
D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.

Fault Masking in Synchronous
and in Asynchronous Logic – A

Comparison

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Wolfgang Ramsl

Matrikelnummer 0526694

an der

Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Steininger

Mitwirkung: Dr. Vorname Familienname

Wien, TT.MM.JJJJ

(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien

A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Erklärung zur Verfassung der Arbeit

Wolfgang Ramsl

Siedingerstrasse 19, 2631 Sieding

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Acknowledgements

I would first like to thank my thesis advisor Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas

Steininger. He consistently allowed this thesis to be my own work, but steered me in the right the

direction whenever he thought I needed it. Finally, I must express my very profound gratitude

to my parents and to my wife Sandra, for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process of researching and writing

this thesis. This accomplishment would not have been possible without them. Thank you.

iii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Abstract

The topic of this diploma thesis is the investigation of fault masking effects in synchronous

and asynchronous logic. A fault is said to be masked if it affects a circuit but never creates an

erroneous state and hence stays ineffective. In synchronous logic it is known that faults can be

masked on three different levels: (1) Electrical masking: A fault is injected on the electrical

level, but it doesn’t affect the logical level. The current pulse induced is not large enough to

change the boolean value. (2) Logical masking: The fault changes a boolean value but the

logical function which is performed on this signal does not take it into account. For example if

you look at an AND-Gate (2 inputs), a „false“ logic 1 only propagates if the other input is also

1. This we call implicit logical masking. Explicit logical masking is related to majority voting

with replicated functions. (3) Temporal (latching-window) masking: This level deals with the

temporal behavior, the fault disturbs a signal but it isn’t captured. For example a transient fault

between two clock edges in a synchronous circuit has no effect on the storage element as long

as its effect has vanished by the next clock event.

While (1) and (2) work similarly in synchronous and asynchronous logic, temporal masking

(3) will be different. Instead of the rigid clock in synchronous logic there is a flexible timing

driven by completion detection. The consideration of skew effects will be one focus of this

thesis, whose general aim is to investigate the masking effects in both theory and practice.

The result of the diploma thesis is expected to be a model which explains the behavior of

masking effects on the three different levels. With the help of this model the appearance of

faults and the bevaviour of masking effects in synchronous and asynchronous logic should be

better understood. We will get a (also quantitative) comparison between masking effects in syn-

chronous and asynchronous logic because those effects are already investigated in synchronous

logic.

v

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Kurzfassung

Der Inhalt dieser Diplomarbeit ist die Untersuchung der Fehlermaskierung in synchroner und

asynchroner Logik. Ein Fehler wird als maskiert angesehen wenn er sich auf die Schaltung aus-

wirkt and niemals einen fehlerhaften Zustand bewirkt, also inaktiv bleibt. In synchroner logik

unterscheidet man folgende 3 Arten der Maskierung von transienten Fehlern: (1) Electrical mas-

king: Ein Fehler wird auf elektronischer Ebene injiziert, aber er wirkt sich nicht auf der logischen

Ebene aus. Der induzierte elektrische Impuls ist nicht stark genug um einen Wert im Speicher

zu verändern. (2) Logical masking: Der Fehler ändert einen boolschen Wert aber die logische

Funktion welche damit ausgeführt wird, ignoriert diesen. Als Beispiel könnte man hier ein Und-

Gatter (2 Eingänge) anführen, eine fehlerhafte „1“ an einem Eingang wirkt sich nur dann aus,

wenn am anderen Eingang auch eine „1“ anliegt. Dieses Verhalten nennt man „logische Mas-

kierung“. (3) Temporal (latching-window) masking: Diese Art der Maskierung wird beeinflusst

durch das zeitliche Verhalten der Schaltung. Zum Beispiel ein transienter Fehler zwischen zwei

Takt-Flanken in synchroner Logik hat keinen Effekt auf das Speicherelement solange der tran-

siente Fehler wieder vor der nächsten Takt-Flanke verschwindet.

Es kann angenommen werden, dass sich (1) und (2) in synchroner und asynchroner Logik

gleich verhalten, temporal masking (3) aber anders ist. Statt eines strikten vorgegeben Clock-

signals gibt es hier ein flexibles Zeitverhalten welches durch Logik (completion detection) ge-

steuert wird. Die Betrachtung von „skew“ Effekten ist ein besonders wichtiger Punkt in dieser

Diplomarbeit. Ziel ist es, die Maskierungseffekte sowohl in Theorie als auch in Praxis beschrei-

ben zu können.

Es soll in dieser Diplomarbeit ein Modell erzeugt werden, welches die Maskierungseffekte

auf den drei unterschiedlichen Ebenen beschreibt. Mit Hilfe dieses Modells können dann das

Auftreten von Fehlern und das Verhalten von Maskierungseffekten in synchroner und asynchro-

ner Logik besser verstanden werden. Es wird einen (quantitativen) Vergleich zwischen Maskie-

rungseffekten in synchroner und asynchroner Logik geben, da diese Effekte in synchroner Logik

schon untersucht worden sind.

vii

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Contents

Contents ix

1 Introduction 1

1.1 Motivation . 1

1.2 Aims and Scope . 2

1.3 Structure of the Master’s Thesis . 3

2 Background 5

2.1 Asynchronous logic . 5

2.2 Classification and Operating modes . 6

2.3 Handshake Protocols . 7

2.4 Pipeline and Data flow control . 10

2.5 Fault Models and Masking effects . 11

3 Comparison of Models 17

3.1 Token and Transition Based Fault Description 17

3.2 State Graph . 21

3.3 Signal Transition Graph . 22

3.4 Trace Based Description . 23

3.5 Probability Model . 28

4 Fault Injection Setup 31

4.1 4-phase bundled data . 31

4.2 2-phase bundled data . 39

5 Simulation 45

5.1 Simulation of 4-phase bundled data pipeline 49

5.2 Simulation of 2-phase bundled data pipeline 55

6 Comparison 61

6.1 Synchronous Pipeline . 61

6.2 Masking Effect Results . 65

7 Summary 71

ix

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

7.1 Summary . 71

Bibliography 73

A Code 77

x

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 1
Introduction

The first chapter is an introduction to the diploma thesis to give a motivation why the analysis

of robustness and masking effects of synchronous and asynchronous logic is important for the

design of logic circuits.

1.1 Motivation

There is a trend for integrated circuits always to get smaller, faster and higher integrated while

the costs are getting lower and lower. As the design becomes smaller, the supply voltage can

be reduced, which leads to higher power efficiency. All those positive effects are paid for by

an increased fault sensitivity, as the amount of charge which is necessary to change the logic

value in the circuit, is becoming smaller. Figure 1.1a shows the soft error rate (SER) versus

the technology, described as feature size. The y-axis in this graphic is log scaled, so the actual

increase is exponential across this range of feature sizes. As a result soft-errors, which are caused

by cosmic neutrons, are becoming a major source of errors in modern integrated circuits. It has

been shown that compared to memory cells, a smaller critical charge is necessary to change

the logic value in a logic cell and since particles with lower energy occur far more often than

particles with high energy, this is the reason for a higher soft-error rate, which is shown in figure

1.1b. This figure shows soft-error rate versus technology generation in nanometer.

The soft error rate for SRAM didn’t change significantly. The reason for this is the compen-

sation of smaller critical charge by a disproportionate reduction in cell area and an improvement

in technology. However, for logic elements and latches the soft error rate grows as predicted by

the critical charge reduction.

There are two main styles of hardware architectures- synchronous and asynchronous logic.

In contrast to asynchronous logic, in synchronous logic all events are driven by one or more

global or distributed timing signals called clocks. Asynchronous logic promises a number of

advantages as shown in table 1.1. The two aspects power efficiency and higher robustness were

already mentioned before and good modularity of different components means that it can be

1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) SER1 (b) SER2

Figure 1.1: SER [21]

easier to connect parts with different asynchronous clocks. Since the handshake mechanism that

asynchronous circuits are based on guarantees that the connection is functioning correctly, it

autonomously adapts to the slowest device. Transitions only take place when they are needed,

which reduces electromagnetic emission and susceptibility as well as dynamic power consump-

tion. On the other hand designing asynchronous circuits is also challenging, because hazards

and race conditions must be carefully considered. Also more space for completion detection and

handshake is used because it has to be recognized when new data is ready or can be computed

by the next stage in a pipeline. The investigation of asynchronous logic with its advantages is

becoming more important, to have a comparison to synchronous logic. There is a good reason

why synchronous logic is almost exclusively used in today’s companies: Tools for developing

asynchronous logic are in the minority compared to synchronous tools and often limited to uni-

versity usage. Although synchronous tools can be used for developing asynchronous logic, their

outcome is not as satisfactory, or often they can not produce the right solution. There is also

a lack of tools for testing and test vector generation. Asynchronous circuits are used less fre-

quently because their design is more time intensive and there is not so much knowledge about

them, so there has to be more investigation on this topic. While there was a lot of research done

on fault tolerance in synchronous systems, less attention has been paid to asynchronous circuits.

Well established error detection techniques can not be directly applied to to asynchronous de-

signs. Nevertheless asynchronous logic can constitute a promising alternative for fault-tolerant

systems because of high robustness and reliability.

1.2 Aims and Scope

There is still a lot of discussion whether asynchronous logic is better and there are not so many

research papers which investigate this topic in detail. A paper which gives a promising result

about the advantages was published by Babak Rahbaran and Andreas Steininger [6]. The ro-

bustness of two versions (synchronous and asynchronous) of the same processor was compared

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 1.1: advantages of asynchonous circuits

advantages reason

power efficiency smaller feature size

more robustness no clock, elastic timing

modularity handshake, elastic timing

average case performance inherent speed regulation

no clock skew no inherent clock signal distribution

reduced electromagnetic emission no regular switching operation

reliability no single point of failure

by fault injection. The result was that the asynchronous circuit showed a better performance in

the presence of faults.

The main objectives of this diploma thesis are to give a better understanding of asynchronous

logic, to show if there are also masking effects as they exist in synchronous logic, and to make a

comparison between the two main design styles. A model will be developed to easily recognize

the behavior of the circuits and see where and when faults are happening. Further literature can

be found in [7] (clock generation scheme), [2] (asynchronous design) and [13] (fault detection).

As a result there will be a (also quantitative) comparison between masking effects in syn-

chronous and asynchronous logic because those effects are already investigated in synchronous

logic. With the help of simulations, different numbers of failures will be injected into different

asynchronous logic circuits and consequently a hypothesis about the behavior in different fault

situations can be proven.

There will be an investigation of transient faults in two sorts of bundled data pipelines (4-

phase and 2-phase) without using hardening techniques for reducing errors. The assumption

for fault injection will be the single fault model. In the context of this diploma thesis a fault

simulator for bundled-data pipelines (4-phase and 2-phase) with three stages will be developed,

to show the result of fault injection and compare the simulation results to those computed by the

formula of the created fault model.

1.3 Structure of the Master’s Thesis

The diploma thesis is structured into six main chapters. The first two chapters discuss the mo-

tivation for this thesis and introduce the reader to the main methodologies of asynchronous and

synchronous logic. Important vocabulary, used pipeline circuit designs and already existing fault

models are explained to build a basis for the understanding of the following chapters.

Chapter 3 deals with the problem of how to get to a suitable model for analyzing faults in asyn-

chronous logic, especially in asynchronous pipelines and shows how to develop a suitable fault

model out of already existing ones.

After the fault model has been developed and discussed, the hypothesis derived from this model

has to be proven by simulation. Chapter 4 shows the setup and purpose of simulation and dis-

cusses the difficulties if fault injection is made in hardware as well.

Chapter 5 reports the results of the simulations and will compare these to the predictions of

3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the fault model. After we discussed the behaviour of fault injection in asynchronous logic we

also take a look into synchronous logic in chapter 6, to make a comparison to the results that

we found in the previous chapters. The last chapter of this thesis will give a conclusion and an

outlook on promising advantages, which can be further elaborated in future works.

In Appendix A, a short explanation of how to use the code for the fault injection simulation is

given. A CD with the source code of the fault injector is attached to this diploma thesis.

4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 2
Background

This chapter introduces the necessary background to understand the main terms of this diploma

thesis. First a short introduction to asynchronous logic and masking effects is provided. Then

the most common styles of modeling systems are shown and examples are given.

2.1 Asynchronous logic

To make the design of digital logic easier, we generally assume the existence of a global, discrete

time, defined by a clock signal. This timing model of a circuit solves many problems as it

is unimportant what happens between two consecutive clock edges since the values which the

operation is made on, are only used after they have settled to a stable and valid state. Propagation

delays, glitches or hazards do not affect the outcome of a logic function as long as they occur

between two consecutive clock ticks. This important property is expressed by the setup and

hold-timing of synchronous logic. The setup-time defines the time when a new value has to

be ready at the input of a component before the clock edge happens. Similarly the hold time

defines how long the value has to be valid after the edge. Synchronous logic follows a discrete

time scale, which is the major difference to asynchronous logic.

In asynchronous logic there is no clock and the operations in the circuit are made as soon as

the input values are stable and ready, so it is not so easy to make a timing analysis. Synchro-

nization is done by handshaking to perform a sequencing of operations. Handshaking is done by

sending request and acknowledge signals. As soon as the sender knows that the receiver is ready,

for new data – which is signaled by the acknowledge signal – and the new data is stable on the

data lines, the request signal is activated. This signals the receiver to perform its operation and

after finishing, it sends the acknowledge signal back to the sender. There are two main styles of

asynchronous logic, which differentiate if the sequencing of operation will be done in equally

timed steps or after arbitrary delay, determined by the time it takes for the operation to calculate.

The two main classifications are:

5

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• bounded delay: constraints on the propagation delay between different components

• unbounded delay: no constraints are made, arbitrary delays in the circuits are allowed

In the bounded delay model we have to know the worst case execution time for the function

between sender and receiver in advance, and we have to guarantee that the functions will never

take longer. It will always take the same time until the request signal will be sent to the receiver,

to signal that new data is available and ready at the input line. In the unbounded delay model

we make no assumption about the readiness and how long it will take to transfer a signal from

sender to receiver. Unlike with bounded delay, the sender has no information about the timing.

The receiver has to recognize if new data is available, stable and ready for input. This can be

done by coding - the receiver has some logic in front of its input port to interpret if the data can

be used. Two important coding styles to encode validity information will be introduced in the

next section, when the four main hand-shake protocols will be introduced.

2.2 Classification and Operating modes

To distinguish the different styles of asynchronous logic we have to make a classification, like

it is made in [22]. With the help of the main classification, described in the last chapter, into

bounded and unbounded delay we can now make a better differentiation and will discuss the

subcategories of those models in more detail.

Within the not bounded delay model two main categories can be distinguished, speed-

independent (SI) and and delay insensitive circuits (DI). A speed-independent (SI) circuit is

a circuit that operates correctly assuming positive, finite but unknown delays in gates and ideal

zero-delay wires. DI circuits do not apply any delay restrictions, neither on gates nor on wires

(except finiteness). Unfortunately, the class of DI circuits is limited to circuits that only consist

of inverters and Muller C-gates. A less restrictive subclass of DI are quasi-delay insensitive cir-

cuits which allow for positive but unbounded delays in all elements except in isochronic forks.

Such forks assume that delays on different paths are negligible, i.e a transition which starts at

the root of the fork will reach the the end of each branch at the same time. With this assumption

this class becomes more practical and bigger. If all forks in the QDI circuit are required to be

isochronic, the circuit essentially becomes a SI circuit.

Bounded delay models require certain timing assumptions and operation modes - the timing

behavior has to be known in advance. As we can see, synchronous circuits can also be assigned

to the class of bounded delay models, as all transient states have settled to a steady state be-

fore the next clock edge happens. Synchronous and asynchronous circuits which match these

classifications are also referred to as self-timed logic [22].

The classification of asynchronous logic according to its delay model is not enough - we also

have to define the interaction with the environment ([22]). The two main operation modes are

• Fundamental mode

• Input- Output Mode

6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

In fundamental mode it is not allowed to apply the next input until the circuit has settled to

a stable state. For that reason a worst case timing for the circuit has to be calculated because

the internal states are not visible to the environment. Fundamental mode circuits always adhere

to the bounded delay model. In a classical model it is only allowed to change one input signal

at a time but this model can be extended to burst mode, where more than one signal can be

changed. But after a burst the environment has again to wait until the circuit is stable before

sending the next burst. The environment can not distinguish if the circuit is now in stable state

by only looking if the output signals have changed, since they could change again because of

internal intermediate states.

In input-output Mode the circuit also has to be stable. But here the environment can apply

the next input signal as soon as the circuit has changed its output, so there exists a causal re-

lation between input and output transition. The internal signal as well as the internal states are

not observed by the environment, so every transition at the output must be a valid one and no

intermediate output transition is allowed. The behavior of such a system can be analyzed by a

transition- based model. An example on how to model such system will be given in the next

chapter.

2.3 Handshake Protocols

As stated before, two handshake events are necessary to guarantee a synchronized communica-

tion and in normal case these events will happen alternately:

• Request event: signals that new data is available

• Acknowledge event: new data can be consumed

Here two main styles have to be distinguished but other protocols can be applied as well:

• Bundled-data protocol: separate line for request

• Delay insensitive data encoding: no separate request line

In the bundled-data protocol the handshake information is explicitly transmitted together

with the data - there is an additional request line. This handshake protocol consists of one

request signal and one acknowledge signal for N data signals. Therefore the request signal has

to be delayed to guarantee that the information data is valid when the request signal arrives at

the receiver. Bundled-data circuits follow the bounded delay model and require a positive timing

margin between the propagation-delay of the request line and the worst case propagation delay

on the data lines. There is no such timing assumption for the acknowledge line required.

In the dual rail protocol there is no separate request line. The information when new data

is available at the receiver’s input is encoded in the data signals. Therefore the receiver needs a

special logic function which interprets the information at the input (completion detector). Dual

rail means that for each bit of information which is sent to the receiver two wires are used to

encode additional request information.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

It is also necessary to decide if information is encoded in the transition or in the state of a

signal line (edge or level encoded). This also leads us to the 4 different styles of handshaking

methods, which are „4-phase bundled data“, „2-phase bundled data“, „4-phase dual-rail“ and

„2-phase dual-rail“.

Two of them are from the bounded delay style - the worst case delay has to be known while

designing the circuit - the other two can handle arbitrary delays; no assumptions are made on

the timing. In the following subsections the different handshaking styles are explained in detail.

Bundled Data Handshake Protocols

Diagrams which show the connection between sender and receiver and the timing diagrams for

the two bundled-data timing styles can be seen in the figures 2.1a and 2.1b. The communications

lines are one request and one acknowledge line and for the codewords n data lines.

In 4-phase bundled data the communication action takes place in 4 stages: (1) The sender

issues data and sets the request signal to high, (2) the receiver absorbs the signal and sets ac-

knowledge to high, (3) the sender responds by setting request to low (typically showing that data

isn’t guaranteed to be valid anymore) and (4) receiver acknowledges this by setting acknowledge

to low. At this point the sender can start a new transmission.

(a) connection (b) 4phase

Figure 2.1: 4-phase timing diagram [22]

In contrast to 4-phase bundled data, in 2-phase bundled data the request and acknowledge

signal information is encoded in the signal transition. It takes only 2 protocol phases to trans-

mit data, which is generally more complex but doesn’t waste the time for reset phases. Some

asynchronous designs use the benefits of both protocols by applying the 4-phase protocol for the

computation part and the 2-phase protocol for the interconnection parts. In figure 2.2 we can

see that information is encoded in the transition and no return-to-zero phase is used. The data

communication needs 2 stages: (1) The sender issues a new data word and produces a transition

at the request line to signal the receiver a new word is ready at the input lines of the receiver. If

the request line was high then it is low now and if the line was low then it is now high. (2) The

receiver absorbs the codeword and changes the state of the acknowledge line. The sender can

detect a state change of the acknowledge line and will start with the next communication cycle.

8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

It seems that the 2-phase bundled data is less robust against fault injection than the 4-phase pro-

tocol because all depends on the correct timing of the transitions but we will discuss this issue

in the later chapters.

Figure 2.2: 2-phase protocol [22]

Dual-rail Handshake Protocols

As already highlighted, real DI circuits do not have a lot of practical applications. Therefore

QDI is applied instead, with the limitation that isochronic forks have to be acceptable- which is

often the case in practical designs. Due to unbounded delay it is more flexible and calculation

times for functions - for example between pipeline states - can change according to input speed.

The 4-phase dual-rail handshaking 2.3, has the advantage of needing no separate request

line. It is comparable to a 4-phase protocol using 2 wires per bit of information d. One wire

d.f is used for signaling logic 0 (or false) and another wire d.t is used for signaling logic 1 (or

true). When observing a 1-bit channel one will see a sequence of 4-phase handshakes where the

participating „request“ signal in any handshake cycle can be either d.t or d.f. Viewed together

the {x.f,x.t} wire pair is a codeword. {x.f,x.t} = {1,0} and {x.f,x.t} = {0,1} are valid data (logic

0 and logic 1 respectively) and {x.f,x.t} = {0,0} represent „NULL“ or „no data“. The code-

word {x.f,x.t} = {1,1} is not used and a transition from one valid codeword to another without a

„NULL“ word in between is not allowed.

This leads to a more abstract view of this handshake scheme (Figure 2.3): (1) The sender

issues a valid codeword, (2) the receiver acknowledges the reception of the codeword by setting

the acknowledge line to high. (3) The sender responds by sending the „NULL“- word, (4) and

after reception of the „NULL“-word, the receiver sets the acknowledge line to low. After those 4

steps the next communication starts at the sender by issuing the next valid codeword. In a more

abstract way we see a data stream of valid codewords, separated by empty codewords.

The 2-phase dual rail handshaking mechanism will be explained here but will not be part

of the simulations with fault injections in pipelines. The 2-phase dual-rail protocol uses also 2

wires for the codewords but the communication is encoded as transition. On an N-bit channel

a new codeword is received when exactly one wire in each of the N wire pairs has made a

transition and there is no empty codeword. The communication cycle for sending one codeword

takes place in two stages: (1) The sender changes one bit of the codeword. (2) The receiver

9

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 2.3: Four phase dual rail diagram [22]

detects the valid codeword by completion detection logic, absorbs it and changes the state of the

acknowledge line. After those two steps the communication cycle starts again.

The completion detection works by differentiation to different phase states, which have to be

accessed alternately. More information about 2-phase dual-rail protocols can be found in [22].

Figure 2.4: FSL [22]

2.4 Pipeline and Data flow control

A fundamental requirement in the design of a digital system is to control the sequence of input

data of a logic function unit in such a way that the respective sequence of output data from a

logic function unit can orderly be received by the subsequent unit.

A pipeline is a division of operation steps in stages. The operations are made in discrete

synchronous steps with a given clock or asynchronous without any clock but with the help of

handshaking and completion detection. A picture of a part of a pipeline with 2 stages is given in

picture 2.5 .

Data is passed from stage i to stage i+1 via the (optional) transition function f(x). The handshake

is controlled by the registers, with the help of completion detection or request and acknowledge

signals. A more detailed description of the used pipeline architectures of 4- and 2-phase bundled

data will be given in chapter 4.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 2.5: 2-stage pipeline model

2.5 Fault Models and Masking effects

Before discussing the different kinds of faults we have to define some frequently used terms

related to error detection and fault tolerance. The terms failure, error and fault are understood

as established in the Working Group 10.4 (WG10.4) on Dependable Computing and Fault Tol-

erance of the International Federation for Information Processing.

• A failure occurs when the delivered service deviates from the correct system function

• An error is a deviation of the internal state of a system from its correct state. An error can

- but doesn’t necessarily- lead to a failure of the system.

• A fault is the adjudged or hypothesized cause of an error.

Examples for faults can be a random break of a wire, or a design fault either in software or

hardware.

So a fault generates an error but an error does not always lead to a failure of the system.

The produced error will lead to a failure provided the error changes the intended behavior of the

system. In other words the error must propagate to the system boundaries to trigger a failure.

This causal chain is continued to next higher level. A failure may be regarded as a fault on the

higher system level.

The ability of a system to function correctly, i.e. without the occurrence of failures, in

the presence of faults is called fault tolerance. To ensure fault tolerance, two features can be

incorporated into the system: error detection and system recovery.

Error detection is carried out by checking the results of the transition functions for testing

their correctness. Error detection can take place during operation or the system is stopped when

checking the function results. Those two operation schemes are called Concurrent Error Detec-

tion (CED) and preemptive error detection.

After the error detection is completed the system enters the system recover phase. This

phase consists of two stages: error handling and fault handling. Error handling is the correction

of any errors detected during the error detection phase. One error detection mechanism are CRC

checksums which are often used in memory or data transfer protocols. Fault handling is the

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

prevention of existing faults from generating subsequent errors.

The ability of a system to show fault tolerance even in absence of error detection and error

recovery mechanisms is called robustness.

Since in this thesis we want to investigate the robustness of systems and the mechanisms

of error propagation and masking, we will not provide error detection or error recovery mecha-

nisms. The correct functioning of the services will be checked by comparing the output of the

system with the output of a correctly functioning system.

A classification of faults can be made according to their persistence, into transient and per-

manent faults. Also the term intermittent fault can be added for faults which occur repetitively

but not continuously. [22]

Transient faults may be produced by three effects: High energy cosmic neutrons that interact

with the silicon nuclei of semiconductor devices, low energy cosmic or thermal neutrons that

interact with insulation layers and alpha particle radiation due to package imperfection. As to-

day’s integrated circuits generally use advanced processes with purified materials, high energetic

cosmic neutrons are the dominating radiation effect.

Radiation leads to ionization effects in the circuit (neutrons ionize indirectly by interacting with

the atomic nuclei) and thus to charge injection into the conduction band of the semiconductor.

Beside radiation, transient faults can also be provoked by electromagnetic interference (EMI)

due to external sources or signal integrity problems such as a ground bounce. Transient faults

- especially those generated by particle impacts - can be modeled by boolean signals. If the in-

jected charge is high enough a logic transition is generated. At the same time the injected charge

is restored by the node’s driver, thus the disturbed signal will return to its initial state after the

fault duration. Eventually the transient fault manifests as a positive or negative digital pulse on

the specified signal.

If a transient fault is injected into a circuit without feedback elements, it will only generate

a logic pulse at the output of the circuit. Especially in space engineering, such pulses are called

Single Event Transients (SET). In circuits with feedback elements, e.g. latches, a transient fault

may be memorized and generate a permanent upset or error, which is also referred to as Single

Event Upset (SEU) or simply a soft error.

Permanent faults are typically caused by physical defects, such as fabrication imperfections.

Contrary to a transient fault, a permanent fault can not be removed. This fact has to be observed,

when both permanent and transient faults can corrupt memory values. Transient faults may re-

sult in a soft error which can be restored by updating the memory value but permanent faults can

not be corrected. Therefore the effect of a permanent fault is also called a hard error.

Faults can be modeled in different ways: One popular method is the Single Stuck-At Fault

(SSAF), which disconnects the circuit node from its surrounding elements and forces the iso-

lated node either to be power supply or ground. The result is either a stuck-at 1 or a stuck-at 0

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

fault. This model was defined for permanent faults, but can be applied to transient faults as well

- the difference lies in the fault duration. A drawback of using this model for transient faults is

the inherent activation problem [5].

There is a certain probability that the fault will force the affected signal to its anticipated

value. This means that the change of the signal which is induced by the fault is identical to a

change that would have taken place at the same time if the system had functioned correctly. In

this way the fault has no effect and no error is produced. This possibility has to be taken into

account when analyzing systems by fault experiments, otherwise the results can be falsified. An

alternative model is the bit-flip model. Is is popular because it inverts the logic value of the

victims signal and therefore avoids an activation problem of stuck-at faults. A simple inversion

of the fault free signal is not a good representation of a transient fault because if during the fault

duration the signal changes, the bit-flip model will again change the state of the model, further

information can be found in [6].

A more realistic representation is done by the pulse model that forces the fault-free signal to the

inverse value at the fault occurrence and maintains that state during the complete fault duration.

To understand the propagation of signals and errors within the system it is necessary to consider

the delays that occur during internal signal transmission. In the past gate delay was the major

delay source in integrated circuits but with smaller feature size the delays in wires and inter-

connections become the major part of delay and determine a circuit’s performance. Thus delay

faults are gaining more importance, especially for devices with very high quality and reliability

requirements.

Another type of fault that is getting more important are open faults, which exist because of

disconnections. They isolate the circuit node from its environment. Since the node has no asso-

ciated driver any more its logic state is controlled by the surrounding environment (e.g. noise).

Still another type of fault is a bridging fault. It occurs, when the logic state of a node called

victim is controlled by another signal called aggressor.

Not every fault leads necessarily to an error. The possibility of of a fault staying dormant

and thus invisible is called masking. In general there are three main reasons for fault masking:

1. Electrical masking: A fault is injected on the electrical level, but it doesn’t affect the

logical level. The current pulse induced is not large enough to change the boolean value.

2. Logical masking: The fault changes a boolean value but the logical function which is

performed on this signal does not take it into account. For example if you look at an

AND-Gate (2 inputs), a „false“ logic 1 only propagates if the other input is also 1. This

is called implicit logical masking. Explicit logical masking is related to majority voting

with replicated functions.

3. Temporal (latching-window) masking: This level deals with the temporal behavior. The

fault disturbs a signal but it isn’t captured. For example a transient fault between two

clock edges in a synchronous circuit has no effect on the storage element as long as its

effect has vanished by the next clock event.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

4. Code masking. This can be compared to logical masking, which is mentioned in [5], since

the logic function of the receiver does not evaluate the token. Contrary to logical masking

not the data value leads to the masking effect but the code phase of the data prevents a

fault from becoming active.

Graphic 2.6 shows how masking effects help to mitigate the propagation of faults, it can be

seen as an inverse fault tree. It is sufficient for the tree to have at least one valid branch to mask

a fault. As an example a transient fault is injected at the input. The temporal masking rejects a

fault because the subsequent system node is not ready. The code masking shows a QDI circuit

that holds data in code phase p0 and waits for phase p1. A fault corrupts one bit of the previ-

ous phase p0, which produces inconsistent data that is not processed. The node waits until all

codewords are in p0, and thus in a stable state. Electrical masking is not further explained here

because the experiments in this thesis deal more with logical, code and temporal masking.

Figure 2.6: Fault mitigation

A fault model summarizes all previously defined boundary conditions: which faults are as-

sumed to occur, the fault classification, the logical model and the applicable masking effects.

It is a common approach to limit faults to one single physical system part per time, which is

referred to as the single fault model. In single rail logic, such as the common synchronous logic,

this restriction means that only one single boolean variable is affected by the fault. To utilize the

single fault model in QDI logic one single rail is affected by one fault per time.

The single fault model also assumes that consecutive faults are separated in time and not inter-

leaved. Finally the single fault model only limits the fault itself as being a singular event. It

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

doesn’t tell anything about its effect, e.g. it might be possible that a single fault leads to multiple

errors that propagate through the system.

Like in synchronous systems only sequential circuits define the progression of states. If a state

is not altered then the fault has no effect. An example can be seen in figure 2.6 , the fault will

not lead to an error as long as the receiving register doesn’t capture the error. This effect is

comparable to the latching window masking in a synchronous pipeline.

Finally, the abstraction level of a model has to be defined. It can be from transistor level, register

level or even to system level. The abstraction level defines the granularity of a circuit from the

fault’s perspective. In papers [11] and [18] investigations about probabilistic models in combi-

national and synchronous logic can be found, which influenced this thesis.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 3
Comparison of Models

This chapter deals with the problem of modeling a system where faults are injected, how to

build a system which explains what is happening when a fault occurs or if it is possible to mask

it and prevent propagation. It should also be possible to explain the behavior of a system in

terms of probability, e.g. how many faults are mitigated and if it is possible to recover from

fault injection. First we have to discuss the different styles of modeling a system and show

the advantages and disadvantages of each procedure. We will build some sort of token-based

description which is similar to the description used in [5], but in this thesis we don’t use QDI

pipelines but bundled data pipelines. Some knowledge about probability theory is needed for

building the fault model and will be explained in this chapter. First the most commonly used

description for faults in systems are described. The main difference between the transition and

token based fault description is the abstraction level.

3.1 Token and Transition Based Fault Description

In a token based model faults are applied on a high level of abstraction, where a token is an

atomic unit of the information processed in the system. In [16] a formal analysis is developed

for QDI circuits to describe the behavior in the presence of SEUs, a procedure for describing

how the different sorts of tokens (valid, invalid, bubble) are corrupted when faults are injected.

Quasi delay insensitive circuits (QDI) are asynchronous circuits that operate correctly regardless

of gate delays in the system, their delay-insensitive property makes them robust for example

against delay faults.

A token is carrying information and is stored in a memory element. Tokens are defined as

follows:

• Valid token: A token that has a data value which is correct in the execution process of

the circuit. We have to distinguish a data token that has a normal value and data tokens

which are corrupted. Those erroneous tokens have „wrong“ data values but are actually

still valid.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• Empty token: This token is used by the four-phase protocol scheme when returning to

zero. There is only one token which is {00}.

• The forbidden token is used for data values which are not used by the communication

protocol. For example in a dual rail scheme the valid tokens are {10} and {01}, the

forbidden token would be {11}.

• Bubble: A bubble indicates that a buffer is free and ready to be written with a new data

value, the data value which was in this memory is already stored in the next memory stage.

It still contains a copy of the previously stored and acknowledged data.

Soft errors can lead to token vanishing, token generation, bubble vanishing, bubble genera-

tion and token corruption. The major advantage of this approach is the simplicity of the model.

A QDI circuit stage is composed of a computational logic block (function block) that processes

the input, and a memory block (buffer) that memorizes data and implements the handshaking

protocol. A three stage pipeline using dual rail, return to zero protocol, is investigated in figures

3.1a and 3.1b. When using this protocol, the asynchronous data path processes a stream of al-

ternating valid tokens, empty tokens and bubbles (empty memory). In this basic model the data

flow is controlled by two rules: Token rule: a memory may receive and store a new token valid

or empty from its predecessor if and only if it has a bubble of the respective opposite type, i.e.,

empty or valid. Bubble rule: a memory becomes empty (bubble) if and only if its successor has

received and stored the token that it was holding. The three stages are described in a row vector

and in each state all previously defined soft error representations in this token based system are

applied.

As described in chapter 2, for the 4 phase dual rail model, the encoding for each signal al-

lows to express four possible states. 1,0 ,unused and NULL. The representation in the token

model is:

• V1,V2,F: Valid token V1 and valid but not correct in this state (V2) and a forbidden token

F (11)

• BV1,BV2,BI: Bubble (Buffer ready to be written)

• I: Empty token I (NULL) , for signal return to zero

Figure 3.1b shows the state enumeration list, it contains a representation of all reachable

valid states for a 3-stage state machine. The movement of the valid token in the ring can be seen.

Each state has only one successor because only one state transition rule can be applied in each

stage. The state transition rules are determined according to the communication protocol.

To investigate the behavior of fault injections, for each stage fault injection is performed sep-

arately. So it is possible to find faults which can be detected and also fault which can not be

detected.

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

An example is shown in Figure 3.1d. If faults are injected in state 3, three possible outcomes

related to the transition rules, are f1, f2 or f3, which can be seen in Figure 3.1c. All transition

rules can be seen in Figure 3.2 and set of rules the performs a fault injection is shown in Figure

3.3. When we continue the fault injection for example in state f2, the number of the next

possible states is two (f2_1 and f2_2). If a fault state can be detected, the state machine stops,

but more dangerous are the cases where the injected fault keeps remaining. With the help of this

model all faults can be found and it can be determined when they are reached.

In this example the state machine was simple but if it gets more complex there are far more

stages to investigate which leads to rapid state explosion and that prevents us from analyzing

large circuits.

Further explanations about the token based model can be found in [16].

(a) A 3-stage state machine (b) State enumeration

(c) Fault injection (d) Enumeration of faulty states

Figure 3.1: Token model [16]

Token based description efficiently explains the end effect of transient faults, such as a soft

error, or SEU. This approach eases a formal investigation of the effect of SEUs but it doesn’t al-

low a detailed investigation in the presence of transient faults as it disregards this primary cause

of an error. A fault is only recognized if it is stored in the memory element of a stage and it will

not appear if it is masked. The following fault description model will be on a much higher detail

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 3.2: Transition rules [16]

Figure 3.3: Fault injection rules [16]

level, to investigate every injected transient fault.

In a transition based model, transient faults are directly applied to internal or external signals.

This description is on a lower abstraction level than the token based fault description. Figure

3.4a shows a 1-of-3 QDI pipeline where a transient fault is applied to one input of the latch in

the middle. The effects are visualized with a STG and tabulated in Figure 3.4b. This method

investigates the impact of a transient fault at an arbitrary state and an arbitrary signal in the

systems. It seems to be the most simple way for investigating fault injection into a system.

The possible effects of glitches in the circuit as described in [3] are:

• none: the circuit ignores the glitch.

• temporary lockout: the circuit experiences a short delay but it is still functioning.

• symbol loss: the spacing between successive symbols is lost.

• additional symbol injection: the glitch introduces a whole new 4-phase cycle.

• symbol corruption: resulting in an illegal symbol where the glitch causes a 2-of-n symbol

to be created in the 1-of-n or 3-of-n symbol in the 2-of-n case.

This fault description is on a high level of detail so it involves a large computation time even

at moderately complex circuits and the state space that has to be covered grows rapidly if all

scenarios have to be covered.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

(a) 1-of-3 four phase (RTZ) QDI pipeline.

(b) Hazard descriptions and resulting effects.

Figure 3.4: State Transition graph analysis [3]

The transition based model seems to be more suitable to describe the behavior of circuits in

the presence of transient faults compared to the token based model. The behavior of masking

effects can be modeled in this model because it doesn’t only show the end effect of a injected

fault, which has been stored in the memory of a pipeline stage.

3.2 State Graph

A state graph describes the temporal behavior of a circuit implementation, where each node of

the graph is a unique state of the system and each arc describes a transition from one state to

another. Each state is defined by a binary encoded vector, which contains all input and output

signals but can also contain internal signals to guarantee a unique state assignment. This is

important because each state of the graph has to correspond to one unique marking in the rep-

resentation as STG. Contrary to an STG, an SG expands all possible state transition sequences,

thus an SG is in general more complex than its corresponding STG. An STG can be seen in 3.5,

the edges are labeled with the same markings and only one transition is allowed to occur per

time. If two events (a,b) should be modeled as concurrent, both orderings (a,b) and (b,a) have to

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

be included in this system description. For fault injection the description as state graph is used to

have a picture, how many states exists for the investigated circuit because this information will

be needed to write a program which measures the temporal behavior. The reason for the usage

of a state graph will become more clear after the procedure for the simulation and comparing of

different traces was described.

3.3 Signal Transition Graph

An STG is a variant of a Petri Net, that models the causal relations between the signal transi-

tions of a system. A petri net is used for modeling concurrent systems. It is a directed graph with

nodes and arcs where the nodes are places or transitions. Places can be marked with tokens and

if a transition is enabled (called „fired“), then all inputs must have tokens. The result of firing

is that the tokens from the input places are removed and added to each reachable output place.

The dashed arrows in STGs indicate orderings, which must be maintained by the environment,

the solid arrows represent orderings, which the circuit itself must ensure.

STGs form a restricted subclass of petri nets. Transitions are always signal transitions and

simple places with only a single input and a single output are omitted. Places (arcs) represent

causal relationships between signal transitions. Markings of an STG represent circuit states.

Single places are omitted and we can see arcs containing places.

The properties of an STG are:

1. Input-free choice: The selection among alternatives must only be controlled by mutually

exclusive inputs.

2. 1-bounded: There must never be more than one token in a place.

3. Liveness: The STG must be free from deadlocks.

To describe a speed-independent system, the circuits has to contain the following character-

istics:

4. Consistent state assignment: The transitions of a signal must strictly alternate between +

and - in any execution of the STG.

5. Persistency: If a signal transition is enabled it must take place, i.e. it must not be dis-

abled by another signal transition. The STG specification of the circuit must guarantee

persistency of internal signals (state variables) and output signals, whereas it is up to the

environment to guarantee persistency of the input signals.

To be able to synthesize a circuit implementation the following is required:

6. CSC (complete state coding), to be synthesizeable into a circuit

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

As we have discussed and introduced the information about state graphs and state transition

graphs we can now start to develop and describe a good way how to model a suitable system

in which it is easier to calculate the probability of faults. To describe system behavior it is an

advantage to start with a signal flow diagram which shows for each signal in the system the tem-

poral behavior. With it we can get to an STG and with the help of an STG it is easy to construct

a state graph by expanding all possible traces and show all possible states. SGs will be the main

part of the system behavior description. Figure 3.5 shows this design procedure for a C-Element.

Figure 3.5: STGs [22]

For further explanations about STGs and SGs the reader can look into [22].

3.4 Trace Based Description

The trace based model as decribed in [5], describes concurrent computation using formal lan-

guage theory.

Definition: A directed trace structure describes the behavior of a circuit C by a triple P =<

I;O;T >, where I is the set of input transitions, O is the set of output transitions and T is the

trace set of C. The trace set T ⊆ (I ∪ O)∗ comprises all finite-length sequences of input and

output transitions. Each trace in the trace set T defines one possible finite sequence of such

input and output transitions.

Example: A two-input Muller-C gate, one of the basic building blocks of SI and (Q)DI

circuits, can be described by the following directed trace structure < I,O, T >: I = {a, b},

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

O = {c}, T = {ǫ, a, b, ab, ba, abc, bac, abca, . . . }, where ǫ describes the empty trace. The out-

put of a Muller-C gate will transition to logic 1/0 only if both inputs are logic 1/0, otherwise it

will mantain its current state.

So we can conclude that it is possible to describe the behavior of a system as a trace or

sequence of states. For this thesis we need to find a way to describe transient faults and to some-

how calculate the sum and probability of events when transient faults can happen.

In the trace based description transient faults can be described as two consecutive transitions on

the same signal. It forms a single fault trace tx = {xx} (transient fault on signal x).

In my fault model the following assumptions are made to construct a model for transient

faults:

• There are only single faults.

Effects of transient faults are distinguished by the time they appear at:

• premature firing: The fault is injected before the expected transition takes place. The

injected pulse could trigger a function earlier than it should be.

• delayed firing: A fault occurs at the same time with the expected transition and the fault

prolongs or delays the expected transition.

• late firing: The fault occurs after the expected transition.

In this thesis a similar description of a system is used as in [5]. Both perspectives can be

transformed into one another, so the explanations used in transitions based description can also

be used in the following model.

Now we want to describe the trace of a Muller C-element in a different way. An example how

a trace can be transformed, to use concrete values for the signals, can be seen in the following

list. The signals are a, b and c and the transition sequence is shown here:

1. {a} ⇔ 000, 100

2. {b} ⇔ 000, 010

3. {a, b} ⇔ 000, 100, 110

4. {b, a} ⇔ 000, 010, 110

5. {a, b, c} ⇔ 000, 100, 110, 111

On the left side we see the order in which the signals are changed in the states and on the right

side the sequence of states is shown. Each state consists of the three signals a, b and c.

Each line describes one of the elements in the trace based model. The description is more

compact and it can directly be used for simulation. It is a straightforward approach to investigate

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

the behavior of a circuit. The output of the simulation can directly be applied to this model and

used for calculation with the formula which will be described in the following subchapter.

If we want to describe a fault in this systems we have to find out if a transient is masked

or not, which we call a „bad“ or „not bad“ signal. It is a bad signal if a transient fault takes

effect and the behavior of the circuits differs from the fault free behavior of the system. If the

transient doesn’t take any effect on the system than it is a „not bad“ signal. This definition will be

used later when we investigate the behavior of bundled data pipeline in the presence of transient

faults.

For example when we look at a Muller C-gate which has two input signals a and b and one

output signal c then a transient fault on c is always a bad signal. The signals a or b are only bad

if this circuit is sensitive, which means that a transient fault on an input signal is propagated to

the output. It depends on the current value of the signal c but lets say that signal c is 0, then if a

is 0 and b is 1, a transient fault injection on a, will not be masked and will change the circuit’s

behavior. If we have the situation that c is 0 and the two other signals a and b are 0 then a

transient fault injection on a will not propagate, it will be masked. So we see that the same

signal is not always good or bad and it also depends on the temporal behavior, the time when the

transient fault is injected. In a pipeline where the temporal behavior of the stages is described

by a state graph, in each state of the state graph we can distinguish if a signal is good or bad,

by comparing a correct trace to a trace with an injected fault. The concrete procedure how to

do this and what we have to consider when making this simulation will be discussed in the next

chapter, when we know more about the used pipeline architectures.

A possibility to locate all possible fault locations was described in [5] with the help of a

simple fault set. A simple fault set T xx
y describes all traces that are obtained when the single

fault trace txx is merged into a code phase trace ty : T xx
y = {t|t = txx ∪ ty}. The size of T xx

y

is calculated as follows: There are n signals that build the trace. A first faulty transition can be

placed before any of the n expected transitions as after the last one, which leaves n+1 possible

locations. The second must be placed after the first one. If the first fault transition is set to the

beginning of the trace, there are n+ 1 possible locations for the second one. If the first location

is set as second transition, there exist only n possible locations for the second one, etc. In case

the first fault is placed after the last expected transition, only one possibility remains to place the

second transition.

Eventually, all different configurations are summed, which yields the formula.

|T xx
y | = (n+ 1) + n+ (n− 1) + · · ·+ 1 =

(n+ 1)(n+ 2)

2
(3.1)

Let’s assume we have a Muller-C element with the input vector I =< a, b >=< 1, 2 >

and the input trace t = {1}. Now a transient fault on signal 2 is added, which will extend t to

the fault set T 22 = {221, 212, 122}. The set contains 3 traces, which could also be found by

applying formula 3.1:
(2)(3)

2 = 3

In [5] tokens are used to describe the set of transitions, we also want to reuse these defini-

tions. The notation is T (# of additional excited rails):

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• T (-1): one expected transition inhibited. That class will be inherently masked by all QDI

circuits as it prevents the code phase completion. However, it requires redundant gates in

the function to inhibit an output transition.

• T (+0): the expected number of rails is excited. Although the class describes legal tokens,

it also contains token errors if unexpected rails are excited.

• T (+1): one additional rail is excited. That class is not delay-insensitive anymore. Al-

though unexpected rail transitions are involved, not all members of this class lead to a

token error.

We can use token classes as described in [5] but in this thesis T(+1) means that there is a

signal change, which is not contained in the normal trace, while T(-1) describes the case when

a transition is inhibited and T(0) describes changes which are also in the normal trace (transient

fault is injected on a signal where a state transition will happen anyhow). This way of describing

faults is more general. The Token description in [5] was used for a dual rail model and not for

a bundled data protocol where the code words are encoded on one signal line and not on two

signal lines. For example if two signal lines are used for code words then T(0) means that there

are not more rails excited than the expected ones. The token classes describe all types of single

bit faults in a single-bit QDI signal. These definitions can also be used when describing transient

fault injection in bundled data pipelines. As long as the fault only effects one signal line, the

token class description is exhaustive. The potential effects of transient faults in this token class

model can be seen in Figure 3.6.

When the Token model in [5] is compared to the model as it is used in this thesis, we can

conclude the following:

• Tc(+1): There is an unexpected signal change because of the transient fault.

• Tc(-1): The signal change will happen later than expected. The transient fault happens

at the same time when the normal state transition would have happened. The signal is

changed to the opposite value, so the real signal change, can only be seen after the transient

fault.

• Tc(0): There will be no additional signal change and we can not see any difference. The

transient fault doesn’t affect the circuit, it doesn’t change the signal to a different value.

As we know the behavior of a Muller-C element, its output changes only if both inputs have

the same value. Whether a fault will be propagated depends on the input state and on the current

state of the circuits output when the transient fault is injected. For example if signal a is high

and when a fault is injected on signal b, it doesn’t take effect and doesn’t change the output c. It

can also happen the other way around. All possible situations where an injected fault propagates

to the output c are also shown in 3.7. Another example: input a and output c are low and input b

is high. If a transient fault is injected at a, the output c of the Muller-C element will be high and

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Tc (-1)

Tc (0)

Tc (+1)

Correct trace

Figure 3.6: Token classes

will hold this state also after recovery of the transient fault.

Based on the description with the help of the state trace and the knowledge of the delays

and bad signals in each state, we can build a probability model which describes the system‘s

behavior in the presence of transient faults. If we inject n transient faults one at a time, we

can get to a value which describes how robust the circuit is, how many transient faults will be

masked. As explained before masking describes the effect when transient faults don’t have any

effect on the outcome of the circuit‘s functions.

We can find the bad signals by simulation or going trough all possible traces in the circuit.

For simulation we can start to inject in each state on each signal line a fault and then compare it

to the fault free trace of the circuit. There are three possibilities:

1. correct: The circuit’s trace doesn’t differ from the correct one, except the two transitions,

where the fault was injected. Masking was successful.

2. bad: The circuit’s behavior is different at the time of fault injection and after the fault

disappears.

3. stabilized: The circuit’s trace will become the normal trace again after some time and

looks like there was no transient fault injected.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

1 1

1
1

1 1 1 1

0
1

0
1

1 1 1 1 0 0 0 00 1 0 1

0
0

0 0 0 0 00

1
0

1
0

1 0 1 0

Current value:
Next value:

Input after
injection:

C C C C C C

Figure 3.7: Muller-C element , Fault injection

3.5 Probability Model

We will now develop a probability model to describe the likelihood of errors leading to failures.

In every state there is the chance, that an error is masked by affecting a signal whose change has

no effect on the system behavior.

In every state there is a fixed number of signals which we will refer to as „bad signals“ which are

sensitive to errors. If a state is affected by exactly one error the probability of the error leading

to a failure is given by formula:

P (A|Ci) =
bi

Bi

(3.2)

• bi . . . Number of bad signals in state i

• Bi . . . Number of signals in state i

• A . . . A failure occurs

• Ci . . . an error occurs in state i

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

If we assume that errors are evenly distributed over time, and we inject exactly one error into

the system, the probability of the error being injected into state i is :

P (Ci) =
ti

T
(3.3)

• ti . . . duration of state i

• T . . . duration of pipeline cycle

Thus we get for the probability P (A) that a single error which is injected into the system

leads to a failure:

f = P (A) =

N
∑

i=1

P (A|Ci) · P (Ci) =

N
∑

i=1

bi

Bi

·
ti

T
(3.4)

• N . . . Number of pipeline states

If we further assume that all cycles in a sequence of n cycles are statistically independent,

the number of failures X is a binomial random variable with success probability f as calculated

above.

This leads to:

E = n · f (3.5)

σ =
√

n · f · (1− f) (3.6)

The formula can also be written in a different way which shows the mean value:

E(X) =

N
∑

i=1

X ·
bi · ti
Bi · T

(3.7)

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 4
Fault Injection Setup

This chapter deals with the structure of 4- and 2-phase bundled data pipelines and their modeling

when we use them as target pipelines for fault injection. We want to find formulas to describe

the temporal behavior, to estimate how long each state in the bundled data pipeline takes. With

the help of this information we can use the probability formula explained in the previous chapter,

to derive a fault probability model for concrete examples.

4.1 4-phase bundled data

To investigate the masking effect of an asynchronous pipeline structure, we start with the sim-

ulation of a 4-phase bundled data pipeline. To understand the behavior and to be able to code

this circuit in VHDL, we have to look at the 4-phase latch control circuit in more detail. We will

not introduce a logic transfer function between two stages of the pipeline, to make it easier for

simulation and it is sufficient to recognize the causes of faults. [8]

The variant of a 4-phase control circuit which was used for this diploma thesis is presented in [8].

Only the simplest controller has been investigated, basically a Muller pipeline. To understand

the behavior in more detail we have to start with a STG (state transition graph) of its input and

output signals and to describe one stage of the control logic, as shown in Figures 4.1a and 4.1b.

The control logic for a micro pipeline register must support the handshake protocol on both

its input and output ports. It is therefore defined in terms of input and output requests (Rin,

Rout), acknowledge signals (Ain, Aout), and its internal latching function.

An event on Rin signals the availability of new data, and the register issues an event on Ain,

to indicate to the source of the data that it has been captured and the data at the input can now

be changed. The control logic also issues an event on Rout to indicate, that the latch’s output is

now valid and will be held stable until an event on Aout signals that it has been accepted by the

next stage in the asynchronous pipeline. In addition to the handshake signals, the latch circuit

also has an internal control signal (Lt) which causes the data latches to be open (transparent)

when low and closed when high.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

In four-phase signaling it can be chosen, which edge of each handshake signal is active and

takes the place of the event while the other edge is inactive and is part of the „recovery“ phase,

during which the control circuit prepares for the next cycle. We choose the rising edge to be

active in every case.

It can be seen in Figure 4.1a that the circuit has to follow some behavioral properties:

• Rout+ indicates the availability of output data and must therefore follow Rin+.

• When input data is available (signaled by Rin+) the latch closes (Lt+) and stores the new

value. Later the input is acknowledged (Aout+) and the latch opens again (Lt−).

• The latch must alternate between open and closed.

It can be seen that Figure 4.1b is an implementation of the STG (4.1a). While this circuit

operates correctly, it has some undesirable properties. Most notable of these is, when several

such latches are formed into a FIFO, at most alternate stages can be occupied at any time. This

is because Aout must be low (and therefore the next latch empty) before Lt can go high (and this

latch becomes full).

Certain assumptions are built into this circuit construction. It is expected that there will be

several bits of latched data, so Lt must have reasonable drive buffering. The path from Rin to

Ain reflects the need for the latch to close before input data may be removed, and to consider

this the buffer delay is built into this path. The buffer delay is not built into the path between Rin

and Rout, since there is no need for the latch to close before Rout is signaled, as long as the data

has propagated through the latches. The C-gate delay must be no shorter than the latch data-in

to data-out delay for the correct functioning of the circuit.

(a) STG (b) Stage

Figure 4.1: 4-phase bundled data pipeline. [22]

After discussing the properties and behavior of one stage we assemble three stages to a FIFO

pipeline. With the help of Figure 4.2, the sequential steps of the control circuits can be inves-

tigated. We can see a 4-phase pipeline structure with three stages, which is used for the fault

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

injection experiment. It is built out of 4 logic components which are connected by wires.

The main components are:

• Muller C-element: logic component which remembers its last state, it only changes its

output if both inputs have the same logic value. It has a similar behavior as an and-gate.

• Delay element △: To control the relative timing in the path delays after the fork right at

at output of the C-element, for example to assure that an event on Ain happens after an

event on Rout. Moving Ain to before Rin can be accomplished by a negative delay△.

• Delay element D2: This delay controls the relative timing of the fork towards Ain and Lt.

• Latch: A D-latch is used as memory element.

The main difference to the circuit which is described in [8] is that there is a delay element

D2 on the path from signal Ain to Lt. This delay element was introduced to make a distinction

between the signals Ain and Lt in the trace-based model (the trace which is produced by the

simulation).

Figure 4.2: 3-stage, 4-phase-pipeline

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

The next step is now to get from the circuit and the STG description of the circuit to the state

graph, to show in which states a specific stage (we consider the stage in the middle) can be. It

can be seen in figure 4.3 that the upper and lower part of figure is in some way symmetric. There

is a phase were new data („new value“) is available and the part were the return to zero takes

place. Those two phases always happen alternately. Every state in the SG shows the current

state (signal level) of the five signals in each stage. The five signals which are already described

above are Rin, Rout, Ain, Aout and Lt.

The two main observations are:

• The diagram forms a cycle with some cycle time.

• The path which is chosen in different cycles need not be the same. It depends on the input

to output behavior of the pipeline.

The following is an explanation of what happens in the different conditions. It can be seen in

the SG that every condition happens twice and symmetrically in the diagram. Which condition is

chosen, depends on the circuit parameters (e.g. delay time). How parameters have to be chosen

to get to a specific condition will be shown later.

To keep the formulas simple, each kind of circuit component has been assigned the same delay

value. For example all Muller C-elements used in the circuit have the same gate delay time.

First we will look at the time difference between transition of Rin and the transition of Aout,

which can be adjusted by the environment which influences if the token is consumed faster from

the output or written to the input of the 4-phase bundled data pipeline. The two possible paths

are available from 12 to 1 and 5 to 8:

• 12 - 13 - 1: Rin ↑ is faster than Aout ↓, A ↓→ R ↑ > 0

• 12 - 0 - 1: Aout ↓ is faster than Rin ↑, R ↑→ A ↓ > 0

• 5 - 6 - 8: Aout ↑ is faster than Rin ↓, R ↓→ A ↑ > 0

• 5 - 7 - 8: Rin ↓ is faster than Aout ↑, A ↑→ R ↓ > 0

The next conditional ways can be seen at the paths 2 to 5 and the symmetric path 9 to 12.

The difference between those two paths exists because of the delay parameter D2, which can be

seen in Figure 4.2. If Lt changes faster than Ain, the circuit has only one possible path because

for positive delay D2, Ain always happens before Lt. For completeness of the state description

of the circuit, the paths 2-3-5 and 9-11-12 were not deleted they will be needed later for the

trace based description, to see if a trace behaves according to the rules. The explanations for the

different paths are shown below:

• 2 - 3 - 5: Lt rises ↑ faster than Ain

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• 2 - 4 - 5: Ain rises ↑ faster than Lt

• 9 - 10 - 12: Ain falls ↓ faster than Lt

• 9 - 11 - 12: Lt falls ↓ faster than Ain

00000

Rin,Rout,Ain,Aout,Lt

10000 111011110011000

01111

11111

--------4-phase------

001110001100010

10010

01101

11001

00110

new value

return to zero

1 2

0

3

4 5

6

7

8910

11

12

13

Figure 4.3: SG of 4-phase-pipeline stage

The SG in Figure 4.3 gives a good overview of the behavior of the circuit and how many

states exist. The next step to get to our fault hypothesis model is to find out how much time

the circuit stays in each state. First we will make some estimations with the help of the token

based model which was explained at the beginning of chapter 2. In the following description B

is „bubble“, T is „token“ and T can be a value or an empty token. We conclude that there are

three possible states in which a pipeline with iterative computation can be:

1. T1T2B3

2. B1T2T3

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

3. T1B2T3

The requirements for a pipeline with iterative computation are: 1. at least one bubble and

2. at least one value and one empty token. It is a subset of all 8 states of an elastic pipeline, in

which no requirement exists.

M_1 M_2 M_3

∆_3
∆_1 ∆_2

T_Aout
T_Rin

Cy0 Cy1 Cy2 Cy3

Rin Aout

Rout

Ain Lt

Figure 4.4: 4-phase-pipeline cycles

To be able to express the temporal behavior of this circuit in a more formal way, we have

to divide the circuit into 4 cycles. The time for each cycle is the summation of the circuits

component delay times.

1. Cy0 = T_Rin+M_1 +△_1

2. Cy1 = M_1 +M_2 +△_2

3. Cy2 = M_2 +M_3 +△_3

4. Cy3 = M_3 + T_Aout

With the help of those explanations and descriptions of cycles we conclude the following

inequalities:

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

T1T2B3 :

condition T1 and T2 : Cy1 > Cy0

condition B3 : Cy3 < Cy2

B1T2T3 :

condition T2 and T3 : Cy3 > Cy2

condition B1 : Cy1 < Cy0

T1B2T3 :

condition T1 and T3 : Cy0 < Cy1

condition B2 : Cy3 > Cy2

After those estimations about input to output timing behavior we have to find the exact

duration for each state in which the circuit can be. The best way would be to calculate the

duration of each state by a formula with the help of the circuit parameters, e.g. delay of the

Muller gate or delay of the delay line△. In the simulation some typical duration values for the

circuit parameters were chosen and can be seen in the following list:

• Delay Muller C-gate (M) . . . 3 ns.

• Delay of the Delay line (△) . . . 13 ns.

• Delay for closing the latch (TD2) . . . 1 ns

• Delay at output T_Aout . . . depends on environment.

• Delay at input T_Rin . . . depends on environment.

In Table 4.1 all formulas for each state are noted. If the delay of each circuit parameter in

the circuit is known, the duration for each state can be calculated and no simulation is necessary.

As we can see there are four different columns which show the four different paths of the SG,

which were explained before.

Condition 1 (COND 1) means Lt changes faster than Ain and Condition 2 (COND 2) means

Aout is faster than Rin. If a condition is true or not is shown by N or Y .

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 4.1: Duration of the stages of a 4-phase bundled data pipeline

COND 1 (Lt < Ain) Y N

COND 2 (Aout < Rin) Y N Y N

0 T_Rin - M - T_Rin - M -

1 M M M M

2 △ △ △ △

3 TD2 TD2 - -

4 - - TD2 TD2

5 M - TD2 M - TD2 M - TD2 M - TD2

6 T_Rin - M - T_Rin - M -

7 - T_Aout - M -△ - T_Aout - M -△

8 M M M M

9 △ △ △ △

10 - - TD2 TD2

11 TD2 TD2 - -

12 M - TD2 M - TD2 M - TD2 M - TD2

13 - T_Aout - M -△ - T_Aout - M -△

Now a more detailed explanation for the formulas in Table 4.1 will be given and we start

with the first column where COND 1 and COND 2 are true. Each entry shows the duration of

each state in the state graph with the used circuit elements. Some of the delays are given by

the circuits requirements to be a correctly functioning pipeline. For example if we look at the

duration of the states 1 or 8, it is clear that the time between the change of the signals is the gate

delay of the Muller C-element. Another example is the time between the signal change of Rout

and Ain, the time, which is given by the delay element△. More interesting is the time between

the states 0 and 1 and 12 and 0 (The duration of the mirrored states are also calculated in the

same way).

Because of symmetry we can find a formula which expresses the input behaviour. Later we want

to find out how we have to adjust the two parameters T_Rin and T_Aout to define if input is

faster than output or the opposite and with this formula it is possible to see which condition in

the table was chosen.

• M2 +M3 +△3 = Cy2.

• M1 +M2 +△2 = Cy1

• M1 +△1 + T_Rin = Cy0

• Cy0− Cy1 = T_Rin−M

The formulas to calculate the duration between the states 12 and 0 are:

• M2 +M3 +△3 = Cy2.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• M2 + TD2 +△2 = x

• Cy2 - x = M − TD2

x is the delay of the second stage.

Now we will look at the case where Cond1 is true and Cond2 is false, the other two pos-

sibilities for the conditions are mirrored and can be found by the same formulas. The reason is

that there is a delay element between those two signals but for completeness it is shown in table

4.1.

For the duration between the states 13 and 1 we get the following formulas:

• M2 +M3 +△3 = Cy2.

• M3 + T_Aout = Cy3

• Cy3 - Cy2 = T_Aout−M −△3

The input T_Rin to output T_Aout delay can be explained in more detail in the following

way: For the correct functionality of the circuit T_Rin must have the duration time which is at

least M , it behaves like a predecessor stage of stage 1. For T_Aout the behavior is similar but

a successor stage of stage 3 is simulated, thus the duration time must be at least M +△. The

formula which describes if input is faster than output is (T_Rin−M)− (T_Aout−M −△):
if the result is positive then the input is faster than the output.

• if (T_Rin−M)− (T_Aout−M −△) > 0 then A← R < R← A (COND2 is false)

• if (T_Aout−M −△)− (T_Rin−M) > 0 then A← R > R← A (COND2 is true)

4.2 2-phase bundled data

For fault injection the second experiment was done with a 2-phase bundled data pipeline. Before

describing the fault injection procedure, we start by describing the main blocks of the pipeline,

which was used for this thesis. The circuit, which was used in this thesis, can also be found

in [17].

The main building blocks are:

• delay element: This delay element is not used in [17] but we will explain this later.

• xnor-gate: It has two inputs and its output is 1, when both inputs have the same value,

otherwise its output is 0.

• a level sensitive latch: It is transparent when the enable signal Lt is 1, otherwise it is not

transparent and saves the last forwarded value. It is not driven by a clock-signal, but it

immediately opens and closes the forwarding gate when the enable signal Lt changes.

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

In contrast to the Muller control, the feedback loop in the circuit is broken by a state-holding

element - the latch.

Figure 4.5 shows the architecture of a 2-phase bundled data pipeline with 3 stages. For

simplicity we omitted the computation functions between the stages to describe the main func-

tionality of the control circuit. We will use the same signal names as for the 4-phase bundled

data pipeline.

As described in chapter 2 the 2-phase bundled data pipeline works with a handshaking proto-

col, which is divided into 2 phases. If the sender wants to send new data, it produces a transition

on the request line. In our circuit this line is called „Rin“. The signal value of „Rin“ is only

forwarded if the latch is transparent, this only happens if the signal Lt is true (xnor gate’s output

has to be 1). Both inputs of the xnor gate had the same value but now the signal from Rin

changes one of the inputs of the xnor gate and the output of the xnor gate becomes 0. The latch

will not be transparent anymore, therefore it closes. The signal value of „Lt“ is also used for

the Latch „D-Latch“, which stores the data for each pipeline stage. As data is already stored

„Rin“ is forwarded to the next pipeline stage as “Rout“, to signal the next stage that new data is

available at input.

In the second stage of the 2-phase handshaking protocol the receiver absorbs the codeword and

changes the signal state of the acknowledge line, in our example „Ain“. Compared to the circuit

design in [17], a delay element for „ack“ was added to give the circuit enough time to absorb the

new data from the sender. If the signal change of „Aout“ is received at the sender’s xnor gate

both inputs have the same value and the communication cycle starts again at phase one.

As we have compared the behavior of this circuit to the 2-phase protocol description and see that

it behaves correctly, we have to look closer at the stage in the middle of the pipeline, as we have

done in the sub chapter before, when we discussed the behavior of the 3-stage 4-phase bundled

data pipeline.

In Figure 4.6 we see the state graph of the 2-phase bundled data pipeline, which describes the

communication cycle states of the second stage in the 3-stage pipeline. As this pipeline protocol

doesn’t forward information simply by the state of the signals –“1“ and “0“– but it is driven by

signal transitions, it can be concluded that it has more states and more possible paths in the state

graph.

Now the different paths are described in more detail. First the path at 2 to 5 is described, it

behaves the same as the mirrored path from 11 to 14:

• 2 - 3 - 5: Lt ↓ faster than Ain ↑ (xnor faster than TD)

• 2 - 4 - 5: Ain ↑ faster than Lt ↓

There are also different paths between 5 to 10, which can be distinguished by the delay of the

circuit elements. Here the important circuit parameters are Aout, Rin and Lt. We see that there

is only one possible trace when the state 8 is reached but at state 6 there are two possibilities. In

state 8 there is only one possibility because of the circuit definition. The output Lt of the xnor

element can only change if both inputs Aout and Rout have the same value, so it is not possible

that Lt changes in the transition from state 8 to 9.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

La
tc
h

La
tc
h

La
tc
h

La
tc
h-
D

La
tc
h-
D

La
tc
h-
D

xn
or

xn
or

xn
or

Da
ta

Da
ta

Ri
n

Ai
n

Ro
ut

Ao
ut

D D D
LtLt

Lt

Figure 4.5: 3-stage, 2-phase-pipeline

• 5 - 6 - 7 - 10: Aout ↑ faster than Rin ↓ and Lt ↑ faster than Rin ↓

• 5 - 8 - 9 - 10: Rin ↓ faster than Aout ↑

• 5 - 6 - 9 - 10: Aout ↑ faster than Rin ↓ and Rin ↓ faster than Lt ↑

As we have described the different cycle formulas of the 4-phase bundled data pipeline state

graph, we will do the same for the 2-phase bundled data pipeline. In the following list we

describe the 4 cycles for the three stage pipeline. Now we also find the formula for describing

TRin and T_Aout - the input and output delays. With the help of those two parameters we can

control whether the pipeline is faster at input or faster at output.

We also describe all cycles shown in 4.7 as formulas. T_Rin and T_Aout are the user

controlled parameters to try different input and output scenarios and are the only parameters

which will be changed during fault injection simulation, all other parameters like the Muller

C-element gate delay will stay the same. With the help of those formulas it is possible to explain

the input to output behaviour of the pipeline:

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

00001

10001 111001010010101

11111

11110

--------2-phase------

01110

0111100010

10010

01100

0101101010

10000

00000

11101

00011

16

1 2

4

3 5

6

7

8

9

1011

12

13

0

15

17

14

phase 1

phase 2

Rin ,Ain ,Rout ,Aout ,Lt

Figure 4.6: SG of 2-phase-pipeline stage

1. T_Rin > Txnor + TD2

2. Cy0 = Txnor + TD2 +△+ T_Rin

3. Cy1 = 2 · Txnor + 2 · TD2 +△

4. Cy2 = 2 · Txnor + 2 · TD2 +△

5. Cy3 = Txnor + TD2 +△+ T_Aout

6. T_Aout > Txnor + TD2

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

La
tc

h

La
tc

h

La
tc

h

xn
or

xn
or

xn
or

T
_A

ou
t

D D D

T
_R

in

C
y0 C

y1

C
y2

C
y3

Figure 4.7: 2-phase-pipeline cycles

We described the pipeline with cycles, now we start to look at duration for each stage in

the pipeline a little bit closer. The three conditions which show which path it will be taken, are

described in the following list. The delay parameter Lt for the xnor element is given by the

circuit but the delay of the output and input signals of the pipeline is given by the environment

and can be changed for the experiments.

1. COND1: Lt ↑ is faster than Ain ↓

2. COND2: Rin ↑ is faster than Aout ↓

3. COND3: Rin ↓ is faster than Lt ↑

Two paths of the circuit are not possible, those are the following two traces starting at stage

5:

1. COND1 is true, COND2 is true and COND3 is false

2. COND1 is false, COND2 is true and COND3 is false

As we see that Rin changes faster than Aout, the successor stage of 5 is 8. In stage 8

the signals Aout and Rout are different, therefore the signal value of Lt cannot change in the

successor stage, there is only one path possible. This is the reason why above two traces are not

possible.

The formulas of the variables used in table 4.2 are:

1. Tdelay : △− (Txnor + TD2)

2. T_z1 : TD2

3. T_y1 : T_Rin− (TD2 + Txnor)

4. T_z2 : T_Aout− (△+ Txnor)

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 4.2: Duration of the stages of a 2-phase bundled data pipeline

COND1 Y N

COND2 Y N Y N

COND3 Y N Y N Y N Y N

0 Txnor - Txnor - Txnor - Txnor -

1 TD2 - TD2 TD2 TD2 - TD2 TD2

2 Tdelay - Tdelay Tdelay Txnor - Txnor Txnor

3 - - - - Tdelay - Tdelay Tdelay

4 Txnor - Txnor Txnor - - - -

5 T_y2 - T_z1 T_z1 T_y2 - T_z1 T_z1
6 - - T_y1 Txnor - - T_y1 Txnor

7 - - - T_y1 - - - T_y1
8 T_z2 - - - T_z2 - - -

9 Txnor - Txnor - Txnor - Txnor -

10 TD2 - TD2 TD2 TD2 - TD2 TD2

11 Tdelay - Tdelay Tdelay Txnor - Txnor Txnor

12 Txnor - Txnor Txnor - - - -

13 - - - - Tdelay - Tdelay Tdelay

14 T_y2 - T_z1 T_z1 T_y2 - T_z1 T_z1
15 - - T_y1 Txnor - - T_y1 Txnor

16 - - - T_y1 - - - T_y1
17 T_z2 - - - T_z2 - - -

5. T_y2 : TD2 + Txnor

Now the input to output delay is explained in more detail, we will use the same procedure

as for the 4-phase bundled data pipeline to find a formula which describes the correct behavior

of input to output. For the correct behavior of the circuit the delay of the predecessor stage of

stage 1 has to be larger than Txnor + TD2 and for the successor stage of stage 3 we conclude

that the duration must be larger than Txnor +TD2+△. In the following chapter we will use this

formula and try different values for T_Rin and T_Aout, to control the delay between input to

output and find out how much influence the different setting have for the fault masking effect of

the pipeline circuits.

• if (Ty − Txnor − TD2) − (T_Rin − Txnor − TD2 − △) > 0 then A ← R < R ← A

(COND2 is true)

• if (T_Rin − Txnor − TD2 − △) − (ty − Txnor − TD2) > 0 then A ← R > R ← A

(COND2 is false)

It is also possible to control COND1 and COND3 and change the behaviour, but this would

not describe a functioning pipeline. For example the output of the latch would not be stable for

the next stage if COND3 is true.

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 5
Simulation

In the following chapter we will discuss the building blocks of the simulator which will be used

to quantitatively verify the results which we got in the last chapter per theory. We want to show

here that the formulas about the timing analysis and error probability can be proven by fault

simulation. First we will discuss what is important for fault simulation and show some similar

programs but we will recognize that the most important parts are the same.

Fault simulation is used as a process of measuring the quality of the probability model,

which was developed to measure the masking effects. The following equation shows the quality

of the developed model: T = calculated masking probability
simulated masking probability

. This formula shows the discrepancy

between the simulation and using the formulas, which will be shown later in more detail.

Some differences in the approach result from differences in basic assumptions about the

circuit being evaluated. When simplifying assumptions are made, it is possible to take advantage

of those assumptions to produce a faster product, but one that will not function correctly when

they do not hold. Hence the user must understand the capabilities and limitations of the tool that

he or she chooses to use in order to obtain maximum benefit from it.

The paper used as guidance for writing the simulator is [19], and it shows how to develop a

suitable simulator for QDI circuits and what are the advantages and disadvantages of different

designs.

The simulator which was modified according to the requirements, contains the following

main parts:

• Fault injector: This part is common in all fault simulators and generally has the function

of applying the fault to certain parts of the circuit. Where it is injected, is identified by the

Fault Place Identify, which is a subcomponent of the Fault injector. There are two different

procedures to decide where to inject a fault, per random process or in a methodical way

and both have their advantages and disadvantages. They will be used in different steps of

the simulation process.

• DUT: Device under test is the component which has to be tested.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

• Monitor: Some output which shows the difference between a correct simulation trace and

a trace where faults have been injected and were not masked.

The simulator which will be used in this thesis is slightly different to the one presented

in [19]. A random delay generator can be used to increase the ability of asynchronous circuit

testing, to simulate the circuit with various delays. In [19] the simulator was designed for QDI

circuits, according to the features of these circuits, random delays must be within certain bound-

aries. The simulator designed for this thesis does not include a Random Delay Generator, the

delays of the circuit parts are fixed, only input to output delay can be changed. Of course the

pipeline architecture can be changed in VHDL to have different gate delays of the elements, but

those parameters will not be changed dynamically. The assertion for our simulator is that the

trace of a correct test run without fault injection has the same sequence as a test run with injected

faults. In Figure 5.1, a description of the simulator on a high abstraction level is given.

Fault injector

Place identify

DUT

Monitor

random methodical

compare traces

Figure 5.1: Fault simulator

Setting up fault injection for synchronous target is a well- researched topic. In contrast, little

is known about the specific issues that arise in context with fault injection into an asynchronous

target [6]. The analysis can be structured in two major topics. 1) the actual fault injection process

including trigger and 2) the subsequent observation of the fault effect on the device under test,

covering capturing and comparison of data. In both topics, synchronization is an issue of interest.

The usual way to do this is by comparison with a well-known good reference, in other words the

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.1: Calculation of state duration

State trace1 timestamp duration

0 0000 100 200

1 0010 300

device is operated in lock step with a fault free duplicate, that serves as a Golden Node. Due to

the adaptive timing behavior of asynchronous circuits, it would be not useful since not required

due to elastic timing, to lock operation of a duplicate, this rules out the use of a Golden Node.

For our simulation and also used in this thesis, it is more appropriate to use the Golden run

concept ([6]). However a cycle-by-cycle comparison based on a rigid time schedule makes no

sense for an asynchronous circuit as the name implies. It is much more natural to compare the

sequence of events (traces) observed in our device under test to a reference sequence, without

alignment to a time scale. So we record the device under test behavior in the fault-free case as a

list of events, and relate the sequence of events observed during the actual fault injection to this

reference on an entry-by-entry basis.

There are two methods to decide in the fault injector where to inject the transient fault:

• Methodical faults: A strategic way of fault injection, selection of specific signal lines and

circuit elements for injection.

• Random faults: Selection of fault injection positions is done randomly.

In our experiments we first use the methodical way to find out the sensitive signals for each

state, to find the last missing paramteres of the probabilty formula. It has to be found out how

many signals in a state are sensitive to transient signals and will not be masked in a later step.

This will be done for each signal in each state. After the probabiltiy formula for calculation is

complete, the random procedure is used for evaluating the masking probability formula.

Another important point is observation time and here we see two different possibilities: 1) Inject

the fault and reset the target system after each single fault injection or 2) proceed with the next

fault injection without a reset of the target, as long as no failure has been observed after a given

timeout. It allows the „late“ observation of faults, which means a fault that has not become

activated within its associated slot may show up in a later slot. For the simulation done in this

thesis method 1 was used, for the fault injection experiments to be statistically independent.

The first step of the fault simulation is the description of the fault free trace:

1. Generation of a fault free trace, with time stamps for each state transition.

2. Calculation of the duration for each state of the state graph with the help of a Python

script.

An example is given in Table 5.1, where the duration of state 0 can be seen. It is calculated in

the following way that t1 (time stamp of state 0) is subtracted from t2 (time stamp of state 2).

The second part is the injection of faults and comparing the produced traces to the fault free

trace:

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.2: Traces

Line trace1 trace2 Compare trace3

0 0000 0000 0000

1 0010 0100 1000

2 0110 0000

3 0100 1000

1. Generation of a .do script with injected faults at the signals of interest and producing a set

of faulty traces.

2. Comparing the faulty traces to the correct ones.

3. If the injected faults are masked then the error counter will not be increased but if the

error propagates and brings the circuit into an error state then the error counter will be

increased.

It is important how we can recognize that a transient fault in a faulty trace could be masked.

The easiest way is to go to the first line where we found a difference to the fault free trace and

delete this line and the following one. If the two traces are completely the same after the deletion

of those two lines, we can conclude that the fault is masked and will not propagate. The table

5.2 shows an example. There are two faulty traces, trace1 and trace2 where transient faults

are injected and a trace (trace3) of a correct functioning circuit without fault injection, which

is used for comparison. A fault was injected at line 1 and if it is a transient fault which will not

propagate, it will disappear in line 2 which is the next state. If we delete the lines 1 and 2 we

should see the same trace as for trace3. For trace2 this is possible but for trace1 the injected

fault propagates and introduces more than only 2 new states, in line 2 the circuit is in the state

0110 which totally differs from the compare trace.

For the simulation a VHDL description was written to describe the behavior of the 4-phase

bundled data pipeline.

The program and program language which were used for the simulator, used for this diploma

thesis are Modelsim and Python. Modelsim is a graphical user interface for performing behavior

simulations of VHDL architecture descriptions with the help of a test bench which describe the

environment in which the described circuit is embedded. It has also a command line interface

for starting simulations and producing output, this feature was used here to automate the fault

injection simulation. The programming language Python was used to perform the calculation,

write the .do- scripts, automate the behavior simulation, and copy the trace files when compar-

ing the different traces. The transient faults were injected first methodically and in the second

simulation step with a random generator at one of the five possible signals at the second stage of

the 4-phase bundled data pipeline.

In Figure 5.2 the main steps of the fault simulation can be seen:

1. Methodical fault injection: Inject to each signal in each state a transient fault and see if it

will propagate, to find out the sensitive signals.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.3: Timing trace

STATE transition timestamp duration

0 2000 100

1 2100

2. Random fault injection: Inject a transient fault to a location in the circuit, the decision

where to inject the fault is made randomly.

3. Compare traces: Compare the fault free trace to the trace were the transient fault was

injected.

4. Use equation: Calculate the Error probability with the help of the formula and not by

random injection of transient faults.

5. Calculate state duration: Calculate the duration of each state.

6. Error probability: Compare the result of the random fault injection with the calculated

value of the error probability.

Another important requirement for calculation of the fault masking probability is to know

the duration for each state. The step for computation of the duration time is shown as example in

the following table 5.3. In the simulation the time is stored when a signal changes, a transition

from one state to another occurs. This is also done for the next state transiton to get from state 0

to state 1. The difference between those two states, in our example 2100 − 2000 = 100, is the

duration time of state 0.

As we have discussed the main building blocks and the functionality of the fault simulator

which was used for this thesis, we can look in more detail on the results, the quantitative repre-

sentation of the fault model which was developed in chapter 2. We will see that the fault model

fits to the results of the fault simulation only with some minor deviations.

5.1 Simulation of 4-phase bundled data pipeline

First we will start discussing the four-phase bundled data pipeline and investigate the 2 cases

of the pipeline which we have described in the last chapter. The two parameters T_Rout and

T_Rin are the only values which will be changed in the simulation, they are controlled by

the environment. All other parameters stay the same only input (T_Rin) to output (T_Rout)

behavior will be changed.

Case 1: Input delay is smaller than output delay

Table 5.4 shows the timing behavior of all three stages of a 4-phase bundled data pipeline. For

each state there is a column and the different lines S0, S1 and S2 represent the three stages.

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

methodical
fault injection

random fault
injection

compare traces

generate fault
free trace

Calculate state
 duration

Use equations

Error probability

compare traces

Figure 5.2: sequence diagram

Table 5.4: Duration time for: T_Rin: 4 ns and T_Aout: 18 ns

S 0 1 2 4 5 6 7 8 9 10 12 13

S0 0 3000 13000 1000 3000 1000 1000 3000 13000 1000 2000 1000

S1 3000 3000 13000 1000 2000 1000 2000 3000 13000 1000 2000 2000

S2 6000 3000 13000 1000 2000 2000 3000 13000 1000 2000 2000

We can see that the values for the duration time for each state in stage S1, which we get from

the simulation are the same values which we get when we use the formulas from Table 4.1, in

Chapter 3. For the circuit elements we use the same values as in the previous chapter: M = 3 ns,

△ = 13 ns and T_D2 = 1ns. For the input T_Rin to be faster than the output T_Aout the values

T_Rin = 4 ns and T_Aout = 18ns are chosen. We can conclude that 4− 3 < 18− 13− 3 and

therefore input is faster than the output. We also see some states which are not possible if the

circuit is in the steady state because here also the state transitions which appear at the beginning

of the simulation are in the trace file. Those lines are not deleted because of completeness.

For example in the steady state of the circuit, the state 0 is not possible if the input delay is

shorter than the output delay of the circuit but at the beginning of the simulation all signals are

0, therefore this state is only possible for one time and for all stages. The delay of state 0 at the

different stages is exactly the delay of Muller-C element, which fits to our circuit description.

In the following two Tables 5.5 and 5.6 the delays of the outputs (T_Aout) are larger, to

find out the delay behavior of the different states. We see that only the resulting delay of the two

states 7 and 13 and their mirrored states have changed when we look at the second stage of the

pipeline. The delay of the states where the output delay (T_Aout) is included in the formula

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.5: Duration time for: T_Rin: 4 ns and T_Aout: 38 ns

S 0 1 2 4 5 6 7 8 9 10 12 13

S0 1000 3000 13000 1000 3000 1000 21000 3000 13000 1000 2000 21000

S1 3000 3000 13000 1000 2000 1000 22000 3000 13000 1000 2000 22000

S2 6000 3000 13000 1000 2000 22000 3000 13000 1000 2000 22000

Table 5.6: Duration time for: T_Rin: 13 ns and T_Aout: 38 ns

S 0 1 2 4 5 6 7 8 9 10 12 13

S0 10000 3000 13000 1000 3000 1000 12000 3000 13000 1000 2000 12000

S1 3000 3000 13000 1000 2000 1000 22000 3000 13000 1000 2000 22000

S2 6000 3000 13000 1000 2000 22000 3000 13000 1000 2000 22000

changes. As an example the calculation of the duration for the two states 7 and 1 in Table 5.6

are shown:

• 1: M = 3 ns

• 7: T_Aout - M -△ = 38− 3− 13 = 22 ns

Another interesting finding is that some states in the first stage of the pipeline have different

durations compared to stage zero and stage two. The states 7 and 13 are different because the

input of the pipeline is faster than the output and the formula for these states are calculated in

the following way: (T_Aout−△−M)− (T_Rin− 5) = 12000.

Calculation of fault masking probability

Now the fault masking pobability will be calculated with the help of the formulas which we

found in the previous chapter. First we will start with calculation of the duration times for each

state. In the first column of Table 5.7 the duration times for each state can be seen, the second

column is the percentage of the period time. The second important parameter for calculation

are the number of sensitive signals for each state and a value for the percentage, as shown in

column three and four in Table 5.7. In the last line the the probabilities are summarized for

the calculation of the mean value to be able to use the following as formula:. E(x) = p ∗ x.

The variable x is the number of transient faults which are injected to the pipeline and p is the

summarized value, in our case the value is 0, 20952381.

In Table 5.7 the calculation of the mean value and all its calculation steps are given for the

situation where input is faster than output. The mean value shows the probability that a tran-

sient fault which is injected to the inputs or outputs of the seconds stage of the 3-stage 4 phase

bundled data pipeline, is not masked and forwarded to the next stage, thus producing an error in

the pipeline. One important thing is how we get to the number of the sensitive signals (signals

in a state, which can lead to an error if a transient fault is injected). One way is by analyzing

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.7: Results of Fault simulation

S duration sensitive signals probability

0 0 0 0 0 0

1 3000 0,071428571 1 0,2 0,014285714

2 13000 0,30952381 1 0,2 0,061904762

3 0 0 0 0 0

4 1000 0,023809524 1 0,2 0,004761905

5 3000 0,071428571 1 0,2 0,014285714

6 0 0 0 0 0

7 1000 0,023809524 2 0,4 0,00952381

8 3000 0,071428571 1 0,2 0,014285714

9 13000 0,30952381 1 0,2 0,061904762

10 1000 0,023809524 1 0,2 0,004761905

11 0 0 0 0 0

12 3000 0,071428571 2 0,2 0,014285714

13 1000 0,023809524 2 0,4 0,00952381
∑

1000 0,20952381

the circuit states theoretically, the other is a simulation for each state of the state machine and

injection at each simulation run on each signal of the state one transient fault. By comparing the

outcome of each simulation to the compare trace it is possible to find out if an injected fault on a

signal in a specific state will propagate and therefore produce a faulty trace. This simulation to

find out the bad signal has to be done for different input to output timings because the behavior

of the second stage of the 4-phase bundled data pipeline depends on the timing behavior of the

predecessor and successor stages of this pipeline. If the duration of a stage gets longer more

transient faults could propagate.

In the simulation we injected 500 faults and reset the simulation after each fault injection.

For this simulation, seen in Figure 5.7 we get an estimate which is calculated in the following

way: E(500) = 500 · 0, 20952381. It shows the expected value of how many transient faults

will propagate and not be masked.

Comparison between calculation and simulation

We are also interested in comparing the values which we got from the simulation to calculated

values. The first row in 5.8 is a parameter (DIFF), showing the input to output delay, it represents

the speed of the pipeline, how fast the pipeline processes data, beginning at stage zero to stage

two. The unit of this parameter is milliseconds and we started with nearly maximum speed and

then we made the pipeline slower. We got the following result:

The number of masked faults gets larger the faster the pipeline is driven, as we can see in Table

5.8. Here we also see the difference between the values which are calculated with the formulas

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.8: Comparison between simulation and calculation

DIFF 1 2 5 10 20 30 40 50

SIM 105 109 120 141 193 194 195 196

CALC 105 109 120 141 193 194 195 196

Table 5.9: Duration time for: T_Rin: 5 ns and T_Aout: 17 ns

S 0 1 2 4 5 6 8 9 10 12

ST0 2000 3000 13000 1000 2000 2000 3000 13000 1000 2000

ST1 2000 3000 13000 1000 2000 2000 3000 13000 1000 2000

ST2 1000 3000 13000 1000 3000 1000 3000 13000 1000 3000

Table 5.10: Duration time for: T_Rin: 25 ns and T_Aout: 17 ns

S 0 1 2 4 5 6 8 9 10 12

ST0 22000 3000 13000 1000 2000 22000 3000 13000 1000 2000

ST1 22000 3000 13000 1000 2000 22000 3000 13000 1000 2000

ST2 21000 3000 13000 1000 3000 21000 3000 13000 1000 3000

and the values which we can get from the simulation. The values fit together so the probability

model seems to be reliable.

Case 2: Input delay is larger than output delay

Now we also want to investigate the opposite case where the output delay is faster than the input

delay at stage one (T_Rin −M > T_Aout − △ −M). It means that data in the pipeline is

faster processed than new data is available. First we want to find out if the simulated duration of

the different states are the same as the calculated one in Table 4.1. The results in the Tables 5.9,

5.10 and 5.11 fits exactly to our expectation.

As before we also can find some states which behave a little bit different compared to stage two

of the pipeline, we can see those states in stage two because the output delay T_Aout is shorter

than the input delay T_Rin. The states which are influenced by this situation are the following

two states six and zero. The calculation for the duration of the states zero and six in 5.11 is the

following:

(T_Rin−M)−(T_Aout−△−M) = (25000−3000)−(26000−13000−3000) = 22000−10000
= 12000

Calculation of fault masking probability

The same procedure, as before, will be used to compute the probability value for the masking

effects in the situation where the output delay is shorter than the input delay and the results are

the following:

The calculation of the mean value and the values for each state can be seen in table 5.12. If

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.11: Duration time for: T_Rin: 25 ns and T_Aout: 26 ns

S 0 1 2 4 5 6 8 9 10 12

ST0 22000 3000 13000 1000 2000 22000 3000 13000 1000 2000

ST1 22000 3000 13000 1000 2000 22000 3000 13000 1000 2000

ST2 12000 3000 13000 1000 3000 12000 3000 13000 1000 12000

Table 5.12: Fault simulation

S duration sensitive signals probability

0 0 0 0 0 0

1 3000 0,071428571 1 0,2 0,014285714

2 13000 0,30952381 1 0,2 0,061904762

3 0 0 0 0 0

4 1000 0,023809524 1 0,2 0,004761905

5 3000 0,071428571 1 0,2 0,014285714

6 0 0 0 0 0

7 1000 0,023809524 2 0,4 0,00952381

8 3000 0,071428571 1 0,2 0,014285714

9 13000 0,30952381 1 0,2 0,061904762

10 1000 0,023809524 1 0,2 0,004761905

11 0 0 0 0 0

12 3000 0,071428571 2 0,2 0,014285714

13 1000 0,023809524 2 0,4 0,00952381
∑

42000 0,20952381

input is faster than output, it has more impact on masking if we make the duration of the output

larger. The expected value for 500 injected faults was calculated in the following way as before:

E(500) = 500 · 0, 20952381. Of course if the delay of the input is changed then also the fault

probability will change but only to a specific limit. The smaller the difference between input and

output delay gets, the larger the number of masked transient fault increases in a 4-phase bundled

data pipeline. Here as we can see the output delay defines the limit of masked faults.

Why the masking effect is better when the pipeline is driven very fast is because of the masking

behavior of the Muller C-elements, the only element in this circuit where the masking effect

exactly takes place at its input. In paper [23] this behavior was investigated and described

also quantitatively. A theoretical analysis indicated the two modes of operation of Muller C-

element, namely transparent mode and hold mode indeed these account for a different sensitivity

of single-event fault. In the Muller pipeline the Muller C-elements assume the more robust trans-

parent mode only transiently when propagating an input transition, while in the quiescent state

hold mode is dominating. This suggests that the Muller pipeline is less sensitive when operated

close to its maximum frequency. We got the same results in our fault injection experiments.

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.13: Comparison between simulation and calculation

DIFF 1 2 5 10 20 30 40 50

SIM 105 105 105 156 156 156 156 156

CALC 105 105 105 156 156 156 156 156

5.2 Simulation of 2-phase bundled data pipeline

The next subchapter will be about the simulation of the 2-phase bundled data pipeline and com-

paring the calculated values to the results of the simulation. For this thesis a VHDL description

was written for the simulation of the pipeline and with the help of these programs, Modelsim

and some Python scripts, the results can be evaluated. Our 2-phase bundled data pipeline is a

little bit more difficult for timing analysis. In the 4-phase bundled data pipeline we found that

there is only one circuit element in the circuit which is responsible for the masking effect – the

Muller C-element. Here, in the 2-phase bundled data pipeline we can also find a comparable

element, which produces masking effects, the xnor gate. The xnor gate is only 1 at the output, if

both inputs have the same values, otherwise its output is 0. For this circuit we will again make

a simulation with three pipeline stages. For timing analysis, in the simulation we will wait until

the circuit is in the steady state then it will only follow one path in the state graph. As before

in the 4-phase bundled data pipeline, the injection of transient faults will only be done on the

signals of the second stage, in the middle of the pipeline.

Case 1: Input delay is smaller than output delay

First we will start measuring the duration of each state for each stage of the pipeline. As an

example, in Figure 5.14, we see the states 0 to 17 for the 3 stages (ST1, ST2 and ST3). The first

experiment with the condition that the the input is faster than the output. Two simulation runs

are combined in this table, to see what happens if we change the output delay, the first column

shows the three stages of the same pipeline but with different input to output delays. On the left

side the input delay is smaller compared to the simulated values of the stages on the right side

of table 5.14.

Following values are chosen for the two simulations in Figure 5.14:

1. on the left side: A→ R: 3 ns and R→ A: 20 ns

2. on the right side: A→ R: 3 ns and R→ A: 30 ns

Some of the states are not reachable if we chose the specific timing, as we have seen in the last

chapter, so we always have the same path in the state graph. As the circuit has a faster input

than output, the first stage of the 3 stage bundled pipeline has a different timing than the other

two stages. For example when we look at state 14 in stage 0, the state’s duration is longer than

the duration of the same state in the stages ST1 and ST2. The simulation of the state durations

fits exactly to the calculation of the formulas for duration of the second stage of a three stage

pipeline. The gate delays of the circuit elements are:

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.14: Duration for each state of the 2-phase bundled data pipeline

simulation run 1 simulation run 2

STATE ST0 ST1 ST2 ST0 ST1 ST2

0 130 130 130 130 130 130

1 2000 2000 2000 2000 2000 2000

2 130 130 130 130 130 130

3 12870 12870 12870 12870 12870 12870

5 3000 2130 2130 3000 2130 2130

8 4000 4870 4870 14000 14870 14870

9 130 130 130 130 130 130

10 2000 2000 2000 2000 2000 2000

11 130 130 130 130 130 130

13 12870 12870 12870 12870 12870 12870

14 3000 2130 2130 3000 2130 2130

17 4000 4870 4870 14000 14870 14870

• T_xnor . . . 130 ps

• T_D2 . . . 2 ns

• △ . . . 15 ns

To prove the correctness of the formulas in table 4.2, we can use those concrete values for

the variables. The values for T_Rin (input delay) and T_Aout (output delay) are chosen for

each experiment separately, it depends if we want to have faster input or output. The formula

for calculating the difference between input and output was already discussed in the previous

chapter.

For the left side of table 5.14 we can do the following calculation for input to output behaviour

and show that here A→ R is smaller than R→ A:

• T_xnor + T_D2 = 2130

• △ = 15000

• A→ R : 3 ns , 3000 - 2130 = 870

• R→ A : 20 ns , 20000 - 2130 - 15000 = 2870

A → R means the input delay, in our case the delay between Ain and the signal change

of Req at the first stage of the pipeline. R → A is the opposite, the output delay, the delay

between the change of Rout and the time when the input value of signal Aout is different.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.15: Fault simulation results

S duration sensitive signals probability

0 130 0,002937189 3 0,6 0,001762314

1 2000 0,045187528 4 0,8 0,036150023

2 130 0,002937189 3 0,6 0,001762314

3 12870 0,290781744 3 0,6 0,174469047

4 0 0 0 0 0

5 2130 0,048124718 3 0,6 0,028874831

6 0 0 0 0 0

7 0 0 0 0 0

8 4870 0,110031631 4 0,8 0,088025305

9 130 0,002937189 3 0,6 0,001762314

10 2000 0,045187528 4 0,8 0,036150023

11 130 0,002937189 5 0,6 0,001762314

12 0 0 0 0 0

13 12870 0,290781744 3 0,6 0,174469047

14 2130 0,048124718 3 0,6 0,028874831

15 0 0 0 0 0

16 0 0 0 0 0

17 4870 0,110031631 4 0,8 0,088025305
∑

44260 0,662087664

Calculation of fault masking probability

In Table 5.15 we have the table for the calculation of the expected value. Now we have more

states compared to the state graph of the 4-phase bundled data pipeline. It is interesting that

in a 2-phase bundled data pipeline, there are more bad signals in the stages. The calcula-

tion for the expected value was done in the same way as before, for these experiments 500

faults were injected and the expected value can be calculated in the following way: E(500) =
500 · 0, 662087664. If the output delay is made larger and the input delay is kept the same then

there will less transient fault masking. It is comparable to the behavior of the Muller C-gate, the

circuit is more sensitive to faults if the circuit is operated at lower frequency.

Case 2: Output delay is smaller than input delay

We also want to investigate the case when the output is faster than the input. The delay which

was chosen for the two timing analysis in Figure 5.16 are the following:

1. on the left side: A→ R: 3 ns and R→ A: 15 ns

2. on the right side: A→ R: 8 ns and R→ A: 18 ns

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.16: state duration

simulation run 1 simulation run 2

STATE ST0 ST1 ST2 ST0 ST1 ST2

1 2000 2000 2000 2000 2000 2000

2 130 130 130 130 130 130

3 12870 12870 12870 12870 12870 12870

5 2000 2000 2000 2000 2000 5000

6 130 130 130 130 130 130

7 870 870 870 5870 5870 2870

10 2000 2000 2000 2000 2000 2000

11 130 130 130 130 130 130

13 12870 12870 12870 12870 12870 12870

14 2000 2000 2000 2000 2000 5000

15 130 130 130 130 130 130

16 870 870 870 5870 5870 2870

If we fulfill the following rules, T_Aout ≥ T_xnor + T_D2 +△ for output duration and

T_Rin ≥ T_xnor + T_D2 for input duration, we can distinguish if input is faster than output

by calculating diff = T_Rin − T_Aout. This is necessary to find out which condition in

table 4.2 should be used to calculate the state durations.

Calculation of fault masking probability and comparison

The result of this simulation to calculate the expected value as explained before, can be seen in

table 5.17 and here the expected value is: E(500) = 500 · 0, 670695652.

If we use the formulas of the last chapter to calculate the fault probability of the 2-phase

bundled data pipeline and compare it to the simulation data, we can see that those values are

similar only with minor deviation. The results of this comparison can be seen in table 5.18. The

difference between input to output delay was changed and always 500 faults have been injected.

In the first line we can see the difference of output to input delay which was calculated in the

following way: diff = (T_Rin− T_xnor − T_D2)− (T_Aout− T_xnor − T_D2−△)
Our results also show that if the difference gets larger the difference between calculated to sim-

ulated values becomes smaller. If the diffence is smaller, the pipeline is driven faster and the

circuit becomes more robust to injected transient faults. The behaviour of the xnor-gate is com-

parable to the behaviour of the Muller C-gate. As a result of those simulations we found out

that the 4-phase bundled data pipeline is more robust to transient faults than the 2-phase bundled

data pipeline. There are more states which are able to produce faulty states, running the pipeline

at higher speed (less difference between output to input delay) gives a better performance but is

not comparable to the 4-phase type.

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 5.17: Fault simulation results

S duration sensitive signals probability

0 0 0 0 0

1 2000 0,043478261 4 0,8 0,034782609

2 130 0,002826087 4 0,8 0,00226087

3 12870 0,279782609 3 0,6 0,167869565

4 0 0 0 0 0

5 2000 0,043478261 3 0,6 0,026086957

6 130 0,002826087 4 0,8 0,00226087

7 5870 0,127608696 4 0,8 0,102086957

8 0 0 0 0 0

9 0 0 0 0 0

10 2000 0,043478261 4 0,8 0,034782609

11 130 0,002826087 4 0,8 0,00226087

12 0 0 0 0 0

13 12870 0,279782609 3 0,6 0,167869565

14 2000 0,043478261 3 0,6 0,026086957

15 130 0,002826087 4 0,8 0,00226087

16 5870 0,127608696 4 0,8 0,102086957

17 0 0 0 0 0
∑

46000 0,670695652

Table 5.18: Comparison between simulation and calculation

DIFF -12 -2 7 10

SIM 335 322 331 352

CALC 335 318 329 352

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 6
Comparison

In this chapter a short comparison between the masking effects of asynchronous and synchronous

logic will be given. It also includes a summary of the results of this diploma thesis and the find-

ings will be discussed in more detail. With the help of the calculations which are explained in

this thesis further investigations can be done about whether asynchronous logic behaves more

robust when transient faults are injected.

6.1 Synchronous Pipeline

In this thesis the main topic was to show the behaviour of asynchronous pipelines, but now we

also want to introduce a simple example for a synchronous design, to be able to compare the

masking effects. A picture of such a simple design of a synchronous pipeline can be seen in

Figure 6.1. We use again a three stage pipeline but here the propagation steps are not controlled

by the signal values and some kind of completion detector but only by a clock signal. The circuit

elements which are controlled by this clock signal and handle the propagation of data values, are

D-flip-flops. D-flip-flops are circuits that have two stable states and can be used to store state

information. It would also be possible to use a double edged logic, with means a inverter at

the clock input of the second stage of the pipeline, which would have the advantages of using a

higher speed. The double edged logic wasn’t chosen because of the following disadvantages:

• An asymmetrical clock duty cycle can cause setup and hold violations.

• It is difficult to determine critical signal paths.

• Test methodologies such as scan-path insertion are difficult, as they rely on all flip-flops

being activated on the same clock edge. If scan insertion is required in a circuit with

double-edged clocking, multiplexers must be inserted in the clock lines to change to

single-edged clocking in test mode.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 6.1: States of the D-flip-flop

E D Q Q

0 0 hold hold

0 1 hold hold

1 0 hold hold

1 1 hold hold

0 hold hold

1 1 0

0 0 1

Double edged logic is described in more detail in paper [1].

A D-flip-flop has only one data input: the „D“ input. Activating the D input sets the circuit,

and deactivating the D input resets the circuit. Of course, this only happens if there is a rising

edge on the clock input (E) as well. Otherwise, the output(s) will be saved, unresponsive to the

state of the D input. This behavior is summarized in table 6.1. This table shows the two inputs

D and E as well as the output signal Q and its inverse signal Q.

D-flip-flop D-flip-flop D-flip-flop

Data

Clock

Figure 6.1: 3-stage, synchronous pipeline

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

As we can see in Figure 6.1, the enable inputs of the D-flip-flops are controlled by the clock

signal. This signal is a single point of failure, if a transient fault is injected on this signal line,

the fault can propagate immediately or data is captured at a D-flip-flop [20]. On the other side if

a transient fault is injected on the D-signal at the input of the flip-flop then it will only propagate

if the flip-flop is open and ready to receive new data, in all other cases the flip-flop will ignore

the transient fault and there will be no fault propagation. This is the latching window masking.

To show the behaviour of this pipeline architecture in more detail, we have to create the state

diagram, shown in Figure 6.2. In each state we can see the value of each signal and the state

transition if one signal changes its value. We will show a formula and behaviour of the second

stage of a three stage pipeline as we have done it for asynchronous logic, to be able to compare

those two architecture styles in the presence of injected transient faults. First we have to describe

the state durations with the help of formulas, this is why we need to start with a state diagram.

A state contains the following signal values, which have the same name as in Figure 6.1:

• CLK: The clock signal.

• D: Input value of the data signal.

• Q: Output value of the data signal at the flip-flop.

• WIN : Time window of the flip flop (setup + hold time).

After creating the state diagram of the 3-stage synchronous pipeline we want to find the

duration of each state to describe the temporal behaviour in more detail. This is necessary to

find a formula which describes the probability of fault masking for this kind of circuit. To find

the duration of each state in the diagram, the fault simulator can be used, which we created for

the asynchronous circuits. To be able to use this simulator, the pipeline architecture and the

testbench have to be changed appropriately in the VHDL code. The code which was used for

this simulation can also be found on the attached CD and a description how to use the simulator

is give in Appendix A.

With the help of the simulator and the state diagram it is possible to describe the duration of

each state as shown in table 6.2. To read the table the following parameters are described:

• Tclk: Period of the CLK signal.

• tsetup: Setup time of the latching window.

• thold: Hold time of the latching window.

• tCO: Rising edge to clock output delay.

• tPD: Time for output to appear after input is applied.

The left column „duration change“ shows the duration of each state if after each clock period

the input signal D changes. The second column shows the durations if the input signal doesn’t

change after one clock period. Per simulation it is now also possible to find out the signal

values in each state which are sensitive to transient faults. First we want to explain the fault

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CLK,Q,D,WIN

0010

0000

0000

0001 1001 1000

1000

1100

1010

1110

1110

111101110110

0110

0100
5

11

0

0'

1 2 3

3'

4

6

6'

7 8 9

10

9'

Q=D=0

Q=D=1

Figure 6.2: state diagam

propagation with a formula as we now found out the duration for each state. We can identify the

circuit elements which are sensitive to fault theoretically or by the fault simulator.

As we can see in table 6.2, there are seven states which are influenced by the clock signal

(0,4,5,6,7,10,11), the other signals are defined by the circuit parameters, for example the delay

of the flip-flop. The circuit parameters influence the optimal clock frequency of the synchronous

pipeline, to get more masking effects. Next step is to make some fault injection simulation with

different clock frequencies for our synchronous pipeline implementation, we will show this in

the next sub chapter. With the help of the state diagram and information about the duration of

the pipeline in the different states we can find the sensitive signals in the synchronous pipeline.

For example transient faults on the signal CLK will always lead to fault propagation.

If we look at the synchronous pipeline and check for the element which helps to mitigate the

propagation of transient fault we can conclude the following. The only circuit element which

is responsible for masking effects in this synchronous pipeline is the D-flip-flop when it is in

the blocked state. Every transient fault will propagate if this circuit opens and stores the faulty

information. Our previous analysis has shown that in asynchronous logic a higher speed for the

pipeline results in more masking effects, therefore less fault propagation. The next step is now

to compare this behaviour to the masking effects in synchronous logic. In the asynchronous

pipeline design the masking behaviour was controlled by the delays of input and output, in

synchronous logic the speed is controlled by a clock signal and this signal is responsible for

opening and closing all state holding elements.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Table 6.2: Duration of the stages of a synchronous pipeline

state duration change duration no change
0 Tclk

2 − tsetup
1 tsetup
2 thold
3 tCO − thold

4 Tclk

2 − tCO

5 tCO + tPD −
Tclk

2

6 Tclk

2 − (Tdelay_length + Tin)

7 Tclk − (tsetup − (tCO + tPD))

8 thold
9 tCO − thold

10 Tclk

2 − tCO

11 tCO + tPD −
Tclk

2

0’ Tclk

2 − tsetup

3’ Tclk

2 − thold

6’ Tclk

2 − tsetup

9’ Tclk

2 − thold

6.2 Masking Effect Results

First we want to show the types of fault injection in synchronous logic. Then we will compare

how the masking effects change when the pipeline is driven with a high rate, to the behaviour in

asynchronous logic.

As already mentioned before there are two different categories of faults in synchronous

pipenlines:

• Faults injected on control signal.

• Faults injected on data line, which was not investigated in this thesis with bundled data

pipelines but will be discussed here in more detail.

In synchronous logic the control signal is the clock signal, and if transient faults are injected

on this signal it will immediately result in an error. The control signals of asynchronous logic

have more similarities to data signals in synchronous logic. This is also a main difference when

comparing the masking behaviour of synchronous and asynchronous pipeline.

Transient faults injected on data lines are only propagated if the state holding elements are

open and ready to store the input data which is provided to their inputs. In asynchronous logic

this type has a similar behavior for the control signals, when the values are stored by the C-

element. For a D-flip-flop in order to store data and propagate data, the setup and hold times

have to be met. The setup time is the minimum time before which data must be stable before

clock transition and hold time is the minimum time for which data must be stable after active

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

clock transition. Set up and hold is related to input signal and clock edge, not to the output. If

the input meets these requirement then we will get a valid output at this element. If a transient

fault is injected in a way that those times are not met, then it will also result in a faulty state. A

timing diagram which shows the setup and hold time for a D-flip-flop can be seen in Figure 6.3.

Simulation

To show the behavior of a synchronous pipeline when transient faults are injected, a three stage

pipeline with D-flip-flops as state holding elements was used (6.1), which was described before.

We used different clock rates to get to some result to be able to compare the masking behav-

ior to asynchronous logic. The following steps are describing the simulation of transient fault

injection:

1. Start simulation.

2. Inject fault on the data signal at the input of the second D-flip-flop in state four or nine.

3. Check if this fault injection results in a faulty state and error propagation.

4. Save the result of this test run and reset the environment.

5. Start again at point 2 or stop and go to the next point if this simulation was already exe-

cuted 500 times (500 faults were injected).

6. Change clock speed and start at point 1.

Table 6.3 shows how many faults are propagated at different frequencies, the parameter Twin

has a fix value of 10 ns. The results of this simulation can be seen in Figure 6.4, which shows

the fault propagation for different clock rates. The key result of this simulation is, if the syn-

chronous pipeline was driven with a higher clock rate, less fault masking was happening and

more transient faults are propagated.

As we can see if the pipeline is driven faster more faults will propagate, which is completely

different to the behaviour in asynchronous logic, where we got the opposite result. The optimal

frequency for the synchronous pipeline always depends on the circuit parameters (e.g.: compu-

tation delays) and is not as flexible as asynchronous designs where different delays for the stages

can exist.

Figure 6.3: Setup- and hold-Time of a D-flip-flop

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 6.4: Fault propagation in a 3 stage-synchronous pipeline

Table 6.3: Results of simulation

Tclk (ns) propagated faults
10 500

20 214

30 170

40 132

50 106

60 89

70 74

80 56

90 54

100 51

110 42

Theory

Paper [14], which is about error probability in synchronous digital circuits due to power supply

noise, shows similar results. There are two ways to achieve less error propagation, improving

the power supply voltage quality (increasing cost) and increasing the clock period for a better

safety margin (decreasing performance). In this thesis a formula for the second reason for less

fault propagation is shown in the following:

Pfail =
Twin

Tclk

=
tsetup + thold

Tclk

(6.1)

In Figure 6.6 we can see the result, for fault propagation, of this formula when we use

different frequencies.The parameter Twin and all different states of the pipeline are shown in

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Figure 6.5. Twin is the part of the period Tclk where the flip flop is sensitive to transient faults.

For our computation the parameter Twin has the fixed value of 10 ns. We can see that the

computation with the help of the formula fits to the result of the simulation.

T_clk

Setup
Hold
CO PD

1 2 3 4 5 6 7

Setup
Hold

8 9 10 11 0

Figure 6.5: T_win

Figure 6.6: Pfail

For this pipeline setup in synchronous logic two different fault situations can be distin-

guished. First situation is when the transient fault is injected and the setup and hold times

are not violated, the other case is when those times are not met. Both cases will result in fault

propagation. Only if the transient fault is injected outside of the time window of opening the

D-flip-flop for new data, masking will happen. So we can see that there is only one situation

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

where fault propagation is prohibited, dependent on the window size Twin. Compared to asyn-

chronous logic it is more prone to faults as for example the signal CLK is always sensitive to

transient faults, whereas in asynchronous logic we don’t have one signal where fault injection

always leads to fault propagation. Of course the fault propagation was already investigated in

different papers and solutions for this topic have been found.

To make synchronous logic more robust logic functions and element are duplicated and voters

are added at the end of the circuit to define the output value by majority voting [1].

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

CHAPTER 7
Summary

7.1 Summary

This chapter provides a brief summary of the work that is contained in this thesis and shows the

main findings.

We started with describing the 3 different fault masking effects, (1) Electrical masking, (2)

Logical Masking, (3) Temporal masking.

After describing different already existing fault models, a new description for the behaviour

of asynchronous logic was built. First we started with analyzing the the different states of a

3-stage asynchronous bundled data pipeline. After building a probability model we were able

to quantitatively describe the masking effects when transient faults are injected. We continued

to do the same for a 2-phase bundled data pipeline. To verify the values which we found in a

mathematical way, we built a simulation setup which could be used for both pipeline types. The

result of the simulation was that the probability model fits exactly to the simulated pipeline cir-

cuits. Changing circuit parameters results in different outcomes in the masking behaviour. With

the fault model which is described in this thesis it is now possible to find out if the parameters

of the circuit and the timing behaviour of the environment are chosen appropriately.

The last part in this thesis was a short comparison between the masking effects in syn-

chronous and asynchronous logic. A synchronous pipeline was simulated and we could find out

that more transient faults are masked if the pipeline is driven with lower clock frequency. So

we can see that it behaves exactly in the opposite way as asynchronous logic where faster cycle

times result in higher fault masking. Asynchronous logic has more cases in which fault masking

is happening compared to synchronous logic, which migh be taken as an indication that asyn-

chronous logic is more robust to transient fault injection than synchronous logic.

The fault injection simulator which was developed for this thesis can help to analyze the be-

haviour of pipeline circuits in more detail and can be extended to be used for other circuits. In

Appendix A a short explanation how to use the fault simulator is given and the main steps of the

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

simulation process are described.

This thesis gives promising results to show that asynchronous circuits can be used in an

environment where high clock frequency is needed and transient faults are present, as also shown

in publications [9] and [12]. With the help of hardening techniques in asynchronous logic even

more fault propagation can be prohibited [15].

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bibliography

[1] Mohit Arora. The Art of Hardware Architecture. Springer, 2012.

[2] John Bainbridge and Steve Furber. Chain: A delay-insensitive chip area interconnect. IEEE

Micro, 22(5):16–23, 2002.

[3] William John Bainbridge and Sean James Salisbury. Glitch Sensitivity and Defense of

Quasi Delay-Insensitive Network-on-Chip Links. 2009 15th IEEE Symposium on Asyn-

chronous Circuits and Systems, pages 35–44, 2009.

[4] Todd A. Delong, Barry W. Johnson, and Joseph A. Profeta. A fault injection technique for

VHDL behavioral-level models. IEEE Design and Test of Computers, 13(4):24–33, 1996.

[5] Werner Friesenbichler. Effects and Mitigation of Transient Faults in Quasi Delay-

Insensitive Logic. PhD thesis, TU Wien, 2011.

[6] Werner Friesenbichler, Thomas Panhofer, and Andreas Steininger. A deterministic ap-

proach for hardware fault injection in asynchronous QDI logic. 13th IEEE Symposium on

Design and Diagnostics of Electronic Circuits and Systems, 6(4):317–322, 2010.

[7] Gottfried Fuchs, Matthias Függer, and Andreas Steininger. On the threat of metastability

in an asynchronous fault-tolerant clock generation scheme. Proceedings - International

Symposium on Asynchronous Circuits and Systems, (809456):127–136, 2009.

[8] S.B. Furber and P. Day. Four-phase micropipeline latch control circuits. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 4(2):247–253, 1996.

[9] Wonjin Jang. Soft-error robustness in QDI circuits. Workshop on System Effects of Logic

Software, 2005.

[10] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson. Fault injection into VHDL models:

the MEFISTO tool. Proceedings of IEEE 24th International Symposium on Fault- Tolerant

Computing, 2:66–75, 1994.

[11] Jung Sub Kim, Chrysostomos Nicopoulos, N Vijaykrishnan, Yuan Xie, and Emanuele Lat-

tanzi. A Probabilistic Model for Soft-Error Rate Estimation in Combinational Logic. Pro-

ceedings of the International Workshop on Probabilistic Analysis Techniques for Realtime

and Embedded Systems, 2004.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[12] Weidong Kuang, Enjun Xiao, Casto Manuel Ibarra, and Peiyi Zhao. Design asynchronous

circuits for soft error tolerance. Proceedings 2007 IEEE International Conference on Inte-

grated Circuit Design and Technology, ICICDT, pages 221–225, 2007.

[13] C LaFrieda and R Manohar. Fault detection and isolation techniques for quasi delay-

insensitive circuits. Dependable Systems and Networks, 2004 International Conference

on, pages 41–50, 2004.

[14] Ferran Martorell, Marc Pons, Antonio Rubio, and Francesc Moll. Error probability in

synchronous digital circuits due to power supply noise. 2007 International Conference on

Design & Technology of Integrated Systems in Nanoscale Era, pages 170–175, 2007.

[15] Y. Monnet, M. Renaudin, and R. Leveugle. Designing Resistant Circuits against Ma-

licious Faults Injection Using Asynchronous Logic. IEEE Transactions on Computers,

55(9):1104–1115, 2006.

[16] Y. Monnet, M. Renaudin, and R. Leveugle. Formal analysis of quasi delay insensitive cir-

cuits behavior in the presence of SEUs. Proceedings - IOLTS 2007 13th IEEE International

On-Line Testing Symposium, (Iolts):113–118, 2007.

[17] Ad Peeters, Frank te Beest, Mark de Wit, and Willem Mallon. Click Elements: An Imple-

mentation Style for Data-Driven Compilation. 2010 IEEE Symposium on Asynchronous

Circuits and Systems, pages 3–14, 2010.

[18] Irith Pomeranz and Sudhakar M Reddy. On Application of Output Masking to Un-

detectable Faults in Synchronous Sequential Circuits with Design-for-Testability Logic.

IEEE, 2003.

[19] Amir Mohammad Rahmani, Ali Asghar Salehpour, Masoud Zamani, Siamak Mohammadi,

and Hossein Pedram. An efficient fault simulator for QDI asynchronous circuits. Proceed-

ings - 2008 4th Southern Conference on Programmable Logic, SPL, pages 99–104, 2008.

[20] Emre Salman, Ali Dasdan, Feroze Taraporevala, Kayhan Küçükçakar, and Eby G. Fried-

man. Exploiting setup - Hold-time interdependence in static timing analysis. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 26(6):1114–1125,

2007.

[21] Premkishore Shivakumar, M Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling

the effect of technology trends on the soft error rate of combinational logic. Proceedings

International Conference on Dependable Systems and Networks, 2002.

[22] Jens Sparsø. Principles of asynchronous circuit design - A systems Perspective. Kluwer

Academic Publishers, 2001.

[23] Andreas Steininger, Varadan S. Veeravalli, Dan Alexandrescu, Enrico Costenaro, and

Lorena Anghel. Exploring the state dependent SET sensitivity of asynchronous logic -

The muller-pipeline example. 2014 32nd IEEE International Conference on Computer

Design, ICCD 2014, 30:61–67, 2014.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

[24] P. C. Ward and J. R. Armstrong. Behavioral fault simulation in vhdl. In Proceedings of

the 27th ACM/IEEE Design Automation Conference, DAC ’90, pages 587–593, New York,

NY, USA, 1990. ACM.

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

APPENDIX A
Code

Introduction

The following chapter gives a overview about the fault injection simulator, how to use it and

which programs have to be installed. As a guidance for creating my behavior simulations in

vhdl I found the following papers about the theory of fault injection in more detail, [10], [4]

and [24].

The following list describes the environment and programs which needs to be installed to

use the simulator:

• Windows 7

• Python (2.7)

• Altera Modelsim

• Windows commandline

File structure

synchronous_pipeline

VHDL

work

2-phase-bundled-data

scripts

not_random

Bounded2_c

Single_fault(not_rand)_2

Bounded2_t

random

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

D
ie

 a
pp

ro
bi

er
te

 g
ed

ru
ck

te
 O

rig
in

al
ve

rs
io

n
di

es
er

 D
ip

lo
m

ar
be

it
is

t a
n

de
r

T
U

 W
ie

n
B

ib
lio

th
ek

 v
er

fü
gb

ar
.

T
he

 a
pp

ro
ve

d
or

ig
in

al
 v

er
si

on
 o

f t
hi

s
th

es
is

 is
 a

va
ila

bl
e

in
 p

rin
t a

t T
U

 W
ie

n
B

ib
lio

th
ek

.
D

ie
 a

pp
ro

bi
er

te
 g

ed
ru

ck
te

 O
rig

in
al

ve
rs

io
n

di
es

er
 D

ip
lo

m
ar

be
it

is
t a

n
de

r
T

U
 W

ie
n

B
ib

lio
th

ek
 v

er
fü

gb
ar

.
T

he
 a

pp
ro

ve
d

or
ig

in
al

 v
er

si
on

 o
f t

hi
s

th
es

is
 is

 a
va

ila
bl

e
in

 p
rin

t a
t T

U
 W

ie
n

B
ib

lio
th

ek
.

Bounded2_c

Bounded2_t

VHDL

sim_post_2_beh

work

4-phase-bundled-data

scripts

not_random

Bounded4_c

Single_fault(not_rand)

Bounded4_t

random

Bounded4_c

Bounded4_t

VHDL

sim_post_4_beh

work

How To

The simulator is divided into three major folders, which can be run separately. The folders 2-

phase-bundled-data and 4-phase-bundled-data contain the whole test setup for the 2-phase

and 4-phase bundled data pipeline implementation. The folder synchronous_pipeline contains

the synchronous pipeline fault injection test setup.

For the asynchronous pipeline implementations also some .bat files are created which help to

start and execute the simulation in a more automated way. For the synchronous pipeline Model-

sim has to be started and the working directory has to be changed to the folder where the folder

work is located, then the simulation can be started. There are always two folders VHDL and

scripts for each pipeline structure. VHDL contains all the circuit and test bench implementa-

tion, changes of circuit parameters have to be done inside here. In folder scripts the python code

and batch scripts are stored for automated test execution.

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Contents
	Introduction
	Motivation
	Aims and Scope
	Structure of the Master's Thesis

	Background
	Asynchronous logic
	Classification and Operating modes
	Handshake Protocols
	Pipeline and Data flow control
	Fault Models and Masking effects

	Comparison of Models
	Token and Transition Based Fault Description
	State Graph
	Signal Transition Graph
	Trace Based Description
	Probability Model

	Fault Injection Setup
	4-phase bundled data
	2-phase bundled data

	Simulation
	Simulation of 4-phase bundled data pipeline
	Simulation of 2-phase bundled data pipeline

	Comparison
	Synchronous Pipeline
	Masking Effect Results

	Summary
	Summary

	Bibliography
	Code

