
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Entwurf eines Frameworks zur
Unterstützung von

Reproduzierbarkeit für die
openEO Plattform

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Bernhard Gößwein

Matrikelnummer 01026884

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Mitwirkung: Projektass. Dr.techn. Mag. Tomasz Miksa

Wien, 23. August 2019

Bernhard Gößwein Andreas Rauber

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Designing a Framework Gaining
Repeatability for the openEO

Platform

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Bernhard Gößwein

Registration Number 01026884

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Rauber
Assistance: Projektass. Dr.techn. Mag. Tomasz Miksa

Vienna, 23rd August, 2019

Bernhard Gößwein Andreas Rauber

Technische Universität Wien

A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der
Arbeit

Bernhard Gößwein
Vorderer Ödhof 1, 3062 Kirchstetten

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. August 2019

Bernhard Gößwein

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

To my fiancee Viola: Thank you very much for helping me through the stressful days of
working on the thesis and for providing breaks and diversions when I needed them.

To my family: Thank you for supporting me through my whole studying time and
for motivating me to go on with the thesis.

To my colleagues of the Remote sensing research group: Thank you for patiently wait-
ing for me to finish my studies and letting me work on a thesis within the openEO project.

To my colleagues at EODC: Thank you for providing me all resources I requested
and letting me implement the solution on your system.

Last but not least to my supervisors Andreas Rauber and Tomasz Miksa for always
quickly replying to my questions and providing me with constructive feedback.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Wissenschaftler im Bereich der Erdbeobachtung verwenden spezielle rechnergestützte
Services um Satellitenbilder bei externen Datenanbietern zu verarbeiten. Die zugrundelie-
gende Quelle der Daten ist meist ähnlich, beispielsweise werden Sentinel Satellitendaten
ausschließlich von Copernicus in Zusammenarbeit der European Space Agency betrieben.
Die Art der Aufbereitung, Aktualisierung, Korrektur und anschließenden Analyse kann
von Anbieter zu Anbieter unterschiedlich sein. Die Anbieter unterstützen meist keine
Datenversionierung, beispielsweise wenn Daten korrigiert werden wird dies nicht doku-
mentiert. Außerdem werden Änderungen in der verwendeten Software nicht kommuniziert
und stellt daher eine Black Box für die Wissenschaftler dar. Daher haben Wissenschaftler
die diese Systeme nutzen keine Möglichkeit herauszufinden warum die Durchführung des
gleichen Programmcodes unterschiedliche Ergebnisse liefert. Dieser Umstand behindert
die Reproduzierbarkeit der Experimente im Bereich der Erdbeobachtung. In dieser Arbeit
wird gezeigt, wie existierende Datenanbieter modifiziert werden können um Reproduzier-
barkeit zu ermöglichen. Die präsentierten Erweiterungen basieren auf den Empfehlungen
der Reseach Data Alliance bezüglich Datenidentifizierung und auf das VFramework
bezüglich automatisierte Dokumentation und Identifikation der durchgeführten Pro-
zesse. Zusätzlich werden Vorschläge dafür präsentiert wie Anbieter die gesammelten
Informationen für die Wissenschaftler zur Verfügung stellt. Die Implementierung der
vorgestellten Erweiterungen werden am Earth Observation Data Centre, einem Partner
des openEO Projektes durchgeführt. Die Evaluierung des fertigen Systems erfolgt durch
die Durchführung von typischen Szenarien der Erdwissenschaften und durch zusätzliche
Tests bezüglich der Effekte der Performance- und Speicherbedarfs für das System des
Anbieters. Das Ergebnis der Evaluation lässt darauf schließen, dass Reproduzierbarkeit
mit nur minimalen zusätzlichen Performance- und Speicherplatzbedarf möglich ist.

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

Earth observation researchers use specialised computing services for satellite image
processing offered by various data backends. The source of data is similar, for example
Sentinel satellites operated by Copernicus and the European Space Agency. The way it
is pre-processed, updated, corrected and later analysed may differ among the backends.
Backends often lack mechanisms for data versioning, for example, data corrections are not
tracked. Furthermore, an evolving software stack used for data processing remains a black
box to researchers. Researchers have no means to identify why executions of the same code
deliver different results. This hinders reproducibility of earth observation experiments. In
this thesis, we present how existing earth observation backends can be modified to support
reproducibility. The proposed extensions are based on recommendations of the Research
Data Alliance regarding data identification and the VFramework for automated process
provenance documentation. Additionally, we provide suggestions on how backends make
the captured information accessible to scientists. We implemented these extensions at the
Earth Observation Data Centre, a partner in the openEO consortium. We evaluated the
solution on a variety of usage scenarios, providing also performance and storage measures
to evaluate the impact of the modifications. The results indicate reproducibility can be
supported with minimal performance and storage overhead.

xi

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 9
1.3 Methodological Approach . 9
1.4 Structure of Work . 10

2 Related Work 11
2.1 Reproducibility . 11
2.2 Earth Observation Science . 14
2.3 Data Identification . 18
2.4 Tools for Reproducibility . 20
2.5 openEO . 23
2.6 Summary . 29

3 Design 31
3.1 Overview . 31
3.2 Query Handler . 34
3.3 Job Capturing . 34
3.4 Result Handler . 36
3.5 Context Model . 37
3.6 User Services . 39
3.7 User Defined Functions . 40
3.8 Summary . 40

4 Implementation 41
4.1 Data Identification . 41
4.2 Backend Provenance . 50
4.3 Job Dependent Provenance . 51

xiii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4 User Services . 55
4.5 Use Cases . 59
4.6 Summary . 69

5 Evaluation 71
5.1 Evaluation Setup . 71
5.2 Data Identification . 73
5.3 Job Capturing . 87
5.4 Performance and Storage Impact . 90
5.5 Summary . 101

6 Conclusion and Future Work 103
6.1 Conclusion . 103
6.2 Future Work . 105

7 Appendix 107

List of Figures 111

List of Tables 113

List of Listings 113

Bibliography 117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

1.1 Motivation

Earth Observation (EO) sciences gathers images of the Earth’s surface and atmosphere
using instruments and cameras on aircrafts or satellites. Advancing technologies in space
agencies lead to the usage of mostly satellite images. The data is too big to be downloaded
for local analysis. The solution is to store it in high-performance computational backends,
process it there, and browse the results or download resulting figures or numbers. The
vast majority of backends are available via Service Oriented Architecture (SOA) interfaces.
Data providers like Google Earth Engine (GEE)1 and Earth Observation Data Centre
(EODC)2 host a Web Application Programming Interface (API).Scientists create a local
description of the workflow and satellite data to describe experiments. They send the
description to the backend and are notified when the processing has finished [32].

Such an approach addresses the performance issues, but it does not allow researchers
to take full control of the environment in which their experiments are executed. The
backends present themselves as black boxes to the researchers with no possibility of
obtaining information on environment configuration, e.g. software libraries used in
processing and their versions. Studies in different domains show that the computational
environment can have an impact on the reproducibility of scientific experiments and must
be documented in order to ensure reproducibility [10] [15] [23]. Still the vast majority
of backend providers do not share such environment information. Another problem
constitutes the precise identification of data used for processing. EO backends in Europe
usually obtain data from the same source, for example from the Sentinel-2 satellites
operated by the European Space Agency (ESA). The data provider releases updates and
corrections to the data in the case that one of the instruments used for observation was

1https://earthengine.google.com
2https://www.eodc.eu

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

wrongly calibrated or broken and raw data had to be processed again. An example for
this is the format update of European Space Agency (ESA) in 2017 of the Sentinel 1
dataset, which affected data records of the backends, see 3. Updated data is released
to backend operators. Usually there is no versioning mechanism for data. Researchers
do not know which version of data was used in their study, i.e. whether they were
using a version before or after some specific modification was made. This leads to the
problem that scientists are not able to precisely identify and cite the input data of their
experiments, which hinders reproducibility and in turn undermines trust in the results.
For a better understanding of the problem we present the conclusion of two studies
regarding reproducibility in EO science after defining used terms of them.
We define the term "reproducibility" by running a second similar experiment, which
arrives at the same conclusion as the original experiment. It is necessary to produce
evidence for the outcome of an experiment. We define the term "replicability" as the
re-run of the same methods of an original experiment to show that the described methods
lead to the claimed results [6].
The first study examines existing publications in the scientific EO community. It does not
actively try to reproduce the experiments, but looks at the description of the methods.
The aim of the paper is to give an overview of the reproducibility and replicability of
the publications. The results show that only half of the publications were replicable and
none of them reproducible [26].
The second study intends to replicate the work of EO scientists and executes a survey of
geoscientific readers and authors. Its aim is to find reasons for the lack of reproducibility
in earth observation sciences. One result is that even though 49% of the participants
responded that their publications are reproducible, only 12% of them have linked the
used code. This leads to the conclusion that the understanding of open, reproducible
research is different among the participating scientists. The interpretations are more
in favor of own publications regarding replicability. The main findings for the lack of
reproducibility in computational geoscience are listed below [15]:

1. Insufficiently described methods

2. No persistent data identifier

3. Legal concerns

4. The impression that it is not necessary

5. Too time consuming

The reproduction of geoscientific papers fails due to the different individual interpretations
of the described approach. When the code was published with the publication, alternative
software environments produced unequal results. For example different versions of the

3https://sentinel.esa.int/web/sentinel/missions/sentinel-1/news/-/article/sentinel-1-update-of-
product-format

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation

CRAN library in R created unequal results. The majority of the replication required
changes of code and a deeper understanding of the procedures, for example caused by
deprecated functions. System dependent issues occurred, which are related to the usage
of random access memory and installation libraries of the operating system. The study
shows an example of a problematic replication using a resulting image of a publication.
It re-executes the experiment to receive this image and compares it with the original one.
Figure 1.1 shows a comparison of the recreated image and the original image. The map
shows spatially gridded biomass burning and was published initially in [18]. Even though
the resulting numbers of the reproduction remain the same, the different aspect ratio
changes the appearance of the resulting image and might lead to different interpretations
[15].

Figure 1.1: Example of a comparison of the original result (a) and a replicated result
(b). The boxes are highlighting the differences of the map. The blue box indicates the
misplacement of the legend, the purple box shows different color of results, the red box
shows a different data type of the legend numbers, the grey box shows a different labeling,
the orange box highlights differences in the background map, the yellow box shows a
different number of classes and the green box shows results that were not in the original
figure [15].

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

The problem description leads us to create the following three use cases to further specify
the aim of the thesis. They describe scenarios focused on scientific experiments that are
currently not achievable, but shall be made possible to accomplish with the solution of
this thesis. This thesis uses the term job for the definition of a description of a workflow
executed at a backend since the term is common in EO sciences. The following sections
describe these use cases as well as the example experiment that will be used to guide the
reader through the thesis.

1.1.1 Example Experiment

This section describes an example of an experiment that a remote sensing scientist wants
to execute. The thesis uses the example throughout the thesis for a better illustration of
the concepts. They are used in the use cases as well.
The input data of the experiment is Sentinel 2 data developed by the ESA. The area of
interest is the province of South Tyrol defined by the bounding area in the "EPSG:4326"
projection with the coordinates of a north-west corner (10.288696, 46.905246) and a
south-east corner (12.189331, 45.935871). The time of interest is the month of May in
2017. The scientist works on vegetation dynamics and wants to know what the state of the
vegetation of South Tyrol was in May 2017. Therefore the minimum of the Normalized
Difference Vegetation Index (NDVI)4 is calculated on the data selection. It derives from
the difference between near-infrared (which reflects vegetation strongly) and red light
(which vegetation absorbs). So for every pixel of the satellite image, the NDVI value is
calculated for every day of May 2017. Then the 31 images are reduced to one by taking
the minimum NDVI value of each pixel. Figure 1.2 shows the results of the running
example execution.

The execution of this experiment consists of the following workflow:

1. Selecting the Sentinel 2 data records

2. Filtering the Sentinel 2 records by the extent of south tyrol.
(10.288696, 46.905246) - (12.189331, 45.935871) on "EPSG:4326" projection.

3. Filtering the Sentinel 2 records by May 2017.

4. Calculate NDVI for all days of May 2017.

5. Reduce by the minimum value of May 2017.

6. Create and start a job at the backend.

7. Interpret the resulting image.

4https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation

Figure 1.2: Resulting image of the running example.

1.1.2 Use Case 1 – Re-use of input data

Figure 1.3: Overview of the first use case: Re-use of input data

The first use case is concerned with the re-use of input data between job executions.
Reproducible methods are important for the scientific community. Scientists are likely to
build on results and methods of publications and this scenario makes the re-use easier. In
this use case, a scientist wants to create a publication by running the example experiment,
described in Section 1.1.1 using an earth observation backend. By creating and starting
the job, the backend generates a Persistent Identifier (PID) for the input data of the

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

experiment. After that, the scientist publishes the results and cites the input data with
the resulting PID. It redirects to a human-readable landing page that provides meta
information about the dataset. Another scientist, also interested in the vegetation of
South Tyrol, wants to use the same input data but chooses a different approach of
processing it (for example the maximum instead of minimum reduction function). Hence,
the input data PID can be used to re-use the same data. The backend has to be capable
of resolving the PID automatically to enable users to work with the same input data for
a new job. The data provider needs to persist the data defined by a PID even if updates
on the data take place.

• Input Data A: Sentinel 2 data of the area of South Tyrol in May 2017.

• Job A: Taking the minimum NDVI of the area of South Tyrol in May 2017.

• Job B: Taking the maximum NDVI of the area of South Tyrol in May 2017.

Figure 1.3 gives an overview of the first use case.

The scenario sequence of actions is summarized in the following steps:

1. Researcher A runs job A at the backend.

2. Researcher A retrieves the used input data PID of job A.

3. Researcher A cites the input data with the PID in a publication.

4. Researcher B uses the same input data, by applying the data PID of job A for job
B.

1.1.3 Use Case 2 – Providing job execution information

The second use case is similar to the first one but it is exclusively concerned with job
dependent environment information. The scientist automatically gets environment data
about the job execution e.g. used software packages and their versions. The motivation
for this is to add transparency of the job execution for users, so that researchers can
describe their processes in more detail. It helps geoscientists to understand why results
differ from executions in the past. Figure 1.4 gives an overview of the use case. The
following steps summarize the scenario sequence of actions:

1. Researcher runs a job (job A) at a backend.

2. Researcher wants to describe the job environment.

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.1. Motivation

Figure 1.4: Overview of the second use case: Providing job execution information

1.1.4 Use Case 3 – Compare different job executions

The third use case is dedicated to the comparison of job executions. The goal is for
geoscientists to be able to compare different jobs not only by their results, but by the way
they were executed. The same backend applies the comparison between a job execution
and another job execution. Therefore, the processing implementation and the input data
must be identifiable. To make the comparison more transparent to the users, additional
data is added to the job environment data e.g. an output checksum. In addition to
the previous conditions, a visualization of the differences for the users lowers the access
barrier for them to use the feature. Figure 1.5 gives an overview of this use case. The
following steps summarize the scenario sequence of actions:

• Job A: Taking the minimum NDVI of the area of South Tyrol in May 2017.

• Job B: Taking the minimum NDVI of the area of South Tyrol in May 2017.

• Job C: Taking the maximum NDVI of the area of South Tyrol in May 2017.

1. Researcher runs a job (job A) at the backend.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

Figure 1.5: Overview of the third use case: Compare different job executions

2. Researcher re-runs the same workflow used for job A at the same backend resulting
in a new job (job B).

3. Researcher runs a different job (job C).

4. Researcher receives a comparison of the jobs (A, B, C) by their environment and
outcome.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1.2. Research Questions

1.2 Research Questions

The aim of the thesis is to propose a framework for making reproducibility conceivable
in the earth observation community. The solution enables users to re-execute jobs and
validate the results. It provides the scientists accessible differences in the execution of
the job and the data, without changing their approach of doing research. To achieve this,
a model for capturing the environment of the backends has to be discovered. Considering
the problem description and the scenarios of the previous sections, the following research
questions can be formulated:

• What information must be captured from an earth observation backend,
so that a job execution can be repeated like the original execution?

– How can the data of the original execution be identified?

– How can the environment of the original execution be reproduced?

– Which parts of the backend need to be extended?

– How can the result of a re-execution in future environments be verified?

• What information must be captured to enable validation of a job re-
execution on an earth observation backend?

– What are the validation requirements?

– How can differences in the environment between the executions be discovered?

The solution prototype is within Open Source Earth Observation Project (openEO)
(details see Section 2.5). It concludes with recommendations for the openEO specification
on how to improve re-execution validation for the users. Using the standard of openEO
enables to restrict the target of the thesis. It also facilitates all backends compliant to
openEO an entrance to the proposed features of this thesis.

1.3 Methodological Approach

There are already technologies available to solve parts of the issues described in the
determined problem. This section provides the three key parts of the methodology used
for the proposed solution of the thesis.

1. Data Identification The input data has to be identifiable, to accomplish the
capturing of jobs described in the use cases of Section 1.1. The Research Data
Alliance (RDA) has identified 14 general rules [34] for identification of data used in
computation that allows to cite and retrieve the precise subset and version of data
that existed at a certain point in time.

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1. Introduction

2. Job Environment The VFramework [23] and context model [19] were proposed
to automatically document environments in which computational workflows execute
and to enable their comparison.

3. Backend Standardization The openEO project [27] works on creating a common
EO interface to enable interoperability of EO backends by allowing researchers to
run their experiments on different backends without reimplementing their code.
We contribute to the openEO standard to provide compliant backends with repro-
ducibility concepts.

By combining these three elements, a scientific infrastructure is created that allows
automatically documented and reproducible experiments to be executed with minimal
overhead to the infrastructure and researchers performing their studies. We present
this solution improving reproducibility of earth observation experiments executed at the
openEO compliant backends. We follow the RDA recommendations for data identification
and present how data provided by backends is made identifiable by assigning identifiers
to subset queries made by researchers. We discuss which specific information must be
captured, which interfaces must be modified, and which software components must be
implemented. We also show how jobs executed at backends can be captured and compared
using the VFramework to identify whether any differences in software dependencies among
two executions exist.

1.4 Structure of Work

This thesis is structured as follows. After this introduction, Chapter 2 gives an overview
of related scientific activities in the area of reproducibility in the earth observation
sciences and reproducibility in other areas with similar objectives. Chapter 3 provides
the concept to address the research questions defined in Section 1.2. It is the design used
for the prototype implementation on the openEO compliant EODC backend described
in the following chapter. Chapter 4 gives detailed insight into the modifications needed
at the backend to achieve the features described by the use cases. The next chapter,
Chapter 5 is concerned with the evaluation of the implementation of Chapter 4. For the
evaluation we simulated typical use cases representing updates of data and changes in
the backend environment. We also measured the performance and storage impact on the
backend, which turned out to be minimal. Chapter 6 summarizes the outcome of the
implementation and evaluation. It contains a discussion on results achieved and future
work.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Related Work

This chapter describes the related work that influenced this thesis. It informs the
reader about concepts related to the proposed solution. The information is structured in
subsections, each representing important technologies or concepts in the context of this
thesis.
The first section presents the concepts behind reproducibility in computer science.
The second section describes the state of reproducibility in earth observation science.
The third section presents concepts related to data identification.
The fourth section consists of other existing implementations to achieve reproducibility.
The last section of this chapter describes the openEO project and the EODC backend,
which we use for the proof of concept implementation in Chapter 4.

2.1 Reproducibility

The term of reproducibility is defined as a new experiment based on an original experiment
by an independent researcher in the manner of the original experiment. Reproducibility
aims to gain additional evidence on the result of the original result by creating an
independent experiment that shows similar results. Repetition defines a re-run of the
same experiment with the same method, same environment, and a very similar result.
The repetition aims to check if the methods described in a publication are resulting in the
purposed outcome [46]. Achieving reproducibility is a common problem in all scientific
areas. Therefore there are ten rules defined to gain a common sense about reproducibility.
They are motivated by the basic idea that every result of interest has to be associated
with a used process and data. The researcher has to provide external programs as well
as custom script versions. Using version control software is recommended. Besides,
one of the steps defines a rule to make scripts and their results publicly available [36].
Reproducibility is the crucial topic of The Fourth Paradigm. It leads to the term eScience,
which has the aim of bringing science and computer technologies closer together. The

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

general concept is to enable scientific procedures with new information technologies used
by data-intensive sciences. The expected result of eScience is to get all scientific papers
publicly available, including the necessary data and workflows, so that scientists can
interact more efficiently [11]. eScience has the potential to enable a boost in scientific
discovery. It provides approaches to make digital data and workflows citable. The
publication [35] discusses a general way of reaching this. It describes an approach to
look at whole research processes by introducing Process Management Plans, other than
limiting it to data citation. It demonstrates the capturing, verification, and validation of
the input data for a computational process. Computer sciences have the issue of high
amounts of published papers that do not provide enough information to make them
reproducible. This is not solved by the scientists that need to make additional effort,
but by providing new tools for scientists that allow it automatically [22]. There are
some additional issues on reproducibility in computer science e.g. in the case that used
software technologies are deprecated and not available anymore. Therefore, persisting the
execution context is needed to achieve a re-execution of the experiment. One proposed
solution is the VFramework described in more detail in Section 2.1.2. The PRIMAD
model defines a set of variables that define an experiment. The relationship of the
original execution to a re-execution is visualized by noticing changes in the variables.
The following variables of an experiment are used to describe the relationship [8]:

• P Platform / Execution Environment / Context (e.g. Python 2.7, Windows 10,. . .)

• R Research Objectives / Goals (e.g. sorting the input)

• I Implementation / Code / Source-Code (e.g. script in Python)

• M Methods / Algorithms (e.g. quick sort)

• A Actors / Persons (e.g. researcher that is executing the experiment)

• D Data (input data and parameter values) (e.g. input data that is to be sorted)

If there is a re-execution that is different on every variable to the original one, except for
the same method (M) and goal (R), it is considered a reproduction [8].
Data citation is a vital issue of reproducing results of past experiments. Preserving
the exact workflow without persisting the original data has no positive effect on the
scientific community. If the data used in an experiment is not available anymore, or not
specified explicit enough, then there is no chance of reproducing it no matter how much
information about the execution is known. In earth observation persisting the data for
reproducibility in the future is an issue discussed in the literature [33]. Gaining data

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.1. Reproducibility

identification in digital sciences has an official working group named Working Group on
Data Citation (WGDC), which created 14 recommendations on data citation further
explained in Section 2.3.

2.1.1 PROV-O

In 2003 the World Wide Web Consortium published the PROV model as a standard
concerning provenance definitions. It is defined in twelve documents. In the context
of this thesis the PROV Ontology (PROV-O) is the most relevant [45]. PROV-O is a
standard language using OWL2 Web Ontology. It is a lightweight concept capable of a
broad spectrum of applications.

Figure 2.1: Overview of the main components of PROV-O [45]

Figure 2.1 shows the basic setup of the PROV-O concept. It consists of three main
elements. The Entity is any physical, digital or conceptual thing. Provenance records
describe Entities that can consist of references to other Entities. Another element
is the Agent, which is responsible for Activities and that they are taking place, e.g.
software, persons, or organizations. The association of an Agent to an Activity defines
the responsibility of the Agent for the Activity. An Activity describes what happened
that the Entity has come to existence and how attributes of an Entity changed [45]. The
design chapter 3 does not specify the representation of the context information. Therefore
the PROV ontology can be used to represent the information. This thesis implements
the PROV-O standard as one of the available provenance representations for the user.
Section 4.4.1 shows the implementation.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

2.1.2 VFramework

The VFramework defines parallel capturing of provenance data during the workflow
execution. During the original execution, evidence gets collected into a repository e.g.
logging. The context model of the execution persists the needed data e.g. in a database
record. Re-execution is verified and validated using the provided provenance data in
the context model of the original execution and the context model of the re-execution.
The provenance data divides into static and dynamic data. Static data defines data
that is not dependent on the execution of the experiment e.g. the operating system
and installed packages. The static environment information is, therefore, independent
of the configuration of the workflow. Dynamic data is captured during the execution
of the original experiment e.g. Python version of the execution or used input files. It
describes data dependent to a workflow execution [21]. Figure 2.2 shows an overview of
the VFramework concept described above.

Figure 2.2: Overview of the Concept of the VFramework [21]

2.2 Earth Observation Science

This section describes Reproducibility in the context of the computational geoscience.
A study tests the reproducibility and replicability of scientific papers in geoscience by
obtaining more than 400 papers [26]. In [26] a reproduction is defined by an exact
duplicate of an experiment, whereas it defines replication as a resemblance of the original
execution, but allowing variation e.g. different scales. Table 2.1 describes the difference
between reproduction and replicability in PRIMAD terms. Since the definition of the
paper differs from the definition of this thesis the terms are marked as Reproducibility’
and Replicability’. Only half of the test group publications are replicable, and none of
them reproducible. There are publications to address the lack of reproducibility in the
earth observation science. The following sections summarize these concepts.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Earth Observation Science

Table 2.1: PRIMAD description of reproduction and replication according to [26]

Reproduction’ Replication’

Platform same different
Research Objectives same same
Implementation same different
Methods same different
Actors different different
Data same different, but similiar

2.2.1 Vadose Zone Journal (VZJ)

In order to face the issue of reproducibility in geoscience the Vadose Zone Journal (VZJ)
started a Reproducible Research (RR) program in 2015 [43]. The earth observation
science is a big part of VZJ publications, and most of them are not applying the open
computational science guidelines. The main reasons are behaviors of scientists that do
not see the overall benefit of putting effort into documentation. Therefore, the VZJ
started an RR program to publish the code and data alongside scientific papers. The
aim of the strategy is to lower the access barrier for scientists to publish their research
work entirely. Goal of the project is to create a community of researchers with a shared
sense of reproducibility and data citation on the platform. The community then animates
other scientists to join the approach. On time this thesis is written, the service is still
available1, but there were no results available on how much it is used [43].

2.2.2 The Geoscience Paper of the Future (GPF)

Geoscience Papers of the Future (GPF) [9] is an initiative to encourage geoscientists
to publish papers together with the associated digital products of their research. This
means that a paper would include:

1. documentation of datasets, including descriptions, unique identifiers, and availability
in public repositories;

2. documentation of software, including pre-processing of data and visualization
steps, described with data and with unique identifiers and pointers to public code
repositories;

3. documentation of the provenance and workflow for each figure or result.

Figure 2.3 visualizes the differences with a reproducible paper. In addition to the
characteristics of the reproducible paper, the GPF focuses on publishing the data publicly
with open licenses with citable persistent identifiers. The GPF proposes a set of 20

1https://dl.sciencesocieties.org/publications/vzj/author-instructions-reproducible-research

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Figure 2.3: Relationship between reproducible publications and geoscientific papers of
the future [9]

recommendations for geoscientists regarding data accessibility, software accessibility, and
provenance information. GPF authors may have reasons to be not able to follow all
rules and therefore, have to find workarounds and propose areas for future improvements.
The strategy of the GPF community is to educate the scientist to make reproducible
publications, by making training sessions2, instead than providing tools. The solution of
this thesis aids in providing information requested above by precisely identifying datasets
and software (including version and libraries) used by backends to compute results. This
information is collected automatically and can be accessed by users any time using the
same API as they use for implementation of their experiments.

2.2.3 Climate Change Centre Austria (CCCA)

The Climate Change Centre Austria (CCCA) is a research network for Austrian climate
research available since 2016. Its aim is the provision of climate-relevant information,
the inter-operable interfaces, and long term archiving of scientific data. In 2017, data
citation for the Network Common Data Form (NetCDF) format was added to the project.
The architecture of the implementation and the technology used in the background is
similar to the set up of the EODC backend. Therefore, the approach of enabling data

2http://scientificpaperofthefuture.org/gpf/events.html

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.2. Earth Observation Science

identification was similar to this thesis. CCCA is open source and available at GitHub3.
Similar to the approach of this thesis, the concept for data identification are the RDA
recommendations. Figure 2.4 shows a technical overview of the CCCA implementation.
It uses a ckan4 web server to handle the request and responses of the user, which are
then passed to a Python application. The Python application is responsible for the
query store functionality. The core element is the Thredds Data Server (TDS)5, which
is responsible for the data archiving. The Python application of the CCCA overview
is similar to the implementation of this thesis. The main difference is the objectives
of the CCCA service compared to the EODC backend. On the CCCA platform, any
climate-relevant information (e.g. air temperature or frost days) can be uploaded and
persisted. On the EODC backend, preprocessed global earth observation data is persisted,
which is used as input data for processing chains. Therefore, the data on EODC is more
homogeneous than the data on the CCCA platform. Nevertheless, the concept of enabling
data identification is similar in both projects. The CCCA implementation inspired the
query store implementation of this thesis. The query result differs, because EODC uses
a different file format (Georeferenced Tagged Image File Format (GeoTiff) instead of
NetCDF). Another difference is that CCCA uses HTTP GET requests as query, whereas
the EODC backend uses Extensible Markup Language (XML) based queries, which are
restricted by the openEO API specification [40].

Figure 2.4: Technical overview of the CCCA NetCDF data citation implementation

3https://github.com/ccca-dc
4https://ckan.org
5https://www.unidata.ucar.edu/software/thredds/current/tds/

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

2.3 Data Identification

For the aim of this work, the input data is a key element of the captured data. If the
input data can not be identified correctly, the capturing of the processing on it does
not gain useful information. Therefore the identity of the data has to be guaranteed.
The Research Data Alliance (RDA)6 is an international body issuing recommendations
helping to remove barriers in data sharing. Recommendations are based on a community
consensus worked out within working groups. The Data Citation working group7 has
identified 14 rules for identification of data used in computation. It allows to identify
and cite arbitrary views of data, from a single record to an entire data set in a precise,
machine-actionable manner. Further it enables to cite and retrieve that data as it existed
at a certain point in time, whether the database is static or dynamic. In the following
the recommendations are summarized [34]:

• R1: Data Versioning
Changes on a data record must result in a new version of the data record and the
persistence of the deprecated data records. All data record versions have to be
identifiable and accessible.

• R2: Timestamping
All changes to the database have to be comprehensible via timestamps. Every time
changes are applied to the data, there has to be a timestamp persisted to describe
when it happened.

• R3: Query Store Facilities
There has to be a query store implemented at the data provider. The applications
uses it to store queries and additional information. The database has to store,
according to [34], the following things:

– The original query as applied to the database

– A potentially re-written unique query created by the system (R4, R5)

– Hash of the (unique) query to detect duplicate queries (R4)

– Hash of the result set (R6)

– Query execution timestamp (R7)

– Persistent identifier of the data source

– Persistent identifier for the query (R8)

– Additional information (e.g. author or creator information) required by the
landing page (R11)

6https://rd-alliance.org
7https://rd-alliance.org/groups/data-citation-wg.html

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.3. Data Identification

• R4: Query Uniqueness
Since it is not desirable to have equal queries with the same result stored at the
query store, there needs to be a unique query that can be directly compared to
other queries. Hence, there needs to be an algorithm to normalize the queries and
to guarantee their uniqueness.

• R5: Stable Sorting
The sorting of the resulting data has to be unambiguous, if the sequence of data
item presentation is essential for the reproduction.

• R6: Result Set Verification
To ensure that the resulting data of the query is comparable there have to be a
checksum or hash key of it.

• R7: Query Timestamping
There has to be a timestamp assigned to every query in the query store, which can
be set to the latest update of the entire database, or the query dependent data of
the database, or simply the time of query execution.

• R8: Query PID
Every query record in the query store must have a Persistent Identifier (PID). There
must not be a query with the same normalized query and query result checksum
tuple.

• R9: Store the Query
The data described in previous recommendations have to be persisted in the query
store.

• R10: Automated Citation Texts
To make the citation of the data more convenient for researchers, there shall be a
automatic generation of the citation text snipped containing the data PID.

• R11: Landing Page
The PID shall be resolvable in a human readable landing page, where data mentioned
in the previous recommendations is provided to the scientist.

• R12: Machine Actionability
Providing an API landing page so that not only humans, but machines can access
the data by resolving the PID.

• R13: Technology Migration
If the query store needs to be migrated to a new system, the queries have to be
transferred too. In addition the queries have to be updated according to the new
setup, so that they still work exactly like in the old system.

• R14: Migration Verification
There shall be a service to verify a data and query migration (see R13) automatically,
to prove that the queries in the query store are still correct.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

The recommendations provide a generic set of rules independent of an application domain.
So far they have been implemented in settings ranging from atomic and molecular data
[48], climate change [41] to health policy planning [31]. We use them also in our solution
to make data provided by backends identifiable, by assigning PIDs to queries identifying
the subsest of data selected by researchers for their analyses.

2.4 Tools for Reproducibility

The section describes tools that are designed to solve similar problems or subproblems
addressed by this thesis. There is an explanation of why the specific tool was not used
for the prototype of this thesis or how it was used in parts of the solution.

2.4.1 noWorkflow

noWorkflow is introduced in 2015 as a provenance capturing tool with the aim of not
influencing the way researchers work. As proof of concept, noWorkflow uses Python as
programming language. A SQLite database stores the provenance information categorized
in trials. A trial represents the environment information of one execution. The main
benefit of noWorkflow is that it does not instrument the code, and it automatically
captures the definition, deployment, and execution environment in a local SQLite database.
The command line interface of noWorkflow is capable of providing access to the stored
data. In addition to just retrieving the information about the execution environment,
analyses features are added Figure 2.5 gives an overview of the noWorkflow architecture.
It shows the three modules of capturing, storing and analyzing of the provenance data
[24].

Figure 2.5: Architecture of noWorkflow [24]

The noWorkflow framework improved regularly after the first announcement. noWorkflow
was extended by an feature of tracking the evolution of the trials [30]. It improves

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.4. Tools for Reproducibility

the possibility to compare trials and to visualize the history of past trials. Next, the
fine-grained provenance tracking extension of noWorkflow is introduced [28]. It enables
to split the trial into single execution lines. It adds a visualization of all called functions
in a graph. It has the limitation of multiple function calls in one line on complex data
structures such as dictionaries, lists, and objects. Next, noWorkflow combines with
yesWorkflow, the concept of gathering information about the provenance using comments
and annotations [20]. The combination enabled more detailed environment information,
querying, and visualizations [29]. In this thesis, noWorkflow was used in an early attempt
for the implementation but is not part of the final solution due to the high amount of
the captured data by noWorkflow and the additional requirements needed by the EODC
backend for using it.

2.4.2 ReproZip

ReproZip is a packaging tool to enable the reproducibility of computational executions
of any kind. It automatically tracks the dependencies of an experiment and stores it into
a package. ReproZip can execute the package on another machine. Additionally it is
capable of letting the re-executor modify the original experiment. It was developed for
the SIGMOD Reproducibility Review8. Figure 2.6 shows the architecture of ReproZip.
ReproZip traces the system calls to create a package configured by the configuration
file. Thus, it produces a single file with the extension “.rpz”. ReproZip opens these
files, unpack them and re-executes it on a different machine. ReproZip aims to make
reproducible science easy to apply for single experiments [4]. The reason why it is not
used in the solution of this thesis is that the capturing is very fine granulated. This
takes too much performance from the backends, which is a key selling point for backend
providers. Depending on the backend, the payment for users may be dependent on the
duration time of the processing. Another issue with ReproZip in the context of this thesis
is that it is not capable of capturing the big data of the backends within the package,
because it would take too much space and performance.

Figure 2.6: Overview of the ReproZip concept from [4]

8http://db-reproducibility.seas.harvard.edu/

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

2.4.3 Docker / Smartcontainer

Docker containers are ubiquitous in geoscience executions. The advantages of reproducible
research and cost savings by using Docker containers are discussed in the community for
the Geographic Object-Based Image Analysis (GEOBIA) [14]. The implementation of the
image analysis is implemented with a docker image with a user interface that can also be
used by non-experts. Studies for the more general Object-Based Image Analysis (OBIA)
using this Docker containers were carried out [13]. The conclusion is definite, with only
little shortcomings in the usability. The aim was to use docker images to make it easier
for scientists to re-run an experiment on the OBIA system. The remaining question
is how the docker configuration is preserved in a manner that it can be reproduced
within different environments. Therefore, a "workflow record" is introduced by storing
the environment and entities involved in addition to the Docker description file. SPARQL
query is introduced to create the possibility to use the container as a repository of data
[7].
Smart container is another approach of preserving a docker container. The aim of a
smart container is an ontology and software to preserve docker data. It uses the PROV-O
standard to define the provenance [12]. Docker containers are used at the EODC backend
for running all services. Therefore they are part of the solution. The description files of
the used docker containers are persisted in the GitHub repository of the EODC backend.
Hence they are identifiable by the backend version defined in Section 3.

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. openEO

2.4.4 Version Control Systems

Version Control Systems (VCS) became an essential part of all computational sciences.
It enables to persist versions of code and the possibility to head back to a particular
version. Before that, programmers tend to have multiple directories to make versions
of the code. The basic idea of VCS is a command line interface that makes it possible
to set a version of the current state of the code. These versions can be accessed in the
future, without changing other versions of the code and without manually added folder
structures [16]. In this thesis, we use Gitorious (Git) as VCS of the solution. Versions in
Git are defined as commits and are stored locally and can be published to an external
server. There, other users can access the commits if they have enough rights set. The
commits are stored both, locally and remotely [17]. openEO uses Git as default code
versioning tool. GitHub is used as the publicly available server. Since openEO is an open
source project, the code of every backend, core API and the client software is available
at GitHub without restrictions.

2.4.5 Hash

Hash functions are used to validate data without having to save the whole data. They
have two important properties to work correctly. First, the probability that two different
inputs have the same hash outcome has to be low. Second, it must to be hard to find
a message with the same hash value as an already known message. These properties
makes the hash functionality a standard tool to identify data without having to save the
original [44]. In this thesis, the Secure Hash Algorithm (SHA)-256 is used for the entries
of the context model, mostly to compare differences in data outcomes.

2.5 openEO

The openEO project consists of three modules. The client module written in the
programming language of the users and entry point of the users. Second, the backend
drivers that enables for every backend to understand the calls from the clients, so the
interface at the backends to support openEO. Third, the core API, which specifies
the communication. The core API is the key element of the openEO project and a
standard that the backend providers accepted to implement on their systems to be
openEO compliant. The backend drivers are the translation of the client calls to the
backends specific APIs. This architecture decouples the clients from the backends so that
every openEO client can connect to every openEO compliant backend. An example of a
workflow is the example defined in Section 1.1.1 using the Python client to access the
openEO interface of the EODC backend [27].

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

The communication is specified as an OpenAPI description, which is a way of defining
Representational State Transfer (REST)ful communication in a standardized way. The
definition consists of the endpoints at the backend and the requests and the responses.
The whole communication protocol is specified with OpenAPI [42]. In the following, the
relevant RESTful request types in openEO and the policy of choosing between them are
introduced:

• GET Request
GET requests are used to retrieve data from the backends. The functionality is
limited to read operations.
(e.g. GET /collections returns a list of available collections at the backend.)

• POST Request
POST requests are used to create new data records at the backend. It is also used
to send information in the body of the request.
(e.g. POST /jobs creates a new processing job at the backend, which is defined in
the body of the request. It creates a new job identifier.)

• PATCH Request
PATCH requests are used to update existing records at the backend.
(e.g. /PATCH /job/job_id modifies an existing job at the backend but maintains
the job identifier.)

• DELETE Request
DELETE requests are used to remove existing records at the backend.
(e.g. /DELETE /job/job_id removes an existing job from the backend.)

2.5.1 Job Execution

Figure 2.7 shows a sequence diagram of a job execution using the client application and an
openEO compliant backend. Users define the workflow in a client-specific programming
language using the openEO client. The main parts of the job execution definition is
the description of the input data, the filter operations and the processes that should be
executed on the filtered data. Therefore, openEO introduces the process graph. openEO
defines it as a tree structure of processes with their input data and successor process.
The openEO coreAPI specifies every operation as process, even filter and data retrieval
operations. The process graph is in JavaScript Object Notation (JSON) format and gets
generated by the clients in the background without users having to deal with it directly.
Figure 2.8 shows the running example process graph defined in Section 1.1.1.

The backends interpret the process graph from inside out. Figure 2.8 displays the process
graph of the running example of Section 1.1.1. It describes the calculation of the minimum
NDVI image of the Sentinel 2 satellite over South Tyrol in May 2017. The element in the
center of the process graph defines the input data identifier in the "imagery" block, with

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. openEO

Figure 2.7: Overview of the openEO procedure to execute a job and retrieve the results

the "get_collection" process id. In this case, "s2a_prd_msil1c" is chosen as input data
identifier, since it defines Sentinel 2 data at the EODC backend. After reading the input
data id, the backend iterates one step up in the hierarchy of the process graph and calls
the process "filter_bbox" with the parameters "west", "east" etc.. It filters the satellite
data spatially, by only considering data within the bounding box (e.g. the area over South
Tyrol). Next, the "filter_daterange" process is used to filter the imageries temporally,
by only using data from May 2017. Every process beginning with "filter_" is defined as
filter process, so an operation that restricts the input data. How the filter operations
are implemented depends on the infrastructure of the backend provider. Section 2.5.3
shows how EODC implements it. The output data of the previous process is the input
data of the next process. After the last filtering process, the NDVI gets called by the
process "NDVI" with the parameters "red" and "nir". They are setting the identifier of
the bands of near-infrared and red light used by the backend. The two bands are used
in the formula of the NDVI calculation (see Section 1.1.1). Next, the minimum value
is taken from all images using the "min_time" process. It is a reducer process, which
transforms the image stack of May 2017 into a single result image. Figure 2.9 shows the
same process graph from the backend point of view. It visualizes the order of how the
processes are executed. To transmit the process graph of Figure 2.8 at a backend, the
openEO client puts it into the body of the POST /jobs endpoint request.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

Figure 2.8: Process graph of the running example defined in Section 1.1.1

There are two different kind of process executions depending on the capabilities of the
backend named synchronous and asynchronous calls. Synchronous calls are directly
executed after the backend receives them, and the script of the user has to wait until
the job is finished for proceeding. For example, the program waits after sending the
process graph to the backend until the backend returns the result. An asynchronous
call does not get executed until the user starts the execution on the backend through
an additional endpoint call. When the processing is finished, the user can download the
result at another endpoint of the backend. For asynchronous calls, there is the possibility
to subscribe to a notification system on the backend, so that the user gets notified when
the job execution finished. The processes are defined at the openEO core API and
independent of the backend they get called at, other than the data identifier, which may
differ at each backend.
The previous example uses a process graph that only consists of the available processes
and data of the backend. Within the openEO9 project, there is the possibility to define

9https://github.com/Open-EO/openeo-openshift-driver/tree/release-0.0.2

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.5. openEO

Figure 2.9: Action chain of the backend after receiving the process graph of Figure 2.8

Table 2.2: List of all backend providers of the openEO project

Organisation GitHub

EODC https://github.com/Open-EO/openeo-openshift-driver

VITO https://github.com/Open-EO/openeo-geopyspark-driver

Google https://github.com/Open-EO/openeo-earthengine-driver

Mundialis https://github.com/Open-EO/openeo-grassgis-driver

JRC https://github.com/Open-EO/openeo-jeodpp-driver

WWU https://github.com/Open-EO/openeo-r-backend

Sinergise https://github.com/Open-EO/openeo-sentinelhub-driver

EURAC https://github.com/Open-EO/openeo-wcps-driver

individual processes and execute them on the backend. In the project, they are called
“user defined functions” and are at the writing of this thesis still not well-defined. The
plan is to send code written by the openEO user to the backend and execute it there in
a secure virtual environment. The user can define processes and can run them with the
data provided at the backend, using the infrastructure of the backend. Every backend
has to define what the restrictions on user defined functions are.

2.5.2 Backends Overview

Even though the backends implement the openEO core API standard, they are still
diverse behind this abstraction layer. Most backends have already an API, where the
openEO calls are translated to. There are 7 partners within the openEO project that are
implementing a backend driver. The backends have to implement a translation of the
process graph to the internal system. The billing of the users can be completely different
on every backend. Table 2.2 gives an overview of all contributing openEO backends and
their related GitHub repository.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2. Related Work

2.5.3 EODC Backend

The EODC backend is one of the contributing backend providers of the openEO project.
The backend is implemented in Python and operates job executions with docker. EODC
decided to use OpenShift (using Kubernetes) 10 to balance the workload of the docker
container. It is capable of scaling docker containers and provides version control on them.
The docker container execute the Python code for executing the processes. The docker
description files and the Python code are available on GitHub. In this thesis, the latest
version of the EODC backend provided in GitHub using openEO coreAPI version 0.3.1
is used. Every process of the openEO process graph is represented by an own Docker
container. The Python library flask accomplishes the service layer for the RESTful API
of the EODC backend driver. EODC provides only data from Sentinel 2 and Sentinel 1
within the openEO project. They are satellite images from Copernicus in cooperation
of the European Space Agency (ESA), which receives the raw data directly from the
Sentinel satellites.
The data management of EODC is file-based, so every image data is stored in a different
directory and filename combination. The path of the file is the identifier of a data record.
Data is provided via PostgreSQL database including the PostGIS11 plug-in. In addition
to the basic PostgreSQL functionality the plugin enables filtering by spatial and temporal
extent. The datasets contain the bounding box coordinates and the timestamp of the
capturing as well as a creation timestamp. It enables to query all datasets inside of a
given area and timerange within SQL syntax. The plugin is capable of returning the
newest datasets in terms of creation timestamps, so that only one version of a dataset is
returned. We use an additional "WHERE" clause to filter datasets that have a creation
timestamp before a certain time. So that we can get the versions of datasets available at
a given time.The provided query tool for EODC users is the Open Geospatial Consortium
(OGC) standard interface Catalogue Service for the Web (CSW)12.It is used for the
communication to the web interface of the EODC database. Figure 2.10 gives an overview
of the EODC database structure. It is retrieved from the GitHub repository of the EODC
backend13, where every database entity is defined. A process entity can have parameters
described by the parameter entity. The process node is representing one node in a process
graph and is therefore related to exactly one process graph entity. Every job is related to
a process graph. There may be jobs that use the same process graphs, but in the current
set up they are persisted both separately in the database.

10https://www.openshift.com/learn/what-is-openshift/
11https://postgis.net
12http://cite.opengeospatial.org/pub/cite/files/edu/cat/text/main.html
13https://github.com/Open-EO/openeo-openshift-driver

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

2.6. Summary

Figure 2.10: Overview of the EODC database structure.

2.6 Summary

The research areas related to the solution of this thesis has a vast amount of available
literature. The problem description of the thesis has many related existing solutions
described in this chapter. The outcome of this thesis has the aim of making it easy for the
scientists to reproduce experiments and therefore enable job re-execution at the backend.
Other than presented solutions for earth observation science like the approach of VZJ
and the GPF, which only provide informal support for scientists. The implementation of
Section 4 builds on existing systems like the implementation of the CCCA query store,
the RDA recommendations and the VFramework. The following chapter describes the
design of the solution.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Design

The core of this thesis is an extension design for EO backends providing users repro-
ducibility. This chapter describes the proposed generic design that can also be applied to
other similar domains. This chapter aims to present the design and is structured in six
parts. The first part presents an overview of the design. The next three sections describe
the main components in more detail. First, the data identification component, then the
component of capturing the provenance of the job execution. Third, the component
for capturing and validation the result. The next section defines the resulting context
model and its elements. The last two sections define the user services, suggestions on
backend API extensions and User Defined Functions (UDF). The next Chapter 4, shows
an implementation of the outcome of this chapter at the EODC backend.

3.1 Overview

This section gives an overview of the design. Figure 3.1 shows an overview of the design.
White boxes represent the components that every backend driver has already in place.
The green elements in Figure 3.1 are the proposed extensions to the backend. The
following steps describe a typical job execution workflow for a better understanding of
the backend functionality:

1. EO Client
The user defines input data, filter operations, and processes, which define the
workflow of an experiment, via an EO client. After that, the user orders with the
client the creation of a new job at the backend. Therefore, the client creates a
process graph description and sends it to the backend. The client application is
used to start the execution of the job and to receive the results. The following
steps describe the backend internal procedures after starting the execution of a job.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Design

Figure 3.1: Overview of the design

2. Data Query
The Data Query component receives the process graph and parses the data identifier
and the filter operations. They are used to build a internal query to select the
input data required by the job execution. Data Query forwards the resulting data
of the query execution to the Process Execution component.

3. Process Execution
The Process Execution component receives the process graph and the input data
from the Data Query component. It parses the processes from the process graph
and executes them in the order of appearance. After every process executed, the

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.1. Overview

Process Execution component forwards the resulting data to the Result Handling
component.

4. Result Handling
The Result Handling component receives the results from the Process Execution
component and stores all job related meta data and the result. If ordered by the
client application, the Result Handling sends a link to the output files back to the
client. In addition does the Result Handling component provide meta data of the
job execution to the user via the client.

The design of this thesis aims to make all three backend internal components identifiable.
This enables to make the whole job execution reproducible. Hence, we introduce the
following elements as additional components to the backend.

• Query Handler
The Query Handler component applies data identification to the backend. It does
so by applying the RDA recommendations described in Section 2.3. The component
takes the query and a checksum of the resulting data of the query execution from the
Data Query component. Every query and query result combination is identifiable
by a data PID. Section 3.2 describes the functionality of the Query Handler in
more detail.

• Job Capturing
The Job Capturing component enables code identification as well as execution
environment information. Therefore, it introduces a PID of the job execution
code. In addition, it captures data of the execution environment to gain additional
information for users. Section 3.3 describes the Job Capturing component in more
detail.

• Result Handler
The Result Handler component creates a comparable result checksum or hash. The
data created by an earth observation backend might be too big to be persisted
entirely. Hence, the component introduces a checksum or hash to be capable
of confirming equality of job results. Section 3.4 describes the Result Handler
component in more detail.

• Context Model
The context model is not a component, but a data record containing the job related
data produced by the previous components. Every job execution is related to one
context model. Section 3.5 provides more detailed information about the context
model and its elements.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Design

3.2 Query Handler

The input data of the processing is crucial for the outcome of the job execution. Even
though the process graph contains an identifier of the input dataset (e.g. Sentinel 2),
internal changes to the data set might not result in a new dataset identifier. Later
execution of the job might use another version of the input data. The input data has
to be stored in a query store according to the 14 recommendations of data provenance
defined by the RDA [34]. By implementing these at the Query Handler component, input
data becomes identifiable. The Query Handler is the module where the data persistence
is implemented and depends highly on the structure and architecture of the backend.
Therefore, there is no general design to achieve it in this section. Chapter 4 shows an
implementation of the RDA recommendations at the EODC backend. The context model
contains the input data with the following element:

(a) Input data persistent identifier
The output of the Query Handler component is the input data PID used by a job
execution. Every job execution accesses input data with a PID. Therefore, the input
data PID is added to the job dependent context model.

3.3 Job Capturing

This section describes the Job Capturing component. It handles the job execution
environment capturing and the code identification. The data provided by Job Capturing
is categorized in static and dynamic data. We define static data as not dependent on the
configuration of the job. We define dynamic data as job dependent information. The
following two sections describe the static data (backend provenance) and dynamic data
(job dependent environment).

3.3.1 Backend provenance

The scope of the backend provenance is to get the static environment of the job execution.
It contains the provenance data independent of the job configuration. The elements
of the context model not changing regardless of how many jobs are executed. Only
the maintainer of the backend are capable of changing this data. The following data is
suggested for the backend provenance:

(A) Code identification
Earth observation backends have to provide an identifier for the code. Therefore,
the backends must apply a version control system. If the backend is open source, it
can use a public repository using e.g. GitHub. The advantage of this is to get other
backends with similar settings to reuse the already existing solutions. By using Git,
the backend achieves code identification by adding repository information to the
backend provenance. It stores the Git repository URL and the commit identifier of

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.3. Job Capturing

the job execution. If the backend is not open source, a local or secure version control
repository is implemented to keep track of the different code versions. The code
identifier is necessary to identify differences in the backend code, and the version
control system enables to jump back to versions of the past.

(B) API version
The backend must stores the version of the currently used interface API. The API
defines the syntax and semantics of communication. The same API calls can resolve
in unequal results if the API version differs. Hence, the backend stores the API
version of the job execution in the context model.

(C) Backend version
The backend version is an identifier of the backend state. The backend updates
its version on every internal change (e.g. update of dependencies). It updates the
version on changes in the hardware as well as the software. It is essential that the
backend provider implement a tool to automatically capture the environment data
and persist it in a separate backend version store. Every change on any of the
described backend data has to be detected automatically and have to result in a
new backend version.

(D) Publication timestamp
The publication timestamp describes the time when the version was accessible at
the backend. The timestamp stands for the beginning of a new backend version.
The newest timestamp means that the version is the current one. The timestamp
enables to find a version of the backend used in a job execution of the past, just by
knowing the time it was executed.

3.3.2 Job dependent environment

This section describes the job dependent provenance of the context model. The data
captured is tied to specific job executions. The process graph is a description of processes
related to a job execution. Sending two equal process graphs to the same backend should
result in the same outcome. To assure that the process graph can be re-executed in the
same way as the original execution, data about the first execution gets captured. The
way of executing a specific process graph is not only related to the code running it, but
also by the dependencies of the code. Therefore, the programming language version and
the additional used libraries are persisted in the context model. To gain meta-information
about the processing the start time and end time can be added to the context model via
timestamps. These suggestions lead to the following capturing elements in the context
model:

(b) Backend provenance / code identifier
The backend provenance represents the version of the backend used for the job
execution. Since for every change on the backend, a new version is applied, the
version of the backend is used as a code identifier of the execution.

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Design

(c) Programming language
The programming language of the code used for the job execution. Besides, the
version of the programming language is included to this information.

(d) Dependencies of the programming language
The dependencies of the programming language must be captured and added to the
context model to describe the environment of the job execution. The version of the
packages have a high influence on the outcome, hence are included in this element.
For example, in Python, the installed modules are added with their versions to the
context model. The information stored in this element is part of the job dependent
environment, because it depends on the configuration of the job if the backend has a
dynamically generated container for every job.

(e) Start and end time of process execution
The start and end time of the job execution is persisted in the context model.

3.4 Result Handler

The resulting data of a job execution must be captured to enable the oucome of jobs.
In earth observation jobs, the results can be rather big. Therefore, the Result Handler
generates a hash value over the resulted files. The result data does not have to be
identifiable within the scope of this thesis, but checkable of equality with others. Therefore,
a hash value of the output data is sufficient. The aim of the output data capturing is
not to find differences between results, but to show that results are different or equal.
Even though the input data of typical earth observation experiments are significant, the
output of such experiments are images of various sizes.

(f) Result hash
To make the result of a job execution verifiable it gets persisted. One way to achieve
this, without too much impact on the backend storage, is to take a hash value over
the resulting files sorted by the alphabetical ascending filenames.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.5. Context Model

3.5 Context Model

The context model is the data record containing the provenance of a job execution. The
backend provider infrastructure defines the type of storage it is saved. In example it can
be stored in a relational database or a file-based system as a file. It must be integrated
into the database structure of the backend. Figure 3.2 shows an overview of the elements
of the backend used to run a job. Besides, it shows how the context model elements are
used to identify the components of the backend.

Figure 3.2: Overview of the backend execution components and the context model
elements that identifies them.

The backend provenance dataset contains job independent provenance and is identified
by a backend version. Therefore, the necessary element of the backend provenance is the
backend version that defines the state of the backend in a time period. The backend
version must be resolvable by a code version present during a past execution. Besides,
meta data about the backend can be added to the elements of the backend provenance.
The elements ((A) - (D)) defined in Section 3.3.1 are the suggestions of elements in the
backend environment record. The following list recaps all of the backend environment
elements:

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Design

(A) Code identification
Enables the identification of the code of a backend version.

(B) API version
Enables the identification of the API version of a backend version.

(C) Backend version
Identifies the whole backend.

(D) Publication timestamp
Enables the identification of a backend version at a specific time.

The job execution context model, which includes all information related to a job execution,
is stored in the context model. There are three necessary elements in the job context
model. The input data identifier must be part of the context model, so that the input
data of the job is identifiable. The backend version of the job execution must be included
in the context model, to be able to re-execute it with the same backend state in the future.
The job dependent context model must contain the output hash, so that differences in
the job results are detectable. The following list recaps the elements of the job context
model described in Section 3.3.2:

(a) Input data persistent identifier
Identifies the input data of the job.

(b) Backend provenance / code identifier
Identifies the backend version (C) during the execution of the job. Connects the job
context model with the backend environment dataset.

(c) Programming language
Identifies the programming language and version used by the job execution.

(d) Dependencies of the programming language
Identifies the dependencies of the programming language used by the job execution.

(e) Start and end time of process execution
Provides the start and end time of the job execution.

(f) Result hash
Describes the results of the job execution.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3.6. User Services

3.6 User Services

This section describes the provided information for users and how users access it. The
capturing described in the previous sections consist of information about the backends
that backend provider do not want to pass entirely to users. For example, it can be
risk to provide information on specific programming language packages if they have
vulnerabilities. There is captured information that might not be necessarily useful for
users. Therefore, there must be a filter on the shown information at the user services.
The earth observation community has a diverse set of backends with unique company
security guidelines.
Provenance information should be available to users to be useful. Therefore, we suggest
additions to the backend API specification. It consists of additional endpoints for the
users to get information about the backend and the client application. The following
recommendations are for backend and client developer to make context model information
accessible for users.

I. Backend version
We suggest an endpoint to retrieve the backend specific information, especially the
backend version. Additionally there need to be an endpoint to retrieve the backend
version of a specific time. The aim of it is to present the users with information
about the current state of the backend and to help users decide, which backend
they want to use.

II. Detailed Job Information
We recommend an endpoint to retrieve detailed information about an already
executed job. The endpoint includes the provenance of the job, therefore the
resolvable persisted identifier of the input data, the backend version, and the result
set hash. Additionally, the whole data of the context model can be made accessible,
depending on the security decisions of the backend. We recommend to provide this
information in PROV-O. In the current implementation the detailed job information
can be accessed in PROV-JSON, PROV-XML or visualized exported as PNG (see
Section 4.4.1).

III. Comparing Two Jobs
We suggest an additional endpoint either on the backend or at the client application
to compare two jobs. Every item of both of their context models is compared on
equality. If they are not equal, the differences should be transparent to the user. The
response of the comparison consists of the differences in the context model between
two jobs. In this thesis this is the only comparison representation implemented.
Future work will lead to a representation of the comparison according to PROV-O.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. Design

IV. Data Identifier Landing Page
After the job is executed and the input data got an PID. The PID must be resolved
by a machine-actionable landing page. The landing page provides the user with
information about the input dataset. We suggest an additional endpoint to re-
execute the query showing the input data files if given sufficient permissions.

V. Re-use of Input Data
We recommend to add the functionality to a backend to re-use input PIDs in a new
job. The API allows to include the use of an input data PID in the process graph,
so that users can include cited data directly in a newly created job description.

3.7 User Defined Functions

UDFs are customized code written by the user that gets executed in a virtualized
environment at the backend provider. In theory, the user defines a docker base image and
the code running in it. Therefore, it is a black box for the backend provider. They cannot
know how the code looks like in the docker container. Therefore, the capturing concept
needs to be different than the typical way of executing jobs at the backend. The code
and the docker base image has to be persisted by the backend provider. Additionally, the
timestamp of the execution, to be able to identify the backend version at the execution.
This is a rather new concept in earth observation science and not implemented on the
EODC backend, hence the implementation of the capturing is not part of this thesis.

3.8 Summary

This chapter presented the design of the proposed solution. It shows how a backend
can be extended to enable reproducible job executions. The data needed to be able
to reproduce a job execution are presented and described. Data identification must be
implemented according to the RDA recommendations. The elements of the backend
environment are defined and are identifiable by the backend version. We defined the
job dependent context by the job execution environment and the result hash. The data
needed for a reproduction of a job execution is stored in the context model and it is
the data needed to answer the research questions of Chapter 1. In addition to the data
description, recommendations on user services are listed. They provide the functionality
for the users. The next chapter presents the implementation of the proposed design at
the openEO compliant EODC backend.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Implementation

In this chapter we present the implementation of the thesis following the design described
in Chapter 3. It is implemented at the Python based EODC backend, a consortium
member of the openEO project. The implementation consists of the suggested extensions
to the backend and client application. It contains suggestions to the specification of
openEO. Thus, we modify all three parts of the openEO project architecture in the
presented solution. We modify the Python client1 for the purpose of this thesis. Python
is the most common programming language at the contributing backends of the openEO
project. The implementation is open source and other backend providers with similar
setup can use it.

Similar to the design of this thesis, we structure the implementation in four parts
presented in the first four sections. The first section describes the data identification
implementation following the RDA recommendations at the backend. Section 4.2 presents
the implementation of the backend provenance capturing at the backend. Next, Section
4.3 presents the implementation of the job dependent provenance at the backend. The
last section describes the implementation of the proposed user services in the client
application and the backend defined in Section 3.6.

4.1 Data Identification

In Section 3.2 we suggested that every backend provider has to implement data identifi-
cation following the RDA recommendations. This section presents the data identification
solution for the EODC backend. Other openEO backend providers can use the presented
approach as well. This section focuses on the implementation of the core components on
the backend. The mechanics of users getting and using the data identifier including the

1https://github.com/Open-EO/openeo-python-client

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

landing page is part of Section 4.4.

4.1.1 Database and Query Overview

This section describes the services used by the backend to query datasets and how the
underlying database is structured. Figure 4.1 gives an overview of the communication
layers of the query execution. The backend uses a PostgreSQL database with the PostGIS
plugin for querying the datasets. It is not only used by the openEO compliant backend,
but also by other applications from EODC and partners. The PostgreSQL Server is an
internal service inside the infrastructure of EODC. To make the data discovery accessible
from the web, EODC uses a web service layer compliant with the CSW standard. The
backend sends XML formatted CSW queries, which the CSW Webservice Layer translates
into SQL queries for the internal PostgreSQL Server. The result goes through the inverse
communication layer, so that the backend receives a CSW compliant response.

Figure 4.1: Overview of the query services at EODC. The backend sends CSW compliant
queries to the CSW Webservice Layer, which translates it to SQL. It enables a decoupling
of the database and the services as well as publicly available data discovery via the CSW
endpoint of EODC.

The backend uses a filebased data storage, where every file is identified by its path.
Nevertheless, there is additional metadata stored in the PostgreSQL database. The
following list describes the metadata relevant for the thesis:

• path
The path is the identifier of the data record. The backend uses it to access the
actual data file inside of its infrastructure.

• creation timestamp
The creation timestamp is the time, since the data record is available at the backend.
We use it in our implementation to query data versions from the past after updates
occurred.

• publisher
Contains the name of the publisher providing the source data e.g. ESA for Sentinel
data. We use it for the description of datasets on the landing page.

• description
Describes the source data. We use it to provide a description of the source data on
the landing page.

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Data Identification

• satellite identifier
Identifies the satellite used to retrieve the data record.

• tile number & orbit number & baseline number
These three numbers identify the geographical location of the data record. The
PostGIS plugin is capable of filtering tiles by bounding box coordinates. This
information is used by the backend to apply the filter arguments.

• sensing timestamp
The sensing timestamp describes when the data record was recorded by the satellite.
This information is applied by the backend for the filter arguments.

The backend creates a new version of a data record by appending a new data record with
a new path and a new creation timestamp to the database table.
The database structure is hidden for the backend, because the mapping is configured by
the CSW Webservice Layer. The CSW standard specifies properties and operators that
the backend uses to filter the data without knowing the concrete structure. Listing 4.1
shows the available properties. The backend uses these properties to access data of the
metadatabase e.g. apiso:ParentIdentifier for the satellite identifier.

<ogc:PropertyName>apiso:ParentIdentifier</ogc:PropertyName>

<ogc:PropertyName>apiso:TempExtent_begin</ogc:PropertyName>

<ogc:PropertyName>apiso:TempExtent_end</ogc:PropertyName>

<ogc:PropertyName>ows:BoundingBox</ogc:PropertyName>

<ogc:PropertyName>apiso:Modified</ogc:PropertyName>

Listing 4.1: CSW properties, used by the backend and our implementation.

Listing 4.2 shows the available operators. They are used by the backend to specify how
the parameters are filtered.

<ogc:PropertyIsLessThan></ogc:PropertyIsLessThan>

<ogc:PropertyIsLessThanOrEqualTo></ogc:PropertyIsLessThanOrEqualTo>

<ogc:PropertyIsEqualTo></ogc:PropertyIsEqualTo>

<ogc:PropertyIsGreaterThanOrEqualTo></ogc:PropertyIsGreaterThanOrEqualTo>

<ogc:PropertyIsGreaterThan></ogc:PropertyIsGreaterThan>

Listing 4.2: CSW operations.

Listing 4.2 shows the available operators. They are used by the backend to specify how
the parameters are filtered. All operators and properties compatible with the EODC
CSW server are listed at the official CSW endpoint2.

2https://csw.eodc.eu

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

<ogc:PropertyIsEqualTo>

<ogc:PropertyName>apiso:ParentIdentifier</ogc:PropertyName>

<ogc:Literal>s2a_prd_msil1c</ogc:Literal>

</ogc:PropertyIsEqualTo>

<ogc:PropertyIsGreaterThanOrEqualTo>

<ogc:PropertyName>apiso:TempExtent_begin</ogc:PropertyName>

<ogc:Literal>2017-05-01T00:00:00Z</ogc:Literal>

</ogc:PropertyIsGreaterThanOrEqualTo>

<ogc:PropertyIsLessThanOrEqualTo>

<ogc:PropertyName>apiso:TempExtent_end</ogc:PropertyName>

<ogc:Literal>2017-05-31T23:59:59Z</ogc:Literal>

</ogc:PropertyIsLessThanOrEqualTo>

<ogc:BBOX><ogc:PropertyName>ows:BoundingBox</ogc:PropertyName>

<gml:Envelope>

<gml:lowerCorner>46.905246 10.288696</gml:lowerCorner>

<gml:upperCorner>45.935871 12.189331</gml:upperCorner>

</gml:Envelope>

</ogc:BBOX>

Listing 4.3: Example CSW query of the backend.

Listing 4.3 shows an example CSW query of the backend if it runs the running example
described in Section 1.1.1. The query uses the ogc:Literal annotations to set the values
of the properties specified by the ogc:PropertyName annotations. The operations define
the relation between the value and the property e.g. the query only returns data records
with satellite identifiers that are equal to s2a_prd_msil1c. For our solution we need to
be able to filter by the creation timestamp of the data record. It enables us to re-execute
a query in the manner of the original execution. Listing 4.4 shows the additional query
part. apiso:Modified is specified by the CSW standard as the timestamp the dataset
got modified. EODC does not modify existing data records. An update appends an
additional data record. That is why EODC maps the apiso:Modified property to the
creation timestamp of the data record.

<ogc:PropertyIsLessThanOrEqualTo>

<ogc:PropertyName>apiso:Modified</ogc:PropertyName>

<ogc:Literal>2019-03-31T17:36:43.06Z</ogc:Literal>

</ogc:PropertyIsLessThanOrEqualTo>

Listing 4.4: CSW query addition by our implementation to filter by creation timestamp.

4.1.2 Query Store

The centerpiece of the RDA recommendations is the implementation of a Query Store.
Queries in the Query Store must be comparable, identifiable, and persistent. The query
data has to be stored at the backend infrastructure. The backend has a PostgreSQL

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Data Identification

database to store the executed jobs (see Figure 2.10 in Section 2.5.3). We realized the
Query Store at the backend with two additional tables to this database. Figure 4.2
visualizes the proposed additional tables. The new Query table consists of the query
datarecord specified by the RDA recommendations. The QueryJob table maps the
relation between Job and Query. In the current version of the openEO core API, it is
only possible to have one input data query used by a job. In the future, there may be the
possibility to have more than one input data query related to one job execution. Hence
we introduce the QueryJob table.

Figure 4.2: Overview of the database of the backend with the proposed additional tables
(green).

4.1.3 Query Handler

Figure 4.3 shows an overview of the data identification solution at the backend. The
green parts of the diagram represent proposed extensions. We implemented the Query
Handler component as an additional Python module in the backend called after the job
execution.

The Query Generation and Query Execution components provide the input data of the
Query Handler. The process graph is the raw input process graph received by the backend
driver from the client application. The list of result files is the result of the query execution
and therefore, the input data of the job. The Query Execution component provides the
execution timestamp. The Query Handler contains the following components:

• Query Processor
The Query Processor takes the executed query, parses and generates the necessary

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

Figure 4.3: Overview of the proposed data identification component at the backend

query data and forwards the information to the Query Record Handler. This step is
necessary, since the process graph at this point also includes the execution processes
and not only the filter processes. The output is composed of the original query, the
unique query, the hash of the unique query and the persistent data identifier (PID)
of the query. This information is forwarded to the Query Record Handler. The
mentioned resulting items are described in more detail in the next section.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Data Identification

Table 4.1: Structure of the Query Table in the PostGres database.

Query PID Dataset PID Original Query Unique Query

VARCHAR(100) VARCHAR(100) TEXT VARCHAR(300)

Query Hash Result Hash Execution Metadata
Timestamp

VARCHAR(65) VARCHAR(65) TIMESTAMP TEXT

• Data Handler
The Data Handler is responsible for creating the elements of a query record related
to the query result. The output contains the hash over the file list, the execution
timestamp and the number of resulting files. Since the backend uses the OGC
standard CSW3 to query the data, the sorting of the resulting files is predefined.
The order of the files has no impact on the processing, and openEO users are not
able to choose a sorting type. Therefore, the predefined CSW sorting is used for
the hash production. The results of the Data Handler component are forwarded to
the Query Record Handler.

• Query Record Handler
The Query Record Handler communicates with the database of the backend to find
existing identical query records. Figure 4.4 gives an overview of the activities of
the Query Record Handler. If the query record already exists, the Query Record
Handler returns the existing PID, otherwise a new PID is created and the query
is stored in a new query record. The combination of the result-file hash and the
unique query hash must not have duplicates in the query table. On saving the
query PID in the job context model, a queryjob record gets created. It sets the
relation between the job execution and the input data query PID.

4.1.4 Query Table Structure

The query table stores the query data with additional result and data information. Table
4.1 visualizes the structure of the query table. We added example values to explain how
the parts of the query record are generated. Figure 4.5 shows the example input process
graph.

The following list describes how the elements of the query data set record are created in
more detail:

3http://cite.opengeospatial.org/pub/cite/files/edu/cat/text/main.html

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

Figure 4.4: Activity diagram of the Query Record Handler component.

1. Query PID
We generate the query PID with the Python library uuid4. The library generates
unique identifiers and the backend uses it for creating the job identifier. The
identifier of the backend have codes related to the database table in the beginning
(e.g. "jb-UUID" for job entities). That is why the id for the newly introduced query
table is structured like "qu-UUID".
Example: "qu-16fd2706-8baf-433b-82eb-8c7fada847da"

2. Dataset PID
The dataset PID is the identifier of the satellite in the process graph (e.g. the
identifier in the "load_collection" process).
Example: "s1a_csar_grdh_iw"

4https://docs.python.org/3/library/uuid.html

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.1. Data Identification

Figure 4.5: Example for the original query and the unique query of the example process
graph.

3. Original Query
The initially executed CSW query of the query execution component.
Example: See the original query in Figure 4.5

4. Unique Query
The unique query is the restructured query that is comparable to other unique
queries. The order of the filters make no difference in the outcome of the query
execution. Therefore, the filter arguments of the original query are alphabetically
sorted by the JSON keys to generate the unique query.
Example: See the unique query in Figure 4.5

5. Unique Query Hash
We remove newline and space characters from the unique query string. After that,
we create the unique query hash by running the SHA-256 over the resulting unique
query using the "hashlib" Python module.
Example: "AE7EF888CDEDF8A9A371. . . "

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

6. Result Hash
The result hash is the output of the SHA-256 hash function using the Python
module "hashlib" over the result file list. The sorting of the files is fixed by the
CSW query standard used by the backend. We clean up the string of the file list by
removing the newline and white space characters, before it is applied to the hash
function.
Example: "565D229FCE4772869343. . . "

7. Execution Timestamp
The execution timestamp is the input parameter of the Query Handler transformed
to the data type needed by the database. We take the timestamp from the Query
Execution Handler and is part of the result.
Example: "2018-10-17 18:03:20,609"

8. Additional Data
The additional data column of the query table can be used by the backend to store
additional information about the query execution. In the implementation of this
thesis, we only store the number of output files. The column is defined as a JSON
object and can be extended with additional data without changing the structure of
the table.
Example: "{ "number_of_files": 10}"

4.2 Backend Provenance

The backend provenance is idenfifyable by the backend version and contains the job
independent provenance information. The following subsections explain how the (in
Section 3.3.1 defined) provenance data elements are implemented.

(A) GitHub Repository
The backend services deploy automatically from the GitHub repository. Therefore,
we read the used GitHub repository information via the Command Line Interface
(CLI) of Git. We access the checked out commit and branch of the backend directly
via the Git CLI, initiated with Python. Listing 4.5 shows the Git CLI calls used to
retrieve the GitHub repository information needed by the backend provenance.

Receiving the Git Repository URL

git config --get remote.origin.url

Receiving Branch

git branch

Receiving the commit messages with the timestamps

git log

Listing 4.5: Git CLI calls to get access the backend provenance.

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Job Dependent Provenance

(B) Core API Version
The backend provider update the openEO core API version of the backend manually.
The currently used API is in the GitHub repository of the backend.

(C) Back End Version
The backend fetches the code for the services directly from GitHub and the Git
commit identifies a certain state of the code. Therefore, we use the commit identifier
as the version of the backend.

(D) Publication Timestamp
The publication timestamp of the version of the backend is defined by the timestamp
when the Git commit happened. GitHub stores it and it can be retrieved via the
Git CLI.

4.3 Job Dependent Provenance

The backend transforms the process graph into separate docker containers. For every pro-
cess in the process graph, there is a docker container running the Python implementation
of the process. The input of the current process is the output of the previous process.
The first process docker container has the input data defined in the process graph as
input data, which is the result of the query execution. Every process saves the results
in a temporary folder dedicated to the specific process execution. Every process has its
temporary output directory until the whole process chain is finished. After that, the
backend deletes the temporary folders, and it only keeps the result in the job directory.
The job must identify the input data, the output data and the execution environment to
achieve the job environment data capturing described in Chapter 3.3.2.
The implementation adds the captured information to the logging of the job execution.
After the job execution it reads the logging files to generate the context model. This
solution extends the code of the backend with minor logging calls. Figure 4.7 gives an
overview of the implemented job capturing procedure. Section 4.3.2 describes every part
of the overview in more detail.

4.3.1 Context Model Repository

Each executed job generates a context model related to the job execution. If the job
gets re-executed, the context model gets replaced by a new context model related to
the later execution. The backend handles job re-executions as new jobs with the same
process graph and assigns a new job identifier. Letting the same job be re-executed
without creating a new job id is dropped from the agenda of the openEO project since
version 0.3.1 (see the GitHub repository5). The aim of this design decision is to turn the
job id into an job execution identifier and the process graph to the identifier of a job.
Therefore, different job ids with the same process graph represent different executions

5https://open-eo.github.io/openeo-api/v/0.3.1/apireference/

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

Table 4.2: Relation of context model elements and the implementation JSON context
model.

Context Model Definition JSON Key

(a): Input data persistent identifier input_data
(b): Backend provenance / code identifier backend_env
(c): Programming language interpreter
(d): Dependencies of the programming language code_env
(e): Start and end time of the process execution start_time, end_time
(f): Result hash output_data

of the same job. We store the context model formatted as a JSON object in the job
execution database. After the job is carried out in the backend, the results are saved in
a folder named after the job identifier and the meta data information is stored in the
PostgreSQL database (see Section 2.5.3). Jobs are stored in the Job table of the database.
We added an additional column to this table to store the context model in this solution.
The creation of the context model is described with the implementation below.
Table 4.2 provides the mapping between the context model elements from Section 3 and
the keys of the JSON context model object of the prototype. The elements have a one to
one mapping of the context model and the JSON key except for the timestamps of the
execution. The execution timestamps are part of the Job table in the EODC database.
Figure 4.6 shows an example context model. It consists of all elements described by the
context model in the Design chapter. Information on the backend environment during the
execution of the job is stored in the context model. We store the backend version and the
execution timestamp in the context model to be able to identify backend provenance of
the execution The code environment is a list of Python dependencies of the job execution
with their versions. Besides, the Python interpreter version is added to the context model.
How the data is captured in detail is described in the sections below.

4.3.2 Python Implementation

The implementation of this thesis is an example for other backends with similar setups.
Therefore, we implemented it in the Python version of the backend without any additional
requirements on Python modules. The Python solution uses logging messages to transfer
the needed data from the process execution to the capturing modules. The cleanup
service of the EODC backend driver triggers the modules of the solution. It is an
additional Python module and parses the log files after the job is finished. This solution
generates, except for the additional logging calls, little impact on the existing backend
implementation. The EODC backend driver has already a logging system installed. Hence
the modifications are added to the existing logging policy.
Figure 4.7 visualizes the additional Python modules Job Capturing and Result Handler
in the context of the backend environment.

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3. Job Dependent Provenance

Figure 4.6: Example context model of a job execution at the backend implementation.

The following list describes the modules of the backend and the additional modules of
the solution. The order of the list shows the order of the module execution.

1. Process Execution
The Process Execution module at the backend is responsible for the execution of
the job. It creates the additional logging information (see (a), (c), (d) and (e) of
the context model) and stores it in a logging file.

2. Processing Cleanup
After finishing the job execution, the backend deletes all temporary folders from
the file system and copies the results to the newly created job folder. Then the
solution module Job Capturing starts given the path of the logging file.

3. Result Provider
The Result Provider is responsible of making the result available for the user. It pro-
vides the user with information and feedback about the job execution. Additionally
it invokes the Result Handler module with the path of the resulting file.

4. Result Handler
The Result Handler reads the result file and calculates an SHA-256 hash over it.
After completion, it sends it to the Context Model Creator module.

5. Job Capturing
The Job Capturing module parses the logging file to extract the information needed
for the context model ((a), (c), (d) and (e)). It passes the rightful formatted

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

Figure 4.7: Overview of the Job capturing architecture at the backend. Green blocks are
additional modules

information to the Context Model Creator. The Context Model Creator needs the
Result Handler (f) and Back End Provenance Handler (b) for the remaining parts
of the context model. After receiving all necessary information, the Context Model
Creator creates the JSON context model and saves it into the Job table of the
database.

The following sections describe the capturing of each data element of the job dependent
context model in more detail.

(a) Source Input Data Identifier
The source input data identifier is the PID of the input data provided by the query
store described in Section 4.1. It is forwarded to the Job Capturing module by the
Processing Cleanup module.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. User Services

(b) Backend provenance / Code Identifier
The Job Capturing module reads the backend provenance described in Section 4.2.
The backend version active at the beginning of the execution is copied to the context
model.

(c)(d) Programming language and used libraries
The Process Execution module uses the installed Python module pip to list all
installed packages with their versions. The module is at the moment used to manage
the Python packages of the backend. The GitHub repository of the backend includes
a Python environment file to install all needed dependencies of Python via pip
automatically. A feature of that tool is the pip freeze call, which returns all installed
Python packages with their versions. It is then transformed into a JSON object
and saved to the context model. In addition to this the Process Execution captures
the Python version by using the sys.version function of the sys module. All of
this executions are done in the Process Execution module in the actual processing
environment and stored in the output log file of the job execution.

(e) Start and end time of process execution
The start and end time of the process execution is already done by the backend in
the Process Execution module. The resulting timestamps are persisted in the Job
table of the database.

(f) Result Identifier
The result identifier consists of the resulting data of the whole job execution. It is an
SHA-256 hash (using the hashlib Python library) of the resulting alphabetical sorted
output files, which are placed in the resulting folder of the job execution directory.
In the current version of the backend, there is only one result file created, due to the
limitations of the available processes.

4.4 User Services

The previous sections describe the technical insight of the backend. This section describes
the implementation of the interfaces used by the users. Therefore, endpoints are added
to the current existing openEO core API. Besides, the proposed endpoints are applied to
the Python client and the backend. The implementation of the recommended additions
of Section 3.6 are described in the following:

I. Backend version
We added a new endpoint for retrieving additional information about the backend.
The new endpoint is a GET request with the path “/version” and no authentication
is needed to access it. The response of the version endpoint is the job independent
provenance information of the backend ((A)-(D), see Section 4.2). In a production
version, the data may be filtered for information marked as a security risk. This
endpoint is added to the backend to return the latest backend version. The endpoint

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

takes a timestamp as parameter to get the backend version that was active at a
specific time. We added a method to the Python client, so that the user can retrieve
this information by calling “version()”. The result is a JSON object consisting of
the backend provenance data. Listing 4.6 shows a result example.

{'branch': 'master',

'commit': '1a0cefd25c2a0fbb64a78cd9445c3c9314eaeb5b',

'url': 'https://github.com/bgoesswein/implementation_backend.git'}

Listing 4.6: Backend version example.

II. Detailed Job Information
In the openEO coreAPI, there is an endpoint for getting detailed information about
a job execution. The endpoint path is “GET /jobs/<job_id>” , which by the
current release version (0.3.1) only contains the execution state of the job and the
job id. In addition to this, we add the job dependent provenance to the endpoint
(e.g. see Figure 4.6). Since the Python client returns the resulting JSON response
from the backend as a Python dictionary, there is no modification of the client
needed. There is an option to retrieve the detailed job information in PROV-JSON
format.

III. Comparing two Jobs
There does not exist any user interface to compare jobs in the coreAPI. The solution
API defines a new endpoint in the manner of existing endpoint definitions. For this
thesis, we introduce the endpoint “POST /jobs/<job_id>/diff”. In the URL of the
request, the user defines the base job id, which context model is compared with
other jobs. In the body of the request, the target job ids are defined in a JSON
object. After getting the request from the user, the backend compares the context
models of the base job with every target job occurring in the request body. The
result from the backend consists of a term for every item in the base job context
model. The term “EQUAL”, if the items are the same in both context models, the
difference if the items are not the same in both context models, or “REMOVED”
if the item is in the base job context model, but missing in the target job context
model, or "ADDED" if it is the other way around. If an element is different, the
elements that differ are visible. The latest mentioned outcome can occur if the
context model definition is modified in future job executions and there are e.g.
additional fields. The response contains the context model of all jobs with one
of the previously described three states inside of the value of every item. In the
Python client, this feature is added with an additional function of the Job class
called "diff(target_job)". Listing 4.7 provides an example of the dictionary output
of this function.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.4. User Services

{

"process_graph":"EQUAL",

"input_data":"EQUAL",

"code_env":"EQUAL",

"output_data":"EQUAL",

"openeo_api":"EQUAL",

"back_end_timestamp": "REMOVED",

"end_time": "ADDED",

"different":{

"interpreter": {"source": "Python 3.4", "target": "Python 3.5"},

"job_id": {"source": "jb-47e062e4-d39c-4f7f-bc5e-aa877f039a84",

"target": "jb-b5e000f9-f586-40d1-b0b8-c813e5d93b4b"},

"start_time": {"source": "2019-04-05 12:16:38.286217",

"target": "2019-04-05 13:14:22.369015"}}

}

Listing 4.7: Example of a job comparison regarding the context model.

IV. Data Identifier Landing Page
Depending on the backend, the input data may be restricted to the openEO interface.
Therefore, the resolver of the input data PID is set within the coreAPI specification.
There exists an endpoint to retrieve detailed information about a data set. We
introduce the additional "GET /data/<data-pid>" endpoint. If the user calls the
endpoint with a data PID, the result are the details of the underlying dataset and
besides, the result of the query execution and the original query parameters. It
has to be machine-actionable in JSON format providing the attributes of the query
record. The landing page contains a link to another page with the file list after a
query re-execution ("GET /data/<data-pid>/result" endpoint). If the result file list
differs from the original execution, there is a list of the files that differ. Otherwise,
it states that the file list is equal to the first execution. The landing page contains
the citation text for the data. In EODC only Sentinel data is available for the users.
EODC already stores the official citation text from ESAfor Sentinel. In addition to
this text we add the resolvable data PID (see Listing 4.10).

V. Re-use of Input Data
To re-use the input data in different job execution, the client user can use the data
PID in the process graph directly as source data, instead of just the unfiltered dataset
identifier. If a process graph uses the input data PID, the backend automatically
applies the queries in the way of the original execution. It is inserted in the process
"get_collection" as an additional filter argument named "data_pid", to pass the
data PID to the process graph. Section 4.5.1 provides an example of such a process
graph. If the query result data changed from the original execution of the PID, the
job shall be processed nonetheless, but a warning message appears to notify the

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

user. The notification appears in the Python client, when the user fetches the result
either automatically with synchronous jobs, or by a separate call in asynchronous
jobs.

4.4.1 PROV Modeling

This section describes the mapping of the PROV elements with the provenance information
of the job execution. As mentioned in Section 2.1.1 there are three core elements of the
PROV-O annotation. The following enumeration shows how they are mapped with the
job provenance information:

1. Entity element
We use entities to represent the data of job executions. Therefore, we model the
input data as well as the result data as entities. The PROV-DM definition specifies
that an entity needs an identifier and can have additional attributes. We identify
the input data with the query PID from the query store and set the entries of the
query table as its attributes. The resulting entity is identified by the result hash
and has no additional attributes. We set the type of both elements to "dataset".

2. Activity element
An activity has an identifier, an optional start time, an optional end time and
optional additional attributes. It takes entities and modifies them to generate
new entities. We use the activity element to represent jobs. They are identified
by the job id and have the additional information captured in the context model.
The connection from the job to the entities is "used" for the input data and
"wasGeneratedBy" for the result.

3. Agent element
Agents are capable of starting activities. In our solution we have two instances of
agents. First, the user that starts the job execution. Second, the backend in which
environment the job is executed. The user id identifies the user and the backend
version identifies the backend. Since the backend does not start jobs on his own we
add an "actedOnBehalfOf" relation between the backend and the user. We assign
the type "Person" to the user and "SoftwareAgent" to the backend.

We implement the PROV-O representation with the "prov"6 module for Python. It is
capable of exporting the provenance in XML, JSON and RDF format. We also use the
module to the provenance in images of PNG format. Figure 4.8 shows the PROV-O
visualization of the example experiment.

6https://github.com/trungdong/prov

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Use Cases

Figure 4.8: PROV-O representation of the example job execution.

4.5 Use Cases

This section shows how the use cases of Section 1.1 are addressed using the implementation
described in the sections before.

4.5.1 Use Case 1 – Re-Use of Input Data

The first use case describes how a researcher uses openEO as a processing environment.
In this use case, the focus is on data identification and data citation. Researchers that
use openEO may want to cite the data that is used in the applied job. Other scientists
then want to use this data in their related research experiment. Section 1.1.2 shows a
step-by-step description of the use case. In this section, we execute the steps of the use
case with the solution. The implementation of the use cases is available on GitHub7.

1. Researcher A runs an experiment (job A) at the EODC backend.
This step is basic openEO functionality and is not influenced by the solution from
the user point of view. The researcher chooses Sentinel-2 data by loading the
Sentinel-2 collection of the backend with the dataset identifier "s2a_prd_msil1c".

7https://github.com/bgoesswein/dataid_openeo/tree/master/openeo-python-client/examples

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

In the next step, the researcher filters the collection data temporally (May of
2017) and spatially (bounding box of the South Tyrol area). In the next step
the researcher applies the NDVI8 on the filtered data as well as the minimum
value of each pixel during the time range with the "min_time" process. The NDVI
calculation needs the measurements of the satellite in near-infrared (parameter
"nir") and the measurements of red light (parameter "red"). The backend represents
the band identifiers of the two measurements by "B08" for near-infrared and "B04"
for the visible red light. The last two lines create a job at the backend with the
process graph and starts the execution of it at the backend. At the backend the
Query Handler generates a new data PID or returns an already existing one, if the
same query was executed in the past. Listing 4.8 represents the experiment Python
client code of Researcher A.

import openeo

EODC_DRIVER_URL = "http://openeo.local.127.0.0.1.nip.io"

con = openeo.connect(EODC_DRIVER_URL)

Choose dataset

processes = con.get_processes()

pgA = processes.get_collection(name="s2a_prd_msil1c")

pgA = processes.filter_daterange(pgA, extent=["2017-05-01",

"2017-05-31"])

pgA = processes.filter_bbox(pgA, west=10.288696,

south=45.935871, east=12.189331,

north=46.905246, crs="EPSG:4326")

Choose processes

pgA = processes.ndvi(pgA, nir="B08", red="B04")

pgA = processes.min_time(pgA)

Create job A out of the process graph A (pgA)

jobA = con.create_job(pgA.graph)

jobA.start_job()

Listing 4.8: Researcher A runs job A with the Python client.

2. Researcher A retrieves the used input data of job A.
Researcher A wants to receive the input data identifier by calling the job description
endpoint. Listing 4.9 shows the calls used to do that with the Python client.

pidA_url = jobA.get_data_pid_url()

print(pidA_url)

8https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Use Cases

Figure 4.9: Resulting image of the first step of Use Case 1.

Output: EODC_DRIVER_URL/data

/qu-d1701f4e-e7c5-4a83-92e0-9facbd401a06

pidA = jobA.get_data_pid()

retrieve information about the pidA

e.g. executed query and description about the dataset.

desc = con.describe_collection(pidA)

query = desc["query"]

re-execute query and get the resulting

file list from the backend

file_list = con.get_filelist(pidA)

Listing 4.9: Researcher A retrieves the used input data PID.

The user can get the resolvable data PID of the used input data by calling the
"get_data_pid_url" method. It contains the input data PID as a resolvable web
address. Figure 4.10 shows the response data of the data PID information. After
calling the page, the website provides the researcher with the filter parameters, the
dataset identifier and a description of the dataset. Besides, the link to get the results
of a query re-execution (see "Show Result" in Figure 4.10) and a link to the machine
actionable landing page in JSON format are added to the page (see "JSON" button in
Figure 4.10). The machine actionable JSON pages for the result and the landing page
are extensions to the core API of openEO. The resulting file list of the re-execution
is accessible with the "BACKEND_URL/data/data-PID/result" endpoint. The

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

Figure 4.10: Screenshot of the pid A landing page. The button "JSON" redirects to a
landing page with the same information in JSON format. The button "Show Result",
redirects to a new page, which re-executes the query and shows the resulting file list in
JSON format.

JSON format landing page is accessible at "BACKEND_URL/data/data-PID/json".
The user can retrieve the information of both endpoints via the Python client.
The last three calls of the code block above show how the user can gather information
about the input data directly in the Python client code.

3. Researcher A cites the input data in a publication.
This step is independent from the implementation and therefore not explained in
detail. For the further steps it is assumed that Researcher A used the resolvable PID
from step 2 ("BACKEND_URL/data/qu-d1701f4e-e7c5-4a83-92e0-9facbd401a06")
for the citation. Listing 4.10 shows the whole generated citation text.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Use Cases

Copernicus Sentinel data (2017). Retrieved from EODC, Austria

[2019-04-17], processed by ESA.

PID: BACKEND_URL/data/qu-d1701f4e-e7c5-4a83-92e0-9facbd401a06

Listing 4.10: Generated citation text of pidA.

4. Researcher B uses the same input data of job A for job B.
To use the same input data as Researcher A, Researcher B uses the data PID from
the publication and puts it into the input data element of the process graph of job
B. Listing 4.11 gives an example of the code needed to use the same input with a
different process constellation (max_time instead of min_time process).

import openeo

Take input data of job A by using the input data PID A

pidA = qu-d1701f4e-e7c5-4a83-92e0-9facbd401a06

pgB = processes.get_data_by_pid(

data_pid="qu-d1701f4e-e7c5-4a83-92e0-9facbd401a06")

Alternative: data_pid="EODC_DRIVER_URL/data/pidA"

Choose processes

pgB = processes.ndvi(pgB, nir="B08", red="B04")

pgB = processes.max_time(pgB)

Create job B out of the process graph B (pgB)

jobB = con.create_job(pgB.graph)

jobB.start_job()

Listing 4.11: Researcher B uses PID A for different job.

4.5.2 Use Case 2 – Capturing job dependent environments

This use case focuses on the execution environment. It handles the need of researchers
to describe the execution environments of his experiments. Section 1.1.3 describes the
second use case in detail. The implementation at the backend gives the users the option to
gain additional data about the execution. In the following, we show the implementation
steps to realize the use case with our solution.

1. Researcher runs an experiment (job A) at a backend.
The researcher A runs a job at the backend with the Python client code of Listing
4.12. It is the usual code of executing a job using the Python client.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

Figure 4.11: Resulting image of the last step of Use Case 1.

import openeo

EODC_DRIVER_URL = "http://openeo.local.127.0.0.1.nip.io"

con = openeo.connect(EODC_DRIVER_URL)

Choose dataset

processes = con.get_processes()

pgA = processes.get_collection(name="s2a_prd_msil1c")

pgA = processes.filter_daterange(pgA, extent=["2017-05-01",

"2017-05-31"])

pgA = processes.filter_bbox(pgA, west=10.288696,

south=45.935871, east=12.189331,

north=46.905246, crs="EPSG:4326")

Choose processes

pgA = processes.ndvi(pgA, nir="B08", red="B04")

pgA = processes.min_time(pgA)

Create job A out of the process graph A (pgA)

jobA = con.create_job(pgA.graph)

jobA.start_job()

Listing 4.12: Researcher A runs job A at the backend using the Python client.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Use Cases

2. Researcher wants to describe the experiment environment.
The researcher wants to publish the result of the experiment and therefore, needs
to describe the environment in detail. Listing 4.13 provides the code to give the
user detailed information about the job A execution:

Get context model of job A

context_model = jobA.describe_job["context_model"]

Listing 4.13: Describe jobA execution environment.

After the execution of the line above, the researcher can retrieve the used pro-
gramming language and the installed packages with their versions from the context
model. Besides, the backend version identifies the used code for the job execution.
Listing 4.14 shows the context model value.

{ "backend_version": "16c3b32b5cb2d92d1c32d8c1f929065ee6bf2831",

"code_env": ['alembic==0.9.9', 'amqp==1.4.9',

..., 'GitPython==2.1.11', 'numpy==1.16.2', 'GDAL==2.4.0'],

"end_time": "2019-04-01 18:13:06.221436"

"input_data": "qu-3f0b66b8-3cb0-414d-bff4-95e08eb99393",

"interpreter": "Python 3.7.1",

"job_id": "jb-f022b568-b674-48d7-9f98-d9555e5eb6f3",

"openeo_api": "0.3.1",

"output_data": "5090732d9fb0620773edfcdfc4aad1e9ac771c6eb17b418e5ce5e224aa2bb2a0",

"start_time": "2019-04-01 18:12:36.221436"

}

Listing 4.14: Value of context_model from the second Use Case (see Listing 4.13).

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

4.5.3 Use Case 3 – Getting differences of job executions

The last use case focuses on the users of openEO. It describes the need for transparency
of job executions for the users. If results differ with the same job later in time, the user
can access data to find reasons why it happened. Therefore, we use the new endpoint to
compare job execution environments. Section 1.1.4 describes the third use case in more
detail.

1. Researcher runs an experiment (job A) at a backend.
Listing 4.15 shows the Python code used by researcher A to run a new job at the
backend.

import openeo

EODC_DRIVER_URL = "http://openeo.local.127.0.0.1.nip.io"

con = openeo.connect(EODC_DRIVER_URL)

Choose dataset

processes = con.get_processes()

pgA = processes.get_collection(name="s2a_prd_msil1c")

pgA = processes.filter_daterange(pgA, extent=["2017-05-01",

"2017-05-31"])

pgA = processes.filter_bbox(pgA, west=10.288696,

south=45.935871, east=12.189331,

north=46.905246, crs="EPSG:4326")

Choose processes

pgA = processes.ndvi(pgA, nir="B08", red="B04")

pgA = processes.min_time(pgA)

Create job A out of the process graph A (pgA)

jobA = con.create_job(pgA.graph)

jobA.start_job()

Listing 4.15: Researcher A runs job A using the Python client.

2. Researcher re-runs the same experiment (job B).
Listing 4.16 shows the re-execution of the same job e.g. by using the same process
graph. The new execution gets a new job id and is called "job B" in the following.

jobB = con.create_job(pgA.graph)

jobB.start_job()

Listing 4.16: Researcher re-reruns job A resulting in job B.

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.5. Use Cases

3. Researcher runs a different experiment (job C).
The researcher runs a third job (job C) with a different process graph and input
data query. Listing 4.17 shows the code to create job C.

Choose dataset

processes = con.get_processes()

pgC = processes.get_collection(name="s2a_prd_msil1c")

pgC = processes.filter_daterange(pgC, extent=["2017-05-01",

"2017-05-31"])

pgC = processes.filter_bbox(pgC, west=10.288696, south=45.935871,

east=12.189331, north=46.905246,

crs="EPSG:4326")

Choose processes

pgC = processes.ndvi(pgC, nir="B08", red="B04")

pgC = processes.max_time(pgC) # differs from job A

Create job C out of the process graph C (pgC)

jobC = con.create_job(pgC.graph)

jobC.start_job()

Listing 4.17: Researcher runs experiment different from job A.

4. Researcher wants to compare the jobs by their environment and out-
come.
Now the researcher wants to compare job B and job C with the original job A.
Therefore he executes the code presented in Listing 4.18.

diffAB = jobA.diff(jobB)

diffAC = jobA.diff(jobC)

logging.info("diffAB: \n {}".format(diffAB))

logging.info("diffAC: \n {}".format(diffAC))

Listing 4.18: Researcher compares the different jobs.

The researcher gets two dictionaries for the comparisons between job A with job
B (diffAB) and job A with job C (diffAC). The content of the dictionary is a
comparison of every key of the jobs context model. Listing 4.19 shows the logging
output of Listing 4.18 (using logging.info).

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Implementation

INFO:root:diffAB:

{'input_data': 'EQUAL', 'output_data': 'EQUAL',

'process_graph': 'EQUAL', 'openeo_api': 'EQUAL',

'interpreter': 'EQUAL', 'code_env': 'EQUAL',

'different':

{'back_end_timestamp': {'target': '20190417194702.496810',

'source': '20190417154611.728540'},

'job_id': {'target': 'jb-b92c688c-7fdc-4126-bcdf-85bc07030237',

'source': 'jb-b5e000f9-f586-40d1-b0b8-c813e5d93b4b'},

'start_time': {'target': '2019-04-17 19:47:02.496810',

'source': '2019-04-17 15:46:11.728540'},

'end_time': {'target': '2019-04-17 19:47:03.258261',

'source': '2019-04-17 15:46:13.015937'}}

INFO:root:diffAC:

{'input_data': 'EQUAL', 'output_data': 'EQUAL',

'openeo_api': 'EQUAL', 'interpreter': 'EQUAL', 'code_env': 'EQUAL',

'different': {'process_graph': { 'target': {'imagery': {'imagery': {'extent':

{'crs': 'EPSG:4326', 'east': 12.189331, 'north': 46.905246,

'south': 45.935871, 'west': 10.288696}, 'imagery':

{'extent': ['2017-05-01', '2017-05-31'],

'imagery': {'name': 's2a_prd_msil1c', 'process_id': 'get_collection'},

'process_id': 'filter_daterange'}, 'process_id': 'filter_bbox'},

'nir': 'B08', 'process_id': 'NDVI', 'red': 'B04'}, 'process_id':'max_time'},

'source': {'imagery': {'imagery': {'extent':

{'crs': 'EPSG:4326', 'east': 12.189331, 'north': 46.905246,

'south': 45.935871, 'west': 10.288696}, 'imagery':

{'extent': ['2017-05-01', '2017-05-31'],

'imagery': {'name': 's2a_prd_msil1c', 'process_id': 'get_collection'},

'process_id': 'filter_daterange'}, 'process_id': 'filter_bbox'},

'nir': 'B08', 'process_id': 'NDVI', 'red': 'B04'}, 'process_id':

'min_time'}},

'start_time': {'target': '2019-04-17 19:47:09.089075',

'source': '2019-04-17 15:46:11.728540'},

'end_time': {'target': '2019-04-17 19:47:11.786845',

'source': '2019-04-17 15:46:13.015937'},

'back_end_timestamp': {'target': '20190417194709.089075',

'source': '20190417154611.728540'},

'job_id': {'target': 'jb-ecdd5768-3c22-4c73-85b8-ac6f4bdc138f',

'source': 'jb-b5e000f9-f586-40d1-b0b8-c813e5d93b4b'}}

Listing 4.19: Logging output of the job comparisons diffAB and diffAC.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.6. Summary

4.6 Summary

This chapter presented an implementation of the design of Chapter 3 at the EODC
backend. It contains the implementation of the RDA recommendations. We implemented
the query store with two additional tables at the database of the backend. We store
the queries of the backend that follow the CSW9 standard formatted in XML. The
additional modules needed to achieve data identification are presented in Section 4.1.
Our implementation of the backend provenance uses GitHub as CVS to make the
backend environment as well as the code for the job executions identifiable. We capture
the job dependent environment by retrieving the Python environment using PIP. Our
implementation uses the logging system of the backend to transfer the data to the
additional modules. They create the context model by reading the logging files. The data
of the query and the context model are stored in additions to the existing PostgreSQL
database. Besides, the endpoints needed to access the provenance information lead to
extensions of the openEO API. We implemented these extensions into the backend and
the Python client. In the last section of the chapter, we present the code to run the use
cases of Section 1.1. The following chapter evaluates the implementation by the impact
on the EODC backend and by testing the implementation against exceptional cases.

9http://cite.opengeospatial.org/pub/cite/files/edu/cat/text/main.html

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Evaluation

This chapter evaluates the concept of the prototype implementation described in Chapter
4. We evaluate the solution with test cases, which simulate updates on data as well as on
the backend environment. After that, we evaluate the performance and storage impact
of the implementation by applying 18 test cases derived from 9 publications that used
EODC data in the past. The chapter is structured as follows:
First, we describe the setup of the evaluation environment in Section 5.1. Next, Section 5.2
evaluates how the solution behaves on data updates at the backend. The following Section
5.3 evaluates the recreation of an older back end version using the solution. Section
5.4 provides measurements on the performance and storage impact of the prototype
implementation.

5.1 Evaluation Setup

EODC uses an OpenShift1 service to manage the backends functionality. For this evalua-
tion we installed OpenShift locally to run the backend with our extensions (furthermore
called Solution Backend). The data querying of EODC is publicly available and we use
it in the evaluation. The Query Handler component of the solution operates with the
actual data of the backend provided for openEO users.
Figure 5.1 gives an overview of the evaluation setup. The job execution service of the
backend cannot be executed locally, because data files are only inside the EODC infras-
tructure available. Therefore, the processing mechanism is mocked up by the Processing
Mockup component (see yellow box). It creates an array with mockup values in the size
of the query results uses it for the process graph execution. The Solution Extensions
component (see green box) contains the backend extensions described in Chapter 4. The
Solution Python Client is the openEO Python client with the extensions of Section 4.4,

1https://www.openshift.com/

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Table 5.1: Evaluation system specifications.

Hardware

CPU Intel(R) Core(TM) i7-3770T CPU @ 2.50GHz
GPU Radeon HD 7750/8740 / R7 250E
RAM 16 GB

Software

OS Kubuntu 18.04.1 LTS
OpenShift 3.9.0
Python 3.7.1

which give the user the possibility to operate with the proposed features via the Python
client. The test cases are Python programs using the Solution Python Client to create
and execute jobs at the Solution Backend. We added a "reset" endpoint to the backend,
to be able to run test cases independently. If called, it deletes all existing job and query
records from the database.
Table 5.1 specifies the local machine used for the evaluation. To get a minimum perfor-
mance bias, irrelevant background programs are disabled during the evaluation execution.
The Solution Python Client, the Solution Backend, and the code for the evaluation is
available and further described on GitHub2.

Figure 5.1: Overview of the evaluation setup. Green boxes are components of the solution,
white boxes are unmodified existing components and yellow boxes are components added
only for the evaluation.

2https://github.com/bgoesswein/dataid_openeo

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

5.2 Data Identification

This section evaluates the data identification mechanism of the Solution Backend. We
first show how it fulfills the RDA recommendations. Next, we show how the solution
behaves if data updates or deletions occur at the backend.
The policy of the EODC regarding updates on datasets is dependent on the type of data:

1. Sentinel Data
The Sentinel data, which is used by EODC for the openEO project, has never been
updated before. The data comes directly from ESA, and updated datasets from
ESA were not applied to the EODC data yet. However, the occurrence of updates
is, in general, not impossible in future of the backend. If a dataset was updated, it
would follow the update policy of ESA, therefore having a new file name for the
updated file. An update adds a new dataset record to the PostGIS database used
for the data querying. It has the same attribute values as the original one, except
for the new generated unique filename and the creation timestamp. In this solution
we do not modify the PostGIS server of EODC. We simulate updates by modifying
the query execution result. Hence, we simulate updates on the data by renaming
input files and their creation timestamp. Other than updating the existing datasets,
there are regular updates on the extent of the Sentinel datasets.

2. Processed Data
Data that is processed by partners of EODC is maintained and updated by the
partners. EODC archives or deletes old versions depending on the decision of each
partner. This type of data is not available using openEO, since it is the property
of the partners and not EODC. Besides, to be able to use the same processes on
different openEO backends, the data layer needs to be the same. Therefore, all
openEO compliant backends provide unprocessed input data. Since the datasets
are not available for openEO, the data identification of them is not in the scope
of the thesis. By the time this thesis is written, EODC plans to use the openEO
framework for their whole infrastructure, which brings the partners to use openEO
for their processing. Therefore they can use the data identification implementation
for their tasks.

5.2.1 RDA Recommendations

The Design (see Section 3.2) proposes the implementation of the RDA data identification
recommendations at the backend. Therefore, the following enumeration shows how we
tackle the recommendations.

• R1: Data Versioning
The backend does versioning of data already, by following the versioning policies of
ESA. The path to a file represents the version identifier. Modified files must have a
different file path. Every file is represented as a data record in the PostGIS database,

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

which stores the metadata e.g. timestamp of capturing and geographical extent.
Every data record has an creation timestamp. It represents the time since the data
record version is available at the backend. If a file is updated, the filename has to
change as well as the creation timestamp. A query execution without filtering by
the creation timestamp results in the file with the most recent creation timestamp.
We filter by the creation timestamp to get the the file version of a specific time.

• R2: Timestamping
The creation timestamp of the files are stored by the file system of the backend and
the PostGIS database. Since the files have to change the path after an update, the
creation timestamp of the updated file is the update timestamp of the original file.

• R3: Query Store Facilities
We introduce a new table in the database (PostGreSQL) of the backend for the
query store. The query table stores the following data about each query:

– The original CSW query in XML format

– The unique query: The backend generates the unique query using the filter
arguments of the original query. It is then stored as a alphabetically sorted
JSON object.

– The hash of the unique query after removing characters with no semantic
meaning.

– The hash of the alphabetically sorted resulting file list, after removing charac-
ters with no semantic meaning.

– The timestamp of the original query execution.

– The dataset identifier is set to the used collection identifier of the query.

– The persistent identifier of the query generated using the UUID3 library of
Python.

– A JSON object with the number of result files.

• R4: Query Uniqueness
The alphabetically sorted filter criteria generated by the backend (See Figure 4.5).

• R5: Stable Sorting
The original CSW query assures stable sorting. It alphabetically sorts the resulting
file list in ascending order.

• R6: Result Set Verification
The resulting file list is alphabetically sorted in ascending order. It transfers to
a string object that cleaned up by not relevant characters, which we hash by the
SHA-256 hash function.

3https://docs.python.org/3/library/uuid.html

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

• R7: Query Timestamping
The implementation stores the timestamp of the original query execution.

• R8: Query PID
The query PID is created using the Python UUID library if the same unique query
and resulting hash combination is not in the database yet.

• R9: Store the Query
We implemented the query store as an additional table of an existent relational
database of the backend (PostgreSQL).

• R10: Automated Citation Texts
The citation text for the dataset is already available at EODC. We added the
generated data PID and filter arguments (See Listing 4.10).

• R11 & R12: Landing Page & Machine Actionability
We define the landing page as an additional openEO endpoint. It is publicly
accessible as a human readable website and additionally in JSON format, which
makes it machine actionable (see Figure 4.10). The landing page includes a link to
re-execute the query and lists the result files also in JSON format. Since it is part
of the openEO API, it can also be accessed from the openEO clients and be used
in future jobs as input data.

• R13 & R14: Technology Migration & Migration Verification
These recommendations are not implemented in this thesis, since there are no EODC
migrations planned. Nevertheless, we estimate potential risks of a migration process.
Using the Git commit as identifier of code might cause issues, when migrating to
a different VCS. If the repository just moves to a different Git server, the whole
history, including commit identifiers, can be migrated. The creation timestamps of
the datasets have to be migrated properly, since they are an important information
needed by our solution.

The original data of EODC can’t be changed for this evaluation since the evaluation
backend is using the actual data source (https://csw.eodc.eu). To simulate changes on the
data, we modify the query result received by the backend. Figure 5.2 gives an overview
of where the data update simulator is located in the data identification implementation
overview of Figure 4.3. The test cases describe what data is modified.
The test cases of the following sections focus on the Sentinel Data of EODC, and how the
solution behaves on data updates. We use the running job (referenced as jobA) defined
in Section 1.1.1 for the test case execution. Every test case starts with one executed job
at an empty database. It stores the first query table entry. The next section describes
how we achieve the initial test case state.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Figure 5.2: Overview of the data update simulation. It shows the extension on the data
identification implementation of Figure 4.3.

5.2.2 Test Case Preparation

This section describes the test case preparation, so the step executed before every test
case execution. It creates an initial job and input query entry, which is needed for the test
cases. In the beginning the database is empty, we achieve this by calling the introduced
reset endpoint.

1. Run jobA, which creates query pidA. Get result files of pidA

Listing 5.1 shows the code to run jobA using the Python client. The researcher
defines the spatial and temporal filter arguments and applies the NDVI and the
"minimum time" process on it. This is the running example described in Section
1.1.1. The "con.create_job()" call sends the process graph to the backend and
retrieves a job object containing the newly generated job id. After executing jobA
(calling start_job()), a job entity and a query entity are created and stored in the
database. The query entity with a newly generated data PID is created by the
Query Handler. Table 5.2 shows the state of the query table after the execution of
Listing 5.1.

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

con = openeo.connect("http://openeo.local.127.0.0.1.nip.io")

Choose dataset

processes = con.get_processes()

pgA = processes.get_collection(name="s2a_prd_msil1c")

pgA = processes.filter_daterange(pgA, extent=["2017-05-01", "2017-05-31"])

pgA = processes.filter_bbox(pgA, west=10.288696, south=45.935871,

east=12.189331, north=46.905246, crs="EPSG:4326")

Choose processes

pgA = processes.ndvi(pgA, nir="B08", red="B04")

pgA = processes.min_time(pgA)

Create and start job A out of the process graph A (pgA)

jobA = con.create_job(pgA.graph)

jobA.start_job()

Get data PID of jobA

pidA = jobA.get_data_pid()

Re-execute the query to print the used files.

file_listA = con.get_filelist(pidA)

Get state of the resultfiles, so if they changed since

the original execution

file_listA["input_files"]["state"] # Returns "EQUAL"

Listing 5.1: Researcher runs jobA and retrieves the result files status.

Figure 5.3 shows the original query. It is has an XML format and contains the filter
values defined in the process graph (pgA). Figure 5.3 highlights the timestamp
of the first query execution. The content of the database tables as well as query
re-execution results after each execution step are available in the result folder4 of
the GitHub repository.

Listing 5.2 shows the normalized query created by the Query Handler. It contains
all filter arguments and their values in a JSON object alphabetically sorted. Note
that filter options that the user does not use have a "None" value.

{'bands': None,

'data_id': None,

'derived_from': None,

'extent': {'extent': {'crs': 'EPSG:4326', 'east': 12.189331,

'north': 46.905246, 'south': 45.935871, 'west': 10.288696}},

'license': None,

'name': 's2a_prd_msil1c',

'time': {'extent': ['2017-05-01', '2017-05-31']}}

Listing 5.2: Normalized query of the initial query entry.

Listing 5.3 shows the first four file paths and timestamps of the resulting file list,
after executing the query of Figure 5.3. The query in Figure 5.3 in XML format

4https://github.com/bgoesswein/dataid_openeo/tree/master/openeo-python-
client/examples/results

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Figure 5.3: Original query of jobA after the test case preparation step.

follows the CSW standard for EO web service catalogs. The backend sends it to
the PostGIS server of EODC, which translates it to the SQL based internal query
and executes it. The resulting file list (file_listA["input_files"]) are 51 files and the
re-execution of the query results in the same 51 files. The path of each file provides
information about the data record. The term "s2a_prd_msil1c" defines the dataset
identifier of Sentinel 2 at the backend. The following folders define the date of
the data record. The filename follows the ESA naming convention5. The Nxxyy
value defines the baseline number, Rxxx defines the orbit number of the satellite
and Txxxxx defines the tile number. The first date is the sensing time and the
second at the end of the file name is the product disclaimer, therefore distinguishes
products that came from the data of the same sensing time. The timestamp shows
when the data was first available at EODC.

5https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/naming-convention

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

Table 5.2: Query table after the execution of Listing 5.1

Query pidA

Column Value

Query PID qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
Dataset PID s2a_prd_msil1c

Original Query XML CSW query (see Figure 5.3)
Unique Query Sorted filter criteria (see Listing 5.2)

Query Hash 0917c7a21cec960b8a6617b22ad26578c2c67f0b0501ba1a359b078c6c51d77d
Result Hash abf43f519007050cbaeb59a067a2226d64b041c6d6ec323b2401109176e66455

Execution Timestamp 2019-03-31 17:36:43.064445
Metadata {’result_files’: 51}

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQS_20170504T101349.zip',

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPT_20170504T101349.zip'},

...

Listing 5.3: First four resulting files with creation timestamp.

Table 5.2 shows the content of the query table after the execution of the test case
preparation step. It has one entry with a new generated data PID, since there was
no query entry before.

5.2.3 Test Case 1: Is it possible to re-execute a query after a file is
updated?

2. Update one of the resulting files of the pidA query
We added the "update_file()" method to the client and the backend to let the
backend activate the Data Update Simulator component shown in Figure 5.2. If it
is activated, it simulates the update of the first file in the query result. It sets the
creation timestamp of the data record to the execution time of the "update_file()"
method and appends "_new" to the file path. The update does not replace the
old file but adds a new file to the result. Therefore, we simulate a new additional
dataset record in the PostGIS database.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Update the first file of the pidA query resulting files.

con.update_file()

Listing 5.4: Update one of the pidA resulting files, but keep the original file.

Listing 5.5 shows the result file list with the activated Data Update Simulator.
There is now an additional file with "_new" at the end of the path, but with the
same information in the file path and name as the first file. Besides, the creation
timestamp is set to the time of the execution of Listing 5.4.

{'timestamp': '2019-03-31 17:44:43',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPR_20170504T101349_new.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQS_20170504T101349.zip',

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPT_20170504T101349.zip'},

...

Listing 5.5: Modified file list output after the Data Update Simulator component.

3. Re-execution of pidA query
Listing 5.6 shows the re-execution of the query with the identifier pidA, after the
activation of the Data Update Simulator component in the previous step. The
second query re-execution results in the same file list as the first one (see Listing
5.7). The reason for this is that the old file is still available and the updated file is
added after the execution timestamp of the original query execution (see timestamp
element in the query in Figure 5.3). The query from the query store contains the
execution timestamp. This shows that earlier states of datasets can be retrieved
with our solution.

Get state of the resultfiles, so if they changed since

the original execution.

file_listA = con.get_filelist(pidA)

file_listA["input_files"]["state"] # Returns "EQUAL"

Listing 5.6: Re-execute pidA query after one file got updated.

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQS_20170504T101349.zip',

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPT_20170504T101349.zip'},

...

Listing 5.7: First four resulting files of the file list.

4. Run duplicate of jobA named jobB

Listing 5.8 shows the execution of a second job using the same process graph as
jobA. Such scenarios happen within the openEO project when users want to re-run
their old experiments using new data. In the first line of Listing 5.8 the process
graph of jobA (defined in Listing 5.1) is used to create a new job instance named
jobB. Therefore, jobB uses the same process graph as jobA but gets executed after
the update of the file in Listing 5.4. It results in a different file list with the new
file is in the query result file list (see Listing 5.3).

Reuse the defined process Graph (pgA) from jobA at Step 1 to create jobB

jobB = con.create_job(pgA.graph)

jobB.start_job()

re-execute query and get the resulting file list from the backend

pidB = jobB.get_data_pid()

file_listB = con.get_filelist(pidB)

comparing the resultfiles of jobA with the resultfiles of jobB

(file_listA == file_listB) # Returns False

Listing 5.8: Step 4: Create jobB, which uses the same process graph as jobA.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Table 5.3: Query table after the execution of Listing 5.8. Important elements are
highlighted blue if they are the same and red if they are different.

Query pidA (full entry in Table 5.2)

Column Value

Query PID qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
Query Hash 0917c7a21cec960b8a6617...
Result Hash abf43f519007050cbaeb59...

Metadata {’result_files’: 51}
Query pidB

Column Value

Query PID qu-23f5a313-e804-4faa-aa33-60ed1ac69e2d
Dataset PID s2a_prd_msil1c

Original Query see Figure 7.1 in the appendix
Unique Query see Listing 5.2

Query Hash 0917c7a21cec960b8a6617...
Result Hash 28088d113de19ce037e965...

Metadata {’result_files’: 51}
Execution Timestamp 2019-03-31 18:01:47.695042

Table 5.3 shows the query table after the execution of Listing 5.8. Now there is
an additional query entry. Table 5.3 marks the important differences red. There
is a different result hash, because the resulted file name of the updated file is set
to the most recent one and not the one from the original query execution.. The
normalized query is still the same, but the result of the query changed therefore, a
new data PID is generated.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

Table 5.4: Resulting mapping of the jobs and the used data PID of the first test case.

Job Query PID

jobA qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
jobB qu-23f5a313-e804-4faa-aa33-60ed1ac69e2d
jobC qu-a3bbe4a0-a875-4687-bb78-9457f33134a9

5. Run duplicate of jobA named jobC, by using the data PID of jobA

This step shows how a researcher can run a new job (jobC) with the original data
version of jobA. Other than jobB, it uses the original data version even if there are
new versions available. The persistent input data identifier of job A (pidA) is used
as the input data for jobC. The execution timestamp is part of the query entry
behind pidA, and the backend executes the original query for jobC. jobC uses the
same data PID as jobA therefore, the updated file is not in the result file list and
there is no new data PID generated. The query table is still in the state of Table
5.3.

Take input data of job A by using the input data PID A of job A

pgC = processes.get_data_by_pid(data_pid=pidA)

Choose processes

pgC = processes.ndvi(pgC, nir="B08", red="B04")

pgC = processes.min_time(pgC)

Create and start Job C

jobC = con.create_job(pgC.graph)

jobC.start_job()

re-execute query and get the resulting file list from the backend

pidC = jobC.get_data_pid()

file_listC = con.get_filelist(pidC)

Compare resulting files with the original execution of jobA

(file_listA == file_listC) # Returns True

Listing 5.9: Create jobC, which uses the input data identified by pidA.

Table 5.4 presents the mapping between the executed jobs and the input data PIDs of
the first test case. The results are consistent if files are updated at the backend. Jobs
using the original data PID (jobC), also use the data defined by the PID, even after the
update. The reason for this is the original file was still available. The current way of
reproducing a job in openEO, by applying the same process graph (jobB), fails since
the resulting files differ from the first execution (jobA). The query execution timestamp
information is missing. Hence, the input data of jobB result in a different data PID.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

5.2.4 Test Case 2: Is it possible to re-execute a query after a file is
updated with the original one deleted?

2. Update one of the resulting files of the pidA query and remove the
original one.
The method in Listing 5.10 updates the first file of the query result as described in
Section 5.2.3 and removes the original file. Listing 5.11 shows the updated file list,
where the first entry replaced the original first file (see Listing 5.5).

con.update_file(deleted=True)

Listing 5.10: Update one of the pidA resulting files and delete the original file.

{'timestamp': '2019-03-31 17:44:43',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPR_20170504T101349_new.zip'}

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQS_20170504T101349.zip',

{'timestamp': '2017-05-08 00:00:00',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TQR_20170504T101349.zip'},

{'timestamp': '2017-05-08 00:00:00',

'path':'/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/04/

S2A_MSIL1C_20170504T101031_N0205_R022_T32TPT_20170504T101349.zip'},

...

Listing 5.11: Modified file list output of the Data Update Simulator component, by
removing the original file from the list.

3. Get File-list of pidA

The re-execution of the query pidA results in a file list without the deleted file. Since
files are filtered by the query execution timestamp. The new file does not appear
in the result file list. If the re-execution results not in the same file list, the "state"
attribute contains "Incomplete Result" and a list of files that replaced no longer
available files are stored in the "diff" attribute. Listing 5.13 shows the content of
the "diff" attribute of Listing 5.12. The backend returns the most recent file version,
even if there are versions between the original and the most recent file available.
In the result of Listing 5.12 the "diff" contains only the one file that replaces the
original file. Users can see the alternatives for the original file, but not the original
file itself. This is because the full file list is not persisted in the query store, but the
number of result files. The decision for not storing the complete file list was made
by EODC. The reason is because of the additional needed storage size it would
cause and the rare occasion of a data update. If the number of resulting files is
different at a re-execution, we execute the query without the creation timestamp
filter, and the result is compared to the re-execution with the original execution
timestamp. We compare the attributes of the original files (except for the creation

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.2. Data Identification

timestamp) with the most recent files. If there is no matching file in the original
file list, the most recent file is added to the "diff" attribute. The researcher can use
the resulting "diff" file list to contact EODC or ESA to order older version.

re-execute query and get the resulting file list from the backend

file_listA = con.get_filelist(pidA)

Stdout: Warning: The resulting file list changed from the original query

execution! Look into the "diff" attribute to see the list of files that

have changed. The original data might be still obtainable by the original

data provider. Please contact the backend provider for further information.

file_listA["input_files"]["state"] # Returns "Incomplete Result"

file_listA["input_files"]["diff"] # Returns one file entry

Listing 5.12: Re-execute pidA query after one file is updated and the old version is
erased.

[{'timestamp': '2019-03-31 17:44:43',

'path': '/eodc/products/copernicus.eu/s2a_prd_msil1c/2017/05/24/

S2A_MSIL1C_20170524T101031_N0205_R022_T32TQR_20170524T101353_new.zip'}]

Listing 5.13: List of files that replaced original files of the query result.

4. Run duplicate of jobA, by using the data PID of jobA named jobD

Listing 5.14 shows the code of running a new jobD with the data of pidA. The
code is executed after the deletion of one file from the resulting file list of pidA.
After the creation of the job, the backend notices that the number of result files
is different than the first execution of the input data PID. Therefore, a warning
message is displayed at the client of the researcher (see Listing 5.14). If the user
starts the job nevertheless, the backend looks for updated files like described in
the previous step and adds the most recent version of the missing file to the query
result. EODC chose this strategy, since updates on datasets usually fix errors, users
expect the most recent ones. Most backends e.g. Google Earth Engine give the
users the most recent version automatically. The backend creates a new data PID
for jobD, since the query result changed. Table 5.5 shows the query table status
after the execution. The second query entry has a different result hash, since one
file changed.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Table 5.5: Query table after the execution of Listing 5.8. Important elements are
highlighted blue if they are the same and red if they are different.

Query pidA (full entry in Table 5.2)

Column Value

Query PID qu-a3bbe4a0-a875-4687-bb78-9457f33134a9
Unique Hash 0917c7a21cec960b8a6617...
Result Hash abf43f519007050cbaeb59...

Metadata {’result_files’: 51}
Query pidD

Column Value

Query PID qu-3544aeae-cd24-4b6d-ad34-0d674c2a400f
Dataset PID s2a_prd_msil1c

Original Query see Figure 7.2 in the appendix
Unique Query see Listing 5.2

Query Hash 0917c7a21cec960b8a6617...
Result Hash 28088d113de19ce037e965...

Metadata {’result_files’: 51}
Execution Timestamp 2019-03-31 18:10:25.46402

Take input data of job A by using the input data PID A of job A

pgD = processes.get_data_by_pid(data_pid=pidA)

Choose processes

pgD = processes.ndvi(pgC, nir="B08", red="B04")

pgD = processes.min_time(pgD)

Create and start Job D

jobD = con.create_job(pgD.graph)

Stdout: Warning: The resulting file list changed from the original query

execution! Look into the "diff" attribute to see the list of files that

have changed. The original data might be still obtainable by the original

data provider. Please contact the backend provider for further information.

jobD.start_job()

pidD = jobD.get_data_pid() # pidD != pidA

Listing 5.14: Run duplicate of jobA, by using the data PID of jobA named jobD.

The result of the second test case shows how the backend behaves on data updates
replacing the original data. If the file is deleted, the researcher gets a warning message
and a list of files that are replacing the original files. Since the path of the file identifies
the date and tile that was used, the researcher can notify EODC about the concrete
changed file. On creation of the new jobD that uses the input data identifier pidA, the
client notifies the user that the result files changed, before the execution happens. Then

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Job Capturing

the user can decide to start the job nevertheless or contact EODC about the modified
files.

5.2.5 Test Case 3: Is it possible to re-execute a query after a data file
is deleted?

The deletion of a file without a new file replacing it is not within the policies of EODC
since it would restrict their range on available data. If it happens nevertheless, the data
records are still persisted in the database and can therefore be used to identify the missing
files. If they are also deleted in the database it can only occur by mistake, because EODC
does not delete data records from the database. If it happens nevertheless, there is in
the current solution no possibility to get the exact removed files. The number of result
files in the "meta_data" column shows how many files changed. The whole result files
need to be added to the query table to achieve the knowledge of missing files. In our
solution, the user has to notify EODC about the missing files. How EODC gets the files
from ESA in such a case is not in scope of this thesis.

5.3 Job Capturing

This section reviews the capabilities of the solution regarding job capturing. The focus is
on the context model of the job execution. The following question is used to discuss the
impact of the captured data regarding job execution.

Is it possible to recreate an older version of the backend?
The solution aims to capture enough data to make it possible to re-run the same job
at the same backend. The backend is created directly by its GitHub repository. The
GitHub repository URL and the commit identifier of the original setup are needed to
recreate an old version of the backend. The timestamp of the job execution is stored in
the context model of the original job execution. The backend provenance can resolve the
version of the backend and therefore the GitHub repository and commit via execution
timestamp. Therefore, the information on re-creating a backend version from an older
version is captured. The process graph of the job is persisted as well. The re-execution of
the job is the same, assuming the input data has not been deleted in the meantime, which
can be checked by re-executing the data query of the job. The resulting hash makes it
possible to validate if the job re-execution us done in the same way. The following code
presents how this can be achieved in our solution.

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

1. Run jobA, which creates query pidA and job_idA.
The first step shows the definition, creation, and execution of jobA. The last two
lines show the retrieval of the backend version. The "con.version()" method returns
the current version of the backend, but can also take a timestamp as parameter to
get the version of a particular time. The "jobA.get_backend_version()" method
returns the version of the backend during the execution of jobA. Both versions are
at the end of Step 1 identical.

import openeo

Connect with GEE backend

con = openeo.connect("http://openeo.local.127.0.0.1.nip.io")

Choose dataset

processes = con.get_processes()

pgA = processes.get_collection(name="s2a_prd_msil1c")

pgA = processes.filter_daterange(pgA, extent=["2017-05-01", "2017-05-31"])

pgA = processes.filter_bbox(pgA, west=10.288696, south=45.935871,

east=12.189331, north=46.905246, crs="EPSG:4326")

Choose processes

pgA = processes.ndvi(pgA, nir="B08", red="B04")

pgA = processes.min_time(pgA)

Create and start job A

jobA = con.create_job(pgA.graph)

jobA.start_job()

Get current backend version

version_old = con.version()

Get backend version of jobA

versionA = jobA.get_backend_version()

Listing 5.15: Step 1: Researcher runs jobA and gets the used backend version.

{'branch': 'master',

'commit': '1a0cefd25c2a0fbb64a78cd9445c3c9314eaeb5b',

'url': 'https://github.com/bgoesswein/implementation_backend.git'}

Listing 5.16: Step 1: Version of the jobA execution version_old.

2. Publish job_idA and pidA.
The researcher retrieves the persistent input data identifier pidA and the job
identifier jobA_id to cite the provenance of the execution. The timestamp of the
execution in the context model is used to identify the backend version of the job
execution.

Get input data PID of jobA

pidA = jobA.get_data_pid()

jobA_id = jobA.job_id

Listing 5.17: Researcher gets the input data PID of jobA and the job_id of jobA.

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.3. Job Capturing

3. Update backend version
In this step, we modify the backend by updating one Python package in the
requirements file used for the job execution. We edit the file by replacing the line
"urllib3==1.23" with "urllib3==1.24.1". After editing we call the "git commit"
command to get a new version of the backend.

4. Get original context of jobA

Listing 5.18 shows the code needed by the researcher to get the original version of
the backend during the jobA execution. The variable versionA contains the version
displayed in Listing 5.16.

5. Re-run jobA with the original version.
To get the original version of the backend, EODC has to create a second instance
of the backend. Then they have to check out the commit of the job execution, by
running "git checkout commit_id" in the console, where "commit_id" is the value
of versionA["commit"].

import openeo

Connect with GEE backend

con = openeo.connect("http://openeo.local.127.0.0.1.nip.io")

Get jobA using the jobA_id.

jobA = con.get_job(jobA_id)

Get the version of the backend that was active during the job A execution

versionA = jobA.get_backend_version()

Listing 5.18: Researcher retrieves the original backend version of the jobA execution.

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

5.4 Performance and Storage Impact

This section evaluates the performance and storage impact of the solution on the EODC
backend. We define 18 input process graphs from 9 publications using data provided
by EODC from the last two years. The data used in the papers provide spatial and
temporal extents. These 18 input process graphs define the 18 test cases. Table 5.6
shows the papers used for the test cases. The evaluation code (see evaluation_impact.py
on GitHub) contains the values of the spatial and temporal extent. The performance of
the Solution Backend is compared to a local EODC backend, without the extensions of
this thesis (from now on referred to as Reference Backend). Note that in the Reference
Backend the processing is mocked up in the same way as in the Solution Backend. Figure
5.4 gives an overview of the performance and storage evaluation setup.

Figure 5.4: Overview of the storage and performance evaluation setup.

5.4.1 Performance

In this section, we evaluate the performance impact on the backend by measuring the
difference of job execution durations between the Reference Backend and the Solution
Backend. We measure the execution time by writing timestamps into a log file and
calculating the duration afterward. We measure the duration of the Query Handler (see
Section 4.1) execution, as well as the duration of the context model creation process
(described in Section 4.3). Each test case is executed 50 times at each backend. Before
the test case execution, we cleanup the backend, so that every iteration has the same
backend condition.

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Performance and Storage Impact

Table 5.6: List of geoscientific papers used for the input data of the impact evaluation in
Section 5.1

Test Cases DOI Citation

1 10.1080/01431160902887339 [3]
2-4 10.3390/rs8050402 [37]
5,6 10.1016/j.jag.2014.12.001 [39]
7 10.1016/j.jag.2016.12.003 [38]
8 10.3390/rs8110938 [47]
9 10.1080/2150704X.2016.1225172 [25]

10-13 10.1109/TGRS.2018.2858004 [1]
14 10.1080/01431161.2018.1479788 [5]

15-18 10.3390/rs10071030 [2]

Performance of Query Handler

This section provides a description regarding performance constraints for each element of
the query table.

• Dataset PID
We take the Dataset PID directly from the parsed filter arguments of the backend.
Therefore, the duration has a complexity of O(1). Figure 5.5 shows the performance
results, which are between 4 µs and 26 µs with a median of 8 µs. the standard
deviation over all test cases is 2.5 µs. The results show that the duration time of
retrieving the dataset PID is, except for a few aberrations, similar between all test
case executions and independent of the job configuration.

Figure 5.5: Boxplot of the duration needed in the test cases to handle the Dataset PID
entry.

5 10 15 20 25

Dataset PID

duration [µs]

• Original Query
The Query Execution component passes the Original Query. The Query Handler
transforms the query into a string. The query string has the same size for each
query, and just the argument values are exchanged. Therefore the duration has a
complexity of O(1). The execution time of the test cases is between 24 µs and 98 µs,

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

with a median of 37 µs. The standard deviation for all test cases is 5.34 µs. Figure
5.6 shows the boxplot of all test case executions and therefore the distribution of
duration. The measurements indicate that most of the Original Query retrieval
time is in a small range. The duration of retrieving the original query is constant
in time and independent on the job configuration.

Figure 5.6: Duration boxplot of the test cases to handle the Original Query entry.

20 40 60 80 100

Original Query

duration [µs]

• Unique Query
The Unique Query is the result of an alphabetical sorting of the parsed filter
arguments of the backend. It takes nearly constant duration time, since there are
only 4 filter arguments allowed in the openEO API version 0.3.1, but they may
not all be used. The sorting algorithm has a complexity of O(n log n), where "n"
is the number of crucial elements in the dictionary (amount of filter operations).
In this evaluation, four filter arguments were used for each test case. Therefore it
has a constant complexity in every test case execution. It takes between 38 µs and
132 µs with a median of 59 µs of duration time with a standard deviation of 19.35
µs. Figure 5.7 shows the boxplot of all test case executions to visualize that the
duration is not widely distributed.

Figure 5.7: Boxplot of the duration time of the test cases to handle the Unique Query
entry.

40 60 80 100 120 140

Unique Query

duration [µs]

• Query Hash
The performance of the unique Query Hash is dependent on the size of the unique
query (O(n), where "n" is the size of the unique query string). In this evaluation, it

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Performance and Storage Impact

is constant because every test case uses four filter arguments. The circumstances
makes the unique query have a constant length. In the test cases, the duration is
between 15 µs and 54 µs with a median of 20 µs and a standard deviation of 5.89
µs. Figure 5.8 shows the boxplot of all test case executions. The duration has a
small range of distribution, except for a few executions. The measurements show
that the duration is independent of the job configuration.

Figure 5.8: Boxplot of the duration time of the test cases to handle the Query Hash
entry.

20 30 40 50

Query Hash

duration [µs]

• Result Hash
Duration of the Result Hash creation is dependent on the length of the result file
list. The SHA-256 operation has a complexity of O(n), where "n" is the length of
the resulting file list string. In the test cases, the duration time of the Result Hash
calculation is between 28 µs and 9167 µs with a median of 51 µs. Figure 5.9 shows
the duration of the Result Hash creation of the test cases, sorted by the size of the
result file set in an ascending way. Table 5.7 shows the values of the chart. They
indicate the relationship between the number of files and the duration.

• Metadata
In the solution the Metadata contains only the number of result files. It measures it
by the built-in len() operator of Python, which has a complexity of O(1) according
to the official Python description6. In the test cases, the data calculation takes a
duration between 6 µs and 359 µs with a median of 12 µs and a standard deviation of
3.98 µs. Figure 5.10 shows the boxplot of the test case execution. The measurements
indicate no correlation of the test case configuration and the duration.

• Database operations
To ensure that there are no duplicate query entries in the database, the Query
Handler executes a SQL SELECT statement to check if there is already an entry
with the same unique query hash and the same result hash. In the evaluation,
the query table is empty before the SELECT statement. Hence, the complexity
is O(1). There is currently no statistic on query executions at EODC, but an
estimation of a few hundred per month. The INSERT statement to store the

6https://wiki.python.org/moin/TimeComplexity

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Table 5.7: Result Hash performance of the test cases depending on the number of result
files.

Test Case Number of files Result Hash duration [µs]

1 14 47.2
2 24 78.0
3 11 37.2
4 9 32.4
5 10 35.0
6 10 35.9
7 10 33.8
8 12 36.9
9 2255 8698.7
10 17 59.4
11 1551 5343.9
12 12 41.5
13 28 95.2
14 420 1400.7
15 15 50.1
16 1356 4985.0
17 15 51.6
18 54 187.2

query has a complexity of O(1). The database operations in the test cases have a
duration between 10.501 ms and 49.283 ms with a median of 13.377 ms. Figure
5.11 shows the boxplot of the test case executions indicating that the performance
is independent of the job configuration.

Figure 5.12 shows the duration of the constant query elements of the test cases. The
test cases are sorted by the result size in ascending order. It shows that even though we
configured the test cases differently, the duration time of the constant query elements are
similar between them.

Performance of Context Model Creation

1. Constant context model elements
The creation of the following elements of the context model have a constant duration:

• The programming language

• The input data identifier

• The backend version

• The start and end timestamp

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Performance and Storage Impact

Figure 5.9: Result Hash duration of the test cases sorted by result size.

Figure 5.10: Boxplot of the duration time of the test cases to handle the Metadata entry.

0 100 200 300

Metadata

duration [µs]

Figure 5.11: Boxplot of the duration time of the test cases to make the needed database
operations.

10 20 30 40 50

database operations

duration [ms]

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

Figure 5.12: Constant elements of the Query Handler output in relation to the test cases
sorted by result size.

These are independent of the job configuration and are read operations with a
complexity of O(1). The constant context model elements in the test cases have a
duration between 26 µs and 122 µs with a median of 41.5 µs. Figure 5.13 shows
the boxplot of the test case executions to visualize the distribution.

Figure 5.13: Boxplot of the duration time of the test cases to handle the constant context
model elements.

20 40 60 80 100 120

Constant Elements

duration [µs]

2. Dependencies of the programming language
A "pip freeze" execution retrieves the dependencies of the backend. It is independent
on the complexity of the job, hence has a constant duration time. The duration
in the test cases executions is between 92 µs and 289 µs with a median of 133 µs.
Figure 5.14 shows the boxplot of the test case execution to visualize the distribution.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Performance and Storage Impact

Figure 5.14: Boxplot of the duration time of the test cases to retrieve the modules of
Python.

100 150 200 250 300

python modules

duration [µs]

Table 5.8: Result hash performance of the test cases in relation to the result size.

Test Case Result size [kByte] Result hash duration [ms]

1 587 2.2
2 721 2.7
3 600 2.2
4 556 2.1
5 570 2.1
6 553 2.1
7 578 2.1
8 638 2.4
9 27 999 104.2
10 621 2.3
11 7 969 29.7
12 649 2.4
13 1 376 5.1
14 6 026 22.4
15 777 2.9
16 7 978 29.7
17 733 2.7
18 706 2.6

3. Result hash
The duration of the resulting hash calculation is dependent on the length of the
resulting image. The SHA-256 operation has a complexity of O(n), where "n" is
the size of the output image. In the test cases, the duration is between 1.924 ms
and 106.270 ms with a median of 2.521 ms. Table 5.8 shows the test cases and
their result size concerning the average duration time of the result hash calculation.
In the experiment setup, every 100 kByte of output data resulted in average in
an additional duration of 371 µs. The test cases 9, 11, 14, and 16 have the most
prominent result file and therefore needed the longest for the result hash calculation.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

4. Database UPDATE operation
The job entry gets updated to store the context model in the database by a SQL
UPDATE statement. It is independent of the job configuration. The duration
of the test case execution is between 3.631 ms and 20.099 ms, with a median of
5.493 ms. Figure 5.15 shows the boxplot of the test case execution to visualize the
distribution.

Figure 5.15: Boxplot of the duration time of the test cases to retrieve the modules of
Python.

5 10 15 20

UPDATE operation

duration [ms]

The context model creation performance is not affected by the complexity of the test
cases. The captured data for the context model is not related to the complexity of
the job execution. The "Increase" column of Table 5.9 shows that simple test cases are
affected the most in terms of relative performance loss because the Query Handler and
the context model have elements that need the same execution duration. In conclusion, it
can be argued that the execution of the Query Handler and the context model creation
is less affecting complex test cases, because of the constant overhead, which adds a fixed
amount of time. Besides, it should be mentioned that the Query Handler and the context
model creation happens after the processing. So that the result files of the job execution
are available for the user even if both modules have not finished yet.
Table 5.9 summarizes the result of the mean duration time over the 50 runs of each
the test case. The second column presents the duration of the Reference Backend. The
other columns are measurements of the Solution Backend. It includes the total execution
duration of the Solution Backend, the duration of the Query Handler and the duration
of the context model creation. The last column shows the additional time the Solution
Backend needs in comparison to the Reference Backend. The last row of Table 5.9 shows
the mean duration over all test cases. It indicates that the solution adds between 20 ms
and 175 ms to the duration of the Reference Backend. It depends on the result sizes
and not on the execution duration of the job execution. Compared to the estimated
computation time of the test cases between 10 seconds and 20 minutes at the production
version of the EODC backend, we conclude that the impact of the Query Handler is
negligible.

98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.4. Performance and Storage Impact

Table 5.9: Mean duration time over 50 runs of the Solution Backend and the Reference
Backend by executing the test cases

Reference Backend Solution Backend

Test Comparison Query Context Solution
Case Total Total Handler Model Addition

1 322.946 ms 345.127 ms 14.187 ms 7.994 ms 22.181 ms (6.8 %)
2 369.066 ms 393.505 ms 16.342 ms 8.097 ms 24.439 ms (6.6 %)
3 281.657 ms 305.407 ms 15.669 ms 8.081 ms 23.750 ms (8.4 %)
4 276.324 ms 298.954 ms 14.015 ms 8.615 ms 22.630 ms (8.2 %)
5 312.150 ms 334.802 ms 13.925 ms 8.727 ms 22.652 ms (7.3 %)
6 314.571 ms 337.290 ms 13.985 ms 8.734 ms 22.719 ms (7.2 %)
7 320.081 ms 343.552 ms 14.555 ms 8.916 ms 23.471 ms (7.3 %)
8 304.998 ms 328.633 ms 14.742 ms 8.893 ms 23.635 ms (7.7 %)
9 565.289 ms 740.751 ms 48.766 ms 126.696 ms 175.462 ms (31.0 %)

10 401.922 ms 425.026 ms 14.874 ms 8.230 ms 23.104 ms (5.7 %)
11 521.022 ms 605.185 ms 34.660 ms 49.503 ms 84.163 ms (16.2 %)
12 387.536 ms 412.079 ms 15.711 ms 8.832 ms 24.543 ms (6.3 %)
13 510.517 ms 538.784 ms 17.070 ms 11.197 ms 28.267 ms (5.5 %)
14 657.989 ms 706.329 ms 19.010 ms 29.330 ms 48.340 ms (7.3 %)
15 345.806 ms 371.984 ms 17.027 ms 9.151 ms 26.178 ms (7.6 %)
16 585.730 ms 658.493 ms 23.956 ms 48.807 ms 72.763 ms (12.4 %)
17 563.755 ms 589.776 ms 16.778 ms 9.243 ms 26.021 ms (4.6 %)
18 836.377 ms 862.271 ms 16.801 ms 9.093 ms 25.894 ms (3.1 %)

Avg. 437.652 ms 477.664 ms 19.004 ms 21.008 ms 40.012 ms (8.9 %)

Storage

This section describes the storage needed for the captured data. The Solution Backend
stores all of the captured data in a PostgreSQL database. Therefore, we estimate the
needed storage using the PostgreSQL command line interface. Listing 5.19 presents
the commands to retrieve the size of the database entries. The id of the data record is
inserted into "”" (e.g. job id in the first one).

The storage need for the evaluation is constant. The mean storage of the 50 runs per
test case and the average storage size of the test cases are measured. Three parts of the
implementation are storing data in the database. First, we store the context model in
an additional column named "context_model" in the job table. There is no element in
the context model that can vary in size, except for the list of packages of Python, which
didn’t change during the evaluation. It takes an additional 1.043 kByte of size for every
job entry. The same occurs at the queryjob table, which maps the query table and the
job table and therefore contains the needed identifiers and timestamps for creation and
modification. Every record of the queryjob table needs 0.113 kBytes of storage space.
The query records have a varying size because of the string length of the parameters

99

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5. Evaluation

-- Context Model

SELECT sum(pg_column_size(context_model)) as filesize, count(*) as filerow

FROM jobs as t WHERE id = '{}';

-- Query Table

SELECT sum(pg_column_size(t)) as filesize, count(*) as filerow

FROM query as t WHERE query_pid = '{}';

-- QueryJob Table

SELECT sum(pg_column_size(t)) as filesize, count(*) as filerow

FROM queryjob as t WHERE job_id = '{}';

Listing 5.19: PostgreSQL commands to retrieve the size of one data record in the job
table, the query table and the queryjob table.

in the original query. The remaining parts of the query table are constant in storage
usage. Each query record of the test cases needs between 1.520 kByte and 1.533 kByte
of space. The original query makes up the biggest part in the query table (e.g. 959
Bytes of 1521.432 Bytes in test case 18). The reason for this is the high amount of XML
annotations. In summary, the average additional storage needed by the Solution Backend
per job with a new query entry is 2.677 kBytes. If the used query is already in the query
table, only additional 1.043 kBytes are needed by the Solution Backend. For EODC
this are unproblematic numbers with the estimate of under five hundred queries and job
executions per month (maximum additional 1.338 MBytes per month).

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

5.5. Summary

5.5 Summary

The evaluation in this chapter showed how the solution tackles the goals of the research
questions. First, it summarizes how the RDA recommendations are implemented in
the solution, except for the migration recommendations (R14 and R15). The data
identification implementation is then tested against exceptional test cases regarding data
updates and data deletions at the backend. The evaluation shows that the solution can
re-execute queries properly by returning old versions of updated files. The test cases
show that the usage of the data PID as input data of a new job is superior to the current
way of re-executing a job with the same process graph at EODC. The reason for this is
that the process graph does not have the original execution timestamp and therefore,
does not use the same input data after an update occurs. In the evaluation of deleted
data at the backend, the solution happens to be not capable of showing the exact missing
files, since not the whole file list result of the query is persisted. The test case on job
capturing showed that the solution is capable of identifying the backend version and
therefore, the environment of the job execution. Still, to run a new job in the same
environment, EODC has to provide it manually. The evaluation also contains a section
about the performance and storage impact on the EODC backend, by running 18 test
cases derived from past publications that used data from EODC. The results show that,
except for the result hashes, the calculation of the data identification and the context
model are independent of the complexity of the job. The time of the result hashing used
for the data identification is dependent on the size of the query result, and the resulting
hash of the context model is dependent on the size of the output file of the job execution.
The evaluation of storage impact results in the conclusion that the additional needed
space per job is unrelated to the job configuration. It depends on if there is a new query
entry added to the database or not. The performance impact of the test case execution is
between 20ms and 170ms. Compared to the estimated computation time of the test cases
between 10 seconds and 20 minutes at the production version of the EODC backend, we
conclude that the impact of the Query Handler is negligible. The additional needed space
per job is constant and also minimal if compared to size of data kept at the backend.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Conclusion and Future Work

6.1 Conclusion

In this thesis, the challenges of providing reproducibility in earth observation science have
been explored. We dealt with the problematic state of reproducibility in EO experiments,
which use extern computational backends. We suggested how existing infrastructure
of EO backends can be adapted to enable data identification using the Research Data
Alliance recommendations. We presented how job environments can be captured and
compared, by applying the VFramework to make differences in the computational
environment measurable. The presented solution was implemented at the backend
of the Earth Observation Data Centre which is compliant with the openEO specification
that provides a common interface for earth observation backends. The implementation
involved extending the backend to add reproducibility supporting functionality, as well
as, extending client applications to provide additional functionality. This allows scientists
not to change the way of work but, due to the introduced changes into the existing
environment, they can improve the reproducibility of experiments. The evaluation of
our solution consists of simulated use cases representing updates of data and changes in
the backend environment. We also measured the performance and storage impact on the
backend, which concluded that the solution is capable of making the input data, code
and the environment identifiable and reproducible with minimal impact on the backend’s
performance.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6. Conclusion and Future Work

6.1.1 Research questions revisited

This section revisits the research questions defined in Section 1.2 to discuss how the
solution suits them.

• What information must be captured from an earth observation backend,
so that a job execution can be repeated like the original execution?

– How can the data of the original execution be identified?
The data of an EO job execution is defined by a list of satellite images
needed to execute the job. It it is specified by the satellite identifier and
the filter operations of the job, which result in a backend specific query (e.g.
CSW). We made it identifiable by storing the original query following the
RDA recommendations. Therefore, we assigned a persistent identifier to every
unique query and result combination. We defined the result as the hash
value of the resulting file list of the query execution. The landing page of the
resolvable input data PID is a human-readable and machine-readable website.
We extended the openEO API specification to access the information of the
landing page using an openEO client application.

– How can the environment of the original execution be reproduced?
The original environment consists of the executed code, the version of pro-
gramming language, and the installed libraries. We use Git and GitHub in our
implementation to identify a version of the backend. Each commit represents
a version of code. The version of the programming language as well as the
installed libraries are captured during the execution of the job delusing. In
our implementation we used the Python tool pip. The context model stores
the three elements of the environment during the job execution. The backend
has to jump back to the version of the backend used during the job execution
to reproduce the original execution environment.

– Which parts of the backend need to be extended?
The RDA recommendations have to be implemented at the query execution
component of the backend. To realize the backend version, we recommend
to use a version control system. The job execution environment has to be
modified to capture the job dependent environment. After the execution of the
job finished, we added the creation of a result hash. We suggest an additional
database table to store the context model for every job.

– How can the result of a re-execution in future environments be
verified?
The solution contains a hash of the resulting output file. The user compares
the result hash value of the re-execution with the original execution output
hash to see if the result differs. If the result hash differs in a re-execution, the
user is able to investigate which parts of the job environment may caused the
inequality.

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

6.2. Future Work

• What information must be persisted to enable validation of a job re-
execution on an earth observation backend?

– What are the validation requirements?
We defined the validation requirements as the equality of the captured data in
the context model. We proposed the equality of the input data identifier, the
execution environment and the hash of the output for validation,because they
define the job execution comprehensively. If any of these parts are different in
a re-execution, we conclude that the way the execution happened is different
from the original one.

– How can differences in the environment between the executions be
discovered?
The solution contains a user service to compare two job executions. It compares
the context models of the two jobs and returns the differences. If a backend
environment changes between two executions, the backend version is different.

6.2 Future Work

The prototype of this thesis applies reproducibility using a file-based openEO compliant
backend. The openEO project is an ongoing project, hence the common API may evolve
and our work will have to be adapted to new releases of the API. User defined functions
(UDF) are part of the project, but not well defined yet. The extension of the design to
support reproducible UDFs is a useful extension of the solution. Future work will lead to
the implementation of the proposed solution at other backends of the openEO consortium.
Further, the solution will be applied to backends that are not openEO compliant. Future
effort will go into differently structured backends e.g. backends with non-file-based result
sets. In the solution of this thesis, we capture environment information to identify how
jobs are executed. Jobs are represented by the process graph and therefore, a compilation
of single processes. Future work will improve the provenance of process implementations
at the backend by introducing process versions. This will improve the transparency for
users by enabling the identification of updated process implementations that may cause
different results in a re-execution.

105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Appendix

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7. Appendix

Figure 7.1: Original query of jobB from the evaluation in Section 5.2.

108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 7.2: Original query of jobD from the evaluation in Section 5.2.

109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Figures

1.1 Example of a comparison of the original result (a) and a replicated result
(b). The boxes are highlighting the differences of the map. The blue box
indicates the misplacement of the legend, the purple box shows different color
of results, the red box shows a different data type of the legend numbers, the
grey box shows a different labeling, the orange box highlights differences in
the background map, the yellow box shows a different number of classes and
the green box shows results that were not in the original figure [15]. . . . 3

1.2 Resulting image of the running example. 5
1.3 Overview of the first use case: Re-use of input data 5
1.4 Overview of the second use case: Providing job execution information . . 7
1.5 Overview of the third use case: Compare different job executions 8

2.1 Overview of the main components of PROV-O [45] 13
2.2 Overview of the Concept of the VFramework [21] 14
2.3 Relationship between reproducible publications and geoscientific papers of

the future [9] . 16
2.4 Technical overview of the CCCA NetCDF data citation implementation . 17
2.5 Architecture of noWorkflow [24] . 20
2.6 Overview of the ReproZip concept from [4] 21
2.7 Overview of the openEO procedure to execute a job and retrieve the results 25
2.8 Process graph of the running example defined in Section 1.1.1 26
2.9 Action chain of the backend after receiving the process graph of Figure 2.8 27
2.10 Overview of the EODC database structure. 29

3.1 Overview of the design . 32
3.2 Overview of the backend execution components and the context model elements

that identifies them. 37

4.1 Overview of the query services at EODC. The backend sends CSW compliant
queries to the CSW Webservice Layer, which translates it to SQL. It enables
a decoupling of the database and the services as well as publicly available
data discovery via the CSW endpoint of EODC. 42

4.2 Overview of the database of the backend with the proposed additional tables
(green). 45

111

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3 Overview of the proposed data identification component at the backend . 46
4.4 Activity diagram of the Query Record Handler component. 48
4.5 Example for the original query and the unique query of the example process

graph. 49
4.6 Example context model of a job execution at the backend implementation. 53
4.7 Overview of the Job capturing architecture at the backend. Green blocks are

additional modules . 54
4.8 PROV-O representation of the example job execution. 59
4.9 Resulting image of the first step of Use Case 1. 61
4.10 Screenshot of the pid A landing page. The button "JSON" redirects to a

landing page with the same information in JSON format. The button "Show
Result", redirects to a new page, which re-executes the query and shows the
resulting file list in JSON format. 62

4.11 Resulting image of the last step of Use Case 1. 64

5.1 Overview of the evaluation setup. Green boxes are components of the solu-
tion, white boxes are unmodified existing components and yellow boxes are
components added only for the evaluation. 72

5.2 Overview of the data update simulation. It shows the extension on the data
identification implementation of Figure 4.3. 76

5.3 Original query of jobA after the test case preparation step. 78
5.4 Overview of the storage and performance evaluation setup. 90
5.5 Boxplot of the duration needed in the test cases to handle the Dataset PID

entry. 91
5.6 Duration boxplot of the test cases to handle the Original Query entry. . . 92
5.7 Boxplot of the duration time of the test cases to handle the Unique Query

entry. 92
5.8 Boxplot of the duration time of the test cases to handle the Query Hash entry. 93
5.9 Result Hash duration of the test cases sorted by result size. 95
5.10 Boxplot of the duration time of the test cases to handle the Metadata entry. 95
5.11 Boxplot of the duration time of the test cases to make the needed database

operations. 95
5.12 Constant elements of the Query Handler output in relation to the test cases

sorted by result size. 96
5.13 Boxplot of the duration time of the test cases to handle the constant context

model elements. 96
5.14 Boxplot of the duration time of the test cases to retrieve the modules of

Python. 97
5.15 Boxplot of the duration time of the test cases to retrieve the modules of

Python. 98

7.1 Original query of jobB from the evaluation in Section 5.2. 108
7.2 Original query of jobD from the evaluation in Section 5.2. 109

112

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

List of Tables

2.1 PRIMAD description of reproduction and replication according to [26] . . 15
2.2 List of all backend providers of the openEO project 27

4.1 Structure of the Query Table in the PostGres database. 47
4.2 Relation of context model elements and the implementation JSON context

model. 52

5.1 Evaluation system specifications. 72
5.2 Query table after the execution of Listing 5.1 79
5.3 Query table after the execution of Listing 5.8. Important elements are

highlighted blue if they are the same and red if they are different. 82
5.4 Resulting mapping of the jobs and the used data PID of the first test case. 83
5.5 Query table after the execution of Listing 5.8. Important elements are

highlighted blue if they are the same and red if they are different. 86
5.6 List of geoscientific papers used for the input data of the impact evaluation

in Section 5.1 . 91
5.7 Result Hash performance of the test cases depending on the number of result

files. 94
5.8 Result hash performance of the test cases in relation to the result size. . . 97
5.9 Mean duration time over 50 runs of the Solution Backend and the Reference

Backend by executing the test cases . 99

List of Listings

4.1 CSW properties, used by the backend and our implementation. 43
4.2 CSW operations. 43

113

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4.3 Example CSW query of the backend. 44
4.4 CSW query addition by our implementation to filter by creation timestamp. 44
4.5 Git CLI calls to get access the backend provenance. 50
4.6 Backend version example. 56
4.7 Example of a job comparison regarding the context model. 57
4.8 Researcher A runs job A with the Python client. 60
4.9 Researcher A retrieves the used input data PID. 61
4.10 Generated citation text of pidA. 63
4.11 Researcher B uses PID A for different job. 63
4.12 Researcher A runs job A at the backend using the Python client. 64
4.13 Describe jobA execution environment. 65
4.14 Value of context_model from the second Use Case (see Listing 4.13). . . . 65
4.15 Researcher A runs job A using the Python client. 66
4.16 Researcher re-reruns job A resulting in job B. 66
4.17 Researcher runs experiment different from job A. 67
4.18 Researcher compares the different jobs. 67
4.19 Logging output of the job comparisons diffAB and diffAC. 68

5.1 Researcher runs jobA and retrieves the result files status. 77
5.2 Normalized query of the initial query entry. 77
5.3 First four resulting files with creation timestamp. 79
5.4 Update one of the pidA resulting files, but keep the original file. 80
5.5 Modified file list output after the Data Update Simulator component. . . 80
5.6 Re-execute pidA query after one file got updated. 80
5.7 First four resulting files of the file list. 81
5.8 Step 4: Create jobB, which uses the same process graph as jobA. 81
5.9 Create jobC, which uses the input data identified by pidA. 83
5.10 Update one of the pidA resulting files and delete the original file. 84
5.11 Modified file list output of the Data Update Simulator component, by removing

the original file from the list. 84
5.12 Re-execute pidA query after one file is updated and the old version is erased. 85
5.13 List of files that replaced original files of the query result. 85
5.14 Run duplicate of jobA, by using the data PID of jobA named jobD. 86
5.15 Step 1: Researcher runs jobA and gets the used backend version. 88
5.16 Step 1: Version of the jobA execution version_old. 88
5.17 Researcher gets the input data PID of jobA and the job_id of jobA. . . . 88
5.18 Researcher retrieves the original backend version of the jobA execution. . 89
5.19 PostgreSQL commands to retrieve the size of one data record in the job table,

the query table and the queryjob table. 100

114

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Glossary

backend A web service provider, capable of processing and providing geoscientific data.

experiment Practical scientific earth observation research using at least one backend
with at least one job.

job Definition of a workflow execution on a backend, including the input data.

process Algorithm that gets executed over earth observation data. May use the output
of another process as input data.

process graph openEO definition of a job in a JSON format.

workflow Step by step description of an experiment.

Acronyms

API Application Programming Interface.

CCCA Climate Change Centre Austria.

CLI Command Line Interface.

CPU Central Processing Unit.

CSW Catalogue Service for the Web.

EO Earth Observation.

EODC Earth Observation Data Centre.

ESA European Space Agency.

GEE Google Earth Engine.

GEOBIA Geographic Object-Based Image Analysis.

GeoTiff Georeferenced Tagged Image File Format.

GPU Graphics Processing Unit.

JSON JavaScript Object Notation.

NDVI Normalized Difference Vegetation Index.

115

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

NetCDF Network Common Data Form.

OBIA Object-Based Image Analysis.

OGC Open Geospatial Consortium.

openEO Open Source Earth Observation Project.

OS Operating System.

PID Persistent Identifier.

RAM Random Access Memory.

RDA Research Data Alliance.

REST Representational State Transfer.

RR Reproducible Research.

SHA Secure Hash Algorithm.

SOA Service Oriented Architecture.

TDS Thredds Data Server.

UDF User Defined Functions.

VCS Version Control Systems.

VZJ Vadose Zone Journal.

WGDC Working Group on Data Citation.

XML Extensible Markup Language.

116

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] B. Bauer-Marschallinger, V. Freeman, S. Cao, C. Paulik, S. Schaufler, T. Stachl,
S. Modanesi, C. Massari, L. Ciabatta, L. Brocca, and W. Wagner. Toward global soil
moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles.
IEEE Transactions on Geoscience and Remote Sensing, 57(1):520–539, 2019.

[2] B. Bauer-Marschallinger, C. Paulik, S. Hochstöger, T. Mistelbauer, S. Modanesi,
L. Ciabatta, C. Massari, L. Brocca, and W. Wagner. Soil moisture from fusion
of scatterometer and sar: Closing the scale gap with temporal filtering. Remote
Sensing, 10(7), 2018.

[3] M. Callegari, L. Carturan, C. Marin, C. Notarnicola, P. Rastner, R. Seppi, and
F. Zucca. A pol-sar analysis for alpine glacier classification and snowline altitude
retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 9(7):3106–3121, 2016.

[4] F. Chirigati, R. Rampin, D. Shasha, and J. Freire. Reprozip: Computational
reproducibility with ease. In SIGMOD 2016 - Proceedings of the 2016 Interna-
tional Conference on Management of Data, volume 26-June-2016, pages 2085–2088.
Association for Computing Machinery, 2016.

[5] A. Dostálová, W. Wagner, M. Milenković, and M. Hollaus. Annual seasonality in
sentinel-1 signal for forest mapping and forest type classification. International
Journal of Remote Sensing, 39(21):7738–7760, 2018.

[6] C. Drummond. Replicability is not reproducibility: Nor is it good science. Proceedings
of the Evaluation Methods for Machine Learning Workshop at the 26th ICML, 2009.

[7] I. Emsley and D. De Roure. A framework for the preservation of a docker container.
12th International Digital Curation Conference (IDCC17), 2017.

[8] N. Fuhr. The primad model of reproducibility. Dagstuhl Seminar 16111 - Rethinking
Experimental Methods in Computing, 2016.

[9] Y. Gil, C. H. David, I. Demir, B. T. Essawy, R. W. Fulweiler, J. L. Goodall,
L. Karlstrom, H. Lee, H. J. Mills, J.-H. Oh, S. A. Pierce, A. Pope, M. W. Tzeng,
S. R. Villamizar, and X. Yu. Toward the geoscience paper of the future: Best

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

practices for documenting and sharing research from data to software to provenance.
Earth and Space Science, 3(10):388–415, 2016.

[10] E. H. B. M. Gronenschild, P. Habets, H. I. L. Jacobs, R. Mengelers, N. Rozendaal,
J. van Os, and M. Marcelis. The effects of freesurfer version, workstation type, and
macintosh operating system version on anatomical volume and cortical thickness
measurements. PLOS ONE, 7(6):1–13, 06 2012.

[11] T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Microsoft Research, Redmond, Washington, 2009.

[12] D. Huo, J. Nabrzyski, and C. Vardeman. Smart Container: An Ontology Towards
Conceptualizing Docker. In Process of International Semantic Web Conference,
2015.

[13] C. Knoth and D. Nust. Enabling reproducible obia with open-source software in
docker containers. GEOBIA 2016 : Solutions and Synergies, At University of Twente
Faculty of Geo-Information and Earth Observation (ITC), 2016.

[14] C. Knoth and D. Nüst. Reproducibility and practical adoption of geobia with
open-source software in docker containers. Remote Sensing, 9(3), 2017.

[15] M. Konkol, C. Kray, and M. Pfeiffer. Computational reproducibility in geoscientific
papers: Insights from a series of studies with geoscientists and a reproduction study.
International Journal of Geographical Information Science, 33(2):408–429, 2019.

[16] G. T. Konrad Hinsen, Konstantin Laeufer. Essential tools: Version control systems.
Computing in Science and Engineering, 11(06):84–91, 2009.

[17] H. P. Langtangen. Quick introduction to git and github. http://hplgit.

github.io/teamods/bitgit/Langtangen_bitgit-solarized.html. Ac-
cessed: 2018-08-10.

[18] J. R. Marlon, R. Kelly, A.-L. Daniau, B. Vannière, M. J. Power, P. Bartlein,
P. Higuera, O. Blarquez, S. Brewer, T. Brücher, A. Feurdean, G. G. Romera,
V. Iglesias, S. Y. Maezumi, B. Magi, C. J. Courtney Mustaphi, and T. Zhihai.
Reconstructions of biomass burning from sediment-charcoal records to improve
data–model comparisons. Biogeosciences, 13(11):3225–3244, 2016.

[19] R. Mayer, T. Miksa, and A. Rauber. Ontologies for describing the context of scientific
experiment processes. In 2014 IEEE 10th International Conference on e-Science,
volume 1, pages 153–160, Oct 2014.

[20] T. McPhillips, S. Bowers, K. Belhajjame, and B. Ludäscher. Retrospective prove-
nance without a runtime provenance recorder. In 7th USENIX Workshop on the
Theory and Practice of Provenance (TaPP 15), Edinburgh, Scotland, 2015. USENIX
Association.

118

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[21] T. Miksa, S. Pröll, R. Mayer, S. Strodl, R. Vieira, J. Barateiro, and A. Rauber.
Framework for verification of preserved and redeployed processes. In Proceedings
of the 10th International Conference on Digital Preservation, iPRES 2013, Lisbon,
Portugal, September 2 - 6, 2013, 2013.

[22] T. Miksa and A. Rauber. Using ontologies for verification and validation of workflow-
based experiments. Web Semantics: Science, Services and Agents on the World
Wide Web, 43:25 – 45, 2017.

[23] T. Miksa, A. Rauber, and E. Mina. Identifying impact of software dependencies on
replicability of biomedical workflows. Journal of Biomedical Informatics, 64:232 –
254, 2016.

[24] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire. No workflow:
Capturing and analyzing provenance of scripts. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 8628, pages 71–83. Springer Verlag, 2015.

[25] D. B. Nguyen, A. Gruber, and W. Wagner. Mapping rice extent and cropping scheme
in the mekong delta using sentinel-1a data. Remote Sensing Letters, 7(12):1209–1218,
2016.

[26] F. O. Ostermann and C. Granell. Advancing science with vgi: Reproducibility and
replicability of recent studies using vgi. Transactions in GIS, 21:224–237, 2017.

[27] E. Pebesma, W. Wagner, M. Schramm, A. Von Beringe, C. Paulik, M. Neteler,
J. Reiche, J. Verbesselt, J. Dries, E. Goor, T. Mistelbauer, C. Briese, C. Notarnicola,
R. Monsorno, C. Marin, A. Jacob, P. Kempeneers, and P. Soille. OpenEO - a
Common, Open Source Interface Between Earth Observation Data Infrastructures
and Front- End Applications, 2017.

[28] J. a. F. Pimentel, J. Freire, L. Murta, and V. Braganholo. Fine-grained provenance
collection over scripts through program slicing. In Proceedings of the 6th International
Workshop on Provenance and Annotation of Data and Processes - Volume 9672,
pages 199–203, New York, NY, USA, 2016. Springer-Verlag New York, Inc.

[29] J. F. Pimentel, S. Dey, T. McPhillips, K. Belhajjame, D. Koop, L. Murta, V. Bragan-
holo, and B. Ludäscher. Yin and yang: Demonstrating complementary provenance
from noworkflow & yesworkflow. In M. Mattoso and B. Glavic, editors, Prove-
nance and Annotation of Data and Processes, pages 161–165, Cham, 2016. Springer
International Publishing.

[30] J. F. Pimentel, J. Freire, V. Braganholo, and L. G. P. Murta. Tracking and analyzing
the evolution of provenance from scripts. In IPAW, 2016.

[31] S. Pröell, R. Mayer, and A. Rauber. Data access and reproducibility in privacy
sensitive escience domains. In 2015 IEEE 11th International Conference on e-Science,
pages 255–258, Aug 2015.

119

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[32] M. Ramamurthy. Geoscience cyberinfrastructure in the cloud: Data-proximate
computing to address big data and open science challenges. In 2017 IEEE 13th
International Conference on e-Science (e-Science), pages 444–445, Oct 2017.

[33] H. Ramapriyan, J. Moses, and R. Duerr. Preservation of data for earth system science
- towards a content standard. In Process of 2012 IEEE International Geoscience
and Remote Sensing Symposium, pages 5304–5307, 2012.

[34] A. Rauber, A. Asmi, D. V. Uytvanck, and S. Pröll. Identification of reproducible
subsets for data citation, sharing and re-use. TCDL Bulletin, 12, 2016.

[35] A. Rauber, T. Miksa, R. Mayer, and S. Pröll. Repeatability and re-usability in
scientific processes: Process context, data identification and verification. In Data
Analytics and Management in Data Intensive Domains» conference/RCDL, 2015.

[36] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig. Ten simple rules for
reproducible computational research. PLOS Computational Biology, 9(10):1–4, 2013.

[37] S. Schlaffer, M. Chini, D. Dettmering, and W. Wagner. Mapping wetlands in zambia
using seasonal backscatter signatures derived from envisat asar time series. Remote
Sensing, 8(5), 2016.

[38] S. Schlaffer, M. Chini, L. Giustarini, and P. Matgen. Probabilistic mapping of flood-
induced backscatter changes in sar time series. International Journal of Applied
Earth Observation and Geoinformation, 56:77 – 87, 2017.

[39] S. Schlaffer, P. Matgen, M. Hollaus, and W. Wagner. Flood detection from multi-
temporal sar data using harmonic analysis and change detection. International
Journal of Applied Earth Observation and Geoinformation, 38:15 – 24, 2015.

[40] C. Schubert. CCCA Data Centre: RDA Pilot Dynamic Data Citation for NetCDF
files. https://www.rd-alliance.org/system/files/documents/CCCA_

DC_RDA_DynamicDCite_v3_inkl_manual.pdf. Accessed: 2018-11-25.

[41] B. H. Schubert C. Handling continuous streams for meteorological mapping. In
Lecture Notes in Geoinformation and Cartography, volume 8628. Springer Verlag,
2019.

[42] S. Schwichtenberg, C. Gerth, and G. Engels. From open api to semantic specifications
and code adapters. In 2017 IEEE International Conference on Web Services (ICWS),
pages 484–491, 2017.

[43] T. Skaggs, M. Young, and J. Vrugt. Reproducible research in vadose zone sciences.
Vadose Zone Journal, 14(10):vzj2015.06.0088, 2015.

[44] S. Thomsen. Cryptographic Hash Functions. PhD thesis, DTU Orbit, 2009.

120

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[45] D. M. Timothy Lebo and S. Sahoo. PROV-O: The PROV Ontology. W3C Recom-
mendation. World Wide Web Consortium, United States, 2013.

[46] J. Vitek and T. Kalibera. Repeatability, reproducibility and rigor in systems
research. In 2011 Proceedings of the Ninth ACM International Conference on
Embedded Software (EMSOFT), pages 33–38, 2011.

[47] F. Vuolo, M. Żółtak, C. Pipitone, L. Zappa, H. Wenng, M. Immitzer, M. Weiss,
F. Baret, and C. Atzberger. Data service platform for sentinel-2 surface reflectance
and value-added products: System use and examples. Remote Sensing, 8(11), 2016.

[48] C. M. Zwölf, N. Moreau, and M.-L. Dubernet. New model for datasets citation and
extraction reproducibility in vamdc. Journal of Molecular Spectroscopy, 327:122 –
137, 2016. New Visions of Spectroscopic Databases, Volume II.

121

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Research Questions
	Methodological Approach
	Structure of Work

	Related Work
	Reproducibility
	Earth Observation Science
	Data Identification
	Tools for Reproducibility
	openEO
	Summary

	Design
	Overview
	Query Handler
	Job Capturing
	Result Handler
	Context Model
	User Services
	User Defined Functions
	Summary

	Implementation
	Data Identification
	Backend Provenance
	Job Dependent Provenance
	User Services
	Use Cases
	Summary

	Evaluation
	Evaluation Setup
	Data Identification
	Job Capturing
	Performance and Storage Impact
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	List of Figures
	List of Tables
	List of Listings
	Bibliography

