprinting
applications is very limited.

This work thus considers the following research questions:

1. Which metrics can be recommended to evaluate the robustness of the fingerprinting
schemes for relational datasets and which to evaluate the utility of data?

2. How robust are the fingerprinting techniques in the setting of certain malicious
attacks?

3. How does the fingerprint in the data affect the quality and the utility of data?

4. How can we design a robust fingerprinting scheme that can be applied on non-
numerical data?

5. How can we provide guidance on the application of the most suitable fingerprinting
techniques and parameters that meet both the ownership protection and utility
requirements for a given data-analysis setting?

1.3 Aim of the work

This work aims to answer the research questions from Section 1.2. Different existing
fingerprinting methods will be analysed and their robustness under different attacks
will be evaluated, both theoretically and experimentally. Special attention will be given
to defining and analysing a method for fingerprinting categorical data. Furthermore,
the utility of fingerprinted data will be evaluated concerning changes in metrics such as
mean and variance, and concerning effects on Machine Learning models when trained
on fingerprinted data compared to models trained using original data. The work will
summarise all of the aspects of the fingerprinting scheme, from detectability by the owner,
imperceptibility by the users, resilience to attacks and quality and utility of fingerprinted
data.

1.4 Methodological Approach

Implementation of fingerprinting techniques and framework for robustness

analysis The proposed fingerprinting techniques [1, 2, 3] provide well-defined schemes
and robustness analysis but lack in implementations. To perform the empirical evaluation,
the approaches are implemented as a part of this thesis. The implementation follows the
proposed algorithmic steps from their respective fingerprinting methods and allows to
easily change the parameter setting for the fingerprinting method. Secondly, we design
and implement a method for fingerprinting categorical data. Finally, robustness analysis
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1.5. Structure of the work

requires a suitable framework for evaluating fingerprinting techniques’ resilience against
different attacks. Each attack is modelled and incorporated into the framework such that
it can be tested on any of the implemented fingerprinting schemes.

Evaluation of the quality effects on a fingerprinted dataset for different finger-

printing techniques As mentioned before, the fingerprint brings a certain distortion
to the data. Therefore one should address the problem of modifications of the values and
consistency and integrity of the fingerprinted dataset. In this part, we will obtain some
measures such as mean and variance of distinct numerical attributes in the real data,
analyse those results and compare them to theoretical results, discussed in the respective
original papers of the fingerprinting methods [1, 2, 4].

Evaluation of fingerprint robustness for different fingerprinting techniques

The second part of this thesis is an evaluation of the robustness of each fingerprinting
method against the malicious attacks and benign operations on the dataset. Some of the
attacks include bit-flipping attack, subset attack, collusion, etc.[5]. Every fingerprinting
method is well substantiated by the probabilistic model for the robustness against each
of the attacks. We further run experiments on real data to measure the success of each
attack empirically and deliver conclusions and comparisons to the theoretical results.
The experiments are run with different parameter settings, therefore the impact of each
parameter on the techniques’ resilience to attacks is elaborated.

Empirical evaluation of the impact of a fingerprinted dataset on a specific

learning target The goal of the last part of the thesis is to evaluate the impact of a
fingerprint embedded into the dataset used for a specific learning target. We refer to
this impact as a quality effect. The biggest focus is given to measuring the difference
in the utility of a dataset before and after fingerprinting under the same parameter
setting. This is achieved by performing the same classification tasks on both datasets, in
several different experiments with different supervised Machine Learning tasks, different
classifiers, i.e. logistic regression, random forest, etc. and different parameters.

The overall goal of the thesis is to deliver a comprehensive overview and analysis of the
state-of-the-art fingerprinting techniques for relational databases, present the robustness
and defence models against numerous attacks, analyse the distortions to integrity and
quality effects of the dataset via impact on learning tasks, corroborate the analysis with
the experimental results and provide guidance for choosing a technique and the parameter
setting based on a thorough experimental evaluation.

1.5 Structure of the work

Chapter 1 provides the introduction of the thesis. It includes the motivation, problem
statement, research questions and aim of the work. Chapter 2 provides the state of
the art. It covers the general watermarking and fingerprinting techniques developed for
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1. Introduction

domains of multimedia, text, software, etc., and related work in the area of watermarking
and fingerprinting relational datasets. Chapter 3 describes the chosen fingerprinting
techniques. Chapter 4 covers the robustness analysis of chosen fingerprinting techniques
against different attacks and empirical evaluation using different datasets. In Chapter 5
we analyse the quality effects of fingerprinted datasets through the experiments on real
data and evaluate the effects of an embedded fingerprint in data used for training Machine
Learning models. We summarise by providing the recommendations and guidance on the
choice of fingerprinting techniques and parameters for specific settings.
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CHAPTER 2
State-of-the-Art

Digital watermarking is a method that helps protect intellectual property for various
types of digital data. Since it just marks data but doesn’t control access to the data,
watermarking is a passive protection tool. There is a wide range of applications that
watermarking can be used for, such as copyright protection, fraud and tamper detection,
content management on social networks, etc. Fingerprinting is used for source tracking.
It is the special application of watermarking where different recipients of the data get
differently watermarked content. The first watermarking methods were developed for the
multimedia domain (images, audio, video) and later extended to other types of digital
data such as text, software, relational databases, etc.

2.1 Generic framework for watermarking and
fingerprinting

Digital watermarking consists of two main processes: insertion (embedding) and detection
(extraction). The insertion process is in charge of watermark creation and embedding it
into the data. The output is the marked copy of the data that is publicly distributed.
Insertion process of fingerprinting embeds the different mark for each distributed copy
that is specific for each buyer. Detection process extracts the watermark from the data.
It reports the existence of a watermark in the data given as the input, identifies the
owner, or in case of fingerprinting identifies the buyer. The data on the input of the
detection process can be affected by some benign transformations of the data or malicious
transformations made by the attacker. The general framework for watermarking (and
fingerprinting) is shown in Section 2.1.
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2. State-of-the-Art

Figure 2.1: General framework for watermarking

2.2 Watermark categorisation

Digital watermarks may be categorised in several ways depending on different properties.
The following categorisation criteria are applied to fingerprints as well since we consider
fingerprinting as a special case of watermarking.

Imperceptibility The most general categorisation is according to the imperceptibility
of a watermark. A digital watermark is called imperceptible if the marked copy is
perceptually indistinguishable from the original data. A watermark is perceptible if its
presence in the data is noticeable (e.g. owner’s logo as an overlay on an image).

Detectability Watermark schemes can be categorised in terms of verifiability / de-
tectability, i.e. needing the original data to extract the watermark from the marked data.
A Blind watermarking scheme does not need the original data for the extraction process,
while non-blind does.

Robustness Furthermore, according to its robustness, watermarks can be categorised
into fragile, semi-fragile and robust. Fragile watermarks are commonly used for tamper
detection because they fail to be detected after the slightest modification. Semi-fragile
transformation resists some benign transformations, but fail detection after malignant
transformations (attacks). Robust watermarks resist a wide range of benign or malignant
transformations and satisfy the property that the removal of a watermark is not possible
without significantly degenerating the data quality.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2.3. Multimedia, text and software

Distortion In distortion-based watermarking techniques marking introduces distortions
to the underlying original data. On the contrary, distortion-free watermarking techniques
rely on detecting the watermark as a function of the data itself without changing the
original data. Distortion-free watermarks are fragile and are applied in tamper detection.

2.3 Multimedia, text and software

The concepts of watermarking [6, 7, 8] and fingerprinting [9] digital data firstly appear in
domains of multimedia data and are extensively studied over the last two decades. Most
of these techniques are developed for images [10] and later extended to video [11] and
audio [12, 13].

Image watermarking is applied in two main domains of an image: in the spatial domain
where an image is represented by pixels and in the transform domain where it is represented
in terms of its frequencies (the image is segmented into multiple frequency bands using
a mathematical transform, for instance, Discrete Cosine Transform (DCT), Discrete
Wavelet Transform (DWT) and Discrete Fourier Transform (DFT)) [14]. The watermark
can be embedded in the spatial domain by modifying pixel values [15] or adding an
overlying layer on top of the original image [16], however more robust watermarks are
usually embedded in the transform domain by modifying the transform domain coefficients
[17, 18]. More advanced watermarking techniques are developed for video watermarking
which extends and incorporates watermarking techniques for images [19, 20]. Most of the
image and video watermarking algorithms focus on processing data files stored on a disc,
while some introduce real-time content processing (applied for example on screenshot
images) [16, 21].

There have also been some approaches in applying a watermarking scheme in other
domains such as text and software. Techniques for watermarking text data typically
exploit special properties of text formatting and semantics. Watermarks are often
introduced by altering the spacing between words and lines of text [22]. Other techniques
rely on natural language processing and rephrasing sentences in the text [23, 24, 25, 26].
Techniques for watermarking software only have limited success in their native domain
[27, 28]. A key problem is that the instructions in a computer program can often be
rearranged without altering the semantics of the program. This resequencing can destroy
a watermark. Techniques have also been proposed to prevent copying of software, but
they require installation of tamper-resistant modules in users’ machines, which limits
their successful adoption in practice.

2.4 Watermarking Relational Databases

Digital watermarks in the domain of multimedia are not easily extended or adapted to
relational database applications, because of the inherent differences between multimedia
data and relational databases. For example, a lot of techniques for images and audio
rely on phenomena based on the limitation of the human visual and auditory system.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

2. State-of-the-Art

Figure 2.2: Categorization of watermarking techniques for relational data

Furthermore, multimedia data contains a large number of redundant bits providing
much wider cover for embedding the watermark than it is the case with relational data.
Relational data may as well consist of multiple types of data - numerical, categorical,
text, etc., requiring different approaches for embedding the watermark. Categorical
data is known to introduce additional issues for watermarking compared to numerical,
so we will divide these techniques into separate subsections. Therefore, techniques for
watermarking relational data differ significantly from those for multimedia. A couple
of surveys [29, 30, 31, 32] list most of the proposed watermarking techniques in the
literature and classify them, comparing thereat their main properties and robustness to
attacks. In the remainder of the section, we present the watermarking techniques for
relational data, according to the categorisation illustrated in Figure 2.2 [5]. The first level
of categorisation is a distinction of watermarks based on distortion. Distortion-based
watermarks are then divided into categories based on the type of data they apply to. A
further distinction is made among the techniques applied to a numerical type of data
according to what carries the watermark information.

2.4.1 Distortion-based watermarks

Watermarking numerical data

1. Arbitrary bit pattern as watermark information

Pioneering work on watermarking relational databases is proposed by Agrawal and
Kiernan [33]. It is a blind, bit-resetting technique where the watermark insertion is
controlled by a gap parameter γ (the ratio of tuples to be fingerprinted). They use
a message authentication code (MAC) - a one-way hash function that depends on
a secret key to determine which tuples will be marked. The same value F(r.P ) =
H(K||H(K||r.P )) is used for selecting the tuple, attribute and bit that will be marked,
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2.4. Watermarking Relational Databases

where H is a hash-function, K is a secret key, r.P the primary key of the tuple and ||
is representing a concatenation. The important property of a hash function is that
it is easy to calculate a hash value (output) for a given input, but computationally
difficult to do the reverse. Therefore only the owner knowing the secret key can detect
where the marks are embedded in the data.

This work is extended in [34, 35] by introducing a pseudo-random sequence generator
instead of the MAC in the process to select tuples, attributes and bits for watermarking.
The technique from [35] (referred to as the AKH technique; AKH stands for the
initials of the authors) and its predecessor [33] is used for many extended works in
watermarking and fingerprinting relational databases. The technique in principle
contains two steps: watermark insertion and watermark detection, according to the
generic framework for watermarking.

The watermark insertion algorithm marks certain numerical attributes such that the
least significant bits (LSBs) are altered, therefore this technique assumes that the
dataset contains one or more numerical attributes. The database owner is left to decide
the number of LSBs available for marking ξ, such that the changes of marked attributes
stay imperceptible. The insertion algorithm then uses a cryptographic pseudo-random
sequence generator G, seeded by a secret key known only to the owner of the database,
and concatenated with the primary key attribute value of each tuple from a database.
The main assumption that the AKH technique relies on is the existence of a primary
key in the dataset. Li et. al. [36] propose three different schemes to obtain a virtual
primary key for relational databases without primary key. The numbers generated by
G determine the tuples, attributes within the tuples and LSBs within the attribute
values to be marked, as well as the mark itself. It is computationally infeasible to
predict the next number in the cryptographic pseudo-random sequence. Thus, it is
computationally infeasible to guess the marking pattern without the knowledge of the
owner’s private key.

The detection algorithm contains calculating the sequence using a cryptographic
pseudo-random sequence generator with the same seeds as in the insertion algorithm.
Those sequences will be the same because repeated executions of the generator seeded
by the same value always produce the same sequence. Thus, the detection algorithm
finds which bits within the database should have been marked and counts how many
of them match the bits from the database suspected for piracy. If the number of
matches is “large”, the database owner can suspect the piracy. On the other hand,
if the matching is “too small”, the database owner can suspect that the attacker
somehow identified the marking pattern and recreated the original database values.
The number of matches necessary for suspecting piracy is defined by a parameter τ
called significance level.

The authors analysed the robustness of this technique against several malicious attacks,
namely, subset attacks, bit-flipping attacks, mix-and-match attack and false claim of
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2. State-of-the-Art

ownership. More of the robustness analysis of the AKH scheme is done in later work
by Lafaye [37].

Extensions and improvements to the AKH technique have been proposed in [38]
and [39]. The first one [38] improves the AKH by using chaotic random series based
on the Logistic chaos equation instead of a hash function. This has two advantages:
non-repetitive iterative operation and sensitiveness to initial values in a way that the
selection of bits meets the requirements of both data range and data precision of each
attribute, rather than using same ξ for all attributes as it is the case in the AKH.
This strategy’s advantages manifest by a significantly decreased error when data with
large differences in ranges within the attributes is watermarked. Another extension is
a reversible version of the AKH watermarking scheme [39] where watermark can be
recovered during the detection phase and the attribute can be restored to its unmarked
value.

The watermarking method in [40] embeds random digits at second LSB positions of
the numeric candidate attributes. The watermark is not explicitly embedded like in
the previously mentioned techniques, but rather used for identifying valued groups of
tuples to embed the random values.

2. Image as watermark information

There is a couple of proposed techniques that mark the data using an image as
watermark information.

The method in [41] describes embedding the scrambled image based on the Arnold
transform with scrambling number d. The scrambling number improves the security of
this technique because of it an additional parameter, besides the secret key, that the
embedding scheme relies on. The scrambled image is represented as a binary string
and embedded into tuples that are previously grouped using hash values depending
on a secret key, primary key and the order of the image.

Another method [42] follows the similar algorithmic steps as in [41], but embeds the
original image converted into a bit flow instead of a scrambled image.

The method in [43] divides an image into header and image data in the insertion phase.
The header is used in a hash function together with tuple’s primary key to determine
tuple’s ID value and determine positions where the image data will be embedded.

3. Other types of watermark information

Besides arbitrary meaningless bit pattern and image as watermark information, other
types of watermark information have been proposed and embedded into the data.
One example is speech as a watermark information [44]. The proposed technique
uses compressed owner’s speech converted into a bitstream as a watermark and
follows similar algorithmic steps as [42]. Furthermore, in [45] authors propose a
Genetic Algorithm-based technique to generate watermark signal, in [46] the cloud
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2.4. Watermarking Relational Databases

watermarking scheme is proposed and authors in [47] use k-means algorithm to cluster
the tuples into some equivalent classes.

Watermark information may as well be the content of data itself [48, 49]. Generally,
some bits of one part of the data, i.e. characteristics are extracted in the insertion
phase and used to mark the other parts of the data.

Watermarking non-numerical data

Non-numerical data requires different techniques for watermarking purposes than numer-
ical data because of its discrete nature. The concept of introduced errors is perceived
differently as well because we cannot apply the same measurements as in the case of
categorical data, e.g. marking the numerical value 23 as 25 does not have the same impact
on the data as marking "blue" as "red". The latter may not even be acceptable in some
settings, therefore watermarking non-numerical data needs to start from the assumption
that the user accepts this kind of errors and that they do not violate credibility and
utility of the data. Another limitation of watermarking categorical data that can cause
the loss of credibility is the semantic correlation between the attributes that depending
on the setting needs to be preserved.

In [50, 51] the authors propose a technique for watermarking categorical data. The
technique requires the presence of a primary key in the dataset. The embedding process
relies on two secret keys k1 and k2. The first secret key k1 is used for selecting the tuples
"fit" for watermarking together with parameter e and the primary key. e is a control
parameter of how many tuples get marked, i.e. has the same purpose as parameter γ
in schemes for watermarking numerical data. The number of tuples "fit" to be marked
(η/e) is usually larger than the size of a watermark, which is solved by converting the
watermark wm into wm_data of length η/e using an Error Correcting Code (ECC). In
every "fit" tuple, the embedding algorithm generates a secret value in bit representation.
The number of bits in a secret value is equal to the number of bits required to represent
all possible categorical values for the attribute. The least significant bit of the value is
marked by a randomly chosen bit of wm_data depending on the primary key and the
secret key k2. The marking scheme assures that the resulting categorical value will be
some value from the domain of the attribute. The pseudo-random nature of the choice of
a bit from wm_data guaranties that almost all bits will be chosen at least once during
the embedding process. Using two different secret keys k1 and k2 assures non-correlation
between the selected tuples for embedding and the corresponding bit value positions in
wm_data.

The detection algorithm reverses the operations from the insertion phase and extracts
some wm_data′. Once wm_data′ is available, the ECC is invoked to generate the
"closest" or "most likely" corresponding watermark wm.

The authors also suggest an embedding scheme based on multiple categorical attributes
by considering not only the association between the primary key and a single categorical
attribute but also associations between different categorical attributes. The embedding
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2. State-of-the-Art

scheme described previously is applied for every combination of primary key - categorical
attribute, and every combination of two categorical attributes. In combinations of two
categorical attributes, one of them serves as a virtual primary key for the embedding
process. For instance, let us have a dataset containing primary key K and two categorical
attributes C1 and C2. The embedding scheme will be performed 3 times, for (K, C1),
(K, C2) and (C1, C2). First, two runs of the embedding scheme will use the secret key k1,
e and the primary key K for the choice of tuples to be marked and embeds the mark in
attribute C1 (or C2 for the second combination). The embedding scheme run for (C1, C2)
uses the secret key k1, e and attribute C1 for the choice of tuples to be marked and
embed the mark in attribute C2. In this scheme for watermarking multiple categorical
attributes, taking just described case, we can see that markings for (K, C2) interfere
with markings for (C1, C2). Even though this scheme is claimed to be robust against
serious attacks (e.g. vertical data partitions) and breaks the dependency of the primary
key, the convenience of this method is questionable due to the increase of the number
of combinations (sequence of triangular numbers) for more categorical attributes in the
dataset.

This watermarking technique is applied to binned medical data in [52].

Another method for watermarking non-numerical data has been proposed in [53], for
non-numeric multi-word attributes. The watermarking scheme is based on hiding a binary
image in space of non-numeric multi-word attributes of subsets of tuples by introducing
double spaces on pseudo-randomly chosen places. The scheme is claimed to be robust
against subset and superset attacks, however, it may suffer from the simple malicious
action that replaces all double spaces between two words by a single space and therefore
erases the watermark.

Watermarking non-type-specific data

Techniques have been proposed to use fake tuples [54] or fake attributes [55] as watermark
information.

The approach from [54] generates fake tuples and inserts them erroneously into the
dataset. The fake tuple creation algorithm uses Bernoulli sampling probability to decide
whether the new value will be chosen from the existing set of values of the corresponding
attribute, or a set of fake values. The choice of the new value can be made uniformly,
or as the value with higher-occurrence frequency in the existing set of values of the
corresponding attribute in the relation. The detection algorithm checks via the primary
key to see whether the fake tuples inserted during watermarking insertion phase exist or
has been changed. As soon as it finds one match, detection is done. The detection fails
for the watermarked database when all of the fake tuples are deleted. One advantage of
this scheme is that the owner can be publicly verified more than once until all of the fake
tuples are revealed. Another advantage is that this scheme works with all types of values
- numerical, categorical, dates, etc.
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2.5. Fingerprinting Relational Databases

The technique of inserting a virtual attribute in the relation which serves as watermark
[55] generates new values as aggregates obtained from any other numerical value from
the dataset. This approach is fragile and can easily detect any of the deletion, insertion
or alteration attacks, however, it suffers from the watermark removal attack.

2.4.2 Distortion-free Watermarking

The watermark information may be the hash value extracted from the data. The main
idea is to partition the data in some way. [56] propose a technique where partitioning of
tuples is based on the hash value parameterized with the primary key and secret key,
whereas in [57], partitioning is based on categorical attribute values. After partitioning,
hash values for each group as well as tuple level hash values are computed. Based on the
hash values and their parity, two tuples’ order changes or doesn’t. These schemes are
able to detect any modifications made to a database relation.

There are other proposed solutions in the literature that are used as watermark informa-
tion, such as combining owner’s mark and database features [58], converting database
relation into binary form [59, 60] or R-tree based permutations [61].

Most of the distortion-free watermarking techniques are fragile, i.e. they aim at main-
taining the integrity of the information in the database in addition to the ownership
protection. The watermark insertion phase does not depend on any specific type of data
and does not introduce any distortion in the underlying data of the database.

2.5 Fingerprinting Relational Databases

Fingerprinting is a special application of watermarking - a distinct watermark (a fin-
gerprint) is generated and embedded in every distributed copy of the data. In paper
[32], the authors gave a classification and brief analysis of relevant watermarking and
fingerprinting techniques. Table 2.1 is derived from this survey. In our review we mention
many of the techniques from [32] and include some that are not mentioned in the survey.

Li et al. in [1] extended the watermarking technique proposed by Agrawal et al. [35] into
a fingerprinting technique. The marking scheme embeds different bit-strings - fingerprints
in different releases of data. The owner generates buyer’s fingerprint from the owner’s
secret key and the buyer’s serial number using a cryptographic hash function. This
method of generating the fingerprints avoids storing buyer-fingerprint pairs and additional
security management for this database. Similarly to the watermarking technique [35],
this fingerprinting technique consists of the insertion algorithm and detection algorithm.

The insertion algorithm follows the steps for selecting the tuple, attribute, LSBs and
marks in the same manner as the insertion scheme from [35], and additionally embeds
the generated fingerprint by XOR function applied on the mark (in this algorithm called
mask) and a selected fingerprint bit.
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2. State-of-the-Art

The aim of the detection algorithm of the fingerprinting methods, in general, is to
determine whether the suspicious database is pirated, as well as to identify the source of
the unauthorised release of the database. The detection algorithm from [1] reverts the
fingerprint insertion process similarly to [35]. It locates the bits that should have been
altered and compares the matching of the extracted fingerprint with buyers’ fingerprints.
The exact bit matching of the extracted fingerprint to some buyer’s fingerprint implies
this buyer to be an unauthorised distributor. τ is a parameter related to the assurance
of the detection process.

In [2], authors propose a block-oriented fingerprinting scheme for relational databases
inspired by a fingerprinting scheme for images from [62]. This method also relies on
altering the LSBs at certain locations in the database.

In the insertion algorithm, the LSBs of numerical values from the database (as much
LSBs as it is allowed to change) are combined into a two-dimension image and separated
into blocks of size β × β. Then a pseudo-random number generator is used to decide the
block and position within the block where the fingerprint should be embedded until all
blocks are marked. Fingerprint bits will be embedded again if there is still unmarked
blocks left when all fingerprint bits have been embedded. A fingerprint is produced in
the same manner as in previous techniques, using the cryptographic hash function seeded
by the owner’s secret key and the user’s serial number.

Detection phase consists of sorting the suspicious database according to the primary keys
and filling out the database with the original values in case of deletion. The location
where the fingerprint bit is supposed to be is calculated as in insertion algorithm and the
bit is recorded. As the fingerprint is embedded multiple times in the dataset, if most of
the detected values for a single fingerprint bit are 1, the detected fingerprint is said to be
1, otherwise 0.

Authors of watermarking and fingerprinting system Watermill [4, 63] further extend
the methods from [35] and [1] by considering the constraints of data alteration and
treating fingerprinting as an optimisation problem. By using a declarative language, the
usability constraints that the fingerprinted dataset must meet are specified. For example,
a purchaser may require that joins between some attributes should be preserved, or
that values of some attribute cannot be altered more than a predefined amount. One
of two proposed fingerprinting strategies consists of translating the weight-independent
constraints into an integer linear program (ILP) and using the ILP solver to solve it. The
second fingerprinting strategy is pairing heuristics for larger datasets where using ILP
solver might not be efficient.

In [3] and in its predecessor [64], the proposed technique is a two-level fingerprinting
scheme. In the first embedding process, a distinct fingerprint of length L for each buyer is
embedded. The tuples are partitioned into L subsets and in each of them, one fingerprint
bit is embedded in a pseudo-random position. The second embedding process is designed
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2.5. Fingerprinting Relational Databases

for verifying the extracted fingerprint and numerical confidence level. The selected
positions are marked as "0" or "1" depending on the hash value seeded with secret key
concatenated with the primary key. A fingerprint from the first level is used as a secret
key for the second embedding level. To avoid conflict between two levels of embedding,
the bit values in the second embedding process are only considered for marking if not
marked in the first embedding process.

In [65] an architecture for identifying a malicious buyer and redistributing digital
content is proposed. When a user accesses the database, a fingerprinting process is
invoked. A parameter manager module is used to store the fingerprinting parameters
and a manager module is in charge for the fingerprinting task and verifying authenticity
of users; if the user is unauthentic (not the owner), the fingerprinting process is executed.
The encoding and decoding algorithm is the same as in [64].

All of the above fingerprinting techniques have one restriction in common - they are
applicable only on numerical attributes. Only a few solutions have been proposed for the
categorical data.

One approach is a fingerprinting technique that incorporates the k-anonymity property
into the fingerprinted data [66]. k-anonymity [67] strives to modify a dataset so that at
least k data samples (individuals) become indiscernible when considering quasi-identifying
attributes. This is commonly achieved by generalising values in the dataset to a broader
meaning. There are generally multiple solutions for achieving the same level of k by
choosing different attributes to modify. The idea of the scheme is, therefore, that
equivalent k-anonymous patterns of the given dataset serve as fingerprints, and the
process of anonymizing data is at the same time the fingerprinting process. K-anonymity
is applied on both categorical data and numerical, therefore this model, unlike the
previous, provides the fingerprinting technique that includes the categorical data in the
process. However, there are some limitations: (i) the number of available fingerprints is
limited to the number of different equivalent patterns for k-anonymity in the dataset, (ii)
the utility of the differently fingerprinted (anonymized) datasets can vary significantly,
and (iii) the fingerprint cannot be computed alone by the recipient’s identifier, but rather,
a mapping of fingerprint and recipients needs to be stored, with all associated security
risks.
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2. State-of-the-Art

Table 2.1: Summary and comparison of well known fingerprinting techniques

Scheme Attribute
data type

Attribute
selection
method

Tuple
selection
method

Granularity
level Detectability Dependencies

AK [1] Numerical PRSG PRSG Bit Blind
Primary key,

Value

Block Scheme [2] Numerical All All Bit Not Blind
Primary key,

Value

Watermill [63] Numerical Arbitrary PRSG Bit Blind
Primary key,

Value

Two-level
scheme [3]

Numerical Arbitrary SHF Bit Blind
Primary key,

Value

FP Architecture [65] Numerical Arbitrary SHF Bit Blind
Primary key,

Value

k-anonymity
based [66]

All All All Value Blind Value
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CHAPTER 3
Fingerprinting techniques

Fingerprinting is a technique that embeds a piece of information into the data to provide
the identification of the owner of data and the source of potential unauthorised data
leakage. Fingerprint combines secret owner-specific and buyer-specific information and
is embedded in the dataset. Every buyer has her fingerprint, therefore every dataset
fingerprinted and distributed by the owner is different from each other. By detecting
the fingerprint within the dataset, the owner can trace the buyer of that instance of the
dataset. The fingerprinting techniques usually contain two main algorithms: fingerprint
insertion and fingerprint detection. In the fingerprint insertion, the fingerprint of a buyer
is embedded into the dataset. Fingerprint detection strives for detecting the fingerprint
in a suspicious dataset to connect it with the buyer who distributed the dataset without
the authorisation. Detection could be disrupted by malicious attempts of the buyer to
remove the fingerprint from the data, but also by benign changes in the dataset. These
attacks and fingerprint resistance to them will be addressed in Chapter 4.

3.1 Notation and parameters

In the following, several different fingerprinting techniques are discussed in detail. In this
section, we set the common notation and explain the parameters used in the techniques.
The dataset schema is denoted by R(P, A0, ..., Av−1) where R is a database relation,
P is the primary key attribute, and A0, ..., Av−1 are v attributes that will be used for
fingerprinting. η is a notion of number of tuples (rows/entries) in the dataset. As the
fingerprinting techniques embed the fingerprint by changing the attribute values, we
define the parameter ξ which denotes the number of least significant bits (LSBs) that
can be used to embed the fingerprint.
Let N be the number of buyers to whom the dataset is being distributed. To each of
the buyers, a unique fingerprint will be assigned. Every fingerprint Γ = (f0, ..., fL−1) is a
binary string of length L ≥ logN .
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3. Fingerprinting techniques

Table 3.1: The notions of the most common parameters

Notation Meaning

R database relation

P primary key attribute

Ai attribute i

v number of attributes

η number of tuples

K owner’s secret key

ξ number of least significant bits

1/γ ratio of tuples to be marked

N number of buyers

L length of fingerprint

ωi number of embeddings of a fingerprint bit i

ω total number of marks

Besides the buyer’s fingerprint, the owner-specific information has to be embedded in the
dataset to ensure the ownership protection and make it possible only for the data owner
to detect the fingerprint from the fingerprinted dataset. This information is usually a
secret key K - a binary string known only to the dataset owner. Table 3.1 contains the
notation that will be used in the remainder of this thesis unless otherwise stated.

3.2 Prerequisites

Before discussing the specific schemes and algorithms used for fingerprinting relational
databases, it is necessary to mention auxiliary functions and algorithms required to
achieve the goal of robust fingerprints. Cryptographic pseudo-random sequence generator
and cryptographic hash function, discussed in the following subsections, both ensure that
neither the fingerprint nor any part of fingerprinting scheme get disclosed or recreated by
an unauthorised user. This stated, their usage is crucial for the owner’s rights protection.

3.2.1 Cryptographic pseudo-random sequence generator

A cryptographically secure pseudorandom number generator (CSPRNG) is an algorithm
for creating a sequence of random numbers with properties suitable for use in cryptography.
The CSPRNG-generated sequence is not truly random, because it is completely determined
by the initial value called seed. The requirements of CSPRNG fall into two groups:

• They pass statistical randomness tests.

A generator passing the next-bit test will pass all other polynomial-time statistical
tests for randomness (proof by Andrew Yao in 1982 [68]). We say that a sequence
of bits passes the next-bit test for at any position i in the sequence, if any attacker
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3.2. Prerequisites

who knows the i first bits (but not the seed) cannot predict the (i + 1)st with
reasonable computational power.

• They resist a serious attack, even when part of their initial or running state becomes
available to an attacker.

If part or all of CSPRNG’s state has been revealed (or guessed correctly), it should
be impossible to reconstruct the stream of random numbers before the revelation.
Additionally, if there is an entropy input while running, it should be unfeasible to
use knowledge of the input’s state to predict future conditions of the CSPRNG
state.

There is several designed practical CSPRNGs including the Yarrow Algorithm [69] incor-
porated in iOS and macOS, its successor Fortuna [70] used in FreeBSD, CryptGenRandom
[71] included in Microsoft’s Cryptographic Application Programming Interface, etc.

For the analysis in the thesis, we denote CSPRNG with S, where Si denotes the ith

random number of the sequence.

3.2.2 Cryptographic hash function

The cryptographic hash function is a deterministic function that takes a string input
of any length and returns a fixed-size string value. The returned value is called "hash
value". In literature the hash value can be also referred to as "digest", "checksum" or
"digital fingerprint" (the word fingerprint is here used in the different context than the
fingerprint used as a topic of this thesis). The hash function has three main properties:

• It is easy to calculate a hash value for any given input string.

• It is computationally difficult to calculate an input that has given a certain hash
value.

• It is extremely unlikely that two different inputs, even remotely different, have the
same hash value.

While the regular hash functions aim to, most importantly, avoid the collision of hash
values for non-malicious input, the above properties are much strongly guaranteed for
cryptographic hash functions. The hash value serves as a "signature" for the input
provided. Only the person knowing the original input value can easily check the matching
hash function. However, knowing only the hash value, one is unable to do the inverse
and find out the original input value. If either finding a string that matches a given hash
value or finding two different inputs that have the same hash value is computationally
feasible, then a cryptographic function is not considered secure from a cryptographic
point of view.

Most commonly used cryptographic hash functions are MD5 [72] and SHA-1 [73].
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3. Fingerprinting techniques

3.3 Fingerprint codes

A fingerprinting scheme assigns a specific fingerprint to each of the N buyers. A fingerprint
is a unique binary string of length L known only by the database owner which is used to
trace a specific owner. Storing the mapping of a recipient to her fingerprint is additional
data that requires additional protection measures to be protected against attacks. To
avoid this, the owner uses a cryptographic hash function H to produce each buyer’s
fingerprint instead. In the fingerprinting techniques presented in the following sections,
each fingerprint F is produced as a hash value of the concatenation of owner’s secret key
K and buyer’s identification number id:

F(K, id) = (f0, ..., fL−1) = H(K|id) (3.1)

where buyer’s identification number can be publicly accessible. This way only the owner
who knows both secret key K and identification number id can produce the hash value -
the fingerprint of a specific buyer.

Collusion resistant codes Fingerprinting schemes are susceptible to collusion attacks
where users with multiple copies of the same dataset but different embedded fingerprints
work in coalition to create a useful data copy that does not implicate any member of
the coalition. Collusion attacks will be thoroughly discussed in Section 4.7, while in this
section we cover collusion resistant codes. Collusion resistant fingerprinting codes have
been studied extensively in the literature [74, 75, 76, 77, 78]. One of the well-known
codes is proposed by Boneh and Shaw [74] (this code is referred to as BoSh code in the
remainder of the thesis). The effectiveness of the BoSh code relies on the assumption
that colluding buyers can detect only the fingerprint bits in which their copies differ,
otherwise a fingerprint bit cannot be detected. For example, two buyers with their
own fingerprinted datasets can easily compare their datasets and remove or change the
values that differ between their copies. Authors of [74] call refer to this as the "Marking
Assumption". The main property that codes should satisfy is that users cannot change
the state of an undetected bit without rendering the dataset useless. This small amount
of information where the buyers’ marks agree is used to trace the copies they generate
back to either of them. A collusion resistant code is expected to have two properties
well-elaborated:

• c-frameproof code, i.e. a coalition of at most c users cannot frame a user not in the
coalition even all user fingerprints are known to the users

• c-secure code, i.e. there exists a tracing algorithm that on input x must output
a single member of the coalition of at most c users, where the input x is the new
mark extracted by the fingerprint extraction algorithm that was generated by the
coalition

The usage of the BoSh code is discussed in Section 3.4 as a part of the collusion-resistant
version of the scheme.
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3.4. AK Scheme

3.4 AK Scheme

Algorithm 3.1: AK Scheme: Insertion Algorithm

Input: dataset R with scheme (P, A0, ..., Av−1), buyer n’s ID id
Output: fingerprinted dataset R′

1 fingerprint of buyer n: F(K, id) = H(K|id)
2 foreach tuple r ∈ R do

3 if (S1(K|r.P ) mod γ == 0) then

4 attribute_index i = S2(K|r.P ) mod v
5 bit_index j = S3(K|r.P ) mod ξ
6 mask_bit x = 0 if S4(K|r.P ) is even; x = 1 otherwise
7 fingerprint_index l = S5(K|r.P ) mod L
8 fingerprint_bit f = fl

9 mark_bit m = x⊕ f
10 LSB(j, r.Ai) = m

11 end

12 end

13 return R′

In [1] the authors describe a fingerprinting scheme that is an extension of the watermarking
scheme from [35]. In this thesis, this fingerprinting scheme will be referred to as AK
Scheme whose name is made of last name initials of authors of the underlying watermarking
technique, Rakesh Agrawal and Jerry Kiernan.

3.4.1 Algorithms

Insertion Algorithm 3.1 shows the pseudo-code of the insertion algorithm, which is
used to embed a fingerprint of a buyer n into the dataset R. Using random numbers
generated by a pseudo-random sequence generator S the algorithm chooses the bit within
the dataset’s values that will be marked, as well as the bit that will be embedded.
The pseudo-random sequence generator is independently seeded for each tuple with a
concatenation of the owner’s secret key K and the primary key of each tuple. In the
line 3, the algorithm decides whether the current tuple will be marked, based on the
generated number S1(K, r.P ). In lines 4 and 5, based on S2(K, r.P ) and S3(K, r.P ), it is
decided which one of the attribute’s values will be marked, and which least significant bit
of the value, respectively. In lines 6-10 the algorithm determines which value to replace
this bit with. The next numbers, generated by the sequence generator S4(K, r.P ) and
S5(K, r.P ), decide the mask bit and choose the fingerprint bit, respectively. Finally, the
resulting bit that is embedded in the line 10 at the chosen place in a dataset is the result
of applying XOR function on the mask bit and the fingerprint bit.

Assume we want to fingerprint a very simple dataset shown in Table 3.2 with a fingerprint
11110000. We use the value 01010101 as a secret key K. Furthermore, assume we want
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3. Fingerprinting techniques

Algorithm 3.2: AK Scheme: Detection Algorithm

Input: fingerprinted dataset R′ with scheme (P, A0, ..., Av−1)
Output: suspected buyer’s ID id

1 //initiate fingerprint template and counts
2 fingerprint template F = (f0, ..., fL−1) = (?, ..., ?) // ’?’ represents unknown value
3 for i = 0 to L− 1 do

4 count[i][0] = count[i][1] = 0
5 // count[i][0] = count[i][1] are votes for fi to be 0 and 1 respectively

6 end

7 //scan all tuples and obtain counts for each fingerprint bit
8 foreach tuple r ∈ R′ do

9 if S1(K, r.P ) mod γ == 0 then

10 attribute_index i = S2(K, r.P ) mod v
11 bit_index j = S3(K, r.P ) mod v
12 mark_bit m = LSB(j, r.Ai)
13 mask_bit x = 0 if S4(K, r.P ) is even; x = 1 otherwise
14 fingerprint_bit f = m⊕ x
15 fingerprint_index l = S5(K, r.P ) mod L
16 //update the votes
17 count[l][f ] + +

18 end

19 end

20 //recover the fingerprint
21 for l = 0 to L− 1 do

22 if count[l][0] + count[l][1] == 0 then

23 return none suspected
24 end

25 fl = 0 if count[l][0]/(count[l][0] + count[l][1]) > τ
26 fl = 1 if count[l][1]/(count[l][0] + count[l][1]) > τ
27 return none suspected otherwise

28 end

29 F = (f0, ..., fL−1)
30 //determine a source of leakage
31 id = detect(F ,K, L, N)
32 if id ≥ 0 then

33 return id
34 else

35 return none suspected
36 end
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3.4. AK Scheme

Algorithm 3.3: AK Scheme: Subroutine detect

1 detect(template F , secret key K, fingerp. length L, number of buyers N):
2 for each buyer n do

3 F ′ = H(K|id)
4 if F == F ′ then

5 return id
6 end

7 return -1

8 end

Table 3.2: Sample dataset

Primary key Attribute 0 Attribute 1

1 34 749

2 21 265

to mark on average every second tuple, i.e. γ = 2 and consider the last two bits of value
for marking; ξ = 2. The algorithm will use the random number sequence generator to
produce a unique sequence of numbers for every tuple (different seed for every tuple).
Let

S(01010101|0) = {72, 39, 10, 34, 97} and
S(01010101|1) = {21, 37, 62, 25, 16}.

Starting with the first tuple, the algorithm will choose it for marking because S1 mod γ =
72 mod 2 = 0. Then the attribute index is chosen as S2 mod v = 39 mod 2 = 1 and
bit index as S3 mod ξ = 10 mod 2 = 1, therefore we are marking 2nd LSB (because bit
indices start with 0) of a value 749 which is 0; 75110 = 10111011012. Further, we decide
the mark that is going to be applied to the bit. Firstly, the algorithm computes a mask
bit as S4 mod 2 = 34 mod 2 = 0 and decides which fingerprint bit to use; S5 mod L =
97 mod 8 = 1, i.e. second bit of the fingerprint (indices start from 0) - 1. Secondly, the
mark bit value is calculated as mask_bit xor fingerprint_bit = 0 xor 1 = 1, and finally
the mark bit is embedded into previously chosen place in the data, i.e we are changing
2nd LSB of 749 from 0 to 1 obtaining that way a fingerprinted value 751. The algorithm
continues with the second tuple. The condition from the line 3 of Algorithm 3.1 fails
because S1 mod γ = 21 mod 2 = 1. Thus, the insertion algorithm does not mark this
tuple and the process is over.

Detection Algorithm 3.2 shows the pseudo-code of fingerprint detection. The detection
algorithm must reverse the steps from the fingerprint insertion phase to detect all the
bits that construct a valid fingerprint. In the line 2 of the algorithm, the template for the
fingerprint is initialised with L unknown values "?". Reversing the steps from the insertion
phase is possible because the pseudo-random sequence generator S will produce the same
random number sequences when seeded with the same value. Therefore, modelled by the
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3. Fingerprinting techniques

insertion algorithm, it is iteratively seeded with a concatenation of a secret key K known
only to the owner and the primary key of every single tuple. In lines 9-12, based on
random numbers from the sequence, the location of the marked bit is calculated. In the
same manner, the mask bit x and fingerprint bit index i are calculated, in lines 13 and 15
respectively. Considering that in the insertion phase the value of a bit to be embedded,
i.e. the mark bit m is calculated by applying the XOR function on the fingerprint bit and
the mask bit, the fingerprint bit f is then, in reverse, calculated by applying the XOR
function on the mark bit m and the mask bit x (line 14). Note that the fingerprinted data
set might have been under attack that changes or erases the values from the originally
released fingerprinted dataset, for example, subset attack or bit-flipping attack. This kind
of attacks might disturb the fingerprint detection phase and the fingerprint bits might
not be detected correctly. The record of detected values of a fingerprint bit fl during the
detection phase is kept in two count variables count[l][0] and count[l][1] depending if the
detected bit is 0 or 1, respectively. When the counts for each fingerprint bit are obtained,
the algorithm assigns 0 to fingerprint bit fl if the counts satisfy the condition

count[l][0]/(count[l][0] + count[l][1]) > τ (3.2)

or 1 if counts satisfy the condition

count[l][1]/(count[l][0] + count[l][1]) > τ (3.3)

The parameter τ ∈ [0.5, 1) defines assurance of the detection process. Recovered fin-
gerprint bits constitute the fingerprint template F = (f0, ..., fL−1) which is compared
to fingerprints of buyers to detect the source of leakage. This process is done by the
subroutine detect described in Algorithm 3.3. The buyers’ fingerprints are calculated
on the fly. If the exact match of buyer n’s fingerprint with the fingerprint template is
detected, the buyer n is reported.

3.4.2 Assumptions and Properties

In this section, we list the assumptions and properties of AK Scheme. The first assumption
is one that is present in all of the schemes presented in this thesis. We have to assume
that the minor errors in numerical attributes in the dataset, necessarily caused by
fingerprinting process, are not violating the integrity of the database and that those
errors are tolerated by the database users. Besides, the AK Scheme is modelled such
that it requires the presence of a primary key attribute. The primary key should stay
unmodified or otherwise has to be recoverable for the sake of successful fingerprint
detection. The same is true for the tuple order in the database. Since each tuple is
assumed to have a unique primary key value based on which it is processed independently,
the scheme is incrementally updatable. This means that fingerprint bits can be added to
any additional tuples in the dataset at any given point in time in the future, without
breaking the integrity of a fingerprinting scheme.

One more advantage of AK Scheme is blindness: It is not required to have the original
database or any of the fingerprints involved in the fingerprint detection stored as the
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3.5. Block oriented scheme

owner’s secret key is involved in every step of the scheme, both embedding and detecting
a fingerprint.

3.5 Block oriented scheme

The block-oriented fingerprinting scheme for relational databases is very much inspired
by the block oriented scheme in spatial domain proposed in [62]. This scheme divides
the image to be fingerprinted into blocks of size β × β and permutes them in an order
which is specific for every buyer. Both permutation and the information of the buyer are
stored in a database known to the owner only. The scheme calculates the minimum and
maximum intensities of the pixels in every block, and according to the corresponding
bit of the fingerprint, increases (if the bit value is 1) or decreases (if the bit value is 0)
intensities of the pixels in the block. In this way, every buyer gets a marked image which
is different for everyone. Each marked image is different from the original, however, the
changes are hardly perceptible to the human. This ability to produce imperceptibly
different copies of the original does not apply in the same way in relational databases.
This is one of the reasons why multimedia fingerprinting techniques cannot be directly
applied to relational datasets.

In this section, the algorithms for the block-oriented scheme will be presented. Further-
more, we discuss the main properties and limitations of the scheme and present the
analysis of quality effects of a process of embedding the fingerprint.

3.5.1 Algorithms

Insertion For fingerprint insertion, it is assumed that an input relational dataset
contains primary key attribute P and v numerical attributes A0, ..., Av−1. The pseudo-
code is shown in Algorithm 3.4. Every buyer has her identification number which we
use for fingerprint embedding, and which is allowed to be publicly available, similar to
the AK Scheme. The fingerprint of a fixed length L of a buyer n is generated using a
cryptographic hash function H as a hash of a concatenation of owner’s secret key K and
n. Every buyer gets a unique value called threshold (denoted as r0) which is used as
a seed for a pseudo-random sequence generator in the insertion algorithm. The term
threshold is used in the literature [2], however, it does not have any functionality of
providing boundaries in the process as the naming would suggest. It is solely used as a
seed for the pseudorandom number generator. To avoid storing the pairs of buyer’s IDs
and thresholds, in the adaptation of this scheme for this thesis we use a concatenation of
owner’s secret key and buyer’s ID as a buyer’s threshold value. The next step is to create
the binary image using the bits of values available for embedding the fingerprint and
dividing it into blocks of size β × β. Table 3.3 shows the example of creating the binary
image from the sample dataset and dividing the binary image into blocks. Table 3.3b
shows the sample dataset from Table 3.3a with binary representation of its values. In this
example we allow three LSBs of all the values to be the candidates for marking (ξ = 3).
These bits are underlined in Table 3.3b. If the binary representation of an original value
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3. Fingerprinting techniques

Algorithm 3.4: Block Scheme: Insertion Algorithm

Input: dataset R with scheme (P, A0, ..., Av−1), buyer’s ID n
Output: fingerprinted dataset R′

1 fingerprint of buyer n: F(K, n) = H(K|n)
2 choose a threshold r0 for the pseudo-random number generator
3 divide dataset attribute values bits into blocks Bi of size β × β
4 i = 0, j = 0
5 foreach block Bi do

6 r1 = random(r0)
7 x = H1(r1, n) mod β
8 r2 = random(r1)
9 y = H1(r2, n) mod β

10 Bi(x, y) = Bi(x, y)⊕ fj

11 r0 = r2

12 i + +, j + +
13 if j==L then

14 j=0
15 end

16 end

17 return R′

does not reach ξ, the leading zeros are added. They are extracted to construct the binary
image in Table 3.3c which is divided into blocks of size β × β, here β = 2, shown in
Table 3.3d. This blocked image serves as a background structure for embedding the
fingerprint bits. Blocks are being marked in order such that the position (x, y) of a bit
within the block i to be marked is generated by a pseudo-random number choice. The
random number generator is always seeded by the previously generated number, with
the threshold r0 being a seed for the first generation. The next generated number r1

The new value of the bit on the chosen position in the block is calculated as XOR of the
original bit value and the fingerprint bit in the order. Fingerprint bits are embedded
in sequential order and circularly, i.e. when the last fingerprint bit is embedded while
there are still unmarked blocks left, the bits are being embedded all over from the start
until all blocks are marked. This means that under assumption that the length of the
fingerprint is of form F = [f0, f1, ..., f31], blocks with the sequence number 0, 32, 64, ...
will be marked with f0, block with the sequence number 1, 33, 65, ... will be marked
with f1, etc.

Detection It is crucial to have the complete data in the suspicious database, therefore
before blocking the bit image, it is necessary to properly order the tuples according to
the primary key, as well as the attributes according to the original dataset and to fill
out possibly missing tuples and attributes. To do so, the detection algorithm needs the
access to the original dataset. The pseudo-code for the detection algorithm is shown in
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3.5. Block oriented scheme

Algorithm 3.5: Block Scheme: Detection Algorithm

Input: fingerprinted dataset R′ with scheme (P, A0, ..., Av−1)
Output: suspected buyer’s ID n

1 sort R′ according to the primary key P
2 divide bits of R′ into blocks β × β
3 foreach buyer n do

4 retrieve the corresponding r0

5 Fn,j = 0 for all j ∈ {0, ..., L− 1}
6 i = 0
7 foreach block Bi do

8 j = imodL
9 r1 = random(r0)

10 x = H1(r1, n) mod β
11 r2 = random(r1)
12 y = H1(r2, n) mod β
13 Fn,j += R′(Bi(x, y))⊕R(Bi(x, y)) if R′(Bi(x, y)) is in R
14 r0 = r2

15 i + +

16 end

17 end

18 foreach buyer n do

19 fingerprint of buyer n: F(K, n) = H(K|n)
20 foreach j ∈ {0, ..., L} do

21 if Fn,j/ω ≥ τ then

22 f ′
n,j = 1

23 else if 1− Fn,j/ω ≥ τ then

24 f ′
n,j = 0

25 else

26 f ′
n,j =?

27 end

28 end

29 if Fn == F ′
n then

30 return buyer n is the source of leakage
31 end

32 end

33 return none suspected
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3. Fingerprinting techniques

Table 3.3: Creating β × β blocks in binary image; β = 2, ξ = 3

(a) Original dataset

P A0 A1 A2 A3

0 32 2 14 165

1 26 1 15 171

2 30 4 19 169

3 23 4 22 183

(b) Binary representation of the original values

P A0 A1 A2 A3

0 100000 010 01110 10100101

1 011010 001 01111 10101011

2 011110 100 10011 10101001

3 010111 100 10110 10110111

(c) Binary image

000010110101
010001111011
110100011001
111100110111

(d) Binary image divided into blocks

00 00 10 11 01 01
01 00 01 11 10 11

11 01 00 01 10 01
11 11 00 11 01 11

Algorithm 3.5. Once the dataset is complete, the next step is to divide the bit image
made of LSBs into blocks of the same size as in the insertion phase, β × β. Then we
retrieve the corresponding r0 of each buyer that we use as an initial seed to random
numbers generator. The detection algorithm repeats steps from the insertion phase to
locate the bits that are marked. The algorithm finds a position (x, y) in each block
Bi where the mark is embedded (lines 7-11 of Algorithm 3.5). Since the bits in the
insertion phase are marked with the result of xor operation between the existing bit on
the position (x, y) of the i-th block and j-th fingerprint bit, in the detection phase the
operation is inverted to obtain the fingerprint bit value (line 12). Thus, the marked bit
on the position (x, y) of Bi xor the original bit on the position (x, y) of Bi will yield the
value of the fingerprint bit fj . The variable Fn,j counts how many times the fingerprint
bit fj was detected to be 1. At the end of the extraction process, the fingerprint value
of the potential fingerprint F ′

\ is decided according to the values of count variables. If
the value of a certain fingerprint bit is during the process counted to be 1 more than
τω times, then we set that fingerprint bit to be 1. The analogy holds for deciding that
fingerprint bit is 0. The parameter τ ∈ [0.5, 1) is the assurance of the detection process.
Choosing for example τ = 0.5 for the detection algorithm means that if count variable
of the fingerprint bit f0 counted more than 10 occurrences of value 1 out of 20 actual
embeddings of the fingerprint it f0 in the dataset, the algorithm would pass the condition
in line 21 and the extracted value of the fingerprint bit f0 will be 1.

3.5.2 Assumptions and Properties

The most important parameter for the Block Scheme is β that defines the size of the block.
Since every block is being marked in the insertion algorithm, β defines the robustness of
the fingerprint and the distortion of data. In a dataset with v attributes, η tuples and ξ
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3.6. Two-level Fingerprinting technique

LSBs available for marking, the number of blocks in the binary image of the dataset is:

vξ

β
·

η

β
(3.4)

The bits for marking are chosen pseudorandomly. In a dataset big enough and with
a reasonable disparity of its values, we can assume a uniform distribution of values of
the chosen bits. After a xor operation between a specific fingerprint bit and a bit to
be marked, there is 50% chance the bit will change its original value. Thus, in the
fingerprinted dataset the number of changed values will be

1

2
·

vξ

β
·

η

β
(3.5)

One of the practical limitations occurs when creating blocks in the binary image of a
dataset. Let us assume the dataset has 5 attributes, each allowing three LSB-s for mark
embedding, i.e. 5 ∗ 3 = 15 bits available for marking in the row. If we choose β = 4, it
will cause last three bits of the row never to be part of any block, hence, never marked.
Table 3.4 depicts the disputable situation. The binary image of data is divided into three
blocks of size 4 × 4 and the remainder of size 3 × 4 is left out. Generally, if possible,
β should be a divisor of vξ (number of attributes times number of LSBs available for
marking) to avoid such a situation. Hence, β ≤ vξ.

Table 3.4: Limitations in block creation

(a) Binary image

000010110101110
010001111011011
110100011001000
111100110111110

(b) Binary image divided into three
blocks and the remainder

0000 1011 0101 110
0100 0111 1011 011
1101 0001 1001 000
1111 0011 0111 110

3.6 Two-level Fingerprinting technique

Guo et al. [3] propose a fingerprinting technique for protecting numerical relational data
from illegal duplication and redistribution. The fingerprint embedding scheme contains
two embedding processes. In the first embedding process, a unique fingerprint that
identifies a specific buyer is embedded in relational data using a secret key known only
to the owner of the database. The fingerprint can be detected using the same secret key
to prove ownership at a numerical confidence level. The second embedding process is
designed for verifying the extracted fingerprint. Thus, the scheme provides ownership
identification and illegal distributor identification on two separate numerical confidence
levels.
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3. Fingerprinting techniques

The scheme uses the primary key for the identification of each tuple and for embedding
the fingerprint. The proposed technique is marking a single attribute that is predefined
based on practical attribute properties, taking into account that the embedding algorithm
introduces small distortions to the least significant bits of the values. The scheme-specific
notation is shown in Table 3.5. For the rest of the notations we refer to Table 3.1.

Table 3.5: Notation in the Two-level Scheme

1/γ1 Marked ratio in the first embedding process

1/γ2 Marked ration in the second embedding process

α1 Significance level of the ownership

α2 Significance level of each fingerprint bit

α3 Significance level of the fingerprint

3.6.1 Algorithms

Insertion The insertion (embedding) algorithm whose, pseudocode is shown in Al-
gorithm 3.6, combines two embedding processes. The first process (lines 1-6) uses a
cryptographic hash function to produce hash values of a concatenation of the secret key
and primary key. The hash values are used to group tuples into L groups. Each group is
associated with one fingerprint bit fi. Since the hash results are uniformly distributed,
each group is expected to have a similar number of tuples. The fingerprint bit fi is part
of a seed for a hash function that decides which tuples in the group i will be marked by
fi. We concatenate the fingerprint bit fi, primary key r.P and secret key K, use it as a
seed for the hash function and compute the modulo by γ1. Due to the uniformity of a
hash function, on average 1

γ1
is the fraction of tuples that will be selected for marking. A

different seed, created by the same values permuted, is then used in a hash function that
decides which LSB will be marked by fi in the marking process. The described marking
pattern is used to verify the ownership independently from the fingerprint.

The second embedding process (lines 7-17) for marking considers only the tuples that
have not already been marked in the first embedding process to avoid overlapping. This
process uses the fingerprint itself as a secret key. Similarly to the first process, the hash
function results are used to select the tuples and LSBs to be marked. The selected bit is
marked "0" if the hash result of secret key K concatenated with primary key r.P is odd,
otherwise "1". The granularity of the second embedding process is controlled by γ2. The
fraction of tuples marked in the second process is (1− 1

γ1
) ∗ 1

γ2
. Thus, the total fraction

of tuples marked can be calculated as in Equation (3.6).

1

γ
=

1

γ1

+ (1−
1

γ1

) ∗
1

γ2

(3.6)

Detection The fingerprint detection (fingerprint extraction) algorithm consists of three
tasks:
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3.6. Two-level Fingerprinting technique

Algorithm 3.6: Two-level Scheme: Insertion Algorithm

Input: dataset R with primary key P , buyer’s fingerprint F
1 foreach tuple r ∈ R do

2 i = H(r.P |K) mod L
3 group[i] ← r
4 if H(fi|r.P |K) mod γ1 == 0 then

5 j = H(r.P |K|fi) mod ξ
6 LSB(j, r) = fi

7 else if H(F|r.P |K) mod γ2 == 0 then

8 j = H(r.P |K|F) mod ξ
9 if H(K|r.P ) mod 2 == 0 then

10 LSB(r, j) = 0
11 end

12 else

13 LSB(r, j) = 0
14 end

15 else

16 do nothing to this tuple

17 end

Output: fingerprinted dataset R′

1. Ownership verification

2. Fingerprint extraction

3. Fingerprint verification

The first task is to find the pattern to verify the ownership, the second is to extract
the suspect’s fingerprint and finally, the third task is verifying the extracted fingerprint.
Algorithm 3.7 comprise the first two tasks - ownership verification and fingerprint
extraction. Fingerprint verification is described by Algorithm 3.10. All parameters and
the secret key should be the same as used in the embedding algorithm.

The first step of the extraction algorithm is ownership verification. We use the original
secret key K to find the pattern embedded in the embedding process. Firstly, we use
subroutine detect (Algorithm 3.8) to identify the candidate set of tuples for detecting
marks. The candidate tuples are sorted into subset0 and subset1 depending on the
conditions in lines 4 and 12 of the subroutine detect. If a tuple satisfies both conditions,
it is included in both subset0 and subset1. total_count0 and total_count1 count the
number of candidate tuples in subset0 and subset1, respectively. These steps ensure that
all of the tuples selected for marking in the embedding process (Algorithm 3.6, line 4)
are going to be selected as candidate tuples (although the inverse does not hold; there
exist candidate tuples that were not chosen for marking in the first embedding process).
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3. Fingerprinting techniques

Algorithm 3.7: Two-level Scheme: Fingerprint Extraction Algorithm

Input: suspect relation R′ with primary key P ′

1 total_count0, total_count1, match_count0, match_count1 = detect(R′)
2 total_count = total_count0 + total_count1

3 match_count = match_count0 + match_count1

4 if match_count > threshold(total_count, α1) then

5 foreach tuple r ∈ R do

6 i = H(r.P |K) mod L
7 group[i] ← r

8 end

9 foreach group[i] do

10 total_count0, total_count1, match_count0, match_count1 =
detect(group[i])

11 if match_count0>threshold(total_count0,α2) then

12 fi = 0
13 else if match_count1>threshold(total_count1,α2) then

14 fi = 1
15 else

16 fail to extract fi

17 end

18 end

19 end

20 return fingerprint F

The total number of candidate tuples total_count = total_count0 + total_count1 will
be ≈ η/γ1 + η/γ1 = 2η/γ1.

Once the tuple is selected as a candidate, the algorithm checks whether the bit positions
that were supposed to be marked in the embedding process in the candidate tuples
are the correct values. In line 7 we calculate the same hash as in embedding process
- H(r.P |K|1) to obtain the bit position that should contain a mark, and in lines 8-10
we record if the mark is correct by the count variable match_count1. The same steps
are done for candidate tuples from subset0 in lines 15-18. The total number of matches
from the candidate tuples is then match_count = match_count0 +match_count1. Note
that in unaffected fingerprinted data, we expect to see η/γ1 matches that correspond
to tuples marked in the fist embedding process. This algorithm further produces more
"fake" matches, about η/2γ1 of them, so in total the rough expectation is match_count =
3η/2γ1.

From this extraction phase, the ratio of matches and the total number of candidate tuples
is match_count/total_count = 75%. This forms a special pattern, and a probability to
detect such a pattern in unmarked data is rather small. The authors propose a threshold
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3.6. Two-level Fingerprinting technique

Algorithm 3.8: Two-level Scheme: Subroutine detect

1 detect(relation R):
2 total_count0 = total_count1 = match_count0 = match_count1 = 0
3 foreach tuple r ∈ R do

4 if H(1|r.P |K) mod γ1 == 0 then

5 // subset1

6 total_count1++
7 j = H(r.P |K|1) mod ξ

8 if jth bit is 1 then

9 match_count1++
10 end

11 end

12 if H(0|r.P |K) mod γ1 == 0 then

13 // subset0

14 total_count0++
15 j = H(r.P |K|0) mod ξ

16 if jth bit is 0 then

17 match_count0++
18 end

19 end

20 end

21 return total_count0, total_count1, match_count0, match_count1

Algorithm 3.9: Two-level Scheme: Subroutine threshold

1 threshold(n, α):

2 return minimum integer m that satisfies
∑n

k=m ck
n(1

2
)n < α

value which satisfies:

P{MATCH_COUNT > threshold|total_count} < α (3.7)

i.e. the probability to find matches more than the threshold is less than alpha in a
non-marked relation, where alpha ∈ (0, 1) is a small value called significance level. Thus,
once such a pattern is detected, we can claim that the relation must have been modified by
our insertion algorithm at the confidence level of (1− α). The threshold (Algorithm 3.9)
for a given total_count is calculated as Equation (3.8).

threshold = minimum integer m that satisfies

n
∑

k=m

ck
n

(1

2

)n

< α (3.8)
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3. Fingerprinting techniques

where

ck
n =

n!

k!(n− k)!
; n = total_count (3.9)

In line 4 of Algorithm 3.7 we compare the total number of matches with the threshold. If
the number of matches is larger than the threshold, the ownership verification succeeded;
otherwise, the ownership cannot be claimed.

When the ownership verification is done, the algorithm attempts to extract the fingerprint
to track the buyer that leaked the data without the authorisation. The procedure starts
with line 5 of Algorithm 3.7 and like the insertion algorithm forms the same L groups.
The group represents the subset of tuples that are marked with the same fingerprint fi.
Therefore, for each group the candidate tuples and matches are calculated using again
the subroutine detect (Algorithm 3.3) to extract the value of each fingerprint bit. For this
phase, we use a significance level α2. A fingerprint bit fi is claimed to be 0 at confidence
level (1−α2) if the match_count0 is larger than the threshold calculated with the number
of candidate tuples from the group that might contain mark 0 from the embedding phase
- total_count0 and α2. Following the analogy, fingerprint bit fi is claimed to be 1 if the
match_count1 is larger than the corresponding threshold. If neither match_count0 nor
match_count1 exceed the corresponding threshold, the fingerprint bit value cannot be
decided. The output of Algorithm 3.7 is an extracted candidate fingerprint which needs
further verification.

Algorithm 3.10: Two-level Scheme: Fingerprint Verification Algorithm

Input: suspect relation R′, suspect fingerprint F ′

1 foreach tuple r ∈ R′ do

2 if H(F ′|r.P |K) mod γ2==0 && H(f ′
i)|r.P |K mod γ1!=0 then

3 total_count++
4 j = H(r.P |K|F ′) mod ξ

5 if H(K|r.P ) is even && jth bit is 0 then

6 match_count++

7 else if H(K|r.P ) is odd && jth bit is 1 then

8 match_count++

9 end

10 end

11 if match_count>threshold(total_count, α3) then
Output: the fingerprint is verified

12 end

13 else
Output: the fingerprint is not verified

14 end

Using the Algorithm 3.10, we identify the exact fingerprint from the candidate set of
suspect fingerprints produced by Algorithm 3.7. In this phase, we detect the embedding
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3.6. Two-level Fingerprinting technique

pattern from the second phase of fingerprint embedding algorithm at a confidence level
of (1−α3). Following the steps of the second phase of the fingerprint insertion algorithm,
we consider only the tuples that have not been marked in the first embedding process.
The pattern is detected using the owner’s secret key K and the candidate fingerprint
F . The Algorithm 3.10 in line 3 counts the candidate tuples that are supposed to be
marked, and depending on the hash value and value of the corresponding fingerprint bit,
counts the matches in lines 6 or 8, depending on whether the bit value is 0 or 1. Note
that in this phase if the data is unaffected, the parameters and the secret key are the
same as in the insertion algorithm, and also the correct fingerprint is extracted in the
previous phase, then the number of candidate tuples total_count and number of matches
match_count is expected to be equal. The number of matches is once again compared
to the threshold calculated from total_count and significance level α3. If the number of
matches satisfies the condition in line 11, we may claim that the fingerprint F is verified
at confidence level (1− α3).

3.6.2 Properties and discussion

We mentioned in the previous section that the extraction algorithm relies on finding a
certain number of matches that would confirm the mark pattern is embedded in the data.
The confidence levels of the fingerprint extraction process (i.e. the converse process to
the first embedding processes) are defined by significance level parameters α1 and α2 that
are used to calculate the threshold value. To achieve a high confidence level of ownership,
e.g. 99% (α1 = 0.01), the condition in line 4 of Algorithm 3.7 has to be satisfied.

Figure 3.1 shows, for a fixed α1 = 0.01, the thresholds for different values of total_count
as a fraction of total_count (continuous blue line). The dashed blue line is the expected
fraction of match_count out of total_count (75%). We can see that for the total_count
larger than ≈ 30 the previously mentioned condition is satisfied and the extraction
algorithm can verify the ownership with a confidence level of 99%. The statement is
confirmed with the experimental results shown by the orange lines in the figure. The
experiments are run on Forest Cover Type data with fingerprint length L = 96. The
match_count value in the experiments is 75%(total_count) ± 5%, according to the
expectation. Furthermore, the lower limit for total_count to have 99% confidence level
for ownership is shown to be around 30. Therefore, Equation (3.10) needs to be satisfied
for the correct ownership verification.

2η/γ1 > 30(α1 = 0.01) (3.10)

For the real-life datasets with hundreds or thousands of tuples this is rather easy to achieve
(e.g. for Forest Cover Type data, setting γ1 = 200 results in total_count ≈ 5, 800).

The second phase of detection algorithm - the fingerprint extraction - identifies each bit
individually from the associated group of tuples. The process of comparing the matching
bits to the threshold value is in this phase controlled by α2. If the number of matches
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3. Fingerprinting techniques

Figure 3.1: Portion of match_count and threshold for different total_count to achieve
the ownership confidence level 99% (α1 = 0.01)

of a single bit value is larger than the threshold, the bit is decided to be that value
(conditions in lines 11 and 13 of Algorithm 3.7).

Figure 3.2 shows threshold values in a subset, depending on the total number of tuples in
a subset. A dashed line represents the expected number of matches in a marked group of
unaffected fingerprinted data. We show the relation between thresholds and the number
of matches for different levels of confidence - 99% and 90%. Generally, the more tuples
are selected into a subset, the more robust the fingerprint is. For reaching the confidence
level of 99%, total_counti must be at least 8 for a trusted pattern to be found, while
for 90% confidence that lower limit is 4. Therefore, Equation (3.11) must be satisfied to
obtain the successful marking pattern with confidence 99% and Equation (3.12) with
confidence 90%.

η/(γ1 ∗ L) > 7(α2 = 0.01) (3.11)

η/(γ1 ∗ L) > 3(α2 = 0.1) (3.12)
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3.7. Fingerprinting categorical data

(a) α2 = 0.01 (b) α2 = 0.1

Figure 3.2: Threshold in subsets of unaffected marked data for different total_counti to
achieve confidence level of each bit of 99% (a) and 90% (b)

In the real implementation η/(γ1 ∗ L) should be rather larger than suggested in Equa-
tions (3.11) and (3.12) because of the deviation introduced by random distribution of
tuples into L groups.

The proposed technique has a limitation that it embeds the fingerprint in only one,
initially chosen attribute. However, this approach is vulnerable to a vertical attack
(attribute deletion attack) where the attacker can delete the fingerprint by removing
the entire attribute. To avoid the possibility of such attack in multi-attribute datasets
and for further experiments with this scheme, we slightly redesign the embedding and
extraction process such that all attributes appear as candidates for marking. The simple
modification is the reinterpretation of the term LSB(r, j) in Algorithm 3.6. In this
notation LSB(r, j) represents the j− th bit from the set of least significant bits available
for marking of all attribute values from the tuple r (instead of only one predefined
attribute). Pseudo-randomness of this step ensures uniformly distributed marks over all
attributes.

3.7 Fingerprinting categorical data

We present two approaches to developing a technique that can be applied to both
numerical and categorical data. Both schemes use the processes of the AK Scheme
for marking numerical values. The first technique, a rather simplistic one, is based
on a random choice of values to be marked and a random choice of a mark. In the
second approach, we focus on keeping the semantic relations between the categorical
data rather than purely randomly choosing the marks. The technique, however, relies on
the availability of the original data, therefore, unlike the first scheme, it is not blind.
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3. Fingerprinting techniques

Another proposed technique for fingerprinting categorical data is [66], where the k-
anonymity pattern is used as a fingerprint. The number of k-anonymity patterns is limited
and highly depends on the data and user-defined generalisation hierarchies, therefore also
the number of distinct fingerprints is limited. Furthermore, k-anonymity significantly
changes the quality of the data. Since a subset of values is replaced by the respective
value of the higher semantic category (e.g. Vienna->Austria), the informativeness of the
data is lost. Every buyer receives a distinct fingerprinted data copy, thus the quality
of the data among the distributed copies differs significantly. The technique lacks in
implementation, therefore we do not include it in our analysis.

3.7.1 Random mark choice

Methodology

Insertion The approach for fingerprint embedding into the categorical data has the
following steps:

1. Label encoding all categorical values to obtain numerical data

2. Fingerprint insertion algorithm of AK Scheme (Algorithm 3.1)

3. Applying modular arithmetic to fingerprinted numerical values of categorical data

4. Decoding the values of categorical attributes

The main idea of the approach is to convert categorical values to numerical values and
treat them as any of the described methods for fingerprinting numerical data would.
Assume that the attribute A has c different categorical values C0, ..., Cc−1. The label
encoding model assigns each categorical value Ci to the respective numerical value
i. After the fingerprint is embedded, the numerical values are being decoded back to
the categorical values. A problem arises when a fingerprinted numerical value is not
assigned to any of the categorical values in the encoding model because the range of
values available in fingerprinting 2ξ, due to the binary representation, does not always
correspond to the range of categorical values for an attribute. The occurrence of such
illegal values is possible when the fingerprint insertion algorithm marks a bit in the
numerical representation of categorical value in such a way that the change of that
bit transforms the numerical value to something that can’t be decoded. For instance,
assume that an attribute A1 has 6 different categorical values (c = 6), assigned by the
encoding model to the numerical values {0, 1, 2, 3, 4, 5}. Furthermore, assume ξ = 2, and
the insertion algorithm deciding to change the second least significant bit of value "4"
somewhere within the dataset. The bit representation of the value 410 = 1002 will after
marking be changed to 1102 which corresponds to 6 in the decimal system, the value
that is not assigned to any categorical value of attribute A1. In general, the set of values
of A1 that can be obtained after embedding the fingerprint is {0, 1, 2, 3, 4, 5, 6, 7}, where
6 and 7 are illegal values.
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3.7. Fingerprinting categorical data

Much bigger odds for a marked value to be out of bounds is in cases when the number of
LSB-s available for fingerprinting ξ is bigger than the length of bit representation the
numerical values in label encoding model. For example, assume c = 4, i.e. an attribute
A2 has 4 different values that are assigned to numerical values {0, 1, 2, 3}, and ξ = 3.
In case when insertion algorithm chooses, for example, value 210 = 102 and its third
least significant bit for fingerprinting, the resulting marked value is 1102 = 610, which
does not have a corresponding categorical value in the encoding model. In general, after
the fingerprint-embedding process, the domain of possible values of the attribute A2 is
{0, .., 7}, where {4, 5, 6, 7} are not assigned to any original categorical value in our label
encoding model.

We solve the problem of illegal values in the fingerprinted dataset by applying modular
arithmetic to the set of values obtained after fingerprinting. The final numerical value x′

i of
the attribute is given by x′

i = xi mod c, where xi is the value after step 2 of the fingerprint-
embedding process. The modulo step in insertion algorithm for categorical data applied
on A1 would change the marked value 610 = 1102 to 610 mod 6 = 010 = 0002.

Finally, after removing the illegal values from the fingerprinted dataset, the numerical
values are decoded to the categorical values.

Detection Fingerprint detection process contains the following steps:

1. Label encoding categorical values using the same model as in fingerprint insertion
phase

2. Fingerprint detection algorithm of AK Scheme (Algorithm 3.2)

In the fingerprint detection process, it is again necessary to preprocess data by label
encoding categorical values. The encoding model needs to match the one from the
insertion phase, otherwise, the detection process is disrupted. After encoding categorical
values, the AK detection algorithm 3.2 can be directly used to detect the malicious buyer.

Properties and Discussion

The properties of a detection algorithm for categorical data are essentially the same
to the properties of AK detection algorithm, except that it is important to take into
account the effects of modular arithmetic applied to the fingerprinted values where it is
the case. Consider the previous example with attribute A1 where the fingerprint insertion
algorithm changes the number representation 210 = 102 of some categorical value to value
1102 = 610 by marking the third LSB and modulo operator application obtains the final
marked value 610 mod 6 = 010 = 0002. From this attribute value, the fingerprint bit
cannot be correctly extracted anymore, therefore the detection algorithm is affected.

The detection algorithm uses the technique called majority voting for deciding the values
of fingerprint bits, as discussed in Section 3.4. This is the key to the property of the

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

3. Fingerprinting techniques

scheme that small errors in data do not prevent detecting the source of leakage. The
effects of these small errors, i.e. values that are changed after inserting the fingerprint,
are analysed in the context of attacks in Chapter 4. Applying modulo to the values has
the same effect on the detection process as purposely changing the values in fingerprinted
data as part of a malicious attack (for example, bit flipping attack).

The success of the detection process directly depends on the number of values that are a
result of performing the modulo step in the insertion phase. This number is affected by the
number of least significant bits we allow to change (parameter ξ) - larger ξ leads to more
frequent usage of modulo operation because the fingerprinted values more frequently get
out of valid bounds. Since the detection process relies on multiple embeddings of a single
fingerprint bit, having more marks in the dataset might assure that the fingerprint bits
are detected correctly. This is controlled by parameter γ and the length of a fingerprint
L.

Table 3.6 presents the success of the detection algorithm for different values of parameters
γ and ξ. A fingerprint is in these experiments embedded in categorical values only.
Length of a fingerprint L is set to 40. The dataset used for experiments from Table 3.6
is the German Credit data with 1000 entries and 21 attributes, out of which 14 are
categorical. The dataset is described in Section 4.1.2. The results are based on 1000 runs
of the algorithm for every parameter combination.

Table 3.6: Success of a detection algorithm of the fingerprinting scheme for categorical
data using the German Credit dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6

γ = 2 99.8% 99.3% 56.4% 23.2%

γ = 3 94.7% 90.4% 17.3% 2.9%

γ = 6 30.0% 18.2% 0.3% 0%

γ = 9 2.9% 1.0% 0% 0%

γ = 12 0.1% 0% 0% 0%

The detection algorithm performance significantly drops when either ξ or γ are increased.
The expectation that the performance of the detection algorithm drops if more LSB-s
are available for embedding the fingerprint (larger ξ) is confirmed by these experiments.
Table 4.2 shows how many categorical attributes have a certain amount of different values
in German Credit dataset. For instance, 3 out of 14 categorical attributes have 3 different
values and therefore require only 2 bits to be encoded. An additional 10 attributes have
up to 5 different values, therefore can be encoded by 3 bits.

In the case where our insertion algorithm marks the 1st or the 2nd LSB of the value, the
value obtained after fingerprinting will most likely be a modified numerical value that can
be decoded back to a valid categorical value. However, allowing e.g. the 4th significant
bit to be marked in the insertion process opens more possibilities of obtaining values
outside of the bounds, and modulo needs to be applied. This results in the big decrease
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3.7. Fingerprinting categorical data

in the detection that can be seen in Table 3.6 between ξ = 2 and ξ = 4. Applying
modulo changes the marked value in the way that the detection algorithm can’t extract
the fingerprint bit correctly, leading to the impossibility of detecting a valid fingerprint.
Generally, increasing ξ leads to worse performance of the detection algorithm. A good
choice for value of parameter ξ depends very much on the dataset. One needs to inspect
the dataset to see approximately how many different values the categorical attributes
have, and set ξ accordingly. For example, if most of the categorical attributes have
approximately 4 values, then ξ should be at most 2 to keep the performance of the
detection algorithm high. Generally, ξ should be set to at most the number of bits needed
to encode all the values of the attribute to their binary representations. The choice
of parameter ξ according to this will help in decreasing the loss in performance of the
detection algorithm, but it generally cannot be completely avoided. One of the reasons is
that the choice of ξ is limited to choosing the same value for the entire dataset, i.e. the
same number of LSBs is available for fingerprinting in any of the attributes, no matter
the size of their domains. The optimal choice for ξ from a detection performance point
of view is then constrained by attributes with a small number of different values, while
from the robustness point of view it is desired to have larger ξ, as discussed in detail
in Chapter 4. On the other hand, if the numbers of different values in all categorical
attributes are not all power of two and ξ not set according to the size of the smallest
domain, there will always be even a minor possibility that the modulo will be applied
and will affect the detection algorithm.

Besides the parameter ξ, the parameter γ affects the performance of the detection
algorithm, as shown in Table 3.6 (γ = 2 means that on average every second tuple is
chosen for fingerprinting). Experiments show a significant decrease in performance when
increasing γ. Increasing γ means marking fewer tuples. Consequently, each fingerprint
bit will be embedded in the data fewer times. This makes it harder for the detection
algorithm to extract the correct value of a specific fingerprint bit when errors caused by
the modulo operation are introduced. The design of our detection algorithm requires the
perfect match of the fingerprint extracted by detection algorithm to some valid buyer’s
fingerprint, therefore only one falsely extracted fingerprint bit is enough for detection
algorithm to fail. This is the reason for the success of 0% for experiments with both high
γ and high ξ.

The issue that arises when fingerprinting dataset as small as German Credit data with
only 1000 rows is that with γ large enough, some fingerprint bits don’t get embedded at
all in the insertion process. Let us have an example where γ = 12 and L = 40. According
to the parameters, 1000/γ ≈ 83 rows will be fingerprinted, and each fingerprint bit will
be embedded into the dataset 83/40 ≈ 2 times. This number is approximate, and most
importantly, averaged over all fingerprint bits. Since the choice of fingerprint bit to be
embedded is completely independent and random in every step of the insertion algorithm,
it is plausible to expect some bits being embedded 0 times. This means that the detection
algorithm will fail to extract the valid fingerprint from the unchanged fingerprinted
dataset if the insertion process failed to embed all fingerprint bits at least once. This
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3. Fingerprinting techniques

observation is important to be noted when analyzing results from the Table 3.6 because
the success of the detection algorithm in small datasets is affected not only by errors
caused by modulo operation but also by the failure of insertion algorithm to embed all of
the fingerprint bits for larger γ. To analyze these effects as separate cases, we define the
following measures:

• DFR (Detection Fail Rate) - the number of fingerprint bits wrongly extracted
because of the errors caused by modulo operation in the fingerprint detection
process

• IFR (Insertion Fail Rate) - the number of fingerprint bits that were not embedded at
all in the fingerprint insertion process, and are therefore impossible to be extracted
(unknown bit value)

• DIFF - bit difference between the extracted fingerprint and the correct one;
DIFF = DFR + IFR

Table 3.7 shows the rates obtained by the experiments shown in the Table 3.6, and
presents a comparison of how much effect on the success of detecting the valid fingerprint
is due to the modulo operation, and how much due to non-embedded bits. Rates in
the table are the average values of rates from all 1000 runs. Insertion Fail Rate (IFR)
depends only on the number of dataset values being fingerprinted, i.e. parameter γ. For
γ as small as two, a single fingerprint bit is embedded 1000/(γ ∗L) ≈ 13 times on average,
and experimental results show that the insertion algorithm does not fail in embedding
all of the fingerprint bits in any of the 1000 trials. The detection algorithm is, for γ = 2,
affected only by errors induced by modulo, and the fingerprint extracted by the algorithm
and the correct one differ in only 0.002 bits on average. For γ = 12 the IFR raises up
to ≈ 5/40, i.e. on average 5 out of 40 bits of the extracted fingerprint are incorrect.
From the experiments, we can see that in most of the cases DFR is larger than IFR, i.e.
errors in fingerprint extraction are mostly caused by applying modulo operation, except
for small values of ξ.

Table 3.7: Bit difference and the detection fail rates for the German Credit data

ξ = 1 ξ = 2 ξ = 4 ξ = 6

DIFF DFR DIFF DFR DIFF DFR DIFF DFR IFR

γ = 2 0.002 0.002 0.007 0.007 0.562 0.562 1.376 1.376 0

γ = 3 0.055 0.045 0.100 0.090 1.654 1.644 3.203 3.193 0.010

γ = 6 1.170 0.558 1.642 1.030 5.603 4.991 7.842 7.230 0.612

γ = 9 3.615 1.105 4.256 1.746 9.206 6.696 11.498 8.988 2.510

γ = 12 6.462 1.424 7.190 2.152 11.935 6.897 14.095 9.057 5.038

Table 3.8 shows the experimental results of the success of the detection algorithm when
modulo is not applied, but illegal numerical values are left in the fingerprinted dataset.
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3.7. Fingerprinting categorical data

Experiments are as well run on the German Credit dataset, with 1000 runs for each
parameter value. This table highlights the case of having a small dataset. The results
show how limited the choice of parameter γ is in these cases.

Table 3.8: Success of a detection algorithm using the German Credit dataset without
applying modulo operation

γ = 2 γ = 3 γ = 6 γ = 9 γ = 12 γ = 15

100% 99.0% 54.5% 7.6% 0.6% 0%

We repeat the experiments on another, larger dataset in order to examine the effects
of modulo operation on the detection process, without other side effects such as the
insertion algorithm failure. For the experiments, we use Adult dataset. The dataset
originally has 32,561 rows that contain missing values. We will not examine dealing with
missing values, so for the experiments, we use the subset of 30,162 rows that do not
contain any missing values. Table 3.9 shows the experimental results of the success of the
detection algorithm to recognise the correct malicious buyer. the fingerprint length L is
set to 80. The results in Table 3.9 are the percentage of successfully detected fingerprints
out of 1000 runs for every parameter combination.

Table 3.9: Success of the detection algorithm using Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6

γ = 3 100% 100% 100% 100%

γ = 6 100% 100% 100% 100%

γ = 12 100% 100% 100% 99.5%

γ = 25 100% 100% 95.8% 64.0%

γ = 50 95.6% 72.6% 25.2% 1.4%

γ = 100 14.2% 3.0% 0% 0%

Comparing the results from Table 3.6 and Table 3.9 it can be observed that the detec-
tion algorithm performance improved a lot by having a larger dataset. For low γ the
performance is perfect or close to perfect. Again, increasing ξ leads to worse performance
of the detection algorithm since the modulo operation is required more and fingerprint
bits are wrongly detected. In Table 3.10 we can see that the extracted fingerprint is very
"close" to the valid one. For instance, in the case of γ = 50 and ξ = 2, the performance
of the algorithm drops to 72.6%, but the bit difference between the extracted and real
fingerprint is on average 0.31 (Table 3.10, DIFF rate), meaning that for most of the
remaining 27.4% runs of the algorithm, the fingerprints’ bit difference is only in one
single bit. In Table 3.10 we omitted the experiments where the detection success is 100%
since all the rates for those cases are 0. In other cases, we can see that insertion fail
rate IFR is very small or zero, so most of the fingerprint detection failure is caused by
modulo operation.

The problem of having illegal categorical values after the fingerprinting process is thwarted
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3. Fingerprinting techniques

Table 3.10: The detection fail rates for Adult data

ξ = 1 ξ = 2 ξ = 4 ξ = 6

DIFF DFR DIFF DFR DIFF DFR DIFF DFR IFR

γ = 25 0 0 0 0 0.043 0.043 0.431 0.431 0

γ = 50 0.047 0.003 0.310 0.266 1.302 1.258 3.987 3.943 0.044

γ = 100 1.994 0.158 4.086 2.250 7.030 5.194 12.228 10.392 1.836

by the solution that introduces another problem - the weaker performance of the detection
algorithm. Bad performance of the detection algorithm necessarily means that the
presented fingerprinting scheme for categorical data is more susceptible to the attacks.
Small datasets are more vulnerable because of the possibility that the insertion algorithm
fails to embed the fingerprint properly, not only in the context of categorical data but in
general. By careful dataset inspection and parameter tuning, both problems of small
dataset and errors caused by modulo can be avoided. Lower L, γ and ξ in general lead
to better performance.

We saw that the number of LSB-s ξ defines the quality of the scheme and that by
choosing smaller ξ we can minimise the error of the detection algorithm. In the discussion
above, we use the fixed ξ for all the attributes. However, we could modify this property
such that each attribute Ai is associated with own ξi based on the number of distinct
values of that attribute. This way we increase the robustness by setting particular ξi

values as high as possible, taking into account the upper limit that is defined by the
number of distinct values in the attribute. For instance, changing only one LSB in the
attribute with only three values, but allowing to change 5 LSB-s in attributes with > 40
values.

This approach is simplistic but effective. We will see in Chapter 4 the robustness analysis
of the scheme and in Chapter 5 the utility analysis. Another aspect that could be taken
into account when designing a robust fingerprint technique is the semantic correlation
between the categorical attributes. For instance, the fingerprint might be much more
perceptible when there is a frequent number of occurrences of impossible or very unlikely
combinations of attribute values due to marking. This problem is addressed in the
following section.

3.7.2 Choosing a mark based on correlations in the dataset

This approach addresses the problem of semantic relations between categorical attributes
that can be disturbed by fingerprinting. Considering attributes independently of each
other and embedding a random mark into a categorical value might lead to non-consistent
records. A mark may introduce an uncommon or impossible combination of values
in the data. As an example, let us consider a dataset containing attributes gender,
numberOfPregnancies, etc. The attributes gender and numberOfPregnancies intuitively
contain an impossible combination of values: (gender :male, numberOfPregnancies:1).
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3.7. Fingerprinting categorical data

Another example is where the combination of values might be very uncommon. Take,
for example, a medical dataset containing information about the patients suffering from
Alzheimer’s disease. The combination (alzheimersStage:middle, employed:yes) is very
uncommon, but might be introduced by a random fingerprint mark. With a dataset
domain knowledge, these examples would be rather suspicious and thus perceptible. We
aim to take into account the correlation between the values of different attributes and
avoid uncommon combinations. Algorithm 3.11 shows the pseudocode for the insertion
algorithm of the scheme.

Methodology

Algorithm 3.11: Fingerprinting technique for categorical data: Insertion Algorithm

Input: dataset R with scheme (P, A0, ..., Av−1), buyer n’s ID id
Output: fingerprinted dataset R′

1 fingerprint of buyer n: F(K, id) = H(K|id)
2 foreach tuple r ∈ R do

3 if (S1(K|r.P ) mod γ == 0) then

4 attribute_index i = S2(K|r.P ) mod v
5 if Ai is categorical then

6 mask_bit x = 0 if S3(K|r.P ) is even; x = 1 otherwise
7 fingerprint_index l = S4(K|r.P ) mod L
8 fingerprint_bit f = fl

9 mark_bit m = x⊕ f
10 if m == 1 then

11 neighbourhood = select_neighbours()
12 target_values, freq = get_frequencies(neighbourhood)
13 r.Ai = random(target_values, weight = freq)

14 end

15 else if Ai is numerical then

16 bit_index j = S3(K|r.P ) mod ξ
17 mask_bit x = 0 if S4(K|r.P ) is even; x = 1 otherwise
18 fingerprint_index l = S5(K|r.P ) mod L
19 fingerprint_bit f = fl

20 mark_bit m = x⊕ f
21 LSB(j, r.Ai) = m

22 end

23 end

24 return R′

Insertion The insertion algorithm resembles the AK Scheme’s insertion algorithm
(Algorithm 3.1). The creation of a fingerprint and the pseudorandom choice of tuples
and attributes to be marked is the same. In this scheme, the distinction is made based
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3. Fingerprinting techniques

on whether a numerical or a categorical attribute is chosen for fingerprinting (line 5).
In a case where the attribute is categorical, the next random value generated by a
pseudorandom number generator S decides the value of a mask bit x. Furthermore, the
next random value from the generator decides which fingerprint bit fl is going to be
embedded. The mark bit m is a result of an XOR operation between the mask and the
fingerprint bit. In case the mark is 1, the attribute value will be marked. The lines 11 to
13 of Algorithm 3.11 are specific for this scheme and contain the main part of this scheme.
Instead of marking the value to something random from the domain of the attribute, the
idea is to choose a value taking into account the values of the other attributes in the tuple.
This way, the algorithm avoids the combinations of values that are unlikely to appear in
the dataset. We search for a neighbourhood of the observed tuple regarding all attributes
but one that is being fingerprinted. We find the neighbours using the nearest neighbours
algorithm with the Hamming distance. We let the user select whether the neighbourhood
will be defined as a certain number of neighbours, k, or as the set of elements within
the given distance d. The parameters k and d are predefined by the user as well. After
the neighbours are obtained, we observe the values in the attribute Ai and sort them by
their frequencies. The new value, i.e. the fingerprinted value is then a random value from
the set of neighbours’ values, where the random choice is weighted by values’ frequencies.
This technique is known in genetic algorithms as a fitness proportionate selection, or
roulette wheel selection, a genetic operator used for selecting potentially useful solutions
for recombination. Fingerprinting process of numerical values follows the steps of the
AK Scheme.

Detection The pseudocode for the detection algorithm is shown in Algorithm 3.12.

Similarly to the AK’s detection algorithm (Algorithm 3.2), the algorithm starts by
initializing the fingerprint template and the votes for fingerprint bit values. We then find
the tuples and attributes that should have been fingerprinting according to the same
pseudorandom sequence as in the insertion algorithm. For categorical attributes, the
fingerprint extraction is described from line 7 to 12. We retrieve the mask bit x. Next, to
find the value of the mask bit m, it is necessary to compare the suspected fingerprinted
dataset to the original. If the corresponding value is different from the original, then
the value m was 1 in the insertion algorithm, otherwise 0. Furthermore, we find the
fingerprint bit index l as the next random value in the pseudorandom sequence generator.
The lines 13 to 17 contain the extraction from the numerical values which is the same as
in the extraction algorithm of the Ak Scheme. The lines 18 to 38 are common for both
categorical and numerical data and follow the steps from the detection algorithm of the
AK Scheme.

Discussion

Neighbourhood search is implemented in two different ways and is left to the user to decide
which one to use for the specific case. We allow searching for a fixed number of neighbours,
k, or searching for neighbours within a predefined distance d. The choice between the
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3.7. Fingerprinting categorical data

Algorithm 3.12: Fingerprinting technique for categorical data: Detection Algo-
rithm

Input: fingerprinted dataset R′ with scheme (P, A0, ..., Av−1), original dataset R
with scheme (P, A0, ..., Av−1

Output: suspected buyer’s ID id
1 fingerprint template F = (f0, ..., fL−1) = (?, ..., ?)
2 count[i][0] = count[i][1] = 0 for i = 0 to L− 1
3 foreach tuple r ∈ R′ do

4 if S1(K, r.P ) mod γ == 0 then

5 attribute_index i = S2(K, r.P ) mod v
6 if Ai is categorical then

7 mask_bit x = 0 if S3(K, r.P ) is even; x = 1 otherwise
8 if r.Ai is different from the original then

9 mark_bit m = 1
10 else

11 mark_bit m = 0
12 fingerprint_index l = S4(K, r.P ) mod L

13 else if Ai is numerical then

14 bit_index j = S3(K, r.P ) mod v
15 mark_bit m = LSB(j, r.Ai)
16 mask_bit x = 0 if S4(K, r.P ) is even; x = 1 otherwise
17 fingerprint_index l = S5(K, r.P ) mod L

18 //update the votes
19 fingerprint_bit f = m⊕ x
20 count[l][f ] + +

21 end

22 end

23 //recover the fingerprint
24 for l = 0 to L− 1 do

25 if count[l][0] + count[l][1] == 0 then

26 return none suspected
27 end

28 fl = 0 if count[l][0]/(count[l][0] + count[l][1]) > τ
29 fl = 1 if count[l][1]/(count[l][0] + count[l][1]) > τ
30 return none suspected otherwise

31 end

32 F = (f0, ..., fL−1)
33 id = detect(F ,K, L, N)
34 if id ≥ 0 then

35 return id
36 else

37 return none suspected
38 end
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3. Fingerprinting techniques

approach, as well as setting the parameters k and d requires some expert knowledge about
the dataset. In case of an approach based on selecting a fixed number of neighbours, it
is important to handle the neighbours with the same distances deterministically. We
solve this in the following way: first, we choose the k neighbours, then find the maximum
distance within the neighbours and select all elements outside of the neighbourhood with
the same distance. Therefore, it might be the case where the neighbourhood is extended
to more than k elements.

The set of attributes included in the neighbourhood selection do not have to be the whole
set of attributes of the dataset. This can be set by the user who has insights into the
data and has the knowledge about the highly related attributes.

The final choice of the mark could be ambiguous if we would always choose the most
frequent ones, in cases when we have multiple values with the same frequencies. For that
reason we choose to select the new value pseudorandomly, weighted by the frequencies.
This way the whole set of values from the neighbourhood have a chance to be selected,
while the most frequent one will be selected with the highest probability.

3.8 Summary

In this chapter we have presented three common fingerprinting techniques for finger-
printing relational datasets, the AK Scheme in Section 3.4, Block Scheme in Section 3.5
and Two-level Scheme in Section 3.6. These techniques have in common the usage of
cryptographically secure structures and algorithms, i.e. cryptographic pseudo-random
sequence generator and cryptographic hash function. They are used for creating the
buyers’ fingerprints because of security reasons since they must remain secret to everyone
except the owner of the dataset. These techniques are limited to application on numerical
values in the data. Furthermore, two fingerprinting techniques for non-numerical data
are introduced in Section 3.7. Both techniques extend the AK Scheme such that the
same algorithmic steps are used for fingerprinting the numerical part of the data. The
first scheme follows the pseudo-random pattern of choosing marks for categorical values.
In the second scheme, the solution goes towards preserving the correlations between the
categorical values and marks the values in a way that no uncommon combinations of
values occur in the final fingerprinted copy of the dataset.

These techniques are the basis of the analysis in the following chapters. The techniques
are susceptible to attempts of a malicious buyer to destroy the fingerprint from the
dataset. In the next chapter, we analyse how robust these techniques are under certain
types of attacks.
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CHAPTER 4
Robustness of fingerprinting

techniques against attacks

4.1 Experimental setup

4.1.1 Robustness measures

Fingerprinting schemes should be robust against different attempts to prevent the correct
detection of the fingerprint. Modifying, deleting and adding the values to the fingerprinted
data, that can be both benign updates and malicious attacks, can modify or erase the
fingerprint. A robust fingerprinting scheme should make it hard for the attacker to erase
the fingerprint, to modify it in the way that an innocent buyer is implicated as a traitor,
or to modify unmarked data such that a valid fingerprint is detected.

In further sections we analyse robustness fingerprinting schemes against different attacks
using robustness measures proposed in [1]:

• Misdiagnosis false hit (fhD): The probability of detecting a valid fingerprint
from data that has not been fingerprinted.

• Misattribution false hit (fhA): The probability of detection an incorrect but
valid fingerprint from fingerprinted data.

• False negative (fn): The probability of detecting no valid fingerprint from
fingerprinted data.

• False miss (fm): The probability of failing to detect an embedded fingerprint
correctly. False miss rate is the sum of the false negative and misattribution false
hit rates, i.e. fm = fhA + fn.
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4. Robustness of fingerprinting techniques against attacks

4.1.2 Datasets

We use three different datasets for the experiments on fingerprint robustness and quality
effects on fingerprinted datasets in the following sections obtained from the UCI Machine
Learning repository [79]:

• Forest Covertype dataset1

• German Credit Data2

• Adult dataset (train data)3

Forest Cover Type The dataset contains measurements related to the forest cover
originally obtained from US Geological Survey (USGS) and US Forest Service (USFS) data.
This dataset is chosen due to its desired properties of containing multiple integer-valued
attributes, because of its size and because its intended purpose is the classification problem
with target Cover_Type. This dataset is often used for experiments in watermarking
and fingerprinting literature [35, 1], therefore using this dataset gives the possibility of
comparing our results with previous work. The dataset has 581,012 rows, each with
54 attributes and no primary key. For fingerprint insertion, an extra attribute - id is
added to serve as the primary key, since the chosen fingerprinting techniques require the
presence of the primary key for fingerprint embedding. 44 out of a total of 54 attributes
of the dataset contain binary values. We use the remaining 10 integer-valued attributes
for embedding fingerprints. Binary attributes are a result of one-hot encoding, therefore
changing one value from 0 to 1 or vice versa would require changing another attribute’s
value to retain the structure. The binary attributes of Forest dataset are excluded because
of this high correlation that defines different properties compared to the numerical values
in the context of fingerprinting. In Table 4.1, the information about the attributes is
given.

German Credit Data The dataset describes persons by attributes containing some
personal information and classifies them as good or bad in terms of risk for the credit
defaulting. The dataset has 1000 rows, 20 attributes and one target attribute. 13
out of 20 attributes in this dataset, as well as the target attribute in this dataset, are
categorical and we use this dataset to analyse the performance of the fingerprinting
scheme for categorical data described in Section 3.7 and for experiments on the impact
of fingerprinting to a learning task in Section 5.2. The dataset is also chosen for its size.
Because it is considerably smaller than Forest Cover Type, there is a possibility that
the size of a dataset can affect the performance of fingerprinting algorithms. Detailed
information about the attributes in the dataset is given in Table 4.2.

1https://archive.ics.uci.edu/ml/datasets/covertype
2https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
3https://archive.ics.uci.edu/ml/datasets/adult
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4.1. Experimental setup

Table 4.1: Attributes of the Forest Cover Type dataset

Name Description Type

Elevation Elevation in meters Int

Aspect Aspect in degrees azimuth Int

Slope Slope in degrees Int

Horizontal_Dist_To_Hydrology Horizontal distance to nearest surface water features Int

Vertical_Dist_To_Hydrology Vertical distance to nearest surface water features Int

Horizontal_Dist_To_Roadways Horizontal distance to nearest roadway Int

Hillshade_9am Hillshade index at 9am, summer solstice Int

Hillshade_Noon Hillshade index at noon, summer solstice Int

Hillshade_3pm Hillshade index at 3pm, summer solstice Int

Horizontal_Dist_To_Fire_Points Horizontal distance to nearest wildfire ignition points Int

Wilderness_Area (4 columns) Wilderness area designation Binary

Soil_Type (40 columns) Soil Type designation Binary

Cover_Type Forest Cover Type designation Int

Adult dataset The dataset contains information about people such as their age,
workclass, education, etc. and a target attribute whether a person makes at least $50K
per year or less than $50K. This dataset contains 15 attributes in 30,162 samples of
training data (after removing samples containing missing values), where the attributes
are both numerical and categorical (five continuous numerical and ten categorical). The
same as German Credit dataset, we use this dataset to analyse the performance of
fingerprinting scheme for categorical data in Section 3.7 and for experiments on the
impact of fingerprinting to a learning task in Section 5.2. Table 4.3 describes the attributes
of the Adult dataset.

4.1.3 Attacks

In the following sections we discuss and analyse the robustness of the fingerprinting
schemes, described in Chapter 3, against the following attacks:

• Subset attack - the attacker releases only a subset of the dataset rows as an attempt
to erase the fingerprint

• Superset attack - the attacker adds additional rows to the original dataset and
mixes them with the original rows

• Bit-flipping attack - the attacker flips arbitrary bits in the dataset in an attempt
to erase the fingerprint

• Additive attack - the attacker inserts additional fingerprint to the data, claiming
the ownership

• Collusion attack - multiple buyers compare their dataset copies and create a new
copy in an attempt to erase the fingerprint of every buyer in the collision
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4. Robustness of fingerprinting techniques against attacks

Table 4.2: Attributes of the German Credit dataset

Name Description Type #values

Attr.1 Status of existing checking account Categ. 4

Attr.2 Duration in month Int

Attr.3 Credit history Categ. 5

Attr.4 Purpose Categ. 11

Attr.5 Credit amount Int -

Attr.6 Savings account/bonds Categ. 5

Attr.7 Present employment since Categ. 5

Attr.8 Installment rate of disposable income (%) Int -

Attr.9 Personal status and sex Categ. 5

Attr.10 Other debtors/guarantors Categ. 3

Attr.11 Present residence since Int -

Attr.12 Property Categ. 4

Attr.13 Age in years Int -

Attr.14 Other installment plans Categ. 3

Attr.15 Housing Categ. 3

Attr.16 Number of existing credits at this bank Int -

Attr.17 Job Categ. 4

Attr.18 Number of liable people Int -

Attr.19 Telephone Bin 2

Attr.20 Foreign worker Bin 2

Target Good or bad credit risks Bin 2

4.2 Misdiagnosis false hit

In this section, we will analyse the misdiagnosis false hit rate of different fingerprinting
schemes. This robustness measure differs from the others in a way that it does not
measure the success of a malicious attack or benign updates on the dataset. In contrast
to the ability of the detection algorithm to detect the correct fingerprint from the pirated
(and fingerprinted) data, the fingerprinting scheme may also, purely by chance, extract a
valid but incorrect fingerprint from unmarked data. This phenomenon is measured by
misdiagnosis false hit rate.

4.2.1 AK Scheme

Assume that the detection algorithm from the unmarked data extracts a potential
fingerprint f = (f0, ..., fL−1), i.e. some bit string of length L. Furthermore, assuming
that a single fingerprint bit fi is extracted from the dataset multiple times, it is decided
to be a single value (0 or 1) if that value is extracted more than τωi, where ωi is the
number of times fi is extracted. Due to the use of pseudo-random mask bits in this
scheme, each time fi is extracted, it will be extracted as 0 or 1 with probability 0.5,
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4.2. Misdiagnosis false hit

Table 4.3: Attributes of the Adult dataset

Name Type #values

age Continuous -

workclass Categorical 8

fnlwgt Continuous -

education Categorical 16

education-num Continuous 16

marital-status Categorical 7

occupation Categorical 14

relationship Categorical 6

race Categorical 5

sex Categorical 2

capital-gain Continuous -

capital-loss Continuous -

hours-per-week Continuous -

native-country Categorical 41

income Categorical 2

which is modelled as an independent Bernoulli trial. Once when the detection algorithm
is done processing the dataset, the probability of the value of one fingerprint bit fi of the
extracted potential fingerprint f being 0 is B(⌊τωi⌋; ωi, 0.5), and the same probability
stands for fi being 1. Therefore, the algorithm detects the potential fingerprint with
the probability

∏L−1
i=0 2B(⌊τωi⌋; ωi, 0.5). The probability that the extracted fingerprint

is matching one of the N valid ones equals to choosing N bit strings out of 2L possible
ones: N/2L. Now the overall misdiagnosis false hit rate is

fhD =
N

2L

L−1
∏

i=0

2B(⌊τωi⌋; ωi, 0.5) (4.1)

and after 2L cancels out

fhD = N
L−1
∏

i=0

B(⌊τωi⌋; ωi, 0.5) (4.2)

The misdiagnosis false hit rate is exponentially dependant on length of the fingerprint L.
The rate can be reduced by increasing L. Table 4.4 shows the misdiagnosis false hit rate
under different values of L and ωi ≈ {100, 50} : ∀i ∈ {0, ..., L− 1}, where N = 100 and
τ = 0.5 are fixed values.

We can see that for L≫ log(N) we can almost completely avoid the misdiagnosis false
hit (fhD ≃ 0) and by this rule, we will be choosing the values for L in further analysis
and experiments in this thesis.
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4. Robustness of fingerprinting techniques against attacks

Table 4.4: Misdiagnosis false hit rate for the AK Scheme

L 8 16 32 64 128

fhD(ωi = 100) 0.7208 0.0052 2.70× 10−7 7.30× 10−16 5.31× 10−33

fhD(ωi = 50) 0.9151 0.0084 7.01× 10−7 4.92× 10−15 2.42× 10−31

4.2.2 Block Scheme

The probabilistic model for the misdiagnosis false hit is the same as in the case of AK
Scheme, so for analysis on this topic, we refer to Section 4.2.1.

4.2.3 Two-level Fingerprinting Scheme

Two-level Fingerprinting Scheme detects the detected fingerprint in multiple phases.
The extraction starts with ownership verification followed by fingerprint extraction and
fingerprint verification. The detection algorithm goes to the extraction phase only if the
ownership is verified, suggesting that first, we have to take into account the probability
of passing the first phase of detection.

Let us assume that the input to the detection algorithm is an unmarked dataset of size η.
We set α1 = α2 = α3 = 0.01 and choose arbitrary γ1 and γ2. The subroutine detect 3.3
counts the amount of tuples that should have been marked with 1 (total_count1) and
with 0 (total_count0) in the embedding process. Due to uniformly distributed output of
the hash function H, the approximate value of both total_count1 and total_count0 will
be:

total_count1 ≈ total_count0 ≈ η/γ1 (4.3)

Furthermore, the subroutine counts number of matches of chosen bits with the suggested
values (match_count1 and match_count0). Again, assuming the uniformity of the hash
function:

match_count1 ≈ total_count1/2 (4.4)

match_count0 ≈ total_count0/2 (4.5)

To pass the ownership verification test, the total number of matches has to satisfy the
condition:

match_count > threshold(total_count, α1) (4.6)

where match_count = match_count1+match_count0 and total_count = total_count1+
total_count0. Therefore, for the ownership verification with confidence 99% the following
has to hold:

threshold(total_count, 0.01)

total_count
< 0.5 (4.7)

The value of this portion is shown in Figure 3.1 with the solid blue line. Even for very
big total_count, the threshold portion very slowly approaches 0.5. Thus, the ownership
is very unlikely to be falsely verified in the unmarked dataset.
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4.3. Subset attack

The extraction algorithm does not continue if ownership is not verified, therefore the
scheme is extremely robust against misdiagnosis false hit.

4.2.4 Fingerprinting scheme for categorical data

The probabilistic model for the misdiagnosis false hit for the fingerprinting scheme for
the categorical data is the same as in the case of AK Scheme. For the analysis, we refer
to Section 4.2.1.

4.3 Subset attack

In the attempt to erase the fingerprint from the dataset, the attacker may release only a
subset of tuples of a fingerprinted dataset. This is called a subset attack. In our attack
model, we assume the attacker selects each tuple independently with probability p to
include it in the pirated dataset. We also assume no other updates on the dataset are
applied and no other attacks performed.

4.3.1 AK Scheme

A subset attack succeeds when all embedded bits for at least one fingerprint bit are
deleted. Assuming that each fingerprint bit fi is embedded ωi times, then the probability
that all embedded bits for fi are deleted is (1 − p)ωi . The probability that no valid
fingerprint will be detected from the dataset is then

fm = 1−
L−1
∏

i=0

(1− (1− p)ωi). (4.8)

Table 4.5 shows the probability of a successful attack for different parameter γ values.
p′ = 1 − p denotes the probability that a single tuple is deleted, i.e. the approximate
percentage of deleted tuples since the choice of deletion is made independently by the
attacker. We set η = 581, 012, v = 10 (according to the properties of Forest Cover Type
dataset that we use in empirical evaluation), ξ = 4 and L = 96. We can see from the table
that the subset attack only gets to the reasonable level of probability for success with
more than at least 90% deleted tuples, depending on γ. We have to take into account
that as few as 1% of the tuples in this example is around 5810 tuples, which for the
attacker might still be the acceptable amount of tuples to release without authorisation
and perform the successful subset attack if γ is set high enough (γ ≥ 25). In those
cases where p′ is large, γ should be set to the smaller value, since the probability for a
successful subset attack decreases when γ decreases for the same p′. Therefore, we adapt
γ to prevent the subset attack.

Experiments To present empirically the success of the subset attack, we performed
the attack on the Forest dataset with η = 581, 012 and v = 10 using different parameter
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4. Robustness of fingerprinting techniques against attacks

Table 4.5: Probability of a successful subset attack on the AK Scheme

p′ = 70% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 6 0 0 0 0 0.0038

γ = 12 0 0 0 5.6881× 10−10 0.4555

γ = 25 0 0 8.1088× 10−10 0.0004 0.99985

γ = 50 0 0 0.0003 0.1761 1

γ = 100 4.877× 10−8 0.0001 0.1586 0.9892 1

settings. The parameters are chosen the same way as shown in table 4.5 to be able to
compare theoretical results with the empirical. The experimental results are shown in
table Table 4.6. Every experiment is run 500 times and parameters are set as presented
in the table. We set L = 96 and ξ = 4 where the later does not affect the success of the
subset attack.

We can see from the table Table 4.6 that the results roughly match our analysis. The
best rate of success has the attacks where most of the tuples are deleted (>95%) and the
percentage of fingerprinted tuples is low (γ is high). Therefore, we can argue that the
AK Scheme is robust against subset attacks.

Table 4.6: Experimental results of a subset attack success rate on the AK Scheme, using
the Forest dataset

p′ = 70% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 6 0 0 0 0 0.004

γ = 12 0 0 0 0 0.5

γ = 25 0 0 0 0 1.0

γ = 50 0 0 0.002 0.194 1.0

γ = 100 0 0 0.20 0.9975 1.0

Note that our original dataset did not have a primary key. Instead, we added the attribute
Id to serve as the primary key. For simplicity purposes, the Id values in the experiments
are represented by the sequence number of the tuple. Furthermore, although during
subset attack the attacker removes some tuples, we assume that the primary key of every
preserved tuple will not change. In case the primary key is removed or manipulated, the
recreation of one is crucial for the defence against the subset attack. Availability of the
original dataset simplifies the process of recreating the primary key. A simple matching
algorithm can be applied to the suspect dataset that compares values of bit positions
which are not being selected for marking in the fingerprinting process to the same set
of bit positions in the original data. This approach might be flawed by having multiple
primary key value candidates for a single tuple. In that case, the additional decision
step based on the similarity of the bits used for marking can be applied. Alternatively,
the virtual primary key construction technique proposed in [36] can be used to generate
the primary keys and does not require the presence of the original dataset. Primary
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4.3. Subset attack

keys are generated from the unmarked parts or data and the owner’s secret key using a
cryptographic hash function. Without knowing the secret key, recreating the primary
key values is unfeasible.

4.3.2 Block Scheme

For the Block Scheme detection algorithm, it is crucial to have the same number of
tuples and attributes and their correct order in the suspicious database. Otherwise, we
cannot detect a valid fingerprint. When the attacker removes the chosen tuples, the
defence has to replace the deleted one with the corresponding ones from the original
dataset. In our analysis we formulate the deletion of each tuple as an independent
trial with two possible outcomes whose probabilities remain the same through the trials
(Bernoulli trial). Furthermore, with B(k; n.p) we denote the probability of having at
least k successes in n trials with probability p of success. The detection algorithm will be
able to detect the correct fingerprint if every fingerprint bit fi occurs at least ⌊τωi⌋ times
in the suspicious dataset. It means that at least ⌊(1 − τ)ωi⌋ embedded bits for some
fingerprint bit have to be deleted for the attack to succeed. If the attacker examines each
tuple independently and selects it for inclusion in the pirated database (i.e. deletes it
with probability p′ = 1− p), the probability that the fingerprint bit fi cannot be detected
is B(⌊(1− τ)ωi⌋; ωi, p′). Note that each fingerprint bit in the Block Scheme is embedded
either ω or ω− 1 times, so we approximate this value to ω for the convenience. Then the
probability that the detection algorithm will fail to extract the fingerprint is

fm = 1− (1−B(⌊(1− τ)ωi⌋; ωi, p′))L (4.9)

Table 4.7 shows the probabilities of successful subset attack under different values of
parameter β and different probabilities p′. For calculations we use dataset of size η =
581, 012 and v = 10 attributes, for purpose of comparing these results with experimental
results. The other parameters are set as follows: ξ = 3, L = 96 and τ = 0.5.

Table 4.7: Probability of a successful subset attack on the Block Scheme

p′ = 30% p′ = 40% p′ = 45% p′ = 50%

β = 5 0 0 0 1.0

β = 10 0 0 0.001 1.0

β = 15 0 6.8233× 10−7 0.2320 1.0

β = 20 0 9.7949× 10−4 0.8301 1.0

β = 30 2.0832× 10−7 0.2151 0.9998 1.0

Experiments We present the empirical results of the success of a subset attack on
the Block Scheme. The experiments are run on Forest dataset of size η = 581, 012 and
v = 10 attributes, with parameters ξ = 3, L = 96 and τ = 0.5. We measure success of the
attack for p′ = {0.30, 0.40, 0.45, 0.50} and β = {5, 10, 15, 20, 30}. We run each experiment
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4. Robustness of fingerprinting techniques against attacks

(a) γ1 = 100 (b) γ1 = 50

Figure 4.1: Fingerprint extraction in a subset attack

500 times and summarise the number of successes/fails of the attack. In table 4.8 the
empirical results are presented.

Table 4.8: Probability of a successful subset attack on the Block Scheme

p′ = 30% p′ = 40% p′ = 45% p′ = 50%

β = 5 0 0 0 1.0

β = 10 0 0 0.008 1.0

β = 15 0 0 0.356 1.0

β = 20 0 0.002 0.914 1.0

β = 30 0 0.196 1.0 1.0

For β values 5, 10 and 15, up to 40% of the arbitrary tuples can be deleted and it will
not affect the detection of the fingerprint. Larger values of β tolerate around 30% of the
deleted tuples. Compared to the theoretical results in Table 4.7, the experimental results
are very similar.

4.3.3 Two-level Fingerprinting Scheme

The Two-level Fingerprinting scheme provides two levels of marking patterns; the first
one that can verify the owner and the second one verifying the recipient of the dataset.
When the attacker removes a subset of tuples and releases the remainder, the fingerprint
is affected in two ways:

1. It might be impossible to trace back the owner but the owner can claim the
ownership

2. It might be impossible both to trace back the owner and to claim the ownership
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4.3. Subset attack

Experiments The attack may cause that the extraction process does not manage to
extract all the fingerprint bits correctly. We can see from Figure 4.1(a) that even if only
around 35% of the tuples are released by the malicious buyer, all fingerprint bits are
still correctly extracted. The robustness of this scheme can be improved by changing the
value of γ1. Figure 4.1(b) shows the results for a smaller γ1, i.e. for the increased number
of marks in the data that can be used to verify the ownership. For this parameter setting,
the scheme is more robust against the subset attack, and even from only 20% of the
data, all the correct fingerprint bits can be extracted. For this experiments, we used
the fingerprint of length L = 96 and the bit significance level of each bit α2 is 0.01 (the
confidence level is 99%).

Table 4.9: Success of the subset attack on Two-level Fingerprinting Scheme

p′ = 60% p′ = 70% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ1 = γ2 = 10 0 0 0 0 0 1.0

γ1 = γ2 = 25 0 0 0 0.04 1.0 1.0

γ1 = γ2 = 50 0 0 0.04 0.98 1.0 1.0

γ1 = γ2 = 100 0 0.74 1.0 1.0 1.0 1.0

γ1 = γ2 = 200 1.0 1.0 1.0 1.0 1.0 1.0

Let us consider the setting where γ1 = 50 and γ2 = 50. For p < 20% (p′ > 80%; the
attacker removes more than 80% of the tuples) some bit positions will be unknown. For
p = 15% on average 2 out of 96 bit positions cannot be detected, creating 22 fingerprint
candidates. The fingerprint verification process may still select the correct fingerprint out
of 22 possible ones and the extraction algorithm finds the malicious buyer successfully. In
the same setting, when 90% of the tuples are removed, the algorithm correctly extracts
72% correct fingerprint bits, or 69 out of 96. This is not enough for the fingerprint
verification algorithm to verify any fingerprint and the detection algorithm fails. See the
Table 4.9 where the success of the subset attack is recorded. The experiments are run
using Forest Cover Type data. The results in the table confirm that although not all
fingerprint bits are extracted, the attack is not 100% successful.

The first level of the embedding process provides the ownership verification even for
cases when the correct fingerprint cannot be extracted. So, although the owner cannot
trace the source of unauthorised leakage of data, she can claim the ownership. The mark
created in this process is very robust. See in the Figure 4.2 that even from the very
small percentage of the data (<5%), the detection algorithm will verify the owner with
confidence level 99% (α1 = 0.01). The experiments are run even for the very big values
of γ1. For the settings where our experiments show high probabilities of extracting the
right fingerprint from the small chunks of data, i.e 10 < γ1, γ2 < 100, up to 99% of the
tuples can be deleted and ownership can still be claimed.
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4. Robustness of fingerprinting techniques against attacks

Figure 4.2: Ownership verification in a subset attack

4.3.4 Fingerprinting scheme for categorical data

The fingerprinting scheme for categorical data complements the AK Scheme and for subset
attack, we can refer to Equation (4.8) as a starting point for analysis. The important
difference between AK Scheme and scheme for categorical data is the introduction of
modulo operation as one of the steps. We mentioned before in Section 3.7 that we
trade the strength of detection algorithm for fingerprinting categorical data successfully.
This means that additional modulo operation step in the fingerprint insertion phase
causes errors in the detection phase that cannot be avoided. Having errors in unaffected
fingerprinting scheme increases the vulnerability of the scheme to attacks. Therefore, the
Equation (4.8) lacks influence of modulo operation in order to be credible. Table 4.10
shows the theoretical success of the subset attack on the dataset with η = 30, 162 rows
(convenient for comparison to experimental results on Adult dataset) if the effects of
modulo are not taken into account, using Equation (4.8). ωi is approximated to η/(γ ∗L)
and L = 80. Value 0 represents the perfect resistance to the subset attack, and 1 is the
perfect success of the subset attack, i.e. the scheme completely failing to defend against
it.

Experiments The experiments are made on the Adult dataset as it is the dataset
containing categorical attributes. We measure the success of subset attack over 500 runs
and parameters set as follows: L = 80, ξ = 1, τ = 0.5, γ = {3, 6, 12, 25, 50, 100} and
p′ = {0.30, 0.60, 0.80, 0.90, 0.95, 0.99}, where p′ represents the percentage of tuples that
are deleted.

Table 4.10 and Table 4.11 share the same parameter settings for calculating the success
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4.4. Superset attack

Table 4.10: Theoretical success rate of a subset attack on the fingerprinting scheme for
categorical data, using the Adult data

p′ = 30% p′ = 60% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 3 0.0 0.0 0.0 0.0001 0.1174 1.0

γ = 6 0.0 0.0 0.0001 0.0996 0.9601 1.0

γ = 12 0.0 0.0 0.0762 0.9555 1.0 1.0

γ = 25 1.15× 10−6 0.3166 0.9430 1.0 1.0 1.0

γ = 50 0.0052 0.7421 1.0 1.0 1.0 1.0

γ = 100 0.4783 0.9999 1.0 1.0 1.0 1.0

Table 4.11: Experimental results of the subset attack success rate on the fingerprinting
scheme for categorical data, using the Adult data

p′ = 30% p′ = 60% p′ = 80% p′ = 90% p′ = 95% p′ = 99%

γ = 3 0.0 0.0 0.0 0.004 0.22 1.0

γ = 6 0.08 0.18 0.20 0.354 0.954 1.0

γ = 12 0.078 0.0 0.212 0.97 1.0 1.0

γ = 25 0.012 0.284 0.99 1.0 1.0 1.0

γ = 50 0.346 1.0 1.0 1.0 1.0 1.0

γ = 100 0.976 1.0 1.0 1.0 1.0 1.0

of a subset attack on the Adult dataset, however, in latter the rate of success is larger
overall. Although the detection algorithm can detect the correct fingerprint from the full
set of tuples, the errors introduced by modulo operation are enhancing the success of the
attack. Therefore, only for small values of γ, the scheme is resistant to subset attack if
the large portion of tuples is not deleted.

4.4 Superset attack

In a superset attack, an attacker adds additional tuples to the fingerprinted data, creating
a bigger, pirated dataset. This attack considers only the addition of the new tuples while
the original set of tuples remains in the pirated dataset. The sources of the additional
tuples can be various. One can add the tuples from other sources such as related datasets
with similar attributes, artificial tuples with some semantic meaning, tuples generated
from the dataset itself, or the values can be completely random. This attack can only be
applied on fingerprinting schemes whose defence algorithms can and do function without
the access to the original dataset (e.g. AK Scheme). Otherwise, it is trivial to compare
the pirated dataset to the original and remove the tuples that are added by an attacker.

Defence in some cases can be helped by syntactical examination of the dataset. In cases
where additional tuples are generated completely randomly, it might be easy for a human
to spot and remove them without any algorithm. Also, any semantic background that
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4. Robustness of fingerprinting techniques against attacks

the defence knows about the database can serve as the preliminary step in the deletion
of additional tuples.

4.4.1 AK Scheme

Assume that fingerprint bit fi is embedded in the original data ωi times, and that it
is extracted from the additional tuples ω′

i times [1]. Matching of the single extracted
fingerprint bit to the correct value fi is modelled as an independent Bernoulli trial with
probability 0.5 of success or failure. (Extraction is controlled by the new unknown values
of the primary key, therefore it is equally likely for the extracted bit to be 0 or 1.) For the
detection algorithm to fail in extracting the correct fingerprint bit, at least (1−τ)(ωi +ω′

i)
embedded bits that correspond to the fingerprint bit fi must be detected wrongly. Thus,
the probability that the fingerprint is detected incorrectly is B((1− τ)(ωi + ω′

i); ω′
i, 0.5).

The probability that the entire fingerprint is detected incorrectly is

fm = 1−
L−1
∏

i=0

(1−B((1− τ)(ωi + ω′
i); ω′

i, 0.5)) (4.10)

Let us set τ = 0.5 (the usual default value) and analyse the performance of superset
attack success for that case. Knowing that all fingerprint bits will be correctly extracted
from the original tuples because they are not changed, intuitively, in the tuples added
by the attacker the incorrect occurrence of some fingerprint bit must outnumber its
occurrences in the original tuples. Formally, superset attack can be successful only if
∃i ∈ {0, ..., L−1} : ω′

i ≥ ωi. To make that possible, the attacker must add at least 100%η
tuples to the original data.

In AK Scheme the choice of fingerprint bit to be embedded is made randomly and
independently in each step, therefore we can assume ωi ≈ ωj ,∀i, j ∈ {0, ..., L− 1}, i 6= j.
Furthermore, we can also assume ω′

i ≈ ω′
j ,∀i, j ∈ {0, ..., L− 1}, i 6= j. Table 4.12 shows

the success of the superset attack depending on γ and number of added tuples. The
success is calculated using Equation (4.10), taking into account the assumptions made
above. We analyse the success of superset attack for Forest Cover Type data with L = 96
and τ = 0.5 Value 0 is the complete failure of the attack and 1 maximum success.

Table 4.12: Superset attack success rate on the Forest Covertype data

ω′
i γ = 25 γ = 50 γ = 100

100%(ωi) 1.35835× 10−71 3.61112× 10−35 8.32668× 10−17

200%(ωi) 1.91325× 10−27 8.66310× 10−14 1.81092× 10−6

300%(ωi) 8.32595× 10−18 9.89990× 10−9 0.000439

400%(ωi) 3.31239× 10−13 1.55168× 10−6 0.006221

500%(ωi) 1.74078× 10−10 0.000047 0.029978

1000%(ωi) 0.000045 0.019113 0.536146
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4.4. Superset attack

The ratio ωi/ω′
i is approximately the same as ratio η/η′, where η′ is the number of added

tuples because of the randomness in embedding the fingerprint, so we can interpret the
percentages in the first row of Table 4.12 as the amount of added tuples in with respect
to the original number of tuples.

The success rates in the Table 4.12 are very small even for cases with a big number of
added tuples, i.e. the scheme is very resilient to superset attack. Adding a lot of "fake"
tuples to the dataset, in this case even several times more than the original dataset
size, violates the credibility of the data. The attacker does not benefit from such attack,
so the subset attack is usually combined with some other attack such as subset attack
(mix-and-match attack [1]).

Superset attack requires the generation of new "fake" rows which can be achieved in
several ways. The attacker might come up with brand new values and combine them
into new tuples or use the existing ones. In any case, the semantic problem might arise if
the new values, or a combination of them, do not contextually fit the attribute or the
dataset. For example, assume we have a dataset with information about persons such as
their age, weight, height, etc. Generating new tuples might result in having tuples with
illogical values for attributes, for example height:240cm or a same person with values
age:10y. and height:190cm. In this case, the defence against the attack might be trivial,
only by removing such tuples from the pirated dataset.

One possible superset attack model consists of generating new tuples from the existing
fingerprinted data and mixing those with the original fingerprinted data to create a
pirated dataset. The tuples are generated such that every attribute value (except for
the private key) is independently randomly chosen from the set of existing values for
that attribute. This way we make it harder for a human to distinguish between the
tuples originating from the originally fingerprinted data and those added by the attacker,
making the defence rely entirely on detection algorithm. The example of tuple generation
is shown in Table 4.13. The original tuples from which the values are generated are
singled out and the sampled values are highlighted. In the last row, we can see the
generated tuple.

4.4.2 Block Scheme

Superset attack essentially does not work if the original dataset is available in the
fingerprint detection process. Block Scheme detection algorithm requires the original
dataset to extract the fingerprint as discussed in Section 3.5, therefore this kind of attack
alone, without a combination with some other attack does not make much sense. The
owner trivially removes the tuples from the pirated dataset that are not part of the
original and proceeds with the detection algorithm.
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4. Robustness of fingerprinting techniques against attacks

Table 4.13: Example of tuple generation

Id El. Asp. Slope HD-H VD-H HD-R HS-9am HS-noon HS-3pm HD-FP C-Type

75 2864 118 18 201 74 4567 248 221 93 4849 2

191 2995 173 15 268 135 6312 228 246 146 4135 2

893 2924 270 10 134 11 5066 194 244 189 1652 5

1258 2803 57 32 323 136 342 223 157 45 1851 5

2165 3390 59 10 124 12 2610 228 219 124 2357 7

6880 2983 297 11 713 -51 1543 190 237 186 2003 2

11643 2911 332 11 67 2 4972 193 225 172 1724 5

19210 2737 20 7 95 14 2314 215 225 147 6815 2

23117 2877 165 3 30 4 5236 222 240 154 4279 1

23135 2801 116 9 30 2 4709 236 231 126 4807 2

581012 3390 57 11 201 135 2314 222 231 189 2003 2

4.4.3 Fingerprinting scheme for the categorical data

The blind, simplistic fingerprinting scheme described in Section 3.7 behaves in the same
way as the AK Scheme against the superset attack. Therefore, we refer to Section 4.4.1.

The second discussed scheme which is based on neighbourhood search is not blind. It
means that any additional fake tuples in the dataset would easily be detectable and
removed by a simple check and comparison with the original dataset.

4.5 Bit-flipping attack

The subset and superset attacks described in Section 4.3 and Section 4.4 respectively,
are targeting the disruption of tuples without changing the values inside the dataset.
However, the attacker might change values by selecting some bits and flipping their values
in an attempt to destroy the fingerprint. This kind of attack is called a bit-flipping attack.
The choice of the bits is random because the attacker is modelled such that he has no
knowledge about the owner’s secret key that is crucial for fingerprint insertion scheme.

4.5.1 AK Scheme

Let p be the probability that the attacker flips some kth least significant bit, with p ≤ 0.5
(otherwise fingerprint detection can be applied to transformed data by flipping each
fingerprintable bit back). The attacker chooses bits independently, therefore bit flipping
is modelled as an independent Bernoulli trial with probability p of success and 1 − p
of failure. Assume that each fingerprint bit fi is embedded ωi times. The detection
algorithm will fail to extract the correct fingerprint bit if the correct bit value is extracted
less than the defined number of times which is controlled by parameter τ . Therefore at
least (1− τ)ωi embedded bits must be flipped by an attacker. Thus, the probability that
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4.5. Bit-flipping attack

the fingerprint f is detected incorrectly is

fm = 1−
L−1
∏

i=0

(1−B(⌊(1− τ)ωi⌋; ωi, p)) (4.11)

Because the choice of fingerprint bits to be embedded in fingerprint embedding process is
completely random, we can assume that each fingerprint bit will be embedded in the data
approximately same number of times; ω0 = ω1 = ... = ωL−1 = ω,∀i, j ∈ {1, L− 1}, i 6= j.
Therefore, we can write the expression for false miss rate (Equation (4.11)) as fm =
1− (1−B(⌊(1−τ)ω⌋; ω, p))L. The results in Table 4.14 and Table 4.15 are obtained using
this approximation of false miss rate. Since 0 < B(⌊(1− τ)ω⌋; ω, p) ≤ 1, by increasing L
the false miss rate also increases, meaning that longer fingerprints lead to schemes more
vulnerable to bit-flipping attack. Intuitively, longer fingerprint means fewer embeddings
of each single fingerprint bit in the data and larger probability for the attacker to erase
all of the embeddings of some fingerprint bit, making the detection algorithm incapable
of detecting a valid fingerprint.

The effect of parameter γ is shown in Table 4.14 by calculating probabilities of success
of bit-flipping attack for different values of γ and p (probability of flipping a bit, i.e.
the approximate amount of tuples containing a value with a flipped bit). We choose
γ = {6, 12, 25, 50, 100, 200} and p = {45%, 40%, 30%, 20%}, and set τ = 0.5 and L = 96
as fixed values. ω is calculated as η/(L ∗ γ), and η = 581, 012 for the convenience of
comparing these results to the experimental results on Forest Covertype dataset.

Table 4.14: Probability of a successful bit-flipping attack on the AK Scheme

p = 20% p = 30% p = 40% p = 45%

γ = 6 0 0 6.6530× 10−9 0.0671

γ = 12 0 0 0.0003 0.7327

γ = 25 0 5.8392× 10−9 0.0941 0.9987

γ = 50 0 0.0002 0.7144 1

γ = 100 2× 10−5 0.0839 0.9994 1

γ = 200 0.0220 0.8060 1 1

The effect of parameter τ is shown in Table 4.15. The success of the bit-flipping attack is
calculated for different values of τ and p, while L = 96 and γ = 50 are set as fixed values.

Both τ and γ affect the success of the attack such that if they are increased, the probability
that fingerprint will not be detected correctly is also increased, i.e. the scheme is more
susceptible to bit-flipping attack. Generally, if the attacker chooses to flip more bits, i.e.
increases p, that also increases his chance for the successful attack, but in the same time
violates credibility of the data since more original values would be changed. Note that
parameter ξ does not affect the success of the attack because it is not important which
LSB of a chosen value is flipped by the attacker.
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4. Robustness of fingerprinting techniques against attacks

Table 4.15: Probability of a successful bit-flipping attack on the AK Scheme

p = 45% p = 40% p = 30% p = 20%

τ = 0.50 1 0.7144 0.0002 0

τ = 0.55 1 0.9999 0.0228 0

τ = 0.60 1 1 0.5779 2× 10−5

τ = 0.65 1 1 1 0.0048

τ = 0.70 1 1 1 0.3041

τ = 0.75 1 1 1 0.9996

Misattribution false hit Let us now analyse the probability of detecting valid but
incorrect fingerprint caused by a bit-flipping attack - misattribution false hit fhA. The
detection algorithm will extract a binary bit for fingerprinting bit fi if either at most
⌊(1−τ)ωi⌋−1 or at least ⌊τωi⌋ of its embedded bits are flipped. If the detection algorithm
extracts a binary string, the probability that the binary string is valid but belongs to
an innocent buyer is N−1

2L . Therefore, the probability of detecting valid but incorrect
fingerprint is

fhA =
N − 1

2L

L−1
∏

i=0

(1−B(⌊(1− τ)ωi⌋; ωi, p) + B(⌊τωi⌋; ωi; p)). (4.12)

False miss rate is by definition the sum of misattribution false hit and false negative
rate. Therefore, false negative is straightforward:

fn =1−
L−1
∏

i=0

(1−B(⌊(1− τ)ωi⌋; ωi, p))−

N − 1

2L

L−1
∏

i=0

(1−B(⌊(1− τ)ωi⌋; ωi, p) + B(⌊τωi⌋; ωi; p)).

(4.13)

Experiments We have run experiments on the Forest dataset and obtained results
that are shown in table 4.16. As it is shown in the previous section, the success of
bit-flipping attack is influenced by multiple parameters - length of the fingerprint L,
fingerprint detection assurance parameter τ , amount of marked values γ (or equivalently,
number of embedded bits corresponding to a single bit ω) and the attacker’s parameter
p that defines the number of flipped bits in pirated data. For our experiments we fix
the values of L = 96 and τ = 0.5. We run 100 experiments with different random
bit-flipping pattern for each of the combinations of parameters γ = 6, 12, 25, 50, 100 and
p = 20%, 30%, 40%, 45%.

The experimental results show that flipping 40% of the bits available for fingerprinting
most likely deletes the fingerprint. At 30% the schemes with bigger γ (γ = 50, 100), i.e.
less embedded marks, fail under the bit-flipping attack. Generally, the scheme is more
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4.5. Bit-flipping attack

Table 4.16: Experimental results of a bit-flipping attack on the AK Scheme, using the
Forest Cover Type data

p = 20% p = 30% p = 40% p = 45%

γ = 6 0 0 0.50 0.56

γ = 12 0 0 0.50 1.0

γ = 25 0 0 0.54 1.0

γ = 50 0 0.50 0.72 1.0

γ = 100 0 0.86 1.0 1.0

robust against the attack for a smaller value of γ. The empirical results differ from the
analytic results in Table 4.14. The two analysis agree on the cases where the attack
completely succeeds and completely fails, however, in our experiments the scheme appears
less robust to the bit-flipping attack than it is suggested in the analysis. The success
rates in Table 4.14 are calculated using Equation (4.11) under the assumption that all
fingerprint bits are embedded the same number of times, which is approximated with
ω. This is not true due to the random nature of bit choice. In reality, every fingerprint
bit has it’s own ωi value. Many fingerprint bits, thus, are embedded in data less than ω
times and are easier to destroy. Since destroying all occurrences of just one fingerprint
bit makes the fingerprint impossible to extract, the low occurrences of some fingerprint
bits might decrease the robustness. This might be the reason for the difference in the
attack success rates. Even though the probabilities for attack success are different, the
boundary for robustness is confirmed. For γ = {6, 12, 25} it is safe to flip up to 30% of
LSBs to not remove the fingerprint, and for larger values, γ = {50, 100}, it is safe to flip
around 20% of the LSBs.

4.5.2 Block Scheme

Assume that the attacker examines every bit available for fingerprinting independently
and selects it for flipping with probability p. Let us approximate the number of times
that each fingerprint bit is embedded in the data to ω. For the detection algorithm to
fail to recover the correct fingerprint bit, at least (1− τ)ω embedded bits corresponding
to the single fingerprint bit fi must be changed, i.e. more than ω − ⌈τω⌉+ 1 bits must
be changed. Probability that one fingerprint bit is destroyed is B(ω − ⌈τω⌉ + 1; ω, p).
The probability that the entire fingerprint will be detected incorrectly is therefore

fm = 1− (1−B(ω − ⌈τω⌉+ 1; ω, p))L (4.14)

Table 4.17 shows the probabilities that the bit-flipping attack will be successful on Block
Scheme, depending on p and β. Parameters are set as follows: ξ = 2, τ = 0.5 and L = 96.
We choose η = 581012 and v = 10, same as Forest Covertype dataset.

Experiments We run experiments on the Forest dataset with the previously defined
parameters. Table 4.18 shows the obtained empirical results for the success of the
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4. Robustness of fingerprinting techniques against attacks

Table 4.17: Probability of a successful bit-flipping attack on the Block Scheme

p=30% p=40% p=45% p=50%

β = 5 0 0 0 1.0

β = 10 0 0 0.02 1.0

β = 15 0 0.002 0.88 1.0

β = 20 0 0.017 0.97 1.0

bit-flipping attack on the Block Scheme. Each experiment is run 100 times and the table
shows the average success of the bit-flipping attack.

Table 4.18: Experimental results of the bit-flipping attack on the Block Scheme, for the
Forest Cover Type data

p=30% p=40% p=45% p=50%

β = 5 0 0 0.50 1.0

β = 10 0 0.50 0.50 1.0

β = 15 0 0.50 0.92 1.0

β = 20 0.08 0.50 1.0 1.0

The experiments confirm the rule that having more marks in the data, i.e. smaller β,
makes the scheme more robust against the bit-flipping attack. Our experimental rates of
the attack success, however, differ from the analytical results in Table 4.17. The change
might be due to the implementation limitations introduced by the design of the Block
Scheme. We address in Section 3.5.2 the problem of "extra data" that in reality never
gets fingerprinted. This means that less data is fingerprinted, i.e. fewer marks are in the
data due to this limitation than it is assumed for the calculation of the theoretical attack
success rates. This might be the reason why experimentally this scheme appears to be
more vulnerable to the attack than expected by the theoretical analysis.

The scheme with all of the chosen parameters guarantees robustness for to 30% flipped
LSBs. Choosing a small value of β, e.g. 5, the tolerated amount of flipped bits rises up
to 45%. We can argue that this is indeed a robust scheme. The assumed attacker would
like to keep the data useful, and flipping more bits significantly changes the values in the
data and the utility decreases.

4.5.3 Two-level Fingerprinting Scheme

In this section, we empirically analyse the robustness of the Two-level Fingerprinting
Scheme against the bit-flipping attack. We measure the success on two levels; the
ownership verification and the fingerprint extraction. The attacker might be able to
either (i) disable both ownership verification and fingerprint extraction, (ii) destroy the
fingerprint but fail in disabling ownership verification, or (iii) fail in both. We use the
Forest Covertype data for the experiments and measure success of the subset attack over
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4.5. Bit-flipping attack

500 runs of each parameter setting. We choose: L = 96, ξ = 2, α1 = α2 = α3 = 0.01,
γ1 = γ2 = {10, 25, 50, 100}. Figure 4.3 shows the results of the experiments.

Figure 4.3: Bit-flipping attack success in the Two-level Fingerprinting Scheme

The coloured lines show the success rate of the attacks against the fingerprint extraction.
The dashed line shows the success rate of the attack against the ownership verification.
The experiments show that the robustness against the bit-flipping attack, as expected,
grows with more embedded marks. The scheme with γ1 = γ2 = 100 fails to extract the
fingerprint when 19% of the LSBs are flipped by the attacker, while the scheme with
γ1 = γ2 = 10 fails at approximately 43% flipped LSBs. In both cases, the ownership is
verified 100% of the times, even though the exact fingerprint cannot be extracted. The
ownership verification fails with approximately 47% flipped LSBs. The robustness of the
ownership verification is very similar for each γ1 value, therefore we represent it with
only one (dashed black) line in Figure 4.3.

Choosing smaller γ values makes the Two-level Fingerprinting Scheme very robust against
the bit-flipping attack. The two-level fingerprint provides the additional protection
measure of verifying the ownership even in cases when the exact fingerprint cannot be
extracted. Smaller values of γ, however, introduce more error in data. How these errors
affect the utility of the data, we discuss in Chapter 5.
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4. Robustness of fingerprinting techniques against attacks

4.6 Additive Attack

Consider a scenario where the attacker tries to claim the ownership of the dataset by
inserting an additional fingerprint in the bought dataset. We call this strategy an additive
attack [35]. The competing ownership claims can be resolved if there exists at least one
bit that both the owner and the attacker have marked, each with a different value. The
way to resolve the ownership claim competition is to determine which owner’s marks win,
i.e. which mark has overwritten the other. The winning owner’s mark is clearly inserted
later, therefore his claim of ownership is false.

Method for dealing with the false claims of ownership could be to ask both the owner and
the attacker to produce the original dataset before it was fingerprinted and to demonstrate
the presence of the fingerprint in each other’s original datasets. The owner will be able to
demonstrate the presence of her fingerprint in the attacker’s original unlike the attacker
in the owner’s original.

4.6.1 AK Scheme

In the AK Scheme, it is justified to conclude that the odds of finding such conflicting
bits are low. Suppose that the data fingerprinted by the owner is marked ω times
with parameters γ, v and ξ and that the attacker performs the fingerprinting insertion
algorithm with parameters γ′, v′ and ξ′. Under the usual probabilistic model of AK
Scheme’s bit-marking process, the probability that a specified bit marked by original
fingerprint is also marked by the attacker is the product of probabilities that the tuple
containing the bit is chosen for marking (1/γ′), that the attribute containing the bit is
also chosen for marking (1/v′) and that the specified bit is chosen (1/ξ′). The probability
that the attacker’s mark is different from the original mark is 1/2 so that the overall
probability that the specified bit is a conflict bit is 1/(2γ′v′ξ′). The tuples are marked
independently of each other, therefore the probability that the attack is successful, i.e.
no conflicting bits are found, is

P{success|ω} = (1−
1

2γ′v′ξ′
)ω (4.15)

For example, let the dataset have around 500,000 tuples and ω = 1000. Assume that
attacker wants to increase his chances of success. If the attacker sets γ′ = 10, 000 (a
rather big value considering that it means that only 1/10,000 tuples will be marked),
v′ = 10 and ξ′ = 5, then P{success|ω} = (1− 10−6)1000 ≈ 0.999.

4.6.2 Block Scheme

The solution from section 4.6.1 is applicable to the block fingerprinting scheme as well.
Suppose that the attacker runs the fingerprint insertion algorithm with parameters β′, ξ′

and v′. Let 1/γ′ be the percentage of tuples marked by the attacker. Due to the uniform
distribution of the marks in the Block Scheme, we can approximate the percentage
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4.7. Collusion Attack

1/γ ≈ (ξv)/β2, assuming that there is in average no more than 1 mark in a single tuple.
Let the data be marked Lω times in total by the owner. The probability that the additive
attack is successful is then

P{success|Lω} = (1−
1

2γ′v′ξ′
)Lω

= (1−
1

2 β′2

ξ′v′ v′ξ′
)Lω

= (1−
1

2β′2
)Lω

(4.16)

The success of the additive attack depends exponentially on Lω. The attacker can increase
his chances for success by increasing β′, however with Lω ≫ β′, the chances for the
successful attack are low. For example, with β′ = 30 and Lω = 10000, P{success|Lω} =
0.0039.

4.7 Collusion Attack

Fingerprinting produces distinct copies of the data for each of the buyers. This opens
the possibility for multiple buyers to have access to each other’s copies of the data, all
fingerprinted with different fingerprints, and work in coalition in order to create a useful
data copy that would not implicate any member of the coalition. One possibility for
the members of the coalition is to attempt to erase the fingerprint or to modify values
such that detection algorithm implies an innocent buyer who is not a member of the
coalition to be the traitor. Collusion attack is specific for fingerprinting, as opposed to
other attacks discussed in this thesis that can be applied in the context of watermarking.
Collusion is studied extensively in the literature [74, 75, 76, 77, 78] and collusion resistant
fingerprinting codes have been proposed such as one by Blakley et al. [80], by Guth and
Pfitzmann [80], and probably the most well-know by Boneh and Shaw - BoSh [74].

Boneh and Shaw [74] provide the definitions of collusion-secure codes and propose the
methods for construction of codes and algorithm for dealing with collusion attacks. The
method can be used for fingerprinting any sort of digital data: documents, multimedia,
software, etc. The effectiveness of the approach is based on the Marking Assumption that
states that "the main property of the marks should be satisfied are that users cannot
change the state of an undetected mark without rendering the object useless" [74]. The
colluding buyers can detect only the fingerprint bits in which their copies differ, otherwise,
the fingerprint cannot be detected. For instance, two buyers with their fingerprinted
dataset can fairly easily compare their datasets and remove or change the values that
differ between the copies.

The following definitions of collusion-secure codes are defined [74]:
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4. Robustness of fingerprinting techniques against attacks

• c-frameproof code satisfy that no coalition of at most c members can frame a
user who is not part of the coalition. c-frameproof codes prevent this harder version
of treason but do not assure that the traitor(s) will be found

• totally c-secure code is a code for which exist an algorithm that outputs a
member of a coalition with at most c members that generated an arbitrary code
under the coalition. It is proven that for c ≥ 2 the totally c-secure code does not
exist.

• c-secure code with ǫ-error is a relaxation of the previous - if the code is c-secure
with ǫ-error, then there exists an algorithm which outputs a member of coalition
with at most c members with probability 1− ǫ, ǫ ∈ [0, 1].

BoSh codes are designed to be c-secure with ǫ-error. Increasing c or reducing ǫ provides
better security definition, but results in longer codes. BoSh code is generated as a
concatenation of b code-words of size (a−1)d from public "inner code" that is common for
all buyers. Therefore, the code has length b(a− 1)d. Code words from the inner code are
chosen according to the secret buyer-specific "outer code" and randomly permuted before
the use. a, b and d are code construction parameters (in [74] n, L and d respectively, but
we change the notation due to overlapping with notation in this thesis). The parameter
values are: a = 2c, b = 2c log(2N/ǫ) and d = 2a2 log(4ab/ǫ). It is required that the
random permutation and random outer code for each buyer are kept secret from all
buyers. The tracing algorithm takes as input pirated data under collusion attack and
returns exactly one malicious buyer.

AK Scheme AK insertion algorithm (Algorithm 3.1) is not secure against collusion
attack. Each fingerprint bit fi is embedded to the same place in every fingerprinted copy
of the dataset since it only depends on parameters γ, v and ξ which are not buyer-specific,
and owner’s secret key K. Assume that 3 buyers are in collusion and they extract following
marks from the bits that differ within their copies: (1,0,1), (1,1,0) and (0,1,1). They
decide to change values according to the majority, so they come up with the new mark
(1,1,1) that they use to create the pirated data. Detection algorithm cannot match the
new fingerprint to any of the members of the coalition. Another option for members of
the collusion is to produce a random mark, e.g. (0,0,1) which leads to the same outcome.

To create a collusion-resistant scheme, authors in [1] propose the modified version of
BoSh code that is adequate to be incorporated into AK Scheme. The fingerprint in the
proposed solution consists of two parts: (1) watermark which is the same for every buyer
and computed from a hash function using owner’s secret key, H(K), and (2) BoSh code.
Those two parts are concatenated to create the fingerprint.

There are two main differences between BoSh code and proposed solution [1]:

1. Collusion-resistant AK Scheme does not require recording of secret outer code for
every buyer as it is the case for BoSh codes. Storing any kind of secret buyer-specific
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4.7. Collusion Attack

information is already discussed to violate key-based property and as a reason for
incorporating pseudo-random sequence generator in the context of a fingerprint.
The outer code needs to be hidden from the buyers, but deterministic to the owner.
Therefore, the outer code is in collusion-resistant AK Scheme generated using such
pseudo-random sequence generator from the owner’s secret key K and buyer’s ID
number.

2. Similarly, the random permutation for all buyers needs to be stored in BoSh
code setting. The purpose of the final random permutation in BoSh code is to
hide which mark in dataset corresponds to which fingerprint bit. In AK Scheme
this permutation is not necessary as the choice of fingerprint bit to be embedded
is already random by the design of the insertion algorithm (lines 7 and 8 in
Algorithm 3.1).

Insertion and detection algorithms of collusion-resistant AK Scheme are slightly mod-
ified insertion (Algorithm 3.1) and detection (Algorithm 3.2) algorithms of AK. The
modifications in the insertion algorithm are as follows:

1. Additional parameter L1 represents the length of the first (watermarking) part of a
fingerprint. L = L1 + L2 (L2 is the length of second part - BoSh code).

2. Generation of fingerprint replaced by concatenation of watermark part of the
fingerprint and BoSh code.

3. Additional parameter c - maximum coalition size

4. Additional parameter ǫ - maximum false detection rate in tracing a coalition

The detection algorithm is modified such that it runs in two consecutive phases:

1. Watermark check - in this part, the watermark part F∞ of recovered fingerprint
template F is checked against the inserted codeword. The algorithm returns none
suspected for a single bit mismatch. This phase serves as prevention from 100%
misdiagnosis false hit rate in cases where non-pirated data is the input of detection
algorithm (because the following phase returns exactly one malicious buyer).

2. BoSh tracing algorithm (from [74]) - if algorithm passes the first phase, this
phase identifies exactly one malicious buyer.

Authors of [1] analyse the robustness rates of collusion-resistant AK Scheme and carry
out the experimental results on scheme robustness. Following the proof from [74] that
probability of BoSh tracing algorithm returning the buyer who is indeed a member of
the coalition is greater than 1− ǫ, the false miss rate fm and misattribution false hit
fhA satisfy

fm = fhA ≤ ǫ (4.17)
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4. Robustness of fingerprinting techniques against attacks

The misdiagnosis false hit fhD when the detection algorithm is applied on unmarked
dataset is

fhD =
L1−1
∏

i=0

B(⌊τωi⌋; ωi, 0.5) ≤
1

2L1

) (4.18)

and it can be decreased exponentially by increasing L1 (fhD ≃ 0 if L1 ≫ 1).

4.8 Summary

In this chapter, we analysed the robustness of the fingerprinting techniques under certain
types of attacks. We address subset attack, superset attack, bit-flipping attack, additive
attack and collusion attack. As opposed to analysing the inability of a scheme to detect
the fingerprint under a malicious attack, we also address the possibility of detecting the
fingerprint in unmarked data - misdiagnosis false hit.

Figure 4.4: Misdiagnosis false hit rate

To avoid the misdiagnosis false hit, the fingerprint length must be big enough. Figure 4.4
shows the robustness of a scheme given the assumed number of buyers. We see that for
the larger number of buyers we must ensure the longer fingerprint, e.g. if there are 100
buyers, the fingerprint length L should be larger than 30.

The additive attack is, like misdiagnosis false hit, not specific for a certain scheme. The
robustness of the scheme against the additive attack depends on the number of marks
the scheme embeds in the data, which is controlled by parameters γ in AK Scheme
and the Scheme for fingerprinting categorical data, by γ1 and γ2 in Two-level Scheme
and by β in the Block Scheme. We show in Figure 4.5 the relation between number of
marks and robustness of the scheme for different attacker’s embedding patterns. The
attacker’s parameter of the ratio of the marked tuples is γ′ (γ′ = 1, 000 means that one
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4.8. Summary

Figure 4.5: Robustness against the additive attack

Figure 4.6: Comparison of robustness
against the subset attack

Figure 4.7: Comparison of robustness
against the bit-flipping attack

in a thousand tuples is marked). It depends on the attacker how he chooses to embed his
fake fingerprint. If the dataset is very big and marking one in 10,000 tuples is sufficient
to claim his ownership, then the fingerprinting schemes are not very robust - there is only
40% chance that the attacker will not succeed. However, smaller datasets (10,000 tuples
or less) might be harder to attack since the attacker would need to choose smaller γ′ to
be able to claim the ownership. Schemes are much more robust if the attacker chooses
γ′ < 1, 000.

Furthermore, we discussed the robustness against the attacks where the attacker modifies
the dataset, e.g. subset attack and bit-flipping attack. A general conclusion is that more
marks in the data mean better robustness. A somewhat smaller role plays the parameter
ξ that defines how many LSBs are available for fingerprinting such that is ξ is bigger,
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4. Robustness of fingerprinting techniques against attacks

the scheme is more robust. We compare the robustness of the discussed fingerprinting
techniques against the subset attack in Figure 4.6 and the bit-flipping attack Figure 4.7.
Robustness against the subset attack is measured as the largest percentage of tuples
deleted where the scheme still detects the correct fingerprint with 100% probability. The
AK Scheme shows the best robustness even for a smaller number of marks in the data.
The Two-level Scheme and the scheme for categorical data are reaching a high robustness
level for a larger number of marks in the data. The Block Scheme under-performs all the
schemes.

Robustness of the bit-flipping attack is measured as the largest percentage of the LSBs
that can be flipped while the scheme would still detect the correct fingerprint with
probability 100%. AK Scheme again outperforms other schemes, except for the smaller
number of marks where the Two-level Scheme is more robust. The Block Scheme is the
least robust scheme against the bit-flipping attack. However, we can argue that all of the
schemes are robust against the attack since they can all reach the level of robustness of
> 0.4.

We conclude that a good robustness level can be reached with a sufficient number of
marks in the data. However, more marks in the data introduce more errors and they
might significantly affect the utility of the data. In the next chapter, we will analyse how
the utility is affected and if introducing the necessary number of marks to ensure the
robustness is acceptable from the utility point of view.
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CHAPTER 5
An evaluation on the utility of

the fingerprinting schemes

5.1 Quality effects on fingerprinted datasets

To get an insight into how the fingerprinting scheme affects the quality of the data that
is disturbed by perturbations, we calculate the mean and variance of the values of an
attribute. In this section, we first present the analysis and the empirical evaluation of
changes in these two measures for each of the fingerprinting schemes described in Chapter 3.
Exclusively, for the fingerprinting scheme for categorical data, we use a different quality
measurement since the mean and variance do not apply to the categorical values. Instead,
we count the number of changes in the data introduced by fingerprinting.

5.1.1 AK Scheme

The procedure of embedding the fingerprint is determined by the owner’s secret key K,
primary key attribute P and controlled by parameters γ, v and ξ. In a dataset with η
tuples, on average η/γ tuples are selected for marking. In a selected tuple a single bit of
a single attribute will be selected for marking. Mark value is calculated as a result of
applying XOR function on fingerprint bit and pseudorandomly selected mask bit. The
mark bit value will half of the times match the original value, on average, and therefore
leave the selected bit unchanged. Considering that the probability of selecting a value for
marking is 1/(γv), i.e. one over the number of selected tuples times number of attributes,
and the probability that the mark bit differs from the original bit value is 1/2, we obtain
the probability that the value will be selected and changed

P{Li = 1} = 1− P{Li = 0} =
1

2γv
(5.1)
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5. An evaluation on the utility of the fingerprinting schemes

where Li equals 1 if the value of a certain attribute of tuple i is selected and changed (in
contrast, it equals 0 if the new value doesn’t differ from the original value).

In addition, we assume that the original values of an attribute in the dataset are
x1, x2, ..., xη and the values of the attribute after fingerprinting are x1+∆1, x2+∆2, ..., xη+
∆η. {∆1, ∆2, ..., ∆η} represent the error caused by fingerprinting. They are independent
and identically distributed random variables. We further assume the representation of
∆i, 1 ≤ i ≤ η,

∆i = LiSi2
Ui (5.2)

where Si ∈ {−1, 1} depending on whether the perturbed value is smaller or greater than
the original, both with probability 0.5, and Ui ∈ {0, 1, ..., ξ − 1} is uniformly distributed
variable representing position of the marked bit.

Mean The mean value of the original attribute values is

x = (1/η)
η

∑

i=1

xi (5.3)

and the mean of the attribute values after embedding the fingerprint is

x′ = x + ∆ (5.4)

where

∆ = (1/η)
η

∑

i=1

∆i (5.5)

The expected error of a single attribute value is

E[∆i] =
1

2
Li2

Ui −
1

2
Li2

Ui = 0,∀i : 1 ≤ i ≤ η (5.6)

thus the expected error in attribute mean value after embedding the fingerprint is

E[∆] = 0 (5.7)
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5.1. Quality effects on fingerprinted datasets

Variance The variance of the original attribute values is given by

Vx =
1

η

η
∑

i=1

(xi − x)2 (5.8)

and the variance of the perturbed attribute values after the fingerprint insertion is

Vx+∆ =
1

η

η
∑

i=1

[(xi + ∆i)− (x + ∆)]2 (5.9)

After applying some algebra, the error in variance is given by

Vx+∆ − Vx =
1

η

η
∑

i=1

(∆i −∆)2 + 2 ·
1

η

η
∑

i=1

(xi − x)(∆i −∆) (5.10)

The expected error in computing the variance is given by

E[V∆] ≈
22ξ

6γvξ
(5.11)

Table 5.1: Change in variance introduced by fingerprinting with AK Scheme

γ 100 50 25 12
ξ 4 8 4 8 4 8 4 8

Expected error in variance 0 1.4 0.01 2.7 0.02 5.5 0.04 11.4

Attribute Mean Variance

Elevation 2,959 78,391 0 +1 0 +1 +1 +5 +1 +9

Aspect 156 12,525 0 +1 0 +1 +1 +5 0 +8

Slope 14 56 0 +1 0 +3 0 +5 0 +11

HD-Hydrology 269 45,177 0 +1 0 +1 0 +2 +1 +2

VD-Hydrology 46 3,398 0 +1 0 +2 0 +4 0 +9

HD-Roadways 2,350 2,431,276 0 +10 0 +10 -1 +5 +2 +37

Hillshade-9am 212 717 0 +1 0 +2 0 +4 0 +9

Hillshade-noon 223 391 0 +1 0 +2 0 +4 0 +10

Hillshade-3pm 143 1,465 0 +1 0 +2 0 +4 0 +8

HD-Fire-Points 1,980 1,753,493 0 -2 0 +5 0 +8 +1 +30

Experiments Experimental results are obtained by embedding a fingerprint into the
Forest dataset. We choose the set of following values for parameter γ = {12,25,50,100},
and ξ = {4,8}. Table 5.1 contains recorded changes in the variance introduced by
fingerprinting for each of the attributes and parameter setting. The results support the
analysis previously made on errors in the mean and variance of the attribute values. The
error in the mean in all of the cases of this experiment was < 0.01, so only the error in
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5. An evaluation on the utility of the fingerprinting schemes

the variance is presented. The largest changes are expectedly occurring when γ is small
and ξ is big, i.e. when more tuples are selected and more bits of the value are available
for marking. The errors in variance between cases with the same γ value and different ξ
differ significantly, implying that imperceptibility of the fingerprint is highly sensitive to
the number of LSBs available for marking. Original values of the variances, in general,
do not affect the relative error of perturbed values. In rare cases, the introduced errors
result in a decrease of the variance, however, the change is in the same range as in cases
where the variance increases.

5.1.2 Block Scheme

Experimental results are obtained by embedding a fingerprint into the Forest dataset.
We choose the set of following values for parameter β = {30,25,15,10}, and ξ = {4,8}.
Table Table 5.2 contains recorded changes in mean introduced by fingerprinting for each
of the attributes and parameter setting, and Table 5.3 changes in variance.

Table 5.2: Change in mean introduced by fingerprinting with the Block Scheme

β 30 25 15 10
ξ 4 8 4 8 4 8 4 8

Attribute Mean

Elevation 2959

Aspect 156

Slope 14 +1

HD-Hydrology 269

VD-Hydrology 46 +1 +1 +1

HD-Roadways 2350

Hillshade-9am 212

Hillshade-noon 223 -2

Hillshade-3pm 143 -1 -1 -1

HD-Fire-Points 1980

The error is primarily controlled by parameter β. We have previously discussed the
expected average number of changes which is described with Equation (3.5). β in
denominator suggests that for smaller β there will be more errors in the data introduced
by the fingerprint. We can see that a larger number of errors expectedly introduces larger
errors in variance from the Table 5.3. The smallest error of variance appears for β = 30
and increases for smaller β values.

A large difference in the error of variance is noticeable between different values of ξ which
defines the number of LSBs available for fingerprinting. We expect larger errors if more
LSBs are available for fingerprinting - bits of more significance are being potentially
changed, therefore creating bigger distortions (also assumed from Equation (3.5)). The
experiment results in Table 5.4 and Table 5.2 confirm this claim. Setting ξ = 4 will result

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.1. Quality effects on fingerprinted datasets

Table 5.3: Change in variance introduced by fingerprinting with the Block Scheme

β 30 25 15 10
ξ 4 8 4 8 4 8 4 8

Attribute Variance

Elevation 78391 0 +13 +1 +15 +1 +48 +1 +178

Aspect 12525 0 +7 0 +12 0 +35 0 +127

Slope 56 0 +12 0 +18 0 +48 0 0

HD-Hydrology 45177 0 +6 +1 +4 +1 +13 +2 0

VD-Hydrology 3398 0 +10 0 +15 0 +38 0 +87

HD-Roadways 2431276 0 +3 0 +3 0 +44 -2 0

Hillshade-9am 717 0 +11 0 +15 0 +41 0 +8

Hillshade-noon 391 0 +11 0 +16 0 +45 0 +200

Hillshade-3pm 1465 0 0 0 +13 0 +35 0 +160

HD-Fire-Points 1753493 0 0 0 -4 0 +54 0 +68

in no or very small errors of variance and mean. Note that ξ = 8 may change a value in
the dataset up to ±27 = ±128. Considering that most of the values in Forest dataset are
in the range of 27, ξ = 8 is a rather big value. For example, in the attribute Slope where
the mean value is 14 (see Table 5.2), this may cause quite a perceptible modification. For
attributes with a range of larger values, e.g. Aspect with mean 156 or HD-Roadways with
mean 2350, the error of ≤ ±128 causes slightly less perceptible modifications in single
values compared to Slope, however the overall variance is certainly affected. We see in
Table 5.2 that error in the mean is introduced only for ξ = 8 and for attributes with the
small mean value. We have set ξ = 8 for experiments purely to show the clear distinction
of the ways that different values of ξ affect the quality of the data. In practice, ξ is set
according to the values in the dataset and generally to the smaller values. When ξ is set
appropriately, in these experiments ξ = 4, different values of β do not affect the errors in
mean and variance too much.

5.1.3 Two-level Fingerprinting Scheme

The embedding process is controlled by γ1, γ2 and ξ. Using Equation (3.6), a dataset
with η tuples will have 1

γ
= 1

γ1
+ (1− 1

γ1
) ∗ 1

γ2
tuples selected for marking. Due to the

pseudo-random nature of bit marking, the selected bit’s original value will half of the
times match the mark. Thus, the probability that the value will be selected and changed
is

P{Li = 1} = 1− P{Li = 0} =
1

2γ
=

1

2γ1

+ (1−
1

γ1

) ∗
1

2γ2

(5.12)

where Li equals 1 if the value of a certain attribute of tuple i is selected and changed (in
contrast, it equals 0 if the new value doesn’t differ from the original value).
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5. An evaluation on the utility of the fingerprinting schemes

The authors of the proposed scheme in their work [49] present the quality effects by
measuring mean and variance before and after embedding. They show the results from
experiments run on a portion of Forest Cover data (η = 5, 000) and where fingerprinting is
applied to a single attribute - Elevation. Both mean and variance showed minor absolute
alteration (≈ 0.01) and lead to the conclusion that the scheme preserves the utility of
the data.

We show the empirical results on change in mean and variance in a scenario with entire
Forest Cover Type data (η = 581, 012). For our experiments we consider all 10 numerical
attributes for marking (v = 10) and set parameters as follows: γ1 = γ2 = {10, 25, 50, 100},
η = {4, 8} and L = 96.

Table 5.4: Change in variance introduced by fingerprinting using the Two-level Finger-
printing Scheme

γ1 = γ2 100 50 25 10
ξ 4 8 4 8 4 8 4 8

Attribute Mean Variance

Elevation 2959 78391 +1 +3 +1 +4 +1 +4 +1 +14

Aspect 156 12525 0 +3 0 +7 0 +15 0 +36

Slope 14 56 0 +1 0 +2 0 +4 0 +10

HD-Hydrology 269 45177 0 +3 0 +5 +1 +7 +2 +10

VD-Hydrology 46 3398 0 +1 0 +1 0 +3 0 +6

HD-Roadways 2350 2431276 -1 +12 0 +27 0 +31 +1 +61

Hillshade-9am 212 717 0 0 0 +1 0 +2 0 +6

Hillshade-noon 223 391 0 +4 0 +9 0 +18 0 +43

Hillshade-3pm 143 1465 0 +1 0 +3 0 +5 0 +13

HD-Fire-Points 1980 1753493 +1 0 +1 +12 0 +19 +1 +34

The total mark ratio in the embedding process is around 1/γ1 + 1/γ2. Table 5.4 shows
that the change in variance increases for larger number of marks, i.e. smaller γ1 and γ2.
The change, however, depends on the number of LSBs available for marking ξ as well.
By choosing a smaller value, the change of variance can be almost completely avoided.
The smaller ξ value, however, decreases the robustness of the scheme which needs to
be taken into account when choosing the value of this parameter. This is discussed in
Chapter 4. The mean value of any attribute did not change more than 0.01 in any of the
experiments. These changes are minuscule enough to hold the claim that the alteration
for fingerprinting does not affect the usability of the data.

5.1.4 Fingerprinting scheme for categorical data

The fingerprinting scheme that deals with categorical data requires a different type of
measure for data utility since mean and variance are not applicable in this case. One
possible measure is the number of changes introduced by marking the data.
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5.2. Impact of fingerprinting on Machine Learning models

We fingerprint the categorical values of the Adult dataset using the fingerprinting scheme
for categorical data. Furthermore, we fingerprint the numerical attributes using the
AK Scheme. Table 5.5 shows the utility effects on the Adult dataset (which contains
30,162 tuples) introduced by the fingerprinting scheme for categorical data. The utility
of numerical attributes is still measured by mean and variance, where the difference in
the mean is negligible (it does not exceed 0.02 and is therefore excluded from the table).
The change in variance introduced by errors for numerical attributes is also rather small,
as it was the case with previously presented schemes. For each categorical attribute, we
count how many changes in values are introduced by the fingerprint. The Number of
values that change in a single categorical attribute is approximately 30, 162/(2γv). For
the presented set of parameters, the introduced total number of changes is < 4% of the
total number of tuples in the dataset. Due to the random nature of fingerprint insertion
process, the distributions of attributes are not significantly affected.

Table 5.5: Change in variance and value-flips introduced by fingerprinting with the
fingerprinting scheme for categorical data and the AK Scheme, on the Adult dataset

γ 50 25 12 6
ξ 2 4 2 4 2 4 2 4

Attribute Variance

Age 173 0 0 0 0 0 0 0 +0.05

Capital Gain 54,853,968 -1 -3 -5 -11 -23 -56 -31 -67

Capital Loss 163,457 0 -1 0 -1 -1 -2 -2 -5

Hours per Week 144 0 0 0 0 0 +0.2 0 +0.3

Value Changes

Workclass 26 19 45 45 81 90 165 165

Education 26 18 49 43 83 84 172 173

Marital Status 24 24 46 44 101 87 207 189

Occupation 23 20 44 47 75 73 148 135

Relationship 22 22 29 41 81 89 175 189

Race 19 20 47 51 87 91 160 174

Sex 12 5 19 13 39 25 77 46

Native country 19 21 45 30 94 78 173 164

5.2 Impact of fingerprinting on Machine Learning models

In this section, we evaluate the utility of fingerprinted datasets by measuring the differ-
ence in the performance of classifiers for a predictive task, using the original and the
fingerprinted dataset. We use accuracy and F1 as performance measures. In Machine
Learning, binary classification is the task of classifying the elements of a given set into
two groups (also, categories or classes). Given a classification of a specific data set, there
are four basic combinations of the actual data class and the assigned class: true positives
(TP; actual positive and predicted positive), false positives (FP; actual negative and
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5. An evaluation on the utility of the fingerprinting schemes

Figure 5.1: Combinations of actual data classes and assigned classes in binary classification

predicted positive), true negatives (TN; actual negative and predicted negative) and false
negatives (FN; actual positive and predicted negative), where "positive" and "negative"
represent two classes. These combinations can be arranged into a 2x2 contingency table
as shown in Figure 5.1.

A calculation of the classification accuracy and F1 score is based on a number of
occurrences of each combination in the classification. Accuracy is the ratio of a number
of correct predictions to the total number of input samples. Accuracy of a binary
classification is defined as:

accuracy =
TP + TN

P + N
(5.13)

where P = TP + FP and N = TN + FN . F1 score of binary classification is the
harmonic average of the precision and the recall. Precision, recall and F1 score for the
binary classification are defined as follows:

precision =
TP

TP + FP
(5.14)

recall =
TP

TP + FN
(5.15)

F1 = 2 ·
precision · recall

precision + recall
(5.16)

The metrics are shown graphically in Figure 5.2.

Multiclass (or multinomial) classification is the task of classifying the elements of a given
set into three or more groups (categories, classes). It can be denoted as a function g(x)
that on input x returns one of the classes 1, ..., K. Similarly to the binary classification,
we can distinguish the combinations of actual data class and the predicted one. In this
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5.2. Impact of fingerprinting on Machine Learning models

Figure 5.2: Classification performance metrics

case, we have true positives, false positives and false negatives associated with each class
i. TPi denotes the instances from the class i that are predicted to be in the class i, FPi

are instances belonging to another class, falsely predicted to be in the class i, and FNi

are the instances from the class i falsely predicted to be in some other class.

The accuracy of the multinomial classification is calculated as:

accuracy =
1

η
·

K
∑

i=1

TPi (5.17)

where η is a total number of data instances. Note that Equation (5.17) is the general
form that applies to the binary classification as well.

For multiclass classification, precision and recall can be micro- or macro-averaged,
therefore also can be F1 score. The micro-averaged precision and recall are defined as
follows:

precisionmicro =

∑K
i=1 TPi

∑K
i=1 TPi + FPi

(5.18)

recallmicro =

∑K
i=1 TPi

∑K
i=1 TPi + FNi

(5.19)

Therefore, the micro F1 score is:

F1micro = 2 ·
precisionmicro · recallmicro

precisionmicro + recallmicro
(5.20)
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5. An evaluation on the utility of the fingerprinting schemes

If micro F1 is a large value, this indicates that a classifier performs well overall, however
it is not sensitive to the performance of individual classes. The macro-averaged precision
and recall are:

precisionmacro =
1

K

K
∑

i=1

TPi

TPi + FPi
(5.21)

recallmacro =
1

K

K
∑

i=1

TPi

TPi + FNi
(5.22)

Hence, the macro F1 score is:

F1macro = 2 ·
precisionmacro · recallmacro

precisionmacro + recallmacro
(5.23)

A large macro F1 suggests that the classifier performs well for each individual class. The
macro-average is therefore more suitable for data with an imbalanced class distribution.
All of the above metrics reach their best value at 1 for the perfect classifier and worst at
0.

Experimental setup We used three datasets for the experiments - the Forest dataset,
the Adult dataset and the Credit dataset. Therefore, three different classifications have
been analysed. In the Forest dataset, the target attribute is covertype with 7 values, thus
we are solving the multiclass classification problem. The accuracy is calculated as in
Equation (5.17). Furthermore, we choose to use macro averages for calculating the F1
score (Equation (5.23)) to avoid the misleading nature of micro averages when the class
distribution is imbalanced.

In the Adult dataset, we are predicting the binary attribute income. In the German
Credit dataset, we are as well predicting the binary target attribute that classifies the
data instance as good or bad credit risk. The binary classification is being performed
and analysed for these two datasets and accordingly, the classification accuracy and F1
are calculated as Equation (5.13) and Equation (5.16).

For all of our experiments, we use 10-fold cross-validation to evaluate Machine Learning
models. k-fold cross-validation is a resampling procedure used in Machine Learning to
estimate the skill of a Machine Learning model on unseen data. It generally results in
a less biased or less optimistic estimate of the model skill than other methods, such as
a simple train/test split. The procedure starts by shuffling the dataset randomly and
splitting it into k groups. In our experiments k = 10. Each unique group is taken as a
hold out (test dataset) while the remaining k − 1 groups are taken as a training dataset.
It fits a model on the training set and evaluates it on the test set, retaining the evaluation
score for that group. At the end, we summarise the skill of the model using the sample
of model evaluation scores. In the experiments, we record the average of these scores.

Generally, the goal was not to build models with best predictions but to compare
the effectiveness of the fingerprinted data compared to the original. Therefore, there
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5.2. Impact of fingerprinting on Machine Learning models

is no advanced parameter optimisation included nor we dive into more complicated
feature selection for building models, as it would shift the focus from the main goal.
Still, we wanted to achieve the model performance levels rather close to the benchmark
solutions available from numerous online sources1,2 (the chosen datasets and the correlated
classification problems are well known in the Machine Learning community). Therefore,
it was important to find good hyperparameters for each of the classification tasks and
each classifier. One possible solution besides the pure manual tuning is a random search
over hyperparameters. We set up a grid of hyperparameter values and select a limited
number of random combinations to train the model and score on validations data. This
way we choose the combination of parameters giving the best score for our model.

We use Randomized Search with 10 iterations from the Python scikit-learn package3 for
tuning most important hyperparameters. Evaluation within the random search is done
using 10-fold cross-validation and F1 score (macro F1 in case of a multiclass classification).

Finally, for our experiments, we use the following classifiers, all implemented in the
Python scikit-learn package:

• Decision Tree

• k-NN (k Nearest Neighbours)

• Logistic regression

• Random Forest

• Gradient Boosting

The experimental process in the following sections has the following steps:

1. Use random search to tune the hyperparameters of the Decision Tree, k-NN,
Logistic Regression, Random Forest and Gradient Boosting classifiers. In some of
the experiments, we use only the subset of the classifiers above.

2. Train the model with the original dataset and score the classification accuracy and
F1

3. For each fingerprinting parameter combination (γ, ξ) train the model with the
fingerprinted dataset and score the classification accuracy and F1. Set the hyperpa-
rameters according to step 1.

4. Record the differences in the performance measures

5. Steps 3 and 4 are repeated 10 times to get the average values. In every experiment,
we fingerprint the data with a random choice of buyer’s id and secret key.

1https://www.kaggle.com/wenruliu/adult-income-dataset/kernels
2https://www.kaggle.com/c/forest-cover-type-prediction/kernels
3https://scikit-learn.org/stable/
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5. An evaluation on the utility of the fingerprinting schemes

5.2.1 Forest Cover Type

The first set of experiments is made using the biggest of the three datasets - Forest Cover
Type. We use the AK Scheme for fingerprinting the numerical attributes of the dataset.
The target attribute is covertype and all the others are used as an input for a prediction.
We use the following classifiers and set the following hyperparameters:

• Decision Tree: max_depth = 5, criterion = entropy

• Logistic Regression: C = 100

• Random Forest: n_estimators = 100

The other hyperparameters are set to default values from the scikit-learn implementations
of the classifiers.

The average differences are shown in Tables 5.6 to 5.8 for Decision Tree, Logistic Regression
and Random Forest, respectively.

Table 5.6: Effects on F1 score and classification accuracy of a Decision Tree model trained
with the Forest Cover Type dataset

ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc.

γ = 100 0% 0% 0% -0.01% 0% -0.01% 0% -0.01%

γ = 50 0% -0.02% 0% 0% 0% +0.01% 0% 0%

γ = 25 0% -0.02% +0.02% +0.01% -0.03% -0.01% 0% -0.01%

γ = 12 -0.01% -0.02% -0.01% 0% -0.01% -0.10% -0.01% -0.04%

γ = 6 -0.01% 0% -0.04% -0.01% -0.19% -0.11% -0.08% -0.04%

average 0% -0.1% -0.01% 0% -0.05% -0.04% -0.07% -0.02%

Table 5.7: Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the Forest Cover Type dataset

ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc.

γ = 100 0% 0% +0.01% 0% -0.01% +0.01% 0% 0%

γ = 50 -0.02% 0% +0.01% 0% -0.01% +0.01% -0.01% 0%

γ = 25 0% 0% -0.01% -0.01% -0.05% +0.02% -0.02% 0%

γ = 12 0% 0% -0.02% 0% -0.11% +0.02% -0.04% 0%

γ = 6 0% 0% -0.03% 0% -0.14% +0.03% -0.06% +0.01%

average 0% 0% -0.01% 0% -0.07% +0.02% -0.03% +0.01%

The changes in performance are generally very small (in most of the cases the difference
is in the 4th decimal place of the absolute values), therefore we represent the changes
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5.2. Impact of fingerprinting on Machine Learning models

Table 5.8: Effects on F1 score and classification accuracy of a Random Forest model
trained with the Forest Cover Type dataset

ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc.

γ = 100 +0.01% -0.03% +0.01% -0.05% -0.06% -0.08% -0.01% -0.05%

γ = 50 0% 0% +0.01% +0.02% -0.02% -0.03% 0% 0%

γ = 25 0% -0.01% -0.07% -0.03% -0.05% -0.03% -0.04% -0.02%

γ = 12 -0.02% 0% -0.01% 0% -0.03% -0.05% -0.02% -0.02%

γ = 6 -0.04% -0.08% -0.01% -0.03% 0% -0.01% -0.02% -0.04%

average -0.01% -0.03% -0.01% -0.02% -0.03% -0.04% -0.02% -0.03%

as percentages in range (0-100%). All of the results roughly follow the rule that the
performance measures decrease when γ decreases, i.e. more marks introduced in data.
We can observe this behaviour in the last columns of every table where we calculate the
average F1 score and accuracy for a fixed γ Furthermore, a general rule holds that the
performance slightly drops for larger ξ values, i.e. more bits available for fingerprinting.
This is due to larger distortions of particular values in the data. This is shown in the
last row of every table where we average out the F1 score and accuracy for a fixed ξ.
Every classifier from the experiments behaves very similarly in the means of performance
decrease. Overall average F1 score and accuracy for every classifier is calculated from
the experiment results and presented the bottom rightmost cell of each table.

On the Forest Cover Type data, we can conclude that the differences observed when using
the Decision Tree classifier (see Table 5.6) are rather minute, and would not constitute a
noticeable degradation of effectiveness. The trend is the same also for other classifiers, as
can be seen in Table 5.7 for Logistic Regression, and Table 5.8 for Random Forest. In a
few cases, the classification results obtained even improved, for example, the accuracy of
Logistic Regression trained by data fingerprinted using ξ = 6, though by the same rather
marginal order of magnitude as the observed decline.

5.2.2 Adult (Census Data)

We make the set of experiments using the Adult dataset. The dataset is mostly com-
posed of categorical values, thus we use the fingerprinting scheme for categorical data
from Section 3.7. The target of the classification task is income. All other attributes
(including numerical, although we do not fingerprint them) are used for as an input for a
classifier. We use Decision Tree, k-NN, Logistic Regression and Gradient Boosting. The
hyperparameters are set as follows:

• k-NN: n_neighbors = 19

• Logistic Regression: solver = liblinear, C = 20

• Random Forest: n_estimators = 200, max_depth = 15, criterion = gini
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5. An evaluation on the utility of the fingerprinting schemes

• Gradient Boosting: n_estimators := 40, max_depth = 8, loss = deviance,
criterion = mse

The differences in F1 and accuracy scores (on a scale [0, 100]%) between original and
fingerprinted Adult dataset for Decision Tree, k-NN, Logistic Regression, Random Forest
and Gradient Boosting are shown in Tables 5.9 to 5.12.

Table 5.9: Effects on F1 score and classification accuracy of a k-NN model trained with
the Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 50 +0.05% +0.03% -0.10% -0.05% -0.06% -0.02% -0.02% +0.01% -0.03% -0.01%

γ = 25 -0.10% -0.05% +0.05% +0.02% +0.07% +0.03% -0.02% +0.03% 0% -0.01%

γ = 12 -0.32% -0.19% -0.10% -0.06% +0.02% +0.03% -0.20% -0.04% -0.15% -0.07%

γ = 6 -0.70% -0.42% -0.50% -0.22% -0.36% -0.15% -0.60% -0.21% -0.54% -0.25%

γ = 3 -1.79% -1.02% -0.70% -0.36% -0.61% -0.22% -0.81% -0.32% -0.98% -0.48%

average -0.57% -0.33% -0.27% -0.13% -0.19% -0.07% -0.33% -0.11% -0.34% -0.16%

Table 5.10: Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 50 -0.15% -0.07% -0.02% -0.01% -0.07% -0.03% -0.03% -0.02% -0.07% -0.03%

γ = 25 -0.25% -0.14% -0.13% -0.06% -0.10% -0.06% -0.14% -0.06% -0.16% -0.08%

γ = 12 -0.46% -0.22% -0.27% -0.12% -0.12% -0.08% -0.39% -0.15% -0.31% -0.14%

γ = 6 -0.68% -0.38% -0.41% -0.22% -0.46% -0.19% -0.80% -0.33% -0.59% -0.28%

γ = 3 -2.12% -1.01% -1.08% -0.52% -0.75% -0.32% -1.33% -0.62% -1.32% -0.62%

average -0.73% -0.36% -0.38% -0.19% -0.25% -0.14% -0.54% -0.24% -0.49% -0.23%

Table 5.11: Effects on F1 score and classification accuracy of a Random Forest model
trained with the Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 50 -0.04% +0.06% -0.40% -0.10% -0.02% +0.02% -0.37% -0.09% -0.21% -0.03%

γ = 25 -0.28% -0.13% -0.20% -0.03% -0.29% -0.08% -0.56% -0.15% -0.33% -0.10%

γ = 12 -0.59% -0.23% -0.63% -0.23% -0.13% +0.02% -0.34% -0.09% -0.42% -0.13%

γ = 6 -0.68% -0.31% -0.66% -0.20% -0.33% -0.08% -0.76% -0.24% -0.61% -0.27%

γ = 3 -2.26% -1.02% -1.04% -0.37% -1.24% -0.40% -1.01% -0.35% -1.39% -0.54%

average -0.77% -0.33% -0.59% -0.19% -0.40% -0.10% -0.61% -0.18% -0.69% -0.20%

Overall, each classifier shows a decrease in performance when the fingerprint is applied.
Except for a few cases where the performance slightly improves, both F1 and accuracy
decrease up to approximately 2%. The average difference for each classifier can be seen in
the respective table in the rightmost cell of the last row in bold characters. The largest
average difference for the entire classifier is the change in F1 score of Gradient Boosting,

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

5.2. Impact of fingerprinting on Machine Learning models

Table 5.12: Effects on F1 score and classification accuracy of a Gradient Boosting model
trained with the Adult dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 50 -0.12% -0.06% -0.32% -0.16% +0.02% -0.01% -0.17% -0.07% -0.15% -0.08%

γ = 25 -0.40% -0.19% -0.43% -0.20% -0.13% -0.08% -0.30% -0.10% -0.32% -0.14%

γ = 12 -0.71% -0.34% -0.51% -0.18% -0.42% -0.18% -0.29% -0.11% -0.48% -0.20%

γ = 6 -0.85% -0.45% -0.74% -0.35% -0.39% -0.20% -0.69% -0.30% -0.67% -0.33%

γ = 3 -2.60% -1.22% -1.18% -0.59% -0.76% -0.36% -0.59% -0.27% -1.28% -0.61%

average -0.94% -0.45% -0.64% -0.30% -0.34% -0.17% -0.41% -0.17% -0.58% -0.27%

-0.58% (Table 5.12). Therefore, we can argue that changes in F1 and accuracy in this
range are rather acceptable. This is, of course, dependable on the use case. However, we
need to consider that fingerprinting necessarily changes the values in the dataset and
the performance can not be exactly the same as when the original dataset is used. The
occurrences of the positive differences (see, for example, Table 5.10, γ = 50, ξ = 1) are
random and minute, and therefore concluding that a fingerprint in the data improves the
performance of the Machine Learning model is a rule for certain cases would be wrong.

In the last row and the last column of every table, we calculate the average difference for
the fixed ξ or γ, respectively, to see the effects of these parameters more easily. It is hard
to detect any pattern between average values of F1/accuracy and ξ value for any of the
classifiers. This behaviour can be expected because bigger ξ do not imply "more change"
in values for this fingerprinting scheme compared to the schemes for numerical values.
For instance, using ξ = 3 in fingerprinting could change a value "9" to "13" (difference of
4), while using ξ = 1 could only (and at most!) change it to "8" (difference of 1). This
behaviour does not apply to categorical data since the change from any categorical value
to another is unit. Therefore, the effect of the parameter ξ on the performance of a model
trained using fingerprinted data in classification is random.

On the other hand, we can see the trend of a decrease in performance for smaller values of
γ in the last column of the tables. Both average F1 and accuracy gradually decrease for
smaller γ, i.e. more marks in the dataset. It is the case for a majority of the particular
cases with one fixed value of ξ. For example, the entire experimental results with Logistic
Regression, in Table 5.10, have a perfect inversely proportional relation between a value
of γ and absolute difference in F1 score or accuracy.

On the Adult dataset we can conclude that, from the classification point of view, the
utility of data is preserved after applying the proposed fingerprinting technique for
categorical data. The performance drops are not significant and can be controlled by the
parameter γ.
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5. An evaluation on the utility of the fingerprinting schemes

5.2.3 German Credit Data

With the last set of experiments, we analyse the utility of the fingerprinted data that
contains a mixture of numerical and non-numerical attributes. We use the German Credit
dataset and apply both AK Scheme to the numerical values and the naive fingerprinting
technique for categorical data to non-numerical. We unify these two processes into one
fingerprinting process since these techniques share the algorithmic steps, except for the
modification for marking the categorical values. We use Decision Tree, k-NN, Logistic
Regression and Random Forest for the classification and follow the usual procedure. We
find with the random search that the best hyperparameters for the model trained with
original data are as follows:

• Decision Tree: max_depth = 2, criterion = entropy

• k-NN: n_neighbors = 14

• Logistic Regression: solver = newton− cg, C = 70

• Random Forest: n_estimators = 85, max_depth = 10, criterion = gini

Tables 5.13 to 5.16 show the resulting differences in F1 and accuracy scores (on a scale
[0, 100]%) between original and fingerprinted German Credit data for Decision Tree,
k-NN, Logistic Regression and Random Forest, respectively.

Table 5.13: Effects on F1 score and classification accuracy of a Decision Tree model
trained with the German Credit dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 12 0% 0% -0.07% -0.10% -0.07% -0.10% 0% 0% -0.04% -0.05%

γ = 9 0% 0% 0% 0% -0.14% -0.20% -0.14% -0.20% -0.07% -0.10%

γ = 6 0% 0% -0.07% -0.10% -0.14% -0.20% -0.14% -0.20% -0.09% -0.13%

γ = 3 0% 0% -0.14% -0.20% -0.14% -0.20% -0.42% -0.60% -0.18% -0.25%

average 0% 0% -0.07% -0.10% -0.12% -0.18% -0.18% -0.25% -0.09% -0.13%

Table 5.14: Effects on F1 score and classification accuracy of a k-NN model trained with
the German Credit dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 12 0.0% 0.0% -0.14% -0.20% -0.07% -0.10% 0.0% 0.0% -0.05% -0.08%

γ = 9 0.0% 0.0% -0.05% -0.10% -0.14% -0.20% -0.22% -0.30% -0.10% -0.15%

γ = 6 0.0% 0.0% -0.27% -0.40% -0.14% -0.20% -0.22% -0.30% -0.16% -0.23%

γ = 3 0.0% 0.0% -0.09% -0.10% -0.39% -0.60% -0.45% -0.60% -0.23% -0.33%

average 0% 0% -0.14% -0.20% -0.19% -0.28% -0.22% -0.30% -0.14% -0.19%
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5.2. Impact of fingerprinting on Machine Learning models

Table 5.15: Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the German Credit dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 12 -0.02% 0.0% -0.45% -0.61% -0.02% +0.09% +0.17% +0.30% -0.08% -0.06%

γ = 9 -0.04% 0.0% -0.27% -0.30% -0.38% -0.60% -0.25% -0.50% -0.24% -0.35%

γ = 6 -0.05% -0.10% -0.42% -0.71% -0.55% -0.80% -0.25% -0.40% -0.32% -0.50%

γ = 3 -0.17% -0.30% -0.26% -0.41% -0.21% -0.50% -0.29% -0.41% -0.23% -0.41%

average -0.07% -0.10% -0.35% -0.51% -0.29% -0.45% -0.16% -0.25% -0.22% -0.33%

Table 5.16: Effects on F1 score and classification accuracy of a decision Tree model
trained with the Random Forest dataset

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 12 -0.47% -0.70% -0.81% -1.20% -0.07% -0.31% -0.21% -0.50% -0.39% -0.68%

γ = 9 -0.50% -0.80% -0.34% -0.70% -0.31% -0.50% -0.35% -0.61% -0.38% -0.62%

γ = 6 -0.82% -1.30% -0.42% -0.90% -0.44% -0.70% -0.30% -0.41% -0.50% -0.83%

γ = 3 -0.79% -1.40% -0.78% -1.30% -1.23% -2.10% -0.85% -1.20% -0.91% -1.50%

average -0.65% -1.05% -0.59% -1.03% -0.51% -0.90% -0.43% -0.68% -0.54% -0.91%

Similar to the Forest Cover Type dataset and Adult dataset, we can note that there
are very small effects on the classification accuracy and F1 score using German Credit
dataset.

In experiments, the classification accuracy and F1 score generally slightly decrease for
smaller γ, i.e. by introducing more error, which is expected. The effect of parameter ξ is
not obvious in all of the cases. We now have a mixture of numerical and non-numerical
values. We have discussed in the previous sections that ξ affects the performance when
numerical data is used, while with non-numerical it is not the case. For example, results
from Decision Tree in Table 5.13 show the decrease in F1 and accuracy for larger ξ, while
the results from Logistic Regression in Table 5.15 do not show such relation.

Generally, bigger errors introduced by fingerprinting using the naive technique for
categorical data did not significantly affect the performance of any of the classifiers.

We further run experiments to analyse the second proposed technique for fingerprinting
the categorical type of data. German Credit Data is fingerprinted using the approach
of finding a fixed number of neighbours, with k = 10. We use the same set values for
parameters ξ and γ as in the previous experiments. We trained the Logistic Regression and
the Random Forest models. The differences of the performance measures, classification
accuracy and F1 score, are shown in Tables 5.17 and 5.18.

The results are, generally, very similar to the results of the naive fingerprinting technique.
The decrease in performance is in the range of approximately −1% for both classification
accuracy and F1 score. The Logistic Regression gives overall slightly worse results in this
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5. An evaluation on the utility of the fingerprinting schemes

Table 5.17: Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the German Credit dataset fingerprinted with the neighbourhood-based
technique

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 12 -0.19% -0.20% +0.03% +0.09% 0% -0.01% -0.19% -0.30% -0.09% -0.11%

γ = 9 -0.24% -0.30% -0.23% -0.30% 0% 0% -0.34% -0.50% -0.20% -0.28%

γ = 6 -0.47% -0.60% -0.16% -0.31% -0.28% -0.41% -0.93% -1.31% -0.46% -0.66%

γ = 3 -0.65% -0.90% -0.33% -0.60% +0.13% +0.09% -0.07% -0.20% -0.23% -0.40%

average -0.39% -0.50% -0.17% -0.28% -0.04% -0.08% -0.38% -0.58% -0.25% -0.36%

Table 5.18: Effects on F1 score and classification accuracy of a Random Forest model
trained with the German Credit dataset fingerprinted with the neighbourhood-based
technique

ξ = 1 ξ = 2 ξ = 4 ξ = 6 average
F1 acc. F1 acc. F1 acc. F1 acc. F1 acc.

γ = 12 -0.27% -0.60% -0.16% -0.50% -0.57% -1.10% -0.43% -1.00% -0.36% -0.80%

γ = 9 -0.33% -0.60% -0.36% -0.70% -0.45% -0.90% -0.48% -0.90% -0.41% -0.78%

γ = 6 -0.56% -1.00% -0.22% -0.40% -0.73% -1.31% -0.41% -0.90% -0.48% -0.90%

γ = 3 -0.65% -1.10% -0.95% -1.90% -0.40% -0.90% +0.01 -0.20% -0.50% -1.03%

average -0.45% -0.82% -0.42% -0.88% -0.54% -1.05% -0.33% -0.75% -0.44% -0.88%

case, while for the Random Forest the performance is slightly better compared to the
naive technique. The performance follows the same trend of a decrease when more marks
are embedded in the data. See, for example, the last column in Table 5.18 where we
recorded the average F1 and accuracy decrease for different values of ξ. The difference is
larger for smaller values of γ, i.e. more marks in the data.

5.3 Summary

In this chapter, we deliver the analysis of the utility of the fingerprinted data. We
analyse the utility from the two aspects. First, we measure the mean and variance of each
attribute of the datasets before and after fingerprinting and compare them. Fingerprinting
techniques for numerical data introduce almost no change in the mean and very little
change in the variance. For the fingerprinting technique for non-numerical data where
mean and variance are not applicable, we measure the quality by counting the number of
changes.

Secondly, we analyse the effect of the fingerprint on the classification performance. We
build Machine Learning models using the original dataset and record the performance
scores. Then we record the performance scores of the models using the fingerprinted
datasets, under the same set of hyperparameters. The performance measures we use
are the classification accuracy and F1 score. Our experiments show that the decrease in
performance is minute. The fingerprinting parameters, for example, the number of marks
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5.3. Summary

Figure 5.3: Error in performance measures of the Random Forest classifier

controlled by the parameter γ, influence the performance, however, the difference stays
in the same range. The example of the performance decrease depending on γ is shown in
Figure 5.3 for Random Forest and three different datasets. The F1 score differences are
reflected over the x-axis for clarity. The trend of decrease in the performance error can
be seen for fewer marks in data (bigger γ). Furthermore, we can see that the range of
the errors, both accuracy and F1, are within the range [0,1.5]%, based on which we can
argue that the error introduced by the fingerprint is negligible.

We obtain similar results with every other classifier, including Decision Tree, Logistic
Regression, k-NN and Gradient Boosting. Our experiments with data fingerprinted with
the second fingerprinting technique for categorical data based on finding the closest
neighbourhood show very similar results to the naive approach. In future work, this
technique will be more closely analysed, both from the robustness and the data utility
point of view. In this case, the technique did not show distinctively better results than
the naive approach. However, this might be case-specific and differ for the other choices
of the parameter k that defines the size of the neighbourhood.
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CHAPTER 6
Conclusion

This thesis elaborates the concept of fingerprinting relational databases. We implement
and analyse three fingerprinting techniques for relational data containing numerical
values - AK Scheme, Block Scheme and Two-level Fingerprinting Scheme. The real-world
datasets oftentimes contain non-numerical attributes. Therefore, we propose, implement
and analyse two approaches for fingerprinting non-numerical data. The naive approach,
inspired by techniques for fingerprinting numerical data, first converts the categorical
attributes to numerical and then applies random marks on the chosen values. The
second approach goes towards minimising contextual inconsistencies in the data after
fingerprinting. Even though this technique is not blind, it might be a better solution
for fingerprinting data with correlated categorical attributes than marking the values
randomly.

We analyse the robustness of the techniques against the attacks. We analyse it theoretically
and empirically, using the implemented techniques and a broad set of parameters. Attacks
that modify the dataset without any background knowledge of where the marks are
embedded and without the access to other copies of fingerprinted data (e.g. subset attack,
superset attack, bit-flipping attack), are shown to be avoidable by careful parameter
tuning. In most of the cases, the robustness is increased by increasing the number of
marks in the data. If a smaller dataset is being fingerprinted, a fingerprinting scheme
that creates shorter fingerprints is more robust.

The AK Scheme appears to be the most robust technique among the analysed ones. This
is beneficial for our choice that the proposed scheme for categorical data follows the same
steps as the AK Scheme. The Two-level fingerprinting technique is very useful because of
the verification of the ownership and the source of the leakage in two separate processes.
The ownership verification level is much more robust to any kind of attack, which allows
the owner to prove ownership even in cases when the exact fingerprint of the receiver
cannot be extracted. The Block Scheme is inspired by a useful fingerprinting technique
for fingerprinting images, however, does not appear to be very robust in its adaptation to
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6. Conclusion

fingerprinting technique for relational datasets. The proposed technique for categorical
data is less robust against the attacks than AK Scheme or Two-level Scheme, however
still applicable.

We further analyse how the modifications in data affect its utility. The modifications in
the mean and variance of the attributes are rather minute. More marks in data and more
allowed bits for embedding the mark result in bigger variance errors. The utility is further
measured in the assumed scenario where the fingerprinted data is used for training a
Machine Learning model that is making some prediction. We use a variety of Machine
Learning classifiers, including Decision Tree, Logistic Regression, k-NN, Random Forest
and Gradient Boosting, and experiment with three different datasets. The resulting
decrease of performance when compared to the model trained with original data is around
1%, mostly less (assuming the accuracy and F1 score are measured in the range [0,100]%).
Therefore, the predictions are rather accurate when the fingerprinted data is used.

The parameters that would, for example, increase the robustness of the scheme, decrease
the utility. We show in Table 6.1 the effects of the main fingerprinting parameters on
different types of attacks and the utility.

Table 6.1: Impact of parameters on robustness against attacks resp. on data utility

↑ ω ξ τ L N

Misdiagnosis false hit ↑ ↑ ↑ ↓

Subset Attack ↑ ↓ ↓

Bit-flipping Attack ↑ ↑ ↓ ↓

Additive Attack ↑ ↓ ↓

Utility ↓ ↓

For example, increasing the number of marks in the data ω would increase the scheme’s
robustness against misdiagnosis false hit, subset attack, bit-flipping attack and additive
attack, while decreasing the utility. Increasing the number of LSBs available for finger-
printing ξ, does not affect the robustness against misdiagnosis false hit and subset attack,
increases robustness against bit-flipping attack, but decreases the robustness against the
additive attack and the utility.

We show that the fingerprint does not affect the utility of the data too much. However,
it depends on the use case if these, although minor, effects are acceptable.

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Figures

2.1 General framework for watermarking . . . . . . . . . . . . . . . . . . . . . 8
2.2 Categorization of watermarking techniques for relational data . . . . . . . 10

3.1 Portion of match_count and threshold for different total_count to achieve
the ownership confidence level 99% (α1 = 0.01) . . . . . . . . . . . . . . . 38

3.2 Threshold in subsets of unaffected marked data for different total_counti to
achieve confidence level of each bit of 99% (a) and 90% (b) . . . . . . . . 39

4.1 Fingerprint extraction in a subset attack . . . . . . . . . . . . . . . . . . . 60
4.2 Ownership verification in a subset attack . . . . . . . . . . . . . . . . . . 62
4.3 Bit-flipping attack success in the Two-level Fingerprinting Scheme . . . . . 71
4.4 Misdiagnosis false hit rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5 Robustness against the additive attack . . . . . . . . . . . . . . . . . . . . 77
4.6 Comparison of robustness against the subset attack . . . . . . . . . . . . . 77
4.7 Comparison of robustness against the bit-flipping attack . . . . . . . . . . 77

5.1 Combinations of actual data classes and assigned classes in binary classification 86
5.2 Classification performance metrics . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Error in performance measures of the Random Forest classifier . . . . . . 97

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Tables

2.1 Summary and comparison of well known fingerprinting techniques . . . . 18

3.1 The notions of the most common parameters . . . . . . . . . . . . . . . . 20

3.2 Sample dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Creating β × β blocks in binary image; β = 2, ξ = 3 . . . . . . . . . . . . 30

3.4 Limitations in block creation . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Notation in the Two-level Scheme . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Success of a detection algorithm of the fingerprinting scheme for categorical
data using the German Credit dataset . . . . . . . . . . . . . . . . . . . . 42

3.7 Bit difference and the detection fail rates for the German Credit data . . 44

3.8 Success of a detection algorithm using the German Credit dataset without
applying modulo operation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Success of the detection algorithm using Adult dataset . . . . . . . . . . . 45

3.10 The detection fail rates for Adult data . . . . . . . . . . . . . . . . . . . . 46

4.1 Attributes of the Forest Cover Type dataset . . . . . . . . . . . . . . . . . 53

4.2 Attributes of the German Credit dataset . . . . . . . . . . . . . . . . . . . 54

4.3 Attributes of the Adult dataset . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Misdiagnosis false hit rate for the AK Scheme . . . . . . . . . . . . . . . . 56

4.5 Probability of a successful subset attack on the AK Scheme . . . . . . . . 58

4.6 Experimental results of a subset attack success rate on the AK Scheme, using
the Forest dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Probability of a successful subset attack on the Block Scheme . . . . . . . 59

4.8 Probability of a successful subset attack on the Block Scheme . . . . . . . 60

4.9 Success of the subset attack on Two-level Fingerprinting Scheme . . . . . . 61

4.10 Theoretical success rate of a subset attack on the fingerprinting scheme for
categorical data, using the Adult data . . . . . . . . . . . . . . . . . . . . 63

4.11 Experimental results of the subset attack success rate on the fingerprinting
scheme for categorical data, using the Adult data . . . . . . . . . . . . . . 63

4.12 Superset attack success rate on the Forest Covertype data . . . . . . . . . 64

4.13 Example of tuple generation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Probability of a successful bit-flipping attack on the AK Scheme . . . . . 67

4.15 Probability of a successful bit-flipping attack on the AK Scheme . . . . . 68

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

4.16 Experimental results of a bit-flipping attack on the AK Scheme, using the
Forest Cover Type data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.17 Probability of a successful bit-flipping attack on the Block Scheme . . . . 70
4.18 Experimental results of the bit-flipping attack on the Block Scheme, for the

Forest Cover Type data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Change in variance introduced by fingerprinting with AK Scheme . . . . . . 81
5.2 Change in mean introduced by fingerprinting with the Block Scheme . . . 82
5.3 Change in variance introduced by fingerprinting with the Block Scheme . 83
5.4 Change in variance introduced by fingerprinting using the Two-level Finger-

printing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.5 Change in variance and value-flips introduced by fingerprinting with the

fingerprinting scheme for categorical data and the AK Scheme, on the Adult
dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Effects on F1 score and classification accuracy of a Decision Tree model trained
with the Forest Cover Type dataset . . . . . . . . . . . . . . . . . . . . . 90

5.7 Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the Forest Cover Type dataset . . . . . . . . . . . . . . . . . 90

5.8 Effects on F1 score and classification accuracy of a Random Forest model
trained with the Forest Cover Type dataset . . . . . . . . . . . . . . . . . . 91

5.9 Effects on F1 score and classification accuracy of a k-NN model trained with
the Adult dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the Adult dataset . . . . . . . . . . . . . . . . . . . . . . . . 92

5.11 Effects on F1 score and classification accuracy of a Random Forest model
trained with the Adult dataset . . . . . . . . . . . . . . . . . . . . . . . . 92

5.12 Effects on F1 score and classification accuracy of a Gradient Boosting model
trained with the Adult dataset . . . . . . . . . . . . . . . . . . . . . . . . 93

5.13 Effects on F1 score and classification accuracy of a Decision Tree model trained
with the German Credit dataset . . . . . . . . . . . . . . . . . . . . . . . 94

5.14 Effects on F1 score and classification accuracy of a k-NN model trained with
the German Credit dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.15 Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the German Credit dataset . . . . . . . . . . . . . . . . . . . 95

5.16 Effects on F1 score and classification accuracy of a decision Tree model trained
with the Random Forest dataset . . . . . . . . . . . . . . . . . . . . . . . 95

5.17 Effects on F1 score and classification accuracy of a Logistic Regression model
trained with the German Credit dataset fingerprinted with the neighbourhood-
based technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.18 Effects on F1 score and classification accuracy of a Random Forest model
trained with the German Credit dataset fingerprinted with the neighbourhood-
based technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Impact of parameters on robustness against attacks resp. on data utility . 100

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

List of Algorithms

3.1 AK Scheme: Insertion Algorithm . . . . . . . . . . . . . . . . . . . . . . 23

3.2 AK Scheme: Detection Algorithm . . . . . . . . . . . . . . . . . . . . . 24

3.3 AK Scheme: Subroutine detect . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Block Scheme: Insertion Algorithm . . . . . . . . . . . . . . . . . . . . 28

3.5 Block Scheme: Detection Algorithm . . . . . . . . . . . . . . . . . . . . 29

3.6 Two-level Scheme: Insertion Algorithm . . . . . . . . . . . . . . . . . . 33

3.7 Two-level Scheme: Fingerprint Extraction Algorithm . . . . . . . . . . 34

3.8 Two-level Scheme: Subroutine detect . . . . . . . . . . . . . . . . . . . . 35

3.9 Two-level Scheme: Subroutine threshold . . . . . . . . . . . . . . . . . . 35

3.10 Two-level Scheme: Fingerprint Verification Algorithm . . . . . . . . . . 36

3.11 Fingerprinting technique for categorical data: Insertion Algorithm . . . 47

3.12 Fingerprinting technique for categorical data: Detection Algorithm . . . 49

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

Bibliography

[1] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting relational databases: Schemes
and specialties,” IEEE Transactions on Dependable and Secure Computing, vol. 2,
no. 1, pp. 34–45, 2005.

[2] S. Liu, S. Wang, R. H. Deng, and W. Shao, “A block oriented fingerprinting scheme
in relational database,” in International Conference on Information Security and
Cryptology, pp. 455–466, Springer, 2004.

[3] F. Guo, J. Wang, and D. Li, “Fingerprinting relational databases,” in Proceedings
of the 2006 ACM symposium on Applied computing, pp. 487–492, ACM, 2006.

[4] C. Constantin, D. Gross-Amblard, and M. Guerrouani, “Watermill: an optimized
fingerprinting system for highly constrained data,” in Proceedings of the 7th workshop
on Multimedia and security, pp. 143–155, ACM, 2005.

[5] R. Halder, S. Pal, and A. Cortesi, “Watermarking techniques for relational databases:
Survey, classification and comparison.,” J. UCS, vol. 16, no. 21, pp. 3164–3190, 2010.

[6] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure spread spectrum
watermarking for multimedia,” IEEE transactions on image processing, vol. 6, no. 12,
pp. 1673–1687, 1997.

[7] F. A. Petitcolas and S. Katzenbeisser, Information Hiding Techniques for Steganog-
raphy and Digital Watermarking (Artech House Computer Security Series). Artech
House, 2000.

[8] S.-J. Lee and S.-H. Jung, “A survey of watermarking techniques applied to multime-
dia,” in ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics
Proceedings (Cat. No. 01TH8570), vol. 1, pp. 272–277, IEEE, 2001.

[9] M. Wu, W. Trappe, Z. J. Wang, and K. R. Liu, “Collusion-resistant fingerprinting
for multimedia,” IEEE Signal Processing Magazine, vol. 21, no. 2, pp. 15–27, 2004.

[10] J. O’Ruanaidh, W. Dowling, and F. Boland, “Watermarking digital images for
copyright protection,” IEE Proceedings-Vision, Image and Signal Processing, vol. 143,
no. 4, pp. 250–256, 1996.

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[11] F. Hartung and B. Girod, “Watermarking of uncompressed and compressed video,”
Signal processing, vol. 66, no. 3, pp. 283–301, 1998.

[12] L. Boney, A. H. Tewfik, and K. N. Hamdy, “Digital watermarks for audio signals,” in
Proceedings of the Third IEEE International Conference on Multimedia Computing
and Systems, pp. 473–480, IEEE, 1996.

[13] M. D. Swanson, B. Zhu, A. H. Tewfik, and L. Boney, “Robust audio watermarking
using perceptual masking,” Signal processing, vol. 66, no. 3, pp. 337–355, 1998.

[14] V. M. Potdar, S. Han, and E. Chang, “A survey of digital image watermarking
techniques,” in INDIN’05. 2005 3rd IEEE International Conference on Industrial
Informatics, 2005., pp. 709–716, IEEE, 2005.

[15] N. Nikolaidis and I. Pitas, “Robust image watermarking in the spatial domain,”
Signal processing, vol. 66, no. 3, pp. 385–403, 1998.

[16] M. Piec and A. Rauber, “Real-time screen watermarking using overlaying layer,”
in 2014 Ninth International Conference on Availability, Reliability and Security,
pp. 561–570, IEEE, 2014.

[17] M. A. Suhail and M. S. Obaidat, “Digital watermarking-based dct and jpeg model,”
IEEE transactions on instrumentation and measurement, vol. 52, no. 5, pp. 1640–
1647, 2003.

[18] V. Solachidis and L. Pitas, “Circularly symmetric watermark embedding in 2-d dft
domain,” IEEE transactions on image processing, vol. 10, no. 11, pp. 1741–1753,
2001.

[19] R. B. Wolfgang, C. I. Podilchuk, and E. J. Delp, “Perceptual watermarks for digital
images and video,” Proceedings of the IEEE, vol. 87, no. 7, pp. 1108–1126, 1999.

[20] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Multiresolution scene-based video
watermarking using perceptual models,” IEEE Journal on selected areas in commu-
nications, vol. 16, no. 4, pp. 540–550, 1998.

[21] I.-K. Kang, D.-H. Im, H.-K. Lee, and Y.-H. Suh, “Implementation of real-time
watermarking scheme for high-quality video,” in Proceedings of the 8th workshop on
Multimedia and security, pp. 124–129, ACM, 2006.

[22] N. F. Maxemchuk, “Electronic document distribution,” AT&T technical journal,
vol. 73, no. 5, pp. 73–80, 1994.

[23] M. J. Atallah, V. Raskin, M. Crogan, C. Hempelmann, F. Kerschbaum, D. Mohamed,
and S. Naik, “Natural language watermarking: Design, analysis, and a proof-of-
concept implementation,” International Workshop on Information Hiding, pp. 185–
200, 2001.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[24] M. J. Atallah, C. J. McDonough, V. Raskin, and S. Nirenburg, “Natural language
processing for information assurance and security: an overview and implementations,”
NSPW, pp. 51–65, 2000.

[25] M. J. Atallah and S. S. Wagstaff, “Watermarking with quadratic residues,” Security
and Watermarking of Multimedia Contents, vol. 3657, pp. 283–289, 1999.

[26] M. J. Atallah, V. Raskin, C. F. Hempelmann, M. Karahan, R. Sion, U. Topkara,
and K. E. Triezenberg, “Natural language watermarking and tamperproofing,” in
International workshop on information hiding, pp. 196–212, Springer, 2002.

[27] J. Palsberg, S. Krishnaswamy, M. Kwon, D. Ma, Q. Shao, and Y. Zhang, “Experi-
ence with software watermarking,” in Proceedings 16th Annual Computer Security
Applications Conference (ACSAC’00), pp. 308–316, IEEE, 2000.

[28] C. Collberg and C. Thomborson, “Software watermarking: Models and dynamic
embeddings,” in Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 311–324, ACM, 1999.

[29] M. K. Rathva and G. Sahani, “Watermarking relational databases,” International
Journal of Computer Science, Engineering and Applications, vol. 3, no. 1, p. 71,
2013.

[30] B. B. Mehta and H. D. Aswar, “Watermarking for security in database: A review,”
in 2014 Conference on IT in Business, Industry and Government (CSIBIG), pp. 1–6,
IEEE, 2014.

[31] S. Iftikhar, M. Kamran, and Z. Anwar, “A survey on reversible watermarking
techniques for relational databases,” Security and Communication Networks, vol. 8,
no. 15, pp. 2580–2603, 2015.

[32] M. Kamran and M. Farooq, “A comprehensive survey of watermarking relational
databases research,” arXiv preprint arXiv:1801.08271, 2018.

[33] R. Agrawal and J. Kiernan, “Watermarking relational databases,” in VLDB’02:
Proceedings of the 28th International Conference on Very Large Databases, pp. 155–
166, Elsevier, 2002.

[34] R. Agrawal, P. J. Haas, and J. Kiernan, “A system for watermarking relational
databases,” in Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, pp. 674–674, ACM, 2003.

[35] R. Agrawal, P. J. Haas, and J. Kiernan, “Watermarking relational data: framework,
algorithms and analysis,” The VLDB Journal—The International Journal on Very
Large Data Bases, vol. 12, no. 2, pp. 157–169, 2003.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[36] Y. Li, V. Swarup, and S. Jajodia, “Constructing a virtual primary key for finger-
printing relational data,” in Proceedings of the 3rd ACM workshop on Digital rights
management, pp. 133–141, ACM, 2003.

[37] J. Lafaye, “An analysis of database watermarking security,” in Third International
Symposium on Information Assurance and Security, pp. 462–467, IEEE, 2007.

[38] Z. Qin, Y. Ying, L. Jia-jin, and L. Yi-shu, “Watermark based copyright protection
of outsourced database,” in 2006 10th International Database Engineering and
Applications Symposium (IDEAS’06), pp. 301–308, IEEE, 2006.

[39] G. Gupta and J. Pieprzyk, “Database relation watermarking resilient against sec-
ondary watermarking attacks,” in International Conference on Information Systems
Security, pp. 222–236, Springer, 2009.

[40] X. Xiao, X. Sun, and M. Chen, “Second-lsb-dependent robust watermarking for
relational database,” in Third International Symposium on Information Assurance
and Security, pp. 292–300, IEEE, 2007.

[41] C. Wang, J. Wang, M. Zhou, G. Chen, and D. Li, “Atbam: An arnold transform
based method on watermarking relational data,” in 2008 International Conference
on Multimedia and Ubiquitous Engineering (MUE 2008), pp. 263–270, IEEE, 2008.

[42] Z. Hu, Z. Cao, and J. Sun, “An image based algorithm for watermarking rela-
tional databases,” in 2009 International Conference on Measuring Technology and
Mechatronics Automation, vol. 1, pp. 425–428, IEEE, 2009.

[43] X. Zhou, M. Huang, and Z. Peng, “An additive-attack-proof watermarking mecha-
nism for databases’ copyrights protection using image,” in Proceedings of the 2007
ACM symposium on Applied computing, pp. 254–258, ACM, 2007.

[44] H. Wang, X. Cui, and Z. Cao, “A speech based algorithm for watermarking relational
databases,” in 2008 International Symposiums on Information Processing, pp. 603–
606, IEEE, 2008.

[45] X. Cui and H. Cui, “The approach for optimization in watermark signal of rela-
tional databases by using genetic algorithms,” in 2008 International Conference on
Computer Science and Information Technology, pp. 448–452, IEEE, 2008.

[46] Y. Zhang, X. Niu, and D. Zhao, “A method of protecting relational databases
copyright with cloud watermark,” International Journal of Information and Com-
munication Engineering, vol. 1, no. 7, pp. 337–341, 2005.

[47] K. Huang, M. Yue, P. Chen, Y. He, and X. Chen, “A cluster-based watermarking
technique for relational database,” in 2009 First International Workshop on Database
Technology and Applications, pp. 107–110, IEEE, 2009.

110

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[48] Y. Zhang, X. Niu, D. Zhao, J. Li, and S. Liu, “Relational databases watermark
technique based on content characteristic,” in First International Conference on
Innovative Computing, Information and Control-Volume I (ICICIC’06), vol. 3,
pp. 677–680, IEEE, 2006.

[49] H. Guo, Y. Li, A. Liu, and S. Jajodia, “A fragile watermarking scheme for detecting
malicious modifications of database relations,” Information Sciences, vol. 176, no. 10,
pp. 1350–1378, 2006.

[50] R. Sion, “Proving ownership over categorical data,” in Proceedings. 20th International
Conference on Data Engineering, pp. 584–595, IEEE, 2004.

[51] R. Sion, M. Atallah, and S. Prabhakar, “Rights protection for categorical data,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 7, pp. 912–926,
2005.

[52] E. Bertino, B. C. Ooi, Y. Yang, and R. H. Deng, “Privacy and ownership preserving
of outsourced medical data,” in 21st International Conference on Data Engineering
(ICDE’05), pp. 521–532, IEEE, 2005.

[53] A. Al-Haj and A. Odeh, “Robust and blind watermarking of relational database
systems,” 2008.

[54] V. Pournaghshband, “A new watermarking approach for relational data,” in Pro-
ceedings of the 46th annual southeast regional conference on XX, pp. 127–131, ACM,
2008.

[55] V. Prasannakumari, “A robust tamperproof watermarking for data integrity in
relational databases,” Research Journal of Information Technology, vol. 1, no. 3,
pp. 115–121, 2009.

[56] Y. Li, H. Guo, and S. Jajodia, “Tamper detection and localization for categorical
data using fragile watermarks,” in Proceedings of the 4th ACM workshop on Digital
rights management, pp. 73–82, ACM, 2004.

[57] S. Bhattacharya and A. Cortesi, “Distortion-free authentication watermarking.,” in
International Conference on Software and Data Technologies, pp. 205–219, Springer,
2010.

[58] M.-H. Tsai, H.-Y. Tseng, and C.-Y. Lai, “A database watermarking technique for
temper detection,” in 9th Joint International Conference on Information Sciences
(JCIS-06), Atlantis Press, 2006.

[59] Y. Li and R. H. Deng, “Publicly verifiable ownership protection for relational
databases,” in Proceedings of the 2006 ACM Symposium on Information, computer
and communications security, pp. 78–89, ACM, 2006.

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[60] S. Bhattacharya and A. Cortesi, “A generic distortion free watermarking technique for
relational databases,” in International Conference on Information Systems Security,
pp. 252–264, Springer, 2009.

[61] I. Kamel, “A schema for protecting the integrity of databases,” computers & security,
vol. 28, no. 7, pp. 698–709, 2009.

[62] T. K. Das and S. Maitra, “A robust block oriented watermarking scheme in spatial
domain,” in International Conference on Information and Communications Security,
pp. 184–196, Springer, 2002.

[63] J. Lafaye, D. Gross-Amblard, C. Constantin, and M. Guerrouani, “Watermill: An
optimized fingerprinting system for databases under constraints,” IEEE Transactions
on Knowledge and Data Engineering, vol. 20, no. 4, pp. 532–546, 2008.

[64] F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li, “An improved algorithm to water-
mark numeric relational data,” in International Workshop on Information Security
Applications, pp. 138–149, Springer, 2005.

[65] M. Zhou, J. Wang, C. Wang, and D. Li, “A novel fingerprinting architecture for
relational data,” in 2007 Inaugural IEEE-IES Digital EcoSystems and Technologies
Conference, pp. 477–480, IEEE, 2007.

[66] P. Kieseberg, S. Schrittwieser, M. Mulazzani, I. Echizen, and E. Weippl, “An algo-
rithm for collusion-resistant anonymization and fingerprinting of sensitive microdata,”
Electronic Markets, vol. 24, pp. 113–124, Jun 2014.

[67] L. Sweeney, “K-anonymity: A model for protecting privacy,” International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, pp. 557–570, Oct.
2002.

[68] A. C. Yao, “Theory and application of trapdoor functions,” in 23rd Annual Sympo-
sium on Foundations of Computer Science (sfcs 1982), pp. 80–91, IEEE, 1982.

[69] J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the design and anal-
ysis of the yarrow cryptographic pseudorandom number generator,” in International
Workshop on Selected Areas in Cryptography, pp. 13–33, Springer, 1999.

[70] N. Ferguson, B. Schneier, and T. Kohno, “Generating randomness,” Cryptography
Engineering: Design Principles and Practical Applications, pp. 135–161, 2015.

[71] “Microsoft documentation for CryptGenRandom.” https://

docs.microsoft.com/en-us/windows/win32/api/wincrypt/

nf-wincrypt-cryptgenrandom. Accessed: 2019-08-01.

[72] R. Rivest, “The md5 message-digest algorithm,” 1992.

[73] D. Eastlake and P. Jones, “Us secure hash algorithm 1 (sha1),” 2001.

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek


D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n 
di

es
er

 D
ip

lo
m

ar
be

it 
is

t a
n 

de
r 

T
U

 W
ie

n 
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d 
or

ig
in

al
 v

er
si

on
 o

f t
hi

s 
th

es
is

 is
 a

va
ila

bl
e 

in
 p

rin
t a

t T
U

 W
ie

n 
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n 

di
es

er
 D

ip
lo

m
ar

be
it 

is
t a

n 
de

r 
T

U
 W

ie
n 

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d 

or
ig

in
al

 v
er

si
on

 o
f t

hi
s 

th
es

is
 is

 a
va

ila
bl

e 
in

 p
rin

t a
t T

U
 W

ie
n 

B
ib

lio
th

ek
.

[74] D. Boneh and J. Shaw, “Collusion-secure fingerprinting for digital data,” IEEE
Transactions on Information Theory, vol. 44, no. 5, pp. 1897–1905, 1998.

[75] H.-J. Guth and B. Pfitzmann, “Error-and collusion-secure fingerprinting for digital
data,” in International Workshop on Information Hiding, pp. 134–145, Springer,
1999.

[76] B. Pfitzmann and A.-R. Sadeghi, “Coin-based anonymous fingerprinting,” in Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
pp. 150–164, Springer, 1999.

[77] B. Pfitzmann and M. Schunter, “Asymmetric fingerprinting,” in International Con-
ference on the Theory and Applications of Cryptographic Techniques, pp. 84–95,
Springer, 1996.

[78] Y. Yacobi, “Improved boneh-shaw content fingerprinting,” in Cryptographers’ Track
at the RSA Conference, pp. 378–391, Springer, 2001.

[79] D. Dua and C. Graff, “UCI machine learning repository,” 2017.

[80] G. Blakley, C. Meadows, and G. B. Purdy, “Fingerprinting long forgiving messages,”
in Conference on the Theory and Application of Cryptographic Techniques, pp. 180–
189, Springer, 1985.

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement and Research Questions
	Aim of the work
	Methodological Approach
	Structure of the work

	State-of-the-Art
	Generic framework for watermarking and fingerprinting
	Watermark categorisation
	Multimedia, text and software
	Watermarking Relational Databases
	Fingerprinting Relational Databases

	Fingerprinting techniques
	Notation and parameters
	Prerequisites
	Fingerprint codes
	AK Scheme
	Block oriented scheme
	Two-level Fingerprinting technique
	Fingerprinting categorical data
	Summary

	Robustness of fingerprinting techniques against attacks
	Experimental setup
	Misdiagnosis false hit
	Subset attack
	Superset attack
	Bit-flipping attack
	Additive Attack
	Collusion Attack
	Summary

	An evaluation on the utility of the fingerprinting schemes
	Quality effects on fingerprinted datasets
	Impact of fingerprinting on Machine Learning models
	Summary

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

