FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Visual Assistance for Importing
Time-oriented Data Tables

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Media and Human-Centered Computing
eingereicht von

Ing. Boris Serdar, BSc
Matrikelnummer 01025657

an der Fakultat fir Informatik
der Technischen Universitat Wien

Betreuung: Priv.-Doz. Dipl.-Ing. Dr. Wolfgang Aigner, MSc
Mitwirkung: Dipl.-Ing. Mag. Alexander Rind

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Wien, 31. Mai 2019

Boris Serdar Wolfgang Aigner

w Sibliothek,
Your knowledge hub

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der
Arbeit

Ing. Boris Serdar, BSc
HerbeckstralBe 69/9
1180 Wien

Hiermit erklére ich, dass ich diese Arbeit selbstindig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 31. Mai 2019

Boris Serdar

i

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Acknowledgements

I would first like to thank Wolfgang Aigner and Alexander Rind. Whenever I had a
question about my research or writing, they found time and had always advices, which
led me to the right answers.

I would also like to thank the usability experts who were involved in the usability
inspections for this research project. Without their passionate participation and input,
the evaluation could not have been successfully conducted and the software could not
have been put on this high level.

I would also like to thank my colleagues at Syngroup Management Consulting as well as
the colleagues at Syn I'T Services. They always showed discernment, if it was necessary
to give priority to the work on the master thesis, even if the work in the company was
also of high importance.

Finally, I must express my very profound gratitude to my parents and to my girlfriend
for providing me support and continuous encouragement, throughout my years of study
and through the process of researching, implementation and writing this thesis. This
accomplishment would not have been possible without them.

Thank you.

1ii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Abstract

There are many approaches, which were developed in the last few years, dealing with
the visualization of time-oriented data. Most of the methods, used in those approaches,
are very specific and made for a small number of particular analysis problems. The
main reason for that is the high complexity of applications, when multiple aspects of
time-oriented data are considered. However, before any visualization can be done, the
data has to be imported into the software. This might be challenging, especially when
the metadata for the data to import is not given. In scope of this work a prototype of
an interactive visual interface is presented, which is specifying the metadata, based on
the overview of the data, providing support to the user importing data from tables. The
prototype is based on the software library TimeBench. This software library provides
data structures and algorithms, which deal with multiple aspects of time-oriented data.

This work is giving an answer to the question: How can a visual interface, which includes
the design aspects named by Aigner, Miksch, Schumann & Tominski [Aigner et al., 2011],
assist the users to import time-oriented data tables? To answer this question a methodical
approach has been applied. First of all, a literature search was performed out to see, if
such a problem had already been treated in the past. User scenarios were generated to
determine the scope of the work. To show how the visual interface will look like, or how
the user interacts with it, mockups were created. The mockups are showing the required
interaction steps of the user when creating the import configuration.

After the design of the software was determined, the interface was implemented in
programming language Java. To evaluate the result, usability inspections were performed
in several iterations. Those evaluations show that, although some points still exist, that
can still be dealt with in future works, the software can already be used productively
and the requirements set on the interface have been fully met.

iv

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

Kurzfassung

Es gibt viele Ansétze, die in den letzten Jahren entwickelt wurden, um zeitbasierte Daten
zu visualisieren. Die meisten Methoden, die in diesen Ansétzen verwendet werden, sind
sehr spezifisch und konnten eine nur geringe Anzahl der Analyseprobleme bahandeln.
Der Hauptgrund dafiir ist die hohe Komplexitdt der Anwendungen, wenn mehrere
Aspekte zeitobasierter Daten beriicksichtigt werden miissen. Vor jeder Visualisierung
missen die Daten jedoch in die Visualisierungssoftware importiert werden. Dies kann eine
Herausforderung sein, insbesondere dann, wenn die Metadaten fiir die zu importierenden
Daten nicht gegeben sind. Im Rahmen dieser Arbeit wird ein Prototyp eines interaktiven
visuellen Interfaces vorgestellt, welcher die Metadaten auf der Grundlage der Daten
spezifiziert und den Benutzer unterstitzt diese Daten aus Tabellen zu importieren. Der
Prototyp basiert auf der Softwarebibliothek TimeBench. Diese Softwarebibliothek bietet
Datenstrukturen und Algorithmen, die sich mit mehreren Aspekten zeitbasierter Daten
befassen.

Diese Arbeit gibt eine Antwort auf folgende Frage: Wie kann ein visuelles Interface, welches
die Designaspekte der zeitbasierten Daten, vorgestellt von Aigner, Miksch, Schumann
& Tominski [Aigner et al., 2011] die Benutzer beim Import zeitbasierter Datentabellen
unterstiitzen? Als Erstes wurde eine Literaturrecherche durchgefithrt. Zur Festlegung des
Umfangs der Arbeit wurden Benutzerszenarien definiert. Um zu zeigen, wie die visuelle
Benutzeroberflache aussehen wird, beziehungsweise wie der Benutzer mit ihr interagiert,
wurden Mockups erstellt. Die Modelle zeigen die erforderlichen Interaktionsschritte des
Benutzers mit der Software, die beim Erstellen der Importkonfiguration durchgefiihrt
werden miissen.

Nachdem das Design der Software festgelegt war, wurde die Schnittstelle in der Pro-
grammiersprache Java implementiert. Um das Ergebnis zu bewerten, wurden Usability
Inspections in mehreren Iterationen durchgefiihrt. Diese Evaluierungen zeigen, dass,
obwohl noch einige Punkte existieren, die in zukinftigen Arbeiten noch behandelt werden
kénnten, die Software bereits produktiv eingesetzt werden kann und die urspringlichen
Anforderungen an die Software vollkommen erfiillt sind.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1 Introduction

Contents

1.1 Problem Description

1.2 Expected Results

1.3 Methodological Approach

1.4 Structure of Work

2 Related Work

2.1 Literature Research Method
2.2 Results of the Litearature Research
2.3 Related Work Discussiono

3 Design of Interactive Visual Interface

3.1 The Scope
3.2 User Scenarios .

3.3 Prototype Requirements Given by User Scenarios

3.4 Mockups

4 Implementation

4.1 Revision of the Design L.

5 Evaluation

5.1 Usability Inspections oo
5.2 Usability Inspection Results

5.3 The Walkthrough

6 Discussion
6.1 Critical Reflection

7 Conclusion
List of Figures
List of Tables
Bibliography

vi

J O O =

Qo

10
20

23
23
24
28
30

37
43

46
46
47
49

53
54

57

69

70

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Introduction

1.1 Problem Description

When designing visualizations or visual analytics applications the fundamental factor
for choosing the suitable type of visualization is the data itself, that it is being designed
for. For example, when visualizing the temperature variation on some specific place over
some time, a line plot might be a good idea to visualize this data. Also the import of the
data for that specific case might be connected with only little effort. Probably, in this
case the data would be stored in some tabular shape and every row would consist of a
timestamp and the temperature value. Unfortunately, the visualization of time-oriented
data is mostly much more complex then in the named example. For instance, when
visualizing time-oriented data which appears in periods and is repeating in specified
intervals (monthly, yearly, etc.). First, the visualization of such data is a difficult process,
and second, when the visualization tool for such time-oriented data is finished, the data
needs to be imported into the tool which is expecting some specific “shape” of the
data. One of the reasons why this task is challenging is that time has many theoretical
and practical aspects, which all have to be considered when building a visual analytics
applications to visualize time-oriented data [Aigner et al., 2007]. The following design
aspects, hierarchical organization of time and the time elements themselves, have to be
considered [Aigner et al., 2011]:

e Scale: In an ordinal time domain only relative order relations between events
are described, for example: “A happened before B”. An ordinal scale can be used
to present such relations. Alternatively, discrete values describe the time values,
which are mapped to a set of integers. For example, the time values are mapped
approximately on the number of seconds elapsed since 1st of January 1970 in the
UNIX time system.! In this case, the 12th of May 2000, 00:00:00 would be number

IFor further information visit https://www.unixtimestamp.com/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

958143982 in the UNIX time system. In contrast to the UNIX time system, where
the time values between two seconds are getting approximated, the continuous
scale allows any point between two values.

Scope: In point-based time domain, there is no information about the region
between two points in time, even if there is information for one specific point in
time. In contrast, in an interval-based time domain, a time value stands for a
specified interval. For example, a point-based time domain on the 12th of May 2000
stays for a single instant the 12th of May 2000 00:00:00 and in the interval-based
time domain it may stay for the interval between the 12th of May 2000 00:00:00
and the 12th of May 2000 23:59:59.

Arrangement: For people, the common perception of time is linear. That means,
time proceeds from past to future and that each time value has an unique predecessor
and successor. In a cyclic arrangement of time domain, a set of recurring time
values appears, for example, changing, recurring values for every day of week.

Viewpoint: In an ordered viewpoint, things happen one after the other (in a totaly
ordered perspective only one thing can occur at a time, whereby in a simultaneous
or overlapping perspective things can happen at the same time). A branching
perspective can be used to present multiple scenarios. In this case, only one of the
scenarios can happen. Multiple perspectives allow more than one view of time. In
this case, the result for multiple views on the same happening might be different.

Granularity and calendars: In general, granularity of time describes the mapping
from time units to smaller or larger ones. For example, hours to days and days to
weeks etc. A calender is a system of multiple granularities including the mappings
between granularities. Since the granularity can be regular (1 year always includes
12 months) or irregular (one month consists of 28, 29, 30 or 31 days), the conversion
between those granularities has to be supported when building time oriented
applications. Beneath the support of multiple granularities, a time model might
also support one, single granularity (every time value is specified in seconds) or
none (for example when it has abstract measurement).

Time primitives: The elements, which relate data to time (time primitives) can
be divided into instant, interval and span. Instant is a point in time and it can
have a duration (depending on granularity). In the simplest sense, intervals might
be represented as a period of time between two instants. A span is not tied to a
specific time, it is a primitive which represents, depending on the granularity, an
amount of time, for example “one hour”.

Relation between time primitives: Sometimes, the relations between time
primitives might exist. For example some instants might

— be before, after or equal (at the same time) to another

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.1. Problem Description

The relation between intervals might be the following:

— one interval meets another (ends when another starts)
— one interval overlaps another (one event is not finished while another starts)

— one interval starts another (starts at the same time but does not have influence
on the finish of the second interval)

— one interval finishes another (finishes at the same time but does not have
influence on the start of the secont interval)

— one interval equals another (the start and finish of both intervals are equal)

e Determinacy: When there is complete knowledge of all temporal aspects, de-
terminacy is given. In contrast to determinacy, there is indeterminacy, which is
imprecise knowing of time events. It often appears in planning data with statements
like: “event X will be finished in the next few days”.

In most cases the time primitives does not make sense without the data which relies on
the time values, or rather the context of the time values. Following the data which is
connected with the time values will be discussed. There are multiple aspects on the data
which also have to be considered when working with time-oriented data tables:

e Scale: the given data might be quantitative. This means that the data comparison
between the data values (discrete or continuous) is possible. Besides quantitative
data, qualitative data stands for data values which are ordered or unordered, where
a metric range is not given.

e Frame of references: In this aspect we can distinguish between abstract and
spatial data. The difference is that the abstract data does not have any relation to
spatial location, while the spatial data provides this information.

e Kind of data: We can distinguish between events, which are points between states.
A state can be seen as phase between events. For example “sitting” can be seen as
a state between events “sit down” and “stand up”.

e Number of variables: This aspect considers the number of time-dependent
variables, which can be univariate (each time primitive is related to one single data
value) and multivariate (each time primitive is related to multiple data values).

While discussing the connection between data and time, there are 2 important aspects:
Internal time: when the information in the data is valid, the external time describes how
a dataset evolves over time.

This work builds upon a library called TimeBench [Rind et al., 2013], which is able to
model, visualize and process time-oriented data. TimeBench relies on design aspects

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

described in work from Aigner, Miksch, Miiller, Schumann & Tominski [Aigner et al., 2007]
and supports different time primitives like instants, intervals and spans. Also, it supports
granularities, calenders and (in)determinacy. In contrast to the existing visualization tools
like Improvise [Weaver, 2004], uVis[Pantazos et al., 2013], Polaris/Tableau, SAS JMP or
MS Excel, which are limited according to the different design aspects already named,
TimeBench provides multiple data structures and algorithms for various time-oriented
data.

When performing visualization or data analysis with tools and libraries such as TimeBench,
the first step is to import the data. What sounds trivial, might be challenging when
the data is provided, but not its characteristics, the meta data. For example, when
importing time-oriented data from some tables (i.e. CSV), one row from the table might
look following:

e Columnl: “08.05.2014”, Column 2: “18:10” - since there is no further information
about the data characteristics, the combination of the two columns might be a time
point of temporal granularity minutes

e Columnl: “15.07.20147, Column 2: “02.08.2014” - in this case, the presented
information might be a time interval of temporal granularity days

e with no relation to the data stored in the table columns, the row number itself
could be a time point of temporal granularity year starting with 2001 (based on
background knowledge of the dataset or freetext documentation of the dataset -
e.g. a README file)

Research Questions

According to these considerations and examples named above, I am asking the following
research question:

e How can a visual interface, which includes the design aspects named by
Aigner, Miksch, Schumann & Tominski [Aigner et al., 2011], assist the
users to import time-oriented data tables?

Following hypothesis are supporting the research question:

e [H1]: The prototyped visual interface and its usability are assisting
users, with expertise in time-oriented data, to import time-oriented
data tables.

e [H2]: The prototyped visual interface provides features based on the
design aspects named by Aigner, Miksch, Schumann & Tominski [Aigner
et al., 2011].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.1. Problem Description
B
” bafore batora s
Time scale A C%oc .
ordinal discrete continuous
point-based interval-based
arrangement . O
linear cyclic
----- >
. . -
viewpoint —_— é ikl
ordered branching perspectives
Abstractions
granularity & . ——
calendars) ;
none single multiple
e . 2 X — -
primitives 2 -
instant interval span
; || E =
determinacy
determinate indeterminate
314 coconut
3.27 banana
Data scale 4.88 apple
quantitative qualitative
frame of v @
reference 3
abstract spatial
kind of data Il —
events states
number of B
variables A
univariate multivariate
Data & Time internal time

Inherent in the data
model

external time
axtrinsic to the data
model

®

non-temporal

static

C

ternporal

dynamic

Figure 1.1: Design aspects of time-oriented dataAigner et al., 2011]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.

INTRODUCTION

1.2 Expected Results

The first part of the work should be a state-of-the-art literature review including projects
which are standing in relation with this work. As already mentioned in Section 1.1, in
the next step, an interactive visual interface for importing time-oriented data from tables
will be designed and implemented as a prototype. The visual interface will be based on
the software library TimeBench. The planned interactive visual interface will be:

e a validated design artefact that provides an interactive visual interface for import
time-oriented data from tables,

e considering the design aspects from Aigner, Miksch, Schumann & Tominski [Aigner
et al., 2011] &

e usable (avoiding usability problems set by Nielsen [1994a]).

1.3 Methodological Approach

For the first part of the work, a systematic overview of existing approaches in state-
of-the-art literature will be given. To approach this, the following methods will be
used:

e Research: Finding and description of multiple existing approaches from the
literature with focus on used tools, programming languages and included functions.

e Comparison: Comparison of design aspects of the found approaches and high-
lighting of the potential approach advantages and disadvantages.

In the next step the prototype of a visual interface will be built. To achieve the expected
results, named in Section 1.2, following methods will be used:

e Creation of user scenarios: At the beginning of the prototyping part of the work,
3 user scenarios will be created. The user scenarios will put focus on users needs and
will bring the author to keeping in mind which results have to be reached during
the remaining project parts. The fulfilling of the user scenarios will demonstrate
the utility of the prototype in the end of the project and how the persona interacts
with the system [Cooper et al., 2007] [Evans and Taylor, 2005].

e Designing: To visualize the goal of the work a visual interface will be designed.
This step is necessary not only for author (early stage recognition of usability
problems), but also for the reader, to understand and reproduce the design decisions.
Using this method, the first essential errors will be minimized and the idea about the
shape of the resulting project and functions will be given. To design the prototype
a mock up tool will be used (i.e. Balsamiq?).

2For further information visit https://balsamiq.com/

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

1.4. Structure of Work

e Prototype implementation: Using Java the interactive visual interface will be
implemented.

e Evaluation: The created prototype will be evaluated in multiple ways. First, the
software developer will test the software to avoid software errors. The evaluation
and usage scenarios will show if the software prototype is fulfilling the requirement,
which is to help the users import the time-oriented data. Additionally, an expert
inspection [Nielsen, 1994b] will be done in more then one iteration and will be
performed by usability experts. Every user scenario will be performed by the
usability experts. Also, a walkthrough should be created, showing the fulfillment of
the requirements, which were set by the user scenarios.

1.4 Structure of Work

The focus of the Chapter 2 is set on the related work. In detail, it will be presented first
how the literature research was carried out methodically. The second part of the chapter
presents the results of the literature research. These include 8 works that are related to
this work.

Chapter 3 describes the design process of the visual interface. The scope of the work is
defined first, then the created user scenarios are described, which specify requirements
to the prototype. In addition to the 3 user scenarios, the created mockups are shown
and described, which show the appearance as well as the interaction of the user with
the designed prototype. Chapter 4 shows the process of implementation. In particular,
the logical structure of the software is presented, and also screen shots of user interfaces
are shown and described. As part of the implementation, the evolution of the design is
also discussed. Chapter 5 concentrates on the conducted usability inspections and their
results as part of the evaluation.

The initial requirements are compared with the results in Chapter 6. At the end of the
work, a summary about the done work is given, a answer to the research question is
provided and some approaches for future work are proposed.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Related Work

2.1 Literature Research Method

Before starting the implementation, it is necessary to conduct a literature research. This
should clarify whether the mentioned problem or similar problems have already been
treated. There are multiple reasons for this procedure. One of them is, if exactly this
problem has already been dealt with, there is probably no need for the implementation.
Also, it makes sense to take up concepts, and also to learn and apply the learnt lessons
from similar work .

The following search engines and digital libraries were used to find relevant literature:

e ACM DL: dl.acm.org

IEEE Xplore: ieeexplore.ieee.org

Springer Link: 1ink.springer.com

ScienceDirect: sciencedirect.com

Web Of Knowledge: webofknowledge.com

Google Scholar: scholar.google.com

Table 2.1 shows the list of the keywords searched for. For each library/search engine the
approximate number of results, in thousand, is shown. The search provides relatively
many results. The main reason for the high number of hits is the keyword import.
Most search engines and the search algorithms in the digital libraries are not able to
differentiate the search keyword import from the keyword important, which is why it is
not possible to get the search results only for the exact keyword import.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. Literature Research Method
>
—
®
=
=2
— >
[
T8 &
= el o)
= & <
o) ® =i)]
= 8 o Q -~ o
Q S or=
& A | S| & M
e
9 2 & & 9| S
&0 = k= RS a
e 9 ~ £a))
Keywords &) 0 n = | <
import 3300 360 430 4| b4 1
data table import 1.000 200 200 | 0,05 | 200 1,8
intelligent import 300 14 281 0,3] 120 0,8
import assistant 400 17 30 | 0,02 68 0,6
time based data import | 1.000 200 240 | 0,2 | 330 3,4
predict datatypes 22 0,6 0,6 0] 25| 0,01
import time data 2.000 200 260 | 0,4 | 260 9
import optimization 200 70 371 0,4 | 100 2
import improvement 1.000 100 127 | 0,1 | 115 4
time based data 6.000 | 5.000 | 4.000 | 142 | 300 | 1.100
time oriented data 4.000 700 700 8 | 250 32
import time 2.500 300 370 1| 154 30
data import 2.500 250 270 1,5 | 150 52
CSV import 40 1,7 410,01 | 50 0
support import 2.000 200 300 | 0,6 | 120 0,4
data descriptors 2.000 100 90 | 4.4 | 170 40
tabular data 300 50 43 | 0,5 | 160 9,5

Table 2.1: Approximate number of results for search engines (in thousand)

However, the keyword important yield a lot of results, which could not be used for this
work and made finding relevant content difficult.

The literature research resulted in a collection of 39 papers (relevant after reading the
abstract, some results and conclusion). In the next iteration, the found papers were
read completely in order to decide, which paper is going to be named in this work. The
main selection criterion was the relevance of the content of the paper. More specifically,
as relevant papers were all papers selected, which were dealing with any kind of data
visualization and import of any kind of data. Another criterion was the year of publication.
The older a found paper was, the higher was the likelihood that the used frameworks and
libraries were already obsolete. As a result of our literature research 8 relevant papers

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

10

were found and will be presented in this work.

2.2 Results of the Litearature Research

In this section, 8 approaches in this area will be presented and described. At the beginning
a paper is presented, which deals with the data descriptors. With the described methods
the context of the relevant data can be described. The next presented work shows
how a system can automatize a number of decisions, which help visualization beginners
to work with data. In contrast to this work, Excel Massive Data Intelligent Import
System presents an import system, which is working with Excel and works in concert
with the user input. The reason for this is to show how a piece of software can be
realized as an extension to an already existing system and how the user can be assisted
during the importing process. Polaris (Tableau), iVisDesigner and Lyra are very popular
visualization environments. With their presentation, we would like to explain how the
visualization environments present data these days and how the import is realized in
those software applications. The last two works present systems, that can be used explicit
as data import systems. Both use different strategies and interactions to complete their
tasks.

2.2.1 A systematic view on data descriptors for the visual analysis of
tabular data

So called “data descriptors” [Schulz et al., 2017] are trying to describe the data context
and content. Because tabular data is the common form for structured data, the work
focuses on tabular data. In this paper, the authors classify the data descriptors in 2
groups: Data Flow Descriptors (DFD) and Data Space Descriptors (DSD). Data flow is
the look of the data from a temporal perspective (the data’s past, the data’s present and
the data’s future) and the data space is the look from a structural perspective. Data Flow
Descriptors describe where the data comes from, where it is now and where it might go
(the purpose of the data). Data Space Descriptors describe data context (granularity or
dimensionality) and data content (the actual data values). The authors named 3 sources
of data descriptors:

e querying the descriptor from additional data source (i.e. annotations)
e deriving the descriptor by computation from dataset and

e user input

Figure 2.1 shows one possible process of gathering data descriptors from tabular data.
The complete process can not be done autonomously without including the user in the
procedure, if the results should be correct. The first processing step describes the data
type for each column. This step has to be done semi-automatically and requires user
input. The reason is that the software is not able to recognize ordinal data types. After

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.2. Results of the Litearature Research

Variable Descriptors | Value Descriptors Variable Descriptors II Dataset Descriptors — " Record Descriptors

Context Descriptors
g B

Context

Extent 1

Grid Type
Variable Grouping / ‘ s

Hierarchization

- automatic gathering step \ \ semi-automatic gathering step interactive gathering step

Figure 2.1: Gathering descriptors from tabular data[Schulz et al., 2017]

the completion of variable description, value description can be performed. This step

describes the actual cell values and also the user might complement the missing values.

Afterwards, the variable descriptor 2 operates. This is a procedure, which is gathering
descriptive statistics out of the values. The fourth step provides information between
data context and data content. The user is also invited to group values, for example two
variables “date” and “time” to one variable “datetime”. Using the context descriptors the
user is able to specify the context variables which describes spatial /temporal reference
and its extent (point, local and global). An automatic completeness check is possible if
the descriptors are configured well and the data is suitable. The last step of the procedure
is automatic recording of outliers and duplicates, based on the given data descriptors.

2.2.2 Keshif: Rapid and Expressive Tabular Data Exploration for
Novices

Before any valuable and highly interactive visualizations and infographics can be created,
most of Visualization design environments require the user to make many decisions. Not
only is this procedure not very efficient, it also requires a lot of experience, knowledge and
cognitive effort. To minimize this number of decisions, Yalcun et al. have presented a tool
called Keshif [Yalcun et al., 2018]. The named tool automatically tries to extract certain
insights from the data set and thus bring the user to the desired visualization as quickly
as possible. Especially the novice visualization analysts benefit from Keshif, because
they can focus on the data-driven insights and less with visualization specifications and
underlying decisions.

Keshif has an automatic aggregation function, which depends on the data type. The
tool extracts an attribute value from records and is able to aggregate records by that
extracted value. Figure 2.2 shows different aggregation possibilities for each included
data type. For example, data type time can be visualized as a line in an absolute scale
or a part-of scale. Also, the aggregate metric function computes and shows valuable
information about the record (statistic data like median, percentile and count).

Sometimes, the data that is imported into visualization systems, needs to be adjusted
before the visualization takes place. For that purpose Keshif provides functions that
return calculated data from the raw data, which is one of the main reasons, why this
tool is named in this work. The calculated attributes can:

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2. RELATED WORK
e parse token text values (e.g. split “A;B;C” on “;” to create an array of characters),
e process data without making any changes to the original data source (e.g. create
numerical data types, like 10000, from string value 10k)
e extract time features from time data type (e.g. getting days of week from time
data type)
e combine multiple record features
e combine data from multiple data sources
Data Type | Glyph Visualization Data Type | Glyph Visualization
Absolute Scale Part-of Scale Absolute Scale Part-of Scale
A 276 A 737 Bar
B Bar , B 2StEmmTm B 86% M (Interval
Cat ategory) | ¢ 14smmm C 66% mmmm— Numb: i ' | ‘ II.
) [V — D 79% e S| range bin) |l.“I1 I. I l i
‘ sk o o
Encoding > Length (Width) Encoding — TI:eng;;;(Height)
Position Ca_tegory order, next to category label Position Interval Range
Absolute Scale Part-of Scale
300 S1k 4k 520k 7‘
Line ‘/h— Block ‘ L ety
(Interval M _l i (Percentile » s ————— —
Time range bin) —_——— S~—— Percentile range)
49 42 8 S0% 59% 60 Distribution Distribution of a numerical attribute. Simple alter-
Nov Dec Jan Nov Dec Jan native to box-plots without visualization of outliers.
2014 2014 Percentiles are independent of scale mode.
Encoding tLength for measure value. —Line connects Encoding | Color: Four fixed percentile ranges with 10%
bins. Area-fill for non-compare selections. steps. Darker color towards the median (50%).
Position Interval Range Position | The percentile ranges of the selected records
Absolute Scale Part-of Scale .RL“‘I;‘ = T
D ' o @& & &= (M)
Disc . Region ‘»“; il
:) ® J ‘ [(Map) - SEE
Set Pair S . % -
(Multi-Value >] D \ K:e:’ In part-of scale, color is scaled from 0% to the
Category) — maximum % value of all (filtered) regions.
Encoding | Filtered: @ Circular area. Highlighted: Arc area (0°- Encoding Color: [0 - max(distribution)].
360°) Compared: Arc border (0°-360°) Total: None. Visualizes one distribution by color mapping.
Exists: Cell background color. Strength: Circle color Default is filtered selection. Highlight-selection
(part-of scale). For details, see AggreSet [33]. takes precedence when enabled.
Position Set-pair location on grid. Small glyph size. Position | Geographically defined. Fixed shape and size.
lcon @ All Bar 294 Victims [Race: cioce lAge: 20 40 [Sex: Ferae §
No-Val 2 h—
,.?- a ;)e Aggregates records with no-value in summary. Records {Full width)
h Encoding Color (0-max(filtered)) (Global) | Encoding — Length (Width)
Position Fixed (Lower-left corner of summary) Position Fixed (Top of the dashboard)
Figure 2.2: Visual Aggregate Encodings for Common Data Types [Yalcun et al., 2018]
The prototype Keshif has been created using JavaScript, HTML and CSS. To assist in
the generation of web-based interactive data visualizations, the D3 library was used. The
created implementation supports configuration and customizing using web programming.
2.2.3 Excel Massive Data Intelligent Import System
Excel massive data intelligent import system [Ying et al., 2010] is a software which has
been implemented in order to make the import of a large amount of data into a database
easier. The software was implemented for a specific purpose. It was developed to import
12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Results of the Litearature Research

large amounts of data into a National Oil/Gas Resource database from Excel. The
system was created in Visual Studio 2008 development tool and is using C# as developing
language. The Model-View-Controller framework (MVC) has been used to separate
application input, processing and output. The data is imported into an Oracle database.
The system is using extract, transform and load design patterns (ETL). To extract
the Excel data from the data source, the developers are using ADO.NET connection
technology. To analyse and design the system, developers have used UML.

The system operates in 3 main steps: collection of data out of Excel files, processing
of the found data and output of the data for Oracle database. Figure 2.3 is presenting
the system workflow chart. There are multiple steps needed to import the data from
an Excel spreadsheet into the Oracle database. First, the Winform interface allows the
user to select the Excel tables to be imported. In the next step the system extracts the
names of subjects from metadata tables and the user has to select the imported subjects
and the target table to import into. After choosing the destination table, the user must
choose the primary and foreign keys and also the Null values. The system uses its own
data checking function to detect errors in primary keys, foreign keys and Null values.
If errors are found, they are displayed in a list with the information in which row and
column they occurred. If no errors are found, primary keys are created in the destination
table and the data is imported.

2.2.4 Polaris (Tableau)

The idea behind Polaris [Stolte et al., 2008] is the exploration of multidimensional
relational databases in an interactive way. To generate a graphic, the data can be
imported from different sources. Each source gets mapped to its own layer in the software
and can be combined with other imported sources. To specify the table configurations,
the creators of Polaris defined a special algebra, which allows the execution of the cross,
nest and concentration operators on itself. After the configuration, the user is asked
to select the predefined type of chart or to specify the individual components of the
graphic. The space of graphics is structured into groups by the type of fields mapped
on the axes: ordinal-ordinal (for example a table showing sales by state and product),
ordinal-quantitative (for example bar charts used to compare several functions of the
independent variables) and quantitative-quantitative (for example the map explaining
relationships between quantitative variables). The visual specifications are generating
queries for the database. The queries prepare the dataset for the visualization in 3 steps:

e selection of the needed dataset,
e filtering, grouping and sorting of dataset into labels/panes and

e grouping, sorting and aggregating (summation, building an average) of dataset.

Figure 2.4 shows the Tableau user interface. Nearly all objects and tools can be applied to
the visualization by drag and drop. The underlying data, that has been imported earlier,

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.

RELATED WORK

14

Choose the Excel files |«

A

h 4

Choose the work sheet
which will be import

Choose the subjects

h 4

Choose the target table

|

Judge the primary key
Judge the foreign key

Judge the null value
S
Yes
Generate primary
key,data completion,and
specifically to save

End,waiting for the new
import

Figure 2.3: The workflow of the import system [Ying et al., 2010]

can be selected for the visualization by clicking on the wanted data table column in the
tab "Data" and dragging in into the "Columns" or "Rows" field over the visualization
panel. By clicking on the selected columns or rows, the user has the possibility to choose
different granularity of the data. To apply the type of the visualization, the type has to
be dragged from the model section and dropped into the visualization panel. Also trends
and calculations can be done easily by selecting the data on the visualization panel and
clicking on the correct "Model" function on the left side of the screen.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

2.2. Results of the Litearature Research

< [in] tableau ¢ LR E=N

Sales Analysis

File Data Worksheet Dashboard Analysis Map Format Help

8 6 & m - T 4 8 W W = ShowMe
Data Analytics < ~ Pages (RSP 5 VONTH(Order Date...
S SMSae) B
~ Filters
Constant Line
Segment, Forecast indicator
4 AverageLine Sales Forecast ™ v
& Median with Quartiles Segment .
& BoxPlot
~ Marks $60,000
~ Automatic
Model
& Average with 95% CI o s} &
& Median with 95% CI Color || Size | Label 000
& Trend Line
9
e Detail | Tooltip | Path 0000 &
i Reference Line . Estimate Sales
@ Reference Band BN Forecast indicator & Consumer, July 2017

@ Distribution Band Sales: $25,193

$20,000

2016 2017 2018 2019 2020
Order Date

Forecast [, B [T}

Figure 2.4: The Tableau user interface [Tableau, 2019]

2.2.5 iVisDesigner

iVisDesigner [Ren et al., 2014] is an information visualization system, which in contrast
to programming frameworks for visualization like Prefuse [Heer et al., 2005] or D3.js
[Bostock et al., 2011], does not require textual programming. The system is a web-based
platform, which provides an user interface in a web browser and allows the designing
of the visualizations by user interactions like drag and drop, sketching and by clicking
on elements in the context menu. According to the input procedure, the datasets are
loaded as JSON objects into the system. The import supports data serialization language
YAML' and CSV files. While trying the online designer?, first, we uploaded a CSV file.
The system does not expect any user interaction at this point. To create a timeline
visualization, it is necessary to map the CSV table rows to the given axes. The data type
of the axis points is automatically “num” and the user has no influence on this option.
After the data import, there was no possibility to change the datatype. We also have
not found any option to influence the granularity of the data or import different time
primitives, like intervals or spans.

Figure 2.5 shows the iVisDesigner interface. Similar to the Polaris interface, the panel on
the left border represents the structure of dataset. The tools panel, which is placed in
the upper section of the interface, provides the tools to move objects, to create them and
to change the view. The biggest part of the interface consists of the canvas to draw the
visualizations. In the shown example, there are multiple linked views on the same data,

LFor further information about YAML visit http://yaml.org/
2iVisDesigner online toolkit https://donghaoren.org/ivisdesigner/toolkit

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

2. RELATED WORK

visualizing the air pollution in Beijing. To create the visualization, the objects have to
be dragged on the canvas and combined by selection and adjustment in the object panel.

[V] iVisDesigner File ~Templates View Panel Help 2 donghao

e (< ¢ + QA YE 0/ H2FATED HT A il
e = ——— o
R AT = Join round v
measurements ser (3132) = R Ry
time num - v Stroke. x
o color Wl =
if:z e 3 A, “ o) Width 0.616 T=
num wom S v
€O rum * ool \/\A . Join bevel ¥
Raai 'S E8 Tuan mean wean amwan | wwan | weas Cap butt v
03 um A i Sieng .
oy WA tuity
« BrushingValuel x iy ummw - W“MWKM
& LineThroughl x s e SR
7. Polylinel 5 Y - Tomporatre 4 Name LineThroughl
Circlel x s 3] o p A N /\V v Shape
%Componen(l (x| ;,..'\,/\" i él iy M Jw‘/\hﬂ’w/\/\‘\,/ [\/\w AR TATA Y —
% Trackl x . \[/_ o [Filter None =
% Tracke - o Ml Tama mamn aemn awemn | mewn | wmeen R e pe——
112 Scatterl x il Closed false
22 LineThroughl 14 .J;\A A Vi Curved false
. Linel x i - MJ,/ \W /"
T Textl x el

Figure 2.5: The iVisDesigner user interface [Ren et al., 2014]

2.2.6 Lyra

Similar to iVisDesigner (Section 2.2.5), Lyra [Satyanarayan and Heer, 2014] is an envi-
ronment for designing and creating information visualization. It also does not require
programming skills, instead it builds on common user interactions like drag and drop and
clicking. After importing the dataset to the environment, the user is able to create marks,
which have to be linked to the data fields. Data transformations and layout algorithms

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

16

allow the creation of visualizations.

CRCR W

VISUALIZATION

Wheat and Wages — » Labels
ety WG Cromell Charlec i1, B pas George it
James1 sames 1™ inne George 1t
[T o
CHART
Shewing at One View . i 7
. = The Price of The Quarter of Wheat, ut .
From Seurcei(whest ¢ | & Wages of Labaur by the Week, Axis 5
From The Year 1565 o 1821, .
Formula -~ by WILLIAM PLAYIAIR Y Axis

MARKS

Formula | (name) -~ »crnemuall
as commonwealth Monarch Names
Rt - _
Formula -
‘s
= fonarchs B + VISUAL LAYOUTS
name bt | James | Chare | Cromel —
sart s 60 e e s
end en |6 [1eas | 160
e) I ERE] O sun :| O(emd :)
nnnnnn e [fela [| P -
ot o o e
YPOSITION
1-120f12
O s :) [Height ¢ |
+ NEW TRANSFORM
W ofsen s
Scales +
FiLL
o o @ Export Visualization
© Color + | (FliGaH wealth
IMAGES
Opacity =) 1
APNG || AssvG
(LASENG]| fe S0 | STROKE

+ NEW PIPELINE VEGA JSON SPECIFICATIONS

With Inlined Data Values

Without Inlined Data Values

[vecroavoe U= RGN

Figure 2.6: The Lyra user interface

Color [#000000
Width = = 25

Wages Line

Wages Highlight

[Satyanarayan and Heer, 2014]

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2. Results of the Litearature Research

Figure 2.6 presents the Lyra interface. The left side-panel is presenting the data pipelines.
The shown data table is demonstrating the current output and below, there is the
possibility for the user to scale transforms over the given fields in the pipeline. The right
side-panel is showing the visual properties. The main area for the visualization is taking
place in the middle of the screen. The shown example reproduces a classical chart by
Playfair.

There are 3 ways of importing the data into the online toolkit?: JSON, CSV and TSV
(Tab Separated Values). After importing the row values to the interface, the data type for
each table column has to be selected by the user. There are only 4 options for the data
types: string, number, boolean and date. The creation of a simple timeline seems to be
created relatively fast, however, there is no opportunity to import other time primitives
(intervals, spans) or influence on the granularity, related to iVisDesigner.

2.2.7 Wrangler: Interactive Visual Specification of Data
Transformation Scripts

Before any kind of visualization can be started, the data must be loaded into the
visualization software. This data is not always in good condition and must be cleared
due to misspellings, missing data, outliers or duplicate data. Wrangler [Kandel et al.,
2011] was designed to transform raw data into a form that visualization tools can import
and represent correctly. Using this tool, the analysts are able to specify transformations
by executing multiple basic transforms one after another.

Transform Script Import Export

Year Property_crime_rate
0|Reported crime in Alabama
1

™ Split data repeatedly on newline into
rows

™ Split split repeatedly on ', 22004 4029.3
32005 3900
" Promote row 0 to header 412006 3937
Text Columns Rows Table Clear 52007 3974.9
6[2008 4081.9
]
Delete row 7 8 Reported crime in Alaska
9
Delete empty rows 10 2004 3370.9
11 2005 3615
Fill row 7 by copying values from above 12 2006 3582

Figure 2.7: The Wrangler interface [Kandel et al., 2011]

As far as the interface is concerned, Wrangler uses a declarative transformation language
which has been extended by authors with additional operators. There are 8 classes of
transforms, which the Wrangler language includes:

3Lyra online toolkit http://idl.cs.washington.edu/projects/lyra/app/

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

2.

RELATED WORK

18

e Map allows transforms of input data to one (extracting, cutting, splitting values
into multiple columns, reformatting, arithmetic and updates), zero (deleting) or
multiple output row (splitting data into multiple rows).

e Lookups allow combining data from external data tables (e.g. mapping zip codes to
state names). Also there are 2 different types of joins: equi-joins and approximate
joins. Are sometimes usable for correcting typos and recognizing the correct data
type afterwards

e Reshape transform allows 2 different operators: fold (collapses multiple columns to
minimum 2 columns) and unfold (creation of new column headers from values).

e Fill and lag operations are part of positional transforms. Fill generates values (e.g.
filling empty cells with some values based on neighbour data) and lag operator
moves the value up or down the column.

o Aggregation functions like min, max, sum, mean etc. are also provided.
e Wrangler also supports sorting of rows.
e Key generation (skolemization)

e To set column names and specify column data types schema transforms are also
possible.

Wrangler not only supports standard data types (e.g. integers) but also semantic roles
(e.g. currencies) in order to validate the data. For example, Wrangler is able to check and
validate a zip code of the USA. In this case, a zip code is only correct, if the value consists
of 5 integers. There are few semantic roles which are supported (geographic locations,
government codes, currencies, and dates). Also, semantic roles can be extended.

Figure 2.7 shows the Wrangler interface. In the left upper panel the history of transform
scripts is placed. Also, there is the possibility to import already created transform script
or to export the current script. Below the transform script panel, a transform selection
menu and automatic transform suggestions, depending on selected items in the right
panel, are shown. The right panel shows an interactive data table and the data quality
meter. Based on the user input, semantic role or data type Wrangler suggests transforms
to the user. In order to make the data transforms easier, the named suggestions are
using natural language descriptions and visual transform previews. By clicking on the
suggested transforms, the user gets the opportunity to change the parameters of the
transformation. The visual transform previews allow the user to see what modifications
will take place to the data as soon as the current script gets executed.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

2.2. Results of the Litearature Research

2.2.8 Supporting heterogeneous data import for data visualization

The most common visualization tools use so-called general array importer functions
[Ford et al., 1995]. Those functions are created to allow user to map the input data to
the points or spaces in the target space (mostly N-dimensional grid). They work well
for regular grids and uniform datasets. However, because of the non-uniform data files
and /or non-regular grids, sometimes it is impossible to create appropriate descriptions of
the imported dataset in the visualization tools. Mostly, the only help is to use a format
converter, which changes the original dataset into a new shape, which is better accepted
by the visualization tool. In addition, the question arises: how can one merge data from
multiple sources into one consistent data model?

Proprietary Public Local Arc/info DEM
Format File)\ Format File/\Format File DLG
1] 4

A - o //{ /| ERDAs
,’I ! H (GIS/Lan) Lo
1. Form empirical ! '1 l Export l i : \\\
spatial model b v v
2. Build descriptions i !
of the model and the \ |ArcTools CONV-2.0 !
dataset ' | (lines) [\ : Y.
\ T
Visualization Y N
System “X" ArcConv | 2 4
(coverages) DX objects

Figure 2.8: Data import problem (left) and schematic workflow
of the conversion program (right) [Ford et al., 1995]

Figure 2.8 (left) is showing the different data format categories, which the import should
support:

e Proprietary Format File is the individual format that depends on the used visual-
ization software

e Public Format File is the format which is based on published standards

e Local Format File is based on dataset which is produced by locally written code

The point of interest for the authors was to import data into IBM - Visualization Group’s
Data Explorer (DX). DX supports meta-descriptions, which can be inserted into an
external file. This feature allows external objects to be structured off-line and then be
imported into the tool. The visualization tool also provides a programming interface and
process-control abilities. These features allow execution of additional data generators
and import scripts, which have been used by authors to support all the different data

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.

RELATED WORK

20

formats. Figure 2.8 (right) shows the structure of the created importer. The created
package CONV-2.0 can be used to send the output to a file or to put the output directly
into DX. It combines converters for public formats and some chosen local formats. For
the proprietary formats, the import starts with the export process. “Export” exports
data into ERDAS/Lan format, which can be imported into CONV 2.0. CONV 2.0
exports then files to DX. “ArcTools” uses a macro language to export data to DX objects.
“ArcConv” uses Arclnfo software library to export data to DX objects. The authors are
describing 3 ways to import data to locally defined formats:

e use of external conversion,

e modify the code of the export system to export a format, which can be imported
into the target visualization system and

e modify the generator process, which then can be executed in visualization environ-
ment

The workflow of the system is the following. First, the user has to select the type of
the file to be converted and afterwards the system shows a dialog to the user. The
dialog is showing information about the converted file and allows the user to set multiple
configuration to the export, like use of standard output, setting of file names, creation of
binary files or ASCII, or which bands to convert. Depending on supported data formats,
the dialogs are slightly different from another. In the last step, the tool creates the chosen
output using the settings, which were applied by the user.

2.3 Related Work Discussion

The work from Schulz, Nocke, Heitzler & Schumann [Schulz et al., 2017] shows their
own classification of data descriptors. They do not present their own taxonomy, they
present their own view on the taxonomies that already exist. In this paper the authors
were concentrating on climate data, which is useful in showing detailed view on this
topic. However, for my purpose it would be interesting to get insights about dealing
with time and time-oriented data. For this work, it would be interesting to see, which
descriptors particularly the authors recommend and how the structure of the descriptors
would look like. Like the authors mention in their work, providing the data descriptors to
the analyst is only one step in the visualization process. The actual usage is dependent
on the current visualization task and might be more or less necessary.

With Keshif [Yalcun et al., 2018], the authors have created a tool that should minimize
the number of decisions, which appear when the user is creating visualizations. The
software automatically tries to get insights out of the data to facilitate the visualization
analyst’s work, which might be very useful. It also gives the possibility to prepare the
data before processing, e.g. aggregation functionalities for included data types. The
fact, that the tool uses up-to-date frameworks and libraries has a positive impact on the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Related Work Discussion

applicability and usability of the tool. The fact that the tool is dedicated primarily to
newcomers lacks the potential for advanced analysts. In particular, there is a lack of
possibilities that would allow the user to import more complex data (types) into the
tool, such as cyclic data. Likewise, it is not shown how the automatic algorithms can be
avoided to extract findings manually and eventually with more insights into the data.

With Excel Massive Data Intelligent Import System [Ying et al., 2010], the authors have
presented a tool that imports the data from Excel into Oracle database. The focus in this
project is the interaction of the system with the user. The system requires step-by-step
user decisions describing the desired import, which is the main reason why this project
has been mentioned in this work. After the user has applied all keys, judged Null values,
source- and target tables the import gets started. In our opinion, it would be helpful, if
in these steps the system could make suggestions based on the data to be imported. In
addition, the imported data types were not discussed in a appropriate level of details. It
would be interesting to know how the system handles compex data types, e.g. datetime.

Project Polaris, which is now named Tableau?®, was created for exploration and analysis
purposes of multi-dimensional databases. Since the system uses database queries to
generate data subsets out of the original data, it might be quite comfortable for some
users to import the exact data, which they require for their visualizations. Also when
speaking about the importation of time-oriented data, it might be a comfortable way to
import the data in the shape the analyst wants, since the visual specification is creating
SQL-Queries for the database [Stolte et al., 2008] .

Different from Polaris, in other visualization tools like iVisDesigner[Ren et al., 2014] or
Lyra[Satyanarayan and Heer, 2014] the user imports the data from datatypes like CSV
and has less influence on the imported datatypes. In the field of time-oriented data, only
the default primitives (instants) are considered. Data primitives like spans and intervals
were not included.

Wrangler [Kandel et al., 2011] was created to transform raw data into a form that visual-
ization tools can import and represent correctly. It uses natural language descriptions
and visual transform previews, which help the user to create correct transforms on the
raw data. The additional features, that Wrangler offers make it possible to perform more
complex operations on the raw data, like mapping, lookups, reshaping, aggregations,
sorting, etc. The tools also gives the opportunity to work with different semantic roles
like currencies and dates. Although the tool has useful functions that can adjust raw
data, it is not an import tool. The idea with the visual transform previews seems to
be very helpful and will be considered in the further implementation of the work. Like
the preview function, we find the history function very useful and we will keep it in our
minds during the further work.

Supporting heterogeneous data import for data visualization [Ford et al., 1995] describes
the work that deals with the import of data from multiple sources into one consistent data

4For further information visit https://www.tableau.com/

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2. RELATED WORK
o
N~
[\ =
;| 8
3)
B 5|2 3
B | & o | 8
=2 I I 7 L&
wl= 2|9 o | &
<l a5/« 5|
n —_ (2] =~
S|z |3 |5 |58 %
Time-oriented data aspect | & | H [& |2 | 3 ? A
Arrangement - linear I X V|| XX
Arrangement - cyclic X| X| V| X|X]|X]| X
Single granularity I X | V| X /| XX
Multiple granularity VI X | V| X|X]|X]|X
Time primitive - instant I XV /| /| XX
Time primitive - interval V| X | V| X|X]|X]|X
Time primitive - span X| X| X| X | X|X| X
Determinacy I X V|V /XX
Indeterminacy X[X| X| X| X|X| X
Table 2.2: Cross-sectional analysis of shown approaches
and supported time-oriented aspects
model. The authors have focused on importing data into IBM - Visualization Group’s
Data Explorer (DX), which supports meta-descriptions (like TimeBench [Rind et al.,
2013]) as external files. The created tool allows execution of additional data generators
and import scripts. The described tool seems to be useful for the purpose, but however,
it does not support visual assistance of the import procedure. Also, it is focused on DX,
which is not the issue of this work. The authors do not mention any kind of import of
time-oriented data, which would be useful for our case.
Table 2.2 represents a cross-sectional analysis for the shown approaches. It is shown
whether an aspect of time-oriented data is supported by the approach or not. By
"supported", it means that the application is able to visualize and/or import the data,
which is underlying time-oriented data aspects.
22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Design of Interactive Visual
Interface

In order to determine the scope of the work, user scenarios were described in the first
step. To show how users interact with the software, mockups were created in the next
step. The mockups show how the user uses the interactive user interface to handle tasks
set in the user scenarios. In this chapter, 3 scenarios are described, which demonstrate
the need and the usage of the visual interface. The first scenario [Ilse Arlt Institut
fiir Soziale Inklusionsforschung, 2019] is based on software from the real world, while
the other scenarios are fictitious. After the user scenarios, the mentioned mockups are
demonstrated and described.

3.1 The Scope

Before the user scenarios were generated, some basic questions about the software
should be answered. As an example of these basic questions was the question of the
software’s outcome. Since the import assistant should be used as a library in external
software frameworks, we agreed that the output of the import assistant should be
TemporalDataset. TemporalDataset provides a data structure, able to store temporal
objects and the relationships between them [Rind et al., 2013]. These TemporalObjects
do have multiple roles. First, they consist of TemporalElements, which store temporal
aspects of the data, and second, they refer to the non-temporal aspects of the data.

To appropriately test the software, the work requires an input and output format. These
formats should be independent of other software libraries and should be simple, so that
the resources can be focused on the core of the work. Based on these considerations,
GraphML! should be used as export interface. Another question, that we had to discuss

"http://graphml.graphdrawing.org/

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DESIGN OF INTERACTIVE VISUAL INTERFACE

24

was: Which files should be supported by the import assistant? Since iCalender has
already been specified by TimeBench, the prototype should support import of tabular
data. As already discussed, due to the focus on the core of the work, the import of
the data should be realised in a simple way. A simple interface solution, that can store
tabular data, is to import data from CSV files. For the future work, also the data from
other storages for tabular data, like Excel/OpenDocument, JSON and databases should
also be able to get imported.

It should also be clarified, if data wrangling [Kandel et al., 2011] should be performed
on the raw data, before import into the software. We agreed that the data wrangling is
not the main issue of the work, however, there should be some functionality, which gives
the option to the user to bring the raw data into a valid state, which afterwards can be
imported into the software.

3.2 User Scenarios

There are multiple purposes for user scenarios in software development context. One of
them is to develop ideas about uses and the possible ways how the user interacts with
the software. Another purpose in this case is to support the dialog between software
developers and people who are responsible for evaluation [Evans and Taylor, 2005].

3.2.1 User Scenario 1 - EasyBiograph

This user scenario was chosen and involved in the work for several reasons. On the one
hand, the user scenario should show that the software is based on everyday situations and
is not based purely on fictitious tasks. On the other hand, several functions of the visual
interfaces can be demonstrated: the filtering function, to import only data needed for the
analysis, working with data items, that stand for something specific, e.g. numbers which
describe months of the year, starting with 0. The user scenario involves also determinate
and indeterminate intervals which are processed with the prototype.

The following user scenario describes the named functions: EasyBiograph is a software
used for cooperative acquisition of biography of any person. It allows to visualize
important sections and events of a person’s life using a timeline [Ilse Arlt Institut fiir
Soziale Inklusionsforschung, 2019]. The persona John, who is a data scientist, would like
to import Mr. Hubers biography data into TimeBench and visualize it. The biography
data was created in EasyBiograph. The reason for the creation of the TimeBench
visualization is that John would like to experiment with the given data and try to get
more insights, then the EasyBiograph visualization might provide. Figure 3.1 shows the
interface of EasyBiograph and the data of Mr. Huber. The y-axis is showing important
dimensions of the person’s life: family, living, education, work, healthcare, treatments,
others. On the x-axis the user can find the timeline and the age of the person. To save
the created data, EasyBiograph uses CSV files, which are shown in the Table 3.1.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2. User Scenarios

event interval unknown determinate dimension intervalStartMonth inter il tYear inter description unknown2 unknown3

E 2 16 33 0 2 3 1989 1989 Scheidung detrue 377
E 1 18 33 1 0 2 1982 1989 Mietwohnun;false 0
E 1 16 33 2 8 7 1989 1990 VS false 0
E 1 16 33 2 8 5 1990 1997 SPZ false 0
E 2 16 33 4 3 4 1990 1990 Blinddarm-Oltrue 399
E 2 16 33 4 4 5 1998 1998 Nasenbruch true 586
E 1 18 33 1 8 0 1991 1998 ETW Stiefvatifalse 0
E 1 17 33 1 2 4 1989 1991 Wohnung Mttrue 353
E 1 18 33 1 5 3 1999 2000 LBS true 599
E 1 17 33 1 0 3 1998 2000 Whg. Freunditrue 565
E 1 18 33 1 4 8 2000 2003 Mietwohnun;true 621
E 1 18 33 2 7 0 1997 2000 Lehre false 0
E 2 17 33 1 8 9 2003 2003 Delogierung true 721
E 2 18 33 0 0 1 1997 1997 Konflikte mit true 560
E 1 17 33 0 0 2 1996 2003 Div. kurze Be:false 0
E 1 18 33 0 3 9 2003 2005 Beziehung mitrue 720
E 2 17 33 0 6 7 2004 2004 Tod d. Tochtetrue 736
E 2 16 33 4 2 3 2000 2000 Alkoholvergif true 619
E 2 16 33 4 10 11 2000 2000 Alkoholvergif true 648
E 2 17 33 2 0 1 2000 2000 Lehrabbruch true 633
E 1 16 33 5 1 11 2000 2001 AMS false 0
E 1 16 33 3 0 0 2002 2003 Div. Hilfsarbetrue 633
E 1 18 33 5 0 0 2002 2005 Sachwaltersc true 661
E 1 17 33 5 0 7 2004 2004 JWF true 709
E 1 17 33 5 0 11 2005 2005 JWF false 0
E 1 16 33 5 0 5 1989 1997 Sprachheilpaifalse 0

Table 3.1: EasyBiograph export file [Ilse Arlt Institut fiir Soziale Inklusionsforschung,

2019]

The rows, which start with the "E" entry are describing an interval or an instant date
of the event. All other lines that do not start with an "E" can be ignored. Following

columns are relevant for John:

e Column 1: Only rows with an "E" are signalizing that the row is a time event. All

the other rows can be ignored

o Column 2: Integer indicating if the time entry is an interval (1) or an instant (2)

e Column /: Integer indicating if the interval is indeterminate (32) or determinate

(33)

e Column 5: Integer indicating the dimension (0: family, 1: accommodation, 2:

education, etc.)

e Column 6: Integer indicating the interval start month (0: January, 1: February, 2:

March, etc.)

e Column 7: Integer indicating the interval end month (0: January, 1: February, 2:

March, etc.)
e (Column 8: Integer indicating the interval start year
o Column 9: Integer indicating the interval end year

e Column 10: The description of the event

unknown4
137
0
0
0
415
398
0
180
215
180
215
0
180
141
0
146
103
452
428
265
0
340
515
480
0
0

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

DESIGN OF INTERACTIVE VISUAL INTERFACE

26

Herr Huber, geb. 11.1982(29a) in Bezirk Horn. interviewer: 55, 11.10.2012.

1 2 3| 4| 5| 6 7| B 9|10|11|12|13|14| 15| 16| 17| 18| 19| 20| 21{ 22| 23| 24| 25| 26| 27| 28| 2930

19| 19| 19 19| 19| 19(19 19| 19(19(19| 19| 19(19| 19| 19(19| 20| 20| 20| 20| 20| 20| 20 20| 20| 20| 20| 2020
83| 84| 85| 86| 87) 88| 89| 90| 91| 92| 93| 94| 95| 96| 97| 98| 99| 00| 01| 02| 03[04| 05| 06| 07| 08| 09] 10{ 1112

Tod d. Tochter

| ik [] |

Scheidung der Eltern Konflikte mit Stiefvatafir Frau
L] N | e
] =

— 1! =
Wohnung Mutter Whg. Freunde |<!DE|99'E"‘"9
L e = | .
Mietwohnung der Eilern| ‘ ETW Stiefvater ‘ LBSIPwielwohnung
7 —

Div. kurze Beziehungen | |/<
T

— |
[|
Lehrabbruch
Vs SPZ ‘ ‘

Lehre

[]

Div. Hilfsarbeiten

Nasenbruch ‘
Blinddarm-0OP| |
Alkeholvergiftung 2
‘ Alkoholvergiftung 1 ‘

JWEWH

Sprachheilpadagogin AMS

achwalters

Figure 3.1: EasyBiograph interface [Ilse Arlt Institut fiir Soziale Inklusionsforschung,
2019]

3.2.2 User Scenario 2 - Sandbox

This user scenario is intended to show an use case in which the user is able to carry out
certain arithmetic operations directly in the dataset and can also form different views on
the same data (e.g. one timestamp allowing monthly and daily views on the data).

"Sandbox" is a store selling toys for children between 3 and 12 years. The records of the
sold toys are stored in the software at the time of the sale. The software has an export
function for the accounting data. The recorded data of the sold toys is thus stored in a
CSV file, which may be further processed. The owner of the store (Olivia) would like to
know on which days of the week the most turnovers are made, and also, which months of
the year have the highest turnovers. To visualize the data, she would like to import the
data into TimeBench. Table 3.2 shows the export example.

Following columns are relevant for Olivia to import the CSV data correctly into
TimeBench:

o timestamp: Timestamp in datetime format showing the time of the purchase
e grossPrice: Price of the item

e quantity: Number of purchased items

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.2. User Scenarios

id invoiceNumber timestamp store vendor item grossPrice tax currency quantity
156778 156298771 24.01.2019 12:15 VIE18 ASF P552TNP 62,99 20 E 2
156779 156298772 24.01.2019 13:25 VIE18 ASF A812TIS 41,99 20E 3
156780 156298773 24.01.2019 14:35 VIE18 ASF D721WEY 49,99 20E 3
156781 156298774 24.01.2019 15:45 VIE18 ASF T257IXF 7199 20 E 3
156782 156298775 24.01.2019 16:55 VIE18 ASF Y105NLN 50,99 20 E 2
156783 156298776 25.01.2019 09:15 VIE18 ASF Q542L0V 97,99 20E 3
156784 156298777 25.01.2019 10:22 VIE18 ASF D625YNT 60,99 20 E 1
156785 156298778 25.01.2019 11:29 VIE18 ASF A473INQ 86,99 20 E 1
156786 156298779 25.01.2019 12:36 VIE18 ASF B511UPL 58,99 20 E 1
156787 156298780 25.01.2019 13:43 VIE18 ASF C417LCG 95,99 20E 1
156788 156298781 25.01.2019 14:50 VIE18 ASF TO025CDV 43,99 20E 2
156789 156298782 25.01.2019 15:57 VIE18 ASF FO71YOB 65,99 20 E 1
156790 156298783 25.01.2019 17:04 VIE18 ASF 1348ZBL 38,99 20 E 1
156791 156298784 25.01.2019 18:11 VIE18 ASF R758ALQ 56,99 20 E 3
156792 156298785 26.01.2019 09:15 VIE18 ASF H614UXB 43,99 20E 3
156793 156298786 26.01.2019 10:00 VIE18 ASF C978DKY 79,99 20 E 3

Table 3.2: Sandbox export file example

3.2.3 User Scenario 3 - HemingwayFM

The HemingwayFM user scenario shows the interaction between timestamps and spans.

The user can form intervals, that consist of a specific time and duration. It also builds
on the context of the data. The dataset does not show that every row is committed to a
specific date. The user, who has additional knowledge about the available data, is able
to add additional data to the dataset and create even more valuable dataset.

The online radio station "HemingwayFM" is famous for the good cultural program and
playing classic music in a small city in Illinois (US). Every day on each hour between
6 a.m. and 6 p.m. the radio presenter is telling a short story, which is quite popular
among local listeners. Since January 1st, 2017 00:00:00 the radio station has a software
(StoryTracker), which makes an entry in the database automatically every hour, saving
the hour of the day, the length of the presented short story, the number of audience
during the story and some additional information. The radio station owner (Karen)
would like to get insights into the data, which gets generated by StoryTracker. She would
like to understand, if the length of the story, the time of the day or the time of the
year make influence on the number of the audience. To get the named insights, Karen
exports the data into a CSV file and wants to visualize the data using the software library
TimeBench.

The CSV file (Table 3.3) has following columns, which are relevant for the import into
TimeBench:

e id: Sequential number providing uniqueness of the data entry

e hour: Integer standing for the hour of the day, starting on January 1st, 2017

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3. DESIGN OF INTERACTIVE VISUAL INTERFACE
id hour storylength storyld audienceCounter
1 0 0 STO4985 0
2 1 0 STO0068 0
3 2 0 STO1997 0
4 3 0 STO5883 0
5 4 0 STO7070 0
6 5 0 STO9286 0
7 6 321 STO8672 14336
8 7 350 STO4190 14091
9 8 342 ST09284 11963
10 9 219 STO7321 16588
11 10 246 STO4764 18028
12 11 190 STO4076 21427
13 12 238 STO5077 10270
14 13 405 STO3615 14456
15 14 382 5T01499 21412
16 15 393 STO7896 11995
17 16 275 STO5082 11660
18 17 209 STO2873 17823
19 18 259 STO9042 14335
20 19 0 STO8186 0
Table 3.3: HemingwayFM export file example
o storyLength: The length of the short story in seconds
e storyld: 1D representing the story
o qudienceCounter: The number of listeners during the time interval
3.3 Prototype Requirements Given by User Scenarios
After it became clear, which user scenarios have to be covered, multiple basic questions,
regarding the design of the visual assistant, came up. First question: Which functions
should the software include, based on user scenarios? This question describes exactly
the functionalities which the user scenarios require to fulfil the tasks. The following 2
questions have less functional, but more design in the foreground. By which graphic
representation you can visualize arbitrarily nested objects? The answer to this question
must satisfy both software architectural and visual requirements. The last question
provides information about the user’s interaction with the software: By what habitual
interactions the user should be able to interact with the objects?
After the user scenarios have been set, it was clear which functions have to be realized in
the import assistant software:
e There should be distinction possible between TemporalObjects (object which stores
application data with reference to a TemporalElement) and TemporalElements
28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

3.3. Prototype Requirements Given by User Scenarios

(interfaces for time primitives - instants, intervals, spans)[Rind, 2017], with a n:1
relationship between those. That means, every TemporalObject has exactly one
TemporalElement in TimeBench and the importer should support this architecture

Regarding aspects of time-oriented data, the import assistant framework should support
multiple functions:

The software should support the import of data tables, which consist of columns
representing time-oriented data. For example, columns consisting of integers, which
stand for years (1999, 2000, 2001, etc.), months (01 stands for January, 02 stands
for February, etc.), etc.

Especially, when there is no context about the time-aspects, the user should be
able to enrich the imported data. For example, if the imported data does not have
a valid reference to the time components, the user should be able to insert the time
reference and enrich the data. In particular, the user can specify that each line of
the imported data stands for a week, e.g. beginning with June 1st, 2019

The prototype has to support different granularities. For example, the user must be
able to specify that every row is one decade, year, month, week, day, hour, minute,
etc. referenced to a specific start date and time

With an additional feature, it should also be possible to merge data from multiple
columns. That could help the user to create a valid date and time when the date
and time information are in different columns (column 1: 01.06.2019, column 2:
23:23:59)

In addition to instants, it should also be possible to import other time primitives,
like intervals (determinate and indeterminate) and spans, into the framework

Sometimes the data, which has to be imported, by using the prototype, has rows
which have to be handled differently. For example, some rows of the data are
describing some points in time (instants) and the others are describing intervals
(ranges between 2 instants). The prototype should include some kind of filtering
function to support the named case

The user should not only be able to import continuous, but also cyclic data into
the software

To assist the user to configure the import of the data, additional requirements on the
prototype occurred:

e The user should get feedback and an overview of the progress of his or her configu-

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

ration. While he or she is configuring the import description, the prototype should
give him or her an overview about the already used data (columns) and also show
him warnings/errors about the wrong configuration

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.

DESIGN OF INTERACTIVE VISUAL INTERFACE

30

e The imported data types should be shown to the user in some way
e The repetitive work should be avoided

e The result of the configuration should be shown to the user, who should be able to
verify the created import description

3.4 Mockups

The reason for mockups is mostly to specify the user interface features and functions
in a simple "quick and dirty" way [Rivero et al., 2010, 2011]. In this chapter a part of
the mockups is presented, which describes the design process in the first steps. For each
of the scenarios described, the mockups show how the user reaches his or her goals, or
better, what steps are required to fulfil the requirements for the given import result.

Mockups were created for each of the three user scenarios. For the first user scenario,
every interaction (every click) of the user and the subsequent reaction of the system
was displayed. As a result, the mockup process resulted in 69 images for the first user
scenario. After the mockups for the first user scenario already showed the most user
interfaces, not every interaction of the user had to be displayed for the remaining user
scenarios. The representations in the mockups for scenarios 2 and 3 showed only the
different configuration settings for the different requirements.

Since the internal representation of the TemporalDataset in TimeBench is done by graphs,
we saw as one of the alternatives to represent TemporalObjects and TemporalElements
by graphs too. Figure 3.2 shows the mockup of the start screen of the prototype. This
screen shows up immediately after the user has started the software and has selected the
CSV file to import using the OpenFile menu. If the CSV file is corrupt, the software will
issue an error message and it will close automatically. The lower part of the screen shows
the imported CSV file in a data table view. The column headers show the names of the
columns. The data type is displayed in the form of symbols for each column and is placed
over the column header. What is not visible in the mockups is, that the data types are
automatically recognized by the software. The bar above the data-type-symbols gives the
user the possibility to display the hidden columns and also to show more or less data from
the CSV file. These functions were designed to prevent the user’s cognitive overload and
increase the software’s performance. The largest part of the screen represents the place
needed for the composition of the TemporalDataset graph. When the program starts, the
root node is already added to the TemporalDataset and displayed to the user. The left
part of the screen shows the object catalog. In this area graphs can be pinned from the
main area for later reuse. This functionality should minimize the repetitive user’s work.
When clicking the "Done" button, TemporalDataset is generated and is accessible for
further visualization frameworks. In addition, the specification of the TermporalDataset
is getting created and a GraphML file is generated. This button is only active, if a
TemporalDataset can actually be generated and that is only the case, when the user’s
configuration is error-free.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.4. Mockups

Import Assistant

-0 X

Object Catalog

O

Temporal Object

(o]

[Show hidden columns

W —iV] rows
A

Al# | # | # # # # # # A # # i
eve|inten|unkno | determir|dimens|intervalStartt|intervalEndM|intervalStart |intervalEnd | description unknow | unknow|unknow

E |2 16 33 0 2 3 1989 1989 Scheidung der Elftrue [377 |137

E 1 18 33 1 0 2 1982 1989 Mietwohnung der |false |0 0

E I 16 33 2 8 7 1989 1990 Vs false [0 0

E 16 33 2 8 5 1990 1997 SPZ false [0 0

E |2 16 33 4 3 4 1990 1990 Blinddarm-OP true [399 |4156 1

Figure 3.2: Mockup: main screen

Change type
Show/hide column

Datacolumn specification x
Column name unknown
Data example true
S
Language English =

| ok

* I Cancel]

Figure 3.3: Mockup: data table context menu (left) and data type change window (right)

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.

DESIGN OF INTERACTIVE VISUAL INTERFACE

32

Add object to catalog Object specification b4
Specify Object : I
Data Element Add >
New temporal object Remove [ok [Cancel]
New temporal elerrﬂ*

Figure 3.4: Mockup: temporal object context menu (left) change object name window
(right)

Figure 3.3 (left) shows the context menu, which appears when the user clicks on the
columns of the data table with the right mouse button. The context menu allows the
user to show and hide the columns. In addition, the data types of the columns can be
adjusted. When clicking on the "Change type" option, the window appears in which the
data type can be adjusted (Figure 3.3 (right)). The window shows which column has been
selected, including a data example that comes from the first row of the current column.
The user has the possibility to choose a new data type from "text", "numeric", "boolean"
and "datetime'. If the data type "datetime" is selected, the pattern, in which the date is
available, can also be described, for example "yyyy-MM-dd HH:mm:ss". The language
selection function is limited to the data type boolean, since the value can be given in
different languages. The software should then be able to interpret the data correctly,
depending on the language, which the raw data contains (For example: "English" should
be chosen in case when the data column contains "True" and "False". Otherwise when
the data column contains values "Wahr" and "Falsch", "German" should be chosen).

Figure 3.4 (left) shows the context menu, which appears when the user clicks on a
TemporalObject with the right mouse button. After that, the user has the possibility
to add the object (including its children) to the object catalog and to reuse it at some
later point. Also he or she is able to change the object name by clicking on the "Specify
object" option. Figure 3.4 (right) is showing the window, which allows the changing of the
object’s name. This appears only, when the TemporalObject is the root node. In other
cases, the window contains a submenu, which can be used to change the TemporalObject
to an interval, instant or span. The submenu "Add" allows the user to add a data element.
Also, it allows to add a new TemporalObject or TemporalElement (instant, interval or
span) as a child. If there are some objects in the object catalog, they are appearing in this
list and are ready to get added to the selected TemporalObject as children. To remove
the TemporalObject there is also a "Remove" function, which is not only removing the
TemporalObject itself, but also its children, after the user has confirmed the warning
message.

Figure 3.5 shows the result of changing the TemporalObject node type to "interval". The
instant children appear automatically, attached to the interval (parent) node. The red
color of the nodes symbolizes that the TemporalElements (in this case - instants) have

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.4. Mockups

Datacolumn specification b

Column name intervalStartM

Data example

Granularity Month

II nI
KIAKE

Pattern M

| Data type DateTime

Starting with
eventlnterval Sl

/\ -

Language
6 0 | OK I Cancel]
interval_start interval_end

Figure 3.5: Mockup: interval (left) and Datacolumn specification window (right)

al

not yet been assigned temporal columns from the CSV file. When temporal elements are
assigned to temporal columns, not only does the color of the nodes change to green, but
also the columns in the data table (Figure 3.2 (bottom)) also turn green. This change
of color gives the user an overview of which columns have already been assigned to the
nodes and which were not assigned. The temporal columns can be assigned to a node by
the user, calling the context menu by clicking with the right mouse button on the nodes
and calling the corresponding function. The appearing context menu allows the user to
change the node’s name, to delete the node and to add a (temporal) data column to the
node. By clicking on the "Add data column" option in the context menu, the window for
the data column specification shows up (Figure 3.5 (right)). The user is able to choose the
temporal data column from the list of all columns. After choosing the right data column,
the data example is changed automatically, showing the value of the first data cell of the

chosen column. As next step, the user is able to configure the data type and granularity.

At the granularity selection, the user has the choice between: "milliseconds", "seconds",
"minutes", "hours", "days", "weeks", "months", "years" and "decades". After choosing the
appropriate granularity, the user can insert the pattern for the data column values. The
values, which are getting imported into the software from the current column looks like
following: 00 - January, 01 - February, ..., 11 - December. By using the "Starting with"
text field, the user is able to specify that the numeric values, which stand for months, do
not start with 01 for January, but with 00. Using the filter function, the user is able to
specify the allowed months, which are getting imported. The first drop-down field allows
following filtering operators: "<", '<=", "=", "<>", ">" ">=". The text field next to it
can be used to enter the operand.

Every instant can contain up to 2 data columns with one data column containing the
date and the other the time.

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

@ Sibliothek,
Your knowledge hub

3.

DESIGN OF INTERACTIVE VISUAL INTERFACE

34

Datacolumn specification »

Data Elements
Column name ‘ .
interval

1ite O e 33
Data example 33 determinate

determinatelnterval

Data type Integer = I

Granularity

[]

Starting with eventlnterval

N o o | i N

2] Iﬂl interval_end

Figure 3.6: Mockup: Data element specification (left) and data element representation
(right)

Figure 3.6 (left) shows the data element specification window, which can be called by
clicking on the TemporalObject context menu on "Add" > "Data Element" (Figure 3.4
(left)). This window can be used to link the data elements to the temporal data, which
has been specified in the children TemporalElements. First, the user can choose the data
column to insert. After choosing the column, a data example is shown to the user. The
next step, which has to be done by the user, is to select the appropriate data type for
the selected column. This selection must be done when using the filter below. The filter
function can be used to import only a subset of raw data, which is fulfilling the filter
requirements. By choosing the data type "Integer", the user is able to choose following
filter operators: "<", "<=", "=", "<>", ">", ">=". If the chosen data column contains
only textual values, following operators are available: "=" and "<>". In the shown figure,
the user is setting the filter for the column "determinate", importing only those rows,
which contain the value "33" in the column "determinate". The reason for the users
action is the fact that the user has the knowledge, that the value "33" of the column
"determinate" marks the rows as a determinate interval data in the raw data. It is possible
to add multiple data elements to the TemporalObject having their own filters. Figure
3.6 (right) shows the representation of the data elements, which have been added to the
TemporalObject. There is also a function, which can be used to delete the added data
elements. This function can be called from the TemporalObject context menu and is
appearing only if the TemporalObject contains more then 0 data elements.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

3.4. Mockups

Impert Assistant

-0 X

Object Catalog

O

determinatelnterval

eventintervs

interval_stort interval_end

determinatelnterval

indetermnateinterval

[t}

eventintervel

interval_start

indeterminatelnterval

determinatelnterval

root

O

inddeterminatelnterval

O

instantObject

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2 &) t) i/
nstontObsect
eventinterval eventInterval event_instant
vent_instant /\
interval_start interval_end interval start
instantObject -
[J Show hidden columns 100
Al # # | # # | # * # # A & | #
evel inten unkno| determir domens!m!ervalS\artr intervalEndM intervalStart intervalEnd description unknow|unknow|unknow
]

E |2 16 a3 0 ‘2 3 1989 1989 Scheidung der El true [377 137
E |4 18 33 1 0 2 1982 1989 Mietwohnung der false |0 0
E R 16 33 2 8 7 1989 1990 vs false |0 0
E 16 33 2 8 5 1390 1997 SPZ false |0 0
E |2 16 33 4 3 4 1990 1990 Blinddarm-OP (true [399 415 5

Figure 3.7: Mockup: finished import configuration

Figure 3.7 shows the mockup of the finished import configuration for the first user scenario
(Chapter 3.2.1). The user has created 3 TemporalObjects. The first was created to import
only determinate intervals (intervals, which have a start and an end instant). The filter,
that has been used was applied on data column "determinate" on value "33". The second
TemporalObject has been created for indeterminate intervals. In this case, the same filter
has been used, but this time on the data column "determinate" was filtered on the value
"32". The named value stands for indeterminate interval. The third TemporalObject was
inserted to import all events, which are no intervals. The user has set an filter on the
second column ("interval"). Every row, which has the value "2" in the column "interval"
represents an event, which is not an interval. The object catalog displays the objects
"cached" by the user. Since the first and second TemporalObject differ only in the filter,
the user can benefit from the catalog function. The procedure to perform the entire
configuration for the first user scenario would be the following:

e create determinatelnterval TemporalObject,

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.

DESIGN OF INTERACTIVE VISUAL INTERFACE

36

pin the created object to the object catalog,

add the object from the catalog to the work space again,
change the filter option to indetetminate interval,
rename the object to "indeterminatelnterval",

pin the new object to the catalog,

create the "instantObject" TemoralObject,

pin the object to the catalog,

create new root object and add all object from the catalog as children

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Implementation

The design of the interactive visual interface took place in several steps. First, the basic
requirements for the prototype have been set. After the basic requirements were clear, we
created 3 user scenarios to describe the scope of the work and to determine the remaining
requirements. The next step was to create mockups, in order to show the way how the
user interacts with the software, and also, to specify prototypes features and functions.
After the mockups were completed, there was already a clear idea of what the prototype
will look like, what features it will have, and how the user is going to interact with the
prototype.

This chapter describes the next step, the process of implementation. The prototype was
implemented in Java 8. As an integrated development environment (IDE), Eclipse version
2018-09 (4.9.0) was used. In order not to have dependencies on various libraries, the
entire user interface was created using JavaFX standard objects. To use the TimeBench
data structure, the project requires following dependencies: commons-lang3, ical4j, log4j,
ieg-prefuse, ieg-util, TimeBench.

Figure 4.1 shows the prototype’s class diagram. In following, the important classes will
be described and in addition, the revision of the design will be presented.

The entry point of the software is the Main.java class. This class offers only a few func-
tionalities. The first step is to ask the user via FileChooser to select the CSV file to import.
After the CSV file has been imported, it will be passed to the MainController.java. The
only function that the Main.java class offers, is the getTemporalDataset() function, which
retrieves the result of the prototype as a TemporalDataset. Listing 4.1 shows the Java
code used to retrieve the TemporalDataset. The function uses the MainController.java
to retrieve the result. The reason why this function was placed in the code at this point
is that the users, who use the prototype as a library, can easily find it. The same function
can also be called in in MainController.java. The input, that the user has to make when

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4. IMPLEMENTATION

<<Java Class>> <<Java Class>>
<<Java Class>> .
(® Main {9 AddDate TimeColumnController {9 InternalConverter

_startingWith

-controller {0..1 0.1

-dp_filterValue

<< >>
<<Java Class>> e Gl <<Java Class>>

(®MainController ® DataColumnSpecificationControlleg 79 (® DateTimePicker

-nodeDataCqumn¢4{1

<<Java Class>>
{9 NodeDataColumn <<Java Class>>
(2 TemporalObjectNode

+mainController

<<Java Class>>

A | (2 TemporalElementintervalNode
<<Java Class>> <<Java Class>>
(3 RootNode P BMyNode [

< 0.~
—parentRootNod;‘/E 1

-childrenNodes
<<Java Class>>
(9 ParentNodeTuple

<<Java Class>>
(5 TemporalElementinstantNode

-myNodeDataElements | 0..*
-nodeType

<<Java Class>>
<<Java Enumeration>> (2 NodeDataElement <<Java Class>>

{3 NodeType (9 TemporalElementSpanNode
0..1

-nodeDataElement

<<Java Class>> <<Java Class>> <<Java Class>>
(2 DataElementSpecificationController (2 DataTypeConverter (2 TextUtils
<<Java Class>> <<Java Class>>
{5 AddColumnController (= AdjustColumnController

Figure 4.1: Class diagram

calling the library is a CSV file. The output is a TemporalDataset object, which can
request via the function getTemporalDataset() in Main.java class.

The general data structure and the program flow looks as follows:

e The entry point of the software is the Main.java class. This class starts the file
chooser, asking the user to select the CSV file, containing the time-oriented data.

e After checking the inserted file, the MainController.java class gets called and the
CSV file is passed to the class.

e The MainController.java class creates the data table, filling it with the data from

the CSV file. The wrangling functions can be done directly in the created data
table. The main panel of the MainController allows the user create instances of the

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

MyNode.java class, which represents the different node types (RootNode, Tempo-
ralObjectNode, TemporalElementIntervalNode, TemporalElementInstantNode and
TemporalElementSpanNode).

e By clicking on the "Done" button, a new TemporalDataset object is created. The
nodes on the MainController panel are linked to the wrangled data from the data
table and are added to the TemporalDataset.

e Using the getTemporalDataset() function, the user is able to retrieve the Tempo-
ralDataset object and use it in the visualization.

public TemporalDataset getTemporalDataset ()
{

return controller.getTemporalDataset () ;

}

Listing 4.1: Retrieving of TemporalDataset in Main.java

public List<MyNode> getAllChildren (MyNode nod) {
List<MyNode> allChildren = new ArrayList<MyNode>();

for (MyNode childNode : nod.getChildrenNodes ()) {
allChildren.addAll (getAllChildren (childNode)) ;

}

allChildren.add (nod) ;

return allChildren;

Listing 4.2: Get all children from MyNode in MainController.java

The MainController.java class builds the core component of the software. This class is
not just the controller for the main user interface, but also forms the basis for the creation
and management of the TemporalDataset. The recursive approach allows traversal of
the graph, which represents the TemporalDataset. Listing 4.2 shows an example for
retrieving all children of a node. By clicking on the "Done" button in the user interface,
the function create TemporalDataset() is called. For each data table row (in TimeBench
context: Tuple) the TemporalDataset graph is traversed and depending on configuration,
the data is added to the TemporalDataset, or is ignored because of the active filters. The
wrangling of the data table also takes place in this class. Following functions can be
found in the MainController.java that can be used to adjust the raw data in the data
table (dt_myDT):

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.

IMPLEMENTATION

40

o adjustColumn(...): this function allows the user to increase/decrease numerical
values from selected data table columns. Also, it is possible to insert prefixes and/or
suffixes to the raw data. This can be useful to create the valid datetime data type
(format yyyy-MM-dd HH:mm:ss) from incomplete values. For example, when the
data column includes values in the following format: "2019-05", the user is able
to create complete dates by adding suffixes like "-01 00:00:00" to create correct
datetime "2019-05-01 00:00:00". Following, the created column can be used as a
source data column for a TemporalElement object.

e addDateTimeColumn(...): using this function, the creation of additional datetime
data columns can be performed. The user has the possibility to decide the start
datetime of the first data column value and the steps between the rows (granularity).
Startdate "2019-01-01 12:00:00" and granularity "hour" would result in column
values: 1st row - "2019-01-01 12:00:00", 2nd row - "2019-01-01 13:00:00", 3rd row -
"2019-01-01 14:00:00", etc.

e createNewColumn(...): allows merging from 2 columns into a new one. Not only
that date and time columns can be merged to one valid datetime column, also basic
arithmetic operations can be applied between 2 numeric columns. This can be
useful when the data includes data, which must be calculated before visualization.

Besides MainController.java builds MyNode.java class the most important class in the
software. This class includes several important functions. An important task that
this class does, is to represent the TemporalObject and TemporalElement nodes in the
user interface with all the functionalities (add, delete, etc.). MyNode also supports a
parent-child relationship between instances to support the graph representation. De-
pending on the type of node (enumeration of NodeType), a node may contain several
instances of the class NodeDataColumn.java or NodeDataElement.jova. Other than
NodeDataFElement.java, which connects non-temporal data columns of the data table to
TemporalObjects, NodeDataColumn.java class includes the description of the temporal
columns attached to a TemporalElement. To support the different functionalities of the
nodes, depending of their type, classes RootNode, TemporalObjectNode, TemporalEle-
mentIntervalNode, TemporalElementInstantNode and TemporalElementSpanNode are
extending the MyNode.java class. The named extended classes include their own context
menu and the appearance attributes for the user interface. Since all of the node types
share the same functionalities (parent-child relationship, add, delete, translate, etc.),
they inherit those from the super class MyNode.java. the only reason for the distinction
between the RootNode and TemporalObject is the fact that it should be clear to the user
that at least one TemporalObject must be present in the TemporalDataset object. The
functionalities, behind both objects are the same.

In order to better support the user doing his or her task, Cascading Style Sheets (CSS)
files application.css were generated that, for example, place correct data type icons in
the data table column headers or change the background colors of the already assigned
columns.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

@ Import Assistant - X

Object Catalog

Data elements: ",

event
determinate
interval

determinedinterval easyBiogr .

®

3T EE] indeterminedinterval instantObj

indeterminedinterval
determinedint indeterminedint eventinstant

instantObj
startinterval endinterval startinterval

Done

® ® © @ oz @ wrowns @ wromns @ @ e @ srow @ [6)

1989 1989 Scheidung der Eltem true 377 137 4 19892 1989-2-0100:00:00 19894 1989-4-01 00:00:00
3 1982-0 1982-0-0100:00:00 1989-3 1989-3-01 00:00:00
8 1989-8 1989-8-0100:00:00 1990-8 1990-8-01 00:00:00
6 1990-8 1990-8-0100:00:00 1997-6 1997-6-01 00:00:00
5 1990-3 1990-3-0100:00:00 1990-5 1990-5-01 00:00:00
6 1998-4 1998-4-0100:00:00 1998-6 1998-6-01 00:00:00
1
5
4
4
a

3
1982 1989 Mietwohnung der Eltern false 0 1
1989 1990 Vs false 0 0 9
1990 1997 SPz false 0 0 9
1990 1990 Blinddarm-OP true 399 415 4
1998 1998 Nasenbruch true 586 398 5
1991 1998 ETW Stiefvater false 0 0 9 19918 1991-8-0100:00:00 1998-1 1998-1-01 00:00:00
1989 1991 Wohnung Mutter true 353 180 3 1989-2 1989-2-0100:0000 1991-5 1991-5-01 00:00:00
1999 2000 LBS true 599 215 6 1999-5 1999-5-0100:00:00 2000-4 2000-4-01 00:00:00
1998 2000 Whg. Freunde true 565 180 1 1998-0 1998-0-0100:00:00 20004 2000-4-01 00:00:00
5

2000 2003 Mistwohniina trie A1 215 20004 2000.4.01 00:0000 20039 2002.0.01 00-00-00 v

Aﬁwwbombm«:mu@

Figure 4.2: The main screen of the prototype

Figure 4.2 shows the main screen of the prototype. In this case, the main screen is
showing the solution for the first user scenario (Chapter 3.2.1). The different node types
(TemporalObject, TemporalElement - Instant, TemporalElement - Interval) do have
different colors and labels inside the objects (R - RootNode, V - TemporalElementIn-
tervalNode, I - TemporalElementInstantNode, O - TemporalObjectNode). Similar to
the mockups in Chapter 3.4, the object catalog is placed on the left edge of the screen.
Every object that has been pinned to the object catalog has a name, which is placed
under the object in the catalog. The green columns in the data table symbolize that
the column has already been assigned in the graph. The blue icons in the data column
headers indicate the data type of the values in the column.

Figure 4.3 (left) shows the window for adding the data column to a TemporalElement.
All the required fields are marked with an asterisk (*). The field "ColumnName" requires
the selection of the data column from type datetime. After selecting the column, a data
example is shown automatically to the user. The data type is always "Date" and the
required pattern is "yyyy-MM-dd HH:mm:ss". These two fields can not be changed, since
the system needs the data in exactly that format. In the next step, the user must choose
a granularity. In this case, the user has the choice between: "milliseconds", "seconds",
"minutes", "hours", "days", "weeks", "months", "years" and "decades". Optionally, also a
filter can be set. For example, it can be adjusted, that only the data before June 1st,
2019 should be linked to the TemporalElement. For the selection of time, the JavaFX

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.

IMPLEMENTATION

42

@ Add data column m] X

Column name:* | timestamp %

Data example: ~ 2019-01-24 12:15:00 @ Add data element O X

Data type: Column name:* | tax -

Granularity:* Month . Data example: 20
Pattern:

Filter: < - _

< Juni > < 2019 >

Data type:* Numeric =

Filter: <= ~| 20

Mo Di Mi Do Fr Sa So

\ oK
C J 2 27 28 29 30 31 1 oK Gt
23 3 4 5 6 7 8 9

24 10 11 12 13 14 15 16
25 | 17| 18| 19|20 | 21 | 22 | 23
26 24 25 26 27 28 29 30

27 (S 2 13| 4|56 7‘

Figure 4.3: Add data column (left) and add data element (right)

DatePicker ! is used. After applying the changes by clicking on the button "OK", the
system verifies if the selected data column values can be converted to datetime and if
the pattern is correct. If the verification is positive, the data column is linked to the
TemporalElement, otherwise the window remains open and the user is alerted to the
errors that have occurred.

The window in Figure 4.3 (right) shows the "Add data element" dialog. Using this
window, the user is able to apply non-temporal data columns to the TemporalObject.
From the drop down menii "Column name" the user has to select the column, that he
or she would like to add. After the selection, a data example, from the first row of the
selected column, is shown to the user. Another required selection, that the user must
configure is the data type field. Here he or she can choose between "text", "numeric",
"boolean" and "datetime". Similar to the "Add data column" window, a filter can be
added to the data element. For the numeric and datetime values following operators can
be used: "<", "<=", "=","<>", ">" ">=". For the textual and boolean values only "=",
"<>" can be used. This filter helps to add only those tuples to the TemporalDataset,
which are fulfilling the requirements, set by this filter.

Figures 4.4 and 4.5 are showing the windows, which can be called by the data table
context menu. The reason for their usage is to insert the user’s knowledge into the raw
data by reshaping the raw data, merging columns, creating completely new columns
and therefore creating more valuable data. The window, which is displayed in Figure
4.4 (left) shows a function, which can be used to create a new datetime column. By

. https://docs.oracle.com/javase/8/javafx/api/javafx/scene/control/

DatePicker.html

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.1. Revision of the Design

@ Merge 2 columns m} X
@Add datetime column O X New column name:* Total[
New column name:* Timestamp o
Column 1:* Oper.* Column 2:* Delimiter:
First row datetime: 27.05.2019 18:41 = item 2 B 3 [y, -
oK [Cancel
OK Cancel

Figure 4.4: Add new datetime column (left) and merge columns (right)

inserting a new column name, the start row datetime and the steps, the user creates a
new column, which has the start datetime in the first cell. For all the other values in
the column, the function creates continual datetime values, that increase by the value
chosen in the "Row steps" field. For example shown in Figure 4.4 (left), the values for
the column "Timestamp" would look like following;:

e cell 1: "2019-05-27 18:41:00"
e cell 2: "2019-05-27 19:41:00"

e cell 3: "2019-05-27 20:41:00"

Figure 4.4 (right) shows the window used to merge two columns. It can be used to
create a new column by concatenating two columns (column "Month" with value "03" and
column "Year" with value "2019" would result in "03-2019" by merging the two columns,
using the "&" delimiter). Another approach is shown in the Figure. It is possible to merge
columns using basic arithmetic functions. However, this function can also be executed on
numeric data column values. In the shown case, the user is creating a new column "total"
(total price) by multiplying the price per unit with the number of purchased units.

The shown window in Figure 4.5 is representing the "Derive column" function. Using
this window, the user is able to create a new column, using the values from the selected
column. "Prefix" and "Suffix" functions are adding a static value before or after the cell
value. The numeric column values can also be increased or decreased. The shown picture
is presenting a case where the user creates a valid datetime column (which can be used as
data column for the TemporalElement) by adding a suffix to the cell values. The result
for the first row of the new column "intervalStart" will be: "1989-2-01 00:00:00".

4.1 Revision of the Design

During the implementation process a few problems appeared that had to be solved, in
order to provide an unambiguous and well defined user experience. It turns out, that

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

4.

IMPLEMENTATION

44

@ Derive column O X
New column name:* intervalStart

Source column:

[] Prefix v/| Suffix

-01 00:00:00

Increase values by

Decrease values by

OK Cancel

Figure 4.5: Derive column window

although the mockups can be fully implemented, some cases have been overlooked in the
mockups. The mockups focus on the perfect performance while creating a configuration
for the user scenarios. No consideration was given to cases, when the user, for example,
accidentally deleted something, or made incorrect settings.

One of the things that needed to be done better, is the function the user could use to
change data types (Figure 3.3 (right)). It was not clear for the user, why this had to
be changed. Since this function is only needed for the correct execution of the filters, it
has been relocated into the windows, where the filter function is configured and defined
as required. This gives the possibility to filter the data of a certain column in several
ways. For example, numeric values can be filtered to a specific value, even if they are
simultaneously acting elsewhere as a part of a date.

The next window that needed to be adapted, was the "Datacolumn specification" window
(Figure 3.5 (right)). For the user it was not clear, which patterns he or she is able to
use. It was not clear if the pattern "MM" does mean the granularity "month" or only
the month of the date will be "cut out" of the complete date. Also, the field "Starting
with" was confusing. The user did not know, if the data would start with this start date,
or if the data should be filtered on the set date. Apart from that, specifying multiple
date columns for a node was not clear enough. The user could put together a date in the
node, which consists of 2 different columns (one is the date and the other is the time),
regardless of whether the date is including only year, or year and month. In order to
solve that, a different approach had to be made. The user should bring the data into
a specific shape before adding the finished configured column to a TemporalElement.
In order to do that, several functions have been created that support data wrangling.
The user is now not only able to create new columns, but can also merge and modify
columns without damaging the original data (Figures 4.4 and 4.5). This approach gives

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.1. Revision of the Design

much more overview of the imported data. In addition, the user is able to maintain the
overview of linked data easier. Figure 4.3 (left) shows the improved window. The user
only has to select the datetime column and the granularity with which the data is read
out. The data type expected from the data column is a datetime with the special pattern
("yyyy-MM-dd HH:mm:ss").

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Evaluation

After the implementation was done, the next step was the evaluation of the created
software. The evaluation should identify any software errors that may occur, as well
as evaluate the user experience and usability of the prototype. In addition to these
results, the new requirements which appeared during the evaluation, that, if they are
not implemented immediately for various reasons (scope of the work, minor importance
for the usability, etc.), are stored as ideas for future work. The evaluation was carried
out in several steps. As the first type of evaluation, attention was paid to avoiding
programming errors during the implementation. Each function was individually tested
during the implementation. After several coherent functions were implemented, they
were again tested in combination. After the software was completely implemented, it
was fully tested, paying special attention to the correct execution of the user scenarios.
After the evaluation was finished by the developers, usability inspections were conducted
by 3 usability experts. The next chapter describes the process of usability inspections,
which have been performed.

5.1 Usability Inspections

In order to improve the software usability, Nielsen has provided a list of heuristics, based
on a factor analysis of the explanations, which best explain usability problems|Nielsen,
1994a]. They are:

e visibility of system status
e match between system and the real world
e user control and freedom

e consistency and standards

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

5.2. Usability Inspection Results

e error prevention

e recognition rather than recall

o flexibility and efficiency of use

e aesthetic and minimalist design

e well-structured features that are easy to discriminate

e use of default values

Building on these heuristics, usability inspections were conducted with usability experts.
An usability inspection generally proceeded as followed. The first version of the software
was reviewed successively by 2 experts. The final version was then reviewed by an expert
to determine, if the issues, that appeared during the first usability inspections, were
resolved and if usability was improved. For this, the experts were invited to individual
sessions. First, the purpose of the meeting was explained to the person, which was
the usability inspection, done by usability experts, for the formative evaluation. To
record usability inspections and analyze them later, the desktop was recorded, using the
software VLC media player !. In addition to the video recording, audio was recorded
using smartphone microphone and notes were taken. Because the session focus was not
the learnability of the software usage, the software was explained in detail and afterwards
functionalities were presented. To summarize the presentation, a description sheet about
the project has been compiled and given to the expert as a cheat sheet (Figure A.1). In
order to explain how to use the software, the facilitator performed one user scenario in
front of the experts. After the developers had performed the first user scenario using the
prototype and the experts’ questions were answered, the usability experts were tasked
with implementing the remaining 2 user scenarios themselves. While the tasks were being
performed, attention was paid to how the experts use the software to achieve their goals.
In addition, the comments of the experts were noted, since they were very important for
the analysis and for the improvement of the prototype. After the tasks were performed
correctly by the experts, a final interview was conducted in which the main points were
discussed again, with a strong reference to the heuristics of Nielsen. Finally, the persons
evaluated the software according to the heuristics. The duration of the sessions was
between 45 and 60 minutes.

5.2 Usability Inspection Results

After the first two sessions, multiple improvements have been noted by the experts,
regarding the design, usability, data wrangling and results. The complete list of the
improvements can be found in Appendix B.

"https://www.videolan.org/vlc/index.de.html

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.

EvVALUATION

48

We sorted the suggestions into categories and rated them according to severity and
implementation effort. The following categories are derived from the suggestions:

e Design: Those suggestions fall into this category, whose focus is on design. For
example the design of the icons and colors

o Usability: Suggestions concerning the usability of the prototype. An example for
the usability issue is the missing of the default values for the dialog masks

e Data wrangling: Describes all issues that occur during the conversion of the raw
data.

e Result: All problems regarding software output. For example, incorrect export of
the data.

After the first two sessions, we had a list over 55 suggestions of improvement. Regarding
the design of the prototype, here are some of the suggested improvements: "adjustment
of the icon contrast", "too small table preview" and "adding toolbar to the table preview,
containing the options from the context menus".

Regarding the usability of the prototype, some of important suggestions for improvement
were: "to disable the "Done" button when the TemporalDataset can not be created,
because of the wrong configuration”, "the change of the data columns and data elements
should be enabled, not only the deletion of all", "default values should be added to prevent

errors’, "missing data provenance" and "missing function for saving sessions".

The category "data wrangling" had beside improvements also a few software bugs that
had to be repaired: "it is possible to merge columns with an empty operation, which
leads to an error" and "it is possible to create new data table columns with a new of
already existing data column"

Regarding the result category, there were two issues. Wrong edges were put on the nodes
and the names of the instants were not shown in the output and because of that, they
could be named like the data column they are linked to.

There were 2 criteria for choosing which improvements should be implemented in scope
of this work, which should be done in the future and which do not have relevance to
this work. The first criterion was whether the improvement fits into the scope of the
work, or not. An example of an improvement, that was not further developed for this
reason, was the ability to save sessions to be able to carry on with the work at a later
point. Even if this requirement is very useful, it was not intended in the first place and
in addition, the effort required to ensure this functionality is not proportionate to the
added value. Additionally, the same applies to the undo/redo functionalities. However,
these functionalities should be implemented in the future works.

One of the criteria for selecting the tasks to be implemented was the comparison of
the benefits of the functionality and the effort involved in the implementation. If the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.3. The Walkthrough

°°°°°°°°°°° e N y——" o yo—
® 62.99

49.99 . (2) ! totalPrice

125.98

@ Merge 2 columns O X 125.97

New column name:* totalPrice 149.97

- 215.97

Column 1:* Oper.:* Column 2:* Delimiter:

grossPrice v | |» - \ quantity - 101.98

293.97 (4)
oK Cance (3)

Figure 5.1: The walkthrough of the second scenario - new column

effort was much greater than the actual benefit of the functionality, the task was not
implemented. One of the issues was, that the catalog objects are small and hard to
read. The function for the display of the catalog objects was implemented by creating a
screenshot of the main panel and storing it in the object catalog as a picture. Because
for the most tasks, a few number of nodes is needed, there is a lot of white space in the
screenshot. The solution would be, to search for all sub objects in the panel and to save
the positions of the sub objects. Then derive the maximum positions in all directions
and create a screenshot only with these positions (cropped image). Because the name of
the root takes place under each object in the object catalog, the effort for this function is
greater than the benefit.

All the improvement proposals, which were not excluded by the named criteria, were
implemented. That were all functionalities that bring much to the usability and are in
good proportion to the effort, and also, all programming errors that were noticed during
testing.

After the implementation, the third usability inspection took place. In this session, the
reworked prototype was used. This iterative approach has helped the prototype reach a
status, where it can be used productively, even if there are still some functionalities that
can be made even better in the future.

5.3 The Walkthrough

After the usability inspections have been performed, the next step was to evaluate
the utility. More accurate, the fulfilment of the user scenarios should be evaluated by
performing a walkthrough. This chapter shows how to perform the second user scenario
"Sandbox" (described in Chapter 3.2.2) using the interactive user interface.

Figure 5.1 (1) shows the main screen the user gets, when he starts the software and
imports the CSV file. In the lower part of the main window, he can see and scroll
through the imported CSV data in the data table. After the user has not yet stored any

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.

EvVALUATION

50

(’Q\ @ Add data column o X
Pin object to catalog

Add data element
Add new temporal object Data example: 2019-01-24 12:15:00

Add new temporal element - Instant

Remove Add poral element - Interval Data type: @ Add data element m} X

Add new temporal element - Span Granularity:> =]

; ay -
Add catalog object » Column name:* totalPrice -
- Pattern

Filter: = = Data example: 125.98

© .
- g 3) |
[\ Filter: =

instant_di

Cr)
I pin object to catalog ‘
OK Cancel

Remove
S o pad et cement

Figure 5.2: The walkthrough of the second scenario - adding nodes

objects in the object catalog, no objects are displayed in this area. The main panel shows
already one root node, which is created by default on the program start. The imported
accounting data stores the time of the purchase, the price of the bought items and the
quantity of the purchased items. The first thing the user wants to do is to generate the
total price from each line of the accounting data. To make this possible, the user has to
create a new column, which consists of 2 different columns "grossPrice" and "quantity".
Figure 5.1 (2) shows the context menu the user gets, shown by clicking with the right
mouse button on any of the data columns of the data table (shown in Figure 5.1 (1) -
bottom). By clicking on "Merge 2 columns', the form from Figure 5.1 (3) appears. The
new column, which the user wants to create should be a product of the gross price and
the quantity. He or she gives a name for the new column (in this case "totalPrice"). The
first column, that has to be multiplied is "grossPrice" and the second column, that the
user selects from the drop down menu, is named "quantity"'. The operator multiplication
"*" describes the operation, which the user wants to execute on the data to create the
new column. By clicking on the "OK" button a new column appears (Figure 5.1 (4)) in
the data table, showing the total price as a product of the gross price and quantity.

The next step, that the user has to perform is to create the 2 temporal objects and for
each temporal object one temporal element (instant). The reason why he or she has
to create 2 objects is, because the business owner Olivia wants to know on which days
(1) and in which months (2) of the year the most turnover is made. To do that, the
user creates a new TemporalObject by clicking on the root node with the right mouse
button and choosing the "Add new temporal object" option (Figure 5.2 (1)). As a result

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.3. The Walkthrough

@ Import Assistant - o X

Data elements:
(D) | wtarrice <node id="t8024">
- <data key="_inf">1548201600000</data>
sandbox <data key="_sup">1548287999999</data>

<data key="_granularityID">4</data>

Object Catalog

@ <data ke _granularityContextID">1984</data>
e <data key="_kind">2</data>
to_daily_turnover | y_ SRR

<node id="t8025">

<data key="_inf">1546300800000</data>

<data key="_sup">1548979199999</data>

<data key="_granularityID">6</data>

<data key="_granularityContextID">1984</data>
<data key="_kind">2</data>

</node>

<node id="ol">

<data key="totalPrice">125.98</data>

@ 1@ nvorcenumber @ tmestamp @) store @) vendor @) item @ grossrce @) tax @) curroncy @ avanty @ totaprice. | </1OdE>

1867... 156298771 2019.01241.. VIE18 ASF P552T... 62.99 20 125,98 <node id="o2">
<data key="totalPrice">125.98</data>

</node>

instant_daily instant_monthly

Done

1567... 156208772 201901-241.. VIE18 ASF ABI2TIS 41.99 20 125.97

1567... 156298773 20190124 1.. VIE18 ASF D721.. 4999 20 149.97
1567... 156208774 201901-241.. VIE18 ASF T257IXF 7199 20

1567... 156298775 20190124 1.. VIE18 ASF Y105N... 50.99 20 101.98

mmmmmm

3
3
3 21597
2
3

1567... 156298776 201901-250.. VIE18 ASF Q542L.. 97.99 20 293.97

Figure 5.3: The walkthrough of the second scenario - the result

of this action, a new TemporalObject node is created on the main panel. Using the
drag-and-drop function, the user is able to move the node on the panel. By clicking into
the label below the node, the user is able to change the object’s name. Applying the
same "add object" action on the new TemporalObject, the user is able to create a new
TemporalElement - Instant, as a child object of the TemporalObject node. To link the
data to the instant, the user clicks with the right mouse button on the instant node and
chooses "Add data column" option (Figure 5.2 (2)). The form shown in Figure 5.2 (3)
appears. The user chooses the "timestamp' column from the drop down menu and the
data example "2019-01-24 12:15:00" is shown to the user. For the first instant, the user
chooses the granularity "Day", not adding a filter to the data. Since Olivia wants to find
the months too, in which the highest turnover is made, she creates a new TemporalObject
and TemporalElement (instant) as a child. This has to be done in the same way as
described above. The only difference this time, is that the user has to choose "Month" as
the granularity in the "Add data column" form (Figure 5.2(3)). The last thing, that has
to be done, is the link between the created objects and the total price data. Figure 5.2
(4) shows the context menu option "Add data element", which can be used to link the
non-temporal data to the temporal objects. After choosing the "Add temporal element"
option in the context menu of the root TemporalObject, the form, shown in Figure 5.2
(5), appears. Olivia chooses the "totalPrice" column from the drop down menu and the
data type "Numeric" to be added correctly to the TemporalDataset.

Figure 5.3 (left) shows the result of the import configuration. It results in one root object,
2 TemporalObjects and 2 TemporalElements (instants). The instants are linked to the

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

5.

EvVALUATION

52

same column from the CSV file (timestamp) but with different granularities ("Day" and
"Month"). The root node links the objects to the data column "totalPrice", which has
been calculated from the columns "grossPrice" and "quantity"'. Figure 5.3 (right) shows
a part of the GraphML file, which gets created after the user clicks the "Done" button
on the main screen of the interface. It shows some of the data points in the UTC time
format and the non-temporal data, that is linked to the created objects.

There are multiple ways to create the needed TemporalDataset. Another way would be
to use the ObjectCatalog to create the configuration more efficiently. In this case, the
user would create the first TemporalObject and the child TemporalElement. After the
creation, he or she would pin the object to the object catalog and use it multiple times
for the configuration, changing only the granularity for the TemporalElement data.

The created walkthrough shows that the requirements, given by the user scenarios, have
been fulfilled and the software can be used successfully for the intended purposes.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Discussion

As a basis for this work, the question was asked: How can a visual interface, which
includes the design aspects named by Aigner, Miksch, Schumann & Tominski [Aigner
et al., 2011], assist the users to import time-oriented data tables? This chapter provides
the answer to the asked question and refers to the requirements placed on the interactive
visual interface. In the second step, the solution will be critically reflected.

In chapter 1.2 the requirements for the interface were made. The interactive visual
interface should be:

e a validated design artefact that provides an interactive visual interface for import
time-oriented data from tables,

considering the design aspects from Aigner, Miksch, Schumann & Tominski [Aigner
et al., 2011] &

e usable (avoiding usability problems set by Nielsen [1994a]).

To improve user acceptance, usability inspections were performed. These usability
inspections were conducted in several iterations and revealed how the usability increased
and if the software can be used in the current state. Although some suggestions for
improvement have been suggested by the experts, it has been shown that the software
assists the user to do his or her task, which is, to perform the import of time-oriented
data from tables (CSV). Special attention was paid to the data-wrangling functionalities,
which are based on Wrangler [Kandel et al., 2011]. The experts found these functionalities
particularly useful and necessary to implement user scenarios simply and correctly.

Using the visual interface, the user is able to import time-oriented data, supporting various
aspects of time-oriented data. The user is able to import data having multiple scopes,
arrangements, time primitives and indeterminacies, which were set by user scenarios. For

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

6.

DiscussioN

54

example, the user is able to import time-oriented data, which consists of time points or
intervals. Also, e.g. cyclic and linear data import is possible.

All participants of the usability inspections have managed to implement the required
import from the user scenarios. As a result of the import, a TemporalDataset was created,
which can be used as a basis for further visualizations in TimeBench. This shows that
the software can already be used productively, at least if the, already mentioned, aspects
of the time-oriented data have to be considered.

Regarding the main question of the work "How can a visual interface, which
includes the design aspects named by Aigner, Miksch, Schumann & Tominski
[Aigner et al., 2011], assist the users to import time-oriented data tables?",
the software demonstrates a way how such implementation can assist the user to import
time-oriented data. TimeBench provides a convenient data structure for storage and
link of time-oriented and non time-oriented data, which was the point of reference for
the design of the visual interface. The graph representation shows a possibility how the
construction of the temporal dataset can be done. At the same time, the representation
of the graph is directly linked to the given data structure of the TemporalDataset. This
fact simplifies the abstraction level for the user, between the created graph, which is
visible for the user, and the actual TemporalDataset data structure in the software. Such
a software, that works with raw data must have a functionality to adjust and reshape
the data. This can have several reasons. One of the reasons is that the data can only be
processed in a certain "shape', as it was in this case. Wrangler shows a way how this
can be managed and served as basis for the data-wrangling functionalities in the created
visual interface. The user has the possibility to change columns from the tables, to merge
them and to create new ones. Similar to Keshif (Chapter 2.2.2), the interface is able to
automatically detect data types and can combine different features, which is convenient
for the user.

Finally, it can be said, that all the requirements of Chapter 1.2 have been met. As
well, the original question of the thesis has also been answered successfully, showing a
prototype, how such a visual interface can assist the user importing the time-oriented
data tables.

6.1 Critical Reflection

This chapter critically reviews some aspects that relate to work, on the one hand, and
implementation, on the other hand.

The first thing that can be critically reflected is the programming language, in which the
TimeBench was developed. The Java programming language is loosing popularity due to
programming languages designed for developing web applications [Rind, 2017].

Another issue that should be reflected, is the fact that the software was designed to
be used exclusively by experts. The reason for this design lies in the requirements
made at the beginning of the work. It should be investigated whether the interface can

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

6.1. Critical Reflection

be designed in a way, that it can also be operated by novices, which are not familiar
with the structure of the time-oriented data. To archieve that, the meaning of the
TemporalElement, TemporalObjects and TemporalDatasets should be communicated in
a language understandable to the user.

To configure a correct import, the interface requires that the time-oriented data be
formatted as "yyyy-dd-MM HH:mm:ss". Unfortunately, this is not always possible under
certain conditions. For example, if the raw data is in the following format: "ss:mm:HH
MM-dd-yyyy". A remedy would be the split function. With the help of this function,
the user would be able to separate the individual time fragments (ss, mm, HH, etc.)
from each other and then reassemble them in the appropriate format. However, that is
relatively time consuming too. To make this significant easier, a function would have to
be created which, in the best case, automatically extracts the time from the raw data
and parses it into the appropriate format.

An important point, that have to be reflected, is the missing function for saving sessions.
Currently, the user has no possibility to save his or her import configuration and to
continue with the configuration at a later time. The absence of this feature significantly
limits the usability of the interface. A solution suggestion would be to create an additional
save button in the interface, which is responsible for saving the session. The function
behind the button would have to deposit several things for a later call. First, the user
should be called to set a location on the hard disk for the storage data. Once the location
has been set, the file must store the CSV file, currently being imported, at the given
location. Then the following data has to be stored in a file:

e the path to the CSV file,

e all nodes and edges between the nodes from the main panel with all properties and
the position on the panel and

e all nodes and edges between the nodes from the object catalog with all properties
and the position in the catalog.

To simplify the later import, the modified CSV file (with new/edited columns) should
be saved. Also the modification steps, which can later be used for undo/redo functions,
should be saved in the CSV file. The save file could be written to XML and have following
shape:

e the first row: the path to the CSV file

e nested object collections: the collection would include the location of the object on
the screen as property (0 - main panel object, 1 - first object in the object catalog,
2 - second object in the object catalog, etc.) and as another property the nested
object with all node properties:

— node position,

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

6. DiIscussiON
— node name,
— node type: Root, TemporalObject, TemporalElementInstant, TemporalEle-
mentSpan, TemporalElementInterval,
— data element object: with following properties: "column name", "data type"
(boolean, numeric, text, date), "filter operator" (<, <=, =, <>, >, >=), "filter
operand"
— data column object: with following properties: "column name", "granularity"
(millisecond, second, minute, hour, day, week month, quarter, year, decade),
"filter operand" (<, <=, =, <>, >, >=), and "filter date".
The discussed feature of saving sessions can be seen as a part of the future work, additional
to the Chapter 7.
56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion

The visualization of the time-oriented data is usually quite complex. There are many
aspects of time-oriented data, that play a major role in visualization. For example, time-
oriented data can occur in different scales (ordinal, discrete, continuous), scopes (point-
based, interval-based), or arrangements (linear, cyclic)[Aigner et al., 2011]. A library,
that visualizes time-oriented data and supports time-oriented aspects, like different time
primitives, granularities, calenders and (in)determinacy, is called TimeBench. However,
the software TimeBench has a specific structure, that processes time-oriented data and
also has no import function for raw data that comes from a data table. In other words, an
import framework is missing, which prepares the raw data and forms it, that TimeBench
can further process and visualize. This resulted in the following research question,
which was worked on in this thesis: How can a visual interface, which includes
the design aspects named by Aigner, Miksch, Schumann & Tominski [Aigner
et al., 2011], assist the users to import time-oriented data tables?

To answer this question, a prototype of a visual assistance, for importing time-oriented
data tables, was designed and developed. In order to get a clear idea of the functionalities
that the software should have, user scenarios were created in the first step. After
the 3 user scenarios were created and the exact scope of the software was known,
mockups were created as part of the design process. The reason for the creation of the
mockups was to show how the users interact with the software, to handle tasks set in
the user scenarios. After the user scenarios were created, there was a clear idea of what
functionalities the software should encompass, how the user interacts with the software
and its approximate appearance. To implement the interactive visual interface, Java
8 was used. To avoid dependencies on various libraries, the entire user interface was
created using JavaFX standard objects. In order to configure the import, the user must
compose TemporalObjects and TemporalElements using a graph representation. He or
she connects temporal data with non-temporal, by using TemporalObjects, which can be
generated in a parent-child relationship. After the software was implemented, the last

o7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

7. CONCLUSION

58

step was the evaluation. This was carried out in several steps, testing of the software
during the implementation and performance of usability inspections, done by experts in
2 iterations. The usability inspections relied on a list of heuristics, created by Nielsen
[1994a], which describes usability problems. The inspections were done by 3 experts in
separate sessions, lasting between 45 and 60 minutes. After the first two sessions, the
software has been improved, based on the results from the already performed usability
inspections. In order to control the progress and possible new problems, another session
was performed.

The prototyped visual interface and its usability are assisting users, with
expertise in time-oriented data, to import time-oriented data tables. The
implemented solution has been created to assist the user, to configure an import of raw
data into visualization frameworks, like TimeBench. On the one hand, it uses data
wrangling methods to form the raw data into a shape that the visualization framework
TimeBench can handle, otherwise to enrich the raw data with the users knowledge. The
usability has been checked using the heuristics created by Nielsen [1994a]. Through
usability inspections, the usability could be brought to an even higher level, taking
Nielsen’s heuristics into account. The result of the interactive visual interface is a
TemporalDataset object, that can be accessed directly in the software library and can be
used by other visualizations frameworks.

The prototyped visual interface provides features based on the design aspects
named by Aigner, Miksch, Schumann & Tominski [Aigner et al., 2011]. The
created interactive visual interface supports multiple design aspects of time-oriented data.
The prototype supports different scopes (point-based, where the information between
two points in time is not given and interval-based, where a time value stands for a
specified interval), arrangements (linear - each time value has an unique predecessor
and successor and cyclic - recurring time values appear), granularities (mapping from
time units to smaller or larger ones), time primitives (instant, intervals and spans)
and determinacy (depending on the knowledge of all temporal aspects).

Future work

During the execution of the work, some topics are noticed that can be followed up in the
future. In the category design, following improvements could be accomplished:

e the object catalog should be renewed. In the current solution, simple screenshots of
the panel have been used as previews for the objects. A solution should be created
on how the objects in the catalog are best represented so that they are clear and
easy to understand and use,

e the main panel, used for the drawing of graphs is static currently. There is no
possibility to draw large graphs, since there is no function to move the panel or to
resize the panel and/or the panel objects. These functionalities could significantly
improve the design and the usability and

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

e the added data columns and data elements to the object can not be edited. The
only way, the user can change the added elements, is to delete the element and add
it again with new settings. This can be improved by creating additional windows
for editing objects. Also, even if the user can see that the data columns have been
linked to the objects, he or she is not able to see to which objects exactly. The
mapping should be shown in some way.

There are also a few improvements in the category data wrangling:

e in the current solution, it is possible to create 2 data columns with the same column
name. This should be fixed in the future work and

e it is not possible to directly take the year column (e.g. 1982) as an instant of
granularity year. The only way is to add a suffix "-01-01 00:00:00" to the values
to create a valid datetime type in format "yyyy-MM-dd HH:mm:ss", since the
prototype only accepts this format. In a future work, it could be investigated how
different formats may be automatically recognized and used for import.

Some of the improvements could also improve the usability of the prototype:

e when the data columns are linked to an TemporalElement, they turn green in the
data table representation. The data columns, which have been adjusted, or used
for merge, should also be marked in a appropriate way,

e substring, split, trim and expression language from prefuse [Heer et al., 2005] could
be used to enrich the scope of functionalities when adjusting and merging the data
columns,

e in a future version, there should be a functionality to save the session and continue
to a later time, allowing redo/undo functions to reverse made mistakes and provide
data provenance. It should be researched, how the user is able to keep an overview
about the done configuration (the done data wrangling, linking the data columns
to the TemporalElements, linking TemporalElements to TemporalObjects, etc.).

In future works, it can be investigated, how a software for importing raw data could be
implemented, so that it can not only be operated by experts, but also by novices, which
are not familiar with the structure of the time-oriented data.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Appendix

60

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg V_QF_H.O__B__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

Appendix A

This appendix shows the sheet, that has been used for the usability inspection in order
to present the functionalities of the prototype to the expert.

Visual Assistance for Importing Time-oriented Data Tables

eF |

ovent | intorval unknown | determinate | @mension | inervaistarthonth | nervalEndont
2 0 » o B

e unke. Iarval_sart otarval_snd

7T 197 1989301000, 1969301000
x 1965.901000... 1908901009,
= 2 o . 1000 1990501000.. 1950601009,
45 1990401000 1990401000,

" = o ' 1001 1908 o 191801000, 1991801000,
0 1999301000, 1989201000,

2 I 5 . . s 150

£) s 1569 1901

Features:

« Graph representation for easy import of time-oriented data from tables into
visualization frameworks
* Support of time-oriented data aspects:
o Scopes: point-based (instant) and interval-based (interval)
o Granularities: hours, days, weeks, years, etc.
o Time primitives: instants, spans, intervals
o Relations between time primitives: links between intervals or other time
primitives
Separation of data and time elements
Automatic datatype detection
Filtering of time elements by minimum and maximum values
Filtering of non-time elements by text or numerical values
Object library for reuse of objects
Adjustment of raw data in columns by using context menus:
o Increasing/decreasing numerical values
o Creation of prefixes and suffixes
o Creation of new datetime column with different starts and granularities
e Merging of multiple columns by using context menus allowing computational
operations
e Colour marking of already allocated columns
« The prototype can be imported as library into visualization frameworks and the
objects can be accessed via functions
o Export of GraphML XML file

Figure A.1: Prototype functionalities

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Appendix B

This appendix shows the usability inspections results.

Index Issue Category

Severity Rating

Estimated Effor Comment Status

"Adjust column” context menu

L2 1 should be called in the data table °S2°1 lew o Bons
The contrast of the icons should .) .
1 2 be adjusted Design high middle Done
Wrong edges set in intervals (only : -
1 3 to interval end) in GraphML Result high middle Done
"Derive" instead of "adjust” which : : .
1 4 is overwritting the original data Data wrangling high middle Done
Data
Changing of data columns & data Mwmhmmim
1,2,3 5 elements should be possible, not Usability middle high S olotad Discussed in Thesis
only deletion of all
separatly
now
1 6 Disabling of “Done™ button; when, |, . .;;;. middle middle Done
result not possible
Required
fields
. added,
1 7 (SR CEEMINENES AN ey middle middle closing of Done
fields in dialogues .
dialogues
not
possible
Resizing of
1 8 Table preview small Design middle low data table Done
possible
1 9 Typo in dataset 3 : audienece -> Design low low Done
sort 3rd option after Isa
ascending/descending should be - : standard S
1 10 dataset order -does not work as Usabilty low high JavaFX MigonEss
expected feature
[5\]
NeJ
Moylolqig usipy N1 1e Hc_._Q ul @|gejlene si sisayl Siyl JO UOISIDA _mc_@to _um>o‘_QQm 9yl any a3pajmous InoA

“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg AV_QF_H.O__Q__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

63

Index Issue Cateqory Severity Rating Estimated Effor Comment Status
Isa
1 1 cells _wn aligned even though Usability low high standard P
numeric JavaFX
feature

1 12 Datartable contextmenuimpt Usability middle middle Done
called if no cell is selected

Calling of data table context

1 ilS Usability high low Done
menu on wrong source cell
Is only
information
1 o Ormsm_.sm of column data types Usability - st for the Bone
confusing user, the
feature is
deleted
The
Display of the currently selected selected
1 15 value as an example in the data Data wrangling middle middle column will Done
wrangling windows be shown
to the user
Is now a
adjust dialog the example column . text field
1 16 value breaks the layout if too long Besidn L B and no Done
label

"merge two columns”

1 47 consistency: different texts in Design low low Done
popup menu and dialog window
"merge two columns™ the "&" for

1 18 text coneatenation mixed Design middle middle Done
between numeric operations,
but quite different from them
"merge two columns” the text

1 19 field for delimiter should only be Data wrangling high low Done

enabled for concatenation

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg v_w_-_u.o__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Index Issue Cateqory Severity Rating Estimated Effor Comment Status
"merge two columns” - it is
possible to merge columns with
an empty operation -->
IndexOutOfBoundsException:
"merge two columns™ it is
1 21 possible to merge columns into a Data wrangling middle low Done

column with empty name

itis possible to merge columns
1 22 into a column with same name as Data wrangling middle middle Discussed in Thesis
existing column
diagrams in the catalog are very

Data wrangling high low Done

1 23 small (hard to read) Design middle high Discussed in Thesis

1 24 no scrollbars in the diagram area Design middle high Discussed in Thesis
it is possible to drag a diagram

1 25 node outside the visible area and Usability middle middle Discussed in Thesis
never get back

1 26 after the adjust dialog the column Usability s T Dore

selection jumps to the first
it is not possible to directly take
the year column (e.g., 1982) as an
1 27 instant of granularity year (AFAIK Data wrangling middle high Discussed in Thesis
only possible by adding string
suffix "-1-1 1:0:0") - A format for
If the input has a string with
1 28 different format what can | do Usability middle high Discussed in Thesis
now? Support dd.MM.yyyy and

the spinner control to increase f£a
p standard

1 29 and decrease values should also Usability low high Minor issue

: JavaFX
allow keyboard input et

64

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any 23pajmou Jnox
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg v_w_._u.o__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

65

Issue Category Severity Rating Estimated Effor Comment Status
"every row is 1 ... starting with ..."

1 30 15 mseful feature-but it'dees ot Design middle middle separate Done

Isa

need to be based on a row. Maybe
move out into a separate dialog?
checkboxes in adjust dialog make
il 31 it possible to increase and Usability low low Minor issue
execute "every row is" at the
should there be a background
1 32 color for columns that are used Usability low middle Discussed in Thesis
for a merge (or a derive)
"every row is 1 ... starting with ..."
can be executed without filling
1 33 the dropdown and date chooser. Usability low middle Minor issue
Apparently with milliseconds and
the current datetime. | would
substring, split, trim functions
1 34 could be useful for the adjust Usability middle high Discussed in Thesis
dialog; maybe even the
add toolbars to make action
1 35 affordances more visible in Design middle high Discussed in Thesis
addition to popup menus: a
vertical toolbar to the table view?
"Add object to catalog” vs. "Add
>" should use different wording
for different actions for example
"pin object to catalog”
"Add data colum” for Instant is
misleading because it suggest
1 37 you can add more than 1. Trying Design middle middle Done
to add a second is possible in the
popup menu but leads to an error

dialog now

Design low low Done

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any 23pajmou Jnox
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg v_w_._u.o__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

1,3

38

39

40

41

42

Category

"Add data colum” is the most
relevant action for instant -> |
would allow a double click on the
instant to choose the data column
it is not possible to review the
mapping of a data column to an
Instant: you cannot find out if you
have e.g., chosen the correct
granularity; change is only
possible by removing and then

Usability low

Design middle

instants have a name "New
Instant"” which can be changed
but is not used for the output. The
visual element might be used
more valuable to show the name
of the data column.

Result middle

data provenance is missing; in

the end it not clear what was

done to the data (e.g.,

incremented values, how merged, Usability high
suffixed) you need to be careful

and take notes manually. neither

does it support to save a

Implementation of required fields -

especially for the creation of new Usability high
columns e.g. column names

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

Severity Rating

Estimated Effor Comment Status

middle Minor issue

high Discussed in Thesis

Unfortunat
ely not
possible
because of
the data
structure
high requireme On hold
nts, the
data
column
hames
must be
unique

high Discussed in Thesis

middle Done

66

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

67

Cateqory Severity Rating Estimated Effor Comment Status

Add context menu not only to the

i 43 Hearien-Eilal oo it tabic Usability middle low Done

1 44 Herve Columnzade preleand’ e middle low Done
suffix at once does not work

1 45 ,»Add new datetime column*: Design low low Done

wrong window name

’ 46 Button "Done" not n.mmn:<mﬁmn at Design ——— o Done
program start, even if export not
»Remove specific data elements®,

“remove all etc. should all be

1 a7 deactivated if the function can not Design midde low Done
be executed (no elements to
Could not
5 48 After moqm_zo the columns, data Result be on hold
wranglering was not correct reproduce
d
2 49 Save sessions Usability high high Discussed in Thesis
"Add library object" confusing -> . :
2 50 better: "Add catalog object" Design middle low Done
Position of the sorting arrow .
- o1 covers up the icons in the data Residn b e Dane
2,3 52 Redo/Undo functions Design high high Discussed in Thesis
The user should always be
2 53 warned when deleting objects Usability low low Done
(not only when deleting multiple
2 54 EHRE S.q SRR Design low middle Minor issue
names not obvious
283 59 No documentations created. Usability high high Discussed in Thesis
3 56 SRS SRR A RO middle middle Discussed in Thesis

linked to TemporalElement
"merge 2 columns" - merging is

3 57 only "&" operator. All other Design low middle Minor issue
operators are not "merging" the

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg v_w_._u.o__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Test Index Issue Cateqgory Severity Rating Estimated Effor Comment Status
3 58 Filter "<>" missing in "Add data Design low low Done

Graph representation possibly

¢ e not the best solution for ALL

Design low high On hold

68

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay < any a8pajmoun Jnoa
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg V_GF_H.O__G__M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1

3.2
3.3
3.4

3.5
3.6

3.7

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

Al

List of Figures

Design aspects of time-oriented dataAigner et al., 2011]

Gathering descriptors from tabular data[Schulz et al., 2017]
Visual Aggregate Encodings for Common Data Types [Yalcun et al., 2018|
The workflow of the import system [Ying et al., 2010
The Tableau user interface [Tableau, 2019]
The iVisDesigner user interface [Ren et al., 2014]
The Lyra user interface [Satyanarayan and Heer, 2014]
The Wrangler interface [Kandel et al., 2011]
Data import problem (left) and schematic workflow

of the conversion program (right) [Ford et al., 1995]

EasyBiograph interface [Ilse Arlt Institut fiir Soziale Inklusionsforschung,

2019] . .

Mockup:
Mockup:
Mockup:

(right) .

Mockup:
Mockup:
(right) .
Mockup:

MAain SCTEETL v v vt e
data table context menu (left) and data type change window (right)
temporal object context menu (left) change object name window
interval (left) and Datacolumn specification window (right) . . .

Data element specification (left) and data element representation

Class diagram
The main screen of the prototype
Add data column (left) and add data element (right)
Add new datetime column (left) and merge columns (right)
Derive column windowo

The walkthrough of the second scenario - new column
The walkthrough of the second scenario - adding nodes
The walkthrough of the second scenario - the result

Prototype functionalities L

11
12
14
15
16
16
17

19

26
31
31

32
33

34
35

38
41
42
43
44

49
50
51

61

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w Sibliothek,
Your knowledge hub

2.1
2.2

3.1

3.2
3.3

70

List of Tables

Approximate number of results for search engines (in thousand) 9
Cross-sectional analysis of shown approaches

and supported time-oriented aspects L. 22
EasyBiograph export file [Ilse Arlt Institut fiir Soziale Inklusionsforschung,

2019 . . 25
Sandbox export file exampleo oL 27
HemingwayFM export file example 28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

List of Listings

39

4.1 Retrieving of TemporalDataset in Main.java

39

4.2 Get all children from MyNode in MainController.java

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

71

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

Aigner, W., Miksch, S., Miiller, W., Schumann, H., and Tominski, C. (2007). Visualizing
time-oriented data - a systematic view. Computers and Graphics, 31(3):401 — 409.

Aigner, W., Miksch, S., Schumann, H., and Tominski, C. (2011). Visualization of
Time-Oriented Data. Springer, 1st edition.

Bostock, M., Ogievetsky, V., and Heer, J. (2011). D3: Data-driven documents. IEEFE
Trans. Visualization & Comp. Graphics (Proc. InfoVis), 17(12):2301-23009.

Cooper, A., Reimann, R., and Cronin, D. (2007). About face 3: the essentials of
interaction design. John Wiley & Sons.

Evans, D. and Taylor, J. (2005). The role of user scenarios as the central piece of
the development jigsaw puzzle. In Attewell, J. and Savill-Smith, C., editors, Mobile
Learning Anytime Fverywhere: a Book of Papers from MLEARN 2004, pages 63—66.
Learning and Skills Development Agency, London.

Ford, R., Thompson, R., and Thompson, D. (1995). Supporting heterogeneous data
import for data visualization. In Proceedings of the 1995 ACM Symposium on Applied
Computing, SAC 95, pages 81-85, New York, NY, USA. ACM.

Heer, J., Card, S. K., and Landay, J. A. (2005). Prefuse: A toolkit for interactive
information visualization. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’05, pages 421-430, New York, NY, USA. ACM.

Ilse Arlt Institut fiir Soziale Inklusionsforschung (2019). easybiograph. http://www.
easybiograph.com/index.php. Accessed: 2019-02-17.

Kandel, S., Paepcke, A., Hellerstein, J., and Heer, J. (2011). Wrangler: Interactive visual
specification of data transformation scripts. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’11, pages 3363-3372, New York, NY,
USA. ACM.

Nielsen, J. (1994a). Enhancing the explanatory power of usability heuristics. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, CHI '94, pages
152-158, New York, NY, USA. ACM.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Nielsen, J. (1994b). Usability inspection methods. In Conference Companion on Human
Factors in Computing Systems, CHI ’94, pages 413-414, New York, NY, USA. ACM.

Pantazos, K., Kuhail, M., Lauesen, S., and Xu, S. (2013). uvis studio: An integrated
development environment for visualization. In Wong, P., Kao, D., Hao, M., and Chen,
C., editors, Visualization and Data Analysis 2013, pages 15-30, United States. SPIE -
International Society for Optical Engineering.

Ren, D., Hollerer, T., and Yuan, X. (2014). ivisdesigner: Expressive interactive design
of information visualizations. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2092-2101.

Rind, A. (2017). A software framework for visual analytics of time-oriented data. Master’s
thesis, Technische Universitat Wien, urn:nbn:at:at-ubtuw:1-106735.

Rind, A., Lammarsch, T., Aigner, W., Alsallakh, B., and Miksch, S. (2013). TimeBench:
A data model and software library for visual analytics of time-oriented data. IFEE
Transactions on Visualization and Computer Graphics, 19(12):2247-2256.

Rivero, J. M., Rossi, G., Grigera, J., Burella, J., Luna, E. R., and Gordillo, S. (2010).
From mockups to user interface models: An extensible model driven approach. In
Daniel, F. and Facca, F. M., editors, Current Trends in Web Engineering, pages 13—24,
Berlin, Heidelberg. Springer.

Rivero, J. M., Rossi, G., Grigera, J., Robles Luna, E., and Navarro, A. (2011). From
interface mockups to web application models. In Bouguettaya, A., Hauswirth, M., and
Liu, L., editors, Web Information System Engineering — WISE 2011, pages 257-264,
Berlin, Heidelberg. Springer.

Satyanarayan, A. and Heer, J. (2014). Lyra: An interactive visualization design environ-
ment. Computer Graphics Forum, 33(3):351-360.

Schulz, H.-J., Nocke, T., Heitzler, M., and Schumann, H. (2017). A systematic view on
data descriptors for the visual analysis of tabular data. Information Visualization,
16:232-256.

Stolte, C., Tang, D., and Hanrahan, P. (2008). Polaris: A system for query, analysis, and
visualization of multidimensional databases. Commun. ACM, 51(11):75-84.

Tableau (2019). Selfservice-Analysen in der Cloud mit Tableau Online. https://www.
tableau.com/de-de/products/cloud-bi. Accessed: 2019-01-17.

Weaver, C. (2004). Building highly-coordinated visualizations in improvise. In IEEE
Symposium on Information Visualization, pages 159-166.

Yalcun, M. A., Elmqvist, N., and Bederson, B. B. (2018). Keshif: Rapid and expressive
tabular data exploration for novices. IEEE Transactions on Visualization and Computer
Graphics, 24(8):2339-2352.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Ying, L., Yu-Feng, H., Li-Zhou, F., and Yang, W. (2010). Design and implementation of
excel massive data intelligent import system. In 2010 3rd International Conference on
Computer Science and Information Technology, volume 2, pages 328-330.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Introduction
	Problem Description
	Expected Results
	Methodological Approach
	Structure of Work

	Related Work
	Literature Research Method
	Results of the Litearature Research
	Related Work Discussion

	Design of Interactive Visual Interface
	The Scope
	User Scenarios
	Prototype Requirements Given by User Scenarios
	Mockups

	Implementation
	Revision of the Design

	Evaluation
	Usability Inspections
	Usability Inspection Results
	The Walkthrough

	Discussion
	Critical Reflection

	Conclusion
	List of Figures
	List of Tables
	Bibliography

