Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

TECHNISCHE
UNIVERSITAT
WIEN

DIPLOMARBEIT

Comparison of Different Word Embeddings and Neural
Network Types for Sentiment Analysis of German
Political Speeches

zur erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums

Masterstudium Technische Mathematik
Schwerpunkt Diskrete Mathematik (DM)

eingereicht von

Daniel Kapla
Matrikelnummer 01128052

ausgefiihrt am Institut fiir Analysis und Scientific Computing
der Fakultat fiir Mathematik und Geoinformation der Technischen Universitdt Wien

Betreuung
Betreuer: Ao.Univ.Prof. DI Dr. Felix Breitenecker
Mitwirkung: Projektass. DI Dr. Nikolas Popper

Wien, 11.09.2019

Daniel Kapla Dr. Felix Breitenecker

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Abstract

The state of the art technology in natural language processing (NLP) is domi-
nated by neural networks. These networks use word embeddings for text rep-
resentation which are particularly well suited for representing meaning and
relation between words. As this technology moves forward, word embeddings
are freely available for other languages than English. In this thesis T apply
this technology to Austrian political speeches to compare their performance
in a sentiment analysis task. I use different word embeddings for the German
language and combine them with different neural network architectures. In
exhaustive experiments classifiers are trained and validated with sentences
from stenographic protocols labeled with their level of negativity.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Zusammenfassung

Der Stand der Technik in der natiirlichen Sprachverarbeitung (NLP) wird von
neuronalen Netzwerken dominiert. Diese Netzwerke verwenden Worteinbet-
tungen, die insbesondere dazu geeignet sind, um Bedeutung und Beziehungen
zwischen Worten darzustellen. Heutzutage sind vortrainierte Worteinbettun-
gen nicht nur fiir Englisch, sondern auch in anderen Sprechen frei erhiltlich.
In dieser Arbeit wende ich diese Technologie auf die Stimmungsanalyse von
osterreichischen politischen Reden an. Dafiir werden unterschiedliche deut-
sche Worteinbettungen in Kombination mit verschiedenen neuronalen Netz-
werken untersucht. In umfangreichen Experimenten werden Klassifikatoren
mit Sétzen aus stenografischen Protokollen, welche mit ihrem Grad an Ne-
gativitdt gekennzeichnet sind, trainiert und miteinander verglichen.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Contents

List of Figures

List of Tables

1 Introduction

1.1

Datasets

2 Machine Learning

2.1

2.2

Gradient Based Learning
2.1.1 Gradient Descent (GD)
2.1.2 Stochastic Gradient Descent (SGD)
2.1.3 Variations of Gradient Descent
Model Selection oo
2.2.1 Model Capacity
2.2.2 Cross Validation (CV)
223 Grid Search (GS)o L

3 Neural Networks

3.1

3.2
3.3

3.4

3.5
3.6

Perceptron, the Basic Building Block
3.1.1 Activation Functions
Multi Layer Perceptron (MLP)
Convolutional Neural Network (CNN)
331 Pooling
Recurrent Neuronal Network (RNN)
341 Simple RNN 0o oo
3.4.2 Long Short-Term Memory (LSTM)
3.4.3 Gated Recurrent Unit (GRU)
3.4.4 Bidirectional RNN00 000
Back Propagation (BP) 0oL
Back Propagation Through Time (BPTT)

13
15
15
16
19
19
22
22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4 Word Embeddings 48

4.1 Basics e 48
4.1.1 Word Counting Statistics 49
4.1.2 Bag of Words and n-Grams 50
4.1.3 Latent Semantic Analysis (LSA) 51

4.2 word2vec 52
4.2.1 Continuous Bag-of-Words (CBOW) 53
4.2.2 Skip-Gram 56
4.2.3 Negative Sampling and Subsampling of Frequent Words 57

4.3 fastText 58

Experiments 60

5.1 Experiment Setup 60
5.1.1 Preprocessing 60
5.1.2 Word Embeddings 61
5.1.3 Model Builder o000 63

5.2 Model Selection 67
52.1 Grid Search oL Lo 67
5.2.2 Fine-Tuningo 68

53 Results. 68
5.3.1 Embeddings 000 69
932 Modelso 71
5.3.3 Qualitative Analysis 78
5.3.4 Model Fine-Tuning 79

6 Conclusion 82
Bibliography 84
A Appendix 87

A.1 Abbreviationso 87

A.2 Mathematical Symbols and Functions 88

A.3 Convolution and Cross Correlation 88

A.4 Example: Polynomial Regression 89

A5 Example: VC Dimension for Perceptron with Sinus Activation 91

Statutory Declaration 93

2

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

1.1

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5

5.1
5.2
3.3
5.4
3.5
2.6
5.7
2.8
2.9

Dataset Distribution 7
Over- and Underfitting Example 20
Perceptron VC Dimension 21
Rosenblatt’s Perceptron 25
MLP Architecture 29
CNN Sparse Interaction 31
Convolution in a CNN Layer 33
Pooling Example 0000 34
Vanilla RNN Information Flow 36
RNN Structure Comparison 37
LSTM Cell 40
GRU Cell 41
Bidirectional RNN Layer 42
Context Words Window 54
CBOW Model with Softmax Activation 55
CBOW Model with Hierarchical Softmax 56
Skip-Gram Model with Hierarchical Softmax 57
Term Frequency Discarding Probability 58
Grid Search Model Comparison 69
Embedding Comparison 70
Embedding Comparison for “good” Models 71
Training Progress with and without Overfitting 73
MLP Parameter Impact Comparison 74
CNN Parameter Impact Comparison 75
SimpleRNN Parameter Impact Comparison 76
GRU Parameter Impact Comparison 77
“Average Negativity” of Speeches over Years 79
3

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Tables

2.1

5.1
5.2
9.3
5.4
)
2.6

Performance Measure Categories. 10
Abbreviations Replacement 61
Embedding Sizes Lo o 62
Shared Hyperparameters 65
Specialized Hyperparameters 66
Grid Search Parameter Domain 67
Preprocessing Comparison 81
4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 1

Introduction

The task of this work is to build and compare different sentiment classifiers
for German text, especially for Austrian national parliamentary speeches.
This thesis builds on the work of [Rudkowsky et al., 2017] where a contin-
uous word embedding in combination with a neural network was used for
text classification. This is the state of the art technology for natural text
processing and as such subject for implementation in other languages than
English. Continuing the work from [Rudkowsky et al., 2017| in this thesis
different freely available word embeddings provided by the Polyglot library
|[Al-Rfou et al., 2013] which is a word2vec embedding' [Mikolov, Chen, Cor-
rado and Dean, 2013; Mikolov, Sutskever, Chen, Corrado and Dean, 2013|
and the fastText embedding [Bojanowski et al., 2016; Grave et al., 2018;
Joulin et al., 2016; Mikolov et al., 2018| for the German language, are exam-
ined. With each of the different embeddings different neural network types
are compared for their performance on the same text classification task. The
variety of neural network types ranges from MLPs, which is the structure
used in |[Rudkowsky et al., 2017|, over convolutional networks (CNNs) to
different recurrent networks (RNNs) like GRUs and LSTMs. Even bidirec-
tional recurrent networks and combinations of convolutional and recurrent
networks are examined.

We start with an introduction to the field of machine learning with special
attention to the given task in chapter 2. In chapter 3 neural networks are
introduced and a variety of different architectures is presented, followed by
chapter 4 which starts with some basics of natural text representations for
processing with a special focus on the theoretical background of the word2vec
and fastText embeddings. Finally, in chapter 5 the experimental setup

IThere are three different embeddings provided by the Polyglot library, sadly only for
the cw embedding its origin and type could be verified. The cw embedding is described in
the Polyglot paper [Al-Rfou et al., 2013].

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

and technical details are presented, followed by stating the results of the
experiments.

1.1 Datasets

The training data consists of more than 20.000 labeled sentences with labels
from 0 to 4 where 0 means neutral while 4 stands for very negative. The
sentences are gathered from press releases of Austrian political parties, par-
liamentary speech transcripts and media reports from 1996 to 2013. In sum,
these are 56.000 speeches, consisting of more than 2 million sentences. This
training data was initially created for [Rudkowsky et al., 2017].

The labels for the 20.000 sentences as training data were created via
crowd coding. The human crowd coders where asked to classify training
sentences without any context, meaning only the sentence itself was presented
and should be labeled from neutral to very negative in 5 categories. To
obtain a single score for a sentence the mean of all answers was computed
for each sentence. Furthermore each single coder was checked for cheating
or spamming by adding validation sentences with a predefined score into
the data the coders where asked to score. Then all results of coders which
did not reach an accuracy of over 75% at these test sentences were removed
from the calculation of the final score. The final score was then computed
by averaging the labels over all coders. This lead to a continuous score of
negativity between 0 to 4 for each sentence in the dataset. With these scores
the sentences were grouped into three classes, namely neutral Cj, negative
(4 and very negative Cy. The decision boundaries where chosen as 4/3 and
8/3, see figure 1.1.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

Average scores)
neutral negative

Number of training sentences

C, 4

neutral negative very negative

wloo

0 Co 3 C,

Figure 1.1: Average score distribution of all training sentences divided
into three classes C (neutral), C (negative) and Cy (very negative).

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 2

Machine Learning

The term machine learning is coined by Arthur Lee Samuel who wrote in
1959 a paper called “Some Studies in Machine Learning Using the Game of
Checkers” [Samuel, 1959|. There Samuel states:

“The studies reported here have been concerned with the pro-
gramming of a digital computer to behave in a way which, if done
by human beings or animals, would be described as involving the
process of learning.”

[Samuel, 1959]

Even though there is no exact definition given by Samuel he is attributed
with a definition involving the phrase “without being explicitly programmed”.
This means that the knowledge incorporated in a learning machine is not
explicitly hard coded or provided directly. Using this phrase machine learning
is often defined similar to “field of study that gives computers the ability to
learn without being explicitly programmed.”.

But what does the term “learn” mean? An often cited definition given by
Tom Mitchell in 1997 for learning of a computer program is:

“A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if
its performance at tasks in T, as measured by P, improves with
experience E.”

[Mitchell, 1997]

In general, there is a wide range of possible tasks T, experiences E and
performance measures P. We will not give an overview here. Instead, the

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

10
edge

b

now!

i
r

following is intended to give an idea of these entities by taking the example
of our assignment. For a more general introduction into machine learning,
in particular deep learning, see [Goodfellow et al., 2016].

Task

Our assignment is to compare word embeddings and neural network struc-
tures for sentiment analysis of German political speeches by assigning one
of three possible sentiment labels to sentences in political speeches. This
already defines the task T for our assignment. This means we have a three
class classification problem. Each sentence shall be assigned to one of the
three classes by adding one of the class labels.

Performance Measures

To validate if a model learns a qualitative measure P is needed. For classifica-
tion problems the accuracy is the most common performance measure. The
accuracy is nothing else than the ratio of correctly labeled elements versus
all with respect to a labeled dataset. But the accuracy itself is not sufficient
for a thorough validation of a classification model. The most problematic
case results from an imbalanced class distribution in the dataset used for
validation. For example when we have a dataset with multiple classes and
one class represents 90% of the entire dataset, then a model which classifies
everything into this class has an accuracy of 90%. But this is a very useless
model. This leads to other performance measures described below.

One of the main drawbacks of the accuracy is that the accuracy distin-
guishes not between classes. For a multi class problem it would be interesting
to see how good the classifier behaves for different classes. For example for
our classification problem with three classes Cy (neutral), Cy (negative) and
Cy (very negative) a classifier could be very good to distinguish between neu-
tral Cp and not neutral C; U C5. On the other hand, when the question is
which degree of negativity a sentence has, meaning the distinction between
C1 and Cj the classifier could be very uncertain. To validate such behavior
we need performance measures per class.

For a per class performance measure we call each element classified as an
instance of our current class of interest a positive and all other elements a
negative.

Next we denote a positive or negative prediction true if the class affiliation
of the dataset coincide with the prediction, otherwise as false.

Therefore a positive which is actualy an instance of the class of interest
is a true positive tp, otherwise its a false positive fp, meaning a instance of

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

any other class. On the other hand, a negative which belongs to any other
class is a true negative tn, otherwise a false negative fn, see table 2.1.

Labels/Predictions
Positive | Negative
. True tp tn
Correctly classified False p n

Table 2.1: Performance measure categories.

With these categories the precision P is defined as

t
p—_"7
tp+ fp

The precision is the ratio of correctly classified positive instances against all
positive classified instances. For instance in web search engines the precision
is very important. A human using a web search engine is interested in how
relevant the results are and not if all results are found.

On the other hand, the recall R is defined as

t
R=—"Pr
tp+ fn

This is the ratio of positive instances against all actual positive instances.
For example consider a classifier for recognizing cancer. In this case it is more
important to find as many persons which have cancer than to be very precise
in the decision. A false positive can be corrected in further examination while
leaving a patient untreated would most likely have severe consequences.

Finally we want to introduce the F} score which is a combination of recall
and precision in a single value between 0 and 1 where 1 is a perfect result in
both precision and recall given as

_,P-R
- P+ R

Fy

What makes the F) interesting is that a high F; is only reached if both
precision and recall are high.

Remark. For a two class problem only one class needs to be validated by
these measures because precision, recall and Fj for the first class determines
precision, recall and F} for the other.

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Experience

In a lot of machine learning applications the experience can be seen as the
dataset used for training. In this case there are two major categories, super-
wised and unsupervised learning. Even though there is no rigorous definition
they can be distinguished according the kind of data a model experiences in
its training. Either the dataset consists of samples with a target value (label)
or not.

In the supervised learning setup some kind of “teacher” determines what
to expect from the model when looking at a specific data point. In our case
we have a training set with labels where the labels are the expected outcome
for a given sentence and the teacher could be seen as the human crowd coders
who labeled the sentences in the dataset.

In contrast, unsupervised learning is when there are only data points but
no target values. A common example for unsupervised learning is clustering.
In NLP, word vectors are trained in an unsupervised setup.

Remark. A possible vantage point is to say there is no unsupervised learn-
ing. Meaning that by having a machine learning algorithm one must define
some kind of performance measure on which the machine learning algorithm
tries to improve on. By providing this performance measure, which tells if
something is “good” or “bad”, one introduces a supervision. Therefore there
is no unsupervised learning. This is a philosophical question or a question
about the definition of the terms, but I think it is worth mentioning. We will
keep the term unsupervised in the absence of labels in the dataset.

Remark. Not all kind of machine learning trains on datasets. For example
in reinforcement learning the learning algorithm interacts with an environ-
ment. The experience of the model results from a feed back after the model
(agent) performs an action in the environment based on a current state in
the environment.

To be able to learn from a dataset (experiencing the dataset) one has to
find some kind of empirical connection between the dataset and the model.
This means we want to find a connection between the data presented to the
model and the parameters such that the performance measure validating the
models performance improves.

The most common principle is the mazimum likelihood principle. Con-
sider a dataset X = (z;)7, drawn independent from a true but unknown
probability distribution pgate. Let pmoder(x; @) be a parameterized family of
probability distributions estimating the “true” probability pg... But the
probability P, is unknown, therefore we take the empirical probability pgata

11

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

defined by the given dataset X. Now the [ikelihood of a parameterization 6
is defined as .
£(9> = pmodel(X; 9) gj Hpmodel (mzv (9)

i=1
The likelihood L is a measure of how likely it is that the given dataset X is
drawn from the distribution ppeqei(.;0). The likelihood estimate 6y, is the
most likely parameterization

Onrr = arg max L£(6).
0

The product of the probabilities in the definition of the likelihood is im-

practical to work with, especially for a numerical standpoint, leading to the
log-likelihood as the logarithm of the likelihood

lOg ‘C(Q) log Pmodel (X (9 Z log Pmodel (wzv 9)

=1

This does not change the likelihood estimate because the logarithm is contin-
uous and strictly monotonically increasing. Additionally, one often normal-
izes by dividing though the dataset size |X| = m, this does not change the
estimate as well but has the advantage to be interpreted as an expectation

1] —
—1 0)=— 1 'mode 279
m og[,() m; ogp dl(x)

= Z ﬁdata(xi> 10g Pmodel (xu ‘9)

i=1
- Emwﬁdam log pmodel(x; 0)

To apply the maximum likelihood to supervised training for data X =

(x;), with labels Y = (y;)", the probabilities are replaced by conditional

probabilities pmoder(y|z; @) leading to the conditional log-likelihood estimate
in order to model the prediction of y for given x

1
— IOg E(Z lOg pmodel(yz‘xu)

= Emvy’vﬁdata 1Og pmodel(y’m; 0)

The next question is how to find a likelihood estimate for the parameters.
Therefore we need to model the mentioned probability distribution p,,oqe OF
at least define some objective to optimize.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1 Gradient Based Learning

Almost all neural network training algorithms are a variation of gradient de-
scent (GD). This is a numerical optimization algorithm, where optimization
refers to minimizing or maximizing a specific function J(#) with respect to 6.
In the context of machine learning, especially in deep learning, the function
J is called objective function, criterion, cost function, loss function or error
function'. The last three are almost always minimization problems. For the
sake of simplicity we will only talk about minimization problems, but this
restriction is without loss of generality because a maximization problem is
equivalent to a minimization when replacing J with —J. A minimizer 6* of
J:UCR" — Ris given as

0" = arg min J(6).
oeU

A proper choice for the objective function J is the negative log-likelihood.
Now we will give a more detailed description how the objective function for
a likelihood estimate for the parameters can be constructed for our given
task of a classification problem. Therefore consider a dataset X = (x;)™,
with labels Y = (y;), where y; € {1,2, ..., k} for one of k classes. Then we
choose as objective function

‘](0> = _Ex,ywﬁdam logpmodel(y|x; 9)

Usually the cross-entropy is used as a per-example loss for optimizing clas-
sification problems. Lets consider two probability distributions P, () over a
space (), then the cross-entropy of these distributions is given as

H(P Q)= —/ Plog@Q d\
Q
and for a discrete space €2 this transforms into a sum

H(P,Q) == P(w)log Q).

weN

Broadly speaking the cross-entropy can be seen as a measure of how much
two distributions differ, meaning when minimizing the cross-entropy of pi.ode
t0 Pdata We minimize the “difference” between the model distribution and
empirical distribution. But how does this correspond to the likelihood?

!The function J is mostly be referred to as cost function and called J to be consistent
with the rest of the text.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

In our case the probability space €2 for the conditional distributions are
the classes, meaning Q = {1,2,...,k}. Therefore one gets the cross-entropy
of Paata(-|7) and ppeger(.|x; 0) for a fixed z and 0 as

k

H<pdata(|l’) pmodel< ’JI 8 Zpdata y‘l’) logpmodel(y‘x 0)
y=1

The index y of the sum iterates over the classes. But because pgq, is an
empirical distribution of the data, Pg.. is given as (corresponds to one-hot
encoding)

pdata(yz - um) y“l VZ = 1, e, M.

This is because the data is given, therefore the values are already determined.
So we can add zero in the cost function (negative log-likelihood) leading
to

J(Q) - _Ecc,ywﬁdam log pmodel(y|x; 0)

1 m
= —— Z logpmodel(yi‘xi; 6)
m

=1

m k
1 R
= - E E Pdata (Y] i) 108 Prmoder (|25 0)
=1 y=1

- m ZH pdata |I pmodel('|xi;9>)‘

=1

This means we have as cost function J the mean of the per example cate-
gorical cross-entropy. Therefore defining a per example loss £ through the
categorical cross-entropy by

L(yi, f(xi;0)) = H(Paata(-7:), p(-|7:50))
we have a maximum Likelihood estimation for our model parameters. Mean-
ing

1 m
Oy, = 0° = arg min J(A) = arg min — L(y;, f(x;;0
ML gel (0) ga mzz:; (yi, f()

is the minimization problem we want to solve to find a likelihood estimate
for our classification model.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1.1 Gradient Descent (GD)

Gradient descent (GD) or steepest descent is an iterative algorithm to find
(local) minima of J. First a starting point 6 is chosen, then for each step
from a current point #; a next point 6,,; is computed by moving into the
direction of strongest decrease of J. The direction of strongest decrease of J
is given by its negative gradient, so the next point is given as

Ht—‘,-l = Qt - /JVJ(Gt)

The value g > 0 is called the learning rate or step size. There are multiple
approaches to choose p. The most simple and still very common approach is
to set it to a small constant. Another would be to evaluate J(6;, — uV.J(6;))
for different values of . This approach is called a line search because the
function J is evaluated on different points along the line spanned from 6,
in direction of the gradient. Under certain conditions this even guaranties a
convergence of the algorithm to a local minima, sadly in most machine learn-
ing applications this approach is not feasible due to high computational costs.
Even worse, an actual gradient computation for training neural networks with
this simple approach is way too expensive by computational means. Consider
the negative log-likelihood cost for training a neural network on a dataset
with m samples. This number of samples often ranges from thousands to
billions of samples for training neural networks and with growing m the cost
to compute the gradient grows. A common problem in machine learning that
good generalization needs big datasets. This leads to the next algorithm.

2.1.2 Stochastic Gradient Descent (SGD)

To speed up the training process stochastic gradient descent® (SGD) approx-
imates the gradient by taking only a subset of the entire dataset to compute
the gradient of the cost function for one gradient step. Let us continue our
example. To perform one gradient estimate one uniformly samples a small
subset of samples ()7, with associated labels (y;)7, from the dataset. One
such subset is called a batch with batch size m/. The batch size m' is typ-
ically a fixed constant, independent of the dataset size, in the range 1 to a
few hundred. The approximated gradient g is computed as

1 &
9= X;Veﬁ(yia f(z:;0)).

2Sometimes called mini-batch stochastic gradient descent in contrast to SGD where the
batch size is set to 1. But in most of machine learning literature with SGD the mini-batch
version is meant.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Usual implementation of stochastic gradient descent randomly group the
dataset into batches of size m’ and perform an approximated gradient up-
date for each batch until all batches are exhausted. This is called an epoch,
ensuring that each sample is seen exactly once in an epoch. This is done
multiple times for training, meaning multiple epochs includeing new random
creation of batches before each epoch.

2.1.3 Variations of Gradient Descent

This section addresses some problems the classic SGD can have as well as
augmented algorithms which deal with the given problems.

First a proper learning rate can be hard to find, when the learning rate
is too small the algorithm converges slowly but when the learning rate is
too high the algorithm can become unstable. Additionally the learning is
applied to the entire gradient which can result in unstable or slow convergence
for some of the parameters, meaning that for a fast and stable convergence
different learning rates for different parameters are needed. Another big
problem, especially for neural networks, is the high dimensional parameter
space for a highly non-convex cost function. The main problem is to be stuck
in saddle points. Another problem can result from sparse data. For example
when training word vectors infrequent words must be trained as well as very
common words. Another example occurs in image recognition where special
neurons detect special localized features followed by a max pooling. When a
specific feature occurs rarely the gradient flows rarely over the weights of the
neuron detecting this rare feature, roughly speaking this means that these
weights have to learn faster than weights of more common features which are
updated more often.

Momentum

Classic SGD struggles when moving through canyons. Imagine standing in
a canyon, if you are not exactly in the middle of the canyon the direction
of steepest descent is largely towards the river and not the flow direction of
the river which carved the canyon. This results in a zigzag like movement
through the canyon. Now consider (idealistic) a ball in the canyon. The
ball starts rolling mostly towards the middle of the canyon while a tiny bit
into the flow direction of the river. While he zigzags through the canyon the
ball gains more and more momentum into the general direction through the
canyon making the movement through the canyon faster as the ball goes on.

This momentum is introduced with an additional friction constant 0 <
~v < 1 for an adapted step direction leading to a new update schema for each

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

optimization step ¢

gy = VJ(H),
my = Ygt—1 + ¢,
0 =0 — umy.

From the point of a single parameter, this means that when the parameter
is consecutively updated into one direction its updates get bigger and bigger
while on the other hand when the parameter updates alternate they get
changed less and less.

Nesterov’s Accelerated Gradient (NAG)

Again consider a ball rolling through an (idealistic) canyon, the classic mo-
mentum based approach for acceleration the motion through the canyon
works good when the canyon is straightforward, but when the canyon makes
a turn the ball will roll up hill in the curve until it “realizes” that the canyon
made a turn. Nesterov’s accelerated Gradient (NAG) tends to mitigate this
effect by guessing the new position based on the balls velocity and corrects
the step if a similar situation occurs. This is accomplished by the adapted
update rule

gt = VJ(9 - Mmt—l),
my = Ygt—1 + Gt,
0 =0— umy.

So the only difference between classic momentum and NAG is where the
gradient is evaluated.

AdaGrad

In [Duchi et al., 2011]| an adaptive subgradient descent (AdaGrad) algorithm
is proposed which adapts the learning rate for each parameter separately
depending on all previous gradients. This allows to slow down learning for
parameters that already have changed a lot while accelerating learning for pa-
rameters that only changed slightly. The intention behind that is to stabilize
learning between common and rare features.

The actual update rule is given by

g = VJ(Q),
ng =n1+ 39t © G,

W
h—0— —r o
Jrite o

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

The term g; © g; is the element wise squared gradient added in each step to
the vector n; accumulating all squared gradients. Now ﬁ is the vector
valued learning rate containing in each component the learning rate for one
parameter applied element wise to the gradient for updating parameters.

A great result of the adaptive learning rate is that the learning rate pu
can be set to a default value without the need to search for a good learning
rate. But at the same time the accumulation of the squared gradients result
in a monotonic decay of the learning rate. Therefore training basically stops
at some point.

RMSProb

The root mean square propagation (RMSProb) algorithm is not officially pub-
lished but it still is an often used algorithm similar to AdaDelta proposed in
|Zeiler, 2012]. Both algorithms adapt AdaGrad with the intention to solve
the problem of vanishing updates because of too small learning rates. The
simple idea is not to sum all previous gradients, but instead keep a moving
average for computing the adaptive learning rate. The RMSProb update rule
is defined as

gt = VJ<8)7
n=vne1+ (1 —v)g © g,
h=0-—t oy,

Ve +¢€

with a typical value for v = 0.9.

Adam

The adaptive moment estimation (Adam) algorithm combines momentum
with adaptive learning rates. This algorithm is basically RMSProb with
momentum and a bias correction. The bias correction is for the early phase
of the algorithm where initialization of momentum and squared gradient

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

accumulation to zero can cause instabilities.

gt = VJ<0>7
my = YG—1 + (1 —7) g,
R 1
my = 1 _ tmt7
ng=vn_1+ (1 —1v)g: © g,
R 1
ny = 1 _ tht7
0=0— —H _ om,
Ny + €

Here m, is the momentum and n, the addaptive learning rate, the m;, n; are
the corrected momentum and learning rate which get less and less corrected
as training proceeds.

2.2 Model Selection

2.2.1 Model Capacity

One of the biggest challenges in machine learning is generalization. This
means that the models must not only perform well on the training set but
also on unseen data (good performance P for new experiences E during
execution of task T).

In most machine learning applications one has a dataset to train the
model on. In this case one can compute an error measure called training
error which is the error the trained model has on the given dataset. When
only minimizing the training error the setup is just an optimization problem,
but in machine learning one is also interested in the expected error the model
would have for unseen data. This error is called the test error, validation
error or generalization error. From a pure mathematical standpoint the test
and training error for an untrained model are the same, then when training
the model on a test set drawn from a specific but unknown distribution the
training error gets optimized, additionally the test error will be higher than
the training error but should be as close to the training error as possible to
get a good generalization. Therefore, in practice, to find a good model we
are interested in two points

1. to minimize the training error and

2. minimizing the gap between test error and training error.

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

These two points represent two challenges in machine learning namely un-
derfitting and overfitting. Underfitting occurs when a model is not powerful
enough to fit to the given training dataset to get a low training error. On the
other hand overfitting is when the gap between the training and test error
is high, meaning the model could fit well to the given training dataset but
does not perform well for unseen data.

One way to influence overfitting and underfitting is to alter a models ca-
pacity. Basically the capacity of a model is its ability to fit different functions.
In other words, the higher a models capacity the more complex relations can
be modeled. A problem with the term capacity is that it is often casually
used without a clear definition.

WY, fa(z;0) WMSE

--- train
— test

Figure 2.1: Example of polynomial regression with degree d. Left:
Plot of 3 fitted polynomials, linear model d = 1, quadratic d = 2 and
polynom of degree d = 8. Right: Training and test MSE over polynom
degree d.

One of the well known measures of a models capacity is the Vapnik-
Chervonenkis dimension (VC dimension) for binary classifiers. The VC di-
mension is basically the maximum dataset size which can be arbitrarily la-
beled by a binary classifier. More precisely let f be a binary classifier, its VC
dimension is the size of the biggest possible configuration of data points X
such that f is able to label all data points in X arbitrarily (note that X can
be chosen adequately). That means that f can learn all 2X| possible label
combinations of an appropriate dataset X. For example the VC dimension
of the Rosenblatt Perceptron (see: section 3.1) for 2 dimensional data is 3.
Because for a dataset X = {zy, 73,23} C R? (not on a line) there exists a
parameterization of the perceptron such that all 23 splits are correctly clas-
sified by the perceptron, but for any bigger dataset X, meaning |X| > 3,
there does not exist a parameterization for each possible 21¥I splits into two

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

groups as illustrated in figure 2.2. This is also known as the XOR problem
resulting from the fact that the perceptron is a linear classifier but for any
four different points there exists a labeling such that the two groups are not
linear separable, see figure 2.2 for such a configuration.

3 data points with decision boundary
o [¢] [¢] o X o X o}
o X o X
o X o X X X X X
o X o X

4 data points not linear separable

X [e)

o X

Figure 2.2: Top: 3 data points with all possible different labels and a
linear decision boundary. Bottom: Illustration of the XOR problem,
not linear separable.

However, in deep learning the VC dimension is not really used like any
other well defined measure of capacity. In practice the only really used mea-
sure of the capacity of a deep learning model is the number of parameters.
This is because there is a lack of well understood and sufficient capacity
measures for the wide range of different deep learning models. For example
when the activation function of the perceptron is changed to x — H(sin(x))
one gets a VC dimension of oo (see A.5). On the other hand it is infeasible
to actually determine the VC dimension of most deep neural networks not
only because the models are complex and can have high varying capacities by
“small” changes to the model but also that the actual capacity of a machine
learning model is also dependent on the capability of the optimization algo-
rithm used to train a neural network. This means that a capacity measure
for deep learning models must not only consider the model itself but also the
optimization algorithm used to train the model.

But how to determine if a model is underfitting or overfitting? As men-
tioned we do not have a thorough theory about the capacity of a deep learning
model, but even if we would have an explicit capacity measure the capacity
of the model is only a good hint for model selection but not what we are
interested in. The problem is that depending on the task, low capacity mod-
els can still work very well. They can deliver low training and test errors as
well as high capacity models. Additionally models with high capacity but

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

not well suited for a specific task can perform way worse than low capacity
models specialized to the task on hand.

Remark. To address the problem of overfitting in deep learning regulariza-
tion methods are used. These regularization methods range from Lo weight
decay, max-norm reqularization to dropout. Further methods include adding
noise to the input data or the weights during training. Basically there are
two ideas, first the network has additional penalties or restrictions during
training or second the experience of the network during training is manipu-
lated such that the model will not experience the same over and over again.
Well this is very broadly speaking. For more information see [Goodfellow
et al., 2016; Srivastava et al., 2014].

2.2.2 Cross Validation (CV)

To divide the given dataset into a training set and a test set can have un-
wanted side effects, especially when the given dataset is “small”. On one hand
when from a small dataset a portion is split of and not be used for training
the model may not be trained well because the given training data is too
small while on the other hand the resulting “small” test set will probably be
too small to get a statistically certain result. The goal of cross validation is
to get a more accurate estimate of the test error. The idea is to randomly
split the given data into training and test sets, train the model (from scratch)
and evaluate the test error on the remaining test set (out-of-sample testing).
When doing this multiple times the mean of all test errors is an estimate
of the expected test error. Because when evaluating the test error multiple
times the test set for each trial can be way smaller leaving more samples for
the training set needed to have a well trained model. Furthermore with small
test sets a statistical uncertainty is given when evaluating the test error, this
can result in false test error estimates because of a possible unlucky choice of
the test set. This problem is mitigated by taking multiple different test sets.
The most common variation of this approach is the k-fold cross validation.
There the dataset is split randomly into k distinct subsets. Then each of the
k subsets is chosen as the test set while the union of the remaining sets are
the training set. Then the final test error is the mean of all k£ test errors.

2.2.3 Grid Search (GS)

In machine learning it is often not obvious which model is an appropriate
model. Meaning when designing a model there are possible model types often
with different hyperparameters to chose from. For example for a MLP (see:

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

section 3.2) the number of layers, the size of one layer (number of neurons in
the layer), the kind of activation function and so on are all hyperparameters.
To find an appropriate combination of hyperparameters suited for the given
task a grid search (GS) can be used. A grid search is basically to try all
possible hyperparameter combinations in combination with model validation
metrics, then taking the model with the best performance with respect to
the validation metrics. A common setup is to use a grid search with a cross
validation for each model.

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 3

Neural Networks

The idea behind Artificial Neural Networks (ANNs) is inspired by the brain.
Basically, a brain is nothing else than a network of neurons where neurons
are connected via synapses which are electrical (or chemical) conductors with
a specific strength. By the different strengths of the synapses the electri-
cal flow from neuron to neuron is controlled. When a neuron, connected
to multiple others, receives electrical signals through its inbound synapses
this neuron will fire when a certain threshold is reached as combination
of all input signals. This results in a signal discharged into this neurons
outbound synapses which transports this signal depending on the synapses
strength. The stronger the synapses the stronger the signal received by the
connected neurons making it more likely that the connected neurons will
fire too. Broadly speaking, through the connectivity, the strengths of the
synapses and the threshold of neurons the electrical flow through the brain is
controlled. Building on this simple view of the brain, learning and memoriz-
ing is strengthening synapses which are used often while neglected synapses
decay.

Inspired by the brain ANNs are models of this oversimplified version.
Different types of ANNs will be introduced in the following sections, start-
ing with Rosenblatt’s Perceptron as the model of a single neuron, followed
by Multi Layer Perceptrons (MLPs) and more complex models like Convo-
lutional Neural Networks (CNNs) as well as various versions of Recurrent
Neural Networks (RNNs).

Remark. Actually learning with SGD does not match the described learning
in the oversimplified brain model. The SGD optimization tweaks the param-
eters in such a way that the model would make less errors for the current
experience in contrast to strengthening the weights involved in the current
experience while decaying the not (or weak) involved weights.

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Remark. As the task on hand is a multi class classification problem we will
talk about ANNs primarily with the intend to build a classifier. But the exact
same ANNs can be used for regression problems as well. There are just a few
common practices in which the two concepts differ, mostly in the common
output activation functions and the used loss function for training. ANNs
can also be used as generative models, these are models trained to produce
“new data” by training an ANN to represent a probability distribution. For
example a decoder which generates a summary of a text after an encoder
“encoded” the text. In other words, the job of the decoder is to create a
probable summary of the text based on a representation.

3.1 Perceptron, the Basic Building Block

The history of ANNs started with a simple model of a single neuron, known
as Rosenblatt’s Perceptron. The neuron is modeled as the weighted sum
of its inputs plus a bias followed by a Heaviside step function. The weights
correspond to a synapses strength and the bias models the neurons threshold.
Finally, the Heaviside function lets the neuron either fire or stay quiet.

In more detail, let H be the Heaviside function and denote with f(z;w,b)
the model with weights w € R” and bias b € R. As model input the vector
x € R™ describes the signals delivered by the neurons inbound synapses. Each
component x; of the input corresponds to the signal of the :’th synapses with
a weight (strength) of w;.

Figure 3.1: Architecture of Rosenblatt’s Perceptron.

Mathematically, the perceptron is described as
f(z;w,b) = H(w 2z + b).

And it is nothing else than a linear binary classifier.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1.1 Activation Functions

The Rosenblatt Perceptron, as a model of a single neuron, is not suitable as
a single unit in an actual ANN. The problem is that ANNs are trained with
an SGD algorithm. These algorithms compute gradients for learning, but
the derivative of the Heaviside function® is zero and therefore the gradient
too, which means no learning. To resolve this issue, the Heaviside function is
replaced by a piecewise differentiable function denoted as ¢. These functions
are called activation functions. This leads to the altered model of a single
neuron as

f(z;w,b) = p(w'z +b).

Additionally there is a set of well known activation functions, better suited
for specific tasks, than the Heaviside function. Although, a theoretical back-
ground of the behavior of ANNs using specific activation functions is still
not well understood and is an active field of research as part of high di-
mensional non convex numerical optimization. But based on experience,
educated guesses can be made for an activation function to be used in an
ANN. These educated guesses, where ReLLU is a good fallback, are a good
starting point to implement an ANN for a specific task, but there should be
an experimental survey to find a suitable activation function for the specific
task.

In the following a few of the most common activation functions are pre-
sented.

Rectified Linear Units: The Rectified Linear Units defined as
ReLU(z) = max(0, z)

is the most simple activation function and behaves well in a lot of applica-
tions. Due to its linearity the gradient optimization algorithms for learning
like the back propagation algorithm is very efficient and encounters almost
no problems. A special property, this almost linear units have, is that the
derivative of the ReLLU and similar functions does not introduce second order
terms, which is helpful for gradient descent optimization algorithms.

There are a few variations, starting with the leaky ReLU, which has a
small positive slope a that regulates a leak in the negative domain of the
activation.

ReLU,(x) = max(0, z) + o min(z, 0).

'Problematic points, like the 0 for the Heaviside function, are typically ignored and set
to an arbitrary value, for example to the one sided derivative, in the context of numerical
optimization.

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

The leaky ReLU has one advantage in comparison to the ordinary ReLU,
namely that the ReLLU could be struck in the training process when almost
all samples result in negative values for this unit. Then there is no activation
and therefore no updates of weights leading to “dead” units. This behavior
can be avoided with the leaky ReLU.

Furthermore the slope parameter could be learned too and not be fixed,
this version is known as the parametric ReLU or PReLU.

Another variation is the absolute value rectification function that fixes
the value @ = —1 resulting in = — |z|. As an example use case consider
object recognition, where a specific object should be recognized regardless of
a reverse of colors.

Sigmoid Functions: Sigmoid functions are S-shaped functions. The two
most common used sigmoid functions as activation functions are the logistic
stgmotid o and the hyperbolic tangent.

1
7 = T e
tanh(z) —) — ep(=2)

exp(z) + exp(—x)

The sigmoid functions are harder to train, mostly because they saturate for
big values, making it difficult for gradient based learning algorithms. This
is the reason why the use of these activation functions is discouraged for
simple feed forward ANNs. But there are special ANNs like gated RNNs
that use the logistic sigmoid for neurons that control a gating mechanism
or as output activation using its range of (0,1). In others than such special
cases the hyperbolic tangent should be preferred, mostly because of its close
to linear behavior around 0.

A common practice when using sigmoid functions is to approximate them
with partial linear functions. The main advantage is that these approxima-
tions are faster to compute while experience shows that in appropriate places
the performance of the models is not compromised. For example the hard
sigmoid o, defined as

0, if v < —g
on(r) =1, if v >3

T 1

£+ 3, else

is often used in gated RNNs as activation function for the gates.

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Softmax: The softmax, in contrast to other activation functions presented
here, involves more than one unit. This is an activation that involves all
units in one layer.

exp(z;)
>_; exp(z;)
The intention is to create a discrete probability distribution as output over
multiple neurons. It is mostly used as an activation for the output layer
of a classification model. As an example consider our task of a three class
classification problem. All models that will be compared later have three
output neurons, each neuron representing one class and as an activation the
softmax is used. Now the values of the three output neurons for a given input
are interpreted as the probability that the input belongs to a neurons class.
Now the classification is done by taking the class with the highest probability.
In addition the probability of this class can be seen as the certainty of the
model that the input belongs to this class.

(softmax(x)); =

Further Activation Functions: There are countless other activation func-
tions and a wide range of differentiable functions are well suited. For example
the softplus

softplus(x) = log(1 + exp(z))

or radial basis functions or even trigonometric functions can be used. But
the most common ones are listed above and for most tasks these functions
perform as well as specialized activation functions.

3.2 Multi Layer Perceptron (MLP)

Like a single neuron the Rosenblatt Perceptron itself is only a linear classifier
and not very powerful. The real strength of ANNs comes from connecting
multiple perceptrons as nodes of a real network. This leads to Multi Layer
Perceptrons (MLPs) which consist of multiple neurons (perceptrons) aside
in multiple layers, hence the name. The concept is seen in figure 3.2 where
each gray node in the network represents a single perceptron (neuron) and
each arrow a directed connection (synapses).

The first layer consisting of neurons that receive the models input is called
the input layer, the last layer is denoted as output layer. All other layers are
hidden layers because the neurons in the hidden layers do not interact with
the environment, only with other neurons in the network.

We started with a formal description by enumerating the layers starting
by 1 from the first hidden layer. For example the MLP in figure 3.2 has the

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Input Hidden, Hiddeny Output

Y2

S
S
v

(1) (2) (3)
= hO ! > p) ! > p2) f > 13 =g

Figure 3.2: Example Architecture of a 3 Layer MLP.

layers 1,2 as hidden layers and 3 as its output layer. Each layer consists
of n; perceptrons where each perceptron has n;_; inputs from the previous
layer. These myn;_; weights are represented in matrix form and denoted as
WO e Rm*m-1 Furthermore there are the bias each perceptron has which
will be called b € R™ which stores the bias of each neuron. Finally there
was the activation function applied to a perceptrons output. It is common to
have the same activation function for all neurons in one layer, therefore let
" be an activation function from section 3.1.1 for layer number /. Meaning
that all neurons in the layer [use ¢!) as its activation function. With this a
single layer of an MLP can be described through the vector valued function
FORED WO 5D where A1 is the output of the previous layer.

FORED, WO _p0Y = gOORE=D 4 p0)

Please note that the activation function is applied element wise as activation
for each single perceptron where each element is the output of one perceptron.

For the sake of a more economic notation we will write f) as an ab-
breviation for the parameterized function fO(.;W® b)), To finally get a
formulation of an MLP the functions f) describing a single layer need to be

concatenated as
f=fMo fN-Dg o fl

to get a hole N layer MLP f with weights W® and biases b) as well as
activation functions ¢! with an enumeration of the layers by [= 1,..., N.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) are specialized ANNs originally de-
veloped for image processing. Their architecture is strongly correlated to
the brain region V1 also known as the primary visual cortex. The V1 is the
first region of the brain that performs real processing of image data. In the
eye, where light is captured by the retina, the neurons in the retina perform
a simple preprocessing and passe the data through the optic nerve into a
region of the brain, which basically relays the signals further to V1 at the
back of the brain. In our very simplified view, V1 is built up from multiple
layers where each layer has a two dimensional spacial structure consisting of
two kinds of neurons. The simple neurons and the complexr neurons. The
two dimensional structure enables V1 to localize features in an image to a
position. For example when light is captured by the retina at the left upper
part only the corresponding neurons in V1 activate. The next part are the
simple cells which are localized and extract different patterns, meaning that
different simple cells responsible for a specific region of an image activate for
special local patterns. Consider to see a blank canvas with one dot, then the
(localized) simple cells concerned with dots activate. Finally there are the
complex cells, they behave similar to the simple cells except that they are
invariant to small positional shifts and /or changes in the patterns.

Remark. The same concepts can be applied to sequential data with 1D
convolution where the grid like data is represented by a feature axis and
a time axis (sequence of features, for example a sequence of word vectors).
The difference to 2D convolution described below is that the convolution is
applied only to the time axis, therefore 1D CNNss.

Now CNNs mimic this oversimplified V1 architecture by using the follow-
ing three concepts for a single CNN layer.

Sparse Interaction: The idea of sparse interaction (also referred to as
sparse conneclivity or sparse weights) is a localization of dependency. This
means in a single layer one output neuron is only connected to a few input
neurons.

Parameter Sharing: In contrast to the classic MLP the activation for
a output neuron uses the same kernel for the calculation for its input for
different output neurons. This means that in convolutional networks the ac-
tivation of different neurons use the same kernel (or at least a very small
number of kernels) to compute their input and not a matrix vector multipli-
cation where each row (or column) is independently responsible for a neurons

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Sparse Interaction &

All Connected Sparse Interaction X
Parameter Sharing

O><O O:::* b’cj:O

0 SEEYS
— 0
>>§O /jo

® ® 0120

Figure 3.3: Left: A complete connected input to output layer (like in
MLPs). Middle: A sparse connected layer. Right: A convolutional
layer with a 3 element kernel with parameters a,b and c¢. Those are all
parameters for this layer (except the bias).

input. This results in a significant reduction of free parameters. For an ex-
ample of a network layer structure representation using parameter sharing
see figure 3.3.

Equivariant Representation: A desired property called equivariants to
translation means that shifting the input does not result in an entirely dif-
ferent output. It is only shifted equally.

Structure of a CNN Layer

Let us begin with modeling an actual CNN layer. A typical convolutional
layer consists of 3 stages, first a convolution followed by the detector stage
(applying the activation function) and finally a pooling stage.

A convolutional layer basically performs a convolution to the input data
like the discrete convolution? described in section A.3. Second, the kernel
in the convolution is usually much smaller than the input. Therefore a con-
volutional layer only uses a subset of the input data for the calculation of
the output features of a node. For a visualization see figure 3.4. Further-
more the input to a convolutional layer is not just a grid of single values.
Rather, it is a grid of vector valued inputs where the elements of these vec-
tors are called features or also referred to as channels. The output is as well
a grid of vectors, each feature representing a different localized property. To

2 Actually, most frameworks do not implement a mathematical convolution but it is a
very similar operation.

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

accomplish this affine transformation from the multi dimensional input to
the multi dimensional output, tensors are used (consider the bias which is
added after the kernel was introduced to the data, therefore the affine trans-
formation). As an example consider a convolutional layer for image data.
The image data forms a grid of x, y pixel positions, each pixel consists of 3
values, the red, green and blue intensity. A convolution on this image data
could detect differen localized features like edges, dots or colors. This can
be accomplish with a 4D? kernel. There are two positional dimensions and
a channel dimension in the input and one in the output.

Now assume we have a 4D kernel tensor K with the channel indices i, j
with ¢ on the output, j on the input channel and the positional offsets in
the rows and columns k, [relative to the current output position referring to
the input elements (e.g. when calculating the output element with position
(x,y) the indices k,[refer to the input element with position (z + k,y +1)).
With this notation the tensor elements are K, ; ;. Assume our input is given
as X with channel index 7 and positional indices =,y meaning the elements
of the input data are X, , and the output Y, ,, has the same format. Then
the discrete convolution would be

Yi@JJ = : :XJ7E+k7y+lK7‘7.]7k7l'
Jsk,l

For the sake of simplicity the indices k, [are symmetric around 0.

The problem is that the upper convolution is actually not well defined
because the relative indices k, [result in a reference of undefined input data,
for example X, _; _;. This leads to a special feature called implicit zero
padding. That means that the input data is (implicitly) augmented with 0
values outside the boundaries of the data. There are different concepts for
this problem and for more information see [Goodfellow et al., 2016].

3.3.1 Pooling

The pooling step is performed after the detection stage and it basically com-
bines a local neighborhood into a summary. The most common is the maz-
pooling which gives the maximum activation of its neighborhood. Other
pooling types are average-pooling, Lo pooling or weighted averages with re-
spect to the center of the neighborhood.

There are three hyperparameters for such a pooling step. Its size ny, the
stride ny and a padding n,. The size defines the size of the neighborhood, for

3 Actual implementations usually work in batches, this introduces another dimension
over the examples in the batch.

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

000 kernel (0]0]

000 x, k OO output
000 (e]e}
2,

Figure 3.4: Calculation of a single output feature in a convolutional
layer with a 3 x 3 kernel for a 3 feature input and 2 feature output,
this means that the kernel is represented by a 2 X 3 X 3 x 3 tensor.
(Inspired by image data, 2D convolution)

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

example a size of ny gives a ny X ny neighborhood involved. Next the stride
defines the shift from one neighborhood to the next, this means that a stride
of ng shifts the neighborhood for the next pooling output by n,. Finally the
padding sets an input border which (implicitly) augments the input by the
padding size (typically with 0 values). Let us consider a few examples: First a
common pooling configuration with distinct neighborhoods, let ny = n, = 2
and no padding n, = 0. Then the pooling operation on a 8 x 8 grid gives
a 4 x 4 output as illustrated left in figure 3.5. Another example visualized
right in figure 3.5 is with a stride of ny = 1, there the neighborhoods overlap.

Figure 3.5: Left: Pooling operation of size and stride ny = ny, = 2 and
no padding. Right: Size ny = 2 and stride ny, = 1 with no padding.

Convolution Layer Form

Now assume we have a convolutional layer in a convolutional network at an
network depth [. The closed form on the convolutional layer output hY) by
an input denoted by A~ with a kernel K| bias b, an activation function
#Y and a pooling operation p) would be

FORED: KO 50) = pO(¢O (KO « R 4 50,

The activation functions ¢ used in convolutional networks are the same as
in MLPs described in section 3.1.1, for instance the rectified linear unit or a
sigmoid function.

3.4 Recurrent Neuronal Network (RNN)

Recurrent Neural Networks (RNNs) are a family of ANNs specialized for
processing sequential data. The main working principle is inspired by cyclic

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

connections between neurons in the brain to keep track of previous informa-
tion. RNNs incorporate this cyclic connections with internal back references
in a recurrent manner with respect to sequential input.

Let us assume the sequential data processed by an RNN is temporal,
meaning the RNN gets a sequence (x;)]_; where ¢ is a time index, as input.
The input ¢ is not necessarily a time index but it matches our task where an
RNN gets a sequence of word vectors representing a sentence and ¢ is inter-
preted as a time step index of the words. Furthermore a time series justifies
terms like “past” and “future” which simplifies explanation. To motivate the
design of RNNs let us consider such a sentence (x;)]_; as a sequence of word
vectors.

RNNs are designed to handle such sequences properly which the previous
presented feed forward models, namely MLPs and CNNs, are not capable of.
There are a few reasons why. First a sentence does not have a fixed length
which is especially a problem for MLPs because they assume a fixed size
input. To handle this limitation one could build the average over the word
vectors resulting in a sentence summary of fixed size, but totally neglecting
the order of the words in the sentence. This leads to the second design
principle, information of the sequence order must be maintained. Third,
specific patterns in the sequence need to be recognized, independent of their
position. The second and third principle are already incorporated by CNNs
by using parameter sharing, but only local, meaning they cannot keep track
of long term dependencies leading to the fourth principle, tracking of long
term dependencies.

Let us start with building a vanilla RNN for a basic illustration of the
concept. Starting with the RNNs input sequences denoted as (x;)]_; the
RNN computes an output sequence (¢;)7_; while maintaining an internal
state (h:)]_,. For each time step ¢ the RNN takes the input x; at time ¢ and
the internal state of the previous step. By passing on the internal state from
the previous time step the RNN is able to keep track of information from the
past. Additionally there are three weight matrices, one for the input denoted
U, another for the internal state called W and one for transforming the
output denoted as V. Because of the weight matrix for the internal state the
RNN is also capable of learning which information shall be passed on, which
is a very important feature. Furthermore, it is important that for all time
steps the same matrices U, V and W are used to incorporate the parameter
sharing to be able to detect the same patterns at different positions in the
sequence. Mathematically speaking, our vanilla RNN layer is, for time steps

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

t =1,...,7, recursively defined as

hy = tanh(Wh,_, + Ux,),
th - Vht

Note that a hyperbolic tangent was used as activation function for the in-
ternal state, this is just the most common activation for such simple RNNs.
Also the initial internal state hg will just be set to 0 for our vanilla RNN.
The structure is visualized in figure 3.6.

Ut Y 2 Yr—1 Yr
| . .
i h I B o
ho ! 2 . 2 ! h.
x_
= . I
Tt 1 T2 N Tr_q T,

Figure 3.6: Information flow in our vanilla RNN. For each time step ¢
the network processes the current input x; as well as h;_1 and computes
an output g; while updating the internal state to h; that is passed
forward in time. Left: Circuit diagram. The rectangle represents a time
delay. Right: The same network “unfolded” with an input sequence of
length 7.

The next step is to adapt our vanilla RNN to specific tasks, as one can
see our initially constructed vanilla RNN produces an output for each time
step. This is not always a useful behavior. There are three different con-
cepts for RNNs. First, the Sequence-to-Sequence structure like our vanilla
RNN, second the Sequence-to-One structure which can be easily created by
neglecting all the outputs except the last one or all outputs and then take the
last internal state as the output. The third variant is the One-to-Sequence
architecture where the RNN does not get an input sequence. The input to
the network could be the initial internal state and the network creates a
sequence of outputs. For a comparison see figure 3.7.

In our case of a classification problem the Sequence-to-Sequence structure
is not useful as a last layer but will be used as previous layers for a stacked
RNN where the output sequence will be the input of the next RNN and a final
Sequence-to-One recurrent layer. The third version of a One-to-Sequence
structure has no use for our classification problem, an example use case would
be in an Encoder Decoder network for translation. There are a lot of different
variations and for more details of basic construction principles of RNNs see
|Goodfellow et al., 2016] or from an NLP viewpoint see [Goldberg, 2015].

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Sequence-to-Sequence

<>
=
<
%)
<
7
—
<
3

—_—) —

Sequence-to-One

hl h2 hT—Z h,—,]

One-to-Sequence

Y1 Yo cee Yr—1 Yr

hT—2 T h'r—l T

Figure 3.7: Comparison of different RNN structures. Top: A Sequence-
to-Sequence structure where an input sequence (z¢)7_; is transformed
into an output sequence (y¢)7_,, Middle: Sequence-to-One structure,
processes an input sequence (z;)7_; and summarizes the entire sequence
into a fixed size output g, Bottom: One-to-Sequence structure which
gets a single input z and creates an output sequence (y¢)7_;.

r=hy —> - -

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Before diving into specific RNN structures the vanishing- and exploding
gradient problem mneeds to be discussed. These problems result from the
Back Propagation Through Time (BPTT) algorithm, described in 3.6, which
is used to compute gradients for weight updates in the training process of
an RNN. As the name suggests this is a back propagation algorithm closely
related to the classic back propagation algorithm used in the training of feed
forward neural networks but with an additional propagation through time
inside an RNN layer. For our vanilla RNN the propagation through time of
the gradients involves a matrix multiplication with the weight matrix W7
for each step back in time (see section 3.6). The longer the time series the
more matrix multiplications of the same weight matrix are involved. This
means that portions of the gradients from long term dependencies involve
high matrix powers of the same matrix. Depending on the eigenvalues of the
weight matrix W, the high powers result in either exploding gradients or the
portion of the gradient resulting from these long term dependencies vanish.
In the case of an exploding gradient the weight update damage the already
learned information stored in the weights, while the vanishing gradient prob-
lem manifests itself in an incapability of learning long term dependencies (or
at least do that very slowly). There are a variety of different approaches
for these problems. For example gradient clipping against the exploding
gradient, smart weight initialization schemes, other activation functions and
alternative RNN structures. The most robust and common approaches are
alternative RNN structures where the common and state of the art versions
are gated RNNs. We will only discuss the gated RNN structures and do
not go into detail of different methods of dealing with the vanishing- and
exploding gradient problem. For more information see [Goodfellow et al.,
2016).

3.4.1 Simple RNN

This Simple RNN* is a variation of our vanilla RNN with an additional bias
and a possible different activation function ¢, although in most cases the
hyperbolic tangent is a good choice for ¢. This leads to

ht = ¢(Wht_1 + U.Tt + b) (31)

with hg initialized zero and ¢ an appropriate activation function. See the
Sequence-to-One structure in figure 3.7 for a visualization of the information

“The name “Simple RNN” is used in the python library Keras to address this RNN
structure. The main reason why this structure is mentioned explicitly is that it is one of
the architectures used in the experiments.

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

flow in our Simple RNN. For a Sequence-to-Sequence structure the internal
state at time step ¢ can be used as this time steps output.

3.4.2 Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) introduced in [Hochreiter and Schmid-
huber, 1997] is a gated RNN which tries to solve the problem of tracking long
term dependencies. This is approached by introducing gates that control the
information flow from one time step to the next. There are three gates
namely the input, forget and the output gate. The input gate controls which
information passed on from the past is relevant at the current time step, the
forget gate decides if information is needed later on or if it can be forgotten.
Finally the output gate decides which information is the current time steps
output. Furthermore the gating behavior is also learned, meaning the LSTM
learns how to control the gates. With these gates the problematic matrix
multiplication for propagating the internal state through time was replaced
by a gated sum. When information is propagated through time, the gates
learn to behave in a way to stay closed for long term dependencies until the
information is needed (or forgotten), then the gates open. Therefore the long
term dependencies can be passed on without interfering with processing of
time steps where these dependencies are not needed.

This is the basic concept of the LSTM which is incorporated in the re-
cursive definition for the input gate i;, output gate o, and the forget gate f;
values. Furthermore the internal states, the “carry” state ¢; and the memory
state hy.

iy =0 Wihy—1 + Uizy + b;) ,

o= 0 (Wihe_y + Ugzy + by)

or =0 (Wohi_1 4+ Usxy + b,) , (3.2)
a=fioc1+i©¢Whiy+Ur +0),

hy =0 © ¢(cy).

The first three equations define the three gates with their own weight
matrices dependent on the input and the previous hidden state using a sig-
moid o as activation function to ensure an actual gating behavior. Meaning
that each channel of the gates are in the range [0, 1] where 0 is a closed and
1 an open gate. The internal state ¢; is the internal state composed of the
gated previous state and the new processed information with ¢ as activation
function, the operation © is the hadamard product which is an element wise
multiplication operating with the forget gate on the information propagated

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

from the past as well as the input gate controlling the new processed informa-
tion. Finally we have the sequence output with the same activation function
¢ gated by the forget gate. For a visualization of the information flow in a
single LSTM cell see figure 3.8. Note that this is only one time step inside a
LSTM layer.

e

Ci—1 ©

Ct

o Q.
N |

Ty

hy

rO—0
o

Figure 3.8: A single LSTM cell. At the current time step ¢ the cell
gets x; as input as well as the internal state ¢;—; and the output h;—;
from the previous step. The white circles O represent the gates and the
gray circles © compute new states and outputs. The © represent an
element wise multiplication (gating the information flow) and + is a
vector addition. After computation ¢; and h; = §; is passed on to the
same cell for the next time step and ¢ is the output for the current
step (if not discarded).

3.4.3 Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) introduced in [Cho et al., 2014] is another
gated RNN motivated by the LSTM. The main difference is given by us-
ing only two gates namely a reset gate and an update gate, furthermore the
“carry” state is discarded while only a hidden state is propagated through
time. The reset gate controls how much of the previous information is con-
sidered for computing the new hidden state, if the reset gate is closed the
past is ignored and the hidden state is “reset” only with the current input.
The update gate then decides how much of the previous hidden state shall be
propagated fourth in combination with the new hidden state. The recursive
definition for the update gate u; and reset gate r; as well as the hidden state
h; reads®

5The paper [Cho et al., 2014] which introduces the GRUs exists in multiple versions
and there is a structural difference in the GRU between the versions. In earlier versions

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

re = o(Wyhe—y + Upay + b,),
Uy = O'(Wuhtfl + Uuiﬁt + bu), (33)
ht =u © ht—l + (]_ — Ut) © ¢(W(Tt O] ht_1) + U$t + b)

The GRU structure for a single cell is visualized in figure 3.9.

U

ht—l ©)A ht

Figure 3.9: A single GRU cell. Inputs are x; and the previous hidden
state h;—1, The white circles O represent the gates where r is the re-
set gate and u the update gate. The ® operator is the element wise
multiplication for applying the gating. Output is the new hidden state

hy = 9.

3.4.4 Bidirectional RNN

All the RNN structures considered until now have a causal structure, meaning
at a time step t they are only aware of the past. But in natural language the
interpretation of specific words is not only dependent of the past. This means
that the meaning of a word can change dependent on future information.
This is closely related to the problem of ambiguity in natural language. For
example consider the two sentences “Auf der Bank liegt mein Hund.” against
“Auf der Bank liegt mein Geld.”®. In both cases the interpretation of the
word “Bank” is determined by the last word in the sentence, a dog lies on a
bench and the money is on the bank. Another more specific example would

h; was defined as
ht =ur© ht—l + (1 — ut) ® ¢(Tt ® Wht_l + Uxt + b)

The difference is that the reset gate r is applied after the weight matrix. The experiments
use the updated version presented in the text (not the one from the footnote).
6In English: “My dog is lying on the bank.” and “My money is on the bank.”

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

be “Die niichste Ente in den Nachrichten.”” where in this context the German
word “Ente” means “hoax” or “fake news” and not the animal duck. In this
example even the sentiment of the word changes through the reinterpretation
of the word as being in the context of journalism.

Bidirectional RNNs address this issue by processing sequential data not
only from the past to the future but in both directions. To construct such
bidirectional RNNs one simply takes two RNNs, one processes the input
sequence from the beginning and the other from the end and then, for each
time step, the output is combined. The output combination for a time step ¢
can be as easy as stacking the outputs or taking their sum or even point wise
multiplication, the most usual case is to stack the outputs. Using this simple
construction scheme all of the presented RNN structures can be implemented
bidirectional. See figure 3.10 for a visualization of a bidirectional RNN layer.

0 1o o -1 Ur

/] s

Figure 3.10: A Sequence-to-Sequence Bidirectional RNN structure.

3.5 Back Propagation (BP)

In this section the calculation of the gradient used in the optimization al-
gorithms presented in section 2.1 is derived for the MLP. Extending the
algorithm to more complex architectures like CNNs is straight forward but
not for RNNs which is the content of section 3.6.

The back propagation (BP) algorithm is basically a computational efficient
application of the chain rule for computing the gradient of neural networks
for updating the weights while training as described in section 2.1. The idea
is to apply the chain rule to the definition of a neural network in a functional
form. The algorithm to actually compute the gradient is then a two step
process consisting of the forward pass and the backward pass. In the forward
pass the networks output is computed, this is just the evaluation of the neural
networks output for given input. From an algorithmic point of view the BP
algorithm also stores relevant information needed in the backward pass to

"In english: “The next hoax in the news.”

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

reduce computation overhead for values already computed. With the output
of the network the gradient of the cost function V.J(#) can be evaluated
using the chain rule by propagating the evaluation of partial gradients from
the output back to the input, therefore the name of the algorithm.

Let us explicitly derive the computation of the gradient for a simple MLP.
Therefore we restate the definition of an MLP in a slightly different form
which helps with the calculations. See 3.2 for the definition of the terms,
now let

O =g

aV = wORED 40 l=1,..,N

A = O (), l=1,...N
§ = A

where the function representing a single layer is
Y = fORED WO, b(l)) — ¢(l)(W(l)h(l—l) + b(l)) — ¢(l)(a(l))
which results in a function f representing the entire MLP as
f=fMNo fN-Do o fD

To calculate the updates for the weights W® b® let @ represent all param-
eters in f. Furthermore, as described in section 2.1, let £ be a per example
loss for inputs (z;)7, with target values (y;),. Then the cost function J is
given as

J(6) = % > Ly, f(2::0)).

i=1 N
Yi

This leads to ,
1 & R
Vo =VyJ = m ; Vi L(yi, i)

which is the gradient of the cost function with respect to the last layers
output. With the linearity it is sufficient to calculate the gradient for the
per example loss £. Now we compute the gradient parts in one MLP layer.
Meaning we assume to have the gradient V) L of the layer [and derive the
gradient for the weights in this layer as well as the loss with respect to this
layers input, meaning V.- L. Because we got the gradient of the output
layer the entire gradient is recursively defined and can be computed for all
weights.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

So lets assume we already have calculated V) L then the gradient of £
for the linear layer output with the relation h() = ¢ (a®) is

n a l ny ,
(Voo L)i=) (ba (7))(thﬁ)k = 0tV (@) (Vo L)
k=1

k=1

(
= 0" (a") (V0 £);

where we get
V. £ = gb(l)/(a(l)) oV,nLl.

Now to the gradients for the weights W® b® which are the ones we are
actually interested in. They derive from the identity a®® = WORI=D 4 p()
by

8a(l
(Vww L)ij = Z 5 (Vaw L)k

k=1 i

w0 (St Wik +40)
= Z 0 (va(”ﬁ)k
k=1 aVVij
™ Z oW pY
pr— —l
e owY

n; Ni—1

=3 b (Va0 L)

k=1 t=1

= h{(V,0 L)

(Vo L)k

and therefore we obtain
Vol = (VL) h=D"

and analog we get

Vo £ =V,u0L.

Finally we calculate the gradient of £ with respect to the current layers

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

input using the relation o = W®RID 1+ p(® for

K PAY
(Vh(l—1)£>i = Z Wlkfl)(v“(l)ﬁh

k=1 7
o (S WA o))
=) (Vaw L)k

1
on;'™"
ny Mi—1

=> 3 8 Wiy (Va0 L)
k=1 t=1

=> Wi (Vi L.
k=1

Written in matrix form
T
Vi L =WV, 0 L.

Now we have calculated everything we need for the BP algorithm. We
used the gradient of one layers output to compute the gradients of its weights
as well as its input. Furthermore we have the gradient of the loss function
after a forward pass through the network. Therefore we have a starting point
and a recursive relation between the gradients.

To get the gradient of the cost function J we just need to average the per
example gradients.

3.6 Back Propagation Through Time (BPTT)

The Back Propagation Through Time (BPTT) algorithm is an extension of
the Back Propagation algorithm to compute the gradients in the backward
pass for training RNNs. A RNN, in contrast to feed forward networks, has
an additional time axis that consists of cyclic dependencies. The BPTT
algorithm augments the classic BP algorithm to consider these cyclic depen-
dencies inside a RNN layer.

For the sake of simplicity the BPTT will only be derived for our vanilla
RNN, but the extension of the BPTT algorithm to more complex RNN struc-
tures follows the same principle. Let us restate our vanilla RNN layer which
is given as

A = tanh(Wh®D + Uz®),
g =vn®.

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Furthermore let us assume we already have access to Vymﬁ. There are basi-
cally three possible cases for the gradient V) £ at time step ¢ in the current
RNN layer. First they are all zero except the last one V - L. This case
would be the many-to-one RNN structure. This is the case for our classifi-
cation models where only the last output (a complete sentence summary)
is materialized. The second version is a many-to-many (or sequence-to-
sequence) RNN structure with a target sequence y7_; and £ the summation
of all the losses £®). For example let for each time step t the loss be defined
as LO(yy, §) = 2(y — §¢)? and the total loss function

T

L=>"r"= % > (=907
t=1

t=1
then the gradient with respect to the time step ¢t would read
Vo £ =y — Ui

For example consider the assignment to build a sentence tagger where the
output sequence consists of word tags. The last possibility would be that
V;w L is the already propagated gradient from following layers. Either way,
assume we already know Vymﬁ.

We start to derive with the final time step and then go backwards in time,

Vi £=VIVn L.

and for ¢ < 7 the internal state h®) has y® and h(**1) as descendants, there-
fore we get

ont+ON T g\ T
thﬁz (W) vh(t+1)£+ (%) Vg(t)ﬁ. (34)

For a more explicit representation we compute the inner derivatives

Oht+1) 0 tanh (Ek M/ikh;(:) +3 Uilxl(tﬂ))
(ontt)) - ahY)

= <1 — tanh(Wh(t) + U:E(t+1))2> Wi

- (ame(a-n) W),

as well as the second
oy VAW

oh ~ apm V-

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

By plugging into (3.4) we get
VoL =W7T diag(l — h<f+1)2) Ve £+ VIV 0 L.

This is a recursive formula for the gradient where V, L depends on the
gradient of the next time step V1) L. Eliminating the recursion leads to

Vin L = ZT: < ﬁ wT diag(l — h(l)2)> VTVg(k)E

k=t \l=k+1

To get the actually interesting gradient for the weights, we now compute
the sum over all gradients for a specific time step and derive each loss with
respect to the weights resulting in

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 4
Word Embeddings

When working with natural text we need to be able to represent the text
in a form that the downstream processes can work with. This means we
need representations of single entities in the text. This single entities can be
characters, words, sentences or even entire documents. We work on a word
level, meaning our smallest entities are words.

Remark. In the following we will talk mostly about words. But when being
precise we actually mean tokens, for example in most NLP systems tokens
like >?2 or ’2019’ are in the vocabulary of known “words”. In addition
some tokens can represent multiple different “words” (character sequences).
For example the Polyglot library has number expansions built in which
lets the preprocessing represent all numbers of the same length (number of
digits) by the same token. For example the character sequences ’1105°
and ’1729’ are both represented by the same token. Further approaches
like stemming, replacing of similar meanings (for example abbreviations) or
other data preprocessing and cleaning methods are involved. Anyway, in the
following we assume a sequence of words (tokens).

4.1 Basics

In this section we briefly describe some basic text representation methods
and a few useful statistics on text data on a word level.

Let D be a text corpus, meaning D is a set of documents. A document
D € D is just a sequence of words. Given a corpus D we build a vocabulary
V' of words in the corpus

V={weD:DeD}

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Now given a vocabulary V' we start by indexing the vocabulary. Let i(w)
be the index of a word. Mathematically the indexing is a bijection ¢ : V —
{1,...,]V]} providing a one-to-one correspondence between a word and its
index. Equivalent is the one-hot-encoding which is a vector of dimension
|V| where each component is associated with the word of this components

index. Let v(w) be this one-hot vector of a word w then v(w) = ((5i(w),j)|j‘;‘1
is everywhere zero except when j = i(w), therefore one-hot. At this point we
are already able to represent entire documents as numbers, just representing

a document as a sequence of word indices.

4.1.1 Word Counting Statistics

The basis of text analysis starts by counting words. The first is the term
frequency (TF) which in its simplest form just counts occurrences of a term
w in a document D. For our use case we assume our term w to be a word,
although terms can be almost anything starting by a single character to entire
text parts, in most cases a term is a single or a few words.

Raw counts are impractical (in most cases) because the size of a document
is not considered. A more usual version is

TF (w, D) ! > bwa-

Pl

This is the most common TF version and also the version we use. There are
multiple other variations like boolean count 1 if w € D else 0 or a logarithmic
version log(1 + TF(w, D)).

Another word counting statistic is the inverse document frequency (IDF)
which is intended as a measure of information a word (term) possesses for a
document in relation to the entire corpus. The idea is that rare words in the
corpus occurring in a single document must be relevant for this document.
On the other hand common words in the corpus are words not relevant for a
specific document. Like the term frequency the inverse document frequency
comes in different variations. In other words, the IDF tells if finding a term
in a document tells something about the document or not. For example
finding the word ’und’! in a document tells almost nothing about the docu-
ment because this word is so common that the occurrence of >und’ does not
distinguish the document from others. One common version is

IDF (w, D) = — log (HD €D:we D}r)

D

'In English: and

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

So the more documents containing a word the lower the IDF.

Combining both statistics leads to the term frequency-inverse document
frequency (TF-IDF) statistic which is just the product of a TF and a IDF
statistic

TF-IDF(w, D, D) = TF(w, D) IDF (w, D).

4.1.2 Bag of Words and n-Grams

A Bag of Words is a document representation by counting the words occur-
ring in a document. With respect to a vocabulary V' a document D can be
represented by a |V| dimensional vector. There the j-th component contains
the raw count of the word w in the document with index i(w) = j for each
w € V. There are multiple different alternatives, for example we can use
TF-IDF statistics as alternative to raw word counts. Using a Bag of Words
representation an entire corpus can be represented as a document-term ma-
triz where each row of the matrix represents a document in the corpus and
each column a word in our vocabulary. Therefore a document-term matrix
is a |D| x |V| dimensional matrix.

Let us consider an example, assume we have a document corpus D con-
sisting of the following documents

D{ = ’mach die Tiir zu’

Dy = ’mach die Tiir auf’

D3 =’ist die Tir zu’
D, ="ist die Tiir auf’
Dy = ’die Tiir ist zu’
D¢ = >die Tir ist auf’
D; =’die Tiir ist zu mach die Tiir auf’
Dg = >die Tiir ist auf mach die Tiir zu’.

First we create a vocabulary, there are six different words

V = (*die’, *Tiir’, *mach’, >zu’, >auf’, ’ist?).

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

With the vocabulary we create the document-term matrix

NN — — = = = =
NN — = ==
—_0 OO0 O
= = OO = O O
= OO) OO
— =00

Each row represents a document and each column a word.

A major drawback of the simple bag of words approach is that words are
only considered by their occurrence counts. Meaning that co-occurrences are
only captured on a document level. For example the documents D; and Dsg
have the same bag of words representation. This leads to the n-gram model
which considers n long sub sequences of words as terms and performs the
same statistics on these n-grams. For example for n = 2 the following are all
n-grams of our example corpus:

(’mach’, ’die’), (’die’, *Tiir’), (’Tiir’, ’zu’),
(*Tiir’, >auf’), (*ist’, *die’), (*Tiir’, *ist’),
(’ist’,’zu’),(’ist’,’auf’),(’zu’, mach’),

(*auf’, mach?’)

Again with the n-gram model a document-term matrix can be constructed
with different statistics depending on the task. But we will not go into details,
for more information see [Bird et al., 2009].

4.1.3 Latent Semantic Analysis (LSA)

The latent semantic analysis (LSA) is a method to study the relationship
between documents and terms. The main idea is that terms with similar
meaning occur in related documents.

Assuming a document-term matrix X, then LSA is a Singular Value De-
composition of the document-term matrix X. According to linear algebra
there exist orthogonal matrices U and W as well as a diagonal matrix > with
non negative diagonal elements (singular values) such that the document-
term matrix can be written as

X =Uxw".

o1

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

This is known as the Singular Value Decomposition (SVD) of a matrix. In-
jecting the decomposition of X into X7 X and X X7 leads to

XT'X =wxvuTusw?” = wx?w?’
XXT =uxswTwxu® = ux?u”

which leads to the fact that the columns of W and U are the eigenvectors of
XTX and X X7 respectively.

The SVD gives vector representations stored as columns (eigenvectors) of
U and W for terms and documents respectively. With these representations
documents and terms can be analyzed and new documents and terms can be
embedded by using these matrices.

One improvement is to compute a low dimensional approximation and not
a complete SVD which makes it possible to get representations in low dimen-
sional spaces (not the vocabulary size). But as the corpus and vocabulary
sizes grow LSA gets very expensive.

4.2 word2vec

The word2vec are a few neural networks to train word embeddings. They
are initially proposed in [Mikolov, Chen, Corrado and Dean, 2013] and op-
timized in [Mikolov, Sutskever, Chen, Corrado and Dean, 2013]. Building
on previous work which showed that for neural networks for NLP tasks a
two step training is a good approach, the word2vec models where created
for the first training step. This means that a neural network for a specific
NLP task is created in two steps, first a neural network is trained for a rep-
resentation of words, then a part of the first network (which is intended to
have learned good representation of words) is used in the final network which
is then trained for the actual NLP task. This approach is known as trans-
fer learning where one part of a trained network is transferred to another
network. The word2vec models only the first neural network in such a two
step neural network modeling approach. There the projection matrix will be
the embedding matriz used in further neural networks specialized for specific
NLP tasks.

The word2vec models are intended to be very simple and efficient in train-
ing while having high quality representations. To get the efficiency in per-
spective the word2vec models are created to be able to be trained on multiple
billions of words for vocabularies of millions of words. The quality is mea-
sured on different word similarity tasks. One such task is simple word simi-
larity for instance that *Hund’ and ’Katze’? are close in the resulting vector

2In English: dog and cat

02

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

space (according to cosine distance). More complex similarity tasks like if
’groR’ is similar to ’gréfer’ in the same sense as *klein’ to ’kleiner’?.
To validate these similarities the authors used algebraic operations on the
word vectors and computed v(’grofer’) — v(’groR’) + v(’klein’) and
searched for the closest vector which is v(’kleiner’). Even more remarkable
is that when trained on huge datasets, which the word2vec models are capa-
ble of, even more complex relations are encoded in the embedding structure
like*
v(’Konig’) —v(’Mann’) + v(’Frau’) ~ v(’Konigin’).

In the following we introduce the two word2vec architectures. Therefore
consider a training corpus X as a sequence of words wy, wy, ..., w x|. Then a
vocabulary V' of known words is created, typically taking the most common
words in X. The vocabulary is also to be seen as a sequence of distinct words,
this enables us to index the known words in our vocabulary. Now let i(w) be
the index of a word w € V' and v(w) be its continuous vector representation
as a d dimensional vector.

Remark. The vocabulary has fixed size and does not contain all possible
words. In most cases not even all words in the training corpus. Words not
contained in the vocabulary are called Out Of Vocabulary (OOV) words. For
handling these words we add a special OOV word to the vocabulary and
tread all unknown words as this OOV word.

4.2.1 Continuous Bag-of-Words (CBOW)

The first model from |[Mikolov, Chen, Corrado and Dean, 2013] is the Contin-
uous Bag-of-Words (CBOW). This model is basically a log-linear classifier.
The main objective is to train the classifier to predict a word given its con-
text. The context of a word are all ¢ previous and following words.

More precisely, let w; € X be the t-th word in X, then its context C; =
(wt-i-j)j::tl,...,:tc-

The CBOW model consists of an initial embedding layer which embeds
the context words into R?, the weights of the embedding layer, namely the
embedding matriz, contains after training the word vectors and the rest of
the model will be discarded. After embedding the context words their repre-
sentations are averaged to a continuous context representation, therefore also

3In English: big to bigger as small to smaller
4Equation in English:

v(’king’) — v(’man’) + v(’woman’) ~ v(’queen’)

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Wt—4 W3 Wi Wi w, w, W, Wiy d w
t—4 N /t—3 t—2 t lj t N t+1 t+2 H»SJ t4+4

h¢ DA

~

C

Figure 4.1: Context words with window size ¢ = 3 for word wy.

the name because the context representation only bags the context words by
averaging. The context representation is then passed to a log-linear classifier
which has its own weights with a softmax output. The output is because of
the softmax a probability distribution with |V'| nodes. The j-th output node
represents the modeled probability p(i(w;) = j|C;) given its context Cy. The
training objective is to minimize the negative log-likelihood for the models
parameters 6 (consisting of the embedding matrix and the classifier weights)

| X|
1 1
J(0) = —|X—|log L) = —m Zlogp(wtfct)-
t=1

The probability p(w;|C}) is associated to the output neuron representing the
word w;.

In more detail, let E € RIVI*4 be the embedding matriz which represents
the word vectors in its rows, meaning v(w) = Ej,,. The context vector is

computed as the average of the context word vectors
1
v(Cy) = Tl Z v(w).

This context vector is the input to the log-linear classifier with weights U &€
RIVI*4 The rows of U can be interpreted as a context “word” representation
u(w) = Ujq), similar to the embedding matrix, meaning that the model
has two vector representations for a word, namely a word and a context
representation. Now the classifier compares each context representation u(w)
with the given context vector v(C}) to determine their similarity and models
the probability of a word w € V' being the center word of the context C} as

p(w|Cy) = softmax(v(Cy) u(w)).

This is the basic architecture of the CBOW model, see figure 4.2 for a visu-
alization.

This approach is still very expensive because to evaluate the probability
p(w|Cy) the softmax must be evaluated

exp(v(Cy)Tu(wy))
> wey exp(v(Cr)Tu(w))

p(w|Cy) = softmaX(U(C’t)Tu(wt)) =

o4

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Figure 4.2: The CBOW model with softmax activation.

The problem with the softmax activation is the denominator which is a sum
over the entire vocabulary and therefore the computational cost is still pro-
portional to the vocabulary size. But the softmax function can be approx-
imated with the hierarchical softmaz. The computational cost to evaluate
the hierarchical softmax is proportional to d x log|V|. Because for training
we are only interested in the probability p(w;|C;) for the single word w, (and
not for all words to compute the maximum for classification) which leads to
a significant speedup.

The hierarchical softmax uses a binary tree® representation of the output
layer with |V| leaves. Each leave corresponds to one word, each node repre-
sents the relative probability of all its children. Therefore by walking from
the root to a leave and accumulating the relative probabilities leads to the
probability of the leave node associated with a word.

More precisely, each word w can be reached via a unique path from the
root to the leave associated to the word w. Let n(l,w) be the [-th node
in the path from the root to the word w and L(w) the length of the path.
Additionally the context representation is no longer present, in replacement
each node gets a node representation w(n). Furthermore let [[z]] be a truth
evaluation as [[z]] = 1 if z is true and —1 otherwise. Finally let left(n) be
the left child of a node n in the tree representation®. Then the hierarchical
softmax defines the probability of the center word w; given its context C; as

L(wt)—l

p(we|Cy) = H o ([[n(wy, L+ 1) = left(n(wy, 1))]Jo(Co) T u(n(w, 1)) .

=1

®The tree structure used in [Mikolov, Chen, Corrado and Dean, 2013; Mikolov,
Sutskever, Chen, Corrado and Dean, 2013] was a binary Huffman tree.
6Choosing the left over the right child is arbitrary, can be either way.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

with o(z) = H—Tp() the logistic sigmoid. In figure 4.3 the CBOW model
with a hierarchical softmax using a binary tree is visualized.

i wt+2

Lw1+1 \ / \ R °
\ /’o

/'®4>0

p(w:|Cy)

i(wi—1)
i(u‘t,z)

Figure 4.3: The CBOW model with hierarchical softmax output layer.

4.2.2 Skip-Gram

The Skip-Gram model is the second word2vec architecture from [Mikolov,
Chen, Corrado and Dean, 2013]. This model is similar to the CBOW model
except that for a given word the Skip-Gram model predicts context words.
In contrast to the CBOW model which learns to predict a word given its
context the Skip-Gram model learns to predict the context given a word.

With the same notation the learning objective is to minimize the negative
log-likelihood given as

| X

1(0) = =108 £(0) =~ S ()

\Xl

So the difference is in the conditional probability. The log of p(C|wy) is given
as
log p(Cilwy) =log [[p(wlwy) =) logp(wlw,).
weCl weCy

The model structure is similar to the CBOW starting with an embedding
matrix of size |V| x d for word vector representations of dimension d. But
the Skip-Gram model gets as input only a single word (the center words)
whose word vector v(w;) is then the input to a log-linear classifier. Then
the classifier predicts context words given the center word. Like the CBOW
model the Skip-Gram model should be trained with hierarchical softmax for
computational reasons. See figure 4.4.

o6

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

c p(wt+2|wt)

o plwipr]wy)

N\
\

LA

i(wy)

o ’ o>< p(wt_1|wt)
o — °

‘ " p(wi—o|wy)

Figure 4.4: Skip-Gram model architecture with hierarchical softmax
output layer.

4.2.3 Negative Sampling and Subsampling of Frequent
Words

An alternative to the hierarchical softmax is negative sampling introduced in
|[Mikolov, Sutskever, Chen, Corrado and Dean, 2013|. The idea is that lan-
guage models should be able to distinguish actual data from noise. Therefore
the multi class prediction is replaced by a binary classification to distinguish
between real and negative samples. The data seen by the model is now the
center word wy, its context C; and negative samples w, ¢ N, C V. Using a
noise distribution p, the negative samples w € N, are drawn from the vo-
cabulary with w ~ p,, the number of negative samples |V;| range between
2 — 20 depending on the given training corpus size (small corpora need more
negative samples). With the negative samples the new training objective for
the CBOW model is

X
= |X| Z <log0 (C)T Z log o (v(Cy) " u(w)))

wENt

This can be applied in an analog manner to the Skip-Gram model as well.
Another improvement from the paper [Mikolov, Sutskever, Chen, Corrado
and Dean, 2013| for learning word2vec vectors is subsampling of frequent
words. The idea is that high frequent words can occur extremely often in
comparison to others. These high frequent words are usually less informative
than low frequent words, especially when learning word representations based
on context word relations, because most of these high frequent words can be
present in almost every context, for example articles or conjunctions. During
training these high frequent words dominate the training and can even harm
the learning of lower frequent words. To mitigate this harmful effect of highly

a7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

occurring words, words w; in the training corpus X are discarded with a
probability py given as

T

palwd) =1 =\ [TRy

There T is a constant threshold (around 1075, see: [Mikolov, Sutskever, Chen,
Corrado and Dean, 2013|) and TF is the term frequency. The discarding
probability was chosen heuristically but seems to work well in practice and
was designed to drastically discard high frequent words with a frequency
above T" while keeping low frequent words and still preserves the frequency
order (see: figure 4.5).

pa(w) T
14

3/4 4
12+
1/4+

0 A TF(w;)
10°¢ 107° 107 107* 1072

Figure 4.5: Discarding probability for a term frequency threshold of
1075.

4.3 fastText

Inspired by [Levy et al., 2015; Mikolov, Chen, Corrado and Dean, 2013|
fastText initially is a linear text classifier with rank constraint and hierar-
chical softmax output layer introduced in [Joulin et al., 2016|. As the name
suggests this classifier is very fast to train. Furthermore it does not use
any pretrained embeddings. Building on their linear classifier in [Mikolov
et al., 2018| the authors adapted their classifier model to train word vectors.
Similar to [Mikolov, Chen, Corrado and Dean, 2013; Mikolov, Sutskever,
Chen, Corrado and Dean, 2013] their embedding model comes in two flavors,
namely the CBOW and the Skip-Gram architecture although in [Mikolov
et al., 2018] the fastText embedding was introduced with the CBOW ar-
chitecture. Therefore we assume the CBOW architecture for the rest of this
section.

The fastText CBOW model is very similar to the original word2vec
version (see: section 4.2.1) except two changes:

o8

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Position Dependent Weighting: The word2vec model ignores the order
of the context words by calculating the context vectors as average of the
context word vectors. To consider their order the calculation of the context
vectors v(Cy) are replaced by a positional weighted sum where the weights
are learned too. Now for each relative position j = £1, ..., &=¢ in the context
a weighting vector d, is associated. Then the context vector is computed as

U(Ct> == Z dj ®wt+j‘

j==%1,..,Fc

Subword Information: Typical word vectors ignore morphological infor-
mation of words. To encode this information in the embedding a bag of
character n-gram’s in the word is added to the standard word vector. Mean-
ing that character n-grams also have vectors associated which are derived
from a singular value decomposition or are learned similar to the word vec-
tors from a text corpus. Now to get a vector representation of a word w,
the word is first decomposed into a set of known n-grams N in the word w
where z,, denotes the vector representation of a n-gram n € N. Let v(w) be
the classic word vector for w, then its vector with subword information is

1
v(w) +] Z T

The size of the n-grams is typically restricted from 3 to 6 characters. The n-
gram vectors can also be used to calculate word vectors for unknown words,
meaning for OOV words, by simply initializing v(w) as zero vector or using
a trained OOV representation. Therefore the fastText embedding produces
different word vectors for different OOV words.

Remark. Another well known word embedding is the GLoVe word embedding
introduced in [Pennington et al., 2014].

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 5

Experiments

5.1 Experiment Setup

The code for the experiments was written in python. There I used pretrained
word embeddings provided by the Polyglot |Al-Rfou et al., 2013| library as
well as the fastText [Grave et al., 2018] embedding with gensim [Rehiifek
and Sojka, 2010] as the interface. The neural networks are implemented with
Keras [Chollet et al., 2015] using TensorFlow as backend.

5.1.1 Preprocessing

This is the first step in the processing chain. The preprocessing cleans the
raw data (sentences or entire texts), then splits the cleaned data into tokens
(words, punctuations, dates, ...) and finally, dependent on the parameteri-
zation, either removes or leaves stop words and/or punctuations.

Escaping, Replacing and Tokenization

Before removing and splitting some special characters must be escaped. This
way they can be reconstructed after the cleanup and do not interfere with
the splitting. For example consider the raw data sentence ’Am 3. Februar
wurde § 3 Abs. 4 bespro-\nchen.’. There are two dots that are not sen-
tence endings, the character ’§’ which has an explicit meaning but may
not have an embedding and the date >3. Februar’ which should be a sin-
gle token! despite the fact that there is a space in it. Furthermore the -\n
must be deleted as the word splitting over a line break. All of these special
cases are handled by replacing and escaping. At first abbreviations, escape

Tt is more common to split the term 3. Februar in three tokens (3) (.) (Februar),
either way the dot is not a sentence delimiter.

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

sequences and special characters are replaced by actual words, for a few exam-
ples see table 5.1. This transforms our example sentence to >Am 3. Februar
wurde Paragraph 3 Absatz 4 bespro-\nchen.’. The next step is to es-
cape characters that should be kept but not be treated as sentence or token
delimiters like the dot and space in the date of our example. The charac-
ters to be escaped are searched by specialized RegEx (for example dates and
numbers). Then all remaining sentence and token delimiters are actual sen-
tence and token delimiters as well as all remaining “illegal” characters can
be removed safely. After the removal of the illegal characters the text is
split with respect to the remaining delimiters. Afterwards the escaped to-
kens are restored. For our example we get the following sequence of tokens
(Am) (3. Februar) (wurde) (Paragraph) (3) (Abschnitt) (4) (besprochen) (.).

abbreviation replacement
Dr. Doktor
Abg. Abgeordneter
Nr. Nummer
z.B. zum Beispiel
8 Paragraph
€ Euro
€ ; Euro

Table 5.1: Examples of abbreviation and special character replace-
ments

5.1.2 Word Embeddings

In the experiments 4 different word embeddings where compared, 3 provided
by Polyglot and the fastText embedding using gensim as an interface. The
sentence embedding is done by a data generator which gets the preprocessed
sentences and passes batches of embedded sentences to the Keras models.?

Polyglot Embeddings

The Polyglot? library provides three different embeddings directly with a
download utility for a wide range of different languages, in our case German.

2The Polyglot embeddings have fixed size and could be implemented with a Keras
embedding layer, but to provide a uniform processing chain (more or less independent of
the embedding) all embeddings are performed in a data generator.

3For documentation see: https://polyglot.readthedocs.io/en/latest/ and for
the GitHub project see: https://github.com/aboSamoor/polyglot.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

In the tests all three different embeddings, namely cw, ue and sgns, where
compared. The cw embedding was trained on Wikipedia and contains the
100.000 most common words in Wikipedia. A detailed description of the cw
embedding can be found in [Al-Rfou et al., 2013|. Sadly, for the other two
embeddings I was not able to find out how they where created or where they
came from. For a comparison of the vocabulary size and the word vector
dimensions see table 5.2.

Name Known Words | Vector Dim.
cwW 100.004 64
ue 100.000 128
sgns 483.629 256
fastText 2.000.000 300

Table 5.2: Sizes of the used Embeddings

Finally, depending on the options, stop words and punctuations are kept
or removed from the sequence of tokens.

fastText Embedding

The fastText embedding was also trained on Wikipedia data for multiple
different languages. I used the pretrained word embeddings for German in the
binary format! with gensim. The gensim library provides a python interface
to embed arbitrary words with the fastText embedding. The binary format
in combination with gensim was chosen because it provides the capability
to embed OOV words using subword information as described in section
4.3. But there is a drawback from a technical point of view, because with
embeddings of OOV words the Keras embedding layer cannot be used any
more. The reason is that the embedding layer is basically a word vector
lookup table for all known words, but if the vocabulary size is not fixed
because of OOV words, there cannot be a lookup table for all possible words.
This is one of two reasons, why the embedding layer was replaced by a data
generator which provides already embedded sentences using gensim.

Data (Generator

A Data Generator in Keras provides batched data as model input for either
training and validation or prediction. In the case of training and validation

“File Source (Accessed Sep. 1, 2018): https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.md

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

the model expects the embedded sentences and the labels for each sentence.
For prediction only the embedded sentences are passed to the model. The
data generator gets a list of all sentences (preprocessed) and provides batches
of maximum size, meaning number of sentences in a batch, grouped by sen-
tence length. When the model requests a batch for training, validation or
prediction, the data generator passes one of the batches to the model until all
batches are exhausted. In the case of a model training multiple runs through
the entire dataset (epochs) are needed and the order of the training examples
should be shuffled for each iteration. To accomplish this shuffling with the
constraint of grouping the sentences by length the data generator shuffled
the sentence groups after each epoch and recreates the batches. This way
the batches contain different combinations of sentences for each epoch.

5.1.3 Model Builder

A comparison of different ANN models with a wide range of different possi-
ble parameters makes it difficult for an automated comparison. Furthermore
not all model types are capable of processing varying sizes of input data,
which is required in our case, because sentences vary in length. Therefore a
model builder was implemented which is capable of building different Keras
models only parameterized by a model name (type) and model type specific
parameters described below. In combination with the data generator all of
these models can process and be trained on the same data without any spe-
cialization (the main problem is the varying length of sentences and the wish
to use the capability of the fastText embedding to embed OOV words).
The model builder makes it possible to perform automatic model parame-
ter comparisons with performance measures like accuracy, precision, recall
or F} scores. Also libraries like scikit-learn® can be used for parameter
optimization over multiple different types of ANNs.

Models

There are three base types MLPs, CNNs and RNNs. All of them are differ-
ent in their internal structure and behavior. The MLPs and CNNs need to
summarize the embedded sentences of varying size because both cannot sum-
marize the different length input into a fixed output by themselves. In the
case of an MLP this summary needs to be done before even getting into the
“actual” MLP by adding a global pooling layer as first layer, which is either
an averaging or a max pooling over all word vectors, resulting in a summary

®See: https://scikit-learn.org/stable/index.html.

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

of the input sentence of fixed size. These are the two different MLP model
types called MLP (Maz) and MLP (Avg). For the case of CNNs the convolu-
tional layers perform a convolution over the different sized input sequences,
but after being processed by the convolutional layers the data is still of vary-
ing size. Then, like in the MLP models, they are summarized and fed into a
final MLP for classification resulting in the two CNN types CNN (Maz) and
CNN (Avg). In contrary to the MLPs and CNNs the different RNNs, namely
SimpleRNN, GRU and LSTM are specialized for sequence processing and
create a fixed input to a final MLP for classification. In addition the RNNs
can easily be adapted to bidirectional RNNs by taking two RNN layers and
combining the outputs of the two RNNs where one processes the sequential
input in the opposite direction as the other one. The bidirectional RNNs are
the BiSimple RNN, BiGRU and the BiLSTM. Finally a combination of CNNs
with RNNs can be created by replacing the global pooling of a CNN with a
many-to-one RNN layer. This leads to models like CNN (SimpleRNN), CNN
(BiSimpleRNN), CNN (GRU) and so on.
For more details and the corresponding theory see section 3.

Parameters

All of the different models have hyperparameters to explicitly define their
structure. Because of their conceptual divergence they are not all parameter-
ized by the same hyperparameters, although some are shared by all models,
see table 5.3 for a list of shared parameters and fixed values if these param-
eters are not part of the grid search. Hyperparameters specific to special
model types are listed in table 5.4 where the model parameters are marked
with a X when they are a hyperparameter of the model type.
Following a short description of the hyperparameters.

Units: These parameters define the hidden units in the network. In more
detail the units are a list of output dimensions of a convolutional or recurrent
layer while the MLP_units are the dimensions of the hidden layers in the final
MLP without the output layer which is set fixed to 3 by the output_units
parameter. This is because of the given 3 class classification problem.

Activation: Defines which activation function is used. There are four pa-
rameters, first the activation setting the activation in the convolutional or
recurrent layers, next the MLP_activation defines the activation function
in the final MLP. The recurrent_activation is the activation of the gates
in GRUs and LSTMs (typically the logistic sigmoid o) and finally the fixed
output_activation is set to a softmax as output activation of all networks.

64

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Hyperparameters Fixed Value(s)

output_units 3
output_activation softmax
MLP_units

MLP_activation
MLP_kernel_constraint

dropout

loss cross entropy
metrics accuracy, Fi, P, R
epochs 50 (60 in fine-tuning)
batch_size

optimizer Adam

Table 5.3: Hyperparameters common to all models. If no fixed value
is given, then this parameter contributes in the grid search.

Pooling: The pooling in the CNNs is defined through the pool_type and
pool_size, the first defines the pooling type which is either a max or average
pooling and the pool_size defines the size of the pooling area.

Kernel Size: The kernel_size parameter defines the size of CNN kernels,
meaning the kernel size used in a constructional layer.

Dropout: The dropout parameter gives the dropout probability applied
to each hidden neuron in the entire network, meaning in convolutional or
recurrent layers as well as in the MLP layers. Only dropout of the states
propagated through time in recurrent layers is not set by the dropout pa-
rameter, for that the recurrent_dropout parameter is responsible.

Constraints: The MLP_kernel_constraint sets a max-constraint to the
weights of the MLP. The kernel_constraint parameter sets constraints to
convolutional or recurrent layers. For RNNs defined by the equations (3.1),
(3.2) and (3.3) the kernel_constraint is applied to the U matrices and the
recurrent_constraint to the W weights of RNNs.

Merge Mode: The merge_mode is specific for bidirectional RNNs deter-
mining the combination of outputs from the two time opposed RNNs in a
bidirectional layer.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

merge_mode X X X X x x 4
=}
recurrent_dropout X X X X X X X X X X X m
recurrent_constraint X X X X X X X XX Xx F
o]
recurrent_activation X X X X X X X x g .
5
pool_size X X X X X X X X & &
-~
S £
=
pool_type X X XXX XX X g ml
L O
kernel_size X X X X X X X X m £
i
<
kernel_constraint X X X X X X X X X X X X X X B hm o
Z= =
activation X X X X X X X X X X X X X X Mm
.H —
units XXX X X X X X X X X X X X %0
o Q9
2 E S
<)
z Z £ 3
N R —~ e
z <E_2gog &%
TR o Z sEDEAn =2
= P8 Pz = EexzQ0Rs =E
cizig _ S ,FBBTUEI8 H:
—_ | I}
crzzERE EERp sz 2 X
Sz EeanlRdrnsasnass 25
S 200nUAAAMAAMUOOOVU &5
ayiolqig uaipn N1 Te ud ul ajgejreae si SISayl SIYl JO UOISIaA [eulblio panoidde ay any a8pajmou 4noA

“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg Av_w_._u.o__ﬂ__m

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2 Model Selection

Model selection and comparison were performed by multiple grid searches.
Because the number of all possible hyperparameter combinations is way to
large for an exhaustive search through the entire grid, multiple smaller grid
searches where performed. These smaller grids where (like the initial choice
of useful parameters) chosen according to “educated guesses” about use-
ful and interesting parameter combinations. For example the recurrent_
activation parameter was only for a few examples set to a different ac-
tivation function then the logistic sigmoid ¢ and fixed for almost all other
searches.

Each model validation was performed via accuracy, precision P, recall R
and Fi with a 3-fold cross validation where the final metrics where computed
as the average over each fold. Furthermore the search was performed on 90%
of the entire dataset and the withhold 10% test set was only used later on
for final validation of the selected models.

For a theoretical description of a grid search and cross validation as well
as details about the performance metrics see chapter 2.

5.2.1 Grid Search

The possible values for the hyperparameters are listed in table 5.5.

Hyperparameter Domain (Specification)

MLP_units 0 to 3 hidden layers, each with one of 32, 64,
units 128 or 256 neurons per layer
MLP_activation One of ReLU, tanh, logistic sigmoid o or
activation linear (no activation)

recurrent_activation
MLP_kernel_constraint | No constraint or max constraint of 1 or 4
kernel_constraint

recurrent_constraint

dropout No dropout or 20%, 30% or 40%
recurrent_dropout

batch_size Either 32, 64, 128, 256 or 512
kernel_size 3

pool_type Max or Average

pool_size 2or3

merge_mode Sum, product or stacked

Table 5.5: Grid search parameter domain.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

The search consisted of 1314 different parameter combinations using the
cw and the fastText embeddings. To save time, the ue and sgns embeddings
where not evaluated for all models (650 per embedding) because the results
were not too interesting as explained in setion 5.3.1. All together this leads
to 3928 models for comparison, each model needed to be trained 3 times
because of the 3-fold cross validation in the grid search. For the search the
parameterization of the preprocessing was fixed to keep all stopwords and
punctuation. The different preprocessing variations where compared only
for the best performing models of the grid search, see section 5.2.2.

The total run time of all grid searches was about 6 weeks of computation
on my personal computer®.

5.2.2 Fine-Tuning

After the grid searches the results where analyzed and three of the best per-
forming models where chosen for further tuning. Again the models where
validated with a 3-fold cross validation. But in contrast to the model selec-
tion grid search all random number generators’ where seeded for repeatable
results. Another difference is that in the fine-tuning the training epochs
where increased to 60. Also all preprocessing parameter combinations where
compared by performing a cross validation for each different preprocessing
parameterization of the training data for each of the chosen models.

5.3 Results

In this section the results of the experiments described above are presented,
starting with an overview of the grid search results. In the following we will
use the term ‘score’ for the mean accuracy of a 3-fold cross validation of
a model. In figure 5.1 the minimum to maximum score grouped by model
type and used embedding are presented in order of the maximum score.
Comparing the group minimum values has to be taken cautiously. They
are hardly comparable because this overview contains all models including
models which are configured to study specific behavior like overfitting or

6 About 80% CPU usage on all 4 cores with an Intel® Core™ i7-7500U CPU @ 2.70GHz
x 4 and 15.6GiB RAM.

"Random number generators involved are from python, numpy, Keras as well as the
TensorFlow backend. Furthermore only a single TensorFlow session can run and the ses-
sion itself must run single threaded, otherwise race conditions could lead to different results
despite seeding all random number generators. Additionally note that the data generator
randomly rearranges the training batches after each epoch and therefore changing the data
generator would also break the repeatability.

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

parameter combinations which were known not to be a good choice from the
beginning. On the other hand the maximum scores give a good overview of
a models capability in combination with a specific embedding.

yscore [%]

63% o

60% o II I

57% TT

- T

51%

1% | TL

45%

42%

39%

36%

33%

30% »/»/»/»/-/Z)r/mf)u';;;;‘;)m/Gnnngg:‘név/z;nnnn:‘@ma‘
CTEET TR B 2248 RARE AT L LAL R B BATE LA L LA R R
ﬂ“ﬂd'ﬂﬂ@/ﬂ‘/ﬂ/@,(‘,/f,/?j*ﬂ‘/«'/«‘/«'/«(\,/(4,/66//«‘/«'/«/«,/1‘0%&
OGOG¢°¢O”°?”°“¢O‘9ﬁ”€”¢'”@”6”§‘@
LURLE AR AT 22 e e % ogn e 2N 2R g Y

A = 5L S 2 45 a2 = w8 =~ 5 c W e
==L T2 2= T T 2% P = A R
$82%20222% % 586867 0 sosliosnp%
BREETLTETE B ORR ey 558882258 °
2 & - = R N

[[-

% 2RERe S

< GGG

<

Figure 5.1: Comparison of all grid search models with embedding.

5.3.1 Embeddings

As already seen in figure 5.1 the embeddings can be clearly distinguished
by their capability. One can see that the fastText embedding is by far
the most powerful. This is not surprising because it is the biggest and the
most advanced embedding, see: section 4.3. The second place is shared
by sgns and ue which is a bit surprising if one checks the sizes of those
two embeddings as listed in table 5.2. Even though the sgns embedding
is bigger in the size of known words and the word vector dimension they
still perform alike. By far the worst is the cw embedding. In the following
only the cw and fastText embedding are compared. This is because almost
all measures of the sgns and ue are in between the other two. Despite
their experimental measures, which are rarely interesting as bounded by the

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

other two embeddings, their construction or origin could not be investigated
(except that they are provided by the Polyglot library).

For an overall comparison of the embeddings their precision against re-
call was compared as well, meaning the precision and recall of all models
building upon a specific embedding. As visualized in figure 5.2 it is not only
the embedding that leads to a good classifier even though models using the
fastText embedding tend to be more balanced between precision and recall
as well as differences between classes.

cw fastText
AR AR
100% o Co (neutral) 100% o Co (neutral)
5 C1 (negative) 5 Ci (negative)
» Cy (very negative) » Cy (very negative)
80% 80%
60% 60%
Fy = T70% F = T70%
L F) = 60% R = 60%
40% U a0% Y
LR, = 50% SR = 50%
---- IR = 0% N SR = 40%
20% 20%
'Y A A
£ AA/Q S OA 2
e =2 = ® P S: = ® =P
2 g 2 & 2 2, 2 2, g 2
= = = = 2 = = = = =3

Figure 5.2: Precision P against recall R for all models with the same
embedding. Left: cw, Right: fastText.

When further only the “good” models are compared for a specific embed-
ding, meaning for the cw embedding only models with a score higher then
50% and for the fastText embedding all models with a score higher than
60%, see figure 5.3. There are a few points where the embeddings differ,
first the maximum score of the models which is also seen in the class specific
analysis. Second, the models built on the cw embedding are clearly biased
in favor of the biggest class C (negative), with and without class weights,
while the fastText embedding models do not have this bias. This is seen in
the very high recall of class C (negative) for cw in contrast to the bit lower
precision but higher recall for fastText models. Another indicator for a low
bias in the fastText models is given through a balanced distribution of pre-
cision against recall for all three classes. Additionally the fastText models
are way better in distinguishing if a sentence is neutral Cy or not C; U Cy
while it is more challenging to determine how negative a sentence is. This
is supported by the really good metrics for the class Cy (neutral). The only
real evidence of an imbalanced class distribution in the recall and precision

70

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

metrics of the fastText models is seen in the higher recall for the class C}
(negative) in comparison to Cy (very negative). This shows the high quality
and the better capability of the fastText embedding over the cw embedding.

cw (score > 50%) fastText (score > 60%)
AR R
100% e o Co (neutral) 100% AR o Co (neutral)
: 5 C1 (negative) : " 5 Ci (negative)
F : » Oy (very negative) Lo » Cy (very negative)
80% e - 80% R A=
60% O 60% :
; - §% . SR =T0% SR = T0%
v e ip e ! LR = 60%
40% : o U 40% o
A"‘A,_CO TR = 50%) i Py =50%
L%iéﬁ Tl Fy = 40% T R = a0%
20% 20%
A
A
& P P
A = = = > g) = > ® e
2 2 2 =X 2 =2 =3 Z s e
= = = = = = = = = =

Figure 5.3: Precision P against recall R for all “good” models with the
same embedding. Left: cw and a score > 50%, Right: fastText and a
score > 60%.

5.3.2 Models

Before discussing each model type in more detail some remarks that apply
to all of them.

Shuffling Data and Batch Sizes: The optimization algorithm used is
Adam (see: section 2.1.3). The batch size was limited with batch_size sam-
ples per batch. The term “limited” is used because the sentences were grouped
by their length and then each group was split into batches with a maximum
size of batch_size samples. Furthermore after each epoch the groups where
shuffled and new batches were created. This way for each epoch the batches
consisted of different samples which improved learning.® The batch size of 64

8Most deep learning frameworks or libraries, including the python library Keras that
was used here, support such a feature, it is even the default. But to use data shuffling all
samples need to be of equal size which is not the case. The most common approach to
this problem is to pad the sequences for training and use masking. Sadly (at least in the
version of Keras used) not all model structures support masking. Furthermore, for the
actual classification of the political speeches with roughly 2 - 10° sentences the same data
generator can be easily adapted to speed up processing significantly.

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

turned out to be a good choice and was used as the value for the batch_size
for most model training, except when the choice of 64 as batch size was val-
idated. In comparison to [Rudkowsky et al., 2017] a batch size of 100 was
used which is of the same magnitude and behaves similar. When increasing
or decreasing the batch size about a magnitude, then some models will not
be trained as well.

Overfitting: A detailed analysis about the impact of dropout and con-
straints for the model performance is hard because of the size of the given
dataset. For example see figure 5.4 where a big GRU without dropout or
constraints is trained. One can see that the validation score (solid) starts
dropping around epoch 15 but does not drop below 57% until the training
set was almost entirely memorized, meaning to reach a score above 95% on
the current training set (dashed line). When looking at the precision, recall
or F} metrics of models trained without any prevention against overfitting
the impact to those metrics is lower than some other parameter variations.
But that is not a big problem for any of the presented models, the reason is
that when applying a dropout in a range of 20% to 40% in all layers the vali-
dation scores as well as other metrics stay stable when they reach their limit.
Even though the presented example is already an extreme example of over-
fitting, meaning that smaller or simpler models have almost no problem with
overfitting, adding a dropout does not hurt. Additional weight constraints
are also valid for avoiding overfitting. For example a maximum weight con-
straint of 4 does a good job for most models, although it is a bit harder to
adjust the constraint value for a peak performance. If the constraint is too
hard the performance drops and if it is too weak constraints have no effect.

Precision and Recall: The precision and recall of all the models validated
in the grid search does first depend on the used embedding as long as the
model itself has a reasonable score as discussed in section 5.3.1 even though
the variation in these metrics for different model types is not negligible. But
there is a strong correlation between a model’s score, its precision and recall
and therefore F; as well. The basic rule of thumb is that a better score means
better precision and recall as well as a higher balanced classifier. Furthermore
the metrics relation between classes, for models of high scores, depends also
mostly on the used embedding. Models with a very low score have a very
strong variation in these metrics, but they should be avoided anyway.

With the above results in mind a more detailed discussion of the different
model types is presented below.

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

score [%] score [%]

1000 | N 100% - - - training set
-7 g — validation set
90% 2 90%
80% /! 80%
70% 70%
60% |7 60%
/A/V\Wﬁ,\/\w
50% | 50%
epochs epochs
10 20 30 40 50 10 20 30 40 50

Figure 5.4: Scores over training progress. Left: A GRU model with-
out any prevention against overfitting, Right: The same model with a
dropout of 40% and a weight constraint of 4.

MLPs

A simple MLP with a powerful embedding like the fastText embedding
reaches already up to 58% accuracy in a cross validation. In contrast to a
weaker embedding like the cw embedding where all MLLP scores are bounded
by 52%. When comparing these results with [Rudkowsky et al., 2017], a score
of 58% was given for the same models using the cw embedding. The main
difference is the validation of the models. In [Rudkowsky et al., 2017| the
models where validated with random sampling while the results presented
here are from a cross validation. When validating the exact same model
used in [Rudkowsky et al., 2017], denoted as MTBOW, with a cross validation
on the same dataset, the model has a score of 50%, which is consistent with
the results presented here.

There is also a huge difference between the two MLP types. The MLP
(Max) which performs a max pooling over the word vectors to get a sentence
embedding is a very bad choice for a model. The way better version is to
build the average of the word vectors as a sentence embedding. This is
theoretically reasonable in regard to the word embeddings used.

For the impact of single parameters, the choice of the activation function
as ReLLU or a hyperbolic tangents is a good one. If is important to have
at least one hidden layer, but the difference between a single and multiple
hidden layers is surprisingly low. For a comparison of MLPs with fastText
embedding see figure 5.5.

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

_ rani
L qatio® p
: : : : : : actde on =
A e sww A relV
= N e » 4\@034%)\‘\ 5
5 e == s ENE R WP et
= FE e e HE S S SRS 3
~ : I T - - — # ﬁb.rdw
[— : : N} BN\ R s =
w gy 1 : : Al fﬂﬁrm\cbw Y
_I.m_m_|_, - - : Eid 388
= I ' B\ =0
— i
COHH : : is

MLP (Max)

. score [%)]

63% 63%
60% 60%
57% 57%
54% 54%
51% 51%
48% 48%
45% | 45%
42% 42%
39% 39%
36% 36%
33% 33%
30% 30%
Figure 5.5: Impact comparison of a single parameter of an MLP with

fastText embedding. Left: MLP (Max), right: MLP (Avg)

“}auioljqig usipn NL e ud ul s|ge[rene si sisayl SIUl JO UOISIaA feulBblio pasoidde ay
“JeqBnyan 3auloljqig usipn N1 Jap ue isi iagrewoldiq Jasalp uoisiaAfeulBuO apjonipalb ausiqoidde aiqg

74

qny a8pajmoud| INoA

Saylolqie

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CNNs

The CNNs are very good models with up to 61% accuracy. They are definitely
better than an MLP and have even outperformed simple RNNs. Furthermore
they are very robust against changes in the parameters and the entire group of
CNNs is very reliable in their performance when compared to RNNs, meaning
that a poorly parameterized CNN still reaches a reasonable score while RNNs
do not.

The most important parameter is the activation function in the convolu-
tional layer where a sigmoid function or ReLU is a good choice. Furthermore
the type of global pooling is important where the max pooling seems to be
superior over the averaging. At this point it is still surprising that the CNNs
reach their peak performance with a single convolutional layer. A good choice
of the number of features (or hidden layer size) is in the range of 64 neurons.
See figure 5.6.

CNN (Avg) CNN (Max)
ascore [%)] wscore [%]
63% 63%
60% 60%
o (PO 0
54% 54% %
51% 51%
48% 48%
45% 45%
42% 42%
39% 39%
36% 36%
33% 33%
30% 30% SRR ==
LA LR TR R
Y g w R R Ry el T
AR AR AR TR LAY
R R S S S PR S
PRPRESS L mweRnR R T
gy L
Zigeo-ee BREE G
“ E
=

Figure 5.6: Impact comparison of a single parameter of CNNs with
fastText embedding. Left: CNN (Avg), Right: CNN (Max)

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Simple RNNs

The performance of Simple RNNs (also the gated RNNs) is very dependent
on a good parameterization as shown in figure 5.7 and still they reach only
up to a score of 59%. This is only slightly better than MLPs and they are
outperformed by all other model types.

Figure 5.7 shows that the activation function in the recurrent layers needs
to be ReLLU but they are still unreliable and need to be carefully parameter-
ized for the task on hand.

Simple RNN

ascore [%)
63.5%

60.5% - o - -
i e e
o i M

48.5% T

45.5% b b

42.5%

39.5% -

36.5%
33.5%

30.5% 1=

et T
‘0\&\%‘?; -

o

Figure 5.7: Parameter impact comparison for Simple RNNs with
fastText embedding.

Gated RNNs (LSTMs / GRUs)

The gated RNNs are very well suited for the given task which is not surpris-
ing because they are developed exactly for this kind of sequence processing.
But like the simple RNNs they are also very dependent on a good parame-
terization. However, with a well parameterized model they outperform the

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CNNs and reach up to a score of 63%. Both the GRUs and LSTMs behave
alike except that LSTMs are a bit weaker with a highest score of 62%.
Furthermore they have the most extreme case of a single parameter which
must be chosen correctly. The recurrent activation function (not to be mixed-
up with the output activation in the recurrent layers) should be a sigmoid
function as seen in the left plot of figure 5.8 in contrast to the right plot where
the recurrent activation is fixed to sigmoid. Although this is not surprising
because the recurrent activation is intended as value for a gating mechanism,
therefore a function with a range [0, 1] is the only really useful choice. For
the other activation functions ReLU or even a tanh is a good choice. The
depth of the models does not change much in their performance. Although,
this is probably only because the size of the training dataset is not sufficient
to teach a deeper net much more than a shallow one can learn already. In
addition to the single layer a number of 32 neurons is already sufficient.

GRU GRU (recurrent_activation = o)
yscore [%] , score |%)]
63% o 63% |-
gt P
57% T 57% %
54% 54%
51% |- 51%
48% 48%
45% il 45%
42% 42%
39% + 39%
36% 36%
33% 33%
PR
BRY
5%y
B P B 5. N
R\ ;é W
2o g 5. P @ \x
[é =

o9

Figure 5.8: Impact comparison of a single parameter of GRUs with
fastText embedding. Left: All parameters involved in the grid search
for a GRU. Right: Additional constraint of ¢,.. = sigmoid in contrast
to left.

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Bidirectional RNNs (BiLSTMs / BiGRUs)

The bidirectional RNNs performe exactly like their normal counterparts.
They had the same peak performance of 63%, which is the best of the results
achieved, as well as in their behavior on other performance matrices. The
influence of hyperparameters was also the same. The only difference was that
they are a bit slower because of the increased complexity.

CNN - RNN Hybrids

Finally, CNNs with a single RNN layer between the convolutional layers and
the final MLP. These models are a CNN stacked with a single layer many-to-
one RNN (which can also be bidirectional) and finally an MLP. The models of
this type are CNN (SimpleRNN), CNN (BiSimpleRNN), CNN (GRU), CNN
(BiGRU), CNN (LSTM) and CNN (BiLSTM). All of them can be directly
assessed by taking the results from their not convolutional counterparts.

5.3.3 Qualitative Analysis

For a qualitative analysis a few models where trained with the training set
(90% of the entire dataset) and used to classify a wide range of entire po-
litical speeches. These were about 58.000 speeches containing about 2 - 10°
sentences, see section 1.1.

First the results were visualized for manual validation. The visualization
used shows simply the speeches as text where each sentence had its class en-
coded as background color. When randomly browsing through the speeches
one could immediately see a significant bias between the models built on the
cw embedding and the ones using the fastText embedding. Although one
could only see which embedding was used, the difference in the results were
huge. The models build on the cw embedding classified more than half of
all sentences as negative or very negative, even though they definitely were
neutral (or positive). The models build on the fastText embedding labeled
most of the sentences as neutral, which they were, and only a few sentences
as negative or even very negative. FKven though these where just randomly
browsing through the visualizations and manually looking at them, one has
to say that the performance of the models using the fastText embedding in
contrast to the cw embedding are significantly more reliable which is consis-
tent with the results presented in section 5.3.1.

In addition to the visual comparison the visualization of scored speeches
revealed that all models made mistakes in labeling common phrases. For
example “Sehr geehrte Damen und Herren.” was labeled negative by all

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

models. This behavior is simply explained by the given training set. A
search for such common phrases in the training set showed that, on one hand
almost no stand alone phrases are included in the training set, but on the
other hand these phrases occurred as parts of negative training samples. But
such common phrases occur very often in German political speeches.

As a further example see figure 5.9 where the “average negativity” of all
speeches per year are computed from the classification by two models. The
first is the MTBOW (left y-axis) model build on the cw embedding and the
second is a GRU (right y-axis) with fastText embedding. There are two
interesting things to see. First the course over the years is actually quite
alike. Second, there is a huge difference in the bias. To get the “average
negativity” in perspective it has to be mentioned that this is the average of
a sentence “negativity” from all speeches in a specific year. The sentence
“negativity” is set to 0% if the sentence is labeled to be Cj (neutral), 50%
if C} (negative) and 100% for Cy (very negative). With this explained it is
not reasonable to assume that the “average negativity” is around 60%. The
range of 32% to 36% seems (at least for me) a bit high but not unreasonable.

average negativity [%]

62.8 % 36.1 %
62.4 % 35.7 %
62.0 % 35.2%‘
B 6LT% 348 %
= 613 % 314 % Z
2 610 % 340 %
= 60.6 % 336 % &
| 60.2 % 331% &
59.9 % 327%
59.5 % CB23Y%
R T T
2 B22R22222222- 00

Figure 5.9: Comparison of “Average Negativity” of Speeches over Years
labeled by MTBOW (cw) and GRU (fastText).

5.3.4 Model Fine-Tuning

First the best models of the grid search where chosen and manually fine
tuned. This mostly involved training the models with seeded random number
generators and altering some parameters by hand as well as letting the trained
models classify entire political speeches and visualizing the results. Then
finding obvious mistakes and adding these wrongly classified sentences with

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

a correct label to the training data’. For example most salutations where
classified negative. This was because most salutations do not occur in the
training set but were part of longer negative or ironical sentences as described
in section 5.3.3.

Additionally the impact of differences in the data preprocessing was ex-
amined. Therefore the data was preprocessed with different configurations,
namely to keep or remove either stopwords and/or punctuation from the
training and validation data. Then the models where trained and validated,
again with a cross validation, with these four differently preprocessed training
sets.

The results are listed in table 5.6. Compared to the results from the grid
search the performance metrics did not change, the best score of 63% is the
same for the fine tuned models as well as the grid search “winners” as well as
the accuracy, precision, recall and F;. But a qualitative analysis of the fine
tuned models showed that the fine tuned models made less obvious errors
when classifying entire speeches, especially the beginning of speeches which
is almost always a greeting of the audience that is no longer classified as
negative after augmenting the training dataset with a hand full of common
phrases. As mentioned this common phrases are not considered by the given
dataset but for possible usage of the classifiers they are crucial. Also the
preprocessing configuration for the grid search was to keep stopwords and
punctuations which is the same configuration as for the best score presented
in table 5.6. These results were also validated with a 10% test set which was
split from the entire dataset before starting the model selection process.

To the comparison of the preprocessing, there is not a big variation in
altering the preprocessing, not even on a class specific level. Although it
seems to be a bit better to keeping tokens and let the nets learn for themselves
which tokens are important and which are not rather then presenting the
model only the most essential information. But it has to be mentioned that
the list of stopwords which was removed was chosen very considerate. As
an example the German word ’nicht’!? is in the list of stopwords provided
from NLTK but is a word that must not be removed in our context.

For the precision and recall per class the GRUs and CNNs are quite
balanced and both types behave alike for the “middle” class C (negative)
but they do behave a bit different on Cy (neutral) and Cy (very negative).
The GRUs have a higher precision but lower recall on C and for Cj it is the
other way around.

9The models where validated with cross validation and therefore even with the aug-
mented training set it is an out of sample validation. Furthermore the number of added
samples is about 20 which is 0,1% of the training set.

10Tn English: not

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Preprocessing
keep

Type punctuation | stopwords | score | P R Fy

GRU Yes Yes 63.0 | 63.8 | 59.7 | 60.9
GRU Yes No 62.7 | 62.6 | 61.1 | 61.7
GRU No Yes 62.7 | 63.0 | 60.4 | 61.3
GRU No No 62.2 | 61.0 | 60.5 | 60.3
CNN (Max) No Yes 61.8 | 62.0 | 59.3 | 59.9
CNN (Max) Yes Yes 61.7 | 61.9 | 59.9 | 60.6
CNN (Max) No No 61.6 | 61.0 | 58.7 | 58.5
CNN (Max) Yes No 61.4 | 61.5 | 59.4 | 60.0

Table 5.6: Comparison of winning models with different preprocessing
parameters (score (accuracy), P (precision), R (recall) and F; in % as

class average)

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Chapter 6

Conclusion

Building on the work of [Rudkowsky et al., 2017] my experiments compared
different word embeddings and neural network types for sentiment analysis
of German natural text in a political context. I compared different classifiers
for their performance of classifying single sentences into three categories,
namely neutral, negative and very negative. For this comparison different
performance metrics were used, starting with the classification accuracy as
well as per class precision, recall and F; metrics. These performance metrics
were gathered via a 3-fold cross validation®. In addition the best models were
retrained and submitted to a qualitative analysis. Finally the performance
impact on altering the preprocessing in keeping or removing stopwords and
punctuations was analized for the best models.

The four German word embeddings compared were cw, sgns and ue pro-
vided by the Polyglot library [Al-Rfou et al., 2013] and the fastText em-
bedding [Bojanowski et al., 2016; Grave et al., 2018; Joulin et al., 2016;
Mikolov et al., 2018]. The experiments showed a strong influence on the
peak performance of the resulting classifiers depending on the embeddings
used for all metrics. The scores reached by the best models of an embed-
ding were 55% for the cw embedding, next the sgns and ue embeddings have
models with 58% accuracy but by far the best is the fastText embedding
with 63%. A comparison on a class level showed that the classifiers using the
cw embedding tended to have a bias towards the biggest and “central” class,
namely the negative class. This effect was also discovered in classifiers using
the other embeddings but not so strong. The well performing classifiers using

In [Rudkowsky et al., 2017] the models where compared using random sampling re-
sulting in higher scores than the ones presented in this thesis. When evaluating the MLP
model presented in [Rudkowsky et al., 2017] with cross validation (50% accuracy with cw
embedding which was the embedding used) the results were consistent with the results
presented here.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

the fastText embedding showed almost no bias towards a single class.

The differences between the model types were smaller?, for example a
MLP using the fastText embedding reaches a score of 59% which is better
than all other models using any other embedding. But still, using better
suited model types increases the classifiers performance for all embeddings.
Results showed that CNNs are definitely better than MLPs but they are
outperformed by gated RNNs. Surprisingly gated RNNs with a single layer
are already amongst the best performing models sharing their place with
bidirectional gated RNNs and CNN/RNN combinations. Basically for the
given task with respect to the given dataset a GRU or LSTM with a single
layer is the model of choice.

Altering the preprocessing to remove or keep stopwords and punctuations
showed no real impact. Although it seems a bit better to keep everything
and let the models learn for themselves what is important.

Finally, a qualitative comparison of some models verified the results and
even suggested a stronger impact than the numerical results. Especially
when comparing classification of entire speeches where the winning models
using the fastText embedding, with some fine-tuning, showed way better
results in comparison to other embeddings. The main problem was the strong
bias towards the negative class which resulted in speeches classified almost
entirely as negative. Using the fastText embedding this effect did not occur
and the main part (neutral sentences) of a speech was classified neutral, as
it should be.

2Excluding the theoretically and experimentally useless MLP (Avg) model type.

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Bibliography

Al-Rfou, R., Perozzi, B. and Skiena, S. [2013], Polyglot: Distributed word
representations for multilingual nlp, in ‘Proceedings of the Seventeenth
Conference on Computational Natural Language Learning’, Association
for Computational Linguistics, Sofia, Bulgaria, pp. 183-192.

URL: http: //www. aclweb. org/ anthology/ W13-3520

Bird, S., Klein, E. and Loper, E. [2009], Natural Language Processing with
Python, O’Reilly Media.
URL: http: //www. nltk. org/book/

Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T. [2016], ‘Enriching word
vectors with subword information’, CoRR abs/1607.04606.
URL: http: //arziv. org/abs/ 1607. 04606

Cho, K., van Merrienboer, B., Giil¢gehre, C., Bougares, F., Schwenk, H. and
Bengio, Y. [2014], ‘Learning phrase representations using RNN encoder-
decoder for statistical machine translation’, CoRR abs/1406.1078.
URL: http: //arziv. org/abs/ 1406. 1078u3

Chollet, F. et al. [2015], ‘Keras’, https://keras.io.

Duchi, J., Hazan, E. and Singer, Y. [2011], ‘Adaptive subgradient meth-
ods for online learning and stochastic optimization’, J. Mach. Learn. Res.
12, 2121-2159.

URL: http: //dl. acm. org/ citation. cfm? 1d=1953048. 2021068

Goldberg, Y. [2015], ‘A primer on neural network models for natural language
processing’, 57.

Goodfellow, I., Bengio, Y. and Courville, A. [2016], Deep Learning, MIT
Press.
URL: http: //wuww. deeplearningbook. org

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Grave, E., Bojanowski, P., Gupta, P., Joulin, A. and Mikolov, T. [2018],
Learning word vectors for 157 languages, in ‘Proceedings of the Interna-
tional Conference on Language Resources and Evaluation (LREC 2018)’.

Hochreiter, S. and Schmidhuber, J. [1997], ‘Long short-term memory’, Neural
computation 9, 1735-80.

Joulin, A.; Grave, E., Bojanowski, P. and Mikolov, T. [2016], ‘Bag of tricks
for efficient text classification’, CoRR abs/1607.01759.
URL: http: //arziv. org/abs/ 1607. 01759

Levy, O., Goldberg, Y. and Dagan, 1. [2015], ‘Improving distributional sim-
ilarity with lessons learned from word embeddings’, Transactions of the
Association for Computational Linguistics, 3:211-225. CC Liebrecht, FA
Kunneman, and APJ .

Mikolov, T., Chen, K., Corrado, G. and Dean, J. [2013|, ‘Efficient estimation
of word representations in vector space’, CoRR abs/1301.3781.
URL: http: //arziv. org/ abs/ 1301. 3781

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C. and Joulin, A. [2018],
Advances in pre-training distributed word representations, in ‘Proceedings
of the International Conference on Language Resources and Evaluation
(LREC 2018)’.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. and Dean, J. |[2013], ‘Dis-
tributed representations of words and phrases and their compositionality’,
CoRR abs/1310.4546.

URL: http: //arziv. org/ abs/ 1310. 4546

Mitchell, T. M. [1997|, Machine Learning, McGraw Hill.

Pennington, J., Socher, R. and Manning, C. D. |2014], Glove: Global vectors
for word representation, in ‘Empirical Methods in Natural Language Pro-
cessing (EMNLP)’, pp. 1532-1543.

URL: http: //wuww. aclweb. org/anthology/D14-1162

Rehiiiek, R. and Sojka, P. [2010], Software Framework for Topic Modelling
with Large Corpora, in ‘Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks’, ELRA, Valletta, Malta, pp. 45—
50. http://is.muni.cz/publication/884893/en.

Rudkowsky, E., Haselmayer, M., Wastian, M., Jenny, M., Stefan Emrich
and Sedlmair, M. [2017], More than bags of words: Sentiment analysis

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

with word embeddings, in ‘Communication Methods and Measures, Special
Issue on Computational Methods’.

Samuel, A. L. [1959], ‘Some studies in machine learning using the game
of checkers’, IBM JOURNAL OF RESEARCH AND DEVELOPMENT
pp. 71-105.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdi-
nov, R. [2014], ‘Dropout: A simple way to prevent neural networks from
overfitting’, Journal of Machine Learning Research 15, 1929-1958.

Zeiler, M. D. [2012], ‘ADADELTA: an adaptive learning rate method’, CoRR
abs/1212.5701.
URL: http: //arziv. org/abs/ 1212. 5701

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Appendix A

Appendix

A.1 Abbreviations

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

ANN ... Artificial Neural Network
BiGRU Bidirectional Gated Recurrent Unit
BiLSTM Bidirectional Long-Short Term Memory
BiRNN Bidirectional Recurrent Neuronal Network
BP Back Propagation
BPTT Back Propagation Through Time
CBOW Continuous Bag Of Words
CNN Convolutional Neural Network
CV ..., Cross Validation
GD Gradient Descent
GRU Gated Recurrent Unit
GS ... Grid Search
IDF ... Inverse Document Frequency
iid oo identical independent distributed
LSTM Long-Short Term Memory
MLP Multi Layer Perceptron
MSE Mean Square Error
OO0V Out Of Vocabulary
RNN Recurrent Neuronal Network
87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

SGD Stochastic Gradient Descent

SVD ... Singular Value Decomposition
TF-IDF Text Frequency Inverse Document Frequency
TF ... Text Frequency

A.2 Mathematical Symbols and Functions

A7 Inverse of Matrix A

AT Transpose of Matrix A

AOB Hadamard Product: Element-wise product of A and B
fog Concatenation operation: (f o g)(z) = f(g(z)).

f*xg ..., Convolution of the functions f and g

WAl e Euclidean or L? Norm depending on the context

Oij voeiinnn Kronecker delta: 1 if i = 7 and 0 otherwise

EE, Expectation or Expectation with respect to x

Var Variance

Covooont. Covariance

Vi, Vof oo Gradient of f and Gradient of f with respect to x
L., Likelihood function / per sample loss

J oo Objective function for training

Ula,b) Uniform Distribution in the interval [a, b]

N, %) ... Gaussian Distribution with mean p and covariance X
o Logistic sigmoid function

ReLU Rectified Linear Unit

softmax Softmax function

A.3 Convolution and Cross Correlation

The convolution is an operation on two real valued functions g,k : R® — R

defined as
S(t) = (g% k) () = / g(t — 7)k(r) dr

n

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

and the “output” of the convolution s is again a function R” — R. In the
context of convolutional networks the first argument is often donated as the
input (in this case g) and the second as the kernel (in our case k). The
function s, meaning the output of the convolution, is sometimes called the
feature map.

The discrete version is given as

(1) = (g5 W)(0) = 3 gt = 7)k(7).
TEL™
Now the feature map s is a discrete functions in ¢t € Z". For actual computa-
tional purposes we have to use a bounded domain for our functions s, g and
k.
The Cross Correlation between two functions is very similar to the con-
volution. Let x donate the cross correlation operation which is defined as

(fxg)(t) = /n g(t + 7)k(T)dr.

So the only difference between cross correlation and convolution lies in the
direction of the shift. This leads to the flipping operation for the kernel
defined as

k(1) = k(—t)
where & donates the flipped function k. With the flipping operation a rela-
tionship between the convolution and the cross correlation is given by

(g0l = [gtk dr = [()it~ ydr = (g <R}

n

which is an important relation in the context of CNNs because it is used in
the back propagation algorithm. The discrete version of the cross correlation
is analog to the convolutional discrete version.

A.4 Example: Polynomial Regression

As an example we present the polynomial regression algorithm (an extension
of linear regression). There we want to model a relation of z € R toy € R
via a polynomial model f;(z;0) = y with degree d € Ny. Therefore we have
a dataset X = (x;)™, C R with target values Y = (y;)™, C R defining
an empirical estimate of the true data distribution we want to model. We
assume that the given data is i.i.d. drawn from a data-generation process
with noise described via Z ~ N(0, 0?).

fi(X:0) =Y + 2

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Our polynomial model f; is given as

p
0) => 62
j=0

with model parameters § € R, With the zero mean of the noise the
likelihood for a parameterization 6 of a model f; is given by

L(6) = p(Y|X;0) Z HP(?JH%; 0) = H 1 _exp (_(fd($i§2?2_ Yi))

o V2mo

This leads to the negative log-likelihood of

m

105 £(6) = "3 log(2m0%) + g S (fulwis6) — 9"

i=1

Minimizing the negative log-likelihood (maximizing the likelihood) is equiv-
alent to minimizing the mean square error (MSE)

1 m
MSE :Ez_:fdxu -)2

which is the classical approach for polynomial regression. This is a quadratic
minimization problem for the parameters 6 which can be explicitly solved.
But before solving the minimization problem the MSE will be rewritten in
matrix notation which is more compact and better suited for numerical com-
putation. To do so define

1z, 22 ... 2d

1 29 a3 -+ ad
Xg = .

1z, 22 - 2¢

which is a matrix X; € R™ (@) a5 well as Y € R™. In matrix form the
MSE can now be written as

MSE(9) = %(Xde -Y)2

Differentiation by 6 and setting zero for solving the minimization

0= d%MSE(H) 2 (Xde .

90

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Solving for € leads to the explicit solution
0= (XFX,)'XTY.

The higher the degree d the more complex relations can be modeled with
fqa. But if the models capacity is to high it tends to be very well fit to
the given training data ignoring the underlying relation for generalization as
shown in 5.4 where the data consists of 8 data points with quadratic relation
with gaussean noise. One sees that the linear regression (d = 1) is to week to
model the relation, the quadratic (d = 2) does a good job but is not perfect
while it will do a good job for new data as well. But the latter fitted with a
polynom of degree d = 8 perfectly fits the 8 data points but is not suited for
prediction of a quadratic relation.

A.5 Example: VC Dimension for Perceptron
with Sinus Activation

In this section we take the perceptron defined in section 3.1 with an alterna-
tive activation function, namely ¢(z) = H(sin(x)). This is still a binary clas-
sifier with the same number of parameters. We get a model f: R" — {0,1}
with weights w € R™ and bias b € R as

f(z;w,b) = H(sin(w"z +b)).

For this model the VC dimension is co. We will show this explicitly, therefore
take any m € N fixed and let X = (z;)", be a configuration of data points in
R" such that z; = (47,0, ...,0). Now we show that there exist weights w and
bias b to let our model classify any binary labeling Y = (y;)7, C {0,1}™ of X
be correctly classified. To do so we simple define such weights and biases and
show the correctness of the classification for an arbitrary but fixed labeling
Y. Set the bias b = 0 and the weight vector w = (wy, 0,0, ...,0) with

wy =T (1 + i(l — yj)4j) :

J=1

So we ignore everything except the first component.
Now a case study:

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

1. case: Let x; € X be such that its label is zero, meaning y; = 0. Then
whe; = 7T<1 + Z(l - yj)4j>4_i
j=1
w1+ > W)

1<j<miy;=0
:w<4ﬂ'+ T RS N 4H>
0<j<iy;=0 1<j<m:y;=0
S €4Ng

With ¢ > 0 one gets bounds for S by

. . o , o , 4
0<4'<S=4"4 Z 4J*Z<4*Z+Z4*J:4*Z+§—1<1.

0<j<izy;=0 i=1
It follows with appropriate k € Ny that
T2k +1) < 7(S + 2k + 1) = w'z; < w(2k + 2)
and therefore sin(w”z;) < 0 which gives f(x;;w,b) =0 =y; Vi : y; = 0.

2. case: For x; € X with label 1, meaning y; = 1 one gets

wa¢:7T<4_i+ Z 4=y Z 4j_i>

0<j<i:y;=0 1<j<m:y;=0
N > A >y
Vv vV
S €4Np

which gives
2km < 7(S +2k) = whz; < w(1 + 2k)

leading to sin(w?z;) > 0 which gives f(x;;w,b) =1 =y; Vi:y; = 1.

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

92

M Sibliothek,
Your knowledge hub

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Appendix B

Statutory Declaration

I declare that I have authored this thesis independently, that I have not
used other than the declared sources and resources and that I have explicitly
marked all material which has been quoted either literally or by content from
the used sources.

Date, Signature

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	List of Figures
	List of Tables
	Introduction
	Datasets

	Machine Learning
	Gradient Based Learning
	Gradient Descent (GD)
	Stochastic Gradient Descent (SGD)
	Variations of Gradient Descent

	Model Selection
	Model Capacity
	Cross Validation (CV)
	Grid Search (GS)

	Neural Networks
	Perceptron, the Basic Building Block
	Activation Functions

	Multi Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Pooling

	Recurrent Neuronal Network (RNN)
	Simple RNN
	Long Short-Term Memory (LSTM)
	Gated Recurrent Unit (GRU)
	Bidirectional RNN

	Back Propagation (BP)
	Back Propagation Through Time (BPTT)

	Word Embeddings
	Basics
	Word Counting Statistics
	Bag of Words and n-Grams
	Latent Semantic Analysis (LSA)

	word2vec
	Continuous Bag-of-Words (CBOW)
	Skip-Gram
	Negative Sampling and Subsampling of Frequent Words

	fastText

	Experiments
	Experiment Setup
	Preprocessing
	Word Embeddings
	Model Builder

	Model Selection
	Grid Search
	Fine-Tuning

	Results
	Embeddings
	Models
	Qualitative Analysis
	Model Fine-Tuning

	Conclusion
	Bibliography
	Appendix
	Abbreviations
	Mathematical Symbols and Functions
	Convolution and Cross Correlation
	Example: Polynomial Regression
	Example: VC Dimension for Perceptron with Sinus Activation

	Statutory Declaration

