

DIPLOMARBEIT

Leichtbaukonzepte

Ein Leitfaden zur Entwicklung von Leichtbaukonstruktionen in korrosiver Umgebung

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines

Diplom-Ingenieurs

unter der Leitung von

Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Manfred Grafinger

(E307 Institut für Konstruktionswissenschaften und Technische Logistik)

eingereicht an der Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Ing. Dipl.-Ing. Norbert Holzinger, BSc

e00825810 (066 434)

Norbert Holzinger

Wien, 31.10.2019

Ich habe zur Kenntnis genommen, dass ich zur Drucklegung meiner Arbeit unter der Bezeichnung

Diplomarbeit

nur mit Bewilligung der Prüfungskommission berechtigt bin.

Ich erkläre weiters Eides statt, dass ich meine Diplomarbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen selbstständig ausgeführt habe und alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, genannt habe.

Weiters erkläre ich, dass ich dieses Diplomarbeitsthema bisher weder im In- noch Ausland (einer Beurteilerin/einem Beurteiler zur Begutachtung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit übereinstimmt.

Norbert Holzinger

Wien, 31.10.2019

Danksagung

An dieser Stelle möchte ich mich bei all jenen bedanken, die mich nicht nur während der Diplomarbeit, sondern auch während des ganzen Studiums begleitet und unterstützt haben.

Besonders möchte ich mich bei meinem Betreuer, Manfred Grafinger, für die anregenden fachlichen Gespräche und Diskussionen von den Grundlagen bis hin zur praktischen Anwendung danken.

Darüber hinaus möchte ich mich bei den Kolleginnen und Kollegen der Studienkommission Materialwissenschaften und den Dekanaten bedanken, die durch Erstellung und Wartung des Masterstudiums Materialwissenschaften dieses interfakultäre Studium möglich und studierbar machten und machen.

Kurzfassung

Leichtbau gewinnt an Bedeutung. Die Zahl der optimierten Werkstoffe steigt stetig und die unterstützende Standardsoftware sowie die notwendige Hardware wird immer preiswerter und effizienter in der Anwendung. Diese neuen Möglichkeiten erfordern jedoch umfangreicheres und spezifischeres Know-how der Konstrukteur_innen und Berechnungsingenieur_innen. Ist in einer Firma entsprechendes Know-how nicht vorhanden, so ist dessen Erwerb aufwendig und mit hohen Kosten verbunden. Bei mittel- und langfristiger bzw. taktischer und strategischer Planung kann es notwendig sein, hierfür Spezialisten einzustellen und sehr spezifische Software zu beschaffen. Besonders für kleine Betriebe ist es eine Herausforderung, diese teuren Ressourcen ohne Leerlaufzeiten und damit effizient einzusetzen.

Aus technischer Sicht gestaltet sich die Entwicklung von Leichtbaukonstruktionen noch komplexer, wenn über die statische und dynamische Festigkeit sowie die Steifigkeit hinaus weitere Rahmenbedingungen die Konstruktionsfreiheit einschränken. Dies ist insbesondere bei erhöhter Korrosionsgefahr wie z.B. in maritimer Umgebung der Fall. Die Korrosion ist nicht nur von dem mechanischen Design, sondern auch von der Umgebung abhängig. Die Korrosion wirkt sich auf das Erscheinungsbild der Konstruktionen, aber auch auf die Zeit- und Dauerfestigkeit der Werkstoffe aus.

Ziel dieser Arbeit ist es, auf einzelne Bereiche von Leichtbaukonstruktionen einzugehen und Ansätze bzw. Konzepte vorzustellen, welche die Entwicklung von Leichtbaukonstruktionen in korrosiver Umgebung erleichtern. Methoden für die Materialauswahl, die Abschätzung der Kontaktkorrosion, die massensparende Konstruktionsoptimierung am Beispiel des Designs einer statischen Dichtstelle sowie das Aufzeigen des Leichtbaupotentials der Bauteiloptimierung mit unterstützender Software sind hierbei beispielhaft angeführte Schwerpunkte. Die entwickelten Konzepte richten sich besonders an Konstrukteur_innen mit wenig Erfahrung und / oder mit beschränkten technischen und finanziellen Mitteln. Ihnen sollen Hilfsmittel zur Verfügung gestellt werden, um hochwertige und zuverlässige Konstruktionen zu entwickeln.

Abstract

Lightweight design is becoming more important. The number of optimized materials is constantly increasing and the supporting standard software as well as the necessary hardware is becoming cheaper and more efficient to use. However, these new possibilities require more extensive and specific know-how of the mechanical design engineers and CAE engineers. If a company does not have the necessary know-how, its acquisition is costly and time-consuming. For medium- and longterm or tactical and strategic planning, it may be necessary to hire specialists and procure very specific software. Especially for small companies it is a challenge to use these expensive resources efficiently without idle times.

From a technical point of view, the development of lightweight structures is even more complex, if in addition to static and dynamic strength and stiffness, other framework conditions restrict the freedom of design. This is particularly the case with increased risk of corrosion, e.g. in maritime environments. Corrosion depends not only on the mechanical design, but also on the environment. Corrosion has not only an effect on the appearance of the structures, but also on the time and fatigue strength of the materials.

The aim of this work is to address individual areas of lightweight construction and to present approaches and concepts that facilitate the development of lightweight construction in corrosive environments. Methods for the selection of materials, the estimation of contact corrosion, the mass saving design optimization using the example of the design of a static sealing point as well as the demonstration of the lightweight construction potential of component optimization with supporting software are examples of the focal points listed here. The concepts developed are particularly aimed at designers with little experience and/or limited technical and financial resources. They are to be provided with tools to develop high-quality and reliable designs.

Inhaltsverzeichnis

1	Ei	nleit	ung	1
2	W	erks	toffauswahl	3
	2.1	nnung der Beanspruchung	3	
	2.1	.1	Leichtbautauglichkeit bei Zug- bzw. Druckbelastung	4
2.1.2		.2	Leichtbautauglichkeit bei Biegebelastung	5
	2.1	.3	Leichtbautauglichkeit bei Abscherbelastung	7
	2.1	.4	Leichtbautauglichkeit bei Torsionsbelastung	8
2.1.5			Auswertung	. 10
	2.2	Opt	timale Querschnittsauswahl	. 13
	2.3	Kor	rosionsbeständigkeit	. 13
	2.4	Zus	sammenfassung	. 15
3	Er	ntwic	klung eines Versuchsaufbaus zur Kontaktkorrosionsabschätzung	. 17
	3.1	Gru	Indidee	. 17
	3.2	Auf	bau der Kontaktkorrosionstestbaugruppen	. 18
3.3 Erv			vartungen an die Ergebnisse	. 22
	3.4	Erg	ebnisse	. 25
	3.4	.1	Freiliegend korrosiv belastete Testbaugruppen	. 25
	3.4	.2	In einer Klimakammer korrosiv belastete Testbaugruppen	. 35
	3.5	Zus	ammenfassung	. 44
4	Aı	nalyt	ische Konstruktionsoptimierung	. 46
	4.1	Auf	bau der Dichtungsstelle	. 46
	4.1	.1	Weichstoff-Profildichtung	. 47
	4.1	.2	Nut- und Bundflansch inkl. Verschraubung	. 53
	4.2	Not	wendige Bedingungen für eine funktionierende Dichtung	. 59
4.2.1		.1	Verformung der Flansche	. 59
4.2.2			Festigkeit der Flansche	. 60
	4.2	.3	Festigkeit und Abmessungen des Schraubenmaterials	. 61
	4.3	Ana	alyse der Konstruktionsoptimierung	. 68
	4.4	Zus	ammenfassung	. 75
5	Тс	polo	ogie- und Konstruktionsoptimierung	. 76
	5.1	Тор	pologieoptimierung	. 76

	5.2	2 Konstruktionsoptimierung	. 76
	5.3	Praktische Bauteiloptimierung	. 77
	5.4	Zusammenfassung	. 91
6		Ausblick	. 92
	6.1	Werkstoffauswahl	. 92
	6.2	2 Entwicklung eines Versuchsaufbaus zur Kontaktkorrosionsabschätzung	. 92
	6.3	Analytische Konstruktionsoptimierung	. 93
	6.4	Topologie- und Konstruktionsoptimierung	. 93
7		Literaturverzeichnis	. 94
8		Abbildungsverzeichnis	. 96
9		Tabellenverzeichnis	. 98
1	0	Abkürzungsverzeichnis	. 99

1 Einleitung

Es bestehen Zusammenhänge zwischen Geometrie, Werkstoff, Festigkeit, Steifigkeit, Oberflächenbehandlung und Korrosionsbeständigkeit der einzelnen Bauteile in Konstruktionen. Nicht alle Bauteile können aus allen Werkstoffen hergestellt werden, und nicht alle Werkstoffe sind für alle Umgebungsbedingungen der Konstruktionen geeignet.

Es stellt sich daher die Frage, wie der optimale Werkstoff für eine Anwendung ausgewählt werden kann und mittels welcher Möglichkeiten die Bauteilgeometrie auf den Verwendungszweck hin optimiert werden kann.

In den folgenden Kapiteln wird auf ausgewählte Problemstellungen am Beispiel der Entwicklung von mobilen Maschinen für den Einsatz in Meerwasserumgebung eingegangen. Eingangs werden Problemstellungen erörtert und analysiert. In weiterer Folge werden Lösungsansätze vorgestellt. Deren Fokus liegt auf der Einfachheit in der Anwendung und der einfachen Integrierbarkeit in firmeninterne Konstruktionsleitfäden.

Bei der Entwicklung von Leichtbaukonstruktionen ist beispielsweise folgender Ablauf zur Werkstoffauswahl sinnvoll:

- Identifizierung der kritischen Bereiche eines Konstruktionsentwurfes inkl. Belastungsart und Höhe der Belastung.
- Treffen einer Auswahl an geeigneten Werkstoffen, die zu einer geringen Masse führen. Die Auswahl ist anhand der Belastungsart und der Festigkeit der Werkstoffe zu treffen. Je nach Anforderung an die Steifigkeit ist diese ebenfalls zu berücksichtigen. Kommen mehrere Werkstoffe in Frage, ist die engere Auswahl z.B. in Form eines hinsichtlich minimaler Masse gereihten Vorschlages in die folgenden Schritte mitzunehmen. Wie so ein Vorschlag erarbeitet werden kann ist in Kapitel 2 ersichtlich.
- Prüfung auf Korrosionsbeständigkeit, insbesondere bei Materialpaarungen. Die Umgebung und der Elektrolyt im Bereich der Kontakte sind entscheidend für die Bewertung hinsichtlich der Kontaktkorrosion. Idealerweise sind unter Berücksichtigung des vorherigen Schrittes idente Werkstoffe für alle in Kontakt stehenden Bauteile zu wählen. Eine möglichst einheitliche Materialauswahl verringert die Anzahl an verschiedenen Werkstoffpaarungen. Dies verringert die Anzahl der verschiedenen Korrosionsprozesse und in weiterer Folge das Risiko von Folgeschäden. Das Produkt ist darüber hinaus leichter zu recyclen. Kommt nach dieser Prüfung kein Werkstoff mehr für diese Anwendung in Frage, muss der Kreis der in Frage kommender Werkstoffe im vorherigen Schritt erweitert werden, anhand von geeigneten Maßnahmen die Mög-

lichkeit der Korrosion eingeschränkt oder Korrosionserscheinungen müssen in höherem Maß toleriert bzw. mögliche Schäden eingeplant werden. Die Korrosion kann somit über die Einsatzdauer der Konstruktion geplant und gesteuert werden. Bei sichtbaren Oberflächen kann es aus marketingtechnischen Gründen gewünscht sein, dass diese keine Korrosionserscheinungen aufweisen. Dies gilt insbesondere für Schlüsselelemente im Hinblick auf Sicherheit und Funktion, da sichtbare Korrosionserscheinungen das Vertrauen in die Qualität des Produktes drücken können. Wie bei ungenügenden Kenntnissen über die Korrosionsprozesse bei Kontaktkorrosion vorgegangen werden kann, ist in Kapitel 3 ersichtlich.

Die folgenden Schritte eignen sich sehr gut für eine Konstruktionsoptimierung mittels geeigneter Software. Sie sind aber je nach Geometrie vereinfacht auch analytisch mit einem zum Teil beträchtlichen Aufwand durchführbar. In Kapitel 4 wird anhand einer statischen Dichtstelle eine analytische Konstruktionsoptimierung durchgeführt.

- (Überschlagsmäßige) Berechnung und Dimensionierung der kritischen Bereiche, ausgehend von der Festigkeit. Wichtig ist hierbei die zielführende Wahl von Querschnitten unter Berücksichtigung der Vermeidung von Einschränkungen bei der Fertigung (insbesondere bei Hohlquerschnitten).
- (Überschlagsmäßige) Steifigkeitsprüfung im Hinblick auf die zulässigen Verformungen.
- Detaillierte Dimensionierung der Bauteile unter Vermeidung von Spannungsspitzen und zu hohen Verformungen sowie unter Beachtung der Fertigbarsowie (De-) Montierbarkeit.
- Prüfung, ob die Steifigkeit des Bauteiles weiterhin hoch genug ist. Ggf. ist eine Stabilitätsprüfung (Beulen, Knicken) erforderlich.

Ist eine Software zur Konstruktions- und Topologieoptimierung vorhanden, so ist diese nach Möglichkeit zu nutzen. Wichtig ist hierbei eine möglichst genaue Kenntnis über die auftretenden Belastungen des Bauteils (inkl. der notwendigen Lastspielanzahl) und die daraus resultierende Wahl der zulässigen Spannungen. Mittels Softwareeinsatz ist eine genaue Massenabschätzung möglich. In Kapitel 5 wird eine softwareunterstützte Optimierung eines Bauteiles anhand verschiedener Herangehensweisen demonstriert. Die Werkstoffauswahl ist im Zuge einer softwaregestützten Konstruktionsoptimierung neben der Wahl der optimalen Abmessungen ebenfalls möglich.

2 Werkstoffauswahl

In diesem Kapitel wird auf die Möglichkeit der analytischen Werkstoffwahl hingearbeitet.

Für die in dieser Arbeit angeführten Berechnungen werden folgende Vereinfachungen getroffen:

- Als Pool an zur Auswahl stehenden Werkstoffen wird eine Reihe von isotropen Werkstoffen herangezogen. Dieser umfasst Aluminium-, Stahl-, Titanund Magnesiumlegierungen.
- Die zulässige Belastung hängt stark von der zu ertragenden Lastspielanzahl ab. Für z.B. Aluminium- und Titanlegierungen und für alle Werkstoffe in korrosiver Umgebung liegt keine Dauerfestigkeit vor. Deshalb werden die notwendigen zulässigen Festigkeitswerte durch die Dehngrenze ersetzt. Die Werkstoffe werden somit bei statischer Belastung verglichen.

2.1 Trennung der Beanspruchung

Die optimale Werkstoffauswahl ist von der Belastungsart abhängig. Daher werden folgende Belastungsarten getrennt analysiert:

- Zug- und Druckbelastung (Die Druckbelastung wird in dieser Arbeit vernachlässigt, da auf Beulen und Knicken nicht eingegangen wird)
- Biegebelastung
- Abscherungsbelastung
- Torsionsbelastung

Da bei Biege- und Torsionsbelastung nicht nur die Größe, sondern auch die Form des Querschnitts für die Werkstoffauswahl relevant ist, werden genormte Profile als Referenzquerschnitte herangezogen. Die Abmessungen und Festigkeitswerte sind aus der Fachliteratur entnehmbar [1].

Die zuvor beschriebenen Belastungen werden einzeln betrachtet. Optimiert wird hinsichtlich Masse und Steifigkeit.

Zur Vereinfachung der Berechnung wird angenommen, dass die Wirkungslinien sämtlicher Belastungen durch den Schubmittelpunkt verlaufen, da sonst zusätzliche Belastungen auftreten. Eine Überlagerung zweier Belastungen wäre die Folge.

2.1.1 Leichtbautauglichkeit bei Zug- bzw. Druckbelastung

$$\sigma_{z,d} = \frac{F_{z,d}}{A} \le \sigma_{z,d,zul}$$

$$m' = A * \rho$$
(2.1)

(2.2)

$$\varepsilon = \left| \frac{F_{z,d}}{E * A} \right|$$

(2.3)

... Zug- bzw. Druckspannung $\sigma_{z,d}$... zulässige Zug- bzw. Druckspannung $\sigma_{z,d,zul}$... Zug- bzw. Druckkraft normal auf den Querschnitt $F_{z,d}$ Α ... Querschnittsfläche ... Masse pro Längeneinheit m'... Dichte des Werkstoffes ρ ... Betrag der Verzerrung ε ... Elastizitätsmodul des Werkstoffes Ε

Einsetzen und Umformen führt zu folgenden Ungleichungen:

$$m' \ge F_{z,d} * \frac{\rho}{\sigma_{z,d,zul}}$$

$$\varepsilon = \frac{F_{z,d}}{m'} * \frac{\rho}{E}$$
(2.4)
(2.5)

Für eine minimale spezifische Bauteilmasse lässt sich folgende Bedingung ableiten:

$$m'_{min,z,d} = f(min\left(\frac{\rho}{\sigma_{z,d,zul}}\right)) \propto f(min\left(\frac{\rho}{R_{p0,2}}\right))$$
(2.6)

R_{p0,2} ... Dehngrenze

Für eine maximale spezifische Bauteilsteifigkeit lässt sich bei konstanter Masse folgende Bedingung ableiten:

$$\varepsilon_{\min,z,d} = f(\min\left(\frac{\rho}{E}\right))$$

2.1.2 Leichtbautauglichkeit bei Biegebelastung

$$\sigma_{b} = \frac{M}{W_{ax}} \le \sigma_{b,zul}$$

$$m' = A * \rho$$
(2.8)

 $\kappa = \left| \frac{M}{E * I_{ax}} \right|$

(2.10)

(2.9)

Biegespannung zulässige Biegespannung Biegemoment Betrag der Krümmung
axiales Widerstandsmoment axiales Flächenträgheitsmoment

Es besteht kein Zusammenhang zwischen dem Betrag der Querschnittsfläche und dem Betrag des Widerstandsmomentes. Dieser Zusammenhang kann jedoch anhand bekannter Standardquerschnitte von Profilen abgeschätzt werden und ist in Abbildung 1 ersichtlich.

Abbildung 1: Zusammenhang zwischen dem axialen Widerstandsmoment und der Querschnittsfläche von Standardprofilen

Es ist ersichtlich, dass Vollquerschnitte keine effiziente Querschnittsflächenausbeute hinsichtlich eines hohen axialen Widerstandsmomentes aufweisen. Daher sind sie nicht für eine maximale Bauteiltragfähigkeit geeignet und sollten vermieden werden. Auch T- und L-Profile erweisen sich als nicht geeignet für eine maximale Bauteiltragfähigkeit.

Die Querschnittsflächen- und damit auch die Massenausbeute ist am Höchsten bei hohlen rechteckigen, hohen quadratischen, hohlen kreisförmigen sowie von I-Profilen. Daher sind diese Querschnitte sehr gut für eine maximale Bauteiltragfähigkeit geeignet. Aufgrund dieser Ähnlichkeiten werden für die weiteren Berechnungen vertretend für den optimalen Querschnitt hohle, rechteckige Profile berücksichtigt.

Mathematisch wird der Zusammenhang zwischen maximalem axialen Widerstandsmoment und Querschnittsfläche wie folgt beschrieben:

$$W_{ax} = W_{ax,Rechteckprofil,hohl} = 0,6142 * \left(\frac{A}{\text{mm}^2}\right)^{1,6358} * \text{mm}^3$$
(2.11)

Es besteht kein eindeutiger Zusammenhang zwischen der Querschnittsfläche und dem Flächenträgheitsmoment. Dieser kann jedoch ebenfalls anhand bekannter Standardquerschnitte abgeschätzt werden.

Mathematisch wird der Zusammenhang zwischen maximalem axialen Widerstandsmoment und Querschnittsfläche wie folgt beschrieben:

$$I_{ax} = I_{ax,Rechteckprofil,hohl} = 0,7542 * \left(\frac{A}{\text{mm}^2}\right)^{2,2476} * \text{mm}^4$$
(2.12)

Einsetzen und Umformen führt zu folgenden Ungleichungen:

$$m' \ge \sqrt[1,6358]{\frac{M}{0,6142}} * \frac{\rho}{\frac{1,6358}{\sqrt{\sigma_{b,zul}}}}$$

$$\kappa = \frac{M}{0.7542 * m'^{2,2476}} * \frac{\rho^{2,2476}}{E}$$
(2.13)

(2.14)

Für eine minimale spezifische Bauteilmasse lässt sich folgende Bedingung ableiten:

$$m'_{\min,z,d} = f(\min\left(\frac{\rho}{\frac{1,6358}{\sqrt{\sigma_{b,zul}}}}\right)) \propto f(\min\left(\frac{\rho}{\frac{1,6358}{\sqrt{R_{p0,2}}}}\right))$$

Für eine maximale spezifische Bauteilsteifigkeit lässt sich bei konstanter Masse folgende Bedingung ableiten:

$$\varepsilon_{\min,z,d} = f(\min\left(\frac{\rho^{2,2476}}{E}\right))$$
(2.16)

2.1.3 Leichtbautauglichkeit bei Abscherbelastung

$$\tau_a = \frac{F_a}{A} \le \tau_{zul}$$

$$m' = A * \rho$$
(2.17)
(2.18)

$$=\frac{F_a}{G*A}$$

(2.19)

 τ_a ... Abscherspannung τ_{zul} ... zulässige Schubspannung F_a ... Abscherkraft im Querschnitt γ ... Schubwinkel (angenähert für kleine Winkel)G... Schubmodul des Werkstoffes

Einsetzen und Umformen führt zu folgenden Ungleichungen:

γ

$$m' \ge F_a * \frac{\rho}{\tau_{zul}}$$

$$\gamma = \frac{F_a}{m'} * \frac{\rho}{G}$$
(2.20)

(2.21)

Für eine minimale spezifische Bauteilmasse lässt sich folgende Bedingung ableiten:

$$m'_{min,Abscherung} = f(min\left(\frac{\rho}{\tau_{zul}}\right)) \propto f(min\left(\frac{\rho}{R_{p0,2}}\right))$$
(2.22)

(2.15)

TU Bibliotheks Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. WIEN ^{vour knowledge hub} The approved original version of this thesis is available in print at TU Wien Bibliothek.

Für eine maximale spezifische Bauteilsteifigkeit lässt sich bei konstanter Masse folgende Bedingung ableiten:

$$\gamma_{min,Abscherung} = f(min\left(\frac{\rho}{G}\right)$$
(2.23)

2.1.4 Leichtbautauglichkeit bei Torsionsbelastung

$$\tau_T = \frac{T}{W_p} \le \tau_{zul}$$

$$m' = A * \rho$$
(2.24)

$$\gamma' = \frac{\mathrm{T}}{\mathrm{G} * I_t}$$

(2.26)

 τ_T ... Torsionsspannung

T ... Torsionsmoment

 γ^{\prime} ... Schubwinkel pro Längeneinheit

G ... Schubmodul Schubmodul des Werkstoffes

 W_p ... polares Widerstandsmoment

... Drillwiderstand ($I_t = I_p$ bei Kreisquerschnitt)

Es besteht kein eindeutiger Zusammenhang zwischen der Querschnittsfläche und des polaren Widerstandsmomentes. Dieser kann jedoch anhand bekannter Standardquerschnitte abgeschätzt werden. Dieser Zusammenhang ist in Abbildung 2 ersichtlich. Hierbei ist anzumerken, dass die Torsion von offenen Profilen zu sehr geringer Steifigkeit führt, und diese somit für den Leichtbau nicht in Frage kommen. Aus diesem Grund werden für den Vergleich nur geschlossene Profile in Betracht gezogen.

 I_t

Abbildung 2: Zusammenhang zwischen dem polaren Widerstandsmoment und Querschnittsfläche von Standardprofilen

Es ist ersichtlich, dass Vollquerschnitte keine effiziente Querschnittsflächenausbeute hinsichtlich eines hohen Torsionswiderstandsmomentes aufweisen. Daher sind sie nicht für eine maximale Bauteiltragfähigkeit geeignet und sollten vermieden werden.

Die Querschnittsflächen- und damit auch die Massenausbeute ist am Höchsten bei möglichst rotationssymmetrischen Hohlprofilen. Daher sind diese Querschnitte sehr gut für eine maximale Bauteiltragfähigkeit geeignet. Für die weiteren Berechnungen werden vertretend für den optimalen Querschnitt hohle, kreisförmige Profile berücksichtigt.

Mathematisch wird der Zusammenhang zwischen Widerstandsmoment und Querschnittsfläche wie folgt beschrieben:

$$W_p = W_{p,Kreisprofil,hohl} = 0,7166 * \left(\frac{A}{\text{mm}^2}\right)^{2,4746} * \text{mm}^3$$
(2.27)

Es besteht kein eindeutiger Zusammenhang zwischen der Querschnittsfläche und dem Drillwiderstand. Dieser kann jedoch anhand bekannter Standardquerschnitte abgeschätzt werden.

Mathematisch wird der Zusammenhang zwischen Drillwiderstand und Querschnittsfläche wie folgt beschrieben:

$$I_{t,Kreisprofil,hohl} = 0,7785 * \left(\frac{A}{\text{mm}^2}\right)^{1,7549} * \text{mm}^4$$

(2.28)

Einsetzen und Umformen führt zu folgenden Ungleichungen:

$$m' \geq \sqrt[2,4746]{\frac{T}{0,7166} * \frac{\rho}{2,4746} \sqrt{\tau_{zul}}}$$
(2.29)
$$\gamma' = \frac{T}{0.7785 * m'^{1,7549}} * \frac{\rho^{1,7549}}{G}$$
(2.30)

Für eine minimale spezifische Bauteilmasse lässt sich folgende Bedingung ableiten:

$$m'_{min,Torsion} = f(min\left(\frac{\rho}{\frac{2,4746}{\sqrt{\tau_{zul}}}}\right)) \propto f(min\left(\frac{\rho}{\frac{2,4746}{\sqrt{R_{p0,2}}}}\right))$$

(2.31)

Für eine maximale spezifische Bauteilsteifigkeit lässt sich bei konstanter Masse folgende Bedingung ableiten:

$$\gamma'_{min,Torsion} = f(min\left(\frac{\rho^{1,7549}}{G}\right))$$
(2.32)

2.1.5 Auswertung

Ausgehend von einer Liste an Werkstoffdaten wird unter Anwendung der in den vorherigen Kapiteln erstellten Kriterien und Vereinfachungen eine Werkstoffbeurteilung erstellt. Diese ist in Tabelle 1 ersichtlich. Tabelle 1: Werkstoffauswahl bei verschiedenen Belastungsarten. Je kürzer die roten Balken, desto besser ist dieser Werkstoff für den Anwendungsfall geeignet. Die Zahlenwerte geben die zugehörigen Vergleichswerte wieder. Die Werkstoffdaten sind unter [2], [3] und [4] ersichtlich.

Werkstoffe				Zug/Druck		Biegung		Abscherung		Torsion	
Werkstoff	Bezeichnung	alternative Bezeichnung	Werkstoff- Nummer	$\rho/R_{p0,2}$	ρ/Ε	$\rho/\sqrt[1,6359]{R_{p0,2}}$	$\rho^{2,2476}/E$	$\rho/R_{p0,2}$	ρ/G	$\rho/\sqrt[2,4746]{R_{p0,2}}$	$\rho^{1,7549}/G$
	EN AW 6082	AlMgSi1F31	3.2315.72	1,04E+01	3,86E-02	9,02E+01	7,37E+02	1,04E+01	1,00E-01	2,85E+02	3,89E+01
Aluminium-	EN AW 5754	AIMg3F24	3.3535.26	1,50E+01	3,86E-02	1,13E+02	7,37E+02	1,50E+01	1,00E-01	3,31E+02	3,89E+01
Legierungen	EN AW 7020	AlZn4,5Mg1F35	3.4335.71	9,31E+00	3,86E-02	8,43E+01	7,37E+02	9,31E+00	1,00E-01	2,73E+02	3,89E+01
	S185	St33	1.0035	4,11E+01	3,71E-02	3,16E+02	2,66E+03	4,11E+01	9,63E-02	9,36E+02	8,35E+01
	S235JRG1	USt37-2	1.0036	3,32E+01	3,71E-02	2,77E+02	2,66E+03	3,32E+01	9,63E-02	8,59E+02	8,35E+01
	\$235JR	St37-2	1.0037	3.32E+01	3.71E-02	2.77E+02	2.66E+03	3.32E+01	9.63E-02	8.59E+02	8.35E+01
	\$275JR	St44-2	1.0044	2.84E+01	3.71E-02	2.52E+02	2.66E+03	2.84E+01	9.63E-02	8.06E+02	8.35E+01
	\$335JR	St53-3	1.0045	2.20E+01	3.71E-02	2.15E+02	2.66E+03	2.20E+01	9.63E-02	7.27E+02	8.35E+01
	E295	St50-2	1.0050	2.64E+01	3.71E-02	2.41E+02	2.66E+03	2.64E+01	9.63E-02	7.84E+02	8.35E+01
	E335	St60-2	1.0060	2.33E+01	3.71E-02	2,23E+02	2.66F+03	2.33E+01	9.63E-02	7.44E+02	8.35F+01
	E360	St70-2	1.0070	2.17E+01	3.71E-02	2,13E+02	2.66E+03	2.17E+01	9.63E-02	7,23E+02	8.35E+01
Baustähle	\$23510	St37-3U	1.0114	3.32E+01	3.71E-02	2.77E+02	2.66F+03	3.32E+01	9.63E-02	8 59E+02	8.35E+01
	\$27510	St44-3U	1.0143	2.84E+01	3.71E-02	2.52E+02	2.66F+03	2.84E+01	9.63E-02	8.06F+02	8.35E+01
	-	St 37-2K	1.0161	2 44E+01	3 71E-02	2,322+02	2 66E+03	2 44E+01	9.63E-02	7 58E+02	8 35E+01
	E295.GC	St50-2K	1.0533	1.86E+01	3 71E-02	1.94E+02	2 66E+03	1.86E+01	9 63E-02	6 79E+02	8 35E+01
	E335 GC	St60-2K	1.0543	1 59E+01	3 71E-02	1,77E+02	2.66E+03	1 59E+01	9 63E-02	6 38E+02	8 35E+01
	\$33510	St60-2U	1.0553	2,20E+01	3.71E-02	2,15E+02	2.66E+03	2,20E+01	9.63E-02	7,27E+02	8.35E+01
	\$3551263	St52-3	1.0570	2 20E+01	3 71E-02	2,15E+02	2,00E+03	2,20E+01	9.63E-02	7.275-02	8 35E+01
	535332G3	St70-2K	1.0570	1 305+01	3 71E-02	1.63E+02	2,00L+03	1 305+01	9,63E-02	6.05E+02	8 35E±01
	E300 GC	S170-2K	1.0055	2.055+01	2,710,02	2,075+02	2,00000	2,055+01	9,032-02	7.075+02	0,55001
	-	C10	1.0301	1.915+01	2,710,02	2,072+02	2,000+03	1.0101	9,032-02	6 72E 102	0,530+01
	-	CL10	1.0401	2,010+01	3,710-02	1,922+02	2,000+03	2,005+01	9,032-02	7.005+02	0,530+01
Finestastähle	2010	CR10	1.1121	1 775+01	3,71E-02	2,03E+02	2,00000	1 775 +01	9,03E-02	7,00E+02	8,35E+01
EInsatzstanie	3C13		1.1140	1 1 5 5 + 01	3,710-02	1,892+02	2,00000	1,772+01	9,032-02	6,67E+02	0,33E+01
		13CHNI0	1.5919	1,130+01	3,710-02	1,45E+02	2,000+03	1,150+01	9,032-02	5,59E+02	0,550+01
			1.0523	1,24E+01	3,71E-02	1,52E+02	2,00000	1,246+01	9,03E-02	5,77E+02	8,35E+01
	17CINIMO0	TTCHNINO6	1.0387	9,402+00	3,71E-02	1,28E+02	2,00000	9,40E+00	9,03E-02	5,102+02	8,35E+01
	X39Crivi017-1	-	1.4122	1,562+01	3,002-02	1,/SE+02	2,63E+03	1,562+01	9,63E-02	6,33E+02	8,35E+01
	X5CrN(18-10	XSCINI 18 9	1.4301	3,/1E+01	3,90E-02	2,97E+02	2,80E+03	3,/1E+01	9,63E-02	8,99E+02	8,35E+01
Nicht-	X3CrNIM013-14	-	1.4313	9,75E+00	3,61E-02	1,31E+02	2,59E+03	9,75E+00	9,63E-02	5,24E+02	8,35E+01
rostende	X2CrNIN24-4	-	1.4362	1,95E+01	3,90E-02	2,00E+02	2,80E+03	1,95E+01	9,63E-02	6,93E+02	8,35E+01
Stanie	X3C/INIMO17-12-2	X3C-NIMO 17 12 2	1.4401	3,552+01	4,33E-02	2,88E+02	3,112+03	3,550+01	1,15E-01	8,82E+02	9,95E+01
	X2CrNIMON17-13-3	X2Crivition 17 13 3	1.4429	2,04E+01	3,90E-02	2,41E+02	2,80E+03	2,046+01	9,63E-02	7,84E+02	8,35E+01
	X6CFINITI18-10	X10CRN11189	1.4541	3,90E+01	3,90E-02	3,06E+02	2,80E+03	3,90E+01	9,03E-02	9,17E+02	8,35E+01
	1022	C22	1.0402	3,39E+01	3,/1E-02	2,81E+02	2,66E+03	3,39E+01	9,63E-02	8,66E+02	8,35E+01
	1035	C35	1.0501	2,000+01	3,/1E-02	2,39E+02	2,00000	2,000+01	9,03E-02	7,782+02	8,35E+01
	1045	C45	1.0503	2,291+01	3,/1E-02	2,21E+02	2,00000	2,295+01	9,63E-02	7,40E+02	8,35E+01
	1060	C60	1.0601	2,05E+01	3,71E-02	2,07E+02	2,00E+03	2,05E+01	9,03E-02	7,07E+02	8,35E+01
	3022	Cm22	1.1149	2,23E+01	3,/1E-02	2,1/E+02	2,66E+03	2,23E+01	9,63E-02	7,31E+02	8,35E+01
	CZZE	CK22	1.1151	2,29E+01	3,/1E-02	2,21E+02	2,66E+03	2,29E+01	9,63E-02	7,40E+02	8,35E+01
	C25E	Ck25	1.1158	2,11E+01	3,/1E-02	2,10E+02	2,66E+03	2,11E+01	9,63E-02	7,15E+02	8,35E+01
	28Mn6	28Mn6	1.1170	1,32E+01	3,/1E-02	1,58E+02	2,66E+03	1,32E+01	9,63E-02	5,92E+02	8,35E+01
Vergütungs-	C30E	CK30	1.11/8	1,95E+01	3,/1E-02	2,00E+02	2,66E+03	1,95E+01	9,63E-02	6,93E+02	8,35E+01
stähle	3C35	Cm35	1.1180	1,81E+01	3,/1E-02	1,92E+02	2,66E+03	1,81E+01	9,63E-02	6,/3E+02	8,35E+01
	C40E	CK40	1.1186	1,/0E+01	3,/1E-02	1,84E+02	2,66E+03	1,/0E+01	9,63E-02	6,55±+02	8,35E+01
	3V45	Cm45	1.1201	1,56E+01	3,/1E-02	1,/5E+02	2,66E+03	1,56E+01	9,63E-02	6,33E+02	8,35E+01
	CSSE	CK55	1.1203	1,42E+01	3,/1E-02	1,65E+02	2,66E+03	1,42E+01	9,63E-02	6,09E+02	8,35E+01
	COL	CKSU	1.1206	1,50E+01	3,/1E-02	1,/1E+02	2,66E+03	1,50E+01	9,63E-02	6,23E+02	8,35E+01
	COUE	CKOU	1.1221	1,34E+01	3,/1E-02	1,59E+02	2,00E+03	1,34E+01	9,63E-02	5,96E+02	8,35E+01
	36CrNiMo4	36CrNiMo4	1.6511	8,67E+00	3,/1E-02	1,22E+02	2,66E+03	8,6/E+00	9,63E-02	4,99E+02	8,35E+01
	30CrNIMo8	30CrNiMo8	1.6580	7,43E+00	3,/1E-02	1,11E+02	2,66E+03	7,43E+00	9,63E-02	4,69E+02	8,35E+01
	34CrNiMo6	34CrNiMo6	1.6582	7,80E+00	3,/1E-02	1,14E+02	2,66E+03	7,80E+00	9,63E-02	4,78E+02	8,35E+01
	30NICrIVI016	30NICrIVI016	1.6//3	7,43E+00	3,/1E-02	1,11E+02	2,00E+03	7,43E+00	9,63E-02	4,69E+02	8,35E+01
	111	Grade 1	3.7025	2,65E+01	4,30E-02	1,95E+02	1,56E+03	2,65E+01	1,14E-01	5,66E+02	6,55E+01
	112	Grade 2	3.7035	1,64E+01	4,30E-02	1,46E+02	1,56E+03	1,64E+01	1,14E-01	4,66E+02	6,55E+01
Titan-	113	Grade 3	3.7055	1,19E+01	4,30E-02	1,19E+02	1,56E+03	1,19E+01	1,14E-01	4,09E+02	6,55E+01
legierungen	Ti 4	Grade 4	3.7065	9,30E+00	4,25E-02	1,03E+02	1,54E+03	9,30E+00	1,13E-01	3,71E+02	6,49E+01
-	116AI-4V	Grade 5	3.7165	5,34E+00	3,89E-02	7,28E+01	1,38E+03	5,34E+00	1,03E-01	2,93E+02	5,85E+01
	Ti2Pd	Grade 7	3.7235	1,64E+01	4,17E-02	1,45E+02	1,51E+03	1,64E+01	1,11E-01	4,65E+02	6,35E+01
	Ti3Al-2,5V	Grade 9	3.7195	7,23E+00	4,35E-02	8,79E+01	1,56E+03	7,23E+00	1,16E-01	3,33E+02	6,60E+01
	MgMn2		3.5200.08	1,09E+01	4,09E-02	7,94E+01	4,71E+02	1,09E+01	1,10E-01	2,29E+02	3,17E+01
Magnesium-	MgAl3Zn		3.5312.08	1,16E+01	4,09E-02	8,25E+01	4,71E+02	1,16E+01	1,10E-01	2,35E+02	3,17E+01
legierungen	MgAl6Zn		3.5612.08	1,03E+01	4,09E-02	7,66E+01	4,71E+02	1,03E+01	1,10E-01	2,23E+02	3,17E+01
	MgAl8Zn		3.5812.08	8,37E+00	4,09E-02	6,75E+01	4,71E+02	8,37E+00	1,10E-01	2,05E+02	3,17E+01

Für Zug- bzw. Druckbelastungen ist aus jeder Werkstoffkategorie ein ähnlich gut geeigneter Werkstoff auswählbar. Ohne weitere Einschränkungen wäre hierbei ein hochlegierter Vergütungsstahl zu wählen, da das notwendige Bauteilvolumen minimal wird. Bei Druckbelastung besteht aufgrund des resultierenden kleineren Querschnittes Knickgefahr, weshalb ggf. noch als Nebenkriterium eine ausreichend hohe Knickkraft zu beachten ist. Unter Umständen würde somit unter Druckbelastung die Wahl auf einen anderen Werkstoff fallen.

Für Biegebelastungen sprechen die Werkstoffeigenschaftsrelationen eindeutig für die Wahl von Aluminium-, Titan- oder Magnesiumlegierungen. Ist eine hohe Steifigkeit gefordert, sollte eine Magnesiumlegierung gewählt werden. Besteht keine hohe Anforderung nach einer hohen Steifigkeit, könnte z.B. ein Vergütungsstahl aufgrund des geringeren Volumens zugunsten einer geringfügig höheren Bauteilmasse gewählt werden.

Bei Abscherbelastung ist ähnlich wie bei Zug- bzw. Druckbelastung aus jeder Werkstoffgruppe ein geeigneter Werkstoff wählbar. Auch hier könnte zugunsten eines geringen Bauteilvolumens ein hochlegierter Vergütungsstahl gewählt werden.

Bei Torsion fällt die Wahl der Tabelle nach eindeutig auf Aluminium- und Magnesiumlegierungen.

Es ist jedoch bei der Wahl eines Werkstoffes mit geringer Dichte zu beachten, dass durch diese Wahl die Bauteilabmessungen auf ein Vielfaches ansteigen können. Dies kann z.B. bei Getriebewellen aufgrund der daraus folgenden Notwendigkeit an größeren Lagern und Gehäusen insgesamt zu einer größeren Masse der Gesamtkonstruktion führen.

2.2 Optimale Querschnittsauswahl

In Kapitel 2.1 zeigte sich deutlich, wie die Wahl von verschiedenen Querschnitten die spezifische Tragfähigkeit und die spezifische Steifigkeit eines Bauteiles beeinflussen.

Bei Biegungsbelastung ist darauf zu achten, dass möglichst viel Fläche möglichst weit von der neutralen Faser entfernt ist. Hohlprofile eignen sich hierbei hervorragend. Bei Torsionsbelastung ist darauf zu achten, dass ein geschlossenes, idealerweise rotationssymmetrisches Hohlprofil verwendet wird. Bei Druckbelastung bewirken Hohlprofile Vorteile in Form einer geringeren Knickgefahr.

Allgemein ist auf ein günstiges Stabilitätsverhalten des Bauteiles zu achten.

2.3 Korrosionsbeständigkeit

Die Korrosionsbeständigkeit von Bauteilen und Konstruktionen ist nicht einfach zu quantifizieren. Der Grund hierfür ist, dass schon eine ungünstige Materialpaarung, ein ungünstiger Fertigungsschritt oder eine ungünstige Umgebung massive Korrosionserscheinungen und Korrosionsschäden zur Folge haben kann. Diese können von optischen Unschönheiten bis hin zu mechanischen Bauteilversagen reichen. Die Korrosionsbeständigkeit ist somit keine Werkstoffeigenschaft, sondern eine Systemeigenschaft.

Daher sind Werkstoffangaben wie "korrosionsbeständig" oder im Fall von Stählen "rostfrei" immer mit Vorsicht zu genießen. In diesem Zusammenhang muss zwischen Korrosionsschaden (Funktion beeinträchtigt) und Korrosionserscheinung (Korrosion ist ersichtlich) unterschieden werden. Die Abgrenzung für die jeweilige Konstruktion muss für den Materialauswahl- und Designprozess eindeutig definiert sein.

Im Zuge der Werkstoffauswahl wird eine Einschränkung getroffen, die jene Werkstoffe beinhaltet, welche in der Einsatzumgebung für den Einsatzzweck beständig sind. Als grundsätzlich für den Offshore-Einsatz geeignet werden Werkstoffe angesehen, welche bei Anwesenheit von Sauerstoff selbstständig eine Passivschicht ausbilden. Dazu gehören beispielsweise:

- Stähle mit mehr als 10,5 % Masseanteil an Chrom ("rostfreie Stähle")
- Aluminiumlegierungen
- Nickellegierungen
- Titanlegierungen

Da Aluminium-, Stahl- und Titanlegierungen bereits hinsichtlich der mechanischen Eigenschaften analysiert wurden, wird auf diese weiter eingegangen. Die im vorigen Kapitel analysierten Magnesiumlegierungen werden nicht mehr betrachtet, da diese sehr anfällig für Korrosion und somit für den Offshore-Einsatz ungeeignet sind.

Bei Aluminiumlegierungen ist anzumerken, dass Legierungen mit der Bezeichnung EN AW 7xxx zwar die mit den höchsten Festigkeitswerten sind, jedoch laut Datenblättern eine sehr schlechte Korrosionsbeständigkeit aufweisen. Es sind daher Legierungen mit der Bezeichnung EN AW 6xxx zu bevorzugen.

Bei Stahllegierungen fällt die Wahl auf nichtrostende Stähle. Dazu gehören austenitische Stähle, aber auch austenitisch-ferritische Stähle (Duplex-Stähle). Der Chromgehalt in der Randschicht kann durch eine Säurebehandlung erhöht werden (wegätzen von anderen Materialen, insbesondere von Eisen), wodurch die Passivschicht verbessert wird.

Bei Titanlegierungen fällt die Wahl auf Ti6AI-4V (Grade 5). Diese Legierung ist sehr gut verfügbar und weist eine sehr gute Kombination aus Festigkeit, Steifigkeit und Beständigkeit auf. Als Sondergüte Ti6AI-4ELI ("Extra-low-Interstitials", Grade 23) weist diese Legierung zwar eine um ca. 10 % geringere Streckgrenze und einen um ca. 5 % geringeren Elastizitätsmodul, jedoch sehr gute Bruchzähigkeitseigenschaften, eine gute Schwingfestigkeit sowie eine verbesserte Beständigkeit in chlorhaltiger Umgebung auf.

Die Korrosionsbeständigkeit kann auch mittels Beschichtungen bewerkstelligt werden. Die Idee hinter einer Beschichtung ist die Unterbrechung des Elektronenflusses oder der Ionendiffusion, bzw. die Trennung des korrosionsgefährdeten Werkstoffes von dem Elektrolyten. Geeignet ist bei Stählen hierfür z.B. die Vernickelung von ferritischen Stählen, da Nickel eine Passivschicht ausbildet. Für einen effektiven Korrosionsschutz muss die Nickelschicht jedoch durchgehend sein. Ist diese zu dünn oder beschädigt, korrodiert an dieser Stelle das Grundmaterial (Anode). Bei Gefahr von Oberflächenbeschädigungen ist z.B. eine Verzinkung von Stahl hier besser geeignet, da im Beschädigungsfall die Zinkschicht (Anode) angegriffen wird, der Stahl darunter jedoch geschützt wird. In der Praxis werden auch Lackierungen auf Kunststoffbasis (z.B. Polyurethan) verwendet. Eine Verstärkung der Passivschicht durch Eloxieren / Anodisieren von Aluminium(-legierungen) und Titan(-legierungen) ist möglich und empfehlenswert. Unabhängig von der Beschichtungsart wirkt sich eine hohe Schichtdicke positiv auf die Beständigkeit aus.

Soll auf Lackierungen verzichtet werden, und das optische Erscheinungsbild von Interesse sein, ist neben Verhinderung von z.B. chloridbedingter Lochfraßkorrosion darauf zu achten, dass Kontaktkorrosion möglichst unterbunden wird. Dies kann dadurch erfolgen, indem möglichst idente Werkstoffe für die Bauteile einer Konstruktion verwendet werden. Bei Dichtungen und Verbindungselementen kann es aufgrund des Kontakts verschiedener Werkstoffe zu Korrosion kommen, weshalb diese Bereiche näher untersucht werden. Darauf wird in Kapitel 3 genauer eingegangen.

Ein sehr effektiver Korrosionsschutz wird auch dadurch erreicht, indem die Anwesenheit des Elektrolyten unterbunden wird. Daher ist bei der Konstruktion darauf zu achten, dass Flüssigkeiten gut und schnell abrinnen können und sich somit keine Elektrolytansammlungen bilden können. Die Fließrichtung kann sich hierbei positiv auf die Beständigkeit auswirken, wenn der Elektrolyt von der Kathode zur Anode fließt und somit den Ionentransport behindert (z.B. in Rohrleitungen).

2.4 Zusammenfassung

Die Werkstoffauswahl lässt sich durch Bildung von vergleichbaren Kennwerten gut auf verschiedene Anforderungen anwenden. Zu jeder parametrisierten Geometrie kann ein Kennwert gebildet werden, nach dem die Werkstoffauswahl vorgenommen werden kann.

Die weit verbreitete Meinung, dass für Leichtbaukonstruktionen Aluminium-, Titanund Magnesiumlegierungen besser geeignet sind als Stahllegierungen, muss relativiert werden. Zwar beinhaltet die Tabelle nicht alle möglichen Werkstoffe, jedoch kann man schlussfolgern, dass bis auf bei Torsionsbelastung Stahllegierungen ein sehr ähnliches Leichtbaupotential aufweisen als die anderen Legierungen. Der größte Vorteil von Stahllegierungen gegenüber anderen Legierungen ist, dass die Bauteile mit einem geringeren Bauraum auskommen. Die folgenden Auswirkungen auf die Gesamtmasse der Konstruktion z.B. aufgrund kleinerer und damit meist leichterer Lagerungen sowie Gehäuse müssen ebenfalls analysiert werden. Bei vorgegebenem minimalem Bauteilvolumen (z.B. Mindestwandstärke, Mindestdurchmesser, etc.) besteht eine hohe Wahrscheinlichkeit auf eine effektive Massenminimierung mittels Einsatzes von Legierungen geringerer Dichte.

Wenn z.B. Lackierungen keine Option sind, beschränkt sich die Auswahl an möglichen Werkstoffen auf wenige, im Offshore-Bereich beständige Werkstoffe. Neue Werkstoffe bewirken neue Werkstoffkombinationen und führen zu neuen, unter Umständen kaum erforschten Korrosionssystemen. Umfangreiche Tests sind notwendig um diese hinreichend zu verstehen. Diese sind jedoch aufwendig, zeitintensiv und teuer. Weiter müssen diese früh im Entwicklungsprozess durchgeführt werden um von Anfang an in die Konstruktion einfließen zu können. Dies kann zu langen Wartezeiten oder je nach Know-how der Konstruktionsabteilung zu einer mehr oder weniger zielführenden Korrosionsbeständigkeit führen. Eine nachträgliche Werkstoffänderung ist unter Umständen nur mittels umfangreicher Konstruktionsänderung zu realisieren. Wie Tests beispielweise gestaltet werden können, ist in Kapitel 3 angeführt. Wenn die Möglichkeit umfangreicher Tests nicht besteht, sollte auf bekannte Werkstoffe zurückgegriffen werden. Die genaue Kenntnis der tatsächlichen Materialkennwerte ist notwendig um knapper am Festigkeitslimit konstruieren zu können. Es ist darauf zu achten, dass die Kennwerte des gelieferten Rohmaterials im gewünschten Bereich liegen. Die Fertigung ist ebenso wichtig. Hierbei ist z.B. darauf zu achten, dass es zu keinen ungewollten Gefügeumwandlungen durch zu hohe Temperaturspitzen kommt. Bei Biegeteilen darf keine unzulässige Materialschädigung aufgrund zu gering gewählter Biegeradien eintreten. Es ist auch darauf zu achten, ob Bauteile bei Fremdfertigung aus einem Rohteil gefertigt oder z.B. per Schweißung gestückelt wurden.

3 Entwicklung eines Versuchsaufbaus zur Kontaktkorrosionsabschätzung

Im Zuge dieser Diplomarbeit wird im Speziellen auf die Korrosionsbeständigkeit für Offshore-Anwendungen eingegangen. Es sollen diverse Eigenschaften von Kombinationen von Bauteilen aus Aluminium- und Stahllegierungen ausgewiesen werden, da diese oft verwendete Werkstoffe für Konstruktionen sind und in einem preislich verhältnismäßig günstigen Bereich liegen.

Es ist immer das gesamte Korrosionssystem zu betrachten. Dieses beinhaltet neben Werkstoffen bzw. Werkstoffpaarungen den Elektrolyten und die weitere Umgebung (z.B. Einflüsse durch Temperatur und Wind). Zur weiteren Umgebung zählen auch die Anwesenheit von Mikrobakterien, leitende Verbindungen von zwei Bauteilen durch die geerdete Armierung von (beschädigten) Stahlbeton sowie Tierexkremente.

Um die Auswirkungen der Korrosion besser abschätzen zu können, können Korrosionstests durchgeführt werden. Bei der Gestaltung von Tests ist auf die Entstehung aller im Betrieb auftretenden bzw. nicht abschätzbarer Korrosionsprozesse einzugehen. Diese Tests sind möglichst unter realen Bedingungen durchzuführen.

3.1 Grundidee

Um Aussagen über das Kontaktkorrosionsverhalten treffen zu können, kann ein Kontaktkorrosionstest nützlich sein. Dazu wird eine Zusammenstellung einer oder mehrerer Test-Baugruppen, die alle möglichen Werkstoffe bzw. Werkstoffkombinationen der Konstruktion enthalten erstellt, deren Korrosionsprozesse inkl. deren Auswirkungen mit dem aktuell verfügbarem Wissenstand nicht genau abgeschätzt werden können. Auch kann hierdurch sehr gut veranschaulicht werden, wie wichtig die richtige Werkstoffauswahl ist, indem bewusst auch ungeeignete Werkstoffe und Werkstoffpaarungen zum Vergleich verwendet werden.

Folgendes könnte getestet werden:

- Kontaktkorrosion zwischen verschiedensten Metallen bzw. Legierungen
 - Metalle mit intakter Beschichtung (vernickelter und verzinkte Werkstoffe, Werkstoffe mit eigener und verstärkter Passivschicht, etc.)
 - Metalle mit defekter Beschichtung (mittels Aufbringens von Kratzer, Schleifspuren, etc.)

 Kombination von verschiedensten Metallen bzw. Legierungen mit verschiedenen Verschraubungswerkstoffen (z.B. rostfreier Stahl, verzinkter Stahl, unbehandelter Schraubenwerkstoff, etc.)

Diese Test-Baugruppen werden an einer Stelle mit den gleichen Bedingungen platziert, wo die eigentliche Konstruktion ihren Dienst verrichten soll. Beobachtungen sollen Aufschluss darüber liefern, wie sich die Korrosion der Werkstoffkombinationen im Verlauf der Zeit verhält. Dadurch kann eine Vorhersage getroffen werden, wann welche Effekte und Erscheinungen eintreten werden (falls sie überhaupt eintreten).

Es ist bei der Auswertung zu beachten, dass durch einen solchen Testaufbau keine Schlüsse auf die sinkende mechanische Festigkeit aufgrund z.B. Lochfraßkorrosion getroffen werden kann. Hierfür sind andere Versuchsanordnungen besser geeignet.

Es standen einige Werkstoffe und Verschraubungsmaterial kostengünstig zur Verfügung, weshalb sich der Aufbau von Test-Baugruppen zur Analyse der Kontaktkorrosion diverser Werkstoffe angeboten hat. Eine Beschichtungsmöglichkeit um die Werkstoffpaarungen mit intakten und defekten Schutzschichten testen zu können stand ebenfalls zur Verfügung. Es konnten jedoch nur sehr geringe Schichtdicken für primär optische Zwecke bewerkstelligt werden. Es bestand die Möglichkeit, diese Testbaugruppen auf einer kleinen Insel in der Nordsee nahe der Küste sicher zu positionieren, und diesen mittels übertragenen Fotos auswerten zu können. Ebenso ergab sich zu einem späteren Zeitpunkt die Möglichkeit, die identen Testbaugruppen nochmals aufbauen zu können um einen Salzsprühnebeltest in einer Klimakammer durchführen zu lassen. Ziel ist es, diese Tests getrennt zu evaluieren, und die Ergebnisse zu vergleichen. Daraus soll analysiert werden, wie zielführend die einzelnen Tests sind und wodurch es ggf. zu Unterschieden kommt. Schlussendlich soll die Frage beantwortet werden, welche der Werkstoffe und Werkstoffpaarungen für den Offshore-Einsatz geeignet sind. Die Auswirkungen bei Verwendung von ungeeigneten Werkstoffen und Werkstoffpaarungen, unzweckmäßigen Verschraubungsmaterialien sowie unzureichender Schutzmaßnahmen soll für Schulungszwecke verdeutlicht werden.

3.2 Aufbau der Kontaktkorrosionstestbaugruppen

Der Aufbau der Testbaugruppen ist in Abbildung 3 angeführt und wird im Anschluss beschrieben.

Abbildung 3: Beispiel für einen Kontaktkorrosionsprüfstand

Der Grundkörper der Test-Baugruppen besteht aus einer Aluminiumlegierung (EN AW 5052) mit Bohrungen in der Basis zur Montage an einer geeigneten Stelle. An alle vier Seiten wird ein Halter aus identem Werkstoff (in Abbildung 3 beispielsweise aus EN AW 6061-T6, schwarz anodisiert, hier mit "6061" gekennzeichnet) angeschraubt. An jeder der vier Seiten wird nur eine Art Verschraubung im Hinblick auf die Werkstoffauswahl verwendet (Markierung "V1" bis "V4"). An jeder Seite wird der Grundwerkstoff mit Platten aus zehn verschiedenen Prüfwerkstoffen (mit "1" bis "10" markiert) verschraubt. Dieser Aufbau wird für unterschiedliche Halter aus verschiedenen Grundwerkstoffen so oft wie gewünscht wiederholt. Die Markierungen sind notwendig, um Verwechslungen bei der Montage und bei der Analyse zu vermeiden. In diesem Fall wurden die Markierungen aus Kostengründen nicht gelasert, sondern geätzt.

Im Zuge dieses Tests wurden drei verschiedenen Grundwerkstoffe getestet:

- G1: EN AW 6061, schwarz anodisiert (Schichtdicke 3-5 μm), Kennzeichnung "6061"
- G2: EN AW 7075, schwarz anodisiert (Schichtdicke 3-5 μm), Kennzeichnung "7075"
- G3: Rostfreier Stahl (da keine genauere Bezeichnung vorhanden ist, wird daher von austenitischem Stahl mit der Werkstoffnummer 1.4301 ausgegangen), Kennzeichnung "AS"

Die Grundwerkstoffe wurden mit folgenden Prüfwerkstoffen kombiniert:

- 1: Rostfreier Stahl (ident zu G1)
- 2: Rostfreier Stahl (ident zu G1), behandelt mit Zitronensäure (ein Tag)
- 3: Rostfreier Stahl (ident zu G1), behandelt mit Zitronensäure (vier Tage)
- 4: EN AW 6061-T6, schwarz anodisiert (ident zu G2)
- 5: EN AW 6061-T6, schwarz anodisiert (ident zu G2) mit zerkratzter Schutzschicht
- 6: EN AW 7075-T6, schwarz anodisiert (ident zu G3)
- 7: EN AW 7075-T6, schwarz anodisiert (ident zu G3) mit zerkratzter Schutzschicht
- 8: C45, vernickelt (Schichtdicke 3-5 μm)
- 9: C45, vernickelt (Schichtdicke 3-5 µm) mit zerkratzter Schutzschicht
- 10: CFK (Kohlenfaserverstärkter Kunststoff), da nur wenig hiervon zur Verfügung stand ist eine beschichtete CFK-Platte zerschnitten worden, die Schnittflächen wurden nur poliert und nicht nachbehandelt, auf eine Markierung wurde aufgrund der Bearbeitung verzichtet (eine optische Verwechslung ist jedoch nicht möglich)

Die Grundwerkstoffe und Prüfwerkstoffe wurden mittels folgenden Verschraubungsarten verschraubt:

- V1
- Schraube: rostfreier Stahl (A4)
- Scheibe: rostfreier Stahl (A4)
- Mutter: rostfreier Stahl (A4)
- V2
- Schraube: rostfreier Stahl (A2)
- Scheibe: rostfreier Stahl (A2)
- Mutter: rostfreier Stahl (A2)
- V3
- Schraube: verzinkter Stahl
- o Scheibe: verzinkter Stahl
- o Mutter: verzinkter Stahl
- V4
- o Schraube: rostfreier Stahl (A4)
- o Scheibe: verzinkter Stahl
- Mutter: rostfreier Stahl (A2)

Bei der Montage wurde bei der Mutter eine Scheibe als Unterlage verwendet. Es wird einheitlich die Schraube von außen montiert. Nach Möglichkeit wurde darauf geachtet, dass Schraubenkopf und Mutter im verschraubten Zustand so ausgerichtet sind, dass eine der Flanken des Sechskants waagrecht ausgerichtet ist (siehe hierzu Abbildung 3). Auf diese Weise kann sich Flüssigkeit ansammeln, was korrosionsfördernd ist und früher zu sichtbaren Korrosionserscheinungen und damit zu Ergebnissen führen kann.

Das Zerkratzen der von der Kontaktfläche abgewandten Oberfläche der Bauteile aus den Prüfwerkstoffen erfolgte mittels einer Schleifscheibe. Es wurde auf möglichst gleiche Beschädigung aller zu beschädigenden Prüfwerkstoffplatten geachtet. Um die Markierungen nicht zu entfernen wurde nur unterhalb der Markierungen geschliffen. Im Anschluss erfolgte eine gründliche Reinigung der Oberfläche. Die Kontaktflächen wurden nicht beschädigt, da ein Zerlegen der Testbaugruppen sowie einer Analyse der Kontaktflächen nicht vorgesehen war. Anmerkung: Werden nur Beschichtungen gezielt geprüft, findet man in DIN EN ISO 17872 einen Leitfaden zum Anbringen von Ritzen durch eine Beschichtung für die Korrosionsprüfung.

3.3 Erwartungen an die Ergebnisse

Für die Kontaktkorrosion ist die relative Lage zueinander in der elektrochemischen Spannungsreihe notwendig, aber nicht hinreichend. Sie deutet darauf hin, dass ein Korrosionsstrom fließen kann, welcher jedoch aufgrund von hohen Widerständen (z.B. schlechter Kontakt oder einer ausgebildeten Passivschicht) nicht zu Korrosion führen muss. Das Vorhandensein eines Elektrolyten ist ebenfalls notwendig und entscheidend für die Entstehung von Korrosion. Im Zusammenspiel fungiert das unedlere Metall als Anode, das edlere als Kathode. Bei Korrosion gibt die Anode Ionen an den Elektrolyten und Elektronen an die Kathode ab, was zum Auflösen der Anode führt. Betrachtet man die Werkstoffe Stahl und Aluminium allgemein, wird beim Blick auf die elektrochemische Spannungsreihe eine Zersetzung der unedleren Aluminiumlegierungen erwartet. Der Effekt ist bei hoher spezifischer Leitfähigkeit des Elektrolyten umso ausgeprägter. In der Praxis wird dieser Effekt gezielt z.B. bei Schiffen angewendet. Durch Anbringung einer sogenannten Opferanode wird gezielt ein Material (z.B. Magnesium) zugunsten des zu schützenden Werkstoffes bzw. Bauteiles (z.B. des Schiffsrumpfes) geopfert.

Ein Blick auf die elektrochemische Spannungsreihe hilft somit bei der Einschätzung, ob Korrosion überhaupt auftreten kann. Zu diesem Zweck kann es hilfreich sein, die elektrochemische Spannungsreihe in dem vorliegenden Elektrolyten bei den erwarteten Umgebungsbedingungen zu betrachten. Für Meerwasser ist diese in Abbildung 4 ersichtlich.

Abbildung 4: Elektrochemische Spannungsreihe in Meerwasser bei 10 °C [5]

Bei den in Kapitel 2.3 herausgehobenen Werkstoffen handelt es sich um Werkstoffe, die eine Passivschicht ausbilden. Dies erschwert eine Abschätzung der Korrosionsprozesse, da sich Passivschichten bei Vorhandensein eines Elektrolyten zwar auflösen können, sich aber bei aufgetrocknetem Elektrolyten wieder selbstständig neu bilden. Einflüsse wie z.B. die Passivschicht störende Wirkung von Chlorid können hierbei nicht abgelesen werden.

Die Dauer der Elektrolyteinwirkung ist somit relevant aber unter Umständen inkl. den Auswirkungen im Vorfeld nicht bekannt.

Die Auswirkung der Strömungsgeschwindigkeit und -richtung des Elektrolyten relativ zu den korrodierenden Werkstoffen kann relevant sein. Ein strömender Elektrolyt kann Korrosionsprodukte verschleppen und zu Korrosionseffekten an anderen, unerwarteten Stellen führen. Diese Effekte kennt man z.B. von Trinkwasserleitungen.

EN AW 7075 gilt wie alle Werkstoffe mit der Bezeichnung EN AW 7xxx als wenig beständig in Meereswasser [4]. Folglich wird – ebenso wie bei der Probe aus vernickeltem C45 – Korrosion zumindest bei zerstörter oder unzureichender Schutzschicht erwartet.

Im Vergleich dazu gilt EN AW 6061 wie alle Werkstoffe mit der Bezeichnung EN AW 6xxx als meerwasserbeständig [4]. Da dessen Passivschicht in Meerwasserumge-

bung durch Chloride angreifbar ist, sind die Ergebnisse der Kombination von EN AW 6061 mit rostfreiem Stahl von besonderem Interesse.

Unter rostfreiem Stahl versteht man Stähle mit einem Massenanteil von weniger als 1,2 % Kohlenstoff und mindestens 10,5 % Chrom. Chromoxid in der Randschicht führt zu einer Passivschicht. Die Randschicht kann jedoch bei Anwesenheit von freiem Eisen zumindest lokal korrodieren. Deshalb ist für die Bearbeitung von rostfreiem Stahl (umgangssprachlich auch "Edelstahl" genannt) spezielles Werkzeug zu verwenden, welches kein Eisen beinhaltet (z.B. Legierungen aus Chrom und Vanadium) oder entsprechend beschichtet ist (z.B. Titan-Nitrid). Somit wird die Anhaftung von freiem Eisen verhindert. Ein Ansatz, um vorhandenes freies Eisen aus der Randschicht zu entfernen, ist eine Säurebehandlung. Mittels Zitronensäure (günstig, einfacher handzuhaben und zu entsorgen) wird versucht die Korrosionsbeständigkeit durch wegätzen von Eisen in der Randschicht zu erhöhen. Die Passivierung mittels Säure ist immer der letzte Fertigungsschritt, eine Entzunderung und eine Beizung geht der Säurebehandlung auf die Korrosionsbeständigkeit.

Die Korrosion des CFK-Prüfmaterials wird aufgrund der bei Beschädigung der Matrix freiliegenden Kohlenstofffaser von Bedeutung sein, insbesondere bei der Kombination des Kohlenstoffes mit Aluminium (sehr großer Unterschied in der elektrochemischen Spannungsreihe). Auch bei Verschraubungen mit Schrauben aus rostfreiem Stahl können Korrosionsprozesse ersichtlich sein, Abbildung 5 verdeutlicht dies.

Abbildung 5: CFK-Probekörper im Verbau mit einer M8-Schraube aus rostfreiem Stahl (A2) nach korrosiver Belastung [7]

3.4 Ergebnisse

Für eine ausführliche Analyse der freiliegenden Test-Baugruppen standen diese nicht zur Verfügung, da sie noch in der Nordsee für einen Langzeittest ausliegen. Folglich ist eine Zerlegung der Baugruppen und eine Analyse der Kontaktflächen nicht möglich. Die Auswertung erfolgt anhand der erhaltenen Fotos. Die Erkenntnisse gliedern sich in Auffälligkeiten zu Beginn der Tests, nach einer Woche und nach drei Monaten korrosiver Belastung.

Parallel dazu konnten die Test-Baugruppen, die einen sechswöchigen Test in einer Klimakammer absolvierten, zerlegt und analysiert werden. Die Erkenntnisse aus beiden Tests werden schlussendlich verglichen.

3.4.1 Freiliegend korrosiv belastete Testbaugruppen

Auffälligkeiten zu Testbeginn

Schon am ersten Tag nach der Ausbringung waren die ersten Korrosionserscheinungen erkennbar. In Abbildung 6 ist ersichtlich, dass die Prüfwerkstoffe 8 und 9 (C45, vernickelt) offenbar für diesen Einsatz nicht geeignet ist, da nicht nur in den Bereichen der zerkratzten Schutzschicht, sondern auch unter anderem in den Bereichen um den Schraubenkopf Korrosionserscheinungen erkennbar sind. Ein ähnliches Bild zeigt sich bei diesen Prüfwerkstoffen innerhalb der ersten zwei Tage auf allen Test-Baugruppen (siehe z.B. Abbildung 7 und Abbildung 8), unabhängig von Grundwerkstoff und Verschraubungstyp. Der einzige Unterschied liegt an der teilweisen unterschiedlichen Position der Korrosionserscheinungen in den Bereichen der nicht zerkratzten Schutzschicht.

Abbildung 6: EN AW 6061, V4, Ansicht von außen, ein Tag korrosiv belastet, © Total E&P UK Limited

Abbildung 7: EN AW 7075, V2, Ansicht von außen, zwei Tage korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Abbildung 8: rostfreier Stahl, V1, Ansicht von außen, zwei Tage korrosiv belastet, © Total E&P UK Limited

Auffälligkeiten nach einer Woche

Nach einer Woche korrosiver Belastung sind die schon zu Beginn aufgetretenen Korrosionserscheinungen ausgeprägter erkennbar. Zum Vergleich sind in Abbildung 9, Abbildung 10 und Abbildung 11 dieselben auffälligen Stellen wie zu Beginn des Tests ersichtlich.

Abbildung 9: EN AW 6061, V4, Ansicht von außen, eine Woche korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Abbildung 10: EN AW 7075, V2, Ansicht von außen, eine Woche korrosiv belastet, © Total E&P UK Limited

Abbildung 11: rostfreier Stahl, V1, Ansicht von außen, eine Woche korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Beim Grundwerkstoff G3 (rostfreier Stahl) sind bei der Verschraubungsart V4 (gemischt) Korrosionserscheinungen auf der verzinkten Scheibe zu beobachten. Dies ist in Abbildung 12 ersichtlich.

Abbildung 12: rostfreier Stahl, V4, Ansicht von innen, eine Woche korrosiv belastet, $\mbox{$^{\odot}$}$ Total E&P UK Limited

In Abbildung 12 fällt auf, dass beim Grundwerkstoff 3 (rostfreier Stahl) die verzinkten Scheiben bei den Prüfwerkstoffen 5 (EN AW 6061, zerstörte Schutzschicht, 5. Platte von rechts) und 7 (EN AW 7075, zerstörte Schutzschicht, 7. Platte von rechts) keine Korrosionserscheinungen zeigen. Dieser Effekt lässt sich mittels Schutzwirkung der

als Anode wirkenden Prüfwerkstoffe gegenüber dem als Kathode wirkenden Zinks erklären. Einerseits ist es aus konstruktiver Sicht gut, wenn das Verschraubungsmaterial die Kathode bildet, da somit das Verhältnis Kathodenfläche zu Anodenfläche gering ist. Dadurch wird die Korrosionsstromdichte und damit die Korrosion verringert. Andererseits wirkt die verzinkte Scheibe bei der gemischten Verschraubungsart innerhalb der Verschraubung als Anode gegenüber der Schraube und Mutter. Bei den Prüfwerkstoffen 4 und 6 (EN AW 6061 und EN AW 7075, je mit intakter Schutzschicht) schützt die Aluminiumlegierung die verzinkte Scheibe nicht, weshalb die Scheiben Korrosionserscheinungen zeigen. Ähnliche Effekte sind bei allen gemischten Verschraubungen im Laufe der Zeit zu erwarten, unabhängig vom Grundwerkstoff und den Prüfwerkstoffen.

Die anderen Verschraubungsarten zeigen durchgehend keine Korrosionserscheinungen.

Auffälligkeiten nach drei Monaten

Nach drei Monaten sind die schon zu Beginn auftretenden Auffälligkeiten bei den Prüfwerkstoffen 8 und 9 (C45 vernickelt) noch ausgeprägter bemerkbar und in Abbildung 13, Abbildung 14 und Abbildung 15 ersichtlich. Es ist kaum mehr ein Unterschied erkennbar zwischen anfangs intakter und zerstörter Schutzschicht. Zusätzlich ist der Abtransport von Korrosionsprodukten z.B. in Abbildung 15 gut ersichtlich. Dies ist auch an anderen Stellen erkennbar.

Abbildung 13: EN AW 6061, V4, Ansicht von außen, drei Monate korrosiv belastet, © Total E&P UK Limited

Abbildung 14: EN AW 7075, V2, Ansicht von außen, drei Monate korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Abbildung 15: rostfreier Stahl, V1, Ansicht von außen, drei Monate korrosiv belastet, © Total E&P UK Limited

Im Vergleich zu Abbildung 12 ist in Abbildung 16 ersichtlich, dass nun an allen gemischten Verschraubungen (V4) Korrosion deutlich erkennbar ist.

Abbildung 16: rostfreier Stahl, V4, Ansicht von innen, drei Monate korrosiv belastet, © Total E&P UK Limited

Es ist auch anhand Abbildung 13, Abbildung 14 und Abbildung 15 ersichtlich, dass sich beim Prüfwerkstoff 7 (EN AW 7075, anodisierte, zerkratzte Schutzschicht) eine matte Oberfläche gebildet hat, welche Weißrost zu sein scheint. Korrosionsprodukte (und / oder Verunreinigungen bzw. das Fehlen von Farbpartikel der schwarz anodisierten Schutzschicht) finden sich unterhalb aller Prüfwerkstoffen die mit einer Aluminiumlegierung gepaart wurden mit Ausnahme der Prüfwerkstoffe 4 und 5 (EN AW 6061, intakte und zerstörte Schutzschicht) sowie des Prüfwerkstoffs 6 (EN AW 7075, intakte Schutzschicht). Auch ist diesbezüglich kein relevanter Unterschied zwischen den verschiedenen Grundkörpern 1 und 2 (EN AW 6061 und EN AW 7075, anodisiert) und unter Verwendung verschiedener Verschraubungsarten ersichtlich.

Bei Verschraubungsart 3 (verzinkt) zeigt sich eine schützende Wirkung des Zinks insbesonders auf die Prüfwerkstoffe 8 und 9 (C45, vernickelt, intakte und zerstörte Schutzschicht). Dieser Effekt war zuvor noch nicht in diesem Ausmaß erkennbar. Eine Kombination mit dem Prüfwerkstoff 10 (CFK) zeigt ebenfalls Korrosionserscheinungen in Form von matt wirkenden Schraubenköpfen. Dies ist in Abbildung 17 ersichtlich. Die Kombination von verzinktem Schraubenmaterial mit Aluminiumlegierungen zeigte aufgrund des geringen Potentialunterschieds keine Korrosionserscheinungen (Abbildung 18). In Kombination mit dem Grundwerkstoff 3 (rostfreier Stahl) sind jedoch Korrosionserscheinungen erkennbar (Abbildung 19).

Abbildung 17: EN AW 6061, V3, Ansicht von außen, 3 Monate korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Abbildung 18: EN AW 6061, V3, Ansicht von innen, 3 Monate korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Abbildung 19 rostfreier Stahl, V3, Ansicht von innen, 3 Monate korrosiv belastet, $\ensuremath{\mathbb{C}}$ Total E&P UK Limited

Zusammenfassung der Tests von freiliegend korrosiv belasteten Testbaugruppen

Es kann daraus geschlossen werden, dass eine Werkstoffpaarung aus zwei Aluminiumlegierungen beständig ist, wenn die Schutzschicht intakt ist oder das kleinere Bauteil aus einer EN AW 6xxx Legierung besteht (geringe Kathodenfläche).

Die Werkstoffpaarungen zwischen einer Aluminiumlegierung und rostfreiem Stahl zeigen im allgemeinen nur geringe Korrosionserscheinungen. Eine Verbesserung ist mit einer dickeren anodisierten Schutzschicht bei den Aluminiumlegierungen zu erwarten. Hierbei ist eine Analyse der Kontaktfläche aufschlussreich.

Kein Unterschied ist zwischen den Prüfwerkstoffen 1 – 3 (rostfreier Stahl) ersichtlich, d.h. die Behandlung mit Säure hat offenbar bis auf den Bereich der geätzten Nummerierung keine erkennbare Verbesserung der Korrosionsbeständigkeit zur Folge.

Bei der Wahl des Schraubenmaterials zeigen sich bei den einheitlichen Verschraubungen mittels Verschraubungsart 1 (A4) und 2 (A2) keine Korrosionserscheinungen.

Bei gemischter Verschraubung zeigen die verzinkten Scheiben sehr starke Korrosionserscheinungen. Allgemein zeigt verzinktes Schraubenmaterial keine hohe Korrosionsbeständigkeit.

3.4.2 In einer Klimakammer korrosiv belastete Testbaugruppen

Die getesteten Baugruppen sind ident zu den Baugruppen, die an der Nordsee ausgelegt wurden. Der Test war äquivalent zu einer Auslagerung von zwei Jahren an der Nordsee geplant und für eine Testdauer von 12 Wochen in der Klimakammer angesetzt. Der Test wurde jedoch aufgrund der störenden Einflüsse von stark korrodierenden Werkstoffen und der damit verbundenen Verschleppung von Korrosionsprodukte nach 6 Wochen beendet. Die Testdauer wurde somit auf ein Äquivalent von einem Jahr an der Nordsee reduziert. Ausgelöst wurde die störenden Einflüsse hauptsächlich aufgrund der umfangreichen Korrosionserscheinungen an den Prüfwerkstoffen 8 und 9 (C45, vernickelt, intakte und zerstörte Schutzschicht) sowie an den Verschraubungsarten 3 (verzinkt) und 4 (gemischt).

Der beschleunigte Korrosionstest basierte auf ISO 20340 Anhang A [8]. Dieser Test wird zum Testen von Schutzschichten bzw. Lackierungen im Offshore-Bereich verwendet. Da ein UV-Test aufgrund der nicht für Baugruppen in dieser Größe ausgelegten UV-Kammer nicht möglich war, wurde dieser Teiltest durch einen Nass-Trocken-Zyklus ersetzt. Der Testzyklus ist in Tabelle 2 ersichtlich.

Tabelle 2: I	Beschreib	ung de	es origir	nalen u	nd moo	difizierte	n Test	zyklus	nach	ISO 2	20340	Anha	ang A	١

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Original	UVA60°C 4h / Cond. 50°C 4h ISO 11507			NSS	-20°C		
Modified	6 5	60°C-40% R.H. 4 h 50°C-95% R.H. 4 h		NSS NaCl 5% - 35°C ISO 9227		-20°C	

NSS: neutral salt spray

RH: relative humidity

Schlussendlich wurden die Testaufbauten zerlegt und die Bauteile einzeln analysiert:

Grundwerkstoff 1 (EN AW 6061):

- Es wurden weiße Korrosionsprodukte im Zwischenraum zwischen dem Grundwerkstoff und Prüfwerkstoffen am Grundwerkstoff haftend bei folgenden Kontaktstellen gesichtet:
 - Prüfwerkstoff 3 (AS, lange geätzt) / Verschraubungsart V1 (A4)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V1 (A4)
 - Pr
 üfwerkstoff 2 (AS, kurz ge
 ätzt) / Verschraubungsart V2 (A2), siehe Abbildung 20
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V3 (verzinkt)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V4 (gemischt)

Abbildung 20: Kontaktflächen zwischen Grundwerkstoff 1 (EN AW 6061, links) und Prüfwerkstoff 2 (rostfreier Stahl, rechts) bei Verschraubungsart V2 (A2), © taurob GmbH

 Roter Rost wurde auf der Verschraubung mit Pr
üfwerkstoff 10 (CFK) unabh
ängig vom Verschraubungs- und Grundwerkstoff entdeckt. Ausl
öser hierf
ür d
ürfte eine galvanische Koppelung zwischen Stahl und CFK sein, die zu einer erh
öhten Korrosionsrate des Stahls f
ührt. Siehe hierzu beispielsweise Abbildung 21.

Abbildung 21: Korrosion des Gewindes bei Verschraubungsart V2 (A2) bei Grundwerkstoff 3 (rostfreier Stahl) und Prüfwerkstoff 10 (CFK), © taurob GmbH

Grundwerkstoff 2 (EN AW 7075):

- Es wurde Korrosion auf den Kontaktflächen zwischen dem Grundwerkstoff und Prüfwerkstoffen aus rostfreiem Stahl und C45 bei folgenden Kontaktstellen gesichtet:
 - o Prüfwerkstoff 2 (AS, kurz geätzt) / Verschraubungsart V1 (A4)
 - o Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V1 (A4)
 - o Prüfwerkstoff 1 (AS, nicht geätzt) / Verschraubungsart V2 (A2)
 - o Prüfwerkstoff 2 (AS, kurz geätzt) / Verschraubungsart V2 (A2)
 - Prüfwerkstoff 8 (C45+Ni) / Verschraubungsart V2 (A2)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V2 (A2)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V3 (verzinkt)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V4 (gemischt)

Grundwerkstoff 3 (rostfreier Stahl):

- Es wurden Korrosionserscheinungen auf der Kontaktfläche sowie auf den Prüfwerkstoffen und / oder des Grundwerkstoffes gesichtet:
 - Prüfwerkstoff 1 (AS, nicht geätzt) / Verschraubungsart V1 (A4)
 - Prüfwerkstoff 6 (7075+anodisiert) / Verschraubungsart V1 (A4)
 - Prüfwerkstoff 8 (C45+Ni) / Verschraubungsart V1 (A4)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V1 (A4)
 - Prüfwerkstoff 8 (C45+Ni) / Verschraubungsart V2 (A2)
 - Prüfwerkstoff 9 (C45+Ni, zerkratzt) / Verschraubungsart V2 (A2)
 - Prüfwerkstoff 10 (CFK) / Verschraubungsart V2 (A2)
 - o Prüfwerkstoff 1 (AS, nicht geätzt) / Verschraubungsart V4 (gemischt)
 - Prüfwerkstoff 2 (AS, kurz geätzt) / Verschraubungsart V4 (gemischt)
 - Prüfwerkstoff 3 (AS, lange geätzt) / Verschraubungsart V4 (gemischt)
 - Prüfwerkstoff 6 (7075+anodisiert) / Verschraubungsart V4 (gemischt)
 - Prüfwerkstoff 10 (CFK) / Verschraubungsart V4 (gemischt)
- Zwischen dem Grundwerkstoff und dem Prüfwerkstoff 6 (EN AW 7075, intakte Schutzschicht) bei der Verschraubungsart V1 konnte Korrosion des Grundwerkstoffs, jedoch kaum Korrosion des Prüfwerkstoffs erkannt werden. Dies könnte an einer intakten und sehr gut funktionierenden Schutzschicht liegen, die die beiden Werkstoffe voneinander elektrisch isoliert (Abbildung 22).
- Bei der Verschraubungsart V4 (gemischt) sind nur die verzinkten Scheiben korrodiert.
- Bei allen Prüfwerkstoffen 7 (EN AW 7075, zerstörte Schutzschicht) wurden grüne Korrosionsprodukte entdeckt. Diese könnten Reste vom Schleifwerk-

zeug, die beim Zerstören dieser Schicht abgelagert wurden sein oder von Farbstoffen vom Anodisierungsprozess stammen (Abbildung 23).

Abbildung 22: Kontaktflächen zwischen Grundwerkstoff 3 (rostfreier Stahl, links) und Prüfwerkstoff 6 (EN AW 7075, rechts) bei Verschraubungsart V1 (A4), © taurob GmbH

Abbildung 23: Prüfwerkstoff 7 (EN AW 7075, zerstörte Schutzschicht) bei Grundwerkstoff 3 (rostfreier Stahl) und Verschraubungsart V4 (gemischt), © taurob GmbH

In Abbildung 24, Abbildung 25 und Abbildung 26 ist der Korrosionsumfang der in Kontakt stehenden Bauteiloberflächen sowie des Verschraubungsmaterials im Bereich der Durchgangsbohrungen ersichtlich.

Abbildung 24: Korrosionsumfang der einzelnen Bauteiloberflächen und des Verschraubungsmaterials nach 6 Wochen, Grundwerkstoff 1 (EN AW 6061), © taurob GmbH

Abbildung 25: Korrosionsumfang der einzelnen Bauteiloberflächen und des Verschraubungsmaterials nach 6 Wochen, Grundwerkstoff 2 (EN AW 7075), © taurob GmbH

Abbildung 26: Korrosionsumfang der einzelnen Bauteiloberflächen und des Verschraubungsmaterials nach 6 Wochen, Grundwerkstoff 3 (rostfreier Stahl), © taurob GmbH

Die aufgetretenen Korrosionserscheinungen nach 6 Wochen korrosiver Belastung werden sind in Tabelle 3, Tabelle 4 und Tabelle 5 genauer angeführt. Da verzinktes Verschraubungsmaterial keine Beständigkeit zeigt, wird hier nur mehr auf die Verschraubungsarten 1 (A4) und 2 (A2) eingegangen.

Tabelle 3: Korrosionserscheinungen nach 6 Wochen korrosiver Belastung, Grundwerkstoff 1 (EN AW 6061), © taurob GmbH

18/04/19		Comments						
Ref	N°	Overall surface	Head	Thread	Nut			
	1	White oxidation from edges	-	-	-			
	2	White oxidation from edges	-	-	-			
	3	White oxidation from edges and number	-	-	-			
	4	-	-	-	-			
	5	-	-	-	-			
6061 V1	6	white and red oxidation from number	-	Red rust from threads	Red rust nuts			
	7	White oxidation from damaged areas and few red rust from number	-	-	-			
	8	Red rust from number and edges	-	-	-			
	9	Important red rust from number, edges and damaged areas with flowings	-	-	-			
	10	-	-	-	Red rust nuts			
	1	White oxidation from edges and few red rust from number	-	-	-			
	2	White and red oxidation from edges and red rust from number with flowings	-	-	-			
	3	White oxidation from edges	-	-	-			
	4	-	-	-	-			
	5	-	-	-	-			
6061 V2	6	white oxidation from number	-	Red rust from threads	-			
	7	White oxidation from damaged areas	-	-	-			
	8	Important red rust from number	Red rust from head	-	-			
	9	Red rust from number, edges and damaged area	Red rust from head	Red rust from threads	-			
	10	Red rust from bolt and nut assembly	Red rust from head	Important red rust from threads	-			

18/04	1/19	Comments							
Ref	N°	Overall surface	Head	Thread	Nut				
	1	White oxiation from edges and few red rust from number	-	-	-				
7075 V1	2	white oxiation from edges and red rust from number	-	-	-				
	3	white oxidation from edges	-	-	-				
	4	white oxidaton from edges	-	-	-				
	5	white oxidaton from edges and damaged areas	-	-	-				
	6	white oxidation from edges	-	-	-				
	7	white oxidation from edges and damaged areas	-	-	-				
	8	Red rust from number with flowings	-	-	-				
	9	red rust from number and head with flowings	-	-	-				
	10	-	-	-	-				
	1	Red rust from number and white oxidation from edges	Red rust from head	-	white oxidation from washer				
	2	Red rust from number and white oxidation from edges	Red rust from head	red rust from thread	-				
	3	White oxidation from edges	-	-	-				
	4	white oxidation from edges	-	1 spot of red rust from threads	white oxidation from washer				
7075	5	white oxidation from edges and damaged areas	-	1 spot of red rust from threads	white oxidation from washer				
VZ	6	white oxidation from edges and number	Red rust from head	red rust from thread	white oxidation from washer				
	7	white oxidation from edges and damaged areas	-	-	white oxidation from washer				
	8	Red rust from number with flowings and white oxidation from edges	-	-	white oxidation from washer				
	9	red rust from number and edges with flowings	Red rust from head	-	white oxidation from washer				
	10	-	red rust from head	-	white oxidation from washer				

Tabelle 4: Korrosionserscheinungen nach 6 Wochen korrosiver Belastung, Grundwerkstoff 2 (EN AW 7075), © taurob GmbH

18/04/19		Comments							
Ref	N°	Overall surface	Head	Thread	Nut				
	1	red rust from number	-	-	-				
	2	few red rust from number	-	-	-				
	3	-	-	-	-				
	4	few white oxidation from edges	White oxidation from head	-	-				
	5	white oxidation from damaged areas	White oxidation from		_				
AS	6	white oxidation from number and edges	_	-					
VI	7	important white oxidation from damaged areas a and edges	-	-	-				
	8	important red rust from edges	-	-	-				
	9	important red rust from edges with flowings	Red rust from overall surface , impossible to evaluate	-	-				
	10	few red rust from edges (from the substrate)	-	-	-				
	1	few red rust from number	red rust from head	-	-				
	2	few red rust from number	-	-	-				
	3	_	-	-	-				
	4	white oxidation from edges	-	-	-				
	5	white oxidation from edges and from damaged areas	-	-	-				
AS	6	white oxidation from number and edges	-	-	-				
V2	7	white oxidation from edges, number and from damaged areas	-						
	8	important red rust from edges with flowings	-	-	-				
	9	important red rust from edges with flowings	-	-					
	10	-	few red rust from head	red rust from threads	red rust from washer				

Tabelle 5: Korrosionserscheinungen nach 6 Wochen korrosiver Belastung, Grundwerkstoff 3 (rostfreier Stahl), taurob GmbH

Zusammenfassung der Tests von in einer Klimakammer korrosiv belasteten Testbaugruppen

- Verzinktes Verschraubungsmaterial korrodiert schon sehr früh sehr stark
- Rostfreier Stahl korrodiert nur unter folgenden Bedingungen:
 - Die Schutzschicht der im Kontakt stehenden Aluminiumlegierungen ist effektiv.
 - Bei einer zur Umgebung abgeschlossenen Kombination mit rostfreiem Stahl oder CFK (keine Störströme).
 - An den geätzten Markierungen.
- Vernickelter C45 korrodiert in jeder Konfiguration stark.
- CFK agiert aufgrund des Kohlenstoffs als Kathode und führt somit zu einer starken Korrosion der Verschraubungen.
- Die Aluminiumlegierungen korrodieren bei zerstörter Schutzschicht stark bis sehr stark.
- Beim Grundwerkstoff 3 (rostfreier Stahl) traten komplexe galvanische Koppelungen zwischen den einzelnen Prüfwerkstoffen während des Salzsprühtests auf. Die Ergebnisse wurden vermutlich hierdurch beeinflusst.
- Die Säurebehandlung von rostfreiem Stahl (Prüfwerkstoff 2 und 3) zeigte keinen offensichtlichen Effekt.

3.5 Zusammenfassung

Ein einfacher Auslegungstest ist eine kostengünstige Möglichkeit um die Auswirkung von Kontaktkorrosion zu testen. Er ist gut geeignet um nicht geeignete Werkstoffpaarungen auszuschließen. Für eine endgültige Entscheidung im Sinne der Werkstoffwahl sind unter Umständen genauere Analysen im Labor anstelle einer Ferndiagnose notwendig.

Die Tests in einer Klimakammer sind genormt und zeitsparend, was eine gute Vergleichbarkeit gewährleistet. Problematisch hierbei ist die Aufbringung einer äquivalenten Korrosionsbelastung der realen Einsatzumgebung. Auch werden hierbei andere Einflüsse wie z.B. durch Tierexkremente und Mikrobakterien nicht getestet.

Die erhaltenen Ergebnisse, insbesondere die Schlussfolgerungen von beiden Tests decken sich jedoch sehr gut:

- Als Idealer Verschraubungswerkstoff hat sich bei beiden Tests A4 (1.4401) herauskristallisiert.
- Grundsätzlich sehr beständige sowie gleichartige Werkstoffe korrodieren gepaart bei Verschraubungsmaterial aus A4 (1.4401) nicht, sofern die Passivschichten und Schutzschichten intakt sind. Problematisch waren hierbei nur die Stellen der Beschädigungen (zerkratzte und geätzte Bereiche) sowie Ecken und Kanten.
- Schutzschichten aus als Kathode wirkenden Werkstoffen sind nur wirksam, wenn sie absolut dicht und dick genug sind.

Daraus ergeben sich Konstruktionsrichtlinien, bei deren Befolgung zumindest die größten Probleme im Vorfeld verhindert, oder zumindest sehr stark eingedämmt werden können:

- Das Verschraubungsmaterial ist so zu wählen, dass es in Relation zu den zu verschraubenden Werkstoffen die Rolle der Kathode übernimmt. Eine kleine Kathodenfläche führt zu einer geringen Anodenstromdichte, und damit zu geringem spezifischen Ionentransport. Schraubenmaterial aus einheitlichem rostfreiem Stahl ist unbedingt erforderlich, der Schraubenwerkstoff A4 ist für das gesamte Verschraubungsmaterial empfehlenswert. Die deutlich geringere Festigkeit gegenüber Schraubenmaterial aus Kohlenstoffstahl ist zu berücksichtigen.
- Werkstoffe, die einen hinreichend großen Potentialunterschied zwischen einander aufweisen, sodass Korrosionsgefahr besteht, sind nach Möglichkeit elektrisch voneinander zu isolieren (z.B. mittels Schutzschichten). Dies ist nicht möglich, wenn beide Bauteile eigens geerdet sind.

- Eine durchgängige Schutzschicht ist ein sehr effektiver Korrosionsschutz. Die Schutzschichtdicke sollte daher ausreichend dick sein, um eine Funktionalität zu gewährleisten. Auch darf sie bei der Montage nicht beschädigt werden (z.B. ist ein Aufpressen von Lagern auf eine beschichtete Welle nicht zweckmäßig).
- Damit Schutzschichten auch an Ecken und Kanten gut haften, sind diese sauber abzurunden.
- Die Form der Bauteile ist so zu wählen, dass Flüssigkeiten immer schnell abfließen können oder sich zumindest nicht an Stellen sammeln können, an denen unterschiedliche Werkstoffe in Kontakt sind oder die Bauteile mechanisch stark belastet sind.
- Bei Strömungen in z.B. Rohren sind aufeinander folgende Werkstoffe in Strömungsrichtung immer unedler zu wählen als zuvor. Somit können keine gelösten lonen zur (entgegen der Flussrichtung liegenden) Kathode transportiert werden.
- Können Korrosionserscheinungen zu Korrosionsschäden führen, ist auf die Austauschbarkeit von Bauteilen mit korrosionsbedingt niedriger Lebensdauer zu achten. Geeignete Überprüfungsmethoden und Beurteilungskriterien sind festzulegen. Inspektions- und Wartungsintervalle sind im Zweifelsfall kürzer anzusetzen.

Weitere Konstruktionsrichtlinien lassen sich aus diversen Merkblättern zu Korrosion ableiten, wie z.B. bezüglich Kontaktkorrosion verschiedener Werkstoffe von Trinkwasserleitungen in Hausinstallationen [9].

Mittels einfacher (Kontakt-)Korrosionstests ist es möglich, sich ohne viel Aufwand einen Überblick darüber zu verschaffen, wie z.B. die verwendeten Werkstoffe des Standardlieferanten kombiniert mit den üblicherweise verwendeten Verschraubungen in verschiedensten Umgebungen reagieren. Daraus können schützende bzw. vorbeugende Maßnahmen abgeleitet werden. Dadurch lassen sich Kosten sparen und Fehlentwicklungen aufgrund der Werkstoffauswahl basierend auf den Festigkeitswerten und den Korrosionsbeständigkeitsangaben nur anhand von Werkstoffdatenblättern verhindern. In den durchgeführten Tests zeigt sich z.B., dass die zu dünne Vernickelung von C45 praktisch wirkungslos ist.

4 Analytische Konstruktionsoptimierung

In diesem Kapitel wird auf die analytische Konstruktionsoptimierung eingegangen.

Eine statische Dichtungsstelle soll hinsichtlich minimaler Masse optimiert werden. Zu diesem Zweck wird die Geometrie der Dichtungsstelle parametrisiert. Mittels Einsatzes von MatLab werden nach einer Parameterstudie die optimalen Parameter gefunden.

4.1 Aufbau der Dichtungsstelle

Folgende Anforderungen werden für die Dichtungsstelle festgelegt:

- Die Dichtwirkung soll mittels einer Weichstoffprofildichtung (O-Ring) erfolgen.
- Die Dichtwirkung wird durch die Verschraubung im Hauptschluss und die Dichtung im Nebenschluss erzielt. Somit werden die Dichtungen bei der Montage und durch die Betriebskräfte nicht überstrapaziert. Die Setzeffekte der Dichtung beeinflussen die Verschraubungen nur eingeschränkt. Im Umkehrschluss ist ein Nachziehen der Verschraubungen zum Ausgleich der Setzeffekte nach einer Demontage nicht möglich. Daher ist bei zu stark gesetzter Dichtung (oder als Vorsichtsmaßnahme nach jeder Demontage) diese zu tauschen.
- Die Einsatzumgebung der Dichtungsstelle ist der Offshore-Bereich. Daher werden folgende Werkstoffe gewählt:
 - Als Flanschwerkstoff wird basierend auf die Erkenntnisse aus Kapitel 3 EN AW 6061 mit einer anodischen Schutzschicht gewählt.
 - Als Werkstoff f
 ür das Verschraubungsmaterial wird basierend auf die Erkenntnisse aus Kapitel 3 rostfreier Stahl der G
 üte A4 gew
 ählt.
 - Als Dichtungsmaterial wird NBR (Nitrile-Butadiene-Rubber) verwendet. Vorteilhaft herauszuheben ist, dass NBR Beständigkeit gegenüber Öle, Fette und Abrieb sowie geringe Gasdurchlässigkeit aufweist. Somit kommt dieser Dichtwerkstoff in vielen Anwendungsbereichen zum Einsatz.
 - Die Dichte beträgt zwischen 1,35 (geringer Vernetzungsgrad) und 1,5 (hoher Vernetzungsgrad) g/cm³. Für die Berechnung wird die Dichte der Dichtung und damit deren Masse vernachlässigt.

 Die Härte beträgt zwischen 20 (geringer Vernetzungsgrad) und 90 (hoher Vernetzungsgrad) Shore A. Für die Berechnung wird ein Härtegrad von 70 Shore A festgelegt.

Die Dichtungsstelle besteht somit aus zwei Teilen, welche zuerst getrennt analysiert werden:

- Weichstoff-Profildichtung (O-Ring)
- Nut- und Bundflansch inkl. Verschraubung

4.1.1 Weichstoff-Profildichtung

Der bekannteste Vertreter dieser Dichtelemente ist der O-Ring (Rundring). Weitere Vertreter sind der X-Ring (Quadring) und der R-Ring (Rechteckring). Die Namensgebung bezieht sich jeweils auf die Form des Querschnittes im ursprünglichen Zustand.

Im in einer Rechtecknut eingebauten und mit Überdruck beaufschlagtem Zustand nähert sich die Form des Querschnitts von Profildichtungen in etwa der eines Rechtecks an. Betrachtet man einen Rechteckring, sind sowohl der Vorpressdruck und der Betriebspressdruck annähernd gleichmäßig verteilt. Bei anderen Querschnittsformen ergeben sich anhand der Form eine oder mehrere Spitzen in der Druckverteilung. Für eine funktionierende Dichtstelle muss der Peak des Drucks so hoch sein, dass der Kontakt sowohl mit dem Nut- als auch mit dem Bundflansch hergestellt ist, und es zu keiner Relativbewegung kommt. Da dies ab einer gewissen Druckdifferenz nicht mehr sicher gewährleistet werden kann, ist die Dichtungsstelle so zu konstruieren, dass der Dichtring auf der Seite des geringeren Drucks an einer Wand anliegt [10].

Für eine überschlagsmäßige Berechnung werden folgende Annahmen getroffen (siehe Abbildung 27):

- Die Weichstoffprofildichtung weist im eingebauten Zustand eine Rechteckform auf (an die Nutform angepasst und diese ausfüllend).
- Die Druckverteilung wird als konstant über die Druckangriffs- und Auflagefläche angenommen.
- Die Umgebungstemperatur ist konstant.

Betrachtet man die Dichtung quer zur Schnurrrichtung, so lassen sich die Verzerrungen allgemein für Gummi (und für jeden anderen isotropen Werkstoff) bei konstanter Temperatur wie folgt anschreiben:

 ε_i ... Verzerrung in Richtung i σ_i ... Spannung in Richtung i

v ... Querkontraktionszahl

Dem Modell wird ein ebener Verzerrungszustand im Profilquerschnitt (x-y-Ebene) zugrunde gelegt, wobei die x-Achse in Richtung der Unterdruckseite und die y-Achse in Richtung der Verspannungskräfte der Dichtung zeigt. Siehe hierzu Abbildung 27.

Abbildung 27: Vereinfachte Darstellung des eingebauten O-Ringes.

Die Randbedingungen werden wie folgt formuliert:

• Im ruhenden Fall:

h

$$\begin{split} \varepsilon_{0,x} \neq 0 & \varepsilon_{0,y} = \frac{\Delta h}{h} & \varepsilon_{0,z} = 0 \\ \sigma_{0,x} = 0 & \sigma_{0,y} = -p_{0,y} & \sigma_{0,z} \neq 0 \end{split}$$

 $\varepsilon_{i,0}$... Verzerrung in Richtung i ohne Überdruck

 $\sigma_{i,0}$... Spannung in Richtung i ohne Überdruck

... Höhe der Profildichtung im unbelasteten Zustand (Schnurdurchmesser bei O-Ringen)

• Im belasteten Fall:

$$\varepsilon_x \neq 0 \qquad \qquad \varepsilon_y = \frac{\Delta h}{h} \qquad \qquad \varepsilon_z = 0 \\ \sigma_x = -p \qquad \qquad \sigma_y = -p_B \qquad \qquad \sigma_z \neq 0$$

p ... einseitig anliegender Überdruck (positiv einzusetzen)

 $p_{_B}$... gemittelter Betriebsdruck der Dichtung (positiv)

Daraus ergeben sich folgende Gleichungssysteme:

• Im ruhenden Fall:

$$\varepsilon_{0,x} = \frac{v}{E} \left(p_{0,y} - \sigma_{0,z} \right) \tag{4.4}$$

$$\frac{\Delta h}{h} = -\frac{1}{E} * \left(p_{0,y} + v * \sigma_{0,z} \right)$$

(4.5)

$$0 = \sigma_{0,z} + \nu * p_{0,y}$$
(4.6)

• Im belasteten Fall:

$$\varepsilon_x = \frac{1}{E} * \left(-p - v * \left(-p_B + \sigma_z\right)\right)$$
(4.7)

$$\frac{\Delta h}{h} = -\frac{1}{E} * \left(p_B + \nu * (\sigma_z - p) \right)$$
(4.8)

$$0 = \sigma_z + v * (p + p_B)$$

(4.9)

Daraus lassen sich folgende Zusammenhänge finden:

• Im ruhenden Fall:

Aus Gleichung (4.6) ergibt sich:

$$\sigma_{0,z} = -v * p_{0,y}$$
(4.10)

Gleichung (4.10) eingesetzt in Gleichung (4.5) führt zu:

$$E * \frac{\Delta h}{h} = p_{0,y} * (v^2 - 1)$$
(4.11)

• Im belasteten Fall:

Aus Gleichung (4.9) ergibt sich:

$$\sigma_z = -\nu * (p + p_B) \tag{4.12}$$

Gleichung (4.12) eingesetzt in Gleichung (4.8) führt zu:

$$E * \frac{\Delta h}{h} = p_B * (v^2 - 1) + p * v * (v + 1)$$
(4.13)

Setzt man nun die Gleichungen (4.11) und (4.13) gleich, ergibt sich der Dichtungsdruck im Betrieb zu

$$p_B = p * \frac{\nu}{1 - \nu} + p_{0,\nu}$$
(4.14)

Da Gummi inkompressibel ist, beträgt die Querkontraktionszahl 0,5. Somit ergibt sich der Dichtungsdruck im Betrieb zu:

 $p_B = p + p_{0,y}$ (4.15)

Der Druck auf die Flansche im Betrieb steigt linear zum Überdruck an. Somit ist bei einem gegen Verrutschen gesicherten O-Ring ein minimaler Vorpressdruck ausreichend um Dichtheit zu gewährleisten.

Aus konstruktiver Sicht ist es sinnvoll, die relative Nuttiefe einzuschränken. Gründe hierfür sind z.B. Fertigungstoleranzen, die Verformung der zu dichtenden Bauteile

unter Belastung und das Dichtmaterial selbst (z.B. Setzeffekte bzw. Druckverformungsrest). Der Literatur sind folgende Grenzwerte zu entnehmen [4]:

$$0,75 \le \frac{h + \Delta h}{h} \le 0,8 \tag{4.16}$$

Der E-Modul von Gummi ist nicht eindeutig definiert, bzw. hängt dieser sehr stark von der Umgebungstemperatur und der Härte ab. Der Schubmodul kann bei Modellierung nach Neo-Hooke wie folgt abgeschätzt werden [11]:

$$G^{SH} = \frac{0,07515 * H_A + 0,549}{(4,1+3,9 * e^{-1,397*h}) * (0,395 * h_a + 0,315 * {h_a}^2)}$$
(4.17)

mit

 $h_a = 0,025 * (100 - H_A)$

(4.18)

G^{SH} ... aus der Shore-A-Härte abgeschätzter Schubmodul

H_A ... Shore-A-Härte

h_a ... Hilfsgröße

Der Elastizitätsmodul lässt sich bei isotropen Werkstoffen wie folgt berechnen:

$$E^{SH} = G^{SH} * 2 * (1 + v)$$

(4.19)

E^{SH} ... aus der Shore-A-Härte abgeschätzter Elastizitätsmodul

Diese Zusammenhänge sind in Abbildung 28 grafisch dargestellt.

Abbildung 28: Abschätzung von Schub- und Elastizitätsmodul anhand der Härte des Gummis.

Für eine Shore-A-Härte von 70 ergibt sich folglich ein Schubmodul von ca. 2,25 MPa sowie ein Elastizitätsmodul von ca. 6,75 MPa.

Die der Literatur [4] bzw. aus Abbildung 29 entnehmbare Grenzwerte für die relative Nuttiefe bei statischer Belastung führen zu folgenden Grenzwerten für die Verzerrung:

$$-0,25 \le \frac{\Delta h}{h} = \varepsilon_{0,y} = \varepsilon_y \le -0,2$$

Die Nutbreite ergibt sich aufgrund der Verformung des Dichtringes quer zum Vorpress- und Betriebsdruckes. Aufgrund eines inkompressiblen Werkstoffes und des ebenen Verzerrungszustandes in der x-y-Ebene muss die Verzerrung in x-Richtung den negativen Wert der Verzerrung in y-Richtung annehmen:

$$0,2 \le \varepsilon_x \le \varepsilon_{0,x} \le 0,25$$

(4.21)

(4.20)

Für die relative minimale Nutbreite b gilt somit

$$1,2 * h \le b_{min} \le 1,25 * h$$

(4.22)

Die tatsächliche Nutbreite sollte etwas größer sein, um genug Spielraum für Verformungen zu lassen. In der Literatur beträgt der Richtwert für die Nutbreite von O-Ringen das 1,3-fache des Schnurdurchmessers, siehe hierzu Abbildung 29.

4.1.2 Nut- und Bundflansch inkl. Verschraubung

Sowohl der Vorpressdruck als auch die Betriebspressung des O-Ringes sind wichtig für die Betrachtung der Festigkeit und Steifigkeit von Nut- und Bundflansch. Die Flansche müssen die Belastung aushalten. Verformungen, die zu einer Undichtheit führen können, sind unzulässig.

Nut- und Bundflansch werden verschraubt. Die Vorspannkraft der Schraube muss so dimensioniert sein, dass die beiden Flansche den O-Ring quetschen und sich trotz Überdruck berühren. Eine wichtige Fragestellung ist, ob die Verschraubung mittels Mutter, oder mittels Gewindebohrung in einem der beiden Flansche erfolgt. Bei notwendigen Mindestflanschdicken, die unter der Mindesteinschraubtiefe der Schraube liegen, sind Verschraubungen mittels Muttern zu bevorzugen.

Um die optimalen Parameter für eine Axialdichtung mit geringer Masse abschätzen zu können, werden folgende Annahmen bzw. Einschränkungen getroffen:

- Die Flansche werden mittels Schrauben, Muttern, und Scheiben (jeweils eine Scheibe pro Schraube und Mutter) verschraubt. Im Falle einer beschädigten Verschraubung ist somit auch eine einfachere Auswechslung von Verschraubungsteilen möglich.
- Die Anzahl der verwendeten Verschraubungen ist mit mindestens 3 und mit maximal 12 beschränkt.
- Der minimale Schraubengewindedurchmesser wird mit M2, der maximale Schraubengewindedurchmesser wird mit M24 begrenzt.
- Die Verschraubungen werden außerhalb der Dichtstelle angeordnet. Dadurch müssen diese nicht extra abgedichtet werden.
- Die Durchgangsbohrungen für die Schrauben werden aus der genormten Durchgangslochreihe der Reihe "mittel" gewählt [12].
- Die exakte Dimensionierung der Verschraubungen ist nicht möglich, da sie auch äußere, an dieser Stelle unbekannte Lasten aufnehmen müssen. Als Vereinfachung sollen die Schrauben maximal zu 50 % bezogen auf ihre maximale Streckgrenze ausgelastet werden.
- Die Verformung der Flansche zufolge der Flächenpressung zwischen den Flanschen und des Verschraubungsmaterials (Setzeffekte) werden vernachlässigt.
- Die Streckenlast an der Kontaktfläche zwischen Flansch und Dichtung ist abhängig von der Verformung des Dichtkörpers an der entsprechenden Stelle, und damit von der Verformung der Flansche. Sie wird vereinfacht konstant mit dem Betriebsdruck am O-Ring gewählt.
- Auf die Flansche wirkt aufgrund des Innenüberdruckes eine Flächenlast normal auf die Kreisfläche mit dem Durchmesser entsprechend dem Innendurchmesser des O-Ringes. Diese wird in ein eine Streckenlast umgerechnet und gemeinsam mit der Streckenlast des O-Ringes zufolge des Betriebsdruckes als Ersatzstreckenlast in der Nut wirkend aufgeschlagen.

- Die Form der Flansche wird für die Berechnung vereinfacht dargestellt. Die Modellierung sowie die mathematischen Zusammenhänge dieser Modellierung sind in Abbildung 30 und Abbildung 31 und den Gleichungen (4.23) bis (4.38) ersichtlich.
 - Die Flansche werden als niedrige Hohlzylinder modelliert. In den Nutflansch wird eine Nut mit minimal zulässiger Tiefe eingefräst.
 - Da in diesem Beispiel f
 ür eine Dichtungsstelle an der Innenseite
 Überdruck anliegt, wird der Flansch so modelliert, dass der O-Ring mit dem Außendurchmesser an der Nut anliegt.
 - An der Innenseite der Nut wird eine Wandstärke von 0,5 mm vorgesehen.
 - Zwischen der Außenwand der Nut und dem Beginn der Durchgangsbohrung soll die Wandstärke zumindest 0,5 mm betragen. Er wird entsprechend erhöht, wenn die Kontaktfläche zwischen Scheibe und Flansch nicht mindestens 0,5 mm Platz zum Flanschinnendurchmesser aufweist.
 - Von der Kontaktfläche zwischen Scheibe und Flansch zum Flanschaußendurchmesser soll der Abstand 0,5 mm betragen. Dadurch wird ein vollständiges Aufliegen der Scheibe trotz angefasten oder abgerundeten Flanschkanten gewährleistet.
 - Für die einfachere analytische Berechnung der Flanschverformung wird das zu analysierende Kreissegment zwischen zwei Verschraubungen verzerrt, sodass es vereinfacht als geradliniger, beidseitig eingespannter Biegeträger mit konstanter Streckenlast berechnet werden kann.
 - Die Länge des fiktiven Biegeträgers entspricht hierbei der Schnurlänge des O-Ring in diesem Segment abzüglich des Schraubengewindedurchmessers.
 - Tordieren der Flansche wird durch diese Annahme nicht behandelt, die Kräfte greifen im Schubmittelpunkt des Querschnitts an. Torsion wäre durch den Kontakt der beiden Flansche zueinander stark eingeschränkt. Mittels eines FE-Modells kann geprüft werden, dass auf der sicheren Seite gerechnet wird.

Abbildung 30: Modellierung des Nutflanschquerschnittes - Maße in mm

H B	… Nutflanschdicke … Nutflanschbreite
D _{Dichtring}	Innendurchmesser des O-Ringes
$d_{Dichtring}$	Schnurstärke des O-Ringes
t	Tiefe der Nut für den O-Ring
b	Breite der Nut für den O-Ring
$D_{F,a}$	Flanschaußendurchmesser
$D_{F,i}$	Flanschinnendurchmesser
D_{LK}	Lochkreisdurchmesser
D_B	Durchgangsbohrungsdurchmesser
ΔB_i	Nutflanschbreitendifferenz innen
ΔB_a	Nuttlanschbreitenditterenz außen
$D_{S,a}$	Scheidenaußendurchmesser

Abbildung 31: Modellierung des Nutflansches – Koordinatensystem

- SP ... Flächenschwerpunkt
- x, y Achsen des globalen Koordinatensystems
- $x_S \ y_S \ \ldots$ Achsen des Koordinatensystems durch den Flächenschwerpunkt
- $x_{SP}, y_{SP} \dots$ Flächenschwerpunktsabstand zum anfänglichen Koordinatensystem

$$l_{Ersatztraeger} = (D_{Dichtring} + d_{Dichtring}) * \frac{\pi}{z} - M_{Gewindegröße}$$
(4.23)

l _{Ersatztraeger}	Länge des beidseitig eingespannten Ersatzträgers
Z	Anzahl der verwendeten Schraubverbindungen
$M_{Gewindegr\"oße}$	metrische Gewindegröße

Für die weiteren Berechnungen sei:

$$t = 0.75 * d_{Dichtring}$$

$$b = 1.3 * d_{Dichtring}$$

$$(4.24)$$

$$D_{F,i} = D_{Dichtring} - 2 * (b - d + 0.5 \text{ mm})$$

(4.26)

$$D_{LK} = \max\left(D_{Dichtring} + 2 * \left(d + 0.5 \text{ mm} + \frac{D_B}{2}\right); D_{F,i} + 2 * \left(0.5 \text{ mm} + \frac{D_{S,a}}{2}\right)\right)$$
(4.27)

$$D_{F,a} = D_{LK} + \left(\frac{D_{S,a}}{2} + 0.5 \text{ mm}\right)$$

(4.28)

$$B = \frac{D_{F,a} - D_{F,i}}{2}$$

 $H \ge t + 1 \text{ mm}$

(4.30)

(4.29)

Für die Steifigkeit des Querschnittes bei Biegung um die xs-Achse ist das Flächenträgheitsmoment um diese Achse zu bestimmen.

,

$$A_F = B * H - b * t \tag{4.31}$$

 $y_{SP} = \frac{B * H * \frac{H}{2} - b * t * \frac{t}{2}}{A_F}$

(4.32)

$$I_{x} = \frac{\frac{B * (2 * H)^{3}}{12} - \frac{b * (2 * t)^{3}}{12}}{2} = \frac{B * H^{3} - b * t^{3}}{3}$$

$$I_{x} = I_{x} - A_{E} * V_{SP}^{2}$$
(4.33)

(4.34)

 A_F ... Querschnittsfläche des Nutflansches I_x ... Flächenträgheitsmoment um die x-Achse $I_{x,S}$... Flächenträgheitsmoment um die xs-Achse

Die notwendige Gesamtschraubenkraft ergibt sich aus der Addition der Belastung aufgrund des Innenüberdrucks und der Dichtkraft am O-Ring.

$$F_{Innenüberdruck} = p_{Innen} \frac{D_{Dichtring}^2 * \pi}{4}$$
(4.35)

 $F_{Innenüberdruck}$... Gesamtschraubenkraft aufgrund des Innendruck p_{Innen} ... Innendruck

Unter Einbeziehung der Gleichungen (4.11) und (4.15) sowie der Berücksichtigung der Volumenskontanz von Gummi ergibt sich die minimale Dichtkraft zu:

$$F_{Dichtung} = (p_{Innen} + \frac{1}{3} * E_{Gummi}) * (D_{Dichtring} + d_{Dichtring}) * \pi * b$$
(4.36)

 $F_{Dichtung}$... Gesamtschraubenkraft aufgrund des der Quetschung des O-Ringes E_{Gummi} ... Elastizitätsmodul von Gummi (= E^{SH})

Die minimale Einzelschraubkraft ergibt sich zu:

$$F_{Schraube} = \frac{F_{Innenüberdruck} + F_{Dichtung}}{z}$$

(4.37)

F_{Schraube} ... Einzelschraubkraft

Die an der Stelle der O-Ring-Nut aufgebrachten Streckenlast ergibt sich zu:

$$q_{Dichtring} = \frac{F_{Innen\"uberdruck} + F_{Dichtung}}{(D_{Dichtring} + d_{Dichtring}) * \pi}$$
(4.38)

*q*_{Dichtring} ... gesamte Streckenlast aufgrund der Dichtung und des Überdrucks

4.2 Notwendige Bedingungen für eine funktionierende Dichtung

4.2.1 Verformung der Flansche

Die Dichtheit gilt als gegeben, wenn aufgrund des Innenüberdrucks die Flansche an jeder Stelle des Kontakts folgende Bedingung erfüllen:

 $\Delta_{a,Nutflansch} + \Delta_{a,Bundflansch} < 0,25 * d_{Dichtring}$

(4.39)

 $\Delta_{a,Nutflansch}$... axiale Verformung des Nutflansches normal zur dichtenden Fläche $\Delta_{a,Bundflansch}$... axiale Verformung des Bundflansches normal zur dichtenden Fläche

Der Wert 0,25 * *d* entspricht der Quetschung des O-Ringes aufgrund dessen Einbaues. Die Verformungen der Flansche dürfen diesen Wert nicht überschreiten. Die Toleranzen bei der Fertigung sowie Setzeffekte des O-Ringes werden in Ungleichung (4.39) nicht mit einbezogen. Nut- und Bundflansch können sich aufgrund geometrischer Randbedingungen nur in deren Dicke unterscheiden. Die Steifigkeit der Flansche steigt mit deren Dicke an. Die notwendige Mindestdicken werden sich praktisch nicht unterscheiden. Um Fertigungstoleranzen auszugleichen, kann die maximal zulässige Verformung weiter herabgesetzt werden. Aus diesen Gründen ergibt sich folgende Ungleichung:

$$\Delta_{a,Bundflansch} < \Delta_{a,Nutflansch} = 0,1 * d_{Dichtring}$$

(4.40)

Unter der Annahme der gleichen Dicke von Nut- und Bundflansch wird in weiterer Folge nur der minimal weniger steifere Nutflansch analysiert.

Mit der ermittelten Ersatzstreckenlast wird der Ersatzträger belastet. Dessen maximale Durchbiegung sich zu:

$$w_{max,y,Ersatzträger} = \frac{q_{Dichtring} * l_{Ersatzträger}^{4}}{384 * E_{Flansch} * I_{x,S}}$$

(4.41)

 $w_{max,y,Ersatzträger}$... maximale Durchbiegung des Ersatzträgers in y-Richtung $E_{Flansch}$... Elastizitätsmodul des Flanschwerkstoffes

Kombiniert mit Gleichung (4.40) ergibt sich folgende, notwendige Bedingung:

$$\frac{q_{Dichtring} * l_{Ersatzträger}^{4}}{384 * E_{Flansch} * I_{x,S}} \le 0,1 * d_{Dichtring}$$
(4.42)

4.2.2 Festigkeit der Flansche

Das maximale Biegemoment des Ersatzträgers beträgt:

$$M_{b,x,max} = \frac{q_{Dichtring} * l_{Ersatzträger}^2}{24}$$
(4.43)

M_{b,x,max}... maximales Biegemoment

Da y_{SP} aufgrund der Lage der Nut größer als die halbe Flanschdicke ist, ergibt sich das maximale Widerstandsmoment des Nutflansches zu:

$$W_{x,S,max} = \frac{I_{x,S}}{\max(y_{SP}; H - y_{SP})} = \frac{I_{x,S}}{H - y_{SP}}$$
(4.44)

 $W_{x,S,max}$... maximales axiales Widerstandsmoment des Nutflansches

Die Biegespannung ergibt sich folglich zu

$$\sigma_{b,max,Flansch} = \frac{M_{b,x,max}}{W_{x,S,max}}$$

(4.45)

*σ*_{b,max,Flansch} ... maximal auftretende Biegespannung im Nutflansch

.....

Die zulässige Biegespannung des Flanschwerkstoffes ergibt sich folglich zu

$$\sigma_{b,zul,Flansch} = \frac{\sigma_{b,Flansch}}{S}$$

(4.46)

$\sigma_{b,zul,Flansch}$	zulässige Biegespannung des Flanschwerkstoffes
$\sigma_{b,Flansch}$	Biegefestigkeit des Flanschwerkstoffes
S	Sicherheit gegen Versagen durch Biegebelastung

Für die Wahl der Biegefestigkeit ist die Art der von außen auf die Dichtungsstelle wirkenden Belastung zu beachten. Da diese nicht bekannt ist, kann an dieser Stelle für die Biegefestigkeit die Dehngrenze gewählt werden und die Sicherheit gegen Versagen höher angesetzt werden.

Es ergibt sich folgende, notwendige Bedingung:

 $\sigma_{b,max,Flansch} \leq \sigma_{b,zul,Flansch}$

(4.47)

4.2.3 Festigkeit und Abmessungen des Schraubenmaterials

In korrosiver Umgebung ist die Wahl des richtigen Verschraubungsmaterials wichtig. Die Wahl fällt auf Zylinderschrauben mit Innensechskant nach ISO 4762, sowie Muttern nach DIN EN ISO 4032 und Scheiben nach ISO 7089. Als Werkstoff wird rostfreier Stahl der Güte A4-70 gewählt. Dieser Werkstoff ist zufolge der Erkenntnisse aus Kapitel 3 in Meerwasserumgebung beständig. Dieses Verschraubungsmaterial ist weitgehend im Handel erhältlich und für die verwendeten Schrauben bis Gewindegröße M24 laut Norm in den technischen Lieferbedingungen spezifiziert [13]. Bei Muttern ist allgemein darauf zu achten, dass deren Festigkeitsklasse mindestens derselben Festigkeitsklasse der Schrauben entspricht, d.h. z.B. Muttern der Festigkeitsklasse 80 dürfen ebenfalls verwendet werden [14]. Eine Übersicht über die mechanischen Eigenschaften ausgewählter korrosionsbeständiger Schrauben ist in Tabelle 6 ersichtlich.

Gruppe nicht- rostender Stähle	Nicht- rostende Stahl- sorte	Festig- keits- klasse	Zugfestigkeit R _{mf} /R _{m%} min. MPa	0,2 %-Dehngrenze <i>R</i> _{pf} min. MPa	Bruchverlängerung A _f /A _% min. mm
		50	500	210	0,6 d
	A1, A2 A3 A5	70	700	450	0,4 <i>d</i>
	A3, A3	80	800	600	0,3 <i>d</i>
	A4	50	500	210	0,6 <i>d</i>
Auste-		70	700	450	0,4 <i>d</i>
nitisch		80	800	600	0,3 <i>d</i>
		100	1 000	800	0,2 <i>d</i>
		70	700	450	0,4 <i>d</i>
	A8	80	800	600	0,3 d
		100	1 000	800	0,2 <i>d</i>
Duplex	D2 D4	70	700	450	0,4 d
(auste- nitisch-	D2, D4 D6 D8	80	800	600	0,3 <i>d</i>
ferritisch)	20, 20	100	1 000	800	0,2 <i>d</i>

Tabelle 6: Übersicht über die mechanischen Eigenschaften von ausgewählten korrosionsbeständigen Schraubenwerkstoffen [15].

Zu beachten ist, dass die Dehngrenze von Schrauben aus austenitischen Stählen und Duplex-Stählen nicht an die Dehngrenze von Schrauben aus ferritischen Stählen herankommen. Beispielsweise liegt die Dehngrenze von Schrauben aus Stahl mit der Festigkeitsklasse 10.9 (900 MPa) 12,5 % über der Dehngrenze einer Schraube aus A4-100 (800 MPa).

Die Spannungsquerschnitte der Gewindegrößen sind in der nachfolgenden Tabelle ersichtlich.
	Nenn- span-	Mindestkraft bei der 0,2 %-Dehngrenze, F _{pf} ^a N										
Gewinde	nungs- quer-	Auste	Austenitische und Duplexstähle				Martensitische Stähle				Ferritische Stähle	
D	schnitt A _{s,nom} mm ²	50	70	80	100	50	70	80	110	45	60	
M3	5,03	1 060	2 270	3 0 2 0	4 030	1 260	2 070	3 2 2 0	4 130	1 260	2 070	
M3,5	<mark>6,78</mark>	1 430	3 050	4 070	5 430	1 700	2 780	4 340	5 560	1 700	2 780	
M4	<mark>8,78</mark>	1 850	3 960	5 270	7 030	2 200	3 600	5 620	7 200	2 200	3 600	
M5	14,2	2 980	6 390	8 5 1 0	11 350	3 550	5 820	9 080	11 630	3 550	5 820	
M6	20,1	4 230	9 060	12 080	16 100	5 040	8 260	12 880	16 510	5 040	8 260	
M7	28,9	6 070	12 990	17 320	23 090	7 220	11 840	18 480	23 670	7 220	11 840	
M8	36,6	7 690	16 480	21 970	29 290	9 160	15 010	23 430	30 020	9 160	15 010	
M10	58,0	12 180	26 100	34 800	46 400	14 500	23 780	37 120	47 560	14 500	23 780	
M12	84,3	17 700	37 920	50 560	67 420	21 070	34 550	53 940	69 100	21 070	34 550	
M14	115	24 250	51 950	69 270	92 360	28 860	47 340	73 890	94 670	28 860	47 340	
M16	157	32 910	70 510	94 010	125 400	39 170	64 240	100 300	128 500	39 170	64 240	
M18	192	40 420	86 620	115 500	154 000	48 120	78 920	123 200	157 900	48 120	78 920	
M20	245	51 410	110 200	146 900	195 900	61 200	100 400	156 700	200 800	61 200	100 400	
M22	303	63 720	136 600	182 100	242 800	75 850	124 400	194 200	248 800	75 850	124 400	
M24	353	74 030	158 700	211 600	282 100	88 130	144 600	225 700	289 100	88 130	144 600	
M27	459	96 480	206 800	275 700	367 600	114 900	188 400	294 100	376 800	_	_	
M30	561	117 800	252 300	336 400	448 500	140 200	229 900	358 800	459 700	_	—	
M33	694	145 700	312 100	416 200	554 900	173 400	284 400	443 900	568 800		_	
M36	817	171 600	367 600	490 100	653 400	204 200	334 900	522 800	669 800	_	_	
M39	976	205 000	439 100	585 500	780 700	244 000	400 100	624 500	800 200		_	
Für die Be	rechnung vo	on A _{s,nom} , :	siehe 9.1.5.									
^a Die Kraftwerte wurden anhand der genauen Beträge von A _s berechnet und bis 100 000 N auf die nächst höheren 10 N sowie bei Beträgen darüber auf die nächsten 100 N gerundet												

Tabelle 7: Übersicht über die Nennspannungsquerschnitte und Mindestkräfte von Schrauben mit Regelgewinde [15].

Mittels der Werte der 0,2 %-Dehngrenze und der Nennspannungsquerschnitte kann auf die zulässige Zugkraft der Schrauben in Abhängigkeit ihres Durchmessers geschlossen werden. Umgekehrt ist es ebenfalls möglich, von einer bestimmten Zugkraft auf die notwendige Schraubengröße zu schießen. Es ist notwendig, dass die verwendeten Schrauben die für die Dichtheit notwendige Kraft aufbringen können. Bei einer vorgegebenen Auslastung der 0,2 %-Dehngrenze lässt sich dieser Zusammenhang darstellen. Dies ist in Abbildung 32 ersichtlich.

Abbildung 32: metrische Gewindemindestgröße in Abhängigkeit der Schraubenkraft bei verschiedener Ausnutzung der 0,2 %-Dehngrenze

Die Annäherungen können durch eine Potenzfunktion beschrieben werden und unterschieden sich nur durch ihren Proportionalitätsfaktor:

$$M_{Gewindegröße,p} = c_{(p_{\%})} * \left(\frac{F_{Schraube}}{N}\right)^{0,486}$$

(4.48)

 $\begin{array}{ll} M_{Gewindegr\"oße,p} & \dots \text{ minimale metrische Gewindegr\"oße bei einer Auslastung von p} \\ p_{\%} & \dots \text{ prozentuelle Auslastung der 0,2 \%-Dehngrenze} \\ c_{(p_{\%})} & \dots \text{ Proportionalitätsfaktor in Abhängigkeit von der Auslastung der 0,2 \%-Dehngrenze} \end{array}$

Die Abhängigkeit des Proportionalfaktors $c_{(p_{\%})}$ ist in Abbildung 33 ersichtlich.

Abbildung 33: Proportionalfaktor $c_{(p)}$ in Abhängigkeit der Auslastung der 0,2 %-Dehngrenze

Der Proportionalitätsfaktor lässt sich durch eine Potenzfunktion beschreiben:

$$c_{(p_{\%})} = 0,666 * (\frac{p_{\%}}{\frac{9}{0}})^{-0,486}$$

(4.49)

Daraus folgt:

$$M_{Gewindegröße,p} = 0,666 * \left(\frac{\%}{p_{\%}} * \frac{F_{Schraube}}{N}\right)^{0,486}$$

(4.50)

Die minimale metrische Gewindegröße muss im Falle einer Schraubenauswahl schlussendlich noch auf eine mögliche Gewindegröße aufgerundet werden.

Es ergibt sich somit folgende notwendige Bedingung:

 $M_{Gewindegröße,gewählt} \ge M_{Gewindegröße,p}$

(4.51)

 $M_{Gewindegröße,gewählt}$... gewählte metrische Gewindegröße

Darüber hinaus muss noch die passende Schraubenlänge gewählt werden. Die minimale Schraubenlänge wird wie folgt ermittelt und auf verfügbare Längen aufgerundet

$$l_{Schraube,min} = 2 * H + 2 * s_{Scheibe} + m_{Mutter} + l_{Überstand}$$

(4.52)

l _{Schraube,min}	minimal notwendige Schraubenlänge Scheibendicke nach ISO 7089 [16]
m_{Mutter}	Mutternhöhe nach DIN EN ISO 4032 [17]
$l_{Überstand}$	Gewindeüberstand zur Gewährleistung der vollen Gewindetragfähigkeit

Sofern nicht anderweitig geregelt, beträgt der Mindestgewindeüberstand ein voller Gewindegang [18] und kann durch die Steigung angenähert werden. Die Maße hierzu sind in Tabelle 9 angeführt. Sollte die Verschraubung z.B. lackiert werden, ist darauf zu achten, dass der tatsächliche Gewindeüberstand nicht zu groß ausfällt, da dieser vor einer allfälligen Demontage wieder gereinigt werden muss.

Tabelle 6. Oberblick uber die Nerlinnaise von Regeigewinde [19]	Tabelle 8:	Überblick über	die Nennmaße	von Regelgewinde	[19].
---	------------	----------------	--------------	------------------	-------

Gewinde- Nenndurchmesser		Stei- gung	Flanken- durchmesser	Kerndurchmesser		Gewindetiefe		Rundung	
Reihe 1	a = D Reihe 2	Reihe 3	Р	$d_2 = D_2$	d ₃ D ₁		h ₃	H ₁	$R = \frac{H}{6}$
1			0,25	0,838	0,693	0,729	0,153	0,135	0,036
	1,1		0,25	0,938	0,793	0,829	0,153	0,135	0,036
1,2			0,25	1,038	0,893	0,929	0,153	0,135	0,036
	1,4		0,3	1,205	1,032	1,075	0,184	0,162	0,043
1,6			0,35	1,373	1,171	1,221	0,215	0,189	0,051
	1,8		0,35	1,573	1,371	1,421	0,215	0,189	0,051
2			0,4	1,740	1,509	1,567	0,245	0,217	0,058
	2,2		0,45	1,908	1,648	1,713	0,276	0,244	0,065
2,5			0,45	2,208	1,948	2,013	0,276	0,244	0,065
3			0,5	2,675	2,387	2,459	0,307	0,271	0,072
	3,5		0,6	3,110	2,764	2,850	0,368	0,325	0,087
4			0,7	3,545	1,032 1,075 0,184 1,171 1,221 0,215 1,371 1,421 0,215 1,509 1,567 0,245 1,648 1,713 0,276 1,948 2,013 0,276 2,387 2,459 0,307 2,764 2,850 0,368 3,141 3,242 0,429 3,580 3,688 0,460 4,019 4,134 0,491 4,773 4,917 0,613 5,773 5,917 0,613 6,466 6,647 0,767 7,466 7,647 0,767 9,160 9,376 0,920 9,853 10,106 1,074 11,546 11,835 1,227 13,546 13,835 1,227 13,546 13,835 1,227 14,933 15,294 1,534 16,933 17,294 1,534 16,933 17,294 1,534 <tr< td=""><td>0,429</td><td>0,379</td><td>0,101</td></tr<>	0,429	0,379	0,101	
	4,5		0,75	4,013	3,580	3,688	0,460	0,406	0,108
5			0,8	4,480	4,019	4,134	0,491	0,433	0,115
6			1	5,350	4,773	4,917	0,613	0,541	0,144
	7		1	6,350	5,773	5,917	0,613	0,541	0,144
8			1,25	7,188	6,466	6,647	0,767	0,677	0,180
		9	1,25	8,188	7,466	7,647	0,767	0,677	0,180
10			1,5	9,026	8,160	8,376	0,920	0,812	0,217
		11	1,5	10,026	9,160	9,376	0,920	0,812	0,217
12			1,75	10,863	9,853	10,106	1,074	0,947	0,253
	14		2	12,701	11,546	11,835	1,227	1,083	0,289
16			2	14,701	13,546	13,835	1,227	1,083	0,289
	18		2,5	16,376	14,933	15,294	1,534	1,353	0,361
20			2,5	18,376	16,933	17,294	1,534	1,353	0,361
	22		2,5	20,376	18,933	19,294	1,534	1,353	0,361
24			3	22,051	20,319	20,752	1,840	1,624	0,433
	27		3	25,051	23,319	23,752	1,840	1,624	0,433
30			3,5	27,727	25,706	26,211	2,147	1,894	0,505
	33		3,5	30,727	28,706	29,211	2,147	1,894	0,505
36	20		4	33,402	31,093	31,670	2,454	2,165	0,577
42	- 39		4	30,402	34,093	34,070	2,454	2,105	0,577
42			4,5	39,077	30,479	57,129	2,700	2,430	0,650
40	45		4,5	42,077	39,479	40,129	2,760	2,436	0,650
40	52		5	44,752	41,000	42,307	3,007	2,700	0,722
56	32		5	40,752	40,000	40,307	2 274	2,700	0,722
20	60		5,5	52,420	49,252	54,046	3,374	2,977	0,794
64	00		5,5	60,420	55,252	54,046	3,374	2,311	0,794
04	69		6	64 103	60,639	61 505	3,001	3,240	0,000
	00		0	04,105	60,639	01,505	3,001	3,240	0,000

In Abbildung 34 ist die Näherung des minimalen Gewindeüberstandes in Form einer oberen Schranke über die Gewindesteigung in Abhängigkeit von der metrischen Gewindegröße ersichtlich.

Abbildung 34: Zusammenhang zwischen der Gewindesteigung und der Gewindegröße. Näherung des minimalen Gewindeüberstandes in Form einer oberen Schranke.

Dieser Zusammenhang kann wie folgt angenähert werden:

$$l_{\ddot{U}berstand} \ge p_{Gewinde} \approx 0,288 \text{ mm} * M_{Gewindegröße}^{0,7389}$$

 $p_{Gewinde}$... Gewindesteigung

Die Mindestschraubenlänge ergibt sich somit zu:

$$l_{schraube,min} = 2 * H + 2 * s_{scheibe} + m_{Mutter} + 0,288 \text{ mm} * M_{Gewindegröße}^{0,7389}$$

(4.54)

(4.53)

Es ergibt sich somit folgende notwendige Bedingung:

$$l_{Schraube} \ge 2 * H + 2 * s_{Scheibe} + m_{Mutter} + 0,288 \text{ mm} * M_{Gewindegröße}^{0,7389}$$

(4.55)

*l*_{Schraube}... gewählte Schraubenlänge

Die Anzahl der Verschraubungen ist durch die Scheibenaußendurchmesser begrenzt. Der Mindestabstand zwischen zwei Scheiben lässt sich wie folgt berechnen:

$$\Delta_{Schraube} = D_{LK} * \sin\left(\frac{360^{\circ}}{2 * z}\right)$$
(4.56)

Δ_{schraube} ... Mindestabstand zwischen zwei Scheiben

Es ergibt sich unter Berücksichtigung von einer Sicherheitsreserve von 10 % folgende notwendige Bedingung:

$$\frac{\Delta_{Schraube}}{D_{S,a}} = \frac{D_{LK}}{D_{S,a}} * \sin\left(\frac{360^{\circ}}{2 * z}\right) \ge 1,1$$
(4.57)

Die Maße und Massen der Schrauben, Muttern und Scheiben sind aus den einzelnen Normen zu entnehmen.

Die Schraubensicherung erfolgt mittels Schraubensicherungsmittel. Im Fachhandel gibt es zahlreiche Produkte, die die Gewinde nicht nur gegen ungewolltes Lösen sichern, sondern diese auch abdichten und damit vor Korrosion schützen.

4.3 Analyse der Konstruktionsoptimierung

Der Vorteil an einer analytischen Konstruktionsoptimierung ist, dass diese für viele Eingangsgrößen ausgewertet und verglichen werden kann. Von Interesse ist insbesondere die notwendige Verschraubungsanzahl und deren metrische Gewindegröße.

Für alle folgenden Vergleiche wurden, wenn nicht anders angemerkt, folgende Werte bzw. Wertebereiche angenommen:

- O-Ring (Maße abweichend von DIN ISO 3601 [20], genaue und umfangreichere metrische Maße sind den Katalogen der Hersteller entnehmbar)
 - Innendurchmesser des O-Ringes: 10 mm bis 100 mm, Schrittweite 2,5 mm
 - o Schnurstärke des O-Ringes: 1 mm bis 2 mm, Schrittweite 0,5 mm

- Verschraubungsmaterial:
 - Zylinderkopfschrauben ISO 4762 [13], M2 bis M24 (Vorzugsreihe)
 - Sechskantmuttern DIN EN ISO 4032 [17], Größe passend zu den Schrauben
 - Scheiben ISO 7089 [16], Größe passend zu den Schrauben
- Anzahl der Schrauben: 3 bis 12
- Überdruck: 0 bar bis 100 bar, Schrittweite 2,5 bar
- Flanschdicke: 2 mm bis 15 mm, Schrittweite 0,5 mm
 - Randbedingung: Die Flanschdicke muss um mindestens 1 mm größer als die Schnurstärke sein.
- Verwendete Werkstoffe:
 - Flansche: EN AW 6061-T6 mit anodisierter Schutzschicht (die zulässige Biegespannung inkl. Sicherheit aufgrund fehlender äußerer Belastung beträgt 67 MPa, der Elastizitätsmodul 70 GPa)
 - o Schrauben, Scheiben und Muttern: rostfreier Stahl, A4-70

Berechnungsablauf:

- Ein MatLab-Tool berechnet unter Verwendung einer Excel-Eingabemaske von jeder Parameterkombination die Gesamtmasse und prüft, ob die zuvor formulierten Bedingungen erfüllt sind. Erfüllt eine Parameterkombination nicht alle Bedingungen, wird diese nicht mehr weiter berücksichtigt.
- Aus den übriggebliebenen Parameterkombinationen lassen sich diejenige Parameterkombinationen aussortieren, die bei jeder möglichen Eingangsgrößenpaarung (in diesem Fall O-Ring-Innendurchmesser und Innenüberdruck) zur geringsten Gesamtmasse führen. Diese können für Vergleiche aufbereitet und in Diagrammen dargestellt werden. Alle Abmessungen und Zwischenergebnisse können tabellarisch ausgegeben werden.

In Abbildung 35, Abbildung 36 und Abbildung 37 sind die minimale Masse der Dichtungsstelle sowie die dazugehörige metrische Gewindegröße und die Schraubenanzahl in Abhängigkeit von O-Ring-Innendurchmesser und Überdruck angegeben.

Abbildung 35: minimale Masse der Dichtungsstelle, max. 12 Verschraubungen

Abbildung 36: metrische Gewindegröße, max. 12 Verschraubungen

Abbildung 37: Verschraubungsanzahl, max. 12 Verschraubungen

Es ist ersichtlich, dass für eine minimale Gesamtmasse tendenziell eine möglichst hohe Anzahl an Verschraubungen zu wählen ist.

Um die Auswirkungen einer festen Verschraubungsanzahl vergleichen zu können, wird die Dichtungsstelle mit einer fixen Anzahl von je 4, 8 und 12 Schrauben ausgewertet und miteinander verglichen. Der Vergleich bezüglich minimaler Masse und metrischer Schraubengröße ist in Abbildung 38 bis Abbildung 43 ersichtlich.

Abbildung 38: minimale Masse der Dichtungsstelle, 4 Verschraubungen

Abbildung 39: metrische Gewindegröße, 4 Verschraubungen

Abbildung 40:minimale Masse der Dichtungsstelle, 8 Verschraubungen

Abbildung 41: metrische Gewindegröße, 8 Verschraubungen

Abbildung 42: minimale Masse der Dichtungsstelle, 12 Verschraubungen

Abbildung 43: metrische Gewindegröße, 12 Verschraubungen

Bei einer Anzahl von 12 Verschraubungen ist bei geringer O-Ring-Größe eine Stufe ersichtlich. Dies ist bei der metrischen Gewindegröße in Abbildung 43 gut ersichtlich. Diese Stufe kommt dadurch zustande, dass der resultierende geringe Lochkreisdurchmesser zu einer Kollision der kleinstmöglichen Scheiben führt. Daher kann keine metrische Gewindegröße gewählt werden, die alle notwendigen Bedingungen erfüllt. Das Programm gibt folglich für die Gewindegröße 0 aus. Dieselbe Stufe, nur deutlich weniger ausgeprägt, tritt bei der minimalen Masse der Dichtungsstelle in Abbildung 42 ebenfalls auf. Das Programm gibt folglich für die Masse 0 g aus.

Es ist ersichtlich, dass eine geringe Verschraubungsanzahl einen sehr hohen Anstieg der Gesamtmasse der Dichtungsstelle zur Folge hat. In diesem Beispiel bewirkt eine Erhöhung der Verschraubungsanzahl um 4 Stück (sowohl bei von 4 auf 8 als auch bei von 8 auf 12 Verschraubungen) in etwa eine Halbierung der Gesamtmasse der Dichtstelle. Daraus lässt sich folgern, dass für eine Dichtungsstelle mit möglichst geringer Masse die Verschraubungsanzahl den Rahmenbedingungen entsprechend zu maximieren ist.

4.4 Zusammenfassung

Eine analytische Konstruktionsoptimierung ist sehr zeitaufwändig und aufgrund der vielen individuellen Zwischenschritte auch fehleranfällig. Sie erlaubt jedoch interessante Analysen bzw. liefert Erkenntnisse zutage, die durchaus überraschend sein können und zu einem besseren Verständnis der Konstruktionen führen.

Sie eignen sich besonders gut für Auslegungen, denen ein striktes, genormtes Berechnungsschema unterliegt. Dadurch können nicht nur einfache Bauteile und Konstruktionen, sondern auch komplizierte und mit etwas erhöhtem Aufwand auch komplexe Konstruktionen wie z.B. ganze Getriebe im Hinblick auf minimale Masse optimiert werden.

Aus dem hier durchgeführten Beispiel lassen sich folgende Konstruktionsrichtlinien für axiale Dichtungsstellen mittels Flansche und Verschraubungen bei bekanntem O-Ring-Durchmesser und Innenüberdruck ableiten:

- Es ist eine möglichst hohe Verschraubungsanzahl zu wählen.
- Die Gewindegröße ist anhand der Gesamtbelastung zu wählen.
- Die Materialauswahl der Flansche erfolgt z.B. anhand der Erkenntnisse aus den Kapiteln 2 und 3 für auf Biegung belastete Bauteile.
- Schlussendlich sind die notwendigen Flanschdicken zu ermitteln.

Wie eine softwareunterstützte Optimierung von einzelnen Bauteilen mittels Finiten Elementen durchgeführt werden kann, ist in Kapitel 5 ersichtlich.

5 Topologie- und Konstruktionsoptimierung

In Kapitel 2.1 ist ersichtlich, dass ohne Berücksichtigung von Instabilität bei Biegebelastung I-Profile, Profile mit hohlem Rechteckquerschnitt und Profile mit hohlem Kreisquerschnitt besonders gut für den Einsatz im Leichtbau geeignet sind. Bei Torsion fällt das I-Profil aufgrund des offenen Querschnittes nicht in die engere Wahl. Bei Zug/Druck und Torsion ist nur die Größe des Querschnittes relevant. Nicht alle in der Realität auftretenden Bauteilquerschnitte lassen sich durch genormte Querschnitte darstellen. Sie dienen daher als guter Anhaltswert für die überschlagsmäßige Dimensionierung von Bauteilen.

Bauteile sind dreidimensional – sie weisen daher eine weitere Dimension auf als eine Querschnittsfläche. Im Zuge der detaillierten Dimensionierung ist daher das Bauteil als Ganzes zu optimieren.

Sehr gut geeignete Hilfsmittel hierfür sind die Topologie- und die Konstruktionsoptimierung mittels Finite Elemente. Am Markt sind hierzu viele Produkte verfügbar. Erweiterungsmodule von gängiger CAD-Software sind sehr gut geeignet. Grund hierfür ist der Wegfall von Konvertierungsschritten und somit der effiziente, konstruktionsbegleitende Einsatz.

5.1 Topologieoptimierung

Bei der Topologieoptimierung wird einem Bauteil ein nutzbarer Konstruktionsraum vorgegeben. Mittels Finite-Elemente-Modell verteilt die Berechnungssoftware die Dichte (und damit die einzelnen Elemente) in diesem Konstruktionsraum so, dass die Anforderungen optimal erreicht werden. Diese Anforderungen können z.B. eine minimale Masse, eine maximale Steifigkeit, oder eine minimale Masse bei einer festgelegten Maximalverformung sein.

5.2 Konstruktionsoptimierung

Bei der Konstruktionsoptimierung werden Abmessungen oder andere Parameter eines Bauteiles innerhalb eines gewissen Bereichs mit einer ggf. definierten Schrittweite dahingehend optimiert, dass vorgegebene Anforderungen bestmöglich umgesetzt werden. Diese Anforderungen können z.B. eine minimale Masse, eine maximale Steifigkeit, eine minimale Masse bei einer festgelegten Maximalverformung oder ein geometrischer, für die Funktion wichtiger Zusammenhang sein.

5.3 Praktische Bauteiloptimierung

In der Praxis erweist sich eine Kombination aus beiden Optimierungen als sinnvoll.

Dieses Optimierungspotential soll anhand eines Beispiels aufgezeigt werden. Mehrere Varianten zur Ermittlung der idealen Trägerform werden durchgeführt und verglichen.

Angabe: Ein Kragträger mit einer Gesamtlänge von einem halben Meter soll eine statische Streckenlast von gleichmäßig verteilten 5 kN tragen. Es steht eine Platte aus EN AW 6061 T6 mit einer Plattendicke von 10 mm und den Abmessungen von 150x500 mm zur Verfügung. Aus dieser soll ein Zuschnitt mit minimaler Masse erstellt werden. Die zulässige Verformung beträgt 2 mm. Die Sicherheit gegen Fließen soll 3 betragen. Für die mechanische Bearbeitung steht ein Lasercutter zur Verfügung.

1. Ermittlung der optimalen Trägerhöhe anhand einer Grobauslegung des Rohkörpers (rechteckig) - Annahme als ebener Spannungszustand

Mittels Grobauslegung, welche auch ohne Softwareunterstützung durchgeführt werden kann, wird die optimale Trägerhöhe ermittelt.

Die größte Belastung ergibt sich an der Einspannstelle. Es überlagern sich hierbei eine Biegespannung und eine Schubspannung. Die Schubspannung ist aufgrund der kurzen Trägerlänge nicht vernachlässigbar. Für die Grobauslegung kann vereinfacht der zweiachsige Spannungszustand angenähert werden. Die Vergleichsspannung berechnet sich folgendermaßen:

$$\sigma_{v} = \sqrt{\sigma^{2} + 3 * \tau^{2}} = \sqrt{\left(\frac{3 * F * l_{K}}{b_{K} * h_{K}^{2}}\right)^{2} + 3 * \left(\frac{F}{b_{K} * h_{K}}\right)^{2}} \le \sigma_{b,zul}$$

(5.1)

- σ_v ... Vergleichsspannung nach Mises
 - ... Summe aus Normal- und Biegespannungen
 - ... Summe aus Abscher- und Torsionsspannungen
 - ... Ersatzeinzellast der gleichmäßig verteilten Streckenlast an der Oberseite des Trägers

 l_K ... Kragträgerlänge

σ

τ F

b_K ... Kragträgerbreite

- *h_K* ... Kragträgerhöhe
- $\sigma_{v,zul}$... zulässige Vergleichsspannung

Da die Höhe der Platte aufgrund der Bearbeitungsmöglichkeiten die einzige noch festzulegende Abmessung ist, wird nach dieser umgeformt:

$$h_{K} \geq \sqrt{\frac{3}{2} * \frac{1 + \sqrt{1 + 4 * (\frac{\sigma_{b,zul} * b_{K} * l_{K}}{F})^{2}}}{(\frac{\sigma_{b,zul} * b_{K}}{F})^{2}}}$$

(5.2)

Die zulässige Biegespannung wird mit einer Sicherheit von 3 gegenüber der Fließgrenze berechnet und ergibt 91,7 MPa.

$$\sigma_{v,zul} = \frac{\sigma_F}{S_F}$$

(5.3)

 σ_F ... Fließgrenze S_F ... Sicherheit gegen Fließen

Es ergibt sich eine Mindesthöhe von 90,7 mm. Um die Vereinfachung in der Auslegung auszugleichen, wird großzügig aufgerundet und eine Profilhöhe von z.B. 95 mm gewählt. Eine FE-Kontrollrechnung mittels SolidWorks 2018 zeigt bei diesem Zuschnitt eine maximale Vergleichsspannung von 100 MPa (siehe Abbildung 44). Die getroffene Vereinfachung führt demnach zu einer unzulässig hohen Vergleichsspannung. Betrachtet man jedoch den kritischen Bereich näher, ist die Spannungserhöhung nur auf einen Knoten an der Einspannung begrenzt und damit unkritisch.

Abbildung 44: Kragträger, Höhe durch Grobauslegung, Vergleichsspannung

In Abbildung 45 ist die maximale Verformung von 1,65 mm ersichtlich, sie liegt im zulässigen Bereich. Die Masse beträgt 1,30 kg. Dieser Kragträger gilt als Referenz für die weiteren Bauteiloptimierungen.

Abbildung 45: Kragträger, Höhe durch Grobauslegung, Verformung

2. Konstruktionsoptimierung des Rohkörpers (rechteckiger Zuschnitt) mit dem Ziel der Massenminimierung

Mittels Konstruktionsoptimierung wird die ideale Höhe des Trägers ermittelt. Da diese höher sein wird als bei der Grobauslegung, wird die minimale Höhe bei 95 mm, die maximale Höhe auf 150 mm und eine Schrittweite von 1 mm (größer als die Fertigungstoleranz) gesetzt. Die maximale Höhe kann auch geringer angesetzt werden. Dies würde die Rechenzeit verringern, jedoch muss abgeschätzt werden können, ob die nun zu berechnende Höhe auch tatsächlich im festgelegten Bereich liegt. Alternativ kann die Schrittweite zuerst höher angesetzt werden und schlussendlich dann im vermeintlichen Zielbereich wieder herunter gesetzt und Minimal- und Maximalhöhe angepasst werden. Als Ziel der Konstruktionsoptimierung wird eine minimale Masse unter Einhaltung der maximalen Vergleichsspannung gewählt. Es ergibt sich nun eine Höhe von 101 mm. Die Vergleichsspannung und die Verformung sind in Abbildung 46 und Abbildung 47 ersichtlich. Die Masse des Trägers beträgt 1,36 kg. Die maximale Verformung liegt mit 1,38 mm niedriger und damit weiterhin im zulässigen Bereich. Zum Unterschied zur Grobauslegung inkl. wohlüberlegter Aufrundung der Abmessung für die Trägerhöhe erfüllt der konstruktionsoptimierte Kragträger die Forderung nach einer Mindestsicherheit gegenüber der Fließgrenze.

Abbildung 46: Kragträger, Höhe durch Konstruktionsstudie, Vergleichsspannung

Abbildung 47: Kragträger, Höhe durch Konstruktionsstudie, Verformung

3. Topologieoptimierung des zuvor festgelegten Trägers mit einer Trägerhöhe von 101 mm plus anschließender Konstruktionsoptimierung von Ausschnitten mit dem Ziel der Massenminimierung

In weiterer Folge wird eine Topologieoptimierung des zuvor festgelegten Trägers mit einer Höhe von 101 mm durchgeführt, um die Stellen zu identifizieren, welche weggeschnitten werden können. Dafür werden folgende Randbedingungen gesetzt:

- Die angestrebte Massenreduktion beträgt 75 % (zum Vergleich wird anfangs auch mit 50 % gerechnet eine Erklärung folgt auf Seite 82).
- Die ersten 10 mm des Designraumes bei der Einspannstelle werden von der Topologieoptimierung ausgeschlossen.
- Für die Fertigungsoptimierung wird die Entformungsrichtung so gewählt, dass der Träger mit einem Lasercutter nachbearbeitet werden kann – normal zur Plattendicke.

In Abbildung 48 und Abbildung 49 ist das topologieoptimierte Bauteil mit unterschiedlicher Massenreduktion ersichtlich.

Abbildung 48: Kragträger, Höhe durch Konstruktionsstudie, topologie
optimiert, Massenreduktion um 50 %

Abbildung 49: Kragträger, Höhe durch Konstruktionsstudie, topologie
optimiert, Massenreduktion um 75%

Da bei einer angestrebten Massenreduktion um 75 % die Schnittkontur übersichtlicher gestaltet werden kann, wird diese für die weitere Bearbeitung verwendet. Dies führt zu einer geringeren Schnittlänge und zu weniger geometrischen Abhängigkeiten. Es ist jedoch zu beachten, dass bei einer vorgegebenen Massenreduktion trotz einer Randbedingung hinsichtlich der maximalen Vergleichsspannung diese überschritten werden kann. Das Netz des topologieoptimierten Trägers wird nun als toter Körper, besser jedoch als totes Oberflächenmodell abgespeichert und in das Bauteil geladen. In weiterer Folge können die Ausschnitte für den Lasercutter händisch anhand der Kontur gesetzt werden. Der getätigte Ausschnitt ist anhand der hellblauen Kontur in Abbildung 50 ersichtlich.

Abbildung 50: Kragträger, Höhe durch Konstruktionsstudie, Umriss der Topologieoptimierung nachskizziert, angestrebte Massenreduktion um 75 %

Im Anschluss ist der bearbeitete Träger auf die nun auftretende Vergleichsspannung und Verformung nachzurechnen. Es kann vorkommen, dass die festgelegte maximale Vergleichsspannung überschritten wird um das vorgegebene Ziel der Massenreduktion zu erreichen. Dessen Analyse ist in Abbildung 51 und Abbildung 52 ersichtlich.

Abbildung 51: Kragträger, Höhe durch Konstruktionsstudie, Analyse des skizzierten Umrisses der Topologieoptimierung, Vergleichsspannung

Abbildung 52: Kragträger, Höhe durch Konstruktionsstudie, Analyse des skizzierten Umrisses der Topologieoptimierung, Verformung

Die Masse hat sich auf 0,483 kg reduziert, was einer Massenreduktion von weniger als 75 % entspricht.

Es zeigen sich zwei Probleme. Zum einen ist die maximale Vergleichsspannung mit 128 MPa über den zulässigen Wert von 91,7 MPa gestiegen, zum anderen ist die maximale Verformung mit 3,19 mm weit über dem Grenzwert von 2 mm.

Um den Problemen zu begegnen erfolgt eine weitere Konstruktionsoptimierung. Insbesondere die Maße bei der höchstbelasteten Stelle sowie an der Stelle mit der größten Krümmung ist es sinnvoll die Abmessungen zu optimieren. Der weiter optimierte Kragträger ist in Abbildung 53 und Abbildung 54 ersichtlich.

Abbildung 53: Kragträger, Optimierung durch weitere Konstruktionsoptimierung, Vergleichsspannung

Abbildung 54: Kragträger, Optimierung durch weitere Konstruktionsoptimierung, Verformung

Der Kragträger weist nun eine maximale Vergleichsspannung von 91,4 MPa auf. Die Masse des Bauteils beträgt nun 0,549 kg. Die Verformung ist mit 2,59 mm zwar deutlich niedriger als direkt nach der Topologieoptimierung, jedoch immer noch zu hoch. Im Zuge der Konstruktionsoptimierung kann die maximale Verformung als weitere Randbedingung auf 2 mm festgelegt werden. Hierbei ist es aber sinnvoll, den gesamten nutzbaren Bauteilbereich auszunutzen, um eine höhere Steifigkeit zu erzielen. Dadurch kann neben einer Verformungsreduktion auch die Bauteilmasse geringer werden, welche sonst ansteigen würde.

4. Topologieoptimierung des zuvor festgelegten Trägers mit einer Trägerhöhe von 101 mm plus anschließender Konstruktionsoptimierung von Ausschnitten mit dem Ziel der Massenminimierung inkl. nachträglicher Ausnutzung des erweiterten Bauraumes (maximale Höhe 150 mm) mit dem nachträglich hinzugefügten Ziel der Limitierung der maximalen Verschiebung auf 2 mm

Diese Optimierungsvariante ist in der Praxis nicht üblich und dient rein dem Vergleich mit den anderen Optimierungsvarianten. Im Vergleich zur vorherigen Analyse wird nun bei der abschließenden Konstruktionsoptimierung die Kragträgerhöhe ebenfalls aufgenommen und mit maximal 150 mm begrenzt. Die Ausschnitte werden gleich belassen. Bei der Bemaßung der Ausschnitte muss jedoch darauf geachtet werden, dass die Schnittkanten sich auch bei einer Vergrößerung der Bauteilhöhe mit verschieben. Die Ergebnisse sind in Abbildung 55 und Abbildung 56 ersichtlich.

Abbildung 55: Kragträger mit nachträglich größtmöglicher Höhe, Optimierung durch weitere Konstruktionsoptimierung, Vergleichsspannung

Abbildung 56: Kragträger mit nachträglich größtmöglicher Höhe, Optimierung durch weitere Konstruktionsoptimierung, Verformung

Der Kragträger weist nun bei einer Höhe von 130 mm eine maximale Vergleichsspannung von 91,2 MPa und einer maximalen Verformung von 1,58 mm eine Masse von 0,541 kg auf. Nun erfüllt der Kragträger alle Randbedingungen. Es stellt sich jedoch die berechtigte Frage, ob es nicht zweckmäßiger ist, schon bei der Topologieoptimierung die maximale Bauteilhöhe auszunutzen. Dies wird die folgende Auslegungsvariante zeigen. 5. Topologieoptimierung des maximal möglichen Rohkörpers (Höhe 150 mm) plus anschließender Konstruktionsoptimierung von Ausschnitten mit dem Ziel der Massenminimierung und der Limitierung der maximalen Verformung auf 2 mm

Unter der Annahme, dass die Verformung am Trägerende zu groß ist, wird die Minimierung der Verformung nun von Anfang an in die Konstruktionsoptimierung aufgenommen. Die maximale Verformung wird der Angabe entsprechend auf 2 mm beschränkt. Die Topologieoptimierung liefert einen Vorschlag für Ausschnitte, der sich deutlich von dem der vorherigen Methode unterscheidet. Dies ist grundsätzlich ein gutes Zeichen, da dies auf günstigere Verstrebungen schließen lässt. Eine weitere Massenreduktion darf somit erwartet werden. Die Vergleichsspannung und Verformung des die konstruktionsoptimierten Ausschnitte beinhaltenden Kragträgers ist in Abbildung 57 und Abbildung 58 ersichtlich.

Abbildung 57: Kragträger, Optimierung durch Topologieoptimierung des maximalen Bauraumes und anschließender Konstruktionsoptimierung, Vergleichsspannung

Abbildung 58: Kragträger, Optimierung durch Topologieoptimierung des maximalen Bauraumes und folgender Konstruktionsoptimierung, Verformung

Die maximale Vergleichsspannung liegt bei 91,6 MPa, die maximale Verformung bei 1,83 mm. Die Masse hat sich auf 0,492 kg reduziert. Es ist im Unterschied zu den vorherigen Optimierungen ersichtlich, dass die maximale Vergleichsspannung an mehreren Stellen auftritt. Dies lässt auf eine effizientere Ausnutzung des Bauteilwerkstoffes schließen. Es ist auch ersichtlich, dass die Verstrebungen etwas schlanker ausfallen. Dadurch sind sie anfälliger für Instabilitäten. Eine Knickanalyse liefert einen Knickstellensicherheitsfaktor von 2,91. D.h. das Bauteil kann ca. die dreifache Last tragen bis eine Instabilität (in diesem Fall das Ausbeulen einzelner Verstrebungen) eintritt. Da bei dieser Belastung der Werkstoff bereits nahe der Fließgrenze liegen würde ist der Sicherheitsfaktor in Ordnung. Die Analyse ist in Abbildung 59 ersichtlich.

Modusnummer	Knickstellensicherheitsfaktor	(min)
	2.9119	6.909e-U3
		. 6,407e-03
		5.824e-03
		5,242e-03
		- 4.660e-03
		4.077e-03
Schließen	Speichern Hilfe	3.495e-03
		2.912e-03
1		2.330e-03
		- 1.747e-03
	the g	- 1.165e-03
		_ 5.824e-04
		0.000e+00
		Schwingungsf

Abbildung 59: Kragträger, Optimierung durch Topologieoptimierung des maximalen Bauraumes und anschließender Konstruktionsoptimierung, Knickanalyse

Schlussendlich ergibt sich folgender Vergleich der Optimierungen:

	Analyse						
	1	2	3	4	5		
maximale Vergleichsspannung	100 MPa	90,3 MPa	91,4 MPa	91,2 MPa	91,6 MPa		
maximale Verschiebung	1,65 mm	1,38 mm	2,59 mm	1,58 mm	1,83 mm		
Masse	1,3 kg	1,36 kg	0,549 kg	0,541 kg	0,494 kg		
rel. Massenänderung	-	+4,62 %	-57,8 %	-58,4 %	-62,0 %		

Tabelle 9: Vergleich der verschiedenen Herangehensweisen bei der Topologie- und Konstruktionsoptimierung

(1) Ermittlung der optimalen Trägerhöhe anhand einer Grobauslegung des Rohkörpers (rechteckig) -Annahme als ebener Spannungszustand

(2) Konstruktionsoptimierung des Rohkörpers (rechteckiger Zuschnitt) mit dem Ziel der Massenminimierung

(3) Topologieoptimierung des zuvor festgelegten Trägers mit einer Trägerhöhe von 101 mm plus anschließender Konstruktionsoptimierung von Ausschnitten mit dem Ziel der Massenminimierung

- (4) Topologieoptimierung des zuvor festgelegten Trägers mit einer Trägerhöhe von 101 mm plus anschließender Konstruktionsoptimierung von Ausschnitten mit dem Ziel der Massenminimierung inkl. nachträglicher Ausnutzung des erweiterten Bauraumes (maximale Höhe 150 mm) mit dem nachträglich hinzugefügten Ziel der Limitierung der maximalen Verschiebung auf 2 mm
- (5) Topologieoptimierung des maximal möglichen Rohkörpers (Höhe 150 mm) plus anschließender Konstruktionsoptimierung von Ausschnitten mit dem Ziel der Massenminimierung und der Limitierung der maximalen Verformung auf 2 mm

Daraus lässt sich folgendes schließen:

Es ist ersichtlich, dass durch die analytische Grobauslegung einfacher Bauteile die geforderte Minimalsicherheit werden kann. Bei einer analytischen Auslegung ist jedoch eine höhere Masse zu erwarten, da Ausschnitte nicht oder kaum berücksichtigt werden können. Eine Analyse mit aufwendigeren Modellen ist mit einem deutlich höherem Rechenaufwand verbunden und stößt bei komplizierten Bauteilen mit komplexer Geometrie schnell an ihre Grenzen.

Für eine effektive Optimierung wird eine Topologieoptimierung mit dem größtmöglichen Bauraum durchgeführt. Alle Randbedingungen, selbst wenn sie noch so irrelevant erscheinen, sind von Anfang an zu berücksichtigen. Ein nachträgliches Hinzufügen von Randbedingungen liefert weniger Bauteildesignvarianten als im Vergleich zum Neubeginn der Optimierung unter Berücksichtigung aller Randbedingungen von Beginn an, inkl. dem größtmöglichen Bauraum. Mathematisch gesehen wird durch den Neubeginn der Analyse lediglich die Menge an möglichen Lösungen erweitert.

5.4 Zusammenfassung

Schon eine einfache Konstruktionsoptimierung ist für eine Grobauslegung hilfreich, um die geforderten Sicherheiten einzuhalten. Hierfür ist jedoch ein einfaches Finite-Elemente-Tool, wie sie bereits oft in CAD-Systemen als Minimalausstattung integriert sind, hilfreich. Mit dessen Hilfe kann man sich schrittweise zu einer verbesserten Bauteilgeometrie hin iterieren, indem man in Anlehnung an eine Topologieoptimierung händisch sukzessiv gering belastete Teile des Bauteils wegschneidet oder in Anlehnung an eine Konstruktionsoptimierung Bauteilabmessungen verändert. Eine Topologie- oder Konstruktionsoptimierung kann mittels einfachem Finite-Elemente-Tool jedoch nur mit immensem Aufwand mit annähernd vergleichbaren Ergebnissen durchgeführt werden. Eine Minimierung des Optimierungsaufwandes ist möglich, wenn beispielsweise bei der Konstruktionsoptimierung möglichst viele Maße voneinander direkt abhängen, einzelne Schnittkanten fluchten oder parallel verlaufen. Dadurch entstehen Konstruktionen mit weniger Freiheitsgraden und somit weniger Konstruktionsszenarien. Ist eine Leichtbaukonstruktion zu entwerfen, ist die Nutzung einer Optimierungssoftware zweckmäßig.

Der effektive und effiziente Einsatz von Optimierungssoftware setzt jedoch neben deren Erwerbes entsprechend geschultes Personal voraus. Durch das Festlegen einer geeigneten Geometrie im Entwurfsprozess erhöht sich die Aussicht auf Erfolg in der Optimierung. Eine unzweckmäßige, zu optimierende Konstruktion wird daher im Regelfall auch im optimierten Zustand eine (nicht ganz so) unzweckmäßige Konstruktion bleiben. Nur eine von Grund auf gut durchdachte Konstruktion führt im optimierten Zustand zu einer sehr guten bzw. leichten und stabilen Konstruktion.

6 Ausblick

6.1 Werkstoffauswahl

Die Wahl des richtigen Werkstoffes kann für komplexe Bauteile durchaus aufwendig sein, selbst wenn man weitere Einflüsse wie z.B. Korrosionsbeständigkeit ignoriert. Mittels einer softwareunterstützen Konstruktionsoptimierung können jedoch nicht nur die optimalen Bauteilabmessungen, sondern auch der optimale Werkstoff ermittelt werden. Da diese Möglichkeit bereits besteht, ist die Findung von weiteren Kennwerten bezüglich Festigkeit und Steifigkeit nur bedingt zielführend. Ein Maß für die (Kontakt-)Korrosionsbeständigkeit wäre zielführender, um die Anzahl an in Frage kommenden Werkstoffen schnell und treffsicher so früh wie möglich zu minimieren. Ein Beispiel hierfür ist der sogenannte PREN-Index (Pitting Resistance Equivalent Number). Dieser gibt die Korrosionsbeständigkeit für rostfreie Stähle an und wird anhand einer Wirksumme der Legierungsbestandteile ermittelt. Ein höherer PREN-Wert entspricht einer besseren Korrosionsbeständigkeit.

6.2 Entwicklung eines Versuchsaufbaus zur Kontaktkorrosionsabschätzung

Da von der Qualität des Korrosionsschutzes auch die Lebensdauer des Produktes, ggf. Wartungsverträge und weitere wirtschaftliche Überlegungen abhängen, darf der Korrosionsschutz nicht rein in der Verantwortung der Konstrukteur_innen liegen. Korrosionsschutz ist folglich eine Managemententscheidung. Wichtig ist hierbei die exakte Definition von Korrosionsschäden und die saubere Abtrennung zu Korrosionserscheinungen. Im Pflichtenheft ist dies zu vermerken. Zumindest der für die Gesamtkonstruktion verantwortlichen Person sind für die Entwicklung eines optimalen Produktes die für die Konstruktion benötigten Informationen und nach Möglichkeit die Durchführung von Tests zur Verfügung zu stellen.

Wichtig ist für Tests eine möglichst aussagekräftige Abbildung der geplanten Lebensdauer des Produktes in den Testzyklen. Die Entwicklung von genaueren, an die jeweilige Betriebsumgebung und Minimallebensdauer des Produktes angepasste Testzyklen ist sinnvoll. Um den Einfluss der Korrosion auf die mechanische Belastung besser ermitteln zu können, sind Korrosionstests unter mechanischer Belastung sinnvoll. Da dies bei größeren Baugruppen große Klimakammern erfordert, sind Vergleichstests zielführend, falls eine Literaturrecherche keine ausreichende Aussagekraft liefert.

6.3 Analytische Konstruktionsoptimierung

Trotz des hohen Aufwandes ist die analytische Konstruktionsoptimierung sinnvoll. Angewendet auf verschiedenste Bereiche kann so der softwareunterstützten Konstruktionsoptimierung schon vorweg die eine oder andere Entscheidung genommen werden, was sich positiv auf die Berechnungsdauer auswirkt. Dies ist bei besonders komplizierten und insbesondere bei komplexen Baugruppen der Fall. Als Beispiel kann hier die Auslegung eines Getriebes angeführt werden [21]. Daher ist es zielführend auch weiterhin Modelle für Baugruppen mit dem Ziel der Massenminimierung zu entwickeln.

6.4 Topologie- und Konstruktionsoptimierung

Die Verwendung von Optimierungssoftware ist insbesondere beim Leichtbau nicht mehr wegzudenken. Die meisten CAD-Programme verfügen schon mit der Standard-Konstruktionslizenz über Finite-Elemente-Tools, mit denen einfache Berechnungen, jedoch nur bedingt effiziente Optimierungen durchgeführt werden können.

Es stehen als Alternative zu teureren Lizenzen jedoch mehrere Programme zur Topologieoptimierung kostenlos im Internet zur Verfügung. Da diese meist in der Handhabung etwas komplizierter sind, eine Dateikonvertierung (z.B. STEP- oder STL-Format) erfordern, und im Normalfall kein Support zur Verfügung steht, ist eine kommerzielle Software langfristig gesehen wohl die bessere Wahl.

Insbesondere für die konstruktionsbegleitende Konstruktionsoptimierung ist ein in die CAD-Software integriertes Tool wichtig, da nur so die Ergebnisdaten der Berechnung direkt in die Konstruktion zurückgeführt werden können.

7 Literaturverzeichnis

- [1] DIN EN 10210-2 Warmgefertigte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen Teil 2: Grenzabmaße, Maße und statische Werte, 1997.
- [2] Burger, "www.fzt.haw-hamburg.de," 22 Juli 2006. [Online]. Available: www.fzt.haw-hamburg.de/pers/Burger/nkbe/werkstoffdaten.xls. [Zugriff am 21 Oktober 2018].
- [3] Metalcor GmbH, [Online]. Available: http://www.metalcor.de/titan/. [Zugriff am 22 05 2019].
- [4] M. Roloff, Maschinenelemente, Tabellen, 2003.
- [5] Francis, Galvanic Corrosion: "A Practical Guide for Engineers", NACE International, 2001.
- [6] R. Crookes, "ww.worldstainless.org," 2007. [Online]. Available: http://www.worldstainless.org/Files/issf/non-imagefiles/PDF/Euro_Inox/Passivating_Pickling_DE.pdf. [Zugriff am 28 Oktober 2018].
- [7] Schreckenberger, "www.ibekor.de," April 2013. [Online]. Available: http://www.ibekor.de/literatur/WOMag_2013_CFK_Kontaktkorrosion.pdf. [Zugriff am 28 Oktober 2018].
- [8] ISO 20340 Beschichtungsstoffe Leistungsanforderungen an Beschichtungssysteme für Bauwerke im offshorebereich, 2009.
- [9] Schweizerischer Verein Gas- und Wasserfaches, "https://www.buelach.ch," Oktober 2006.
 [Online]. Available: https://www.buelach.ch/fileadmin/files/documents/Wasserversorgung/kontaktkorrosion_bei_der _verbindung_verschiedener_werkstoffe.nbf.pdf. [Zugriff am 28 Oktober 2018].
- [10] *DIN ISO 3601-2 Fluidtechnik O-Ringe Teil 2: Einbauräume für allgemeine Anwendungen*, 2010.
- [11] Institut für Maschinenelemente, "Uni Stuttgart," November 2017. [Online]. Available: http://www.ima.unistuttgart.de/pdf/studium/master/sfv_apmb/mechanisches_Verhalten_von_Elastomeren.pdf. [Zugriff am 13 November 2018].
- [12] DIN EN 20273 Durchgangslöcher für Schrauben, 1992.
- [13] ISO 4762 Zylinderschrauben mit Innensechskant, 2004.
- [14] DIN EN ISO 3506-1 Mechanische Eigenschaften von Verbindungselementen aus korrosionsbeständigen nichtrostenden Stählen, Teil 2: Muttern mit festgelegten Festigkeitsklassen - Regelgewinde und Feingewinde, 2018.
- [15] DIN EN ISO 3506-1 Mechanische Eigenschaften von Verbindungselementen aus korrosionsbeständigen nichtrostenden Stählen, Teil 1: Schrauben mit festgelegten

Festigkeitsklassen - Regelgewinde und Feingewinde, 2018.

- [16] ISO 7089 Flache Scheiben, 2000.
- [17] DIN EN ISO 4032 Sechskantmuttern (Typ 1) Produktklassen A und B, 2013.
- [18] *DIN EN 13480-4 Metallische industrielle Rohrleitungen Teil 4: Fertigung und Verlegung,* 2017.
- [19] DIN 13-1 Metrisches ISO-Gewinde allgemeiner Anwendung Nennmaße für Regelgewinde, 1999.
- [20] DIN ISO 3601-1 Fluidtechnik O-Ringe Teil 1: Innendurchmesser, Schnurstärken, Toleranzen und Bezeichnungen, 2013.
- [21] N. Holzinger, Massenabschätzung von Stirnradgetrieben: Erstellung eines Programms zur massenoptmierten Industriegetriebekonstruktion, 2017.

8 Abbildungsverzeichnis

Abbildung 1: Zusammenhang zwischen dem axialen Widerstandsmoment und der Querschnittsfläche
von Standardprofilen
Abbildung 2: Zusammenhang zwischen dem polaren Widerstandsmoment und Querschnittsfläche von
Standardpromen
Abbildung 3: Beispiel für einen Kontaktkorrosionsprufstand
Abbildung 4: Elektrochemische Spannungsreihe in Meerwasser bei 10 °C [5]
Abbildung 5: CFK-Probekörper im Verbau mit einer M8-Schraube aus rostfreiem Stahl (A2) nach korrosiver Belastung [7]
Abbildung 6: EN AW 6061, V4, Ansicht von außen, ein Tag korrosiv belastet, © Total E&P UK Limited
Abbildung 7: EN AW 7075, V2, Ansicht von außen, zwei Tage korrosiv belastet, © Total E&P UK Limited
Abbildung 8: rostfreier Stahl, V1, Ansicht von außen, zwei Tage korrosiv belastet, © Total E&P UK Limited 27
Abbildung 9: EN AW 6061, V4, Ansicht von außen, eine Woche korrosiv belastet, © Total E&P UK Limited 28
Abbildung 10: EN AW 7075, V2, Ansicht von außen, eine Woche korrosiv belastet, © Total E&P UK Limited 28
Abbildung 11: rostfreier Stahl, V1, Ansicht von außen, eine Woche korrosiv belastet, © Total E&P UK Limited
Abbildung 12: rostfreier Stahl, V4, Ansicht von innen, eine Woche korrosiv belastet, © Total E&P UK Limited
Abbildung 13: EN AW 6061, V4, Ansicht von außen, drei Monate korrosiv belastet, © Total E&P UK Limited 30
Abbildung 14: EN AW 7075, V2, Ansicht von außen, drei Monate korrosiv belastet, © Total E&P UK Limited 31
Abbildung 15: rostfreier Stahl, V1, Ansicht von außen, drei Monate korrosiv belastet, © Total E&P UK Limited
Abbildung 16: rostfreier Stahl, V4, Ansicht von innen, drei Monate korrosiv belastet, © Total E&P UK Limited 32
Abbildung 17: EN AW 6061, V3, Ansicht von außen, 3 Monate korrosiv belastet, © Total E&P UK Limited
Abbildung 18: EN AW 6061, V3, Ansicht von innen, 3 Monate korrosiv belastet, © Total E&P UK Limited
Abbildung 19 rostfreier Stahl, V3, Ansicht von innen, 3 Monate korrosiv belastet, © Total E&P UK Limited
Abbildung 20: Kontaktflächen zwischen Grundwerkstoff 1 (EN AW 6061, links) und Prüfwerkstoff 2
(rostfreier Stahl, rechts) bei Verschraubungsart V2 (A2), © taurob GmbH
Abbildung 21: Korrosion des Gewindes bei Verschraubungsart V2 (A2) bei Grundwerkstoff 1 (EN AW
6061) und Prüfwerkstoff 10 (CFK), © taurob GmbH
Abbildung 22: Kontaktflächen zwischen Grundwerkstoff 3 (rostfreier Stahl, links) und Prüfwerkstoff 6
(EN AW 7075, rechts) bei Verschraubungsart V1 (A4), © taurob GmbH
Abbildung 23: Prüfwerkstoff 7 (EN AW 7075, zerstörte Schutzschicht) bei Grundwerkstoff 3 (rostfreier
Stahl) und Verschraubungsart V4 (gemischt), © taurob GmbH
Abbildung 24: Korrosionsumfang der einzelnen Bauteiloberflächen und des Verschraubungsmaterials
nach 6 Wochen, Grundwerkstoff 1 (EN AW 6061), © taurob GmbH
Abbildung 25: Korrosionsumfang der einzelnen Bauteiloberflächen und des Verschraubungsmaterials
nach 6 Wochen, Grundwerkstoff 2 (EN AW 7075), © taurob GmbH

Abbildungsverzeichnis

Abbildung 26: Korrosionsumfang der einzelnen Bauteiloberflächen und des Verschraubungsmateri	als
nach 6 Wochen, Grundwerkstoff 3 (rostfreier Stahl), © taurob GmbH	39
Abbildung 27: Vereinfachte Darstellung des eingebauten O-Ringes	48
Abbildung 28: Abschätzung von Schub- und Elastizitätsmodul anhand der Härte des Gummis	52
Abbildung 29: Richtwerte für Nutabmessungen für Dichtungen mit O-Ringen [4]	53
Abbildung 30: Modellierung des Nutflanschquerschnittes – Maße in mm	56
Abbildung 31: Modellierung des Nutflansches – Koordinatensystem	56
Abbildung 32: metrische Gewindemindestgröße in Abhängigkeit der Schraubenkraft bei verschiede	ner
Ausnutzung der 0,2 %-Dehngrenze	64
Abbildung 33: Proportionalfaktor $c(p)$ in Abhängigkeit der Auslastung der 0,2 %-Dehngrenze	65
Abbildung 34: Zusammenhang zwischen der Gewindesteigung und der Gewindegröße. Näherung de	es
minimalen Gewindeüberstandes in Form einer oberen Schranke	67
Abbildung 35: minimale Masse der Dichtungsstelle, max. 12 Verschraubungen	70
Abbildung 36: metrische Gewindegröße, max. 12 Verschraubungen	70
Abbildung 37: Verschraubungsanzahl, max. 12 Verschraubungen	71
Abbildung 38: minimale Masse der Dichtungsstelle. 4 Verschraubungen	72
Abbildung 39: metrische Gewindegröße. 4 Verschraubungen	72
Abbildung 40:minimale Masse der Dichtungsstelle. 8 Verschraubungen	73
Abbildung 41: metrische Gewindegröße. 8 Verschraubungen	73
Abbildung 42: minimale Masse der Dichtungsstelle. 12 Verschraubungen	
Abbildung 43: metrische Gewindegröße. 12 Verschraubungen	
Abbildung 44: Kraøträger. Höhe durch Grobauslegung. Vergleichssnannung.	
Abbildung 45: Kraøträger, Höhe durch Grobauslegung, Verformung	
Abbildung 46: Kragträger, Höhe durch Konstruktionsstudie Vergleichssnannung	80
Abbildung 47: Kraoträger, Höhe durch Konstruktionsstudie, Verformung	80
Abbildung 48: Kraoträger, Höhe durch Konstruktionsstudie, Verformung imministration	um 50
η_{0}	uiii 20 81
Abbildung 49. Kragträger Höhe durch Konstruktionsstudie tonologieontimiert Massenreduktion	um 75
η_{o}	uiii 75 82
Abbildung 50: Kraøträger, Höhe durch Konstruktionsstudie, Umriss der Tonologieontimierung	
nachskizziert angestrehte Massenreduktion um 75 %	82
Abbildung 51: Kraoträger Höhe durch Konstruktionsstudie Analyse des skizzierten Umrisses der	
Topologieontimierung Vergleichsspannung	83
Abhildung 52: Kragträger Höhe durch Konstruktionsstudie Analyse des skizzierten Umrisses der	
Tapalogieontimierung Verformung	83
Abbildung 53: Kragträger Ontimierung durch weitere Konstruktionsontimierung Vergleichsson	
Abbindung 55. Kragtrager, Optimierung durch weitere Konstruktionsoptimierung, vergetensspam	1011g 84
Abbildung 54: Kragträger Ontimierung durch weitere Konstruktionsontimierung Verformung	
Abbildung 55: Kragträger mit nachträglich größtmöglicher Höhe Ontimierung durch weitere	
Konstruktionsontimierung Vergleichsspannung	85
Abbildung 56. Kragträger mit nachträglich größtmöglicher Höhe Ontimierung durch weitere	
Konstruktionsontimierung Verformung	86
Abbildung 57: Kraaträger Ontimierung durch Tonologieontimierung des maximalen Bauraumes u	00 nd
anschließender Konstruktionsontimierung. Vergleichesnennung	11U Q7
Abbildung 58: Kragträger Ontimierung durch Tanalagiaantimiarung das maximalan Rauraumas u	0/ nd
folgender Konstruktionsontimierung Verformung	nu QQ
Abbildung 50. Kraaträger Ontimierung durch Tenelogioentimierung des meximalen Peruseures	00 nd
Abbindung 55. Al agu agu, Opunnet ung uuren 1 opologieopunnet ung ues maximalen Daufaumes u	nn 6U
ansennebenuer Konsu ukuonsopunnerung, Kinckänätyse	09

9 Tabellenverzeichnis

Tabelle 1: Werkstoffauswahl bei verschiedenen Belastungsarten. Je kürzer die roten Balken, desto besser	•
ist dieser Werkstoff für den Anwendungsfall geeignet. Die Zahlenwerte geben die zugehörigen	
Vergleichswerte wieder. Die Werkstoffdaten sind unter [2], [3] und [4] ersichtlich1	1
Tabelle 2: Beschreibung des originalen und modifizierten Testzyklus nach ISO 20340 Anhang A	5
Tabelle 3: Korrosionserscheinungen nach 6 Wochen korrosiver Belastung, Grundwerkstoff 1 (EN AW	
6061), © taurob GmbH	0
Tabelle 4: Korrosionserscheinungen nach 6 Wochen korrosiver Belastung, Grundwerkstoff 2 (EN AW	
7075), © taurob GmbH	1
Tabelle 5: Korrosionserscheinungen nach 6 Wochen korrosiver Belastung, Grundwerkstoff 3 (rostfreier	
Stahl), © taurob GmbH4	2
Tabelle 6: Übersicht über die mechanischen Eigenschaften von ausgewählten korrosionsbeständigen	
Schraubenwerkstoffen [15]	2
Tabelle 7: Übersicht über die Nennspannungsquerschnitte und Mindestkräfte von Schrauben mit	
Regelgewinde [15]	3
Tabelle 8: Überblick über die Nennmaße von Regelgewinde [19]	6
Tabelle 9: Vergleich der verschiedenen Herangehensweisen bei der Topologie- und	
Konstruktionsoptimierung9	0
10 Abkürzungsverzeichnis

Zeichen	Benennung	Einheit
A	Querschnittsfläche	mm²
A_F	Querschnittsfläche des Nutflansches	mm²
В	Nutflanschbreite	mm
b	Breite der Nut für den O-Ring	mm
b_K	Kragträgerbreite	mm
γ	Schubwinkel (angenähert für kleine Winkel)	[-]
γ'	Schubwinkel pro Längeneinheit	1/mm
$C_{(p_{\%})}$	Proportionalitätsfaktor in Abhängigkeit von der Auslastung der 0,2 %- Dehngrenze	[-]
ΔB_a	Nutflanschbreitendifferenz außen	mm
ΔB_i	Nutflanschbreitendifferenz innen	mm
$\Delta_{Schraube}$	Mindestabstand zwischen zwei Scheiben	mm
$\Delta_{a,Bundflansch}$	axiale Verformung des Bundflansches normal zur dichtenden Fläche	mm
$\Delta_{a,Nutflansch}$	axiale Verformung des Nutflansches normal zur dichtenden Fläche	mm
D_B	Durchgangsbohrungsdurchmesser	mm
$D_{Dichtring}$	Innendurchmesser des O-Ringes	mm
$D_{F,a}$	Flanschaußendurchmesser	mm
$D_{F,i}$	Flanschinnendurchmesser	mm
D_{LK}	Lochkreisdurchmesser	mm
$D_{S,a}$	Scheibenaußendurchmesser	mm
$d_{Dichtring}$	Schnurstärke des O-Ringes	mm
ε	Betrag der Verzerrung	[-]
ε_i	Verzerrung in Richtung i	MPa
$\varepsilon_{i,0}$	Verzerrung in Richtung i ohne Überdruck	[-]
Ε	Elastizitätsmodul des Werkstoffes	MPa
$E_{Flansch}$	Elastizitätsmodul des Flanschwerkstoffes	MPa
E _{Gummi}	Elastizitätsmodul von Gummi (=E ^{SH})	MPa
E ^{SH}	aus der Shore-A-Härte abgeschätzter Elastizitätsmodul	MPa
F	Ersatzeinzellast der gleichmäßig verteilten Streckenlast an der Ober- seite des Trägers	Ν
F _{Dichtung}	Gesamtschraubenkraft aufgrund des der Quetschung des O-Ringes	N
F _{Innenüberdruck}	Gesamtschraubenkraft aufgrund des Innendruck	N
F _{Schraube}	Einzelschraubkraft	N
F _a	Abscherkraft im Querschnitt	N
$F_{z,d}$	Zug- bzw. Druckkraft normal auf den Querschnitt	Ν
G	Schubmodul des Werkstoffes	MPa
G ^{SH}	aus der Shore-A-Härte abgeschätzter Schubmodul	MPa

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.	The approved original version of this thesis is available in print at TU Wien Bibliothek.
W Sibliothek	E N Your knowledge hub

Н	Nutflanschdicke	mm
H_A	Shore-A-Härte	[-]
h	Höhe der Profildichtung im unbelasteten Zustand	mm
Δh	(Schnurdurchmesser bei O-Ringen) Höhenänderung der Profildichtung aufgrund der Montage (negativ bei Stauchung)	mm
n_K	Kragtragemone	
n _a		mm
		mm⁴
I _t	Drillwiderstand ($I_t = I_p$ bei Kreisquerschnitt)	mm⁴
$I_{x,S}$	Flächenträgheitsmoment um die xs-Achse	mm⁴
I_x	Flächenträgheitsmoment um die x-Achse	mm ⁴
К	Betrag der Krümmung	1/m
$l_{\"Uberstand}$	Gewindeüberstand zur Gewährleistung der vollen Gewindetragfähig- keit	mm
$l_{Ersatztraeger}$	Länge des beidseitig eingespannten Ersatzträgers	mm
l_K	Kragträgerlänge	mm
$l_{Schraube,min}$	gewählte Schraubenlänge	mm
l _{Schraube}	minimal notwendige Schraubenlänge	mm
Μ	Biegemoment	Nmm
$M_{Gewindegr\"omscheweight}$	gewählte metrische Gewindegröße	[-]
M _{Gewindegröße,p}	minimale metrische Gewindegröße bei einer Auslastung von p	[-]
$M_{Gewindegr{ m o}{ m Be}}$	metrische Gewindegröße	[-]
$M_{b,x,max}$	maximales Biegemoment	Nmm
m'	Masse pro Längeneinheit	g/mm
m _{Mutter}	Mutternhöhe nach DIN EN ISO 4032 [17]	mm
p	einseitig anliegender Überdruck (positiv einzusetzen)	MPa
$p_{\%}$	prozentuelle Auslastung der 0,2 %-Dehngrenze	%
$p_{0,y}$	gemittelter Vorpressdruck aufgrund Montage (positiv einzusetzen)	MPa
p_B	gemittelter Betriebsdruck der Dichtung (positiv)	MPa
$p_{Gewinde}$	Gewindesteigung	Mm
<i>p</i> _{Innen}	Innendruck	MPa
$q_{Dichtring}$	gesamte Streckenlast aufgrund der Dichtung und des Überdrucks	N/mm
ρ	Dichte des Werkstoffes	g/mm³
$R_{p0,2}$	Dehngrenze	MPa
σ	Summe aus Normal- und Biegespannungen	MPa
σ_F	Fließgrenze	MPa
$\sigma_{b,max,Flansch}$	maximal auftretende Biegespannung im Nutflansch	MPa
$\sigma_{b,zul,Flansch}$	zulässige Biegespannung des Flanschwerkstoffes	MPa
$\sigma_{b,zul}$	zulässige Biegespannung	MPa
σ_b	Biegespannung	MPa
$\sigma_{i,0}$	Spannung in Richtung i ohne Überdruck	MPa

σ_i	Spannung in Richtung i	MPa
$\sigma_{v,zul}$	zulässige Vergleichsspannung	MPa
σ_v	Vergleichsspannung nach Mises	MPa
$\sigma_{z,d,zul}$	zulässige Zug- bzw. Druckspannung	MPa
$\sigma_{z,d}$	Zug- bzw. Druckspannung	MPa
S	Sicherheit gegen Versagen durch Biegebelastung	[-]
S_F	Sicherheit gegen Fließen	[-]
SP	Flächenschwerpunkt	[-]
S _{Scheibe}	Scheibendicke nach ISO 7089 [16]	mm
τ	Summe aus Abscher- und Torsionsspannungen	MPa
τ_a	Abscherspannung	MPa
τ_T	Torsionsspannung	MPa
τ_{zul}	zulässige Schubspannung	MPa
Т	Torsionsmoment	Nmm
t	Tiefe der Nut für den O-Ring	mm
ν	Querkontraktionszahl	[-]
W _{ax}	axiales Widerstandsmoment	mm ³
W_p	polares Widerstandsmoment	mm ³
$W_{x,S,max}$	maximales axiales Widerstandsmoment des Nutflansches	mm³
W _{max,y,Ersatzträger}	maximale Durchbiegung des Ersatzträgers in y-Richtung	mm
х, у	Achsen des globalen Koordinatensystems	[-]
x _s y _s	Achsen des Koordinatensystems durch den Flächenschwerpunkt	mm
x_{SP}, y_{SP}	Flächenschwerpunktsabstand zum anfänglichen Koordinatensystem	mm
Ζ	Anzahl der verwendeten Schraubverbindungen	[-]