

DIPLOMARBEIT

Auswertung und Analyse von Messdaten einer Francisturbine

ausgeführt zum Zwecke der Erlangung des akademischen Grades Diplom-Ingenieur unter der Leitung von

> Ass. Prof. Dipl.-Ing. Dr. techn. Eduard Doujak Projektass. Dipl.-Ing. Julian Unterluggauer, BSc

> E 302 - Institut für Energietechnik und Thermodynamik Forschungsbereich Strömungsmaschinen

> eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften

> > von

Klaus Mühlbacher, BSc

Matr.-Nr. 0926466

Görgengasse 6, A-1190 Wien

Wien, im September 2019

${f Vorwort}$

Ich möchte mich bei allen bedanken, die mich sowohl beim Verfassen dieser Arbeit als auch während der gesamten Zeit meines Studiums unterstützten und mir dadurch ermöglicht haben, dieses Studium zu absolvieren.

Weiters möchte ich mich bei meinen Betreuern am Institut für Thermodynamik und Energietechnik Hr. Eduard Doujak sowie Hr. Julian Unterluggauer für ihre Unterstützung beim Erarbeiten und Verfassen dieser Diplomarbeit bedanken. Sowohl der Austausch mit anderen Diplomanden im Projekt als auch das gemeinsame Lösen von bestimmten Fragestellungen aus unterschiedlichen Positionen heraus, verbunden mit interessanten Ergebnissen, hat so manche Verzögerungen und Anstrengungen im praktischen Erarbeiten der Ergebnisse geringer erscheinen lassen.

TW **Sibliothek**, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. MEN vour knowledge hub The approved original version of this thesis is available in print at TU Wien Bibliothek.

Kurzfassung

Der Energiemarkt hat sich in den letzten Jahren stark verändert. Die Einbindung erneuerbarer Energieträger wie Photovoltaik und Windkraft erfordert leistungsfähige Ausgleichsmechanismen, wofür Wasserturbinen besonders geeignet sind, da diese im Vergleich zu anderen Kraftwerkstypen relativ schnell leistungsvariabel geregelt werden können. Dies führt allerdings zu vermehrtem Betrieb in kritischen Lastbereichen, wodurch die Lebensdauer der Maschinen stark reduziert und vorzeitige und unkontrollierte Ausfälle zunehmen können. Um dies zu vermeiden, ist es notwendig, den Zustand von auf diese Art und Weise betriebenen Wasserkraftmaschinen gut zu überwachen. In dieser Arbeit werden daher die grundlegenden Strömungsphänomene, welche während des gesamten Leistungsspektrums einer Turbine auftreten können, erläutert und die Möglichkeiten der Maschinendiagnose besprochen. Anschließend werden die Messdaten, welche während einer Prototypmessung einer bestehenden Anlage aufgenommen wurden, anhand der theoretischen Grundlagen auf ihre Besonderheiten untersucht. Es soll damit beantwortet werden, mit welchen Mitteln welche Erkenntnisse über den Zustand einer Maschine erhalten werden können.

Abstract

The energy market has changed drastically in the recent years. Fossil power plants are more and more replaced by RES like photovoltaic and wind power. Because of their volatile energy production, powerful balancing mechanisms are required to keep production and consumption in balance. Hydro turbines are very useful for fulfilling these requirements, because their power output can be controlled easily. This leads to increased operation in critical load ranges, whereby the lifetime of the machine can be heavily reduced and prematurely and uncontrolled failures can increase dramatically. To avoid this, it is absolutely necessary to monitor the condition of such machines operating in critical load regimes. For this purpose, the basic flow phenomena occurring at different power ranges and the possibilities of machine condition monitoring are discussed in the theoretical part of this thesis. This basic knowledge is applied in the practical part, where measuring data of a prototype measurement are analysed. In the end it should be answered which resources are necessary to obtain a specific amount of knowledge about the operating condition of a hydro power plant.

Inhaltsverzeichnis

1	Mot	Motivation und Einleitung				
2	The	oretisc	cher Teil	3		
	2.1	Überb	lick über Wasserkraftmaschinen	3		
	2.2	Franci	sturbinen	6		
	2.3	Ström	ungsphänomene	11		
		2.3.1	Saugrohrschwingungen	12		
		2.3.2	Kanalwirbel	13		
		2.3.3	Schaufelpassierfrequenzen	15		
		2.3.4	Karmansche Wirbelstraßen und Vortex Shedding	16		
		2.3.5	Kavitation	18		
	2.4	Masch	inendiagnose	19		
		2.4.1	Druckmessung	20		
		2.4.2	Kavitationsmessung	22		
		2.4.3	Schwingungsmessung	22		
		2.4.4	Turbinenwirkungsgrad	24		
	2.5	Grund	gleichungen für Rohrleitungen und Anlagenkomponenten	24		
		2.5.1	Bernoulli-Gleichung	24		
		2.5.2	Verlust in einer Rohrleitung	25		
		2.5.3	Verlust in Bauteilen	25		
3	Pra	ktische	er Teil	28		
	3.1	Aufba	u der Anlage und Instrumentierung	28		
	3.2	Messu	ng	31		

	3.3	Messergebnisse				
		3.3.1	Permanent-aufgenommene Maschinendaten	33		
		3.3.2	Permanent-installierte Maschinendiagnose-Sensoren	35		
		3.3.3	Temporäre Messsensoren	39		
		3.3.4	Temporäre Validierungssensoren	42		
		3.3.5	Nettofallhöhe	46		
		3.3.6	Energielinie	48		
		3.3.7	Fast Fourier Transformation (FFT)	50		
4	Zus	ammei	nfassung und Ausblick	57		
	4.1	Zusam	nmenfassung	57		
	4.2	Ausbli	ck auf weitere mögliche Arbeiten	60		
\mathbf{A}	Anhang 72					
	A.1	Abbilo	lungen	72		
		A.1.1	Darstellungen der Sensorauswertung	72		
		A.1.2	Ergebnisse der Fast Fourier Transformation des Sensors $a_{THB_{\rm x}} \ \ . \ \ . \ \ .$	73		
		A.1.3	Ergebnisse der Fast Fourier Transformation des Sensors $a_{THB_{\rm y}}$	76		
		A.1.4	Ergebnisse der Fast Fourier Transformation des Sensors $a_{\rm con} \ \ . \ \ . \ \ .$	80		
	A.2	Ergeb	nisse der Fast Fourier Transformation des ruhenden Systems	84		
	A.3	A.3 Ergebnisse der Fast Fourier Transformation des rotierenden Systems				
	A.4	MatLa	ab-Skripte	105		
		A.4.1	Erstellen von Rohdaten	105		
		A.4.2	Darstellen der Messwerte	107		
		A.4.3	Unterteilung der Signale zur Frequenzuntersuchung	112		

Motivation und Einleitung 1.

Der Energiemarkt hat sich in den letzten Jahren stark verändert. Um den Ausstoß an klimaschädlichem CO₂ zu senken, werden fossile Kraftwerke durch erneuerbare Energieträger wie Photovoltaik und Windkraft ersetzt. Diese schwanken in ihrer Stromproduktion jedoch stark, sodass leistungsfähige Ausgleichsmechanismen nötig sind, um Erzeugung und Verbrauch im Gleichgewicht zu halten. Dies wird über die sogenannte Leistungs-Frequenz-Regelung erreicht [11]. Weiters wird je nach Dauer der zu bereitstellenden Ausgleichsleistung nach Primär-, Sekundär- und Tertiärregelung unterschieden. Für diese Regelaufgaben bieten sich Wasserturbinen besonders an, da diese im Vergleich zu anderen Kraftwerkstypen relativ schnell leistungsvariabel geregelt und daher gut zur Produktion von Regelenergie eingesetzt werden können. Wasserkraftwerke werden somit heute vermehrt zur Netzstabilisierung eingesetzt.

Diese Betriebsweise führt dazu, dass die Turbinen sehr viel öfter gestartet und abgestellt und längere Zeit in Teillastbereichen betrieben werden. Besonders für Hochdruckanlagen wie Francis-Turbinen ist dies schädlich, da dabei vermehrt ungünstige Strömungsphänomene auftreten. Diese verursachen stark schwankende Kräfte, wodurch die Lebensdauer von bestimmten Bauteilen verringert wird [9]. Diese können auch durch langen Teillastbetrieb vorzeitig vor Erreichen ihrer geplanten Lebensdauer ausfallen. Im Vergleich dazu werden bei der Grundlast-Stromproduktion die Anlagen bei stationären Lasten betrieben, bei denen die Bauteile durch Strömungsphänomene nicht derartig beansprucht werden. Sie werden außerdem nicht in einer vergleichbaren Häufigkeit gestartet und abgestellt und erreichen dadurch ein hohes Alter von einigen Jahrzehnten. Ihre Bauteile können nach festen Intervallen auf ihre Funktion überprüft werden, ein vorzeitiges Ausfallen ist unwahrscheinlich.

Wird mit Hochdruckturbinen Regelenergie produziert, müssen diese dafür besonders ausgelegt werden. Die einzelnen Bauteile müssen für die höheren Lastwechselzahlen und für die Belastungen, welche durch den Betrieb in Teillast hervorgerufen werden, entsprechend konzipiert werden. Um mit älteren Maschinen in der Teillast und bei transientem Betrieb Regelenergie zu produzieren, ohne wesentliche Komponenten zu tauschen, ist eine vollständige Kenntnis der wichtigsten Zustandsparameter der Turbine nötig. Dazu zählen beispielsweise die Wasserdrücke vor, in und nach der Turbine, Öltemperaturen, Schwingungen der Welle und der Lager sowie die Leistung des Generators. Zuerst muss eine bestehende Anlage vollständig vermessen werden, um den momentanen Zustand der Prototypmaschine zu erfassen. Anschließend werden über die Maschinendiagnose alle wichtigen Zustandsparameter der Maschine laufend aufgenommen, analysiert und ausgewertet. Damit kann beobachtet werden, wie sich der Zustand der überwachten Bauteile verändert und diese rechtzeitig vor einem Versagen ausgewechselt oder instandgesetzt werden. Zudem kann die Schädlichkeit der einzelnen Betriebsbereiche analysiert und besonders schädliche Bereiche vom Betrieb ausgeschlossen werden. Es ist jedoch nicht möglich, dieses Verfahren auf Bauteile wie beispielsweise Laufräder anzuwenden, da deren Belastungen durch die Maschinendiagnose nicht erfasst werden. Die entscheidende Frage ist, mit welchen Sensoren und Messinstrumenten auch die Belastungen von Bauteilen abgebildet werden können, welche nicht mittels Maschinendiagnose erfassbar sind. Diese Arbeit ist Teil des Forschungsprojektes MDREST, welches versucht, die Schädlichkeit bestimmter Betriebsbereiche einer Prototypanlage zu erfassen und deren Einfluss auf die Lebensdauer abzuschätzen.

TW **Bibliothek** Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar. **The approved original version of this thesis is available in print at TU Wien Bibliothek.

Theoretischer Teil 2.

Überblick über Wasserkraftmaschinen 2.1

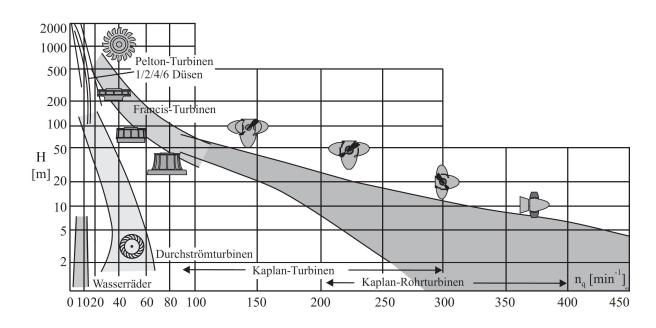


Abbildung 2.1: Übersicht über die Einteilung verschiedener Turbinentypen (bearbeitet) [13]

Die in der Wasserkraft eingesetzten Turbinen werden je nach Fallhöhe und Durchfluss in verschiedene Typen eingeteilt. Sie werden entsprechend den Randbedingungen für jede Anlage einzeln entwickelt, um die vorhandene Energie optimal zu nutzen. Zwischen Fallhöhe H, Durchfluss Q, spezifischer Drehzahl n_q (Gl. 2.1) und Leistung P und dem für bestimmte Werte geeigneten Turbinentyp besteht ein Zusammenhang (Abb. 2.1). Bei mittleren Fallhöhen und Durchflüssen werden hauptsächlich Francisturbinen verbaut, bei niedrigen Fallhöhen und hohen Durchflüssen finden Kaplanturbinen, bei hohen Fallhöhen und niedrigen Durchflüssen Peltonturbinen Anwendung.

Grundsätzlich wird in Gleichdruck- und Überdruckmaschinen unterschieden. Bei Gleichdruckmaschinen wird die Energie des Wassers bei konstantem Druck auf das Laufrad übertragen. Der klassische Vertreter dieser Bauart ist die Peltonturbine. Bei dieser wird das Triebwasser über eine Düse geleitet, sodass die Druckenergie des Wassers in kinetische Energie umgewandelt wird. Der entstehende Freistrahl besteht nur mehr aus kinetischer Energie. Dieser treibt nun die Turbine über Abgabe seiner kinetischen Energie an, indem er in der sogenannten Pelton-Schaufel um fast 180° umgelenkt wird. Bei Überdruckmaschinen wie Francis- und Kaplanturbinen werden sowohl Druck- als auch kinetische Energie zum Antrieb genutzt. Dabei wird ein hoher Druck vor der Turbine in einen niedrigen Druck nach der Turbine umgewandelt, die Strömungsgeschwindigkeit wird reduziert [13]. Das Wasser fließt von der Zuleitung in eine Spirale, welche es relativ gleichmäßig über den Umfang verteilt, und danach über den Leitapparat, welcher den Durchfluss regelt, in das Laufrad. Spirale und Leitapparat bilden gemeinsam den Drallapparat. Sie versetzen das Wasser in Drehung, sodass das Laufrad möglichst optimal angeströmt wird und es möglichst viel von seiner Energie an dieses überträgt. Anschließend kommt es im Saugrohr zu einer Rückumwandlung eines Teils der kinetischen Energie in Druckenergie und das abgearbeitete Triebwasser fließt in den Unterwasserbereich ab (siehe Abb. 2.2 und 2.3).

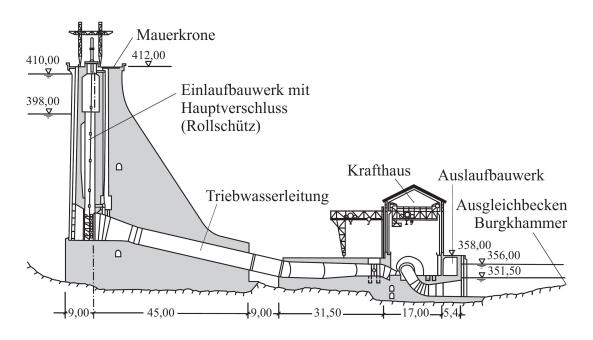


Abbildung 2.2: Übersicht über die Anlagenteile eines Mitteldruck-Wasserkraftwerkes [13]

Wasserkraftwerke können in Hoch-, Mittel- und Niederdruckanlagen eingeteilt werden, wobei jede Anlage den Erfordernissen entsprechend unterschiedlich ausgestaltet wird. Bei dem im Projekt untersuchten Kraftwerk handelt es sich um ein Mitteldruck-Wasserkraftwerk, weshalb sich nachfolgende Absätze auf diesen Typ beschränken.

Mitteldruck-Wasserkraftwerke bestehen aus einem Oberwasserbecken bzw. einem Stauraum, wenn nötig einer Druckrohrleitung, einem Krafthaus mit Turbine und Generator sowie einem Auslaufbauwerk und einem Unterwasserbecken (siehe Abb. 2.2). Das Wasser, welches die Turbinen antreibt, wird entweder direkt vor dem Kraftwerk angestaut oder über eine Druckrohrleitung aus einem Speichersee zum Krafthaus geleitet. In der Turbine wird ein Großteil der kinetischen und Druckenergie des Wassers am Laufrad in mechanische Energie umgesetzt. Danach fließt es über das im Auslaufbauwerk befindliche Saugrohr ins Unterwasserbecken.

Bei den Turbinen, welche in der Wasserkraft verwendet werden, handelt es sich in der Regel um Prototypen, welche sich je nach Standort in der Geometrie und dem Aufbau komplett unterscheiden können. Um nun unterschiedliche Anlagen miteinander zu vergleichen, ist es notwendig, die jeweiligen Maschinenparameter auf einheitliche Kennzahlen umzurechnen. Am wichtigsten sind dabei die spezifische Drehzahl, der Einheitsdurchfluss und die Einheitsdrehzahl. Die am meisten verwendete und aussagekräftigste Kennzahl zum Vergleichen von unterschiedlichen Turbinen ist die spezifische Drehzahl ng. Sie bestimmt sich aus dem Zusammenhang in Gleichung 2.1, in welcher n die Drehzahl der Turbine in U/min, Q der Durchfluss in m³/s und H die Fallhöhe in m ist. Es handelt sich dabei um die Drehzahl einer Maschine bei einer Fallhöhe von 1 m und einem Durchfluss von 1 m³/s [26].

$$n_q = n \cdot \frac{\sqrt{Q}}{H^{3/4}} \tag{2.1}$$

Die heute nach der Norm IEC 60193 definierte Kennzahl des Speed Factor ersetzt die mittlerweile veraltete und dennoch vor allem im deutschsprachigen Raum oft verwendete spezifische Drehzahl. Dieser bezieht sich nicht wie die spezifische Drehzahl auf die Fallhöhe, sondern auf die Energie des Triebwassers vor der Turbine. Hierbei sind wieder n die Drehzahl in U/min, D der Laufraddurchmesser in m und E die Energie des Triebwassers in Nm [3].

$$n_{ED} = n \cdot \frac{D}{E^{1/2}} \tag{2.2}$$

Francisturbinen 2.2

Aufgrund dessen, dass in der im Projekt vermessenen Anlage Francisturbinen verbaut sind, soll hier noch einmal speziell auf diese Turbinenart eingegangen werden. Francisturbinen zählen zu den Überdruckmaschinen und bestehen aus Spirale, Leitapparat, Laufrad und Saugrohr (siehe Abb. 2.3). Der Einsatzbereich dieser Turbinentype liegt bei mittleren Höhen und mittleren Durchflüssen. Sie verarbeiten Fallhöhen von 30-700 m und Durchflüsse von 20-110 m³/s (siehe Abb. 2.1). Sie werden in Laufkraftwerken mit Fallhöhen von 30-50 m und in Pumpspeicherkraftwerken mit hohen Durchflüssen verwendet, dabei sowohl als Turbine als auch im Spezialfall als reversible Pumpturbine.

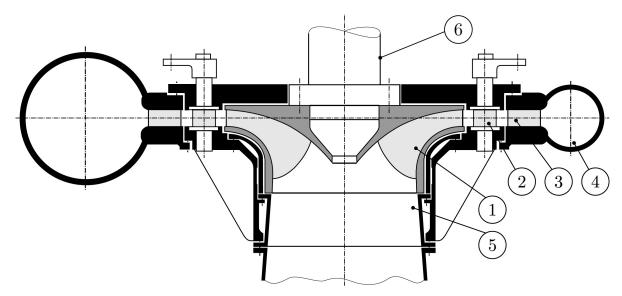


Abbildung 2.3: Aufbau einer Francisturbine, (1) Laufrad, (2) Leitschaufel, (3) Stützschaufel, (4) Spirale, (5) Saugrohr (6) Turbinenwelle, bearbeitet [28]

Da Francismaschinen in einem großen Höhen- und Durchflussbereich einsetzbar sind, kann auch die Form ihres Laufrades sehr verschieden sein. Für jede Drehzahl, Durchfluss und Fallhöhe ergibt sich ein bestimmtes Laufschaufel-Profil. Da diese Größen gemeinsam die spezifische Drehzahl bilden, ändert sich mit der spezifischen Drehzahl einer Francisturbine auch deren Laufrad (siehe Abb. 2.4). Wird bei festgehaltener Fallhöhe Durchfluss oder Drehzahl erhöht, wird das Laufrad weniger radial und mehr axial durchflossen, die spezifische Drehzahl steigt. Erhöht man bei festgehaltener Drehzahl Durchfluss und Fallhöhe,

strömt das Wasser mehr in radialer und weniger in axialer Richtung durch das Laufrad, die spezifische Drehzahl sinkt [13][9].

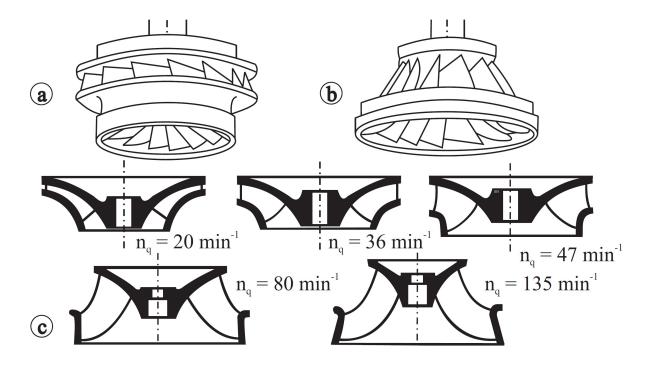


Abbildung 2.4: Verschiedene Formen von Francislaufrädern in Abhängigkeit der spezifischen Drehzahl n_q : (a) Langsamläufer ($n_q=30~U/min$), (b) Schnellläufer ($n_q=120~U/min$), (c) Änderung der Laufradform in Abhängigkeit von $n_{\rm q}$ [13]

Die Strömung des Wassers beim Fluss durch das Laufrad lässt sich über Geschwindigkeitsdreiecke darstellen. Am Eintritt ergibt sich die Absolutströmungsgeschwindigkeit c_1 aus der Umfangsgeschwindigkeit des Laufrades u₁ und der Relativgeschwindigkeit des Triebwassers w_1 sowie aus dem Eintrittswinkel der Strömung β_1 . Die Absolutströmungsgeschwindigkeit am Austritt ergibt sich aus der Umfangsgeschwindigkeit u2 und der Relativströmungsgeschwindigkeit w_2 sowie dem Winkel β_2 , mit dem das Wasser aus dem Laufrad austritt (siehe Abb. 2.5). Die Umfangsgeschwindigkeiten ergeben sich aus der konstanten Drehzahl des Laufrades und dem radialen Abstand zur Drehachse. Über die Stellung des Leitapparates wird Richtung und Höhe der absoluten Strömungsgeschwindigkeit des einströmenden Wassers geändert, und damit auch Richtung und Höhe der Relativströmungsgeschwindigkeit des Wassers zum Laufrad.

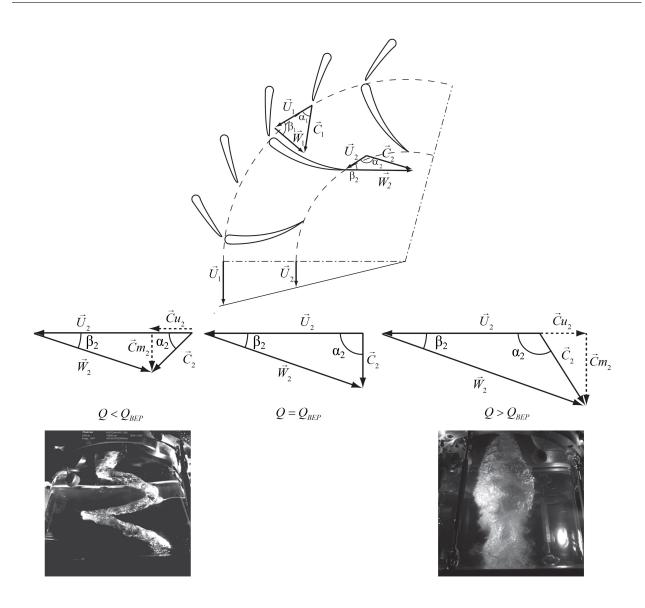


Abbildung 2.5: Geschwindigkeitsdreiecke bei Eintritt in und Austritt aus dem Laufrad [4]

Der Abströmwinkel α_2 ist in der Teillast geringer als 90°, das abströmende Wasser besitzt einen Geschwindigkeitsanteil in Umfangsrichtung cu2. Im Bestpunkt liegt der Abströmwinkel α_2 bei 90°, sodass das Triebwasser ohne Geschwindigkeitsanteil in Umfangsrichtung und somit theoretisch drallfrei abströmt. In der Praxis wird die Maschine jedoch so ausgelegt, dass auch im Bestpunkt ein geringer Restdrall in der Abströmung vorhanden ist, da sich dann die Strömung im Saugrohr besser führen lässt und dessen Verluste gering bleiben. Bei höheren Lasten als im Bestpunkt liegt auch der Abströmwinkel α_2 über 90°, es kommt bei der Abströmung wieder zu einem Geschwindigkeitsanteil in Umfangsrichtung, welcher jedoch im Gegensatz zur Teillast in die entgegengesetzte Richtung zeigt. Die Umfangskomponenten der absoluten Wassergeschwindigkeit beim Austritt aus dem Laufrad verursachen Wirbelzöpfe im Saugrohr, welche je nach Richtung der Umfangsgeschwindigkeit unterschiedlich rotieren (siehe Kap. 2.3.1).

Wasserkraftturbinen besitzen ein breites Lastspektrum und können relativ schnell ihre Leistung ändern. Die Leistung kann im Betrieb über Drehzahl, Fallhöhe und Wasserdurchsatz verändert werden. Falls wie bei der hier untersuchten Anlage Synchrongeneratoren verbaut werden und sich die Fallhöhe während des Betriebes nur geringfügig ändert, können die beiden Größen Drehzahl und Fallhöhe als konstant angenommen werden. Die Leistungsregelung der Turbine geschieht dann ausschließlich über die Wassermenge, welche über den Leitapparat in das Laufrad einströmt. Die Lastbereiche können nach [9] eingeteilt werden in:

- Start-Up (Hochfahren)
- Speed-No-Load-Operation (Lastfreier Leerlaufbetrieb)
- Low-Load-Operation (Niedriger Teillastbetrieb)
- Part-Load-Operation (Teillastbetrieb)
- Best-Efficiency-Point-Operation (Bestpunktbetrieb)
- Full-Load-Operation (Volllastbetrieb)
- Condenser-Mode-Operation (Phasenschieberbetrieb)

Mit dem Start-Up wird die Maschine vom Stillstand weg beschleunigt und im Falle von Synchrongeneratoren auf eine synchrone Drehzahl gebracht. Dann muss über den Erregerstrom die Maschinenspannung gesteigert werden, sodass sie zur Netzspannung passt. Schlussendlich muss für eine Netzsynchronisation an einem Wechselstromnetz auch noch die Phasenlage von Maschinen- und Netzspannung übereinstimmen [32]. Dann ist die Maschine mit dem Netz synchronisiert. Sie befindet sich ab dann im lastfreien Leerlauf, dem sogenannten Speed-No-Load-Betrieb. Dabei wird der Leitapparat gerade soweit geöffnet, dass das Laufrad ohne Leistungsabgabe auf Drehzahl gehalten wird. Es kommt zu starken

Verwirbelungen. Im nächsten Betriebsbereich, der niedrigen Teillast, wird das Laufrad ungleichmäßig angeströmt, die Geschwindigkeitsdreiecke zeigen sehr flache Einströmwinkel und es kommt zu Sekundärströmungen. Im Teillastbetrieb vergleichmäßigt sich die Strömung, die Geschwindigkeitsdreiecke zeigen bessere Einströmwinkel. Es kommt aber durch eine nicht-drallfreie Abströmung zur Ausbildung eines Wirbelzopfes. Der **Bestpunktbe**trieb zeichnet sich dadurch aus, dass das Triebwasser theoretisch drallfrei vom Laufrad abströmt und eine gleichmäßige Strömung ohne Wirbel oder anderer Störungen vorliegt. Bei Full-Load-Operation liegt der Einströmwinkel wieder ungünstiger als im BEP, es kommt zu Verwirbelungen im Laufrad. Durch den wieder auftretenden Drall in der Laufradabströmung kommt es erneut zur Ausbildung eines Wirbelzopfes. Wird durch Einblasen von Druckluft der Wasserspiegel in der Turbine soweit abgesenkt, dass das Laufrad sich ohne Wasserkontakt drehen kann, spricht man von Condenser-Mode-Operation. Damit kann die Blindleistung im Stromnetz geregelt werden.

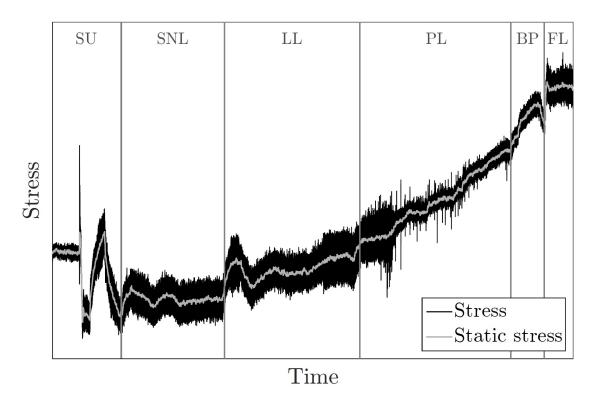


Abbildung 2.6: Spannungswerte in einem Francis-Laufrad während Start-Up (SU), Speed-No-Load (SNL), Low-Load (LL), Part-Load (PL), Best-Point (BP) und Full-Load (FL) -Betrieb [9]

brationen und Druckpulsationen und belasten dadurch die Bauteile der Maschine. Sie können sich im schlimmsten Fall, wenn Eigenschwingungen angeregt werden, auf das ganze Bauwerk ausdehnen (siehe Kap. 2.3.4). In Abbildung 2.6 sind die zum Teil sehr unterschiedlichen und stark schwankenden mechanischen Spannungen aufgezeichnet, die in einem Francis-Laufrad in den im Betrieb auftretenden Lastbereichen auftreten. Während des Start-Ups (SU) und der Abstellung wird das Laufrad einer Francis-Maschine schnell beschleunigt und abgebremst. Dies wirkt sich in starken mechanischen Spannungsspitzen aus. Im Betriebsbereich Speed-No-Load (SNL) kommt es zu starken Verwirbelungen, welche sich als rein schwellende Belastung mit breitem Band auswirken. In der niedrigen Teillast (LL) steigen diese Spannungen etwas an, die breitbandigen mechanischen Spannungen bleiben jedoch erhalten, da die Strömungsverhältnisse gleich bleiben. In der Teillast (PL) vergleichmäßigt sich die Strömung, weshalb die Bandbreite der mechanischen Spannungen in Richtung Bestpunkt hin immer geringer wird. Die Höhe der Spannungen steigt jedoch durch den höheren Energieumsatz am Laufrad. Im Bestpunkt (BP) liegen die Geschwindigkeitsdreiecke ideal, weswegen die Maschine sehr ruhig läuft und die Bandbreite der mechanischen Spannungen gleich niedrig bleibt. Die statischen Spannungswerte steigen jedoch weiter an, da auch die Leistung der Turbine steigt. Bei Betrieb in Überlast (FL) besitzen die Spannungswerte größere Ausschläge. Dies wird durch die wieder ungünstigeren Strömungsverhältnisse bewirkt, wobei dadurch die Bandbreite der mechanischen Spannungen erneut steigt. Gemeinsam mit der ans Laufrad übertragenen Leistung erreicht in der Uberlast die statische Spannung ihr Maximum.

Die in den einzelnen Betriebsbereichen auftretenden Strömungsphänomene verursachen Vi-

2.3 Strömungsphänomene

Im Betrieb von Überdruckturbinen kommt es zur Ausbildung verschiedener Strömungsphänomene. Diese treten in Abhängigkeit der abgegebenen Leistung der Maschine auf und lassen sich somit verschiedenen Betriebsbereichen zuweisen. Sie werden durch bestimmte physikalische Effekte ausgelöst und treten dabei mit für sie typischen Frequenzen und Wellenlängen auf (siehe Abb. 2.7, vgl.[8]). In Francisturbinen treten folgende Phänomene häufig auf (vgl. [8] und [35]):

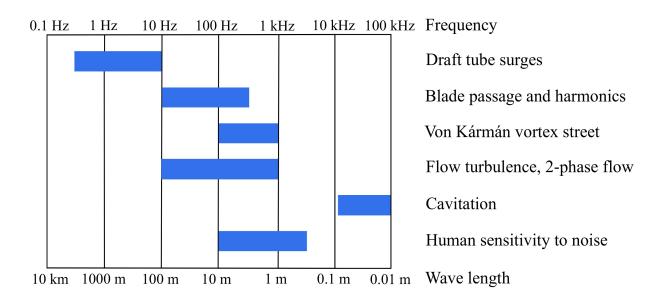


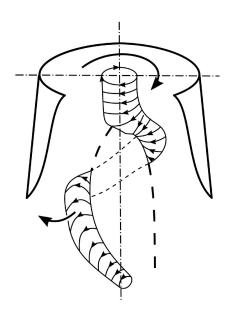
Abbildung 2.7: Auftretende Strömungsphänomene und zugehörige Frequenzen und Wellenlängen [8], bearbeitet

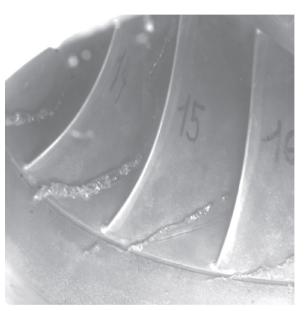
- Saugrohrschwingungen (Draft Tube Surges)
- Schaufelkanalwirbel (Inter Blade Vortices)
- Schaufelpassierfrequenzen und Harmonische (Blade Passage and Harmonics)
- Von Karmansche Wirbelstraße (Von Karman Vortex Street)
- Kavitation (Cavitation)

Bei der im praktischen Teil dieser Arbeit durchgeführten Auswertung der Daten einer Prototypmessung können die oben erwähnten Strömungsphänomene erkannt werden, weshalb diese in den folgenden Kapiteln genauer behandelt werden.

2.3.1Saugrohrschwingungen

Unter dem Begriff Draft Tube Surges werden alle Strömungsphänomene zusammengefasst, welche im Saugrohr einer Turbine Schwingungen verursachen. Das wichtigste dieser Phänomene ist jenes der Wirbelzöpfe. Diese treten im Teillast- und Überlastbereich in verschiedenen Formen auf (vgl. [8]), rotieren in geringem Maße und lassen sich daher gut über ihre




Abbildung 2.8: Aussehen von Wirbelzöpfen in Francismaschinen, a) Skizze mit Drehrichtungen des Wirbelzopfes im Saugrohr, b) Fotografie eines Wirbelzopfes in einem Versuchsstand [20]

niedrige Frequenz von 0.5 bis 10 Hz detektieren. Anhaltspunkt zum Auffinden ist, dass die Frequenz des Wirbelzopfes ca. ein 0.2-faches der Drehfrequenz des Laufrades beträgt.

Nach [8] ist die Ursache von Wirbelzöpfen ein Geschwindigkeitsanteil des Wassers beim Austritt aus der Turbine in Umfangsrichtung (siehe Abb. 2.5). Je nach Richtung der Strömung c_{u2} dreht der Wirbelzopf in der Teillast in Drehrichtung der Turbine und bei Überlast in deren Gegenrichtung. Diese beiden Formen treten in sehr stabiler Form jeweils zwischen 50-85% des Volumenstroms im Bestpunkt sowie im gesamten Überlastbereich auf.

2.3.2Kanalwirbel

Kanalwirbel können an Stützschaufeln, Leitschaufeln und Laufschaufeln auftreten, wobei sie sich an letzteren am schädlichsten auswirken können. Im Laufrad werden sie hauptsächlich durch Sekundärströmungen verursacht. Sie entstehen durch die Kollision der relativ hohen Strömungsgeschwindigkeit und der Sekundärströmung in der Nähe des Drehpunktes des Laufrades [22]. Die Wirbel sind stärker, je größer der Winkel am Eintritt in das Laufrad ist. Nach [39] können sie verantwortlich sein für Kavitation, Schwingungen und Schaufelbrüche.

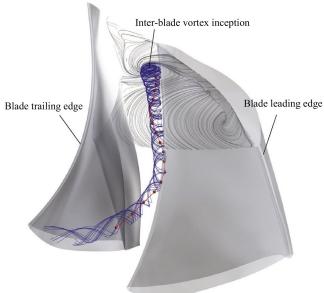


Abbildung 2.9: a) Auftreten eines Kavitations-Kanalwirbels bei tiefer Teillast [37] b) Simulation eines Kanalwirbels zwischen zwei Laufschaufeln [38]

Die Abhängigkeit des Phänomens vom Winkel beim Eintritt in das Laufrad zeigt, dass es hauptsächlich bei tiefer Teillast vorkommt. Nach [8] tritt es entweder auf, wenn die Maschine mit geringem Durchfluss bei gleichzeitig hohem Druck oder mit großem Durchfluss bei gleichzeitig geringem Druck beaufschlagt wird. Mit sinkendem Durchfluss wird auch der Einströmwinkel kleiner, der Kanalwirbel wird stärker und die Druckschwankungen steigen [22]. Kanalwirbel können im Schaufelkanal des Laufrades am Deckel und seltener an den Laufschaufeln selbst Kavitation bewirken. Diese Kavitation besitzt ein sehr breites Anregungsspektrum und kann daher starke mechanische Vibrationen auslösen. Außerdem ist es nach [8] auch möglich, dass sich dadurch Druckpulsationen stromaufwärts in die Druckrohrleitung fortpflanzen und dort starke Schwingungen in Bauteilen wie Absperrklappen verursachen.

2.3.3 Schaufelpassierfrequenzen

Der Frequenzbereich der Schaufelpassierfrequenzen und ihrer Harmonischen liegt zwischen 10 Hz und 500 Hz (siehe Abb. 2.7). Sie umfassen hauptsächlich die Laufschaufelpassierfrequenz und die Leitschaufelpassierfrequenz, welche beide gemeinsam die Rotor-Stator-Interaktion bilden.

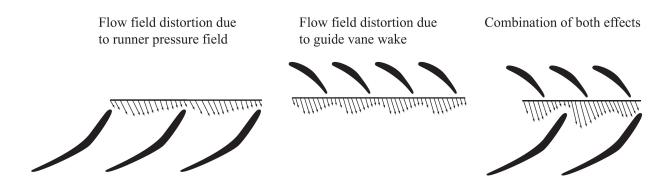


Abbildung 2.10: Strömungsfelder bei der Rotor-Stator-Interaktion [24] a) Störung des Strömungsfeldes durch das Laufrad-Druckfeld, b) Störung des Strömungsfeldes durch den Sog der Leitschaufeln, c) Kombination der beiden Effekte

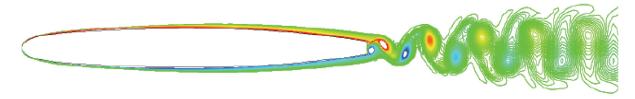
Wird das Laufrad von Triebwasser angeströmt, so kommt es durch dessen Druckfeld zu einer ungleichen Strömungsverteilung. Diese tritt periodisch mit einer bestimmten Frequenz, der sogenannten Laufschaufelpassierfrequenz, auf. Weiters verursachen die Schaufeln des Leitapparates durch deren Sog eine ebenso ungleiche Strömungs- und somit Druckverteilung. Diese tritt wieder mit einer bestimmten Frequenz, der sogenannten Leitschaufelpassierfrequenz, auf. Das Druckfeld beim Eintritt in das Laufrad ist nun durch die Interaktion der Laufschaufeln und der Leitschaufeln beeinträchtigt [35]. Abbildung 2.10 zeigt die einzelnen Druckfelder und deren Überlagerung.

Die Frequenzen der Leitapparatdruckschwankungen f_{GV} und der Laufraddruckschwankungen f_{RN} sind von der Geometrie abhängig und besitzen ausgewiesene Frequenzen, welche sich über die folgenden Zusammenhänge berechnen lassen (Gleichung 2.3 aus [35], Gleichung 2.4 analog dazu):

$$f_{GV} = m \cdot Z_{GV} \cdot f_f \tag{2.3}$$

$$f_{RN} = n \cdot Z_{RN} \cdot f_f \tag{2.4}$$

Dabei steht Z_{GV} für die Anzahl an Leitschaufeln, Z_{RN} für die Anzahl an Laufschaufeln, f_f für die Drehfrequenz des Laufrades und m bzw. n für die ganzzahlige Nummer der Harmonischen. Zu beachten ist, dass die Frequenz des Leitapparates nur am Laufrad "gesehen" werden kann und die Frequenz des Laufrades nur an stationären Bauteilen wie Spirale, Leitapparat und Saugrohr.


Die Rotor-Stator-Interaktion kann zwei unterschiedliche Auswirkungen haben [24]:

- entgegengesetzte Druckmoden, welche im schaufellosen Raum rotieren
- stehende Wellen, die im Spiralgehäuse rotieren.

Im ersten Fall können hydro-mechanische Resonanzen durch die rotierenden Druckmoden zwischen dem Leitapparat und dem Laufrad oder dem Turbinendeckel entstehen, welche sich in starken Vibrationen bis hin zu Rissen und Zerstörung der Leitschaufellager auswirken können. Im zweiten Fall wirken die stehenden Wellen in das Bauwerk des Krafthauses hinein und können dort zu starken Vibrationen führen, wobei sie auch bis in die Rohrleitung hinein wirken können [24]. Es kommt jedoch nur dann zu Resonanzen, wenn die anregende Frequenz des Leitapparates oder des Laufrades die Eigenfrequenz eines anderen Bauteiles trifft [35]. Dies ist vor allem bei Start-Up und Abschalten der Maschine sehr wahrscheinlich, da hier der gesamte Drehzahlbereich von Stillstand bis Nenndrehzahl bzw. umgekehrt durchfahren wird.

2.3.4 Karmansche Wirbelstraßen und Vortex Shedding

Karmansche Wirbelstraßen bzw. deren Auswirkung als Vortex Shedding treten in einem Frequenzbereich von 100 bis 1000 Hz auf (siehe Abb. 2.7). Es handelt sich dabei um die Nachlaufströmung eines Körpers in einer senkrecht auf ihn zulaufenden Strömung. Dabei wechselt der Ablösungspunkt an der Hinterkante des Objekts immer von einer Seite zur anderen und erzeugt so auf je einer Seite einen Wirbel.



Abbildung 2.11: Karmansche Wirbelstraße an einer Leitschaufel [18]

Der Körper ist dadurch einer Kraft ausgesetzt, welche periodisch mit der Frequenz der Wirbelablösung vom Körper wechselt. Diese Frequenz berechnet sich aus dem Zusammenhang

$$f_n = S_r \cdot \frac{v}{L} \tag{2.5}$$

, wobei S_r die Strouhalzahl, v die Geschwindigkeitskomponente normal auf den Körper und L die charakteristische Breite des Körpers ist [8]. Je nach Strömung und Strouhalzahl bilden sich unterschiedliche Wirbelformen, siehe [29]. Entscheidend für die Ausbildung des Phänomens ist auch die Form der Ablösekante [5]. Für sie können auch unterschiedliche Strouhalzahlen von $\rm S_r = 0.2$ - 0.24angesetzt werden [27]. Bei Francis-Maschinen kann dieses Strömungsphänomen bei den Schaufeln des Leitapparates und des Laufrades auftreten. Problematisch wird Vortex Shedding dann, wenn die entstehende Frequenz der Wirbelablösung in der Nähe einer Eigenfrequenz des Bauwerkes liegt. Es kommt dann zum sogenannten

"Lock-In", d.h. das Vortex Shedding hängt sich mit seiner Frequenz in die Frequenz des Bauwerks ein, was zu Resonanz und Schwingungen mit großen Amplituden im Bauwerk führt [18]. Jedoch ist dabei zu berücksichtigen, dass es sehr schwer ist, bei der genauen Bestimmung der auslösenden Frequenz über Gleichung 2.5 diese genau zu treffen. Dies ist dadurch begründet, dass die Variablen dieser Gleichung Schwankungen unterliegen und sich diese im Betrieb der Turbine geringfügig ändern können. Die Frequenzbereiche können sich im Bereich von 100 Hz und mehr bewegen, womit auch die Wahrscheinlichkeit des Treffens einer Eigenfrequenz erheblich erhöht ist.

2.3.5 **Kavitation**

Kavitation beschreibt das Entstehen und plötzliche Zusammenbrechen von Dampfblasen. Diese treten auf, wenn an einer Stelle in einer Flüssigkeitsströmung der Dampfdruck unterschritten wird. Sie bewegen sich in der Strömung ein Stück mit und brechen sehr schnell zusammen, sobald der statische Druck wieder über dem Dampfdruck liegt. Im Betrieb können verschiedenste Formen der Kavitation auftreten, im Folgenden sei beispielhaft der Ablauf der Blasenkavitation gezeigt.

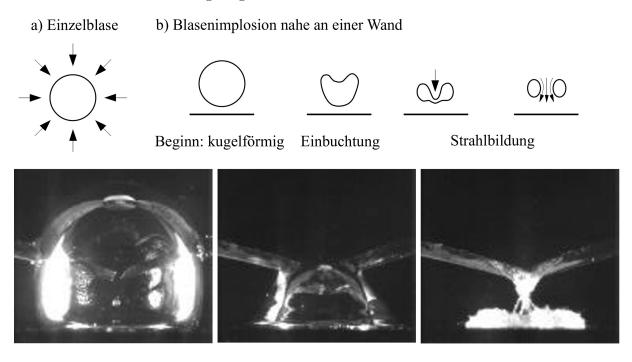


Abbildung 2.12: Zusammenbruch einer Dampfblase bei Kavitation, bearbeitet nach [16]

Beim Zusammenbruch der Dampfblasen kommt es zu sogenannten Micro-Jets, bei denen es durch die Implosion der Blasen zu hohen Druckdifferenzen und somit zu hohen Geschwindigkeiten kommt. An festen Oberflächen führt dies zu Erosion [26]. Dieses Strömungsphänomen löst starke Druckpulsationen aus und ist daher sehr energiereich. Es ist stochastisch und kann über hohe Frequenzen detektiert werden, welche ein breites Band besitzen. Entsprechend zu den hohen Frequenzen besitzt es auch kurze Wellenlängen und tritt daher lokal begrenzt auf. Der Frequenzbereich liegt cirka zwischen 15-100 kHz [21] (siehe Abb. 2.7).

2.4 Maschinendiagnose

Ziel der Maschinendiagnose ist es, den technischen Zustand einer Maschine zu erfassen, um schadhafte Bauteile schnell zu erkennen, einen plötzlichen Ausfall zu verhindern und Ausfalls- und Stillstandszeiten so gering wie möglich zu halten.

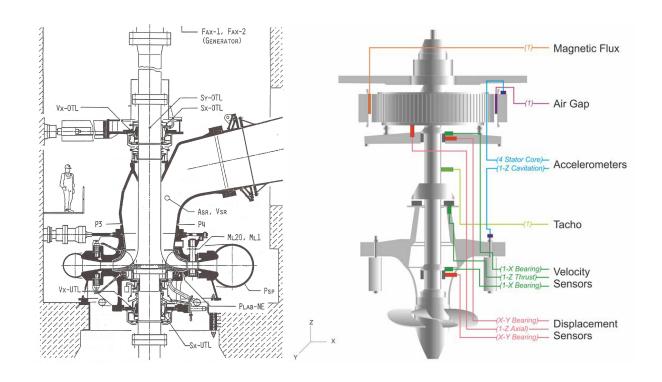


Abbildung 2.13: a) Instrumentierungsplan der Messstellen für eine Messung an einer Francis-Maschine im Jahr 1988 [7] b) State-of-the-Art-Instrumentierung zur Zustandsüberwachung einer Kaplan-Maschine [14]

Ausgehend von einer vorangehenden Abnahme- oder Prototypenmessung, bei der ein Referenzzustand einer Maschine festgestellt wird, müssen die relevanten Größen kontinuierlich erfasst und ausgewertet werden, um deren Veränderung zu erkennen. Die Messgrößen, welche für einen sicheren und wirtschaftlichen Turbinenbetrieb erfasst werden müssen, sind nach [23]:

- Druck
- Kavitation
- Schwingungen
- Turbinenwirkungsgrad

Druckmessung 2.4.1

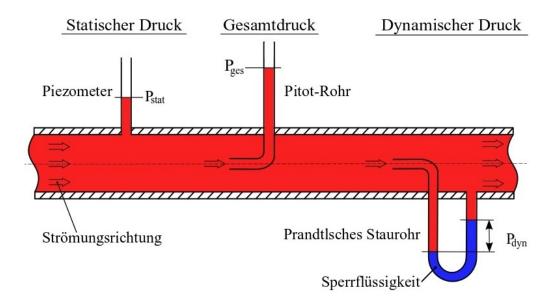


Abbildung 2.14: Messung von statischen und dynamischen Drücken in einer Rohrströmung

In strömenden Medien werden Absolut- und Relativdrücke sowie statische und dynamische Drücke gemessen. Der Absolutdruck ist definiert als der Druck gegenüber dem Null-Druck im Vakuum, der Relativdruck ist der Druck gegenüber einem bestimmten Atmosphärendruck. Beim statischen Druck einer Rohrströmung spricht man von jenem Druck, der an

der Rohrwand anliegt, beim dynamischen Druck von dem Druck, welcher sich aus der kinetischen Energie der strömenden Flüssigkeit ergibt (siehe Abb. 2.14). Er ist nicht direkt messbar, sondern ergibt sich aus der Differenz von statischem zu Gesamtdruck.

Drücke können mechanisch oder elektromechanisch gemessen werden. Mechanische Druckmesser zeigen die vorhandenen Drücke direkt an und werden heute noch oft zum Kalibrieren verwendet (z.B. Betz-Manometer) [25]. Elektromechanische Aufnehmer nehmen den Druck über die Verformung einer Membran auf und besitzen den Vorteil, dass sie sofort ein druckproportionales elektrisches Messsignal ausgeben. Je nach Gegendruck auf die Membran können Absolut-, Über- oder Differenzdrücke gemessen werden.

Bei den elektromechanischen Sensoren sind piezoelektrische und piezoresistive Aufnehmer gängig. Erstere besitzen hohe Eigenfrequenz von bis zu 500 kHz, womit selbst kleinste Druckänderungen gemessen werden können. Sie besitzen jedoch eine Drift bei statischer Belastung (Abb. 2.15) und sollten daher nur für kurze Messzeiten verwendet werden. Zur Messung des statischen Druckes sollte zusätzlich mit driftfreien piezoresistiven Sensoren gemessen werden, da piezoelektrische Druckaufnehmer keine statischen Drücke sondern nur Druckpulsationen aufnehmen können [15].

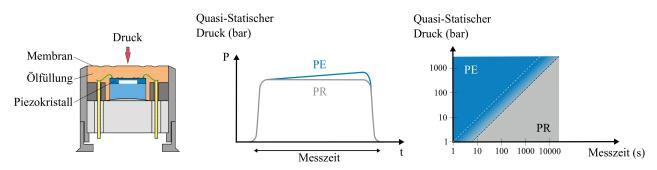


Abbildung 2.15: a) Aufbau eines piezoresistiven Druckmessers [15] b) Drift von piezoelektrischen Sensoren im Vergleich zu piezoresistiven Sensoren (nach [15]) c) Anwendungsbereich von piezoelektrischen und piezoresistiven Sensoren in Abhängigkeit vom zu messenden Druck und der Messzeit (nach [15])

Mit der Druckmessung wird der statische Druck gemessen, der an den Wänden von Rohren und Bauteilen anliegt. Dies erfolgt an Ubergangsstellen zweier Bauteile, an denen sich die Strömungsrichtung ändert, z.B. am Ende des Laufrades oder am Eingang ins Saugrohr. Ziel

ist es, den statischen Druckverlauf über mehrere Lastbereiche aufzuzeichnen. Die Schwankungsbreiten der gemessenen Drücke liefern Anzeichen dafür, wo die stärksten mechanischen Belastungen zu erwarten sind und lassen Rückschlüsse auf die Strömungsverhältnisse zu.

2.4.2 Kavitationsmessung

Kavitation ist ein sehr hochfrequentes Strömungsphänomen mit sehr kleiner Wellenlänge (siehe Kap. 2.3.5). Es tritt lokal an der Oberfläche von Lauf- und Leitschaufeln auf. Die erste Möglichkeit der Detektion ist die Messung durch entsprechend hochfrequent auflösende Beschleunigungssensoren, welche direkt an den betroffenen Maschinenteilen angebracht sind. Diese greifen die Wechselwirkungen zwischen Wasservolumen und Oberfläche ab, welche bei der Kavitation entstehen und sich im Material vom Ort der Entstehung nach außen hin fortpflanzen. Bei den verwendeten Sensoren handelt es sich um hochfrequente Beschleunigungsaufnehmer, welche nach dem piezoelektrischen Prinzip arbeiten. Eine zweite Möglichkeit der Kavitationsmessung bieten akustische Messmethoden. Bei dem von der Firma Korto Cavitation Services entwickelten Messprinzip werden über einen piezo-elektrischen Breitbandsensor während einiger Stunden Betrieb die Schallemissionen in der Maschine an verschiedenen Stellen gemessen. Tritt Kavitation auf, kann es in dem aufgezeichneten Zeitsignal durch seine starken Ausschläge erkannt werden [31].

2.4.3 Schwingungsmessung

Um den Schwingungszustand einer Maschine zu beurteilen, misst man sowohl Wellenschwingungen als auch Lagergehäuseschwingungen. Wellenschwingungen werden üblicherweise als relative Bewegungen gegenüber dem Lagergehäuse gemessen, Lagergehäuseschwingungen dagegen absolut. Werden die beiden Messergebnisse kombiniert, erhält man die absolute Wellenbewegung [12]. Typische Messstellen sind Traglager, Generatorlager, Wellenlager und Turbinenlager (vgl. Abb. 2.13 a und b), wobei bei jedem Lagertyp horizontale Bewegungen und beim Traglager zusätzlich vertikale Bewegungen aufgenommen werden.

Relativbewegungen werden mit Wegaufnehmern gemessen, welche nach dem Wirbelstrom-

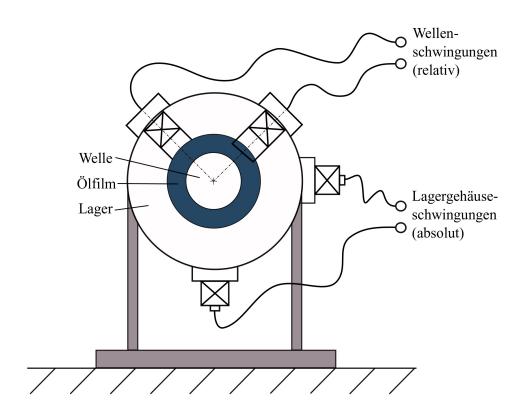


Abbildung 2.16: Absolute und relative Schwingungsmessung an einem Gleitlager (nach [12])

prinzip in einem Frequenzbereich von 0 - 1000 Hz arbeiten. Mit ihnen werden eher niedrigfrequente Ereignisse aufgenommen. Für die Erfassung von Absolutbewegungen eignen sich Geschwindigkeits- und Beschleunigungsaufnehmer, mit welchen eher höher- bis hochfrequente Phänomene gemessen werden können. Geschwindigkeitsaufnehmer arbeiten nach dem elektrodynamischen Prinzip, sie besitzen dabei einen Arbeitsfrequenzbereich von 4-1500 Hz. Beschleunigungsaufnehmer funktionieren nach dem piezoelektrischen Prinzip, ihr Arbeitsfrequenzbereich beträgt 2 - 30.000 Hz [12].

Zur Kontrolle, ob die gemessenen Werte für den Betrieb akzeptabel sind oder nicht, gibt es Normen und Richtlinien, anhand derer die Messwerte beurteilt werden müssen. Für die relativen Schwingungen der Welle und ihrer Verschiebungen ist die Norm DIN ISO 7919-5 [2] zuständig. Mechanische Schwingungen ruhender Bauteile wie z.B. die Bewegungen der Lagergehäuse können anhand ISO 10816-5 [1] beurteilt werden. Der Luftspalt im Generator kann anhand von Richtlinien kontrolliert werden, wie sie beispielsweise von der Firma VibroSystM gemeinsam mit den Unternehmen Hydro-Quebec und Canadian Electrical Association über mehrere Jahre erarbeitet wurden [36].

2.4.4 Turbinenwirkungsgrad

Der Turbinenwirkungsgrad verknüpft die Werte von Durchfluss, Fallhöhe und Generatorleistung und gibt dabei indirekt den Betriebspunkt an. Nach [23] müssen dafür die Werte für Durchfluss, Oberwasser- und Unterwasserhöhe, Verschiebung des Leitapparat-Stellmotors und die abgegebene Leistung des Generators bekannt sein.

Grundgleichungen für Rohrleitungen und Anla-2.5 genkomponenten

Im praktischen Teil dieser Arbeit wird nicht nur die Turbine, sondern auch die Druckleitung und das Saugrohr untersucht, indem entlang der gesamten Anlage eine Energielinie gezeichnet sowie die Nettofallhöhe errechnet wird. Die dazu notwendigen Grundgleichungen werden im folgenden Abschnitt erläutert.

2.5.1Bernoulli-Gleichung

Die Energie des Triebwassers setzt sich aus einem kinetischen, einem geodätischen und einem Druckanteil sowie aus Wärme, Arbeit und Verlusten zusammen. Bewegt man sich innerhalb einer stationären Strömung entlang einer Stromlinie durch eine Wasserkraftanlage, so kann das Energieniveau zwischen zwei Punkten nach [48] mit der erweiterten Bernoulligleichung angegeben werden:

$$\left(\frac{1}{2}u^2 + \frac{p}{\rho} + g \cdot z\right)_{ein} - \left(\frac{1}{2}u^2 + \frac{p}{\rho} + g \cdot z\right)_{aus} = q_{ein} - w_{aus} - e_{verlust} \tag{2.6}$$

Diese Stromlinie kann durch die ganze Anlage oder nur durch einzelne Bauteile der Anlage gezogen werden. An Anfangs- und Endpunkt müssen Druck p, Strömungsgeschwindigkeit u und geodätische Höhe z sowie die Dichte des Fluids ρ bekannt sein und gemeinsam

mit der Erdbeschleunigung g in Gleichung 2.6 eingesetzt werden. Außerdem müssen die Werte für die spezifische Wärme q_{ein} und die spezifische Arbeit w_{aus} zwischen diesen beiden Punkten angegeben werden. Als Ergebnis erhält man die in diesem Abschnitt auftretenden spezifischen Verluste e_{verlust}.

2.5.2Verlust in einer Rohrleitung

Fließt Wasser durch eine Rohrleitung, kommt es durch die Strömung im Rohr und der Oberflächenrauhigkeit der Wand zu Reibung, welche einen Energieverlust verursacht. Dieser kann als Verlusthöhe nach D'Aubuisson de Voisin über Gleichung 2.7 berechnet werden [6]:

$$H_r = \lambda \cdot \frac{L}{D} \cdot \frac{c^2}{2 \cdot g} \tag{2.7}$$

Dabei ist L die Länge der Rohrleitung, D ihr Durchmesser, c die mittlere Geschwindigkeit des Wassers, g die Erdbeschleunigung und λ der zugehörige Rohrreibungskoeffizient. Dieser kann in sehr einfacher Weise nach Bestimmung der Reynoldszahl über das Diagramm von Nikuradse-Moody [30] angegeben werden (Abb. 2.17).

2.5.3Verlust in Bauteilen

In Bauteilen treten zusätzlich zur Rohrreibung auch Verluste durch Umlenkung der Strömung und durch Sekundärströmungen auf, welche nicht über den Rohrreibungsbeiwert λ berechnet werden können. Um deren Größe bestimmen zu können, werden experimentell bestimmte Druckverlustbeiwerte ζ angegeben [33]. Der Druckverlust Δp von wasserführenden Armaturen wie Schieber, Ventile, Hähne und Drosselklappen berechnet sich mit der Dichte ρ und der Strömungsgeschwindigkeit c:

$$\Delta p = \zeta \cdot \rho \cdot \frac{c^2}{2} \tag{2.8}$$

Die Abhängigkeit des Druckverlustbeiwertes von Öffnungswerten soll anhand Abbildung 2.18 beispielhaft dargestellt werden. Diese zeigt den Verlauf des Druckverlustbeiwertes und

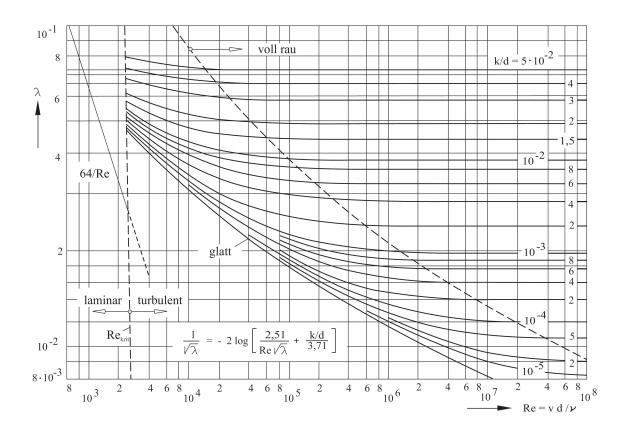


Abbildung 2.17: Diagramm zur Bestimmung des Rohrreibungskoeffizienten λ [30]

des Strömungsquerschnittes eines Keilschiebers über dessen Öffnungsweite. In der untersuchten Anlage ist eine Drosselklappe als Turbinenabsperreinrichtung verbaut. Für diese gelten nach [17] bei gut ausgeführten Typen Druckverluste von 0.15 m bei ζ -Werten von 0.7-0.9. Weitere Kennwerte können der Literatur ([13], [17], [19]) entnommen werden.

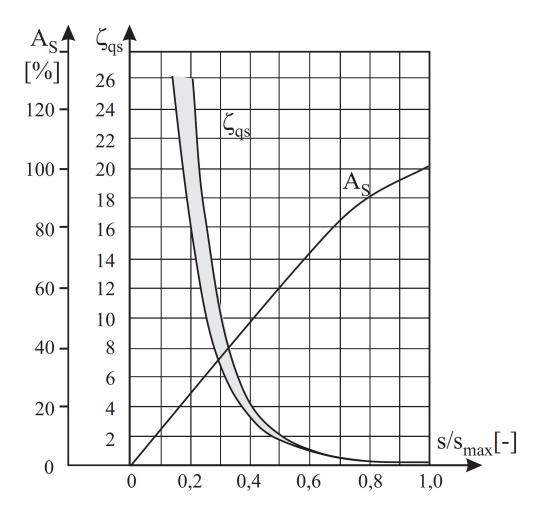


Abbildung 2.18: Druckverlustbeiwert $\zeta_{\rm qs}$ eines Keilschiebers und freier Strömungsquerschnitt $A_{\rm S}$ in Abhängigkeit von dem Verhältnis der Öffnungsweite $s/s_{\rm max}$ [13]

Praktischer Teil 3.

Aufbau der Anlage und Instrumentierung 3.1

Die Anlage, welche im Projekt MDREST untersucht wurde, ist mit einer Francisturbine ausgestattet. Das Triebwasser wird von einem Speicherbecken über eine mehrere Kilometer lange Druckrohrleitung zum Kraftwerk geleitet. Die spezifische Drehzahl der Wasserturbine beträgt $n_q = 56 \text{ min}^{-1}$, der Speed Factor $n_{ED} = 0.39$. Die sich daraus ergebende geringere Fallhöhe und der höhere Durchfluss geben der Maschine eine Charakteristik, die der eines Laufkraftwerkes sehr nahe kommt. Die Turbine wird auch im Regelenergiemarkt eingesetzt, da sie von Beginn der Inbetriebnahme an mit einer Druckluftanlage ausgestattet ist. Mit dieser kann Stabilisierungsluft in den schaufellosen Raum zwischen Leit- und Laufschaufeln eingeblasen werden, womit Vibrationen im Betrieb stark reduziert werden können. Zudem kann mit dieser Anlage auch im Phasenschieberbetrieb (CMO) das Wasser aus dem Laufrad gedrückt werden.

Die Instrumentierung des Kraftwerkes wurde im Projekt festgelegt und während der Evaluierung der Messwerte in vier Bereiche eingeteilt. Die permanent-aufgenommenen Maschinendaten sind für den Betrieb der Anlage notwendig. Sie sind dauerhaft an wichtigen Positionen angebracht und nehmen zur Steuerung und Kontrolle der Turbine wichtige Daten auf. Mit den permanent-installierten Maschinendiagnose-Sensoren wird der Maschinenzustand begutachtet. Es werden die Bewegungen der Welle in den Lagergehäusen und die der Gehäuse selbst gemessen. Über die temporären Messsensoren werden mittels Dehnmessstreifen die auftretenden Spannungen am Laufradaustritt sowie die Beschleunigung, welche in vertikaler z-Richtung einwirkt, gemessen. Die temporären Validierungssensoren werden verwendet, um die Ergebnisse aus verschiedenen Berechnungen zu kontrollieren.

Signal	Position	Physikalische Einheit	Verwendung
	PERMANENT	C-AUFGENOMMENE MASCHINENDATI	EN
$z_{ m HW}$	Oberwasserlevel	Geodätische Höhe in m	Maschinensteuerung
z_{TW}	Unterwasserlevel	Geodätische Höhe in m	Maschinensteuerung
a ₀	Leitapparat	Stellung in %	Maschinensteuerung
Q	Spirale	Durchfluss in m^3/s	Maschinensteuerung
PTV	vor dem Absperrorgan	Druck in bar	Maschinensteuerung
PSC	Spiraleneingang	Druck in bar	Maschinensteuerung
$p_{\rm RN}$	Laufradeintritt	Druck in bar	Druck im schaufellosen Raum
PCO	Turbinendeckel	Druck in bar	Druck im schaufellosen Raum
Pcon2	Saugrohrkonus	Druck in bar	Randbedingung CFD, Energielinie
n	Turbinenwelle	Umdrehungen in min^{-1}	Maschinensteuerung, mechanische Leistung
P_{el}	Generator	Elektrische Leistung in MW	Maschinensteuerung, Effizienz
	PERMANENT-INST	ALLIERTE MASCHINENDIAGNOSE-SE	NSOREN
$r_{\mathrm{THB}_{\mathrm{x,y}}}$	Turbinenlager	Verschiebung in x,y in μm	Relative Wellenschwingung
$a_{\mathrm{THB}_{\mathrm{x,y}}}$	Turbinenlager	Geschwindigkeit in x,y in mm/s^2	Absolute Wellenschwingung
$r_{\rm LGB_{x,y}}$	Unteres Generatorlager	Verschiebung in x,y in μm	Relative Wellenschwingung
$r_{\rm UGB_z}$	Oberes Generatorlager	Verschiebung in z in μm	Relative Wellenschwingung
	T	EMPORÄRE MESSSENSOREN	
Dehnmess- streifen (15x)	Laufrad	Dehnung in $\mu m/m$	Lokale Spannung im Laufrad
$a_{ m Hub}$	Laufrad	Beschleunigung in m/s^2	Wellenschwingung
	TEMPO	DRÄRE VALIDIERUNGSSENSOREN	
PDT	Saugrohrende	Druck in bar	Kavitationszahl, Randbedingung CFD-Berechnungen
Pcon1	Saugrohrkonus	Druck in bar	Randbedingung CFD-Berechnungen, Energielinie
Pcon3	Saugrohrkonus	Druck in bar	Randbedingung CFD-Berechnungen, Energielinie
q´	Sammelrohr	Durchfluss in l/s	Spaltwasser der Labyrinthdichtung am Laufrad
a_{con}	Saugrohrkonus	Beschleunigung in m/s^2	Randbedingung CFD- Berechnungen, Energielinie
$a_{\mathrm{GV}_{1,2}}$	Leitapparat	Beschleunigung in m/s^2	Eintrittskantenkavitation
$a_{\mathrm{THB}_{\mathrm{x,y}}}$	Turbinenlager	Beschleunigung in m/s^2	Absolute Lagerschwingungen
T	Turbinenwelle	Drehmoment in Nm	Mechanische Leistung, Effizienz
n	Turbinenwelle	Drehzahl in min^{-1}	Mechanische Leistung
P_{mech}	Turbinenwelle	Mechanische Leistung in MW	Mechanische Leistung, Effizienz

Tabelle 3.1: Liste der installierten Messsensoren und deren Verwendung

Praktischer Teil Messung

Die Messwerte der permanent-aufgenommenen Maschinendaten liegen in einer Frequenz von 10 Hz vor, die der permanent-installierten Maschinendiagnosesensoren in einer von 6400 Hz. Die temporären Messsensoren wurden in einer Abtastrate von 2000 Hz aufgenommen. Die Messsignale der temporären Validierungssensoren wurden in einer Frequenz von 6400 Hz aufgenommen, mit Ausnahme der Sensoren a_{GV} am Leitapparat, welche mit 204.800 Hz aufgenommen wurden, und der Sensoren q', T, n und P_{mech}, welche mit 3200 Hz erfasst wurden.

Ober- und Unterwasserlevel z_{HW} und z_{TW} sowie die Leitapparatstellung a₀ wurden aus der Maschinensteuerung übernommen, der Durchfluss Q wurde mittels einer Winter-Kennedy-Messung gemessen. Die einzelnen Druckmesswerte wurden mit piezoresistiven Sensoren erfasst. Die Drehzahl n der Turbinenwelle und die elektrische Leistung des Generators Pel wurde aus der Maschinensteuerung ausgelesen. Relative Wellenschwingungen r_{THB} und r_{LGB} wurden mittels Wirbelstromsensoren aufgenommen, absolute Wellenschwingungen a_{THB} am Gehäuse des Turbinenlagers sowohl mit elektrodynamischen Geschwindigkeitsaufnehmern als auch mit piezoelektrischen Beschleunigungsaufnehmern. Die Spannungen am Laufrad wurden mit Dehnmessstreifen gemessen, welche an der Austrittskante der Druck- und Saugseite aufgeklebt waren. Zusätzlich wurde in der Nabe des Laufrades noch ein in senkrechter Richtung messender Beschleunigungssensor a_{Hub} verbaut. Der Spaltwasserfluss q´ wurde aus der Druckdifferenz berechnet, welche mit einer Prandtl-Sonde in der Strömung bestimmt wurde. Die Schwingungen des Saugrohrkonus, welcher direkt an den Laufradaustritt anschließt, wurden mit einem Beschleunigungssensor gemessen, welcher magnetisch an der Saugrohraußenwand befestigt war. Hier wurden auch von oben nach unten in einem Abstand von ca. 0.5 m die Drücke p_{con1}, p_{con2} und p_{con3} gemessen. Am Leitapparat wurden an den Lagerzapfen zweier Leitschaufeln die Absolutbewegungen a_{GV} mittels hochfrequenter Beschleunigungssensoren gemessen. Drehmoment T, Drehzahl n und mechanische Leistung P_{mech} folgten aus einer Lichtschrankenmessung. Die Positionen der einzelnen Sensoren sind in Abb. 3.1 aufgezeichnet.

PRAKTISCHER TEIL Messung

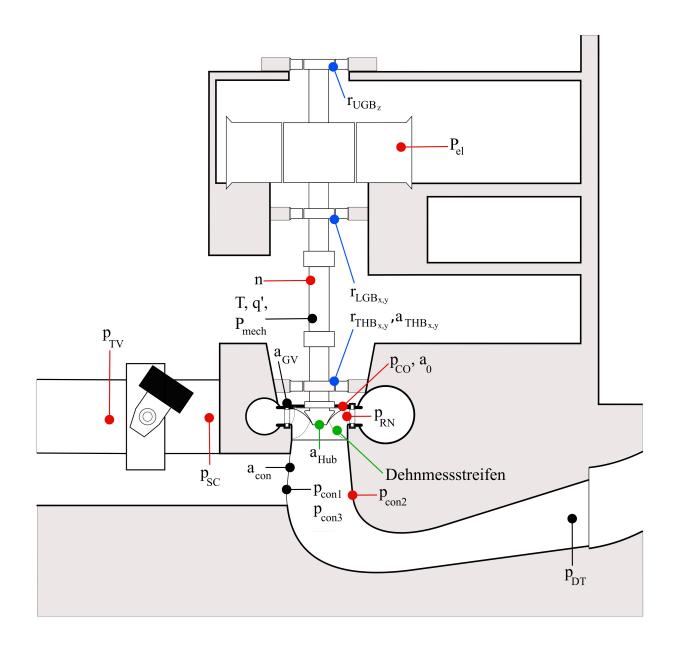


Abbildung 3.1: Positionen der Messsensoren aus Tabelle 3.1 in der untersuchten Anlage, unterteilt in permanent-aufgenommene Maschinendaten (rot), permanent-installierte Maschinendiagnosesensoren (blau), temporäre Messsensoren (grün) und temporäre Validierungssensoren (schwarz)

3.2 Messung

Während der rund vierstündigen Messung wurde der gesamte Leistungsbereich der Maschine stufenweise durchfahren (siehe Abb. 3.2). Der erste Start-Up (SU) wurde manuell

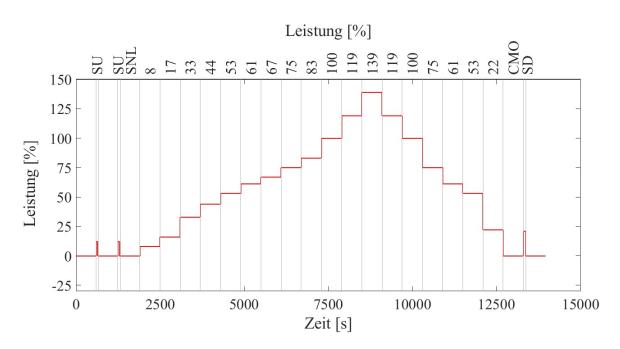


Abbildung 3.2: Leistungskurve, welche in der Messung abgefahren wurde. Die angeführten Werte sind auf die Leistung im Best-Efficiency-Point bezogen.

gesteuert, damit auch die dabei auftretenden Belastungen erfasst werden können. Beim zweiten Mal wurde die Anlage von der Maschinensteuerung selbst angefahren. Danach wurde die Leistung stufenweise in bestimmten, vorher festgelegten Abständen gesteigert. Bei 100% der Leistung arbeitet die Maschine im Best-Efficiency-Point, die maximale Leistung wird bei einer Uberlast von 139% abgegeben. In der zweiten Hälfte der Messzeit wurde die Maschine wieder abgefahren, es wurden nicht alle Stufen der ersten Hälfte angesteuert. Ab 75% Leistung wurde im Turbinendeckel im schaufellosen Raum Stabilisierungsluft eingeblasen. Nach der letzten Stufe wurde für den Phasenschieberbetrieb (CMO) der Leitapparat geschlossen und mit Druckluft der Wasserspiegel in der Turbine soweit abgesenkt, dass sich das Laufrad frei von Wasser in Luft drehen konnte. Zu Schluss erfolgte der Lastabwurf, bei welchem der mechanische Schutz der Maschine diese vom Netz nimmt und abstellt (SD). Jede Laststufe wurde für eine Zeit von fünf bis zehn Minuten gehalten, um einen ausreichend langen Datensatz von Messwerten bei möglichst gleichbleibenden Bedingungen zu erhalten. In der Teillast wurde der Abstand geringer gehalten als in der niedrigen Teillast und der Uberlast, da dieser Bereich genauer untersucht werden sollte. Der symmetrische Stufenbau diente dazu, die Auswirkungen der Stabilisierungsluft in der Teillast zu untersuchen. Das Ziel des Betriebes im CMO waren Untersuchungen über die sich auf der freien Wasseroberfläche ausbildende stehende Welle. Gleichzeitig können die in diesem Bereich aufgezeichneten Messsignale helfen, Eigenfrequenzen von Bauteilen zu erkennen. Die Messung wurde zweimal im Abstand eines halben Jahres durchgeführt, um überprüfen zu können, ob sich gewisse Phänomene oder Frequenzen reproduzieren lassen oder von selbst wieder auftreten. Daher sind die Zeitbereiche der Laststufen der temporären Messsensoren und die Dauer der Messung zu den übrigen Sensoren nicht vollständig ident, obwohl eine gleiche Leistungskurve abgefahren wurde.

Messergebnisse 3.3

3.3.1 Permanent-aufgenommene Maschinendaten

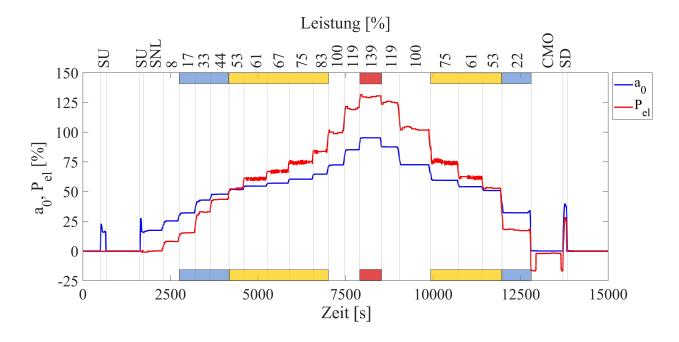


Abbildung 3.3: Leitapparatstellung a₀ und Leistungskurve P_{el} der Francisturbine während der Messung (die angeführten Werte sind auf die Leistung im Best-Efficiency-Point bezogen) in Prozent, blauer Bereich = tiefe Teillast, gelb = Teillast, rot = Überlast

In Abbildung 3.3 sind die Verläufe für die elektrische Wirkleistung P_{el} und die Leitapparatstellung a₀ aufgezeichnet. Wie das Signal für die Wirkleistung P_{el} zeigt, treten im Bereich der Teillast bei 61, 67 und 75% der Leistung im Best-Efficiency-Point (in Abb. 3.3 grün hervorgehoben) geringe Schwingungen des Signals sowohl mit als auch ohne Stabilisierungsluft auf, während dies in den übrigen Bereichen nicht der Fall ist. Es gibt daher im Betrieb in Teillast Strömungsphänomene, die so stark sind, dass sie entlang der Turbinenwelle bis hoch in den Generator wirken und dort Schwankungen der elektrischen Leistung verursachen und durch die Einblasung von Stabilisierungsluft nicht beeinflusst werden können. Diese sind weiters so stark, dass sie in den Messwerten der permanent-aufgenommenen Maschinendaten erkannt werden können, obwohl diese mit einer niedrigen Frequenz von 10 Hz abtasten und daher eher statische Drücke aufzeichnen.

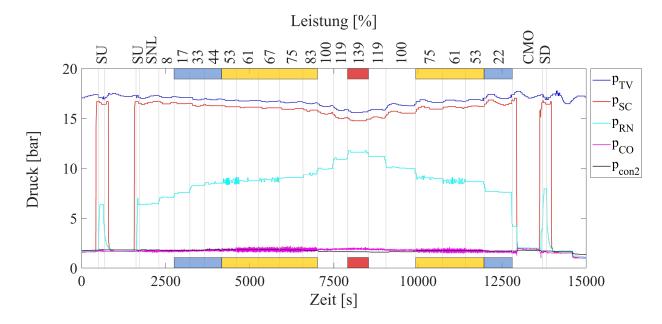


Abbildung 3.4: Druck während der Messung vor dem Absperrorgan p_{TV}, am Spiralgehäuse p_{SC} , im schaufellosen Raum p_{RN} , im Turbinendeckel p_{CO} und im Saugrohrknie p_{con2} in bar

Auch in Abb. 3.4 sind beim Laufraddruck p_{RN} und dem Druck im Turbinendeckel p_{CO} in der Teillast sowohl mit als auch ohne Lufteinblasung Schwankungen des Signals zu sehen. Beim Laufraddruck p_{RN} treten ohne Stabilisierungsluft Schwingungen bei 53 und 67% auf, mit Stabilisierungsluft vor allem bei 61%. Für den Drucksensor im Turbinendeckel p_{co} sind dies die Bereiche ohne Stabilisierungsluft mit 61, 67, 75 und 83% Leistung und mit Stabilisierungsluft mit 53, 61 und 75% Leistung auf. Die Ergebnisse der beiden Abbildungen 3.3 und 3.4 können bereits Hinweise darauf geben, dass die kritischen Betriebsbereiche der Turbine in der Teillast zwischen 53 und 83% Leistung liegen. Außerdem muss es sich bei den den Schwingungen zugrundeliegenden Strömungsphänomenen um schnelle, eher hochfrequente Ereignisse handeln, da beispielsweise der Wirbelzopf, welcher bei Uberlast erzeugt wird, weder Schwankungen in der elektrischen Leistung noch in den anderen Drucksensoren verursacht.

Permanent-installierte Maschinendiagnose-Sensoren 3.3.2

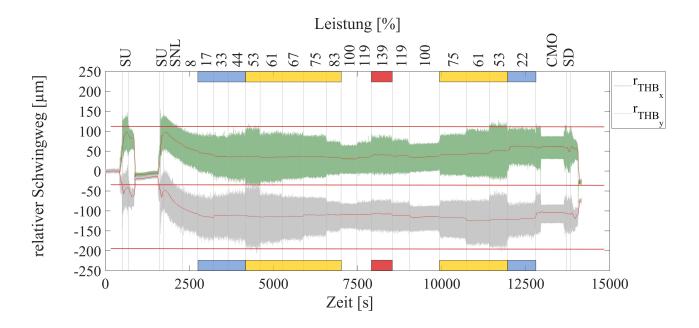


Abbildung 3.5: Schwingweg der Welle relativ zum Turbinenlager in x-Richtung (grün) und y-Richtung (grau) in μm

In Abbildung 3.5 ist der relative Schwingweg der Welle zum Turbinenlager in x- und y-Richtung dargestellt. Gut erkennbar ist, dass durch das Einblasen der Stabilisierungsluft in der zweiten Hälfte der Messung die Schwingungsbreiten bei 53% Leistung geringfügig abnehmen. So reduziert sich der Schwingweg r_{THB_v} um ca. 25 μ m. Vergleicht man die Messwerte mit den in der Norm DIN ISO 7919-5 angeführten Werten, so wäre der Zustand des Turbinenlagers bereits grenzwertig, was jedoch unwahrscheinlich ist. Die Ursache dafür liegt, wie in Abb. 3.6 ersichtlich, in den absoluten Schwingungen des Lagergehäuses. Die Messwerte des relativen Wegaufnehmers beinhalten nämlich nicht nur die relativen Bewegungen der Welle zum Gehäuse, sondern auch die Schwingwege des Gehäuses selbst. Im

Gegensatz zu den Schwingbreiten ändern sich die Amplituden der relativen Schwingung durch die Lufteinblasung jedoch nicht. Diese kann somit die Strömungsphänomene (vornehmlich der Wirbelzopf), welche auf das Laufrad wirken, nicht beeinflussen, wie man auch bereits in Abb. 3.3 erkennen konnte.

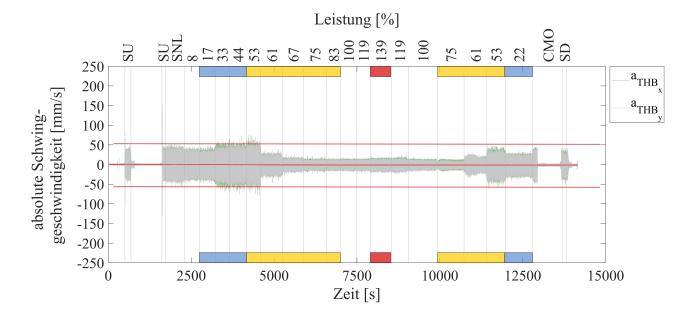


Abbildung 3.6: Absolute Schwinggeschwindigkeit des Turbinenlagers in x-Richtung (grün) und y-Richtung (grau) in mm/s

Eine ebenfalls geringe Reduktion der Schwingungsbreiten durch Lufteinblasung zeigt auch Abbildung 3.6, in welcher die absolute Schwinggeschwindigkeit des Turbinenlagers aufgezeichnet ist. Im Gegensatz zu den Drücken p_{TV} und p_{CO} liegen die Bereiche mit den größten Ausschlägen aber bei 33, 44 und 53% Leistung. Dabei ist wieder zu berücksichtigen, dass diese Drücke mit einer sehr geringen Frequenz aufgenommen wurden und daher Phänomene, welche in Abb. 3.6 enhalten sind, nicht erfasst haben können. Zudem sind diese beiden Druckaufnehmer örtlich vom Laufrad entfernt, sodass diese bereits stark gedämpft wurden. Weiters fällt auf, dass die absoluten Schwingwerte in x-Richtung (grün) offensichtlich stärker sind als in y-Richtung (grau). Im Gegensatz zu den Ergebnissen in Abb. 3.5 kann man bei der absoluten Schwingung des Turbinenlagers erkennen, dass nicht nur die Schwingungsbreiten, sondern auch die Amplituden durch die Einblasung von Stabilisierungsluft verringert werden. Die Stabilisierungsluft dämpft somit die Auswirkungen der Strömungsphänomene, welche über das Saugrohr und die Struktur des Kraftwerkes auf das Turbinenlager wirken.

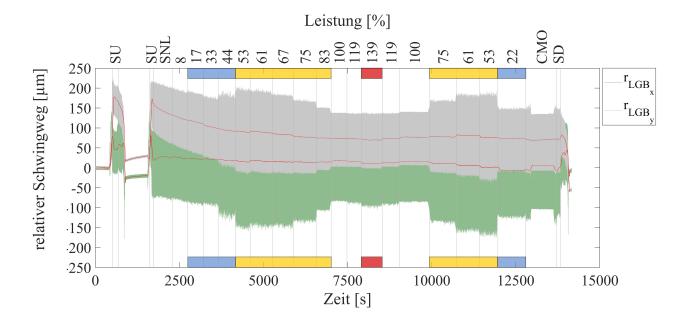


Abbildung 3.7: Schwingweg der Welle relativ zum unteren Generatorlager in x-Richtung (grün) und y-Richtung (grau) in μm

In Abbildung 3.7 sind die Schwingwege der Welle relativ zum unteren Generatorlager zur besseren Vergleichbarkeit in einem Diagramm dargestellt. Die Messwerte der x-Richtung werden jedoch zum Teil von denen der y-Richtung überdeckt, wobei über die roten Mittelwertlinien die Schwankungsbreiten miteinander verglichen werden können. Im Gegensatz zu Abbildung 3.5 liegen die Mittelwerte enger aneinander und besitzen durchgehend positive Werte. Die Lage der Welle hat sich somit gegenüber dem Turbinenlager verändert, sie verbiegt sich im Betrieb. Zusätzlich dazu sind die Schwingbreiten im unteren Generatorlager fast doppelt so groß wie im Turbinenlager. Bei 53% Leistung misst man im Turbinenlager ca. 150 µm, im unteren Generatorlager ca. 300 µm. Vergleicht man wieder die Messwerte mit den in der Norm DIN ISO 7919-5 angeführten Werten, so stellt man fest, dass diese mit Schwingbreiten von 200 μ m und darüber bereits über den nach der Norm zulässigen Bereich liegen (siehe Kap. 2.4.3.). Dies ist jedoch unmöglich, da es sich bei der untersuchten Turbine um eine voll funktionsfähige, regelmäßig gewartete Anlage handelt. Es bestätigt dies vielmehr die bei Abb. 3.5 getroffene Aussage, wonach die relativen Schwingwege durch die Schwingungen der Lagergehäuse überlagert werden. Dadurch

kommen diese großen Schwingbreiten und Amplituden zustande. Die Lufteinblasung zeigt hier keine Auswirkungen, die Schwingbreiten der ersten und zweiten Hälfte sind gleich groß.

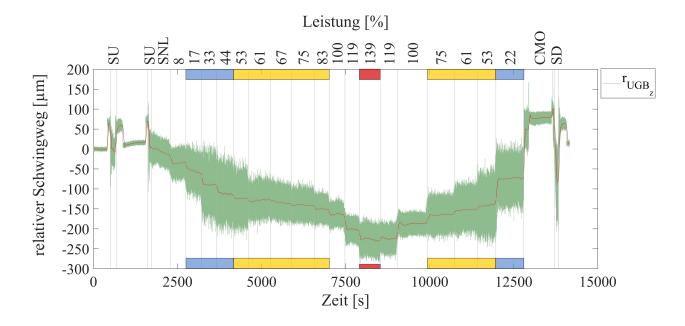


Abbildung 3.8: Schwingweg der Welle relativ zum oberen Generatorlager in z-Richtung in μm

In Abbildung 3.8 ist der Verlauf des relativen Schwingweges des oberen Generatorlagers in z-Richtung dargestellt. Interessant ist, dass sich die Amplituden dieses Sensors durch die Einblasung von Stabilisierungsluft kaum beeinflussen lassen, sie werden sogar geringfügig größer. Bei 53% Leistung erhält man ohne Stabilisierungsluft Ausschläge mit einer Schwankungsbreite von ca. 150 μ m, mit hingegen von ca. 180 μ m. Dies trifft auch auf 61% Leistung zu, hier wurde ohne Stabilisierungsluft eine Schwankungsbreite von 100 μ m und mit eine von ca. 120 μ m gemessen. Bemerkenswert ist auch die Spitze beim Lastabwurf (SD), welche nahezu Volllastwerte erreicht, genauso wie die Tatsache, dass in der tiefen Teillast die Schwingungen in vertikaler Richtung am höchsten sind, während sie in der Teillast in x-y-Richtung maximale Werte aufweisen. Insgesamt kann gesagt werden, dass es möglich ist, durch die Lufteinblasung die Werte der relativen und absoluten Wellenschwingung des Turbinenlagers zu verringern. Die senkrechten Wellenschwingungen in z-Richtung und die horizontalen Schwingungen im unteren Generatorlager bleiben davon jedoch unbeeinflusst bzw. werden sogar noch verstärkt. Die maximalen Schwingbreiten des Messsignales treten hier nicht bei 53%, sondern schon in der tiefen Teillast bei 33% Leistung auf.

Temporäre Messsensoren 3.3.3

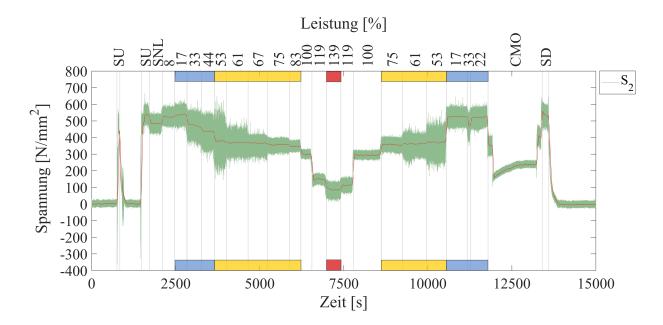


Abbildung 3.9: Spannung im Dehnmessstreifen S2 (Saugseite) in N/mm^2

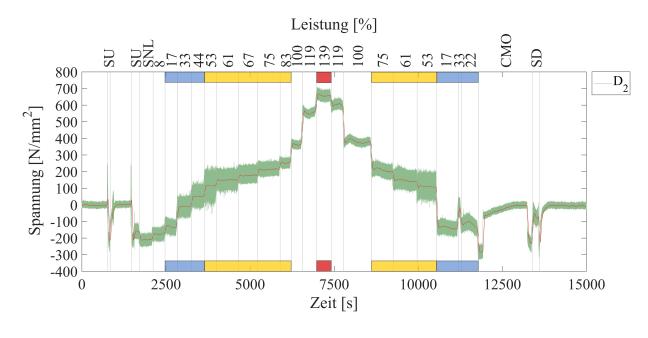


Abbildung 3.10: Spannung im Dehnmessstreifen D2 (Druckseite) in N/mm^2

Der Dehnmessstreifen S2 misst die Spannungen an einer Stelle der Saugseite, der Dehnmessstreifen D2 misst die Spannungen an einer Stelle der Druckseite des Laufrades. Betrachtet man die Abbildungen 3.9 und 3.10, in welchen diese beiden Signale aufgetragen sind, so erkennt man bereits zu Beginn große Spannungssprünge, welche beim Start-Up der Maschine auftreten. Diese betragen an der Saugseite fast 900 N/mm², an der Druckseite ca. 500 N/mm² und umfassen sowohl positive als auch negative Spannungswerte. Beim Abstellen der Maschine treten diese Spannungen nicht auf. An der Saugseite wird die maximale Spannung im Bereich der tiefen Teillast bei 17% Leistung erreicht, die minimale Spannung findet sich im Überlastbereich bei 139%. Auf der Druckseite treten die größten negativen Spannungen bei SNL auf, nahezu neutrale Spannungswerte werden in der unteren Teillast bei 33% Leistung erreicht und die maximale Spannung wird bei Uberlast gemessen. Die Saugseite ist somit während der Messung nur einer schwellenden Belastung ausgesetzt gewesen, die Druckseite zusätzlich dazu im unteren Teillastbereich bei 33% Leistung auch einer wechselnden Belastung. Die minimalen Schwingbreiten werden im Bereich des BEP erreicht, was der Theorie nach zu erwarten ist. Die maximalen Schwingbreiten der beiden Messsignale treten jeweils bei 53% Leistung auf, was sich mit dem Druck p_{RN} und den Ergebnissen der Schwingungsaufnehmer in Abb. 3.5, 3.6 und 3.7 deckt, nicht jedoch mit dem Relativwegaufnehmer in Abb. 3.8, bei welchem die maximalen Auslenkungen bereits bei 33% auftreten. Besonders auffallend sind die Sprünge, welche zwischen 83% Leistung und Überlast auftreten. Während die elektrische Leistung sich in diesem Intervall um das ca. 1.6-fache steigert, sinken die Spannungen auf der Saugseite von 300 N/mm² auf ein Drittel, die Spannungen auf der Druckseite steigen von 250 $\rm N/mm^2$ auf 650 $\rm N/mm^2$ und verdreifachen sich somit. Vergleicht man weiters mit dem Laufraddruck p_{RN} aus Abb. 3.4 und dem relativen Schwingweg r_{UGBz} aus Abb. 3.8, so steigen diese nur auf das 1.3-fache. Am höchsten fällt dabei der Abstand vom BEP zur 119%-Leistungsstufe aus. Die Abstände zwischen den Betriebsbereichen unterhalb des BEP sind im Vergleich mit p_{RN} und r_{UGB_z} an der Saugseite ähnlich, an der Druckseite in der unteren Teillast jedoch etwas höher. Die Lufteinblasung beeinflusst die Messsignale nur geringfügig. Auf der Saugseite können vor allem im unteren Lastbereich die Spannungen etwas reduziert werden, z.B. bei 44% Leistung von 250 N/mm² auf 150 N/mm². Bei 53% ist ebenfalls eine Reduktion um 100 N/mm² möglich, bei 61% um 50 N/mm². Bei 75% Leistung bleiben die Messwerte ident. Auf der Druckseite werden die Spannungen durch das Einblasen der Stabilisierungsluft weder in der Schwingungsbreite noch in der Amplitude signifikant beeinflusst.

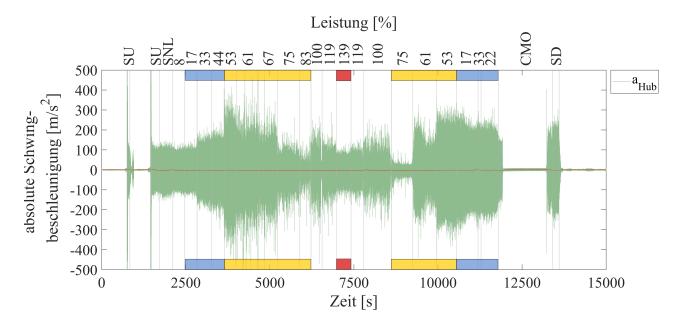


Abbildung 3.11: Absolute Schwingbeschleunigung der Welle in z-Richtung in der Laufradnabe in m/s^2

Das Ergebnis des in vertikaler Richtung messenden Beschleunigungssensors a_{Hub} zeigt Abbildung 3.11. Auch hier sind wieder beim Start-Up hohe Ausschläge erkennbar, welche weit über die maximalen Beschleunigungswerte im Betrieb hinausgehen. Beim Abschalten der Maschine treten diese Spitzen ähnlich zu den Messwerten der Dehnmessstreifen nicht auf. Die maximalen Amplituden treten vergleichbar mit den vorherigen Ergebnissen bei 53% Leistung auf. Ohne Lufteinblasung würden die minimalen Schwingbreiten bei 83% und 139% Leistung liegen, was im Widerspruch zur Theorie und den bisherigen Erkenntnissen steht, da die Maschine im BEP bei 100% am ruhigsten laufen sollte. Berücksichtigt man auch die Messwerte, welche bei Einblasen von Stabilisierungsluft aufgenommen wurden, so treten die minimalen Schwingbreiten bei 75% Leistung auf. Es kommt dabei zu einer sehr erheblichen Reduktion der Amplituden. Betragen die Werte ohne Lufteinblasung noch ca. 250 m/s², so können sie durch die Stabilisierungsluft auf ca. 50 m/s², also um 200 m/s² reduziert werden. Wird die Leistung auf 61% gesenkt, so springen die Schwingbreiten der Beschleunigung sehr stark von 50 m/s² auf ca. 500 m/s², was einer Verzehnfachung

entspricht. Diese besonders außergewöhnliche Stufe kann weder beim vertikalen Relativwegsensor in Abb. 3.8 noch in allen anderen bisherigen Ergebnissen beobachtet werden. Bei 61%beträgt die Reduktion durch Stabilisierungsluft noch ca. 100 bis 150 m/s², bei 53%ca. 50 m/s². Besonders gut sichtbar ist, dass die vielen einzelnen Messspitzen, welche ohne Lufteinblasung auftreten, stark reduziert werden können. Besonders ungewöhnlich sind die Messwerte im unteren Teillastbereich, da hier die Schwankungsbreiten durch Einblasen von Stabilisierungsluft sogar zunehmen. So steigen diese von ca. 360 m/s² ohne Lufteinblasung auf ca. 440 $\rm m/s^2$ mit Lufteinblasung. Durch Einblasen von Stabilisierungsluft können also die Spannungen auf der Saugseite des Laufrades etwas reduziert werden, jedoch beeinflusst diese weder die senkrechte Beschleunigung der Welle noch die Spannungen auf der Druckseite.

3.3.4 Temporäre Validierungssensoren

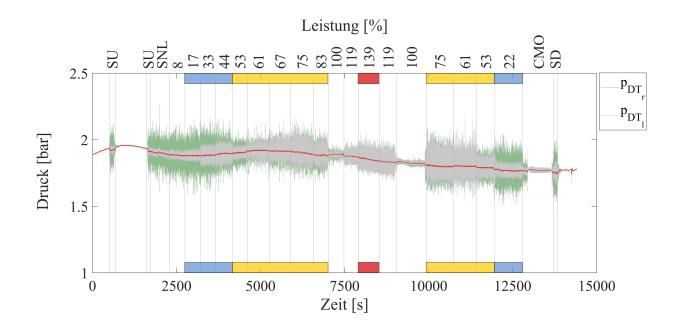


Abbildung 3.12: Druck am Saugrohrende auf der rechten Seite (grün) und der linken Seite (grau) in bar

In Abbildung 3.12 sind die Drücke am Ende des Saugrohres aufgezeichnet. Die maximalen und minimalen Schwingbreiten der beiden Messsignale zeigen sich bei unterschiedlichen TW **Bibliothek** Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Leistungen. Die Maxima des Sensors auf der rechten Seite findet man in der unteren Teillast, die der linken Seite jedoch in der Uberlast. Bei den minimalen Schwingbreiten verhält es sich genau umgekehrt: auf der rechten Seite findet man diese in der Uberlast, auf der linken Seite in der unteren Teillast. Ursache dafür ist der Wirbelzopf, dessen Auswirkungen sich durch seinen Drall in der Teillast auf der rechten und in der Überlast auf der linken Seite des Saugrohres zeigen. Diese minimalen Schwingbreiten treten ebenfalls im BEP bei 100% Leistung auf, was den bisherigen Ergebnissen und den Erkenntnissen aus der Literatur entspricht, nach welchen die Maschine in diesem Betriebsbereich am ruhigsten laufen sollte. Auffallend ist, dass im Bereich ohne Lufteinblasung die Schwingbreiten in der unteren Teillast höher sind als bei 53% Leistung, was bis jetzt nur im Relativwegaufnehmer in senkrechter Richtung (Abb. 3.8) zu sehen war. Im Bereich mit Lufteinblasung kann dies nur für den rechten Druckaufnehmer gesagt werden. Die Lufteinblasung bewirkt, dass die Schwankungsbreiten der beiden Messsignale zunehmen. So erhöht sich diese beispielsweise bei 75% Leistung von ca. 0.4 bar auf ca. 0.6 bar und bei 61% Leistung von ca. 0.25 bar auf ca. 0.5 bar. Dies wird durch die Stabilisierungsluft hervorgerufen, welche im Saugrohr in größeren Luftbläschen abschwimmt. Gut erkennbar ist die langgezogene Schwingung der Mittelwertlinie (rot).

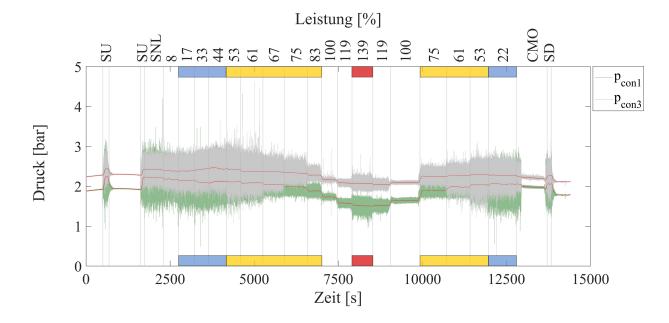


Abbildung 3.13: Drücke der Aufnehmer p_{con1} (grün) und p_{con3} (grau) im Saugrohrkonus in bar

Die Drücke p_{con1} und p_{con3} in Abbildung 3.13 werden in einem Abstand von ca. 1 m gemessen, wobei der Druckaufnehmer p_{con1} näher zum Laufrad liegt. Die maximale Schwingbreite des oberen Sensors p_{con1} liegt in der unteren Teillast bei 33% bzw. 22%, während diese beim Sensor p_{con3} bei 53% Leistung zu finden ist. Die Minima liegen wieder wie üblich im BEP bei 100% Leistung. Interessant ist, dass in der unteren Teillast und in der Uberlast die Schwingbreiten von p_{con1} das 1.3- bis 1.5-fache von p_{con3} betragen. Betrachtet man die Mittelwerte, so liegen die Messwerte des zweiten Sensors $p_{\rm con3}$ konstant um ca. 0.2 bis 0.5 bar über dem von p_{con1}, wobei der Abstand in der unteren Teillast geringer und bei Überlast am höchsten ist. Das Einblasen von Stabilisierungsluft beeinflusst die Messwerte des Aufnehmers p_{con1} nicht signifikant, jedoch reduzieren sich die Schwingbreiten des Sensors p_{con3}. So nehmen beispielsweise die Werte bei 53% Leistung von 1.2 bar auf 1 bar ab.

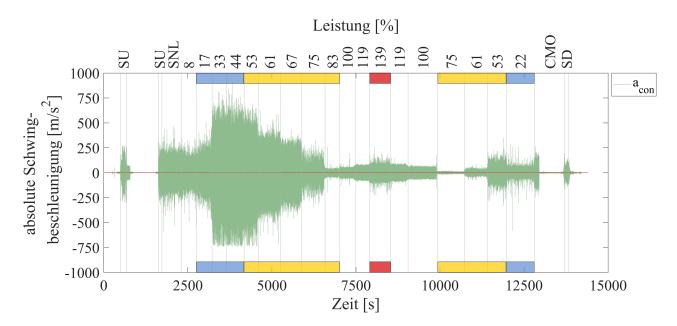


Abbildung 3.14: Absolute Schwingbeschleunigung des Saugrohrkonus in m/s²

In Abbildung 3.14 ist die absolute Schwingbeschleunigung, welche am Saugrohrkonus gemessen wurde, aufgezeichnet. Die maximalen Schwingbreiten liegen hier - im Gegensatz zu allen Ergebnissen bisher mit Ausnahme des Relativwegaufnehmers in Abb. 3.8 - nicht bei 53% Leistung, sondern im Bereich der tiefen Teillast bei 33%. Ebenfalls wie in Abb. 3.8 befinden sich die niedrigsten Amplituden des Signals nicht im BEP, sondern ohne Lufteinblasung bei 83% Leistung und mit Lufteinblasung bei 75% Leistung. Im Gegensatz

zum vertikalen Beschleunigungsaufnehmer in Abb. 3.11, in welchem bei Lufteinblasung an der Stufe zwischen 75% und 61% Leistung eine Verzehnfachung der Schwingbreite auftritt, kommt es hier nur zu einer Vervierfachung. Die Auswirkungen der Einblasung von Stabilisierungsluft sind hier enorm. Während in der ersten Hälfte ohne Einblasung bei 33% Leistung noch Schwankungsbreiten von bis zu 1500 m/s² gemessen wurden, reduzieren sich diese auf maximal 200 m/s² mit Einblasung. Bemerkenswert ist, dass die Maschine bei 100 und 119% so ruhig läuft, dass praktisch keine Ausschläge im Messsignal vorkommen, und dass durch die Lufteinblasung, welche ab 75% Leistung aktiviert wird, die Beschleunigungen erheblich reduziert werden. Dieser Beschleunigungssensor spiegelt auch wider, dass im Teillastbetrieb ohne Stabilisierungsluft das gesamte Kraftwerksbauwerk sehr starken Vibrationen unterworfen war, während dies bei Lufteinblasung vollständig unterblieb.

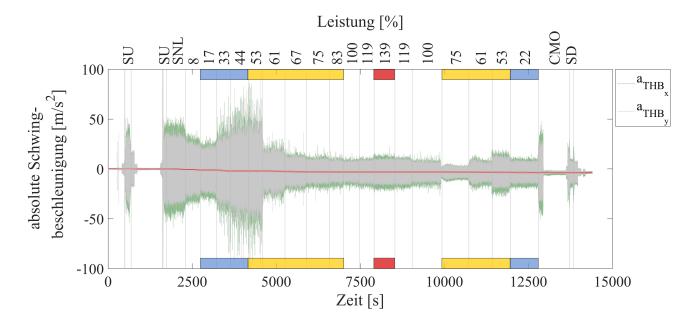


Abbildung 3.15: Absolute Schwingbeschleunigung des Turbinenlagers in x-Richtung (grün) und y-Richtung (grau) in m/s^2

In Abbildung 3.15 wird die absolute Schwingbeschleunigung des Turbinenlagers dargestellt. Die Amplituden in x-Richtung (grün) sind wie in Abbildung 3.6 stärker als die der y-Richtung (grau). Die maximalen Schwingbreiten treten bei 53% Leistung, die minimalen Schwingbreiten ohne Lufteinblasung im BEP, mit Lufteinblasung bei 75% Leistung auf. Bei der Reduktion der Leistung von 75% auf 61% tritt wieder ein markanter Sprung auf,

die Amplituden steigen hier wieder auf ca. das doppelte an. Wie bereits Abbildung 3.14 zeigt, wirkt sich auch hier die Lufteinblasung sehr stark auf die Schwingungsbreite aus. Während bei 53% Leistung ohne Einblasung noch eine Schwingungsbreite von bis zu 100 m/s² gemessen wird, reduziert sich diese durch Einblasung auf bis zu 25 m/s². Zudem treten keine der großen Ausschläge auf, wie sie in der ersten Hälfte der Messung gemessen wurden.

Nettofallhöhe 3.3.5

Im folgenden Abschnitt wird der Verlauf der Nettofallhöhe während der Messung berechnet. Dieser ist deshalb interessant, da die Nettofallhöhe eine wichtige Randbedingung für die Leistung der Turbine darstellt und indirekt in den bisher dargestellten Ergebnissen enthalten ist. Zudem können Ereignisse in der Druckrohrleitung, welche während der Messung auftreten, erkannt werden. Sie beinhaltet weiters alle Verluste, welche aufgrund von Reibung oder Umlenkung entstehen.

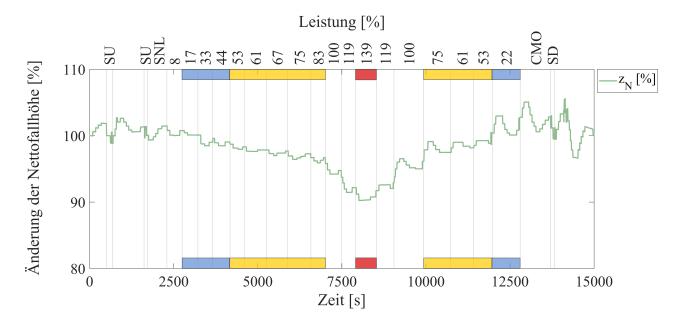


Abbildung 3.16: Entwicklung der Nettofallhöhe z_N während der Messung

Die Nettofallhöhe ergibt sich aus dem Druck vor dem Turbinenabsperrorgan p_{TV} und dem Unterwasserpegel z_{UW}. Der Druck p_{TV} wird über die Erdbeschleunigung und der Dichte des Wassers in die Höhe der Wassersäule vor der Absperrklappe z_{TV} umgerechnet, welche

die Verluste in der Druckrohrleitung beinhaltet. Zu diesem Wert wird die absolute Höhenlage des Turbinenabsperrorgans z_{dk} hinzuaddiert und der Verlauf der Absoluthöhe des Unterwasserpegels z_{uw} abgezogen, womit man die Nettofallhöhe erhält. Die Darstellung in Abbildung 3.16 ist auf den Ausgangswert im Start-Up (SU) bezogen und gibt die Entwicklung ausgehend von diesem in Prozent wieder.

$$z_N = z_{TV} + z_{DK} - z_{UW} (3.1)$$

Wie in Abbildung 3.16 erkennbar ist, fällt die Nettofallhöhe im Lauf der Messung bei Überlast auf ca. 90% des Startwertes, um dann zum Schluss hin diesen wieder zu erreichen. Dieser Verlust zeigt einen annähernd quadratischen Verlauf. Dies stimmt somit mit der Berechnung von Verlusten in Rohrleitungen überein (Gl. 2.7), nach welcher sich diese mit dem Quadrat der Geschwindigkeit auswirken. Der größere Einbruch bei 119% und 139% der Leistung ergibt sich daraus, dass - wie in Abbildung 3.2 zu sehen ist - in der Teillast mehr Punkte und diese zum Teil länger gefahren wurden als in der Überlast. Dadurch kommt es zu einer geringen Verzerrung der nach der Theorie quadratisch abnehmenden Nettofallhöhe. Besonders auffallend in Abbildung 3.16 sind die Schwankungen infolge der Trägheit der Wassersäule in der längeren Rohrleitung. Während diese in der ersten Hälfte der Messung dadurch kompensiert werden, dass die Leistung genau im Rythmus dieser Schwingung erhöht wird und somit diese durch den steigenden Durchfluss von der Maschine "geschluckt" werden, so treten sie in der zweiten Hälfte beim Reduzieren der Leistung sehr viel stärker hervor. Besonders gut erkennbar ist diese Schwingung der Wassersäule im Condenser-Mode-Operation (CMO) oder am Ende der Messung nach Abschalten der Maschine (SD). Der Verlust an Nettofallhöhe bei einer Maschinenleistung von 119% beträgt zwischen 7 und 8% vom Ausgangsniveau und liegt somit etwas über den Werten, welche in der Energielinie in Kap. 3.3.6 berechnet wurden. Durch die Uberlagerung mit der Schwingung der Wassersäule ist dieser Verlust jedoch mit einem großen Schwankungsbereich versehen.

Energielinie 3.3.6

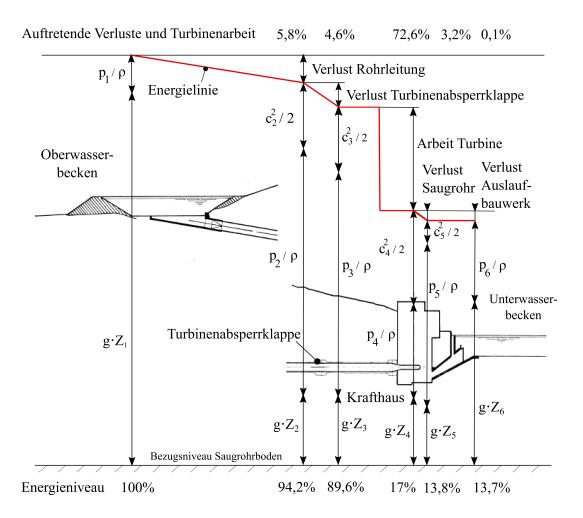


Abbildung 3.17: Energielinie der untersuchten Francis-Turbine im Auslegungspunkt bei 119% Leistung

Ein anschauliches Mittel, um den Energiefluss und die Verluste in einem Kraftwerk darzustellen, bietet die Energielinie. Die Energie des Triebwassers setzt sich aus kinetischen, geodätischen und Druckanteilen zusammen. Mit der Bernoulli-Gleichung (Gl. 2.6 in Kap. 2.5.1) kann für bestimmte Punkte in der Anlage das Energieniveau und aus der Differenz zu einem vorhergehenden Punkt die in einem Abschnitt entstandenen Verluste bestimmt werden. Für die hier untersuchte Anlage liefert dies folgende Energielinie, wie sie in Abbildung 3.17 dargestellt ist. Diese wurde anhand der Messwerte im Auslegungspunkt bei 119 % Leistung erstellt, da dort der Durchfluss durch die Maschine exakt bekannt ist. Wird der Beginn der Stromlinie an der Wasseroberfläche des Oberwasserbeckens angesetzt, so lie-

gen dort 100% der zur Verfügung stehenden Energie an. Fließt das Triebwasser nun durch die Druckrohrleitung zum Kraftwerk, so ergibt sich durch die Strömung im Rohr und der Oberflächenrauhigkeit der Wand eine Reibung, welche die Energie des Wassers um 5,8% auf 94,2% reduziert. Diese Reduktion kann als Verlusthöhe nach D'Aubuisson de Voisin (Gl. 2.7 in Kap. 2.5.2) berechnet werden. Für den vorliegenden Fall ergibt sich eine Reynoldszahl von cirka $1\cdot 10^7$ und ein Verhältnis d/k von cirka 2650. Es folgt damit ein Rohrreibungskoeffizient von $\lambda = 0.015$. Setzt man in Gl. 2.7 grob gerundet für den Durchmesser 5.5 m und eine Strömungsgeschwindigkeit von 2 m/s, so erhält man einen auf das Ausgangsniveau bezogenen Energieverlust von 6.4%. Dieser Wert liegt geringfügig über dem Wert der Messung von 5.8%, was für die sehr groben Annahmen eine sehr gute näherungsweise Nachrechnung bedeutet.

In der Turbinenabsperrklappe kommt es zu einem Energieverlust von 4.6% entsprechend 0.8 bar, das Energieniveaus senkt sich auf 89.6% des Ausgangswertes. Diese Verminderung kann über die Gleichung für Verluste in Bauteilen (Gl. 2.8 in Kap. 2.5.3) nachgerechnet werden. Setzt man für die Geschwindigkeit des Fluides 10.51 m/s, wie es sich aus dem Durchfluss und dem Rohrdurchmesser ergibt, so benötigt man mit einer Dichte von 998 kg/m³ in Gl. 2.8 einen Druckverlustbeiwert von $\zeta = 1.45$. Dieser Wert ist ungewöhnlich hoch, da wie in Kap. 2.5.3 beschrieben für gut ausgeführte Absperrklappen Werte von 0.15 m angenommen werden können, was umgerechnet 0.015 bar entspricht. Der Druckverlust nimmt während der gesamten Messung jedoch Werte zwischen 0.5 und 0.8 bar an. Warum dieser im Turbinenabsperrorgan derart hoch ist, kann nicht geklärt werden. In der Turbine werden 72.6% der Energie, welche am Oberwasserspiegel zur Verfügung steht, abgegeben, womit sich die Energie des Triebwassers von 89.6% auf 17% reduziert. Dieser Wert beinhaltet auch etwaige Verluste im Eingang zur Spirale, in der Spirale selbst, im Leitapparat und im Laufrad. Es ist nicht möglich, die einzelnen Verluste genau anzugeben, da zwar die Drücke, jedoch nicht die Strömungsgeschwindigkeiten in den einzelnen Bauteilen gemessen wurden. Im Saugrohr erfolgt die Rückgewinnung von Druckenergie aus kinetischer Energie, wobei 3.2% der restlichen Energie des Triebwassers verloren gehen. Das Energieniveau sinkt von 17% auf 13.8%. Am Weg vom Ende des Saugrohres zum Wasserspiegel des Unterwasserbeckens passiert das abgearbeitete Wasser noch das Auslaufbecken, in welchem es noch 0.1% seiner Energie als

Verluste abführt. Nach dem Kraftwerk besitzt das Wasser noch 13.7\% seiner Energie.

Fast Fourier Transformation (FFT) 3.3.7

Zur weiteren Untersuchung der erhaltenen Messsignale wurden diese auch in einer Fast Fourier Transformation (FFT) untersucht, um deren zugrundeliegenden Frequenzen zu bestimmen. Dabei wurden vor allem Messsignale der permanent-installierten Maschinendiagnose-Sensoren, der temporären Messsensoren und der temporären Validierungssensoren ausgewählt, welche mit einer entsprechend hohen Abtastrate aufgenommen wurden. Diese wurden zusätzlich noch in Sensoren des ruhenden und des rotierenden Systems unterteilt. Bei den ruhenden Sensoren handelt es sich um die absoluten Schwingungsaufnehmer im Turbinenlager $a_{THB_{x,y}}$, den Druckaufnehmern im Saugrohr p_{con1} und p_{con3} , dem Beschleunigungsaufnehmer am Saugrohr a_{con} und dem Beschleunigungsaufnehmer an der Leitapparatschaufel a_{GV_1} . Bei den Sensoren des rotierenden Systems handelt es sich um die Dehnmessstreifen D2 auf der Druckseite und S2 auf der Saugseite sowie den vertikal messenden Beschleunigungssensor in der Laufradnabe a_{Hub} .

Besonders gehäuft traten dabei folgende, bereits im theoretischen Teil beschriebenen Phänomene mit ihren Frequenzen und deren Harmonischen auf:

Phänomen	Frequenzen
Wirbelzopf	1.4 Hz, 2.8 Hz, 3.2 Hz, 4.6 Hz, 6 Hz
Drehfrequenz	7.14 Hz, 14.28 Hz, 21.42 Hz, 28.56 Hz, 35.7 Hz, 42.84 Hz
Netzfrequenz	50 Hz, 100 Hz, 150 Hz, 200 Hz, 250 Hz, 300 Hz, 600 Hz
Laufschaufelpassierfrequenz	92 Hz, 185 Hz, 277 Hz
Leitschaufelpassierfrequenz	171 Hz, 342 Hz, 513 Hz

Tabelle 3.2: Liste der bekannten Frequenzen und deren Harmonischen

Die Frequenz des Wirbelzopfes mit 1.4 Hz kann in den Signalen der Sensoren p_{con1}, p_{con3}, in den Dehnmessstreifen D2 an der Druckseite und S2 an der Saugseite sowie dem vertikal messenden Beschleunigungssensor in der Laufradnabe a_{Hub} detektiert werden. Sie lässt sich auf den Saugrohrwirbelzopf zurückführen, welcher nach Kap. 2.3.1 mit ca. 0.2-fachem der Drehfrequenz, also 1.428 Hz, rotiert.

Die Drehfrequenz von 7.14 Hz findet sich in den Signalen der Sensoren $a_{THB_{x,y}}$, p_{con1} , p_{con3} ,

der Dehnmessstreifen D2 und S2 sowie dem Beschleunigungssensor a_{Hub}. Die Netzfrequenz von 50 Hz kann in den Signalen von $a_{THB_{x,y}}$, p_{con1} , p_{con3} und a_{Hub} erkannt werden.

Die Laufschaufelpassierfrequenz von 92 Hz tritt in den Sensoren a_{GV_1} , $a_{THB_{x,y}}$, p_{con1} , p_{con3} und a_{con} sowie a_{Hub} auf, nicht jedoch in den Signalen der Dehnmessstreifen D2 und S2. Nach Gl. 2.4 in Kap. 2.3.3 ergibt sich rechnerisch für die erste Harmonische die Frequenz von 92.82 Hz, was gut mit den Ergebnissen in der FFT übereinstimmt. Auffällig ist, dass die zweite Harmonische mit ca. 185 Hz öfter auftritt als die erste Harmonische.

Bei der Frequenz von 171 Hz handelt es sich einerseits um die Leitschaufelpassierfrequenz (Gl. 2.3 in Kap. 2.3.3), andererseits wurde sie in [10] auch als eine mögliche Eigenschwingungsform des Laufrades identifiziert. Über Gl. 2.3 ergibt sich ein theoretischer Wert von 171.36 Hz. Sie tritt sehr oft in den Signalen der Sensoren a_{con}, der Dehnmessstreifen D2 und S2 sowie des Beschleunigungssensors a_{Hub} auf, ist jedoch auch bei den anderen Aufnehmern $a_{THB_{x,y}}$, p_{con1} und p_{con3} zu finden. Es kann - wie in Kap. 2.3.3 beschrieben - durch die Leitschaufelpassierfrequenz und der Eigenfrequenz des Laufrades zu einem Resonanzfall kommen.

Einen nochmaligen Überblick über die Erkenntnisse zu den obigen Frequenzen bietet folgende Tabelle, in welcher aufgetragen ist, an welchen Sensoren welche Phänomene zu erkennen sind:

Phänomen	$a_{\mathrm{GV},1}$	$a_{\mathrm{THB_{x}}}$	$a_{\mathrm{THB_y}}$	p _{con1}	p _{con3}	a_{con}	DMS-D2	DMS-S2	$a_{ m Hub}$
Wirbelzopf				X	X		X	X	X
Drehfrequenz		X	X	X	X		X	X	X
Netzfrequenz		X	X	X	X				X
Laufschaufelpassier-	X	X	X	X	X	X			X
frequenz									
Leitschaufelpassier	X	X	X	X	X	X	X	X	X
-frequenz									

Tabelle 3.3: Auftreten der Frequenzen von Wirbelzopf, Drehfrequenz, Netzfrequenz, Laufschaufelund Leitschaufelpassierfrequenz an den oben genannten Sensoren

Weiters traten folgende Frequenzen und deren Harmonische gehäuft auf, deren Ursache in dieser Arbeit nur zum Teil geklärt werden konnte:

Praktischer Teil

Phänomen	Frequenzen
Unbekanntes Phänomen P1	62.5 Hz, 125 Hz, 187.5 Hz, bis hin zur 14. Harmonischen
Unbekanntes Phänomen P2	111 Hz
Unbekanntes Phänomen P3	140 Hz
Unbekanntes Phänomen P4	160 Hz
Unbekanntes Phänomen P5	232 Hz, 464 Hz, 696 Hz, 928 Hz
Unbekanntes Phänomen P6	1200 Hz, 3600 Hz
Unbekanntes Phänomen P7	1500 Hz 3000 Hz

Tabelle 3.4: Liste der unbekannten Frequenzen und deren Harmonische

Die Frequenz von 62.5 Hz und die Vielzahl ihrer Harmonischen treten nur bei den Sensoren des rotierenden Systems auf, wobei sie überwiegend bei den Dehnmessstreifen D2 und S2 und nur gering beim vertikalen Beschleunigungssensor a_{Hub} vorkommen. Sie treten in allen Lastbereichen auf. Besonders ist, dass die Frequenzen der Harmonischen immer exakt auf das jeweilige Vielfache getroffen werden, ohne auch nur ein Zehntel Hertz abzuweichen. Wodurch diese Frequenz verursacht wird, kann in dieser Arbeit nicht geklärt werden.

Die Frequenz von 111 Hz und ihre Harmonischen können bei den ruhenden Sensoren $a_{THB_{x,y}}$ und a_{con} sowie beim Sensor a_{Hub} im rotierenden System detektiert werden und treten dort hauptsächlich im Teillastbereich vermehrt auf. Vergleicht man diese mit den in [10] ermittelten Frequenzen der Eigenschwingungsformen des Laufrades, so stellt man fest, dass bei ca. 110 Hz die Eigenschwingungsform Torsion liegt.

Die Frequenz von 140 Hz tritt vor allem in der Teil- und Überlast mit Ausnahme des Bereiches zwischen 67 und 100% Leistung sowohl mit als auch ohne Stabilisierungsluft auf. Dabei ändert sich die Amplitude kaum. Sie ist hauptsächlich bei den Sensoren $a_{THB_{x,y}}$ und a_{Hub} erkennbar. Nach [10] kann es sich dabei um die Schwingungsform KD3 des Francis-Laufrades handeln. Dies trifft auch auf die Frequenz mit 160 Hz zu, wobei diese wieder vor allem im Signal von a_{con} und eher selten bei den absoluten Lagerschwingungen $a_{THB_{x,y}}$ und den Drucksensoren p_{con1} und p_{con3} messbar sind. Bei dieser könnte es sich um die Schwingungsform KD4 aus [10] handeln. Beide Frequenzen sind sehr oft bei gleichen Betriebspunkten detektierbar.

Besonders auffällig ist die in der Teillast auftretende Frequenz von 232 Hz und deren zweite, dritte, vierte und fünfte Harmonische (464 Hz, 696 Hz, 928 Hz und 1160 Hz), da diese mit überdurchschnittlich hohen Amplituden sowohl in den Aufnehmern des Turbinenlagers

Messergebnisse

a_{THB_{x,v}}, der Druckaufnehmer im Saugrohrkonus p_{con1} und p_{con3} und den Kavitationssensoren am Leitapparat a_{GV1} sowie den Beschleunigungsaufnehmern im Saugrohrkonus a_{con} und in der Laufradnabe a_{Hub} aufscheint. Sie tritt damit sowohl im fließenden Triebwasser als auch in den voneinander getrennten Bauteilen des Saugrohres, welches zum Großteil einbetoniert ist, und den Leitschaufeln auf. Diese Frequenz erstreckt sich also über die gesamte Anlage. Die Vermutung liegt daher nahe, dass es sich um das sogenannte Vortex Shedding, welches in Kapitel 2.3.4 näher beschrieben wurde, handelt. Wird in Gleichung 2.5 in Kap. 2.3.4 eine Strouhal-Zahl von 0.2, eine an der Austrittskante des Laufrades auftretende Geschwindigkeit von 20.075 m/s und für L die an der Austrittskante maßgebliche Dicke von 0.0173 m gesetzt, so erhält man mit einer Frequenz von 232.08 Hz genau den in der Fast Fourier Transformation bestimmten Wert. Ebenfalls wie in Kapitel 2.3.4 ausgeführt, kommt es im Fall der vermessenen Anlage dazu, dass sich dieses Strömungsphänomen in die Eigenfrequenz des Saugrohres einhängt und es deshalb zu einer massiven Resonanz kommt. In einer separaten Untersuchung wurde die Frequenz von 232 Hz [34] als Eigenfrequenz des Saugrohres detektiert, was erklärt, weshalb diese auch in örtlich komplett voneinander getrennten Aufnehmern detektiert werden kann. Wird Stabilisierungsluft eingeblasen, ist das Phänomen nur mehr mit den Sensoren a_{THBx,y} mit etwas geringeren Amplituden messbar. Die Stabilisierungsluft sorgt somit dafür, dass das Vortex Shedding nur mehr das Laufrad und nicht mehr das Saugrohr zu einer Schwingung anregen kann. Neben dem Saugrohr besitzen nach [10] auch die Laufschaufeln eine Eigenkreisfrequenz im Bereich rund um 230 Hz, womit ein weiterer Resonanzfall denkbar wäre.

Bei der Fast Fourier Transformation der Messsignale der Beschleunigungssensoren am Leitapparat konnte noch zusätzlich die Frequenz von rund 1210 Hz und deren dritte Harmonische entdeckt werden. Diese beiden Frequenzen treten bei den Sensoren a_{GV1}, a_{THBx,v} und a_{con} auf. Die Amplituden sind dabei von Inbetriebnahme der Turbine an sehr hoch, nehmen zur Uberlast hin ab und erreichen im Best Efficiency Point ihr Minimum (siehe Abb. 3.19). Wird Stabilisierungsluft eingeblasen, reduzieren sich die Amplituden sehr stark. So fällt diese beispielsweise im Fall der Frequenz von 3630 Hz bei 53% Leistung auf ein Viertel des Wertes ohne Lufteinblasung. Sie tritt zusätzlich auch im CMO auf. Vergleicht man die hier gefunden Frequenzen mit den in [10] berechneten, so stellt man fest, dass eine Frequenz von

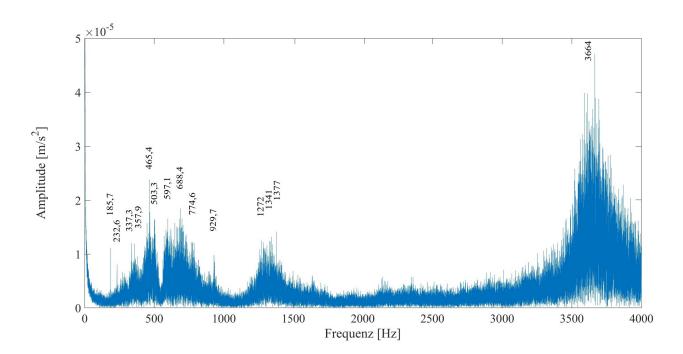


Abbildung 3.18: Ergebnis der Fast Fourier Transformation des Sensors a_{GV_1} an den Leitschaufeln bei 53% Leistung

1256 Hz als Eigenfrequenz der Leitschaufel berechnet wurde. Es kommt somit zu einer Anregung der Eigenfrequenz, wobei die dritte Harmonische um ein Vielfaches stärker ausfällt als die erste.

Die Frequenz von 1500 Hz und der zweiten Harmonischen kann sehr oft beim absoluten Schwingungsaufnehmer a_{con} und in allen Betriebspunkten in den Turbinenlagersensoren a_{THB_{x,v}} gefunden werden, wobei die Amplitude der ersten Harmonischen sehr ausgeprägt ist. Zudem ist auffällig, dass überdurchschnittlich oft genau der Wert 1500 Hz bzw. 3000 Hz ohne Subharmonischer auftritt. Das zugrundeliegende Phänomen muss also sehr stabil sein. Da die Umdrehung der Maschine durch die Kopplung des Generators mit der Netzfrequenz gewissen Schwankungen unterliegt, und auch die Frequenzen der Strömungsphänomene bestimmten Abweichungen unterworfen sind, können diese als Ursachen ausgeschlossen werden. Die tatsächliche Ursache kann hier jedoch nicht bestimmt werden. In folgender Abbildung ist das Ergebnis der Fast Fourier Transformation des absoluten Beschleunigungssensors im Turbinenlager während des Betriebes im CMO dargestellt.

Wie in Abbildung 3.21 zu sehen, tritt bei den hochfrequenten Beschleunigungsaufnehmern

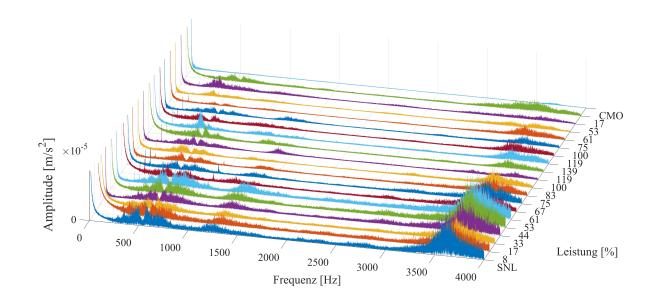


Abbildung 3.19: Wasserfalldiagramm der Fast Fourier Transformation zur Bestimmung der auftretenden Frequenzen an den Leitschaufeln im Bereich bis zu 4000 Hz

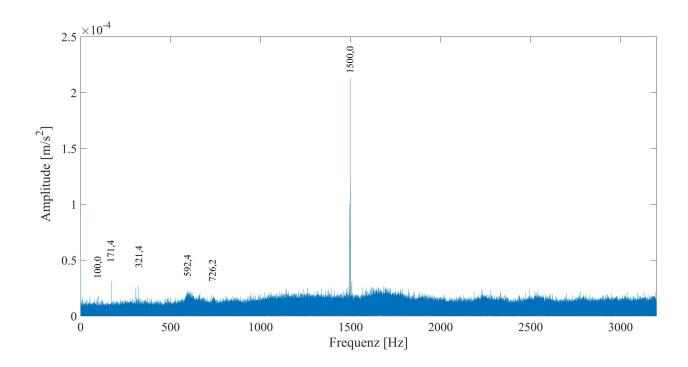


Abbildung 3.20: Ergebnis der Fast Fourier Transformation des Sensors a_{THB} am Turbinenlager im CMO

 $a_{\rm GV_{1,2}}$ an den Leitschaufeln zwischen 6000 und 14000 Hz und 15000 bis 38000 Hz Kavitation auf (siehe Kap. 2.3.5). Diese erreicht vom Start weg ansteigend bis 53% Leistung ihr PRAKTISCHER TEIL Messergebnisse

Maximum und nimmt bis zum Best Efficiency Point bei 100% Leistung stark ab. Durch die Stabilisierungsluft wird sie kaum beeinflusst, da diese erst nach dem Leitapparat im schaufellosen Raum eingeblasen wird.

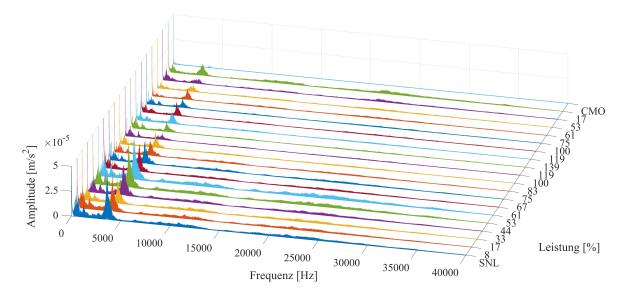


Abbildung 3.21: Wasserfalldiagramm der Fast Fourier Transformation zur Bestimmung der auftretenden Frequenzen an den Leitschaufeln bis 40.000 Hz

In der folgenden Tabelle wird noch einmal ein Überblick über das Auftreten der bisher unbekannten Frequenzen an den mittels FFT untersuchten Sensorsignalen gegeben:

Phänomen	$a_{\mathrm{GV},1}$	$a_{\mathrm{THB_{x}}}$	$a_{\mathrm{THB_y}}$	Pcon1	Pcon3	acon	DMS-D2	DMS-S2	$a_{ m Hub}$
P1 - 62.5 Hz							X	X	X
P2 - 111 Hz			X			X			X
P3 - 140 Hz		X	X						X
P4 - 160 Hz		X	X	X	X	X			
P5 - 232 Hz	X	X	X	X	X	X			X
P6 - 1200 Hz	X	X	X			X			
P7 - 1500 Hz	X	X	X	X		X			

Tabelle 3.5: Auftreten der zum Teil unbekannten Frequenzen an den oben genannten Sensoren

Zusammenfassung und Ausblick

Zusammenfassung 4.1

Bei der Produktion von Regelenergie werden Wasserkraftturbinen sehr oft gestartet, abgestellt und in Teillast betrieben. Dabei treten Strömungsphänomene auf, welche schädlich auf die Bauteile wirken und deren Lebensdauer erheblich verringern können. Wichtig ist es daher für den Betreiber eines Wasserkraftwerkes, die schädlichen Lastbereiche zu kennen. Dies ist möglich, indem geeignete Sensoren zur Überwachung ausgewählt werden und diese an aussagekräftigen Punkten in der Anlage angebracht werden. Ziel dieser Arbeit war es, zu beantworten, mit welchen Mitteln welche Erkenntnisse über den Zustand einer Maschine erhalten werden können.

Im Zuge dieser Arbeit wurden zuerst die in der Literatur bekannten Strömungsphänomene dargelegt und der Stand der Messtechnik erläutert. Daraufhin wurden die Messergebnisse der Prototypmessung einer bestehenden Anlage untersucht. Dies geschah in der Reihenfolge, dass zuerst die Zeitsignale der einzelnen Sensoren aufgetragen und auf Besonderheiten hin untersucht wurden. Dabei war vor allem von Interesse, wo die maximalen und minimalen Schwankungsbreiten lagen und welchen Effekt die Einblasung der Stabilisierungsluft hatte. Im nächsten Schritt wurde die Energielinie bestimmt. Sie zeigt den Anteil an umsetzbarer Energie und die jeweiligen Verluste in den einzelnen Abschnitten der Anlage, vom Oberwasserbecken bis zum Unterwasserbecken. Der Verlauf der Energielinie ermöglicht auch, zu sehen, ob in einzelnen Bereichen des Kraftwerkes Besonderheiten wie beispielsweise überdurchschnittlich hohe Verluste auftreten. Im Folgenden wurde der Verlauf der Nettofallhöhe aus einzelnen Messgrößen bestimmt. Abschließend wurden einzelne Signale noch einer Fast-Fourier-Transformation unterzogen, um die grundlegenden Frequenzen in den einzelnen Betriebsbereichen zu erhalten. Diese zeigen die Strömungsphänomene, welche im Lauf der Messung auftreten.

Die Ergebnisse zeigen, dass die maximalen Schwingbreiten der Sensoren entweder in der unteren Teillast bei 33% bzw. 44 % Leistung oder in der Teillast bei 53% Leistung liegen. Auch die größten Amplituden können in diesen Leistungsbereichen gefunden werden. Nur bei der Relativbewegung in z-Richtung am oberen Generatorlager und beim Dehnmessstreifen auf der Druckseite sind die größten Ausschläge in der Überlast zu finden.

Der Einfluss der Stabilisierungsluft auf die Beanspruchungen der Maschine ist eher marginal. Die Wegsensoren des unteren Generatorlagers UGL genauso wie die senkrechte Wellenbeschleunigung werden nicht beeinflusst, lediglich die relativen und absoluten Bewegungen des Turbinenlagers werden reduziert. Bei den temporären Messsensoren zeigen die Ergebnisse, dass die Spannungen auf der Saugseite geringfügig reduziert werden, die Spannungen auf der Druckseite und die senkrechte Beschleunigung der Turbinenwelle jedoch nicht. Die wichtigste Eigenschaft der Einblasung der Stabilisierungsluft liegt darin, dass sie die Auswirkungen des Vortex Shedding praktisch vollständig beseitigt. Die Maschine läuft dadurch in der Teillast sehr ruhig, die Struktur der Anlage wird geschont. Auf die Beanspruchungen der einzelnen Bauteile hat sie jedoch praktisch keinen Einfluss.

Die Erkenntnisse, welche aus der Bestimmung der Nettofallhöhe gezogen werden können, sind, dass durch die lange Druckrohrleitung die Strömungsverluste sehr hoch werden und der an der Turbine anliegende Druck dadurch vermindert wird. Außerdem kommt es zu merkbaren Schwankungen infolge der Trägheit der Wassersäule.

Bei der Berechnung der Energielinie konnte gefunden werden, dass es beim Passieren der Turbinenabsperrklappe zu hohen Verlusten kommt, welche sehr unüblich sind. Weiters werden auch die Strömungsverluste in der Druckrohrleitung ersichtlich. Man sieht, dass durch die Berechnung der einzelnen Energieniveaus und der Verluste zwischen zwei Abschnitten Erkenntnisse über den Zustand bzw. den Energieverlust erhalten werden können, welche bei reiner Betrachtung der Messsignalsverläufe nicht aufscheinen.

Die Ergebnisse der Fourier-Transformation beinhalteten bekannte als auch unbekannte Fre-

quenzen. Es konnte damit gezeigt werden, welche Strömungsphänomene bei den einzelnen verbauten Sensoren auftreten. Zusätzlich war es auch möglich, Eigenschwingungsformen einzelner Bauteile zu detektieren. Diese Analyse hat es auch ermöglicht, das Vortex-Shedding-Phänomen zu erkennen und zu zeigen, dass die Lufteinblasung dessen Auswirkungen auf die Struktur vollständig beseitigen kann.

Ausblick auf weitere mögliche Arbeiten 4.2

Im Rahmen dieser Arbeit konnten leider nicht alle wissenschaftlich interessanten Aspekte und Fragestellungen untersucht und beantwortet werden. Im Rahmen von weiteren Arbeiten und neuen Messungen könnten einige weitere Punkte untersucht werden.

Ein größeres Tätigkeitsfeld bezieht sich auf die Messungen der Wellenbewegungen. Es könnten in jedem Betriebsbereich die Orbits der relativen Wegsensoren in den einzelnen Lagerstellen untersucht werden. Anhand deren Lage und Form könnten noch weitere Aussagen über Zustand und Verschleiß der Welle und der Lagerungen gemacht werden. Dazu wäre notwendig, auch die relativen und absoluten Schwingungen des oberen Generatorlagers sowie die absoluten Schwingungen des unteren Generatorlagers zu bestimmen. Es wäre sehr interessant, diese Sensoren bei einer neuerlichen Messung zusätzlich einzubinden und auch einer Fast-Fourier-Transformation zu unterziehen, um die Frequenzen der einzelnen Lager gegeneinander abzugleichen. Anschließend könnte auch anhand dieser Messdaten eine rotordynamische Analyse der Welle durchgeführt werden.

Es könnte in allen Betriebspunkten eine Energielinie berechnet, und so die Entwicklung der Verluste der einzelnen Bauteile bestimmt werden. Besonders der hier in dieser Arbeit als sehr hoch bestimmte Druckverlust in der Turbinenabsperrklappe könnte erneut untersucht werden.

Schlußendlich könnte es auch von Interesse sein, die Herkunft der Frequenzen und ihrer Harmonischen zu untersuchen, welche in dieser Arbeit unbekannt geblieben ist. Im Zuge schwingungstechnischer Analysen könnte auch der Frage nachgegangen werden, was es bedeutet, wenn die zweite bzw. dritte Harmonische einer Frequenz am stärksten ausgeprägt ist und welche Ursachen dies haben kann.

Lit

Literaturverzeichnis

- [1] DIN ISO 10816-5. (ISO 10816-5:2000-04), Mechanische Schwingungen Bewertung der Schwingungen von Maschinen durch Messungen an nicht-rotierenden Teilen Teil 5: Maschinensätze in Wasserkraft- und Pumpenanlagen .
- [2] DIN ISO 7919-5. (ISO 7919-5:2005-10), Mechanische Schwingungen Bewertung der Schwingungen von Maschinen durch Messungen an rotierenden Wellen Teil 5: Maschinensätze in Wasserkraft- und Pumpenanlagen.
- [3] IEC 60193 Hydraulic Turbines, Storage Pumps and Pump-Turbines Model Acceptance Tests. International Eletrotechnical Commission, 2. Auflage, 1999.
- [4] S. Alligné. Forced and Self Oscillations of Hydraulic Systems Induced by Cavitation Vortex Rope of Francis Turbines. École Polytechnique Fédérale de Lausanne, dissertation, 2011.
- [5] H. Brekke. New Trends in Technologies. IntechOpen, 1. Auflage, 2010.
- [6] J. F. D'Aubuisson de Voisins. *Traité d'Hydraulique a l'Usage des Ingénieurs*. Pitois-Levrault, 1. Auflage, 1834.
- [7] P. Dörfler, R. Bloch, W. Mayr, und O. Hasler. Vibration Tests on a high-head (740m) Francis Turbine: Field Test from Häusling. *IAHR Symposium Trondheim*, 1988.
- [8] P. Dörlfer, M. Sick, und A. Coutu. Flow-Induced Pulsation and Vibration in Hydroelectric Machinery. Springer, 1. Auflage, 2013.
- [9] M. Eichhorn. Fatigue Analysis of Prototype Francis Turbines Using Numerical Simulations and Site Measurements. TU Wien, Dissertation, 2017.

- [10] G. Fillinger. Eigenschwingungsanalyse eines Francis-Laufrades. Technische Universität Wien, Diplomarbeit, 2018.
- [11] Energie-Control Austria für die Regulierung der Elektrizitäts-und Erd-Regelreserve Ausgleichsenergie. gaswirtschaft. und https://www.econtrol.at/marktteilnehmer/strom/strommarkt/regelreserve-und-ausgleichsenergie, Stand 02.02.2019.
- [12] R. Gasch, R. Nordmann, und H. Pfützner. Rotordynamik. Springer, 2., vollständig neu bearbeitete und erweiterte Auflage, 2006.
- [13] J. Giesecke und E. Mosonyi. Wasserkraftanlagen: Planung, Bau und Betrieb. Springer, 5., aktualisierte und erweiterte Auflage, 2009.
- [14] B. Gregorc, A. Kohn, und M. Hastings. An effective condition monitoring solution is phased in on eight cascade hydropower stations. Vienna Hydro, 2016.
- [15] Kistler Group. Test & Measurement Druck-Messausrüstung für anspruchsvolle T & M-Anwendungen. abgerufen am 29.03.2019.
- [16] J. Gülich. Kreiselpumpen: Handbuch für Entwicklung, Anlagenplanung und Betrieb. Springer, 3., korrigierte und ergänzte Auflage, 2010.
- [17] P. Holl und E. Glunk. Berechnen und Entwerfen von Turbinen- und Wasserkraftanlagen. Unikum Verlag, 1. Auflage, 2013.
- [18] B. Hübner, U. Seidel, und A. D'Agostini Neto. Vibration propagation due to vibroacoustic resonance exemplified at a Francis turbine. ACUM 2014 - Nürnberg, 2014.
- [19] I.E. Idelchik. Handbook of Hydraulic Resistance. Israel Program for Scientific Translations, 1. Auflage, 1966.
- [20] M. Iliescu, G. Ciocan, und F. Avellan. Analysis of the cavitating draft tube vortex in a francis turbine using particle image velocimetry measurements in two-phase flow. Journal of Fluids Engineering, 2008.

- [21] P. Kumar und R. Saini. Study of cavitation in hydro turbines a review. Renewable and Sustainable Energy Reviews, 2009.
- [22] D. Liu, X. Liu, und Y. Zhao. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine. Chinese Journal of Mechanical Engineering Vol. 30(4), 2017.
- [23] Z. Liu, Zou Sh., und Zhou L. Condition Monitoring System for Hydro Turbines Based on LabVIEW. IEEE, 2012.
- [24] Ch. Nicolet, N. Ruchonnet, und F. Avellan. One-Dimensional Modeling of Rotor Stator Interaction in Francis-Pump-Turbine. 23rd IAHR Symposium - Yokohama, 2006.
- [25] W. Nitsche und A. Brunn. Strmungsmesstechnik. Springer, 2., aktualisierte und bearbeitete Auflage, 2005.
- [26] C. Pfleiderer und H. Petermann. Strömungsmaschinen. Springer, 7., unveränderte Auflage, 2005.
- [27] H. Poll, J. Zanutto, und W. Ponge-Ferreira. Hydraulic Power Plant machine dynamic diagnosis. Shock and Vibration 13, 2016.
- [28] J. Raabe. Hydro Power, The Design, Use, and Function of Hydromechanical, Hydraulic, and Electrical Equipment. VDI-Verlag, 1985.
- [29] H. Schlichting und K. Gersten. Grenzschichttheorie. Springer, 10., überarbeitete Auflage, 2006.
- [30] R. C. M. Schröder. Technische Hydraulik Kompendium für den Wasserbau. Springer, 1. Auflage, 1994.
- [31] Korto Cavitation Services. . http://www.korto.com/, abgerufen am 12.08.2019.
- [32] E. Spring. Elektrische Maschinen: Eine Einführung. Springer, 3. Auflage, 2009.
- [33] D. Surek und S. Stempin. Angewandte Strömungsmechanik für Praxis und Studium. Teubner, 1. Auflage, 2007.

TW Sibliothek, Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfügbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

- [34] J. Unterluggauer, A. Maly, und E. Doujak. Investigation on the Impact of Air Admissionin in a Prototype Francis turbine at low load Operation. *Energies*, 2019.
- [35] D. Valentin, A. Presas, M. Bossio, M. Egusquiza, E. Egusquiza, und C. Valero. Feasibility of Detecting Natural Frequencies of Hydraulic Turbines While in Operation, Using Strain Gauges. Sensors 2018, 18, 174, 2018.
- [36] VibroSystM. Mechanical Tolerance Guidelines for Hydroelectric Generators. $https://library.vibrosystm.com/en/Application_Notes/AN001$ a.pdf, abgerufenam 12.08.2019.
- [37] K. Yamamoto. Hydrodynamics of Francis turbine operation at deep part load condition. Ecole Polytechnique Fédérale de Lausanne, thése no. 7730, 2017.
- [38] K. Yamamoto, A. Müller, A. Favrel, und F. Avellan. Experimental evidence of interblade cavitation vortex development in Francis turbines at deep part load condition. Experiments in Fluids 58:142, 2017.
- [39] Z. Yuning, L. Kaihua, X. Haizhen, und D. Xiaoze. A review of methods for vortex identification in hydroturbines. Renewable and Sustainable Energy Reviews 81, 2018.

Abbildungsverzeichnis

2.1	Übersicht über die Einteilung verschiedener Turbinentypen (bearbeitet) [13] .	3
2.2	Übersicht über die Anlagenteile eines Mitteldruck-Wasserkraftwerkes $[13]$	4
2.3	Aufbau einer Francisturbine, (1) Laufrad, (2) Leitschaufel, (3) Stützschaufel, (4) Spirale, (5) Saugrohr (6) Turbinenwelle, bearbeitet [28]	6
2.4	Verschiedene Formen von Francislaufrädern in Abhängigkeit der spezifischen Drehzahl n_q : (a) Langsamläufer ($n_q=30$ U/min), (b) Schnellläufer ($n_q=120$ U/min), (c) Änderung der Laufradform in Abhängigkeit von n_q [13]	7
2.5	Geschwindigkeitsdreiecke bei Eintritt in und Austritt aus dem Laufrad $[4]$	8
2.6	Spannungswerte in einem Francis-Laufrad während Start-Up (SU), Speed-No-Load (SNL), Low-Load (LL), Part-Load (PL), Best-Point (BP) und Full-Load (FL) -Betrieb [9]	10
2.7	Auftretende Strömungsphänomene und zugehörige Frequenzen und Wellenlängen [8], bearbeitet	12
2.8	Aussehen von Wirbelzöpfen in Francismaschinen, a) Skizze mit Drehrichtungen des Wirbelzopfes im Saugrohr, b) Fotografie eines Wirbelzopfes in einem Versuchsstand [20]	13
2.9	a) Auftreten eines Kavitations-Kanalwirbels bei tiefer Teillast [37] b) Simulation eines Kanalwirbels zwischen zwei Laufschaufeln [38]	14

2.10	Stromungsfelder bei der Rotor-Stator-Interaktion [24] a) Storung des Stromungsfeldes durch das Laufrad-Druckfeld, b) Störung des Strömungsfeldes	
	durch den Sog der Leitschaufeln, c) Kombination der beiden Effekte	15
2.11	Karmansche Wirbelstraße an einer Leitschaufel [18]	17
2.12	Zusammenbruch einer Dampfblase bei Kavitation, bearbeitet nach $[16]$	18
2.13	a) Instrumentierungsplan der Messstellen für eine Messung an einer Francis-Maschine im Jahr 1988 [7] b) State-of-the-Art-Instrumentierung zur Zustandsüberwachung einer Kaplan-Maschine [14]	19
2.14	Messung von statischen und dynamischen Drücken in einer Rohrströmung	20
2.15	a) Aufbau eines piezoresistiven Druckmessers [15] b) Drift von piezoelektrischen Sensoren im Vergleich zu piezoresistiven Sensoren (nach [15]) c) Anwendungsbereich von piezoelektrischen und piezoresistiven Sensoren in Abhängigkeit vom zu messenden Druck und der Messzeit (nach [15])	21
2.16	Absolute und relative Schwingungsmessung an einem Gleitlager (nach $[12]$) .	23
2.17	Diagramm zur Bestimmung des Rohrreibungskoeffizienten λ [30]	26
2.18	Druckverlustbeiwert ζ_{qs} eines Keilschiebers und freier Strömungsquerschnitt A_S in Abhängigkeit von dem Verhältnis der Öffnungsweite s/s_{max} [13]	27
3.1	Positionen der Messsensoren aus Tabelle 3.1 in der untersuchten Anlage, unterteilt in permanent-aufgenommene Maschinendaten (rot), permanent-installierte Maschinendiagnosesensoren (blau), temporäre Messsensoren (grün) und temporäre Validierungssensoren (schwarz)	31
3.2	Leistungskurve, welche in der Messung abgefahren wurde. Die angeführten Werte sind auf die Leistung im Best-Efficiency-Point bezogen.	32

3.3	Leitapparatstellung a_0 und Leistungskurve P_{el} der Francisturbine während der Messung (die angeführten Werte sind auf die Leistung im Best-Efficiency-Point bezogen) in Prozent, blauer Bereich = tiefe Teillast, gelb = Teillast, rot = Überlast	33
3.4	Druck während der Messung vor dem Absperrorgan p_{TV} , am Spiralgehäuse p_{SC} , im schaufellosen Raum p_{RN} , im Turbinendeckel p_{CO} und im Saugrohrknie p_{con2} in bar	34
3.5	Schwingweg der Welle relativ zum Turbinenlager in x-Richtung (grün) und y-Richtung (grau) in μm	35
3.6	Absolute Schwinggeschwindigkeit des Turbinenlagers in x-Richtung (grün) und y-Richtung (grau) in mm/s	36
3.7	Schwingweg der Welle relativ zum unteren Generatorlager in x-Richtung (grün) und y-Richtung (grau) in μm	37
3.8	Schwingweg der Welle relativ zum oberen Generatorlager in z-Richtung in μm	38
3.9	Spannung im Dehnmessstreifen S2 (Saugseite) in N/mm^2	39
3.10	Spannung im Dehnmessstreifen D2 (Druckseite) in N/mm^2	39
3.11	Absolute Schwingbeschleunigung der Welle in z-Richtung in der Laufradnabe in m/s^2	41
3.12	Druck am Saugrohrende auf der rechten Seite (grün) und der linken Seite (grau) in bar	42
3.13	Drücke der Aufnehmer $p_{\rm con1}$ (grün) und $p_{\rm con3}$ (grau) im Saugrohrkonus in bar	43
3.14	Absolute Schwingbeschleunigung des Saugrohrkonus in m/s 2	44
3.15	Absolute Schwingbeschleunigung des Turbinenlagers in x-Richtung (grün) und y-Richtung (grau) in m/s^2	45
3.16	Entwicklung der Nettofallhöhe z_N während der Messung \hdots	46

3.17	% Leistung	48
3.18	Ergebnis der Fast Fourier Transformation des Sensors a_{GV_1} an den Leitschaufeln bei 53% Leistung	54
3.19	Wasserfalldiagramm der Fast Fourier Transformation zur Bestimmung der auftretenden Frequenzen an den Leitschaufeln im Bereich bis zu $4000~{\rm Hz}$	55
3.20	Ergebnis der Fast Fourier Transformation des Sensors a_{THB_x} am Turbinenlager im CMO	55
3.21	Wasserfalldiagramm der Fast Fourier Transformation zur Bestimmung der auftretenden Frequenzen an den Leitschaufeln bis 40.000 Hz	56
A.1	Änderung des Spaltwasserdurchflusses während der Messung in Prozent	72
A.2	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 53% Leistung	73
A.3	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 61% Leistung	73
A.4	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 100% Leistung	74
A.5	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 139% Leistung	74
A.6	Ergebnis der Fast Fourier Transformation des Sensors a_{THB_x} für 61% Leistung mit Lufteinblasung	75
A.7	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 53% Leistung	
A 0		75 7 2
A.8	Ergebnis der Fast Fourier Transformation des Sensors a_{THB_y} für 53% Leistung	76
A.9	Ausschnitt aus dem Ergebnis der Fast Fourier Transformation des Sensors a_{THB_y} für 53% Leistung	76
A.10	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_y}$ für 61% Leistung	77
A.11	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_y}$ für 100% Leistung	77
A.12	Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_y}$ für 139% Leistung	78

mit Lufteinblasung	78
A.14 Ergebnis der Fast Fourier Transformation des Sensors a_{THB_y} für 53% Leistung mit Lufteinblasung	79
A.15 Ergebnis der Fast Fourier Transformation des Sensors a_{THB_y} für den Betrieb im CMO	79
A.16 Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 53% Leistung	80
A.17 Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 61% Leistung	80
A.18 Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 100% Leistung	81
A.19 Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 139% Leistung	81
A.20 Ergebnis der Fast Fourier Transformation des Sensors a_{con} für 61% Leistung mit Lufteinblasung	82
A.21 Ergebnis der Fast Fourier Transformation des Sensors a_{con} für 53% Leistung mit Lufteinblasung	82
A.22 Ergebnis der Fast Fourier Transformation des Sensors a_{con} für den Betrieb im CMO	83
A.23 Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für den Betrieb	
im CMO mit feinerer Skalierung	83
A.24 Ergebnis der Fast Fourier Transformation für den Betrieb im SNL $$	84
$\rm A.25$ Ergebnis der Fast Fourier Transformation für den Betrieb bei 8% Leistung $$.	84
A.26 Ergebnis der Fast Fourier Transformation für den Betrieb bei $16%$ Leistung .	85
$\rm A.27\ Ergebnis\ der\ Fast\ Fourier\ Transformation\ für\ den\ Betrieb\ bei\ 33\%\ Leistung\ .$	85
A.28 Ergebnis der Fast Fourier Transformation für den Betrieb bei $44%$ Leistung .	86
$\rm A.29$ Ergebnis der Fast Fourier Transformation für den Betrieb bei 53% Leistung .	86
$\rm A.30$ Ergebnis der Fast Fourier Transformation für den Betrieb bei 61% Leistung .	87

A.31 Ergebnis der Fast Fourier Transformation für den Betrieb bei 67% Leistung .	87
$\rm A.32$ Ergebnis der Fast Fourier Transformation für den Betrieb bei 75% Leistung .	88
$\rm A.33$ Ergebnis der Fast Fourier Transformation für den Betrieb bei 83% Leistung .	88
A.34 Ergebnis der Fast Fourier Transformation für den Betrieb bei $100%$ Leistung	89
A.35 Ergebnis der Fast Fourier Transformation für den Betrieb bei 119% Leistung	89
A.36 Ergebnis der Fast Fourier Transformation für den Betrieb bei 139% Leistung	90
A.37Ergebnis der Fast Fourier Transformation für den Betrieb bei 119% Leistung	91
A.38 Ergebnis der Fast Fourier Transformation für den Betrieb bei $100%$ Leistung	91
A.39 Ergebnis der Fast Fourier Transformation für den Betrieb bei 75% Leistung mit Lufteinblasung	92
A.40 Ergebnis der Fast Fourier Transformation für den Betrieb bei 61% Leistung mit Lufteinblasung	92
A.41 Ergebnis der Fast Fourier Transformation für den Betrieb bei 53% Leistung mit Lufteinblasung	93
A.42 Ergebnis der Fast Fourier Transformation für den Betrieb bei 33% Leistung mit Lufteinblasung	93
A.43 Ergebnis der Fast Fourier Transformation für den Betrieb bei 22% Leistung mit Lufteinblasung	94
A.44 Ergebnis der Fast Fourier Transformation für den Betrieb bei 16% Leistung mit Lufteinblasung	94
A.45 Ergebnis der Fast Fourier Transformation für den Betrieb im CMO $\ \ldots \ \ldots$	95
A.46 Ergebnis der Fast Fourier Transformation für den Betrieb im CMO $\ \ldots \ \ldots$	95
A.47 Ergebnis der Fast Fourier Transformation für den Betrieb im CMO $\ \ldots \ \ldots$	96
A.48 Ergebnis der Fast Fourier Transformation für den Betrieb im CMO	96

A.49 Ergebnis der Fast Fourier Transformation für den Lastabwurf
A.50 Ergebnis der Fast Fourier Transformation für den Lastabwurf
A.51 Ergebnis der Fast Fourier Transformation für den Lastabwurf
A.52 Ergebnis der Fast Fourier Transformation für den Lastabwurf
$\rm A.53$ Ergebnis der Fast Fourier Transformation für die Betriebspunkte SNL und 8% 99
A.54 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 17% und 33%
A.55 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 44% und 53%
A.56 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 61% und 67%
A.57 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 75% und 83%
A.58 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 100% und 119%
A.59 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 139% und 119%
A.60 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 100% und 75% mit Lufteinblasung
A.61 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 61% und 53% mit Lufteinblasung
A.62 Ergebnis der Fast Fourier Transformation für die Betriebspunkte 17% und 33% mit Lufteinblasung
A.63 Ergebnis der Fast Fourier Transformation für den Betrieb im CMO 104

Anhang

Abbildungen **A.1**

A.1.1 Darstellungen der Sensorauswertung

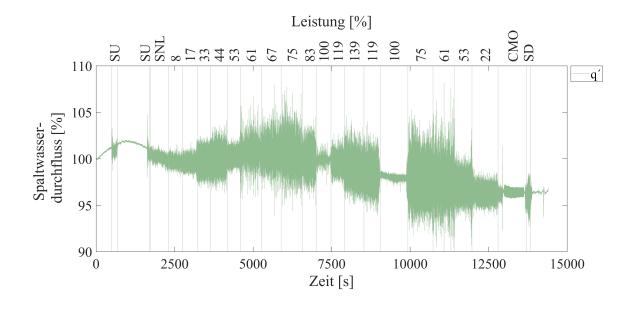


Abbildung A.1: Änderung des Spaltwasserdurchflusses während der Messung in Prozent

Ergebnisse der Fast Fourier Transformation des Sensors A.1.2 a_{THB_x}

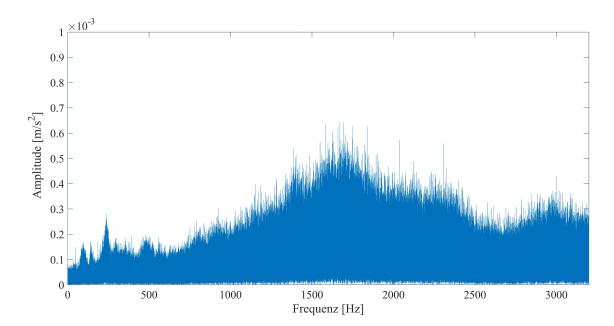


Abbildung A.2: Ergebnis der Fast Fourier Transformation des Sensors a_{THB}, für 53% Leistung

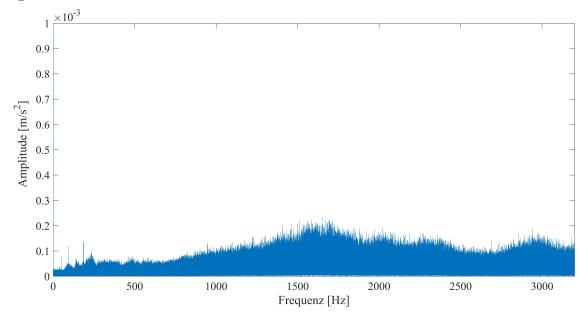


Abbildung A.3: Ergebnis der Fast Fourier Transformation des Sensors a_{THB} für 61% Leistung

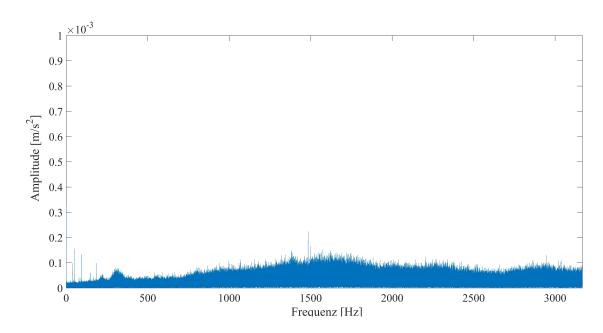


Abbildung A.4: Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 100% Leistung

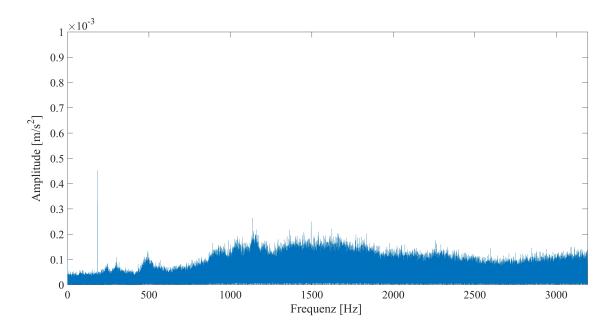


Abbildung A.5: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_x} für 139% Leistung

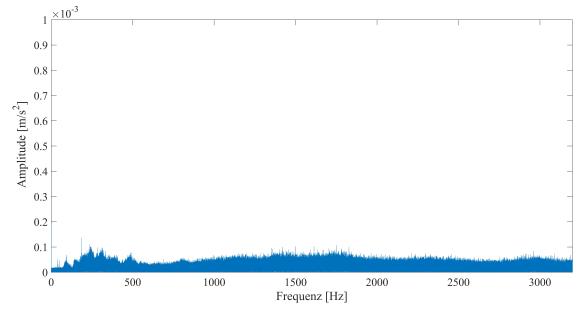


Abbildung A.6: Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_x}$ für 61% Leistung mit Lufteinblasung

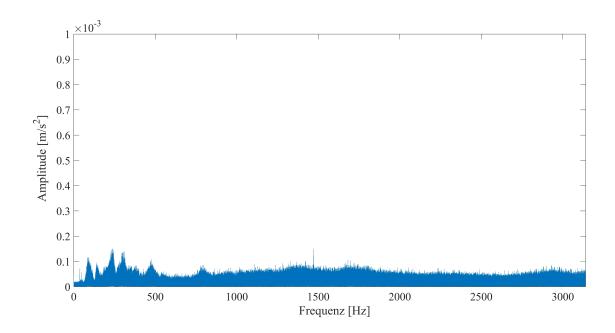


Abbildung A.7: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_x} für 53% Leistung mit Lufteinblasung

Ergebnisse der Fast Fourier Transformation des Sensors A.1.3 a_{THB_v}

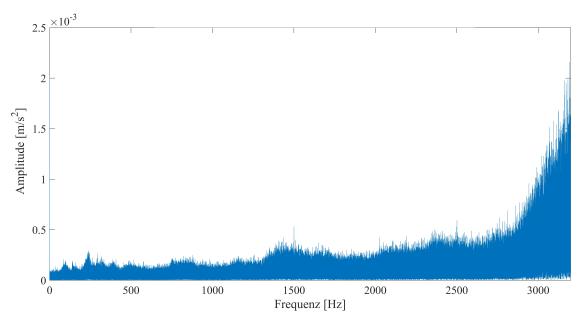


Abbildung A.8: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_v} für 53% Leistung

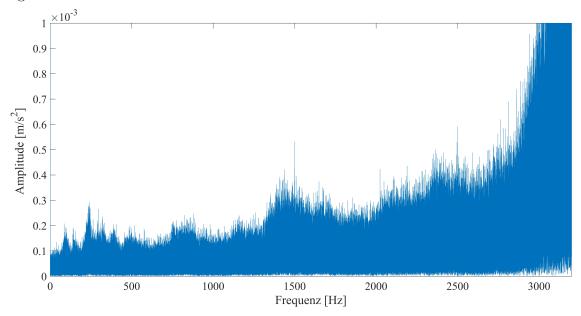


Abbildung A.9: Ausschnitt aus dem Ergebnis der Fast Fourier Transformation des Sensors a_{THB_v} für 53% Leistung

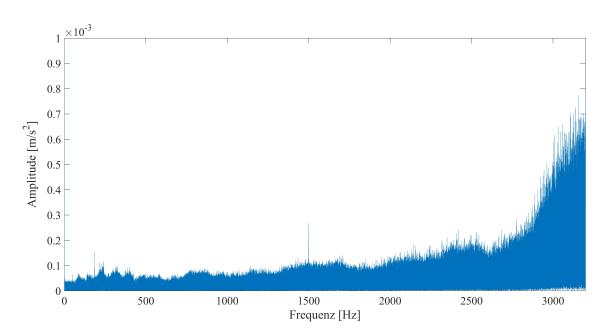


Abbildung A.10: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_v} für 61% Leistung

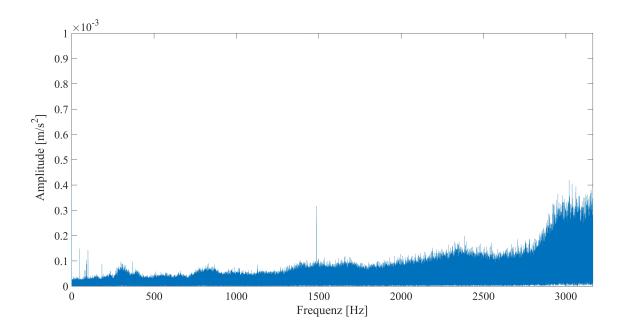


Abbildung A.11: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_v} für 100%Leistung

Abbildung A.12: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_v} für 139% Leistung

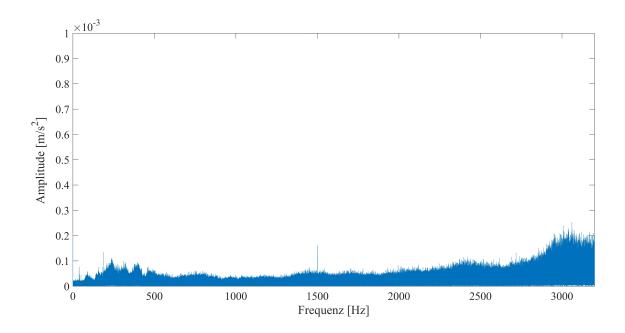


Abbildung A.13: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_y} für 61% Leistung mit Lufteinblasung

Anhang

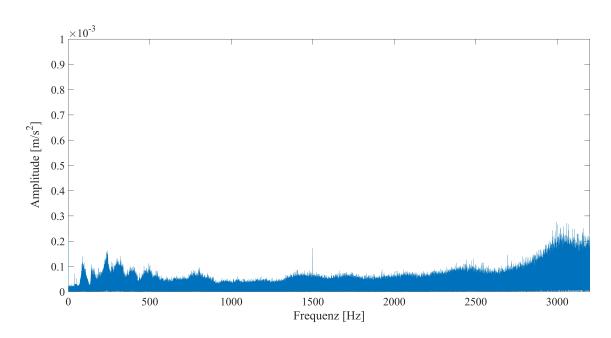


Abbildung A.14: Ergebnis der Fast Fourier Transformation des Sensors a_{THB_v} für 53% Leistung mit Lufteinblasung

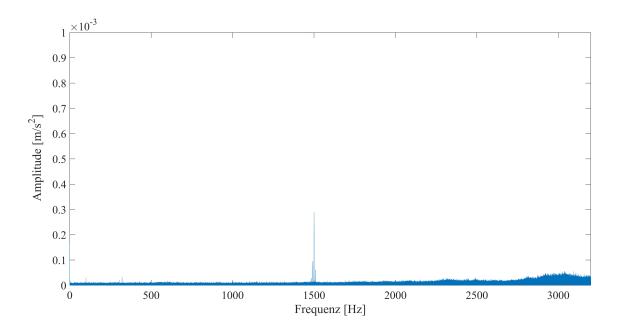


Abbildung A.15: Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm THB_y}$ für den Betrieb im CMO

Ergebnisse der Fast Fourier Transformation des Sensors A.1.4

 $\mathbf{a}_{\mathbf{con}}$

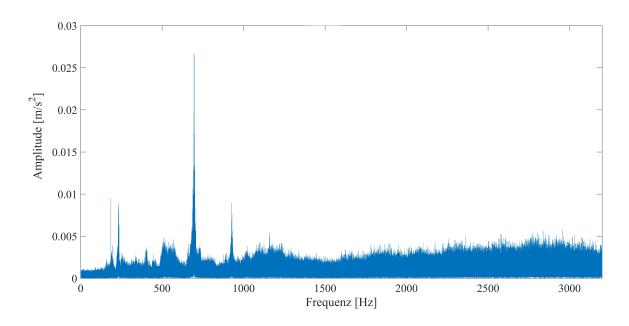


Abbildung A.16: Ergebnis der Fast Fourier Transformation des Sensors a_{con} für 53% Leistung

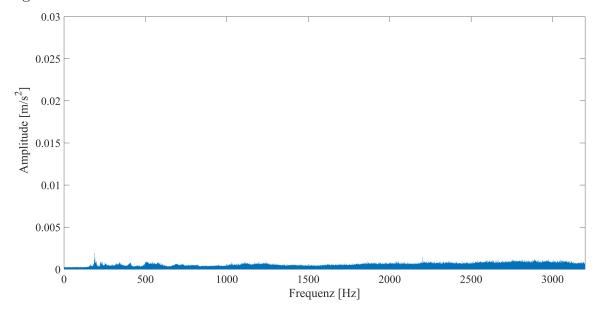


Abbildung A.17: Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 61% Leistung

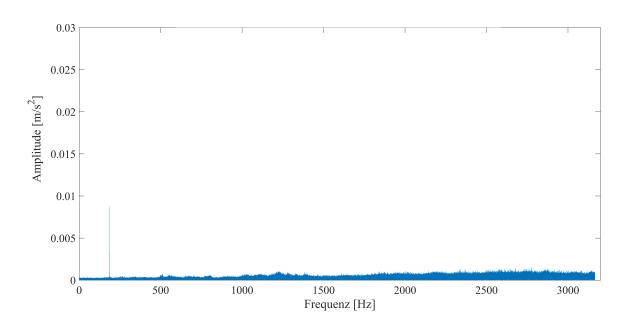


Abbildung A.18: Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 100% Leistung

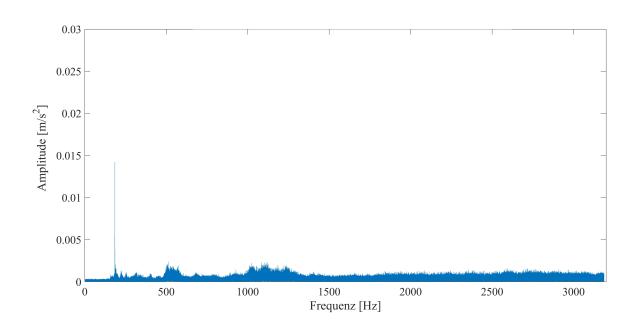


Abbildung A.19: Ergebnis der Fast Fourier Transformation des Sensors a_{con} für 139% Leistung

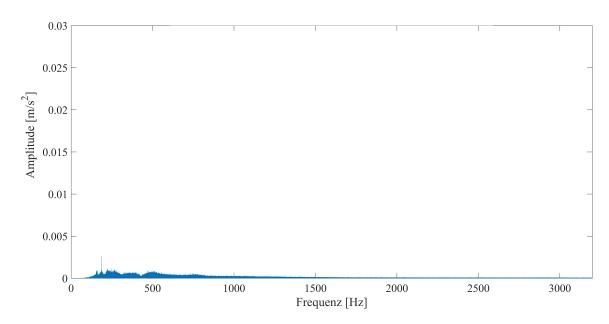


Abbildung A.20: Ergebnis der Fast Fourier Transformation des Sensors a_{con} für 61% Leistung mit Lufteinblasung

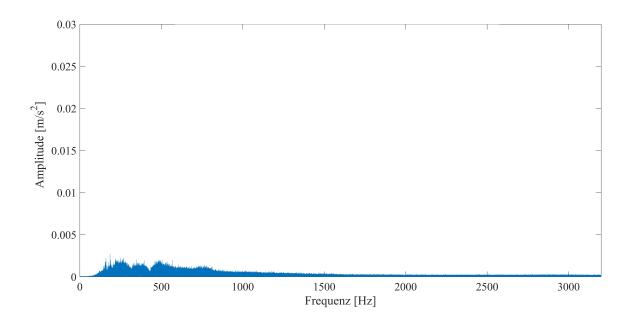


Abbildung A.21: Ergebnis der Fast Fourier Transformation des Sensors $a_{\rm con}$ für 53% Leistung mit Lufteinblasung

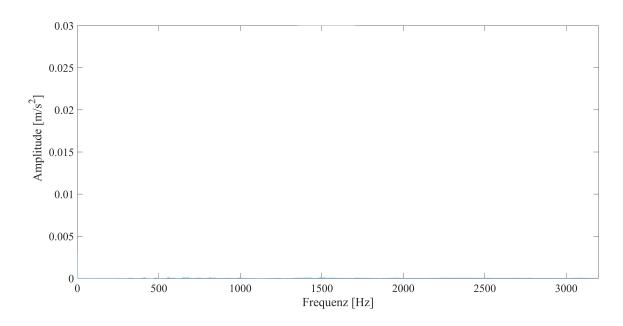


Abbildung A.22: Ergebnis der Fast Fourier Transformation des Sensors a_{con} für den Betrieb im CMO

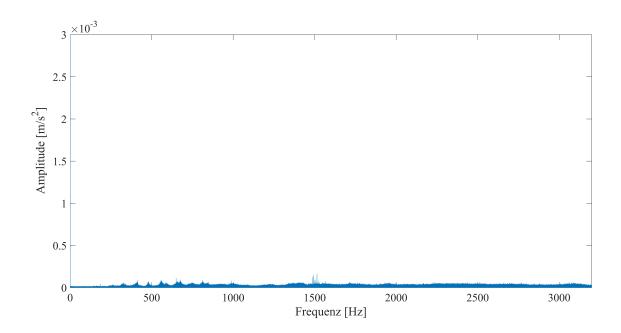


Abbildung A.23: Ergebnis der Fast Fourier Transformation des Sensors $\mathbf{a}_{\mathrm{con}}$ für den Betrieb im CMO mit feinerer Skalierung

Ergebnisse der Fast Fourier Transformation des **A.2** ruhenden Systems

Leistung	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$		a $[m/s^2]$		a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
SNL	177,6	3,59	139,8	0,00355	49,99	0,00008	12,74	0,00914	52,34	0,00231	159,6	0,00273
	185,6	4,73	265,3	0,00079	92,86	0,00009	92,83	0,00371	145,7	0,00147	187,8	0,00400
	278,8	9,99	378,8	0,00190	139,7	0,00027	252,9	0,00168	190,8	0,00192	224	0,00311
	720	23,24	416,4	0,00188	185,7	0,00116			235,9	0,00176	256,2	0,00317
	924	10,67	529,1	0,00388	222,7	0,00145			500,1	0,00051	322	0,00277
	1160	11,08	578,3	0,00380	380,9	0,00112			633,7	0,00052	394,4	0,00414
	1240	17,21	1055	0,00734	416,3	0,00082			713,9	0,00064	506	0,00503
	1440	8,99	1143	0,00603	520,1	0,00137			970	0,00032	553,6	0,00525
	3660	71,27	1266	0,00100	617,9	0,00096					670,5	0,00422
	3810	38,40	2189	0,00876	737,2	0,00104					757,5	0,00300
			2540	0,00138	843,7	0,00134					909,9	0,00250
					1071	0,00038					1094	0,00375
					1151	0,00040					1164	0,00378
					1410	0,00080					1356	0,00260
					1500	0,00073					1444	0,00251
					2365	0,00144					1727	0,00253
											2002	0,00262
											2056	0,00265
											2136	0,00261
											2227	0,00259
											3064	0,00444

Abbildung A.24: Ergebnis der Fast Fourier Transformation für den Betrieb im SNL

			1						I				
_	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p_{con1}		p _{con3}		a_{con}		Index
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a \left[m/s^2 \right]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$	[Hz]
8%	230,4	6,48	140,6	0,00268	49,98	0,00009	10,24	0,00705	43,74	0,00205	158,6	0,00242	50
	344	14,02	286,7	0,00078	92,83	0,00018	92,83	0,00303	96,92	0,00122	185,7	0,00527	92
	476	26,04	378,2	0,00121	222	0,00090	185,7	0,00150	185,7	0,00214	401,1	0,00240	140
	488,8	21,57	413,3	0,00124	250,6	0,00058	502,6	0,00059	242,4	0,00107	509,6	0,00290	160
	507,6	22,01	520,3	0,00183	292,5	0,00027	1000	0,00046	322,3	0,00055	545,3	0,00353	171
	596,4	36,68	597,2	0,00128	378,2	0,00075			490,4	0,00034	670,3	0,00297	232
	732	23,53	1068	0,00039	413,3	0,00051			603,6	0,00029	773,6	0,00183	1200
	1240	13,07	1161	0,00040		0,00063	1		713,8	0,00038	1154	0,00259	1500
	1350	16,88		0,00060		0,00058			1000	0.00030	1256	0,00261	
	1520	9,93		0,00033		0,00056	1			,	1982	0,00182	
	1660	9,05		0,00045		0,00086	1				2909	0,00290	
	3590	64,86		0,00085	· '	0,00021	1				3028	0,00317	
	6600	4,82		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1165	0,00022	1				3055	0,00322	
	10900	7,88			1419	0,00044	1				5000	0,00522	
	10,00	7,00			1499	0,00052	1						
					1962	0,00051	1						
					2060	0,00051	1						
						0,00030	1						
					2280		1						
					2357	0,00068							

Abbildung A.25: Ergebnis der Fast Fourier Transformation für den Betrieb bei 8% Leistung

Index [Hz]

> 140 160

Leistung	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
16%	232	4,27	140,6	0,00288	49,99	0,00009	8,014	0,01109	184,5	0,00169	158,7	0,00416
	267	6,32	288,4	0,00054	92,82	0,00014	158,7	0,00159	225,9	0,00153	186,8	0,00391
	325	9,36	380,8	0,00089	175,5	0,00091	234,9	0,00137	263,3	0,00115	231,6	0,00363
	489,5	19,79	413,8	0,00087	223,1	0,00100	324,7	0,00112	316,9	0,00079	267,1	0,00334
	579	19,08	519	0,00179	250,5	0,00046	391,1	0,00080	502,3	0,00049	398,1	0,00393
	771,5	18,63	593,7	0,00106	379	0,00052	503,4	0,00079	615,7	0,00040	542,7	0,00479
	1260	9,34	1072	0,00030	416	0,00038	620,1	0,00057	704	0,00043	653,3	0,00371
	1450	7,23	1159	0,00030	520	0,00061	1000	0,00040	1000	0,00033	774,7	0,00312
	1660	6,44	1256	0,00047	617,2	0,00053					877,8	0,00214
	2180	4,44	1500	0,00037	740,1	0,00051					1165	0,00277
	3600	44,26	1977	0,00029	834,8	0,00087					1353	0,00226
	6450	3,24	2210	0,00036	1069	0,00018					1426	0,00214
	10930	7,04	2574	0,00069	1152	0,00018					1844	0,00189
	11960	6,01			1408	0,00042					1992	0,00199
	21880	6,09			1500	0,00056					2139	0,00182
					1886	0,00035					2238	0,00179
					1996	0,00040					2573	0,00213
					2044	0,00046					2956	0,00258
					2093	0,00046						
					2368	0,00053						

Abbildung A.26: Ergebnis der Fast Fourier Transformation für den Betrieb bei 16% Leistung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a_{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
33%	508,55	20,00	0,006	0,00255	0,006	0,00211	0,031	0,00733	3,284	0,00999	160,6	0,00262
	599,76	22,60	40,22	0,00010	40,6	0,00011	4,883	0,01509	3,894	0,00838	197,7	0,00466
	1260	13,46	49,98	0,00015	49,98	0,00011	16,3	0,00447	4,877	0,01441	223,6	0,00542
	1500	6,10	91,2	0,00021	87,14	0,00024	37,91	0,00251	6,616	0,00910	254,1	0,00398
	3630	45,37	141,8	0,00013	148,4	0,00015	107,1	0,00134	8,399	0,00804	404,7	0,00581
	6520	4,64	233,8	0,00018	237,1	0,00022	158	0,00134	10,06	0,00585	506,8	0,00672
	10900	5,51	299,8	0,00019	300,5	0,00019	249,5	0,00135	14,8	0,00330	571,9	0,00604
			421,2	0,00015	394	0,00017			17,6	0,00302	667,3	0,00499
			1731	0,00061	748	0,00021			24,45	0,00223	796,8	0,00403
					1152	0,00024			29,55	0,00247	862,5	0,00376
					1419	0,00033			33,64	0,00199	1116	0,00700
					1499	0,00046			40,57	0,00227	1265	0,00546
					1999	0,00032			80,01	0,00150	1815	0,00370
					3186	0,00162			114,9	0,00132		
									193,1	0,00150		
									236,8	0,00200		

Abbildung A.27: Ergebnis der Fast Fourier Transformation für den Betrieb bei 33% Leistung

> 140 160

232

Index [Hz]

> 140 160

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
44%	185,6	6,18	0,006	0,00232	0,006	0,00214	0,037	0,01447	0,037	0,01095	160,3	0,00246
	344	10,70	49,99	0,00016	49,99	0,00017	3,693	0,03392	1,99	0,01072	185,7	0,00793
	511,8	17,58	86,51	0,00021	87,89	0,00021	5,17	0,00990	3,632	0,01741	199,2	0,00332
	595,8	19,56	147,1	0,00014	145,7	0,00015	6,616	0,01124	4,236	0,00957	223,8	0,00424
	673,8	15,09	241,6	0,00021	235,8	0,00021	7,324	0,01076	6,622	0,01010	234,8	0,00441
	691,2	16,22	298,3	0,00019	312,4	0,00022	8,93	0,00982	7,208	0,01004	255,2	0,00383
	1280	12,79	485,7	0,00019	405,1	0,00017	17,67	0,00270	7,794	0,01009	321	0,00324
	1660	5,58	916,4	0,00029	1499	0,00047	19,33	0,00269	8,875	0,00916	340,6	0,00313
	2130	5,25	1420	0,00048					10,31	0,00676	401,5	0,00375
	3620	48,95	1723	0,00071					11,68	0,00524	444,5	0,00288
	6510	4,23	2041	0,00057					123	0,00133	506,8	0,00659
	10780	4,70							185,7	0,00208	580,7	0,00651
	15990	2,80							234,8	0,00257	681,9	0,00484
	21900	5,02									783,3	0,00375
											1105	0,00550

Index [Hz] 140 160 232

Abbildung A.28: Ergebnis der Fast Fourier Transformation für den Betrieb bei 44% Leistung

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
53%	171,6	4,62	0,006	0,00212	0,006	0,00203	1,501	0,02187	0,568	0,00987	161,1	0,00227
	185,6	8,76	50,03	0,00015	36,66	0,00014	2,991	0,04440	1,489	0,04913	185,8	0,00951
	235,6	7,62	99,13	0,00017	50,02	0,00012	4,492	0,01660	2,991	0,02936	197,4	0,00394
	338,7	12,77	140,1	0,00017	95,96	0,00019	7,105	0,00653	4,48	0,01303	232,1	0,00905
	441,6	20,26	185,8	0,00017	140,4	0,00019	185,8	0,00237	4,962	0,01014	234,8	0,00845
	495,9	19,01	236,4	0,00028	239,9	0,00029	232,1	0,00275	9,247	0,07265	254,5	0,00292
	666,61	28,45			296,3	0,00027	696,1	0,00070	13,26	0,00457	403,6	0,00368
	929	12,34			1501	0,00053	927,6	0,00173	185,8	0,00282	509,7	0,00480
	1290	18,65			2024	0,00042			233,1	0,00603	695,9	0,02671
	3390	22,84			2501	0,00059			463,4	0,00150	927,6	0,00894
	3580	54,94			3192	0,00216			696,1	0,00115	1157	0,00543
	3690	59,01							731,2	0,00108		
	6410	5,53							927,6	0,00064		
	10910	7,02							1158	0,00027		
									1298	0,00019		
									1391	0,00019		



Abbildung A.29: Ergebnis der Fast Fourier Transformation für den Betrieb bei 53% Leistung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p_{con1}		p _{con3}		a _{con}		Index
[%]	f [Hz]	a $[m/s^2]$	l	a $[m/s^2]$		a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a [m/s²]	[Hz]
61%	185,4	5,46	0,003	0,00349	0,003	0,00333	1,422	0,02336	1,422	0,07070	160,6	0,00063	50
	232,22	17,42	50,01	0,00008	184,2	0,00015	2,844	0,05249	2,844	0,04713	185,7	0,00193	92
	342,63	7,95	92,84	0,00012	1500	0,00027	5,692	0,00767	4,263	0,01026	234,4	0,00093	140
	462,95	18,00	142	0,00007					5,686	0,00797	341,3	0,00091	160
	695,13	13,80	184,2	0,00013					7,028	0,00526	406	0,00083	171
	927,6	11,82	185,7	0,00014					234,4	0,00091	505,2	0,00090	232
	1160	11,70	235,6	0,00010							730,2	0,00068	1200
	2680	7,95	464,1	0,00008							819,9	0,00060	1500
	3630	39,11	488,9	0,00008							1241	0,00091	
			944,5	0,00013							2203	0,00143	
			1650	0,00023									
			2023	0,00019									
			2688	0,00014									
			2941	0,00019									

Abbildung A.30: Ergebnis der Fast Fourier Transformation für den Betrieb bei 61% Leistung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}		Index
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$	[Hz]
67%	185,47	8,29	0,003	0,00248	0,003	0,00250	1,392	0,02146	1,392	0,08505	160,8	0,00037	50
	234	21,20	49,99	0,00007	49,99	0,00008	2,786	0,03518	2,783	0,03923	172,4	0,00035	92
	372	11,65	92,84	0,00011	92,84	0,00006	4,166	0,00674	4,166	0,00600	185,7	0,00230	140
	498,62	18,89	100	0,00005	100	0,00006	5,515	0,00494	185,7	0,00070	234,2	0,00065	160
	714,63	12,68	150	0,00005	111,2	0,00005	185,7	0,00054	234,2	0,00084	320,7	0,00043	171
	931,24	7,94	171,4	0,00004	150	0,00006	234,2	0,00040	635,5	0,00010	405,4	0,00045	232
	1250	10,95	182,8	0,00006	184,3	0,00015					505,3	0,00058	1200
	2990	8,75	184,3	0,00015	545,5	0,00007					583,4	0,00059	1500
	3640	39,06	1499	0,00024	1499	0,00029					723,4	0,00054	
			1635	0,00024	2382	0,00021					1137	0,00060	
			2217	0,00016	3101	0,00063					1221	0,00061	
			2639	0,00013							1605	0,00053	
			2897	0,00017							1896	0,00069	
			2991	0,00018							2046	0,00072	
											2226	0,00080	
											2969	0,00113	

Abbildung A.31: Ergebnis der Fast Fourier Transformation für den Betrieb bei 67% Leistung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$		$a [m/s^2]$		a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
75%	185,57	8,45	0,003	0,00160	0,003	0,00176	1,364	0,02380	1,364	0,03100	170,7	0,00033
	234,59	10,94	50	0,00012	50	0,00012	2,713	0,01168	2,713	0,02116	185,7	0,00329
	503,6	21,98	92,84	0,00014	92,87	0,00006	4,071	0,00474	4,074	0,00541	197,8	0,00043
	693,28	13,05	100	0,00004	100	0,00006	6,561	0,00332	5,441	0,00343	233,8	0,00086
	1340	9,96	150	0,00005	121,5	0,00005	185,7	0,00069	6,561	0,00308	520,6	0,00044
	3640	39,24	184,3	0,00007	150	0,00005	233,5	0,00049	133	0,00017	575,2	0,00048
			1161	0,00013	184,3	0,00007			185,7	0,00078	692,2	0,00039
			1500	0,00020	300	0,00008			233,5	0,00091		
			1563	0,00017	1435	0,00009			1008	0,00004		
			2338	0,00013	1500	0,00028						
			2407	0,00013	1620	0,00010						
			2962	0,00013	2380	0,00018						
					3103	0,00048						

Index [Hz] 140 160 232 1200

Abbildung A.32: Ergebnis der Fast Fourier Transformation für den Betrieb bei 75% Leistung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}		Index
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$	[Hz]
83%	185,6	6,96	0,006	0,00052	0,006	0,00066	0,006	0,00688	1,465	0,04006	185,5	0,01206	50
	422	12,80	38,67	0,00005	7,446	0,00004	1,013	0,00399	2,93	0,01951			92
	451,2	14,09	50,03	0,00011	34,33	0,00004	1,465	0,02639	4,395	0,00472			140
	500,4	12,99	92,9	0,00022	50,03	0,00010	2,93	0,02447	10,16	0,00281			160
	659,2	13,02	100	0,00007	85,24	0,00006	4,401	0,00289	185,8	0,00291			171
	1240	4,40	150,1	0,00013	92,9	0,00011	7,153	0,00337	232,8	0,00023			232
	3610	24,40	171,5	0,00053	100	0,00011	9,693	0,00280	371,6	0,00012			1200
			185,8	0,00014	150,1	0,00009	10,16	0,00308					1500
			300,1	0,00007	234,9	0,00006	185,8	0,00241					
			1279	0,00014	300,1	0,00008							
			1501	0,00027	388,8	0,00007							
					665,5	0,00007							
					884,4	0,00010							
					1501	0,00046							

Abbildung A.33: Ergebnis der Fast Fourier Transformation für den Betrieb bei 83% Leistung

					1		I				I	
	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p_{con1}		p_{con3}		a_{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
100%	186	9,48	0,006	0,00325	0,006	0,00039	0,006	0,00663	0,006	0,00586	1,878	0,00034
	343,6	7,34	38,97	0,00010	49,47	0,00015	0,38	0,00226	1,467	0,00246	24,37	0,00044
	439	9,18	49,47	0,00016	77,94	0,00006	0,833	0,00246	4,534	0,00046	53	0,00040
	508,2	13,96	77,94	0,00004	84,86	0,00006	1,57	0,00261	6,738	0,00045	83,05	0,00034
	610,6	9,25	84,86	0,00004	88,48	0,00010	7,076	0,00164	7,076	0,00129	113,7	0,00035
	723,2	6,50	91,89	0,00014	91,89	0,00009	8,507	0,00051	10,67	0,00041	183,8	0,00874
	1400	7,02	148,4	0,00006	98,97	0,00014	14,15	0,00117	14,15	0,00035	252,9	0,00048
	3340	4,93	169,6	0,00005	183,8	0,00009	21,21	0,00142	24,74	0,00033	508,7	0,00074
	3770	7,22	183,8	0,00010	298,8	0,00010	28,27	0,00074	35,39	0,00034	553,2	0,00070
			221,6	0,00005	367,6	0,00010	35,35	0,00038	49,47	0,00054	673,6	0,00061
			302	0,00008	830,7	0,00009	42,42	0,00058	98,97	0,00046	1224	0,00105
			543,6	0,00006	1484	0,00032	49,47	0,00053	169,6	0,00026	2776	0,00156
			591,4	0,00062	2386	0,00020	77,94	0,00024	183,8	0,00219		
			665,9	0,00006	3020	0,00042	98,97	0,00044	229,4	0,00016		
			1380	0,00015			183,8	0,00189				
			1484	0,00022								
			2207	0,00012								
			2945	0,00013								

Abbildung A.34: Ergebnis der Fast Fourier Transformation für den Betrieb bei 100% Leistung

Leistung	$a_{\mathrm{GV},1}$	·	a _{THBx-acc}	·	a _{THBy-acc}		p _{con1}		p _{con3}		a_{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	a $[m/s^2]$		$a \left[m/s^2 \right]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a \left[m/s^2 \right]$
119%	185,7	8,30	0,006	0,00023	0,006	0,00029	0,006	0,00784	0,012	0,00292	185,6	0,01469
	506,12	17,86	7,141	0,00003	7,141	0,00005	2,057	0,00087	6,354	0,00622	328,8	0,00069
	578,42	16,89	33,59	0,00004	21,42	0,00003	3,326	0,00110	7,141	0,00277	576,2	0,00150
	709,5	8,37	39,19	0,00004	28,77	0,00003	5,066	0,00228	7,404	0,00182	1027	0,00189
	1210	7,84	42,85	0,00005	40,03	0,00004	6,354	0,00300	7,703	0,00149	1116	0,00250
	3660	12,52	49,99	0,00014	49,99	0,00011	7,141	0,00263	185,6	0,00323	1236	0,00186
			89,15	0,00004	92,84	0,00006	7,404	0,00190			1389	0,00194
			92,82	0,00018	99,98	0,00007	7,703	0,00163			2772	0,00178
			99,95	0,00011	140	0,00005	21,42	0,00087				
			149,9	0,00009	143	0,00005	28,56	0,00065				
			185,6	0,00044	149,9	0,00008	92,82	0,00027				
			299,9	0,00008	157,1	0,00005	118,3	0,00021				
			352	0,00007	178,5	0,00005	185,6	0,00292				
			449	0,00006	185,6	0,00006						
			553,6	0,00008	240,6	0,00007						
			1389	0,00019	305,1	0,00008						
			1499	0,00020	569,8	0,00009						
					819,3	0,00010						
					881,5	0,00011						
					1124	0,00012						
					1440	0,00016						
					1499	0,00029						
					2354	0,00020						

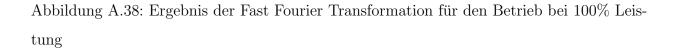
Index [Hz] 140 160 232

> 140 160

Abbildung A.35: Ergebnis der Fast Fourier Transformation für den Betrieb bei 119% Leistung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	$a [m/s^2]$		a $[m/s^2]$		a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
139%	186	10,12	0,018	0,00015	0,006	0,00012	0,006	0,00728	0,006	0,00316	160,6	0,00085
	378,6	13,59	7,115	0,00005	7,141	0,00007	2,075	0,00848	2,075	0,00791	170,7	0,00079
	568,8	12,50	16,81	0,00005	49,98	0,00007	14,28	0,00250	7,141	0,00514	184,9	0,01422
	996,5	8,28	28,43	0,00005	69,89	0,00006	21,42	0,00145	11,83	0,00253	222,6	0,00132
	3640	22,84	37,8	0,00005	99,96	0,00016	28,56	0,00272	15,31	0,00233	253,9	0,00116
			49,88	0,00005	141	0,00006	185,6	0,00292	22,23	0,00188	317,3	0,00119
			54,35	0,00005	158,8	0,00007	511,7	0,00033	185,6	0,00313	404,7	0,00098
			75,57	0,00006	185,6	0,00018	961,3	0,00024	234,7	0,00064	512,1	0,00238
			89,96	0,00006	238,6	0,00009			250,7	0,00034	573,1	0,00196
			99,72	0,00005	305,4	0,00010			285,2	0,00027	677,6	0,00116
			154,2	0,00006	402,6	0,00008			319	0,00025	928	0,00145
			185,1	0,00045	476,3	0,00014			505,7	0,00016	1025	0,00222
			244,4	0,00009	771,1	0,00014			627,6	0,00023	1120	0,00233
			299,8	0,00011	960,1	0,00017			729,2	0,00017	1186	0,00199
			316,1	0,00009	1148	0,00021			981,5	0,00015	1402	0,00117
			491,8	0,00013	1500	0,00036						
			568,6	0,00010	1733	0,00018						
			1136	0,00026	2063	0,00019						
			1362	0,00022	2436	0,00025						
			1495	0,00025	3116	0,00054						
			1623	0,00022								
			1835	0,00020								
			2258	0,00018								
			2596	0.00014								

Abbildung A.36: Ergebnis der Fast Fourier Transformation für den Betrieb bei 139% Leistung


> 92 140 160

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	$a [m/s^2]$	1	a $[m/s^2]$		a $[m/s^2]$		a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
119%	186	10,12	0,012	0,00006	0,006	0,00011	0,006	0,00440	0,006	0,00318	161,3	0,00074
	378,6	13,59	38,65	0,00004	49,78	0,00013	2,377	0,00182	2,377	0,00183	184,9	0,01237
	568,8	12,50	49,99	0,00014	92,46	0,00010	4,565	0,00598	3,374	0,00257	227,8	0,00065
	996,5	8,28	92,84	0,00014	99,57	0,00023	5,757	0,00244	4,067	0,00534	574,9	0,00176
	3640	22,84	99,97	0,00015	141,9	0,00058	7,101	0,00148	4,565	0,00524	1025	0,00187
			110,3	0,00005	184,9	0,00009	14,23	0,00090	4,894	0,00420	1103	0,00239
			150	0,00005	232,8	0,00084	21,34	0,00073	5,757	0,00238	1224	0,00218
			185,7	0,00039	299,9	0,00076	29,78	0,00073	7,101	0,00218		
			238,5	0,00007	543,3	0,00011	40,16	0,00057	14,12	0,00062		
			553,9	0,00008	1126	0,00017	75,49	0,00042	14,85	0,00067		
			944,8	0,00016	1393	0,00019	184,9	0,00268	184,9	0,00029		
			1133	0,00022	1494	0,00034						
			1404	0,00020	1690	0,00017						
			1500	0,00027	1913	0,00016						
			1593	0,00019	2346	0,00023						
			1848	0,00017	2965	0,00045						
			2020	0,00016	3030	0,00044						
			2129	0,00015								

Index

Abbildung A.37: Ergebnis der Fast Fourier Transformation für den Betrieb bei 119% Leistung

Leistung	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$		$a [m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
100%	185,7	9,95	0,002	0,00054	0,002	0,00048	0,002	0,01223	0,002	0,00550	185,7	0,00534
	505,2	12,70	39,23	0,00005	39,33	0,00003	7,15	0,00125	1,25	0,00076	371,3	0,00044
	594,8	7,56	49,99	0,00010	49,99	0,00007	14,29	0,00093	7,15	0,00072	556,6	0,00038
	1270	6,35	85,69	0,00003	78,5	0,00002	21,43	0,00074	10,12	0,00019	1118	0,00054
	3650	15,73	89,28	0,00003	82,14	0,00003	28,58	0,00261	12,6	0,00020	1245	0,00069
			92,84	0,00010	85,65	0,00004	35,71	0,00022	14,29	0,00020	1440	0,00045
			99,98	0,00003	89,32	0,00005	42,86	0,00024	21,43	0,00016		
			150	0,00005	92,84	0,00005	46,68	0,00012	25,48	0,00017		
			171,4	0,00003	100	0,00004	49,99	0,00023	35,68	0,00012		
			185,7	0,00008	150	0,00005	100	0,00019	49,99	0,00020		
			1500	0,00009	185,7	0,00007	171,4	0,00016	100	0,00020		
					332,4	0,00005	185,7	0,00109	171,4	0,00021		
					371,3	0,00006	371,3	0,00008	178,5	0,00010		
					868,2	0,00005	3108	0,00007	185,7	0,00131		
					1399	0,00007						
					1500	0,00015						
					2359	0,00010						
					3094	0,00019						

[Hz]

140 160

232 1200

Index [Hz]

> 140 160

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
75%	89,6	3,78	0,003	0,00018	0,003	0,00029	1,355	0,03059	0,003	0,00323	185,7	0,00638
	185,6	8,24	38,02	0,00004	7,141	0,00003	2,252	0,00802	1,355	0,05320	219,1	0,00019
	450,4	4,67	41,53	0,00003	38,07	0,00007	2,716	0,01321	2,71	0,01105	277,2	0,00016
	583,2	3,50	49,99	0,00003	50,01	0,00003	3,03	0,00699	3,03	0,00671	370	0,00023
	991,2	3,72	79,69	0,00003	92,87	0,00011	4,962	0,00253	4,068	0,00625	493,1	0,00019
	3600	15,90	84,79	0,00003	184,4	0,00056	7,147	0,00189	4,962	0,00276	772,3	0,00017
			91,53	0,00003	1500	0,00018	185,7	0,00137	5,414	0,00289	830,8	0,00016
			92,87	0,00021	2043	0,00009	3108	0,00009	185,7	0,00187	1274	0,00012
			171,4	0,00004	3049	0,00026						
			183	0,00009								
			184,4	0,00051								
			185,7	0,00044								
			187	0,00017								
			1500	0,00011								

Index [Hz] 140

Abbildung A.39: Ergebnis der Fast Fourier Transformation für den Betrieb bei 75% Leistung mit Lufteinblasung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a_{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
67%	390	11,14	0,003	0,00019	0,003	0,00021	1,419	0,02151	0,003	0,00839	61,24	0,00008
	502,4	7,46	38,25	0,00005	16,62	0,00003	2,493	0,00600	1,419	0,06062	92,89	0,00013
	958	4,29	41,73	0,00003	38,25	0,00008	2,832	0,03410	2,832	0,03191	123,3	0,00031
	2210	3,11	50,02	0,00005	41,75	0,00005	4,23	0,00693	4,269	0,00754	161,1	0,00092
	3420	8,69	92,89	0,00007	50,02	0,00004	5,2	0,00610	5,661	0,00847	165,4	0,00055
	3650	8,86	144,1	0,00005	87,85	0,00006	5,884	0,00448	185,8	0,00094	172,6	0,00062
			185,8	0,00014	159,1	0,00008	10,78	0,00194			185,8	0,00261
			237,4	0,00011	185,8	0,00013	17,24	0,00129			225,7	0,00117
			282,9	0,00010	235,3	0,00011					266,7	0,00108
			311,7	0,00010	312,1	0,00010					511	0,00088
			391,1	0,00007	397,6	0,00009					749,8	0,00060
			490,5	0,00008	464,6	0,00008					1309	0,00026
			815,1	0,00006	793,1	0,00006						
			1353	0,00010	1501	0,00016						
			1422	0,00010	2398	0,00011						
			1501	0,00010	3061	0,00025						
			1613	0,00010								
			1751	0,00011								
			1828	0,00010								
			2959	0,00008								

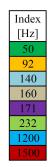


Abbildung A.40: Ergebnis der Fast Fourier Transformation für den Betrieb bei 61% Leistung mit Lufteinblasung

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$		a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
53%	185,6	3,82	0,021	0,00030	0,003	0,00021	1,501	0,02129	0,015	0,00578	61,17	0,00017
	338	16,42	22	0,00011	38,15	0,00007	3,003	0,04215	1,501	0,05046	160,6	0,00225
	386	16,77	92,72	0,00016	49,95	0,00005	4,529	0,01503	3,003	0,02783	175,7	0,00174
	396,5	16,35	145,3	0,00019	85,4	0,00014			4,529	0,01115	185,6	0,00274
	1000	5,36	237	0,00023	97,16	0,00012			5,643	0,00670	220,5	0,00214
	2230	3,78	304,8	0,00022	142,7	0,00011			6,217	0,00591	250,8	0,00224
	3640	8,51	360	0,00026	185,5	0,00009					267,9	0,00228
			721,2	0,00019	238,4	0,00016					348,6	0,00204
					298,5	0,00013					396,4	0,00192
					320,2	0,00014					488,5	0,00203
					493,3	0,00011					507,8	0,00202
					802,2	0,00010					567,6	0,00197
					1499	0,00017					603,8	0,00145
					2994	0,00028					764,6	0,00145

Index [Hz] 140 160 1200

Abbildung A.41: Ergebnis der Fast Fourier Transformation für den Betrieb bei 53% Leistung mit Lufteinblasung

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p_{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
33%			39,75	0,00017	41,26	0,00023	4,736	0,03061	0,537	0,01687	104,1	0,00179
			89,65	0,00047	83,64	0,00047	6,787	0,03423	1,025	0,01678	122,7	0,00316
			154,2	0,00025	147,4	0,00028	7,91	0,02003	2,393	0,01785	139	0,00487
			249,3	0,00036	238,6	0,00046	17,97	0,08746	4,297	0,02451	151,2	0,00708
			304,4	0,00030	331,1	0,00032	20,7	0,06344	4,736	0,02668	172,6	0,06530
			377,8	0,00022	468,5	0,00028	29,3	0,00555	8,838	0,01517	185,6	0,00764
			389,3	0,00020	806,8	0,00025			104,2	0,00433	224,9	0,00962
			488,3	0,00035	1040	0,00017			146,4	0,00442	354,3	0,00750
			719,2	0,00020	1138	0,00019					489,1	0,00879
			802,6	0,00025	1316	0,00021					767,4	0,00497
			1360	0,00032	1499	0,00080						
			1499	0,00064	2377	0,00038						
			1769	0,00037	3065	0,00091						
			2225	0,00027								
			2979	0,00025								

Index [Hz] 140 160 1200

Abbildung A.42: Ergebnis der Fast Fourier Transformation für den Betrieb bei 33% Leistung mit Lufteinblasung

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f[Hz]	a [m/s²]		a [m/s²]		a [m/s²]		a [bar]	f [Hz]	a [bar]	f [Hz]	a [m/s²]
22%		w [mo]	0,003	0,00013		0,00015		0,00818		0,00687	60,54	0,00018
			37,45	0,00007	· 1	0.00006		0.01099		0.00674		0,00070
			41,62	0,00006	_ ′	0,00006	,	0,00926		0,00639		0,00177
			50,01	0,00004	49,96	0,00004	12,12	0,00617	92,85	0,00128		0,00243
			92,89	0,00013	84,86	0,00010		0,00515	,	,	239	0,00248
			144,3	0,00001	92	0,00010	,				312,4	0,00174
			156	0,00006	142,4	0,00008					446,2	0,00142
			232,6	0,00014	237,8	0,00013					626,7	0,00113
			299,1	0,00009	333	0,00010					747,8	0,00090
			372	0,00006	486,1	0,00010					1209	0,00042
			493,3	0,00011	807,6	0,00007						
			809	0,00009	1402	0,00079						
			1371	0,00011	1500	0,00017						
			1500	0,00014	1955	0,00009						
			1894	0,00014	2378	0,00010						
			3095	0,00008	2955	0,00024						

Index [Hz] 140 160

Abbildung A.43: Ergebnis der Fast Fourier Transformation für den Betrieb bei 22% Leistung mit Lufteinblasung

Leistung	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
16%	186	2,80	0,006	0,00025	0,006	0,00024	0,263	0,00778	0,592	0,01102	61,19	0,00024
	496,8	13,10	3,424	0,00004	92,84	0,00012	8,466	0,01243	6,134	0,00834	85,51	0,00030
	576,8	10,16	14,29	0,00004	146,9	0,00013			10,34	0,00580	92,82	0,00038
	615,6	9,10	37,4	0,00012	242,5	0,00020			51,5	0,00219	122,9	0,00124
	646,6	8,32	42,52	0,00008	332	0,00016			226,1	0,00138	132,6	0,00138
	1380	3,90	49,98	0,00008	478,6	0,00016					159,4	0,00281
	3540	19,59	85,51	0,00010	813,9	0,00012					165,6	0,00186
			92,84	0,00017	1500	0,00040					175,4	0,00251
			96,52	0,00014	1787	0,00012					232,7	0,00277
			98,73	0,00011	2045	0,00012					460,9	0,00129
			111,5	0,00009	2420	0,00017						
			150	0,00012	3090	0,00032						
			244,2	0,00019								
			303,1	0,00016								
			315,9	0,00001								
			388	0,00011								
			488,2	0,00016								
			807,3	0,00012								
			1500	0,00027								
			1590	0,00019								
			1679	0,00018								
			2380	0,00012								

Index [Hz] 140 160 232 1200

Abbildung A.44: Ergebnis der Fast Fourier Transformation für den Betrieb bei 16% Leistung mit Lufteinblasung

Leistung	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	$a [m/s^2]$		$a [m/s^2]$	f [Hz]	$a \left[m/s^2 \right]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
PHS1	3660	3,40	50,01	0,00012	7,153	0,00010	0,586	0,00952	0,037	0,00879	122,8	0,00216
			81,12	0,00015	38,61	0,00010	1,465	0,00660	0,44	0,01054	158,5	0,00431
			93,81	0,00015	80,9	0,00013	6,567	0,00596	0,72	0,01101	172,8	0,00309
			143	0,00017	142	0,00020	8,936	0,00682	1,477	0,00878	242,6	0,00458
			241,9	0,00032	243,8	0,00039	14,73	0,00776	2,271	0,00830	486	0,00404
			303,1	0,00034	331,1	0,00033	19,04	0,00687	3,052	0,00731	788,8	0,00407
			312,4	0,00031	474	0,00035	22,73	0,00644	4,028	0,00692	1229	0,00275
			333,3	0,00028	816,6	0,00034	118,9	0,00328	7,056	0,00560		
			477	0,00033	1500	0,00069	218,5	0,00203	8,02	0,00539		
			559,7	0,00025	1714	0,00044	445,5	0,00133	8,911	0,00548		
			781	0,00031	2109	0,00060			16,1	0,00400		
			1366	0,00055	2353	0,00064			70,19	0,00249		
			1500	0,00055	3014	0,00144			117,7	0,00256		
			1734	0,00051					122,7	0,00282		
			2040	0,00046					127	0,00298		
			2760	0,00045								
			3004	0,00047								

Abbildung A.45: Ergebnis der Fast Fourier Transformation für den Betrieb im CMO

Leistung	$a_{ m GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$		a $[m/s^2]$		a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
PHS2			0,003	0,00019	0,003	0,00004	0,003	0,00539	0,003	0,00648	0,003	0,00149
			7,819	0,00001	7,133	0,00002	0,664	0,01074	0,664	0,01052	185,7	0,00006
			10,54	0,00001	92,63	0,00001	23,77	0,00002	1,352	0,00022	260,5	0,00007
			14,45	0,00002	99,74	0,00003	35,59	0,00005	2,024	0,00023	272,8	0,00005
			19,14	0,00001	171	0,00002	40,07	0,00005	2,703	0,00016	285,2	0,00004
			32,81	0,00001	189,8	0,00002	64,17	0,00002	3,376	0,00012	297,6	0,00006
			92,86	0,00002	299,3	0,00002	125,5	0,00007	4,052	0,00010	316,4	0,00009
			99,99	0,00003	320,6	0,00003	135,4	0,00003	4,718	0,00008	328,3	0,00009
			171,4	0,00004	1496	0,00033	142,8	0,00003	5,327	0,00006	339,2	0,00007
			307,1	0,00002	2304	0,00003	163,9	0,00003	5,9	0,00004	375,3	0,00006
			321,4	0,00004	3035	0,00006	170,9	0,00002	6,618	0,00005	413,7	0,00013
			1091	0,00003			210,2	0,00005	40,13	0,00003	482,1	0,00016
			1256	0,00003			243,3	0,00003	125,4	0,00003	558	0,00017
			1500	0,00020			334,9	0,00002	210,2	0,00002	669,6	0,00015
			1698	0,00003			514	0,00002			992	0,00029
			1865	0,00002			2323	0,00002			1493	0,00022
							2900	0,00002			1761	0,00009
							3000	0,00003			2633	0,00007
							3085	0,00004			3038	0,00008
							3099	0,00006				
							3185	0,00005				

Abbildung A.46: Ergebnis der Fast Fourier Transformation für den Betrieb im CMO

> 140 160

Leistung	a _{GV 1}		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a [m/s²]	f [Hz]	a [m/s²]	f [Hz]	a [m/s²]	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
PHS3			0.003	0,00009	0,003	0,00017	0,003	0,02012	0,003	0,00739	0,003	0,00302
			7,135	0,00001	7,135	0,00002	0,726	0,00351	0,726	0,01143	185,7	0,00005
			8,2	0,00002		0,00001	1,456	0,00010	1,434	0,00223	327,4	0,00006
			9,766	0,00001	42,19	0,00001	2,179	0,00015	2,158	0,00062	412,6	0,00009
			32,03	0,00002	49,21	0,00001	2,908	0,00009	2,869	0,00042	479,2	0,00007
			51,56	0,00002	63,67	0,00001	3,635	0,00008	3,577	0,00025	556,5	0,00009
			77,73	0,00001	74,23	0,00013	4,364	0,00006	4,303	0,00013	650,1	0,00011
			92,87	0,00002	92,85	0,00001	5,087	0,00004	5,005	0,00012	813,6	0,00009
			100	0,00002	99,99	0,00003	5,817	0,00003	5,737	0,00007	991,9	0,00008
			171,4	0,00003	307,1	0,00002	6,497	0,00003	6,439	0,00006	1514	0,00016
			307	0,00003	321,4	0,00003	8,981	0,00002	7,144	0,00004	1715	0,00007
			321,4	0,00003	430,9	0,00002	10,93	0,00003	7,898	0,00004	1955	0,00002
			592,7	0,00002	1500	0,00029	35,82	0,00006	8,731	0,00004		
			1500	0,00021	2322	0,00003	50,34	0,00005	28,13	0,00002		
							64,18	0,00002	35,82	0,00002		
							79,29	0,00002	50,06	0,00002		
							100,1	0,00009	84	0,00002		
							112,4	0,00002	100	0,00003		
							135,8	0,00007	135,8	0,00002		
							154,4	0,00004	154,4	0,00002		
							164,1	0,00002	165,6	0,00002		
							177,4	3,10900	177,3	0,00002		
							215,9	0,00005	215,9	0,00002		
							234,5	0,00005	234,5	0,00002		
							335,8	0,00003				
							962,2	0,00004				
							1691	0,00002				
							2907	0,00002				
							3007	0,00003				
							3093	0,00003				
							3107	0,00011				
							3193	0,00004				

Abbildung A.47: Ergebnis der Fast Fourier Transformation für den Betrieb im CMO

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p_{con3}		acon	
[%]	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
PHS4			94,65	0,00017	93,65	0,00018	0,586	0,01040	0,073	0,00971	256,3	0,00314
			145,2	0,00028	148,9	0,00036	10,25	0,00892	1,172	0,00965	830,2	0,00153
			185,1	0,00022	243,8	0,00045	18,58	0,00964	4,907	0,01028	1293	0,00097
			246	0,00044	325,4	0,00036	35,99	0,00649	34,16	0,00339		
			478,2	0,00038	473,6	0,00032	43,38	0,00455	50,12	0,00315		
			878,8	0,00029	806,2	0,00028			99,44	0,00280		
			1500	0,00070	1500	0,00077						
			1568	0,00044	3006	0,00011						

Abbildung A.48: Ergebnis der Fast Fourier Transformation für den Betrieb im CMO

> 140 160

232 1200

Index [Hz]

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$
LAB1			41,27	0,00020	41,1	0,00020	0,169	0,00965	0,266	0,01196	140	0,00306
			92,86	0,00024	90,46	0,00019	3,541	0,01058	3,65	0,01199	212	0,00522
			144,2	0,00016	143,7	0,00020	5,499	0,02184	5,499	0,01834	252,5	0,00462
			239,2	0,00023	238,7	0,00026	7,529	0,01611	8,339	0,01005	318,2	0,00410
			303,3	0,00017	326	0,00017	8,58	0,01218	10,05	0,00656	447,4	0,00302
			316,9	0,00019	490,9	0,00016	11,52	0,01041	12,13	0,00563	617,6	0,00249
			493,1	0,00017	800,6	0,00012	17,22	0,00756	14,19	0,00417	754,5	0,00224
			810,6	0,00011	1485	0,00042	40,67	0,00354	16,34	0,00427		
			1500	0,00036	2080	0,00016	48,45	0,00244	21,78	0,00416		
					2438	0,00019	56,74	0,00192				
					2988	0,00040	81,99	0,00218				
							91,93	0,00214				
							147	0,00206				

Abbildung A.49: Ergebnis der Fast Fourier Transformation für den Lastabwurf

Leistung	$a_{GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}		Index
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	a $[m/s^2]$	[Hz]
LAB2			138,9	0,00013	263,3	0,00018	0,024	0,00697	0,049	0,00653	0,024	0,00018	50
			249,8	0,00016	414,3	0,00014	6,787	0,00350	0,244	0,00449	227,4	0,00089	92
			299,9	0,00016	2056	0,00038	9,693	0,00334	2,124	0,00393	266,6	0,00084	140
			1704	0,00048	2457	0,00060	23,12	0,00231	7,324	0,00261	384,1	0,00070	160
			2266	0,00038	3119	0,00121	41,7	0,00127			494,3	0,00081	171
											783	0,00044	232
											1098	0,00050	1200
											1973	0,00033	1500

Abbildung A.50: Ergebnis der Fast Fourier Transformation für den Lastabwurf

Leistung	$a_{\rm GV,1}$		a _{THBx-acc}		a _{THBy-acc}		p_{con1}		p_{con3}		a_{con}	
[%]	f [Hz]	$a \left[m/s^2 \right]$	f [Hz]	$a [m/s^2]$	f [Hz]	$a [m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
LAB3			0,012	0,00051	0,012	0,00032	0,012	0,00288	0,012	0,00322	0,012	0,00037
			92,82	0,00005	92,82	0,00003	0,208	0,00093	0,195	0,00088	164,2	0,00008
			185,6	0,00008	185,6	0,00007	2,71	0,00063	1,77	0,00054	171,4	0,00008
			278,5	0,00004	1141	0,00004	3,137	0,00069	2,747	0,00044	185,6	0,00270
			608,2	0,00004	1333	0,00006	3,98	0,00058	136,1	0,00005	198,1	0,00014
			1097	0,00004	1463	0,00003	4,285	0,00065	185,6	0,00058	228,9	0,00006
			1297	0,00005	1541	0,00004	4,736	0,00067			371,3	0,00002
			1383	0,00005	2322	0,00010	5,005	0,00074			2898	0,00002
			2271	0,00011	2487	0,00009	5,921	0,00052			3138	0,00030
			2487	0,00006	2640	0,00004	6,799	0,00057				
					2816	0,00006	7,532	0,00049				

Abbildung A.51: Ergebnis der Fast Fourier Transformation für den Lastabwurf

> 140 160

1200

Index [Hz]

> 140 160

Leistung	$a_{\mathrm{GV},1}$		a _{THBx-acc}		a _{THBy-acc}		p _{con1}		p _{con3}		a _{con}	
[%]	f [Hz]	a $[m/s^2]$	f [Hz]	a $[m/s^2]$	-	a $[m/s^2]$	f [Hz]	a [bar]	f [Hz]	a [bar]	f [Hz]	$a [m/s^2]$
LAB4			0,012	0,00046	0,012	0,00042	0,012	0,00211	0,012	0,00215	0,012	0,00040
			92,85	0,00003	92,85	0,00006	0,11	0,00030	0,098	0,00032	164,3	0,00007
			185,7	0,00008	185,7	0,00005	0,208	0,00030	0,208	0,00029	171,4	0,00011
			278,5	0,00005	278,5	0,00004	36,1	0,00014	7,141	0,00006	185,7	0,00165
					327,7	0,00003	46,72	0,00006	36,1	0,00005	200,9	0,00022
					371,4	0,00003	63,89	0,00006	83,6	0,00003	234,2	0,00008
					415,6	0,00002	92,85	0,00005	92,85	0,00006	525,8	0,00015
							100,8	0,00008	100	0,00003	588,1	0,00014
							105,2	0,00010	105,3	0,00003	702,4	0,00014
							136,1	0,00008	171,4	0,00005	1264	0,00014
							151,9	0,00004	185,7	0,00004		
							163,9	0,00006				
							185,7	0,00042				
							200,9	0,00004				
							214,7	0,00055				
							235	0,00072				
							336,1	0,00004				
							436	0,00004				
							957	0,00005				
							2350	0,00004				
							2907	0,00004				
							3007	0,00005				
							3107	0,00015				

Abbildung A.52: Ergebnis der Fast Fourier Transformation für den Lastabwurf

Ergebnisse der Fast Fourier Transformation des **A.3** rotierenden Systems

Leistung	DMS_I)2	DMS_S	32	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a _{Hub}	
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	$a [m/s^2]$	[Hz]	[%]	f [Hz]	a [N/mm²]	f[Hz]	a [N/mm²]	f [Hz]	$a [m/s^2]$
SNL	7,141	3,22	0,488	0,89	13,44	0,39	7,14	8%	7,141	3,38	1,617	0,85	12,95	0,63
	14,28	1,82	1,419	0,93	29,41	0,05	50		14,28	1,50	7,141	1,83	29,91	0,05
	21,42	0,41	7,141	0,96	42,85	0,08	62,5		21,43	0,59	14,28	1,36	42,85	0,08
	29,41	0,20	14,28	1,39	100	0,42	92		29,91	0,20	21,43	0,59	111,2	0,58
	37	0,24	21,42	0,41	109,7	0,54	111		35,81	0,26	36,48	0,26	224,3	0,39
	62,5	1,34	29,41	0,28	138,2	0,47	140		42,85	0,36	42,85	0,27	279,4	0,72
	125	1,84	36,79	0,23	171,4	0,15	171		51,34	0,27	62,5	1,44	300	2,21
	187,5	1,70	42,85	0,25	228	0,43	232		62,5	1,29	125	2,04	357,9	0,51
	250	0,53	62,5	1,49	300	1,29			125	1,87	171,4	0,41	418,9	0,52
	312,5	0,52	125	2,05	335,6	0,65			187,5	1,68	187,5	1,89	581,1	0,31
	375	1,26	187,5	1,88	360,9	0,62			250	0,55	250	0,65	642,1	0,20
	437,5	0,44	250	0,65	410,8	0,59			312,5	0,49	312,5	0,51	700	0,57
	562,5	0,30	312,5	0,51	589,2	0,33			375	1,29	375	1,41	720,6	0,16
	625	0,56	375	1,50	630,1	0,25			437,5	0,43	437,5	0,47	769,6	0,06
	687,5	0,15	437,5	0,51	664,4	0,22			562,5	0,29	562,5	0,32	858,1	0,02
	750	0,09	562,5	0,34	700	0,33			625	0,57	625	0,63		
	812,5	0,16	625	0,67	772	0,06			687,5	0,14	687,5	0,15		
	875	0,07	687,5	0,14	861,8	0,02			750	0,09	750	0,11		
			750	0,11					812,5	0,16	812,5	0,17		
			812,5	0,17							875	0,08		
1			875	0,08										

Abbildung A.53: Ergebnis der Fast Fourier Transformation für die Betriebspunkte SNL und 8%

Leistung	DMS_I	02	DMS_S	52	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a_{Hub}
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	a [m/s²]	[Hz]	[%]	f [Hz]	a [N/mm ²]	f [Hz]	a [N/mm²]	f [Hz]
16%	7,141	4,99	7,141	4,29	7,141	0,03	7,14	33%	7,141	3,74	3,983	0,99	8,995
	14,28	1,42	14,29	1,06	12,58	0,37	50		14,29	2,24	7,141	3,18	15,03
	21,43	0,41	21,43	0,45	30,29	0,05	62,5		21,43	0,46	9,727	1,51	33,87
	35,33	0,42	62,5	1,282	42,85	0,11	92		35,73	0,68	14,29	2,01	104,7
	62,5	1,27	125	2,16	74,87	0,25	111		62,5	1,22	21,43	0,58	172
	125	1,78	187,5	1,97	112,3	0,65	140		71,38	0,73	37,15	0,70	224
	187,5	1,68	250	0,79	226,3	0,49	171		125	1,76	62,5	1,58	277,1
	250	0,54	312,5	0,56	276,1	0,58	232		187,5	1,69	125	2,19	300
	312,5	0,51	375	1,42	300	1,13			250	0,56	187,5	1,91	353
	375	1,29	437,5	0,48	352,2	0,50			312,5	0,55	250	0,68	386,4
	437,5	0,43	562,5	0,32	385,7	0,66			375	1,23	312,5	0,66	405,8
	562,5	0,29	625	0,63	412,4	0,64			437,5	0,43	375	1,41	565,8
	625	0,58	687,5	0,16	443,9	0,38			562,5	0,29	437,5	0,53	594,2
	687,5	0,15	750	0,14	587,6	0,37			625	0,55	562,5	0,36	613,6
	750	0,09	812,5	0,18	597,7	0,34			687,5	0,16	625	0,63	647
	812,5	0,15	875	0,09	614,3	0,32			750	0,10	687,5	0,19	700
	875	0,07		,	647,8	0,19			812,5	0,16	750	0,12	722,9
		,			700	0,29			875		812,5	0,18	
					723,9	0,12					875	,	
					773,7	0,07						-,	

Abbildung A.54: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 17% und 33%

Leistung	DMS_I)2	DMS_S	32	a_{Hub}		Index	L
[%]	f [Hz]	a [N/mm ²]	f [Hz]			a $[m/s^2]$	[Hz]	
44%	5,157	1,666	5,157	2,53	9,132	0,19	7,14	
	7,141	4,11	7,141	1,79	16,63	0,25	50	
	10,67	2,75	10,67	6,56	42,86	0,11	62,5	
	14,28	1,20	14,29	1,42	50	0,13	92	
	21,34	0,45	21,43	0,97	102,8	0,70	111	
	37,24	0,50	62,5	1,56	225,3	0,92	140	
	62,5	1,22	125	2,01	275,6	0,86	171	
	125	1,86	187,5	1,92	300	0,97	232	
	187,5	1,71	250	0,54	337,1	0,71		
	250	0,55	312,5	0,62	349,1	0,88		
	312,5	0,49	375	1,40	361,3	0,86		
	375	1,27	437,5	0,49	393,8	0,91		
	437,5	0,43	562,5	0,33	408,7	0,89		
	562,5	0,29	625	0,62	591,3	0,50		
	625	0,57	687,5	0,18	638,7	0,35		
	687,5	0,14	750	0,09	700	0,25		
	750	0,09	812,5	0,18	724,4	0,18		
	812,5	0,16	875	0,08	774,7	0,13		
	875	0,07						

Leistung	DMS_D2		DMS_S2		a_{Hub}	
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm ²]	f [Hz]	$a [m/s^2]$
53%	5,653	25,52	1,488	1,96	1,495	0,08
	7,141	2,50	5,653	17,61	2,983	0,04
	11,31	5,26	11,31	2,89	5,653	0,15
	14,29	2,02	14,29	2,15	18,27	0,18
	62,5	1,04	22,61	0,98	42,87	0,11
	125	1,83	28,26	1,21	100	1,16
	187,5	1,60	62,5	1,49	108,5	0,96
	250	0,55	125	1,96	226,6	1,16
	312,5	0,48	187,5	2,06	300,1	1,24
	375	1,31	312,5	0,63	350,2	1,27
	437,5	0,43	375	1,37	397,5	1,40
	562,5	0,29	437,5	0,47	602,5	0,73
	625	0,58	562,5	0,32	649,8	0,48
			625	0,61	699,9	0,32
			812,5	0,19	773,4	0,16

Abbildung A.55: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 44% und 53%

a [m/s²] 0,14

> 0,20 0,06 0,65 0,42 0,72 1,09 0,79

0,71

0,63

0,41

0,34 0,31

0,28

0,17 0,10

Leistung	DMS E	02	DMS S	32	a_{Hub}		Index	Leistung	DMS D2		DMS S2		a_{Hub}	
[%]	f [Hz]	a [N/mm ²]	f [Hz]	a [N/mm ²]		a [m/s²]	[Hz]	[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]		$a [m/s^2]$
61%	1,419	2,31	1,419	4,13	1,419	0,10	7,14	67%	1,389	2,64	1,389	2,46	1,389	0,10
	5,722	17,62	2,838	0,83	2,846	0,06	50		5,753	20,44	2,968	1,47	2,785	0,06
	7,149	4,58	4,303	2,52	5,119	0,04	62,5		7,141	2,84	4,364	3,17	4,173	0,04
	12,87	3,87	5,722	13,19	5,722	0,07	92		11,51	4,27	5,753	16,04	14,66	0,17
	62,5	1,26	7,149	5,65	13,91	0,18	111		12,9	2,45	7,141	5,42	31,25	0,04
	125	1,92	12,87	2,61	42,88	0,08	140		14,29	2,45	11,51	3,42	42,87	0,09
	171,5	1,17	14,29	2,12	50,02	0,08	171		17,26	0,66	14,29	1,98	50,01	0,10
	187,5	1,67	36,54	0,43	100,1	0,55	232		18,65	0,74	62,5	1,44	78,44	0,18
	250	0,53	62,5	1,51	156,6	0,26			62,5	1,27	125	2,05	100	0,89
	312,5	0,50	125	2,04	171,5	0,57			125	1,85	171,5	1,79	111,3	0,26
	375	1,29	171,5	1,84	219,8	0,45			171,5	1,25	187,5	1,98	171,5	0,65
	437,5	0,42	187,5	1,97	346,3	0,85			187,5	1,65	250	0,60	183	0,58
	562,5	0,28	250	0,63	390,7	0,67			250	0,53	312,5	0,57	300,1	0,73
	625	0,57	312,5	0,58	609,3	0,33			312,5	0,52	375	1,50	397,4	0,57
			375	1,44	653,7	0,31			375	1,29	437,5	0,49	602,6	0,29
			437,5	0,50	828,5	0,04			625	0,57	562,5	0,33	699,9	0,19
			562,5	0,33							625	0,67	817	0,05
			625	0,64							687,5	0,16	828,5	0,05
											812,5	0,18	900	0,02

Abbildung A.56: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 61% und 67%

Leistung	DMS_I)2	DMS_S	32	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a_{Hub}	
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	a $[m/s^2]$	[Hz]	[%]	f [Hz]	a [N/mm²]	f [Hz] a	a [N/mm²]	f [Hz]	$a [m/s^2]$
75%	1,366	2,06	1,366	0,76	1,366	0,11	7,14	83%	1,465	1,17	1,465	1,16	1,465	0,11
	5,783	11,98	3,075	0,75	5,785	0,08	50		5,684	9,73	4,219	0,73	2,93	0,05
	7,149	3,22	4,425	0,88	13,72	0,09	62,5		7,149	4,79	5,684	10,35	4,395	0,03
	11,57	2,03		9,93	31,25	0,04	92		14,3	1,87	7,149	3,80	5,684	0,06
	14,29	1,46	-	2,90		0,10			42,89	0,50	14,3	1,44	11,38	0,12
	42,88	0,34		1,59	_	0,09			62,5	1,28		0,46		0,04
	62,5	1,28		1,69		0,13	171		125	1,83		0,55		0,14
	125	1,84		0,38	_	0,26	232		171,6	1,81	62,5	1,39		0,17
	171,5	1,41	62,5	1,41	-	0,94			187,5	1,69		2,06		0,14
	187,5	1,65		2,05		0,23			250	0,52	-	2,45		0,97
	250	0,53	-	1,94		0,57			312,5	0,52		1,89	_	0,24
	312,5	0,51		1,90		0,28			375	1,30	-	0,61	150,1	0,26
	375	1,27		0,63	-	0,26			437,5	0,44		0,62	171,6	0,86
	437,5	0,44	-	0,58		0,46			562,5	0,29		0,56		0,25
	562,5	0,30		1,45		0,30			625	0,58		1,46	100	0,16
	625	0,57		0,49		0,16					437,5	0,50		0,47
			562,5	0,33		0,13					562,5	0,33		0,16
			625	0,65		0,12					625	0,65	396,5	0,15
			687,5	0,17		0,04					687,5	0,16		0,08
			750	0,11		0,04					750	0,11	699,8	0,12
			812,5	0,18		0,02					812,5	0,17	799,8	0,03
			875	0,08							828,4	0,19		0,07
											875	0,08	899,9	0,02

Abbildung A.57: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 75% und 83%

Leistung	DMS I)2	DMS_S	32	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a_{Hub}	
[%]	f [Hz]	a [N/mm²]		a [N/mm²]		a [m/s²]	[Hz]	[%]		a [N/mm²]		a [N/mm²]	f [Hz]	a [m/s²]
100%	7,149	5,66	7,149	3,50	14,26	0,11	7,14	119%	7,141	5,36	2,068	0,30	7,408	0,03
	14,3	1,32	14,3	1,74	18,06	0,09	50		14,28	2,59	7,141	3,70	14,28	0,07
	35,74	0,24	21,45	0,42	32,23	0,06	62,5		36,54	0,26	14,28	1,82	20,71	0,08
	62,5	1,27	42,88	0,50	42,88	0,15	92		62,5	1,22	21,42	0,42	42,85	0,20
	125	1,81		1,40	78,76	0,30	111		125	1,76	42,85	0,35		0,20
	171,5	1,15	125	2,07	100,1	1,39	140		171,4	0,92	62,5	1,47	92,81	0,72
	187,5	1,64		1,56	128,8	0,43	171		187,5	1,63	125	2,08		1,62
	250	,	187,5	1,89		0,64	232		200	0,52		1,07		0,27
	312,5		200,1	0,39	185,8	0,72			250	0,54	187,5	1,92		0,22
	375	1,27		0,60	-	0,21			312,5	0,50		0,72	157,1	0,19
	437,5	0,43		0,58		0,54			375	1,24	250	0,61		0,53
	562,5	0,29	_	0,21	343,1	0,45			437,5	0,42	312,5	0,55		0,30
	625	0,57		1,44	409	0,32			562,5	0,28	375	1,48	-	0,26
			437,5	0,49	435,9	0,27			625	0,55	437,5	0,48		0,30
			562,5	0,33	564,1	0,18					562,5	0,32	216,9	0,21
			625	0,64	591	0,18					625	0,66	· · · · · ·	0,49
			687,5	0,17	656,9	0,16					687,5	0,16		0,25
			750	0,10	699,8	0,14					750	0,10		0,04
			812,5	0,17	814,2	0,07					812,5	0,18		0,04
			828,5	0,12	828,5	0,05					828,6	0,08		
			875	0,08	899,9	0,04					875	0,08		

Abbildung A.58: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 100% und 119%

Leistung	DMS_E	02	DMS_S	2	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a _{Hub}	
[%]	f [Hz]	a [N/mm ²]	f [Hz]	a [N/mm ²]	f [Hz]	$a [m/s^2]$	[Hz]	[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	a [m/s²]
139%	2,022	0,90	2,022	1,44	14,29	0,07	7,14	119%	7,141	4,42	7,141	3,83	7,141	0,03129
	7,141	3,32	7,141	2,72	31,25	0,05	50		14,29	2,32	14,29	2,34	31,3	0,05933
	14,29	2,92	14,29	3,08	50,01	0,28	62,5		28,57	0,41	21,43	0,68	35,61	0,06864
	21,43	0,34	28,58	0,89	61,37	0,10	92		62,5	1,22	28,57	0,57	50	0,34360
	28,58	0,56	62,5	1,45	86,85	0,15	111		125	1,76	42,86	0,52	78,58	0,16110
	62,5	1,28	125	2,01	100	0,27	140		171,4	0,96	62,5	1,44	92,11	0,21080
	125	1,78	171,5	1,25	126,7	0,34	171		187,5	1,65	125	2,09	100	1,02300
	171,5	1,03	187,5	1,80	171,5	0,44	232		200	0,33	171,4	0,88	115	0,29930
	187,5	1,66	200,1	0,58	185,8	0,47			250	0,48	187,5	1,79	150	0,21450
	200,1	0,44	250	0,59	300,1	0,40			312,5	0,48	200	0,45	171,4	0,67590
	250	0,55	312,5	0,59	341	0,40			343,8	0,18	250	0,61	250,5	0,45050
	312,5	0,50	343,8	0,19	590	0,19			375	1,20	312,5	0,58	307	0,49790
	375	1,23	375	1,44	699,9	0,10			437,5	0,42	375	1,47	349,4	0,51560
	437,5	0,42	437,5	0,48	814,2	0,04			562,5	0,28	437,5	0,49	376,5	0,52090
	562,5	0,28	562,5	0,33	828,5	0,03			625	0,54	562,5	0,33	616,1	0,24220
	625	0,55	625	0,64					687,5	0,14	625	0,66	650,6	0,19270
	687,5	0,14	687,5	0,17					750	0,08	687,5	0,16	828,6	0,05153
	750	0,09	750	0,10					812,5	0,15	750	0,10	900	0,02526
	812,5	0,15	799,9	0,06					828,6	0,07	800	0,05		
	828,5	0,08	812,5	0,17					875	0,07	812,5	0,16		
	875	0,08	-	0,10							828,6	0,07		
			875	0,08							875	0,08		

Abbildung A.59: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 139% und 119%

Leistun	g DMS_1	D2	DMS_S	S2	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a_{Hub}	
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm ²]	f [Hz]	$a [m/s^2]$	[Hz]	[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	$a [m/s^2]$
100	7,149	4,01	7,149	1,95	7,149	0,02	7,14	75%	1,35	1,79	5,791	7,66	1,35	0,03
	14,29	1,34	14,29	2,48	10,69	0,05	50		5,791	10,14	14,29	1,60	2,716	0,04
	21,44	0,29	21,44	0,45	19,59	0,06	62,5		7,149	5,01	62,5	1,39	5,791	0,06
	35,73	0,23	35,73	0,18	32,2	0,04	92		11,57	1,50	125	2,06	7,149	0,06
	42,86	0,22	42,86	0,33	42,88	0,09	111		14,29	1,22	171,5	3,06	15,43	0,08
	62,5	1,29	62,5	1,43	50,02	0,07	140		62,5	1,31	187,5	1,88	30,86	0,06
	125	1,83	125	2,05	60,7	0,08	171		125	1,80	250	0,62	48,65	0,06
	171,5	0,67	171,4	0,98	78,67	0,17	232		171,5	2,30	312,5	0,57	92,9	0,12
	187,5	1,67	187,5	1,89	82,36	0,12			187,5	1,65	375	1,46	100,1	0,18
	250	0,56	200,1	0,28	89,33	0,29			250	0,54	437,5	0,48	111,9	0,19
	312,5	0,50	250	0,60	100	0,97			312,5	0,51	562,5	0,32	177,3	1,11
	375	1,26	312,5	0,59	171,4	0,40			375	1,29	625	0,65	231,7	0,10
	437,5	0,44	343,8	0,20	185,8	0,35			437,5	0,43	687,5	0,16	300,1	0,63
	562,5	0,30	375	1,46	232,2	0,19			562,5	0,29	750	0,11	318,1	0,11
	625	0,56	437,5	0,48	300,2	0,29			625	0,58	812,5	0,17	699,9	0,16
	687,5	0,14	562,5	0,32	366,2	0,28					828,5	0,23	799,9	0,02
	750	0,10	625	0,65	403,2	0,28					875	0,08	822,7	0,09
	812,5	0,15	656,3	0,07	596,8	0,15								
	875	0,07	687,5	0,17	633,8	0,12								
			750	0,10	699,8	0,07								
			812,5	0,17	814,2	0,03								
			828,6	0,07	828,6	0,03								
			875	0,08	900	0,02								

Abbildung A.60: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 100% und 75% mit Lufteinblasung

Leistung	DMS_E)2	DMS_S	32	a_{Hub}		Index	Leistung	DMS_D2		DMS_S2		a_{Hub}	
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm ²]	f [Hz]	$a [m/s^2]$	[Hz]	[%]	f [Hz] a	a [N/mm²]	f [Hz] a	1 [N/mm²]	f [Hz]	$a [m/s^2]$
61%	1,419	2,56	1,419	3,24	1,419	0,12	7,14	53%	1,503	0,83	1,503	2,30	1,503	0,06
	2,838	0,48	4,311	1,83	2,838	0,11	50		5,638	14,52	4,139	1,29	3,002	0,03
	5,73	21,56	5,73	15,36	4,25	0,04	62,5		7,137	4,09	5,638	9,96	4,498	0,02
	7,149	4,86	7,149	6,06	5,73	0,10	92		11,27	3,83	7,137	2,14	5,638	0,09
	11,45	3,96	14,3	1,96	7,149	0,67	111		62,5	1,20	11,27	1,85	7,137	0,05
	12,88	2,37	18,6	1,64	10,05	0,07	140		125	1,93	16,92	1,31	15,41	0,13
	14,3	1,73	24,33	1,07	14,93	0,18	171		187,5	1,67	28,16	0,83	31,11	0,05
	62,5	1,31	62,5	1,39	112,9	1,21	232		250	0,57	62,5	1,53	112,2	1,99
	125	1,77	125	2,08		1,69			312,5	0,52		2,03	182,6	0,66
	171,6	0,95	171,6	1,18	-	0,90			375	1,26	187,5	1,85	228,1	0,58
	187,5	1,61	187,5	1,98	332,2	1,05			437,5	0,44	250	0,55	279,8	0,93
	250	0,56	250	0,67	589,2	0,27			562,5	0,30	312,5	0,52	299,9	1,02
	312,5	0,49		0,59	-	0,35			625	0,56		1,50	348,3	0,92
	375	1,22	375	1,46		0,15					437,5	0,47	409,2	0,75
	437,5	0,44	437,5	0,49	887,1	0,04					562,5	0,31	590,8	0,42
	562,5	0,29	562,5	0,33							625	0,67	651,7	0,34
	625	0,54	625	0,65							687,5	0,15	700,1	0,26
			687,5	0,17							750	0,09	720,2	0,21
			750	0,12							812,5	0,17	817,4	0,06
			812,5	0,18							875	0,08	887,8	0,06

Abbildung A.61: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 61% und 53% mit Lufteinblasung

Leistung	DMS_I)2	DMS_S	52	a _{Hub}		Index	Leistung	DMS_D2		DMS_S2		a_{Hub}	
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	$a [m/s^2]$	[Hz]	[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]	f [Hz]	$a [m/s^2]$
17%	7,141	2,57	7,145	1,57	7,141	0,02	7,14	33%	7,145	5,02	7,145	5,52	7,145	0,03
	14,29	1,70	14,29	1,27	12,48	0,14	50		14,29	1,22	14,29	0,82	12,55	0,15
	21,43	0,35	21,43	0,39	17,64	0,11	62,5		37,18	0,43	37,18	0,44	17,17	0,10
	36,03	0,31	37,32	0,24	30,38	0,07	92		62,5	1,28	62,5	1,33	114,5	0,96
	62,5	1,26		1,40		0,05	111		125	1,83		2,05		0,51
	125	1,82	125	2,08	87,52	0,22	140		187,5	1,72	187,5	1,89	280,6	0,71
	187,5	1,64	187,5	1,85	115,6	0,94	171		250	0,56	250	0,56	299,8	0,81
	250	0,55		0,59		0,52	232		312,5	0,50		0,55		1,25
	312,5	0,50		0,57	282,6	0,83			375	1,30		1,43	401,8	0,77
	343,8	0,17	375	1,40	300	1,22			437,5	0,44	437,5	0,48	598,2	0,41
	375	1,25	437,5	0,48	-	1,32			562,5	0,29	562,5	0,32	647,7	0,48
	437,5	0,44	562,5	0,32	378	0,89			625	0,58	625	0,64	700,2	0,21
	562,5	0,29	625	0,63	412,6	0,75			687,5	0,14	687,5	0,16		0,16
	625	0,56	687,5	0,16	587,4	0,43			750	0,10	750	0,10	773,7	0,07
	687,5	0,14	750	0,10	640,7	0,53			812,5	0,16	812,5	0,17	885,5	0,03
	750	0,09	812,5	0,17	700	0,32			875	0,07	875	0,08		
	812,5	0,15	875	0,08	717,4	0,19								
	875	0,07	937,5	0,01	769,3	0,07								
					884,4	0,03								

Abbildung A.62: Ergebnis der Fast Fourier Transformation für die Betriebspunkte 17% und 33% mit Lufteinblasung

Leistung	DMS_E	02	DMS_S	32	a_{Hub}			Index
[%]	f [Hz]	a [N/mm²]	f [Hz]	a [N/mm²]		a [m/s²]		[Hz]
PHS	7,145	0,45	7,145	0,42	7,145	0,01		7,14
	14,29	0,19	38,96	0,19	14,29	0,06	-	50
	38,96	0,25	62,5	1,41	31,25	0,03		62,5
	62,5	1,28	125	2,07	62,5	0,02		92
	125	1,86	187,5	1,87	100	0,04		111
	187,5	1,67	250	0,61	118	0,02	ı	140
	250	0,55	312,5	0,60	155,4	0,12		171
	312,5	0,53	375	1,44	187,5	0,01		232
	375	1,27	437,5	0,50	200	0,01		
	437,5	0,45	562,5	0,34		0,01		
	562,5	0,30	625	0,64	238	0,04		
	625	0,57	687,5	0,17	257,2	0,02		
	687,5	0,15	750	0,11	285,8	0,02		
	750	0,09	812,5	0,17	300,1	0,81		
	812,5	0,15	875	0,08	346	0,04		
	875	0,07			400,1	0,05		
					407,3	0,04		
					592,7	0,02		
					599,9	0,03		
					654	0,01		
					699,9	0,21		
					762	0,01		
					844,6	0,01		

Abbildung A.63: Ergebnis der Fast Fourier Transformation für den Betrieb im CMO

A.4 MatLab-Skripte

A.4.1 Erstellen von Rohdaten

```
% Erstellen der Rohdaten %
clc;
clear all;
close all;
1) Definition des Dateipfades und Festlegen von nötigen Variablen
dateipfad = 'G:\Data';
addpath(char(dateipfad));
uff_files = dir('*.uff');
numfiles = length(uff_files);
% Festlegen der nötigen Variablen als leere Matrizen
A3 = [];
zp1 = [];
t = [];
mt = [];
% Erstellen einer Laufvariablen für die uff.-Dateien
h = [1:1:numfiles];
W Erstellen der Messwertreihen aus den uff.-Files
```


end

A4 = A3;

% Plotten und Speichern der Messwerte

```
for k = 1:numfiles
    filename = uff_files(h(k)).name;
    delimiterIn = ' ';
    headerlinesIn = 13;
    a = importdata(filename, delimiterIn, headerlinesIn);
    zeilen_a = length(a.data(:,1)) - 3;
    spalten_a = length(a.data(1,:));
    werte_a = zeilen_a*spalten_a;
    A = a.data(1:zeilen_a,:);
    A2 = [];
    for j = 1: zeilen_a
    A1 = A(j,:);
    A2 = [A2 A1];
    end
    A3 = [A3 \ A2];
```

106

```
% Erstellen des Zeitvektors (ein uff.-File misst 120 Sekunden)
time = 120*numfiles;
messpunkte = numfiles*werte_a;
x = linspace(0, time, messpunkte);
figure ('Name', 'messung2_2twf1', 'NumberTitle', 'off');
plot(x, A4);
cd('G:\ Figures');
savefig('messung2_m2_twf1.fig');
cd('G:\ Data');
m2_{twf1} = [x', A4];
save('messung2_2twf1','m2_twf1');
```

Darstellen der Messwerte A.4.2

```
% Darstellen der Messwerte %
clc;
clear all;
close all;
dateipfad = 'D:\Data';
```

```
addpath(char(dateipfad));
% Laden der Rohdaten des Sensors a_HUB
load('messung2_twf11');
name = \{ 'twf11' \};
% Daten aus Workspace in Programm holen
x0 = evalin('base', name\{1\});
x = x0(:,1);
y = x0(:,2);
% Umrechnen der Rohdaten in physikalische Werte mittels
% Messsensitivität
dcx = -12.92;
y = y + dcx;
sntyx = 0.01;
y = y/sntyx;
% Berechnung des gleitenden Mittelwertes
xg_use = x(1:100:end);
yg_{use} = y(1:100:end);
iN = 3000;
                          % Länge des Filters
xg_zu_val = 5;
                          % Vektor yg nach hinten verlängern
```

```
yg_zusatz = yg_use(1)*ones(length(xg_zusatz),1);
xg\_use\_neu = xg\_use(1:end) + xg\_zu\_val;
xg = [xg_zusatz; xg_use_neu];
yg = [yg_zusatz; yg_use];
yg = filter(ones(1,iN)/iN, 1, yg);
xg = xg(iN : end) - xg_zu_val;
yg = yg(iN : end);
y_a_con = y;
yg_acon = yg;
% Readme Filter: mit iN
                           wird
                                 die Länge des Filters angegeben. Der
\% Filterverursacht einen
                           Sprung, dessen Länge die Länge des Filters
\% ist.
        Um
            diesen
                    zu
                         vermeiden,
                                    werden \ zuerst \ mit \ xg\_zusatz \ und
\% yg_zusatz die Vektoren x und y um den Zeitsprung 5
% Werte
        iN
            verlängert,
                           der
                                Filter angewendet,
               Werte iN wieder abgezogen, indem erst
% eingefügten
\% iN die Vektoren xg und yg geplottet werden. Die Werte im Vektor xg
```

% müssen noch um den Zeitwert xg_zu_val , welcher zu Beginn eingefügt

xg_zusatz = linspace(1,xg_zu_val,iN)';

% Plotten der Messwerte

% wurde, runtergesetzt werden.

% Colormap

loyolagray = 1/255*[200,200,200];

 $mit\ der\ Anzahl$

danach diese

ab der Anzahl

und

```
DarkSeaGreen = 1/255*[143 188 143];
figure (1)
plot(x,y_a_con, 'Color', DarkSeaGreen);
hold on
plot ( xg, yg_a_con, 'r');
% Eigenschaften des Plots
x \lim ([0 \ 15000]);
y \lim ([-1000 \ 1000]);
xlabel('Zeit [s]', 'Fontsize', 25, 'FontName', 'Times New Roman');
ylabel_name = {'absolute Schwing- \n beschleunigung [m/\{s^2\}]'};
ylabel(sprintf(ylabel_name {1}), 'FontSize', 25, 'FontName', ...
        'Times New Roman');
hYLabel = get(gca, 'YLabel');
set (hYLabel, 'rotation', 90, 'Vertical Alignment', 'middle', 'Position', ...
    get (hYLabel, 'Position') - [1000,0,0]);
plot.Units = 'normalized';
\mathbf{set}(\mathbf{gca}, Position', [0.2\ 0.2\ 0.7\ 0.6]); \% \ left\ bottom\ width\ height
set (gca, 'FontSize', 25);
set(gca, 'FontName', 'Times New Roman');
set (gca, 'XTickMode', 'manual', 'XTick', 0:2500:15000);
set (gca, 'YTickMode', 'manual', 'YTick', -1000:250:1000);
% Einzeichnen der vertikalen Trennstriche der einzelnen
% Leistungsbereiche
line ([502 502], [-1000 5000], 'Color', [.7 .7 .7]);
```

legend({ 'a_{con}}');

% beschriftet

```
line ([684 684], [-1000 5000], 'Color', [.7 .7 .7]);
line ([1617 1617], [-1000 5000], 'Color', [.7 .7 .7]);
line ([1730 1730], [-1000 5000], 'Color', [.7 .7 .7]);
line ([2300 2300], [-1000 5000], 'Color', [.7 .7 .7]);
line ([2750 2750], [-1000 5000], 'Color', [.7 .7 .7]);
line ([3220 3220], [-1000 5000], 'Color', [.7 .7
                                                 .7]);
line ([3650 3650], [-1000 5000], 'Color', [.7 .7
                                                 .7]);
line ([4175 4175], [-1000 5000], 'Color', [.7 .7
line ([4600 4600], [-1000 5000], 'Color', [.7 .7
line ([5260 5260], [-1000 5000], 'Color', [.7 .7
line ([5890 5890], [-1000 5000], 'Color', [.7 .7
line ([6580 6580], [-1000 5000], 'Color', [.7 .7
line ([7010 7010], [-1000 5000], 'Color', [.7 .7
line ([7480 7480], [-1000 5000], 'Color', [.7 .7 .7]);
line ([7910 7910], [-1000 5000], 'Color', [.7 .7 .7]);
line ([8530 8530], [-1000 5000], 'Color', [.7 .7 .7]);
line ([9050 9050], [-1000 5000], 'Color', [.7 .7 .7]);
line ([9930 9930], [-1000 5000], 'Color', [.7 .7 .7]);
line ([10730 10730], [-1000 5000], 'Color', [.7 .7 .7]);
line ([11420 11420], [-1000 5000], 'Color', [.7 .7 .7]);
line ([11970 11970], [-1000 5000], 'Color', [.7 .7
line ([12800 12800], [-1000 5000], 'Color', [.7 .7 .7]);
line ([13710 13710], [-1000 5000], 'Color', [.7 .7 .7]);
line ([13830 | 13830], [-1000 | 5000], 'Color', [.7 .7 .7]);
% Einfügen der Legende
```

% Einfügen einer oberen x-Achse, welche die Leistungsstufen

111

 $dateipfad = 'G: \ ';$

addpath(char(dateipfad));

```
ax2 = axes('Position', [0.2 0.8 0.7 1e-12], ...
            'XAxisLocation', 'top', 'Color', 'none');
ax2\_xticks = [580\ 1654\ 2059\ 2525\ 2985\ 3435\ 3912\ 4387\ 4930\ 5575\ \dots
               6235 6795 7245 7695 8220 8790 9490 10330 11075 ...
               11695 12385 13265 13760];
ax2_xticklabels = ({ 'SU', 'SU', 'SNL', '8', '17', '33', '44', '53', ...
                      '61', '67', '75', '83', '100', '119', '139', ...
                      '119', '100', '75', '61', '53', '22', 'CMO', 'SD'});
set(ax2, 'XTick', ax2_xticks, 'XTickLabel', ax2_xticklabels, ...
    'XLim', [0
               15000], 'FontSize', 25, 'FontName', 'Times New Roman');
ax2.XTickLabelRotation = 90;
set (ax2, 'TickLength', [0 0])
xlabel('Leistung [%]');
```

A.4.3 Unterteilung der Signale zur Frequenzuntersuchung

```
% Auslesen der Lastbereiche für die Frequenzanalyse %
clc;
clear all;
close all;
% 1) Dateipfade der einzelnen Files
```

```
cd('D:\Data');
\% Laden Kanal twf4 - Schwingung ax Welle TL
load('messung2_twf4.mat', '-mat');
a_x = twf4(:,1);
a_y = twf4(:,2);
% Bereich b2_SNL
b2_x = a_x(13218191:14136119);
b2_{-y} = a_{-y}(13218191:14136119);
b2_{SNL} = [b2_{x} b2_{y}];
% Bereich b3_8
b3_x = a_x (15421216:16706296);
b3_{y} = a_{y}(15421216:16706296);
b3_8 = [b3_x b3_y];
% Bereich b4_16
b4_x = a_x(17991416:19827250);
b4_y = a_y (17991416:19827250);
b4_{-}16 = [b4_{x} b4_{y}];
```

$$b5_x = a_x(21112360:22764642);$$

$$b5_{-y} = a_{-y}(21112360:22764642);$$

$$b5_{-33} = [b5_{x} b5_{y}];$$

$$b6_x = a_x(23682567:25701990);$$

$$b6_{-y} = a_{-y}(23682567:25701990);$$

$$b6_{-}44 = [b6_{x} b6_{y}];$$

$$b7_x = a_x(26987094:28822955);$$

$$b7_y = a_y(26987094:28822955);$$

$$b7_{-}53 = [b7_{x} b7_{y}];$$

$$b8_x = a_x(29740894:32311087);$$

$$b8_y = a_y (29740894:32311087);$$

$$b8_{-}61 = [b8_{x} b8_{y}];$$

$$b9_x = a_x(33963362:36900732);$$

```
b9_y = a_y (33963362:36900732);
```

$$b9_{-}67 = [b9_{x} b9_{y}];$$

% Bereich b10_75

$$b10_x = a_x (38552997:41306787);$$

$$b10_y \ = \ a_y \, (\, 3\,8\,5\,5\,2\,9\,9\,7{:}4\,1\,3\,0\,6\,7\,8\,7 \,)\,;$$

$$b10_{-}75 = [b10_{x} b10_{y}];$$

% Bereich b11_83

$$b11_x = a_x(42224715:44244154);$$

$$b11_{-y} = a_{-y}(42224715:44244154);$$

$$b11_{-}83 = [b11_{-}x \ b11_{-}y];$$

% Bereich b12_100

$$b12_x = a_x (45345667:47181524);$$

$$b12_y = a_y (45345667:47181524);$$

$$b12_{-}100 = [b12_{x} b12_{y}];$$

% Bereich b13_119

$$b13_x = a_x (48466627:50302480);$$

$$b13_y = a_y (48466627:50302480);$$

$$b13_{119} = [b13_{x} b13_{y}];$$

```
% Bereich b14_139
```

$$b14_x = a_x (51403988:53790600);$$

$$b14_{-y} = a_{-y} (51403988:53790600);$$

$$b14_{-}139 = [b14_{x} b14_{y}];$$

% Bereich b15_119

$$b15_x = a_x (55075710:57095150);$$

$$b15_y = a_y (55075710:57095150);$$

$$b15_{-}119 = [b15_{x} b15_{y}];$$

% Bereich b16_100

$$b16_x = a_x (58563833:62602713);$$

$$b16_y = a_y (58563833:62602713);$$

$$b16_{-}100 = [b16_{x} b16_{y}];$$

% Bereich b17_75

$$b17_x = a_x (64254990:67743112);$$

$$b17_{-y} = a_{-y} (64254990:67743112);$$

$$b17_{-}75 = [b17_{x} b17_{y}];$$

% Bereich b18_61

```
b18_x = a_x(69395385:72332756);
b18_y = a_y (69395385:72332756);
b18_{-}61 = [b18_{x} b18_{y}];
% Bereich b19_53
b19_x = a_x(73250675:75820877);
b19_y = a_y (73250675:75820877);
b19_{-}53 = [b19_{x} b19_{y}];
% Bereich b20_16
b20_x = a_x (77473152:81328448);
b20_{-y} = a_{-y} (77473152:81328448);
b20_{-}16 = [b20_{x} b20_{y}];
% Bereich b24_PHS
b24_x = a_x (83347892:86836013);
b24_y = a_y (83347892:86836013);
b24_{PHS} = [b24_{x} b24_{y}];
% Plotten der Messwerte
figure(1);
```

plot (a_x, a_y, 'b', b_x, b_y, 'r', b2_x, b2_y, 'g', b3_x, b3_y, 'g', ...

```
b4_x, b4_y, 'g', b5_x, b5_y, 'g', b6_x, b6_y, 'g', ...
        b7_x, b7_y, 'g', b8_x, b8_y, 'g', b9_x, b9_y, 'g', ...
        b10_x, b10_y, 'g', b11_x, b11_y, 'g', b12_x, b12_y, 'g', ...
        b13_x, b13_y, 'g', b14_x, b14_y, 'g', b15_x, b15_y, 'g', ...
        b16_x, b16_y, 'g', b17_x, b17_y, 'g', b18_x, b18_y,
                                                               'g', ...
        b19_x, b19_y, 'g', b20_x, b20_y, 'g', b24_x, b24_y, 'g');
cd('G:\Frequenzanalyse');
save('DDAU1_twf4.mat', 'b2_SNL', 'b3_8', 'b4_16', 'b5_33', 'b6_44', ...
           'b7_53', 'b8_61', 'b9_67', 'b10_75', 'b11_83', 'b12_100', ...
           'b13_119', 'b14_139', 'b15_119', 'b16_100', 'b17_75', ...
           'b18_61', 'b19_53', 'b20_16', 'b24_PHS');
```