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Kurzfassung

Das elektrische Energiesystem ist derzeit in einem Übergang begriffen, der durch das Aufkommen
von umweltfreundlichen Erzeugungs- und Verbrauchertechnologien gekennzeichnet ist. Wesentlich
dabei ist der steigende Anteil erneuerbarer Energien (engl. renewable energy resources, RES), wie
beispielsweise Wind- und Solarenergie. Dieser Übergang führt allerdings zu kritischen Situationen
im operativen Bereich, in erster Linie aufgrund der Prognoseunsicherheit im Zusammenhang mit
Strom aus erneuerbaren Energiequellen. Daher wird eine erhöhte Flexibilität benötigt, um das
Ungleichgewicht zwischen Angebot und Nachfrage in Zukunft bewältigen zu können. Ein hoher
Anteil dieser RES ist direkt in die elektrischen Verteilnetze eingebunden, was innovative Ansätze
in der Netzplanung erforderlich macht. Ansätze basierend auf aktivem Monitoring und Steuerung
können die notwendige Unterstützung für den Umgang mit Flexibilität von Ressourcen bieten, um
Prognoseunsicherheiten und andere Herausforderungen bewältigen zu können. Solche Ansätze
können allgemein in zwei Kategorien eingeteilt werden: Microgrids bieten die Möglichkeit des
unabhängigen Systembetriebs, wohingegen Anwendungen, die einen Anschluss an eine höhere
Netzebene voraussetzen, als zellbasierte Ansätze klassifiziert werden.

Betreiber von Microgrids führen für die Planung der Reserven eine Beurteilung der Flexibilität
durch, bei der unter Zuhilfenahme von modellbasierten Vorhersagen die mit der Gesamtnachfrage
verknüpfte Unsicherheit prognostiziert wird. Die vorliegende Arbeit zielt darauf ab, diesen
Prozess durch die Modellierung der Unsicherheit, auf Basis ihrer zugrundeliegenden Dynamik,
sowohl wirtschaftlich als auch technisch zu erleichtern. Zu diesem Zweck wurden die dynamischen
Variablen erster Ordnung berücksichtigt: Leistung, Rampensteigung und Rampendauer.
Es wurde festgestellt, dass die Verwendung einer kompakten, geometrischen Hülle für die
tatsächlich realisierten Werte dieser Variablen bei der Erstellung einer solchen Bewertung eine
Verringerung der Reserveanforderungen gestattet. Das wiederum erlaubt einen wirtschaftlicheren
Planungsansatz. In diesem Zusammenhang wurde für die Modellierung des Arbeitsbereichs der
Generatoren im Betrieb ein Variablenraum verwendet, der von denselben dynamischen Variablen
aufgespannt wird. Mit Hilfe dieser Formulierung wurde der Planungsprozess für die notwendigen
Reserven in ein geometrisches Zuordnungsproblem überführt. Um dieses Problem zu lösen wurde
ein neuer Algorithmus entwickelt. Abgesehen von den Generatoren können damit potenziell auch
andere Ressourcen für die Bereitstellung von Flexibilität herangezogen werden, beispielsweise
steuerbare Lasten oder Stromspeicher. Ein vereinheitlichtes Modell für derartige Ressourcen
erleichtert deren Aggregation und das Zuteilungsverfahren. Die Flexibilität von Wärmeerzeugern
und das Energiespeicherpotential von thermostatisch geregelten Lasten (engl. thermostatically
controlled loads, TCL) konnte anhand dieses Modells demonstriert werden. Dabei wurde gezeigt,
dass solche TCLs aufgrund ihrer Fähigkeit die Energie im Betrieb vorübergehend zu speichern
besonders interessant sind. Das Speicherpotential für TCL-basierte Aggregation wurde mithilfe
eines stochastischen Batteriemodells dargestellt und für Frequenzregelung eingesetzt. Analytische
Gleichungen wurden abgeleitet, um die entsprechenden Batterieparameter zu berechnen. In zwei
Beispielen konnte dargestellt werden, wie nachfrageseitige Flexibilität (engl. demand response)
als Reserveressource eingesetzt werden kann. Im ersten Beispiel wurde anhand der Steuerung
einer großen Anzahl von TCLs, die in dieser Form typischerweise in Wohngebieten vorzufinden
sind (z.B. Klimaanlagen), das Batteriemodell validiert. Im zweiten Beispiel wurden mithilfe eines
Ansatzes zur Simulationskopplung die Auswirkungen der Flexibilitätsaktivierung im elektrischen
Netzwerk studiert.

Bisherigen Untersuchungen bezüglich der Abschätzung von Flexibilität basierten auf der
Verwendung von Intervallen zur Darstellung der Unsicherheit. Die vorliegende Arbeit geht
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einen Schritt weiter und verwendet Korrelationen in der Systemdynamik für die Modellierung
einer geometrischen Hülle. Dadurch werden die Gesamtreserveanforderungen in Microgrids
basierend auf der Prognoseunsicherheit definiert. Die vorgeschlagene Methode für Reserveplanung
wurde für Testfälle auf der Mittelspannungsebene durchgeführt, allerdings sind sie auch ohne
Beschränkung der Allgemeinheit in anderen Anwendungsgebieten einsetzbar. Die Anforderungen
aus der Reserveplanung wurden außerdem in Anwendungen zur Systembetriebsoptimierung (unit
commitment, economic dispatch) verwendet. Darüber hinaus wurde ein Ansatz basierend auf
evolutionärer Spieltheorie bezüglich der Tauglichkeit im Bereich der Systembetriebsoptimierung
(economic dispatch) untersucht. Die potenziellen Vorteile und Grenzen dieses Ansatzes werden
in der folgenden Arbeit ebenfalls aufgezeigt.
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Abstract

The electric power system of the present era is in transition towards a future characterized by the
environment friendly generation and consumption technologies. Among them is the rising share
of Renewable Energy Sources (RES) such as wind and solar energy in the electricity network.
This transition has resulted in critical operational challenges primarily due to forecast uncertainty
associated with the power from RES. As a result, more flexibility shall be required to deal with
demand and supply imbalances in the future. A high share of RES is connected to the distribution
networks, thus motivating a need to revisit the distribution network planning and operational
practices. An active monitoring and control strategy within the distribution system can provide
support against forecast uncertainty and network challenges by handling flexibility offered by the
distributed resources. Such local control applications can potentially perform resource scheduling
in meeting the local flexibility requirements and provide flexibility services to the connected grid.
The control approaches can be classified generally into two categories. The “microgrid” based
control enables the independent system operation while the applications designed for only grid
connected state can be classified as “cell” based approaches.

The microgrid operator performs flexibility assessment by modeling the uncertainty associated
with the overall demand and use it to schedule the reserves. The dissertation aimed to facilitate
this process both economically and technically by considering the uncertainty dynamics. For
this purpose, the first order dynamical variables of power, ramp-rate and ramp duration were
considered. A compact envelope enclosing the uncertain net-demand dynamics in microgrid
was found as more economic approach than the state of the art interval based method. The
dynamic capability of generators was modeled by a space using the same dynamical variables.
This formulation transformed the reserve planning process into a space allocation problem. It has
been solved by a novel algorithm of flexibility allocation. Along with the generators, the potential
flexibility resources can be of diverse types such as controllable loads, electricity storage and
others. A common flexibility model for such resources was proposed that aimed to facilitate the
flexibility aggregation and allocation processes. It represented both the energy storage potential
and the dynamic capability of a resource. The flexibility of thermal generators and energy storage
potential of Thermostatically Controlled Loads (TCLs) have been presented using this model.
The TCLs propose an interesting potential due to their ability to temporarily store the energy
during operation. The energy storage ability of a TCL aggregation was modeled by a stochastic
battery and used in the frequency regulation process. Analytic equations have been derived for
calculating the battery parameters. Two test cases have been presented exploring the demand side
flexibility as a reserve resource. In the former, a control strategy for a large number of residential
TCLs validated the proposed battery model, while in later, a combined simulation framework
was developed to study the impact of flexibility activation on the distribution network.

Prior research on the flexibility assessment have used an interval based approach to represent the
uncertainty dynamics. This dissertation advanced it by modeling the correlation in uncertainty
dynamics by an envelope. It defined the reserve requirements in microgrid based on the forecast
uncertainty. The methods for reserve planning have been performed for a medium voltage mi-
crogrid test case, however, they can be extended to other related applications in power system
without loss of generality. The reserve requirements were used in the unit commitment and eco-
nomic dispatch applications. In addition, an evolutionary game theory based approach has been
explored for the unit commitment problem. Its potential benefits and limitations were discussed.
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1 Introduction

Historically, large power generation units are preferred in the power system due to favorable
economics. Most of the major power producing units are either fossil fuel based, hydro-power
or nuclear power plants. Despite their economic advantages and favored centralized control, the
major issues associated are environmental impacts, transmission and distribution cost & losses.
Since few decades, there is a global drive to support the environmentally friendly energy produc-
tion from Renewable Energy Sources (RES) and improving efficiency of electricity consumption.
The driving force for this change are the environmental concerns. Other reasons vary for each
region and can be the lack of conventional fuel resources, economy and others. There is also a
strong interest in improving the reliability of electricity supply in order to decrease the probability
for loss of power due to unforeseen events. Various countries and regions have set ambitious tar-
gets for increasing share of energy generation from RES like wind and solar, improving efficiency
in generation and consumption & de-carbonization. The result of these activities have led to a
drastic increase in the power production from RES. In Europe, Germany has the highest share of
installed capacity from RES reaching to 61 Gigawatt (GW) in comparison to 12.9 GW in France,
21.3 GW in Italy and 9.3 GW in Great Britain.

Traditionally bulk power generation has been connected to the transmission network at the ultra-
high and high voltage levels. The substations at transmission level steps up the voltage that
reduces the losses during bulk energy transfer over long distances. The voltage is then stepped
down at distribution substations. Service transformers directs the flow of active power from
substation to the customer service delivery points. The advent of RES in the power system has
impacted upon all voltage levels in the power system operation. An increasing number of on-shore
and off-shore wind farms and solar energy sources are connected to the high (ultra-high) voltage
levels. Last decades have also experienced a consistent increase in RES based generation at the
residential levels. Bulk of RES is connected to the Medium Voltage (MV) and Low Voltage (LV)
distribution networks due to the distributed nature of energy source and their relatively smaller
ratings [1]. In Germany, approximately 90% of the total renewable energy based generation is
connected to the distribution networks [2]. Due to the distributed nature of such resources,
they are commonly termed as Distributed Energy Resourcess (DERs) or Distributed Generators
(DGs). According Electric Power Research Institute (EPRI), the DGs are defined as smaller
wide spread power sources that can be aggregated to support energy demand. The DGs can also
include electricity storage, Combined Heat and Power (CHP) and micro-turbines.

The aggregate impact of DGs on the distribution system can be classified into four main areas;
protection systems, fault handling services, network voltage and the frequency. The distribution
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system has been traditionally designed for unidirectional power transfer considering the top-
down hierarchy of the energy market. However, the distributed generation has led to the reverse
power flows. The traditional DGs had generally led to uni-directional power flow and had been
dedicated for serving particular customers. Hence, both the distribution system protection and
the Volt/VAR control were not effected. In those systems, the reverse power flow rarely occurred
and when it happened it could be predicted and the impact was on small part of feeder. The
growing percentage of DGs have led to an increasing number of and high levels of reverse power
flows that impacts the operation of classical protection system. The mismatch between demand
and supply resulting from the forecast uncertainty is supported by reserve power in the system.
The requirement of reserves shall increase with the rise of RES and the failure in their timely
activation can leads to the frequency problems. Similarly, when the demand is low and generation
from RES in high, the network experiences a rise in the voltage levels, that can violate the voltage
limit constraints.

1.1 Motivation

The distribution network challenges have hindered the rise in distributed generation from RES.
It has encouraged the need for an active monitoring and control setup for distributed genera-
tion. The forecast accuracy of power from distributed generation needs to be improved in order
to reduce the load-generation imbalance and hence the reserve requirements. The distributed
resources can offer flexibility in providing reserve against the potential imbalances in the system.
A mechanism is required to model the flexibility from diverse resource types, deal with their
distributed nature and manage their impacts on the network operations. Such planning and
control efforts needs to be frequently updated to manage the volatility of generation from RES
and changing network conditions. Due to large number of nodes in the distribution network,
there is a strong motivation for implementing a local control mechanism. Among its objectives
is to maintain reserves for dealing with the voltage and frequency problems. This strategy can
potentially decrease the impact of local uncertainty on the power system operation. The local
control in the distribution network can potentially provide service to the critical loads in case
of disconnection from the network. It will increase the reliability of the system in dealing with
emergency situations.

With the increase in reliance on power generation from green energy, reserves shall play a crucial
role in ensuring the critical balance of demand and supply. In the power system planning, there
exists methods that assess the flexibility requirements and capability of the system in enduring
and supporting the uncertain nature of demand and supply. The objective of such methods is to
ensure the generation adequacy in the system. Generation adequacy is defined as the ability of
power system to meet the demand under all possible loading conditions. The generation adequacy
needs to be maintained while satisfying all network constraints. It is ensured by scheduling and
operating generators in meeting the changing demand on monthly, daily, hourly and minute basis.
The process takes into consideration the fluctuating renewable energy output and unavailability
of resources due to faults and maintenance operations.

1.1.1 Generation Adequacy Requirements

The generation adequacy trend can be assessed by the Net Generation Capacity (NGC). It is the
total installed capacity that is the sum of Reliable Available Capacity (RAC) and Unavailable

2



Introduction

Capacity (UnC). The UnC is composed of capacity unavailable due to maintenance and overhauls,
system reserve, outages and non-usable capacity. The part of RAC is allocated to meet the
demand and rest of it is reserved to meet the peak loading conditions. For Europe, the NGC
is anticipated to increase from 1021 GW in 2016 to 1167 GW in 2025. However, the RAC
increases marginally from 602 to 611 GW as can be seen in Figure 1.1. Unavailable capacity
is related to RES based generation as the primary source of energy having limited availability.
The increase in net generation capacity over the next decade shall be contributed by 94% from
unavailable capacity. A greater portion of the UnC is contributed by the un-usable portion of
installed capacity from wind and solar power which shall have a dominant share in the new
capacity additions over the horizon from 2016 to 2030 in Europe [3]. The improvement towards
energy efficiency shall decrease maintenance, overhaul requirements and the likelihood of outages.
Figure 1.2 shows a comparative analysis of the unavailable capacity. It can be observed that the
major contributors to the unavailable capacity are wind and solar installations [3].
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1.1.2 Trends in Power Systems

The overall load requirement are anticipated to increase in the future. A comparison of the load
requirement and the net generation capacity increase is show in Figure 1.3. In comparison, the
evolution of generation mix and its diversity are shown in Figure 1.4. It can be observed that the
power from RES shall increase by 44% of the current share in Europe. The generation from fossil
fuels and nuclear shall drop due to decommissioning process. Moreover, ongoing hydro power
projects shall increase the production capacity by 32% of the current share of RES hydro. The
combined share of wind and solar capacity in the generation mix shall increase by 71% of their
current share.

Due to increased reliance from RES, new trends are expected to arise in power system impacting
the adequacy requirements of the power system. In 2020, Germany shall need to import power
during January, February and December months due to extreme conditions [3]. Furthermore, the
risks associated with the high share of RES shall require an efficient forecasting methods.

1.1.3 Flexibility and Ancillary Services

The growth of RES shall increase the requirement of ancillary services for maintaining sufficient
reserves in the power system. In addition, the decommissioning of coal and nuclear energy
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based power plants in the future shall make room for other players to participate in the reserve
market. Traditionally, reserves have been provided by the bulk power producers as part of
their generation bid. However, given the increase of distributed generation, the power system
is in transition from the centralized to a distributed control. The decentralized control has
been discussed in [4] as, “control centers today are in the transitional stage from the centralized
architecture of yesterday to the distributed architecture of tomorrow”. The control of distributed
generation in the distribution systems shall require a monitoring and control mechanism. Such a
mechanism can also provide basis for the flexible loads in providing ancillary services.

An qualitative economic comparison of the potential flexibility resources in providing ancillary
services is performed in [5]. The flexibility requirements can be decreased by improving the re-
newable energy forecasts and performing the sub-hourly scheduling of resources. This is a cost
effective approach in comparison with the curtailment of power from RES. To deal with the
increased flexibility requirements, it may become important to widen the scope of system opera-
tion. It shall require joint market operations and an improved energy market design. The active
control of the load can be cost effective solution for providing flexibility. Among this category,
the involuntary load shedding is the most expensive option that should only be used in the emer-
gency situations. The commercial and industrial demand response is the least expensive and shall
require investments in the communication infrastructure. A direct contributor to the flexibility
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can be additional generation resources in the network. They are expected to provide high ramp
capability in order to meet the variability requirements. In addition, the ramp capability of ex-
isting generators can be increased if possible. The renewable energy resources e.g., offshore wind
farms are normally distant from the load centers requiring the construction or reinforcement of
transmission infrastructure, the expense of which is generally high. The distributed generators
providing flexibility shall also require an advance network management. This is relatively an ex-
pensive choice in comparison with the demand response programs. Energy storage is technically
a favored option for providing flexibility. However, its cost is a major limiting factor for its wide
scale deployment. However, with the technological advancements, it may become economically
feasible to use it for ancillary services. In addition, the storage can help the Distribution Network
Operator (DNO) in increasing the hosting capacity of the network for RES based generation.

The transition of distribution systems towards a more active paradigm has attracted the com-
missioning of several projects. They are briefly reviewed here in Table 1.1.

Table 1.1: A review of some projects in the field of active distribution networks.

Project Description

Cell Controller [6] A distribution area from the 60 kV grid is controlled under a Cell
controller for an autonomous operation with a high share of RES. A
comprehensive approach for modeling and control of a cell based dis-
tribution network with the islanding capability.

evolvDSO [7] Define future roles of Distribution System Operators (DSOs). The
design of future energy markets, regulatory framework, forecasting,
scheduling and optimization in distribution grids.

IDE4L [8] Develop and demonstrate the entire system of distribution network
automation, information technology systems and applications for active
distribution network management.

DREAM [9] Lay the foundations for a novel hierarchical management approach in
order to integrated distributed RES in a reliable and economic way.

INCREASE [10] Enabling the RES in MV and LV grid in contributing towards the an-
cillary services to the DNO and Transmission System Operator (TSO),
focusing on the voltage control and reserve services.

DISCERN [11] Technical and organizational advancements in the European distribu-
tion networks to support the smart grid technologies in an intelligent
way.

PlanGridEV [12] Design of planning models and operational practices for supporting
the integration of Electric Vehicle (EV) in various configurations of
distribution network along with a high share of RES.

EEPOS [13] Load control mechanism at a neighborhood level in the distribution
system leading to better energy management.

The control schemes in an active distribution network can be related to a Virtual Power Plant
(VPP), microgrid or a local control based architecture. Such localized solutions shall need to
deal with the changing network conditions. In order to localize the impact of uncertainty, an
important step is to identify the flexibility requirements locally. The flexibility assessment can lead
to insights in the overall demand of a microgrid and associated uncertainty. The local resources
can be planned to meet the demand requirements and additionally power can be imported or
exported to grid. Such a control platform in the distribution system also facilitate the distribution
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system resource in providing flexibility bids in energy market. The objectives of a local control
mechanism can be divided into planning and operation stages. The planning paradigm aims
towards setting a competitive environment where the most economic and environmental friendly
technologies contribute towards network resiliency. Network constraints can be limiting factors
for resources in delivering their flexibility services. Therefore, these constraints are to be taken
into consideration during flexibility planning and operations. Reserve resources are planned in
order to deal with the uncertainty associated with the demand. A stochastic framework of optimal
reserve scheduling is required that take into consideration the resource availability reflecting the
stochastic nature of variables. The controller activates the resources in an economically optimal
and operationally viable way. The resources such as demand response and battery storage can
also play an effective role in supporting grid operations. The aims of the control mechanism can
be to enable such resources in contributing towards demand and ancillary services.

1.2 Problems Addressed

The distribution networks of future anticipate an increasing number of connections from gen-
eration sources primarily driven by RES such as wind and Photo Voltaic (PV) systems. The
distributed, volatile and uncertain nature of the generation from such sources shall require flexi-
bility from the power system. The generation, storage and responsive loads can provide a suitable
compensation for the issues associated from distributed generation. The controllable generation
and loads shall require an active monitoring and control mechanism in order to seamlessly operate
and participate towards a secure operation of the grid. They are termed as distributed resources
and can be thermal generators (e.g., diesel generators), micro hydro power plants, CHP, bio-
mass/wind/solar energy based generators or responsive loads. The planning and operation of the
flexibility from such resources at varying time scales shall form the basis for realizing a smart
distribution network that ideally enable such technologies. A local control scheme in the form
of a microgrid or cell can provide a suitable mechanism for managing these tasks. The objective
of such approaches is to localize the uncertainty by prioritizing local resources in meeting the
demand. Therefore, the forecasting of generation and consumption shall be required to assess
the overall demand/generation and available flexibility. During this process, the control scheme
has to deal with the stochastic availability of power from RES and the uncertainty in demand.
The flexibility in terms of first order dynamics can be defined by the triad variables of the power,
ramp-rate and the ramp duration requirements from the literature [14, 15]. The state of art
flexibility assessment methods uses an interval based approach for quantifying the limits on these
variables, resulting in a hyper-rectangular model, where vertices of the hyper-rectangle represents
worst case scenarios. This approach is useful for the large systems as it reduces the computational
burden by evaluating the system only at the vertices. In other words, maximum values of power,
corresponding ramp-rate and ramp duration specify the reference values according to which the
resources need to be planned. In terms of demand and reserve, it defines the maximum ramp-rate
and ramp duration requirements for all demand levels. Maintaining such conservative margins
can lead to a safe operation of the system but at a high expense. Furthermore, this approach
assumes a uniform likelihood of variables e.g., ramp-rate at all demand values which may not be
the case. Consequently, the potential of each generation resource is limited by its ability to offer a
fixed ramp-rate at all power levels. This aspect can limit the dynamic potential of the generation
resource. For example, a thermal generator or demand response can possess a varying ramp-rate
potential as function of the power level. An appropriate model that considers the dynamic ramp-
rate limits can improve the situation by enabling the resources bid their true potential, that can
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result in better resource utilization and economic advantage. A compact geometric model can
be a candidate to represent dynamic ramp-rate as function of the demand value. Furthermore, a
local control in the distribution system e.g., microgrid has a limited resource thus requires a com-
prehensive flexibility assessment approach, that can decrease the demand/reserve requirements
and improve economics by better resource utilization.

The flexibility requirements are generally obtained by generating a set of scenarios based on
the uncertainty models of the variables. Some variables may possess time-series correlations
that needs to be modeled. Similarly, the forecast uncertainty can be a function of the its level.
Therefore, suitable uncertainty modeling methods are to be selected based on the availability of
the historical data and its nature. Secondly, the uncertainty outcomes of each variable needs to be
normalized so that they can be combined to yield the lumped uncertainty. The increasing amount
of data from the distributed resources shall require data driven approaches that can model the
uncertainty from the limited data. An exampling of such a flexibility assessment approach can be
the modeling of overall demand in a local control scheme and its uncertainty. Suitable methods
are required to represent the uncertainty and its dynamics. This aspect can quantify the impact
of increase in distributed generation on the overall system dynamic capability requirements. The
results are probabilistic in nature and can be related to the scenarios considered during the
planning process. The number of scenarios can be related to the volatility consideration in the
forecast and needs to be selected based on a desired probabilistic criteria. Therefore, an emphasis
is required to be placed in the selection of sufficient number of scenarios.

The distributed resources shall require to make flexibility bids in an active distribution net-
work. For this purpose, suitable model shall be required to represent the resource potential. The
potential resources can be generation (diesel generators, fuel cell, micro-hydro, renewable en-
ergy sources), demand (thermal loads, heat pumps, electric vehicles) or storage (pumped-hydro,
batteries). A common flexibility model for such diverse type of resources can facilitate the op-
erational management. Recently, a generic approach for a battery based flexibility model has
been proposed in [16]. The resources who does not possess the storage capability can also be
represented using this model by performing appropriate simplifications of the model. However,
a generic model that can represent the dynamic capability in conjunction is lacking in the liter-
ature. It should preferably be able to describe the first order dynamic capability of the battery
along with the associated response time (if applicable) and cost of service. In other words, a
generic model that can be applicable to a diverse range of resources shall form the basis of the
flexibility modeling. Once modeled, the flexibility bids can be aggregated in the system. In case
of a geometric approach applied to model the resource flexibility, an appropriate mechanism of
flexibility aggregation shall be required in relevance.

An important step in generation adequacy planning is to verify that the available flexibility
is sufficient to meet the requirements. The demand, ramp-rate and reserve requirements are
traditionally allocated using an economic dispatch process. However, in case of an envelope based
modeling of flexibility requirements, an advanced mechanism shall be required to allocate it among
resources based on their flexibility bids. The flexibility allocation problem is thus transformed
to an economic space allocation problem. The selection of flexibility envelope for modeling the
demand shall define the computational complexity of the allocation problem. Furthermore, the
location of resource and network conditions can limit the flexibility that can be allocated to a
resource. Thus the network constraints should be considered during the flexibility allocation
process. The flexibility envelope shall also define the reserve requirements at various levels of
demand. Reserve requirement is generally probabilistic in nature and can be related to the
number of scenarios used to perform flexibility assessment. The consideration of the stochastic
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reserve requirements for a given demand forecast in the Unit Commitment (UC) and Economic
Dispatch (ED) problems can lead to probabilistic confidence in results. The strategic modeling
of the resources in distribution network possess an interesting application in such optimization
problems. By using Game Theory, the roles of each resource can be defined based on set of
strategies that maximized their utility. The approaches that can lead to an equilibrium based
on a common signal dispatched to all resources can be of interest as it can potentially decrease
communication requirements. This can be particularly relevant if the number of resources in the
distribution network under a local control is large. However, the limitation of game theory based
schemes needs to be identified for such approaches.

The demand side resources can participate in meeting the flexibility requirement locally and offer
the flexibility towards the grid operations. A suitable flexibility model is required to represent the
aggregation of the responsive loads in a cell/microgrid based local control scenario. The aggre-
gation of demand responsive loads can represent a stochastic resource that require an elaborate
mechanism for assessing the overall capability, availability and the associated cost. Such a model
can be defined by a stochastic battery model whose parameters are uncertain and depend on the
availability of the resource. A cost effective way is desired to implement such a scheme that re-
quires minimum level of data exchange between a controller and responsive loads. The flexibility
model of demand response aggregation needs to be validated for a tracking a realistic reference
signal. The impact of the uncertainty and the communication delay needs to be evaluated for
assessing the potential of this resource. Furthermore, the utilization of demand side flexibility
shall not result in the violation of the network constraints. In the best case, they may support
the network operations in addition to providing flexibility in the system.

Overall, a number of research questions are aimed at ranging from assessing the demand and
associated uncertainty in a local control scheme to modeling the resource flexibility potential and
incorporating it in the planning operations. The local control scheme either implemented as mi-
crogrid (if standalone operations in also desired) or cell (if the grid connection is always available)
require new methods that aims to increase the operation efficiency, quantify the uncertainty and
facilitate the planning and operations by considering a diverse range of resources in the network.

1.3 Methodology and Contributions

The distribution systems are in transition towards a more active paradigm to support the control
of power in-feed from RES. The provision of flexibility from distributed resources like demand
response and energy storage shall be key players in realizing smart grid future. This necessitates
local control approaches in the distribution systems. The aim of such efforts is to increase
the hosting capacity of existing distribution networks for renewable energy based intermittent
generation and to handle the associated uncertainties. Various approaches in the literature are
discussed to enable the DNOs in handling the future challenges of actively managing the network
and providing additional services. In the Electra project [17, 18], a distribution network under
a DNO is divided into cells as shown in Figure 1.5. A cell is a control area in the distribution
network with a well-defined physical boundaries and having a dedicated cell controller. The
responsibilities of a cell controller can range from providing additional support service to the
DNO to a complete microgrid solution. The cell here is defined as a microgrid if it possesses
the property of independent system operation. However, a cell is not essentially a microgrid
and can remain indefinitely connected to the distribution network. This thesis builds on the
future scenario assumption that the local control either based on cell or microgrid shall play an
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important role in the future distribution system. The microgrid is a technologically advanced
form of the local control in comparison with a cell as it covers both the aspects of grid connected
and isolated operation. The proposed methods are developed for the microgrid based control in
distribution system. However, they can be be applied for the cell based control as well.

Figure 1.5: A cell based approach for the local control in distribution system.

It is aimed that a comprehensive generation adequacy planning is performed to facilitate the
microgrid planner in identifying the local flexibility requirements and assessing the corresponding
potential from the distributed resources. In case of microgrid, it can help in planning of local
generators and power exchange requirements with the connected grid. The work-flow diagram
for the overall flexibility planning process is shown in Figure 1.6. During the whole process, an
emphasis is places on the economics of the flexibility assessment and allocation processes. The
objectives have been to model the flexibility from a diverse range of resources, aggregate the
flexibility potential and allocate the requirements among resources. In addition to the generation
sources, the demand side flexibility is assessed and modeled using the proposed flexibility model.

Figure 1.6: In the first stage of flexibility planning, the forecast uncertainty is modeled and used to
generate scenarios. From scenarios, the dynamics of the overall uncertainty are evaluated leading to the
definition of worst case requirements. Meanwhile, the resource flexibility is modeled. The net-demand
flexibility is then allocated among resources in the end.

Flexibility assessment. The first part of the process is to perform the flexibility assessment.
The energy management system of the microgrid performs the forecasting of power from RES
and the anticipated load. These forecasts are used for planning the local resources in various
time frames ranging from a day ahead plan to intra-hour schedules. The forecast is accompanied
with an uncertainty that needs to be modeled. The forecast uncertainty can be modeled from
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the probability distribution of the stochastic variables. These distributions can be obtained from
the historical data of the prediction and actual values. A suitable model is adopted for each type
of uncertainty based on the available historical data and the desired accuracy.

The Markov chain associate a probability of the outcome of an event based on the occurrence of
previous events. Thus it is can model the time-series correlation in the data. A Markov chain
based approach is used here to model the forecast uncertainty in the load, generation from wind
and solar power. The Markov chain and the probabilistic models are used to generate scenarios
by performing Monte Carlo sampling. An important aspect is the number of scenarios that are
sufficient for modeling the uncertainty. This is defined on the basis of chance constrained op-
timization theory. It relates the number of scenarios to the desired probability of a constraint
violation. The probability is related to likelihood of the uncertain scenarios and confidence in
result. The net-demand scenarios are created using the sampling process from the individual
models. The generated scenarios are used for the flexibility assessment. An appropriate com-
pression algorithm is used to extract dynamics from the scenarios. The flexibility envelope is
modeled based on the first order dynamic variables of power, ramp-rate and ramp duration.
A novel polytope based method is applied to generate a compact and convex envelope. This
leads to more economical assessment in comparison with the state of the art approach of using
a hyper-rectangle. Secondly, the proposed approach also considers the correlation between the
dynamic variables. The surface of the polytope defines the maximum values of the net-demand
and associated uncertainty. This step is the starting point for the demand and reserve allocation
in the microgrid.

Resource flexibility modeling. Once the flexibility assessment in a microgrid is completed,
the next step is to analyze the flexibility from available resources in meeting the demand and
reserve requirements. The generation and demand flexibility resources are diverse in the dis-
tribution network. Hence, the development of a generic flexibility model that can represent all
resources is challenging. Based on a recent generic battery model in [16], a new Resource Flex-
ibility Model (RFM) is proposed in this thesis. The RFM combines the generic battery with
a dynamic capability envelope model. The battery model captures the storage potential of the
resource while the dynamic capability model allows for a comprehensive modeling of first or-
der dynamic capability and the associated cost. The RFM can contribute to an increase in the
flexibility potential of the system and can potentially lead to a better resource utilization. The
proposed RFM is demonstrated for a thermal generation unit representing distributed generation
and an aggregation of Thermostatically Controlled Loads (TCLs) in the network. This model
needs to additionally take into consideration the resource specific constraints. The structure of
the methodology used is shown in Figure 1.7. The resource specific constraints can be taken into
consideration while generating the flexibility bids at each resource. An alternate approach can be
that each resource sends the flexibility potential to the microgrid controller where it is evaluated
during flexibility allocation process.

Flexibility aggregation and allocation. The flexibility represented by the RFM for the re-
sources needs to be aggregated for the assessment of overall flexibility potential in the microgrid.
A geometric method based on Minkowski’s sum is used to perform this aggregation. The flexibil-
ity allocation is defined here as a process in which the flexibility requirement envelope is allocated
among the Resource Capability Envelope (RCE) of resources. A simple decomposition of the en-
velopes can be used if the related economics are neglected. However, for a grid connected case of
microgrid (cell based scenario) it is important to consider the price of electricity service during
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Figure 1.7: Flow diagram of the flexibility assessment, modeling, aggregation and allocation. The
flexibility planning is performed while considering the resource capability and network constraints.

resource allocation. Similarly during the island operation of the microgrid, the most economic
resources needs the be allocated with priority. The allocation of flexibility should ideally be
optimal in terms of generation and maintenance cost to the system. For this purpose, a novel
geometric method of polytopic decomposition is proposed. This is a vertex based decomposition
method that facilitates the use of existing constraints models found in the common optimization
applications. The selection of the envelope model for the flexibility assessment and RCE defines
the complexity of the flexibility allocation process. The convex envelope representation is gener-
ally preferred from the optimization point of view. The selected polytope approach facilitate the
application of the deterministic optimization methods. Figure 1.7 shows the additional considera-
tions during the flexibility allocation process. The network constraints involving the transmission
line power ratings and the voltage constraints are taken into consideration while performing the
flexibility allocation. This captures the aspect that the location of a resource can be a limiting
factor for utilizing its flexibility. The proposed flexibility allocation is demonstrated for a micro-
grid test case. The required flexibility is allocated between the thermal generators and the main
grid. The outcome of the overall process is an economic assessment of resource adequacy based
on the available flexibility in the network and can be used to assess the flexibility import/export
between the microgrid and the external grid.

Flexibility in operation. The reserve requirements as function of the demand emerges from
the flexibility assessment process. In comparison with a fixed reserve which is a normal practice,
the consideration of variable reserve as function of demand decreases the reserve cost. This
consideration is incorporated for the UC and Security Constrained Economic Dispatch (SCED)
problems in microgrid.

Another interesting research direction has been the strategic modeling of the resources. At one
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end it can facilitate in modeling a strategic model for the resources having multiple strategies
in difference scenarios. Such that for a given scenario, the resources can participate with their
flexibility bids that aims to maximize their outcomes. The area of game theory presents a the-
oretical foundation for such a strategic interaction. The case of large number of resources who
are modifying their share of flexibility as function of the electricity price or a common signal
can lead to a situation that requires less communication infrastructure. The evolutionary game
theory is explored for this purpose. A novel application of Replicator Dynamics (RD) method
for ED problem is presented. The evolution of the strategies of resources towards an equilibrium
are explored. The limitations of the approach are discussed with an emphasis on the RD being
a gradient based method. The overall limitations of the game theory based methods for the
flexibility allocation problem are discussed.

Demand side flexibility modeling and utilization. The imbalance between demand and
supply is reflected on the frequency of electricity in the system. The term frequency regulation
stands for the efforts to keep the frequency within the permissible limits. This is achieved by
consuming/generating the power to counter the imbalance between demand and supply. The
frequency regulation signal can represent the imbalances in the microgrid and/or from the energy
market. An overview of the demand side flexibility utilization for the frequency regulation is
shown in Figure 1.8.

Figure 1.8: Methodology for demand response flexibility from thermostatically controlled loads. An
aggregation of such loads is controlled to track reference frequency regulation signal. An aggregator or
local controller can act as a reserve provider.

An aggregation of Thermostatically Controlled Loads (TCLs) in the distribution network can
provide the frequency regulation flexibility. This thesis presents a novel stochastic battery model
is developed to represent the storage potential of TCL aggregation in an active distribution
network. During the battery modeling, an emphasis has been placed on the consideration of the
availability of resource, decreasing the computational requirements and the sensor requirements.
The storage potential of the TCL aggregation operates as a damper for the demand-supply
imbalances. This stochastic battery model along with the dynamic capability of TCL aggregation
to track a reference frequency regulation signal is modeled by the proposed RFM. A test case for
a large number of residential TCLs is used to validate the proposed model.

The demand response service is offered by an aggregator model that can be the part of microgrid
or an independent entity. While performing the active demand response, the aggregators needs to
ensure that the network constraints are observed. Therefore, the current state of the network is
periodically sent to the aggregator. In addition, a combined simulation environment is presented
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to test the impact of the TCL aggregation based demand response service on the voltage at the
critical bus in the network. This consideration aims to cover the operational constraint aspect of
flexibility utilization.

1.4 Organization of Thesis

The thesis is organized as follows,

1. Chapter 2: Control Strategies in Distribution System.
This chapter gives an overview of the control strategies in the active distribution net-
works. The key stakeholders in the control process and prospective flexibility resources
are discussed. Aggregator is identified as a key player and a suitable operational model
is presented. The control architecture is described from the perspectives of microgrid and
cell based approaches. A hierarchical control within a microgrid is explained with empha-
sis on tertiary level control challenges. Among these challenges, the areas focused in the
dissertation are explained.

2. Chapter 3: Uncertainty Modeling for Flexibility Assessment.
This chapter describes the uncertainty modeling methods used for assessing the flexibility
requirements in the microgrid. The forecast uncertainty variables are modeled using Markov
Chain and empirical Cumulative Distribution Function (eCDF) functions. Monte Carlo
sampling is performed on the uncertainty models resulting in the scenarios of the net-
demand in microgrid. The first order dynamic variables are extracted using a compression
algorithm on the scenarios. The analysis leads to the demand and reserve requirements
defined as points in space spanned by dynamic variables. A compact and convex envelope
approximation is performed to represent the reserve requirements. The stochastic nature of
reserve in the optimization problem transforms the deterministic constraints to stochastic
variants. A microgrid test case is used to demonstrate the proposed method of the flexibility
assessment.

3. Chapter 4: Resource Flexibility Modeling.
This chapter proposes a generic RFM for modeling the flexibility from distributed resources
in the power system. The RCE is composed of energy storage model and a capability
envelope. The battery model represents the energy storage potential of the resource which
can be used to scheduling optimization. While, the capability envelope allows to model the
cost of service as function of the power exchange dynamics. Together, they can represent
a diverse range of resources. This model has been later used to discuss about the potential
flexibility bid structure in the local energy market. The proposed RCE model is applied
to a thermal generator and an aggregation of TCLs. These application provides a proof
of concept of how the flexibility from generation and consumption side can be formulated
using a common model. The RCE based model for thermal generator has been used in
Chapter 5, while for TCL aggregation in Chapter 6.

4. Chapter 5: Flexibility Aggregation and Allocation.
This chapter presents the methods for flexibility aggregation and allocation. The desired
probabilistic confidence against forecast uncertainty is quantified by the number of scenarios
and is represented by the flexibility envelope based on the results in Chapter 3. The ther-
mal generators installed in the distribution network are considered as potential flexibility
resources. Their operational capability as discussed in Chapter 4 is aggregated to compare
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it with the flexibility requirements. A novel vertex based flexibility allocation algorithm
is presented that optimizes for the generation cost. The method is used in the day ahead
resource planning problem in microgrid. It gives an insight into demand and reserve con-
tributions from generators and the power import from the grid. The allocated envelopes
represent the contribution of resources in terms of their first order dynamics. Based on
results, the microgrid can be modeled as a virtual power plant or flexible load. The reserve
requirements resulting from the flexibility assessment process are used in the optimization
problems of the UC and SCED applications. In the end, a novel application of population
game theory based method for the UC problem is discussed.

5. Chapter 6: Demand Side Flexibility as Frequency Reserve.
This chapter discusses an application of RFM based flexibility model representing a TCL
aggregation as discussed in Chapter 4 for a secondary frequency reserve application. The
TCLs share a common characteristic i.e., they aim to maintain the temperature within
certain limits around the set-point called dead-band. The operational state of TCLs can be
changed while operating in the dead-band region and hence presents a flexibility potential.
This flexibility offered by a large number of TCLs is represented by a stochastic battery
model. A central control approach simulates a priority stack based algorithm to track the
reference frequency regulation signal. The algorithms for the central control simulating the
demand response and for each TCL are presented. The proposed battery model is validated
for a test case of a large number of residential TCLs. In addition, a combined simulation
platform is proposed to study the impacts of flexibility activation on the network.

6. Chapter 7: Conclusion and Outlook.
This chapter summarizes the contributions from dissertation. The extensions of proposed
methods in related topics is presented in the outlook section. Moreover, an approach for
flexibility activation from distributed resources (generation and demand) in a distribution
network is discussed.

The concept map of the thesis is shown in Figure 1.9.

1.5 Publications

During the course of PhD, following publications have been made,

• S. Khan, W. Gawlik, and P. Palensky, “Reserve Capability Assessment Considering Corre-
lated Uncertainty in Microgrid,” Sustainable Energy, IEEE Transactions on, vol. 7, no. 2,
pp. 637-646, April 2016.

• H. Bosetti, S. Khan, H. Aghaie, and P. Palensky, “Survey, Illustrations and Limits of Game
Theory for Cyber-Physical Energy Systems,” at-Automatisierungstechnik, 62.5, 375-384,
2014.

• S. Khan, H. Bosetti, P. Palensky, and W. Gawlik, “A Replicator Dynamics method for the
Unit Commitment problem,” in Workshop on Modeling and Simulation of Cyber-Physical
Energy Systems (MSCPES), Berlin, pp. 1-4, 2014.

• S. Khan, M. Shahzad, U. Habib, W. Gawlik and P. Palensky, “Stochastic battery model
for aggregation of thermostatically controlled loads,” IEEE International Conference on
Industrial Technology (ICIT), Taipei, Taiwan, pp. 570-575, 2016.
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• A. Latif, S. Khan, U. Habib, W. Gawlik, and P. Palensky, “Co-simulation Based Platform
for Thermostatically Controlled Loads as a Frequency Reserve,” in IEEE workshop on
Modeling and Simulation of Cyber-Physical Energy Systems (MSCPES), (Accepted), 2016.

Figure 1.9: Concept map for the thesis contents.
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2 Control Strategies in Distribution System

2.1 Introduction

The electric power system represents network composed of a large number of networked sub-
systems that aims to meet the energy demand of consumers in a safe, reliable, economic and a
sustainable way. The major components of the electric power system are shown in Figure 2.1.
The bulk of power is generated by hydro, thermal, nuclear power plants and other generation
resources and fed into the transmission network. The power is delivered from the transmission
system to sub-transmission and delivered to distribution networks at the distribution substations.

Figure 2.1: Major components of a power system.

The distribution system starts with the distribution substation which is connected mostly to
the sub-transmission system and occasionally to the high voltage transmission line. A one line
diagram of a typical distribution system is shown in Figure 2.2. At the high-voltage side, the
switching is done using simple switch followed by a fuse. While on the low-voltage side of sub-
station transformer, the relay/circuit breakers are used [19]. The voltage of the sub-transmission
line ranges between 12.47 to 245 kV. The substation transformer steps down the voltage from
4.16 to 34.5 kV. As the energy demand changes the voltage drop between substation and the load
varies. Voltage regulators are used to keep the voltage within acceptable limits by the transformer
action. Generally, Load Tap Changing (LTC) transformers are used as voltage regulators. They
have the variation of typically 10% on the low-voltage side. On the high-voltage side fixed taps
are used to adjust the voltage variation. Every substation has a metering arrangement, which
can be as simple as ammeter showing the current or a digital recording device that can measure
the current, voltage, power, power factor etc. Each distribution substation serves one or more
primary feeders. The fuse at the primary feeders provides protection against the short-circuit.
The primary feeder typically has a radial structure resembling like branches of tree where the
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Figure 2.2: One line diagram of a typical distribution system.

distribution transformers are used to further step-down the voltage to the consumers. In some
case primary feeders serves the consumers directly through primary mains.

The distribution system has been originally designed to deliver power from the transmission
system to the end users in a uni-directional power flow. The rise in the electricity generation at the
consumption side is challenging the distribution networks in variety of ways. The principal impact
is on the requirement of distribution network to support the power flow in the reverse direction i.e.,
from the end customers towards the grid. The distribution network comprises of a large number
of nodes or buses. This aspect makes the active monitoring and control technically difficult
and economically expensive. Thus the distribution systems have been designed to operate with
minimum supervision. However, as the share of Renewable Energy Sources (RES) increases in the
distribution network, a number of technical issues have been observed. Some of them are related
to voltage violating the maximum/minimum limits, congestion in the network due to overloading
of lines, false triggering of protection systems and others. It has led to a need of suitable measures
that can increase the hosting capacity of the distribution network in incorporating a high share
RES. Among these measures is a local control mechanism that can perform active monitoring and
control of distributed generation. This has become a necessity for realizing a secure and reliable
control of the distribution network in wake of the future scenarios.

Numerous challenges are associated with an active distribution network. The advent of smart
meters aims to increase the operational awareness of Distribution Network Operator (DNO).
However, the challenge is to handle the data from large number of nodes in the network. Various
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studies have been done on introducing additional stakeholders e.g., aggregators to manage the
Distributed Energy Resources (DER) related activities and their integration in the overall power
system operation. Some of the studies have been on the network reinforcements and additional
hardware installation to meet the distribution system challenges.

An important step in the transition towards an active distribution network is to determine the
maximum hosting capacity in supporting intermittent power from RES. The flexibility from DER
can provide valuable support to the network operations and can potentially increase the distribu-
tion system hosting capacity. The control and optimization techniques for handling the DER in a
Medium Voltage (MV)/Low Voltage (LV) distribution network is an emerging research area that
has received significant attention in literature. Various control mechanisms have been presented
in the literature spanning from a centralized to distributed and hybrid control approaches. Most
of them have proposed a hierarchical approach involving primary, secondary and tertiary level
control.

The control mechanisms that can facilitate DER integration in a distribution network are being
focused. The flexibility in generation and consumption at the distribution level can play an
important role in maintaining the balance between demand and supply. An economic approach is
to use the local flexibility of DER in supporting the local demand and reserve requirements within
the control area of the distribution network. The first step for this is to assess the flexibility
requirements of the local energy demand. Each of DER requires to model its potential as a
flexibility resource considering the operational and availability constraints. This thesis discusses
the assessment of desired flexibility by modeling the uncertainty. On the other hand the flexibility
from the participating distributed resources is modeled. Then the desired flexibility is allocated
among resources in an optimal way. The challenges related to the flexibility modeling, assessment,
aggregation and allocation are addressed at varying levels.

2.2 Distribution Management System

The state of the art methods in the Distribution Management System (DMS) provides a starting
point in the study of the control challenges in the distribution system. A DMS is a collection of
applications used by the DNO in order to monitor, control and optimize the distribution system
performance. The ultimate goal of the DMS is to enable smart, self-healing, efficient, reliable
and economic electricity distribution service. The reliability of the power supply is of paramount
importance and is ensured by the planning and operation activities. The time scale of such
activities ranges from milliseconds (protection operation) to years (network expansion planning).
Figure 2.3 provides a general overview to some applications in the DMS.

DNO monitors the network and the equipment status at the substation. In order to assess the
network state, it implements a state estimation algorithm. The output of the state estimator is the
core component for the network assessment and optimization applications. The DNO monitors the
alarms that may result in triggering of system restoration services. Some restoration services are
operated remotely while for other crews are dispatched. The set of tools used for implementing
the strategies for the outage management are generally termed as emergency triggered tools.
Among such tools is the N −K contingency analysis method. An N − 1 contingency is a system
test if one of the element in the network is not operational. A DMS may deploy N − 1 and
N − 2 contingency planning as part of reliability assessment. The detailed discussion about the
applications in DMS can be found in [20] and [21].
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The DNO implements a load forecast estimation based on the historical data and the prediction
models. As a result, the net-demand forecasts are obtained. The net-demand is the subtraction
of the local power generation e.g., from renewable energy sources from the demand. The forecast
information is used for the reliability support applications.

Figure 2.3: Overview of applications in the Distribution Management System.

2.2.1 Distribution System Operational States

A DMS can recognizes up to five operational states as shown in Figure 2.4.

Figure 2.4: Operational modes in the distribution network.

The first mode is called normal mode or green mode. In this mode, DNO performs active grid
monitoring and optimization tasks and the system operates as desired. The demand is met
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with a reasonable accuracy by the scheduled activation of generation resources and the power
transfer schedules. The second mode is called alert operation or yellow mode. It is activated
when there is a need of active control from DNO in triggering of the reserve flexibility. It can
be triggered by a significant forecast error or contingency situation in network. DNO actively
controls the loads/generation to remove congestion in this mode. It avoid voltage violations or
other limiting constraints causing the alert alarm. The state goes back to the normal if the
capacity management solves the problem. The emergency or orange is the third mode of the
distribution network. It is activated as a fall back mode when the flexibility available is not able
to satisfy the network operational constraints. Graceful degradation is performed in this scheme
by limiting the load/generation connections to the distribution network. As soon as the situation
normalizes the mode shifts back to the alert mode and subsequently to the normal operation. The
fourth mode is called power outage mode. It can be triggered by a major fault at the distribution
network or power outage at the transmission side. The DNO implements the emergency response
schemes by triggering the protection devices in the network. As the power supply resumes, the
distribution system undergoes a restoration phase. The fifth mode is called restoration mode.
It is triggered when the power outage situation is resolved. The outage management system is
active in this mode. It communicates with the customers to determine the fault location, separate
the energized part from the non-energized part and the crews are dispatched to the locations. As
the state is restored the system can either go to the alert or normal operation modes. This thesis
is related the flexibility utilization from DER during the alert mode operation.

2.2.2 Scenario Assumptions

Based on various reports and outlooks, it is expected that by 2030, between 52% to 89% of
electricity production will be generated from RES in Europe [22, 23]. The country specific
situation shall vary due to the uneven starting points, policies and availability of RES potential.
The overall consequences can be summarized as,

• The growing percentage of renewable based generation in the energy mix requires more
reserves in the system in order to handle demand and supply imbalances caused by forecast
uncertainties. As the reserves are an expensive resource to maintain during power system
operation there is a growing need of load following the generation.

• The reverse direction of power flow in distribution system can cause insecure situations and
may trigger the protection systems in an undesired manner. Therefore, appropriate control
mechanism or protection reinforcements shall be required.

• The replacement of large synchronous generators by the RES shall result in the reduced
inertia against the frequency perturbations in the system. Hence more flexibility shall be
required from DER and the importance of demand side participation shall increase.

• Due to the low dispatch capability of RES, the major contributors to the reserves shall be
the bulk power producers, flexible loads and storage. Storage is likely to become competitive
with the power plants for offering the ancillary services by 2020 [24].

• In order to reduce greenhouse gas emissions, there is a rising need of the electrification
of transportation and heating/cooling systems. It is expected that the electricity demand
in Europe shall increase by 14% in 2030 as compared to 2012 [25]. The growing demand
can burden the network beyond its capacity. Hence the congestion problems are likely to
increase in such situations.
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• The roll-out of the smart meters and deployment of the sensors shall increase significant
potential in monitoring and control applications. However, it shall require special arrange-
ments for handling large data and using it during operations.

The monitoring and control of resources connected to the distribution system can play an impor-
tant role in providing flexibility that can help in addressing some of the challenges outlined above.
For example, if the distribution system is experiencing a congestion problem in an area, the active
demand response can decrease the demand. Similarly, reserves at the DER can be activated to
maintain energy balance in the network. The dedicated storage and electric vehicles shall also
open new directions for flexibility. As more and more resources are actively controlled there is
a need of a monitoring mechanism that can inform the DNO about the available flexibility from
the distributed resources dynamically. The network impacts of the activation of flexibility from
such resources is a critical for a reliable system operation. The distribution network constraints
can potential limits the resource potential in the system that may cause voltage, frequency or
congestion related problems. Considering the future scenarios, additional control for actively
managing the distributed resources shall become a necessity. The objective of this control shall
be to provide a holistic mechanism for the seamless assessment, aggregation and allocation of the
flexibility on one hand and on the other to address the network constraints in the process.

2.2.3 Stakeholders

It is important to study the role of the key stakeholders in designing the control strategies to
tackle the future challenges in the distribution system. In the light of the future challenges, the
DNO shall have a key role in communicating with the stakeholders.

Prosumer. The prosumers are traditional consumers but have an ability to contribute their
excess production of electricity to the grid. The prosumers are becoming energy aware and moti-
vated to contribute to environmental friendly solution to their energy requirements. The future
prosumer can possess an electric vehicle that requires to be charged from preferably using local
solar power generated at the prosumer premises. Prosumer may require this service independent
of time and place and expect the power system to make it possible. Similarly, the demand re-
sponse potential of a prosumer can offer valuable flexibility to the system. The energy market is
evolving towards a more prosumer friendly setup where the flexibility can be offered and received.
However, in order to communicate with large number of prosumers the intermediate control layers
or organization shall likely to play a key role.

Supplier (producers, Balance Responsible Party and supplier). The bulk electricity
producers, Balance Responsible Party (BRP) and supply companies are considered here as a
single category termed as suppliers. The role of the supplier is to provide energy to the consumers
whenever it is required. The suppliers may need to communicate with increasing number of
prosumers in the future. These prosumers can be large industrial consumers producing part
of their electricity demand themselves or the residential consumers. The diversification of the
consumer types shall likely to increase in the future. The emerging role of the supplier shall be
to fulfill the deficit between the demand and supply of the prosumers instantaneously. A part of
this imbalance can be dealt with using flexibility at the prosumers side. Therefore, the supplier
of future not only needs to optimize the generation assets but also to take into consideration the
flexibility at the prosumers side.
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Distribution Network Operator. The DNOs are responsible for the secure flow of the energy
between suppliers and consumers. The existing distribution network is designed to be resilient
and stable network. However, with the increase in the demand in the form of electric vehicles,
heat pumps and due to local renewable generation the network capacity may reach to its limits.
Therefore, the role of the distribution network operator shall also be to assess the state of network
and communicate with the flexibility service providers to deal with the congestion and the voltage
quality problems.

Aggregator. Aggregator can be an independent organization or part of energy supply company.
The objective of an aggregator is to accumulate the flexibility from the industrial, commercial
and/or residential prosumers. The aggregated flexibility is then traded in the energy market and
the bid is customized to meet the stakeholder’s requirements. The aggregator is responsible to
manage risk of the availability of flexibility e.g., from demand response of prosumers.

Transmission System Operator. The Transmission System Operator (TSO) objective is to
ensure that the transmission capacity is available to meet the supply and demand. As the share
of renewable increases, the load flow changes dynamically and would require a optimization of
resources. The objective of maintaining the sufficient transmission capacity can be challenging.
Traditionally, the flexibility is obtained by large power producers to counter the imbalances
between supply and demand. As renewables have more share in the energy mix, alternate source
of flexibility shall be required to provide the ancillary service flexibility. Thus the TSO shall have
an additional responsibility of assessing the reserve requirements and to play a role in energy
market for the procurement of the flexibility.

The individual objectives of the stakeholders are an important consideration. The DNO would like
to see a flat profile of loads across time to maximize the capacity utilization. The bulk producers
of renewable energy would like the demand to follow the generation closely. A prosumer on the
other hand would like to have guaranteed availability of energy when required and may prefer to
contribute to grid when it is economic. While the aggregator would like accurately compute the
available flexibility and activate it as desired. The global objectives of all the stakeholders can
only be met as a trade-off and are decided at various levels in the overall topology of the system.

The challenges faced by the distribution system can be broadly classified into two categories,
the voltage and the frequency stability. The voltage quality problems are normally attributed
to the increase in the load or distributed generation while the frequency problems are due to
the imbalances between supply and the demand. Some of the reasons for the imbalance are the
uncertainty in the power from renewable energy resources and the load forecasts. The importance
of this aspect shall further increase as the percentage of the RES in the energy mix increases.
In such a scenario it is preferred that the local resources contribute to the system rescue. In
order to facilitate the active role of community, a number of market models are presented in the
literature. They aim to include new players like prosumers, aggregators and supplier companies in
the decision making process. Among them, the Universal Smart Energy Network (USEF) defines
the roles and the operational practices in the new paradigm [26].

2.2.4 Flexibility Resources

The resources in the distribution system that possess the capability of providing the flexibility
shall perform a key role in the future. Their roles as flexibility resources is related to the techno-
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logical advancements and regulatory standards. A general overview of the commonly existing or
anticipated resources is discussed here.

Electric vehicles as storage. Recently, there has been improvements in the price performance
ratio and the battery technology. It is anticipated that the economic viability of electric vehicles
shall increase in the future. Electric vehicles provide unique opportunity to the electric power
system for the energy storage. On average, vehicles are parked more than 22 hours a day so the
charging process can be scheduled. This storage can play an active role in the peak reduction and
as a reserve against imbalances in the grid. When sufficient capacity is available, this resource
can be traded in the energy market as well.

Heat pump. The working principle of a heat pump is similar to that of a air conditioner or
freezer but in opposite direction. Such that heat pump absorbs the heat from the surrounding
cold space and and release it into warmer space. External power is used to transport energy from
the heat source to the heat sink. A study has been conducted by Pacific Northwest National
Laboratory (PNNL) to assess the demand response potential of the Heat Pump Water Heaters
(HPWH) as compared to Electric Resistance Water Heaters (ERWH) [27]. The demand response
potential is assessed on the basis of peak reduction and balancing reserves. Both are capable of
providing the demand response services. However, it is observed that HPWH is 63% more energy
efficient than ERWH. With the anticipated increase in the heat pumps at the distribution system,
this resource proposes an interesting potential in the demand response.

Controllable loads. Along with the electric vehicles and heat pumps, additional demand flexi-
bility can be provided by Heating Ventilation and Air Conditioning (HVAC), heating and cooling
process of industries and the shift-able loads of the residential consumers. Each of these ap-
plications require a specific set of constraints that are to be considered during operation. The
shift-able loads introduce inter-temporal constraints and hence the flexibility allocated at one
time influences the flexibility available at other times. The internet of things is also an emerging
area in which each device can freely exchange information with other. All of these resources can
help in maintaining a real time balance between supply and demand.

Distributed Generation. Energy conversion technologies like power to gas and fuel cells are
also becoming mature technologies. Power to gas provides opportunity to convert excessive
power to gas and even to the liquid. While, fuel cells can perform the reverse process of creating
electricity when required. It is possible that in future new value chains combining these aspects
arise in the market. The controllable local generation from Combined Heat and Power (CHP),
micro-CHP, fuel cells and gas turbines can provide flexibility in the system. A part of their local
generation capability can be kept as reserves to provide ancillary services. The variable power
generation comes from the RES like wind turbines and Photo Voltaic (PV). Their power in-feed
can be curtailed and can be used as a flexibility option. It is generally preferred to use power
curtailment as a last resort as it results in the wastage of the renewable energy.

2.3 Role of the Aggregator in the Flexibility Value Chain

The aggregator shall play a central role in the flexibility value chain of the local energy market.
The role of the aggregator towards prosumers, distribution system operator, balance responsible
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party and transmission system operator in the smart grid context is discussed in [26]. An overview
of the aggregator role in the distribution system operation is shown in Figure 2.5.

Figure 2.5: Role of the aggregator in flexibility value chain.

2.3.1 Services to Prosumers

The prosumer can represent a residential/industry/commercial customer or a distributed gen-
erator. Each prosumer may be implementing a self-optimization based on its preferences and
constraints. The flexibility bid by a prosumer can possess a diverse structure that can be con-
tractual with guaranteed availability or a capability that is probabilistic in nature. The role of the
aggregator is to accumulate the flexibility bids from prosumers. Aggregator can provide input to
this process in terms electricity tariff with respect to time of use. Maximum load tariff provides
an incentive to the prosumers to decrease the maximum load by load shifting or load-shedding.
The prosumer can save tariff cost and contribute to reducing peaks in demand. It can possess the
capability to directly influence the load/generation of a prosumer while utilizing the offered flexi-
bility. For example, the demand side management of Thermostatically Controlled Loads (TCLs)
of prosumers can be used to track the reference frequency signal. Aggregator can facilitate the
distribution network in case of grid outage by controlling the prosumer based on the agreed upon
control schemes.

2.3.2 Services to Balance Responsible Party

Aggregator can facilitate the BRP in the day-ahead, intra-day and shorter time-scale market
operations by providing the flexibility forecasts. These forecasts are used by BRP to optimize
its generation portfolio and to update the generation/demand schedules dynamically to reduce
imbalance charges. The flexibility offered by the aggregator can be committed by the BRP to the
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TSO. Primary, secondary and tertiary reserves are activated by the TSO to counter the frequency
imbalance caused by the mismatch of demand and supply. The TSO shall have the capability to
trigger the flexibility from the aggregator for this purpose. This signal shall be communicated by
the TSO to the prosumers through BRP and the aggregator.

There are several applications for which the flexibility can be triggered by the TSO. The congestion
is the state of thermal overload of system components due to operating them at their peak ratings.
Flexibility can be used to reduce peaks in energy demand/supply and hence relieve congestion
in the network. It can be used for the grid capacity management such that to reduce peak load,
distribute loads evenly and reduce the losses in the network. In addition, the flexibility reserves
can be activated by TSO in case of a contingency.

2.3.3 Services to Distribution Network Operator

The flexibility offered by the aggregator can be used by the DNO to improve the performance and
efficiency of the distribution network. It can be used to prevent the possible voltage violations
and congestion in the distribution network. Recently, voltage violations have been observed in
the distribution networks having high share of PV. This can happen when PV are producing at
their peak output and demand is low resulting in the violation of the upper bounds of the voltage.
In such situations, DNO can activate the flexibility to relieve the network. This flexibility can
come from the demand response, active set-point control of a Distributed Generator (DG) or
curtailment of renewable energy in-feed. If a part of distribution system possesses the islanding
capability, then a DNO can use the flexibility from the aggregator to control the islanding process.

2.4 Aggregator Workflow

In the USEF market model, a hierarchical model of the future distribution system is presented
as shown in the Figure 2.6. Each prosumer has a contract with the supplier about its anticipated
power demand and the fixed flexibility offers in this model. The supplier generates a demand
forecast based on these contracts and the historical information and provides it to the BRP. The
agreed flexibility as per contract is communicated by the supplier to the aggregator. In addition
to the contractual flexibility the additional flexibility offer is made by the prosumers via the cell
operator to the aggregator. The aggregator is then responsible for accumulating the data about
the flexibility and controlling the demand/supply of the prosumers.

Aggregator performs the portfolio optimization along with the BRP resulting in the A-plan. BRP
uses the net demand information from supplier and the A-plan from aggregator in performing
economic dispatch of generators as in the resulting in the E-program. The operational schedule
is handed over to the TSOs and DNOs. A DNO performs the self-assessment to check whether
the network constraints are satisfied considering the planned power transfer. In case of the
constraint violations, e.g., distribution transformer overload, DNO can procure the flexibility
from the aggregator in order to maintain a reliable operation.

Based on the USEF model, the distribution system can be divided into multiple cells that have
well defined boundaries. Each cell corresponds to a control area having a dedicated cell oper-
ator. The aggregator broadcasts the current market price forecast to the prosumers via their
cell operator. The prosumers optimize their operation with the user defined inputs and provides
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Figure 2.6: Aggregator workflow in the USEF energy market model [26].

updated information to the cell operator about their demand and flexibility. The cell operator
bundles the flexibility offers from the prosumers and the associated cost and provides them as a
bid to the aggregator. In response to the DNO flexibility request, the aggregator provides the
available flexibility offer via D-prognosis to DNO and via T-prognosis to TSO. The A-plan
is rescheduled if required and the E-program is subsequently updated [28].

The flexibility requires modeling of not only the capacity but also the dynamic capability with
which the resources can be made available. It is the function of the capability of the prosumers
in reducing/increasing the demand/generation. The key control variables can be active demand
response, output of DGs, energy storage and curtailment of renewable energy in-feed. The USEF
model provides a mechanism for activating the flexibility at the distribution side. This flexibility
can be used to deal with the uncertainty in the forecast variables, particularly the renewable en-
ergy generation. A suitable control architecture is required to harness the potential of distributed
resources in providing the flexibility.

2.5 Control Architectures in Distribution Network

The power system operation of the present era relies on the centralized generation. However,
the increasing decentralized generation shall require new control mechanisms to enable the active
monitoring and control. The control strategy primarily aims to maintain voltage and frequency
within operational limits while providing additional services. These services are defined by the
scope of the control scheme. As discussed in the previous Section, the aggregator shall play an
important role in power system operation in future. The control in distribution network aims to
enable the aggregator operations while facilitating the DNO. Among the nomenclature used for
the control architecture two most common terminologies used are microgrid and cell.
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2.5.1 Microgrid and Cell

Microgrid as a term is coined to refer a partially self-controlled area of electric power system
that can intentionally island itself. According to Institute of Electrical and Electronics Engineers
(IEEE) standard 1547.4, it is referred as distributed resource island system and is defined as ,
“Distributed resource island systems are parts of Electric Power Systems (EPSs) that have dis-
tributed resources and load, have the ability to disconnect from and parallel with the EPS, include
the local EPS and may include portions of the area EPS, and are intentional and planned” [29].
International Council on Large Electric Systems (CIGRE) has defined microgrid as, “Microgrids
are electricity distribution systems containing loads and distributed energy resources, (such as
distributed generators, storage devices, or controllable loads) that can be operated in a controlled,
coordinated way either while connected to the main power network or while is landed.” [30].

The concept of cell is presented in a Danish project called “Cell controller” [31, 32]. A cell is
a well-defined area in the distribution network that is operating under a cell controller. This
controller manages the data communication, measurements and monitoring & control systems.
The goal of the cell controller it to enable the active and reactive power control to handle the
voltage and frequency within the control area. According to the Cell controller project, the
cell can operate in the grid connected and islanded modes. The control enables safe islanding
of the cell and re-synchronization with the transmission system. In terms of this definition
a cell resembles microgrid. A cell based control architecture is also presented in a European
project called Electra [17, 18]. The cell is strictly defined to operating only in the grid connected
mode. This definition is selected for the work in this thesis. It classifies the control in the active
distribution systems as cell or microgrid based approaches. The cell is referred to having similar
capabilities of a microgrid with an exception of services related to the island mode operation. In
terms of operational capabilities, the cell is a subset of the microgrid. Therefore, the microgrid
based control strategy is selected and discussed here.

2.5.1.1 Advantages of Microgrid

Despite operational and organizations challenges in microgrid implementation in the distribution
system, following advantages have been reported in literature [33],

• Microgrid captures a system perspective for customers, utility and society. This system
has the capability of achieving the socio-economic objectives. It can contribute to the
integration of distributed energy resources in the system.

• Enable the localized control which can be useful in integrating increasing number of dis-
tributed generation sources in the distribution network.

• Be a specialized solution for critical or isolated infrastructure. It can also help in application
of the backup strategies in emergency situations.

• Microgrid can provide the high power quality to the critical loads in a facility. Thus in
case of disconnection from the main grid, the critical loads can continue to operate in a
well-managed setup.

• Microgrid capability to withstand independent operation increases the reliability of the
overall system.
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2.5.1.2 Types of Microgrid

Microgrid can appear in large variety of scales. The important question is that what can be
classified as microgrid. It can be answered by looking at the common requirements among the
various types of microgrids. A review of various types of the microgrids is presented in [29].
According to it, if a distribution substation possesses the islanding capability then it can be
referred as substation island. Similarly, within a substation distribution network, a circuit, lateral
(primary or secondary) or a facility can form a microgrid. In [34], the microgrid is categorized
in three major scales. The biggest scale is a MV microgrid that can involve multiple feeders (for
example rural, residential, commercial). Then is a microgrid having a single LV feeder referred
as a LV microgrid. The smallest scale can be a residential house connected to the LV feeder.

The essential ingredients for a microgrid includes on site supply-side(micro-generators) and likely
demand-side resources (storage units and controllable loads). It should be capable of handling
both normal state (grid-connected) and emergency state (islanded mode) operations. A con-
trolled network area cannot be classified as microgrid if there is absence of load, micro-sources or
monitoring and control. In general, a microgrid is a combination of an aggregator for DG, service
provider for the network, controller for demand response and can be a regulator for controlling
emissions. It is likely to perform all these functions and achieve objectives of economy, resilience
and emission reduction simultaneously [34].

2.5.1.3 Microgrid Operational Modes

Microgrid has three operation modes namely, grid connected, transition and island modes [35, 36].
In the grid connected mode the voltage and frequency follows the main grid. The central con-
trol in the microgrid is responsible for controlling the power flow for optimal cost and reliability.
It generates control signals to manage the import/export with the utility grid. During the tran-
sition mode the central control is responsible for ensuring the quality of voltage and frequency
at the point of common coupling. During islanding event the central control may also need to per-
form emergency demand side management strategy. When the microgrid is re-synchronized with
the main grid a number of criteria needs to be satisfied. Among others, primarily the voltage and
the frequency difference should be small between the microgrid and the main grid. The islanded
mode of the microgrid has received perhaps the greatest attention in the literature. As the
name implies, microgrid in this mode operates standalone. The local controllable generators are
responsible for the maintaining the voltage and frequency in the microgrid. The non-controllable
or grid following generators follows the frequency and voltage as set by the controllable gener-
ators. From the control perspective there is a significant difference between control in islanded
microgrid as compared to grid connected mode. Most notable differences are outlined as,

• In the grid-connected mode, microgrid is connected with the network thus there exists inertia
to ensure the frequency regulation during perturbations. But it possesses significantly less
inertia when operated in the islanded mode.

• Microgrid is mostly formed at low voltage network. Such networks have a significant resistive
part in the network impedance matrix. In this case, the active power through a transmission
line also depends on the voltage magnitude as well as the phase. Therefore, there exists
coupling between the real and reactive power and they cannot be independently dealt.
One of the impact of such scenario is that the fast decoupled method cannot not be used
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in computing the load flow for the low voltage network having considerable resistance to
reactance ratio.

• Due to relatively high percentage of non-dispatch able renewable energy sources in the
generation portfolio, the reliability and security is more of a concern in the islanded mode
operation. Thus sophisticated algorithms are required for precise assessment of uncertainty
and the corresponding reserve requirement analysis.

2.5.2 Control Architecture

The design of control framework for the microgrid is case specific. However a hierarchical structure
is emphasized in the literature [35, 36, 37], and is comprised of three main levels namely, primary,
secondary and the tertiary control.

2.5.2.1 Primary Control (Frequency Containment Reserve)

The primary level control is responsible for local voltage control to ensure the proportional load
sharing. This control loop is fast and typical response time is in milli-seconds to micro-seconds.
The objective of the primary control at a generator is to respond to the transient variations in
voltage and frequency by adjustment of its output active and reactive power. This adjustment
is done according to a reference curve that relates the active power with frequency (P/f) and
reactive power with voltage (Q/V) respectively. This level of control is also sensitive to the
nature of the network. If the network is highly inductive, the (P/f) droop control is commonly
used. While for a highly resistive network, (P/V) droop control is used to regulate the share of
power of the inverter. Such cases are discussed in [38].

The operation of the primary control in the microgrid is demonstrated in Figure 2.7. The fre-
quency deviation from the set-point is first responded by the change in active power set-point
of generators. The potential of the primary control in responding to a frequency deviation in a
control area is termed as frequency containment reserve.

The increase in inverter based generation from renewable energy sources limits the available
inertia in responding to the frequency deviations. Virtual synchronous generators concept can
be used to emulate the rotating inertia to damp out the transients in frequency. Various primary
control methods have been presented in the literature to target additional objective along with
the principal objective. These objectives can be classified as,

• Precise Voltage Regulation (VR).

• Decoupled handling of Active and Reactive Power given by (P/Q).

• Support for Nonlinear Load (NL).

• Robustness towards parameter deviations (RB).

• Simplicity of implementation (Simple).

• Flexibility with respect to line impedance (Zflex).

• Control of Harmonic Distortion (HD).

The approaches in the literature are classified in Table 2.1.
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Figure 2.7: Figure (a) shows the droop relationship between the active power P produced by a gener-
ator and the output frequency f . Initially, the generators are operating at the nominal frequency fMG

(microgrid nominal frequency). The increase in the active load in the network causes the frequency to
decrease to f ′MG. This droop in frequency is sensed by the generator primary control. The primary control
action increases the output power of the generator 1 from P1 to P ∗1 and of the generator 2 from P2 to P ∗2 .
Here Pmax

1 and Pmax
2 represents the maximum power ratings of both the generators. Figure (b) shows

the droop relationship between the reactive power Q produced by a generator and the output voltage E.
Initially, the generator is generating the reactive power Q and the terminal voltage is EMG (microgrid
nominal voltage). The increase in the reactive load in the network results in decrease in the voltage. This
droop is sensed by the generator and the reactive power is increased to from Q to Q∗. Here, Qmax is
the maximum reactive power rating of the generator. The −Qmax is the maximum power that can be
absorbed by the generator.

Table 2.1: Time evolution of primary control techniques in microgrid.

Year Technique VR P/Q NL RB Simple Zflex HD

1993 Conventional PF Droop Control [39, 40] X

2000 Signal Injection Method [41, 42] X X X

2005 Adjustable load sharing method [43] X X X

2006 Voltage P Droop / Freq. Q Boost [44] X X

2010 Adaptive Voltage Droop [45] X X X

2011 Virtual Frame Transformation [46, 47] X X

2012 Nonlinear Load Sharing [48, 49] X X X

2013 Virtual Output Impedance [50, 51] X X X X X X

2.5.2.2 Secondary Control (Frequency Restoration Reserve)

The general objective of the secondary control loop is to have supervisory control over the primary
control. Secondary control has dominantly a centralized structure and relatively slow control loops
as compared to primary control. It uses low bandwidth communication to collect measurement
data from critical points in the network. It uses this data to estimate the steady state deviations
in voltage and frequency caused by the primary control in various parts of the network. The
corrective control signals are then sent to the primary control loops as updated set-points [52],[37].
The operation of the secondary control in microgrid is demonstrated in Figure 2.8. The correction
control action steers the frequency error towards zero increasing the frequency set-point. The
potential of performing the frequency restoration by the adjustment of the reference frequency of
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generators is termed as frequency restoration reserve.

MGf

MGf

*
1P *

2P 1
maxP 2

maxP *Q maxQ

f

P Q

E

MGE

MGESecondary 
Response

maxQ

Secondary 
Response

Figure 2.8: Figure (a) shows the secondary control action corresponding to the frequency droop action
of primary control. It restores frequency by increasing the frequency reference of each generators to the
nominal microgrid frequency fMG.Figure (b) shows the secondary control action of restoring the output
voltage of the generator. This is done by changing the internal voltage reference of the generator to the
microgrid voltage EMG.

An extensive effort is done recently to improve the performance of secondary control. The ob-
jectives like voltage control, harmonic and unbalance compensation is discussed in [53, 54]. The
approach used is centralized which raises concerns for single point of failure. A pseudo decentral-
ized scheme inspired from Networked Control Systems (NCS) is proposed in [55]. Authors propose
a distributed integral controller based averaging scheme. The reactive power sharing is improved
by introducing an additional loop in the local secondary control of each DG. It helps to deal with
variable transmission line impedance in the system. A mathematical analysis of the hierarchical
control approaches has been discussed in [56]. The important results are that distributed primary
and secondary control with properly tuned droop gains (function of proportional power sharing
and marginal cost) can be sufficient to perform the economic dispatch minimization. But the
work in this paper assumes constant line impedance and do not consider the ramping limits on
the generation. A summary of the evolution of secondary control is given in Table 2.2.

Table 2.2: Time evolution of secondary control techniques in microgrid.

Year Technique

1988 Power deviation method [57]

1989 PLL based parallel operation of inverters [58, 59]

2000 Circular chain control [60]

2004-08 Master slave control [61, 62]

2010 Peak value based current sharing [63]

2010 Angle based droop control [64]

2012 Voltage quality enhancement [54]

2012-13 Distributed secondary control [65, 66, 67]
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2.5.2.3 Tertiary Control (Replacement Reserve)

The tertiary level control in the microgrid is related to the economic optimization and overall
system monitoring and control tasks. This level also controls the power quality at the point of
the common coupling with the main grid particularly during grid transition phases. The dispatch
optimization can include technical economic and environmental objectives [68, 69, 70].

The tertiary control activates the replacement reserves that relieves the secondary control and
steers the frequency to nominal value. The tertiary reserves generally come from non-spinning
generators that are offline and can be made operational generally in 5 to 30 minutes. The
time requirements are however application specific. Various other sources can also contribute to
this type of reserve. For example, thermal buffering in the loads can be useful. The demand
response programs at the load can contribute to primary reserve in a microgrid [71]. The reserve
management programs at the load end can be either direct load control or economically driven
control. In addition, Electric Vehicle (EV) are envisioned to be an important element in the
future distribution system. The storage from the EV can provide the needed reserves as well.

The objectives of the tertiary control spans multiple areas along with the activation of replacement
reserves. The major roles of tertiary control are described as [72],

• Voltage and frequency reference dispatch for the secondary control based on the configura-
tion of the microgrid and energy transferred with main grid.

• Issue of voltage/frequency restoration signals during and after transients.

• Sense faults in the system and initiate emergency procedures.

• The power flow control with the main grid/neighboring AC or DC microgrid or both.

• Ensure that critical loads are serviced by the available energy produced in the microgrid

• Performing the active control of loads to implement demand response strategies.

• Ensure that the microgrid satisfy the operational constraints with the utility.

• Consideration for specific requirements/limitations of each DER, including its type, cost
of generation, time dependency of the primary source, maintenance intervals, and environ-
mental impacts [73].

• Performing islanding of the microgrid in case of disturbance at manual grid or electricity
price based decision.

• Coordinating DGs during black start operation and re-synchronization with the grid.

• Minimize system losses and emissions.

• Maximize the operational efficiency of the DGs.

• Provision to maintain an appropriate level of reserve capacity while rescheduling the op-
erating points of dispatch-able DERs. The objective of the optimization problem can be
to control the net power import or export with the connected grid, minimize power losses,
maximize the contribution from RES, minimize the generation cost from fuel based gener-
ators.

A real time power management and control scheme for a microgrid is presented in [74]. It op-
timizes multiple objectives including fuel cost, dispatch able loads, emissions, while meeting the
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power demand and system constraints. The design of microgrid central control as enhanced ver-
sion of traditional distribution management system has been discussed in [75]. The multi-objective
optimization is performed after incorporating the bids from the demand side and generation side
controllers. The problem address is of different nature as compared to traditional distribution
management systems due to operational mode requirements by microgrid, load side bidding and
energy exchanged with the main grid. The reliability indices for campus level microgrid are
briefly discussed in [76]. Based on thes indices a systematic model for the supervisory control is
presented in [77]. Authors present a model of microgrid consisting of PV, wind turbines, storage
units and a central natural gas generation plant.
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Figure 2.9: Microgrid supervisory control architecture, taken from [77].

An overview of supervisory control architecture from [77] is shown in Figure 2.9. The control-
lable generators are necessary for the operation of the microgrid in island mode as they play an
important role in defining the frequency of the system. Such generators are dispatched in both
the short term and day ahead planning similar to the power system operation. They consist of
controllable (grid-forming) and non-controllable(grid-following) generators. Grid forming gener-
ators can consist of micro-hydro, CHP plants or diesel generators. They are responsible for the
frequency regulation in microgrid. While the grid following generators follow the frequency of the
grid. They consist of renewable energy resources like wind and solar power plants. The nature of
the power produced by them is uncertain and depends on the probabilistic environmental vari-
ables. Therefore, the generation forecast is accompanied with the uncertainty. This uncertainty
is needed to be incorporated in both short and long term day ahead planning. The two appli-
cations used for this purpose are called Unit Commitment (UC) and Economic Dispatch (ED).
UC decide about the status (On/Off) of the generators in a day ahead schedule. While ED per-
forms economic optimization of the set point of the active generators considering the operational
constraints.

The reserve provision in a microgrid can support to the control and efficiency of overall system
when it is connected to the grid. The reserve provided by online generators in case of microgrids
may not be enough to deal with low inertia and volatile transients. Hence two types of generation
control reserves are introduced in the system. The grid forming reserves are provided by dispatch
able generators. They are typically voltage controlled. These generators are directly responsible
for the voltage control and power sharing in the system. Their DC side is related to the state of
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the network. The primary reserve in such systems is incorporated in the rating of such generators
i.e. their nominal rating is reduced by the amount of reserve that is required from them. Hence
certain amount of reserve is guaranteed to be available all the time. The grid following reserve
plays an important role as the grid forming reserve are used. Such type of reserve is realized
by active control of non-dispatch able generation sources. These devices are current controlled
devices with the reference current generated based on measured terminal voltage and the DC
side. The DC side is the function of available energy and the reserve provision will add up to this
DC side.

Tertiary control challenges. One of the objectives of microgrid is to provide strong foun-
dation of local control for dealing with the uncertainty. The intermittent power from renewable
energy sources and the load forecast variations influences the operation of microgrid. This influ-
ence is strong compared to large scale problem dimension due to high share of uncertain variables
in generation portfolio and due to the relatively small size of the network. The information about
uncertainty based reserve requirement is useful for scheduling the resources ahead of time. This
is done in order to deal with the probable deviations from planned activities. The analysis of
uncertainty increases the risk awareness for the operator and helps in finding an economic solution
for desired confidence.

The uncertainty associated with the transients in the voltage and frequency in the microgrid are
dealt at the primary level [36]. The frequency transients are supported by the rotating inertia
of the generators that in turn changes the output real power. While the voltage transients are
supported by controlling the level of injected reactive power. Both the task are fine-tuned by
adjustment of the droop gains of the controllers at the generators. But in case of microgrid the
reserve provided by online generators will not be enough to deal with the reserve requirements.
Therefore, a certain amount of generation capability needs to be scheduled ahead of time for
ensuring safe operation. According to National Electric Reliability Corporation (NERC), the
operating reserves are defined as, “Operating reserve is the capability above firm system demand
required to provide for regulation, load forecasting error, equipment forced and scheduled outages
and local area protection. It consists of spinning and non-spinning reserve.” [78, 79].

The reserves from generators that are operational and synchronized with the grid frequency
are called spinning reserves, while the reserve potential from disconnected resources is called
non-spinning reserves. A day ahead dispatch in a power system is an optimization task that is
performed by the supervisory control authority. It decides the operational schedule of controllable
generators considering the forecast variables. In this aspect two algorithms are relevant, the UC
and ED. UC is an optimization problem in which binary status of generators is computed for a
given energy demand forecast in a time horizon. This problem is subject to generator and network
specific constraints. The generator constraints involve the capability constraints of the generators
that are diverse and machine specific. The network constraints include constraints like power
carrying capability of transmission lines and voltage constraints on buses. The power generated
from the renewable energy resources and the anticipated electricity demand are the key variables
in this regard. These forecast variables are naturally accompanied by the uncertainty. Therefore,
the generators are obliged to offer a certain degree of their production capability as ancillary
services. The uncertainty is traditionally encountered by the reserve adjustment approach in
the reserve optimization. However, due to relatively strong influence of the forecast variables
in the microgrid, it is not sufficient to consider a certain percentage of the load as required
reserves. The reserve adjustment approach needs to be made more dynamic and comprehensive.
This advancement should be done considering the uncertainty dynamics in the local renewable
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generation forecast, load forecast and the equipment outage probability. The advent of electric
vehicles in the network introduces additional control challenges as well as another control variable
in the form of storage [80]. This variable along with the demand side management can also be
useful in providing supplementary reserves in the microgrid.

The concept of microgrid was introduced to enable the operation of critical loads in the power
system during blackouts and brownouts. In literature microgrid is also advocated in providing
local control solution for dealing with the power quality problems arising due to distributed
generation in the MV and LV network. Microgrid can also help in implementing the attractive
market models to facilitate the increase in renewable energy in the system.

For the remote area applications like vacation houses or distant villages the cost of installation
of a transmission line is high. A microgrid in such as scenario can provide energy solutions. The
building controller may implement a microgrid scheme in managing the local energy demand and
purchase of electricity from main grid. One of the application at a university level has been
implemented with good results in [77]. If the microgrid is disconnected from the main grid then
the local control can support the critical applications locally.

The application of microgrid as a generic approach in the distribution grid is faced with the reg-
ulatory and technical challenges. When a part of distribution system either at MV or LV level is
disconnected from the main grid, the current grid code requires that all the distributed generators
connected should be disconnected from the network. Assuming that the microgrid is in place and
in case of islanded mode the microgrid central controller takes the control of distributed gener-
ation, there exists substantial operational challenges due to small inertia and limited generation
capability. The operational standards related to the microgrid are also currently in the developing
phase.

2.6 Flexibility in Supervisory Control

Among supervisory control applications, the focused areas are shown in the Figure 2.10. The
reserve requirements are assessed in the microgrid while considering its dynamics. For this pur-
pose, a number of scenarios of demand, supply and availability are created. The overall demand
and reserve requirements in the microgrid are then modeled by an envelope among the first order
dynamics variables of power, ramp-rate and ramp duration variables. This leads to an economic
flexibility assessment approach in the microgrid that considers the correlation between the dy-
namics variables. Secondly based on the given demand, the reserve requirements are assessed and
allocated among available resources.

In order to model resources in the microgrid, a generic model for a flexibility is presented. The
energy storage potential of the resource is modeled with a battery while the operational capabil-
ity and associated costs are modeled by an envelope. A Polytope is selected as the envelope of
choice after comparing the alternatives. The demonstrative example uses this model for Ther-
mostatically Controlled Loads (TCLs). The resources having demand response potential can be
described controllable loads. A load controller can have multiple resources e.g., TCLs, EV in its
aggregation. The load controller can communicate with the supervisory control and potentially
implement a frequency regulation service. The flexibility bid from the load controller should
sufficiently represent the energy storage characteristic, stochastic availability and the associated
cost. It is desired that when the flexibility from the resources in the network is utilized, it does
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Figure 2.10: This Figure shows the stochastic optimization model for microgrid. This thesis contributes
to reserve planning, the results of which are incorporated in UC and ED applications. Moreover, methods
are designed to facilitate the demand response potential as the secondary frequency reserve.

not lead to constraint(voltage) violations. This aspect has been considered as a constraint in the
demand side management applications.

When a microgrid is connected to the distribution grid the supervisory control is also responsible
for the optimizing the value of energy exchanged with the distribution grid. It can be performed
by considering the price of local electricity generation in comparison of cost of electricity from
distribution grid. This in turn shall also allow to incorporate the available reserve capacity
available from distribution grid. The power transfer capacity of the coupling transformer can be
considered as a constraint in this regard.
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3 Uncertainty Modeling for Flexibility
Assessment

3.1 Introduction

Provision of the distribution side resources in providing flexible reserve services can propose a local
and cost effective solution to address the uncertain and volatile nature of the power generated
from Renewable Energy Sources (RES) [81]. A control mechanism in the distribution system
can provide a platform for aggregating the reserve flexibility from the resources and performing
their coordinated control for the secure and reliable operation. The microgrid is considered as
an attractive choice among various control mechanisms discussed in literature [82]. Among the
objectives of microgrid or cell based control in the electric distribution system is to provide a
strong foundation of local control for dealing with the increase in uncertainty from generation
and consumption of electricity. The forecasts of intermittent power from renewable energy sources
and the load variations strongly influence the operation of microgrid. The microgrid is expected
to have a high share of uncertain power from RES in its generation portfolio. Furthermore, the
advent of electric vehicles shall introduce further uncertainty in the load characteristics. The
impact of overall uncertainty in the net-demand shall be a significant player in determining the
reserve requirements in the microgrid.

The distribution system can be considered pre-dominantly in the steady-state. The steady-state
is defined by a “snapshot” of the variables like voltage, power etc. at the buses in the network.
Although most of the variables are time varying but the variation is small enough to justify the
consideration of power system algebraic model. The set of variables defining the steady-state
are load/generation values, switching status and other dynamic variables. A local forecast of
the net-demand is performed in order to determine the schedule of generation sources to meet
the electricity demand and to plan the power import from the grid. The information about
uncertainty in forecast variables is important for the scheduling of resources in order to deal
with the deviations from planned activities. This information increases the risk awareness for the
control entity and helps in finding an economic solution in the stochastic environment that leads
to safe and reliable operation of the microgrid.

The resources are scheduled based on the net-demand and associated uncertainty forecast. This
analysis is obtained by the study of historical information and the probabilistic models of the
uncertain variables. From this analysis, the worst case scenarios are obtained that corresponds
to the maximum system loading. Following can be the general requirements for determining the
worst case scenarios in a microgrid application,
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• The probabilistic model of the uncertain variables should preferably capture the spatial i.e.,
variation in level) and temporal i.e., variation with time aspects of uncertainty in generation
and demand.

• The number of scenarios selected during the resource planning should define a probabilistic
guarantee on the results.

• The requirement of flexibility should preferably consider the dynamics along with the level
of uncertainty.

• A mechanism for the stochastic constraint formulation is required for a deterministic for-
mulation of the stochastic problem.

These questions are answered by the study of uncertainty type and the associated optimization
problem in the active distribution system. This is followed by the model of uncertain net-demand
for a microgrid test case. The contents of this chapter are partly published in [83].

3.1.1 Uncertainty in Distribution System

The uncertainty in a variable is an unexpected deviation in its status and the goal of uncertainty
modeling is to quantitatively represent it. Authors in [84] and [85] provide a general classification
of uncertainty. Based on these papers and the general literature in relevance, the uncertainty in
distribution system can be broadly classified into three categories,

1. Forecast uncertainty. The uncertainty in forecast of power from renewable energy
sources, load and market price of electricity.

2. Uncertainty due to unplanned events. The contingency (out of service condition) of
a line, generation unit or load that leads to unplanned changes in available transmission
capacity, generation potential or load requirements. A drastic change in market forces,
energy price and other unforeseen interruptions including sensor failure can also be classified
in this category.

3. Modeling uncertainty. Measurement accuracy of the power system parameters like volt-
age, power etc. are in this category. These can be due to discretization error and/or faults.
The error in state estimation also belong to this category that is influenced by the number of
observable values in the distribution system along with the accuracy of the measurements.

3.1.2 Uncertainty Modeling Methods

A rich spectrum of uncertainty modeling methods have been developed in literature and used
in practice. The objective of these methods were two folds, firstly, a sufficient representation of
the uncertainty and secondly, to assess the impact of uncertainty on the process output. Factor
influencing selection of the uncertainty modeling methods are the availability of historical data,
accuracy of modeling approach and the support for correlation between uncertain variables. The
classification of uncertainty modeling methods is given in Figure 3.1.
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Figure 3.1: Breakdown of the uncertainty modeling approaches.

There are generally two types of uncertainties, the quantitative uncertainty1 and the qualitative
uncertainty2 [86]. A review of the modeling methods with the perspective of type of uncertainty,
availability of sufficient historical information and problem structure is given in Table 3.1.

Table 3.1: Categorization and methods in the uncertainty modeling.

Deterministic
methods

Heuristics
based methods

Set theory
based methods

Uncertainty boundary
based methods

Interval
boundaries

Interval
boundaries

Method Type Probabilistic Methods
Possibilistic

Methods
Information Gap
Decision Theory

Interval Based
Analysis

Robust
Optimization
approach

Uncertainty
Modeling

Probability Distribution Function,
Cumulative Distribution Function,

Markov Chain.

Linguistic
definition with
fuzzy limits

Uncertainty
Sets

Uncertainty
Intervals

Uncertainty
Sets

Uncertainty
Impact
Analysis

Numerical
Methods

Analytical
Methods

α-cut,
Defuzzification

Risk Averse,
Risk Seeking
Methods

Interval Based
Analysis
Techniques

Adaptive Robust
Optimization

Monte Carlo
Simulation

Convolution,
Cumulant,
Taylor series,
Scenario based
methods

The uncertainty modeling methods are briefly discussed here,

Probabilistic methods. The probabilistic methods are applicable when the probability distri-
bution of the uncertain variables can be approximated from the historical data. For example, the
wind speed patterns can follow a Weibull Probability Distribution Function (PDF) [87] and load
uncertainty in some cases can be modeled by the normal PDF [88]. If the probability distribution
is not known then the Markov chain based methods can be used. Once the analytic model of
the uncertainty is known, there are two approaches for obtaining the impact on uncertainty of
the output. The first approach is numerical and involve Monte Carlo simulations. A scenario set
is constructed based on a desired criterion in this process. The uncertain variables are sampled
from their respective distributions or models to create this scenario set. The system output is
evaluated for each case in the scenario set. This method is relevant when the system is complex
and a relationship between output and input uncertainty is analytically difficult to obtain [84].
In [89], sequential Monte Carlo was used to evaluate the impact of wind on the power distribution
system. The second approach is to evaluate the output of stochastic process analytically. For

1The uncertainty associated with numerical terms quantified by a mathematical function with deterministic
parameters.

2The uncertainty expressed initially as linguistic non-numeric value such as “near to” or “in between”.
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example, convolution based method is one of the analytical approach that can be used to obtain
the PDF of output based on the PDFs of input variables [90]. Other analytical methods like
cumulant, taylor series and others are reviewed in [84]. A cumulant based method is proposed
in [91] for the stochastic optimal reactive power planning in the distribution system having high
share of wind power.

Possibilistic methods. The possibilistic methods were first introduced in [92]. In this method,
the uncertain parameters are characterized by linguistic categories having fuzzy limits. Here, the
Membership Function (MF) describes possibilistic uncertain variable. Methods like α − cut are
used to find the MF of output if the input MFs are known. The possibilistic methods are useful
in case when appropriate PDF of the uncertain variable is not known due to inadequacy or
imprecision of the data. These methods also facilitate in modeling the impact of an external
parameter on the system. Possibilistic methods in the distribution network have been used for
multi-objective planning with fuzzy economics and level of reliability in [93]. A fuzzy evaluation
tool was proposed in [94] for analyzing the impact of investment and operation of Distributed
Generator (DG) on active power loss and the adequacy of the load supply capability in distribution
system.

Information gap theory. Information gap theory can be applied if the PDF or MF of the
uncertain variable is not known. There are two major methods used in this theory. Risk averse
method is used to set the decision variables in order to avoid the risks. The objective is to make
robust decisions while considering the maximum radius of uncertainty. The other method is
called risk seeker in which the decisions are set in a way to maximize the impact of perturbation
in the uncertain variable hence defining the boundaries of possible outcomes. The information gap
theory has been discussed in [95] to help the Distribution Network Operator (DNO) in selection
of supply resource for meeting the demand of customers. The volatility of High Voltage DC
(HVDC) connected wind power generation was studied using this theory in [96].

Interval based analysis. The upper and lower bounds for the uncertain variables are defined
in the interval based analysis method. These intervals can be used in the robust optimization
to find the interval limits on the output variables. This method is applicable if the variables are
un-correlated. The uncertainty in load demand is studied by an interval arithmetic approach
based on probabilistic distributions [97]. In this paper, the interval arithmetic approach is used
to consider the load uncertainty in the radial distribution system.

Robust optimization approach. This method is relatively new in solving optimization prob-
lems having uncertainty in variables. In the robust optimization, it is assumed that PDF is not
available for the uncertain parameter X. It is defined by the uncertainty set X ∈ U(X), where
U is the set from which X can be taken. The robust optimization seeks to optimize the objective
while ensuring that the result is valid with high probability for the values of X in set U(X).
A two-stage adaptive robust model is presented in [98] for the security constrained Unit Com-
mitment (UC) problem. An adaptive robust optimization model for a multi-period Economic
Dispatch (ED) is proposed in [99].
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3.2 Stochastic Optimization in Control

State estimator is the base of control applications implemented in Distribution Management Sys-
tem (DMS). The state estimator implements the power flow algorithm that aims to determine the
real and reactive power flows in each transmission line. Input to this process is the active & reac-
tive power and voltage information at each bus in the network. A detailed power flow formulation
can be consulted from [100]. The power flow model represents the distribution network under a
microgrid by a system of non-linear equations. In particular, the state (magnitude and angle) of
the bus voltage X and the apparent power (active and reactive power flow in each branch) Z can
be calculated for a set of inputs. The inputs are active and reactive power injection at each bus
Y according to Equation 3.1,

Y = g (X) , Z = h (X) . (3.1)

3.2.1 Stochastic Optimization Applications

The common optimization applications that can be relevant for an active distribution system
are optimal power flow, economic dispatch, unit commitment and Volt-Ampere Reactive (VAR)
optimization with uncertain reactive load. The uncertainty in variables leads to a stochastic
formulation of these deterministic problems.

Power flow analysis. The steady state power flow analysis assumes the deterministic values
of input variables where the associated uncertainty factor is not considered. However, for a
highly dynamic scenario i.e., in case of a distribution system having a volatile renewable based
generation, neglecting the uncertainty can result in an unrealistic output of the power flow process.
This limitation can be overcome by a probabilistic power flow formulation of the problem. It was
first presented in [101] and it models the input data like uncertain loads and generation using
probabilistic models and calculate PDFs of the line flows. The mathematical treatment of this
problem is discussed in [102].

Optimal power flow. The goal of Optimal Power Flow (OPF) is to find the optimal settings of
the controllable parameters in the power network in order to optimize the objective function. The
objective function can be among minimization of the electricity generation cost, system losses,
bus voltage deviation, minimization of the emissions from generators, load shedding, system
security and equipment operating limits [102]. The control variables can include generator output
power and voltage, transformer tap settings, phase shifters, switchable capacitors/reactors and
others. The OPF problem is composed of the system of equations from the general power flow
combined with selected constraints and desired objectives. The probabilistic OPF methods allow
the consideration of the probability distribution of uncertain variables. One of such methods is a
two-point estimate method. It considers the interval uncertainty and evaluate the deterministic
OPF for the limits of each uncertain variable.

Economic Dispatch. ED is an OPF problem in which the objective is the minimization of
generation fuel cost. The classic ED problem does not consider the transmission line capacity
constraints. The consideration of network security constraints makes it as security constrained
ED problem. The stochastic factors effecting ED are the uncertain loads and inaccurate fuel cost
function along with the uncertainty in the network elements. Stochastic model [103] and fuzzy
ED methods [104] aims to solve the probabilistic ED problem.
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Unit Commitment. UC is an optimization problem in which binary status of generation units
is optimized for a given energy demand forecast. The objective of this problem is minimizing op-
erational cost and satisfying system demand, reserve requirements and generators start-up/shut-
down constraints. The uncertainty in this problem depends on the time scale under consideration.
The time scale are long term regulation (1 to 2 years), intermediate term (6 month to 1 year)
and short term dispatch (1 day to 1 week) [102]. The factors influencing are the uncertainty in
load, unit availability and resource availability. In literature the approaches used are the robust
and chance constrained UC methods.

VAR optimization with uncertain reactive load problem. The VAR optimization is an
OPF problem in which the objective is minimization of real power loss in distribution system and
improving the voltage profile by the dispatch of reactive power from generators. The uncertain
reactive load and the potential of generators make it a stochastic problem. The reactive load
uncertainty is considered using fuzzy sets in [105]. A heuristic method is applied using sensitivities
with the objective of minimizing the adjustments in control variables.

3.2.2 Stochastic Optimization Methods

The classic way of incorporating uncertainty in an optimization process is by the consideration
of worst case scenarios. It can lead to a robust result but at the high price associated with the
conservative margins. Other approaches have been to intentionally tighten constraints that can
reflects the confidence against uncertainty. However, as the level of uncertainty increases, there
is a strong need of approaches that can model the uncertainty during optimization process. The
stochastic optimization methods can be classified into three categories, scenario based, robust
and chance constrained optimization.

Scenario-based optimization. The scenario tree based approach formulates the uncertainty
instances as deterministic branches of a tree. Thus the key benefits are that the resulting problem
is a large scale deterministic optimization problem. In [106] and [107], authors have discussed the
impact of uncertainty in wind forecasts on the generation dispatch problem. The scenario based
approach is performed after the first stage of UC optimization has been performed. The scenarios
are then included by considering a known distribution in correspondence with the volatility of
wind. Benders decomposition is used to accommodate the changes from the base case in an iter-
ative manner till the problem becomes feasible. According to [108] the scenario based approaches
have two drawbacks. Firstly, it is assumed that the probability distribution of the forecast un-
certainty is already known. Secondly, a large number of scenario samples is required to obtain a
reasonably high confidence in results.

The scenario-based optimization defines a scenario tree that emerges from uncertainty instances.
Consideration of the high number of possible scenarios results in a large problem size. The authors
in [106] and [107] have proposed the scenario based approach for incorporating the uncertainty
in wind power. The volatility of wind forecast is modeled by a uncertainty distribution that
is sampled to generate scenarios. The base case is defined based on the UC results. Changes
from this base case corresponding to the uncertainty scenarios is incorporated using benders
decomposition method. It is an iterative process that converges to a feasible solution. The
drawbacks of scenario based approach are discussed in [108]. Firstly, the probability distribution
of the uncertainty is to be knows and secondly, the large number of scenarios needs to be generated
and addressed in order to ensure sufficient confidence in results.

44



Uncertainty Modeling for Flexibility Assessment

Robust optimization. In this approach, the deterministic algorithm includes an uncertainty
set that consists of worst case scenarios which are to be avoided. So the solution is searched in a
reduced search space. However, this often leads to over-conservative solutions as the worst cases
are dealt irrespective of their probability. In [109], the approach is to add a budget to uncertainty
in order to adjust the degree of protection from the adverse situations. But the modeling this
approach is non-trivial.

In the robust optimization, only the worst case scenarios are considered. The deterministic
optimization problem is evaluated for these scenarios and a reduced search space is searched for
solution. The consideration of worst case scenarios irrespective of the occurrence probability leads
to over conservative results. The uncertainty has been quantified in [109], where it defines the
degree of confidence against uncertainty.

Chance constrained optimization. The chance constrained optimization aims at to trade-off
between cost and robustness with uncertainty consideration. In this method, a probability is as-
sociated with violation of a constraint involving the uncertainty. This probability is used to define
sufficient number of scenarios. The worst cast in the scenarios are considered in the deterministic
formulation of the optimization problem. Hence, chance constrained optimization combines the
benefits of scenario based methods and robust optimization. The uncertainty scenario set is as-
sociated with the probability of uncertain events and the confidence in results. Such an approach
of defining uncertainty sets in the reserve allocation problem has been presented in [110]. The
approach used is for the single time intervals and hence can be termed as Independent Chance
Constrained Optimization (ICCO). The consideration of multiple time periods can improve the
results in case of time dependent variables. Such an approach is referred to Joint Chance Con-
strained Optimization (JCCO). The JCCO requires generation of scenarios considering the time
correlation of the uncertainty and hence is computationally intensive. The formulation of un-
certainty sets have been discussed in [111] and can be considered for ICCO/JCCO problems.
A JCCO solution has been proposed in [112] to the hydro thermal system having probabilistic
constraints. The approach is inspired from [113] that prioritize the inequalities to reduce the
problem size. The ICCO had been used for modeling the uncertainty in demand and generation
from RES in this thesis. The time correlation was considered by modeling the uncertain variables
using the Markov chain.

3.2.3 Reserves Against Uncertainty

Among the various optimization approaches effected by the uncertainty, this thesis focus on two
applications, the stochastic UC and ED. In these problems, resources are scheduled to meet
the energy demand while considering the uncertainty. The uncertainty in forecast of power from
renewable energy sources like Photo Voltaic (PV) and wind along with fluctuating demand makes
it essential to address them during resource planning and allocation. The uncertainty in these
processes are traditionally handled by a reserve adjustment approach. A part of generation
potential is reserved in this approach, and is ready to be supplied in order to balance the supply
and demand. This type of reserve is usually a percentage of the nominal power of generator.
The control system in an active distribution network shall also need to plan resources against an
outage of a generator, line or load. This reserve can be obtained from the grid or using local
resources. Such type of reserves is called contingency reserves. The classification of reserve types
and their roles are different for countries and regions. A comprehensive review of the reserve
types can be found in [114]. An overview of the reserve types is shown in Figure 3.2.
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Figure 3.2: Reserve types and their contribution to spinning reserves [114].

Regulating reserve is the available on-line generation capacity margin to cater for the forecast
errors. This type of reserves is activated by the Automatic Generation Control (AGC) action and
aims to maintain balance between supply and demand. The imbalance is reflected as change in
frequency. Hence, the regulating reserves can also be termed as primary frequency reserve. Part
of demand that is responsive to frequency deviation can also contribute to the regulating reserves.
The load following reserve consists of a combination of spinning and non-spinning reserves. They
can also be termed as secondary frequency reserves. This type of reserve is slow as compare to
regulating reserves.

The slow event is an event that takes a time duration during which resources can be made oper-
ational. For example, a sharp decrease in power from the wind farm shall require the generation
resources to ramp-up quickly. Therefore, the ramp-up potential of the resources should be able
to meet the requirements in real-time. If this requirement is not met, then the supplemental
reserves can be activated. The resources that can participate as supplemental reserves can be
off-line generators, load-shedding schemes, emergency demand response and others.

The contingency reserve is the amount of spinning and non-spinning reserve that is available to
be deployed by balancing authority to meet the requirements in case of component outages. The
component can be a generator, line, bus or any other significantly impacting element in network.
According to [115], at least half of the contingency reserve must be spinning reserves. While
the additional requirements can be met on a relatively slow activation time using supplemental
reserves.

A tentative value of the spinning reserve is defined a-prior to the optimization process of resource
scheduling. This value is defined as an addition to the net-demand, which is the aggregate demand
in the network. The reserves planned against the uncertainty in net-demand aims to cover the
maximum possible value of error considering the historical record. The interval based approach for
defining the capacity, ramp-rate and ramp duration of the net-demand has been discussed in [14].
This approach can be used for defining the spinning reserve capacity and ramp-rate requirements.
However, during studies it is found that using this approach in the smart distribution system can
lead to conservative requirements that can result in high cost. This situation can arise due to
relatively small value of net-demand (kW to few MW) and high share of uncertain variables in
the power balance. Therefore, an elaborate mechanism of uncertainty specification is required
that can improve the economics in the reserve allocation process. The contributions in here aims
towards,
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• An economic specification of spinning reserve requirements due to the forecast uncertainty.
It aims towards the modeling of regulating and ramping reserve.

• The modeling of demand response in the distribution system to operate as load following
reserve in order to contribute as a load following reserve resource.

3.2.4 Stochastic Constraint Formulation

This section discusses how the probabilistic power balance constraint in the microgrid can be
handled using chance constrained optimization theory. The forecast uncertainty in the variables
of load, wind and PV power was combined together to model the lumped uncertainty in microgrid.
The approach can be extended to other sources of uncertainty as well. The power balance in the
microgrid and associated uncertainty is given as,

∆P t = ∆P tD −
(
∆P tw + ∆P tPV

)
. (3.2)

Here, ∆P tw, ∆P tPV and ∆P tD are the wind, PV power and demand uncertainties. The lumped
uncertainty in the net-demand is given by ∆P t during tth hour. The power balance equation is
given as,

N∑
i=1

P ti = P tD −
(
P tw + P tPV

)
+ Ploss , (3.3)

where, the power generated by the ith generator is given by P ti . The active power limits of ith

generator are given as,
Pi ≤ P ti ≤ Pi , (3.4)

here, the maximum and minimum power ratings of a generator are given by Pi and Pi. A
sufficient amount of reserves should be contributed by each generator to meet the overall reserve
requirements. The constraint modeling this aspect is given as,

SRti ≤ Pi − P ti , (3.5)

N∑
i=1

SRti ≥ ∆P t . (3.6)

The reserve contribution by each generator should satisfy its ratings and is given by Equation 3.5.
While, the sum of flexibility contributions should be sufficient to meet the overall reserve require-
ments as given in Equation 3.6.

The reserve requirements in Equation 3.6 are stochastic and hence results in a probabilistic
constraint formulation. A generic form of such a formulation as part of optimization problem can
be given as,

min
x∈Rnx

J (x) ,

s.t.: P
(
δ ∈ ∆ | max

s=1,...,M
gs(x, δ) ≤ 0

)
≥ (1− ε) .

(3.7)

The objective function is a mapping that is given as J : Rnx → R, while the inequality constraint
function is gs : Rnx ×∆ → R. The inequality constraint function involves the uncertainty given
as δ ∈ ∆ ⊆ Rnδ . Here, the uncertainty scenarios were sampled from the envelope defined by ∆.
The constraint satisfying Equation 3.7 can be referred to as ε level feasible solution [116], where,
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the ε defines the probability of constraint violation. It decides the number of sufficient scenarios
(S) that results in the uncertainty envelope ∆. The decrease in desired probability of constraint
violation increases the number of scenarios and hence the likelihood of rare event occurrence. This
approach stems from the chance constrained optimization theory that prevents the requirement of
probabilistic distribution of uncertain variables. It also avoids modeling complexity for handling
the correlation between such variables. This being a scenario based approach associates the
constraint satisfaction probability (1− ε) and the confidence in results (1− β) with the number
of scenarios S [116],

S ≥ 1

ε

(
e

e− 1

)(
ln

(
1

β

)
+ 2 ∗ nδ − 1

)
. (3.8)

Here, e is the Euler constant and nδ is the number of uncertain variables. Probabilistic parameters
of (1− ε) and (1− β) are in the range of (0, 1). Such an approach quantifies the probability with
the number of scenarios and can be scaled for a given problem.

The interval based approach can be used to define the uncertainty limits in case of un-correlated
variables. In such a case, ∆ is a bounding box defined as, B∗ := ×nδu=1

[
δu, δu

]
. The vertices of B∗

defines the reference points for the uncertainty [116]. The Equation 3.7 for such a case is given
as,

min
x∈Rnx

J (x) ,

s.t.: max
s=1,...,M

max
δ∈B∗∩∆

gs(x, δ) ≤ 0 .
(3.9)

The inequality constraints are considered at the vertices of B∗ as representative of δ [14]. However,
if the correlation between uncertain variables exits then the interval based approach cannot be
used. An geometric based approach can be used to define the uncertainty envelope, resulting in
a general formulation given as,

min
x∈Rnx

J (x) ,

s.t.: max
s=1,...,M

max
δ∈∆

gs(x, δ) ≤ 0 .
(3.10)

Here, the inequality constraint needs to be satisfied for the uncertainty instances (δ) within
the envelope (∆). The Equation 3.8 is probabilistic as it is based on the uncertainty envelope.
Equation 3.6 transforms to,

P

(
N∑
i=1

SRti ≥ ∆P t

)
≥ (1− ε) . (3.11)

Equation 3.11 states that the reserve allocated should be sufficient to cover the uncertainty
envelope characterized by ∆. Hence the reserve requirements can be related to the probability of
constraint satisfaction, given as (1− ε).

The forecasting methods can be classified as linear/nonlinear regression, probabilistic time series
and neural networks based methods. This thesis focuses on probabilistic time series based meth-
ods. A Markov chain based approach has been used in [117] to model the time series correlation of
the uncertainty. This captures the temporal aspect of forecast uncertainty. The spatial aspect of
the uncertainty can be related to the probabilistic model of the variable. If historical information
about the uncertainty is related to the forecast level, then appropriate clustering methods are
required.

48



Uncertainty Modeling for Flexibility Assessment

While modeling the forecast uncertainty in the net-demand of microgrid, it was observed that the
uncertainty is related to the forecast value. Therefore, a binning strategy was used to classify the
uncertainty based on the forecast magnitude. The aim had been to model both the spatial and
temporal aspects of uncertainty. The number of scenarios were selected using chance constrained
optimization theory [116] for given probability specifications.

3.3 Flexibility Assessment in Microgrid

This section discusses the methodology for modeling the forecast uncertainty in microgrid. It lead
to an assessment of required flexibility in terms of demand and reserves requirements. The result
was a probabilistic envelope among the variables of net-demand values, associated ramp-rate and
ramp duration variables.

3.3.1 Scenario Generation

The measurement of uncertainty in a forecast variable needs to be generalized in order to combine
the uncertainty from various variables. Therefore, it is taken as the percentage deviation from
the forecast value. The analysis of historical data leads to an observation that the percentage
error is related to the forecast level. Such that low forecast levels experience high percentage
error as compared to high level. Therefore, using a single probabilistic model for the range of
the forecast values may not be appropriate. The uncertainty values are clustered based on the
forecast levels using a binning structure. Equidistant levels of the forecast data are considered for
this purpose. The probability distribution of uncertainty in each forecast cluster may not be know
and hence the application of a non-parametric probability density approach is preferred. Here,
the empirical Cumulative Distribution Function (eCDF) from [14] was used to model uncertainty
in each forecast cluster.

Markov chain based approach was used to capture the correlation between time-series data of
uncertainty. The Markov chain defines the probability of occurrence of an event given the occur-
rence of previous events. A second order Markov chain had been used here. It is represented by
a Transition Probability Matrix (TPM) [117]. Algorithm 3.1 models the spatio-temporal aspects
of the uncertainty. This model had been used to generate the net-demand scenarios in microgrid.

The dynamics of scenarios can be represented by the flexibility metrics. A metric based on
the first order dynamics i.e., power, ramp-rate and ramp duration had been discussed in [14]
and [15]. An interval based approach is used to model the variation across these variables.
This approach results in a hyper-rectangular model among the three variables. The vertices of
the rectangle represent the requirements in terms of demand and reserve. It is well suited for
power system applications with large number of variables as the computational burden is only
limited to the vertices. However, the approach is conservative as it considers a uniform ramp-rate
requirement for all demand values. Similarly, maximum ramp duration requirement is associated
with all demand and ramp-rate values. Such an approach can lead to a safe operation of the
system but at a high expense. The situation is different for a microgrid or a local control in
the distribution system. A microgrid is likely to have limited resources in terms of generation.
Using the interval based approach for the demand and reserve assessment can result in a high
cost. Another aspect is that the ramp-rate and ramp duration requirements are correlated with

49



Uncertainty Modeling for Flexibility Assessment

Algorithm 3.1: Uncertainty modeling algorithm.

The forecast data is clustered among F clusters based on the magnitude;1

The forecast error is modeled using eCDF for each cluster;2

for f := 1 · · ·F do (Forecast error limit loop)3

The eCDF of f th cluster is sampled S times;4

The boundary values of uncertainty in each forecast cluster is obtained as Lf ;5

end6

The time series correlation in the uncertainty is modeled using a TPM for second order Markov7

chain;
for s := 1 · · ·S do (Forecast realizations loop)8

The initial error states are assumed at t = 1, 2;9

for t := 3 · · ·T do (Time periods loop)10

A probability value is generated using a uniform random generator;11

The tth state of uncertainty is sampled from TPM based on the probability and the12

occurrence of previous two error states;
The outcome is bounded by the limits Lh(t) of the corresponding forecast cluster h(t);13

end14

end15

the demand values. Thus a suitable geometric model is required that can compactly represent
the requirements while preserving the correlation. Such models have been discussed with much
interest in the recent literature. Available transfer capacity in the power system has been modeled
using a geometric approach in [118]. Similarly, the real time dispatch problem is discussed in [119],
where a polyhedral approach is used. This has further encouraged to study the compact geometric
models for this problem.

3.3.2 Uncertainty Envelope Modeling

The uncertain net-demand scenarios are to be represented using the selected flexibility metric.
In literature, various compression algorithms have been discussed that can be used to extract the
dynamics of a curve. Several algorithms such as box-car, averaging and Swinging Door Algorithm
(SDA) are discussed in [120]. Based on work in [14], SDA had been selected for the dynamics
extraction. The working principle of SDA is explained in Figure 3.3. The SDA is applied on the
net-demand scenarios resulting in pivot points characterized by the triad variables. The sensitivity
parameter (ε∆P ) can be related to minimum ramp-rate limit of the participating generators.

After the identification of pivot-points, the next step is to model an envelope enclosing them.
One of the envelope modeling approach is the ellipsoidal model. Authors in [121] have used it
to model the uncertainty. The ellipse is of interest as it can be represented by few parameters.
However, in order to complete the ellipsoidal structure additional uncertain area may be included
in the process. Using this approach for the problem under consideration resulted in enclosing
the negative ramp duration region, which is a non-negative value. A possible solution can be to
intersect the ellipse with a half space extending towards the positive ramp duration axis. Such
an application results in the polyhedral structure of the envelope. It shall require more data
for representation and thus the advantage of using an ellipse does not apply. In comparison, a
polytope based model provides a compare representation enclosing the pivot point and leads to a
convex model. The advantages of the convexity property shall become evident with the discussion
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Figure 3.3: The figure shows working principle of swinging door algorithm that is used to extract the first
order dynamics. The scenario curve as a representative of lumped uncertainty ∆P t in microgrid is shown
by the points 1 − 4. A sensitivity parameter (ε∆P ) is set at each point that describes desired ramp-rate
resolution. The parallelogram is checked to contain previous points, which in case of abcd is true. However,
at t = 4 the point 3 lies outside abef , where 3 is termed as a pivot point. It is represented by magnitude
(π), ramp-rate (ρ1−3) and the ramp duration (µ).

of optimization problems in later Chapters. After comparing approaches for uncertainty modeling,
the polytope was selected for the representation of the uncertain demand in microgrid. The
demand scenarios were generated with a probability associated with number of scenarios from
Equation 3.8. The envelope modeling approach extends this probability to the surface of the
polytope. The uncertainty envelope ∆ as discussed in Equation 3.11 is represented here by
the polytope. This consideration results in the satisfaction of the probabilistic constraint while
considering the uncertainty dynamics.

A polytope is a convex representation of the intersection of finite number of closed half-spaces.
Mathematically, it can be defined by a hyper-plane H definition given as,

P = {x ∈ R | P xx ≤ P c} . (3.12)

The polytope can also be defined using vertices V definition, [122],

P =

[
x ∈ R | x =

υP∑
i=1

miV
i
P ,m ∈ [0, 1] ,

υP∑
i=1

mi = 1

]
(3.13)

Here, V
(i)
P is the ith vertex of P and υP is the total number of vertices or pivot-points. The

polytope (P) can be sub-divided into two polytopes based on the magnitude being positive and
negative. The sub-polytope that includes the non-negative value of power represent demand and
associated uncertainty. The other sub-polytope represents the dynamics of power exported to the
grid. Here, the demand polytope was focused and it was allocated among the microgrid resources.

The vertices of the demand polytope (∆) defines the reference points for the resource planning.
However, the limited number of them may not be sufficient during resources allocation process.
An mechanism performing polytope sectioning is proposed in Algorithm 3.2. It is used to identify
the desired number of points on the surface of ∆. The process section the ∆ into C sub-polytopes
along the demand axis.

The sub-polytope coordinates are given as [xj y
k
j zkj ]. Where, xj is the jth capacity/power

among C capacity values and (ykj , z
k
j ) is the kth vertex among Vj vertices. Vj are vertices of the
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Algorithm 3.2: Sectioning of polytope (∆).

Compute the bounding box around ∆;1

Divide the power axis interval in C number of equidistant points (xj);2

for j := 1 · · ·C do (Polytope sectioning loop)3

Define an orthogonal hyper-plane for each xj ;4

Intersect ∆ with the hyper-plane leading to polygon Sj(∆);5

end6

sub-polytope (Sj(∆)). It represents the maximum ramp-rate and ramp duration values for the
demand xj .

The polytope (∆) models the maximum ramp-rate and ramp duration for the demand values.
It is to be noted that it does not capture the time information of the forecast. The demand
polytope was used for planning the generation resources to possess the capability of support
the reserve dynamics requirements. During operation, the operational schedule shall follow the
classic economic dispatch approach. The information about the demand dynamics can be used for
determining the reserve requirements. The real power axis of the polytope defines the capacity
requirements in microgrid, while, the ramp-rate and ramp duration axes provides information
about the associated dynamics in the aggregate demand.

3.4 Microgrid Test Case for Flexibility Assessment

The flexibility assessment is performed for a microgrid test case based on International Council
on Large Electric Systems (CIGRE) Medium Voltage (MV) benchmark [123, 124], European
configuration. The RES like wind and solar energy were included in the microgrid to represent
the future scenario of high renewable penetration. Figure 3.4 shows the network configuration.

A wind farm comprising seven wind turbines is connected to the MV network using a tie-line
as shown in Figure 3.5. The wind turbines are required to operate with minimum power factor
0.9. The ratings of each wind turbine is 2.78 MVA. All wind turbines are connected to the
20 kV bus by the step-up transformers of equal rating. A capacitor bank is centrally installed
to improve the power factor. The wind farm has a controller that allocates the reactive power
contribution between wind turbines based on the overall active power generation and the voltage
at the tie-line. Algorithm 3.1 is used to generate the wind output data for the wind farm using
the historical information.

The nominal load data and transmission line parameters for the MV network are obtained from
Appendix C of [125]. A number of load buses in the MV network are equipped with the PV
power sources as shown in Figure 3.4. The nominal ratings of the PV apparent power and their
bus connection information is given in Table 3.2. The historical data for the wind power output
was obtained from [126] and for the load from [127]. It had been normalized and scaled to meet
the use-case ratings.

Two thermal generators are connected to bus 8 and 12. They are operated by natural gas and
provide necessary backup during the islanded mode operation of the microgrid. In the grid-
connected mode of microgrid, they contribute to the demand and ancillary services. The thermal
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Figure 3.4: CIGRE MV distribution network from [123] modified as microgrid.

Figure 3.5: Wind farm model.

generation cost (T ) is selected as 3.45 [$/MMbtu]. The generation cost can be given as,

Cost(Pi) = Heat rate(Pi)× T , (3.14a)

Heat rate(P ) = aiPi + biP
2
i . (3.14b)

The cost coefficients (ai, bi) are derived by fitting a second order polynomial to the historical data
of the generator output power vs. heat rate. The generator specifications are given in Table 3.3.

The ramp-rate limits of generators are obtained using the approach from Section 4.3.1. The
power exchange with the sub-transmission network have static ramp-rate limits. The peak values
[Pmin Pmax] for the demand are [10 41], power from the wind-farm [6 17] and PV [0 7] in MW.
This data is used to develop the uncertainty model for the renewable energy and demand forecast
using Algorithm 3.1.
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Table 3.2: Data for PVs in the microgrid test case (Snom [kVA], power factor = 0.8).

Bus Snom Bus Snom Bus Snom Bus Snom

1 3103 5 113.7 8 91.8 12 3129.4

3 78.5 6 85.7 10 174.67 13 5.32

4 69.6 7 12.0 11 51.6 14 84.4

Table 3.3: System data for the microgrid test case.

Gen. 1 Gen. 2 Grid

Incremental operating cost
bi [$ / kWh2] 0.04 0.038 0.1

ai [$ / kWh] 10 13 18

Pi [MW] 10 5 35

Pi [MW] 1 0.5 0

Temperature power slope (ki) [◦F/kW] 0.068 0.2066 -

Thermal stress up limit (Hi) [◦F] 200 250 -

Thermal stress down limit (Li) [◦F] -210 -270 -

Thermal time constant (τi) [min] 50 30 -

Maximum ramp-up rate (URi) [MW/h] 5.05 2.80 20

Maximum ramp-down rate (LRi) [MW/h] 5.30 3.02 20

3.4.1 Uncertainty Modeling: Spatial

The spatial aspect of uncertainty describes the value of forecast error. It is observed that the
percentage forecast uncertainty can be related to the forecast level. Hence, a binning strategy
is used to classify the forecast value in the clusters. The bins here are equally spaced values
sampled between minimum and maximum forecast level. Figure 3.6 shows the percentage error
in the forecast for the load, wind and PV power in each bin. A significant variation in error can
be observed for difference forecast levels. The forecast error in each cluster is modeled using an
eCDF function. It is sampled S times using Equation 3.8. The sampling process results in the
identification of maximum and minimum limits on the error outcomes of each cluster.

The output of the sampling process for the wind power, PV generation and load forecasts is given
in Figure 3.7, 3.8 and 3.9. The results are used to define the interval limits for each cluster.
These interval limits have the probability of (1− ε) and is related to the selection of the N . It is
selected using Equation 3.8 with the parameters β = 10−4, ε = 0.1 and nδ = 1. This set of data
yields S = 162 scenarios.

Spatial diversity of uncertainty in the power balance is shown in Figure 3.10. Here, various levels
of uncertainty define the percentage deviation from the forecast value. The 20% deviation takes
significant portion of the permissible deviation region. Subsequently the possibility of deviating
higher percentage of the maximum deviation is less probable to occur. In addition, the uncertainty
variation along the day is influenced by the renewable energy contribution. Furthermore, the
holidays and seasonal patterns also influences the demand patters and can be modeled without
loss of generality.
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Figure 3.6: Percentage error variation as function of the forecast level, where, the range is divided into
10 levels. The figure shows the percentage error bounds obtained by sampling the eCDF of each forecast
cluster S times. The percentage error varies widely for the corresponding forecast level, thus validating
the clustering approach adopted in Algorithm 3.1.
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Figure 3.7: Spatial dynamics of the day ahead wind power forecast error.
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Figure 3.8: Spatial dynamics of the day ahead PV power forecast error.
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Figure 3.9: Spatial dynamics of the day ahead load forecast error.
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Figure 3.10: The percentage deviation from the day ahead forecast is shown by the density of the shaded
area. Higher width of the area indicates more probability of occurrence. Such that lower deviation has large
probability and thus more width. The results are obtained by the Monte Carlo sample of the uncertainty
models.

3.4.2 Uncertainty Modeling: Spatio-temporal Correlation

The second order Markov chain models the time-series forecast error data by a TPM. The proba-
bility of a state is influenced by the occurrence of previous two error states. States can be defined
as equidistant points along the percentage deviation. A higher state number reflects more ac-
curacy in the sampling process. Here, 200 transition states were used while formulating TPM.
Some of the percentage error states might not receive any entry from the scenario data. This
shall decrease the number of transition states. The density map of TPM is shown in Figure 3.11.
Where the higher level of curves shows more probability of occurrence. It can be observed that
there is a strong correlation along the diagonal. This behavior shows that if the error is sampled
in a state the next value of error will most likely be close to the current error state.

A generic diagram of the temporal correlation as performed using second order Markov chain
is shown in Figure 3.12. The Markov chain captures the time correlation of the uncertainty.
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Such that the actual curve shall follow one of the possible state transition trajectories with a
probability (1− ε). The spatio-temporal characteristics of the forecast uncertainty for the wind,
PV and load forecasts are given in Figure 3.13, 3.14 and 3.15. While comparing these results,
it can be observed that the PV power forecast uncertainty deviation is least turbulent. It is
however function of the dataset and forecast accuracy. The realizations of the uncertain variables
are combined together using Equation 3.2 to generate the net-demand scenarios.
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Figure 3.11: TPM of the load forecast error obtained using historical data of one year.
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Figure 3.12: The graph shows horizontal correlation between the power balance states as obtained by
second order Markov chain. The actual curve is likely to follow the forecast trends with a probability
(1− ε) that is the function of S and the order of Markov chain.
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Figure 3.13: Spatio-temporal dynamics of the day ahead wind power forecast error.
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Figure 3.14: Spatio-temporal dynamics of the day ahead PV power forecast error.
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Figure 3.15: Spatio-temporal dynamics of the day ahead load forecast error.
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3.4.3 Polytope Formulation

This section applies the SDA from Section 3.3.2 to the scenarios of the net-demand obtained
using the previous section. The polytope is modeled to enclose the pivot points and is shown in
Figure 3.16. While, Figure 3.17 insights into the projections of polytope.

Figure 3.16: A polytope enclosing the pivot-points defines the net-demand requirements in terms of first
order dynamic variables. The surface of the polytope defines the maximum requirements. A comparison
is made with the rectangular box envelope that stems from interval based approach. It shows that the
proposed approach can potentially decrease the uncertainty region considerably.

Dvorkin et al. have proposed a hyper-rectangular or bounding box representation in [15]. The
comparison of the proposed polytope based with the bounding box approach shows that substan-
tial volume of the uncertainty associated with the net-demand can be saved. In the case of this
test case the volume of the polytope had been 73.53% less than that of the bounding box. It
is notable that the projections of the polytope cannot be used for comparing the two approach.
The is due to the projections obtained while viewing the polytope from the perpendicular axes.

The rectangular or bounding box approach stems from interval based analysis and leads to define
maximum ramp-rate and ramp duration requirements for all power levels. This can lead to con-
servative results. The comparison shows that the tighter approximation can result in defining the
uncertainty precisely while maintaining the probabilistic guarantees associated with the sampling
process. The confidence against uncertainty can be increased by decreasing the values of ε and β.
This shall result in more number scenarios and increase the likelihood of rare events. The analysis
of which shall lead to increase in the size of the bounding polytope. The demand polytope ∆
is obtained by intersecting the polytope from Figure 3.16 with the hyper-space extending along
the positive power axis. It is then sectioned using Algorithm 3.2 leading to a polygon Sj(∆) for
each demand value xj along the power axis. The points on the surface of the polytope where it
is sectioned are shown in Figure 3.18.
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(a) (b)

Figure 3.17: This figure shows the projections of polytope and bounding box on (x−y) and (y−z) axes.
(a) It shows the plausibility of the ramp-rate as function of the power level. The lower demand experiences
a high ramp-up rate in relation with the higher demand values. (b) This graph shows a relationship
between the ramp-rate and ramp duration. The small ramp-rate values are likely to be experienced for
more duration than high ramping events.

Figure 3.18: Polytope sectioning performed on the surface of the uncertain net-demand polytope. It is
sectioned at these points leading to 2-dimensional polygons. The result had been used during flexibility
allocation process.
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4 Resource Flexibility Modeling

4.1 Introduction

In Europe, it is aimed to increase the percentage of renewable energy more than 50% of the total
generation capacity by 2050 [128]. The higher magnitude of the renewable energy shall result
in more forecast uncertainty, thus requiring more flexibility from the conventional generation
resources. A sample case study has been conducted by California Independent System Operator
(CAISO) in [129]. This study assesses the flexibility requirements considering the net-demand
scenarios for each day from 2012 till 2020. The results for one of the day and the scenarios for
different years is shown in Figure 4.1. It can be observed from the graph that the net load curve
decreases from 8 am on-wards due to the solar power generation and as sun sets, it increases
sharply. This steep ramp decreases in the evening hours as the demand decrease. Figure 4.1
also shows that the grid conditions in future shall change by a significant margin during day
as compared to the present scenario. The variation shall require resources that can be turned
On and Off multiple times in a day and possess a high ramp-up/down capability. The ramp
requirements shall vary throughout the year depending on the availability of renewable energy
and the demand patterns.
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Figure 4.1: The net-demand curves by CAISO for the 31st March for years 2012 through 2020, taken
from [129].

61



Resource Flexibility Modeling

The steep ramp mentioned with ”increased ramp” in the Figure accounts for 12 GW over 3
hours (approximately 67 MW/min). The ramp-rate is expressed in MW per minute at which a
resource can change its output. Most of the industrial gas turbines have an average ramp-rate
of 25 MW/min [130]. The thermal generators alone may be incapable of meeting such require-
ments. It has motivated the operation of the grid at shorter (intra-hour) time frames. This step
has decreased the impact of forecast uncertainty. However, the spinning reserve requirements
shall continue to encourage the participation of local resources. The active distribution network
approaches aim to enable the resources like controllable loads, community energy storage and
coordinated control of distributed generation in providing grid support. The flexibility from dis-
tributed resources can come from thermal loads, heat pumps, electric vehicles, Heating Ventilation
and Air Conditionings (HVACs), refrigeration, energy storage, Renewable Energy Sources (RES),
Distributed Generators (DGs) and others. A common model that can represent the flexibility at
resources shall facilitate the local energy market operations. It can form basis for the flexibility
bids that can be used for scheduling problems. This chapter discusses a generic modeling frame-
work termed as Resource Flexibility Model (RFM), that can be used to represent the flexibility
offered by distributed resources. The contents are partly published in [83] and [131].

Flexibility specification. A common flexibility modeling framework can facilitate the charac-
terization of distributed resource potential and can be useful during the design of control strate-
gies. Following are the flexibility specifications that can be associated with such a model [118],

• Some of the resources e.g., an aggregate load of a house can act as a generation resource
if locally produced electricity is more than the demand of house. Therefore, it is desired
that the nature of a distributed resource (demand/generation) can be modeled and changed
conveniently when desired.

• It can be tailored to meet the specifications of the diverse types of resources like storage
devices, concentrated solar power plants or demand response. Thus a single model may be
a representative of a resource when the parameters are customized to represent it.

• It should be able to model the energy storage characteristic to represent resources like
pumped-hydro, thermal loads and others. This should not hinder the modeling of no-
storage resources.

• The resource specific constraints relating to the dynamic capability of power generation or
consumption can be specified. This capability can be the ramp-rate, availability, energy
constraints and others.

• The response time of a distributed resource against a control signal can be modeled. This
can facilitate to model the resource availability aspect before the use.

• Cost of service can be expressed in terms of the dynamic capability offered. Such that it can
be related to the operating point, ramp-rate, response time, time of use or a combination
of these variables.

The flexibility definitions have been presented in [132], where it discusses the concept of flex-offer
in a Danish project, TotalFlex. This projects models the combined effects of time and energy on
the flex-offer. The flexibility interval is divided into time-slices of 1 hour in which the controllable
level of energy is defined. It is a sequence optimization problem and can be useful for modeling
a large number of resources like residential shift-able loads. However, it cannot capture other
desired characteristics as mentioned in Section 4.1 e.g., energy storage. A taxonomy for modeling
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the flexibility in smart grids is discussed in [16]. Based on this taxonomy, authors have provided
a review of the existing flexibility modeling approaches. The flexibility models are classified as
namely Bucket, Battery and Bakery models. Among them, a Bucket is a constrained energy and
power integrator. The behavior is similar to that of a bucket i.e., the power consumed increases
the state of energy in the model. The second model resemble the behavior of battery and hence
named as Battery model. It is based on the Bucket model with an additional time constraint
associated with the State of Charge (SoC). For example, an electric vehicle may be required
to possess certain level of charge in the morning. The Bakery model is based on the Bucket
model with additional constraint that the process must run in the continuous stretch for specified
amount of time at a fixed power consumption.

A power node modeling framework has been presented in [133]. It represents the power system
components using a generic power node. The model describes dynamics of the state-of-charge by
a first order differential equation. Its relevance to the mentioned flexibility specifications makes
it a suitable choice. Moreover, the proposed model should facilitate the consideration of resource
specific constraints described in [16]. The model discussed in [133] has been be termed as a
battery model, but it is a Bucket model in the taxonomy from [16].

4.2 Resource Flexibility Model

The Resource Flexibility Model (RFM) consists of two parts, the energy storage model and the
resource capability envelope. The first model aims to provide a mathematical representation of the
resource energy storage potential. While, the second model characterize the dynamic capability
of a resource in providing generation or consumption flexibility.

4.2.1 Energy Storage Model

The SoC dynamics of the energy storage model are given as [133],

Cx′[k] = ηLPL[k]− 1

ηG
PG[k] + ξ[k]− υ[k]− ω[k] . (4.1)

Where, the parameters are,

• ηL and ηG is load and generator efficiency,

• C is the capacity of battery [kWh],

• x[k] ∈ (0, 1) is the SoC of battery,

• PL and PG are the resource maximum power consumption/generation ratings,

• PL = ηLPL and PG = 1/ηGPL is the net power seen from the grid,

• ξ is the primary in-feed/out-feed of power,

• ω is the power curtailed,

• υ is the battery loss.
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Figure 4.2: Resource flexibility, battery model.

The constraints associated can be defined as,

(1) 0 ≤ x[k] ≤ 1 , (2) 0 ≤ PL ≤ PL ≤ PL , (3) 0 ≤ PG ≤ PG ≤ PG ,

(4) R+ ≤ R+ ≤ R+ , (5) R− ≤ R− ≤ R− , (6) ξ · ω ≥ 0 ,

(7) |ξ| − |ω| ≥ 0 , (9) υ ≥ 0 ,

where,

• (1) enforces a normalized value for the SoC,

• (2-3) describes that power generated or consumed is positive and is bound by the maximum
limits,

• (4-5) defines the ramp-up and ramp-down rate limits for generation or consumption,

• (6) says that the sign of curtailed power should be same as of primary out-feed/in-feed of
the power. For example, if power is consumed then the power curtailed is taken positive in
relevance to Equation 4.1,

• (7) defines that the curtailment of power cannot exceed the power itself, and

• (8) constrains the storage losses to be a non-negative value.

The model can be customized to represent the characteristics specific to a resource. For example,
the power conversion efficiency of the battery model can be the function of its SoC ηG(x[k]).
Similarly, the capacity of battery can be a dynamic variable given as C[t]. It and be made a
function of the resource availability and its specifications. Such a model facilitates constraint
handling in the diverse situations.

Charge state constraint. The constraint of possessing an energy state at a specific time can
be modeled as,

Cx[0] = C0 , Cx[Tend] = Cend . (4.2)

Where, Tend ∈ N and C0, Cend is required capacity at time 0 and Tend.
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Energy constraint. Some resources may possess a constraint that requires a continuous oper-
ation at nominal ratings from time a to d in order to meet specific energy requirements. Such a
constraint for the generator can be modeled as,

d∑
k=a

PGx[k] = E , 0 ≤ x[k] ≤ m (4.3)

Where, m is the maximum admissible value of the normalized power. Equation 4.3 is satisfied if,

d∑
k=a

x[k] ≥ (d− a) (x[d]− x[a]) (4.4)

Continuous operation constraint. A resource can require a continuous operation for Trun

time to complete a task requiring an energy E. In this case, the battery should be capable of
providing this service at each time [k]. The constraint can be modeled as,

a+Trun−1∑
k=a

x[k] ≥ Trun (x[k]− x[k − 1]) (4.5)

4.2.2 Resource Capability Envelope

The dynamics of a resource and its operational limits influences its capability of generation/consumption
of energy. This capability can be conveniently represented using a geometrical formulation. For
example, a polytope can be used to represent the dynamic ramp-rate capability as function of the
output power. The energy limits can be incorporated by considering the ramp duration variable.
Surface of such a polytope can define the capability limits of the resource as shown in Figure 4.3.

P

ω

T resR+

[MW] (Power)

[h] (Ramp duration)

[MW/h] (Maximum ramp-up rate)

R­ [MW/h] (Maximum ramp-down rate)

Cost
4th axis 

5th axis 

Figure 4.3: Resource Capability Envelope (RCE) as part of Resource Flexibility Model (RFM) repre-
senting the dynamic capability of a resource.

Some of the resource like controllable thermal loads can have a response time (delay) in responding
to a control signal. This delay can be the function of the operational state of the resource. Hence,
it can useful to associate a fourth axis of response time in the polytopic model. The fifth axis from
the Figure shows the operational cost than can modeled as a function of any single or combination
of other variables.
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Operational cost. The operating cost of a resource e.g., generator is the function of power
output and is generally given by Equation 4.6,

CF =
N∑
i=0

T∑
t=0

(
ai (pg,i) + bi (pg,i)

2
)
. (4.6)

The proposed capability envelope can be used to associating the cost as function of the ramp-rate.
Where the ramp-rate can be have fixed nominal ratings or a function of the SoC from the battery
model. This approach can be useful if some resources permit the over-drive operation. The
over-drive operations is when a resource operates beyond the nominal ratings. Such an operates
generally results in additional costs that can be due to maintenance requirements or reduction
in the life expectancy of the equipment. The additional ramp costs can be associated with the
ramp-rate and ramp duration variables and can be given as,

CT =
N∑
i=0

T∑
t=0

(
ai (pg,i) + bi (pg,i)

2 + COD

)
. (4.7)

Where, COD = f(Ri, Pi, Tdur,i) if Ri > Ri.

Here,the RFM for a thermal generation unit and the aggregation of thermostatically controlled
loads in the active distribution network are explored.

4.3 Flexibility at Generation

Since last two decades, the evolving economic and regulatory environment has resulted in the
increase of small scale generation units connected to the distribution network. According to
International Energy Agency (IEA), there are five major reasons driving this change [134],

• Advancement in small scale generation technology.

• Economic constraints in the construction of new transmission lines that may be required
for the dispatch of bulk power production.

• Increase in the customer demand for reliable electricity.

• The liberalization of electricity market encouraging the participation of small scale genera-
tion companies.

• The drive towards environmental friendly generation from renewable energy sources like
solar and wind.

The DGs can be classified into controllable or non-controllable types. The output of controllable
DGs can be regulated by adjusting the supply of the primary energy source. This category
can include internal combustion engine, small gas turbines, Combined Heat and Power (CHP),
micro-turbines, small hydro power plants, bio-mass, geo-thermal power plants, fuel cells and
others. Non-controllable DGs as the name implies are not actively controlled by the operators
and hence their availability cannot be guaranteed. They can include power from wind turbines,
Photo Voltaic (PV) and other renewable energy based generation.
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Distributed generation in an active distribution network can be modeled using the proposed
RFM. The control aspect of the primary energy in-feed can be controlled by the constraints on
ξ parameter. Similarly, the capability of a DG can be modeled using the resource capability
envelope as discussed in Section 4.2.2. If the DG has fixed nominal ratings for the ramp-rate
then the capability can be defined by a simple hyper rectangular structure. The model also
facilitates modeling of the dynamic ramp-rate potential of the DG. Authors in [135] and [136]
have discussed the dynamic ramp-rate model for a generator. These papers have discussed the
economic advantage of defining ramp-rate potential as a function of thermal stress on the rotor.
The study reveals that the ramp-rate of a generator can be defined as a dynamic value without
causing additional costs when operated within its thermal limits. The costs can be considered if
the generator is allowed to operate beyond the elastic thermal limits. The term “elastic” refers to
the dynamic range of the limits as compared to the fixed values. In such a case it can be referred
as over-drive cost. Here, the capability envelope of the thermal generation unit with the dynamic
ramp-rate limits is discussed.

4.3.1 Thermal Generation Unit

The thermal generator ramp-rate potential can be modeled as a function of the rotor thermal
stress limits. Generally, the generator manufacturer provides fatigue curves that relates the ther-
mal stress of the machine to ramp-rate values. It can be used to associate the ramp capability
with the thermal limits. The thermal state of a generator has been modeled in [136] as a combina-
tion of previous thermal state (decaying term) and temperature increase due to the ramp process
(growth term) . However, the fatigue curve data generally assumes a thermal equilibrium and a
constant ramp-rate [135]. Therefore, the decay term can be neglected. The resulting equation
for thermal stress can be given as,

Sti = kiτi

(
1− e−w/τi

)
[Pi(t)− Pi(t− 1)]/w . (4.8)

The shift in power output of the machine as resulting of ramping process is given as,

Pi(t)− Pi(t− 1) = wR+
i , (4.9)

Hence the thermal state of a generator can be given as,

Si = kiτiR
+
i

(
1− e−w/τi

)
. (4.10)

The thermal limits of the stress are in both directions such that ramping up/down. The Equa-
tion 4.10 can be defined in terms of ramp-down rate (R−i ) as well in a similar way. The thermal
stress limits of the machine can be described as,

− Li ≤ Si ≤ Hi, i = 1 · · ·M . (4.11)

The per-hour maximum ramp-up and ramp-down rate (R+
i , R

−
i ) are obtained by solving Equa-

tion 4.10 for thermal limits and for a ramp duration of 60 minutes (w = 60 min). It is given
as,

Hi = kiτiR
+
i

(
1− e−60/τi

)
, (4.12)

Li = kiτiR
−
i

(
1− e−60/τi

)
. (4.13)
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Equidistant point of the power (P di ), ramp-up (R+
i,m) and ramp-down rate (R−i,n) can be taken

from the intervals,

Pi ≤ P di ≤
(
Pi −R+

i

)
, 0 ≤ R+

i,m ≤ R
+
i , (4.14)

Pi ≥ P di ≥ (Pi +R−i ), 0 ≤ R−i,n ≤ R
−
i . (4.15)

Equation 4.14 describes the power and ramp-up rate values that can be assigned to ith generator.
Similarly, Equation 4.15 describes the interval for the ramp-down rate. Maximum ramp duration
(w) can be calculated for each pair of power (P di ) and ramp-up rate (R+

i,m) values by solving,

max w , (4.16a)

s.t. : kiτiR
+
i,m

(
1− e−w/τi

)
≤ Hi , (4.16b)(

R+
i,mw + P di

)
≤ Pi . (4.16c)

The point [P di R
+
i,m w] defines a boundary instance in generator envelope for the positive ramp

domain. Similarly maximum ramp duration can be obtained for each pair of the power (P di ) and
ramp-down rate (R−i,n) values by solving,

max w , (4.17a)

s.t. : kiτiR
−
i,n

(
1− e−w/τi

)
≥ Li , (4.17b)(

P di −R−i,nw
)
≥ Pi . (4.17c)

The process was repeated for all pairs of capacity and ramp-up/down values leading to points in
the space. A convex envelope (∆i) had been used to enclose these points defining the ith generator
capability limits.

4.3.2 Resource Capability Envelope for a Generator

The ramp-rate limits of a generator have been assessed based on the thermal limits. It defines
the dynamic capability of the generator in terms of the first order dynamics variables (power,
ramp-rate and ramp duration). A typical generator data is given in Table 4.1. The capability
of generator can be assessed by solving problems in Equation 4.16 and 4.17. The result are
the maximum ramp duration (w) values that can be sustained while operating within elastic
thermal limits (Hi, Li). A convex envelope enclosing the points in space determines the generator
capability envelope. Figure 4.4 shows the variation in ramp duration capability as a function
of the power and ramp-rate values. The projections of the polytope are shown in Figure 4.5.
It is to be noted that the convex envelope approximates the actual capability of the generator
which is a non-convex envelope. The convex formulation facilitates in implementing deterministic
optimization algorithms that are discussed in the later chapters.

The cost of thermal generation is normally taken as a quadratic or linear function of power
produced. However, if the generator is allowed to operate beyond its rated values, it shall incur
additional costs. These cost are associated with maintenance, wear of the machines and reduction
in its life span. They are attributed to the turbine thermal stress that happens as the ramp-rate
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Table 4.1: A typical generator ratings for capability assessment.

Property Symbol Value Unit

Maximum output power Pi 10 MW
Minimum output power Pi 1 MW
Temperature power slope ki 0.068 ◦F/kW
Thermal time constant τi 50 min
Thermal stress up limit Hi 200 ◦F
Thermal stress down limit Li -200 ◦F
Elastic thermal stress up limit Hi 120 ◦F
Elastic thermal stress down limit Li -120 ◦F

Elastic strain cost coefficient di 1 $/(◦F )2

Figure 4.4: Dynamic capability model for a thermal generator.

goes beyond the rated values. The cost of generation from Equation 4.7 has been modified for
the case of generator and is given in Equation 4.18,

Cgen =

N∑
i=0

T∑
t=0

(
ai (pg,i) + bi (pg,i)

2 + Ch,i + Cs,i

)
. (4.18)

Where, Cs,i is the start-up cost and Ch,i is the over-drive cost. The over-drive cost is incurred
in both cases of violating the upper and lower elastic thermal stress limits (Hi, Li). In case of
violating the upper elastic thermal stress limits, the cost incurred are as [136],

Ch,i = di (Si(t)−Hi) . (4.19)

Here, Si(t) is the thermal state after the generator power is ramped by Ri, starting at a power
level Pi and for a duration of w. It can be obtained using Equation 4.8. The over-drive cost as
function of the triad variables is given in Figure 4.6.

The projections on the axes are shown in 4.7. From the figures it can be observed that the elastic
thermal constraints are violated for higher ramp-rate limits and for lower values of power. The
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Figure 4.5: Projections of the generator capability envelope.
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Figure 4.6: Over-drive cost of operating the generator beyond its thermal stress limits.

former behavior is due to the higher ramp-rate, that if sustained for less duration can result in
elastic thermal stress limit violation and increase the costs. The behavior in the later case for
lower values of the power and is due to higher likelihood of sustained ramping resulting in the
thermal limit violations.

4.3.3 Energy Storage Model for a Generator

In some cases, it may be necessary to take into consideration the availability of fuel while consid-
ering a potential of a generator. For example, the operating limits of generator at a hydro-storage
lake are the function of stored potential energy in water. This energy can be represented by a
normalized value x[k]. The potential energy can be defined as equivalent electrical energy poten-
tial C [kWh]. While, Pg,i[k] is the power generated at time k. The primary source of in-feed in
the form of water/fuel input is represented by ξ and the curtailed power (ω) can be related to
the spilled water volume. Both of these parameters needs to be modeled in contributing to SoC,
x[k]. The variable ramp-rate of the generator connected to the turbine can also be modeled as
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Figure 4.7: Projections of the over-drive cost of the generator as function of power, ramp-rate and ramp
duration values.

function of energy storage potential along with thermal limits. This modeling shall determine
the shape of resulting capability envelope.

Response time. The response of a thermal (diesel) generator to a change in the set-point
depends on the inertia of rotor and governor. While assessing the demand/reserve requirements,
it is essential to specify the desired response time for the possible values of the ramp-rate. This
enables the consideration of generator response time during the resource allocation process. The
response of a thermal generator to the change in set-point can be the function of the delay in
governor response, engine delay and generator inertia. As a starting point, the work in [137] can
be referred. This paper models the engine delay based on the time taken by the governor and
inertia in responding to the change in set-point.

4.4 Flexibility at Demand

Demand response is a term used for loads responsive that can change their energy consumption
behavior in response to the control signals. It enables the loads to participate in the ramp-rate
effort as discussed in Section 4.1. Demand response can be performed on the diverse time scales
ranging from real-time frequency responsive loads to the load scheduling. The demand response
applications are designed for desirable response time and activation schedules. Among such
applications is the secondary frequency reserve. It is used for maintaining the balance between
demand and supply in the steady state. The response time for this type of reserve in power
system ranges from seconds to minutes and thus limits the maximum admissible delay from the
participating resources. The anticipated increase in the renewable energy (30% by 2020 in CAISO)
shall increase the reserve requirement significantly (0.6 GW to 1.4GW in CAISO) [138]. Demand
response as potential resource has attracted a growing interest recently. The advancements in
metering and control infrastructure shall pave the way for implementation of demand response
schemes. The demand response programs can be broadly classified into incentive and price based
applications [139]. An overview of various demand response approaches is given in Figure 4.8.
The details about each category and the corresponding market models can be found in [140]. The
shaded regions in Figure 4.8 are the areas that are being focused in this thesis. The flexibility bid
structures based on the proposed RFM are discussed while a direct control based scheme is used
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by the Thermostatically Controlled Load (TCL) aggregation for performing frequency regulation.

Figure 4.8: Overview of the demand response programs and the shaded focused areas.

4.4.1 Thermostatically Controlled Loads

TCLs such as air conditioners and heating units forms a major part of the total load at demand
side. These loads have an ability to store energy temporarily. This characteristic can be used for
the demand response service, where it can damp the demand and supply imbalances by charging
and discharging when required. The objective of such loads is to maintain their temperature
around a set point value. The width of this interval is called the dead-band. The TCL undergoes
a cycling process between On and Off states that aims to maintain the average temperature with-
in the dead-band. The On/Off duration is function of the effectiveness of TCL in maintaining
temperature within limits and also the environment temperature. TCLs have been explored in
the literature with much interest due to their vast numbers at the demand side and their energy
storage potential [141]. The aggregation of TCLs can be represented by an equivalent battery
model. Such an approach has been used for the frequency regulation service in [142, 143]. Another
study in [144] aimed to model the aggregation of TCLs using a state space model. The uncertainty
associated with the parameters of state space model has been the focus of [145], where a state
queuing model has been used.

A number of studies have been done on improving the equivalent battery model. It has been
discussed in [144], but it lacks an insight on the quality of solution. This model has been improved
in [146] by introducing an energy dissipation term. The mechanism of using the battery model
(representing the flexibility of TCLs) in the energy market has been proposed in [147]. This
paper presents a mechanism design based approach to encourage the market participation of the
TCLs. Although most of the studies have focused on the spinning reserve potential of TCLs in
the energy market. However, in [148], a mechanism is proposed where the TCLs participate as
a contingency reserve. Authors present a set theoretic based approach in [149] that aimed to
define control trajectories and associated them with the battery parameters. A comprehensive
discussion on the necessary and sufficient battery models have been presented in [149]. The
“necessary model” proposed by this paper is selected in this thesis. It is used to develop a
stochastic representation of the equivalent battery model. The emphasis has been to develop
mathematical formulation of the battery parameters that has a comparatively simpler structure
for a real time application.
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4.4.1.1 System Model

The frequency regulation signal (r[k]) as received by a central control from the energy market.
It represents the instantaneous imbalance between demand and supply. The central control is
responsible for maintaining the battery model as a representative of the TCL aggregation in the
network. The central control communicates with the TCLs and control their operational states.
Each TCL sends its available flexibility information to the central control. It consists of the
status ui[k], availability λi[k] and temperature distance to the switching boundary πi[k]. The
central control models it using a stochastic battery and identifies sufficient number of TCLs to
turn On/Off in order to track the reference signal (r[k]). The error in the tracking signal is sent
back for the monitoring purpose.

Figure 4.9: Overview of the control mechanism for an aggregation of TCLs.

4.4.1.2 TCL Model

TCLs possess flexibility termed as dead-band around the user defined set-points. The TCL
temperature dynamics are shown in Figure 4.10, A non-disruptive operation can be achieved
by controlling the operational state of the TCL within dead-band between θ+ and θ− [144]. In
case of the air-conditioning load the sum of the heating Th and cooling Tc times is called cycling
duration.

In order to simulate the aggregation of TCL, a simplified first order model has been reported
widely in the literature [150, 144, 151]. It is given by a stochastic hybrid discrete time difference
equation given as,

θi(t+ 1) = giθi(t) + (1− gi)(θia(t)− δi(t)θig) + εi(t) , (4.20)

here, gi = e−τ/(C
iRi) (τ is the sampling time of the TCL), θig = RiP iηi and θia(t) is the ambient

temperature measurement at ith TCL. The first term represents the decaying influence of the
temperature from previous time step, while the second term is the temperature gain/loss as TCL
is switched On or Off. The parameter εi represents the measurement error of the ith TCL. The
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Figure 4.10: TCL temperature dynamics.

rated power of a TCL is given by P i. It is positive in case of the air-conditioning load and
negative for the heaters.

The state transition conditions for a TCL can be given as [144],

δi(t+ 1) =


1 θi(t+ 1) > θiref + ∆i

0 θi(t+ 1) < θiref −∆i

δi(t) otherwise
. (4.21)

Where, ∆i defines the dead-band around the set-point θiref. The TCL is considered non-controllable
when operated outside the dead-band. Control of a TCL in its controllable region results in a
non-disruptive interference. Such that it can momentarily suspend the normal operation without
effecting the temperature crossing the dead-band limits. The local control of a TCL enforces
the natural cycling process as the temperature crosses limits, during which the TCL is not avail-
able [144].

In the steady state it is assumed that θi = θiref. The corresponding power consumption can be
obtained by solving the continuous power model from [149], leading to,

P oi (t) =
θia(t)− θir
ηiRi

. (4.22)

The baseline power consumption (Pbase(t)) can be considered as the average power consumed by
a TCL operating in the steady state [144]. It can be given as,

Pbase(t) =
∑
i

P io . (4.23)

The instantaneous active power consumption at t is the sum of rated power from all active TCLs
and is given as,

Pagg(t) =
∑
i

δi(t)P i . (4.24)

The difference between aggregate and baseline power consumption is given as,

ψ(t) = Pagg(t)− Pbase(t) . (4.25)
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This study considers the air-conditioning TCLs. Thus, ψ(t) > 0 when the average temperature
of the TCL is below the set-point. It indicates the natural phenomenon of temperature decrease
when TCL (air-conditioning) is active. In order to use TCLs as a frequency reserve, the reference
power imbalance signal (r(t)) must be followed in real-time. This can be achieved by controlling
the number of active TCLs in the aggregation in real-time. The TCLs can be collectively modeled
by as a battery, where the reference signal can charge or discharge if r(t) > ψ(t) or r(t) < ψ(t),
respectively. Maximum charging the battery shall turn Off all the TCLs, while the discharge
process shall force On state of TCLs.

4.4.2 Energy Storage Model for TCL aggregation

A stochastic battery model has been proposed in [149]. It models the capacity and maximum
charge/discharge rates of the battery. According to it, the battery parameters are,

C ′ =
∑
i

(
1 +

∣∣∣1− ai
α

∣∣∣) ∆i

bi

R′+ =
∑
i

(Pi − P oi )

R′− =
∑
i

P oi

, (4.26)

here, ai = 1/(RiCi), bi = ηi/Ci and d = 1/N
∑

i 1/(RiCi). The parameters are thermal resistance
(R), capacitance (C), efficiency (η) and number of TCLs (N). This formulation enables the
calculation of the maximum capacity (kWh) available in the system as a stochastic variable. The
availability of TCL is a limiting factor in this regard.

The consideration of TCL availability results in a dynamic stochastic model of the battery. The
parameters for which are given as,

C =
∑
i

λi(t)
(

1 +
∣∣∣1− ai

α

∣∣∣) ∆i

bi

R+ = R′+ −
∑
i

(1− λi(t))Pi

R− = R′− +
∑
i

(1− λi(t))Pi

, (4.27)

where, the λi(t) is the availability of ith TCL given as,

λi(t) =

{
1 ρi(t) > ρi & θi ≤ θi(t) ≤ θi
0 otherwise

. (4.28)

The stochastic ramp limit constraint on the reference signal can be considered as,

R− ≤ r(t) ≤ R+ . (4.29)

While the SoC constraint is incorporated as,

− C ≤

(∑
i

[
θiref − θi(t)

bi

])
≤ C . (4.30)
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Figure 4.11: Stochastic battery model for the TCL aggregation.

Note: The temperature difference (θiref − θi(t)) in Equation 4.30 represents the temperature
decrease when the air-conditioning is On, it represents the charging of the battery.

Stochastic battery model is shown in Figure 4.11. The dynamics of the variables are bounded by
the stochastic limits and are given as,

ẋ(t) = −dx(t)− p(t), x(0) = 0, |x(t)| ≤ C , (4.31)

where, the dissipation rate (d) is given as,

d =
1

N

N∑
k=1

1

RiCi
. (4.32)

4.4.3 Resource Capability Envelope for TCL aggregation

The dynamic capability of the TCL aggregation is characterized by the ramp-rate and the state-
of-charge limits. Based on different values of the x[k], the values of the ramp-rate and ramp
duration can easily be obtained while satisfying the following constraints,

− C ≤ R× Tdur ≤ C . (4.33)

R− ≤ R ≤ R+ . (4.34)

The response time of the TCL aggregation can be modeled using the time delay in the commu-
nication and its response time against change in set-point. This delay can be proportional to the
load, by assuming a direct relationship with inertia. The cost of service can be modeled as a
function of the load change, price in the energy market and customer preferences. The proposed
capability envelope as part of RFM can be used to define the resource specific constraints.
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5 Flexibility Aggregation and Allocation

5.1 Introduction

Flexibility from distributed resources shall play an important role in supporting the high ramp-
rate requirements of future power systems [3, 130]. The activation of flexibility from distributed
resources such as generation, load or storage shall require an energy market at the distribution
side of the power system. The organizational measures of local market design can pave the way
for the flexibility aggregation and fast dispatch of resources. It can potentially improve the lo-
cal generation forecasts, implement the demand response programs and smart grid technologies
based on smart meters and others [5]. Microgrid as a key enabler for the activation of flexibility
can support the Distributed Generators (DGs) with higher ramp-rate capability, active demand
response from thermal loads, charging control of electric vehicles, network expansion and en-
hancement, electricity storage using pumped hydro, thermal storage and as a last option active
power curtailment from renewables. The flexibility defined by Resource Flexibility Model (RFM)
in Chapter 4 can be used to model the flexibility potential of distributed resources in the micro-
grid. This chapter aims at presenting methods that can be used to aggregate and allocate the
flexibility while performing the reserve planning in a day ahead scenario. The allocated reserve
capacities have been used in the Unit Commitment (UC) and Security Constrained Economic
Dispatch (SCED) applications. They provide a mechanism for incorporating the reserve require-
ments obtained by the flexibility allocation process in practice. The contents of this chapter are
partly published in [83], [152] and [153].

5.2 Flexibility Assessment and Aggregation

The flexibility assessment is an important phase in the operational planning of the microgrid.
It aims to predict the demand patterns of consumers and model the associated uncertainty.
This section defines a general approach for the demand and reserve requirements in microgrid
based on the results from Chapter 3. The reserve margins are generally defined based on the
standard reliability metrics. The metric called reliability indexes defines reserve requirements for
the system. Here, a distribution feeder is studied to observe the ramp-rate variations in the net-
demand as function of time of day and month. It is observed the worst case demand and reserve
ramp-rate requirements can be an expensive approach during the resource planning process. Thus
the proposed approach for modeling the uncertain demand discussed in Section 3.3.2 is relevant
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for assessing the demand and reserve requirements. The variation of the envelope size for the
different levels of probabilistic confidence in results is discussed.

5.2.1 Reserve Flexibility Margins

The objective of operational flexibility planning is to define the demand and reserve requirements
in the system. It is necessary to maintain a resource adequacy level. It is a probability that the
level of installed capacity is available to serve the demand at all times. Resource adequacy is
enforced by implementing the reserve margins in the system. It is a percentage of the installed
capacity exceeding the peak demand. It can be set for a specific level of Loss of Load Probability
(LOLP). LOLP can be described as a projected value of how much time, in the long run, the
load is expected to be more than the capacity of generation resources. The LOLP criteria based
metrics includes,

• Loss of Load Expectation (LOLE), measured in number of loss of load events/year,

• Expected Unserved Energy (EUE), measured as percentage of the net energy requirements
not served,

• Loss of Load Hours (LOLH), which is number of hours of unserved load.

LOLE and LOLH are based on power loss event expectancy while EUE is about the level of
energy not served. A comparison of these metrics is shown in Figure 5.1.

Figure 5.1: Reliability indices representing the reserve requirements, where, LOLH of 2.4 hours per year
and LOLE of 0.1 event per year leads to different reserve specifications in United States. The 0.001%
normalized EUE is standard in some energy markets [154].

Extensive bench marking is required to determine the level of LOLH that corresponds to a certain
LOLE reliability level e.g., 0.1 events per year [155]. Additional discussion about the selection of
reserve margins can be found for National Electric Reliability Corporation (NERC) in [156] and
the capacity value studies of wind power [157] and solar power [158]. As the load increase the Loss
of Load Expectation also increase. A contribution from a resource in sharing the load decreases
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LOLE by a margin called Effective Load Carrying Capability (ELCC) or capacity credit. It is of
interest to analyze the contribution of resources towards the required capacity credit in order to
achieve a specific level of LOLE.

These reliability metrics can be used to define the reserve levels critical for reliable operation in
a microgrid. In literature, various studies have discussed the reserve requirements in relevance.
An overview of the control and reserve management strategies in microgrid is discussed in [159].
While in [160], a stochastic energy and reserve scheduling method is proposed considering the
demand response in the microgrid. Authors in [161] have used artificial neural networks for
the forecasting and used the results for the reserve quantification in microgrid. These studies
focus on an interval based approach for the reserve allocation. However, this thesis takes a more
holistic approach by modeling the uncertain demand dynamics. This consideration leads to the
assessment of required reserve capability and is used as a reference during resource allocation.

5.2.2 Demand Dynamics at a Distribution Feeder

The impact of variable generation on the net-demand at a feeder for one week duration is shown in
Figure 5.2. The data for the analysis is taken from [162]. It can be observed that the penetration
of renewables has resulted in steeper ramps. Secondly, deep turn-downs and high peaks are most
likely to occur. The generation resources required in future for meeting the demand and providing
ancillary services should have high ramp-rate capability and small start-up times.
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Figure 5.2: Effect of the power generation from Photo Voltaics (PVs) on the net-demand at a distribution
feeder. It impacts in steep ramps, deeper turn-down and high peaks in the net-demand.

Figure 5.3 shows how the ramping intensity varies for each month for the load connected to the
distribution feeder. The month of June experiences ramp-up rate ratio of [0.42 − 0.53] during
35% of days in the month. While observing the net-demand statistics, it can be observed that
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renewable energy increases the ramp-up rate requirement for all months. The month of March
experiences the least occurrence of high ramp-up ratio.
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Figure 5.3: Comparing the results in each graph shows monthly variations in the ramp-up/down rates,
where each bar represents the ramp intensity contributions. This value is defined as a ratio between 1-hour
vs 3-hour ramp excursion. For the top-left graph, the maximum value of this ratio is minimum for months
of July and September. While comparing the graphs from the left with right, it can be observed that both
ramp-up and ramp-down rates increases for all months. This is due to high share of renewables expected
in 2024.

From the analysis, it can be observed that the distribution network shall face high ramp-rates
in future. Therefore, the supporting flexibility resources whether DGs or demand response are
desired to possess the relevant dynamic capability. This signifies the approach undertaken in this
research, that emphasis on the economic modeling of the reserve dynamics that can potentially
yield to effective flexibility management strategies.

5.2.3 Flexibility Envelope Modeling

In order to meet the local demand and reserve requirements, the controller in the active distri-
bution network shall play a central role in dispatch of the resources. In order to capture the
uncertainty in the net-demand, the historical data of the forecast uncertainty was used to develop
a probabilistic model. This model captured the spatio-temporal nature of the uncertainty and
was used to generate scenarios for a given forecast level. The methodology has been described in
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Section 3.4.3. The first order dynamics had been obtained by the application of the compression
algorithm on the scenario curves. As the variables of ramp-rate and ramp duration are correlated
with the power values, an envelope is modeled to enclose the set of points. The envelope in case
of net-demand represents the demand and the uncertainty dynamics. The difference between
demand and the uncertain net-demand envelope determine the reserve flexibility requirements.
Furthermore, the size of flexibility envelope is determined by the boundary points enclosed. This
size increases with the rise in number of scenarios primarily due to the occurrence of events having
less probability. The number of scenarios N is the function of desired probability of constraints
satisfaction (1 − ε) and confidence in results (1 − β) as discussed in Equation 3.8. Figure 5.4
shows a the flexibility requirement for various levels of (1 − ε). The number of scenarios that
are used to generate the envelopes are given in Table 5.1. It can be observed that in few cases
increasing the confidence level e.g., from 0.6 to 0.7 may decrease the flexibility requirements due
to the occurrence of rare events.

Table 5.1: Comparison of probabilistic confidence level (1− ε) and the number of scenarios requirements.
The confidence in result (1− β) is set at 0.9999 for all cases.

1− ε N 1− ε N

0.5 33 0.6 41

0.7 54 0.8 81

0.9 162 0.99 1616

Figure 5.4: Impact of the desired probabilistic confidence against uncertainty (1 − ε) on the size of the
net-demand envelope in microgrid.
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5.2.4 Flexibility Bid Formulation

Each resource can bid its flexibility based on the requirements and resource owner preferences.
The flexibility bid structure can be based on the RFM presented in Section 4.2. It will be regulated
by the structure of the local energy market. The objective in such a market can be to schedule
the electricity supply from local resources and the grid to meet the local demand forecast. In
any energy market setup, the two major role players are supply and demand parties that bid the
prices as function of their energy offer. The supply side bid corresponds to the price charged
for generating a specific quantity of power during a time interval e.g., hour. While the demand
side bid represents price which the customers are willing to pay for a power level during a time
interval. A simple bid format consists of pairs of quantity (q, p) where, q is energy (MWh) and
p is price ($/MWh) value for each hour. Each participant can present several pairs (p, q) values
for each hour. For each hour the supplier and consumers offer tuples of price and quantity value
((p1, q1), (p2, q2), · · · , (pT , qT )). The vectors of supply and demand are aggregated and the market
clearing price is determined at their intersection points. The bids can be continuous curves or can
be modeled as discrete steps. A demonstrative example of a simple auction is shown in Figure 5.5.
The intersection of both the curves decides the market clearing price. In a day ahead market
24 hourly auctions are performed. For each hour, the supplier bids their offers. Based on the
overall demand and supply curves the market clearing price is decided. The step-wise aggregate
supply and demand curves as shown in Figure 5.5 intersect at a demonstrative value of 60 and
at Market Clearing Price (MCP) of 23. The supplier bids whose price is less than or equal to the
MCP are selected for the auction. During allocation the bids that are closest to the MCP are
selected. Based on the demand forecast, each supplier designs its bidding strategy considering an
expected revenue. Similar mechanisms are expected to evolve for the local energy market.

0 20 40 60 80 100
Quantity

0

20

40

60

80

100

P
ri

ce

Simple auction for one hour dispatch

Supply
Demand

Figure 5.5: Illustration of simple auction in energy market where step-wise demand and supply are
matched.

In addition to the simple price/quantity bids a supplier can add additional constraints [163],

• Non-divisible quantity. The cheapest bid can be designated as non-divisible. Such that
if this bid is accepted the whole quantity should be accepted.
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• Minimum daily income amount. This constraint specifies the minimum amount of in-
come to the supplier that should be guaranteed by the market operator. The corresponding
power quantity can vary based on the price dynamics.

• Ramp-rate constraint. The energy scheduling between consecutive time intervals need to
consider the minimum ramp-up and ramp-down rates e.g., in MW/min of the participating
suppliers.

These constraints can be handled as a single combinatorial optimization problem or a set of
sub-problems in which the constraints are sequentially enforced. A detailed algorithm of market
clearing can be found in [164]. Apart from the single round auction, the multiple round auction
involves the update in bids as outcome of an iterative approach. The Resource Flexibility Model
discussed in Section 4.2 provides a comprehensive representation of the capability of a resource.
This information can be used in design of the bidding strategy as single period or multi-period
bids. The amount of energy available at a resource can be divided into hours in the day e.g.,
in units of MWh and used in bidding process. The offered price can be determined using the
generation cost obtained from the dynamic capability envelope and the market price. This price
shall be greater than the sum of minimum revenue and generation cost at a supplier. Similarly,
the demand side can bid its flexibility using RFM. In addition to the first order dynamics, the
second order dynamic i.e., ramp acceleration can become part of demand and reserve market
operations. In such a case ramp acceleration can be added to RFM. The control entity whether
operating as a cell or microgrid controller shall be responsible for the flexibility aggregation from
the resources.

5.2.5 Flexibility Aggregation

The role of aggregator is to combine the flexibility offered from distributed resources. This role
can be performed by an independent organization or by a cell/microgrid controller. The flexibility
of a resource can be modeled as envelope between the dynamics variables. Minkowski sum is used
to add the geometric models of flexibility from resources. The Minkowski sum of two sets S1 ⊂ R2

and S2 ⊂ R2, denoted by S1 ⊕ S2, is defined as,

S1 ⊕ S2 = {p+ q : p ∈ S1, q ∈ S2}, (5.1)

where, p + q denotes the vector sum of the vectors p and q i.e., if p = (px, py) and q = (qx, qy)
then,

p+ q = (px + qx, py + qy). (5.2)

It is demonstrated in Figure 5.6. The minkowski sum can be used to aggregate the flexibility
envelopes (Resource Capability Envelope (RCE)) from the resources. The allocation of demand
flexibility envelope among the resources can be straight forward if the economics are not con-
sidered. The difference between demand envelope and the aggregate resource potential shall be
imported or exported to the grid depending on the need or excess of the additional flexibility.
As the economics of flexibility services offered by the resources greatly varies, therefore there is
a need of an allocation method that optimizes the process with minimization of the costs. Such
that the generation adequacy in the microgrid can be ensured within a budget specified by the
microgrid operator.
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Figure 5.6: Flexibility aggregation using Minkowski sum.

5.3 Flexibility Allocation

Flexibility allocation is performed by the decomposition of uncertain demand envelope (∆) among
the generator capability envelopes (∆i). The area of computational geometry provides insights
in the space allocation methods [165]. One of the method is to model the allocation process as
an optimization problem with ∆ defined in the hyper-plane representation. It is found that the
corresponding allocation process involves non-convex scaling along ramp-rate and ramp duration
axes. While, Minkowski sum can be relevant for the demand allocation process. In comparison,
a vertex based allocation method is developed. It facilitates the modeling of constraints on
individual variables. The allocation of ∆ among resources is a deterministic process. During
which, the power import from the main grid is used as a slack resource. ∆ is decomposed in two
steps, the demand and dynamics allocation.

5.3.1 Demand Allocation

The range of the ∆ along power axis is divided into desired number of equidistant points C. Here,
each point is a demand value termed xj . Each xj is dispatched among the resources by solving,

min

N∑
i=1

[
aiP

j
i + bi(P

j
i )2
]
,

s.t. : ∀ i = 1 · · ·N, j = 1 · · ·Vj (5.3)

power balance constraint,
N∑
i=1

P ji ≥ xj , (5.4)
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generator active power limits,
Pi ≤ P ji ≤ Pi, i ∈ N , (5.5)

generator reactive power limits,

Qi ≤ Qji ≤ Qi, i ∈ N , (5.6)

power flow equations,

PGa −
∑
b∈NB

[ea(ebGab − faBab) + fa(fbGab + ebBab)] = PDa

QGa −
∑
b∈NB

[
fa(ebGab − faBab)− ea(f tbGab + ebBab)

]
= QDa

a ∈ NB i.e., ∀a 6∈ N =⇒ PGa, QGa = 0 , (5.7)

transmission line constraint,

PLab ≤ PLab ≤ PLab ,

where,

PLab =
[
e2
a + f2

a − eaeb − fafb
]
Gab

+ (eafb − ebfa)Bab , ab ∈ SL , (5.8)

bus voltage limit constraint,

Va
2 ≤

(
e2
a + f2

a

)
≤ Va2, a ∈ NB . (5.9)

The constraints in Equation 5.5 and 5.6 ensures the consideration of generator active and reactive
power limits. While, the transmission line and voltage limit constraints in Equation 5.8 and 5.9
incorporates the location and operational aspects.

5.3.2 Dynamics Allocation

The polytope ∆ is sectioned at each demand value xj using Algorithm 3.2 resulting in C sub-
polytopes (Sj(∆)). Here, the vertices of Sj(∆) represents the ramp-rate and ramp duration. In

the first step, the polytope of each generator ∆i is sectioned at the assigned power P ji leading
to the sub-polytopes Sj(∆i). The allocation is then performed for each vertex k of Sj(∆), where
k = 1 · · ·Vj . The kth vertex of Sj(∆) is given as [ykj z

k
j ]. The corresponding generator vertices

(gki = [rki d
k
i ]) are found by solving,

min
N∑
i=1

[
ai(r

k
i d

k
i ) + bi(r

k
i d

k
i )

2
]
, (5.10a)

s.t. : ∀ i = 1 · · ·N, k = 1 · · ·Vj ,

Hj
i

[
gki
−1

]
≤ Sj(∆i) , (5.10b)

N∑
i=1

rki d
k
i ≥ ykj zkj . (5.10c)

Here, Equation 5.10a is the quadratic cost assigned to displacement in power of generator i.
Equation 5.10b constrains the generator i variables to be within the sub-polytope space. While,
Equation 5.10c is the power balance constraint. The result of the optimization problem are
allocated vertices given as [P ji r

k
i d

k
i ]. A polytope encloses the allocated vertices of each generator.
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5.3.3 Scalability

The formulation in Section 5.3.1 is similar to that of the Optimal Power Flow (OPF) prob-
lem [166]. The time complexity in solving OPF can be attributed to the problem size and the
solver used. Primal Dual Interior Point method is used to solve the demand allocation problem
in Section 5.3.1. In Section 5.3.2, Equation 5.10 is the function of number of inputs (N) and the
size of resource capability envelopes. An addition of a generator adds

∑C
j=1 Vj constraints to the

problem. Equation 5.10b restrict the vertex (gki ) assigned to a generator within its envelope. The
size of Sj(∆i) defines the search space and influences the computational time. However, it is in-
dependently applied for each generator. Thus, the complexity of this equation increases linearly
with N . The coupling between generators appears as a linear combination in Equation 5.10c
and it scales accordingly. The structure of this constraint is bilinear, hence, branch and bound
algorithm is used to solve Equation 5.10. Overall, the problem remains tractable as N increases.

5.4 Test Case of Flexibility Allocation

The flexibility aggregation and allocation method is demonstrated with a microgrid test-case
which is based on International Council on Large Electric Systems (CIGRE) Medium Voltage
(MV) benchmark [123, 124], European configuration. The details about network have been
discussed in Section 3.4. The uncertain net-demand based demand envelope show in Figure 5.7
is to be allocated between resource envelopes. The resources considered here are the diesel
generators. The dynamic ramp-rate of a generator is modeled using thermal stress model as
discussed in Section 4.3.1. The result is a polytope ∆i for each generator. The power import
capability polytope has a cubic structure due to the consideration of static ramp-rate limits
defined by the ratings of HV/MV transformer. After modeling of the resource envelopes, the
next step is the allocation process.

5.4.1 Polytope Decomposition

An overview of the polytope decomposition process is show in Figure 5.7 where the net-demand
envelope is allocated among the RCEs while optimizing for the generation cost. As discussed in
Section 5.3, the decomposition of ∆ is performed in two steps. In the first step, the demand xj is
dispatched by solving the demand allocation problem in Section 5.3.1. This process is repeated
C times. In the second step, each vertex of the polygon Sj(∆) for the jth demand is allocated
by solving optimization problem in Equation 5.10. The process results in the vertex assignment
to generation resource i given as [P ji r

k
i d

k
i ]. It is repeated for the jth demand values and the

kth vertex of the polygon Sj(∆). As a result of this process the spaces are allocated to each
generation resource. Figure 5.8 shows the allocation among local generators in the microgrid
test case. Figure 5.10 provides an insight in the capability utilization of generators 1 and 2.
The projections of enclosed polytopes shows the comparative analysis of demand and reserve
allocation among generators.

The optimization of individual polytope is based on the production cost while considering the
operational constraints. Figure 5.9 shows the envelope assigned to the power import from the
main grid. It can be used in the resource planning for the islanded-mode operation of microgrid.
Such that the fast and slow ramping generators can be allocated with associated ramp duration

86



Flexibility Aggregation and Allocation

Net-Demand

Envelope in Microgrid

R1 envelope

RN envelope

Dynamic Capability Envelopes of 

Resources

Objective: Minimize Cost

𝐶𝑔𝑒𝑛 =෍

𝑖=0

𝑁

෍

𝑡=0

𝑇

𝑎𝑖 𝑝𝑔,𝑖 + 𝑏𝑖 𝑝𝑔,𝑖
2
+ 𝐶ℎ,𝑖 + 𝐶𝑠,𝑖 ,

while satisfying envelope containment and network 

constraints. 

Figure 5.7: An illustration of the economic flexibility allocation process in which the net-demand and
reserves are to be allocated between resources represented by envelopes.

(a) (b)

Figure 5.8: Figure (a) and (b) shows the x − y and y − z projections of the allocation of ∆ among
generator 1 and 2. The allocated capability is bounded by the operational constraints of each generator.
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(a) (b)

Figure 5.9: Figure (a) x− y and (b) y− z are projections of the polytope assigned to power import from
grid. It provides a reference for the resource planning in the microgrid.

(a) (b)

(c) (d)

Gen. 1

Gen. 2

Figure 5.10: Projections of polytopes assigned to generator 1 and 2. The “assigned” areas are the genera-
tor polytopes against day-ahead demand forecast. The allocated polytopes ∆i includes both the “assigned”
and the “reserve” areas. While the “available” region shows the capability polytopes of generators. The
space between “reserve” and “available” marks the un-used dynamic capability of a generator.
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capability. The approach provides insights into the assigned, reserve and the available capabilities.
It can be extended to the contingency reserve planning in microgrid. In case of a generator
contingency, the respective capability envelope shall be allocated among the remaining resources
in a similar way. The transmission line and bus contingencies can be incorporated during the
allocation process as discussed in Section 5.3.1.

5.4.2 Cost Analysis

The maximum deviation from the day-ahead forecast as a reserve reference for the scheduling of up
and down-spinning reserves has been discussed in [167]. This approach assumes fixed uncertainty
at all power levels. However, the proposed approach allows for the consideration of dynamic
value of the uncertainty. It is obtained from the worst case limits of the power balance scenarios
generated by the Monte Carlo simulations. Figure 5.11 compares the limits associated with the
fixed and dynamic reserve allocation approaches. The result shows 27% reserve requirement can
be reduced by dynamic dispatch of reserves as compared to fixed percentage of load ramp-up/down
reserve approach.
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Figure 5.11: Comparison of the reserve requirements for the day-ahead fixed and the dynamic range based
approaches. It shows that the reserve requirement can be decreased while still covering the uncertainty
with a probability defined in Equation 3.8.

5.5 Flexibility in Operation

An important problem in the energy management of a microgrid is the operational schedule for
generation resources. This needs to be decided ahead of time generators needs time for starting
up. A day-ahead dispatch is performed to allocate these resources for meeting demand of the
next day. The day-ahead operational planning needs to consider both the demand and generation
uncertainty. For this purpose, a sufficient level of reserve is allocated for each time period. Here,
these values are decided based on the results of flexibility assessment from Section 5.2. The reserve
requirement is stochastic and is defined by the interval limits of the up and down spinning reserves.
These values are incorporated in the day ahead planning by solving two problems i.e., the Unit
Commitment and Economic Dispatch. In the next sections both of these problems are discussed.
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The output of these algorithms is the operational schedule for the generators and dispatched
value of the demand and reserve contributions.

5.5.1 Unit Commitment

The Unit Commitment (UC) problem is defined in [168] as, “Unit Commitment is an optimization
problem of determining the operational status of generations for a given profile of energy demand.
This problem is subject to generation and network operational constraints.” The objective of UC
problem is generally the cost minimization but may include environmental, safety and/or market
oriented objectives. Mathematically, UC is a large scale non-convex and nonlinear mixed integer
problem [169]. Due to its importance in power system operation, the literature regarding solving
and improving UC problem spans over four decades.

5.5.1.1 Mathematical Formulation

The objective of UC problem is the minimization of fuel cost given by,

min CT =
T∑
t=1

N∑
i=1

[
ρtiC

i
F (P ti )

]
, (5.11)

where, ρti is the operational state of ith generator at time t, CT is the total cost, CF is fuel cost,
P ti is real power generated by ith generator and value N is the total number of generators. The
UC problem generally have following constraints [170],

Constraints.
1. Limits on the active power of generator i,

ρtiPi ≥ P ti ≥ ρtiPi . (5.12)

2. The power balance constraint,

N∑
i=1

P ti ρ
t
i = P tD + SRt . (5.13)

Where P tD is the demand and SRt is the spinning reserve requirements at time t. The spinning
reserve requirement is obtained from the output of flexibility assessment discussed in Section 5.2.

3. Ramp-rate constraints on the generator,

P ti − P t−1
i ≤

[
1− ρti(1− ρt−1

i )
]
R+
i + ρti(1− ρt−1

i )Pi , (5.14)

P t−1
i − P ti ≤

[
1− ρt−1

i (1− ρti)
]
R−i + ρt−1

i (1− ρti)Pi . (5.15)

4. Start-up and shut-down characteristics of generator,(
ρt−1
i − ρti

)
(Xon

i (t− 1)− T oni ) ≥ 0 , (5.16)(
ρti − ρt−1

i

) (
−Xoff

i (t− 1)− T offi

)
≥ 0 , (5.17)
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Here, T oni and T offi are minimum On and Off times of generator i. While, Xon
i (t − 1) and

Xoff
i (t− 1) are the duration of On and Off states of the generator i at time (t− 1).

The optimization in the UC problem is carried out over all the time steps in the horizon and can
be termed as multi-period optimization. The hourly constraints in the UC problem includes the
generator active power limit constraint (5.12), power balance constraints (5.13), ramp-rate limits
on each generator (5.15) and (5.14), minimum On/Off times for a generator 5.16 and 5.17.

5.5.1.2 Test Case for Unit Commitment

The Unit Commitment optimization model is solved for a day ahead dispatch for the a West-
ern System Coordinating Council (WSCC) 9 bus network presented in [171] and is shown in
Figure 5.12. The test case data is also available as part of Matpower software [172].

Figure 5.12: One-line diagram of 9 bus power system from [171].

Bus Load Bus Load

– MW Mvar – MW Mvar

1 0 0 6 0 0

2 0 0 7 100 35

3 0 0 8 0 0

4 0 0 9 125 50

5 90 30 – – –

Table 5.2: Bus data.

Bus Voltage Generation Pi Pi Fuel cost Mvar Limits

– Mag. MW MW MW CF ($) Min Max

1 1 – 250 10 0.11× P 2
i + 5× Pi + 150 -300 300

2 1 163 300 10 0.085× P 2
i + 1.2× Pi + 600 -300 300

3 1 85 270 10 0.1225× P 2
i + Pi + 335 -300 300

Table 5.3: Generator data.
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Bus Bus R X B/2 Bus Bus R X B/2

– – p.u. p.u. p.u. – – p.u. p.u. p.u.

1 4 0 0.0576 0 7 8 0.0085 0.072 0.074

4 5 0.017 0.092 0.079 8 2 0 0.0625 0

5 6 0.039 0.17 0.179 8 9 0.032 0.161 0.153

3 6 0 0.0586 0 9 4 0.01 0.085 0.088

6 7 0.0119 0.1008 0.104 – – – – –

Table 5.4: Line and transformer per-unit (p.u) data.

The problem is solved using MOSEK1 optimization toolbox. Its dimensions are given in Table 5.5.
The result of optimization process is shown in Figure 5.13. The previous status of the generators

Table 5.5: Optimization problem summary for the UC test case

Problem Type: Quadratic Optimization Problem

Constraints: 1587

Scalar variables: 330

Integer variables: 120

Solver Used: MOSEK

Platform: Windows/64-X86

displayed at time 0. Upon solving UC problem the operational schedule of generators and the
dispatched power level is obtained. The power flow evaluation at each hour results in the bus
voltage dynamics shown in Figure 5.14. Generally, bus voltage limit constraints are not considered
in the UC problem.
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Figure 5.13: Generation allocation from the Unit Commitment problem for IEEE 9 bus system.

1https://www.mosek.com, MOSEK
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Figure 5.14: Voltage dynamics at bus 2 based from the Unit Commitment.

5.5.2 Economic Dispatch

Economic Dispatch (ED) is an optimization problem in which the set-points of the generating
units are decided at each point in time. The objective is minimization of the total operational
cost. There are two variants of this problem found in literature, the static and dynamic. The
static ED solve the set-points of generator at a single time instant while dynamic ED is a multi-
period optimization problem. A review of both approaches for ED is given in [173]. The dynamic
ED considers the ramp-rate constraints of the generators inherently and optimizes the ramping
effort as well as function of the ramp costs.

Here, static ED is discussed with the inclusion of stochastic reserve variable. The ramp-rate is
taken into consideration by the dynamic upper/lower limits of the generators power ratings. Such
that, the dispatched scheduled for ith generator at time (t− 1) is used to set the Pi and Pi limits
at time (t). The ED is different than UC as it involves the consideration of additional constraints
of transmission line power carrying capability limits and the bus voltage limits.

5.5.2.1 Mathematical Formulation

The objective function of ED problem is,

min CF =

N∑
i=1

[
ai(P

t
i ) + bi(P

t
i )

2
]
, (5.18)

Constraints.
1. The power balance constraint from Equation 5.13,

N∑
i=1

P ti = P tD + SRt . (5.19)

2. Limits on the active power of generator i,

P ti ≥ P ti ≥ P ti where, P ti = P t−1
i +R+

i and P ti = P t−1
i −R−i . (5.20)

3. The transmission flow constraints,

|Sf (V )| =
∣∣Sf

(
etk, f

t
k

)∣∣ ≤ S max
m (5.21)
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|St(V )| =
∣∣St

(
etk, f

t
k

)∣∣ ≤ S max
m (5.22)

where,

Sf (V ) = [Cf V ] I∗f = [Cf V ]Y ∗f V
∗ (5.23)

St(V ) = [Ct V ] I∗t = [Ct V ]Y ∗t V
∗ (5.24)

The matrices Cf and Ct are NL × NB sparse coefficient matrices. Where
(
i , j th

)
element of Cf

and
(
i , k th

)
element of Ct are equal to 1 for each branch i connecting bus j to k. The NL and NB

are number of lines and buses respectively. All other elements are equal to zero. The matrices
Yf and Yt are given by,

Yf = [Yff ] Cf + [Yft ] Ct (5.25)

Yt = [Ytf ] Cf + [Ytt ] Ct (5.26)

Here the four NL× 1 vectors Yff , Yft, Ytf and Ytt are constructed in such a way that ith element
of each comes from corresponding element of Branch model [172].

4. The voltage limit constraint on buses,(
emink

)2 ≤ ((etk)2 +
(
f tk
)2) ≤ (emaxk )2 (5.27)

The bus voltages are influenced by the power consumed/generated at the connected buses in the
network. It is incorporated in the power balance equations as,

P t
Gk − P t

Dk = et
k

NB∑
j=1

(
Gjk et

j −Bjk f t
j

)
+ f t

k

NB∑
j=1

(
Bjk et

j + Gjk f t
j

)
(5.28)

Q t
Gk −Q t

Dk = et
k

NB∑
j=1

(
−Bjk et

j −Gjk f t
j

)
+ f t

k

NB∑
j=1

(
Gjk et

j −Bjk f t
j

)
(5.29)

N-1 contingency. The outage of a network element that can be a generator, bus, load or
a transmission line is termed as contingency in power system. The objective of contingency
analysis is to make sure that there is enough generation capability in the system to meet the
demand. In literature, the consideration of contingency requirements adds a preamble of security
constrained to ED and UC problems. The commonly considered contingency includes generator,
transmission line and loads in the system. Total number of possible outages can be denoted by
Nout = Nl + NG + NL. There are two aspects necessary to consider while operating the system
compliant with N − 1 contingency criteria. The first is availability of generation potential, it can
be achieved by the assessment of largest generator/load maximum power ratings and adding the
respective value to the spinning reserve requirement for all times.

The total up-spinning reserve are given as

TRt
up = SRt

up + max
∀ i=1...N

P ti (5.30)

The down-spinning reserves are similarly formulated as,

TRt
down = SRt

down + max
∀ j=1...B

P tDj (5.31)
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The consideration of generator and load contingency shall revise Equation 5.19 as,

N∑
i=1

P ti = P tD + TRt
up . (5.32)

N∑
i=1

P ti ≤ P tD − TRt
down . (5.33)

Equation 5.32 and 5.33 are considered as part of Security Constrained Economic Dispatch (SCED)
problem. For each time period the process is repeated for each line contingency to check the
(N − 1) compliance of the dispatch. Normally DC power flow is performed while considering the
(N − 1) security constraint as it simplifies the process [167].

5.5.2.2 Test Case for Economic Dispatch

The test case for the ED is based on IEEE 30 bus system. A wind farm is connected at bus 22
of the network as shown in Figure 5.15. The test case data can be also be accessed from the
Matpower software [172]

Figure 5.15: One-line diagram of 30 bus power system.
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Bus Load Bs emax emin Bus Load Bs emax emin

– MW Mvar Siemens p.u. p.u. – MW Mvar Siemens p.u. p.u.

1 0 0 0 1.05 0.95 16 3.5 1.8 0 1.05 0.95

2 21.7 12.7 0 1.1 0.95 17 9 5.8 0 1.05 0.95

3 2.4 1.2 0 1.05 0.95 18 3.2 0.9 0 1.05 0.95

4 7.6 1.6 0 1.05 0.95 19 9.5 3.4 0 1.05 0.95

5 0 0 0.19 1.05 0.95 20 2.2 0.7 0 1.05 0.95

6 0 0 0 1.05 0.95 21 17.5 11.2 0 1.05 0.95

7 22.8 10.9 0 1.05 0.95 22 0 0 0 1.1 0.95

8 30 30 0 1.05 0.95 23 3.2 1.6 0 1.1 0.95

9 0 0 0 1.05 0.95 24 8.7 6.7 0.04 1.05 0.95

10 5.8 2 0 1.05 0.95 25 0 0 0 1.05 0.95

11 0 0 0 1.05 0.95 26 3.5 2.3 0 1.05 0.95

12 11.2 7.5 0 1.05 0.95 27 0 0 0 1.1 0.95

13 0 0 0 1.1 0.95 28 0 0 0 1.05 0.95

14 6.2 1.6 0 1.05 0.95 29 2.4 0.9 0 1.05 0.95

15 8.2 2.5 0 1.05 0.95 30 10.6 1.9 0 1.05 0.95

Table 5.6: Bus data.

Bus Voltage Generation Pi Pi Fuel cost Mvar Limits

– Mag. MW MW MW CF ($) Min Max

1 1 23.54 80 0 0.02× P 2
i + 2× Pi -20 150

2 1 60.97 80 0 0.0175× P 2
i + 1.75× Pi -20 60

3 1 26.91 55 0 0.00834× P 2
i + 3.25× Pi -15 48.7

3 1 19.2 30 0 0.025× P 2
i + 3× Pi -10 40

3 1 37 40 0 0.025× P 2
i + 3× Pi -15 44.7

Table 5.7: Generator data.

Two formulations of ED are considered,

• The AC OPF based ED considering the bus voltage and transmission line constraints. The
reserves are allocated as fixed percentage of load and the uncertainty in the wind power.

• The DC OPF based ED considering the N − 1 security constraints. The total reserve
requirement includes reserves as fixed percentage of load, wind power uncertainty and the
necessary reserve for satisfying the N − 1 security criteria.

The first formulation is the static ED discussed from Equation 5.18 to 5.29 with the bus voltage
and transmission line constraints. While the second formulation adds the constraints from equa-
tions 5.32 and 5.33 in the place of Equation 5.19. The results of SCED are studied to assess the
impact of the reserve requirements on the dispatch of generation.

The demand profile in the network is shown in Figure 5.16. Demand uncertainty is taken as
fixed percentage (20%) of total demand. The wind power forecast is shown in Figure 5.17. The
flexibility assessment method is used to find the probabilistic maximum and minimum of the
results. The difference between forecast and the extreme limits is used to define the ramp-up and
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Bus Bus R X B/2 Smax
m Bus Bus R X B/2 Smax

m

– – p.u. p.u. p.u. MVA – – p.u. p.u. p.u. MVA

1 2 0.02 0.06 0.015 130 15 18 0.11 0.22 0 16

1 3 0.05 0.19 0.01 130 18 19 0.06 0.13 0 16

2 4 0.06 0.17 0.01 65 19 20 0.03 0.07 0 32

3 4 0.01 0.04 0 130 10 20 0.09 0.21 0 32

2 5 0.05 0.2 0.01 130 10 17 0.03 0.08 0 32

2 6 0.06 0.18 0.01 65 10 21 0.03 0.07 0 32

4 6 0.01 0.04 0 90 10 22 0.07 0.15 0 32

5 7 0.05 0.12 0.005 70 21 22 0.01 0.02 0 32

6 7 0.03 0.08 0.005 130 15 23 0.1 0.2 0 16

6 8 0.01 0.04 0 32 22 24 0.12 0.18 0 16

6 9 0 0.21 0 65 23 24 0.13 0.27 0 16

6 10 0 0.56 0 32 24 25 0.19 0.33 0 16

9 11 0 0.21 0 65 25 26 0.25 0.38 0 16

9 10 0 0.11 0 65 25 27 0.11 0.21 0 16

4 12 0 0.26 0 65 28 27 0 0.4 0 65

12 13 0 0.14 0 65 27 29 0.22 0.42 0 16

12 14 0.12 0.26 0 32 27 30 0.32 0.6 0 16

12 15 0.07 0.13 0 32 29 30 0.24 0.45 0 16

12 16 0.09 0.2 0 32 8 28 0.06 0.2 0.01 32

14 15 0.22 0.2 0 16 6 28 0.02 0.06 0.005 32

16 17 0.08 0.19 0 16 – – – – – –

Table 5.8: Line and transformer data.

ramp-down reserve requirements corresponding to the wind power in the system. The consid-
eration of voltage constraint during the process is validated by the Figure 5.18. The tightening
of lower voltage limit from 0.99 to 0.95 is observed during the simulations. A demonstration of
the total up and down spinning reserve requirements is shown in Figure 5.19. The total up and
down spinning reserves are allocated among the generators. The Figures 5.20 and 5.21 shows the
allocation results. If a fixed reserve margin is applied then the total reserve requirements can be
set at 60 MW for the up and 55 MW for the down-spinning reserves. The reserve requirements
related to the contingency cases is fixed for all time values as the contingency can happen at
any time. The load forecast uncertainty is a fixed percentage of the load and hence impacts the
reserve requirements for each time differently. The variable reserve requirements also emerges
from the polytopic model based approach discussed in Section 5.2.3 which is used for modeling
the wind forecast uncertainty.

5.5.3 Unit Commitment using Population Game Theory

The generators participating in the UC problem selects a bidding strategy based on their objec-
tives. Environmental variables and the bidding strategies of other generators can influence this
process. The strategic interaction between generators can be modeled using Game Theory. An
interesting application from this theory is called Replicator Dynamics (RD). RD is a population
game theory based method that is characterized by the reduced complexity and a support for
parallel computation. As an outcome of the strategic game, the players (generators) can select
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Figure 5.16: Real power demand to be dispatched among generators for the Security Constrained Eco-
nomic Dispatch problem.
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Figure 5.17: Wind power forecast with the probabilistic bounds obtained using Monte Carlo simulations.
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Figure 5.18: Enforcement of voltage constraint in the SCED problem.
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Figure 5.19: Total up and down spinning reserve requirements.
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Figure 5.20: Up spinning reserve allocation among generators in the SCED problem.
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Figure 5.21: Down spinning reserve allocation among generators in the SCED problem.
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best strategies based on the strategy of other players. The operator on other hand can observe
and potentially influence the interaction in a broader perspective. The RD based economic dis-
patch has been explored in [174]. Here, this method is extended for the UC problem. RD models
the strategy growth rate of a player in a population based on its payoff. Mathematically, it equals
the difference between the strategy payoff and the average payoff of a population, given as [175],

ẋi = xi [(Ax)i − (x.Ax)] , (5.34)

where, the strategy state of the population is xi and the payoff matrix is given by A. Based on the
dynamic equation, most successful strategy prevails during the selection process. The RD based
resource allocation method can be compared with the UC problem i.e., the generators corresponds
to habitats with each one having a fitness (objective) function, The net power demand can be
related to a population of values searching for a habitat (generators). The Population dynamics
within a habitat can be described similar to Equation 5.34 as follows,

ṗi = pi
(
fi(pi)− f

)
, (5.35)

where, f and fi(pi) represents the average fitness and ith generator fitness value, respectively.
The generator fitness function can be obtained from a quadratic cost function [174] that can be
related to cost of generation. The discrete time version of Equation 5.35 is given as,

pi[k + 1] = pi[k]
1/Ts + fi[k]

1/Ts + f [k]
, (5.36)

fi [k + 1] =
1

ci

(
1− pi [k + 1]

pnom′
i

)
, (5.37)

f [k] =
1

P ′d

N∑
j=1

pj [k] fj [k] , (5.38)

here, k = 1, 2, 3, . . . is the iteration count for each time instance, ci is the cost associated with
each generator and N is the number of generators. The local controller at each generator performs
calculations based on Equations 5.36 and 5.37, while the central control implements Equation 5.38.
The iterative process continues till the individual fitness functions are equal to the average fitness
value, given as,

fi(pi) = f , (5.39)

The result of the process is an optimal solution as commented in [174] and [176]. RD have
similarities with the Newton’s Approach (NA) for the optimal power flow [177]. The constraints
are augmented to the cost function using the Lagrange multipliers given as,

L = Ctotal + λ

(
P ′d −

N∑
i=1

pi

)
, (5.40)

Here, Ctotal is the total cost and P ′d is the demand. The function is minimized for the following
condition,

∂Ci
∂Pi

= λ , (5.41)

This is similar to Equation 5.39, i.e., generation dispatch is optimal if each generator operates at
same incremental cost [100].
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In Newtons method the value of λ is calculated using iterative procedure which involves the com-
putation and inversion of Hessian matrix. The process is computationally intensive. Therefore,
quasi-Newton approaches have been developed. They have good performance but poor accuracy
due to approximations [178]. In comparison, RD has simple structure and can be suitable for
on-line computation for UC problem.

In the Newton’s method, the λ is calculated by an iterative process that involves the calculation
of a Hessian matrix, resulting in computational complexity. Quasi-Newton methods have been
developed to address this issue but lacks accuracy due to approximations [178]. In comparison,
RD has a simpler structure and can be used for the UC problem.

5.5.3.1 Replicator Dynamics and Unit Commitment

The objective of UC problem is generally to minimize the total cost due to fuel (F), maintenance
(M), start-up (U) and shut-down (D) costs by scheduling resources over a time horizon [168],
given as,

Ctotal =
N∑
i=1

T∑
k=1

Fi[k] +Mi[k] + Ui[k] +Di[k] , (5.42)

The fuel and maintenance costs can be combined to form a quadratic cost function, represented
by the cost factor ci in (5.37). The objective function in Equation 5.42 is subject to the following
constraints [179]: (i) System power balance; (ii) System reserve requirement, namely preserve; (iii)
Unit maximum (resp. minimum) operating limits, denoted pnom (resp. pmin); (iv) Unit minimum-
up (resp. down) time, T up

min (resp. T down
min ); (v) Unit status restrictions (must run, unavailable,

fixed production) and others.

Several binary logic states of the generator are defined to facilitate the handling of constraints:

(i) Ii[k]: Commitment state of generator i at kth hour; (ii) I
start/stop
i [k]: Transition start-up (resp.

shut-down); (iii) Xoff
i [k]: time duration for which generator i has been switched off; These states

are subsequently used in calculation of fitness function values.

The equality constraint can be given as,

N∑
i=1

pi −
N∑
i=1

preserve
i = Pd + PL = P ′d , (5.43)

This constraint is directly incorporated by the design of Equation 5.38 as commented in [174].
Here, the power loss (PL) is calculated using the B-coefficient method [100]. The reserve power
requirement from a generator impacts its nominal rating as,

pnom′
i = pnom

i − preserve
i , (5.44)

The reserve power can be made available by a generator if required using this nominal power
margin. Generator power limits can be transformed to constraints on the fitness function, given
as,

fmin
i ≤ fi ≤ fmax

i . (5.45)

The fmax
i corresponds to pmin

i , see Equation 5.37. The shut-down or start-up conditions can be
obtained by considering the minimum up and down time constraints of a generator and the fitness
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function values. It is given as, For shut-down:(
fi > fmax

i

)
∧
(
f > fmax

i

)
∧
(
Ii[k − 1] = 1

)
∧

 k−1∑
α=k−Tup

min

Ii[α] = T up
min

 . (5.46)

For start-up: (
fi ≤ fmax

i

)
∧
(
f ≤ fmax

i

)
∧
(
Ii[k − 1] = 0

)
∧

 k−1∑
α=k−Tdown

min

Ii(α) = T down
min

 , (5.47)

where, ∧ symbolizes the logical & operator. If the conditions in Equations 5.46 / 5.47 are met,
then the shut-down/start-up costs are considered in the fitness function values as,

f ′i = fi − Istart
i [k]Dmarg

i + Istop
i [k]Umarg

i , (5.48)

here, Dmarg
i and Umarg

i stands for marginal shut-down cost and start-up costs, respectively. The
start-up cost is modeled as,

Ui[k] =
(

1− e−X
off
i [k]/τ

)
Umarg
i , (5.49)

where, τ is the time constant of generator start-up function. The economic feasibility to shut-
down or start-up the generator can be performed by following inequality conditions,

f ′i > fmax
i , f ′i ≤ fmax

i . (5.50)

The resulting algorithm is a bounded form of the original RD algorithm, thus it retains the
optimality characteristics.

5.5.3.2 Stability of Equilibrium

A strategy i is said to be evolutionary stable if it is robust against the opposing strategies.
According to the dynamical-systems theory, a steady state is reached when the condition ẋi = 0
is satisfied. In the context of RD, the right-hand side of Equation 5.34 give us the stable vector
field of the evolutionary game. It facilitates in turn the definition of the equilibrium. For RD
model used for UC problem, the equilibrium is reached when each player plays reaches the stable
equilibrium with the average fitness function given by Equation 5.39. This equilibrium condition
is asymptotically stable i.e., the solution path that starts close to equilibrium as result of minimal
perturbation remain arbitrarily close and converges to the equilibrium in steady sate [100].

5.5.3.3 Test Case of Replicator Dynamics for UC

The proposed algorithm for UC has been applied for the 26-bus power system from [100]. One-
line diagram of the network is shown in Figure 5.22. For this use-case, the load, generator, shunt
capacitor sizing, transformer tap settings and line data are tabulated from Tables 5.9 to 5.12, on
a 100 MVA base, respectively.
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Figure 5.22: One-line diagram of 26 bus power system from [100].

Bus Voltage Generation Mvar Limits

– Mag. MW Min Max

1 1.025

2 1.02 79 40 250

3 1.025 50 40 150

4 1.05 100 40 80

5 1.045 300 40 160

26 1.015 60 15 50

Table 5.9: Generator data.

The slack bus voltage is given as, 1.025∠0◦. Furthermore, generator parameter details are de-
scribed in Table 5.13. The spinning reserve requirement is set as 5% of total load for each time
period.
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Bus Load Bus Load

– MW Mvar – MW Mvar

1 51 41 14 24 12

2 22 15 15 70 31

3 64 50 16 55 27

4 25 10 17 78 38

5 50 30 18 153 67

6 76 29 19 75 15

7 0 0 20 48 27

8 0 0 21 46 23

9 89 50 22 45 22

10 0 0 23 25 12

11 25 15 24 54 27

12 89 48 25 28 13

13 31 15 26 40 20

Table 5.10: Bus data.

Shunt Capacitors Transformer Taps

Bus Mvar Designation Tap Setting

1 4 02-03 0.96

4 2 02-13 0.96

5 5 03-13 1.017

6 2 04-08 1.05

11 1.5 04-12 1.05

12 2 06-19 0.95

15 0.5 07-09 0.95

19 5 – –

Table 5.11: Shunt capacity and transformer taps settings.

pnom pmin T up
min T down

min Cost factor (ci) Dmarg
i Umarg

i (τ)

Gen. MW MW Hours Hours per − unit per − unit per − unit Hours

G1 850 100 6 5 0.143 0.14 0.2 4
G2 500 50 5 5 0.100 0.12 0.18 3
G3 300 50 5 4 0.117 0.10 0.16 3
G4 180 100 3 2 0.090 0.09 0.13 2
G5 320 50 4 4 0.095 0.11 0.15 3
G6 100 62 3 2 0.083 0.08 0.10 2

Table 5.13: Generator data for the Replicator Dynamics based UC test case.

The power allocated to the generators as a result of UC process performed by RD is shown in
Figure 5.23. It can be observed that, (i) The shut-down (resp. start-up) of G4 and G6 occurs
after the minimum up-time constraint (resp. minimum down-time constraint) are satisfied. It is
discussed in Equation 5.46 (resp. equation 5.47); (ii) G4 is shut-down at 140 hours due to low
demand of energy. After this event, it remains off despite satisfying the minimum down-time
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Bus Bus R X B/2 Bus Bus R X B/2

– – p.u. p.u. p.u. – – p.u. p.u. p.u.

1 2 0.0005 0.0048 0.03 10 22 0.0069 0.0298 0.005

1 18 0.0013 0.011 0.06 11 25 0.096 0.27 0.01

2 3 0.0014 0.0513 0.05 11 26 0.0165 0.097 0.004

2 7 0.0103 0.0586 0.018 12 14 0.0327 0.0802 0

2 8 0.0074 0.0321 0.039 12 15 0.018 0.0598 0

2 13 0.0035 0.0967 0.025 13 14 0.0046 0.0271 0.001

2 26 0.0323 0.1967 0 13 15 0.0116 0.061 0

3 13 0.0007 0.0054 0.0005 13 16 0.0179 0.0888 0.001

4 8 0.0008 0.024 0.0001 14 15 0.0069 0.0382 0

4 12 0.0016 0.0207 0.015 15 16 0.0209 0.0512 0

5 6 0.0069 0.03 0.099 16 17 0.099 0.06 0

6 7 0.0053 0.0306 0.001 16 20 0.0239 0.0585 0

6 11 0.0097 0.057 0.0001 17 18 0.0032 0.06 0.038

6 18 0.0037 0.0222 0.0012 17 21 0.229 0.445 0

6 19 0.0035 0.066 0.045 19 23 0.03 0.131 0

6 21 0.005 0.09 0.0226 19 24 0.03 0.125 0.002

7 8 0.0012 0.0069 0.0001 19 25 0.119 0.2249 0.004

7 9 0.0009 0.0429 0.025 20 21 0.0657 0.157 0

8 12 0.002 0.018 0.02 20 22 0.015 0.0366 0

9 10 0.001 0.0493 0.001 21 24 0.0476 0.151 0

10 12 0.0024 0.0132 0.01 22 23 0.029 0.099 0

10 19 0.0547 0.236 0 22 24 0.031 0.088 0

10 20 0.0066 0.016 0.001 23 25 0.0987 0.1168 0

Table 5.12: Line and transformer per-unit (p.u) data.

requirements. This behavior is caused by the start-up cost; (iii) The power allocated to the slack
bus is compared with that of the power flow result for each time. If it does-not matches sufficiently
(here, tolerance is set to 0.001) then the convergence process is repeated. It can be observed in
Figure 5.24-(a) that RD based results satisfy the equality constraint explained in Equation 5.43.
For this use-case, the RD based results have been compared with NA and the error was found
out to be less than 1.12%.

The convergence accuracy has been set to 1e− 005 during course of simulation for both RD and
NA algorithms. The system had been simulated using Matlab2. In Figure 5.24-(c), the fitness
function dynamics of generator G2 is shown for the whole duration. It satisfies the limits set due
to operating limits of the generator as discussed in Equation 5.45. As an outlook, the ramp-rate
limits of the generator can be modeled as limits on the fitness function dynamics.

Figure 5.25-(a) shows the dynamics of fitness functions of the generators and their convergence to
a common average value. The convergence rate can be adjusted by controlling the sampling time
Ts from Equation 5.36. Here, it has been fixed at 0.16sec. Increasing this time can potentially
decreases the number of iterations required for convergence. However, it has been observed
that if it increased beyond a threshold, the fitness value starts to oscillate around a solution
and may not satisfy the convergence accuracy criteria. Here, this threshold has been obtained

2http://www.mathworks.com, MathWorks
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Figure 5.23: Power dispatch dynamics for 26-bus power system using RD algorithm, where G1 is the
slack generator.
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Figure 5.24: (a) Comparison of the total power dispatched using RD Vs the total demand, Equation 5.43.
(b) Difference between results of RD and NA algorithms for generator 4. (c) Fitness function dynamics of
generator 2 for the whole demand profile.
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experimentally. Figure 5.25-(b) shows the robustness of RD approach when the process starts for
a range of initial conditions. It is however required that the equality constraint is satisfied at initial
condition [174]. The simulation results demonstrate the effectiveness of RD method in solving
the UC problem. It has been observed that the convergence of fitness function is independent
of initial conditions. The cost functions considered have a quadratic structure. However, the
approach can be extended to other piece-wise and other polynomial functions. The structure
of problems has a resemblance towards the secondary control approach in microgrid. There, a
centralized control coordinates with local controlled in maintaining frequency and voltage in the
network. The RD based implementation shall require dedicated communication links between
the nodes. For the convergence at each time instance, the data needs to be transferred multiple
times. This aspect can be a limiting factor for the applications have uncertain and relatively high
communication latency. As an outlook, the generator specific constraints can be directly modeled
on the fitness function and can reduce the problem complexity. In addition, the convergence
towards the solution can be improved by introducing a gain multiplier to Equation 5.35.
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Figure 5.25: For single instance [k]: (a) Evolution of fitness function of generators and average fitness
value (where, favg is the average fitness value). (b) The convergence of fitness function of G2 to average
fitness function value for different initial conditions.

5.5.3.4 Game Theory and Optimization

From a conceptual point of view, game theory with an exception of mean field game theory is an
iterative process of reaching towards a solution or equilibrium. The limitations of the convergences
are similar to that encountered during optimization applications. The RD method explored here
for the ED problem is a gradient based approach. Thus the applicability of this method is limited
to the problems having a single solution or a single local extremum point. This may not be the
case for a general ED or UC problem.

Game theory can be highly relevant for the applications involving a high level of strategic inter-
actions where it can be used to solve the conflicts. For example, if the players or participants
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have multiple strategies that are function of other players strategies and/or system wide vari-
ables. Game theory has been used for numerous energy market applications [180]. In the electric
distribution systems, the game theory has been applied to study the behavior of thermostatically
controlled loads based demand response application [147].

In microgrid, a prosumer may have an incentive to maximize its benefit and/or the social welfare.
Game theory can provide an elaborate analysis of the underlying optimization problem, where,
it can be used to select an optimal or preferred strategy. However, the optimization applications
such as ED or UC generally require fixed strategies (objective functions) from the stakeholders.
The results of optimization process are set-points for the participating players. These set-points
can be used by a player to fine tune its strategy relying on possibly game theory based algorithm.
It is inferred that game theory can potentially contribute in the energy domain during the selection
of the best strategy, and when selected, state of the art optimization processes can be applied.
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6 Demand Side Flexibility as Frequency
Reserve

6.1 Introduction

A critical requirement in the power system operation is to match the generation with demand,
which happens continuously and instantaneously. The power system operators counter the
generation-load imbalance by activating control reserves. These reserves can be differentiated
based on the type of events causing the imbalance, time-scale requirements and the direction
(upward/downward) of the response. A comparison of the different types of reserves as function
of the time-scale is shown in the Figure 6.1.

Figure 6.1: Reserve types as function of response time and power level.

When the generation is less than the demand there is an immediate impact on the generators
output frequency. It can be understood by the study of a generator operation. As the demand
increases, rotors of the generators tends to slow down due to increase in load. The angular speed
of the generator’s rotor has a direct relationship with the output frequency. A decrease in the
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angular speed droops down the output frequency. In order to maintain the frequency within
permissible limits, the generators normally have governors. A governor implements droop control
mechanism i.e., the generator output power is increased and the drooping frequency is recovered
to the nominal value. This action of the governor is a primary reserve that provides an immediate
relief to the system. The frequency compensation capability of the generators is normally termed
as Frequency Response Reserve (FRR). Additionally, the frequency deviations in an intercon-
nected system are countered by the Frequency Containment Reserve (FCR) that are activated
automatically. Both the frequency response and containment reserves are triggered in the time
scale of seconds to minutes and can be categorized as primary reserves. The compensation level
provided by the primary reserves is limited and in general a steady state frequency error may be
maintained in case of imbalance situation. This imbalance is adjusted by a secondary mechanism
called load following reserves termed as Frequency Restoration Reserve (FRR). The time scale of
FRR ranges from seconds to minutes. Generators have traditionally participated in this type of
reserve. Along with it, demand response also posses a potential in contributing to this resource.
Finally, the large scale reserve requirements are met by a tertiary level control as part of balancing
market operations and are termed as Replacement Reserve (RR).

Generally, the activation of reserves from generators keep the frequency stable in the classical
power system operation. However, the increasing share of renewables in the power system shall
require a high level of reserves to cater for the associated forecast uncertainty. The high ramp-rate
requirements from the reserve resources makes the traditional approach an expensive choice for
providing reserves, therefore, the alternate sources of reserves are highly sought after. A number
of studies have shown that the responsive loads in the distribution network can play an important
role in contributing to the load following secondary reserves. International Energy Agency (IEA)
estimates that every 1$ investment in Demand Side Management (DSM) is equivalent to 2$
investments in upgrading generation capabilities [25]. Among the potential demand response
resources, the refrigeration, heating and air-conditioning loads amounts to more than 40% of
total load in both residential and commercial sectors [181]. Such loads can be classified as
Thermostatically Controlled Load (TCL) and they possess common working principle. These
devices are thermostatically controlled and aim to maintain temperature within a dead-band
around a set-point. A general objective of a TCL is to regulate specific level (set-point) of
the temperature by maintaining it within a dead-band (interval) around the set-point. A TCL
undergoes a cycling process in order to maintain temperature within this interval as shown in
Figure 6.2.

Figure 6.2: Cycling operation of a Thermostatically Controlled Load.
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Consider an air-conditioning unit that is performing cooling to maintain the room temperature.
It can be assumed that the output temperature is higher than the set-point. The TCL consumes
power till temperature reaches minimum threshold, after that it is turned Off. The temperature
of room rises due to the high outside temperature until it reaches maximum threshold, which
triggers the air-conditioning unit On. The On and Off states of a TCL completes one cycle and
the ongoing process is called “cycling”, as shown in Figure 6.2.

The load of TCL can be changed while operating it within the dead-band. Such a control effort
results in a non-disruptive operation towards the customer as temperature remain within the
dead-band. Similarly, the power demand of a TCL aggregation can be changed during the cycling
process and can be used to track a reference active power signal [144]. The potential of the TCL
aggregation can be viewed as an energy storage. This chapter discusses the application of the
flexibility model discussed in Section 4.4for tracking of a frequency regulation signal. It provides
a proof of concept of using this resource for frequency regulation and validates the proposed
stochastic battery mode. The contents of this chapter are partly published in [131] and accepted
to be published in [182], where the energy storage model and a test cases are discussed.

6.1.1 TCL as frequency reserve

Frequency regulation is a process to maintain the instantaneous balance between demand and
supply. Any imbalance effects the frequency of the system that is to be kept within permissible
limits. It is achieved the frequency regulation process, the time scale for which ranges between
seconds to minutes. This limits the maximum allowable delay in the response of reserve resources.
An aggregation of the TCLs can be used as a reserve resource in supporting frequency regulation
process [149]. The ability of TCL aggregation in responding to a real-time frequency adjust-
ment signal has been reported in [142, 143] The application of this technology has also led to
regional studies. For example, the ability to use TCLs as the storage capacity in Switzerland
has been discussed in [183]. Potentially it is interesting, but to enable this technology, suitable
communication infrastructure is the limiting factor.

The aggregate behavior of the TCLs can generally be modeled using two approaches. First
approach is based on differential equation based model and had been presented in [150]. It is
composed of a continuous temperature state dynamics model and a discrete switching state of the
input power. It models the change in internal temperature of a thermal load while considering
the thermal resistance, capacitance, ambient temperature and temperature gain due to power
consumption [184, 185]. Due to the simplicity of this model, it is well suited for the application
in simple control strategies applied to large number of TCLs [186]. This model has been verified
for the real population of TCLs in [187]. The other approach is to use state space model to
represent the TCL aggregation. It has received considerable interest in literature due to the
inherent support for the controller design. Among state space methods, the partial differential
equation based model in combination with sliding mode control has been used for TCL aggregation
in [188]. Similarly, a three state model has been presented in [189] for a TCL aggregation. An
advanced model has been presented in [190], that aims to model the TCL dynamics accurately.
The implementation aspects of TCL based demand side management have also been explored in
number of studies. Authors in [191] and [192] have proposed a direct control mechanism for the
Distribution Network Operator (DNO). It allows the DNO to change the active power set points
continuously. Similarly, an intelligent control based on the real time data of electricity price has
been proposed in [147].
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A battery model representing TCLs has been presented in [144], where the battery parameters
of power and energy capacity are calculated. Similarly, a stochastic modeling approach for the
calculation of battery parameters has been discussed in [130]. This paper presents the maximum
ramp-up/down rate and the charging/discharging potential of the battery. Each TCL communi-
cates its status, temperature distance to switching boundary and power level to central control.
The requirement of power measurements adds additional expense and introduce measurement
uncertainty to the process. In addition, the stochastic battery parameters are calculated using
historical data of previous switching status and time since a switching state. The measurement
uncertainty can adversely effect this process and the problem can become computationally com-
plex for large number of TCLs. Here, these two aspects of the stochastic battery model are
improved. A novel mathematical functions are presented for the calculation of battery parame-
ters that does not need the historical information. This has been achieved by assuming that the
TCL rated power is already known to the central control as part of the contractual agreement and
each TCL only communicates its availability binary signal. On one hand it prevents the require-
ment of power measurement and in addition, it helps in the calculation of battery parameters.
The main contributions can be summarized as,

• A mechanism where each TCL transmits the status ui[k], relative temperature distance to
switching boundary πi[k] and the availability λi[k] to the central control.

• Analytic expressions for calculating the stochastic ramp-up/down rate and State of Charge
(SoC) of the battery. Validation of this model by tracking a realistic frequency regulation
signal.

• The impact of communication delay on the tracking performance is studied.

6.1.2 System Model

Figure 6.3 shows an overview of control mechanism for the TCLs. The central control models ag-
gregation of TCLs by a Resource Flexibility Model (RFM) discussed in Section 4.4 of Chapter 4.
A frequency regulation signal (r[k]) corresponding to the imbalance between demand and supply
is input to central control. The central control algorithm decides the activation/deactivation
of suitable number of TCLs that can track the frequency regulation signal with sufficient ac-
curacy. The operational state changes are sent to TCLs by the central control using dedicated
communication channels. The tracking error is sent back for the monitoring purpose.

6.1.3 Regulatory Requirements

Each system operator has specific regulatory requirements for the demand side participation in the
reserve market. For example, California Independent System Operator (CAISO) has defined the
non-generator resources to provide power bid on the basis of their 15-minute energy capacity [143].
Alongside, strict requirements have been placed on the telemetry of TCL data. The TCLs are
required to update their SoC and instantaneous power status every 4 seconds. In addition, the
minimum TCL size that can participate is restricted to 0.5 MW. However, the results of this
Chapter have complimented the findings in [130] that suggest a viable potential from a large
number of residential TCLs. However, the uncertainties associated with such an application and
the communication needs are required to be taken in account. This is essential for ensuring the
resource availability that can make it a candidate of meeting the regulatory requirements. An
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Figure 6.3: Overview of the control mechanism for TCL aggregation.

appropriate approach for modeling the uncertainties associated within the process is to model it
in the equivalent battery model. In this way, a probabilistic approximation of the availability and
potential of the resource can be made.

6.2 Control Scheme

Various control mechanisms have been studied in the literature for the control of TCLs, e.g.,
in [189, 193, 142, 188]. A predictive controller for controlling the TCL aggregation has been used
in [142]. While in [193], the load control is achieved using minimum variance control law. These
approaches have advantages but can be complex for the implementation of a large number of
TCLs. In [143], a direct control mechanism of the TCL aggregation using priority stack based
control has been proposed. In this method, the relative temperature distance (πi(t)) of a TCL
from its switching boundary is sent by each TCL to the central control. The central control then
prioritizes to turn On/Off the TCLs that have the least distance to the switching boundary. The
benefit of this method is that it reduces the overall number of forced cycling of the TCLs. This
approach has been selected for the work in this Chapter.

6.2.1 Central Control Algorithm

The central control receives the flexibility information from each TCL in the form of its operational
status (ui[k]), availability (λi[k]) and temperature distance from the switching boundary (πi[k]).
It then performs a merit order to sort the TCLs based on value of πi[k]. Such that, the TCLs
having lesser distance to switching boundary are given preference. This schemes decreases the
overall number of switching requirements. A frequency regulation signal from energy market is
fed to the central control. It is followed by the difference between aggregate and baseline power
consumption of the TCL aggregation. The difference from Equation 4.25 is given as,

ψ[k] = Pagg[k]− Pbase[k] . (6.1)

The objective of tracking the regulation signal is satisfied if ψ[k] is equal to frequency regulation
signal, r[k]. Without the regulation process (r[k] = 0)) and in the steady state, The ψ[k] = 0 as

113



Demand Side Flexibility as Frequency Reserve

the TCL aggregation is consuming power equivalent to the base power. If r[k] > ψ[k], then the
algorithms at the central control turns On sufficient number of TCLs till the inequality ψ[k] ≥ r[k]
becomes true. This process can be termed as charging of the battery. Similarly, for r[k] < ψ[k],
the battery shall be discharged to track the reference signal. The maximum charging potential
of the battery is achieved when all the TCLs are turned On. It is given by,

ψ[k] =
∑
i

P i − Pbase[k] , (6.2)

while, the maximum discharge potential can be obtained by setting Pagg = 0, resulting in ψ[k] =
−Pbase[k]. If the base power consumption changes, then it shall impact the regulation limits.
Considering this requirement, the base power consumption information shall be required from
TCLs. However, this work assumes that the temperature set-points are static. The control scheme
at the central control is described in Algorithm 6.1. The central control transmits the forced state

Algorithm 6.1: Priority stack algorithm at central controller.

Input : TCL i data (ui[k], λi[k], πi[k])
Output: Forced state of the TCL δi∗

Calculate battery parameters (C, n+, n−);1

for t := 1 · · ·T do (Time iteration loop)2

Sample input frequency regulation signal r[k];3

for i := 1 · · ·N do (TCL iteration loop)4

Sort priority list of available On/Off TCLs;5

end6

end7

Update stochastic battery limits (C ′, n′+, n
′
−);8

if (R′+ ≤ r[k] ≤ R′−) then9

ξ = r[k]− ψ[k] ;10

if r[k] < ψ[k] then (Priority list based control)11

Turn Off available TCLs till δP < ξ;12

end13

else14

Turn On available TCLs till δP < −ξ;15

end16

end17

else18

Regulation not possible;19

end20

change signals δi∗[k] to the TCLs. This algorithm also facilitate the addition or removal of TCLs
dynamically to the system. In this case, the stochastic battery limits are updated dynamically.
The stochastic battery model derived in Chapter 4 is shown in Figure 6.4 for reference. The
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Figure 6.4: Stochastic battery model representing the TCL aggregation.

battery parameters have been discussed in Equation 4.27 are given as,

C =
∑
i

λi[k]
(

1 +
∣∣∣1− ai

α

∣∣∣) ∆i

bi

R+ = R′+ −
∑
i

(1− λi[k])Pi

R− = R′− +
∑
i

(1− λi[k])Pi

. (6.3)

The reference signal is compared to the stochastic limits given as,

R− ≤ r[k] ≤ R+ . (6.4)

These limits can be used as a filter to guarantee the tracking of reference signal. If violated,
the residual can be allocated to the other resources in the network e.g., distributed generators
and the battery storage who are participating in the reserve service. Furthermore, the stochastic
energy state of the TCLs aggregation can be observed at the central control.

6.2.2 Control at Thermostatically Controlled Load

The TCL dynamical model discussed in Equation 4.20 is given as,

θi[k + 1] = giθi[k] + (1− gi)(θia[k]− δi[k]θig) + εi[k] , (6.5)

The availability signal of a TCL has been introduced in Equation 4.28. A TCL is available if the
temperature lies within the dead-band region and the short cycling constraint is fulfilled. The
short cycling constraint (ρi[k]) is the minimum time duration for which TCL must remain in a
state after a state transition. The violation of this constraint or the operation of the TCL outside
dead-band implies the non-availability. It is given as,

λi[k] =

{
1 ρi[k] > ρi & θi ≤ θi[k] ≤ θi
0 otherwise

. (6.6)

The temperature distance of the TCL from switching boundary is normalized with respect to the
dead-band width before it is transmitted to the central control. The control strategy at a TCL
is presented in Algorithm 6.2.

115



Demand Side Flexibility as Frequency Reserve

Algorithm 6.2: Algorithm at TCL.

Input: Control signal δi∗[k]
Output: (ui[k + 1], λi[k + 1], πi[k + 1])
(θi[k + 1], δi[k + 1], λi[k + 1]) = 0;1

if ρi[k] > ρi then2

λi[k + 1] = 1;3

if δi∗[k] is received then4

δi[k] = δi∗[k];5

ρi[k] = 0;6

end7

end8

ρi[k + 1] = ρi[k] + 1;9

θi[k + 1] = giθi[k] + (1− gi)(θia[k]− δi[k]θig) + εi[k];10

if θi ≤ θi[k + 1] ≤ θi then11

δi[k + 1] = δi[k];12

end13

else14

λi[k + 1] = 0;15

if θi[k + 1] < θi then16

δi[k + 1] = 0;17

if δi[k] = 1 then18

ρi[k + 1] = 019

end20

end21

if θi[k + 1] > θi then22

δi[k + 1] = 1;23

if δi[k] = 0 then24

ρi[k + 1] = 025

end26

end27

end28

if δi[k + 1] = 1 then πi[k] =
(
θi[k + 1]− θi

)
/∆i;29

if δi[k + 1] = 0 then πi[k] =
(
θi − θi[k + 1]

)
/∆i;30

6.3 Test Cases of Demand Response Flexibility

Two test cases are presented for simulating the demand response flexibility from TCLs. In the first
test case a large number of residential TCLs are simulated. The TCL aggregation is represented by
an equivalent stochastic battery model and is used for tracking the reference frequency regulation
signal. The objective of this test case has been to validate the hysteresis based control scheme
and the proposed battery model. The regulation performance validates that a violation of the
stochastic battery limits results in the loss of tracking. In the second model, a relatively small
number of comparatively higher rating TCLs demonstrates the demand response scheme in a
combined simulation environment. The individual TCL model and the distribution network are
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simulated in a power system simulation software, PowerFactory1, while the control algorithm is
programmed in Python2. The objective of this test case has been to develop a platform to assess
the impact of the demand response activation on the distribution system.

6.3.1 Test Case for Residential Thermostatically Controlled Loads

The general specifications of a residential TCL is shown in Table 6.1. An aggregation of 1000
residential TCLs are modeled based on this generic data. The parameters of each TCL are
obtained by sampling the normal distribution around these values with the heterogeneity of 30%.
Here, the limits are taken as the percentage deviation from the mentioned quantity. These limits
can be controlled to alter the heterogeneity in the aggregation. The TCL model time step is set
at 10.02 seconds and the TCLs are initialized at steady state temperature condition θi[k] = θiref .
The reference signal is a normalized scaled down version of the frequency regulation signal from
the Pennsylvania-New Jersey-Maryland (PJM) market [194] in United States and is used to test
the tracking performance of the stochastic battery model.

Table 6.1: Parameters of a typical residential air-conditioning TCL [149].

Parameter Description Value Unit

Ci Thermal capacitance 2 kWh/◦C

Ri Thermal resistance 2 ◦C/kW

θiref Temperature 22.5 ◦C

∆ dead-band length 2.5 ◦C

P i Nominal power 5.6 kW

η Coefficient of performance 0.3

6.3.1.1 Simulation Results

The temperature dynamics of a TCL is shown in Figure 6.5. It provides an insight into the
temperature dynamics of the TCL when actively controlled by an external signal. It can be
observed that the temperature evolves within the dead-band while state transition occurs at
boundaries. The external signal can change the operational state while temperature is in limits,
provided that the short cycling constraint is fulfilled. From results, it is observed that TCL
experiences repeated activation between 780 to 950 seconds. This happens when the reference
signal continues to force the state of TCL. Technically, it can cause damage to the device and
hence a short cycling constraint is required. It sets a minimum time for turning On/Off a TCL
after a state transition. The impact of this constraint can be seen in Figure 6.6, where the short
cycling duration is increased from 2 to 6 seconds. The short cycling duration values are selected for
the proof of concept here and can be conveniently changed to represent the actual requirements.
The repeated activation phenomenon can also be observed by analysis of the regulation signal
dynamics.

1www.digsilent.de/index.php/products-powerfactory.html, DIgSILENT PowerFactory
2http://www.python.org, Python
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Figure 6.5: TCL state transition dynamics for short-cycle duration of 2 seconds.
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Figure 6.6: TCL state transition dynamics for short-cycle duration of 6 seconds.

Tracking performance for the test case is shown in Figure 6.7. It can be observed that the
TCL aggregation successfully tracks the regulation signal till k = 780 seconds. The tracking is
lost onward despite the reference signal occurring within the static regulation bounds (shown by
the dotted lines and corresponds to the limits from Equation 4.26). It is due to the violation
of dynamic limits discussed in Equation 6.3. The tracking error as result of the violation of
this constraint can be seen in Figure 6.8. While, the stochastic regulation limits are shown in
Figure 6.9. It can be observed that the reference signal violates the stochastic ramp-rate limits.
The decrease in the permissible ramp-rate limits is due to the unavailability of TCLs as shown in
Figure 6.10. Furthermore, the stochastic SoC limit of the battery given as C ′ from Equation 6.3
is dynamic and shown in Figure 6.11. These limits provides dynamic bounds and the tracking of
regulation signal can be ensured if the stochastic SoC and ramp-rate limits are satisfied.
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Figure 6.7: Tracking performance of TCL aggregation in responding to the regulation signal.
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Figure 6.8: Tracking error in the regulation process.
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Figure 6.9: Tracking performance comparison with stochastic regulation limits.
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Figure 6.10: TCL availability dynamics.
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Figure 6.11: State of charge dynamics of the stochastic battery model.

6.3.1.2 Communication Delay Impact Analysis

The impact of communication delay on the tracking performance is shown in Figure 6.12. The
communication delay is applied to all the TCLs equally. However, it can be sampled from a
probability distribution without the loss of generality. It can be observed that with the commu-
nication delay of 10 seconds impacting all the TCLs, the tracking performance remains more than
50%. The impact of cycling duration on the tracking performance decreases with increase in the
delay. It can be observed that the communication delay becomes a dominant factor in deciding
the regulation performance.

6.3.2 Combined Simulation Test Case for Thermostatically Controlled Loads

This test case focuses on the development of a platform that facilitates the analysis of impact of
demand side flexibility on the distribution network. The objective has been to study the impact
on bus voltage in the network. For this study, it is assumed that the voltage decreases as the
distance from feeder increases. Thus, the bus that is farthest from the main feeder is selected for
the analysis.
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Figure 6.12: Impact of communication delay and the cycling duration on the tracking performance of
TCL aggregation.

6.3.2.1 Simulation Setup

This section discusses the simulation tool selection and is followed by the description of power
network and the combined simulation setup.

PowerFactory as power system simulation tool. PowerFactory is a domain specific tool
for simulating, analysing and understanding power systems. The software package supports a
programming language called DIgSILENT Simulation Language (DSL) which is used for imple-
menting simulation models. DSL however does not support matrices, which are required for
implementing of the central controller. Therefore, a combined simulation approach is selected
where the power network and the local controllers for the TCLs have been simulated in Power-
Factory and the central controller has been simulated in Python.

Python as control environment. Python is an open source high level scripting language
with a large number of interdisciplinary toolboxes for optimization, signal processing, statistics,
matrix calculations etc. This makes it an ideal candidate for programming control algorithms.
Python is a high level language with comprehensive libraries that can be used for facilitating the
computational and connectivity requirements. In combined simulation environment, python can
be used to extend the capabilities of PowerFactory.

Power system network. The network chosen for this work is a Medium Voltage (MV) distri-
bution system test case from Institute of Electrical and Electronics Engineers (IEEE) comprising
of 119 nodes [195]. It consists of with 116 loads and 15 tie lines. This work defines the TCL

121



Demand Side Flexibility as Frequency Reserve

aggregation at a bus as a percentage of the rated load. It is given as,

P i,ratedTCL = 0.2× P i,ratedload × [U [0, 1] + 1] , (6.7)

where, U [0, 1] is a uniform number between 0 and 1.

Co-simulation Setup. Figure 6.13 provides a graphical overview of the co-simulation setup
used in the test case. PowerFactory supports a number of external interfaces covered in [196]
that can be used for data exchange with external software. Here, the PowerFactoy had been
coupled with Python using sockets. DSL models are capable of making function calls to external
C++ libraries. This ability has been used to provide socket communication support for local
TCL controllers simulated within PowerFactory. Ease of implementation, re-usability and the
ability to incorporate additional simulators for future work have been the main driving factors in
selection of the simulation tools and the coupling scheme.
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Figure 6.13: Overview of the co-simulation setup.

6.3.2.2 Simulation Results

Figure 6.14 shows the temperature dynamics of a TCL around the reference value for a limited
time interval of simulation. The control signal influences the operation while temperate remains
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within the dead-band. In relation, Figure 6.15 shows how the temperature distance varies as
function of the switching status. The state transition results in the temperature distance reaching
to its maximum value as expected.
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Figure 6.14: TCL temperature dynamics.
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Figure 6.15: TCL temperature distance from the switching boundary.

The tracking performance of proposed control scheme is shown in Figure 6.16. It is observed that
the TCL aggregation tend to follow the regulation signal dynamics. The precise regulation is not
possible in this case. The main reason are the limited number of TCLs e.g., 116 in this case. The
state transition triggers the cycling constraints which decreases the number of available TCLs.
The higher ratings of the TCLs also hiders the precise tracking performance.

In order to observe the impact of frequency regulation on the network, a 24-hour simulation
is simulated. This study aims to understand the impact of ambient temperature and the load
forecast profiles on the frequency regulation. Some of the loads are considered residential and
others commercial. The profiles of both are shown in Figure 6.17.
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Figure 6.16: Regulation signal tracking performance.
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Figure 6.17: Load profiles for co-simulation test case.
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Figure 6.18 shown the TCL dynamics in relation with the ambient temperature. It can be
observed that despite the ambient temperature change the local TCL controller is able to keep
the temperature within the limits along with providing serving for the frequency regulation.
However, the availability of TCLs has a strong correlation with the difference between ambient
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Figure 6.18: TCL switching as a function of ambient temperature.

and the internal temperature as shown in Figure 6.19. Such that, when the temperature is
high, the frequency of air-conditioning loads being turned On/Off increase. This triggers the
cycling constraints more frequently thus the number of available TCLs decreases. The impact of
frequency regulation and the ambient temperature at the end of a feeder (bus 80 in the network)
can be seen in Figure 6.20. The simulation platform facilitates the design of control schemes that
can take the voltage limits at the end of the feeder as constraints. Thus the control methods
in Python can be developed that can consider or contribute to avoiding the network constraint
violations.
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Figure 6.19: TCL availability.
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Figure 6.20: Impact of TCLs activation on the voltage at a selected bus.
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7 Conclusion and Outlook

7.1 Conclusion

A resource in an electric distribution system had been defined as a power generating or consuming
entity that possess operational flexibility. This study presented a Resource Flexibility Model
(RFM) for representing the flexibility potential of a resource. Incorporation of flexibility from
diverse resource types such as demand response, generators, storage etc., motivated the need
for a common modeling approach in order to facilitate the flexibility aggregation and allocation
processes. The proposed RFM had been designed to represent the storage and dynamic capability
of a resource by an Energy Storage Model (ESM) and a Resource Capability Envelope (RCE).
The ESM had been discussed based on the model proposed in [133]. The novel RCE as the
second part of the RFM, models the capability constraints (e.g., ramp-rate and associated cost
or response time) of the resource. The ability to represent cost as function of dynamic capability
provided a mechanism for modeling the over-drive potential of the resource. It enables a resource
to bid with more diverse offers that can potentially improve the energy efficiency and economics.
Another variable proposed as part of RCE is the “response time”. The applications responsible
for the flexibility activation can make use of this information in planning and optimization of the
operations. The RFM provides a holistic mechanism of flexibility modeling that can be adapted
to represent a diverse range of resources. A resource can use it for the self-optimization and for
making flexibility bids in energy market. The analysis performed based on the flexibility models
assumes the availability of a suitable communication infrastructure for the transfer of flexibility
bids/activation signals between resources and the central controller.

The distribution network of future is assumed to have Cells or microgrids that aims to facilitate
the reliable operation in presence of a high distributed generation. The resource adequacy in
a microgrid has been defined by a flexibility assessment problem. The objective had been to
assess the net-demand forecast while considering the ramp-rate and ramp duration requirements
as function of power values. The triad variables represents the first order dynamics [15]. The
historical data of the demand and generation forecasts had been used to develop the uncertainty
models for the flexibility assessment. Both clustering and probabilistic models had been used
to model the spatial diversity of the uncertainty while temporal correlation was modeled using
Markov chain. The results had been the models that captures both the temporal and spatial
aspects of uncertainty. The uncertainty models were then sampled using Monte Carlo simulations
resulting in net-demand scenarios for the microgrid. These scenarios were then transformed to
instances in a three dimensional space spanned by the first order dynamics variables by the
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application of a compression algorithm. The compact representation of the enclosing envelope by
a polytope resulted in an economic approach towards the flexibility assessment. The result had
been compared to the bounding box approach presented in [14]. The polytope based envelope
requires vertices or hyper plane information for its representation. This in comparison with the
bounding box approach requires more storage However, the economic advantage can be much
significant than additional information storage cost.

The net-demand dynamics and associated uncertainty represented by a polytope had been al-
located among the generators, the capability of which was modeled using RCE. The flexibility
allocation algorithm had resulted in the demand and reserve allocation among generators and the
power import/export envelope related to the connected grid. A comparative analysis of a fixed
reserve (percentage of the demand) and the polytope based reserve levels showed the economic
advantage of the proposed method. Computational complexity of the proposed vertex based
geometric allocation algorithm had been discussed. The flexibility allocation problem remains
tractable as the number of resources increases. The reserve requirements as a result of flexibility
assessment had been incorporated in the Economic Dispatch (ED) and Unit Commitment (UC)
applications for a day-ahead dispatch.

The polytope representation of RCE is a convex bounding surface enclosing points in the space
that are defined by the capability of a resource. Similarly, the net-demand envelope had been
modeled using a convex envelope approach. The formulation also benefited the application of
deterministic optimization methods applied during flexibility allocation process. However, further
improvement can be made by fitting a non-convex envelope on the points in the space. Such an
approach on one end can further reduce the reserve requirements (net-demand polytope) in the
microgrid and on the other hand improves the accuracy of modeling the resource capability. Two
approaches can be used to perform operation with non-convex envelope. The resource capability
can be represented by multiple convex envelopes that approximately represent the non-convex
capability envelope. In this case, the resource allocation shall require to switch between convex
envelopes while performing optimization. This step shall add to the computational complexity of
the problem. The second approach can be a heuristic based optimization method that can directly
operate with the non-convex envelopes. Such an approach may be suitable as the flexibility
planning problem is performed off-line and the convergence of the solution in polynomial time
may not be a stringent requirement.

Demand response shall be an important player as a flexibility resource in maintaining an in-
stantaneous balance between demand and supply. The flexibility offered by an aggregation of
Thermostatically Controlled Loads (TCLs) in the distribution network had been modeled as a
stochastic battery. The parameters of battery model (charge/discharge capacity and ramp-rate
limits) were calculated using the information of status and availability (binary signals) from TCLs.
The rated value of TCLs were assumed as known values to the central control as part of the con-
tract with each TCL. If this assumption is not valid, then the proposed model can be extended
with out the loss of generality. In such a case the power measurements shall be calculated at each
TCL and communicated to the central control. For this scenario, the availability information
may not be required as it will be inherently represented by the power value. The studies in [130]
had used historical and cycling constraint (minimum time to stay off/on after a state transition)
information from TCLs for the stochastic limits. The consideration of availability signal from
each TCL had made it possible to compute the stochastic limits of the battery parameters di-
rectly using the present data only. The proposed battery model has been validated for two test
cases. The tracking performance in first test case showed that the stochastic battery model for the
TCL aggregation can be used to model the dynamic capability as a secondary frequency reserve
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resource. The results showed that the satisfaction of stochastic limits is important for successful
tracking of regulation signal. The residual flexibility that is not tracked by the TCLs can be used
to operate alternate resources. The proposed approach requires dedicated communication links
between TCLs and the central control. It may required for meeting the regulatory requirements
of guaranteed availability of the demand response resource. However, the process has to deal
with the measurement uncertainty and the communication delays. The smart meter technology
can facilitate future efforts in this direction.

The activation of flexibility from the demand response impacts the network and may lead to
constraint violations. These violations can be related to voltage levels at critical buses, overloading
the distribution lines or false triggering of protection devices. Therefore, it is highly likely that
the central control performing the demand response shall require to perform the state estimation.
This process leads to the network awareness and can be used to control the flexibility activation in
the network. In the second test case, a combined simulation approach had been presented to assess
the impact of TCLs activation on the network. The distribution network had been simulated using
a dedicated power system modeling and simulation software (DIgSILENT PowerFactory) and the
control scheme was programmed in Python. The Root Mean Square (RMS) simulation [197]
of the network at each time instance had been used to study the impact of demand response
service on voltage in the network. While, the control mechanism can be improved by using
open source optimization toolboxes and methods in Python. The proposed platform enables
to use the features of PowerFactory in the control scheme, thus opening new areas of research
and possibilities. The consideration of the communication delays, accuracy of the communicated
data due to measurement uncertainty at the local control shall further influence the tracking
performance.

The flexibility in a distribution system that is aggregated using a microgrid or cell based approach
requires a suitable retail market model. The technical and commercial activities at Distribution
Network Operator (DNO) are challenged in dealing with distributed generation, a need to main-
tain local reserves and the uncertainties associated with renewables and consumption. The study
in [198] presents a participation model of the microgrid in market clearing optimization model.
The nodal prices at the distribution level can provide basis for remuneration of the flexibility
offered by Distributed Generators (DGs).

The need for monitoring and control in the distribution network shall become inevitable to realize
a high share of Renewable Energy Sources (RES) and increasing level of loads such as Electric
Vehicle (EV). The enormous challenge posed to the DNOs encourage the role of microgrids or
cells in managing the flexibility locally and appearing to the DNO as lumped loads with the
flexibility offers. Th contribution from this thesis can be summarized as,

• Methods for assessing the flexibility requirements considering the spatio-temporal charac-
teristics of uncertainty. Modeling the uncertainty scenario set as a space between first order
dynamic variables and enclosing it with a compact geometric structure. It results in a
representation of the uncertainty dynamics that can be used to plan reserve resources.

• A common flexibility model for distributed resources that captures both the storage and
dynamic capability using a RFM. The reserve potential of distributed generation and the
responsive thermostatically controlled loads was modeled using proposed RFM.

• Geometric methods for aggregating the flexibility offered by distributed resources. Opti-
mization methods for allocating the uncertain demand space between generators capability
envelopes.
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• Using the demand response flexibility defined by RFM in a frequency regulation process.

7.2 Outlook

The emphasis during flexibility assessment had been on modeling the dynamics of the net-demand
in microgrid. These includes the ramp-rate and corresponding ramp duration requirements as
function of the power level. This approach can be extended to the second order dynamic variables
involving ramp acceleration. This step can further improve an assessment of the ramp acceleration
requirements in microgrid and the available potential within the microgrid. The results can be
used to assess the transformer ratings at the point of common coupling with the distribution
network.

The demand response potential in the distribution network can be modeled as a stochastic bat-
tery. The envelope representation of the dynamic capability of the battery can makes it visually
appealing in comparing it with other resources that can participate as secondary frequency re-
serve. Apart from the direct control of the loads, the price based and incentive based approach
can be used. These approaches may lead to less probabilistic confidence on the available demand
response potential but can subside the requirement of communication with the TCLs. However,
for such an application the demand flexibility estimation and activation needs to be assessed for
a large range of possible scenarios. Reliance on the price/incentive based approach may lead to
a high stochastic variation that may not be able to meet the regulatory requirements.

In order to decrease the communication requirements associated with the proposed method of
flexibility exchange, a control mechanism in a Medium Voltage (MV) distribution network is
shown in Figure 7.1. Here, the Resource Control Unit (RCU) between bus 8 and 14 can be a
phase shifting transformer, Thyristor-Controlled Series Compensation or any other apparatus to
control the flow in the tie line.

Each resource can optimize its portfolio based on the resource specific constraints and preferences.
The resources can be TCLs, shift-able loads, generators, Photo Voltaic (PV), storage, domestic
microgrid and any combination. The objective of the resource optimization can be to fulfill its
energy demand and to meet any committed and/or offered flexibility. The proposed RFM can
be used by a resource to model its flexibility. The model can be influenced by the electricity
price, environment and external variables. The complexity of the local portfolio optimization
shall be responsibility of the resource. Each resource may generate two flexibility offers. The
first offer can be for the frequency regulation process. For a TCL, it can be composed of the
status/power, temperature distance from the switching boundary and the availability signal as
discussed in Chapter 4. This approach assumes that rated power of TCL is already known to the
controller. On the contrary if this is not the case, then the availability signal shall be replaced by
the available power signal. This shall require the installation of sensors for measuring the power.
But this approach can facilitate the addition of additional resources in the frequency regulation
service. The second offer can be a flexibility schedule and associated cost. The flexibility related
to the loads can be managed by a dedicated load controller. The resources shall require to design
algorithm on making flexibility bids while optimizing their portfolio. These flexibility bids can
have a stochastic component as well, the availability of which can be a probabilistic value.

The algorithm at Feeder Control Unit (FCU) will have a responsibility to aggregate the flexibility
bids and to define a stochastic battery model. The battery parameters shall be calculated from
the flexibility offers from the RCUs and may have an associated probability of availability. The
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Figure 7.1: MV network with proposed controllers for controlling flexibility in the distribution network.

measurements errors and uncertainties associated with the resource data needs to be taken into
account at this stage. The FCU shall also implement two stages of aggregation. First stage shall
be to aggregate the TCL flexibility and formulate a priority stack. This stack shall be used to
turn On/Off TCLs locally. The second aggregation effort shall be to calculate the parameters
of the stochastic battery parameters of the equivalent energy storage model and the resource
capability envelope. This information is communicated to the aggregator.

The aggregator responsibility is to aggregate the flexibility offers from the Load Control Units
(LCUs). The battery parameters can be represented by the State of Charge (SoC), ramp-up and
ramp-down limits while the capability envelope can be in the form of a polytope. This approach
decreases the computational complexity of the aggregator in dealing with all the potential flex-
ibility resources by a need to communicate to FCUs only. The aggregator communicates the
maximum flexibility activation limits based on the overall system analysis to the FCUs. The
microgrid/cell controller or the DNO shall assess the activation limits at each feeder by analyzing
the network constraints. Such an approach can lead to realistic flexibility offers from FCU that
can be activated based on prevailing network conditions. A limiting factor towards the consider-
ation of flexibility from a far-end resource in the network can be a voltage issue. The frequency
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regulation signal is received from the microgrid/cell based control, DNO or externally from the
energy market.

The flexibility of energy exchange between multiple areas in power system is discussed in [118].
This study defines the reserves that can be shared in the inter-area energy transfer by the polytopic
projections of the flexibility on the desired bus. This method can be used to identify the flexibility
that can be made available in the distribution network at a bus. It can be a useful resource for
avoiding congestion in the distribution network.

The reserve requirement that is obtained as a result of the net-demand assessment in the mi-
crogrid has been used for scheduling generators using a DC Optimal Power Flow (OPF) based
Security Constrained Economic Dispatch (SCED). The implementation of multi-period SCED in-
volving AC OPF introduces quadratic equations in the optimization problem in terms of network
matrices which should be positive semi-definite [199]. But the negative sign with the matrices is
encountered, thus making the quadratic function non-convex [200]. The convex relaxation can be
applied for making it a convex problem. The result will be a better schedule that considers the
reactive power flows and impedance in the network.
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List of Symbols

sign description unit

ai Linear cost coefficients of generator i —
bi Quadratic cost coefficients of generator i —
Bab Susceptance of line between bus a and b [µS]
(1− β) Confidence in the probabilistic result —
emaxk Bus maximum voltage level [V]
emink Bus minimum voltage level [V]
ci Generator i cost factor for Replicator Dynamics algorithm —
CF Generator fuel cost [$]
COD Resource (e.g., generator) over-drive cost [$]
CRd Cost of down-spinning reserve [$]
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CT Total operating cost [$]
∆ Demand envelope —
∆i Generator flexibility envelope —
∆P t Lumped uncertainty in microgrid during tth hour —
∆P tsymb Uncertainty in the demand, wind and PV power for

symb=D,w,PV during tth hour
—

δu Maximum value of uncertain variable u —
δu Minimum value of uncertain variable u —
dcdown,t Distribution vector for down-spinning reserves for cth con-

tingency
—

dcup,t Distribution vector for up-spinning reserves for cth contin-
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—

Xoff
i (t) Duration since state of generator i has been Off [h]

Xon
i (t) Duration since state of generator i has been On [h]

ei Real value of ith bus voltage —
fi Imaginary value of ith bus voltage —
(1− ε) Probability of the constraint satisfaction —
ε∆P Minimum ramp-rate tolerance [MW/h]
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T oni Minimum On time of generator i [h]
Hi High thermal stress limit of generator i [◦F]

Hj
i Half-space coefficients of Sj(∆i) —
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P ti Active power of ith generator at time t —
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Qti Reactive power of ith generator at time t [Mvar]
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R− Ramp-down rate limit of the stochastic battery model [MW/h]
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SRt
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Ssymb Set of all the buses, generator buses and transmission lines

for symb=B,G,L in the network
—

Sj(∆) The jth uncertainty sub-polytope of polytope ∆ —
Sti Thermal stress state of generator i —
S Number of Monte Carlo scenarios
τi Thermal time constant of generator i [min]
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sign description unit

Smf Apparent power flow ’from’ end of a transmission line m [kVA]

Smt Apparent power flow ’to’ end of a transmission line m [kVA]
Smaxm Maximum apparent power flow rating of a transmission

line m
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uδ Number of uncertain variables —
Vj Number of vertices of the jth sub-polytope —
Vj Number of vertices of jth sub-polytope —
w Duration of ramp [min]
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Definitions

Net-demand The difference between total demand and total power generation from renew-
ables

Over-drive Operating a resource beyond its ratings
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with time
Temporal Variation in the value of a variable as function of time
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