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Kurzfassung

Die Sicherstellung der Korrektheit von Software ist eine wachsende Herausforderung
in der modernen Gesellschaft. Die formale Software-Verifikation versucht, basierend
auf logischem Schließen, verschiedene Anforderungen an die Korrektheit von Software
mathematisch zu beweisen. Da jedoch das manuelle Beweisen solcher Aussagen mühsam
und fehleranfällig ist, ist es erforderlich diese Aufgabe zu automatisieren, beispielsweise
durch die Verwendung von automatischen Beweisern.

Moderne automatische Beweiser für Logik erster Stufe mit Gleichheit sind bereits leis-
tungsstarke Werkzeuge des automatischen Schließens. Allerdings stoßen die verfügbaren
Systeme bei Problemen, die aus der Software-Verifikation kommen, noch häufig an ihre
Grenzen. Insbesondere kann eine große Anzahl von bedingten Gleichungen Schwierigkeiten
bereiten.

Zur Verbesserung dieser Situation präsentieren wir in der vorliegenden Diplomarbeit
eine neue Inferenzregel namens Subsumption Demodulation für Logik erster Stufe. Die
grundlegende Idee von Subsumption Demodulation besteht darin, bedingte Gleichungen
heranzuziehen um Terme in Klauseln, die die Bedingungen der Gleichung erfüllen, zu
vereinfachen.

Wir implementieren und evaluieren Forward Subsumption Demodulation mit Hilfe des auf
dem Superpositionskalkül basierenden automatischen Beweisers Vampire. Erste Ergeb-
nisse zeigen, dass Beweiser für Logik erster Stufe mit Forward Subsumption Demodulation
neue Probleme lösen können, die bisher nicht von existierenden automatischen Beweisern
gelöst werden konnten.
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Abstract

Ensuring correctness of software is becoming increasingly important in modern society,
but still poses a difficult challenge. Reasoning-based software verification addresses this
challenge by proving various requirements on software correctness. Performing such
proofs manually is however tedious and error-prone, calling for the need to automate
software correctness proofs, for example by using automated theorem provers.

State-of-the-art first-order theorem provers for first-order logic with equality are powerful
automated reasoning tools. However, there are still limitations concerning problem
encodings that arise from software verification. In particular, a large number of conditional
equalities can be problematic.

In order to improve the situation, in this thesis we introduce a new inference rule in
first-order theorem proving, called subsumption demodulation. The idea of subsumption
demodulation is to use conditional equalities to simplify terms in clauses where the
conditions are satisfied.

We implement and evaluate forward subsumption demodulation using the superposition-
based theorem prover Vampire. Our initial results show that forward subsumption
demodulation in first-order theorem proving can solve many new problems that could so
far not be solved by existing automated reasoners.
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CHAPTER 1
Introduction

1.1 Motivation

Due to the rise of digitalization, an increasing number of important tasks in modern
society are carried out by computer programs. Unfortunately, software errors happen on
a daily basis in all kinds of computer systems and may lead to severe consequences such
as high financial loss or even fatal accidents.

As a recent example for safety issues, multiple accidents caused by autonomous vehicles
have been reported in 2018. In at least one case the accident was directly attributed to
the car’s software1 (the system mistakenly ignored a pedestrian who was run over as a
consequence).

Furthermore, security issues are becoming increasingly serious due to large parts of vital
infrastructure being controlled by software. Of particular concern are large-scale electrical
power outages that might be caused by attacks on the software controlling power plants
or the power grid.

These issues impose a need for rigorous methods to ensure the correctness of software
systems. Unfortunately, manual verification of software is tedious, error-prone and only
possible for the smallest of programs. Compounding the problem, modern software
systems are constantly increasing in size and complexity, requiring that verification can
be done automatically.

The most prominent approaches such as model checking and deductive verification are
logic-based and rely on automated theorem proving. In this paradigm, the behaviour
of the program and its desired properties are expressed as logical formulas, often by
automatic translation from the program’s source code. This translation is done in such a

1https://arstechnica.com/tech-policy/2018/05/report-software-bug-led-to-death-in-ubers-self-driving-crash/,

accessed on 2019-05-20

1
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1. Introduction

way that the validity of the formulas implies that the program behaves as desired. The
reasoning task is then delegated to specialized reasoning tools such as SAT solvers, SMT
solvers, or first-order theorem provers.

First-order logic is a precise and powerful specification language, and the standard for
axiomatisation of theories in mathematics. The semantics of first-order logic are well
understood, and it is often used as compilation target for more specialized formalisms.

The essential feature separating first-order logic from propositional logic are quantifiers
over object variables. Quantifiers are crucial, for example, to express properties over the
computer memory, an arbitrary number of loop executions, or recursion. For program
verification in particular, also data types such as natural numbers, integers and arrays
are useful for modelling the semantics of programming languages. Because of this, the
thesis at hand focuses on first-order properties that may contain quantifiers, equality,
uninterpreted functions and predicates, as well as natural numbers, integers, and arrays.

As a motivating example, consider the following program, which takes two integer arrays
a and b as input and copies all non-negative values of b into a.

int i := 0

int j := 0

while i < length(b) do

if b[i] >= 0 then

a[j] := b[i]

i := i + 1

j := j + 1

else

i := i + 1

end

end

This program can be translated into a formula in first-order logic according to an
axiomatisation of the programming language semantics. Using this translation, we want
to prove certain properties about the program’s behaviour. For example, we might want
to prove the following postconditions:

• ∀k(0 ≤ k ∧ k < j → a[k] ≥ 0), expressing that the first j elements of a are
non-negative, or

• ∀k(0 ≤ k ∧ k < j → ∃ℓ(0 ≤ ℓ ∧ ℓ < i ∧ a[k] = b[ℓ])), expressing that each of the
first j elements of a is equal to some element of b.

Most current state-of-the-art theorem provers for first-order logic with equality are based
on saturation and the superposition calculus. These systems are very efficient for general
first-order reasoning involving quantifiers and equality, but the situation is unsatisfactory
when theories such as natural numbers or integers come into play, or when the problem
encoding contains a large number of conditional equalities.

2
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1.2. Problem Statement

1.2 Problem Statement

A major obstacle in automated reasoning is the enormous size of the proof search
space. One of the most important concepts to control the growth of the search space in
saturation-based theorem proving are the so-called simplification rules. The benefit of
such inference rules is that they do not add new formulas to the currently known set of
formulas, but instead simplify one of these formulas.

For reasoning about equality, a crucial simplification rule is demodulation, which allows
the prover to use unit equalities such as l = r to simplify parts of another formula F , i.e.,
replacing F [l] by F [r], assuming r is “simpler” than l in some sense2.

Consider the following example, where S stands for an arbitrary statement in the
programming language at hand.

i := i + 1;

S;
−→

i2 ≃ i1 + 1

JSK

The program snippet on the left may be translated into the two formulas on the right.
The assignment i := i + 1 from the source program is translated into the unit
equality i2 ≃ i1 + 1 in the first-order formalization, where i1 and i2 represent the value
of i before and after execution of the statement, respectively. The prover can use this
equality to rewrite terms occuring in JSK. Since assignments are common and essential
in imperative programming, this indicates demodulation is very important for this kind
of problems.

However, if the assignment appears inside a loop, it will be translated to a guarded
equality, as shown by the (simplified) example below.

while P(i) do

i := i + 1;

S;

end

−→
P (i1) → i2 ≃ i1 + 1

P (i1) → JSK

Here, P stands for some unary predicate in the programming language and P for its
translation into first-order logic. Crucially, the same assignment i := i + 1 as before
is not translated into the conditional equality P (i1) → i2 ≃ i1 + 1. Since this is not a
unit equality anymore, demodulation does not apply.

Problem statement. This thesis focuses on improving automated reasoning in first-
order theories, in particular by advancing equality reasoning in first-order theorem
proving by generalizing demodulation to non-unit equalities.

2The notation F [·] denotes a formula with a single hole in place of a term, and F [t] denotes the
formula with the hole filled by the term t.
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1. Introduction

1.3 Methodology

We re-use well-known results of superposition-based theorem proving, most notably the
superposition calculus itself and the notions of redundancy, term/literal/clause orderings,
and saturation. To ease inclusion into existing superposition-based provers, one of our
goals was to develop improvements that do not require radical changes to the underlying
superposition calculus.

To improve first-order reasoning in the presence of conditional equalities, we introduce
the new inference rule subsumption demodulation, which generalizes demodulation to
non-unit equalities by combining demodulation and subsumption. The basic idea of
subsumption demodulation is to use conditional equalities to simplify terms in clauses
where the conditions are satisfied.

Furthermore, we implement forward subsumption demodulation in the state-of-the-art
superposition-based theorem prover Vampire. First, we present a reference implementa-
tion with a focus on understandability and minimal changes to the existing Vampire

code base. Next, we discuss certain optimizations that lead to a second, optimized
implementation.

Finally, we evaluate our implementation of forward subsumption demodulation on prob-
lems from the TPTP v7.2.0 problem library [Sut17] and the SMT-COMP 2019 competi-
tion [BDdM+13].

1.4 Contributions

The contributions of the thesis are as follows:

• Design of a new inference rule, called subsumption demodulation, in superposition-
based theorem proving, as presented in Chapter 3.

• Prove soundness of subsumption demodulation and prove that it is simplification
rule in Section 3.4.

• Implement forward subsumption demodulation in the theorem prover Vampire as
described in Chapter 4.

• Evaluate and report on experimental results using forward subsumption demodula-
tion in Chapter 5.

Initial results show that our implementation solved 59 unique problems from the
TPTP v7.2.0 problem library and 157 unique problems from the SMT-COMP 2019
Single Query Track3. From TPTP, our implementation was able to solve 6 problems
that have not been solved before by another automated theorem prover, according
to the TPTP solutions database.

3Configuration “fsdv2 combined”, taking results for “unsat” and “sat” together.
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CHAPTER 2
Preliminaries

In this chapter, we recall the basics of first-order logic and introduce some important
concepts used in automated theorem proving.

2.1 First-Order Logic with Equality

For the purpose of this thesis, we are interested in standard first-order logic with equality.
We assume basic knowledge of this logic as can be found in textbooks on the subject. In
this section, we mostly fix the terminology and notation.

Let V = {x, y, z, . . . } be a countable set of variables. The language is determined by its
signature Σ = 〈F , P〉, consisting of a set of function symbols F and a set of predicate
symbols P. Every function symbol and predicate symbol is associated with an arity.
Function symbols of arity 0 are also called constant symbols. We reserve ≃ to denote the
object-level equality and take care to distinguish it from the meta-level equality =. We
consider ≃ a part of the language, but not part of Σ.

Terms are constructed inductively from variables, constant symbols, and application of
function symbols of non-zero arity. Let T denote the set of terms.

Atoms are built by applying predicate symbols or equality (≃) to the appropriate number
of terms. Formulas are built inductively from atoms using the connectives ¬ (negation),
∨ (disjunction), ∧ (conjunction), and → (implication) as well as the universal quantifier ∀
and the existential quantifier ∃.

Additionally, for all terms s, t we identify the equality atoms s ≃ t and t ≃ s, which is
justified because the interpretation of equality is symmetric.

We use the notation F [t] to denote an occurrence of the term t in the formula F . For
convenience, we regard any subsequent usage of F [s] for some term s as the formula F

where t has been replaced by s. This notation is slightly imprecise, but it can be made

5
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2. Preliminaries

precise in the following way: define F [·] as a formula with a single hole in place of a term,
and then F [t] as F [·] with the hole filled by the term t. We allow similar notation for
terms, atoms, literals, and clauses in place of the formula F .

The semantics of first-order logic with equality are defined in the usual way. An inter-
pretation structure M = 〈U , I, α〉 consists of a non-empty domain U , an interpretation
function I assigning meaning to the non-logical symbols in Σ, and a variable assign-
ment α : V → U . The interpretation function I can be uniquely extended to terms. Truth
of a formula F is then defined inductively and relative to an interpretation structure M.
We say M is a model of F and write M |= F if F is true in M. A formula F is called
satisfiable if a model of F exists, and unsatisfiable otherwise. A formula F is called valid
if every interpretation structure is a model of F .

The following lemma is a well-known result:

Lemma 1 (Equivalent Replacement). Let M be an interpretation structure and s, t be
terms such that M |= s ≃ t, i.e., I(s) = I(t).

Then M |= F [s] iff M |= F [t] for any formula F .

A literal is either an atom or a negated atom. We define clauses as finite multisets of
literals. Semantically, a clause is equivalent to (the universal closure of) the disjunction of
its literals. As such, we may write the clause consisting of literals L1, L2 . . . , Ln also in the
form L1 ∨ L2 ∨ · · · ∨ Ln. The empty clause, denoted by �, is false in every interpretation
structure. A formula is said to be in conjunctive normal form if it is a conjunction of
disjunctions of literals, i.e., it is essentially a set of clauses.

While most first-order theorem provers accept arbitrary first-order formulas as input,
they usually work only with clauses internally. This approach is justified because every
formula can be converted into a satisfiability-equivalent formula in conjunctive normal
form in (almost) linear time [PG86].

A substitution θ = {x1 7→ t1, . . . , xn 7→ tn} is a finite mapping from variables to
terms. Given a term t, the term tθ is the result of simultaneously performing the
replacements x1 7→ t1, . . . , xn 7→ tn on t. We use the same notation for applying
substitutions to atoms, literals, formulas, and clauses.

We say a substitution θ is more general than a substitution σ if there exists a substitution ̺

such that for every term t we have (tθ)̺ = tσ. We say a substitution θ unifies the terms s

and t if sθ = tθ. In this case, θ is a unifier of s and t. We further call θ a most general
unifier (mgu), if it is more general than any other unifier of s and t. A well-known result
is that two unifiable terms have an mgu that is unique up to renaming of variables. This
concept can be extended naturally from terms to atoms and literals.

A term, atom, literal, formula, or clause is called ground if it does not contain any
variables.

We assume a fixed language throughout the thesis and will not mention it explicitly
unless necessary. Furthermore, we will only consider finite signatures. In the sequel, we
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2.2. Clause Orderings

denote by a, b, c, d, e constant symbols, f , g, h function symbols, P , Q, R predicate
symbols, x, y, z variables, except where noted otherwise and possibly with additional
subscripts and superscripts. As for variables in the meta-language, we will generally use
l, r, s, t, u for terms, A, B for atoms, L, M for literals, C, D for clauses, and σ, θ for
substitutions.

2.2 Clause Orderings

In this thesis, we are interested in computer-supported proving in first-order logic with
equality. To automate reasoning in first-order logic, a clause ordering is a key ingredient.
A more detailed introduction of orderings as defined in this section has been given by
Baader and Nipkow in the context of term rewriting [BN98].

Let us consider a set X, the domain of the ordering. A binary relation over X is a subset
of the cartesian product X × X.

Definition 1 (Strict Partial Ordering). A binary relation > over X is called a strict
partial ordering if it is

(i) irreflexive: ∀x ∈ X : x 6> x, and

(ii) transitive: ∀x, y, z ∈ X : x > y ∧ y > z =⇒ x > z. �

Definition 2 (Total). A strict partial ordering > over X is called total, or a strict total
ordering, if all elements of X are comparable, i.e., for all x, y ∈ X with x 6= y either
x > y or y > x holds. �

Definition 3 (Well-Founded). We say a strict partial ordering > over X is well-founded
if there is no infinite descending sequence of elements, i.e., there is no infinite sequence
x1, x2, . . . ∈ X such that x1 > x2 > · · · . �

2.2.1 Simplification Orderings

Definition 4 (Simplification Ordering). We say a strict partial ordering ≻ on terms is a
simplification ordering if it satisfies the following properties:

(i) Stability under substitutions: s ≻ t =⇒ sθ ≻ tθ for all terms s, t and all
substitutions θ.

(ii) Monotonicity: s ≻ t =⇒ u[s] ≻ u[t] for all terms s, t, u.

(iii) Subterm property: s ≻ t whenever t is a proper subterm of s. �

Every simplification ordering ≻ on terms over a finite signature is well-founded [BN98,
Theorem 5.4.8].
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2. Preliminaries

Simplification orderings are often total on ground terms, but no simplification ordering
can be total on non-ground terms. This is easy to see by considering the variable x and
the ground term c: Assume x ≻ c, then by stability under substitutions also c ≻ c, which
contradicts irreflexivity. Assume c ≻ x, then again by stability under substitions also
c ≻ f(c), which contradicts the subterm property.

A widely used simplification ordering is the Knuth-Bendix ordering (KBO) [KB83, BN98],
which is parameterized by a weight function and a precedence ordering ≫ on the signature.
We will only consider the case where the weight of a term t is simply the number of
symbols in t, but in general this can be customized by using a different weight function.
We omit a detailed definition of KBO in this thesis, but will nevertheless give some
properties and examples. KBO is a simplification ordering and total on ground terms. It
can be computed in linear time [Löc06].

Example 1. Assume a symbol precedence of g ≫ f ≫ d ≫ c and a weight of 1 for each
symbol, and let ≻kbo denote the induced KBO.

• g(c, d) ≻kbo f(c) because g(c, d) has weight 3 which is larger than weight 2 of f(c).

• g(d, d) ≻kbo g(c, d) because d ≫ c.

• g(x, y) 6≻kbo g(x, x) because x appears twice on the right side but only once on the
left side.

• g(x, x) 6≻kbo g(x, y) because y appears on the right side but not on the left side. �

2.2.2 Multiset Orderings

Formally, a multiset C of elements from a domain X is a map C : X → N, where C(x)
is the number of occurrences of x ∈ X in C. A multiset C is finite if there are only
finitely many x ∈ X with C(x) > 0. Note that clauses are always finite multisets. We
also write x ∈ C when C(x) > 0.

Let C and D be multisets. We define the multiset sum C ⊎D by C ⊎D(x) = C(x)+D(x)
for all x ∈ X. We write C ⊆M D to express that C is a submultiset of D, i.e.,
that C(x) ≤ D(x) for all x ∈ X.

Definition 5 (Multiset Extension). Given a strict partial ordering > on X, its multiset
extension >M is defined as follows. For multisets C and D over X, C >M D holds if and
only if

1. C 6= D, and

2. for all x ∈ X with D(x) > C(x) there is some y ∈ X with C(y) > D(y) such
that y > x. �

As a different and maybe more intuitive characterization, C >M D holds iff we can
reach D by (repeatedly) replacing an element of C by a finite number of smaller elements.
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2.2. Clause Orderings

If > is well-founded, then also its multiset extension >M is well-founded. If > is total,
then also its multiset extension >M is total.

We will require the following result.

Lemma 2. Let C, D, E be multisets and let >M be the multiset extension of some strict
partial ordering >. Then C >M D iff C ⊎ E >M D ⊎ E.

Proof. By definition, C >M D is equivalent to stating that (i) there is some x ∈ X such
that C(x) 6= D(x) and (ii) for all x ∈ X with D(x) > C(x) there is some y ∈ X with
C(y) > D(y) such that y > x.

By simple algebraic manipulation, these two statements are equivalent to (i’) there
is some x ∈ X such that C(x) + E(x) 6= D(x) + E(x) and (ii’) for all x ∈ X with
D(x) + E(x) > C(x) + E(x) there is some y ∈ X with C(y) + E(y) > D(y) + E(y) such
that y > x.

Because C ⊎ E(x) = C(x) + E(x), the statements (i’) and (ii’) together are equivalent to
C ⊎ E >M D ⊎ E.

2.2.3 Clause Orderings

Let ≻T be a simplification ordering on terms. In this section, we discuss how to extend ≻T

to an ordering ≻C on clauses.

In the first step, we define the ordering ≻A on atoms. Equality atoms are compared via
multiset extension: s1 ≃ s2 ≻A t1 ≃ t2 iff {s1, s2} ≻′

T {t1, t2}, where ≻′
T is the multiset

extension of ≻T .

To compare non-equality atoms, we introduce a new function symbol fP for each P ∈ P
and a new constant symbol c. Non-equality atoms P (t1, . . . , tn) are then, for the purpose
of comparison, transformed into equalities fP (t1, . . . , tn) ≃ c and treated like equality
atoms.

The literal ordering ≻L essentially interleaves negated atoms above their positive coun-
terparts, i.e., A ≻A B implies ¬A ≻L A ≻L ¬B ≻L B. Formally, ≻L can be defined as
multiset extension of ≻A where negative literals ¬A are identified with the multiset {A, A}
and positive literals A are identified with the multiset {A}.

Finally, as clauses are multisets of literals, we define the clause ordering ≻C simply as
the multiset extension of ≻L.

The clause ordering ≻C is well-founded because it is essentially the three-fold multiset
extension of the well founded ordering ≻T . Well-foundedness of ≻C is essential for
the completeness of superposition. Moreover, ≻C inherits stability under substitutions
from ≻T .

In the sequel, we will write ≻ for ≻T , ≻A, ≻L, and ≻C , unless the distinction is important
and it is not clear from the context which one is meant. Furthermore, from now on we
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2. Preliminaries

assume that the underlying simplification ordering is KBO and that all equality literals
are smaller than all non-equality literals.

2.3 The Superposition Calculus

Most state-of-the-art automatic theorem provers for first-order logic with equality are
based on the superposition calculus, a sound and refutationally complete inference system
for this logic. Soundness means that for every inference in the calculus, the conclusion
is logically entailed by the premises. Refutational completeness means that for each
unsatisfiable set S of input clauses, there is a derivation of � from clauses in S using the
inference rules of the calculus.

Unfortunately, there is no canonical treatment of the superposition calculus in the
literature. In this thesis, we follow the presentation by Kovács and Voronkov [KV13].
Further details can be found in texts by Bachmair and Ganzinger [BG94, BG98, BG01]
as well as Nieuwenhuis and Rubio [NR01].

In practice, it is essential to refine superposition with clause orderings and literal selec-
tion, resulting in ordered superposition with selection. The clause ordering ≻ has been
introduced in the previous Section 2.2 and is used in the side conditions of inference rules
to exclude unnecessary inferences.

Literal selection governs which literals may be used in inferences. We underline literals
in the premises of inference rules to indicate that they must be selected. The literal
selection must be well-behaved with respect to the ordering: either a negative literal or
all maximal positive literals must be selected.

Let Sup denote the inference system formed by the following inference rules. Sup is a
complete superposition inference system.

• Superposition into non-equalities:

l ≃ r ∨ C L[s] ∨ D

(L[r] ∨ C ∨ D)θ

where

1. θ is the most general unifier of the terms l and s,

2. s is not a variable,

3. rθ 6� lθ, and

4. L is not an equality literal.
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2.4. Redundancy

• Superposition into equalities:

l ≃ r ∨ C t[s] ≃ u ∨ D

(t[r] ≃ u ∨ C ∨ D)θ

l ≃ r ∨ C t[s] 6≃ u ∨ D

(t[r] 6≃ u ∨ C ∨ D)θ

where

1. θ is the most general unifier of the terms l and s,

2. s is not a variable,

3. rθ 6� lθ, and

4. uθ 6� tθ.

• Equality Resolution:
s 6≃ t ∨ C

Cθ

where θ is the most general unifier of the terms s and t.

• Equality Factoring:
s ≃ t ∨ s′ ≃ t′ ∨ C

(s ≃ t ∨ t 6≃ t′ ∨ C)θ

where

1. θ is the most general unifier of the terms s and s′,

2. tθ 6� sθ, and

3. t′θ 6� tθ.

• Positive Factoring:
A ∨ B ∨ C

(A ∨ C)θ

where θ is the most general unifier of the atoms A and B.

• Binary Resolution:
A ∨ C ¬B ∨ D

(C ∨ D)θ

where θ is the most general unifier of the atoms A and B.

2.4 Redundancy

In this section, we define the concept of redundancy, which formalizes when clauses are
unnecessary and can be deleted. Note that redundancy is always relative to a certain
set of clauses. Informally, a clause is redundant in a set of clauses S if it is a logical
consequence of smaller clauses that are already in S. Further details can be found in the
literature [BG98].
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2. Preliminaries

Definition 6 (Ground Redundancy). A ground clause C is (ground-)redundant in a set
of ground clauses S if there are C1, . . . , Cn ∈ S such that

• C1, . . . , Cn |= C, and

• C ≻ Ci for all i ∈ {1, . . . , n}. �

Since non-ground clauses represent all their ground instances, we lift redundancy in
the following way. By itself, Definition 6 is not suitable for non-ground clauses because
variables lead to incomparability, which would block many useful redundancies. However,
note that the conditions from Definition 6 are sufficient for lifted redundancy due to the
stability of simplification orderings under substitutions.

Definition 7 (Lifted Redundancy). A clause C is redundant in a set of clauses S if all
ground instances of C are (ground-)redundant w.r.t. ground instances of clauses in S. �

Example 2. Consider the following superposition inference.

f(x) ≃ x f(c) ≃ g(c, y)

c ≃ g(c, y)

We show that the right premise f(c) ≃ g(c, y) is redundant with respect to the conclu-
sion c ≃ g(c, y) and the left premise f(x) ≃ x.

• Obviously, the right premise is entailed by the two other clauses.

• The right premise is larger than the conclusion because of f(c) ≻ c, which is due
to the subterm property of simplification orderings. Because of stability under
substitutions, also all ground instances of the right premise are larger than the
corresponding instance of the conclusion.

• Every ground instance of the right premise is of the form f(c) ≃ g(c, t) for some
ground term t, and is larger than f(c) ≃ c, which is a ground instance of the left
premise. This is due to g(c, t) ≻ c, which again follows from the subterm property
of simplification orderings.

However, note that the non-ground clauses f(x) ≃ x and f(c) ≃ g(c, y) are
incomparable because they contain different variables.

In general, premises of superposition inferences are not redundant. Here, we have
seen an instance of the special case called demodulation, which will be introduced in
Section 3.1. �

Redundant clauses can be deleted from the search space without affecting completeness
of the inference process.
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2.5. Saturation up to Redundancy

Redundancy in full generality is undecidable. However, theorem provers implement
several relatively cheap criteria to test for special cases of redundancy, aiming to prune
the search space as much as possible. This leads to the notions of simplification rules
and deletion rules.

Definition 8 (Simplification Rule). An inference rule is a simplification rule if one of
its premises becomes redundant after adding the conclusion to the search space. �

The premise which becomes redundant is called the main premise, and all others are
called side premises.

Because the main premise is redundant after the inference, it can then be deleted.
Intuitively, a simplification rule simplifies its main premise to its conclusion by using
additional knowledge from its side premises. It is called simplification because the clause
becomes smaller with respect to the clause ordering.

Inference rules that are not simplification rules are called generating rules, because they
generate new clauses without deleting previous ones and thus enlarge the search space.
For example, all the rules in the base calculus Sup introduced in Section 2.3 are generating
rules.

Example 3. Duplicate literal elimination is a simplification rule without side premises:

✭
✭
✭
✭
✭

L ∨ L ∨ C

L ∨ C

As a notational convention, we sometimes strike out the main premise in simplification
rules to indicate that it can be deleted after application of the rule. �

Definition 9 (Deletion Rule). A deletion rule removes a redundant clause from the
search space. �

Example 4. All valid formulas, also called tautologies, are redundant in any search space
because they are entailed by the empty set of clauses. (Simple) tautology deletion is a
deletion rule which removes clauses C containing complementary literals (i.e., whenever
C contains both L and ¬L for some atom L). �

2.5 Saturation up to Redundancy

The basic idea of saturation-based theorem proving is to keep applying possible inferences
in a controlled manner until either the empty clause is derived (which means we have
a refutation of the input set of clauses) or no more new clauses can be derived (which
means the input set of clauses is satisfiable). In practice, resource exhaustion is a common
third outcome of saturation, in which case the status of the input set of clauses remains
undecided. Note that since the unsatisfiability of first-order formulas is undecidable, we
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2. Preliminaries

cannot expect termination in general even if the theorem prover had unlimited resources
at its disposal.

In practice, it is not enough to simply derive new clauses because the search space grows
extremely fast. Instead, redundant clauses are deleted in an attempt to keep the search
space small. To this end, powerful simplification and deletion rules are essential.

This notion of saturation is called saturation up to redundancy which we formalize now
in the concept of inference processes. For a more in-depth discussion, we refer to the
literature [KV13, BG01, NR01].

A finite or infinite sequence of sets of clauses S0, S1, . . . is called a Sup-process if for each
pair (Si, Si+1) either

1. Si+1 = Si ∪ {C} and Sup contains an inference

C1 · · · Cn

C

such that {C1, . . . , Cn} ⊆ Si, or

2. Si+1 = Si \ {C} and C is redundant in Si.

In particular, we are interested in Sup-processes that preserve the refutational com-
pleteness of Sup. To this end, we call a clause C persistent in a Sup-process if there is
some i such that C ∈ Sj for all j ≥ i, i.e., after a certain point, C will never be deleted.
Furthermore, a Sup-process is called fair if every possible Sup-inference with persistent
clauses as premises is performed at some point.

Theorem 1 (Completeness). Let S0 be a set of clauses and S0, S1, . . . be a fair Sup-
process. Then S0 is unsatisfiable if and only iff some Si contains the empty clause.

Fair inference processes are implemented by saturation algorithms. Common saturation
algorithms are Otter [McC94], Discount [DKS97], and Limited Resource Strategy [RV03].

Concerning simplification rules during saturation, we can distinguish between forward
and backward simplifications. During forward simplification, a newly derived clause is
simplified using previously derived clauses as side clauses. Conversely, during backward
simplification a newly derived clause is used as side clause to simplify previously derived
clauses.

Here, the exact meaning of “newly derived” and “previously derived” depends on the
concrete saturation algorithm. For example, so-called given-clause algorithms do not
perform forward simplifications immediately whenever a new clause is derived but only
when it is selected for further processing. The clause thus under consideration is called
the given clause. Further details can be found in the literature indicated above.
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CHAPTER 3
Subsumption Demodulation

In this chapter, we generalize demodulation to non-unit equalities.

3.1 Demodulation

Definition 10. Demodulation [KV13], also known as rewriting by unit equalities, is the
simplification rule

s ≃ t L[sθ] ∨ D

L[tθ] ∨ D

where

1. sθ ≻ tθ, and

2. L[sθ] ∨ D ≻ sθ ≃ tθ. �

Note that the second side condition L[sθ] ∨ D ≻ sθ ≃ tθ is often omitted in discussions
of demodulation, but it is indeed necessary to ensure redundancy of the main premise.

Example 5. Consider the clauses C1 = f(f(x)) ≃ f(x) and C2 = P (f(f(c))) ∨ Q(d).
Using demodulation and the substitution θ = {x 7→ c}, C2 is simplified into the
clause C3 = P (f(c)) ∨ Q(d):

f(f(x)) ≃ f(x) P (f(f(c))) ∨ Q(d)

P (f(c)) ∨ Q(d)

The terms highlighted in blue indicate where the rewriting is performed. �
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3. Subsumption Demodulation

3.2 Subsumption

Definition 11. Given clauses C and D, we say C subsumes D if there is some substi-
tution θ such that Cθ ⊆M D. Subsumption [KV13] is the deletion rule which removes
subsumed clauses D from the search space. �

Example 6. The clause C = P (x) ∨ Q(f(x)) subsumes the clause

D = P (f(c)) ∨ P (g(c)) ∨ Q(f(c)) ∨ Q(f(g(c))) ∨ R(y),

as witnessed by the substitution {x 7→ g(c)} which maps the literals of C to the literals
of D highlighted in red. �

Although checking whether a clause C subsumes another clause D is NP-complete,
subsumption is very important for proof search. Even though the subsumption check
often accounts for a large part of the total solver runtime (20 % and more is common), this
investment pays off in many cases. Efficient algorithms and an optimized implementation
are required to use subsumption effectively in practice.

3.3 Subsumption Demodulation

Subsumption resolution is based on the idea of re-using the subsumption check to find
simplifying applications of binary resolution. In similar spirit, we define subsumption
demodulation to generalize demodulation to non-unit equalities.

Definition 12. Subsumption demodulation is the inference rule

s ≃ t ∨ C L[sθ] ∨ Cθ ∨ D

L[tθ] ∨ Cθ ∨ D (3.1)

where

1. sθ ≻ tθ, and

2. L[sθ] ∨ Cθ ∨ D ≻ sθ ≃ tθ ∨ Cθ.

The equality s ≃ t in the side premise is called the rewriting equality. �

Detecting possible applications of subsumption demodulation involves selecting one
equality of the side clause as rewriting equality and matching each of the remaining
literals, denoted C in (3.1), to some literal in the main clause, indicated by Cθ in (3.1).
Note that this matching allows any instantiation of C to Cθ via substitution θ, but we
do not unify the two clauses, cf. Example 9 in the sequel. Furthermore, we need to find
a term in the main premise outside Cθ that can be rewritten by the rewriting equality.

We will now give some examples to illustrate subsumption demodulation. As in the
earlier examples, we will indicate the rewritten terms in blue color and the subsumed
literals (i.e., Cθ) in red color.
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3.3. Subsumption Demodulation

Example 7. Consider the two clauses

C1 = f(g(x)) ≃ g(x) ∨ Q(x) ∨ R(y) and

C2 = P (f(g(c))) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d))),

and recall that equality literals are smaller than any non-equality literals in our literal
ordering.

Then subsumption demodulation with the substitution θ = {x 7→ c, y 7→ f(g(d))}
simplifies C2 into C3 = P (g(c)) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d))):

f(g(x)) ≃ g(x) ∨ Q(x) ∨ R(y) P (f(g(c))) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d)))

P (g(c)) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d)))

The first side condition of subsumption demodulation, here f(g(c)) ≻ g(c), holds because
of the subterm property of simplification orderings. The second side condition is satisfied
due to P (f(g(c))) ≻ f(g(c) ≃ g(c), which is due to our assumption on the literal ordering.

Note that there is no instance of subsumption demodulation that rewrites the term f(g(d))
in C2 using side premise C1, even though we can find a match for the subsumption part
using the substitution {x 7→ d, y 7→ f(g(d))}:

P (f(g(c))) ∨ Q(c) ∨ Q(d) ∨ R(f(g(d))).

The rewriting may only occur in unmatched literals, here P (f(g(c))) and Q(c). �

In Example 7, the rewriting equality is f(g(x)) ≃ g(x). Due to the subterm property of
simplification orderings, this equality is already oriented before applying any substitutions.
We say the equality is pre-oriented. Note that in general, rewriting equalities are not
pre-oriented.

Example 8. Consider the clause C1 = f(g(x)) ≃ g(y) ∨ Q(x) ∨ R(y). Only the first
literal f(g(x)) ≃ g(y) is a positive equality and as such eligible as rewriting equality. As
the two terms f(g(x)) and g(y) are incomparable due to occurrences of different variables,
this equality is not pre-oriented.

Let us now examine how subsumption demodulation can be applied with side premise C1

and different main premises.

• Consider the clause C2 = P (f(g(c)))∨Q(c)∨R(c) as main premise. The highlighted
matching induces the substitution {x 7→ c, y 7→ c}. Under this substitution, the
equality becomes f(g(c)) ≃ g(c) and is thus oriented, enabling an application of
subsumption demodulation.

• A different substitution can lead to rewriting in the other direction, illustrating
why the rewriting equality at hand cannot be pre-oriented. This situation occurs,
for instance, with the main premise C3 = P (g(f(g(c)))) ∨ Q(c) ∨ R(f(g(c))) and
the substitution {x 7→ c, y 7→ f(g(c))}.
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3. Subsumption Demodulation

• On the other hand, using the clause C3 = P (f(g(c))) ∨ Q(c) ∨ R(z) as main premise
leads to the substitution {x 7→ c, y 7→ z}. Here, the equality becomes f(g(c)) ≃ g(z),
which is not oriented. Even though we can find matching terms for rewriting, no
application of subsumption demodulation is possible in this case. �

Note that the substitution appearing in subsumption demodulation can only be used
to instantiate the side premise, but not for unification with the main premise, as the
following example illustrates.

Example 9. Consider the clauses

C1 = f(f(x)) ≃ f(x) ∨ Q(x, y) ∨ R(x, y),

C2 = P (f(f(c))) ∨ Q(c, d) ∨ R(c, z).

The only possible match for Q(x, y) is Q(c, d), inducing the substitution {x 7→ c, y 7→ d}.
Similarly, matching R(x, y) to its only possible match R(c, z) induces {x 7→ c, y 7→ z},
which is incompatible to the previous substitution due to conflicting values of y. Because
of this, subsumption demodulation is not applicable with premises C1 and C2.

In fact, subsumption demodulation would still be sound if we allowed unification (because
we could view unification as preceding applications of an “instantiation rule” to both
premises before applying subsumption demodulation, and instantiation is obviously
sound). However, it would not be a simplification rule any more. �

Note further that each literal in the side premise (except the rewriting equality) must be
matched to a different occurrence of some literal in the main premise. For example, there
is no instance of subsumption demodulation with side premise f(x) ≃ x ∨ Q(x) ∨ Q(y)
and main premise P (f(c)) ∨ Q(c), while one with main premise P (f(c)) ∨ Q(c) ∨ Q(c)
exists (however, the latter one would usually be simplified by duplicate literal elimination
first).

3.4 Correctness of Subsumption Demodulation

A basic requirement of inference rules in saturation-based theorem proving is that they
are sound. A rule is sound if its premises logically entail the conclusion of the rule.

Theorem 2. Subsumption demodulation is sound.

Proof. Let M be a model of the premises s ≃ t ∨ C and L[sθ] ∨ Cθ ∨ D. We show that
M also satisfies the conclusion L[tθ] ∨ Cθ ∨ D.

In the case that M satisfies Cθ ∨ D, the conclusion holds trivially in M.

Otherwise, M |= L[sθ] holds because of the second premise. Furthermore, we know
M 6|= Cθ. By instantiation we can derive M |= sθ ≃ tθ ∨ Cθ from the first premise
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3.5. Refining the Redundancy Condition

(because free variables are implicitly universally quantified), and thus M |= sθ ≃ tθ must
hold. With Lemma 1 we infer M |= L[tθ]. So the conclusion is true in M also in the
second case.

Theorem 3. Subsumption demodulation is a simplification rule.

Proof. We have to show that the main premise is redundant given the side premise and
conclusion. To this end, we show that

1. s ≃ t ∨ C, L[tθ] ∨ Cθ ∨ D |= L[sθ] ∨ Cθ ∨ D,

2. L[sθ] ∨ Cθ ∨ D ≻ L[tθ] ∨ Cθ ∨ D, and

3. L[sθ] ∨ Cθ ∨ D ≻ sθ ≃ tθ ∨ Cθ.

These three statements together imply (lifted) redundancy because the clause ordering is
stable under substitutions.

The proof of the first part is analogous to the proof of Theorem 2 (with s and t swapped,
which is irrelevant because equality is symmetric).

For the second part, we can infer L[sθ] ≻ L[tθ] from side condition 1 by monotonicity of
the simplification ordering ≻. By Lemma 2 this is equivalent to the statement we want
to prove.

The third statement is given by side condition 2.

3.5 Refining the Redundancy Condition

Side condition 2 of subsumption demodulation is important to ensure redundancy of the
main premise after the inference. However, directly checking the ordering between general
clauses is computationally expensive, and not necessary in this case. The following result
shows that we simply need to cover the equality by some larger umatched literal, because
we can cancel Cθ when checking the second side condition:

Lemma 3. L[sθ] ∨ Cθ ∨ D ≻ sθ ≃ tθ ∨ Cθ if and only if L[sθ] ∨ D ≻ sθ ≃ tθ.

Proof. Recall that our clause ordering ≻ is the multiset extension of some literal ordering.
As such, Lemma 2 allows us to cancel Cθ from both sides of the comparison.

This means redundancy in subsumption demodulation can be checked similarly as in
demodulation.
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3. Subsumption Demodulation

3.6 Impact on Saturation

Example 10. Assume the search space contains, among others, the clauses

D1 = a ≃ b ∨ e ≃ f ∨ P and

D2 = b ≃ c ∨ d ≃ e ∨ P,

where a, b, c, d, e, and f are constant symbols. Furthermore, assume the term ordering
satisfies f ≻ e ≻ d ≻ c ≻ b ≻ a.

If we now derive the new clause C = b ≃ c ∨ e ≃ f ∨ P ∨ Q, there are two possible
applications of subsumption demodulation to simplify C using either D1 or D2:

• Using D1, we choose a ≃ b as the rewriting equality, and C is simplified into
C1 = a ≃ c ∨ e ≃ f ∨ P ∨ Q.

• Using D2, we choose d ≃ e as the rewriting equality, and C is simplified into
C2 = b ≃ c ∨ d ≃ f ∨ P ∨ Q.

Note that subsumption demodulation is not applicable to C1 nor C2 using either of D1

or D2, meaning that each of the two applications blocks the other one. �

Corollary 1. Subsumption demodulation is not confluent.

Note that while this result is unfortunate from a theoretical viewpoint, confluence is not
necessary for simplification rules. It is ultimately not clear how this property affects
saturation in practice, although it may make proof search less stable (if a proof can be
found for one branch but not the other).

Besides avoiding search space blow-up, there is another reason why we set up subsumption
demodulation as a simplification rule instead of a generating rule. In general, having
stronger simplification rules in the inference system means we have a higher chance of
achieving saturation for satisfiable instances, because we are able to delete more clauses.
Even more importantly, we can not only delete more clauses but also avoid generating
clauses that are derivable from the deleted ones. If we view the inference process as a
tree, it means we cut off a whole (possibly infinite) branch.

Indeed, our experiments, as described in Section 5.1, confirm that we are able to prove
more satisfiable instances with forward subsumption demodulation enabled.
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CHAPTER 4
Implementation

We have implemented forward subsumption demodulation (FSD), i.e., the forward direc-
tion of subsumption demodulation, in the state-of-the-art superposition-based theorem
prover Vampire. The source code is available at https://github.com/vprover/
vampire/tree/fsd.

In this chapter, we first explain the existing implementation of forward subsumption in
Vampire and then describe the extension to forward subsumption demodulation.

4.1 Subsumption and Multiliteral Matching

The implementation of forward subsumption in Vampire is separated into subsumption
by unit clauses and subsumption by non-unit clauses. The actual implementation of
forward subsumption also takes care of extra bookkeeping for forward subsumption
resolution, but we will not discuss this further as it is not relevant to this thesis.

Subsumption by unit clauses is done first because very efficient checks can be exploited
in this special case. For our purposes, however, we are interested in the general imple-
mentation of subsumption by non-unit clauses. To check whether the given clause D is
subsumed, Vampire searches for a previously derived clause C such that Cθ ⊆M D for
some substitution θ. This part is implemented in two stages.

4.1.1 Subsumption Index

First, Vampire searches for candidate clauses that might subsume D. Concretely, for
each literal of the given clause, all clauses containing a generalization of this literal are
retrieved from the subsumption index.

Term (or literal) indexes in automated theorem proving are data structures similar
to associative arrays where data, usually clauses, are indexed by terms (or literals).
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4. Implementation

The purpose of these data structures is to allow efficient lookups modulo unification,
instantiation, or generalization.

The subsumption index in Vampire stores the candidate clauses for subsumption. Each
clause is indexed by exactly one of its literals. In principle, any literal of the clause can
be chosen. In order to reduce the number of retrieved candidates as much as possible,
however, the literal is chosen such that it maximizes a certain heuristic.

The heuristic counts the number of symbols and subtracts the number of distinct variables,
which is equal to the number of non-variable symbols plus the number of repeated variable
occurrences. Intuitively, this value is the number of symbols that induce constraints for
matching, because variables only induce constraints for instantiation on their repeated
occurrences. Maximizing this value means the most restrictive literal is chosen, which in
turn reduces the number of retrieved candidate clauses.

Since the subsumption index is not a perfect index (i.e., it may retrieve non-subsuming
clauses), additional checks on the retrieved clauses have to be performed.

4.1.2 Multi-literal matching

Given a candidate clause C, Vampire tries to find a substitution θ that transforms C

into a submultiset of the given clause D. This process is called multi-literal matching,
and is implemented in Vampire in a component called the MLMatcher.

Note that multi-literal matching is an NP-complete problem. Intuitively, this is because
the literal correspondences between the two clauses are not obvious in general. The
MLMatcher implements backtracking to cover all possible matchings, with numerous
optimizations to prune infeasible branches early. Because subsumption is important
and takes a large fraction of the solver runtime, the MLMatcher is a heavily optimized
component of Vampire.

The input to the MLMatcher is essentially an array of base literals, along with one array
of alternatives per base literal that contains the possible instances that the corresponding
base literal may be matched to. The output is a single boolean value, which is true
if and only if all base literals can be instantiated to one of their alternatives using a
uniform substitution. There are some additional technicalities to ensure that Cθ is a
submultiset of D and not merely a subset, which we omit here.

Example 11. Consider the clauses

C = P (x) ∨ Q(x),

D = P (c) ∨ P (d) ∨ Q(d) ∨ Q(f(d)).

We want to check whether C subsumes D.

The input to the MLMatcher consists of the base literal P (x) with alternatives P (c)
and P (d), and the base literal Q(x) with alternatives Q(d) and Q(f(d)).
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4.2. Reference Implementation of FSD (“FSD v1”)

Note that the first choice of matching P (x) to P (c) induces the substitution {x 7→ c} which
is incompatible with all possible choices for Q(x). The MLMatcher must backtrack and
match P (x) to the next alternative P (d), inducing the substitution {x 7→ d} which allows
matching Q(x) to Q(d). We found a match, which means C indeed subsumes D. �

4.2 Reference Implementation of FSD (“FSD v1”)

In a first attempt, we implemented forward subsumption demodulation in a mostly
straightforward way based on forward subsumption. The goal of this implementation was
to quickly obtain a proof of concept implementation that is easy to understand and audit.
This implies keeping changes to highly optimized core algorithms in Vampire minimal.

The algorithm proceeds according to the following steps:

1. Retrieve candidate clauses (i.e., potential side clauses) from an appropriate index
like in forward subsumption.

2. Select a positive equality in the candidate clause as rewriting equality.

3. Construct input to MLMatcher, excluding the selected equality.

4. When a match has been found, retrieve the substitution and the matched literals
from the MLMatcher.

5. Find a term in the non-matched part of the given clause that matches a term of
the rewriting equality. The substitution may be extended in this step.

6. Check whether the rewriting equality is oriented after substitution.

7. Check whether redundancy holds. Due to Lemma 3, the same optimizations as in
demodulation apply.

8. Build the simplified clause and return it.

If one of these steps fails, the algorithm will backtrack to earlier steps and try alternative
choices, as long as any remain.

Note that the substitution θ is built in two stages: first we get a partial substitution from
the MLMatcher, then it (possibly) gets extended when matching terms of the rewriting
equality. The following example illustrates this situation.

Example 12. Consider the following FSD inference:

f(x, y) ≃ y ∨ Q(x) P (f(c, d)) ∨ Q(c)

P (d) ∨ Q(c)
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4. Implementation

We first select the only possible rewriting equality f(x, y) ≃ y. Querying the MLMatcher

then reveals the (partial) substitution θ′ = {x 7→ c}. We arrive at the final substitu-
tion θ = {x 7→ c, y 7→ d} only when we match the left-hand side f(c, y) of the (partially
substituted) rewriting equality to the rewritable term f(c, d).

Note that if there is a variable in the side premise that is not bound even in the final
substitution (e.g., if we replace the equality in the inference above by f(x, y) ≃ z), this
variable can only occur in the right-hand side of the rewriting equality. In this case, no
subsumption demodulation is possible because the rewriting equality will not be oriented
after the final substitution. �

4.2.1 Index adjustments

The original subsumption index is not a good fit for subsumption demodulation because
the rewriting equality does not participate in the multi-literal matching. We might lose
potential FSD applications when a positive equality is chosen for indexing.

Example 13. Consider the clause C = f(f(x)) ≃ f(x) ∨ P (x). The heuristic assigns a
value of 4 to the equality literal and a value of 1 to the other literal, thus C is indexed
by f(f(x)) ≃ f(x).

There is an FSD application with side premise C and main premise D = P (c)∨Q(f(f(c)))
resulting in the conclusion P (c) ∨ Q(f(c)).

However, using the original subsumption index we cannot retrieve C as candidate clause
with the given clause D. �

To address this issue, we added a new index called the forward subsumption demodulation
index (FSD index). The basic idea of the FSD index is the same as the subsumption
index, however, it takes into account not only the “best” literal (best according to the
heuristic) but also the “second best”.

If the best literal in a clause C is a positive equality but the second best is not, C is
indexed by the second best literal, and vice versa. If both the best and second best literal
are positive equalities, C is indexed by both of them.

Furthermore, because the index is now exclusively used by FSD, the index only needs to
keep track of clauses that contain at least one positive equality.

Another possibility to solve this issue would be to adjust the subsumption index by
adding additional entries in the problematic case, i.e., additionally index a clause by
its second best literal when the best literal is a positive equality. However, this might
negatively impact forward subsumption and runs contrary to our goal of minimally
modifying existing Vampire code. Moreover, the impact of adding an additional index
is small from a performance perspective, because index maintenance in Vampire is very
efficient.
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4.3. Optimized Implementation of FSD (“FSD v2”)

4.2.2 MLMatcher modifications

In order to support the algorithm described in Section 4.2, the MLMatcher had to
be extended with functions to retrieve information about the concrete matching. In
particular, the algorithm requires the substitution and the set of matched literals. This
data was already stored for internal bookkeeping purposes but was not accessible from
outside. However, no substantial modifications of the MLMatcher were necessary.

4.3 Optimized Implementation of FSD (“FSD v2”)

We have adapted the implementation to interleave selection of the rewriting equality with
multi-literal matching, which reduces the overhead of calling the MLMatcher multiple
times. This required extensive changes to the MLMatcher, but also enabled some
additional smaller optimizations in the matching algorithm. We refer to the modified
variant as MLMatcher2.

The modified algorithm proceeds as follows:

1. Retrieve candidate clauses (i.e., potential side clauses) from the FSD index.

2. Construct input to MLMatcher2. This input now includes all positive equalities
and depends only on the candidate clause.

3. When a successful match has been found, retrieve the selected rewriting equality
and the current substitution.

4. Find a term in the non-matched part of the given clause that matches a term of
the rewriting equality. The substitution may be extended in this step.

5. Check whether the rewriting equality is oriented after substitution.

6. Check whether redundancy holds. Due to Lemma 3, the same optimizations as in
demodulation apply.

7. Build the simplified clause and return it.

As before, if one of these steps fails, the algorithm will backtrack to earlier steps and try
alternative choices, as long as any remain.

4.3.1 Extended Multiliteral Matching

Instead of first selecting a rewriting equality and then performing multi-literal matching
on the remaining literals, the MLMatcher2 allows interleaving both actions. Conceptually,
for each base literal that is a positive equality, the MLMatcher2 implicitly adds an
additional alternative that means “this base literal is selected as rewriting equality”.

At most one of these implicit alternatives may be chosen at any time. As the rewriting
equality currently does not participate in building the substitution, the MLMatcher2
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4. Implementation

takes care to ignore the implicit alternatives when checking compatibility of partial
substitutions. We have ideas how to extend the MLMatcher2 to also select a concrete
rewritable term along with the rewriting equality, however, this requires another substan-
tial implementation effort which we leave for future work.

Note that, in principle, the MLMatcher2 is also able to report subsumption if all literals
can be matched to instances without using the implicit alternatives. Support for this
result has been implemented in FSD v2, but in the current setting it does not occur
because forward subsumption is still performed separately by the existing implementation.
In future work, we want to study how much can be gained by merging the implementations
of forward subsumption and FSD.

4.4 Possibility of Multiple Matches

In general, a multi-literal match problem may have more than one solution. Moreover,
solutions concerning FSD may differ in which equality has been selected as rewriting
equality, cf. Example 10. We give further examples where backtracking occurs.

Example 14. Consider the two clauses

C1 = f(f(x)) ≃ f(x) ∨ Q(x) and

C2 = P (f(f(d))) ∨ Q(c) ∨ Q(d),

where C1 is intended to be the side premise and C2 the main premise. There is only one
choice for the rewriting equality, and two choices of literals to match to Q(x).

Assume the algorithm first returns the solution matching Q(x) to Q(c), inducing the
substitution {x 7→ c}. Since there is no term f(f(c)) in the main premise, FSD cannot
be applied and the algorithm needs to backtrack.

The algorithm will then find the next solution by matching Q(x) to Q(d) with the
substitution {x 7→ d}. Now there is a suitable term in C2, leading to the simplified
clause P (f(d)) ∨ Q(c) ∨ Q(d) that is returned as result. �

Example 15. Consider the two clauses

C1 = P (x1) ∨ P (x2) ∨ · · · ∨ P (xn) ∨ f(x1, . . . , xn) = x1 and

C2 = P (c1) ∨ P (c2) ∨ · · · ∨ P (cn) ∨ Q(f(d1, . . . , dn)),

for n > 0.

There are n! possibilities to match the literals P (x1), . . . , P (xn) to P (c1), . . . , P (cn), one
for each permutation of the n literals. The algorithm will examine all n! matches, failing
to find a rewritable term for any of the matches.

Note that even if rewriting were possible (e.g., if we add the literal Q(f(c1, . . . , cn))
to C2), it may still happen that the correct match is found last in which case all n!
matches will be considered. �
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4.5. Overview of New Options

While extremely bad cases such as described in Example 15 are rare in practice, they do
occur, as shown by the experimental results presented in Section 5.2. However, those
results also show that most applications of FSD are found within the early matches.

This observation leads to a simple practical approach to avoid situations as in Example 15,
which is to place an upper limit on the number of matches that are examined, and give up
if this upper limit is reached. We have added such an upper limit to our implementation.
The limit is user-configurable through the option -fsdmm, whose usage is described in
Section 4.5.

The implementation of FSD is “complete” in the sense that it always finds an FSD
application if one exists (under slight restrictions, cf. Section 4.6), provided that the
upper limit of matches is disabled.

4.5 Overview of New Options

This section gives a brief explanation of the new Vampire options that control the FSD
implementations.

• -fsd, short for --forward_subsumption_demodulation

Value: off, v1, or v2

Default value: off

The option -fsd determines which FSD implementation is active, if any.

• -fsdmm, short for --forward_subsumption_demodulation_max_matches

Value: a non-negative integer

Default value: 1

The option -fsdmm sets the upper limit on the number of matches to examine for
each candidate side clause as discussed in Section 4.4. The value 0 is special and
means that no upper limit should be enforced.

Currently, all FSD-related options are still marked as being experimental. To see
these options in the built-in help text of Vampire, one should use the command
vampire --show_options on --show_experimental_options on.

4.6 Limitations

There are certain instances of FSD that our implementation does not detect, because the
algorithm only finds substitutions that are directly induced by matching.

Example 16. Assume that f ≫ g in the symbol precedence, and consider instances of
FSD with side premise C1 = f(x) ≃ g(y) ∨ Q(x) and main premise C2 = P (f(c)) ∨ Q(c).
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4. Implementation

Our implementation finds the substitution θ = {x 7→ c}. Since the rewriting equality is
unoriented under θ, no inference is performed.

However, an FSD inference is indeed possible with the substitution σ = {x 7→ c, y 7→ c},
because f(c) ≻ g(c) due to our assumption on symbol precedence.

The algorithm does not find this application of FSD, because the matching algorithms
find the most general substitution and there is no direct reason to substitute anything
for y. It is not obvious how to “guess” substitutions that lead to oriented equalities in
cases such as above. Note that this issue is not specific to subsumption demodulation,
but already appears for demodulation. In fact, Vampire will not even add clauses like
f(x) ≃ g(y) to the demodulation index.

Finally, we argue that this situation is not relevant in practice. This issue occurs when
the clause contains a variable that only appears in one side of the rewriting equality and
nowhere else in the clause. Because clauses are universally quantified, such equalities are
far too general for most useful problem encodings. �
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CHAPTER 5
Experiments

5.1 Evaluation of Forward Subsumption Demodulation

We have evaluated the implementation of forward subsumption demodulation (FSD) on
benchmark problems from the TPTP problem library version 7.2.01 [Sut17] and from the
SMT-COMP 2019 Single Query Track2 [BDdM+13]. In this chapter, we mainly focus on
the evaluation of FSD v2 as described in Section 4.3.

The evaluation compares the version of Vampire with FSD (branch fsd3) against the
standard version of Vampire (branch master4) as of July 2019. The experiments
were conducted on the StarExec cluster [SST14]. For both branches, Vampire has
been compiled with the command make vampire_z3_rel_static. To analyse the
results, we have used the relational database SQLite and various Haskell libraries (cassava,
sqlite-simple, . . . ). The plots have been generated with the Haskell library Chart.

The following options were given to Vampire:

• Portfolio mode (--mode portfolio)

• Timeout of 300 seconds (-t 300)

• Collect and print statistics (-stat full and -tstat on)

• Do no print proofs (--proof off)

The reason for this option is to avoid exceeding the storage quota on StarExec.

1Website of the TPTP: http://www.tptp.org/
2Website of SMT-COMP 2019: https://smt-comp.github.io/2019/
3https://github.com/vprover/vampire/tree/fsd
4https://github.com/vprover/vampire/tree/master
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5. Experiments

• For SMT-COMP benchmarks only, set the appropriate schedule for the portfolio
mode (--schedule smtcomp)

• Configurations with FSD enabled are named after the scheme fsdvx-mmy, where x

is the version of FSD and y is the maximum number of multi-literal matches to
examine. To enable these settings in portfolio mode (which does not know about
FSD yet), we have used the option --forced_options fsd=vx:fsdmm=y.

We have used the portfolio mode for the main experiments because it is the most useful
mode in practice. However, the portfolio mode is tweaked to deliver the best results for
the default set of Vampire options. Enabling FSD via --forced_options instructs
Vampire to enable FSD in all strategies of the portfolio mode, which is not optimal.
Unfortunately, re-training the portfolio mode to take into account FSD is a big effort
and relies on closed-source software not availabe to the author.

Because of these caveats, it is to be expected that the overall results are skewed in favour
of standard Vampire (i.e., configuration master). Nonetheless, some problems are
uniquely solved by configurations with FSD enabled, even including some problems that
have not been solved before by any other automatic theorem provers (according to the
TPTP solutions database).

5.1.1 Results for the TPTP v7.2.0

The TPTP v7.2.0 contains a total of 22,026 problems, of which 17,573 problems can be
parsed (and worked on) by Vampire as of July 2019.

The overall number of solved problems is given in Table 5.1 and is mostly as expected.
Note that while the FSD configurations solve less UNSAT instances overall, they can
solve more SAT instances even though the portfolio mode is not optimized for FSD at all.

Also for UNSAT instances, FSD can solve some problems that master cannot solve.
This can be seen in Table 5.2, which shows the number of problems uniquely solved by
each configuration.

Notably, among the unique problems are some that have not been solved by automated
theorem provers before, according to the TPTP solutions library as of September 2019.
There are four unsatisfiable problems that have been solved by a configuration with FSD

Configuration UNSAT SAT Unknown Total

fsdv1-mm1 12,049 1,185 4,339 17,573
fsdv2-mm1 12,014 1,186 4,373 17,573
fsdv2-mm3 12,017 1,181 4,375 17,573
fsdv2-mm0 11,995 1,184 4,394 17,573
master 12,189 1,178 4,206 17,573

Table 5.1: Number of solved problems from the TPTP v7.2.0
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5.1. Evaluation of Forward Subsumption Demodulation

UNSAT SAT
Configuration Unique FSD Unique master Unique FSD Unique master

fsdv2-mm1 37 212 10 2
fsdv2-mm3 39 211 8 5
fsdv2-mm0 35 229 10 4
fsdv2 combined 47 172 12 0
fsdv1-mm1 39 179 10 3

Table 5.2: Number of uniquely solved problems from the TPTP v7.2.0

enabled and that do not yet have a solution registered on TPTP, namely SEU054+1,
SWC263+1, SWC199+1, and GRP634+3. As for satisfiable problems, configurations
with FSD enabled were able to solve the problems SWV549-1.010, SWV531-1.007,
SWV953-1. For the former two, no solution is registered on TPTP, and for the latter
one, a solution by E 2.4 was only registered in July 2019.

Note that some of these problems had been partially solved before, e.g., the three
satisfiable problems have been shown to be finitely unsatisfiable by Infinox. However,
this is no complete solution of the problem as it merely states that no finite model of the
formula exists.

In Figure 5.1, some comparisons of different configurations have been visualized. Fig-
ure 5.1d compares runs for different values of option -fsdmm. In all plots it can be seen
that each configuration can solve some problems that the other cannot solve.

5.1.2 Results for the SMT-COMP 2019 Single Query Track

We performed the same experiments for 19,116 benchmark problems selected from the
SMT-COMP 2019 Single Query Track. We have chosen the same benchmark problems
that Vampire was competing for at the SMT-COMP 2019 competition [RSV+19].
Vampire can work with all SMT-LIB logics except bit vectors, floating points, and
strings. Furthermore, the quantifier-free variants have been omitted because Vampire

has no special support for ground reasoning.

The overall number of solved problems is given in Table 5.3, and the numbers of uniquely
solved problems per configuration are listed in Table 5.4. Table 5.5 gives the overall
number of solved problems grouped by SMT-LIB logic. Furthermore, Table 5.6 shows
the number of uniquely solved unsatisfiable problems grouped by SMT-LIB logic. The
uniquely solved satisfiable problems are all in the logic UF, which is expected because
Vampire is refutationally complete only for first-order logic and uses incomplete theory
axiomatizations for reasoning in first-order theories.

Some comparisons of different configurations have been visualized in Figure 5.2.
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5. Experiments

(a) master vs. fsdv2-mm1 (b) master vs. fsdv2-mm3

(c) master vs. fsdv2-mm0 (d) fsdv2-mm1 vs. fsdv2-mm0

Figure 5.1: Comparing solver runtimes of different configurations on TPTP problems.
Problems that can be solved by both configurations are indicated in red, while problems
that can be solved by only one configuration are indicated in blue or green.
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5.1. Evaluation of Forward Subsumption Demodulation

Configuration UNSAT SAT Unknown Total

fsdv1-mm1 7,792 541 10,783 19,116
fsdv2-mm1 7,785 540 10,791 19,116
fsdv2-mm3 7,799 541 10,776 19,116
fsdv2-mm0 7,788 541 10,787 19,116
master 7,826 539 10,751 19,116

Table 5.3: Number of solved problems from SMT-COMP 2019

UNSAT SAT
Configuration Unique FSD Unique master Unique FSD Unique master

fsdv2-mm1 127 168 2 1
fsdv2-mm3 138 165 2 0
fsdv2-mm0 130 168 2 0
fsdv2 combined 155 143 2 0
fsdv1-mm1 124 158 2 0

Table 5.4: Number of uniquely solved problems from SMT-COMP 2019

fsdv1-mm1 fsdv2-mm1 fsdv2-mm3 fsdv2-mm0 master
Logic Total unsat sat unsat sat unsat sat unsat sat unsat sat

ALIA 19 9 – 9 – 9 – 9 – 9 –
AUFDTLIA 275 177 – 177 – 177 – 176 – 178 –
AUFLIA 1,638 1,267 99 1,267 99 1,269 99 1,271 99 1,274 99
AUFLIRA 1,683 1,551 – 1,549 – 1,552 – 1,550 – 1,552 –
AUFNIA 3 – – – – – – – – – –
AUFNIRA 300 56 – 55 – 55 – 54 – 58 –
LIA 300 140 5 140 5 140 5 140 5 140 5
LRA 1,003 177 – 177 – 177 – 177 – 177 –
NIA 11 – – – – – – – – – –
NRA 93 81 – 81 – 81 – 81 – 81 –
UF 2,816 627 437 625 436 623 437 624 437 649 435
UFDT 1,547 340 – 335 – 334 – 332 – 348 –
UFDTLIA 299 65 – 64 – 63 – 63 – 66 –
UFDTNIA 1 1 – 1 – 1 – 1 – 1 –
UFIDL 20 7 – 7 – 7 – 7 – 7 –
UFLIA 2,848 1,398 – 1,383 – 1,380 – 1,377 – 1,393 –
UFLRA 7 2 – 2 – 2 – 2 – 2 –
UFNIA 6,253 1,894 – 1,913 – 1,929 – 1,924 – 1,891 –

All logics 19,116 7,792 541 7,785 540 7,799 541 7,788 541 7,826 539

Table 5.5: Number of solved problems from SMT-COMP 2019 by logic
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5. Experiments

(a) master vs. fsdv2-mm1 (b) master vs. fsdv2-mm3

(c) master vs. fsdv2-mm0 (d) fsdv2-mm1 vs. fsdv2-mm0

Figure 5.2: Comparing solver runtimes of different configurations on problems from the
SMT-COMP 2019 Single Query Track. Problems that can be solved by both configurations
are indicated in red, while problems that can be solved by only one configuration are
indicated in blue or green.
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5.2. On the Number of Multi-Literal Matches

Unique UNSAT: FSD/master
Logic fsdv2-mm1 fsdv2-mm3 fsdv2-mm0 fsdv2 combined fsdv1-mm1

ALIA –/– –/– –/– –/– –/–
AUFDTLIA –/1 –/1 –/2 –/1 –/1
AUFLIA –/7 2/7 2/5 2/5 –/7
AUFLIRA 2/5 2/2 1/3 3/2 2/3
AUFNIA –/– –/– –/– –/– –/–
AUFNIRA 1/4 1/4 –/4 1/4 1/3
LIA –/– –/– –/– –/– –/–
LRA 1/1 1/1 1/1 1/1 1/1
NIA –/– –/– –/– –/– –/–
NRA –/– –/– –/– –/– –/–
UF 9/33 7/33 7/32 9/30 8/30
UFDT 2/15 2/16 2/18 2/14 4/12
UFDTLIA –/2 –/3 –/3 –/2 –/1
UFDTNIA –/– –/– –/– –/– –/–
UFIDL –/– –/– –/– –/– –/–
UFLIA 22/32 21/34 19/35 25/23 25/20
UFLRA –/– –/– –/– –/– –/–
UFNIA 90/68 102/64 98/65 112/61 83/80

All logics 127/168 138/165 130/168 155/143 124/158

Table 5.6: Number of uniquely solved UNSAT problems from SMT-COMP 2019 by logic

5.2 On the Number of Multi-Literal Matches

We have performed a separate run on the same problem set as in Section 5.1 with
additional runtime statistics enabled. In particular, we were interested to learn more
about useful values for the option -fsdmm. To this end, we have logged for each successful
FSD inference how many multi-literal matches were examined. The aggregated results
are given in Table 5.7 for the problems from the TPTP and in Table 5.8 for the problems
from SMT-COMP 2019.

Most FSD inferences are found already with the first multi-literal match, which suggests a
rather small value of -fsdmm might be a good default. For example a value of 5 for TPTP
problems and a value of 8 for SMT-COMP problems covers 99 % of the possible FSD
inferences. However, the best value for this option likely depends strongly on the concrete
problem, as comparing the results of configurations fsdv2-mm1 and fsdv2-mm0 does
not give a clear preference (cf. Figures 5.1d and 5.2d).

On the three problems GEO309+1.p, GEO313+1.p, and GEO322+1.p from the TPTP
we have observed certain FSD inferences where as many as 327,164 matches had to be
examined. Manual inspection has shown that the situation in these problems is similar
to what we describe in Example 15.
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5. Experiments

Matches examined FSD inferences Cumulative percentage

1 215,203,323 90.8636 %
2 13,942,080 96.7502 %
3 3,202,922 98.1026 %
4 1,076,591 98.5571 %
5 1,204,196 99.0656 %
6 370,723 99.2221 %
7 219,229 99.3147 %
8 112,557 99.3622 %
9 128,549 99.4165 %
10 167,584 99.4872 %
11–20 607,796 99.7439 %
21–100 550,484 99.9763 %
101–1,000 53,964 99.9991 %
1,000–100,000 2,167 100.0000 %
≥100,001 34 100.0000 %

Table 5.7: Number of FSD inferences by number of matches examined (TPTP)

Matches examined FSD inferences Cumulative percentage

1 955,515,096 79.8259 %
2 85,329,923 86.9545 %
3 48,650,079 91.0188 %
4 34,469,685 93.8985 %
5 27,187,786 96.1698 %
6 17,854,951 97.6615 %
7 12,347,235 98.6930 %
8 6,076,305 99.2006 %
9 3,836,938 99.5212 %
10 2,143,043 99.7002 %
11–20 3,419,842 99.9859 %
21–100 163,828 99.9996 %
101–1,000 4,523 100.0000 %
1,000–100,000 336 100.0000 %
≥100,001 0 100.0000 %

Table 5.8: Number of FSD inferences by number of matches examined (SMT-COMP)
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5.3. Soundness Tests

5.3 Soundness Tests

To increase confidence in the correctness of the implementation of FSD v2, we have
performed soundness tests. This means checking for all successful FSD inferences that
the conclusion does indeed follow from the two premises. Of course, to avoid circular
reasoning, this proof must be done without using FSD.

To enable the soundness tests, we extended the implementation of FSD v2 with inference
logging: all successful inferences are printed on standard output in the TPTP format.

The overall method is as follows:

1. Run Vampire with FSD v2 and inference logging on all TPTP problems and save
the output.

2. Using a simple script, convert each inference in the Vampire output into its own
problem file in TPTP format

3. Check each of the resulting problems with Vampire (branch master, without any
changes relating to FSD). An earlier run was also performed partially using the
theorem prover E.

Even though a relatively short timeout of 30 seconds was used in Step 1, more than
3 million inferences had to be checked.

Most of the checks completed quickly in less than a second using Vampire’s portfolio
mode with a timeout of 5 seconds. However, some checks were harder. From limited
manual inspection, we suppose the reason is that the implementation of FSD rewrites all
matching terms in the simplified literal at once (i.e., it actually performs more than one
inference at once). Whenever more than one term has been replaced, the corresponding
inference check instance was much more difficult for the prover to solve. These cases
have been solved in a second pass using Vampire’s portfolio mode with a timeout of
300 seconds.

In the end, all of the logged FSD inferences have been proved correct.

The inference logging and the soundness tests have been performed on a standard desktop
computer. Because Vampire is essentially a single-threaded program, we have used
GNU Parallel [Tan18] to run multiple instances in parallel and thus take advantage
of additional CPU cores. GNU Parallel also allows the user to interrupt large batch
jobs to continue them later, which is very convenient for such tasks.

5.4 Redundancy Tests

Complementing the soundness tests, we also added a post-check to the implementation of
FSD v2 which asserts that all successful FSD inferences are indeed simplifying inferences,
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5. Experiments

i.e., that the main premise is larger than the conclusion and the (instantiated) side
premise (cf. the proof of Theorem 3).

The clause comparison has been implemented according to a characterization of the
multiset extension that is well-suited for implementation [BN98, Lemma 2.5.6].

The redundancy tests have been performed under similar circumstances as the soundness
tests. No violations of redundancy have been discovered during these runs.

5.5 Summary

We briefly summarize the experimental results.

Most instances of FSD can be found using only a low number of multi-literal matches,
suggesting that placing a limit on the amount of matches to examine might be beneficial.
However, experimental results are unclear on this question.

Altogether, Vampire with FSD v2 was able to solve 59 unique problems from the TPTP
v7.2.0 and 157 unique problems from the SMT-COMP 2019 Single Query Track that the
default version did not solve5. Moreover, our implementation was able to solve 6 problems
from the TPTP that have not been solved before by another automated theorem prover,
according to the TPTP solutions database.

Nevertheless, further investigation is necessary to understand an optimal (portfolio)
combination of FSD (v1 and/or v2) with other Vampire options.

5Configuration “fsdv2 combined”, taking results for “unsat” and “sat” together.
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CHAPTER 6
Related Work

Deductive verification of computer programs is an axiomatic verification approach based
on Hoare Logic [Hoa69]. The primitives in Hoare Logic are triples of the form {F}P{G},
where F and G are formulas expressing assertions on the program state, and P is
a program. Such a triple expresses, e.g., a partial correctness claim: whenever the
precondition F holds at the beginning of an execution of P and P terminates, then the
postcondition G holds at the end of P . A correctness proof in Hoare Logic follows from
a sequence of Hoare proof rules, based on the syntax of the program, building triples for
complex programs from smaller components that have been proved previously.

The paradigm of deductive verification forms the basis of reasoning-based verification and
is used in the following way. First, syntactic Hoare proof rules are applied in so-called
predicate transformers on the pre- and post-conditions to obtain a set of formulas, the
verification conditions. Second, the verification conditions are passed to an automated
theorem prover to check their validity. The syntactic rules are set up in such a way that
the validity of all verification conditions implies the truth of the correctness claim.

Deductive verification has been used in practice. Dafny [Lei10] is a verification-aware
programming language with built-in support for annotating code with pre- and post-
conditions, as well as loop invariants. During compilation, Dafny generates the verification
conditions and checks them using an external SMT solver. Frama-C [KKP+15] is a
framework for static analysis of C code that has multiple plugins for deductive verification.
Why3 [FP13] provides a specification and programming language, and relies on multiple
automated and interactive theorem provers to discharge its verification conditions.

Model checking [CE82, QS82] is a successful verification method where the program to
be verified is transformed into a state transition system. The desired properties of the
system are specified as formulas in temporal logic, and the model checker checks whether
these formulas are true on the transition system at hand. Whenever the model checker
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6. Related Work

fails to prove a temporal formula, it will construct a counterexample trace, which provides
significant help for practitioners working with these tools.

Modern model checkers employ sophisticated techniques to keep the transition system as
small as possible [CHV18]. A key feature is abstraction, which allows the model checker
to handle very large (even infinite) state transition systems by merging sets of concrete
states into single abstract states. Abstraction may lead to spurious counterexamples, i.e.,
traces that violate the specification only in the abstracted system but do not correspond to
an execution in the real system. The most advanced model checkers use counterexample-
guided abstraction refinement [CGJ+00], a method that detects spurious counterexamples
and automatically refines the abstraction until either the formula is verified or a true
counterexample is found.

Examples for classical model checkers that have been widely used in practice are
CBMC [CKL04] for verification of C programs, and SPIN [Hol97] for verification of
concurrent processes. The SLAM [BR02, BLR11] project is a very successful application
of model checking to static verification of hardware drivers in the operating system
Windows.

Both model checking and deductive verification, as well as other verification methods,
ultimately require some variety of theorem proving, meaning that automation of theorem
proving is a prerequisite for automation of program verification.

One of the most prominent approaches to automated theorem proving is propositional
satisfiability checking based on the well-known algorithm DPLL [DP60, DLL62]. Modern
SAT solvers achieve high performance on structured problem instances due to techniques
such as conflict-driven clause learning [MSS99] and specialized heuristics [MMZ+01].
Most automated theorem provers, not just SAT solvers, rely on some variation of these
algorithms to solve certain sub-tasks. For example, Vampire employs a SAT solver for
clause splitting [Vor14].

DPLL has later been extended to certain fragments of first-order logic. This extension
is known as satisfiability modulo theories (SMT) solving [NOT05, BT18]. In particular,
current SMT solvers have good support for theories such as linear arithmetic, bit vectors,
and arrays, whereas support for quantification is still limited and fragile. Examples for
current SMT solvers are Z3 [DMB08] and CVC4 [BCD+11]. SPACER [KGC16] is an
SMT-based model checking approach.

Most state-of-the-art automated theorem provers for first-order logic with equality
are based on saturation algorithms (such as Otter [McC94], Discount [DKS97], and
LRS [RV03]) and the superposition calculus [BG94, BG98, NR01]. Superposition is an
extension of the resolution calculus [Rob65, BG01] with the goal of working more efficiently
with equalities. Essential ingredients for efficient implementations of superposition are
simplification orderings [KB83] and redundancy, both of which we introduce in the
preliminaries.

In first-order theorem proving, the current situation is the opposite compared to SMT
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solving. State-of-the-art superposition-based provers have good support for quantification
and quantifier alternation, as well as equality and uninterpreted functions/predicates.
However, they encounter difficulties as soon as certain theories are used, with natural
numbers and integer arithmetic being especially problematic.

While superposition is the most prominent approach to first-order reasoning, there are
alternatives such as the Inst-Gen calculus [GK03, Kor13], which utilizes instantiation to
approximate the first-order reasoning problem by a sequence of propositional problems.

Examples for current superposition-based provers are Vampire [KV13], E [Sch13] and
SPASS [WDF+09]. iProver [Kor08] is based on the Inst-Gen calculus. The prover
included in the KeY project [ABB+16] uses the sequent calculus and offers a combination
of automatic and interactive theorem proving. Concerning program verification, the KeY
project includes support for verification of Java programs, and Vampire has been used
as prover backend for verification as well [GKR18].

Subsumption demodulation, like superposition, is an instance of the general concept
of conditional rewriting. Unlike superposition, subsumption demodulation is also a
simplification rule. Some other simplification rules that are also instances of conditional
rewriting have been discussed in the literature.

Contextual reductive rewriting [BG94] is more general than subsumption demodulation.
Consider the side premise s ≃ t ∨ C, where s ≃ t is the rewriting equality. Instead of
requiring that Cθ is a submultiset of the main premise, for contextual reductive rewriting
it suffices that Cθ is implied by the main premise (positive and negative literals separately).
Since contextual reductive rewriting was developed in the context of equational reasoning
(i.e., the only predicate is equality), Bachmair and Ganzinger suggest to check these
side conditions by recursively invoking contextual reductive rewriting. To simplify the
ordering check, they suggest to only consider side clauses where s is a strictly maximal
term.

Approximated Contextual Rewriting [WW08] is a refined notion of contextual reductive
rewriting that has been implemented in SPASS. A major difference to subsumption
demodulation is that in subsumption demodulation the discovery of the substitution
is driven by the side conditions whereas in approximated contextual rewriting the side
conditions are evaluated by ckecking the validity of certain implications by means of
a reduction calculus. This reduction calculus recursively applies another restriction of
contextual rewriting called recursive contextual ground rewriting, among other standard
reduction rules. While approximated contextual rewriting is more general, the benefit of
subsumption demodulation is that it can be well integrated into the existing subsumption
machinery.

Non-unit rewriting [Wei01] is similar to subsumption demodulation in that it instantiates
the side premise and performs a subsumption-like check. Non-unit rewriting is however
missing the second side condition on subsumption demodulation, which ensures that the
main premise becomes redundant after the inference.
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CHAPTER 7
Conclusion

We introduced the inference rule subsumption demodulation to improve support for
reasoning with conditional equalities in superposition-based first-order theorem proving,
and we proved this rule to be a sound simplification rule.

We implemented the forward direction of subsumption demodulation in the superposition-
based theorem prover Vampire. For the first implementation (“FSD v1”), the aim was to
re-use existing components of Vampire with minimal changes in order to obtain a mostly
straightforward reference implementation. Even then, a new clause index and some minor
additions to existing components were necessary. Next, we optimized this implementation
to obtain a more efficient version (“FSD v2”), which necessitated significant changes to
the multi-literal matching component of a first-order prover.

Since multi-literal matching is NP-complete, even an optimized implementation may
turn out to be a bottleneck in certain cases. We discussed such a case by means of an
example, which, although rare, our experiments confirmed to indeed occur in practice. A
practical workaround is to place an upper limit on the number of matches to examine.
Statistics from the experimental runs show that most FSD instances can be found with a
low upper limit, although the ideal value strongly depends on the concrete problem.

We evaluated our implementation of FSD on a large number of benchmark problems
from the TPTP v7.2.0 problem library and the SMT-COMP 2019 competition. All
configurations with FSD were able to solve new problems compared to the standard
configuration of Vampire, even though Vampire’s portfolio mode is highly tuned to the
set of options available in standard Vampire and does not take into account FSD. What
is more, FSD was even able to solve some problems that were unsolved before, according
to the TPTP solutions database.
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7. Conclusion

7.1 Future Work

However, while we have experimented with different options influencing FSD, the results
do not clearly show a best configuration. Tuning FSD options remains a tricky and
open problem. Interestingly, even FSD v1 solved some problems that FSD v2 did not
solve. Thus, more experiment-driven research is required. Most importantly, the only
way to enable FSD in portfolio mode currently is to enable it in all strategies, which is
too inefficient. It would be beneficial to train the portfolio mode of Vampire to take
into account FSD. An interesting question is whether there is some set of strategies that
combines most of the positive effects of the various FSD configurations.

The implementation also contains opportunities for further improvements.

Currently, the implementations of forward subsumption and forward subsumption demod-
ulation are completely separate. This means some work is repeated, especially in negative
cases. Consider the case where the FSD algorithm fails to find an instance of FSD for
a given clause C and candidate side clause D because no suitable multi-literal match
exists. In such a case, already the forward subsumption algorithm will have retrieved the
same clause D for the given clause C (excepting some edge cases), and therefore also
performed almost the same (failing) multi-literal matching checks.

This duplicated work could be repeated if forward subsumption were merged into the FSD
algorithm. Since the implementation of FSD v2 already supports reporting subsumption
by non-unit clauses (which at the moment does not happen in practice since the existing
implementation of forward subsumption is called first), this task by itself should not be too
much effort. However, currently forward subsumption also performs forward subsumption
resolution at the same time, so some care must be taken to properly integrate this
inference rule as well. Also, the clause indexes of FSD and forward subsumption need to
be merged because at the moment there are subtle differences between the two.

Furthermore, as hinted before, more intelligent selection of the rewriting equality might
be beneficial. In particular, the matcher should not only select the rewriting equality but
at the same time also a concrete term for rewriting, expanding the current substitution
accordingly. This change would especially improve situations such as in Example 15.
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