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Kurzfassung

Die Bioinformatik ist eine Wissenschaft, die Modelle, Techniken und Methoden der
Informatik in spezifischen Fachgebieten der Biologie, wie Genetik und Molekularbiologie
anwendet. Die enormen Fortschritte auf dem Gebiet der Gensequenzierung führen zum
stetigen Anwachsen biologischer Datenbanken. Der Einsatz der Bioinformatik ist somit
unerlässlich um Sequenzen zu vergleichen und neue Informationen aus den Datenmengen
zu gewinnen. In der Regel werden neue Sequenzen mit Datenbanken verglichen, die aus
Sequenzen bekannter Struktur und Funktionen bestehen. Bei relativer Ähnlichkeit der
Proteine oder Nukleotide zueinander können Funktionsinformationen transferiert wer-
den. Der Sequenzvergleich findet auf der Ebene einzelner Basen oder Aminosäuren statt
und ermöglicht so die Identifizierung genetischer Veränderungen. [90]
Heutzutage werden zur Datenbanksuche vor allem heuristische Suchalgorithmen verwen-
det, da diese weit weniger rechenintensiv sind. BLAST ist der am weitesten verbreit-
ete Algorithmus dieser Kategorie und stellt eine Annäherung an die genaue Berechnung
von Sequenzalignments mit dem Smith-Watermann und Needleman-Wunsch Algorithmus
dar. Zunächst werden in einer schnellen Indexsuche Abschnitte in der Sequenz bestimmt,
die Ähnlichkeiten aufweisen. Diese Bereiche werden dann mit Hilfe einer Substitutions-
matrix sensitiv untersucht und die lokalen Alignments berechnet. Ein Alignment ist eine
Zuordnung von zwei oder mehreren Sequenzen, die es ermöglicht identische und ähnliche
Positionen zu identifizieren. [96]
Die einfachste Möglichkeit diese Ähnlichkeiten grafisch darzustellen bietet bei einem paar-
weisen Alignment der Dotplot. Hierbei werden die Sequenzen auf jeweils einer Achse
aufgetragen und identische Positionen mit Punkten markiert. Bei absoluter Identität
der Sequenzen führt dies zum Ausbilden einer Diagonalen. Die Dotplot-Methode ist je-
doch in vielerlei Hinsicht limitiert. Sie stellt kein Alignment dar und beschränkt sich
auf den Vergleich zweier Sequenzen. Weiters sind die Plots oft stark verrauscht und erst
die Anwendung verschiedener Filter und Schwellenwerte ermöglicht die Extraktion der
gewünschten Informationen.
Werden mehr als 2 Sequenzen verglichen, spricht man von einem multiplen Alignment,
welches ein zentrales Hilfsmittel z.B. zur Analyse von Verwandtschaftsverhältnissen, zur
Konstruktion von Stammbäumen, aber auch zur Analyse von 3D-Strukturen und zur
Genomanalyse, darstellt. [77] Im Laufe der Zeit haben sich viele Multiple Alignment
Hilfsprogramme entwickelt, die sich vor allem bezüglich ihrer Genauigkeit und Laufzeit
unterscheiden. [90]



Im Rahmen dieser Diplomarbeit wurden cDNA contigs von Fasciola hepatica mithilfe
der Alignment-Programme BLAST und Geneious untersucht. Zur Verfügung stehen drei
Datensätze, welche genetisches Material von Medikamenten-sensitiven Leberegeln enthal-
ten und 1 Datensatz bestehend aus Medikamenten-resistentem Material.
Bereits durchgeführte Studien legen nahe, dass Membranproteine (ABC Transporter) als
Effluxpumpen agieren und zu einer verminderten Aufnahme des Medikaments führen.
Beim Menschen konnte nachgewiesen werden, dass 14 der 48 ABC Transporter an Er-
bkrankheiten beteiligt sind. Es wird vermutet, dass Mutationen die Funktionsweise der
Pumpen verändern und die Entwicklung des Organismus zur Medikamentenresistenz un-
terstützen. [23]
Zu Beginn wurden die Leberegel Datensätze mit einer Datenbank, bestehend aus ABC
Transporter Sequenzen von Homo sapiens, Drosophila melanogaster und Caenorhabditis
elegans mithilfe von BLAST, verglichen. Dies ermöglichte die Identifikation der Anzahl
von ABC Transportern, welche in Fasciola hepatica verfügbar sind. Weiters konnte auch
die Zuteilung zu den einzelnen Unterkategorien der Transporter vorgenommen werden,
mit dem Resultat, dass alle 3 bekannten Multi Drug Resistance (MDR) ABC Transporter
im Leberegel vertreten sind. Zur Visualisierung und zum Vergleich der sensitiven mit
den resistenten ABC Transporter-Sequenzen des Leberegels wurden diese in Geneious
importiert und multiple Alignments durchgeführt. Dadurch konnten Punktmutationen
identifiziert werden, welche möglicherweise wertvolle Informationen über die Adaptions-
mechanismen bei der Entwicklung von MDR liefern. Zusätzlich wurden einige funktionell
wichtige Proteinmotive untersucht und teilweise stark degeneriert vorgefunden.



Abstract

This master thesis deals with a bioinformatic approach for detecting genetic muta-
tions leading to multidrug resistance in the trematode Fasciola hepatica. Enhanced an-
thelmintic drug efflux by ABC transporters has been assumed to be involved in developing
resistance [109]. Therefore, cDNA contigs of ABC transporters of drug sensitive versus
resistant individuals were analyzed to identify functional significant mutations. The Ba-
sic Local Alignment Tool (BLAST) was used to compare the Fasciola hepatica contigs
with a database consisting of genetic material of Homo sapiens, Drosophila melanogaster
and Caenorhabditis elegans. Therefore, the liver fluke contigs could be characterized
and uniquely classified to the single ABC transporter subfamilies. In addition, sequence
alignments were conducted by the use of Geneious to organize, visualize and compare the
classified contigs. Several point mutations could be detected probably leading to func-
tional changes of the transporters. Furthermore, biological motifs were identified and
found to be highly degenerate. These results may provide new insights into the adaption
mechanisms the parasites have developed to survive drug exposure.
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1. Introduction

Bioinformatics has gradually become an important area of science using computational
approaches to answer biological questions. With the enormous increase of biological
data and structural information available, the highly multidisciplinary subject recruits
not only biologists but also mathematicians, physicists and computer scientists.
The ultimate goal is to predict structure and further function from gene sequences usually
by applying comparative analyses. New sequences are typically compared with libraries
or databases of sequences with known functional properties to annotate the unknown
genes. [13] The similarities and differences are analyzed at the level of individual bases
or amino acids to detect genetic differences (chapter 2) [81].

For database searching two main heuristic approaches to identify homologs have been
deployed. The FASTA suite of programs and the BLAST programs, which are described
in chapter 3 [13]. Basically, an input sequence is continuously aligned to each subject
sequence in the database to detect significant hits followed by individual sequence align-
ments [81].
The dot plot, a two dimensional similarity matrix can be used as simple graphical rep-
resentation of two sequences (section 4.1). The matrix cells are shaded black, if residues
are identical resulting in diagonal lines. Insertions and deletions disrupt the diagonal
and regions of local similarity or repetitive sequences give rise to additional diagonal
matches. [13] To reduce the chance of random hits a single pathway with most biological
significance is searched through the dot plot. Therefore, most likely equivalent residues
are determined and scored concerning their similarity.
This lead to the introduction of scoring matrices and to the more sophisticated residue
substitution matrices PAM and BLOSUM for proteins, explained in section 4.3.
For nucleotides also different constraints on substitution rates can be defined leading to
various nucleotide substitution models specified in section 4.2. [13] [81]

Generally, alignment methods attempt to determine the optimal alignment between se-
quences by modeling the mutational process that has given rise [11]. The algorithm tries
to match the maximum number of identical or similar residue pairs, whereas it tolerates
the minimum number of insertions or deletions in the sequences [13]. Needleman-Wunsch
and Smith-Waterman originally developed sequence alignment algorithms based on dy-
namic programming, which result in long calculation periods but yield the most reliable
alignments of protein sequences (section 4.4). Nevertheless, they become replaced by
heuristic algorithms due to reduced execution time and acceptable alignment results. [87]

1



1 Introduction

Concerning the number of aligned sequences it can be distinguished between pairwise
and multiple sequence alignment. An alignment of more than two sequences constitutes
a multiple alignment widely used in many different areas in bioinformatics including ho-
mology searches, genomic annotation, structure prediction and functional genomics [87].
In addition, it enables to search for patterns of highly conserved residues and to detect
functional important motifs and their variations (section 5.4.1) [13].
Dynamic programming cannot easily be extended for applying it to multiple sequence
alignments and therefore progressive alignments have to be performed [11]. Diverse ap-
proaches use slightly different methods and vary in accuracy and speed, resulting in
several multiple sequence alignment tools available on the market [13]. A short overview
of their algorithms is given in section 4.5.

This master thesis has been carried out at the Austrian Institute of Technology within
the framework of the Fasciola hepatica project.
The helminth parasite (chapter 5) affects livestock and humans leading to the disease
fascioliasis [9]. According to WHO, at least 2.4 million people are infected in more than
70 countries worldwide. Fascioliasis is currently the most widespread disease known in
terms of latitude, longitude and altitude [72]. The economic losses due to Fasciola hepat-
ica including veterinary costs and production losses exceed 3 billion $ globally [12] [83].
In consideration that more than 55% of all farm animal diseases are caused by parasitic
helminths, it is estimated that every year 400 millione are spend on drugs [76]. In the
absence of effective vaccines against fascioliasis, therapeutic drugs are the mainstays of
prevention and control [52]. The benzimidazole triclabendazole (TCBZ ) is the only ef-
fective known pharmacological treatment and highly effective against the immature and
mature trematode [41]. The complete reliance on TCBZ and the continuous use result
in adaption of the parasites developing drug resistance (section 5.2) [22]. The first case
was reported in Australia in 1983 followed by incidences worldwide [43].
Previous studies suggest that genomic mutations in drug efflux pumps may lead to a de-
creased uptake, increased efflux or metabolic change [109]. In humans, it could be proven
that 14 out of 48 of these pumps, encoding ABC transporter are involved in hereditary
diseases [23].

With this biological motivation, cDNA contigs of putative ABC transporters of drug
sensitive and resistant parasitic helminths were analyzed.
BLAST was used to compare the genetic information of the liver flukes to ABC trans-
porters of Homo sapiens, Drosophila melanogaster and Caenorhabditis elegans to detect
similarities. Therefore, the contigs could be characterized and uniquely classified to the
single ABC transporter subfamilies and their subgroups. From this, a first estimation of
the amount of ABC transporters available in the trematode could be received. Further-
more, all ABC transporter efflux pumps, known to be involved in multidrug resistance
could be detected in Fasciola hepatica.

2



1 Introduction

To organize and compare the identified ABC transporter contigs of the drug senstive
to the resistant individuals they get arranged with the multiple sequence alignment pro-
gram Geneious. Single nucleotide polymorphisms, which distinguish the resistant cDNA
dataset from the sensitive ones were searched. This may offer valuable information about
the adaption changes involved in developing drug resistance.
Moreover, important sequence motifs were investigated in Geneious to detect functional
significant variations.

3





2. Gene Mutation

Gene mutations are defined as alteration in the nucleotide sequence in DNA. The perma-
nent change can affect a single nucleotide pair or larger gene segments of a chromosome.
Mutations cause alterations in the genetic code, which lead to genetic variation and the
potential to develop diseases.
The consequence of a mutation may be a protein change, which further can influence
the function of the protein. Further, they may cause variations of the gene, called allele,
which basically carry out the same function in the cell.
Humans and nearly all mammals have two copies of each gene and therefore two alleles
of each chromosome, which is called a diploid organism.
Alleles can be classified in heterozygous, homozygous or rather codominance. In the first
case the dominant alleles show their effect even if the individual only has one copy of the
allele. One dominant ”green eye” allele and a single copy can determine the green eye
color of a human.
In the second case, recessive alleles only show their effect if the individual has two copies
of the allele. If both alleles are dominant it is called codominance, there both alleles are
expressed equally. For example, the blood group AB results of codominance of the A
and B dominant alleles.
Allele is a short form of allelomorph (”other form”), which was used in early days of ge-
netics to describe variant forms of a gene detected as different phenotype. Today alleles
are understood to be alternative DNA sequences at the same physical gene locus, which
may or may not result in different phenotypic traits. In any particular diploid organism
the genotype for each gene comprises the pair of alleles present at that locus, which
are the same in homozygotes and different in heterozygotes. A population or species
of organisms typically includes multiple alleles at each locus among various individuals.
Allelic variation at a locus is measurable as the number of alleles (polymorphism) present
or the proportion of heterozygotes in the population. [108]

The most common type of genetic variation is the single nucleotide polymorphisms
(SNPs) occurring when a single nucleotide in the genome differs between members of
a species or between paired chromosomes of an individual. SNPs are point mutations
including nucleotide substitutions, insertions or deletions occurring in DNA with a 0.1%
frequency. The mutational process thought to be governing by the evolution of SNPs is
that of nucleotide substitution. [74] 99,9% of the DNA sequences of all human are iden-
tical. 80% of the remaining 0,1% correspond to SNPs [2]. This type of mutation may
alter the reading frame of the gene and can have a profound impact on the individuals
in which they are present. The sickle cell disease is caused by a point mutation of an
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2 Gene Mutation

adenine A for a thymine T, that changes a hydrophilic amino acid glutamic acid to a
hydrophobic amino acid valine. The crohn’s disease is the consequence of an insertion of
cytosine C causing frameshift.
The nonsense mutation alters the nucleotide sequence in such a way that a stop codon
(UAA UAG UGA) is coded in place of an amino acid causing an incomplete protein. For
example, cystic fibrosis is caused by a non-synonymous nonsense mutation. The change
of guanine G for thymine T (GGA→ TGA) changes the protein glycine (Gly) to a STOP
codon. [5] [104]
The 20 amino acids found in proteins are built up by three nucleotide sets called codons
and because most amino acids have multiple codons, a number of possible DNA sequences
might represent the same protein sequence. Although a change in the DNA sequence oc-
curs, silent point mutations do not change the protein [16].

2.1. The Cause of Mutations
Mutations arise spontaneously and often occur naturally due to errors during the DNA
replication. Replication errors can result from failure of three separate processes, namely
base selection, proof-reading and DNA mismatch repair (MMR), which act sequentially
to ensure the fidelity of replication. The first two processes allow DNA replication to
proceed with a fidelity of 10−7 per bp replicated. The final step, MMR, recognizes DNA
base mispairs and initiates a DNA repair cascade, contributing to genomic fidelity and
yielding a final error rate of 10−10 per bp.
Natural exposure of an organism to certain environmental factors, such as ultraviolet
light, chemical carcinogens or ionizing radiation can also cause mutations. [111]
On the one hand, mutations can be beneficial and lead to an evolutionary advantage of
a certain genotype. Otherwise, mutations may lead to changes in the structure of an
encoded protein or to a decrease or complete loss in its expression. [66]

2.1.1. Multidrug Resistance
The emergence of mutations in nucleic acids is one of the major factors underlying evo-
lution, providing the working material for natural selection. Also pathogens tend to
adopt through mutations various mechanisms to survive unfavorable conditions and en-
able these organisms to develop drug resistance.
Resistance to drugs is a heritable increase in the frequency of individuals in a population
able to tolerate doses of a compound following exposure to the drug. [21] Microorganisms
have evolved a multitude of mechanisms to overcome the effectiveness of drugs, thereby
surviving exposure to the drug. The resistance among various microbial species to for
example different antimicrobial drugs has emerged as a cause of public health threat all
over the world at a terrifying rate.
Antimicrobial resistance associated with high mortality rates and high medical costs has
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2 Gene Mutation

a significant impact on the effectiveness of antimicrobial agents. Expansion of global
trade and tourism lead to increased potential of multidrug resistance to spread all over
the world. [100]
In former studies different mechanism (Figure 2.1) could be found the parasites have
developed to protect themselves against drugs. The authors focused on identification of
single nucleotide polymorphisms in genes, which were predicted either to be drug targets
or to be involved in the uptake, metabolism or efflux of drugs. [26] [100]
Antimicrobials bind to the cell wall inhibiting its synthesis and blocking the cell growth
and division. Thus, alteration in the cell membrane composition may lead to a decreased
permeability and uptake of the drug into the cell. In addition, these changes result in
a lack of active target sites for the drugs to bind. Another multidrug resistance (MDR)
mechanism constitutes an overexpression of drug target enzymes leading to target by-
pass and the production of alternate target molecules affecting the access of drugs to the
target sites. Also enzymatic degradation or inactivation of antimicrobials may play a
role in MDR. However, MDR mediated by drug efflux pumps remains the predominant
mechanism and represents the focus in our study. The overexpression of ATP - binding
cassette (ABC) transporter membrane proteins (section 5.2.1), known as multidrug efflux
pumps, generates MDR and continues cellular functions without any interference. MDR
proteins affect the fluidity and permeability leading to an ATP dependent efflux of the
drug and therefore to a decrease of the intracellular concentration.
This mechanism is also known from cancer cells, which limits the long-term use of
chemotherapy. [100]

Figure 2.1.: MDR mechanisms: an alteration in the cell membrane composition leads to a
decreased drug uptake or to drug target changes. Enzymes and efflux pumps
cause a decreased drug concentration within the cell. Mutations in target genes
may retain cellular function by reducing susceptibility to inhibition. [100]
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3. Basic Local Alignment Search
Tool

The Basic Local Alignment Search Tool1 (BLAST) was developed by Altschul et al. in
1990 and has become one of the most popular local alignment tools (section 4.4) in bi-
ology. It is mainly applied for database searches to compare sequences and to identify
homology. [81] BLAST is a heuristic method, which rapidly aligns a query DNA or nu-
cleotide sequence to a library or database of sequences.
The word based algorithm identifies short segments of high similarity. This simplified
approach is 10 to 50 times faster than applying the standard dynamic programming al-
gorithm of Smith-Waterman (section 4.4). [11]
BLAST finds statistically significant similarities between sequences by evaluating align-
ments [14]. This is accomplished by integrating gap costs (section 3.2.2) and scoring
matrices (section 4.2 and 4.3). [13]

3.1. BLAST Algorithm

The BLAST algorithm tries to find a short fragment of the query sequence (input
sequence) that aligns perfectly with a fragment of the subject sequence found in the
database. Then the alignment is extended in both directions until the score is at least
equal to the cutoff score threshold S (section 3.2). Therefore the algorithm attempts to
find short lengths of exact matches (Figure 3.1). [81]

Low complexity regions might produce high scores and confuse the program. They are
filtered out and marked with an X for protein sequences or N for nucleic acid sequences.
Primarily, the BLAST algorithm divide the query sequence into words of length w. For
proteins w = 3 and w = 11 for DNA. [46]

1http://blast.ncbi.nlm.nih.gov/Blast.cgi
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3 Basic Local Alignment Search Tool

Figure 3.1.: BLAST search algorithm: two hit method. (cp. [46])
1) Listing of all words of length w in the query sequence.
2) Scanning the target sequence for matches (hits).
3) Detection of a second hit within a threshold distance A.
4) Bidirectional extension.

The sequences of the database are searched with the index of the length w. The words
whose scores are greater than a certain threshold will remain in the possible matching
words list, while those with lower scores will be discarded. Therefore not only identical
but also similar positions are recognized by BLAST depending on the substitution matrix
used. Only if a second hit can be found on the same diagonal in the dot plot (section 4.1),
both hits are taken into account in the further procedure of the search. The maximum
distance between the two hits are limited by the window length A.
Both hits are extended bidirectionally until the score stops to increase. Hits with a score
above the cutoff score threshold are called High Scoring Pairs (HSPs). In the old version
of BLAST (Atschul et al., 1990) no gaps were allowed at this step. The newer version
(Atschul et al., 1997) allows gaps and thus linking the HSPs. [46]

10



3 Basic Local Alignment Search Tool

3.2. Significance of BLAST Hits

3.2.1. Scores
The score of the HSPs consists of the sum of the individual scores. It depends on the
substitution matrix and the amount of the penalty points for the formation and the
extension of the gaps (section 3.2.2). To normalize the scores they are converted into the
bit score

S′ =
λS − lnK

ln2
(3.1)

where S is the score and S′ the bit score. The bit score enables to compare the alignments
of different calculations, because it is independent of the substitution matrix. The better
the quality of the alignments the higher is the bit score. [14]
However, the magnitude of the bit score says less about the statistical significance of
the alignment. It could also be just a random hit. Therefore, the expectation value
E is calculated with the sequence length of the search sequence m and the sum of the
sequence length of all comparative sequences n.

E = Kmn · e−λS ∼ mn · 2−S′
(3.2)

K is the parameter adjusting for the search space size, and λ is the scaling parameter
for the scoring system. The expectation value E represents the number of different align-
ments with scores equivalent to or better than S that are expected to occur in a database
search by chance. The smaller the E value, the more significant the score.
Doubling the length of either sequence should double the number of HSPs attaining a
given score. Therefore, the expectation value E is a function of the score (respectively of
the bit score) and the database size.
As rule of thumb, E values below 10−6 are most probably statistically significant. Values
between 10−6 and 10−2 absolutely deserve a second look and values between 10−2 and 1
do not indicate a good homology.
Always consider that BLAST is e heuristic method for local alignment and the signif-
icance of a hit is highly dependent on the size of the alignments and the size of the
sequence database. [14]

The chance of finding zero HSPs with score >= S is e−E , hence the probability of
finding at least one such HSP is 1 − e−E , which is given by the p value. p values of
p < 0.05 are usually considered statistically significant.
This parameter is not listed in the BLAST output and therefore the user has to consider
the E value. However, if E < 0, 01, p and E values are quite similar. [80]

11



3 Basic Local Alignment Search Tool

3.2.2. Gap Penalties
Gap penalties including penalizing for insertions and deletions indicate another important
part of the scoring process. Two completely different sequences can always be aligned
without any mismatches by insertions of gaps. Using gaps in such an unconstrained
manner leads to excessive gaps of little biological meaning. [11] Insertions and deletions
should be assumed as rare events and thus the use of gaps is penalized in alignments.
Various mechanisms have been developed for introducing gap penalties. Some algorithms
use a length-independent penalty, whereas others define a fixed penalty for opening a gap,
which increases according to the length of the insertion. [81]
Increasing the gap penalty will improve the statistical significance of shorter, or closely
related alignments. Excessive penalties will enforce a gapless alignment, which would be
biologically inaccurate.
Although the recommended combinations of scoring matrices (section 4.3) and gap penal-
ties have been described in the literature, there is no formal theory available how gap
penalties should be chosen. Therefore, they have to be set empirically. [87]

3.3. BLAST Output
BLAST uses statistical methods to compare a nucleotide or protein query sequence to
a database of sequences. The algorithm calculates similarity scores for local alignments
between the query sequence and the subject sequences using specific scoring matrices
and returns a table of the best matches (hits) from the database. The sequences found
are sorted by statistical significance given as E - value (Figure 3.3).
An accepted input format of BLAST is e.g. FASTA, which is characterized by a def-
inition line, beginning with a ”>” symbol usually containing identifiers and descriptive
information.

BLAST takes a large number of parameters that influence the way BLAST performs
its search and formats its output. The most efficient way to conduct a BLAST search
with your own database is to download the software and conduct it via the command
line. BLAST is available on the NCBI homepage2.

First of all, depending on the database the right BLAST subprogram has to be chosen.
The tblastx program, which was used in Figure 3.3 and 3.2, compares a DNA translated
(six frame translation) into protein with a DNA database translated into protein. If
it is not desired to translate the sequences into proteins blastn can be used. To find
similarities between a nucleotide query sequence and a protein database blastx has to be
chosen. blastp performs a protein against protein search and tblastn compares a protein
query against a nucleotide sequence database dynamically translated in all six reading
frames.

2http://www.ncbi.nlm.nih.gov/
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3 Basic Local Alignment Search Tool

All subprograms offered by BLAST are summed up and listed in Table 3.1. [34]

Program Query Seq. Type Database Seq. Type Alignment Level

blastn nucleotide nucleotide nucleotide
blastp protein protein protein
blastx nucleotide protein protein
tblastn protein nucleotide protein
tblastx nucleotide nucleotide protein

Table 3.1.: BLAST subprograms [80]

It is important to realize that there is no set cutoff, which determines whether a match
is considered significant or ”similar enough” - this has to be set by the user. To find ex-
tremely similar sequences in closely related species the cut off value has to be relatively
small, e.g. 1e−50 or even 1e−100.
In the example of use (chapter 5) the ABC transporter of Fasciola hepatica were compared
to the ABC transporter of Homo sapiens, Drosophila melanogaster and Caenorhabditis
elegans. [39] Especially the human but also the fruit fly and the nematode are evolution-
arily very distant from Fasciola hepatica. Therefore relatively high cutoff values of about
1e−20 were used to detect similarities between the sequences.

After specifying the BLAST subprogram, database, query sequence and the cut off
value, the alignment view options can be chosen from eleven possibilities.
The tabular alignment view represents a clear listing with additional parameters such as
sequence identity [%], alignment length [bp], mismatches and gap openings.
The first column gives the identifiers and the description for the query sequences, which
produced a significant hit with the subject sequences found in column two. In Figure 3.2
a tblastx search was performed comparing the Fasciola hepatica contigs of dataset 19929
(subject sequence) to the ABC transporter sequences of Homo sapiens (query sequence).
The alignment view (Figure 3.3) shows the complete alignment for each hit. The align-
ment line between the query and the subject sequence indicates identities by inserting
the identical amino acid or nucleotide, mismatches by a gap and similarities are marked
with a plus (see Figure 3.3).
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3 Basic Local Alignment Search Tool

Figure 3.2.: Tblastx search output with a cutoff value of 1e−20 and a tabular alignment view.
In the first column the query sequences (ABC transporter of Homo sapiens) are
listed to the subject sequences (Fasciola hepatica sequences of dataset 19929),
which produced significant hits. In the same line further parameters are listed,
giving information about the quality of the alignment and the significance of the
hits.
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3 Basic Local Alignment Search Tool

Figure 3.3.: BLAST output with a cutoff value of 1e−20 and a pairwise alignment view between
query and subject sequence of a certain hit. At the top, subject sequences are
listed, which produce a significant alignment with the query sequences. To the
right the parameters expectation value E and the normalized bit score S′ are
shown to get information about the significance and the quality of the hit. The
hit table shows further information including the number of identities and the
number of positives (fractions of residues that are either identical or similar). The
alignment is mapped below, whereas an identity is marked with 1, a mismatch
with 2, and a similarity with 3. Here, the ABC transporter sequences of Fasciola
hepatica (dataset 19929) were used as subject sequence and the ABC transporter
sequences of Homo sapiens as query database.
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4. Sequence Alignment

The sequence alignment procedure forms the backbone of comparative and evolutionary
genomics. It enables to identify regions of high similarity or functionally important se-
quence motifs.
Furthermore, the structure and the function of DNA are closely related and by comparing
new sequences to those with known function conclusions can be drawn on the function
of the unknown organism. [88]

An alignment program tries to find the best alignment between the sequences or in
other words, it attempts to detect a path through the dot plot diagram including all (or
the most visible) diagonals [59].
There are many possible ways to align two sequences, and in order to select the best
one, means are needed to quantify their relative quality. The idea is to assign a score to
each alignment, and then choose the one with the optimal score. The scoring schemes
used for alignments typically include a substitution matrix and a gap penalty function.
The substitution matrix is used to score matches and mismatches and the gap penalty
function scores insertions and deletion events. [11]
Dot plots can also be used to assess repetitiveness in a single sequence. A sequence can
be plotted against itself and regions that share significant similarities will appear as lines
of the main diagonal.

4.1. Dot Plot
One way to visualize the similarity between sequences is to use a similarity matrix,
known as dot plot. If nothing is known about the evolutionary relationship between the
sequences, a dot plot provides a graphical illustration of the level of similarity, and the
location of conserved elements in the sequences.
Each axis of the plot represents one of the two sequences to be compared. A dot is placed
at each position where two residues match. In the resulting plot, regions of similarity will
appear as diagonal stretch of dots. If two sequences are identical, the diagonals show a
line. Insertions and deletions between the sequences will appear as lateral displacements
of the diagonals and duplications appear as parallel diagonal lines in the plot. [81]

The dot plot is a visual aid, which helps to rapidly identify similar regions in sequences
but it does not provide an alignment. In terms of revealing the best alignment in some
sense, the dot plot method is limited. For this, a scoring scheme is needed, which is able
to quantify the different possible alignments.
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Figure 4.1.: The dot plot, generated by Geneious, shows a comparison of two C transporter
sequences with a word size of 8. On the x - coordinate the sequence of the dataset
19931 is represented and on the y - coordinate the sequence of 19932 is shown.
The sequences are identical, expect for the two substitutions cytosine to thymine
and guanine to adenine. The identical parts of the sequences are represented by a
diagonal line, which is twice interrupted at the positions of the substitutions.

Figure 4.2.: The sequence alignment in text view of the sequences of Figure 4.1 allows a more
detailed view of the substitutions. The contig comp24084_c1_seq3 is part of the
dataset 19931 and the contig comp102145_c0_seq1 of 19932. The 2 differences
(C → T, G → A) found between the resistant Fasciola hepatica 19931 and the
sensitive Fasciola hepatica19932 are marked.
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4 Sequence Alignment

Figure 4.3.: Dot plot with high amount of background noise. By adapting the window size and
the thresholds the noise can be reduced. The optimal result is shown in Figure
4.1 whereas not only the diagonal becomes visible but also the two nucleotide
substitutions.

Moreover, the amount of background noise on a typical dot plot is huge and impedes
the extraction of information (Figure 4.3). To distinguish dot patterns arising from
background noise from significant dot patterns it is necessary to apply a filter. [11]
Maizel and Lenk developed a filter method using overlapping fixed length windows and
required that the comparison achieved some minimum identity score summed over that
window before being considered. Therefore, only diagonals of a certain length will survive
the filter. Most dot plot software provides a default window length and this is sufficient
for an initial analysis. When searching for internal repeats, the length of the repeat can
be used to cut out background noise, or the window length can be set, for example, to
the length of an exon when comparing coding sequences. [70] [97]
However, an additional issue when comparing protein sequences is that we might not
only want to highlight exact matches, but also take into account chemical and structural
similarities between amino acids.
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4.2. Nucleotide Substitution Models
An important problem in biological sequence analysis is to determine the evolutionary
distance between sequences. The distance between two sequences is defined as the ex-
pected number of nucleotide substitutions per site. To estimate the number of nucleotide
substitution between the common ancestor and the current sequences, models have to
be developed. The easiest way would be the direct measure of the proportional number
of mismatches in ungapped alignment of the two sequences. To get the evolutionary
distance, the number of differences simply has to be divided by the sequence length.
However, this description is only sufficient for very closely related sequences, because the
probability of having a second substitution in an already changed position increases with
time [11]. To estimate the number of substitutions, a probabilistic model is needed to
describe changes between nucleotides. Commonly, continuous-time Markov chains are
used for this purpose. [114] Often substitution rates between nucleotides are further
constrained, leading to different models of nucleotide substitution described in chapter
4.2.1 and 4.3. [94]

4.2.1. Markov Models
A common model of substitution is to use a homogeneous, continuous-time, time re-
versible, stationary Markov chain. They form the basis of the likelihood and Bayesian
analysis of multiple sequences on a phylogeny, when used in distance calculations. The
basic assumption of a Markov chain is that the probability with which the chain jumps
into other nucleotide states depends on the current sate, but not on how the current state
is reached. Therefore, it depends only on the current but not on the past state. [94]
Each state represent a single nucleotide and the transition probability Pjk, gives the
probability of replacing nucleotide j with nucleotide k.

P =


A T G C

A P (A|A) P (A|T ) P (A|G) P (A|C)
T P (T |A) P (T |T ) P (T |G) P (T |C)
G P (G|A) P (G|T ) P (G|G) P (G|C)
C P (C|A) P (C|T ) P (C|G) P (C|C)


P (T |A) is for example the probability that the next character will be T while the

current character is A. [47] These probabilities can be weighted differently resulting in
diverse models. The most important DNA models are described below starting with the
simple Jukes Cantor model. More general models can be obtained by allowing unequal
substitution rates and base frequencies. [63]
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The Jukes - Cantor Model

The simplest Markov model of substitution in a single time step is the JC69 (Jukes and
Cantor 1969) model [31]. All substitutions are independent and the rates are set to be
equal and therefore substitutions among the four types of nucleotides occur randomly.
The consequence of this assumption is that the overall rate of substitution is λ = 3α.

Q = qij =


A T G C

A − α α α
T α − α α
G α α − α
C α α α −



The rows sum to zero and consequently the diagonal elements are given by taking the
negative sum of the other, namely −3α. Using the rates in matrix Q, the probability of
each nucleotide substitution occurring when t > 0 can be determined, creating another
matrix called the transition probability matrix P (t) = pij(t) = eQt. [25]

The stationary distribution1 of this Markov chain ϕ = (0.25, 0.25, 0.25, 0.25)
Using the Markov chain, expressions can be derived describing how changes accumulate
at site i over a period of time ∆t. After one time step the probability of observing e.g.
an A at site i is given by

ϕA,t+1 = (1− 3α)ϕA,t + αϕC,t + αϕG,t + αϕT,t (4.1)

where ϕ(t)
j is the probability of being in state Ej at time t. Equation (4.1) can be

reduced to

ϕA,t+1 = (1− 3α)ϕA,t + α [1− ϕA,t] (4.2)

The first term represents the probability of observing A at time t + 1 if the residue
at site i at time t was an A. The second term is the probability of observing A if the
residue at time t was not an A. [31]Equation (4.2) can be applied equally to the other 3
nucleotides, since the model is symmetric.
After some algebraic manipulation an expression for the evolutionary distance between
two sequences can be defined. The Jukes - Cantor distance is given by

dJC(a, b) = −3

4
log

(
1− 4

3
D

)
(4.3)

where D represents the number of observed nucleotide differences divided by the total
number of nucleotides of the two sequences a and b. [101]

1The stationary distribution of a Markov Chain with transition matrix P is some vector ψ, such
that ψP = ψ
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The K80 Model

The 2 parameter Kimura model (1980) does not consider the probability of mutations
of all 4 nucleotides as random and distinguishes between transitions and transversions.
Substitutions between the two pyrimidines (C ↔ T) or the two purines (A ↔ G) are
called transitions whereas transversions include substitution of a pyrimidine by a purine
or reverse (C,T ↔ G,A). Transversions, representing substitutions across types of nu-
cleotides occur less frequent than substitutions between the same type. [98] Therefore,
the transition matrix of the two-parameter model using uniform base frequencies but
different rates for transitions and transversions adapts to


A T G C

A − β α β
T β − β α
G α β − β
C β α β −



where α is the rate of transitions and β the rate of transversions. [31] If R is the
expected ratio of transition changes to transversions, the following relations can be ex-
pressed:

α =
R

R+ 1
(4.4)

β =

(
1

2

)
1

R+ 1
(4.5)

Therefore, the probability of transitions is

PTransition =
1

4
− 1

2
e(−

2R+1
R+1

t) +
1

4
e(−

2
R+1

t) (4.6)

and the transversion probability is

PTransversion =
1

2
− 1

2
e(−

2
R+1

t) (4.7)

The K80- 2 parameter model results in a corrected distance

DK2p(a, b) = −1

2
log(1− 2p− q)− 1

4
log(1− 2q) (4.8)

where p and q represent the number of differences of the sequences concerning transi-
tions and transversions divided by the total number of nucleotides of the two sequences
a and b. [4] [79]
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HKY85

Hasegawa, Kishino and Yano developed a model in 1985 known as the HKY85 [25]. It
is a combination of the Kimura80 and Felsenstein81 models2 and should describe the
nucleotide sequence behavior more realistic with the aid of additional parameters [11].
As the K80 model (section 4.2.1) the HKY85 model distinguishes between the rate of
transitions and transversions. Additionally, the base frequencies π = (πA, πT , πG, πC)
are considered as unequal. [79]
The rate matrix converts to


A T G C

A − βπT απG βπC
T βπA − βπG απC
G απA βπT − βπC
C βπA απT βπG −



GTR Model

The General time-reversible model is the most general model which was first proposed
by Tavaé. It further extended the models to allow all six pairs of substitutions to have
differing rates. The substitution rates differ between each pair of nucleotides and are
consistent within a pair indicating time reversibility. [11]
The substitution rate matrix adapts to


A T G C

A − απT βπG γπC
T απA − σπG ρπC
G βπA σπT − επC
C γπA ρπT επG −



There exist further models, but these are the most commonly used. They allow for
unequal expected frequencies of bases and for inequalities of transitions and transversions.

2Felsenstein suggested that the substitution rate only depends on its base frequency
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4 Sequence Alignment

Figure 4.4.: Relative substitution rates between nucleotides of 3 different Markov chain models:
Jukes and Cantor (JC69), Kimura (K80) and Hasegawa et al. (HKY85). The
thickness of the lines represents the substitution rates while the sizes of the circles
indicate the base frequencies. [114]
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4.3. Amino Acid Substitution Models
Not all amino acids have the same probability to mutate. Some are more easily replaced
or preserved than others. Amino acids with similar codons or properties and structures
have a higher probability of exchange.
To evaluate individual point mutations, substitution matrices can be used. [14]
In 1978 the first substitution matrix, called PAM matrix (section 4.3.1) was introduced
followed by many similar approaches to score point mutations. The PAM substitution
matrices are based on an underlying dataset consisting of closely related aligned protein
sequences. [27] PAM1 assumes the sequences to be aligned are 99% identical, hence the
accepted point mutation rate is 1% [87]. In order to deal with more divergent sequences
the evolutionary information based on the PAM1 matrix is extrapolated to higher matrix
levels (e.g. PAM250) by multiplying the PAM1 by itself [19].
Other popular substitution matrices are for example the Henikoff matrix and the BLO-
SUM matrix (section 4.3.2). Later on the GONNET matrix, which is based on the
dataset of the entire Swiss - Prot database and also an update of the PAM matrix, the
JTT matrix, become popular. [11]

The information content in scoring matrices is given in terms of relative entropy. The
higher the entropy is, the higher is the evolutionary distance between sequences. PAM250
has a relative entropy of about 0.36 bits per aligned residue, whereas that of PAM120
is 0.98. [85] Therefore, the relative entropy can be used to compare different scoring
matrices and is given by

H =
20∑
i=1

20∑
j=1

qijsij (4.9)

where sij represents the scores scaled in bit units and qij the target frequencies from
the aligned amino acid pairs.
Equation (4.9) calculates the average mutual information per amino acid pair. [85]
Gap penalties are neither considered in BLOSUM nor in PAM matrices [10].

PAM100 ∼ BLOSUM90

PAM120 ∼ BLOSUM80

PAM160 ∼ BLOSUM60

PAM200 ∼ BLOSUM52

PAM250 ∼ BLOSUM45

Table 4.1.: Entropy of scoring matrices PAM and BLOSUM. To compare close related
sequences PAM100 or BLOSUM90 are appropriate. For more distant se-
quences PAM250 or BLOSUM45 are available. [27]
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4.3.1. Point Accepted Mutation Scoring Matrix
The point (or percent) accepted mutation scoring matrix, short PAM, was the first
scoring matrix, developed by Margaret Dayhoff et al. in 1978 and was used to evaluate
individual point mutations based on experimental data [19]. The dataset contains 71
gapless alignments of sequences having at least 85% similarity [27].
Dayhoff built a phylogenetic tree of the evolutionary closely related proteins to find out
accepted mutations and stored the data in a matrix. The matrix entries represent the
likelihood of replacing an amino acid i by an amino acid j in an given evolutionary time.
This matrix is called the PAM matrix and has twenty rows and columns representing the
amino acids translated by the genetic code. [114]

1 PAM unit of time is the amount of time one amino acid takes in every hundred to
undergo an accepted mutation.
Thus, the PAM1 scoring matrix can only be used in comparing relatively evolutionary
close sequences. The diagonal in a PAM1 matrix represents the probability to still ob-
serve the same residue after 1 PAM. It doesn’t not mean that there was no mutation but
maybe a succession of two or more mutations ending at the initial residue.
As the divergence of the sequences increases, PAM50, PAM100 or PAM250 are possibili-
ties to further score the substitutions. [27] With the assumption that repeating mutations
follow the same pattern as those in the PAM1, these matrices are all based on the PAM1
[103]. The PAM250 for example is produced by multiplying the PAM1 by itself 250
times, representing 250 accepted point mutations [85].

PAM matrices are used as a scoring matrix when comparing DNA sequences or protein
sequences to judge the quality of the alignment. This form of scoring system is utilized
by a wide range of alignment software.

So far, just a mutational probability matrix M was defined, given the probability
of amino acid i being replaced by the amino acid j over a given evolutionary time.
The entries of the non-diagonal elements of the unsymmetric probability matrix can be
calculated with

Mij =
λmjAij∑
k

Akj
(4.10)

and the diagonal elements with

Mii = 1− λmi (4.11)

in these equations m is the relative mutability3, A the matrix of accepted point muta-
tions and λ represents constant of proportionality. To obtain a scoring matrix a measure
has to be introduced, which reflects the significance of an alignment with respect to what
could happen randomly. [27]

3relative mutability mj = number of changes of j
number of occurrences of j
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Thus, the score involves the ratio between the probability derived from non random
to random models and can be described by

Pji,n = fiM
n
ji (4.12)

rn(i, j) =
Mn
ji

fj
=
Pji,n
fifj

(4.13)

Mn
ji represents the mutational probability matrix at PAM level n and gives the proba-

bility of point accepted mutations replacing the jth amino acid with the ith amino acid.
The denominator in equation (4.13) expresses the probability of these amino acids being
aligned by chance. f represents the effective frequency. [27]

Essentially, all substitution matrices are log-odds matrices. A log-odds score is the
logarithm of the likelihood ratio of two models. [11] Thus, with the aid of log-odd scores
the PAM matrix can be defined by

sn(i, j) = log
Mn
ji

fj
= log

Pji,n
fifj

(4.14)

A positive value (sn > 0) as result of equation (4.14) indicates a positive score and
characterizes the accepted mutations. sn < 0 indicates a negative score and therefore an
unfavorable mutation.

The PAM Matrices work well with similar sequences but for evolutionarily distant
sequences the results become less realistic. Furthermore, the assumption of constant
substitution rates throughout the sequences is definitively not true in reality. A new
approach was the block substitution matrix which should deliver more realistic scores,
especially for distant related sequences.

4.3.2. Blocks Substitution Matrix
The Blocks Substitution Matrix, short BLOSUM, is also designed for scoring protein
alignments. [87] In contrast to the PAM matrix, the BLOSUM matrix is constructed
empirically from multiple alignments of evolutionarily more distant, but homologous
protein sequences. [11] BLOSUM matrices use a larger amount of sequence data than
PAM matrices and consider local alignments blocks or highly conserved regions rather
than independent residue alignments. [87]

First of all, the protein blocks have to be retrieved from the BLOCKS database,
which consists of ungapped multiple alignments of highly conserved protein regions. The
next step is to cluster the sequences according to the given matrix level (BLOSUM90,
BLOSUM80, etc.) in each block. Afterwards, sequence weights have to be set in a way
that the contribution of each cluster in a block is equal to one. For example, for the
BLOSUM60 matrix, sequences with at least 60% identity are clustered.
Next, the number of matches and mismatches are determined in each block column,
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resulting in a table of frequencies fij of observed pairs of amino acids i and j. Thus, the
probability occurrence for each amino acid pair (qij) can the estimated and additionally
calculated for a random model (eij) [11]

qij =
fij

20∑
i=1

i∑
j=1

fij

(4.15)

eij =

{
pipj if i = j

2pipj if i 6= j
(4.16)

where pi is the probability of amino acid i occurring in a pair

pi = qij +
∑
i 6=j

qij
2

(4.17)

The log-odd ratio can be calculated by

Sij = 2log2
qij
eij

(4.18)

where qij represents the observed frequencies of occurrence of a pair i, j and eij gives
the expected frequencies of i, j. [27]

4.4. Pairwise and Multiple Sequence Alignment
To compare sequences and to identify significant mutations sequence alignments are con-
ducted. In 1970, Needleman and Wunsch published a dynamic programming method to
produce global pairwise alignments. There, optimal alignments of partial sequences are
searched and stepwise composed to an optimum global alignment resulting in one-to-one
comparison of two sequences. Global alignments are useful when comparing sequences
that have not diverged substantially, or when the sequences constitute a single element,
such as a protein domain. [32]
If the sequences are highly diverged or have become rearranged during evolution, a lo-
cal alignment might be more suitable. [11] Smith and Waterman extended the ideas
of Needleman and Wunsch to develop a local alignment algorithm called the Smith-
Waterman algorithm, which searches partial paths in dot plots (section 4.1), which are
no longer extended once the marginal sequences of the partial path don’t match well and
the similarity score goes below the threshold. [29] Both algorithms belong to a class of
algorithms called dynamic programming algorithms. They allow to find optimal solu-
tions to problems divided into subproblems but can take a long time to run. [32]
In sequence alignments it can be distinguished between pairwise alignments, in which
sequences, even if they are part of a larger set, are aligned only in pairs, and multiple
alignments, in which more than two sequences are aligned simultaneously. [59]
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Till now, the Needleman-Wunsch and the Smith-Waterman algorithms are the most ac-
curate pairwise alignment algorithms in existence [32].

To compare the sequences and to quantify similarity, the sequences are arranged in
rows on top of each other such that matched residues are arranged in successive columns.
With the aid of insertions the number of matching residues can be optimized and the
resulting alignment is an assembly of matches, mismatches, insertions and deletions.
As there are always many different possibilities to align sequences and to select the best
one, similarity scores have to be introduced to quantify their relative quality. [11] The
scoring schemes normally include substitution matrices to score matches and mismatches
and gap penalty functions to judge insertions and deletions. By summing up the single
scores, a complete alignment score is received and gives a measure of the quality of the
current alignment.

Multiple sequence alignment is an extension of pairwise alignment to incorporate more
than two sequences. In contrast to the pairwise algorithm, most of the multiple alignment
algorithms are heuristic rather than exact solutions and based on progressive alignment
(section 4.4.1), such as CLUSTALW. [86] Otherwise, the execution time and the mem-
ory requirements would be excessive. Multiple sequence alignments have many uses in
molecular biology including e.g. genome sequence annotation, gene prediction, phylogeny
reconstruction, RNA and protein structure analysis and functional classification of pro-
teins. [24]

During the last years, lots of different multiple alignment programs appeared on the
market because of the continuously increasing amount of sequences in public databases
like NCBI.
In section 4.5 some of these popular tools for multiple alignment are described briefly.
Furthermore, multiple alignments may be hard to interpret in the text view without
additional software tools. Thus, a number of visualization tools have been developed
providing graphical representation of the alignments. [24] For example the Geneious4

tool (section 4.5) which was used to visualize the alignments of the Fasciola hepatica
dataset.

4.4.1. Progressive Alignment Construction
The most commonly used approach to multiple sequence alignment is progressive align-
ment. Initially, all possible pairwise alignments are constructed and used to estimate a
phylogenetic tree, often called the guide tree, by using a distance-based algorithm. Using
the tree, the most similar sequences are aligned to each other using a pairwise algorithm.
Then further sequences are added based on the structure of the phylogenetic tree. The
most widely used progressive alignment algorithm is currently CLUSTALW.

4http://www.geneious.com/
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Progressive alignment works well especially for close related sequences, but it suffers
also from many drawbacks.
The resulting progressive alignment is depended on the guide tree, which is just a rough
approximation to the true phylogenetic tree, as it is based on pairwise sequence distances
only. In addition, any mistakes made in early steps can not be corrected by later steps.
Other approaches to avoid this problems are for example the iterative methods used by
MultAlin (Corpet 1988) and DIALIGN (Morgenstern 1999; Morgenstern, Frech, et al.
1998). Here, the alignment generated from one pass of an algorithm is used to construct
a new guide tree, which can then be used for a new alignment. [86]

4.5. Sequence Alignment Tools
In this section the most popular multiple sequence alignment tools on the market are
described briefly. Geneious is explored a little bit more in detail because it is used for all
visual analysis for the example of use (chapter 5).

All of these tools for multiple alignment, explored below, are available online or for
download from their websites.

Geneious Alignment

Geneious is a feature rich software for visualization and analysis of protein or nucleotide
sequences [63]. The interface is very user friendly and with the aid of the sources panel
and the document table a breakdown of the sequences is possible [67]. It organizes and
stores data, provides graphical outputs, visualization of 3D structures and much more.
Geneious also offers the possibility to get a first impression of the similarity of two se-
quences by using the dot plot option and to determine whether the similarity is global
or local.
In addition, several alignment tools are incorporated in Geneious to enable an easy access
to different analysis approaches of the same sequences without data shifting. [69] The
Geneious multiple alignment algorithm uses progressive pairwise alignment. To develop
the guide tree the neighbor-joining method is used. [67]
It provides the alignment software CLUSTALW (section 4.5), MUSCLE (section 4.5),
MAFFT, Mauve and LASTZ.
To run a multiple alignment in Geneious, all the sequences have to be chosen and the
favored algorithm has to be selected. The execution time is quite low and after finish-
ing the Geneious alignment software offers the option of refining the multiple sequence
alignment. Therefore, sequences can be removed from the alignment and realigned very
simply.
Concerning the substitution matrices used in Geneious alignment, protein sequences offer
the choice of either PAM or BLOSUM matrices. For nucleotide sequences match and
mismatch costs can be determined, which allow to set different scores for transition and
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transversion resulting in various substitution models. Geneious is also able to indicate
the amount of similarity of the sequences and to calculate the optimal score by itself.
For both protein and nucleotide alignments gap penalties can be set by the user. [67]

To build a tree, protein or nucleotide sequences can be chosen and different options
are available. One possibility is the genetic distance model, which allows the user to
determine the substitution model used to estimate the branch lengths. If DNA sequences
are used, the Jukes Cantor, HKY (section 4.2.1) and Tamura Nei models are choices and
if amino acids sequences are considered only the Jukes Cantor distance correction can
be used. The tree building method in Geneious is the neighbor-joining method or the
UPGMA method. [67]

CLUSTALW Alignment

CLUSTALW is an improvement of the original CLUSTAL program introduced in 1990
by Higgins and Sharp and is the most commonly used multiple sequence alignment tool.
The ’W’ in CLUSTALW stands for ’weights’ because CLUSTALW uses a sophisticated
scheme in order to prevent very similar sequences from dominating the multiple sequence
alignment. [20] It uses substitution matrices and gap penalties depending on several
parameters such as local sequence similarity and amino acid composition of protein se-
quences.If for example the PAM or BLOSUM substitution matrix is chosen by the user,
CLUSTALW automatically chooses the most adapted matrix level [20].
The algorithm uses the progressive method, explained in section 4.4.1, to build the align-
ments. Therefore, the software clusters the sequences by similarity to produce a phyloge-
netic tree. Following the dendrogram topology and starting to align the single branches
new alignments are received. These new alignments are treated by CLUSTALW like
single sequences and are aligned to each other. [20]
One drawback of CLUSTALW is that it is a strictly global alignment program and al-
ways aligns a sequences from the beginning to the end. TCoffe is an alternative to
CLUSTALW, also using progressive alignment, providing more accurate alignments but
to a higher execution time [20].

MUSCLE Alignment

MUSCLE is one of the fastest multiple alignments methods. It uses progressive alignment
and is quite accurate. It is even more accurate than TCoffe and faster than CLUSTALW.
First of all, MUSCLE generates a rough draft of the alignment, using a very simple
guide tree. In the next step a more accurate guide tree is developed, based on the initial
alignment and a second progressive alignment is generated. [115]
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5. Fasciola Hepatica - Example of
Use

5.1. Introduction

Fasciola hepatica is a brown flatworm helminth and belongs together with the Fasci-
ola gigantica to the liver flukes [53]. The parasitic trematode may infect livestock and
humans leading to the disease fascioliasis, affecting the biliary canals and gallbladder,
causing enormous economic losses and high medical costs [9].
The WHO estimates that at least 2.4 million people are infected in more than 70 coun-
tries worldwide.
Additionally, the estimated number of unreported cases is much higher. It is appraised
that more than 180 million people are at risk to get infected. [112]
Countries with rather damp climate and mild temperatures, like Ireland, present suitable
conditions for the liver fluke’s intermediate host, the freshwater snail [33].
Nevertheless, Fasciola hepatica can be found on all continents, except the Antarctic,
which indicates its high adaptability to external conditions [1].

Humans get rather accidentally hosts of Fasciola hepatica by transmission from animal
to humans (zoonosis) [75].
In regions where infected animals are in contact with vegetation consumed by humans,
transmission can happen easily. Nearly all known cases result from watercress consump-
tion or through the ingestion of water lettuce or alfalfa [95]. The primary hosts of Fasciola
hepatica are wild or domesticated mammals, especially cattle and sheep, but also goats,
horses, buffaloes, alpacas, camels, deer and rabbits may be affected [107] [9].

In 1379, the first references of infections with Fasciola hepatica are made by Jehan de
Brie [95]. France, was the first country in which a modern epidemic of human fascioliasis
occurred in 1956 [102].
At the beginning, fascioliasis was completely underestimated, but with the enormous
increase in the number of infections of animals and humans and the distribution of the
helminth all over the world, effective strategies were researched to regain control of the
disease [72] [71].
Fascioliasis became not only an economic problem, due to decreased meat and milk pro-
duction, decreased female fertility of the ruminants and increased veterinary costs, but
also a worldwide human health problem [18].

33



5 Fasciola Hepatica - Example of Use

Since 1983 an anthelmintic drug, triclabendazole (TCBZ) exists, which helps to pre-
vent the spread of the disease [43]. Till now it is still the only medication recommended by
the WHO and additionally, the only effective known pharmacological treatment against
fascioliasis [112] [1].
Triclabendazole is administered once orally or twice in more severe cases and shows high
efficacy against the immature and the adult liver flukes [60].

However, shortly after the introduction of TCBZ as treatment for infected animals
with fascioliasis, resistance to TCBZ has been reported. The first case of resistance was
documented in Australia in 1995, followed by reports in South America and Europe. [43]

The mechanism underlying TCBZ resistance probably results from active efflux or re-
duced uptake of the drug [17]. Furthermore, possible changes in the target molecule or
drug modification may also play a role in TCBZ resistance [51].

Lots of researches started to find alternatives to TCBZ. Hernandez et al. attempt
to develop vaccines to treat fascioliasis, but the lack of knowledge of the immunological
processes, e.g. how and when the parasite initiates control of the host immune response,
limits the success [75].
Availability of new anthelmintic drugs has become a pressing need. To discover and
develop alternatives to TCBZ, the mechanism of drug resistance and the genetic adaption
of Fasciola hepatica have to be understood first [99].

5.1.1. Epidemiology
Fascioliasis is currently the most widespread disease known in terms of latitude, longi-
tude and altitude [72].
In Australia, the prevalence of fascioliasis in different regions is reported from 41% in
Victoria, 31% to 55% in Gippsland and 0.4% to 50% in Queensland. In northern Victoria
researches in sheep reported a fluke intensity up to 72 flukes per animal. [33]
Studies in the UK show an enormous increase of the prevalence of fascioliasis from 48%
to 72% in just 3 years from 2003 to 2006 [75]. In Belgium the prevalence is estimated to
be 37%, in Germany 50% and in Spain even 61% [73] [15] [58].
Also serological surveys in Austria were conducted investigating bulk milk samples of
domestic dairy farms. Of the total round 5.000 tested samples, 15.5% respond clearly
positive and 29.5% weakly positive. Concerning the frequency of positive serological re-
actions significant regional differences in Austria could be found. In the pasture areas of
the Upper Styria, the West and East Styria the infection frequency is expectedly higher
than in the South plains and hill land. [40]
A study conducted in Tyrol revealed, that in 73% of the tested cows antibodies against
the liver fluke Fasciola hepatica were found [1].
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In Europe, more than 55% of all farm animal diseases are caused by parasitic helminths,
resulting in production losses and high veterinary costs. Estimations claim, that every
year 400 millione are spent on anthelmintic drugs. [76]

The economic losses concerning the parasite Fasciola hepatica exceed 3 billion $ glob-
ally [12] [83]. In Australia, it is estimated that 40 million sheep and 6 million cattle are
infected with the liver fluke, leading in economic losses of about 50 to 80 million $ per
year due to production losses and further 10 million $ per year due to treatment of the
infected animals.

Fascioliasis diminishes the proceeds concerning the milk and meat production. The
reduction in milk yield in dairy cattle depends rather on the intensity of the infection
and further on the level of animal nutrition. [33]
Basically, the reduction concerning the milk output of infected animals has been esti-
mated from 3.8% to 15.2% [56].
Furthermore, the contamination of the liver and the decrease of wool output contribute
to the high losses due to fascioliasis.
However, far more damaging effects are the decreased fertility in dairy cattle, lower calf
birth weight and the reduced growth of infected animals [55].
Taken as a whole, the production losses are estimated to be around 17% per animal
concerning an infection of livestocks with helminth parasites [35].

5.1.2. Morphology and Life Cycle

The Fasciola hepatica is a parasitic trematode, which affects mammals and leads to the
disease fascioliasis [112].
An adult flatworm (Figure 5.1) has a bay leaf form of about 3 cm length and 1.5 cm
width. They appear pink - grayish to dark red and the body surface is covered by various
spines. Each Fasciola hepatica possesses ovaries and testes and allow individual flukes to
reproduce independently. [95]

Figure 5.1.: Adult stage of Fasciola hepatica. [61]
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The life cycle of the liver fluke (Figure 5.3) represents a complex interplay between
the parasite and the hosts and takes around 14 to 23 weeks [75].
The resulting prepatent period1 is dependent on the temperature. Higher temperatures
(25 degrees) can reduce it to 38 days and lower temperatures (15 degrees) extend it.
The adult fluke parasitizes the larger biliary passages and the gallbladder of its hosts.
Especially cattle and sheep serve as primary hosts for the large liver fluke, but also other
herbivorous domestic and wild animals get infected. Cases of fascioliasis in horses, al-
pacas, donkeys, mules, buffalos, deer, wild boars, rabbits and further grazing animals
have been reported. [102]

The adult Fasciola hepatica stays in the bile ducts and produces 20 000 to 24 000
eggs per fluke per day, which are released by way of bile and intestine with the faeces
[75]. The eggs can only hatch and develop if they reach water of appropriate quality
and physiochemical characteristics. Temperatures of about 15 to 25 degrees enables the
development of the miracidia2 and after 9 to 21 days it may hatch. At unsuitable climatic
conditions or absence of water the parasite is able to stay viable for several months. [102]
However, the motile miracidia swims rapidly until discovering a mud snail (aquatic or
amphibious), its second host and invades via chemotaxis [1].
Inside the intermediate snail host the development of the next three typical lifecycle
stages of a trematode take place, including the sporocyst, redial generations and the
production of cercariae.
Afterwards, the cercariae is released by the snail, shedded into the water and after a
short swim period (usually below an hour), it attaches to water plants above or below
the water line. [102]
Under laboratory conditions, a single snail is able to shed around 2000 cercariae before
it dies [28]. The cercariae encyst as metacercariae (Figure 5.2), loses its tail and become
infective within 24 hours and is able to survive for up to a year [8]. Following ingestion
by the definitive host, the metacercariae excyst within an hour and emerge from the
cysts in the intestine. The excysted trematodes are now called juvenile flukes and by
penetrating through the intestinal wall they arrive at the abdominal cavity by about 2
hours after ingestion. After additional six days the trematode reaches the liver via the
abdominal cavity, where they stay for about 5 to 6 weeks.
In this acute phase, the affected patients complain of severe abdominal pain, nausea, skin
rashes, fever and respiratory disturbances [112]. The destruction of the liver cells results
in internal bleeding and a swollen liver causing symptoms related to haemorrhage and
inflammation [1].

Finally, the parasite migrates into the bile duct, where it becomes sexually mature,
produces eggs and initates another cycle of infection.
This chronic phase is characterized by jaundice, anaemia and an intermittent pain. [102]
In addition, the patients often suffer from pancreatitis, gallstones and bacterial superin-
fections and as a result of the long term inflammation also liver fibrosis occurs [112].

1Period between infection of the host and the first appearance of eggs in the faeces.
2The first stage larva of a trematode.
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Figure 5.2.: Encysted metacercariae attached to a leaf of a freshwater plant. The definitive
host gets infected by ingestion. (Orig. S. Mas-Coma)

The final prepatent period differs depending on the type of host and also on the
severity of the parasite infestation in the liver. In sheep and cattle it is about 6 to 13
weeks, whereas in humans rather 3 to 4 months.
Furthermore, the trematode is able to survive for long periods, including anatomical and
probably immunological long term damages. The longest recorded lifespan of the liver
fluke was 11 years in a sheep and 9 to 13 years in humans [75]. In cattle surviving periods
of 9 to 12 months are documented. [102]

5.2. Triclabendazole Resistance
The benzimidazole triclabendazole presents the drug of choice since 20 years against
the chronic and acute fascioliasis in ruminant livestock throughout the world [45]. Its
widespread and extensive use arises from the superior efficacy against both the imma-
ture and mature parasites [22]. The adult liver fluke Fasciola hepatica as well as all its
immature stages down to 2 days post-infection in the definitive host can be killed by the
treatment with triclabendazole [45].
Other standard anthelmintic drugs like praziquantel, used e.g. for the treatment of Schis-
tosoma mansoni, are for unknown reasons not effective against fascioliasis [41] [1].

The mechanism of action regarding triclabendazole is not completely understood yet.
Based on the known effects of other benzimidazole drugs, it is believed that TCBZ might
bind to the β tubulin molecule and therefore prevent the formation of microtubules. [17]
It could be shown, that the entry of the drug into the fluke is based mainly on diffusion
across the tegumental syncytium rather than by oral ingestion [78].

However, only 12 years after TCBZ was introduced as veterinary drug in 1983 the first
case of drug resistance was reported in Australia. Since then further resistance cases in
liver fluke populations were documented worldwide. The continuous, inadequate use and
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Figure 5.3.: The life cycle of Fasciola hepatica [68].
a) the adult flatworm affects the liver and gallbladder of ruminants.
b) Egg without an embryo.
c) Embryo develops within the egg.
d) Miracidium, the first stage larva of a trematode, searching an intermediate host.
e) Cercaria developing within the redia of the intermediate host Galba truncatula.
f) Metacercariae attaches to water plant leafs. The final host gets infected by
ingestion.
g) cross section of the metacercariae.
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the complete reliance on TCBZ led to the development of resistance of the parasites. [44]
Till now, the mechanism underlying TCBZ resistance have not been thoroughly eluci-
dated. Research shows, that it is probably a multifactorial process including changes in
drug uptake, drug efflux and metabolism. [109]
In nematodes, benzimidazole resistance is linked to changes in the target molecule, which
could not be confirmed for TCBZ resistant liver flukes [17]. In heterologous expression
systems, recent studies show an interaction of anthelmintic drugs with homologues of
permeability glycoprotein (P-gp) and an increase of intracellular accumulation of fluo-
rescent ABCB1 substrate rhodamine 123 caused by TCBZ [54] [30].
It is known that Fasciola hepatica expresses a P-gp like ABC transporter and further it
could be proven that their resistant phenotype can be reversed, from resistant to suscep-
tible by applying P-gp inhibitors [109] [17].
The function of ABC transporter (section 5.2.1) is to import or export a wide spectrum
of different substrates and the conducted studies suggest that these transporters may be
responsible for an active efflux or an reduced uptake of the drug [60].
In addition, a recent survey of Wilkinson et al. examined single nucleotide polymor-
phisms (SNPs) of a potentially ABC transporter of Fasciola hepatica. They discovered
a more frequently incidence of the allele specifying codon S1144R in TCBZ resistant
isolates [109].

Taken together all this awarenesses, P-gp like ABC transporter might play a significant
role in mechanism of drug resistance as well as in detoxification processes in helminths
to survive inside their hosts [60].
Thus, polymorphisms in ABC transporters have been increasingly studied over the last
few years to detect SNPs leading to transporter dysfunction, to diseases, or resistances
to drugs.

5.2.1. ATP - Binding Casette Transporter
ATP Binding Cassette (ABC) transporters are membrane proteins that either import or
export various substrates across the cellular membrane [60]. They represent the largest
transmembrane protein family and are found in all organisms [84]. Hydrolysis of ATP to
ADP provides the energy to drive the active transport of a variety of substrates, including
ions, sugars, amino acids, polypeptides, toxic metabolites, xenobiotics and drugs [113].
Based on phylogenetic analysis, the ABC transporters are classified into eight subfamilies
(ABCA to ABCH) concerning their sequence and organization of their ATP binding
domain.
Within one subfamily, the transporters are further subdivided into subgroups concerning
their similarity, additionally marked with numbers, e.g. ABCA1. [23]
Full and functional transporters typically consist of two hydrophilic ATP binding domains
(Nucleotide Binding Domains, NBDs) in combination with two hydrophobic
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Figure 5.4.: A simple ATP-switch mechanism powers ABC transporters. [64]

transmembrane domains (TMDs) [92]. The ABCE and ABCF subfamilies contain 2
NBDs, but no TMDs [41].
For the transport cycle of ABC transporter (Figure 5.4) and the exact process of hy-
drolysis several hypotheses are available. Through structural and biochemical analyses
it turned out that the ATP binding and hydrolysis is coupled to conformational changes
in the transporter based on high and low affinity states for ligands on different sides of
the membrane. [64]
In the resting state, the NBDs form an open dimer with low affinity for ATP. By binding
of a ligand to the high affinity site on the TMDs, conformational changes are induced
in the NBD, transduced via the intracellular loops of the TMDs interdigitating with the
NBDs. Thus, the binding probably enhances the affinity to ATP of the NBDs. Previous
structural studies prove that unusual conformations of the Walker A motif may preclude
binding of ATP.
In the next step, 2 ATP molecules bind and form the closed dimer configuration, which
generates a significant amount of free energy, possibly used to induce conformational
changes in the TMDs. This change may include e.g. breaking interactions between TM
α helices and may alter the position and affinity of the ligand binding site. Consequently
the TMDs open, the substrate is released and hydrolysis of ATP follows. In P-gps the
hydrolysis occurs nonsimultaneously and necessarily of both ATPs to complete a trans-
port cycle. Through the release of phosphate (Pi) and ADP the transporter snaps back
to its initial configuration.
This ATP switch model consists of 4 steps, including 4 conformational changes. First
associated with the binding of ligand, then ATP binding, ATP hydrolysis and ADP and
Pi release. However, the transport mechanism is rather complex and many details remain
to be elucidated. [64]

The highly conserved cytosolic and L-shaped nucleotide binding domains contain char-
acteristic motifs e.g. the Walker A and Walker B. These 2 motifs, found in all ATP
binding proteins, are separated by the Q loop and the Walker C motif (the signature),
which makes up approximately 90 to 120 amino acids [106].
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In contrast to the TMDs, the NBDs are homologous throughout the family including
the named motifs and loops (D, H and Q loop), which represent a unique characteristic
for investigating ABC transporters. Whereas the NBDs are located in the cytoplasm
and are responsible for the energy transfer, the TMDs form the ligand binding sites and
provide substrate specificity. [64]

The domains in eukaryotic ABC transporters are organized as either full transporters
combining all four required domains (2 TMDs and 2 NBDs) in one polypeptide, or half
transporters consisting only of 1 TMD and 1 NBD, requiring homo- or heterodimeriza-
tion for full functionality [64] [109] [65]. In eukaryotes, substrates are moved from the
cytoplasm to the outside of the cell or into an intracellular compartment like the en-
doplasmatic reticulum (ER), mitochondria or peroxisome. The ABC pumps in bacteria
work predominantly as import pumps of essential substrates that cannot be obtained by
diffusion into the cell. [23]

The human genome encodes 48 ABC transporters, representing seven of the eight fam-
ilies (A-G) (Table A.1). Up to date 14 of these transporters are proven to be involved in
human hereditary diseases, including cystic fibrosis (CF), adrenoleukodystrophy (ALD)
and cholesterol metabolism disorders (Table A.2). [23] In addition, several members of
the ABC transporters have been associated with drug resistance in parasites. [65]

Some of the transporters seem to be specific for their endogenous substrates, others
function as multidrug efflux pumps and are able to transport a variety of different drugs
and substrates [23]. The latter are responsible for the transport of cytotoxic compounds
out of the cell and play an important role in the uptake and distribution of drugs. [64]
The three most important transporters known to be involved in multidrug resistance
are the P - glycoprotein (P-gp/ABCB1), the Breast Cancer Resistance Protein (BCR-
P/ABCG2) and the Multidrug Resistance Associated Protein 2 (MRP2/ABCC2). These
transporters are highly expressed in the human gut, limiting the intestinal absorption of
foreign substances. Furthermore, they are localized in the canalicular membrane of the
liver and kidney regulating the secretion of drugs and metabolites to bile. [60] The P-gp
transporter was the first characterized eukaryotic ABC transporter discovered in 2006,
based on the prevention of effective cytotoxic chemotherapy [64]. Other members of the
ABCC subfamily and possibly ABCA2 are also associated to multidrug resistance [23].
However, parasites and nematodes seem to possess a high amount of ABC transporters
and some of those appear very similar to P-gps. Caenorhabditis elegans genomes code
for approximately 60 transporters, 13 P-gp homologues of subfamily B and multidrug
resistance proteins (MRP) of subfamily C. [92]
In Haemonchs conchrotus, the red stomach worm 9 P-gp homologues could be identified
and the nematode Schistosoma mansoni code for approximately 20 transporters includ-
ing 7 of class ABCB [110]. Possibly the parasites have developed to express many ABC
transporters to improve their adaptability [1].
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5.3. Material and Methods

5.3.1. Fluke Isolates

Fluke isolates of known drug sensitivity and treatment history were studied originating
from cattle or sheep of various european countries. In total four datasets (19929, 19930,
19931 and 19932) were analyzed, each including the cDNA contigs of two flukes.
The data of 19931 indicate genetic material of the Dutch isolate collected on a farm
in North Holland [36]. Tests confirmed the presence of resistance to the anthelmintic
drug TCBZ [37]. The others, 19929, 19930 and 19932 are susceptible to TCBZ and are
obtained from Down in Northern Ireland, from Cullompton in South West England and
from Austria.
The Cullompton isolate was received in 1998 from sheep and is known to be sensitive to
several fasciolicides [36].
The Austrian adult liver flukes derive from cattle, fresh slaughtered in Traisen, Lower
Austria. In cooperation with the Medical University of Vienna, RNA was isolated to
generate full length cDNA.
Basically, the Dutch TCBZ resistant isolate was used for comparisons with the TCBZ
sensitive ones to detect functionally significant mutations.

In Table 5.1 information concerning the dataset name, reads, contigs, origin and phe-
notype of the material is summed up and listed.

Sample ID 19929 19930 19931 19932

Origin Down Cullompton Dutch Austrian

Phenotype Sensitive Sensitive Resistant Sensitive

Raw Reads 45.925.010 49.833.866 36.095.878 42.419.544

HQ Contigs 97.766 157.300 93.375 256.577

Contig Nucleotides 50.476.973 78.064.169 105.570.474 52.785.237

Included Reads 16.226.440 19.685.638 17.737.410 20.175.394

Reads in HQ contigs 48% 52% 62% 57%

Average Contig length 516 496 1131 206

Table 5.1.: Data concerning the origin, phenotype and the information content of the
cDNA of the samples. (cp.[3])
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5.3.2. Data Preparation
RNA was prepared and isolated from the Austrian adult liver flukes. It was then con-
verted into the far more stable complementary DNA (cDNA) to enable further analyses.
The cDNA sequencing was outsourced and conducted by the Next Generation Sequenc-
ing Core Facility, CSF, Vienna, Austria.
The underlying idea of sequencing experiments is to add a nucleotide to an extending
primer strand such that the base that is added to the end of the strand is complementary
to the corresponding base on the template.
One of the most popular next generation sequencing systems are Illumina, SOLiD, 454
(Roche), Heliscope and SMRT. The quality of the sequencing is mainly dependent on
the read length and the sequencing depth. Illumina, SOLiD and Heliscope produce a
high amount of short sequence reads of an average length of about ∼ 100-mer. The 454
pyrosequencing technology and the SMRT sequencing from Pacific Biosciences establish
smaller numbers of longer reads (> 400-mer for 454 and 1.000 - 3.000-mer for SMRT).
On the one hand, for generating a deNovo assembly longer reads are easier to handle
concerning sequence assembly. On the other hand Illumina and also SOLiD work with a
high sequencing depth and therefore are ideal for semi quantitative experiments such as
gene expression.
However, the cost effectiveness of shorter read technologies and the availability of so-
phisticated genome assembly algorithms result in the standard use in case of deNovo
assembly and reference assisted genome characterisation. [91]

The sequence technology provides the raw reads, which were further used to produce
an assembly of the genome. In this study, 36.000.000 raw reads for dataset 19931 to
45.000.000 for dataset 19929 were available. Moreover, read pairs were formed, which
halves the amount of raw reads and to increase the quality, erroneous and very short
reads were excluded. The threshold of eliminating short length reads was set to 50 bp.
In addition, the base calling accuracy, which indicates the probability that a given base is
called incorrectly by the sequencer was determined to produce High Quality (HQ) reads.
A Phred Quality Score of 30 to a base is equivalent to a base call accuracy of about
99.9%, meaning that every 1000 bp sequencing read will likely contain an error. [50]
In the next step, all pairs of reads are compared to identify overlaps and are assembled
as HQ contigs by the use of Trinity. The arising challenge as mentioned before is the
shortness of the sequence reads generally only around 300bp long.
An experimental strategy, the paired-end sequencing, facilitates to obtain contiguous
assemblies. The DNA fragments are sequenced from both ends, whereas the distance
between each paired read is known. Therefore alignment algorithms can use this infor-
mation to map the reads over repetitive regions more precisely. [91] [50]

Dataset 19932 contains the highest amount of HQ contigs (∼ 257.000) of lowest aver-
age length, including round 21.000.000 reads and 53.000.000 nucleotides.
The dataset of the putative resistant liver fluke possesses round 93.000 HQ contigs of
106.000.000 nucleotides leading to the largest average length of 1.130 bp.
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Figure 5.5.: The contig length [bp] plotted against the normalized amount of contigs [%] of the
Fasciola hepatica datasets. [3]

The two other sensitive datasets 19929 and 19930 consist of 98.000 and 158.000 HQ reads
of an average length of round 500 bp. The average amount of reads, which are included
in the HQ contigs makes up 55% of the raw reads. [3] The exact values concerning the
information content of the datasets can be found in Table 5.1. All data preparation, ex-
cept the sequencing process, was conducted at the department Health and Environment,
Bioresources3 of the Austrian Institute of Technology in Tulln [3].

In this thesis, phylogenetic analyses with the received cDNA ABC transporter datasets
are described to further discover single nucleotide polymorphisms and therefore detect
ABC transporter dependent resistance.
In addition, comparative analyses of differently expressed genes in resistant versus sen-
sitive specimen are conducted to get insights of the adaption changes developing drug
resistance in parasites.

3DNA Bank and Genotyping Services
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5.3.3. Identification of ABC Transporters
ABC transporters typically encode structural proteins and single SNPs may result in
severe function changes or even lead to a complete function loss. Several transporters
are associated with genetic disorders and with multidrug resistance in chemotherapy by
pumping out anticancer drugs as well as in pathogenic microorganisms [23] [48] [60].
Within parasites the underlying mechanism contributing to the resistance against an-
thelmintic drugs like triclabendazole seems to be increased drug efflux mediated by ATP
binding cassettes transporters. By blocking these transporters it should be possible to
restore susceptibility to anthelmintic drugs.

ABC transporters may support the survival of the liver fluke in the hostile environ-
ment of the bile duct even though many of the bile salts are conjugated. These free bile
salts reach concentrations which are still high enough to be toxic to most cells.
Possibly, the liver fluke gets protected by its outer tegumental layers, but it must further
possesses a detoxification mechanism for its gut. The export of bile salts is known to
be mediated by the Bile Salt Export Pump (BSEP/ABCB11) in mammals. Therefore,
Fasciola hepatica expresses maybe a similar protein which provides a biochemical barrier
against bile acids.
Underlying this hypotheses, Kumkate et al. discovered in 2002 a protein in Fasciola
gigantica recognized by a ABCB1 antibody lining the digestive tract. [1]

Furthermore, a recent study of Wilkinson et al. detected 3 SNPs in an putative ABC
transporter of Fasciola hepatica resulting in an amino acid change. One of these SNPs
could be seen more frequently in the TCBZ resistant isolates. [109]

The resistance to anthelmintic drugs may develop due to a mutation in a transcription
factor resulting in overexpression of an otherwise normal ABC transporter.
Based on this, we tried to identify ABC transporters of Fasciola hepatica and further
detect SNP candidate regions involved in drug resistance. The severity of a SNP in a
transporter depends on the occurring location leading to a protein change which may
affect the function of the transporter [6].

Phylogenetic analyses were conducted for each ABC transporter subfamily in compar-
ison to those of Homo sapiens, the fruit fly Drosophila melanogaster and the nematode
Caenorhabditis elegans. Furthermore, sequence alignments were conducted with Geneious
to detect SNPs.
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5.4. Detection of Significant Hits
To detect regions of similarity the Fasciola hepatica sequences are examined by BLAST
search (chapter 3) to a database consisting of ABC transporters of different organisms.
The database GenBank was used to retrieve 49 sequences of nucleotides of Homo sapiens,
55 protein sequences of Drosophila melanogaster ABC tranpsporter and 70 sequences of
proteins of Caenorhabditis elegans. The ABC transporter sequences of these three organ-
isms are run against the datasets of Fasciola hepatica consisting of nucleotide sequences
of putative ABC transporters.
Based on the use of nucleotides or protein datasets, the right BLAST program has to be
chosen. The programs available for BLAST are listed in chapter 3, Table 3.1.
The Homo sapiens dataset consists of nucleotides whereas the Drosophila melanogaster
and the Caenorhabditis elegans are protein databases. Therefore, for the comparison of
Homo sapiens and the liver flukes, a tblastx search was perfomed, searching translated
nucleotides databases using translated nucleotide queries. For the other two organisms
the BLAST program tblastn was conducted, searching translated nucleotide databases
using protein queries.

As amino acid substitution matrix the BLOSUM62 matrix (section 4.3.2) is used by
default to align the sequences with no more than 62% similarity and to count the relative
frequencies of amino acids and their substitution probabilities. In terms of nucleotides,
each identical match is scored in the same way whereas mismatches are penalized with
negative scores. [105]

Furthermore, a statistical significance threshold for reporting matches against the
database sequences was set with an E value of e−20. Matches with ascribed statisti-
cal significance greater than the expectation threshold won’t be reported. Therefore, the
lower the E value, the more stringent matches are filtered out with little similarity [80].
The organisms compared in our study are evolutionary not closely related. Thus, the E
value should not be set too low to still receive matches to detect homology.

To demonstrate the impact of the E value the comparison of the ABC transporter
dataset of Drosophila melanogaster was conducted with no threshold and with one of
e−20 (Figure 5.6). With no statistical significance threshold BLAST detects many hits
with low similarities. Specifying the BLAST search by introducing an cutoff E value, ho-
mologies between the sequences may be detected. Lots of ABC transporters of Fasciola
hepatica show similarities to several ABC transporter subfamilies. The unique classifica-
tion of the contigs to one transporter sharing the most identity provides a first estimation
of the amount of ABC transporter existing in the liver flukes (Table 6.1).
The assignment of the single contigs of Fasciola hepatica to the subfamilies of the trans-
porters is listed in the Appendix (A.1).
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Figure 5.6.: Conducted BLAST searches (tblastn) against the ABC transporter sequences of
Drosophila melanogaster using 1) the 19929, 2) 19931 and 3) the 19932 Fasciola
hepatica dataset as query. The red bars indicate a BLAST analysis with no sta-
tistical significance threshold resulting in larger numbers of hits. By introducing a
threshold of e−20 the hits reduces enormously (green), displaying only sequences
with high similarity. ABC transporters of Fasciola hepatica which have common-
alities with e.g. A and B transporter are listed in both. The data of the unique
classification where each liver fluke transporter is assigned to only one ABC trans-
porter (A-H) is displayed by the blue bars. The dataset 19930 was excluded from
analysis because of the suspicion of being a triploid form.
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Organism A B C D E F G H

Caenorhabditis elegans 7 24 9 5 1 3 9 2
Drosophila melanogaster 10 10 12 2 1 3 15 3
Homo sapiens 12 11 12 4 1 3 5 0

Table 5.2.: The number of ABC transporters of the organism the liver fluke was com-
pared with and the composition in each ABC subfamily. The evolutionary
most closely related nematode possesses its majority of transporter in the
ABCB subfamily, consistent with the putative amount of ABC transporter
in the liver fluke.

The vast majority of ABC transporters identified in Fasciola hepatica are in the ABCB
subfamily (∼ 50%), followed by the ABCC subfamily (∼ 14%). Furthermore, no trans-
porters of the subfamily H could be found.
After visualization and analysis of the parasite sequences in Geneious, the dataset turned
out to be fragmented. Therefore, the numbers of ABC transporters of the liver flukes
are probably a bit lower in reality because of several transporter fragments, which are
constituents of the same transporter are counted separately.
The high amount of hits received for the subfamily D is due to the detection of many
splice variants of the contigs comp28795_c0 and comp28985_c1 (Table A.5 and A.3 ).
The splicing process removes introns from the mRNA and joins the exons to create ma-
ture mRNA. It may also lead to several mature mRNAs from one mRNA, resulting in
several proteins from a single gene termed ”alternative splicing variants”. [82]

The dataset 19930 delivers results of expression and polygenetic analyses different to
the other 3 Fasciola hepatica datasets. Probably the fluke is triploid4 and to avoid errors,
the dataset 19930 was completely excluded from further analyses.

In three cases the contigs showed a high similarity to two different subfamilies (ABCB
and ABCC). Contig comp106670_c1_seq16 is classified as a transporter of subfamily
ABCB (E value of 4, 00e−27) but delivers also for subfamily C an E value of 4, 00e−26.
Additionally, contig comp106670_c1_seq17 and comp27410_c0_seq1 are assigned to
subfamily C and show high similarity to the members of subfamily B. To classify these
exceptional cases correctly additional parameters such as the bit score are considered.
However, all the other contigs could be assigned clearly to the single subfamilies by the
E value.
The ABC subfamilies are further subdivided into subgroups concerning their expression
and function. This classification based on the comparison of the fully described NCBI
sequences of the ABC transporter of Homo sapiens with the dataset. The results of the
identified ABC transporter subgroups in the liver flukes can be found in Table 6.4.

43 sets of chromosomes
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5.4.1. Characteristic Nucleotide Binding Domain Motifs

Motifs are short, conserved regions of peptide or nucleic acid sequences, which possess
specific functions. By producing a multiple alignment of distant related sequences, gaps
are necessary to arrange the alignment in a correct way. Accordingly, ’islands’ of con-
servation tend to appear surrounded by mutational change. These conserved regions
(motifs) are helpful in comparing widely different genomes and to conclude on their com-
mon functions or appearance. [42]

A full ABC transporter typically shows a length of 200 to 220 amino acids, including
2 NBDs and 2 TMDs (Figure 5.7) [7]. In contrast to the TMDs, the NBDs are highly
conserved and composed of 3 (Walker A, Walker B and the signature) characteristic
protein sequence motifs that are involved in binding and hydrolyzing ATP. Previous re-
ports indicated that intact ATP is preferentially bound at NBD1, whereas trapping of
the ATP hydrolysis product, ADP, occurs predominantly at NBD2 [38]. Therefore, ATP
interaction with NBD1 increases ATP or ADP binding at NBD2 [49].

The Walker A motif, also known as P loop (phosphate binding loop) consists of 8
amino acids of following pattern GXXGXGKS/T5 [62]. It is considered to be a funda-
mental and ancient functional motif in biological systems [57]. Downstream the ABC
transporter signature6 motif LSGGQ is located followed by the Walker B motif.
Surveys of studying mutations of the signature motif in bacterial ABC proteins suggest,
that it is involved in ATP hydrolysis and not in ATP binding leading to a change in
ATPase activity [93] [89]. In addition, its consensus sequence is highly conserved and
only few variations (e.g. Q to E in BtuD) could be detected. The signature motif is a
unique sequence characterizing all ABC transporters and distinguishes them from other
proteins containing the NBD. [84]
The Walker B motif is composed of 7 amino acids resembling φφφDEXX where φ repre-
sent any hydrophobic residue. The amino acids XX are not well conserved but often AT
forming the ”DEAT box” [62].

In the liver fluke contigs of subfamily ABCB and ABCC transporters the motifs Walker
A, Walker B and the signature were identified to detect mutations.
Basically, only one transporter consisting of 2 NBDs could be found. Otherwise the
contigs contain only 1 NBD resembling a half transporter or representing only a fragment
of the transporter sequence. It may indicate partially sequenced cDNA or maybe the
NBDs are encoded on different polypeptides.
For the ABCC subfamily 5 variations of the Walker A and Walker B and 3 variations of
the signature could be detected. The liver fluke contigs of ABCB contain 7 variations
of Walker A, 5 of Walker B and 6 variations of the signature. The signature mutation
LSGGE, known from BtuD, appeared frequently.

5G, K, T, S and X denote glycine, lysine, threonine, serine and an arbitrary amino acid.
6The ABC transporter signature is also called the C motif.
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However, the C motif is heavily degenerated not only for the resistant liver fluke dataset
of 19931 but also for 19929 and 19932.
The consensus sequence of Walker A was highly conserved, only threonine often mutates
to serine or to alanine.
For Walker B either the ”DEAT box” could be identified or the amino acid sequence
DDPL7. The D loop located right after the Walker B showed 3 variations, LD, VD and
DP. All variations of the motifs found in the Fasciola hepatica datasets in ABCB and
ABCC are listed in Table 6.2 and Table 6.3

7DDP, represents aspartic acid D and proline P
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Figure 5.7.: General protein structure of a typical full ABC transporter consisting of 2 trans-
membrane domains (TMDs) and 2 nucleotide binding domains (NBDs). The con-
served NBDs consist of different characteristic motifs represented in the Figure
indicating their common protein sequences listed for different ABC multidrug
transporter. The P - glycoprotein is associated with multidrug resistance and
belongs to the human ABCB subfamily. MsbA is a MDR efflux ABC transporter
representing an ATPase found in bacteria. Sav was detected in Staphylococcus
aureus and is a homolog of MDR ABC transporter like BtuD, the vitamin B12
importer from Escherichia coli. [64]
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5.5. Multiple Alignment Geneious

Contigs of the Fasciola hepatica datasets could be detected with the aid of BLAST, which
show high similarity to the subfamilies of the ABC transporter of Homo sapiens, the fruit
fly and the nematode. Furthermore, they get classified into subfamilies A to G and im-
ported in Geneious for further analyses. Geneious allows to group the single contigs into
lists or to keep the sequences separately. In the Source Panel, folders named from A to H
were produced representing the individual subfamilies. These folders include the contigs,
which produce significant hits grouped by the organism they were compared with. The
sequences were imported as sequence lists named with the letter of the subfamily, followed
by the Fasciola hepatica dataset name and the organism the comparison was conducted.
For example, A_19931_HomoSapiens include all contigs of subfamily A of the dataset
19931, which produced hits by comparing it with the ABC transporters of Homo sapiens.

For each ABC subfamily and liver fluke dataset a multiple sequence alignment was
performed using the incorporated Geneious logarithm. Either the BLOSUM matrices
were used as cost matrix to align protein sequences or match/mismatch costs for nu-
cleotide sequences. Geneious indicates the target sequence similarity for the alignment
scores. Thus, it determines the amount of similarity between the sequences for which
those scores are optimal. Furthermore, both protein and nucleotide alignments have the
opportunity to introduce gap open/gap extension penalties/costs. [67]
Basically, the gap open penalty was set to twelve and the extension penalty to three.
In addition, the alignment with free end gaps was chosen to avoid that gaps at either
end of the alignment are penalized.
After visualization of the sequences it could be seen that some of the transporter are
fragmented. In Figure 5.8 an alignment of the ABCC subfamily contigs of the dataset
19932 is displayed, pointing out that the last 4 contigs from bp 3.800 to bp 9.275 are
probably constituent of one transporter.

The contigs of one subfamily of all Fasciola hepatica datasets are then compared to
identify SNP regions and mutations. For ABCB around 100 sequences get aligned simul-
taneously, which makes it really difficult to detect dissimilarities. Therefore, the contigs
are further grouped visually in subfamilies concerning their similarity and are aligned
again. Also genetic variations of transporters within a subfamily could be discovered.
Figure 5.9 pictures all contigs of the ABCG subfamily of all liver fluke datasets. The
differences of the contigs are visible as black bars in the grey sequence representation. By
zooming into the sequences (Figure 5.10) two transporter variations become visible. We
tried to reduce the amount of sequences to a minimum by keeping only one sequence for
each transporter variation. The sequences within one transporter variation may not be
of the same length and to get a - possibly full length sequence - consensus sequences are
generated. With the reduced amount of sequences the contigs of one subfamily become
comparable. This enables the detection of differentially expressed genes or SNPs leading
to functional changes between the triclabendazole resitant versus sensitive individuals.
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Several SNPs could be detected in the ABC transporter Subfamilies B,C, E and G.
The putative B7 transporter shows 12 amino acid differences between the sensitive
(19932) and the resistant (19931) Fasciola hepatica contigs, including 5 transversions
and 7 transitions. The transversion cytosine to adenine downstream of Walker B defi-
nitely leads to a protein change. Furthermore, in B10 one transition could be identified
located between Walker A and the ABC signature, suggesting that it may have functional
significance. Both contigs of the sensitive liver flukes possess a thymine in contrast to
the resistant one, which expresses a cytosine.
For comparison with the ABC transporter of Drosophila melanogaster and Caenorhabdi-
tis elegans, 3 contigs8 showing many expression differences between all liver fluke datasets
were found.
In subfamily C a putative C2 transporter was identified indicating 4 transitions. These
SNPs are found not only by the comparison of ABC transporter of Homo sapiens but
also the other 2 organism.
In addition, a single SNP occurred in ABCE, not known to be involved in multidrug
resistance.
For ABCG, 2 subfamilies G1 and G2 are found in the liver fluke contigs showing SNPs.
G1 contains 1 transition from thymine to cytosine. In G2 two SNPs right next to each
other are identified not found in any other subfamily. The contig of 19931 possesses an
adenine and a thymine, whereas the contigs of 19929 and 19932 contain a thymine and
a cytosine. The same pattern is shown for the comparison with the nematode sequences,
but in different liver fluke contigs with a different nucleotide exchange. Again the con-
tig of the resistant dataset differs in two subsequent nucleotides from the contigs of the
sensitive individuals (GG changes to TC).
All identified nucleotide differences between the resistant individual and the sensitive
flukes are listed in Table 6.5. They may lead to a protein change and further to a func-
tional alteration of the transporter. The exact location and their significance concerning
TCBZ resistance still has to be investigated.

8comp30171_c0_seq5, comp25903_c0_seq3, comp104119_c1_seq2
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Figure 5.8.: Multiple alignment of the identified ABCC contigs of Fasciola hepatica dataset
19932 established with Geneious. The grey bars represent the sequences whereas
differences are marked black. The 4 contigs from bp 3800 to bp 9275 seem to be
the constituents of one transporter implicating a fragmented dataset.

Figure 5.9.: Multiple alignment of the ABCG Transporter of all Fasciola hepatica datasets
(19929, 19931 and 19932) conducted with Geneious. The differences between the
contigs are visible as black bars in the grey sequence representation. On closer
inspection (Figure 5.10) 2 transporter variations could be identified.

Figure 5.10.: Multiple alignment of the ABCG Transporter of all Fasciola hepatica datasets
(19929, 19931 and 19932) conducted with Geneious. The detailed view enables
the identification of 2 different variations of the transporter within the subfamily
G. The number of contigs for each transporter was reduced to the minimum on
variations.
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6. Results
Comparative analyses have been conducted with the Basic Local Alignment Search tool
BLAST (chapter 3) and the sequence alignment tool Geneious (section 4.5). The re-
ceived results suggest how much and which ABC transporter are available in the liver
fluke (Table 6.1 and 6.4). The assignment of the single contigs of Fasciola hepatica to
the subfamilies of the ABC transporter can be found in the Appendix (A.1). In addition,
the characteristic motifs of the transporter including their variations are identified and
listed (Table 6.2 and 6.3). The detected SNPs (Table 6.5) may affect the function of
the ABC transporter leading to drug resistance. Their exact location in the protein and
functional significance still has to be investigated.

Organism Sample ID A B C D E F G H

Caenorhabditis elegans
19929 4 31 13 21 3 7 4 0
19931 5 30 10 3 5 6 5 0
19932 6 41 5 0 2 5 4 0

Drosophila melanogaster
19929 4 32 10 0 12 0 6 0
19931 5 30 9 0 9 0 7 0
19932 5 43 8 0 6 0 4 0

Homo sapiens
19929 7 35 16 18 1 6 4 0
19931 5 33 12 2 2 4 16 0
19932 8 46 6 3 2 5 15 0

Table 6.1.: The liver fluke datasets were compared with ABC transporter sequences of
the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster
and the Homo sapiens. The number of contigs detected by the use of the
local alignment search tool BLAST for each subfamily of ABC transporter
of Fasciola hepatica are listed above. All contigs could be clearly assigned
to one subfamily. By comparing these results to Table 5.2, it has to be
considered that each Fasciola hepatica dataset contains the cDNA of two
flukes. Moreover, the amount of detected contigs are probably a little bit
higher than in reality, because the dataset is fragmented and constituents of
one transporter are probably counted separately.
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Dataset Walker A Signature Walker B D loop
GQSGCGKST LSGGQ LLLDEAT

19929 GPSGCKST LSGGE FLLDEAT LD
LSAGQ LIYDEAT

GQSGCGKST LSSGQ LLLDEAT
GGSGAGKST LSGGE FLLDEAT

19931 GHSGCGKTS YGGGQ LIYDEAT LD
GPSGSGKST ILLDEAT
GQSGAGKST

19932

GQSGCGKST LSGGQ LLLDEAT

LD
GGSGAGKST LSGGE ILLDEAT
GPNGSGKST LSSGQ LIYDEAT
GPSGSGKST LSVGQ LILDEAT

Table 6.2.: Identified motifs detected in the contigs of Fasciola hepatica subfamily ABCB.
The findings refer to the contigs received by the comparison with the nema-
tode Caenorhabditis elegans. The Walker A normally resembling GXXGXGKS/T,
whereas X denotes an arbitrary amino acid, is highly conserved. Only the known
mutation of threonine to serine could be found frequently. In the putative resistant
liver fluke (19931) a permutation of the last two amino acids threonine and serine
could be observed. The signature motif LSGGQ often appears as LSGGE and is
partially highly degenerated. For Walker B, 16 amino acids downstream of the sig-
nature, the characteristic DEAT motif could be identified followed by the conserved
D loop LD.

Dataset Walker A Signature Walker B D loop
GQSGAGKST LSGGE LVLDEAT

19929 GGSGAGKST ILLDEAT LD
GRTGSGKSS

GTVGSGKSS LSGGQ LVLDEAT
19931 GPVGSGKSA FSTGQ YLLDDPL VD

GRTGSGKSS

GTVGSGKSS LSGGQ LVLDEAT LD
19932 GPVGSGKSA FSTGQ YLLDDPL VD

GRTGSGKSS LVVDEAT DP

Table 6.3.: Identified motifs of the liver fluke subfamily ABCC detected in the contigs found
by comparison with the ABC transporters of Caenorhabditis elegans. The last
amino acid of Walker A deviants at times from threonine or serine to alanine.
About 99 amino acids downstream 2 mutations of the characteristic ABC signature
motif could be identified. Like in the subfamily ABCB the LSGGE mutation occur
frequently in contrast to the FSTGQ mutation only found in ABCC. The Walker B
motif shows either the common ”DEAT box” or the mutation DDPL. Also variations
of the D loop could be identified.
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ABC Subfamily 19929 19931 19932

A

A1 A1 A1

A3 A3 A3

A4 A4 A4

A8 A8 A8

A13 A13

B

B1 B1 B1

B4 B4

B6 B6 B6

B7 B7 B7

B8 B8

B10 B10 B10

C

C1 C1

C2 C2 C2

C3 C3 C3

C6

D D4 D4 D4

E E1 E1 E1

F
F1 F1 F1

F3 F3

G
G1 G1 G1

G2 G2 G2

Table 6.4.: Identified subfamilies of Fasciola hepatica based on the comparison with the
ABC transporter of Homo sapiens. All three transporters (ABCB1, ABCC2
and ABCG2) known to be involved in drug resistance seem to be present in
the liver fluke.
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ID ABC Contig SNP
19931

B7
comp25017_c0_seq1 A G C C C G T A G G C T

19932 comp102748_c0_seq2 G A T G G C C C C A T C

19929
B10

comp25157_c0_seq1 T
19931 comp25345_c3_seq5 C
19932 comp105929_c0_seq3 T

19929
B

comp29030_c0_seq7 C
19931 comp23802_c0_seq1 T
19932 comp101188_c0_seq1 C

19929
B

comp30171_c0_seq5 C T T A C G G C G T A C C G C
19931 comp25903_c0_seq3 G T C G T A T T A C G C T G T
19932 comp104119_c1_seq2 G C T A T A T C G C A T C A T

19929
B

comp29483_c2_seq2 A
19931 comp24532_c0_seq1 C
19932 comp99094_c1_seq1 A

19929
C2

comp27910_c0_seq2 T A A C
19931 comp24084_c1_seq1 C G G T
19932 comp102145_co_seq1 T A A C

19929
C

comp27910_c0_seq2 T G
19931 comp24084_c1_seq3 C A
19932 comp102145_c0_seq1 T A

19929
E

comp30906_c0_seq5 G
19931 comp26245_c5_seq4 A
19932 comp103624_c1_seq1 G

19929
G1

comp30789_c0_seq4 T
19931 comp24196_c0_seq1 C
19932 comp103611_c1_seq3 T

19929
G2

comp29155_c0_seq1 T C
19931 comp24811_c1_seq12 A T
19932 comp103372_c0_seq1 T C

19929
G

comp30789_c0_seq4 A
19931 comp24196_c1_seq11 G
19932 comp103611_c1_seq3 A

19929
G

comp30789_c0_seq4 G G T
19931 comp16784_c0_seq1 T C C
19932 comp390524_c0_seq1 G G T

Table 6.5.: Nucleotide differences between the putative resistant Fasciola hepatica indi-
vidual (19931) and the sensitive liver flukes (19929 and 19932). The contigs
are aligned in Geneious and all detected SNPs may lead to a protein change
with functional significance.
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7. Discussion
In order to compare drug sensitive flukes (dataset 19929, 19930, 19932) to the puta-
tive resistant fluke (dataset 19931) genomic DNA was prepared and sequenced by next
generation sequencing methods to obtain transcriptomes reflecting ABC transporter of
Fasciola hepatica adults.
The liver fluke database was searched using protein sequences corresponding to 48 ABC
transporters of Homo sapiens as well as 56 and 60 nucleotide sequences of the fruit fly
Drosophila melanogaster and the nematode Caenorhabditis elegans.
The Basic Local Alignment Search Tool, BLAST, provides a suitable tool for the iden-
tification of specific gene sequences as long as they don’t get too short. The heuristic
search algorithm enables to handle high amount of data in acceptable calculation time.
The liver fluke sequences are compared to already characterized ones to detect sequence
similarity and to infer both the structure and the function of the genes. [11]
By setting an appropriate cutoff threshold concerning the evolutionary distance of the
sequences significant hits may be found. Thus, the identification of ABC transporters
and further the classification of the contigs to the corresponding subfamily of the trans-
porters is possible with BLAST.

In the case of the Fasciola hepatica database, the ABCB subfamily clearly contain
the most ABC transporters followed by the subfamily ABCC. Consistent to this, in
Caenorhabditis elegans, the evolutionary closest organism the liver fluke was compared
with, also subfamily B clearly presents the largest subfamily.
Tblastx and tblastn BLAST analyses revealed, that the liver fluke transporters represent
seven subfamilies from ABCA to ABCG.
For subfamily H, present in the nematode and Drosophila melanogaster, no hits could be
found with BLAST by setting an E value of e−20.

However, the number of identified putative ABC transporters in Table 6.1 may be
over-represented, because the database was shown to be fragmented and the partial
transcripts are probably counted separately. Moreover, each Fasciola hepatica dataset
contains the cDNA of two flukes. These two facts make it rather difficult to compare the
obtained numbers of putative ABC transporters to the amount of transporter present in
Homo sapiens, the fruit fly and the nematode (Table 5.2).
Nevertheless, a first estimation of the number of ABC transporters available in Fasciola
hepatica could be achieved by the use of BLAST.
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Based on the comparison of the fully described ABC transporter sequences of Homo
sapiens the subdivision of the single ABC subfamilies concerning their expression and
function was conducted. All known multidrug efflux pumps involved in protecting tissue
from toxic xenobiotics and endogenous metabolites (ABCB1, ABCC2 and ABCG2) seem
to be present in the liver fluke.

The first time identification of the biologically and functionally important motifs,
which uniquely characterizes ABC transporter is not recommendable to conduct with
BLAST. The motifs normally consist of only 5 to 10 amino acids and are partially de-
generated. To find unknown mutations of the motifs, it is useful to completely visualize
the sequences with an sequence alignment program. Geneious not only provides a user-
friendly interface to organize and visualize the sequences but also different incorporated
sequence alignment algorithm enabling the validation of the alignment without data shift-
ing. The option to produce dot plots gives a first impression of the sequence similarity
and with the text and alignment view further analyses and the detection of SNPs can
be conducted. The Geneious algorithms are also available in the test version whereas for
the use of MUSCLE, CLUSTALW or Realign algorithm a license is needed. It further
offers a translational align algorithm to test if a detected amino acid mutation leads to
a protein change and enables to determine the significance of the SNP right away.
The investigation of the motifs delivers essential knowledge about the amount and struc-
ture of the ABC transporter domains. SNPs in these regions may lead to drastic changes
of the transporter function and may play a role in developing drug resistance.

Comparative analysis of the contigs in triclabendazole resistant versus sensitive in-
dividuals were conducted with Geneious to get insight into the nature of the adaptive
changes causing drug resistance.
Because further studies prove that ABCB and ABCC transporters are mainly involved in
drug resistance we concentrated especially on these two subfamilies to survey the motifs
and identify single nucleotide polymorphisms.

Basically, only one transporter could be found, which consists of 2 complete NBDs
including the Walker A, followed by the ABC signature and the Walker B. Otherwise
the contigs contain one NBD, parts of it or even no NBD, arguing again for fragmented
parts of transporters or maybe also for partially sequenced cDNA.
Each Walker A motif showed the universally conserved lysine and glycine. Only the
known variation of threonine to serine occur frequently and in some cases the thre-
onine/serine changes to an alanine.
About 99 amino acids downstream of the Walker A, the signature motif is located, show-
ing partially nonconservative substitutions. The LSGGE variation, known from the MDR
transporter BtuD, the vitamine B12 importer of Escherichia coli, appeared several times
in the liver fluke datasets.
Not rarely 2 of 5 amino acids in the normally highly conserved signature motif are de-
generate.
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The Walker B is separated by 16 amino acids from the ABC signature and often shows
the typical DEAT motif. Only in subfamily C variations from DEAT to DDPL1 could be
detected. The motifs are involved in binding and hydrolyzing ATP and therefore are very
important for the function of the ABC transporter. Although no significant differences
between the motifs of the resistant and the sensitive Fasciola hepatica datasets could be
found, mutations in these regions may have functional significance and should be further
investigated.

However, several SNPs could be identified irrespectively of the walker motifs, in the
ABC transporter subfamilies B,C, E and G.
In ABCB7, a difference between the putative resistant liver fluke dataset 19931 and the
sensitive one 19932 definitely leading to a protein change could be detected. All other
discovered SNPs may lead to a protein change and thus to a functional alteration of the
transporter. The right translation frame and the exact positions of the mutations still
have to be identified to evaluate the significance of the SNPs.
Transporter G2 showed twice, two subsequent nucleotide changes not seen in any other
subfamily. Recent studies suggest that the up regulated expression of ABCG2 in Oct -
3/4 expressing cells result in higher resistance to chemotherapeutic drugs. [48]
Therefore, this transporter may play an important role beside transporter B and C in
developing drug resistance.

1Glutamic acid, alanine and threonine changes to aspartic acid proline and leucine.
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8. Conclusion
Comparative analyses of drug sensitive versus resistant ABC transporter sequences of
Fasciola hepatica were conducted to identify single nucleotide polymorphisms. The local
alignment tool BLAST was used to compare cDNA contigs of the trematode to a database
consisting of ABC transporter of 3 characterized organisms. This resulted in new infor-
mation about the ABC transporters available in the liver fluke. It could be shown, that
all known multidrug efflux pumps (ABCB1, ABCC2 and ABCG2) are expressed in Fas-
ciola hepatica. Additionally, single nucleotide polymorphisms were detected in ABCC2
and ABCG2 probably leading to functional changes of the transporters. The ABCG2
transporter showed two subsequent nucleotide changes not discovered in any other trans-
porter. Irrespectively of the known MDR efflux pumps, several SNPs could be found in
the ABC transporter subfamilies B, C, E and G by the use of the multiple alignment
program Geneious. Furthermore, investigations of the functionally important sequence
motifs discovered highly degenerated motifs most likely leading to functional changes.
The exact positions of the SNPs still have to be identified and functional studies will elu-
cidate the significance of the mutations. All these results provide new insights into the
diversity of the entire ABC subfamilies of the liver fluke and may deliver knew knowledge
about the adaption mechanisms the parasites have developed to survive drug exposure.
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A. Appendix

Gene Alias Location Function

ABCA1 ABC1 9q31.1 Cholesterol efflux onto HDL
ABCA2 ABC2 9q34.3 Drug resistance
ABCA3 ABC3 16p13.3 Surfactant secretion?
ABCA4 ABCR 1p21.3 N-Retinylidiene-PE efflux
ABCA5 17q24.3
ABCA6 17q24.3
ABCA7 19p13.3
ABCA8 17q24.3
ABCA9 17q24.3
ABCA10 17q24.3
ABCA12 2q34
ABCA13 7p12.3

ABCB1 PGY1,MDR 7q21.12 Multidrug resistance
ABCB2 TAP1 6p21.3 Peptide transport
ABCB3 TAP2 6p21.3 Peptide transport
ABCB4 PGY3 7q21.12 PC transport
ABCB5 7p21.1
ABCB6 MTABC3 2q35 Iron transport
ABCB7 ABC7 Xq21-q22 Fe/S cluster transport
ABCB8 MABC1 7q36.1
ABCB9 12q24.31
ABCB10 MTABC2 1q42.13
ABCB11 SPGP 2q24.3 Bile salt transport
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A Appendix

Gene Alias Location Function

ABCC1 MRP1 16p13.12 Drug resistance
ABCC2 MRP2 10q24.2 Organic anion efflux
ABCC3 MRP3 17q21.33 Drug resistance
ABCC4 MRP4 13q32.1 Nucleoside transport
ABCC5 MRP5 3q27.1 Nucleoside transport
ABCC6 MRP6 16p13.12
ABCC7 CFTR 7q31.31 Chloride ion channel
ABCC8 SUR 11p15.1 Sulfonylurea receptor
ABCC9 SUR2 12p12.1 K(ATP) channel regulation

ABCC10 MRP7 6p21.1
ABCC11 16q12.1
ABCC12 16q12.1

ABCD1 ALD Xq28 VLCFA transport regulation
ABCD2 ALDL1, ALDR 12q11
ABCD3 PXMP1,PMP70 1p22.1
ABCD4 PMP69, P70R 14q24.3

ABCE1 OABP, RNS4I 4q31.31 Oligoadenylate binding protein

ABCF1 ABC50 6p21.1
ABCF2 7q36.1
ABCF3 3q27.1

ABCG1 ABC8, White 21q22.3 Cholesterol transport?
ABCG2 ABCP, MXR, BCRP 4q22 Toxin efflux, drug resistance
ABCG4 White2 11q23
ABCG5 White3 2p21 Sterol transport
ABCG8 2p21 Sterol transport

Table A.1.: Human ABC transporters [23]
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A Appendix

Gene Mendelian disorder Complex disease

ABCA1 Tangier disease, FHDLD
ABCA4 Stargardt/FFM, RP, CRD, CD AMD

ABCB1 Ivermectin susceptibility Digoxin uptake
ABCB2 Immune deficiency
ABCB3 Immune deficiency
ABCB4 PFIC3 ICP
ABCB7 XLSA/A
ABCB11 PFIC2

ABCC2 Dubin-Johnson Syndrome
ABCC6 Pseudoxanthoma elasticum
ABCC7 Cystic Fibrosis, CBAVD Pancreatitis, bronchiectasis
ABCC8 FPHHI 600509

ABCD1 ALD 300100

ABCG5 Sitosterolemia 605459
ABCG8 Sitosterolemia 605460

Table A.2.: Diseases and phenotypes caused by ABC genes. [23]
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