
Automated Complexity Analysis
for Imperative Programs

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Moritz Sinn, Msc.
Registration Number 1128872

to the Faculty of Informatics

at the Vienna University of Technology

Advisor: Ass.Prof. Dipl.-Math. Dr. Florian Zuleger
Second advisor: Univ.Prof. Dipl.-Ing. Dr. Helmut Veith

The dissertation has been reviewed by:

Florian Zuleger Tomáš Vojnar

Vienna, 25th August, 2016
Moritz Sinn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Moritz Sinn, Msc.
Arsenal 1/29b, 1030 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. August 2016
Moritz Sinn

iii

Danksagung

Zuvorderst möchte ich Florian Zuleger für die ausgezeichnete und angenehme Zusam-
menarbeit danken. Florian hat mir die Befassung mit dem spannenden Thema der
vorliegenden Dissertation ermöglicht und meine wissenschaftliche Tätigkeit immer her-
vorragend betreut.

Und ich möchte an Helmut Veith erinnern. Helmut verstarb Anfang dieses Jahres plötzlich,
unerwartet und viel zu früh. Selbst mit größter Leidenschaft als Wissenschaftler tätig,
verstand Helmut es wie kaum ein anderer, Begeisterung für die Informatik zu vermitteln.
Seine hervorragenden Vorlesungen in Darmstadt haben mich denn auch zur Mitarbeit
in seiner Gruppe motiviert. Ihm habe ich es zu verdanken, dass mich mein Weg in die
Wissenschaft und nach Wien führte. Helmut stand immer mit Rat und Tat zur Seite und
wusste sowohl bei wissenschaftlichen als auch alltäglichen Problemen zu helfen.

Ich danke Fabian Souczek, Clemens Danninger, Bernhard Gleiss und Raphael Mader für
die aktive Mitarbeit an der Entwicklung unserer Implementierung “loopus”. Ich danke
Thomas Pani für seine Mithilfe bei der Durchführung der Experimente.

Ich danke meinem Kollegen Ivan Radicek für die nette Gesellschaft die er mir während
unserer mehrjährigen Bürogemeinschaft bot.

Weiters danke ich allen Mitgliedern der Forsyte-Gruppe an der TU Wien für viele ergiebige
und inspirierende Diskussionen sowie für die angenehme Arbeitsatmosphäre.

v

Kurzfassung

Unsere Arbeit widmet sich dem Problem der automatisierten Komplexitätsanalyse, welches
alternativ auch als Problem der automatisierten Abschätzung des Ressourcenverbrauchs
formuliert wird. Eine Lösung dieses Problems wird angestrebt durch die Entwicklung
einer Quellcodeanalyse (im Folgenden Bound-Analyse genannt) zur Abschätzung der Aus-
führungskosten eines gegebenen Programms. Der Begriff Kosten wird, wie üblich, durch
ein Kostenmodell definiert, welches jeder Programminstruktion eine Ausführungskost
zuweist. Je nach Anwendungsgebiet können Ausführungskosten beispielsweise in Form
der benötigten Zeit, der benötigten Energie oder der Anzahl auszuführender Operationen
definiert werden. Unsere Bound-Analyse behandelt das gegebene Programm als ein mathe-
matisches Objekt und schätzt die Ausführungskosten bzw. den Ressourcenverbrauch des
Programms mittels automatisierter Anwendung mathematischer und logischer Methoden
ab, ohne das Programm auszuführen. Eine gewonnene Abschätzung wird in Form eines
symbolischen Ausdrucks über den Programmparametern angegeben.

Wir denken, dass Bound-Analysen in den verschiedensten Bereichen von großem Nutzen
sein können. In unserer Arbeit diskutieren wir Anwendungsszenarien in den Bereichen
Software Profiling, Program Understanding, Program Verification, Software Security und
Automatic Parallelization.

In den letzten Jahren wurden großen Fortschritte im Bereich der Bound-Analysen erzielt.
Gegenwärtige Bound-Analysen können die Ausführungskosten beeindruckend kompli-
zierter Code-Beispiele vollautomatisch deduzieren. Dennoch sehen wir zwei maßgebliche
Nachteile aktueller Ansätze im Bereich der Bound-Analysen: (1) Die existierenden Ana-
lysen skalieren nicht ausreichend, um den Quellcode ganzer Programme, welcher oft
Tausende oder Hunderttausende Code-Zeilen umfasst, zu analysieren. (2) Obwohl ge-
genwärtige Ansätze hinreichend genaue Abschätzungen des Ressourcenverbrauchs vieler
und vor allem diffiziler Code-Beispiele berechnen können, werden dennoch die Kosten
mancher, durchaus natürlicher Schleifeniterationsschemata nur sehr unzuverlässig und
ungenau ermittelt.

Mit unserer Arbeit wollen wir dazu beitragen, beide Probleme zu überwinden:

(1) Die Bound-Analyse, welche wir in vorliegender Arbeit präsentieren, geht das Problem
mangelnder Skalierbarkeit mittels einfacher statischer Analyse an: Während existierende
Bound-Analysen mächtige Werkzeuge wie z.B. Abstract Interpretation, Computeralgebra

vii

oder lineare Optimierung verwenden, setzt unsere Analyse auf eine Reduktion des
Problems mittels Programmabstraktion: In einem ersten Schritt abstrahieren wir das
gegebene Programm in ein stark vereinfachtes Programmmodell. Anschließend wenden
wir unseren Algorithmus für die Berechnung der Ausführungskosten auf dem vereinfachten
Programm an.

(2) Unsere Analyse erweitert die Möglichkeiten der Bound-Analyse: Wir erhalten asym-
ptotisch präzise Abschätzungen der Kosten bzw. des Ressourcenverbrauchs für Instanzen
einer Klasse von Schleifeniterationsschemata, für welche existierende Analysen meist
fehlschlagen oder nur grobe Abschätzungen deduzieren können. Instanzen dieser Iterations-
schemata werden häufig in Parser-Implementierungen sowie in String-Matching-Routinen
verwendet. Wir diskutieren mehrere Beispiele in unserer Arbeit. Darüber hinaus ist
unsere Analyse in der Lage, den überwiegenden Teil der in der Literatur diskutierten
Bound-Analyse-Probleme zu lösen.

Unsere Bound-Analyse basiert auf dem abstrakten Programmmodell der Difference
Constraints. Difference Constraints wurden für die Terminationsanalyse eingeführt und
bezeichnen relationale Ungleichungen der Form x′ ≤ y + c. Eine solche Ungleichung
drückt aus, dass der Wert von x im gegenwärtigen Zustand höchstens so groß ist wie
der Wert von y im vorherigen Zustand, erhöht um eine Konstante c ∈ Z. Wir denken,
dass Difference Constraints, neben ihrer Anwendung in der Terminationsanalyse, auch
eine gute Wahl für die Komplexitätsanalyse imperativer Programme darstellen, da die
Komplexität solcher Programme meist aus dem Zusammenspiel von Zählerinkrementen
bzw. -dekrementen der Form x := x+ c und Zähler-Resets der Form x := y (wobei x 6= y)
resultiert, diese Operationen können mittels der Difference Constraints x′ ≤ x+ c und
x′ ≤ y modelliert werden.

Unsere Arbeit trägt zur Entwicklung von Bound-Analyse-Techniken wesentlich bei durch:
(1) Effiziente Abstraktionstechniken: Wir zeigen, das Difference Constraints ein adäquates
abstraktes Programmmodell für die Bound-Analyse bilden.
(2) Einen neuen Bound-Analyse-Algorithmus: Wir definieren und diskutieren einen Algo-
rithmus, welcher den Bereich der Bound-Analysen auf eine Klasse schwer zu analysierender,
aber natürlich vorkommender Schleifeniterationsschemata ausweitet. Wir beweisen die
Korrektheit unseres Algorithmus.
(3) Eine skalierende Bound-Analyse: Unsere Analyse skaliert wesentlich besser als existie-
rende Bound-Analysen.

Unser Beitrag wird durch einen sorgfältigen experimentellen Vergleich auf Drei verschiede-
nen Benchmarks unterstützt: Wir vergleichen unsere Implementierung mit gegenwärtigen
Bound-Analyse-Tools auf (a) einer großen Benchmark, bestehend aus C-Code, (b) einer
Benchmark, welche Code-Beispiele aus der Literatur enthält, und (c) einer Benchmark,
welche schwierige Schleifeniterationsschemata beinhaltet, die wir aus dem Quellcode
echter Programme extrahiert haben.

Wie die meisten existierenden Ansätze im Bereich der Bound-Analysen zielt unsere
Analyse auf eine obere Abschätzung der Ausführungskosten.

Abstract

Our work contributes to the field of automated complexity and resource bound analysis
(bound analysis) that develops source code analyses for estimating the cost of running a
given piece of software. The term cost is usually defined by a cost model which assigns an
execution cost to each program instruction or operation. Depending on the application
domain, the cost is estimated, e.g., in terms of consumed time, consumed power, or the
number of executed statements. A bound analysis treats the program under scrutiny
as a mathematical object, inferring a bound on the execution cost (with respect to the
given cost model) by means of automated formal reasoning. The computed bound is
usually expressed by a symbolic expression over the program’s parameters.

We argue that bound analysis could be applied with great benefits, e.g., in the areas of
software profiling, program understanding, program verification, software security, and
automatic parallelization. We state several application scenarios in this thesis.

In recent years, the research on bound analysis has made great progress. State-of-the-
art bound analysis techniques can automatically infer execution costs for impressively
complicated code examples. Nevertheless, we see two main drawbacks of current bound
analysis techniques: (1) Present approaches do not scale sufficiently for analyzing real
code, which often consist of thousands or hundreds of thousands of lines of code with
many nested conditionals. (2) Though existing approaches can infer tight bounds for
many challenging examples, they nevertheless grossly over-approximate the cost of certain
code patterns that are common in real source code.

With our work we aim towards overcoming both problems:

(1) The bound analysis we present in this work tackles the scalability problem by
simple static analysis: In contrast to existing bound analysis techniques, which employ
general purpose reasoners such as abstract interpreters, computer algebra tools or linear
optimizers, we take an orthogonal approach based on the well-known program abstraction
methodology: We first abstract a given program into an abstract program model by
means of static analysis. We then apply our bound algorithm on the abstracted program,
which is a simplified version of the original program.

(2) Our bound algorithm extends the range of bound analysis. It infers tight bounds
for a class of loop iteration patterns on which existing approaches fail or infer bounds
that are not tight. Instances of such loop iterations can often be found in parsing and

ix

string matching routines. We state several examples in this work. At the same time
our approach is general and can handle most of the bound analysis problems which are
discussed in the literature.

Our bound analysis is based on the abstract program model of difference constraints.
Difference constraints have been used for termination analysis in the literature, where
they denote relational inequalities of the form x′ ≤ y + c, and describe that the value of
x in the current state is at most the value of y in the previous state plus some constant
c ∈ Z. Intuitively, difference constraints are also a good choice for complexity and
resource bound analysis because the complexity of imperative programs typically arises
from counter increments resp. decrements of form x := x+ c and resets of form x := y
(where x 6= y), which can be modeled naturally by the difference constraints x′ ≤ x+ c
resp. x′ ≤ y + 0.

Our work contributes to the field of automated complexity and resource bound analysis
by:
(1) Providing efficient abstraction techniques and demonstrating that difference constraints
are a suitable abstract program model for automatic complexity and resource bound
analysis.
(2) Providing a new, soundness proven bound algorithm which extends the range of
bound analysis to a class of challenging but natural loop iteration patterns that can be
found in real source code.
(3) Presenting a bound analysis technique which is more scalable than existing approaches.

Our contributions are supported by a thorough experimental comparison on three
benchmarks: We compare our implementation to other state-of-the-art bound analyses
(a) on a large benchmark of real-world C code, (b) on a benchmark built of examples
taken from the bound analysis literature and (c) on a benchmark of challenging iteration
patterns which we found in real source code.

As most approaches to bound analysis, our analysis infers upper bounds on the execution
cost of a program.

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Complexity, Resource Bounds and Cost 2
1.2 Application Domains . 4
1.3 Aim of the Work and Methodological Approach 5
1.4 Motivation and Overview . 7
1.5 Structure of the Work . 18
1.6 Related Work and State of the Art . 19
1.7 Contributions . 25

2 Program Model and Abstraction 27
2.1 Difference Constraint Programs . 28
2.2 Program Abstraction . 30
2.3 Example . 33

3 Algorithm 37
3.1 Formal Problem Statement and Basic Definitions 38
3.2 Bound Algorithm for Lossy Vector Addition Systems 41
3.3 Bound Algorithm for DCPs with Constant Resets 43
3.4 Bound Algorithm for DCPs . 46
3.5 Reasoning Based on Reset Chains . 51
3.6 Finding Local Bounds . 62
3.7 Example . 63
3.8 Path-Sensitive Reasoning . 65
3.9 Full Bound Algorithm . 77
3.10 Parametrization by a Cost Model . 78
3.11 Comparison to Invariant Analysis . 79
3.12 Relation to Amortized Complexity Analysis 80

xi

4 Extensions 83
4.1 Extensions of the Abstraction Procedure 83
4.2 Extensions of the Bound Algorithm . 95

5 Evaluation 111
5.1 Implementation . 111
5.2 Experiments . 114
5.3 Limitations of Our Implementation . 119

6 Conclusion 121
6.1 Discussion on the Scalability of Our Approach 122
6.2 Reflection on Research Methodology . 123
6.3 Open Issues and Future work . 123
6.4 Detailed Comparison to Related Work . 125

7 Proofs 129
7.1 Soundness of Basic Bound Algorithm . 130
7.2 Soundness of Reasoning on Reset Chains 136
7.3 Soundness of Path-Sensitive Reasoning . 146

List of Figures 161

List of Tables 163

List of Definitions 164

Bibliography 167

CHAPTER 1
Introduction

Complexity is a rigorous notion of efficiency on the level of algorithms. It is well known that
the same functionality can be implemented in various ways, with some implementations
consuming more time and/or memory space than others. A typical example is the task of
sorting a list of n numbers: A naive implementation needs n2 computation steps whereas
efficient algorithms such as heapsort perform the same task in n log(n) steps at most.

An enormous body of literature has been written on the manual analysis of algorithms.
The standard book [CLRS01] states that “Analyzing an algorithm has come to mean
predicting the resources that the algorithm requires.” Analysis of algorithms is an essential
subject of any computer science curriculum because resources such as computation
power, time, memory, network bandwidth, etc., are limited and often short (consider, e.g.,
embedded systems, sensor networks, or smart phones) and it is therefore important to
find and implement efficient solutions.

However, modern software is implemented by hundreds of thousands of lines of code. A
pen-and-paper reasoning as advocated for the analysis of algorithms is highly intractable
for real implementations. The field of automated complexity and resource bound analysis
(short: bound analysis) (e.g., [GZ10, ADFG10, BEF+16, AAGP11]) is dedicated to the
development of methods for inferring bounds on the resource consumption of software by
an automated analysis of the program’s source code. Such an analysis treats the program
under scrutiny as a mathematical object, inferring a bound on the program’s resource
consumption by means of automated formal reasoning.

To this day, bound analysis remains an academic research discipline. As we elaborate in
Section 1.6, and Section 6.4, current approaches to automated resource bound analysis
lack applicability for several reasons, one important being their poor performance char-
acteristics. While impressive academic examples can be solved, present approaches do
not scale up to real-world code. Moreover, existing approaches fail on common iteration

1

1. Introduction

void foo(uint n) {
int i = n;
while(i > 0) {

i = i - 1;
}

}

Cost: 4n + 3

void foo(uint n) {
int i = n;
while(i > 0) {

ConsumeR(2);
i = i - 1;

}
}

Resource Bound: 2n

void foo(uint n) {
int i = n;
while(i > 0) {

AllocateR(2);
i = i - 1;
FreeR(1);

}
}

Resource Bound: n

(a) (b) (c)

Figure 1.1: Examples for Bound Analysis. (a) Cost Model: The cost of an assignment is 2,
the cost of an operation (comparison or decrement) is 1, (b) Cost Model: ConsumeR(2)
consumes 2 units of R, (c) AllocateR(2) allocates 2 units of R, FreeR(1) deallocates
1 unit of R

patterns which can, e.g., be found in parsing and string matching routines. With our
work we aim towards overcoming these drawbacks.

1.1 Complexity, Resource Bounds and Cost

Whereas the analysis of algorithms is mainly concerned with the asymptotic complexity
and resource consumption of algorithms, the field of automated complexity and resource
bound analysis analyzes the cost of executing concrete implementations. Depending on
the application domain, the unit of cost is a time unit, a power unit or other. The term
cost is usually further defined by a cost model which assigns an execution cost to each
program instruction or operation. A bound on the total execution cost of a program is
then expressed by a symbolic expression over the program’s parameters.

As an example, consider Figure 1.1 (a). If we assume that an assignment costs 2 units
and that the operations comparison and decrement cost 1 unit each, a bound on the
overall cost of executing the program is 4n+ 3: Each of the n iterations of the loop costs
4 (1 comparison, 1 decrement and 1 assignment), initially the assignment of n to i costs
2, the final comparison evaluating the loop condition to false costs 1.

In particular, a bound on the consumption of a resource R is obtained by assigning cost
to those instructions or operations which consume R. The cost that is assigned to an
instruction I must be a bound on the amount of R that may be consumed when executing
I. E.g., assume that we add the statement ‘ConsumeR(2)’ to the body of the loop in
Figure 1.1 (a) as shown in Figure 1.1 (b). Let us assume that this statement consumes
2 units of R. Using a cost model which assigns the cost 2 to ‘ConsumeR(2)’ and the

2

1.1. Complexity, Resource Bounds and Cost

cost 0 to all other instructions, we obtain the bound 2n on the consumption of R for
Figure 1.1 by a straightforward manual reasoning.

Note, however, that resources such as memory can also be freed. This can be modeled by
assigning negative costs. E.g., consider Figure 1.1 (c) where the resource R is allocated
and deallocated. For Figure 1.1 (c), we expect a resource bound analysis to infer the
bound n on the total consumption of R.

Uniform Cost Model. In our example we have assigned constant costs to single
instructions or operations. Such a cost model is called a uniform cost model. Depending
on the application area, a uniform cost model might not always be accurate. For an
example, see our discussion on worst case execution time analysis in Section 1.6. On the
other hand, a uniform cost model simplifies the bound analysis problem and is sufficient
for many application areas, of which we sketch some in Section 1.2. The approach we
present in this thesis assumes a uniform cost model.

Program Complexity and the Back-Edge Metric. The examples in Figure 1.1
contain an instruction which we did not consider so far, namely the back jump to the
while statement at the end of a loop iteration. [CHS15] calls the cost model which assigns
the cost 1 to each back jump instruction and the cost 0 to all other instructions or
operations the back-edge metric. Using the back-edge metric we obtain the cost n for the
examples in Figure 1.1 because in total n back jumps are executed during program run.
The back-edge metric is interesting because it reflects the asymptotic time complexity
of a program: independent from the concrete definition of what is to be considered as
computation step, the time complexity of an algorithm or program is asymptotically
determined by the number of times that instructions can be repeated during program
execution. In our upcoming discussions we will suppose the back-edge metric to exemplify
the bound analysis problem on the respective examples. Throughout this work we refer
to the back-edge metric when we speak of the complexity of a program. E.g., we say that
the complexity of the examples in Figure 1.1 is n because n is the cost of executing the
examples when the back-edge metric is assumed. Note, however, that our analysis can be
easily instrumented by other (uniform) cost models. We discuss such instrumentations in
Section 3.10 and Section 3.10.1.

Loop Bound. We use the back-edge metric also to define the term loop bound: Consider
the loop in Figure 1.1. We call the while-instruction the header of the loop. A loop
bound for the loop in Figure 1.1 is a bound on the number of times that any back jump
to the loop’s header (the while-instruction) can be executed. We thus have that n is a
loop bound for the single loop in Figure 1.1. Generally: Let l denote the header of a
loop L, i.e., l is the location from which L is entered. A bound for L is a bound on the
number of times that a back jump to l is executed.

Worst-Case Bounds. Depending on the application area, different kinds of bounds
on the cost of a program execution may be required. For example, a bound can be a

3

1. Introduction

lower-, an average-, or a worst-case bound. Like most approaches to bound analysis,
our approach aims at inferring worst-case bounds. More precisely, we consider any
upper bound on the worst-case cost to be sound. Obviously, an upper bound on the
worst-case cost is only of interest if it is tight, i.e., if it is close to the worst-case cost of
the program. We therefore aim at developing methods which obtain tight upper bounds
on the worst-case cost.

1.2 Application Domains

Software Profiling. In industry profiling, i.e., monitoring resource consumption during
program run, is the state-of-the-art for analyzing the performance behaviour of software
products. The corresponding analysis tools, called Profilers, link the resource consumption
that they observe to the statements by which these resources are allocated. However,
profiling can only experiment with a limited number of execution scenarios and will thus
always miss other scenarios which may later cause performance problems in operation
mode. Because profiling can only be applied when the product is already in an executable
stage, a performance bottleneck is detected late in the development cycle. In fact,
performance bugs, i.e., usability restrictions due to poor program performance, are
omnipresent in modern software and, e.g., familiar to every smart phone user. [ZAH11]
states that “performance bugs take more time to fix, need to be fixed by more experienced
developers and require changes to more code than non-performance bugs”. Discovering and
fixing performance bugs is subject to an intensive research in software engineering (e.g.,
[ZAH11, JSS+12, NJT13, KNP+10]). However, avoiding performance bugs is obviously
preferable over fixing performance bugs. Moreover, the late detection of performance
bugs can cause high costs. The basic requirement for avoiding performance bugs is
that the programmer must be aware of badly performing implementation parts already
early during software development. A tool that informs about the worst-case amount of
resources which may be consumed when executing a given piece of code, would obviously
be of great help. We propose bound analysis as a means to avoid performance bugs.

With respect to the detection and analysis of performance bugs, bound analysis has three
important advantages over the currently common profiling approach:

• It covers all possible execution scenarios. I.e., if a bound on the resource con-
sumption is inferred, this bound is guaranteed to hold for all executions of the
software.

• Isolated parts of the software, e.g., functions, methods, sub-routines, etc., can be
analyzed independently, even if the software as a whole is not (yet) in an executable
stage. This allows early detection of (potential) performance problems.

• Bound analysis expresses resource consumption in terms of the input parameters of
the program (or program part) under scrutiny. This helps understanding the cause
of performance problems.

4

1.3. Aim of the Work and Methodological Approach

We conclude that bound analysis can complement classical profiling in industrial software
development.

We now sketch further potential application domains of bound analysis:

Program Understanding. Complexity and resource bound analysis can be used to
explore unfamiliar code or to annotate library functions by their performance character-
istics; [JSS+12] states that a substantial number of performance bugs can be attributed
to a “wrong understanding of API performance features”.

Program Verification. In many applications such as embedded systems there is a
hard constraint on the availability of resources like CPU time, memory, bandwidth, etc.
Limits on the resource consumption must not be exceeded during program run, otherwise
this may cause the program to behave unexpectedly. For example, the program may
crash. Or, in the case of real-time systems, an intermediary result that is not available in
time may cause the computation of overall wrong results (see our discussion on worst case
execution time analysis in Section 1.6). Exceeding resource limits during program run
is thus to be considered a safety error and a violation of functional correctness. Bound
analysis can serve as a means to prove the absence of such bugs: By computing an upper
bound on the resource consumption we can show that exceedance of the given limits can
never happen.

Software Security. In the field of security, bound analysis could be applied for deriving
a bound on how much secret information is leaked in order to decide whether this leakage
is acceptable [Smi09]. For example, consider a loop where up to x bits of information
are leaked in each iteration. A bound on the total number of loop iterations allows to
conclude whether or not the overall leakage is sufficient to guess the secret. Our analysis
could be a useful tool in the process of proving that the amount of leaked information is
not sufficient for obtaining the secret.

Automatic Parallelization. A research problem still unsolved is how we can take
advantage of the modern multi-core processors. An attractive idea is the automatic
parallelization of sequential code. Besides understanding the data dependencies in the
code, two fundamental questions need to be answered in order to decide whether to
parallelize a certain loop under consideration: How often is the loop repeated? What
is the cost of a single loop iteration? Both questions can be answered by automated
resource bound analysis.

1.3 Aim of the Work and Methodological Approach
Our goal is to develop an automatic complexity and resource bound analysis for im-
perative programs. Given that the underlying halting problem is undecidable [Tur36]
we nevertheless aim at a practical solution. By “practical solution” we refer to the

5

1. Introduction

following two essential properties which our solution shall comply with: 1) We want to
automatically infer the program complexity implemented by typical iteration patterns
used in imperative code. 2) Our solution shall be efficient, meaning that 2a) bounds are
inferred in reasonable time, 2b) resources of a standard desktop computer are sufficient
to run our analysis on real world software, 2c) our analysis fails fast if no bound can be
inferred.

As our demands are high, we restrict ourselves to the following essential program
paradigms in order to make a solution technically feasible within the limits of a PhD
thesis: Our analysis handles integer programs with loops (or tail-recursion). Note that
this setting allows the handling of non-recursive function calls by function inlining. We
leave the extension of our approach to the handling of data structures, pointers and
recursion for future work. We note that recursion is not often used in C programs (only
91 out of 1751 functions in our benchmark, see Section 5.2.1) and that recursive programs
often turn out to be tail-recursive after deleting all instructions which are irrelevant
for the program’s complexity (program slicing). Furthermore, programs using data
structures can, in principle, be modeled by pure integer programs using techniques such
as [MTLT10, GLAS09]. The examples which we discuss next (Section 1.4) demonstrate
that inferring the complexity of integer programs with loops is very challenging for
iteration patterns as they can be found in real-world source code.

Methodologically we follow an approach that is well-established in computer science,
in particular in the area of computer aided verification. Given that every non-trivial
program property is undecidable (Rice’s theorem), many advances in program verification
are due to the development of suitable program abstractions and abstraction mechanisms.
A program abstraction is suitable, if inferring the desired property becomes feasible in the
abstraction and crucial information about the program can be maintained by appropriate
abstraction mechanisms. This methodology underlies many approaches to software model
checking and program analysis.

In order to identify suitable program abstractions, abstraction mechanisms, and algo-
rithms, we adopt an interplay between theory and practice: We develop a theoretical
framework for bound analysis and, at the same time, implement our ideas into a prototype
tool. Applying our implementation on real-world software will help to identify practically
relevant problems, thus spurring further research on the theoretical framework. More
precisely, we develop our solutions along the following research cycle:

1. We study real-world code in order to identify typical iteration patterns and chal-
lenging complexity behaviour.

2. Generalizing from our observations, we identify an abstract program model which
captures the observed implementation patterns.

3. We design algorithms which compute the complexity of programs formulated in
the abstract program model.

6

1.4. Motivation and Overview

4. We implement our algorithms and run experiments on real source code in order
to find further interesting code bases which serve as our field-of-study in the next
iteration.

By means of this methodology we iteratively adjust both our abstract program model
and the algorithms until we can handle a large class of real-world code in a scalable and
predictable manner.

Our goal can thus be further concretized as follows:

1. We identify a suitable abstract program model for bound analysis with desirable
properties such as the decidability of the halting problem. Most of the complexity
behaviour of real-world imperative programs shall be expressible in our abstract
program model.

2. We devise correctness-proven algorithms for bound analysis and amortized com-
plexity analysis of programs formulated in the abstract program model.

3. We implement our algorithms and abstraction mechanisms in a publicly available
tool which will allow us to prove the practical relevance of our research by means
of experiments on open-source code.

Our implementation is intended to handle programs written in the C programming
language. The concepts, algorithms, etc., we develop shall, however, be general enough
to be applicable to other imperative languages as well.

1.4 Motivation and Overview
In the following we motivate our algorithm and technical solutions by four typical
challenges to bound analysis. For each challenge, the discussion is structured as follows:
In a first subsection we motivate and explain the problem that is posed by the challenge.
In a second subsection we state intuition on how our algorithm copes with the challenge.
The third subsection refers to those parts of this thesis where the previously summarized
technical solution is detailed.

In order to give the reader some general orientation, we outline the overall structure of
the thesis in Section 1.5.

1.4.1 Challenge I: Amortized Complexity

Amortized complexity analysis [Tar85] aims at inferring the worst-case average cost over
a sequence of calls to an operation or function rather than the worst-case cost of a single
call. In (resource) bound analysis the difference between the single worst-case cost and
the amortized cost is relevant, e.g., if a function f is called inside a loop: Assume the
loop bound is n and the single worst-case cost of a call to f is also n. The cost of a

7

1. Introduction

void tarjan(uint n) {
uint i = n;
uint j = 0; //stack is empty

l1 : while (i > 0) {
i--;
j++; //push;

l2 : while (j > 0 && ?) //pop
j--;

}
}

Total Worst-Case Cost of “push” and “pop”: 2n

lb

l1 le

l2

[i]′ ≤ [n]
[j]′ ≤ [0]τ0

[i]′ ≤ [i]− 1
[j]′ ≤ [j] + 1τ1

[i]′ ≤ [i]
[j]′ ≤ [j]− 1

τ2

[i]′ ≤ [i]
[j]′ ≤ [j] τ3

(a) (b)

Figure 1.2: (a) Example tarjan: Model of Tarjan’s classical example [Tar85] for
amortized complexity analysis, with ‘?’ denoting non-determinism. (b) DCP obtained
by abstraction from tarjan

single call to f amortized over all n calls might, however, be lower than n, e.g., 2. In this
case the total worst-case cost of iterating the loop is 2n rather than n2. Note that in
our non-recursive setting function calls can always be inlined. The amortized analysis
problem thus boils down to the problem of inferring the cost of executing an inner loop
averaged over all executions of the outer loop.

Tarjan [Tar85] motivates amortized complexity analysis on the example of a program
which executes n stack operations StackOp. Each StackOp operation consists of a push
instruction, adding an element to the stack, followed by a pop instruction, removing an
arbitrary number of elements from the stack. Initially the stack is empty. The cost of
a single push is 1 and the cost of a single pop is the number of elements removed from
the stack. Tarjan points out that the worst-case cost of a single pop is n: the nth pop
instruction may pop n elements (cost n) from the stack, if the previous pop instructions
did not remove any elements from the stack. I.e., the worst-case cost of a single StackOp
operation is n+ 1. Nevertheless all n operations StackOp cannot cost more than 2n in
total since we cannot remove more elements from the stack than have been added to the
stack and thus the overall cost of the pop instructions is bounded by the total number
of push instructions (n by assumption). The amortized cost of StackOp, i.e., the cost of
StackOp averaged over the sequence of all n operations, is therefore 2.

Example tarjan in Figure 1.2 (a) shows a model of Tarjan’s example in form of two
nested loops: All calls to StackOp, push and pop are inlined, j models the stack size, the
inner loop models the pop operation. The body of the outer loop models the StackOp
operation. The symbol ‘?’ denotes non-determinism. Considering Example tarjan, the
problem posed by Tarjan amounts to the problem of inferring a bound on the number of

8

1.4. Motivation and Overview

times the outer and the inner loop of the example may be executed.

In accordance with Tarjan’s example, the inner loop can be executed n times on a single
execution of the outer loop (the worst-case cost of a single pop is n). But averaged over
all n executions of the outer loop, the inner loop can only be executed once at most per
execution of the outer loop (the amortized cost of a single execution of the outer loop is
2). Current approaches to automated complexity and resource bound analysis from the
literature [GG08, GMC09, GJK09, GZ10, BHHK10, ZGSV11, AGM13, BEF+16] are not
able to reason about the amortized cost of inner loop executions: For Example tarjan
these approaches assume that the inner loop can be executed n times on each execution
of the outer loop and therefore infer the worst-case cost of n2 rather than 2n.

We sketch next how our approach automatically infers the precise overall cost of 2n of
Example tarjan.

1.4.2 Sketch of Our Analysis I: Transition Bounds

Our approach is based on the observation that - in most cases - the complexity of
imperative programs evolves from the interaction of loop counters. More precisely, the
number of times a given loop or nested loop construct can be executed depends on
the interplay between loop counter decrements, increments and resets. This is, in fact,
intuitive to every programmer: In imperative programs control is typically separated
from data. Counter variables are used to control the number of repetitions of a code
sequence (a loop), other variables are used to perform the actual data manipulations. We
conclude that an effective complexity analysis for imperative code has to track decrements,
increments, and resets of counter variables.

One of our our key insights is that difference constraints (DCs) provide a natural
abstraction of the standard manipulations of counters in imperative programs. Difference
constraints have been introduced by Ben-Amram for termination analysis in [Ben08],
where they denote relational inequalities of the form x′ ≤ y + c, and describe that the
value of x in the current state is at most the value of y in the previous state plus some
constant c ∈ Z. We call a program whose transitions are given by a set of difference
constraints a difference constraint program (DCP). As we elaborate in Section 2.2,
counter increments and decrements, i.e., x := x + c resp. resets, i.e., x := y, can be
modeled by the DCs x′ ≤ x + c resp. x′ ≤ y. Our approach exploits the expressive
strength of DCs, distinguishing between counter resets, counter increments and counter
decrements in the reasoning.

We now sketch how our approach infers the linear cost for Example tarjan:

1. Program Abstraction. We abstract the program to a DCP over N as shown in
Figure 1.2 (b). The abstract variable [j] represents the program expression max(j, 0).
2. Finding Local Bounds. We identify [j] as a variable that limits the number of
executions of transition τ2: [j] decreases on each execution of τ2 ([j] takes values over N).
We call [j] a local bound for τ2. Accordingly we identify [i] as a local bound for τ1 and τ3.

9

1. Introduction

3. Bound Analysis. Our bound algorithm (Chapter 3) computes transition bounds, i.e.,
(symbolic) upper bounds on the number of times program transitions can be executed.
The main idea of our transition bound algorithm is to estimate how often and by how
much the value of the transition’s local bound may increase during program run. This
reasoning is implemented by our function TB(τ) which computes a transition bound for
transition τ . We give an intuition on how our function TB(τ) computes transition bounds:
Assume we want to infer a bound on the overall cost of the StackOp operation, i.e., a
bound on the total number of times that transitions τ1, modeling the push instruction,
and τ2, modeling the pop instruction, can be executed. Our algorithm computes

TB(τ1) (1)→ TB(τ0)× [n]
(2)→ 1× [n]
= [n]

where
(1) because the local bound [i] of τ1 is initially (on τ0) set to [n] and never increased or
reset, (2) because TB(τ0) = 1 since transition τ0 is not part of any loop and can thus
only be executed once.

Our algorithm computes TB(τ2) as follows:

TB(τ2) (1)→ [0] + TB(τ1)× 1
(2)→ 0 + [n]× 1
= [n]

where
(1) because τ2 has local bound [j] and [j] is initially set to [0] on τ0; further [j] is
incremented by 1 on τ1, i.e., the value of the local bound [j] of τ2 can be incremented up
to TB(τ1) times by 1,
(2) our algorithm obtains TB(τ1) = [n] by a recursive call.

We have TB(τ1) + TB(τ2) = [n] + [n] = 2n because the parameter n of Example tarjan
has type unsigned. We thus obtain 2n as a bound on the total cost of the StackOp
operation.

1.4.3 Overview I

We formally define our abstract program model of difference constraint programs in
Section 2.1. We discuss how we obtain abstract programs from concrete imperative code
in Section 2.2.

Chapter 3 presents our bound algorithm. In Section 3.1 we give a formal definition of
the problem that is solved by our algorithm and some basic but unavoidable definitions.

10

1.4. Motivation and Overview

twoSCCs(uint n, uint m1, uint m2) {
int y = n;
int x;

l1 : if(?)
x = m1;

else
x = m2;

l2 : while(y > 0) {
y--;
x = x + 2;

}
int z = x;

l3 : while(z > 0)
z--;

}

Bound of loop at l3: max(m1 ,m2) + 2n

lb

l1

l2

l3 le

[y]′ ≤ [n]τ0

τ1
[y]′ ≤ [y]
[x]′ ≤ [m1][y]′ ≤ [y]

[x]′ ≤ [m2] τ2

τ3
[y]′ ≤ [y] − 1
[x]′ ≤ [x] + 2

[z]′ ≤ [x];τ4

τ5
[z]′ ≤ [z] − 1

(a) (b)

Figure 1.3: (a) Example twoSCCs, (b) DCP obtained by abstraction from twoSCCs

In Section 3.2 we state our bound algorithm restricted to a special case of our abstract
program model, namely lossy vector addition systems (VASS). A DCP is a VASS if
variable updates are of form x′ ≤ x+c. In a VASS, updates of form x′ ≤ y+c with y 6= x
are only allowed on the initial transition τ0. E.g., the abstraction of Example tarjan in
Figure 1.2 (b) is a VASS. In Section 3.2, we discuss in detail how our algorithm infers
the precise cost of Example tarjan.

In Section 3.12 we discuss how our approach relates to Tarjan’s classical amortized
analysis technique by means of potential functions.

In Section 3.3 we generalize our bound algorithm to a broader set of abstract programs,
allowing updates of form x′ ≤ y + c with y 6= x if y is a symbolic constant.

In Section 3.6 we describe how we determine local bounds.

Next, we state an example of a general DCP and sketch how our bound algorithm infers
bounds for general DCPs.

1.4.4 Challenge II: Invariants and Bound Analysis

Consider Example twoSCCs in Figure 1.3 (a). By ‘?’ we denote non-determinism that
arises from a condition which is not modeled in our analysis like, e.g., a function call (that
cannot be inlined), a pointer dereference or some instruction accessing the heap. Note

11

1. Introduction

that the abstracted DCP of Example twoSCCs, shown in Figure 1.3 (b), is a general
DCP: The update [z]′ ≤ [x] on τ4 is not expressible in a VASS. Moreover, x is a variable
rather than a symbolic constant.

Assume we want to compute a bound on the number of times that the second loop
(at l3) of Example twoSCCs can be executed. It is easy to infer x as a bound on the
possible number of iterations of the second loop. However, when it comes to obtaining
a bound in the program parameters the difficulty lies in finding an invariant of form
x ≤ expr(n,m1 ,m2) where expr(n,m1 ,m2) denotes an expression over the program
parameters n,m1 ,m2 . Here, the most precise invariant x ≤ max(m1 ,m2) + 2n cannot
be computed by standard abstract domains such as octagon or polyhedra [Min06]: these
domains are convex and cannot express non-convex relations such as maximum. The most
precise approximation of x in the polyhedra domain is x ≤ m1 + m2 + 2n. Unfortunately,
as is well-known, the polyhedra abstract domain does not scale to larger programs and
needs to rely on heuristics for termination.

Our approach does not rely on abstract interpretation for inferring the bound m1 +m2 +2n
for the loop at l3. Our analysis implements an alternative idea, inferring invariants of
form x ≤ expr(~n), where ~n denotes the program parameters, by means of bound analysis.
We give an intuition on this idea in the next section, where we sketch how our bound
algorithm infers bounds for general DCPs such as the abstraction of Example twoSCCs
in Figure 1.3 (b).

1.4.5 Sketch of Our Analysis II: Variable Bounds

Besides transition bounds, our analysis also infers variable bounds, i.e., (symbolic) upper
bounds on variable values. Similar to our reasoning on transition bounds, the main idea
is to reason how much and how often the value of a variable may increase during program
run.

Our core algorithm for general DCPs (Section 3.4) is based on a mutual recursion between
variable bound analysis (“how much”, function VB(v)) and transition bound analysis
(“how often, function TB(τ)). We sketch how our algorithm infers a bound for the loop
at l3 of Example twoSCCs:

Consider the DCP abstraction of Example twoSCCs shown in Figure 1.3 (b). Transition
τ5 corresponds to the loop at l3. We have that [z] is a local bound for τ5 and [y] is a local
bound for τ3.

Our algorithm computes a transition bound for τ5 in Figure 1.3 (b) as follows:

TB(τ5) (1)→ TB(τ4)×VB([x])
(2)→ 1×VB([x])
= VB([x])
(3)→ TB(τ3)× 2 + max([m1], [m2])

12

1.4. Motivation and Overview

(4)→ ([n]× TB(τ0))× 2 + max([m1], [m2])
(5)→ ([n]× 1)× 2 + max([m1], [m2])
= 2× [n] + max([m1], [m2])

We discuss the computation steps:
(1) The local bound [z] of τ5 is set to [x] on each execution of τ4.
(2) We compute TB(τ4) = 1 since τ4 cannot be repeated.
(3) Variable [x] is incremented by 2 on each execution of τ3. Further [x] is initially set to
either m1 or m2.
(4) We compute TB(τ3) = [n]×TB(τ0), because the local bound [y] of τ3 is set to [n] on
τ0.
(5) We compute TB(τ0) = 1 because τ0 cannot be repeated.

Finally we get m1 + m2 + 2n as bound for the loop at l3 in Example twoSCCs because
n,m1,m2 have type unsigned and therefore [n] = n, [m1] = m1 and [m2] = m2.

We point out the mutual recursion between TB and VB: TB(τ5) calls VB(x), which in
turn calls TB(τ3). We highlight that the variable bound VB(x) (corresponding to the
invariant x ≤ max(m1,m2) + 2n) is established during the computation of TB(τ5).

1.4.6 Overview II

In Section 3.4 we state our bound algorithm for general DCPs. In Section 3.11 we
discuss how our reasoning is substantially different from invariant analysis by abstract
interpretation. In Section 3.10 we show how our analysis can be instrumented by a
uniform cost model through the VB function. The general idea is to introduce a fresh
counter c which is initially set to 0. We increment the counter c on a transition τ by
the cost of executing the instructions and/or operations on τ . Note that this cost is
determined by the cost model. Our variable bound method can then be applied to c
(computing VB(c)) in order to infer an upper bound on the overall worst-case cost, which
is modeled by c.

We prove soundness of our bound algorithm in Section 7.1.

1.4.7 Challenge III: Real-World Amortized Analysis

Example xnu in Figure 1.4 (a) is a representative of a class of iteration patterns that we
found in parsing and string matching routines during our experiments. In these loops
the inner loop iterates over disjoint partitions of an array or string, where the partition
sizes are determined by the program logic of the outer loop.

Example xnu is taken from the SPEC CPU2006 benchmark [spe]. It is a sliced version
of function XNU in 456.hmmer/src/masks.c.

The outer loop of Example xnu partitions the interval [0, len] into disjoint sub-intervals
[beg, end]. The inner loop iterates over the sub-intervals. Therefore the inner loop has an

13

1. Introduction

void xnu(int len) {
int beg,end,i = 0;

l1 while(i < len) {
i++;

l2 if (?)
end = i;

l3 if (?) {
int k = beg;

l4 while (k < end)
k++;

end = i;
beg = end;

} else if(?) {
end = i;
beg = end;

}
l5 }
}

Complexity: 2×max(len, 0)

lb

l1

l2

l3

l4l5

le

[e− b]′ ≤ [0];
[i− b]′ ≤ [0];
[l − i]′ ≤ [l];

τ0

[e− b]′ ≤ [e− b]
[i− b]′ ≤ [i− b] + 1
[l − i]′ ≤ [l − i]− 1

τ1

[e− b]′ ≤ [i− b]
[i− b]′ ≤ [i− b]
[l − i]′ ≤ [l − i]

τ2a
[e− b]′ ≤ [e− b]
[i− b]′ ≤ [i− b]
[l − i]′ ≤ [l − i]

τ2b

[e− k]′ ≤ [e− b]
[e− b]′ ≤ [e− b]
[i− b]′ ≤ [i− b]

[l − i]′ ≤ [l − i]

τ3a
[e− b]′ ≤ [e− b]

[i− b]′ ≤ [i− b]
[l − i]′ ≤ [l − i]

τ3b

[e− b]′ ≤ [0]
[i− b]′ ≤ [0]

[l − i]′ ≤ [l − i]

τ3c

[e− b]′ ≤ [0]
[i− b]′ ≤ [0]
[l − i]′ ≤ [l − i]

τ5

[e− b]′ ≤ [e− b]
[i− b]′ ≤ [i− b]

[l − i]′ ≤ [l − i] τ6

[e− k]′ ≤ [e− k]− 1
[e− b]′ ≤ [e− b]
[i− b]′ ≤ [i− b]
[l − i]′ ≤ [l − i]

τ4

(a) (b)

Figure 1.4: Example xnu: (a) Sliced version of function XNU in 456.hmmer/src/masks.c
in SPEC CPU2006 benchmark [spe], (b) DCP obtained from Example xnu; we use the
following short forms: l for len, b for beg, e for end

overall linear iteration count. Example xnu is a natural example for amortized complexity:
Though a single visit to the inner loop can cost len (if beg = 0 and end = len), several
visits can also not cost more than len since in each visit the loop iterates over a disjoint
sub-interval. We therefore have: The amortized cost of a visit to the inner loop, i.e., the
cost of executing the inner loop within an iteration of the outer loop averaged over all len
iterations of the outer loop, is 1. Here, we refer by cost to the number of consecutive back
jumps in the inner loop. But in general, any resource consumption inside the inner loop
can, in total, only be repeated up to max(len, 0) times (see Discussion in Section 1.1).

Together with the loop bound max(len, 0) of the outer loop, our observation yields an
overall complexity of 2×max(len, 0).

14

1.4. Motivation and Overview

1.4.8 Sketch of Our Analysis III: Reset Chains

Consider the DCP abstraction of Example xnu Figure 1.4 (b). We use the following
short forms: l for len, b for beg, e for end. Recall that [a] denotes max(a, 0).

We outline how the abstraction is obtained from Example xnu:
Based on the conditions i < l and k < e our abstraction algorithm forms the expressions
[l − i] and [e − k]. The abstraction (Figure 1.4 (b)) is now obtained by tracking how
the value of each of these two expressions changes on the respective program transitions:
For example, we have that k is set to b in the if-branch at l3. This reset of k to b is
modeled in the abstracted DCP by the predicate [e− k]′ ≤ [e− b] on transition τ3a. As a
result, our abstraction algorithm now also tracks how the value of the expression [e − b]
is altered on each program transition, etc.

Next, we motivate a powerful feature of our analysis by which we obtain the precise bound
len of the loop at l4 of Example xnu: As discussed previously on Example tarjan and
Example twoSCCs, our bound algorithm is applied on the abstract DCP representation
(Figure 1.4 (b)). Here, the loop at l4 is modeled by transition τ4. It is easy to see that
[e− k] is a local bound for τ4, [l − i] is a local bound for all other transitions except τ0
which can only be executed once. Our algorithm infers a bound for the loop at l4 by
computing TB(τ4) based on its local bound [e− k].

However, our reasoning as sketched so far on Example tarjan and Example twoSCCs,
is not sufficient for obtaining the linear bound of τ4 (the loop at l4): On the previous
examples, our algorithm considered only the increases of a local bound or variable. For
the linear bound of τ4, it is, however, decisive to consider the reset of [e− b] to [0] on
transition τ5, as we argue next. If this reset were not on τ5, transition τ4 could indeed be
executed a quadratic number of times: Note that the value of [i− b] can be incremented
to [l]

2 (l denotes the program parameter len) by executing the outer loop (at l1) [l]
2 times

([i − b] is incremented by 1 on τ1). We can set [e − b] to [l]
2 by executing τ2a. Now, if

[e − b] was not reset to [0] on τ5, we could set the local bound [e − k] of τ4 to [l]
2 on

each of the remaining [l]
2 executions of τ3a. I.e., on each of the [l]

2 remaining executions
of the outer loop, the loop at l4 could be executed [l]

2 times, resulting in a total of [l]2
4

executions.

For reasoning on resets that can decrease the maximum amount of iterations (as the reset
of [e − b] to [0] on τ5, which decreases the maximum amount of iterations of the loop
at l4), we introduce the concept of reset chains. We say that [0] τ5−→ [e− b] τ3a−−→ [e− k]
is a sound reset chain because whenever [e − k] is set to [e − b] on τ3a, [e − b] will in
turn be set to 0 on τ5. Our algorithm now applies the same reasoning as outlined on the
previous examples but based on reset chains rather than on single transitions. We state
the details in Section 3.5.

In our experiments (Section 5.2.3) our implementation loopus (available at [looa]) was
the only tool that inferred the linear complexity of Example xnu.

15

1. Introduction

1.4.9 Overview III

We formally introduce our concept of reset chains in Section 3.5, where we also extend
our algorithm to the reasoning based on reset chains rather than single transitions. We
prove soundness of this reasoning in Section 7.2.

We state all details on the abstraction of Example xnu by our abstraction algorithm in
Section 2.3. We show how our bound algorithm infers the complexity of Example xnu in
Section 3.7.

1.4.10 Challenge IV: Tracking Increments and Decrements

Consider the example in Figure 1.5 (a). The loop at l2 can be executed n times in total:
Initially the loop counter x of the loop at l2 is set to n + 1. x is decremented before
entering the loop at l2 and incremented after leaving the loop. However, the increment
of x cannot increase the number of executions of the loop since it only levels out the
decrement of x which happened before:

Note that the worst-case bound n of the inner loop remains if we remove the increment
of x on the outer loop (the statement ‘x + +’): We can still execute the inner loop n
times on the first iteration of the outer loop.

In contrast, if x were not decremented on the outer loop (if we removed the statement
‘x−−’ from the outer loop), the bound of the inner loop would in fact be 2n: we would
have one additional execution of the inner loop on the first iteration of the outer loop,
also we would have one additional execution of the inner loop for each of the remaining
n− 1 executions of the outer loop due to the increment of x in the outer loop.

The example demonstrates that decrements can decrease the maximal number of iterations
of a loop. In particular, decrements can level out increments.

1.4.11 Sketch of Our Analysis IV: Path-Sensitive Reasoning

Consider the DCP in Figure 1.5 (b), which we obtain by abstraction from the example
in Figure 1.5 (a). We have that [x] is a local bound for transition τ2, which corresponds
to the loop at l2 of Figure 1.5 (a).

In order to obtain a bound for the loop at l2, we apply our previously discussed method
TB on τ2, based on the local bound x.

However, for obtaining a precise bound, it is not sufficient to reason only about the
increases of [x]. As argued previously, the bound of the loop at l2 is 2n rather than n if
the decrement of x is ignored.

On example xnu we motivated a reasoning which considers decreases caused by resets.
We now sketch how our reasoning takes into account decreases by decrements:

The essential idea is to consider increments and decrements of variables not only on
single program transitions but on cyclic paths of the program. We therefore refer to

16

1.4. Motivation and Overview

void foo(uint n) {
int i = n;
int x = n + 1;

l1 while(i > 0) {
x--;

l2 while(x > 0 && ?)
x--;

x++;
i--;

}
}

Bound of Loop at l2: n

lb

l1

l2

le

[i]′ ≤ [n]
[x]′ ≤ [n] + 1τ0

[i]′ ≤ [i]
[x]′ ≤ [x]− 1

τ1

[i]′ ≤ [i]− 1
[x]′ ≤ [x] + 1

τ3

[i]′ ≤ [i]
[x]′ ≤ [x]− 1

τ2

(a) (b)

Figure 1.5: (a) Minimal example for our path-sensitive analysis, (b) DCP obtained by
abstraction

this reasoning as path-sensitive reasoning. The basic concept remains as motivated on
Example tarjan and Example twoSCCs:

In the case of Figure 1.5 (b), our reasoning considers the following cyclic paths: π1 = τ1◦τ3
and π2 = τ2 (by τ1 ◦ τ3 we denote the path that results from concatenating the transitions
τ1 and τ3). When computing TB(τ2), our path-sensitive transition bound algorithm
checks how the respective local bound is increased on π1 and on π2. We have that [x] is
increased neither on π1 nor on π2: On π2 [x] is only decremented, on π1 the increment of
[x] on τ3 is leveled out by the decrement of [x] on τ1.

Therefore, the maximal number of executions of τ2 depends only on the initial value
[n] + 1 of [x]. However, this value can flow to τ2 only by taking the path τ0 ◦ τ1. Since [x]
is decremented on τ1, the total amount that flows into [x] at l2 is limited by [n] rather
than [n] + 1. We obtain TB(τ2) = [n].

Finally the precise bound n of the loop at l2 is obtained since n has type unsigned and
therefore [n] = n.

1.4.12 Overview IV

We formally define our path-sensitive bound algorithm in Section 3.8.3. As before, we
develop our algorithm step-by-step: We first deal with the special case of a VASS. We
then generalize our path-sensitive bound algorithm to full DCPs. We further discuss an
interesting example which we found during our experiments. This discussion demonstrates
the power of our path-sensitive reasoning for the complexity analysis of real source code.

17

1. Introduction

In Section 3.10.1 we discuss the instrumentation of our path-sensitive reasoning for
computing bounds on memory consumption.

In Section 7.3 we prove soundness of the path-sensitive reasoning.

1.5 Structure of the Work

The overall structure of our work follows our methodological approach: We start with the
presentation of our abstract program model and appropriate abstraction techniques in
Chapter 2. In Chapter 3, where we present our bound algorithm, we first limit ourselves
to a restrictive sub-set of abstract programs, namely VASS. We then generalize our
algorithm step by step as we summarized in Section 1.4.3. We present our full bound
algorithm in Section 3.9. Our experiments in Section 5 demonstrate that our analysis
can handle a large class of real-world code in a scalable and predictable manner.

To support comprehensibility it is our aim to keep the presentation of our bound analysis
focused. To this end, we separate the essential insights and techniques from extensions
and enhancements which we consider to be of a rather technical nature (Chapter 4). With
respect to our abstraction mechanism such extensions are discussed in Section 4.1. In
Section 4.2 we discuss extensions of our bound algorithm. We stress that these technical
discussions are of high practical value and recommend to the reader the study of the
respective sections.

In Section 5 we discuss some essential properties of our implementation. We further
present the results of an evaluation and tool comparison on (a) a large benchmark of
open source code (Section 5.2.1), (b) a benchmark of examples from the literature on
bound analysis (Section 5.2.2), and (c) a benchmark of challenging loop iteration patterns
gathered from real-world code bases (Section 5.2.3).

We summarize the results of our work in Section 6. In particular, we reflect on the
contributions of our work to the field of automated complexity and resource bound
analysis.

We present essential soundness proofs in Section 7. We prove soundness of our algorithm
for general DCPs (Section 7.1), of our reasoning on reset chains (Section 7.2), and of the
path-sensitive reasoning (Section 7.3).

We finally point out that, though we mainly discuss examples with linear bounds, our
analysis is not limited to linear bounds. By placing the focus on examples with linear
bounds, we stress the intrinsic difficulty of inferring such bounds in presence of nested
loops or loops with multiple counters. Our analysis, however, can still infer (precise)
bounds for all examples we discuss in this work if the respective example is placed inside
of an outer loop, thereby obtaining an overall quadratic complexity.

18

1.6. Related Work and State of the Art

void foo(uint n) {
int i = n;
int j = n;
while(i > 0) {

if (j > 0 && ?) {
j--;
i = n;

} else
i--;

}
}

Bound of the loop: n2

Figure 1.6: Example with two loop counters

1.6 Related Work and State of the Art
We start with a discussion of approaches from other research areas which are related to
automated complexity and resource bound analysis. We discuss approaches from the fields
of termination analysis, worst-case execution time analysis, and performance profiling
(Section 1.6.1).

Afterward, we summarize recent work in the area of automated complexity and resource
bound analysis. We categorize the different approaches in approaches based on recur-
rence relations (Section 1.6.2), approaches based on termination proofs (Section 1.6.3),
approaches based on amortized complexity analysis techniques (Section 1.6.4), and ap-
proaches based on program transformation and abstract interpretation (Section 1.6.5).

We discuss open issues in the field of bound analysis in Section 1.6.6. In Section 1.6.7 we
summarize our previous work in the area and point out the contributions that this thesis
adds to our publications.

1.6.1 Related Research Areas

Complexity and resource bound analysis can be understood as a quantitative variant
of termination analysis, which provides not only a qualitative “yes” answer, but also
a symbolic upper bound on the run-time of the program. Whereas (resource) bound
analysis has gained attention only recently, termination analysis has been intensively
studied in the last decade.
Some approaches to bound analysis are based on termination analysis as we detail
in Section 1.6.3. These approaches instrument termination proofs in form of ranking
functions. Synthesis of linear ranking functions by means of linear constraint solving
has been described in [PR04], amongst others. However, often a single linear ranking
function does not exist: As an example consider the loop in Figure 1.6. A ranking

19

1. Introduction

function for this loop is n× j + i, but there is no linear ranking function. Note that our
algorithm (Chapter 3) infers the precise loop bound n2 for Figure 1.6.
[BMS05] generalized the constraint solving approach to the synthesis of multi-dimensional
linear ranking functions. E.g., for the loop in Figure 1.6 we have that 〈i, j〉 is a ranking
function over N2, where the well-founded order relation ‘>’ over N is lifted to N2

lexicographically. But the constraint system generated by [BMS05] is not linear, which
complicates the search for feasible solutions. The non-linear nature of the constraints is
due to the fact that [BMS05] synthesizes the state invariants needed to infer the ranking
function and the ranking function itself in one step. This has the advantage that no
global invariant analysis is needed. An alternative is to run a polyhedra analysis
upfront (as, e.g., in [ADFG10]) which, however, is also costly. We conclude that synthesis
of ranking functions is a non-trivial task. Unlike other approaches to bound analysis
(e.g., [BEF+16, ADFG10, FH14, AAG+12]), the approach we discuss in this work does
not rely on general techniques for the synthesis of ranking functions.

However, our research benefits from research on termination analysis with respect to the
investigation of abstract program models: The bound analysis in [ZGSV11] is based on
the size change abstraction which was designed and investigated by Lee et al. [LJBA01]
as an abstract program model for termination analysis.
Further, the termination paper [Ben08] shows that termination of difference constraint
programs (DCPs) is undecidable in general but decidable for the natural syntactic subclass
of fan-in-free DCPs (see Definition 4), which is the class of DCPs that we use as our
abstract program model.

The field dedicated to worst case execution time analysis [WEE+08] is closely related
to the research on automated complexity and (resource) bound analysis. But unlike
bound analysis, WCET analysis aims at predicting the timing behaviour of software
under consideration of the underlying hardware. State-of-the-art WCET analysis tech-
niques achieve a very high precision in computing time bounds by low-level modeling of
architectural features such as caches, branch prediction and instruction pipelines. Such
time bounds are needed, e.g., for proving correctness of real-time systems, where the
result of a computation is required to be available within a certain time frame.

WCET analysis is, in general, not compatible with a uniform cost model (see Section 1.1),
because such a cost model does not allow the timing behavior of hardware components
such as caches to be modeled precisely: E.g., the performance of a cache or memory
depends on physical constraints such as the temperature and can therefore increase or
decrease over time when components are heating up.

For establishing loop bounds, WCET techniques usually either require user annotation,
or use simple techniques based on pattern matching or numerical analysis. A symbolic
loop bound analysis for WCET analysis has been suggested in [KKZ11]. The approach is,
however, limited to the special case of for-loops with only one loop counter. E.g., [KKZ11]
cannot handle the loop in Figure 1.6.

Recently, new profiling approaches have been proposed that apply curve fitting techniques

20

1.6. Related Work and State of the Art

for deriving a cost function, which relates size measures on the program input to the
measured program performance [ZH12, CDF12]. This idea can be understood as a
dynamic bound analysis, which however, cannot give any guarantees on the correctness
of the inferred bounds.

1.6.2 Bound Analysis Based on Recurrence Relations

Recurrence relations are the oldest methodology for computing bounds on resource
consumption. [Weg75] automatically extracts recurrence relations from LISP programs
and then computes closed expressions for the recurrences. [Mét88] first simplifies programs
into ones with the same asymptotic complexity and then determines their complexity by
checking a database for programs with the same recursion patterns.

In recent research, the recurrence relation approach is followed prominently by the
COSTA project (e.g. [AAG+12, AAGP11, AGM13]). In this line of research, recurrence
relations are obtained from so-called cost equations using invariant analysis based on
the polyhedra abstract domain and linear ranking functions. Ranking functions
are inferred through linear programming (as discussed in Section 1.6.1). Closed-form
solutions for the obtained recurrence relations are inferred by means of computer
algebra.

[BHHK10] also follows the recurrence based approach. [BHHK10] is limited to nested
for-loops of a special shape (so-called ABC loops) but guarantees to infer a bound for
such loop constructs. In particular, it is required that each loop has only one loop counter,
resp. a second counter will be ignored. [BHHK10] cannot, e.g., handle the example in
Figure 1.6. [BHHK10] instruments the innermost loop body by a new counter z which is
increased on each iteration; next, a recurrence relation determining the counters value is
generated. A polynomial closed form expression over the iteration variables is obtained
by solving the recurrence. Due to the special shape of the for-loops, the recurrence is
guaranteed to be of a form for which closed form solutions exist and can be inferred.
A symbolic loop bound is obtained from the closed form expression by replacing the
iteration variables by bounds on their value. These bounds are obtained by the same
technique.

1.6.3 Bound Analysis Based on Termination Proofs

Another line of research obtains complexity bounds from termination proofs:

[ADFG10] over-approximates the reachable states by abstract interpretation based
on the polyhedra abstract domain. This information is used for generating a linear
constraint problem from which a multi-dimensional linear ranking function (see
our discussion in Section 1.6.1) for each control location is obtained. Having inferred a
ranking function rf l for a control location l, the computed approximation of the reachable
states is used for inferring a bound on the number of values which can be taken by the
ranking function rf l during program run. This bound is a reachability bound for l (a
bound on the number of times location l can be visited during program run [GZ10]) since

21

1. Introduction

the ranking function, by definition, takes a different value on each visit to l.
Importantly, the number of dimensions of the ranking function determines the degree
of the bound polynomial. [ADFG10] therefore aims at inferring a ranking function
with a minimal number of dimension. This is in contrast to [BMS05] which pioneered
multi-dimensional ranking functions for termination analysis: for termination analysis
the number of dimensions of the ranking function does not matter. Unlike [BMS05]
[ADFG10] therefore depends on a minimal solution to the linear constraint problem
which is obtained by linear optimization ([ADFG10] instruments the LP-solver with
an objective function).

The bound analysis in [BEF+16] applies approaches from the literature for synthesizing
ranking functions (see our discussion in Section 1.6.1) thereby inferring bounds on
the number of times the execution of isolated program parts can be repeated. These
bounds, called time bounds, are then used to compute bounds on the absolute value
of variables, so-called variable size bounds. Additional information is inferred through
abstract interpretation based on the octagon abstract domain. An overall com-
plexity bound is deduced by alternating between time bound and variable size bound
analysis. In each alternation bounds for larger program parts are obtained based on
the previously computed information. We experimentally compare to [BEF+16] in Sec-
tion 5.2.1 and Section 5.2.2. We give a detailed discussion on the comparison of our
approach to [BEF+16] in Section 6.4.

Our previous works [ZGSV11, SZV14a] also follow the termination proof-based approach:
In [ZGSV11] a multi-dimensional ranking function is obtained based on the size-change
abstraction, invariant analysis by abstract interpretation is employed to obtain up-
per bounds for each component of the multi-dimensional ranking function, multiplication
of the obtained bounds results in an overall complexity bound. [SZV14a], one of our works
on which this thesis is based, computes a multi-dimensional ranking function efficiently
based on the abstract program models of vector addition systems. In contrast to [ZGSV11]
no global invariant analysis is applied, a bound is obtained from the multi-dimensional
ranking function by reasoning on how the transitions bounded by one component of
the ranking function can increase other ranking function components. We state further
aspects of [ZGSV11] and [SZV14a] in Section 1.6.7.

1.6.4 Bound Analysis Based on Amortized Analysis

An interesting line of research studies the amortized complexity analysis of first-order
functional programs formulated as type rules over a template potential function with
unknown coefficients (e.g. [HJ03, HAH12]); these coefficients are then found by linear
programming. The core idea is the annotation of data structures by potentials that
can be used to pay for executing program steps. The recent paper [CHS15] adapts
this approach for imperative integer programs: Hoare-style proof rules are employed
as an adequate imperative counterpart for the type rules of the functional approach.
Similarly to the approach for functional programs, the rule system is applied for deriving
a linear constraint system. The size of the generated problem is at least quadratic in the

22

1.6. Related Work and State of the Art

program’s size because any combination of two variables and/or constants is represented
by a variable in the constraint system. Since bound analysis typically does not aim at
some bound but tries to infer a tight bound, [CHS15] uses linear optimization (an
LP-solver instrumented by an objective function) in order to obtain a minimum solution
to the problem. In contrast to the older approach for functional programs, the imperative
version of the approach can so far only derive linear resource bounds. We experimentally
compare our implementation to [CHS15] in Section 5.2.2. We state further details on the
comparison of our work to [CHS15] in Section 6.4.

An alternative approach for the amortized analysis of imperative programs is reported
in [ABG12]. Quantifier elimination is applied for simplifying a constraint system over
template cost functions. Since quantifier elimination is expensive, the technique does not
scale to larger programs.

1.6.5 Bound Analysis Based on Program Transformation and
Abstract Interpretation

Other approaches for bound computation employ program transformation and ab-
stract interpretation. A straightforward approach is to introduce a counter, which is
increased whenever the resource under consideration is consumed, and then to compute
an upper bound on this counter with abstract interpretation techniques. [Ros89] was the
first to implement this idea for first-order LISP programs. [GG08] proposes to extend the
polyhedra abstract domain with the maximum operator and non-linear expressions.
[GMC09] introduces multiple counters and exploits their dependencies such that upper
bounds (inferred by abstract interpretation) have to be computed only for restricted
program parts. [GJK09] proposes a program transformation (control-flow refinement)
based on abstract interpretation that separates the different loop phases such that
bounds can be computed for each phase in isolation. We discuss the potential benefit of
control-flow refinement in the context of our approach in Section 4.1.3. [GZ10] employs
proof rules for bound computation, combined with disjunctive invariant generation
by abstract interpretation using power set domains for summarizing inner loops.

We experimentally compare to [FH14] in Section 5.2.1 and Section 5.2.2. We state further
details on the comparison of our approach to [FH14] in Section 6.4.

1.6.6 Conclusion: Drawbacks of Existing Solutions and Our
Complementary Approach

Existing techniques to bound analysis are either limited to special cases ([BHHK10]) or
based on the following general frameworks for global invariant analysis and automated
reasoning:

• abstract interpretation (polyhedra or octagon abstract domain, [AAG+12,
AAGP11, AGM13, FH14, BEF+16, ZGSV11, GG08, GMC09, GJK09]),

23

1. Introduction

• computer algebra ([AAG+12, AAGP11, AGM13]),

• synthesis of ranking functions by linear programming and invariant anal-
ysis ([AAG+12, AAGP11, AGM13, FH14, ADFG10, BEF+16]),

• constraint solving through linear optimization ([FH14, HJ03, HAH12, CHS15]),

• quantifier elimination ([ABG12]),

• program transformation based on abstract interpretation ([GJK09]),

• disjunctive invariant generation using power set abstract domains ([GZ10]).

We think that the relatively poor performance characteristics of state-of-the-art bound
analysis techniques (see also our experimental results in Section 5.2.1) is due to the
massive deployment of general-purpose reasoning machinery.

Our work aims at a more scalable and more predictable solution to bound analysis.
We take an orthogonal approach based on scalable static analysis techniques which
complement previous research.

Further, our discussion in Section 6.4 shows, and our experimental results in Section 5.2.3
demonstrate that existing approaches have difficulties to infer tight bounds for a class of
nested loop constructs which we identified during our experiments on real-world code.
What the loop patterns in this class have in common is that the amortized worst-case cost
of an inner loop, i.e., the cost of executing an inner loop averaged over the executions
of its outer loop(s), is lower than the worst-case cost of a single execution of that inner
loop (for an example see Section 1.4.1 and Section 1.4.7): [CHS15] is limited to linear
bounds, [ADFG10] easily fails in case of polynomial bounds (see discussion in Section 6.4),
[BEF+16, ZGSV11, FH14] often fail to infer tight bounds (for [BEF+16] and [FH14] this
can be also be seen from the experimental results in Section 5.2.3).

In contrast, the approach we present in this work succeeds in inferring tight bounds for
challenging cases (consider, e.g., Example xnu in Figure 1.4) while not being limited to
the linear case. On the contrary, the same reasoning which infers tight linear bounds
is also applied for inferring tight polynomial bounds (Consider, e.g., Figure 1.6 and
Figure 6.1, page 127).

1.6.7 Relation to Our Previous Publications

We took first steps towards an adequate abstract program model for bound analysis
in [ZGSV11]. [ZGSV11] proposes a bound analysis based on so-called size-change con-
straints of form x′ C y, where C ∈ {<,≤}.

The basic insights on which we elaborate in this thesis were published for the first time
in [SZV14a] and [SZV15] and [SZV16].

24

1.7. Contributions

In [SZV14a] we proposed a bound analysis based on constraints of the form x′ ≤ x+ c,
where c is either an integer or a symbolic constant. A system modeled by such constraints
is called a parametrized lossy vector addition system with states (VASS) in the literature.
However, [SZV14a] cannot model resets. As a result [SZV14a] cannot, e.g., infer the linear
complexity of Example xnu (Figure 1.4). In [SZV15] we generalized our abstract program
model to difference constraints, which allow to model counter resets and increments
as discussed in Section 1.4.2. In [SZV16] we elaborate on the approach of [SZV15] by
discussing the algorithm in more detail, stating additional experimental results and
providing essential soundness proofs.

This thesis goes beyond [SZV14a, SZV15, SZV16]. In particular, a path-sensitive version
of our algorithm (Section 3.8) is presented for the first time. Moreover, as we discuss in
Section 6.4, our path-sensitive algorithm solves a strict superset of abstract programs
compared to the VASS-based approach in [SZV14a]. For the first time we state the
full soundness proof of our bound algorithm, including a proof of soundness of our
path-sensitive reasoning (Chapter 7). The presentation of our work is, in many aspects,
much more detailed than in [SZV14a] and [SZV15] and [SZV16]: We provide important
technical insights regarding program abstraction (Section 4.1) and our main algorithm
(Section 4.2). We hope that our discussions of challenging examples, which we present in
this work, will help the reader to gain a deeper understanding of our approach and its
potential, thereby further populating our core insights in the research community.

1.7 Contributions
The main contributions we make to the field of automated complexity and resource bound
analysis are the following:

1. We demonstrate that difference constraints are a suitable abstract program model
for automatic complexity and resource bound analysis. We develop appropriate
techniques for abstracting imperative programs to DCPs in Section 2.2.

2. Our approach handles bound analysis problems of high practical relevance which
current approaches cannot handle as we demonstrate by our experiments in Sec-
tion 5.2. The results on a benchmark of challenging iteration patterns, which we
found in real-world code, are presented in Section 5.2.3. We state, and discuss in
detail, a number of examples in Chapter 3 and Chapter 4.

3. Our approach is more scalable than existing approaches. We give a detailed
discussion in Section 6.1. The claim is further supported by our experimental
comparison on real C code in Section 5.2.1.

4. At the same time, our approach is general and can handle most of the bound
analysis problems which are discussed in the literature. This claim is supported by
our experimental comparison on examples from the literature on bound analysis in
Section 5.2.2.

25

1. Introduction

5. Our approach is rigorous, we prove soundness of our bound algorithm, the reasoning
on chained resets and the path-sensitive reasoning in Section 7.

We give a detailed discussion on our contributions in Chapter 6.

26

CHAPTER 2
Program Model and Abstraction

Definition 1 (Program). Let Σ be a set of states. A program over Σ is a directed
labeled graph P = (L, T, lb, le), where L is a finite set of locations, lb ∈ L is the entry
location, le ∈ L is the exit location and T ⊆ L× 2Σ×Σ × L is a finite set of transitions.
We write l1

λ−→ l2 to denote a transition (l1, λ, l2) ∈ T . We call λ ∈ 2Σ×Σ a transition
relation. A path of P is a sequence l0

λ0−→ l1
λ1−→ · · · with li

λi−→ li+1 ∈ E for all i. A run
of P is a sequence ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→ · · · such that lb

λ0−→ l1
λ1−→ · · · is a path of

P and for all 0 < i it holds that (σi−1, σi) ∈ λi−1. ρ is complete if it ends at le.

Note that a run of P = (L, T, lb, le) starts at location lb. We will need the notion of a
complete run only later in Section 3.8 when we discuss our path-sensitive bound algorithm.

Further note that we call an edge l1
λ−→ l1 ∈ T of the program a transition, whereas λ is

its transition relation. In the following we will refer to transitions by τ and to transition
relations by λ.

Formal Program Representation. We use labeled transition systems (LTS) to rep-
resent programs. Figure 2.1 (b) shows the LTS representation of Example xnu (discussed
in Section 1.4.7). (In the LTS of Example xnu we use l as a shorthand for the program
variable len, accordingly b for beg and e for end.) Each edge in an LTS is labeled by
a formula which encodes the transition relation. We define the semantic of an LTS in
compliance with Definition 1 as follows: We assume that the state of the program is
described by a mapping which assigns each variable its current value. Let σ ∈ Σ. By
σ(x) we denote the value of variable x in state σ. We further assume that variables take
values over the integers. Consider, e.g., the edge from l1 to l2 in Figure 2.1 (b). It is
labeled by the formula:

i < l ∧ b′ = b ∧ e′ = e ∧ i′ = i+ 1 ∧ l′ = l

27

2. Program Model and Abstraction

void xnu(int len) {
int beg,end,i = 0;

l1 while(i < len) {
i++;

l2 if (?)
end = i;

l3 if (?) {
int k = beg;

l4 while (k < end)
k++;

end = i;
beg = end;

} else if(?) {
end = i;
beg = end;

}
l5 }
}

begin

l1

l2

l3

l4l5

end

b′ = 0 ∧
e′ = 0 ∧
i′ = 0

τ0

i < l ∧
b′ = b ∧
e′ = e ∧
i′ = i+ 1 ∧
l′ = l

τ1

b′ = b ∧
e′ = e ∧
i′ = i ∧
l′ = l

τ2a

b′ = b ∧
e′ = i ∧
i′ = i ∧
l′ = l

τ2b

k′ = b ∧
b′ = b ∧
e′ = e ∧
i′ = i ∧
l′ = l

τ3ab′ = b ∧
e′ = e ∧
i′ = i ∧
l′ = l

τ3b

b′ = i ∧
e′ = i ∧
i′ = i ∧
l′ = l

τ3c

k ≥ e ∧
e′ = i ∧
b′ = i ∧
i′ = i ∧
l′ = l

τ5

b′ = b ∧
e′ = e ∧
i′ = i ∧
l′ = l

τ6

k < e
k′ = k + 1 ∧
b′ = b ∧
e′ = e ∧
i′ = i ∧
l′ = l

τ4

i ≥ l

(a) (b)

Figure 2.1: (a) Example xnu (b) Formal representation of xnu by an LTS

This formula encodes the transition relation λ1 =

{(σ, σ′) ∈ Σ×Σ | σ(i) < σ(l)∧σ′(b) = σ(b)∧σ′(e) = σ(e)∧σ′(i) = σ(i)+1∧σ′(l) = σ(l)}.

2.1 Difference Constraint Programs
As discussed introductory, we base our algorithm on the abstract program model of
difference constraint programs which we now formally define in Definition 4.

Definition 2 (Variables, Symbolic Constants, Atoms). By V we denote a finite set of
variables. By C we denote a finite set of symbolic constants. A = V ∪ C is the set of
atoms.

Definition 3 (Difference Constraints). A difference constraint over A is an inequality
of form x′ ≤ y + c with x ∈ V, y ∈ A and c ∈ Z. By DC(A) we denote the set of all
difference constraints over A.

Notation: We often write x′ ≤ y as a shorthand for the difference constraint x′ ≤ y + c.

28

2.1. Difference Constraint Programs

Definition 4 (Difference Constraint Program, Syntax). A difference constraint program
(DCP) over A is a directed labeled graph ∆P = (L,E, lb, le), where L is a finite set
of vertices, lb ∈ L and le ∈ L and E ⊆ L × 2DC(A) × L is a finite set of edges. We
write l1

u−→ l2 to denote an edge (l1, u, l2) ∈ E labeled by a set of difference constraints
u ∈ 2DC(A). We use the notation l1 −→ l2 to denote an edge that is labeled by the empty
set of difference constraints. ∆P is fan-in-free, if for every edge l1

u−→ l2 ∈ E and every
v ∈ V there is at most one a ∈ A and c ∈ Z s.t. v′ ≤ a + c ∈ u.

Example: Figure 2.2 (b) shows a fan-in free DCP.

Definition 5 (Difference Constraint Program, Semantics). The set of valuations of A
is the set ValA = A → N of mappings from A to the natural numbers. Let u ∈ 2DC(A).
We define JuK ∈ 2(ValA×ValA) s.t. (σ, σ′) ∈ JuK iff for all x′ ≤ y + c ∈ u it holds that (i)
σ′(x) ≤ σ(y) + c and (ii) for all s ∈ C σ′(s) = σ(s). A DCP ∆P = (L,E, lb, le) is a
program over the set of states ValA with locations L, entry location lb, exit location le
and transitions T = {l1

JuK−−→ l2 | l1
u−→ l2 ∈ E}.

I.e., a DCP is a program (Definition 1) whose transition relations are solely specified by
conjunctions of difference constraints.

Note that variables in difference constraint programs take values only over the natural
numbers.

Further note that by u we refer to the syntactic representation of the transition relation
in form of a set of difference constraints, whereas by JuK we refer to the transition relation
itself.

Definition 6 (Well-defined DCP). Let ∆P = (L,E, lb, le) be a DCP.
We say a variable x is defined at l if x ∈ def(l), where def : L→ 2A is defined by
def(l) =

⋂
l1
u−→l∈E

{x | ∃y ∈ V ∃c ∈ Z s.t. x′ ≤ y + c ∈ u} ∪ C.

We say a variable x is used at l if x ∈ use(l), where use : L→ 2A is defined by
use(l) =

⋃
l
u−→l1∈E

{y | ∃x ∈ A ∃c ∈ Z s.t. x′ ≤ y + c ∈ u}.

∆P is well-defined iff lb has no incoming edges and for all l ∈ L it holds that
use(l) ⊆ def(l).

Discussion. A program ∆P is well-defined if lb has no incoming edges and for all v ∈ V
it holds that v is defined at all locations at which v is used (symbolic constants are always
defined). Note that for well-defined programs we in particular require use(lb) ⊆ def(lb).
Because lb has no incoming edges we have def(lb) = C. Thus only symbolic constants
can be used at lb.

Throughout this work we will only consider DCPs that are fan-in free and well-defined.

29

2. Program Model and Abstraction

2.2 Program Abstraction

In the following we discuss how we abstract a given program to a DCP.

Definition 7 (Difference Constraint Invariants). Let P(L, T, le, lb) be a program over
states Σ. Let e1, e2, e3 ∈ Σ→ Z, and let c ∈ Z be some integer. We say e′1 ≤ e2 + e3 is
invariant on a transition l1

λ−→ l2 ∈ T , if e1(σ2) ≤ e2(σ1)+e3(σ1) holds for all (σ1, σ2) ∈ λ.

Definition 8 (DCP Abstraction of a Program). Let P = (L, T, lb, le) be a program and
let N be a set of fucntions from the states to the natural numbers, i.e., N ∈ 2Σ→N. A
DCP ∆P = (L,E, lb, le) over atoms N is an abstraction of the program P iff for each
transition l1

λ−→ l2 ∈ T there is a transition l1
u−→ l2 ∈ E s.t. every e′1 ≤ e2 + c ∈ u is

invariant on l1
λ−→ l2.

Our abstraction mechanism proceeds in two steps: We first abstract a given concrete
program to a DCP with integer semantics, in a second step we then further abstract the
integer-DCP to a DCP over the natural numbers (in compliance with Definition 4).

2.2.1 Abstraction I: DCPs with Integer Semantics

We extend our abstract program model from Definition 4 to the non-well-founded domain
Z by adding guards to the transitions of the program.

Syntax of DCPs with guards. The edges E of a DCP with guards ∆PG(L,E, lb, le)
are a subset of L×2V×2DC(A)×L. I.e., an edge of a DCP with guards is of form l1

g,u−−→ l2
with l1, l2 ∈ L, g ∈ 2V and u ∈ 2DC(A).

Example: See Figure 2.2 (a) on page 34 for an example.

Semantics of DCPs with guards. We extend the range of the valuations ValA of A
from N to Z. Let u ∈ 2DC(A). Let JuK be as defined in Definition 5. Let g ∈ 2V . We define
Jg, uK = {(σ1, σ2) ∈ JuK | σ1(v) > 0 for all v ∈ g}. A guarded DCP ∆PG = (L,E, lb, le)
is a program over the set of states ValA with locations L, entry location lb, exit location
le and transitions T = {l1

Jg,uK−−−→ l2 | l1
g,u−−→ l2 ∈ E}.

I.e., a transition l1
g,u−−→ l2 of a DCP with guards can only be executed if the values of all

v ∈ g are greater than 0.

Definition 9 (Norm). Let Σ be a set of states. A norm e : Σ→ Z over Σ is a function
that maps the states to the integers.

Definition 10 (Guard). Let P(L, T, le, lb) be a program over states Σ. Let e be a norm,
let c ∈ Z. We say e is a guard of l1

λ−→ l2 ∈ T if e(σ1) > 0 holds for all (σ1, σ2) ∈ λ.

30

2.2. Program Abstraction

We abstract a program P = (L, T, lb, le) to a DCP with guards ∆PG = (L,E, lb, le) as
follows:

1. Choosing an initial set of Norms. We aim at creating a suitable abstract
program for bound analysis. In our non-recursive setting complexity evolves from
iterating loops. Therefore we search for expressions which limit the number of loop
iterations. We consider conditions of form a > b resp. a ≥ b found in loop headers
or on loop-paths if they involve loop counter variables, i.e., variables which are
incremented and/or decremented inside the loop. Such conditions are likely to limit
the consecutive execution of single or multiple loop-paths. From each condition
of form a > b we create the integer expression a− b, from each condition of form
a ≥ b we create the integer expression a+ 1− b. These expressions form our initial
set of norms N . Note that on those transitions on which a > b holds, a − b > 0
must hold, whereas with a ≥ b we have a+ 1− b > 0.
In ∆PG we interpret a norm e ∈ N from our initial set of norms N as variable, i.e.,
we have e ∈ V for all e ∈ N .

2. Abstracting Transitions. For each transition l1
λ−→ l2 ∈ T we generate a set uλ

of difference constraints: Initially we set uλ = ∅ for all transitions l1
λ−→ l2 ∈ T .

We repeat the following construction until the set of norms N becomes stable:

For each e1 ∈ N and for each l1
λ−→ l2 ∈ T , such that all variables in e1 are defined

at l2, we check whether there is a difference constraint of form e′1 ≤ e2 + c with
e2 ∈ N and c ∈ Z in uλ. If not, we derive a difference constraint e′1 ≤ e2 + c as
follows: We symbolically execute λ for deriving e′1 from e1: E.g., let e1 = x+ y and
assume x is assigned x+1 on l1

λ−→ l2 while y stays unchanged. We get e′1 = x+1+y
through symbolic execution. In order to keep the number of norms low, we first try

a) to find a norm e2 ∈ N and c ∈ Z s.t. e′1 ≤ e2 + c is invariant on l1
λ−→ l2

(see Definition 7). If we succeed we add the predicate e′1 ≤ e2 + c to uλ.
E.g., for e1 = x + y and e′1 = x + 1 + y we get the transition invariant
(x+ y)′ ≤ (x+ y) + 1 and will thus add e′1 ≤ e1 + 1 to uλ. In general, we find
a norm e2 and a constant c by separating constant parts in the expression
e′1 using associativity and commutativity, thereby forming an expression e3
over variables and program parameters and an integer constant c. We then
search a norm e2 ∈ N with e2 = e3 where the check on equalitiy is performed
modulo associativity and commutativity.

b) If a) fails, i.e., no such e2 ∈ N exists, we add e3 to N and derive the predicate
e′1 ≤ e3+c. In ∆PG we interpret e3 as atom, i.e., e3 ∈ A. E.g., given e′1 = 5+z
we set e3 = z and c = 5. We interpret e3 as a symbolic constant, i.e., e3 ∈ C,
only if e3 is purely built over the programs input parameters and constants.
Note that this step increases the number of norms.

31

2. Program Model and Abstraction

3. Inferring Guards For each transition l1
λ−→ l2 we generate a set gλ of guards:

Initially we set gλ = ∅ for all transitions l1
λ−→ l2. For each e ∈ N and each

transition l1
λ−→ l2 we check if e is a guard of l1

λ−→ l2. If so, we add e to gλ. We use
an SMT solver to perform this check. E.g., let e = x+ y and assume that l1

λ−→ l2
is guarded by the conditions x ≥ 0 and y > x. An SMT solver supporting linear
arithmetic proves that x ≥ 0∧ y > x implies x+ y > 0 and we thus add x+ y to gλ.

4. We set E = {l1
gλ,uλ−−−→ l2 | l1

λ−→ l2 ∈ T}.

Note that SMT solver reasoning is applied only locally to single transitions to check if an
expression is greater than 0 on that transition.

Propagation of Guards. We improve the precision of our abstraction by propagating
guards: Consider a transition l3

g3,u3−−−→ l4. Assume l3 has the incoming edges l1
g1,u1−−−→ l3

and l2
g2,u2−−−→ l3. If y ∈ g1 ∩ g2 (i.e., y is a guard on both incoming edges) and y does not

decrease on the corresponding concrete transitions l1
λ1−→ l3 and l1

λ2−→ l3 (checked by
symbolic execution) then y is also a guard on l3

g3,u3−−−→ l4 and we add y to g3.

Well-defined and Fan-in free. DCPs generated by our algorithm are always fan-in
free by construction: For each transition we get at most one predicate e′ ≤ e2 + c for
each e ∈ N : We check whether there is already a predicate for e before a predicate is
inferred resp. added. We ensure well-definedness of our abstraction by a final clean-up:
We iterate over all l ∈ L and check if use(l) ⊆ def(l) holds. If this check fails we remove
all difference constraints x′ ≤ y + c with y ∈ use(l) \ def(l) from all outgoing edges of l.
We repeat this iteration until well-definedness is established, i.e., until use(l) ⊆ def(l)
holds for all l ∈ L.

Termination. We have to ensure the termination of our abstraction procedure, since
case b) in step “2. Abstracting Transitions“ triggers a recursive abstraction for the newly
added norm: Note that we can always stop the abstraction process at any point, getting
a sound abstraction of the original program. We therefore ensure termination of the
abstraction algorithm by limiting the chain of recursive abstraction steps that is triggered
by entering case 2.b).

Non-linear Iterations. We can handle counter updates such as x′ = 2x or x′ = x/2
as follows: 1) We add the expression log x to our set of norms. 2) We derive the difference
constraint (log x)′ ≤ (log x)− 1 from the update x′ = x/2 if x > 1 holds. Symmetrically
we get (log x)′ ≤ (log x) + 1 from the update x′ = 2x if x > 0 holds.

Data Structures. In previous publications [GLAS09, MTLT10] it has been described
how to abstract programs with data structures to pure integer programs by making use
of appropriate norms such as the length of a list or the number of elements in a tree. In

32

2.3. Example

our implementation we follow these approaches using a light-weight abstraction based on
optimistic aliasing assumptions (see Section 5.1). Once the program is transformed to an
integer program, our abstraction algorithm is applied as described above for obtaining a
difference constraint program.

2.2.2 Abstraction II: From the Integers to the Natural Numbers

We now discuss how we abstract a DCP with guards ∆PG = (L,E, lb, le) to a DCP
∆P = (L,E′, lb, le) over N (Definition 4):

Let e ∈ N . By [e] : Σ→ N we denote the function [e](σ) = max(e(σ), 0). Recall that e is
interpreted as atom in ∆PG, i.e., e ∈ A. In ∆P , we interpret [e] as variable (i.e., [e] ∈ V)
if e ∈ V. We interpret [e] as symbolic constant (i.e., [e] ∈ C) if e ∈ C.

Let l1
g,u−−→ l2 ∈ E. We create a transition l1

u′−→ l2 ∈ E′ as follows: Let e′1 ≤ e2 + c ∈ u.
If c ≥ 0, we add [e1]′ ≤ [e2] + c to u′. If c < 0 and e2 ∈ g we add the constraint
[e1]′ ≤ [e2]− 1 to u′. If c < 0 and e2 6∈ g we add the constraint [e1]′ ≤ [e2] + 0 to u′.

Discussion. Soundness of Abstraction II is due to the following observation: Consider
a transition l1

g,u−−→ l2 of ∆PG. Let e′1 ≤ e2 + c ∈ u, i.e., e′1 ≤ e2 + c is invariant for the
corresponding transition τ of the concrete program. Then [e1]′ ≤ [e2] + 0 is also invariant
for τ . Further: If c ≥ 0 then [e1]′ ≤ [e2] + c is invariant for τ . And if c < 0 and e2 ∈ g
(i.e., e2 > 0 must hold before executing τ), then [e1]′ ≤ [e2]− 1 is invariant for τ .

2.3 Example
We exemplify our abstraction algorithm on Example xnu. Consider the LTS representa-
tion of Example xnu in Figure 2.1 (b), we use l as a shorthand for the program variable
len, accordingly b for beg and e for end.

We first apply abstraction step I discussed in Section 2.2.1:

1. Choosing an initial set of Norms. Our described heuristic adds the expressions
l − i and e− k generated from the conditions k < e and i < l to the initial set of
norms N . Thus our initial set of norms is N = {l − i, e− k}.

2. Abstracting Transitions.

• We check how l−i changes on the transitions τ0, τ1, τ2a, τ2b, τ3a, τ3b, , τ3c, τ4, τ5, τ6:
– τ0: we derive (l − i)′ ≤ l (reset), we add l to N . Since l is an input

parameter we have l ∈ C.
– τ1: we derive (l − i)′ ≤ (l − i)− 1 (decrement)
– τ2a, τ2b, τ3a, τ3b, τ3c, τ4, τ5, τ6: l − i unchanged

• We check how e− k changes on the transitions τ3a, τ4 (k is only defined at l4):

33

2. Program Model and Abstraction

lb

l1

l2

l3

l4l5

le

(e− b)′ ≤ (0);
(i− b)′ ≤ (0);
(l− i)′ ≤ (l);

τ0

(l− i) > 0,
(e− b)′ ≤ (e− b)
(i− b)′ ≤ (i− b) + 1
(l− i)′ ≤ (l− i)− 1

τ1

(e− b)′ ≤ (e− b)
(i− b)′ ≤ (i− b)
(l− i)′ ≤ (l− i)

τ2a

(e− b)′ ≤ (i− b)
(i− b)′ ≤ (i− b)
(l− i)′ ≤ (l− i)

τ2b

(e− k)′ ≤ (e− b)
(e− b)′ ≤ (e− b)
(i− b)′ ≤ (i− b)

(l− i)′ ≤ (l− i)

τ3a

(e− b)′ ≤ (e− b)
(i− b)′ ≤ (i− b)

(l− i)′ ≤ (l− i)

τ3b

(e− b)′ ≤ 0
(i− b)′ ≤ 0

(l− i)′ ≤ (l− i)

τ3c

(e− b)′ ≤ 0
(i− b)′ ≤ 0
(l− i)′ ≤ (l− i)

τ5

(e− b)′ ≤ (e− b)
(i− b)′ ≤ (i− b)

(l− i)′ ≤ (l− i)
τ6

(e− k) > 0,
(e− k)′ ≤ (e− k)− 1

(e− b)′ ≤ (e− b)
(i− b)′ ≤ (i− b)
(l− i)′ ≤ (l− i)

τ4

lb

l1

l2

l3

l4l5

le

q′ ≤ [0];
r′ ≤ [0];
x′ ≤ [l];

τ0

q′ ≤ q
r′ ≤ r + 1
x′ ≤ x− 1

τ1

q′ ≤ r
r′ ≤ r
x′ ≤ x

τ2a
q′ ≤ q
r′ ≤ r
x′ ≤ x

τ2b

p′ ≤ q
q′ ≤ q
r′ ≤ r
x′ ≤ x

τ3a
q′ ≤ q

r′ ≤ r
x′ ≤ x

τ3b

q′ ≤ [0]
r′ ≤ [0]
x′ ≤ x

τ3c

q′ ≤ [0]
r′ ≤ [0]
x′ ≤ x

τ5

q′ ≤ q
r′ ≤ r

x′ ≤ x τ6

p′ ≤ p− 1
q′ ≤ q
r′ ≤ r
x′ ≤ x

τ4

(a) (b)

Figure 2.2: (a) Abstraction I: DCP with guards obtained from Example xnu (b) Abstrac-
tion II: DCP obtained from Example xnu; where p, q, r, x ∈ V and [e−k] = p, [e− b] = q,
[i− b] = r, [l − i] = x

– τ3a: we derive (e− k)′ ≤ (e− b) (reset), we add e− b to N
– τ4: we derive (e− k)′ ≤ (e− k)− 1 (decrement)

• We check how e−b changes on the transitions τ0, τ1, τ2a, τ2b, τ3a, τ3b, τ3c, τ4, τ5, τ6:
– τ0: we derive (e− b)′ ≤ 0 (reset), we add 0 to N . Since 0 is a constant we

have 0 ∈ C.
– τ2a: we derive (e− b)′ ≤ (i− b), we add i− b to N .
– τ3c: we derive (e− b)′ ≤ 0 (reset)
– τ5: we derive (e− b)′ ≤ 0 (reset)
– τ1, τ2b, τ3a, τ3b, τ4, τ6: e− b unchanged

• We check how i−b changes on the transitions τ0, τ1, τ2a, τ2b, τ3a, τ3b, τ3c, τ4, τ5, τ6:
– τ0: we derive (i− b)′ ≤ 0 (reset)
– τ1: we derive (i− b)′ ≤ (i− b) + 1 (increment)

34

2.3. Example

– τ3c: we derive (i− b)′ ≤ 0 (reset)
– τ5: we derive (i− b)′ ≤ 0 (reset)
– τ2a, τ2b, τ3a, τ3b, τ4, τ6: unchanged

• We have processed all norms in N

3. Inferring Guards. We add the guard (l− i) to τ1 in ∆PG because l− i is a guard
of τ1 in P (due to the condition i < l), we add the guard (e − k) to τ4 in ∆PG
because e− k is a guard of τ4 in P (due to the condition k < e).

4. The resulting DCP with guards is shown in Figure 2.2 (a).

Applying abstraction step II discussed in Section 2.2.2 gives us the DCP shown in
Figure 2.2 (b). In the depiction of the abstraction we assume p, q, r, x ∈ V and [e−k] = p,
[e− b] = q, [i− b] = r, [l − i] = x.

35

CHAPTER 3
Algorithm

In this chapter we develop our bound algorithm for DCPs step-by-step. We first present a
bound algorithm for the special case of vector addition systems in Section 3.2 (motivated
in Section 1.4.1). We then generalize this algorithm to DCPs with only constant resets
(Section 3.3). In Section 3.4 we finally generalize our algorithm to full DCPs (motivated
in Section 1.4.1).

We present our reasoning based on chained resets (consecutive resets of counters cn, cn−1, . . . c1
such that c1 is set to c2 which is set to c3 ,etc.), motivated in Section 1.4.7, in Section 3.5.

In Section 3.6 we present our analysis from inferring local bounds.

In Section 3.7 we state a complete example.

In Section 3.8 we discuss our path-sensitive reasoning.

In Section 3.9 we combine the presented ideas to form our full bound algorithm.

In Section 3.10 we discuss how our reasoning can be instrumented for computing resource
bounds. In Section 3.10.1 we give further details on how bounds on memory consumption
or memory-like resources can be inferred by our analysis.

In Section 3.11 we reflect on the relation of our analysis to classical invariant analysis.

In Section 3.12 we discuss how our reasoning is connected to classical amortized complexity
analysis.

We start by sketching the principal idea that is underlying our analysis.

Reconsider Tarjan’s example for amortized complexity discussed in Section 1.4. We
restate the example in Figure 3.1 (a). Assume we want to compute a bound on the overall
cost of the pop operation, modeled by the inner loop (see discussion in Section 1.4).

37

3. Algorithm

void tarjan(uint n) {
uint i = n, j = 0;

l1 : while (i > 0) {
i--;
j++; //push

l2 : while (j > 0 && ?)//pop
j--;

}
}

Complexity: 2n

lb

l1 le

l2

i′ = n ∧
j′ = 0τ0

i > 0 ∧
i′ = i− 1 ∧
j′ = j + 1

τ1

j > 0 ∧
i′ = i ∧
j′ = j − 1

τ2

i′ = i ∧
j′ = j τ3

lb

l1 le

l2

[i]′ ≤ [n]
[j]′ ≤ [0]τ0

[i]′ ≤ [i]− 1
[j]′ ≤ [j] + 1τ1

[i]′ ≤ [i]
[j]′ ≤ [j]− 1

τ2

[i]′ ≤ [i]
[j]′ ≤ [j] τ3

(a) (b) (c)

Figure 3.1: Example tarjan (b) LTS of Example tarjan (c) DCP obtained by
abstraction from tarjan

Local Bound. Note that j decreases with each execution of the inner loop and that
the inner loop can only be repeated if j > 0 holds. Thus the number of consecutive
executions of the inner loop is limited by the value of j. j is, however, not a bound on
the overall executions of the inner loop, because the value of j is incremented on the
outer loop. We therefore call j a local bound.

Bound Computation. Our algorithm, which we present next, infers a bound on the
overall number of executions of the inner loop by reasoning how often and by how much
the inner loop’s local bound j may increase during program run. Since j is incremented
by 1 on the outer loop, this reasoning triggers a recursive bound computation for the
outer loop. The bound n of the outer loop multiplied by the increment 1 of j then leads
to the loop bound n for the inner loop. By this reasoning, we conclude that the overall
cost of the push operation is limited by n.

3.1 Formal Problem Statement and Basic Definitions
Transition bounds are at the core of our analysis: We infer bounds on the number of loop
iterations, on computational complexity, on resource consumption, etc., by computing
bounds on the number of times that one or several transitions can be executed.

Before we formally define our notion of a transition bound we have to introduce some
notation.

Definition 11 (Counter Notation I). Let P(L, T, lb, le) be a program over Σ. Let τ ∈ T .
Let ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→ · · · be a run of P. By](τ, ρ) we denote the number of
times that τ occurs on ρ.

38

3.1. Formal Problem Statement and Basic Definitions

In the following, we denote by ‘∞’ a value s.t. a <∞ for all a ∈ Z (infinity).

Definition 12 (Transition Bound). Let P = (L, T, lb, le) be program over states Σ. Let
τ ∈ T . A value b ∈ N0 ∪ {∞} is a bound for τ on a run ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→
(l2, σ2) λ2−→ . . . of P iff](τ, ρ) ≤ b, i.e., iff τ appears not more than b times on ρ. A
function b : Σ→ N0 ∪ {∞} is a bound for τ iff for all runs ρ of P it holds that b(σ0) is
a bound for τ on ρ, where σ0 denotes the initial state of ρ.

Our aim is to design a procedure TB(τ) which, given a program transition τ , returns a
bound for τ . If possible, the bound computed by our procedure should be precise or tight,
in particular the trivial bound Σ→∞ is (most often) of no value to us.

Definition 13 (Precise Transition Bound). Let P(L, T, lb, le) be a program over states
Σ. Let τ ∈ T . We say that a transition bound b : Σ→ N0 ∪ {∞} for τ is precise iff for
each σ0 ∈ Σ there is a run ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→ · · · such that](τ, ρ) = b(σ0).

Informally: A transition bound is precise if it can be reached for all initial states σ0.
Note that there is only exactly one precise transition bound.

Definition 14 (Tight Transition Bound). Let P(L, T, lb, le) be a program over states Σ.
Let τ ∈ T . We say that a transition bound b : Σ→ N0 ∪ {∞} is tight iff there is a c > 0
such that either 1) for all σ ∈ Σ we have b(σ) < c (b is bounded), or 2) there is a family
of states (σi)i∈N with lim

i 7→∞
b(σi) =∞ (b is unbounded) such that for all σi there is a run

ρi starting in σi with b(σi) ≤ c×](τ, ρi).

Informally: A transition bound is tight if it is in the same asymptotic class as the precise
transition bound: Let τ ∈ T . For the special case Σ = N we have the following: Let
f : N→ N denote the precise transition bound for τ . Let g : N→ N be some transition
bound for τ . Trivially f ∈ O(g) (f does not grow faster than g). Now, g is tight if also
f ∈ Ω(g) (f does not always grow slower than g). With f ∈ O(g) and f ∈ Ω(g) we have
that f ∈ Θ(g). The same can be formulated for general state sets Σ by mapping Σ to
the natural numbers.

We now formally define the notion local bound.

Definition 15 (Counter Notation II). Let P(L, T, lb, le) be a program over Σ. Let
ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→ · · · be a run of P. Let e : Σ → Z be a norm. By ↓(e, ρ) we
denote the number of times that the value of e decreases on ρ, i.e.,
↓(e, ρ) = |{i | e(σi) > e(σi+1)}|.

Definition 16 (Local Bound). Let P(L, T, lb, le) be a program over Σ. Let τ ∈ T . Let
e : Σ → N be a norm that takes values in the natural numbers. Let ρ = (lb, σ0) u0−→
(l1, σ1) u1−→ · · · be a run of P. e is a local bound for τ on ρ if it holds that](τ, ρ) ≤ ↓(e, ρ).

39

3. Algorithm

Discussion. A natural number valued norm e is a local bound for τ on a run ρ if τ
appears not more often on ρ than the number of times the value of e decreases. I.e., a
local bound e for τ limits the number of executions of τ on a run ρ as long as certain
program parts (those were e increases) are not executed. We argue in Section 3.12 that,
in our analysis, local bounds play the role of potential functions in classical amortized
complexity analysis [Tar85].

We discuss how we obtain local bounds in Section 3.6.

Following our methodological approach (Section 1.3) we design our algorithm on the
level of our abstract program model of difference constraint programs. We discussed in
Section 2.2 how we obtain DCPs from concrete programs.

Let ∆P(L,E, lb, le) be a DCP over A. Our bound algorithm, which we start to develop
in the next section, computes a transition bound for a given transition τ ∈ E in form of
an expression over A which involves the operators +,×,/,min,max and the floor function
b·c. Note, however, that the norms, which are treated as atoms (elements of A) in the
abstraction, can involve arbitrary operators (see Section 2.2).

Definition 17 (Expressions over A). By Expr(A) we denote the set of expressions over
A∪Z∪∞ that are formed using the arithmetical operators addition (+), multiplication (×),
division (/), maximum (max), minimum (min) and integer division of form bexpr

c c where
expr ∈ Expr(A) and c ∈ N. The semantics function J·K : Expr(A)→ (ValA → Z∪ {∞})
evaluates an expression expr ∈ Expr(A) over a state σ ∈ ValA using the usual operator
semantics (we have a+∞ =∞, min(a,∞) = a, etc.).

We now introduce the key ingredients of our bound algorithm.

Our bound algorithm computes a bound for a given transition τ ∈ E based on a mapping
(called local bound mapping) which assigns each τ ∈ E either 1) a bound for τ in form
of an expression over the symbolic constants (ζ(τ) ∈ Expr(C)) or 2) a local bound for τ
in form of a variable (ζ(τ) ∈ V). Note that V ∩ Expr(C) = ∅. In case 1) our algorithm
(Definition 22) returns TB(τ) = ζ(τ). In case 2) a transition bound TB(τ) ∈ Expr(C) is
computed by inferring how often and by how much the local transition bound ζ(τ) ∈ V
of τ may increase during program run.

Definition 18 (Local Bound Mapping). Let ∆P(L,E, lb, le) be a DCP over A. Let
ρ = (lb, σ0) u0−→ (l1, σ1) u1−→ · · · be a run of ∆P. We call a function ζ : E → Expr(A) a
local bound mapping for ρ if for all τ ∈ E it holds that either
1) ζ(τ) ∈ Expr(C) and Jζ(τ)K(σ0) is a bound for τ on ρ or
2) ζ(τ) ∈ V and Jζ(τ)K is a local bound for τ on ρ.
We say that ζ is a local bound mapping for ∆P if ζ is a local bound mapping for all runs
of ∆P.

Further, our bound algorithm is based on a syntactic distinction between two kinds of
updates that may modify the value of a given variable v ∈ V: We identify transitions
which increment v and transitions which reset v.

40

3.2. Bound Algorithm for Lossy Vector Addition Systems

Definition 19 (Resets and Increments). Let ∆P = (L,E, lb, le) be a DCP over A. Let
v ∈ V. We define the resets R(v) and increments I(v) of v as follows:
R(v) = {(l1

u−→ l2, a, c) ∈ E ×A× Z | v′ ≤ a + c ∈ u, a 6= v}
I(v) = {(l1

u−→ l2, c) ∈ E × N | v′ ≤ v + c ∈ u, c > 0}

Given a path π of ∆P we say that v is reset on π if there is a transition τ on π such
that (τ, a, c) ∈ R(v) for some a ∈ A and c ∈ Z. We say that v is incremented on π if
there is a transition τ on π such that (τ, c) ∈ I(v) for some c ∈ N.

I.e., we have that (τ, a, c) ∈ R(v) if variable v is reset to a value smaller or equal to
a + c when executing the transition τ . Accordingly we have (τ, c) ∈ I(v) if variable v is
incremented by a value smaller or equal to c when executing the transition τ .

3.2 Bound Algorithm for Lossy Vector Addition Systems

Definition 20 (Monotone Difference Constraints.). Let x′ ≤ y + c ∈ DC(A) be a
difference constraint over A. We say that x′ ≤ y + c is monotone if x = y. We denote
the set of all monotone difference constraints over V byMDC(V).

I.e., monotone difference constraints are a strict syntactic sub-class of difference con-
straints, we haveMDC(V) ⊂ DC(A).

Definition 21 (Lossy Vector Addition System with States.). A DCP ∆P(L,E, lb, le) is
a lossy vector addition system with states (VASS) iff (1) for all l1

u−→ l2 ∈ E with l1 6= lb
u ∈ 2MDC(V), (2) there is exactly one l2 ∈ L s.t. lb

u−→ l2 ∈ E.

I.e., lossy vector addition systems with states (see, e.g., [BM99]) are a strict syntactic
sub-class of difference constraint programs. Non-monotone difference constraints are
allowed only on the single initial transition.

Example: The DCP shown in Figure 3.1 (b) is a VASS. Figure 3.1 (b) is obtained by
our abstraction procedure (Chapter 2) from Figure 3.1 (a).

Definition 22 (Bound Algorithm for VASS.). Let ∆P = (L,E, lb, le) be a DCP over A.
Let ζ : E → Expr(A). We define TB : E 7→ Expr(A) as:

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else
TB(τ) = Incr(ζ(τ)) +

∑
(_,a,c)∈R(ζ(τ))

max(a + c, 0)

where Incr(v) =
∑

(τ,c)∈I(v)
TB(τ)× c (we set Incr(v) = 0 for I(v) = ∅)

41

3. Algorithm

Call Evaluation and Simplification Using

TB(τ2)
→ Incr([j]) + max([0] + 0, 0)
= Incr([j])
→ [n]

ζ(τ2) = [j],
R([j]) = (τ0, [0], 0),
Incr([j])

Incr([j])
→ TB(τ1)× 1
→ [n]× 1
= [n]

I([j]) = (τ1, 1),
TB(τ1)

TB(τ1)
→ Incr([i]) + max([n] + 0, 0)
→ 0 + max([n] + 0, 0)
= [n]

ζ(τ1) = [i],
R([i]) = (τ0, [n], 0),
Incr([i])

Incr([i]) → 0 I([i]) = ∅

Table 3.1: Computation of TB(τ2) and TB(τ1) for Example tarjan (Figure 3.1) by
Definition 22

Discussion. We first explain the subroutine Incr(v): With (τ, c) ∈ I(v) we have that
a single execution of τ increments the value of v by not more than c. Incr(v) multiplies
the bound for τ with the increment c in order to summarize the total amount by which
v may be incremented over all executions of τ . Incr(v) thus computes a bound on the
total amount by which the value of v may be incremented during program run. The
function TB(τ) computes a transition bound for τ based on the following reasoning: (1)
The total amount by which the local bound ζ(τ) of transition τ can be incremented is
bounded by Incr(ζ(τ)). (2) By Definition 21 we have that ζ(τ) ∈ V can only be reset
on the single initial transition lb

u−→ l2. By well-definedness of ∆P lb has no incoming
edges. Thus lb

u−→ l2 can be executed exactly once. Further R(ζ(τ)) 6= ∅ because by
well-definedness of ∆P ζ(τ) must be reset on lb

u−→ l2.

Example. Consider the VASS in Figure 3.1 (c) which models Tarjan’s example for
amortized complexity discussed in Section 1.4.1: Variable j models the stack size. The
push instruction is modeled by increasing the stack size j by 1. The pop instruction
is modeled by decreasing the stack size. We want to compute a bound on the overall
cost of the StackOp operation, that is, a bound on the total number of times that
transitions τ1 and τ2 can be executed. See Table 3.1 for details on the computation. We
get TB(τ1) = [n] and TB(τ2) = [n]. We thus get 2n as upper bound on the total cost of
the StackOp operation (n has type unsigned). Recall from the discussion in Section 1.4.1
that 2n is in fact the precise upper bound for the cost of the StackOp operation.

Termination. Our algorithm does not terminate iff recursive calls cycle, i.e., if a call
to TB(τ) (indirectly) leads to a recursive call to TB(τ). This can be easily detected,
we return the expression ‘∞’. A cyclic computation occurs iff there is a transition τ1
with local bound x that increases the local bound y of a transition τ2 which in turn
increases x. We conclude that absence of a cyclic computation is ensured if for all

42

3.3. Bound Algorithm for DCPs with Constant Resets

strongly connected components (SCC) SCC of ∆P we can find an ordering τ1, . . . τn of the
transitions of SCC s.t. the local bound of transition τi is not increased on any transition
τj with n ≥ j > i ≥ 1. Note that the existence of such an ordering for each SCC of ∆P
proves termination of ∆P : it allows to directly compose a termination proof in form of a
lexicographic ranking function [BMS05] by ordering the respective local transition bounds
accordingly.

Complexity. Our algorithm can be efficiently (polynomial in the number of vari-
ables and transitions of the abstract program) implemented using a cache (dynamic
programming): We set ζ(τ) = TB(τ) after having computed TB(τ).

Theorem 1 (Soundness). Let ∆P(L,E, lb, le) be a well-defined and fan-in free VASS
over atoms A. Let ζ : E 7→ Expr(A) be a local bound mapping for ∆P. Let τ ∈ E. Let
TB be as defined in Definition 22. Then JTB(τ)K is a transition bound for τ .

Proof: Definition 22 is a special case of Definition 27. We prove soundness of Definition 27
in Section 7.1.1.

3.3 Bound Algorithm for DCPs with Constant Resets
In Figure 3.2 (a) we show a simplified version of an example which we found dur-
ing our experiments. We discuss how our algorithm handles the full version of Ex-
ample SingleLinkSimple (Example SingleLinkCluster in Figure 4.13) in Sec-
tion 4.2.2. In Figure 3.2 (b) the DCP obtained from Example SingleLinkSimple by
our abstraction procedure from Section 2.2 is shown. Note that the DCP in Figure 3.2 (b)
is not a VASS: The variable i is reset to a value lower or equal to n−1 with each execution
of transition τ2, where n ∈ C is a symbolic constant.

In this section we discuss how we extend our bound algorithm such that it supports
constant resets.

Definition 23 (DCP with only Constant Resets.). A DCP ∆P(L,E, lb, le) over A is a
DCP with only constant resets iff for all l1

u−→ l2 ∈ E and all x′ ≤ y + c ∈ u it holds that
either x′ ≤ y + c ∈MDC(V), i.e., y = x, or y ∈ C.

See Figure 3.2 (b) for an example.

Definition 24 (Bound Algorithm for DCPs with only Constant Resets). Let ∆P =
(L,E, lb, le) be a DCP over A. Let ζ : E → Expr(A). We define TB : E 7→ Expr(A) as:

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else
TB(τ) = Incr(ζ(τ)) +

∑
(t,a,c)∈R(ζ(τ))

TB(t)×max(a + c, 0)

where Incr(v) =
∑

(τ,c)∈I(v)
TB(τ)× c (we set Incr(v) = 0 for I(v) = ∅)

43

3. Algorithm

void SingleLinkSimple(int n) {
int a = n, b = 0;

l2 : while (b > 0) {
b--;

l3 : for (int i = n-1; i > 0; i--) {
if (a > 0 && ?) {

a--;
b++;

l4 : }
}

}
}

lb

l2

l3

l4

le

u3 ≡
[a]′ ≤ [a]
[b]′ ≤ [b]
[i]′ ≤ [i]

[a]′ ≤ [n]
[b]′ ≤ [0]τ0

[a]′ ≤ [a]
[b]′ ≤ [b]− 1
[i]′ ≤ [n]− 1

τ2

u3

τ3 [a]′ ≤ [a]− 1
[b]′ ≤ [b] + 1
[i]′ ≤ [i]

τ4
[a]′ ≤ [a]
[b]′ ≤ [b]
[i]′ ≤ [i]− 1

τ5

[a]′ ≤ [a]
[b]′ ≤ [b]

τ6

(a) (b)

Figure 3.2: (a) Example SingleLinkSimple is a simplified version of Exam-
ple SingleLinkCluster which we discuss in Section 4.2.2, (b) DCP obtained by
abstraction from SingleLinkSimple

Discussion. The only difference to Definition 22 (our algorithm for VASS) is that we
multiply a reset (t, a, c) ∈ R(ζ(τ)) by the number of times it may occur: Consider a reset
(t, a, c) ∈ R(ζ(τ)). Note that a ∈ C if ∆P is a DCP with constant resets. In the worst
case, a single execution of t resets the local bound ζ(t) to a + c, adding max(a + c, 0) to
the potential number of executions of t; in total all TB(t) possible executions of t add
up to TB(t)×max(a + c, 0) to the potential number of executions of t.

Theorem 2 (Soundness). Let ∆P(L,E, lb, le) be a well-defined and fan-in free DCP
with only constant resets over atoms A. Let ζ : E 7→ Expr(A) be a local bound mapping
for ∆P. Let τ ∈ E. Let TB be as defined in Definition 24. Then JTB(τ)K is a transition
bound for τ .

Proof: Definition 24 is a special case of Definition 27. We prove soundness of Definition 27
in Section 7.1.1.

Example. Assume we want to compute a bound on the number of times that the inner
loop at l3 of Figure 3.2 can be executed. We thus compute a transition bound for τ5 (the
single back-edge of the inner loop). For details on the computation see Table 3.2. We get
TB(τ5) = [n]×max([n]− 1, 0). We thus have that max(n, 0)×max(n− 1, 0) is a loop

44

3.3. Bound Algorithm for DCPs with Constant Resets

Call Evaluation and Simplification Using

TB(τ5)

→ Incr([i]) + TB(τ2)×max([n]− 1, 0)
→ 0 + TB(τ2)×max([n]− 1, 0)
→ 0 + [n]×max([n]− 1, 0)
= [n]×max([n]− 1, 0)

ζ(τ5) = [i],
R([i]) = {(τ2, [n],−1)},
Incr([i]),
TB(τ2)

Incr([i]) → 0 I([i]) = ∅

TB(τ2)
→ Incr([b]) + TB(τ0)×max([0] + 0, 0)
= Incr([b])
→ [n]

ζ(τ2) = [b],
R([b]) = {(τ0, [0], 0)},
Incr([b])

Incr([b])
→ TB(τ4)× 1,
→ [n]× 1
= [n]

I([b]) = {(τ4, 1)}
TB(τ4)

TB(τ4)

→ Incr([a]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n], 0)
= [n]

ζ(τ4) = [a],
R([a]) = {(τ0, [n], 0)},
Incr([a]),
TB(τ0)

Incr([a]) → 0 I([a]) = ∅
TB(τ0) → 1 ζ(τ0) = 1

Table 3.2: Computation of TB(τ5) for Example SingleLinkSimple (Figure 3.2) by
Definition 24

bound for the inner loop. In fact, max(n, 0)×max(n− 1, 0) is the precise loop bound for
the inner loop of Figure 3.2.

Termination. The same condition applies as for Definition 22 (see Section 3.2). We
return the expression “∞” if a cyclic computation occurs.

Complexity. The time complexity of our algorithm remains polynomial if imple-
mented by dynamic programming (see discussion in Section 3.2). The computed bound
expressions, however, can now be of exponential size: Consider the DCP ∆P =
({lb, l}, {τ0, τ1, . . . , τn}, lb, le) over variables {x1, x2, . . . , xn} and constants {m1,m2, . . . ,mn}
shown in Figure 3.3. Our algorithm computes:

TB(τn) = m0 +
m0 ×m1 +
(m0 +m0 ×m1)×m2 +
(m0 +m0 ×m2 + (m0 +m0 ×m1)×m2)×m3

. . .

=
∑

S∈2{1,2,...,n}
m0 ×

∏
i∈S

mi

45

3. Algorithm

lb

lle . . .

x′1 ≤ m0

x′2 ≤ m0

. . .

x′n ≤ m0

τ0

x′1 ≤ x1 − 1

x′2 ≤ m1

x′3 ≤ m1

. . .

x′n ≤ m1

τ1

x′2 ≤ x2 − 1

x′3 ≤ m2

x′4 ≤ m2

. . .

x′n ≤ m2

τ2

x′3 ≤ x3 − 1

x′4 ≤ m3

x′5 ≤ m3

. . .

x′n ≤ m3

τ3

x′n ≤ xn − 1
τn

TB(τn) =
∑

S∈2{1,2,...,n}
m0 ×

∏
i∈S

mi

Figure 3.3: Example for which we get a bound expression of exponential size, transitions
τ1≤i≤n have source- and target-location l

We thus obtain a bound expression of exponential size (exponential in the number of
transitions and variables of ∆P). In fact, TB(τn) =

∑
S∈2{1,2,...,n}

m0 ×
∏
i∈S

mi is precise for

Figure 3.3. The example, however, is artificial. To our experience, the computed bound
expressions can, in practice, be reduced to human readable size by applying basic rules
of arithmetic.

3.4 Bound Algorithm for DCPs
In this Section we discuss how our bound algorithm is extended to support non-constant
resets, i.e., difference constraints of form z′ ≤ x+ c with x ∈ V. Let us sketch our basic
idea on the Example twoSCCs which we discussed in Section 1.4.4: In Figure 3.4 (a)
we restate Example twoSCCs. In Figure 3.4 (b) the abstraction of Example twoSCCs
is shown as obtained by our abstraction procedure (discussed in Section 2.2). On
transition τ2 of Figure 3.4 (b) [z] is set to a value lower or equal than [x], where [x]
is a variable of the abstract program. We reduce the problem of reasoning about this
non-constant reset to the problem of reasoning about a constant reset by computing
an invariant x ≤ expr(n,m1,m2), where expr(n,m1,m2) is an expression over the
programs parameters n, m1 and m2, i.e., an expression which value does not change
during program run.

We call expr(n,m1,m2) such that x ≤ expr(n,m1,m2) an upper bound invariant for x.

We compute upper bound invariants by means of bound analysis: We bound the number
of times that x can be incremented by 2 in the loop at l2 by computing a loop bound
for l2. I.e., we design a mutual recursive algorithm consisting of the function TB for
computing transition bounds and a new function VB for inferring variable bounds, a

46

3.4. Bound Algorithm for DCPs

twoSCCs(uint n, uint m1, uint m2) {
int y = n;
int x;

l1 : if(?)
x = m1;

else
x = m2;

l2 : while(y > 0) {
y--;
x = x + 2;

}
int z = x;

l3 : while(z > 0)
z--;

}

Bound of loop at l3: max(m1 ,m2) + 2n

lb

l1

l2

l3 le

[y]′ ≤ [n]τ0

τ1
[y]′ ≤ [y]
[x]′ ≤ [m1][y]′ ≤ [y]

[x]′ ≤ [m2] τ2

τ3
[y]′ ≤ [y] − 1
[x]′ ≤ [x] + 2

[z]′ ≤ [x];τ4

τ5
[z]′ ≤ [z] − 1

(a) (b)

Figure 3.4: (a) Example twoSCCs discussed in Section 1.4.4, (b) DCP obtained by
abstraction from twoSCCs

special case of upper bound invariants. TB calls VB for over-approximating non-constant
resets by constant expressions and VB calls TB for over-approximating the number of
times that a given variable is incremented on a given transition.

Definition 25 (Upper Bound Invariant). Let P(L, T, lb, le) be a program over Σ. Let
e : Σ → Z. Let l ∈ L. Let ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→ (l2, σ2) λ2−→ . . . be a run of P.
b ∈ Z ∪ {∞} is an upper bound invariant for e at l on ρ iff e(σi) ≤ b holds for all i on
ρ with li = l. A function b : Σ→ Z ∪ {∞} is an upper bound invariant for e at l iff for
all runs ρ of P it holds that b(σ0) is an upper bound invariant for e at l on ρ, where σ0
denotes the initial state of ρ.

Definition 27 computes a special case of an upper bound invariant that we call a variable
bound.

Definition 26 (Variable Bound). Let ∆P(L,E, lb, le) be a DCP over A. Let a ∈ A. We
call b s.t. b is an upper bound invariant for JaK at all l ∈ L with a ∈ def(l) a variable
bound for a.

Let variable x of the abstract program represent the expression expr of the concrete
program. Note that by computing an variable bound for x in the abstract program, we
compute an upper bound invariant for expr in the concrete program.

47

3. Algorithm

As motivated above, we extend our algorithm by a function VB which computes variable
bounds.

Definition 27 (Bound Algorithm). Let ∆P(L,E, lb, le) be a DCP over A.
Let ζ : E → Expr(A). We define VB : A 7→ Expr(A) and TB : E 7→ Expr(A) as:

VB(a) = a, if a ∈ C, else
VB(v) = Incr(v) + max

(_,a,c)∈R(v)
(VB(a) + c)

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else
TB(τ) = Incr(ζ(τ)) +

∑
(t,a,c)∈R(ζ(τ))

TB(t)×max(VB(a) + c, 0)

where Incr(v) =
∑

(τ,c)∈I(v)
TB(τ)× c (we set Incr(v) = 0 for I(v) = ∅)

Discussion. The function VB(v) computes a variable bound for v: After executing a
transition τ with (τ, a, c) ∈ R(v), the value of v is bounded by VB(a) + c. As long as v
is not reset, its value cannot increase by more than Incr(v).
The function TB(τ) is defined similar as in Definition 24 (Section 3.3), the only difference
is that we over-approximate the value of a reset (t, a, c) ∈ R(ζ(τ)) by VB(a). Note that
VB(a) = a if a ∈ C. Thus, Definition 27 is identical to Definition 24 for the special case
of a DCP with only constant resets.

Termination. The same condition applies as for Definition 22 (our algorithm for
VASS, Section 3.2), and we return the expression “∞” if a cyclic computation occurs. In
comparison to Definition 22 there are, however, two additional reasons which may lead
to cyclic computations: (1) VB(v) cycles: There is a variable v ∈ V s.t. the computation
of VB(v) ends up calling VB(v) over a number of recursive calls to VB. (2) TB(τ)
and VB(v) cycle mutually: There is a variable v ∈ V and a transition τ ∈ E s.t. the
computation of TB(τ) calls VB(v) which in turn ends up calling TB(τ) over a number
of recursive calls to VB and TB.
Case (1) occurs iff there is a cycle in the reset graph (Definition 28, page 52) of ∆P.
In Section 3.5.3 (page 59) we discuss a preprocessing that ensures absence of cycles
in the reset graph and thus absence of case (1) by renaming the program variables
appropriately.
An example for Case (2) is given in Figure 3.5: Consider the DCP abstraction in
Figure 3.5 (b). τ1 is the transition on which y is reset to a. τ2 is the single transition of the
inner loop. Assume we want to compute a loop bound for the inner loop, i.e., a transition
bound for τ2 with local bound [y]. This triggers a variable bound computation for [a]
because [y] is reset to [a]. Since [a] is incremented on τ2, the variable bound computation
for [a] will in turn trigger a transition bound computation for τ2. Note, however, that
the loop bound of the inner loop (the transition bound of τ2) is exponential (2n). We

48

3.4. Bound Algorithm for DCPs

void foo(uint n) {
int x = n; int a = 1;
while(x > 0) {

x--; int y = a;
while(y > 0) {
y--; a++;
}

}
}

lb

l1

l2

le

[x]′ ≤ [n]
[a]′ ≤ [1]τ0

[x]′ ≤ [x]− 1
[a]′ ≤ [a]
[y]′ ≤ [a]

τ1[x]′ ≤ [x]
[a]′ ≤ [a]

τ3

[x]′ ≤ [x]
[a]′ ≤ [a] + 1
[y]′ ≤ [y]− 1

τ2

Complexity: 2n

(a) (b)

Figure 3.5: (a) Example with exponential loop bound, (b) DCP obtained by abstraction

consider exponential loop bounds to be very rare, we did not encounter an exponential
loop bound during our experiments.

Complexity. The time complexity of our algorithm remains polynomial if implemented
by dynamic programming: Similar to the discussed caching for TB(τ) (see discussion in
Section 3.2), we can introduce a cache to store the result of a VB(v) computation. When
VB(v) is called we first check if the result is already in the cache before performing the
computation.

Theorem 3 (Soundness). Let ∆P(L,E, lb, le) be a well-defined and fan-in free DCP
over atoms A. Let ζ : E 7→ Expr(A) be a local bound mapping for ∆P. Let a ∈ A and
τ ∈ E. Let TB(τ) and VB(a) be as defined in Definition 27. We have: (1) JTB(τ)K is a
transition bound for τ . (2) JVB(a)K is a variable bound for a.

Proof: We prove soundness of Definition 27 in Section 7.1.1.

Example. We want to infer a loop bound for the loop at l3 in Figure 3.4. We thus
compute a transition bound for τ5 (the single back edge of the loop at l3). See Table 3.3
for details on the computation. We get TB(τ5) = max([m1], [m2]) + [n] × 2. Thus
max(m1,m2) + 2n is a bound for the loop at l3 (n, m1 and m2 have type unsigned).
Recall that max(m1,m2)+2n is in fact the precise bound of the loop at l3 (see discussion
in Section 1.4.4).

49

3. Algorithm

Call Evaluation and Simplification Using

TB(τ5)

→ Incr([z]) + TB(τ4)×max(VB([x]) + 0, 0)
→ 0 + TB(τ4)×max(VB([x]) + 0, 0)
→ 0 + 1×max(VB([x]) + 0, 0)
→ 0 + 1×max(

[n]× 2 + max([m1], [m2]) + 0,
0)

= max([m1], [m2]) + [n]× 2

ζ(τ5) = [z],
R([z]) = {(τ4, [x], 0)},
Incr([z]),
TB(τ4),
VB([x])

Incr([z]) → 0 I([z]) = ∅
TB(τ4) → 1 ζ(τ4) = 1

VB([x])
→ Incr([x]) + max([m1] + 0, [m2] + 0)
→ [n]× 2 + max([m1] + 0, [m2] + 0)
= [n]× 2 + max([m1], [m2])

R(x) = {(τ1, [m1], 0),
(τ2, [m2], 0)},
[m1], [m2] ∈ C,
Incr([x])

Incr([x]) → TB(τ3)× 2
→ [n]× 2

I([x]) = {(τ3, 2)},
TB(τ3)

TB(τ3)

→ Incr([y])+TB(τ0)×max([n]+0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ3) = [y],
R([y]) = {(τ0, [n], 0)},
[n] ∈ C,
Incr([y]),
TB(τ0)

Incr([y]) → 0 I([y]) = ∅
TB(τ0) → 1 ζ(τ0) = 1

Table 3.3: Computation of TB(τ5) for Example twoSCCs (Figure 3.4) by Definition 27

lb

l1

l2 le

z′ ≤ n
y′ ≤ n

τ0

z′ ≤ z
y′ ≤ y

τ2

z′ ≤ z − 1
y′ ≤ y τ1

z′ ≤ z + 1
y′ ≤ y − 1 τ3

lb

l1

l2 le

z′1 ≤ n
y′1 ≤ n

τ0

z′2 ≤ z1
y′2 ≤ y1

τ2

z′1 ≤ z1 − 1
y′1 ≤ y1 τ1

z′2 ≤ z2 + 1
y′2 ≤ y2 − 1 τ3

(a) (b)

Figure 3.6: (a) DCP before variable renaming, (b) DCP obtained by variable renaming
(Section 3.5.3)

50

3.5. Reasoning Based on Reset Chains

void foo(uint n) {
int x = n;
int r = n;

l1 while(x > 0) {
x = x - 1;

l2 if(?) {
int p = r;

l3 while(p > 0)
p--;

r = 0;
}

l4 }
}

Complexity: 2n

lb

l1 le

l2

l3l4

[x]′ ≤ [n];
[r]′ ≤ [n];

τ0

[x]′ ≤ [x] − 1
[r]′ ≤ [r]

τ1

τ2

[x]′ ≤ [x]
[r]′ ≤ [r]
[p]′ ≤ [r]

[x]′ ≤ [x]
[r]′ ≤ [r]

τ5

τ4
[x]′ ≤ [x]
[r]′ ≤ [0]

[r]′ ≤ [r]
[x]′ ≤ [x]

τ6

[x]′ ≤ [x]
[r]′ ≤ [r]
[p]′ ≤ [p] − 1τ3

[0][n]

[r]

[p][x]

τ4

τ2

τ0

τ0

(a) (b) (c)

Figure 3.7: (a) Example, (b) Abstraction, (c) Reset Graph

Flow-Sensitive Reasoning. Our algorithm, as formulated in Definition 27, is flow-
insensitive. This can lead to coarse over-approximations even for simple cases such as
the one in Figure 3.6 (a). Here our algorithm does not take into account that z at
l2 can never flow into z at l1 and thus computes TB(τ1) = 2 × n whereas the precise
transition bound for τ1 is n. However, thanks to our simple program abstraction, we
obtain a flow-sensitive bound algorithm through a simple program transformation: By a
preprocessing, which we discuss in Section 3.5.3, we obtain the semantically equivalent
DCP in Figure 3.6 (b) from Figure 3.6 (a) through variable renaming (z at l1 is renamed
to z1, z at l2 is renamed to z2, etc.). For Figure 3.6 (b) we now obtain TB(τ1) = n.
I.e., by renaming the program variables appropriately the precision of our algorithm
is enhanced. Note that Figure 3.6 (b) is very similar to the static single assignment
(SSA) form. In program analysis, the transformation of programs into the SSA form is a
well-known trick for adding some flow-sensitivity to a flow-insensitive analysis.

3.5 Reasoning Based on Reset Chains

Consider Figure 3.7. The precise bound for the loop at l3 is n: Initially r has value n,
after we have iterated the loop at l3, r is set to 0. Thus the loop can only be executed in
at most one iteration of the outer loop. However, our algorithm from Definition 27 infers
a quadratic bound for the loop at l3: As shown in Table 3.4 we have TB(τ3) = [n]× [n].
We thus get n2 (n has type unsigned) as bound for the loop at l3 in the concrete program.

Our algorithm from Definition 27 does not take into account that r is reset to 0 after
executing the loop at l3. In the following we discuss an extension of our algorithm which
overcomes this imprecision by taking the context under which a transition is executed

51

3. Algorithm

Call Evaluation and Simplification Using

TB(τ3)

→ TB(τ2)×max(VB([r]) + 0, 0)
→ [n]×max(VB([r]) + 0, 0)
→ [n]×max([n] + 0, 0)
= [n]× [n]

ζ(τ3) = [p],
R([p]) = {(τ2, [r], 0)},
TB(τ2),
VB([r])

TB(τ2)
→ TB(τ0)×max([n] + 0, 0)
→ 1×max([n] + 0, 0)
= [n]

ζ(τ2) = [x],
R([x]) = {(τ0, [n], 0)},
[n] ∈ C,
TB(τ0)

VB([r])
→ max([n] + 0, [0] + 0)
= max([n], [0])
= [n]

R([r]) = {(τ0, [n], 0),
(τ4, [0], 0)},

[n], [0] ∈ C
TB(τ0) → 1 ζ(τ0) = 1

Table 3.4: Computation of TB(τ3) for Figure 3.7 (b) by Definition 27 (without calls to
Incr because I(v) = ∅ and thus Incr(v) = 0 for Figure 3.7 (b))

into account: We say that a transition τ2 is executed under context τ1 if transition τ1
was executed before the current execution of τ2 and after the previous execution of τ2 (if
any).

As an example, consider Figure 3.7 (b), the abstraction of Figure 3.7 (a). We have that
τ2 is always executed either under context τ0 or under context τ4. When executing τ2
under context τ0, p is set to n. But when executing τ2 under context τ4, p is set to 0.
Moreover, τ2 can only be executed once under context τ0 because τ0 is executed only
once.

We define the notion of a reset graph as a means to reason systematically about the
context under which resets can be executed.

Definition 28 (Reset Chain Graph). Let ∆P(L,E, lb, le) be a DCP over A. The reset
chain graph or reset graph of ∆P is the directed graph G with node set A and edges
E = {(y, τ, c, x) | (τ, y, c) ∈ R(x)} ⊆ A×E ×Z×V, i.e., each edge has a label in E ×Z.
We call G(A, E) a reset chain DAG or reset DAG if G(A, E) is acyclic. We call G(A, E)
a reset chain forest or reset forest if the sub-graph G(V, E) is a forest. We call a finite
path κ = an

τn,cn−−−→ an−1
τn−1,cn−1−−−−−−→ . . . a0 in G with n > 0 a reset chain of ∆P. We

say that κ is a reset chain from an to a0. Let n ≥ i ≥ j ≥ 0. By κ[i,j] we denote the

sub-path of κ that starts at ai and ends at aj. We define in(κ) = an, c(κ) =
n∑
i=1

ci,

trn(κ) = {τn, τn−1 . . . , τ1}, and atm(κ) = {an−1 . . . , a0}. κ is sound if for all 1 ≤ i < n
it holds that ai is reset on all paths from the target location of τ1 to the source location of
τi in ∆P. κ is optimal if κ is sound and there is no sound reset chain κ of length n+ 1
s.t. κ[n,0] = κ. Let v ∈ V, by R(v) we denote the set of optimal reset chains ending in v.

52

3.5. Reasoning Based on Reset Chains

Example: Figure 3.7 (c) shows the reset graph of Figure 3.7 (b).

We elaborate on the notions sound and optimal below. Let us first state a basic intuition
on how we employ reset chains to enhance the precision of our reasoning:

For a given reset (τ, a, c) ∈ R(v), the reset graph determines which atom flows into
variable v under which context. For example, consider Figure 3.7 (b) and its reset graph
in Figure 3.7 (c): When executing the reset (τ2, [r], 0) ∈ R([p]) under the context τ4, [p]
is set to [0], if the same reset is executed under the context τ0, [p] is set to [n]. Note that
the reset graph does not represent increments of variables. We discuss how we handle
increments in Section 3.5.1.

Let v ∈ V . Given a reset chain κ of length n that ends at v, we say that (trn(κ), in(κ), c(κ))
is a reset of v with context of length n − 1. I.e., R(v) from Definition 19 is the set of
context-free resets of v (context of length 0), because (trn(κ), in(κ), c(κ)) ∈ R(v) iff κ
ends at v and has length 1. Our previously defined algorithm from Definition 27 uses
only context-free resets, we say that it reasons context free. For reasoning with context,
we substitute the term ∑

(t,a,c)∈R(ζ(τ))
TB(t)×max(VB(a) + c, 0)

in Definition 27 by the term∑
κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ)) + c(κ), 0).

Note that we can compute a bound on the number of times that a sequence τ1, τ2, . . . τn
of transitions may occur on a run by computing min

1≤i≤n
TB(τi).

We now discuss how our algorithm infers the linear bound for τ3 of Figure 3.7 when
applying the described modification to Definition 27: The reset graph of Figure 3.7 (b) is
shown in Figure 3.7 (c). There are 3 reset chains ending in [p]: κ1 = [0] τ4,0−−→ [r] τ2,0−−→ [p],
κ2 = [n] τ0,0−−→ [r] τ2,0−−→ [p] and κ3 = [r] τ2,0−−→ [p]. However, κ3 is a sub-path of κ1 and κ2.
Note that κ1 and κ2 are sound by Definition 28 because [r] is reset on all paths from the
target location l3 of τ2 to the source location l2 of τ2 in Figure 3.7 (b) (namely on τ4). κ1
and κ2 are both optimal because they are sound and of maximal length (we discuss the
notions sound and optimal next). Thus R([p]) = {κ1, κ2}. Basing our analysis on R([p])
rather than R([p]) our approach reasons as shown in Table 3.5. We get TB(τ3) = [n],
i.e., we get the bound n (n has type unsigned) for the loop at l3 in the concrete program
(Figure 3.7 (a)).

Sound and Optimal Reset Chains. A given reset chain an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−→
. . .

τ1,c1−−−→ a0 is sound if in between any two executions of τ1 all atoms on the path (but

53

3. Algorithm

Call Evaluation and Simplification Using

TB(τ3)

→ TB({τ4, τ2})×max([0]+0, 0) +
TB({τ0, τ2})×max([n] + 0, 0)

= 0+TB({τ0, τ2})×max([n]+0, 0)
→ 0 + min(1, [n])×max([n] + 0, 0)
= min(1, [n])× [n]
= [n]

ζ(τ3) = [p],
R([p]) = {[0] τ4−→ [r] τ2−→ [p],

[n] τ0−→ [r] τ2−→ [p]},
[n], [0] ∈ C,
TB({τ0, τ2})

TB({τ0, τ2})
→ min(TB(τ0),TB(τ2))
→ min(1, [n])

TB(τ0),
TB(τ2)

TB(τ2}
→ TB(τ0)×max([n] + 0, 0)
→ 1×max([n] + 0, 0)
= [n]

ζ(τ2) = [x],
R([x]) = {[n] τ0−→ [x]},
[n] ∈ C,
TB(τ0)

TB(τ0) → 1 ζ(τ0) = 1

Table 3.5: Computation of TB(τ3) for Figure 3.7 (b) by Definition 29 (without calls to
Incr because I(v) = ∅ and thus Incr(v) = 0 for Figure 3.7 (b))

not necessarily an where the path starts and a0 where it ends) are reset: Assume that
r in Figure 3.7 (a) would not be reset after executing the inner loop. Then we could
repeat the reset of p to r without resetting r to 0, and the inner loop would have a
quadratic loop bound. For the abstract program the described modification amounts to
replacing the constraint [r]′ ≤ [0] on τ4 in Figure 3.7 (b) by [r]′ ≤ [r]. In the modified
program [r] is not reset between any two executions of τ2. Our algorithm must therefore
reason based on the reset chain [r] τ2−→ [p] in order to obtain the quadratic bound for
τ3: TB(τ3) = TB(τ2)×VB(r) = [n]× [n]. I.e., if r is not reset on the outer loop this is
modeled in our analysis by considering the reset chain [r] τ2−→ [p] rather than the maximal
reset chain [n] τ0−→ [r] τ2−→ [p]. Considering the maximal reset chain [n] τ0−→ [r] τ2−→ [p] would
be unsound in the described scenario: min(TB(τ0),TB(τ2)) × [n] = [n] is not a valid
transition bound for τ3 if r is not reset to 0 between two executions of the inner loop.
The optimal reset chains are the sound reset chains with maximal context, i.e., those
reset chains that are sound and cannot be extended without becoming unsound.

3.5.1 Algorithm Based on Reset Chain Forests

In the presence of cycles in the reset graph we get infinitely many reset chains. Let us
for now assume that the given program has a reset forest, i.e., that the sub-graph of the
reset graph which has nodes only in V is a forest (Definition 28). Then also the complete
reset graph is acyclic because the nodes in C cannot have incoming edges (Definition 28).

54

3.5. Reasoning Based on Reset Chains

void xnuSimple(uint n) {
int x = n;
int r = 0;

l1 while(x > 0) {
x = x - 1;
r = r + 1;

l2 if(?) {
int p = r;

l3 while(p > 0)
p--;

r = 0;
}

l4 } }

lb

l1le

l2

l3l4

[x]′ ≤ [n];
[r]′ ≤ [0];

τ0

[x]′ ≤ [x] − 1
[r]′ ≤ [r] + 1

τ1

τ2

[x]′ ≤ [x]
[r]′ ≤ [r]
[p]′ ≤ [r]

[x]′ ≤ [x]
[r]′ ≤ [r]

τ5

τ4
[x]′ ≤ [x]
[r]′ ≤ [0]

[r]′ ≤ [r]
[x]′ ≤ [x]

τ6

[x]′ ≤ [x]
[r]′ ≤ [r]
[p]′ ≤ [p] − 1τ3

[0][n]

[r]

[p][x]

τ4

τ2

τ0

τ0

Complexity: 2n

(a) (b) (c)

Figure 3.8: (a) Example xnuSimple, (b) DCP obtained by abstraction from xnuSimple
(c) Reset Graph

Definition 29 (Bound Algorithm using Reset Chains (reset forest)). Let ζ : E →
Expr(A) be a local bound mapping for ∆P. Let VB : A 7→ Expr(A) be as defined in
Definition 27. We override the definition of TB : E 7→ Expr(A) in Definition 27 by
stating:

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else

TB(τ) = Incr

(⋃
κ∈R(ζ(τ))

atm(κ)
)

+
∑

κ∈R(ζ(τ))
TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

where TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi) and
Incr({a1, a2, . . . , an}) =

∑
1≤i≤n

Incr(ai) with Incr(∅) = 0

Discussion and Example. We have discussed above why we replace the term TB(t)×
max(VB(a)+c, 0) from Definition 27 by the term TB(trn(κ))×max(VB(in(κ))+c(κ), 0).
We further discuss the term Incr(

⋃
κ∈R(ζ(τ))

atm(κ)) which replaces Incr(ζ(τ)) from

Definition 27: Consider Example xnuSimple in Figure 3.8. Note that r may be
incremented on τ1 between the reset of r to 0 on τ0 resp. τ4 and the reset of p to r on τ2.
The term Incr(

⋃
κ∈R(ζ(τ))

atm(κ)) takes care of such increments which may increase the

value that finally flows into ζ(τ) (in the example p) when the last transition on κ (in the
example τ2) is executed. In Table 3.6 the details of the bound computation are given.
We get TB(τ3) = [n], i.e, we have the bound n for the loop at l3 in the concrete program
(Figure 3.8 (a), n has type unsigned).

55

3. Algorithm

Call Evaluation and Simplification Using

TB(τ3)

→ Incr({[r], [p]}) +
→ TB({τ4, τ2})×max([0]+0, 0) +
→ TB({τ0, τ2})×max([0] + 0, 0)
= Incr({[r], [p]}) + 0 + 0
→ [n] + 0 + 0
= [n]

ζ(τ3) = [p],
R([p]) = {[0] τ4−→ [r] τ2−→ [p],

[0] τ0−→ [r] τ2−→ [p]},
[0] ∈ C,
Incr({[r], [p]})

Incr({[r], [p]})
→ Incr([r]) + Incr([p])
→ [n] + 0
= [n]

Incr([r]),
Incr([p])

Incr([r])
→ TB(τ1)× 1
→ [n]× 1
= [n]

I([p]) = {(τ1, 1)},
TB(τ1)

Incr([p]) → 0 I([p]) = ∅

TB(τ1)

→ Incr([x]) + TB(τ0)× [n]
→ 0 + TB(τ0)× [n]
→ 0 + 1× [n]
= [n]

ζ(τ1) = [x],
R([x]) = {[n] τ0−→ [x]},
[n] ∈ C, Incr([x]), TB(τ0)

Incr([x]) → 0 I([x]) = ∅
TB(τ0) → 1 ζ(τ0) = 1

Table 3.6: Computation of TB(τ3) for Example xnuSimple (Figure 3.8) by Definition 29

Soundness. Definition 29 for DCPs with a reset forest is a special case of Definition 31
for DCPs with a reset DAG. We prove soundness of Definition 31 in Section 7.2.1.

Complexity. The nodes of a reset forest are the variables and constants of the abstract
program (the elements of A). Since the number of paths of a forest is polynomial in the
number of nodes, the run time of our algorithm remains polynomial.

3.5.2 Algorithm Based on Reset Chain DAGs

The examples we considered so far had reset forests. Note that the definition of a reset
forest (Definition 28) only requires the sub-graph over the variables (i.e., the reset graph
without the nodes that are symbolic constants) to be a forest. In the following we
generalize Definition 29 to reset DAGs. We discuss in Section 3.5.3 how we ensure that
the reset graph is acyclic.

Consider the Example shown in Figure 3.9. The outer loop (at l1) can be executed n
times. The loop at l4 resp. transition τ6 can be executed 2n times, e.g., by executing
the program as depicted in Table 3.7: The first row counts the number of iterations
of the outer loop, the second row shows the transitions that are executed and in the

56

3.5. Reasoning Based on Reset Chains

void foo(uint n) {
int x = n;
int y = n;
int p = 0;

l1 while(x > 0) {
x = x - 1;
int r = 0;

l2 while(y > 0 && ?)
{

y--;
r++;

}
l3 if(?)

p = r;
l4 while(p > 0)

p--;
p = r;

}
}

Complexity: 4n

lb

l1 le

l2l3

l4

[x]′ ≤ [n];
[y]′ ≤ [n];
[p]′ ≤ [0];

τ0

[x]′ ≤ [x]− 1
[y]′ ≤ [y]
[p]′ ≤ [p]
[r]′ ≤ [0]

τ1

[x]′ ≤ [x]
[y]′ ≤ [y]
[p]′ ≤ [p]
[r]′ ≤ [r]

τ3

[x]′ ≤ [x]
[y]′ ≤ [y]− 1
[p]′ ≤ [p]
[r]′ ≤ [r] + 1

τ2

[x]′ ≤ [x]
[y]′ ≤ [y]
[p]′ ≤ [r]

τ4
[x]′ ≤ [x]
[y]′ ≤ [y]
[p]′ ≤ [p] τ5

[x]′ ≤ [x]
[y]′ ≤ [y]
[p]′ ≤ [p]− 1

τ6

[x]′ ≤ [x]
[y]′ ≤ [y]
[p]′ ≤ [r]

τ7

[n]

[y][x]

[0]

[p] [r]

τ0τ0

τ0 τ1

τ5

τ7

(a) (b) (c)

Figure 3.9: (a) Example, (b) Abstraction, (c) Reset Graph

1 2 3 4 . . .
τ0 τ1 τ2 τ2 τ3 τ5 τ6 τ6 τ7 τ1 τ3 τ4 τ6 τ6 τ7 τ1 τ2 τ2 τ3 τ5 τ6 τ6 τ7 τ1 τ3 τ4 τ6 τ6 τ7 . . .
r 0 1 2 2 2 2 2 2 0 0 0 0 0 0 0 1 2 2 2 2 2 2 0 0 0 0 0 0 . . .
p 0 0 0 0 2 1 0 2 2 2 2 1 0 0 0 0 0 0 2 1 0 2 2 2 2 1 0 0 . . .

Table 3.7: Run of Figure 3.9

last two rows the values of r resp. p are tracked. The execution switches between two
iteration schemes of the outer loop: an uneven iteration increments r twice (by executing
τ2 twice) and afterward assigns r to p by executing τ5. We can then execute τ6 two times.
Afterward the value of r is “saved” in p for the next (even) iteration of the outer loop
before r is set to 0 on τ1. Therefore τ6 can be executed again two times in the next, even
iteration though r is not incremented on that iteration.

Consider the abstracted DCP in Figure 3.9 (b) and its reset graph in Figure 3.9 (c). We
have that κ2 = [0] τ1−→ [r] τ5−→ [p] and κ3 = [0] τ1−→ [r] τ7−→ [p] are two reset chains ending in
[p] (see Figure 3.9 (c)). Observe that both are sound, i.e., between any two executions of
τ7 resp. τ5 [r] is reset. However, [r] is not necessarily reset between the execution of τ5
and τ7, therefore the accumulated value 2 of r is used twice to increase the local bound
[p] of τ6.

57

3. Algorithm

I.e., since there are two paths from [r] to [p] in the reset graph (Figure 3.9 (c)) we have to
count the increments of [r] twice: once for κ2 and once for κ3. Definition 30 distinguishes
between nodes that have a single resp. multiple path(s) to a given variable in the reset
graph. This is used in Definition 31 for a sound handling of the latter case.

Definition 30 (atm1(κ) and atm2(κ)). Let ∆P(L,E, lb, le) be a DCP over A. Let
P (a, v) denote the set of paths from a to v in the reset graph of ∆P. Let v ∈ V. Let
κ be a reset chain ending in v. We define atm1(κ) = {a ∈ atm(κ) | |P (a, v)| ≤ 1} and
atm2(κ) = {a ∈ atm(κ) | |P (a, v)| > 1}, where |S| denotes the number of elements in S.

Definition 31 (Bound Algorithm using Reset Chains (reset DAG)). Let ∆P(L,E, lb, le)
be a DCP over A. Let ζ : E → Expr(A) be a local bound mapping for ∆P. Let
VB : A 7→ Expr(A) be as defined in Definition 27. We override the definition of
TB : E 7→ Expr(A) in Definition 27 by stating:

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else

TB(τ) = Incr

(⋃
κ∈R(ζ(τ))

atm1(κ)
)

+
∑

κ∈R(ζ(τ))
TB(trn(κ))×max(VB(in(κ)) + c(κ), 0)

+Incr(atm2(κ))

where TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi) and
Incr({a1, a2, . . . , an}) =

∑
1≤i≤n

Incr(ai) with Incr(∅) = 0

Discussion. If atm2(κ) = ∅ for all reset chains κ, Definition 31 is equal to Definition 29.
This is the case for all DCPs with a reset forest (all examples in this thesis except
Figure 3.9). Definition 31 thus is a generalization of Definition 29.

Example. As shown in Table 3.8 we get TB(τ6) = [n] + [n] for Figure 3.9 by Defini-
tion 31. I.e., we get the precise bound 2n for the loop at l4 in Figure 3.9 (n has type
unsigned).

Theorem 4 (Soundness of Bound Algorithm using Reset Chains). Let ∆P(L,E, lb, le)
be a well-defined and fan-in free DCP over atoms A. Let ζ : E 7→ Expr(A) be a local
bound mapping for ∆P. Let TB and VB be defined as in Definition 31. Let τ ∈ E and
a ∈ A. If ∆P has a reset DAG then (1) JTB(τ)K is a transition bound for τ and (2)
JVB(a)K is a variable bound for a.

Proof: See Section 7.2.1.

58

3.5. Reasoning Based on Reset Chains

Call Evaluation and Simplification Using

TB(τ6)

→ Incr([p]) +
TB({τ0})×max([0] + 0, 0) + 0 +
TB({τ1, τ7})×max([0] + 0, 0) +
Incr([r]) +
TB({τ1, τ5})×max([0] + 0, 0) +
Incr([r])

= Incr([p]) + 0 + 0 + 0 + Incr([r]) +
0 + Incr([r])

→ 0 + 0 + 0 + 0 + [n] + 0 + [n]
= [n] + [n]

ζ(τ6) = [p],
κ1 = [0] τ0−→ [p],
κ2 = [0] τ1−→ [r] τ7−→ [p],
κ3 = [0] τ1−→ [r] τ5−→ [p],
R([p]) = {κ1, κ2, κ3},
atm1(κ1) = {[p]},
atm1(κ2) = {[p]},
atm1(κ3) = {[p]},
atm2(κ1) = ∅,
atm2(κ2) = {[r]},
atm2(κ3) = {[r]},
[0] ∈ C,
Incr([p]), Incr([r])

Incr([p]) → 0 I([p]) = ∅

Incr([r])
→ TB(τ2)× 1
→ [n]× 1
= [n]

I([r]) = {(τ2, 1)},
TB(τ2)

TB(τ2)
→ TB(τ0)×max([n] + 0, 0)
→ 1×max([n] + 0, 0)
= [n]

ζ(τ2) = [y],
R([y]) = {[n] τ0−→ [y]},
[n] ∈ C,
TB(τ0)

TB(τ0) → 1 ζ(τ0) = 1

Table 3.8: Computation of TB(τ6) for Figure 3.9 by Definition 31

Complexity. A DAG can have exponentially many paths in the number of nodes.
Thus there can be exponentially many reset chains in R(v) (exponential in the number
of variables and constants of the abstract program, i.e., the norms generated during
the abstraction process, see Section 2.2). However, in our experiments enumeration of
(optimal) reset chains did not affect performance.

3.5.3 Preprocessing: Transforming a Reset Graph into a Reset DAG

Consider the DCP shown in Figure 3.10 (a). Figure 3.10 (a) has a cyclic reset graph as
shown in Figure 3.10 (b). In the following we describe an algorithm which transforms
Figure 3.10 (a) into Figure 3.10 (d) by renaming the program variables. Figure 3.10 (d)
has an acyclic reset graph (a reset DAG).

59

3. Algorithm

lb

l1 le

l2

x′ ≤ nτ0

y′ ≤ x− 1τ3
x′ ≤ y

τ1

y′ ≤ y − 1
τ2

n

x

y

τ0

τ1τ3

x, l1

y, l2

lb

l1 le

l2

z′ ≤ nτ0

z′ ≤ z − 1τ3
z′ ≤ z

τ1

z′ ≤ z − 1
τ2

(a) (b) (c) (d)

Figure 3.10: (a) Example, (b) Reset Graph, (c) Variable Flow Graph, (d) Example after
renaming variables

Definition 32 (Variable Flow Graph). Let ∆P(L,E, lb, le) be a DCP over A. We call
the graph with node set V × L and edge set

{(y, l1)→ (x, l2) | l1
u−→ l2 ∈ E ∧ x′ ≤ y + c ∈ u with x, y ∈ V}

the variable flow graph.

Example: Figure 3.10 (c).

Let ∆P(L,E, lb, le) be a DCP. Let {SCC1, SCC2, . . . , SCCn} be the strongly connected
components of its variable flow graph. For each SCC SCCi we choose a fresh variable
vi ∈ V. Let ς : V × L 7→ V be the mapping ς(v, l) = vi, where i s.t. (v, l) ∈ SCCi. We
extend ς to A× L 7→ A by defining ς(s, l) = s for all l ∈ L and s ∈ C.

We obtain ∆P ′(L,E′, lb, le) from ∆P by setting E′ = {l1
u′−→ l2 | l1

u−→ l2 ∈ E}, where u′
is obtained from u by generating the constraint ς(x, l2)′ ≤ ς(y, l1) + c from a constraint
x′ ≤ y + c ∈ u.

Examples. Figure 3.10 (d) is obtained from Figure 3.10 (a) by applying the described
transformation using the mapping ς(x, l1) = ς(y, l2) = z. Figure 3.6 (b) is obtained from
Figure 3.6 (a) by applying the described transformation using the mapping ς(z, l1) = z1,
ς(z, l2) = z2, ς(y, l1) = y1, ς(y, l2) = y2.

Soundness. Soundness of the described variable renaming is obvious if there are no
two (different) variables v1 and v2 that are renamed to the same fresh variable at some
location l. This is the case if in each SCC of the variable flow graph each location l ∈ L
appears at most once, i.e., if there is no SCC SCC in the variable flow graph of the program
s.t. there is a location l ∈ L and variables v1, v2 ∈ V with v1 6= v2 and (l, v1) ∈ SCC
and (l, v2) ∈ SCC. In the literature, a program with this property is called stratifiable
(e.g., [BAL07]).

60

3.5. Reasoning Based on Reset Chains

void foo(uint n){
int i = n;

l1 : while (i > 0) {
j = i;

l2 : while(j > 0 && ?)
j--;

if(?)
i = j - 1;

else
i = i - 1;

}
}

Loop Bound for l1 : n

lb

l1

l2

le

[i]′ ≤ [n]τ0

[i]′ ≤ [i]
[j]′ ≤ [i]

τ1

[i]′ ≤ [i]− 1

τ2

[i] ′≤
[j]−

1

τ3

[i]′ ≤ [i]
[j]′ ≤ [j]− 1

τ4

[i], l1

[i], l2[j], l2

(a) (b) (c)

Figure 3.11: (a) Example, (b) DCP obtained by abstraction, (c) Variable Flow Graph

Ensuring Stratifiability

A fan-in free DCP that is not stratifiable can be transformed into a stratifiable and
fan-in free DCP by introducing appropriate case distinctions into the control flow of the
program. We state an example next. In the worst-case, however, this transformation can
cause an exponential blow up of the number of transitions in the program (the size of
the control flow graph).

Example. Consider the program in Figure 3.11 (a), in Figure 3.11 (b) the DCP
as obtained by our abstraction procedure is shown. Note that the reset graph of
Figure 3.11 (b) is cyclic ([i] flows into [j] on τ1, on τ3 [j] flows into [i]). For ensuring
termination of our algorithm we want to apply our previously discussed variable renaming
on Figure 3.11 (b). However, Figure 3.11 (b) is not stratifiable: The variable flow graph
is shown in Figure 3.11 (c). There is an SCC that contains the nodes “[i], l2” and “[j], l2”.
Renaming [i] and [j] at location l2 to the same fresh variable would obviously alter the
semantics of the program. We thus have to transform Figure 3.11 (b) into a (semantically
equivalent) stratifiable DCP before applying our variable renaming.
We do so by introducing the following case distinction into the control-flow of the
program: We distinguish between the case that a) transition τ2 and b) transition τ3
is executed after visiting l2. For this purpose we split the control location l2 into the
two control locations l2a and l2b. The resulting DCP is shown in Figure 3.12 (a), its
variable flow graph is shown in Figure 3.12 (b). The variable flow graph has 3 SCCs:
SCC1 = {([i], l1), ([i], l2a), ([j], l2b)}, SCC2 = {([j], l2a)}, SCC3 = {([i], l2b)}. We conclude
that Figure 3.12 (a) is indeed stratifiable because in all three SCCs each location appears

61

3. Algorithm

lb

l1

l2al2b

le

[i]′ ≤ [n]τ0

[i]′ ≤ [i]
[j]′ ≤ [i]

τ1

[i]′ ≤ [i]
[j]′ ≤ [i]

τ1

[i]′ ≤ [i]− 1

τ2

[i]′ ≤ [j]− 1

τ3

[i]′ ≤ [i]
[j]′ ≤ [j]− 1τ4

[i]′ ≤ [i]
[j]′ ≤ [j]− 1

τ4

[i], l1

[i], l2a[j], l2a

[i], l2b[j], l2b

lb

l1

l2al2b

le

x′ ≤ [n]τ0

x′ ≤ x
y′ ≤ x

τ1

x′ ≤ x
z′ ≤ x

τ1

x′ ≤ x− 1

τ2

x′ ≤ x− 1

τ3

x′ ≤ x
y′ ≤ y − 1τ4

x′ ≤ x− 1
z′ ≤ z

τ4

(a) (b) (c)

Figure 3.12: (a) DCP refined, (b) Variable Flow Graph, (c) DCP obtained by variable
renaming

at most once. However, the reset graph of Figure 3.12 (a) remains cyclic, [i] flows into
[j] and vice versa.
In accordance with our previously described procedure we therefore apply the following
variable renaming to Figure 3.12 (a): The variables in SCC1 are renamed to x at the
respective locations, i.e., ς([i], l1) = ς([i], l2a) = ς([j], l2b) = x. The variables in SCC2 are
renamed to y at the respective locations, i.e., ς([j], l2a) = y. The variables in SCC3 are
renamed to z at the respective locations, i.e., ς([i], l2b) = z. The resulting DCP is shown
in Figure 3.12 (c).
In Figure 3.12 (c) there are two back-edges that end at location l1, namely τ2 and τ3.
By our bound algorithm (Definition 27) we obtain TB(τ2) = [n] and TB(τ3) = [n].
We thus get the bound 2n (n has type unsigned) for the loop at l1 of the program in
Figure 3.11 (a).

Note, however, that the precise bound of the loop at l1 in Figure 3.11 (a) is n. In
Section 4.2.2 we discuss an extension of our bound algorithm by which we obtain the
precise bound n. The extension exploits the fact that both transitions, τ2 and τ3 have
the same local bound (namely x).

3.6 Finding Local Bounds

In this section we describe our algorithm for finding local bounds.

Intuition. Let τ = l1
u−→ l2 ∈ E and v ∈ V. Clearly, v is a local bound for τ if v

decreases when executing τ , i.e., if v′ ≤ v + c ∈ u for some c < 0. Moreover, v is a local
bound for τ , if every time τ is executed also some other transition t ∈ E is executed and

62

3.7. Example

v is a local bound for t. This is, e.g., the case if t is always executed either before each
execution of τ or after each execution of τ .

Algorithm. The above intuition can be turned into a simple three-step algorithm. Let
∆P(L,E, lb, le) be a DCP. (1) We set ζ(τ) = 1 for all transitions τ that do not belong to
a strongly connected component (SCC) of ∆P. (2) Let v ∈ V. We define ξ(v) ⊆ E to be
the set of all transitions τ = l1

u−→ l2 ∈ E such that v′ ≤ v + c ∈ u for some c < 0. For
all τ ∈ ξ(v) we set ζ(τ) = v. (3) Let v ∈ V and τ ∈ E. Assume τ was not yet assigned a
local bound by (1) or (2). We set ζ(τ) = v, if τ does not belong to a strongly connected
component (SCC) of the directed graph (L,E′) where E′ = E \ {ξ(v)} (the control flow
graph of ∆P without the transitions in ξ(v)).
If there are v1 6= v2 s.t. τ ∈ ξ(v1) ∩ ξ(v2) then ζ(τ) is assigned either v1 or v2 non-
deterministically. An alternative way of handling this case is as follows: We generate
two local bound mappings, ζ1 and ζ2 where ζ1(τ) = v1 and ζ2(τ) = v2. This way we can
systematically enumerate all possible choices, finally we apply our bound algorithm once
based on ζ1, based on ζ2, etc., and finally take the minimum over all computed bounds.
In our implementation, however, we follow the aforementioned greedy approach based on
non-deterministic choice.

Discussion on Soundness. Soundness of step (1) and (2) is obvious. We discuss
soundness of step (3): Let τ ∈ E. If τ does not belong to an SCC of (L,E \ {ξ(v)}) we
have that some transition in ξ(v) (which decreases v) has to be executed in between
any two executions of τ . It remains to ensure that there is a decrease of v also for
the last execution of τ : For special cases this is unfortunately not the case. Consider
Figure 4.12 (b) (page 98). The above stated algorithm sets ζ(τ1) = [x]. However, [x] is
not a local bound for τ1 of Figure 4.12 (b) because there is no decrease of [x] for the last
execution of τ1 (before executing τ3).
It is straightforward to ensure soundness of the algorithm: Adding an edge from le to
lb forces the algorithm to take the last execution of a transition into account. I.e., we
set E′ = E ∪ {le

∅−→ lb} \ {ξ(v)}. Now our algorithm fails to find a local bound for τ1 of
Figure 4.12 (b), which is sound. We discuss how we handle the example in Figure 4.12 in
Section 4.2.1.

Complexity. Step (1) and (2): can be implemented in linear time. Step (3): For each
v ∈ V we need to compute the SCCs of (L,E \ ξ(v)). It is well known that SCCs can be
computed in linear time (linear in the number of transitions and nodes). Since we need
to perform one SCC computation per variable, step (3) is quadratic.

3.7 Example

We discussed in Section 2.2 how we obtain the DCP in Figure 2.2 (b) as an abstraction of
Example xnu (Figure 2.1). Let us now exemplify our algorithm for finding local bounds

63

3. Algorithm

Call Evaluation and Simplification Using

TB(τ4)

→ Incr({p, q, r})
+ TB({τ5, τ2a, τ3a})×max([0]+0, 0)
+ TB({τ3c, τ2a, τ3a})×max([0]+0, 0)
+ TB({τ0, τ2a, τ3a})×max([0]+0, 0)
+ TB({τ0, τ3a})×max([0] + 0, 0)
+ TB({τ5, τ3a})×max([0] + 0, 0)
+ TB({τ3c, τ3a})×max([0] + 0, 0)

= Incr({p, q, r}) + 0 + 0 + 0 + 0 + 0 + 0
→ [l] + 0 + 0 + 0 + 0 + 0 + 0
= [l]

ζ(τ4) = p,
R(p) = {

[0] τ0−→ r
τ2a−−→ q

τ3a−−→ p,
[0] τ3c−−→ r

τ2a−−→ q
τ3a−−→ p,

[0] τ5−→ r
τ2a−−→ q

τ3a−−→ p,
[0] τ0−→ q

τ3a−−→ p,
[0] τ3c−−→ q

τ3a−−→ p,
[0] τ5−→ q

τ3a−−→ p}
[0] ∈ C,
Incr({p, q, r})

Incr({p, q, r})
→ Incr(p) + Incr(q) + Incr(r)
→ 0 + 0 + [l]
= [l]

Incr(p),
Incr(q),
Incr(r)

Incr(p) → 0 I(p) = ∅
Incr(q) → 0 I(q) = ∅

Incr(r)
→ TB(τ1)× 1
→ [l]× 1
= [l]

I([p]) = {(τ1, 1)},
TB(τ1)

TB(τ1)

→ Incr(x) + TB(τ0)× [l]
→ 0 + TB(τ0)× [l]
→ 0 + 1× [l]
= [l]

ζ(τ1) = x,
R(x) = {[l] τ0−→ x},
[l] ∈ C, Incr(x), TB(τ0)

Incr(x) → 0 I(x) = ∅
TB(τ0) → 1 ζ(τ0) = 1

Table 3.9: Computation of TB(τ4) for Example xnu (Figure 2.1) by Definition 29 resp.
Definition 31

[l]

x

τ0

[0][0][0]

r[0][0][0]

q

p

τ0
τ3cτ5

τ2aτ3cτ5τ0

τ3a

Figure 3.13: Reset Graph of Example xnu (Figure 2.2 (b))

64

3.8. Path-Sensitive Reasoning

(Section 3.6) and our bound algorithm (Section 3.5) on Figure 2.2 (b). We first apply
our algorithm for finding local bounds:

• τ0 does not belong to a strongly connected component of Figure 2.2 (b). We set
ζ(τ0) = 1.

• We have ξ(q) = ∅, ξ(r) = ∅, ξ(x) = {τ1} and ξ(p) = {τ4}. We therefore set
ζ(τ1) = x and ζ(τ4) = p.

• We did not yet assign local bounds to the transitions τ2a,τ2b,τ3a,τ3b,τ3c,τ5 and τ6.
We now remove ξ(x), i.e., τ1 from Figure 2.2 (b). Observe that after τ1 is removed
τ2a,τ2b,τ3a,τ3b,τ3c,τ5 and τ6 do no longer belong to a strongly connect component.
We therefore set ζ(τ2a) = ζ(τ2b) = ζ(τ3a) = ζ(τ3b) = ζ(τ3c) = ζ(τ5) = ζ(τ6) = x.

We discussed in Section 1.4.7 that the inner loop at l4 of Example xnu has a linear
bound, namely max(len, 0). Our algorithm infers the linear bound of the inner loop at
l4 based on the abstracted DCP in Figure 2.2 (b) and the local bound mapping ζ(τ0) = 1,
ζ(τ1) = x, ζ(τ4) = p, ζ(τ2a) = x, ζ(τ2b) = x, ζ(τ3a) = x, ζ(τ3b) = x, ζ(τ3c) = x, ζ(τ5) = x,
and ζ(τ6) = x: Table 3.9 states how our bound algorithm from Section 3.5 computes
TB(τ4) = [l] for τ4, the single transition of the loop at l4. In Figure 3.13 the reset graph
of Figure 2.2 (b) is shown. Recall, that the abstract variable [l] represents the expression
max(len, 0) of the concrete program.

Note that the reset graph of Figure 2.2 (b) (Shown in Figure 3.13) is a reset forest.
Therefore atm1(κ) = atm(κ) for all reset chains κ of Figure 2.2 (b), as discussed in
Section 3.5.2. The computation traces of Definition 29 and Definition 31 are thus
equivalent for Figure 2.2 (b).

3.8 Path-Sensitive Reasoning
Example s_SFD_process shown in Figure 3.14 (a) is a simplified version of a nested
loop in the function s_SFD_process in file office_ghostscript/src/sfilter1.c of the cBench
Benchmark [cbe]. Example s_SFD_process poses the following challenge: We have
that the condition p > 0 must hold before each execution of the outer loop. Further p
is decremented on each execution of the outer loop. But there is also an execution of
the outer loop in which p is incremented (when entering the else-branch). A closer look
reveals that in case p is incremented m > 0 holds and that m is decremented. But, m can
also be incremented on the outer loop. I..e, we have a cyclic dependency between the two
loop counters p and m: If p decrements, m may increment and vice versa. Nevertheless
the example terminates and the outer loop cannot be executed more than 2n− 1 times
as we show in the course of the following discussion.

In Figure 3.14 (b) the DCP is shown as it results from applying our abstraction procedure
(Section 2.2) to Example s_SFD_process. Note that Figure 3.14 (b) is a VASS
(Definition 21).

65

3. Algorithm

void s_SFD_process(uint n)
{

uint p = n;
uint m = 0;

l1 while(p > 0) {
p--;

l2 if(?)
m++;

l3 else if(m > 0) {
l4 do {

m--;
l5 } while(m > 0 && ?)

p++;
}

l6 }
}

Complexity: 2n− 1

lb

l1 le

l2

l3

l4l5

l6

[p]′ ≤ [n]
[m]′ ≤ [0]τ0

[m]′ ≤ [m]
[p]′ ≤ [p]− 1τ1

[m]′ ≤ [m]
[p]′ ≤ [p]τ4

[m]′ ≤ [m]
[p]′ ≤ [p]τ6[m]′ ≤ [m]− 1

[p]′ ≤ [p]
τ7

[m]′ ≤ [m]
[p]′ ≤ [p]

τ8

[m]′ ≤ [m]
[p]′ ≤ [p] + 1 τ9

[m]′ ≤ [m]
[p]′ ≤ [p]

τ5

[m]′ ≤ [m] + 1
[p]′ ≤ [p]

τ2

[m]′ ≤ [m]
[p]′ ≤ [p] τ3

τ10

(a) (b)

Figure 3.14: (a) Example s_SFD_process, (b) DCP obtained by abstraction

Assume we want to compute a bound for loop at location l4 of Example s_SFD_process,
i.e., a transition bound for its single back-edge τ8. Our bound algorithm from Definition 22
computes TB(τ8) =∞: We have that [m] is a local bound for τ8 and for τ9. Variable [p]
is a local bound for τ2. Variable [m] is incremented on τ2. Variable [p] is incremented on
τ9. Due to this cyclic dependency between the increment of [m] and the increment of [p]
our algorithm from Definition 22 returns ‘∞’ when reasoning about the transition bound
of τ8.

We now discuss a path-sensitive extension of our bound algorithm which infers the tight
transition bound n for τ8. The precise transition bound for τ8 is n− 2.

As for the path-insensitive case, we develop our path-sensitive algorithm step-by-step:
We first present a path-sensitive algorithm for VASS in Section 3.8.1. We generalize this
algorithm to DCPs with only constant resets in Section 3.8.2. Finally we present our
path-sensitive bound algorithm for full DCPs in Section 3.8.3.

Note that we do not restate our insights on reasoning with reset chains (Section 3.5) in
the context of our path-sensitive reasoning. It is straightforward to combine both ideas for
obtaining one powerful bound algorithm. Our full bound algorithm is stated in Section 3.9.

66

3.8. Path-Sensitive Reasoning

Intuition. The underlying idea of our path-sensitive extension is to cancel out incre-
ments with decrements that lay on the same cyclic path. E.g., in Example s_SFD_process
every increment of p on τ9 is preceded by a decrement of p on τ1. Let v ∈ V . For canceling
out increments of v with decrements of v we (1) enumerate the cyclic paths (Definition 33)
and (2) sum up the increments and decrements of v on each cyclic path (Definition 35).
The total amount by which a variable v is incremented on a run ρ is then calculated by
multiplying the number of times that a cyclic path that increments v is executed on ρ
with the respective increment. We implement this reasoning through the re-definition of
Incr(v) in Definition 36.

Definition 33 (Simple and (A)Cyclic Paths). Let ∆P(L,E, le, lb) be a DCP over A.
Let π = l1

u1−→ l2
u2−→ . . . ln be a finite path of ∆P. By trn(π) we denote the set

{l1
u1−→ l2, l2

u2−→ l3, . . . } of transitions of π. π is acyclic if π does not visit any location
twice (i.e., li 6= lj for all 1 ≤ i, j ≤ n with i 6= j), cyclic else. π is simple if its prefix
π[1,n−1] is acyclic. I.e., π is simple and cyclic iff it has the same start- and end-location
and does not visit a location twice except for the start- and end-location. Given two
simple and cyclic paths π1 and π2 we say that π1 is equivalent to π2 and write π1 ≈ π2
iff trn(π1) = trn(π2). Let l1, l2 ∈ L. By S(l1, l2) we denote the set of simple paths from
l1 ∈ L to l2 ∈ L. By Sa(l1, l2) we denote the set of acyclic paths from l1 ∈ L to l2 ∈ L.
Note that Sa(l1, l2) = S(l1, l2) if l1 6= l2 and Sa(l1, l2) = ∅ else.

Notation: In the following we denote by τ1 ◦ τ2 the path that results from concatenating
the transitions τ1 and τ2.

Example: For Figure 3.14 (b) we have: The set of simple and cyclic paths is S(l1, l1) ∪
S(l4, l4) where S(l1, l1) = {τ1 ◦ τ2 ◦ τ3, τ1 ◦ τ4 ◦ τ5 ◦ τ3, τ1 ◦ τ4 ◦ τ6 ◦ τ7 ◦ τ9 ◦ τ3} and
S(l4, l4) = {τ7 ◦ τ8}. We have τ7 ◦ τ8 ≈ τ8 ◦ τ7 because trn(τ7 ◦ τ8) = {τ7, τ8} = trn(τ8 ◦ τ7).
Further S(lb, le) = {τ0 ◦ τ10} is the set of simple paths from lb to le.

Definition 34 (Decrements). Let v ∈ V. The set

D(v) = {(l1
u−→ l2, c) ∈ E × Z | v′ ≤ v + c ∈ u, c < 0}

is the set of decrements of v.

Example: For Figure 3.14 (b) we have: D([m]) = {(τ7,−1)}, D([p]) = {(τ1,−1)}.

Definition 35 (Incrementing and Decrementing Paths). Let ∆P(L,E, le, lb) be a DCP
over A. Let π = l1

u1−→ l2
u2−→ . . . ln be a finite path of ∆P. Let v ∈ V. Let

SumID(π)(v) =
∑

(τ,c)∈I(v)∪D(v) s.t. τ∈trn(π)
c

denote the sum of all increments and decrements of v on π. We define

C+(v) = {π ∈
⋃
l∈L
S(l, l) ∪ S(lb, le) | SumID(π)(v) > 0}

67

3. Algorithm

to denote the set of incrementing paths of v. Accordingly

C−(v) = {π ∈
⋃
l∈L
S(l, l) ∪ S(lb, le) | SumID(π)(v) < 0}

denotes the set of decrementing paths of v.

Example: For Figure 3.14 (b) we have: C+([m]) = {τ1 ◦ τ2 ◦ τ3}, C−([m]) = {τ7 ◦ τ8},
C+([p]) = ∅ and C−([p]) = {τ1 ◦ τ2 ◦ τ3, τ1 ◦ τ4 ◦ τ5 ◦ τ3}.

Discussion. Note that SumID(π)(v) sums up all increments and decrements of v on π,
ignoring possible resets of v on π.
Further note that in the definition of C+(v) resp. C−(v) also the simple paths from lb to
le are considered, beside the simple and cyclic paths. This ensures that we consider also
those increments resp. decrements of v which are not on a cyclic path in ∆P.

3.8.1 Path-Sensitive Reasoning for VASS

Definition 36 (Bound Algorithm for VASS (path-sensitive)). Let ∆P = (L,E, lb, le) be
a DCP over A. Let ζ : E → Expr(A). We define TB : E 7→ Expr(A) as:

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else
TB(τ) = Incr(ζ(τ)) +

∑
(_,a,c)∈R(ζ(τ))

max(a + c, 0)

where

1. Incr(v) =
∑

π∈C+(v)
TB(trn(π))× SumID(π)(v) (we set Incr(v) = 0 for C+(v) = ∅)

2. TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi)

Discussion. TB(τ) is defined exactly as for the path-insensitive case of our algorithm
for VASS (Definition 22). We implement path-sensitivity in our algorithm by redefining
the sub-routine Incr(v): Incr(v) is defined over the incrementing paths C+(v) of v rather
than over the incrementing transitions I(v) of v. We over-approximate the number of times
that a given cyclic path π ∈ C+(v) may appear on a run by TB(trn(π)) = min

τ∈trn(π)
TB(τ):

A path in ∆P cannot be taken more often than the number of times that any transitions
on the path can be taken.

Example I. Consider Example s_SFD_process in Figure 3.14. We want to compute
a loop bound for inner loop at l4, i.e., a bound for τ8, the single back-edge of the loop.
Our algorithm from Definition 36 computes TB(τ8) = [n], i.e., we get the tight bound n
for the inner loop of Example s_SFD_process (n has type unsigned). The details are
given in Table 3.10. Note that the precise loop bound for the loop at l4 is max(n− 2, 0).

68

3.8. Path-Sensitive Reasoning

Call Evaluation and Simplification Using

TB(τ8)
→ Incr([m]) + max([0] + 0, 0)
= Incr([m])
→ [n]

ζ(τ8) = [m],
R([m]) = (τ0, [0], 0),
[0] ∈ C,
Incr([m])

Incr([m])
→ TB({τ1, τ2, τ3})× 1
→ [n]× 1
= [n]

C+([m]) = {τ1 ◦ τ2 ◦ τ3},
TB({τ1, τ2, τ3})

TB({τ1, τ2, τ3})
→ min(TB(τ1),TB(τ2),TB(τ3))
→ min(∞, [n],∞)
= [n]

TB(τ1),
TB(τ2),
TB(τ3)

TB(τ1) →∞ ζ(τ1) =∞

TB(τ2)
→ Incr([p]) + max([n] + 0, 0)
→ 0 + max([n] + 0, 0)
= [n]

ζ(τ2) = [p],
R([p]) = (τ0, [n], 0),
[n] ∈ C,
Incr([p])

Incr([p]) → 0 C+([p]) = ∅
TB(τ3) →∞ ζ(τ3) =∞

Table 3.10: Computation of TB(τ8) for Example s_SFD_process (Figure 3.14 (b)) by
Definition 36

Definition 37 (Simple Paths that contain a given Transition). Let ∆P(L,E, le, lb) be a
DCP. Let τ ∈ E. We define C (τ) = {π ∈

⋃
l∈L
S(l, l) ∪ S(lb, le) | τ ∈ trn(π)}.

Example: Consider Figure 3.14 (b): We have C (τ1) = S(l1, l1) because τ1 is on all simple
paths that start and end at l1.

Theorem 5 (Soundness). Let ∆P(L,E, lb, le) be a well-defined and fan-in free VASS
over A. Let ζ : E 7→ Expr(A) be a local bound mapping for ∆P s.t. for all τ ∈ E
with ζ(τ) ∈ V it holds that C (τ) ⊆ C−(ζ(τ)). Let τ ∈ E. Let TB(τ) be as defined in
Definition 36. Let ρ be a complete run of ∆P. Then JTB(τ)K is a transition bound for
τ on ρ.

Proof: Definition 5 is a special case of Definition 40. Soundness of Definition 40 is proven
in Section 7.3.3.

Discussion. In comparison to previous soundness theorems we have two restrictions in
Theorem 5:
1) For the local bound mapping ζ it is required that “for all τ ∈ E with ζ(τ) ∈ V it
holds that C (τ) ⊆ C−(ζ(τ))”. We call such a local bound mapping a path-sensitive local

69

3. Algorithm

bound mapping (Definition 38). The restriction to path-sensitive local bounds is justified
by the following observation: Consider τ1 in Figure 3.14 (b). Obviously [p] is a local
bound for τ1. Note that C (τ1) 6⊆ C−([p]) because τ1 ◦ τ4 ◦ τ6 ◦ τ7 ◦ τ9 ◦ τ3 ∈ C (τ1) but
τ1 ◦ τ4 ◦ τ6 ◦ τ7 ◦ τ9 ◦ τ3 6∈ C−([p]). I.e., [p] is not a path-sensitive local bound for τ1. If
we run Definition 36 based on ζ(τ) = [p] we obtain TB(τ1) = [n] because C+([p]) = ∅.
However, [n] is not a valid bound for τ1: the reasoning misses that [p] is incremented
when executing τ9 which allows for additional executions of τ1. In Table 3.10 we ensure
soundness of the reasoning by setting ζ(τ1) = ∞. We discuss next how we generate
path-sensitive local bound mappings. In Section 4.2.1 we show how our algorithm infers a
bound for τ1 based on assigning τ1 a set of path-sensitive local bounds (Table 4.2).
2) Soundness is only guaranteed for complete runs of ∆P, i.e., for runs that end at le.
The restriction is necessary because we cancel out increments of v ∈ V with decrements
of v on cyclic paths: this reasoning assumes that cyclic paths are completely executed
during program run. We take care of the case that a loop is left during execution
(break-statements) by considering the simple paths from lb to le in Definition 35 (see
discussion under Definition 35).

Definition 38 (Path Sensitive Local Bound Mapping). Let ∆P(L,E, lb, le) be a DCP
over atoms A. Let ζ : E → Expr(A). ζ is a path-sensitive local bound mapping for
∆P if ζ is a local bound mapping for ∆P and for all τ ∈ E with ζ(τ) ∈ V it holds that
C (τ) ⊆ C−(ζ(τ)).

I.e., a path-sensitive local bound mapping is a local bound mapping s.t. all simple and
cyclic paths that contain τ are decrementing paths of ζ(τ).

Finding Path Sensitive Local Bounds. Let τ ∈ E. We infer a path-sensitive local
bound for τ as follows: For each v ∈ V s.t. v is a local bound for τ (see Section 3.6 on how
we determine such v) we check whether C (τ) ⊆ C−(v). For the first such local bound v
for τ we set ζ(τ) = v. If the check fails for all local bounds for τ we set ζ(τ) =∞.

3.8.2 Path-Sensitive Reasoning for DCPs with only constant resets.

Definition 39 (Bound Algorithm for DCPs with only constant resets (path-sensitive)).
Let ∆P(L,E, lb, le) be a DCP over A. Let ζ : E → Expr(A).
We define TB : E 7→ Expr(A) as:

TB(τ) = ζ(τ), if ζ(τ) 6∈ V, else
TB(τ) = Incr(ζ(τ)) +

∑
(t,a,c)∈R(ζ(τ))

TB(t)×max(a + c, 0)

where

1. Incr(v) =
∑

π∈C+(v)
TB(trn(π))× SumID(π)(v) (we set Incr(v) = 0 for C+(v) = ∅)

2. TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi)

70

3.8. Path-Sensitive Reasoning

lb

l1 le

l2l3

x′ ≤ 1
y′ ≤ n
z′ ≤ n

τ0

x′ ≤ x− 1
y′ ≤ y
z′ ≤ z

τ1
x′ ≤ x+ 1
y′ ≤ y
z′ ≤ z

τ5

x′ ≤ n
y′ ≤ y − 1
z′ ≤ z

τ2

x′ ≤ x
y′ ≤ y
z′ ≤ z − 1

τ3

x′ ≤ x− 1
y′ ≤ y
z′ ≤ z

τ4

lb

l1 le

l2l3

x′ ≤ 1
y′ ≤ n
z′ ≤ n

τ0

x′ ≤ x− 1
y′ ≤ y − 1
z′ ≤ z

τ1
x′ ≤ x+ 1
y′ ≤ y
z′ ≤ z

τ5

x′ ≤ n
y′ ≤ y
z′ ≤ z − 1

τ2

x′ ≤ x
y′ ≤ y − 1
z′ ≤ z

τ3

x′ ≤ x− 1
y′ ≤ y
z′ ≤ z

τ4

(a) Bound for τ4: n2 (b) Bound for τ4: n2 + 1

Figure 3.15: Examples for path sensitive reasoning with constant resets

Discussion. TB(τ) is defined exactly as for the path-insensitive case of our algorithm
for DCPs with only constant resets (Definition 24). We implement path-sensitivity in
our bound algorithm for DCPs with only constant resets (Definition 24) by re-defining
Incr(v) as discussed for VASS in Section 3.8.1. In the following we give intuition for the
soundness of Definition 39 for DCPs with only constant resets by means of the examples
in Figure 3.15. Soundness is formally stated in Theorem 6.

Example I. Consider the DCP in Figure 3.15 (a). For the ease of the discussion
we assume that the symbolic constant ‘1’ to which x is reset on τ0 is evaluated to the
natural number 1. Consider the transition τ4. Variable x is a local bound for τ4. The
highest value that x can reach during program run (the precise variable bound of x)
is n + 1: We reset x to n by executing τ2, afterward we execute τ5, incrementing x
by 1. Given that the increment of x on τ1 does affect the upper bound of x, it may
thus seem inadmissible to cancel out the increment of x on τ5 with the decrement of
x on τ1. But at location l3, where τ4 is situated, x can have at most the value n: x
has value n after executing τ2. If we increment x by executing τ5, we have to execute
τ1 in order to reach l3. On τ1 variable x is decremented. Thus, τ4 can be executed
at most n times consecutively. Since τ2 (local bound y), where x is set to n, can be
executed n times in total, we get the precise transition bound n2 for τ4. Our path-
sensitive algorithm for DCPs with constant resets (Definition 39) computes the tight
bound TB(τ4) = n × n + 1 = n2 + 1. The details are given in Table 3.11. Note that
our path-insensitive algorithm (Definition 24) ignores the decrement of x by 1 on τ1 and
therefore infers the transition bound (n× 1 + 1× n) + n× n+ 1× 1 = 2n+ n2 + 1 for τ4.

71

3. Algorithm

Call Evaluation and Simplification Using

TB(τ4)

→ Incr(x) + TB(τ2)×max(n+ 0, 0) +
TB(τ0)×max(1 + 0, 0)

= Incr(x) + TB(τ2)× n+ TB(τ0)× 1
→ 0 + TB(τ2)× n+ TB(τ0)× 1
→ 0 + n× n+ TB(τ0)× 1
→ 0 + n× n+ 1× 1
= n× n+ 1

ζ(τ4) = x,
R(x) = {(τ2, n, 0), (τ0, 1, 0)},
n, 1 ∈ C,
Incr(x),
TB(τ2),
TB(τ1)

Incr(x) → 0 C+(x) = ∅

TB(τ2)

→ Incr(y) + TB(τ0)×max(n+ 0, 0)
= Incr(y) + TB(τ0)× n
→ 0 + TB(τ0)× n
→ 0 + 1× n
= n

ζ(τ2) = y,
R(y) = {(τ0, n, 0)},
n ∈ C,
Incr(y),
TB(τ0)

TB(τ0) → 1 ζ(τ0) = 1
Incr(y) → 0 C+(y) = ∅

Table 3.11: Computation of TB(τ4) for Figure 3.15 (a) and (b) by Definition 39

Example II. Consider the DCP in Figure 3.15 (b). The only difference to Fig-
ure 3.15 (a) is that the simple loop τ4 is now located at l1 rather than l3. We have
discussed before that x (the local bound of τ4) can reach the value n + 1 at l1. I.e.,
in contrast to Figure 3.15 (a), transition τ4 can be executed n+ 1 times consecutively.
Nevertheless, τ4 can be executed at most n2 + 1 times in total during program run:
If we execute τ4 n + 1 times, x has value 0 and we cannot execute the outer loop
any further. I.e., only after the last execution of the outer loop τ4 can be executed
n + 1 times, on all other executions of the outer loop we can execute τ4 only n times.
Given that τ2 (which resets x to n) can be executed n times in total, we get the bound
(n − 1 × n) + (1 × n + 1) = n2 + 1 for τ4. As shown in Table 3.11 our path-sensitive
algorithm (Definition 39) infers the precise transition bound for τ4 in Figure 3.15 (b):
TB(τ4) = n×n+ 1 = n2 + 1. We conclude that the number of times τ4 can be executed is
in fact not affected by the increment of its local bound x on τ5. The additional execution
of τ4 after the last execution of the outer loop is due to the initial value 1 of x.

Discussion. Our discussion of Figure 3.15 (a) and (b) shows that the precise transition
bound of τ4 depends on the location at which τ4 is situated. In case τ4 starts and ends at
location l3 (Figure 3.15 (a)) it can be executed n2 times in total, if situated at location l1
(Figure 3.15 (b)) τ4 can be executed n2 + 1 times in total. The reasoning of our algorithm
(Definition 39), however, is identical for τ4 in Figure 3.15 (a) and in Figure 3.15 (b)
(Table 3.11). While paths are enumerated in Incr(v), our algorithm does not take the
start-location of τ4 on a given path into account and computes TB(τ4) = n2 + 1 for both,
Figure 3.15 (a) and Figure 3.15 (b).

72

3.8. Path-Sensitive Reasoning

lb

l1 le

l2

l3l4

l5

x′ ≤ 1
y′ ≤ n

τ0

x′ ≤ x− 1
y′ ≤ y − 1τ1

x′ ≤ x+ 1
y′ ≤ y
z′ ≤ x

τ5

x′ ≤ x
y′ ≤ y
z′ ≤ z

τ6

x′ ≤ x
y′ ≤ y

τ7

x′ ≤ n
y′ ≤ y

τ2

x′ ≤ x
y′ ≤ y

τ3

x′ ≤ x
y′ ≤ y
z′ ≤ z − 1

τ4

lb

l1 le

l2

l3l4

l5

x′ ≤ 1
y′ ≤ n

τ0

x′ ≤ x− 1
y′ ≤ y − 1τ1

x′ ≤ x+ 1
y′ ≤ y

τ5

x′ ≤ x
y′ ≤ y
z′ ≤ x

τ6

x′ ≤ x
y′ ≤ y

τ7

x′ ≤ n
y′ ≤ y

τ2

x′ ≤ x
y′ ≤ y

τ3

x′ ≤ x
y′ ≤ y
z′ ≤ z − 1

τ4

(a) Bound for τ4: n2 (b) Bound for τ4: n2 + n

Figure 3.16: Examples for path sensitive reasoning for DCPs

Theorem 6 (Soundness). Let ∆P(L,E, lb, le) be a well-defined and deterministic DCP
with only constant resets over atoms A. Let ζ : E 7→ Expr(A) be a path-sensitive local
bound mapping for ∆P. Let τ ∈ E. Let TB be as defined in Definition 39. Let ρ be a
complete run of ∆P. Then JTB(τ)K is a transition bound for τ on ρ.

Proof: Definition 39 is a special case of Definition 40. Soundness of Definition 40 is
proven in Section 7.3.3.

Discussion. Soundness is restricted to path-sensitive local bound mappings and com-
plete runs for the same reasons already discussed for the case of VASS (Section 3.8.1).

3.8.3 Path-Sensitive Reasoning for DCPs

Consider the DCP in Figure 3.16 (a). Figure 3.16 (a) is similar to the examples from
Figure 3.15: Again we are interested in the transition bound of τ4. Transition τ4 has
local bound z. Variable z, however, is set to x on τ5. The number of times τ4 can
be executed consecutively thus depends on the upper bound of x. As in our previous
examples (Figure 3.15, discussed in Section 3.8.2) the precise upper bound invariant for
x is n+ 1. But, at l3, from where x flows into a, x can have at most the value n. In total,
transition τ5 (local bound y), on which z is set to x, can be executed n times. We thus
get the precise transition bound n2 for τ4 in Figure 3.16 (a).

73

3. Algorithm

Consider the DCP in Figure 3.16 (b). The only difference to Figure 3.16 (a) is that z is
reset to x on τ6 rather than on τ5. I.e., x at l4 now flows into z. At l4 the precise variable
bound of x is n+ 1. Since τ6 (local bound y) can be executed n times in total, we get
the precise transition bound n× (n+ 1) = n2 + n for τ4.

The examples in Figure 3.16 demonstrate, that computing precise transition bounds
requires to compute upper bound invariants per location: the precise upper bound invariant
for x at l3 is n, whereas at l4 it is n+ 1. This small and apparently negligible increase of
1 in the upper bound of x allows for n additional executions of τ4. This is in contrast to
the examples in Figure 3.15 (DCPs with constant resets), where x is the local bound of
τ4: Here an increase of 1 in the upper bound of x allows for only one additional execution
of τ4.

Our observation motivates the new definition of VB in Definition 40: VB(v, l) infers an
upper bound invariant for v at location l.

Definition 40 (Bound Algorithm (path-sensitive)). Let ∆P(L,E, lb, le) be a DCP over
A. Let ζ : E → Expr(A). We define VB : (A× L) 7→ Expr(A) and TB : E 7→ Expr(A)
as:

VB(a, l) = a, if a ∈ A \ V, else
VB(v, l) = Incr(v) + max

(l1
u−→l2,a,c)∈R(v)

(VB(a, l1) + c + max
π∈Sa(l2,l)

SumID(π)(v))

(we set max
π∈Sa(l2,l)

SumID(π)(v) = 0 for Sa(l2, l) = ∅)

TB(τ) = ζ(τ), if ζ(τ) ∈ C, else
TB(τ) = Incr(ζ(τ)) +

∑
(l1

u−→l2,a,c)∈R(ζ(τ))

TB(l1
u−→ l2)×max(VB(a, l1) + c, 0)

where

1. Incr(v) =
∑

π∈C+(v)
TB(trn(π))× SumID(π)(v) (we set Incr(v) = 0 for C+(v) = ∅)

2. TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi)

Discussion. We pass the additional parameter l to VB. l denotes the location for
which the variable bound of v is to be computed: The term max

π∈Sa(l2,l)
SumID(π)(v)

adds the total amount by which v may be incremented on any acyclic path from the
reset of v at l2 to l, the location for which the variable bound is to be computed: In
Figure 3.16 (b) x is reset to n on τ2, but between l3 and l4 x is incremented by 1. We
have max

π∈Sa(l3,l4)
SumID(π)(x) = SumID(l3

u5−→ l4)(x) = 1. We thus get VB(x, l4) = n+ 1,

see Table 3.13 for details.
The definition of TB in Definition 40 is nearly identical to Definition 27, we only adjust

74

3.8. Path-Sensitive Reasoning

Call Evaluation and Simplification Using

TB(τ4)

→ Incr(z) +
TB(τ5)×max(VB(x, l3) + 0, 0)
→ 0 + TB(τ5)×max(VB(x, l3) + 0, 0)
→ 0 + n×max(VB(x, l3) + 0, 0)
→ 0 + n×max(n+ 0, 0)
= n× n

ζ(τ4) = z,
R(z) = {(τ5, x, 0)},
Incr(z),
TB(τ5),
VB(x, l3)

Incr(z) → 0 C+(z) = ∅

TB(τ5)

→ Incr(y) + TB(τ0)×max(n+ 0, 0)
= Incr(y) + TB(τ0)× n
→ 0 + TB(τ0)× n
→ 0 + 1× n
= n

ζ(τ2) = y,
R(y) = {(τ0, n, 0)},
n ∈ C,
Incr(y),
TB(τ0)

VB(x, l3)

→ Incr(x) +
max(n+ 0 + max

π∈Sa(l3,l3)
SumID(π)(x),

1 + 0 + max
π∈Sa(l1,l3)

SumID(π)(x))

→ 0 + max(n+ 0 + 0,
1 + 0 + max

π∈Sa(l1,l3)
SumID(π)(x))

→ 0+max(n+0+0, 1+0+max(−1,−1))
= n

R(x) =
{(τ2, n, 0), (τ0, 1, 0)},

n, 1 ∈ C,
Incr(x),
Sa(l3, l3) = ∅,
Sa(l1, l3) =

{l1
u1−→ l2

u2−→ l3,
l1

u1−→ l2
u3−→ l3}

Incr(y) → 0 C+(y) = ∅
TB(τ0) → 1 ζ(τ0) = 1
Incr(x) → 0 C+(x) = ∅

Table 3.12: Computation of TB(τ4) for Figure 3.16 (a) by Definition 40

the call to VB: we pass the location l2 at which the variable bound for a is needed. As
discussed in Section 3.8.1 for the case of VASS, path-sensitivity is implemented into our
algorithm by defining Incr(v) over the incrementing paths C+(v) rather than over the
incrementing transitions I(v).

Example I Consider Figure 3.16 (a). Our algorithm from Definition 40 infers the
precise transition bound TB(τ4) = n× n for τ4. The details are given in Table 3.12.

Example II Consider Figure 3.16 (b). Our algorithm from Definition 40 infers the
precise transition bound TB(τ4) = n× n+ n for τ4. The details are given in Table 3.13.

Computing upper bound invariants per location. In the definition of VB(v, l)
the location l is only used in the term max

π∈Sa(l2,l)
SumID(π)(v). This term, however, is

75

3. Algorithm

Call Evaluation and Simplification Using

TB(τ4)

→ Incr(z) +
TB(τ6)×max(VB(x, l3) + 0, 0)
→ 0 + TB(τ6)×max(VB(x, l3) + 0, 0)
→ 0 + n×max(VB(x, l4) + 0, 0)
→ 0 + n×max(n+ 1, 0)
= n× (n+ 1)

ζ(τ4) = z,
R(z) = {(τ6, x, 0)},
Incr(z),
TB(τ6),
VB(x, l4)

Incr(z) → 0 C+(z) = ∅

TB(τ6)

→ Incr(y) + TB(τ0)×max(n+ 0, 0)
= Incr(y) + TB(τ0)× n
→ 0 + TB(τ0)× n
→ 0 + 1× n
= n

ζ(τ2) = y,
R(y) = {(τ0, n, 0)},
n ∈ C,
Incr(y),
TB(τ0)

VB(x, l4)

→ Incr(x) +
max(n+ 0 + max

π∈Sa(l3,l4)
SumID(π)(x),

1 + 0 + max
π∈Sa(l1,l4)

SumID(π)(x))

→ 0 + max(n+ 0 + 1,
1 + 0 + max

π∈Sa(l1,l4)
SumID(π)(x))

→ 0 + max(n+ 0 + 1, 1 + 0 + max(0, 0))
= max(n+ 1, 1)
= n+ 1

R(x) = {(τ2, n, 0),
(τ0, 1, 0)},

n, 1 ∈ C,
Incr(x),
Sa(l3, l4) = {l1

u5−→ l4},
Sa(l1, l4) = {

l1
u1−→ l2

u2−→ l3
u5−→ l4,

l1
u1−→ l2

u3−→ l3
u5−→ l4}

Incr(y) → 0 C+(y) = ∅
TB(τ0) → 1 ζ(τ0) = 1
Incr(x) → 0 C+(x) = ∅

Table 3.13: Computation of TB(τ4) for Figure 3.16 (b) by Definition 40

crucial for the overall soundness of the algorithm: Consider the computation of TB(τ4)
for Figure 3.16 (b) in Table 3.13. Consider the row computing VB(x, l4). The term

max
π∈Sa(l3,l4)

SumID(π)(x) evaluates to 1 because x is increased by 1 on l3
u5−→ l4 ∈ Sa(l3, l4)

in Figure 3.16 (b). We therefore get VB(x, l4) = n+ 1. As a result we obtain the precise
(see discussion above) transition bound n × (n + 1) for τ4. In contrast, if we ignored
the increment of x by 1 on τ5, we would obtain n× n as a bound for τ4. As discussed
previously, n× n is not a transition bound for τ4 in Figure 3.16 (b).

Theorem 7 (Soundness). Let ∆P(L,E, lb, le) be a well-defined and deterministic DCP
over atoms A. Let ζ : E 7→ Expr(A) be a path-sensitive local bound mapping for ∆P.
Let a ∈ A and τ ∈ E. Let l ∈ L be s.t. a ∈ def(l). Let TB(τ) and VB(a, l) be as defined
in Definition 40. Let ρ be a complete run of ∆P. We have: (1) JTB(τ)K is a transition
bound for τ on ρ. (2) JVB(a, l)K is an upper bound invariant for a at l on ρ.

76

3.9. Full Bound Algorithm

Proof: See Section 7.3.3.

3.9 Full Bound Algorithm
Our full bound algorithm finally results from combining the reasoning on reset chains
(Definition 31) and the path-sensitive reasoning (Definition 40).

Definition 41 (Notation). Let ∆P(L,E, lb, le) be a DCP over A. Let κ = an
τn,cn−−−→

an−1
τn−1,cn−1−−−−−−→ . . . a0 be a reset chain of ∆P. By sl(κ) we denote the source location of

transition τn, i.e., if τn = l1
u−→ l2 then sl(κ) = l1.

Definition 42 (Full Bound Algorithm). Let ∆P(L,E, lb, le) be a DCP over A. Let
ζ : E 7→ Expr(A). We define VB : (A× L) 7→ Expr(A) and TB : E 7→ Expr(A) as:

VB(a, l) = a, if a ∈ A \ V, else

VB(v, l) = Incr(v) + max
(l1

u−→l2,a,c)∈R(v)

(
VB(a, l1) + c + max

π∈Sa(l2,l)
SumID(π)(v)

)
(we set max

π∈Sa(l2,l)
SumID(π)(v) = 0 for Sa(l2, l) = ∅)

TB(τ) = ζ(τ), if ζ(τ) ∈ C, else

TB(τ) = Incr

 ⋃
κ∈R(ζ(τ)

atm1(κ)


+

∑
κ∈R(ζ(τ))

TB(trn(κ))×max(VB(in(κ), sl(κ)) + c(κ), 0)

+ Incr(atm2(κ))

where

1. Incr({a1, a2, . . . , an}) =
∑

1≤i≤n
Incr(ai) with Incr(∅) = 0

2. Incr(v) =
∑

π∈C+(v)
TB(trn(π))× SumID(π)(v) (we set Incr(v) = 0 for C+(v) = ∅)

3. TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi)

We introduced and discussed the terms from which Definition 42 is composed step-by-step
in this chapter.

Soundness. Soundness of our full bound algorithm (Definition 42) results from combin-
ing the soundness proof for the reasoning on reset chains (Section 7.2) and the soundness
proof for the path-sensitive reasoning (Section 7.3).

77

3. Algorithm

3.10 Parametrization by a Cost Model
Recall our discussion on complexity and resource bounds in Section 1.1. So far, our
examples have always assumed the back-edge metric as cost model. We now discuss an
instrumentation of our analysis by other uniform cost models:

Let P(L, T, lb, le) be a program. Let CM denote a uniform cost model. I.e., CM assigns
a cost in Z to each instruction or operation in P . We obtain a cost for a transition τ ∈ T
of P , by summing up the cost of all instructions and operations on τ . We thereby obtain
a function CM : T → Z.

Let ∆P(L,E, lb, le) denote the DCP abstraction of P as obtained by our algorithm from
Section 2.2.

In order to infer bounds with respect to the cost model CM, we apply the following
modification to ∆P: We choose a fresh variable vcost ∈ V (vcost does not yet appear in
∆P). We add the difference constraint v′cost ≤ 0 to all outgoing transitions of lb, i.e.,
to all initial transitions. For all other transitions τ ∈ E we now add the constraint
v′cost ≤ vcost + CM(τ), thereby increasing vcost up to the cost of executing τ .

We then compute VB(vcost) in order to infer a bound on the overall cost of executing P
with respect to the cost model CM.

3.10.1 Computing Bounds on Memory Consumption

Note that the variable vcost maybe decremented in presence of negative costs. For example,
the deallocation of a resource such as memory is usually modeled by negative costs.

For reasoning about decrements, we have introduced the path-sensitive reasoning in
Section 3.8. Our path-sensitive variable bound algorithm, however, computes bounds on
variable values at a given control location l ∈ L. But the above described instrumentation
of our algorithm by a cost model requires to infer a global bound on the value of vcost .

We now show how our path-sensitive variable bound algorithm can be generalized for
inferring global variable bounds.

Let ∆P(L,E, lb, le) be a DCP over A. Let v ∈ V. We obtain a variable bound for v, i.e.,
an upper bound invariant for v which is valid at all locations l ∈ L s.t. v ∈ def(l), by
computing max

l∈L s.t. v∈def(l)
VB(v, l). I.e., we have:

VB(v) = max
l∈L s.t. v∈def(l)

VB(v, l)

As an example consider variable p in Example s_SFD_process (Figure 3.14 (a)).
Assume we want to compute a global upper bound on p. As usual, our computation is
performed on the DCP obtained by abstraction (Figure 3.14 (a)). Since C+([p]) = ∅ we
have that Incr([p]) = 0. With R([p]) = {(τ0, [n], 0)} and [n] ∈ C we compute:

VB([p])→ max
l∈L s.t. [p]∈def(l)

VB([p], l)

78

3.11. Comparison to Invariant Analysis

→ max
l∈L s.t. [p]∈def(l)

Incr([p]) + [n] + 0 + max
π∈Sa(l1,l)

SumID(π)([p])

= Incr([p]) + [n] + 0 + max
l∈L s.t. [p]∈def(l)

max
π∈Sa(l1,l)

SumID(π)([p])

→ 0 + [n] + 0 + max
l∈{l2,l3,l4,l5,l6}

max
π∈Sa(l1,l)

SumID(π)([p])

→ 0 + [n] + 0 + 0
= [n]

We have that max
l∈{l2,l3,l4,l5,l6}

max
π∈Sa(l1,l)

SumID(π)([p]) = 0 because SumID(π)([p]) ≤ 0 for all

paths π with start location l1. We therefore obtain the precise bound n (n has type
unsigned) as an upper bound on p. In contrast, our path-insensitive algorithm infers the
bound 2n since it ignores the decrement of p.

3.11 Comparison to Invariant Analysis

In this section we compare our bound algorithm to classical invariant analysis by abstract
interpretation.

3.11.1 Variable Bounds and Classical Invariant Analysis

Reconsider our discussion of Example twoSCCs in Section 3.4. Table 3.3 (page 50) shows
how our algorithm computes VB([x]) = [n]× 2 + max([m1], [m2]), thereby obtaining the
invariant x ≤ max(m1 ,m2) + 2n (n, m1 and m2 have type unsigned).

Note that this invariant cannot be computed by standard abstract domains such as
octagon or polyhedra [Min06]: these domains are convex and cannot express non-convex
relations such as maximum. The most precise approximation of x in the polyhedra
domain is x ≤ m1 +m2 +2n. Unfortunately, it is well-known that the polyhedra abstract
domain does not scale to larger programs and needs to rely on heuristics for termination.

We further point out how our algorithm differs methodologically from classical invariant
analysis: Standard abstract domains such as octagon [Min06] or polyhedra propagate
information forward until a fixed point is reached, greedily computing all possible invariants
expressible in the abstract domain at every location of the program. In contrast, VB(x)
infers the invariant x ≤ max(m1,m2)+2n by modular reasoning: local information about
the program (increments/resets of variables and local bounds) is combined to a global
program property.

Moreover, our variable and transition bound analysis is demand-driven: our algorithm
performs only those recursive calls that are indeed needed to derive the desired bound.
We believe that our analysis complements existing techniques for invariant analysis and
will find applications outside of bound analysis.

79

3. Algorithm

3.11.2 Transition Bounds and Classical Invariant Analysis

We now contrast our approach for computing a loop bound for the loop at l3 in Ex-
ample xnuSimple (Figure 3.8, page 55) with classical invariant analysis: Assume that
we have added a counter c, which counts the number of inner loop iterations (i.e., c is
initialized to 0 and incremented in the inner loop). For inferring c <= n through invariant
analysis the invariant c + x + r <= n is needed for the outer loop, and the invariant
c+ x+ p <= n for the inner loop. Both relate 3 variables and cannot be expressed as
(parametrized) octagons (e.g., [SGS14]). Further, the expressions c+ x+ r and c+ x+ p
do not appear in the program, which is challenging for template based approaches to
invariant analysis.

3.12 Relation to Amortized Complexity Analysis

In the following we discuss how our approach relates to amortized complexity analysis as
introduced by Tarjan in his influential paper [Tar85]. We recall Tarjan’s idea of using
potential functions for amortized analysis in Section 3.12.1. In Section 3.12.2 we explain
how our approach can be viewed as an instantiation of amortized analysis via potential
functions.

3.12.1 Amortized Analysis using Potential Functions.

We refer the reader to Section 1.4.1 for an example on amortized complexity analysis.

Potential Function. As a means to reason about the amortized cost of an operation or
a sequence of operations, Tarjan introduces the notion of a potential function. A potential
function is a function Φ : Σ → Z from the program states to the integers. Let Cop(σ)
denote the cost of executing operation op at program state σ ∈ Σ. Let Φ be a potential
function. Tarjan defines the amortized cost CAop(σ) as CAop(σ) = Cop(σ)+Φ(σ′)−Φ(σ) where
σ denotes the program state before and σ′ denotes the program state after executing op.
I.e., the amortized cost is the cost plus the decrease resp. increase in the value of the
potential. Consider a sequence of n operations, let opi denote the ith operation in the
sequence. Let σi denote the program state before executing operation opi, σi+1 is the
program state after executing opi. In general, the total cost of executing all n operations
is:

n∑
i=1
Copi (σi) =

n∑
i=1
CAopi

(σi)− Φ(σi+1) + Φ(σi) = Φ(σ1)− Φ(σn+1) +
n∑
i=1
CAopi

(σi) (3.1)

“That is, the total time of the operations equals the sum of their amortized times plus the
net decrease in potential from the initial to the final configuration. [...] In most cases of
interest, the initial potential is zero and the potential is always non-negative. In such a
situation the total amortized time is an upper bound on the total time.” [Tar85]. I.e., if

80

3.12. Relation to Amortized Complexity Analysis

Φi ≥ 0 and Φ0 = 0 then
n∑
i=1
Copi (σi) ≤

n∑
i=1
CAopi

(σi) (3.2)

Reconsider Tarjan’s example of a sequence of n executions of operation StackOp (Sec-
tion 1.4.1). Let j denote the stack size, i.e., σi(j) is the size of the stack in program state σi.
The cost of executing StackOp in program state σi is CStackOp(σi) = 1+(σi(j)+1−σi+1(j))
(where σi(j) + 1− σi+1(j) is the cost of the pop operation). Tarjan proposes to use the
stack size j as a potential function, i.e. we choose Φ(σi) = σi(j). We have

CAStackOp(σi) = CStackOp(σi) + Φ(σi+1)− Φ(σi)
= CStackOp(σi) + σi+1(j)− σi(j)
= 1 + (σi(j) + 1− σi+1(j) + σi+1(j)− σi(j)
= 2

With (3.2) we get:

n∑
i=1
CStackOpi (σi) ≤

n∑
i=1
CAStackOpi

(σi) =
n∑
i=1

2 = 2n

3.12.2 Amortized Analysis in our Algorithm.

Consider the labeled transition system of Example tarjan shown in Figure 3.1 (b). We
have that transition τ1 models the push instruction, increasing the stack size j by 1, a
sequence of transitions τ2 models the pop instruction, decreasing the stack by an arbitrary
number of elements. A complete run ρ of Example tarjan can be decomposed into
the initial transition τ0 and a number of sub-runs ρ[ik,ik+1] with 1 ≤ i1 < i2 . . . s.t. each
ρ[ik,ik+1] consists of a single transition τ1 (push) followed by a sequence of transitions
τ2 (pop), followed by a single execution of transition τ3. Each sub-run ρ[ik,ik+1] models
Tarjan’s StackOp operation. We thus have that the amortized cost of a sub-run ρ[ik,ik+1]
is 2. Given that τ1 cannot be executed more than n times and each ρ[ik,ik+1] contains
exactly one τ1, we get that the overall cost of executing Example tarjan is bounded by
n× 2 = 2n.

In the following we discuss that our transition bound algorithm TB can be viewed as an
instantiation of amortized analysis using potential functions. We base our discussion on
the concrete semantics of Example tarjan given by the LTS in Figure 3.1 (b). Note,
however, that our algorithm is run on the abstracted DCP in Figure 3.1 (c) where the same
reasoning applies: Suppose we want to compute the transition bound of transition τ2 in
order to compute the total cost of the pop instructions. Let ρ = (σ0, l0) λ0−→ (σ1, l1) λ1−→ . . .
be a run of Example tarjan. Let len(ρ) denote the length of ρ (i.e, total number of
transitions on ρ). We define the cost of executing τ2 in program state σi as Cτ2(σi) = 1
and the cost of executing τ1 and τ3 as Cτ1(σi) = Cτ3(σi) = 0 since we are only interested
in τ2. We have

81

3. Algorithm

](τ2, ρ) =
len(ρ)−1∑
i=1

Cρ(i)(σi)

where ρ(i) denotes the i + 1th transition li
ui−→ li+1 on ρ. Our algorithm reduces the

question “how often can τ2 be executed” to the question “how often can the local bound
’j’ of τ2 be increased on τ1”. This reasoning uses the local bound j of τ2 as a potential
function, as we show next: We get the following amortized costs for executing τ1, τ2 and
τ3 respectively:

CAτ2(σi) = Cτ2(σi) + σi+1(j)− σi(j) = 1 + σi+1(j)− σi(j) = 0
CAτ1(σi) = Cτ1(σi) + σi+1(j)− σi(j) = 0 + σi+1(j)− σi(j) = 1
CAτ3(σi) = Cτ3(σi) + σi+1(j)− σi(j) = 0 + σi+1(j)− σi(j) = 0

With σi(j) ≥ 0, σ1(j) = 0 and (3.2) we have:

](τ2, ρ) =
len(ρ)−1∑
i=1

Cρ(i)(σi) ≤
len(ρ)−1∑
i=1

CAρ(i)(σi) =](τ1, ρ)× 1

We point out that choosing the local bound j of τ2 as potential function causes the
amortized cost of executing τ2 to be 0 and reduces the question of how often τ2 can be
executed to how often the potential j can be incremented on τ1.
Using](τ1, ρ) ≤](τ0, ρ)× n = n one obtains the upper bound n for the total cost of the
pop instructions.

82

CHAPTER 4
Extensions

In this chapter we present a number of rather technical, but practically very useful
extensions of the abstraction procedure and of the bound algorithm.

4.1 Extensions of the Abstraction Procedure

In this Section we show how to keep some of the information that is lost by our basic
abstraction algorithm (Section 2.2).

4.1.1 Modeling arbitrary Decrements

Consider the example in Figure 4.1 (a). The loop at l2 can be executed bn+1
2 c times

because i is incremented n times by 1 when iterating the loop at l1, afterward i is
decreased by 2 on each execution of the loop at l2. Figure 4.1 (b) shows the DCP with
guards as obtained by Abstraction I (Section 2.2.1). Figure 4.1 (c) shows the DCP as
obtained by Abstraction II (Section 2.2.2). Note that in Figure 4.1 (c) the decrease
of i by 2 on τ3 is over-approximated by a decrease of [i] by at least 1. Recall that
the variable [i] represents the program expression max(i, 0). It is unsound to add the
predicate [i]′ ≤ [i]− 2 to transition τ3 of the DCP: E.g., consider the case where n = 1.
Then max(i, 0) indeed only decreases by 1 when executing τ3 (whereas i decreases by 2).

As a result, transition τ3 of the DCP in Figure 4.1 (c) can be executed n times in total.
Basing our analysis on the DCP in Figure 4.1 (c) we thus over-approximate the bound
for the loop at l2 in Figure 4.1 (a) by n (the precise bound is bn+1

2 c).

In the following we discuss how to obtain a more precise DCP abstraction for programs
where loop counter variables are decremented by a constant greater than 1 such as i
in Figure 4.1 (a). Observe that the DCP shown in Figure 4.2 is a valid abstraction of
Figure 4.1 (a): In comparison to Figure 4.1 (b) the abstraction in Figure 4.2 is based

83

4. Extensions

on the additional norm [i+ 1]. We have that i > 0 is a guard of τ3 (see Figure 4.1 (b)),
thus i+ 1 > 1 holds when executing τ3. Therefore [i+ 1] (= max(i+ 1, 0)) decreases by
2 when executing τ3. Transition τ3 of Figure 4.2 can be executed up to b [n]+1

2 c times.

Based on our observation we suggest the following algorithm for obtaining a DCP
abstraction that preserves decrements by 2: Let P be a program, let ∆PG(L,E, lb, le) be
the DCP with guards obtained from P by Abstraction I (Section 2.2.1), let ∆P(L,E′, lb, le)
be the DCP obtained from ∆PG by Abstraction II (Section 2.2.2). We refine our DCP
abstraction ∆P as follows: Let τ = l1

g,u−−→ l2 ∈ E be a transition of ∆PG. Let
τ ′ = l1

u′−→ l2 ∈ E′ be the corresponding transition of ∆P. Let e′1 ≤ e1 − 2 ∈ u for
some norm e1. If e1 ∈ g, we i) add the predicate [e1 + 1]′ ≤ [e1 + 1] − 2 to u′, ii) for
each τ ′′ = l3

u′′−→ l4 ∈ E′ with τ ′′ 6= τ ′ and [e1]′ ≤ [e1] + c ∈ u′′ for some c ∈ Z we
add the predicate [e1 + 1]′ ≤ [e1 + 1] + c to u′′, iii) for each τ ′′ = l3

u′′−→ l4 ∈ E′ with
τ ′′ 6= τ ′ and [e1]′ ≤ [e2] + c ∈ u′′ for some c ∈ Z and some e2 6= e1 we add the predicate
[e1 + 1]′ ≤ [e2] + (c + 1) to u′′.
We can handle decrements greater than 2 accordingly: E.g., if e′1 ≤ e1 − 3 ∈ u we add
the predicate [e1 + 2]′ ≤ [e1 + 2]− 3 to u′, etc.

Example: By the described algorithm the refined DCP abstraction shown in Figure 4.2
is obtained from the DCP with guards in Figure 4.1 (b) and the DCP in Figure 4.1 (c).

Soundness. Soundness of the suggested refinement follows by the following observations:
Let τ be a transition of P . If e1 is a guard of τ (e1 > 0 before executing τ) and e′1 ≤ e1 − 2
is invariant on τ we have that [e1 + 1]′ ≤ [e1 + 1] − 2 is invariant on τ (as previously
discussed on the example in Figure 4.1 above). Further: Let τ ′ 6= τ be some transition of
the concrete program. If [e1]′ ≤ [e1]+c is invariant on τ ′ then [e1 +1]′ ≤ [e1 +1]+c is also
invariant on τ ′. Let e1 6= e2. If [e1]′ ≤ [e2]+c is invariant on τ ′ then [e1+1]′ ≤ [e2]+(c+1)
is also invariant on τ ′.

Note that our refinement algorithm is a procedure that performs simple syntactic manip-
ulations based on purely syntactic information. It can therefore be performed efficiently
(linear in the number of transitions of ∆PG), no re-run of the abstraction procedure is
performed. The refinement uses ∆PG and ∆P as obtained by Abstraction I and II.

We discuss in Section 4.2.3 (page 102) how our bound algorithm infers the correct bound
for the loop at l2 in Figure 4.1 (a) based on the abstraction in Figure 4.2.

4.1.2 Modeling Flags

Consider Figure 4.3 (a) which is an example of a loop with two paths. The path
interleaving is controlled by the boolean variable b. Such loop constructs are common in
imperative programs, boolean control variables such as b in Figure 4.3 (a) are usually
called flags. Figure 4.3 (a) has loop bound 2n − 1: the if-branch of the loop can be
executed n times (i is initially n), and for each but the last execution of the if-branch
there is one execution of the else-branch, i.e., we have n+ n− 1 = 2n− 1 executions.

84

4.1. Extensions of the Abstraction Procedure

void foo(uint n){
int j = n;
int i = 0;

l1 : while (j > 0) {
j = j - 1;
i = i + 1;

}
l2 : while (i > 0) {

i = i - 2;
}

}

Loop Bound for l2: bn+1
2 c

lb

l1

l2 le

j′ ≤ n
i′ ≤ 0τ0

i′ ≤ iτ2

j > 0
j′ ≤ j − 1
i′ ≤ i+ 1

τ1

i > 0
i′ ≤ i− 2

τ3

lb

l1

l2 le

[j]′ ≤ [n]
[i]′ ≤ [0]τ0

[i]′ ≤ [i]τ2

[j]′ ≤ [j]− 1
[i]′ ≤ [i] + 1

τ1

[i]′ ≤ [i]− 1

τ3

(a) (b) (c)

Figure 4.1: (a) Example, (b) DCP with guards (Abstraction I), (c) DCP (Abstraction II)

lb

l1

l2 le

[j]′ ≤ [n]
[i]′ ≤ [0]
[i+ 1]′ ≤ [0] + 1

τ0

[i]′ ≤ [i]
[i+ 1]′ ≤ [i+ 1]τ2

[j]′ ≤ [j]− 1
[i]′ ≤ [i] + 1
[i+ 1]′ ≤ [i+ 1] + 1

τ1

[i]′ ≤ [i]− 1
[i+ 1]′ ≤ [i+ 1]− 2

τ3

Figure 4.2: DCP abstraction obtained for Figure 4.1 (a) when adding the norm [i+ 1]

We can handle the boolean variable b as an integer variable (a common treatment in
program analysis). By a direct application of our abstraction procedure (Section 2.2), we
obtain the abstraction shown in Figure 4.3 (b). The DCP in Figure 4.3 (b), however,
does not terminate: Even if we interpret the symbolic constants [0] and [1] as the natural
numbers 0 and 1 respectively, τ2 can be executed infinitely often.

In our implementation, we abstract an update of form b := false by b′ ≤ b− 1 if we can
establish that b = true holds before the update, correspondingly for an update of form
b := true. Example: Applying this heuristic during the abstraction of Figure 4.3 (a), we
obtain the DCP shown in Figure 4.3 (c).

Based on the DCP abstraction in Figure 4.3 (c), our bound algorithm (Chapter 3) now
easily obtains the tight bound 2n for Figure 4.3 (a). (The precise bound is 2n− 1.)

85

4. Extensions

void foo(uint n){
int i = n;
bool b = false;

l1 : while (i > 0) {
if(¬b) {
i = i - 1;
b = true;

} else {
b = false;

}
}

}

Loop Bound for l1: 2n− 1

lb

l1

le

[i]′ ≤ [n]
[b]′ ≤ [0]τ0

[i]′ ≤ [i]
[b]′ ≤ [1]

τ2

[i]′ ≤ [i]− 1
[b]′ ≤ [0]

τ1

lb

l1

le

[i]′ ≤ [n]
[b]′ ≤ [0]τ0

[i]′ ≤ [i]
[b]′ ≤ [b]− 1

τ2

[i]′ ≤ [i]− 1
[b]′ ≤ [b] + 1

τ1

(a) (b) (c)

Figure 4.3: (a) Example, (b) DCP obtained by abstraction, (c) alternative DCP abstrac-
tion

4.1.3 Control-Flow Refinement

The program shown in Figure 4.4 (a) is another example of a loop which phases are
controlled by a flag variable. The loop has loop bound 2n− 2: In the worst case we first
count i down from initially n− 1 to 1, then we set b to false and count i up from 0 to n.
With our technique for abstracting flags (see Section 4.1.2) we obtain the DCP shown
in Figure 4.5 (a) by our abtraction procedure. This DCP, however, does not terminate:
We can infinitely often execute τ1, τ2, τ4, τ1, τ2, τ4, The information, that altering
between the execution of the if and the else branch is not possible, is lost during the
abstraction.

In our implementation we use control-flow refinement for handling such cases. The idea
of control-flow refinement is to encode semantic properties of the program into its control-
flow structure, thereby refining the control-flow. E.g., consider the labeled transition
system (LTS) of the program in Figure 4.4 (a) shown in Figure 4.4 (b). In Figure 4.4 (b)
there is a path that takes transition τ4 and afterwards transition τ1. However, this path
will never be executed during program run: Executing τ4 requires that ¬b holds, whereas
executing τ1 requires that b holds. Variable b, however, stays false if it is set to false
once. Similarly, we cannot execute τ4 directly after executing τ0, we first will have to
execute τ3.
These observations are made explicit by the LTS in Figure 4.4 (c). (by λi we refer to
the transition relation of transition τi in Figure 4.4 (b).) Note that Figure 4.4 (b) is
semantically equivalent to Figure 4.4 (c).

Applying our abstraction algorithm to the control-flow refined LTS shown in Figure 4.4 (c)

86

4.1. Extensions of the Abstraction Procedure

void foo(uint n){
int i = n - 1;
bool b = true;

l1 : while (i > 0 &&
i < n) {

if(b) {
i = i - 1;
if(?)

b = false;
} else {
i = i + 1;

}
}

}

Loop Bound for l1:
max(2n− 2, 0)

lb

l1

l2

u3 ≡
i′ = i ∧
b′ = 0

le

i′ = n− 1 ∧
b′ = 1τ0

i > 0 ∧
i < n ∧
b ∧
i′ = i− 1 ∧
b′ = b

τ1

i′ = i ∧
b′ = b

τ2

u3
τ3

i > 0 ∧
i < n ∧
¬b ∧
i′ = i+ 1 ∧
b′ = b

τ4

lb

l1l′1

l2

le

le λ0

λ1

λ2
λ3

λ4

(a) (b) (c)

Figure 4.4: (a) Example, (b) Labeled Transition System, (c) Control-Flow Refined LTS,
by λi we denote the transition relation of transition τi of the original LTS

results in the DCP shown in Figure 4.5 (b). In contrast to the DCP in Figure 4.5 (a),
Figure 4.5 (b) does terminate: On each execution of the cycle τ1, τ2 variable [i] decreases
whereas on each execution of τ4 variable [n−i] decreases. Our bound algorithm (Chapter 3)
infers the bound 2n− 1 for Figure 4.5 (b). (Note that, as a preprocessing, we rename the
program variables as we discussed in Section 3.5.3.)

Control-flow refinement techniques are, e.g., discussed in [GJK09] and [ZGSV11] (for
imperative programs), and in [MV06] (for functional programs). In [FH14] control-flow
refinement is applied to cost equations.

Contextualization, Infeasible Path Elimination and Loop Unrolling

In our implementation we use the conrol-flow refinement technique contextualization
introduced in [ZGSV11].

In our framework contextualization can be defined as follows: Given a program P(L, T, lb, le)
we create a new program P ′(L′, T ′, l′b, l′e) where

• L′ = {lτ | τ ∈ T} and

• T ′ = {lτ1
λ1−→ lτ2 | τ1 = l1

λ1−→ l2 ∈ T ∧ τ2 = l2
λ2−→ l3 ∈ T and λ1 ◦ λ2 6= ∅}.

87

4. Extensions

lb

l1

l2

u3 ≡
[i]′ ≤ [i]
[b]′ ≤ [b]− 1
[n− i]′ ≤ [n− i]

le

[i]′ ≤ [n]− 1
[b]′ ≤ [1]
[n− i]′ ≤ [1]

τ0

[i]′ ≤ [i]− 1
[b]′ ≤ [b]
[n− i]′ ≤ [n− i] + 1

τ1

[i]′ ≤ [i]
[b]′ ≤ [b]
[n− i]′ ≤ [n− i]

τ2

u3
τ3

[i]′ ≤ [i] + 1
[b]′ ≤ [b]
[n− i]′ ≤ [n− i]− 1

τ4

lb

l1l′1

l2

le

le

u2 ≡
[i]′ ≤ [i]
[b]′ ≤ [b]
[n− i]′ ≤ [n− i]

u4 ≡
[i]′ ≤ [i] + 1
[b]′ ≤ [b]
[n− i]′ ≤ [n− i]− 1

[i]′ ≤ [n]− 1
[b]′ ≤ [1]
[n− i]′ ≤ [1]

[i]′ ≤ [i]− 1
[b]′ ≤ [b]
[n− i]′ ≤ [n− i] + 1u2

[i]′ ≤ [i]
[b]′ ≤ [b]− 1
[n− i]′ ≤ [n− i]

u4

(a) (b)

Figure 4.5: Abstractions of Figure 4.4 (a): (a) DCP obtained by abstraction from original
LTS, (b) DCP obtained by abstraction from control-flow refined LTS

Here λ1 ◦ λ2 denotes the transition relation that results form concatenating the transition
relations λ1 and λ2. E.g., we have {(σa, σb), (σa, σc)} ◦ {(σc, σd), (σe, σf)} = {(σa, σd)}.
The check whether λ1 ◦λ2 6= ∅ can be performed by an SMT solver (as in our implementa-
tion): Assume that λ1 is given by formula φ1 and λ2 is given by formula φ2. We ask the
SMT solver whether φ1∧φ′2 is satisfiable, where φ′2 results from φ2 by adding an additional
′ to all variables in the formula. E.g., in the LTS stated in Figure 4.6 (b) the transition
relation of τ1 is stated by the formula i > 0 ∧ i′ = i, the transition relation of τ4 is given
by i ≤ 0 ∧ i′ = i. We thus ask the SMT solver whether i > 0 ∧ i′ = i ∧ i′ ≤ 0 ∧ i′′ = i′

is satisfiable. Since this is not the case, there is no transition from lτ1 to lτ4 in the
contextualized LTS in Figure 4.6 (c).

Since, in general, first-order logic is undecidable, we sometimes have to overapproximate
λ1 respectively λ2 by removing conjuncts that involve undecidable theories (e.g., non-
linear arithmetic) from the respective formulas. For obivious reasons this does not affect
soundness of contextualization, we still obtain a semantically equivalent program.

It remains to define the start- and end-location of the contextualized program. We set
l′b = lτ for τ = lb

λ−→ l1 with l1 ∈ L. If there are several such τ ∈ E we add a new location
l′b and edges from l′b to all such lτ . Accordingly we set l′e = lτ for τ = l1

λ−→ le with l1 ∈ L.
We handle the case that there are several such τ ∈ E in the same way as for lb.

88

4.1. Extensions of the Abstraction Procedure

Example. Consider the example in Figure 4.6 (a), in Figure 4.6 (b) the labeled
transition system is shown, in Figure 4.7 (a) we show the DCP as obtained by our
abstraction procedure. Note that this DCP (Figure 4.7 (a)) does not terminate: We can
infinitely often execute the path τ1, τ4. However, in the original program (Figure 4.6 (b)),
this execution is not possible: Since τ1 is guarded by i > 0 and τ4 is guarded by i ≤ 0,
i must decrease between executing τ1 and executing τ4. This ensures termination of
the original program. We make this information available in the abstract program by
applying contextualization before computing the abstraction: In Figure 4.6 (c) we show
the LTS that results from applying contextualization to the original LTS (Figure 4.6 (b)).
In Figure 4.7 (b) the DCP is shown that results from applying our abstraction procedure
to the refined LTS in Figure 4.6 (c). Note that the DCP in Figure 4.7 (b) terminates: [i]
never increases but decreases on all cyclic paths of the program. By our bound algorithm
(Chapter 3) we are able to infer the bound n for the outer loop (at l1) as well as for the
inner loop (at l2).

Applying Contextualization iteratively vs. Large-Block Encoding. Note that
we can apply contextualization again to the refined program P ′, thereby increasing the
precision of our refinement. E.g., we have to apply contextualization twice to the LTS in
Figure 4.4 (b) in order to exclude the execution τ2, τ4.
To our observation, at most one application of contextualization is sufficient in practice if
large-block encoding is used appropriately: Large-Block encoding is a well-known technique
for increasing the precision of static analysis methods. It is also highly effective in our
context. In contrast to contextualization large-block encoding reduces the number of
control locations. Control locations are removed by pairwise concatenating incoming and
outgoing transitions. E.g., in our implementation we only consider the loop headers as
control locations. Thus the transitions τ1, τ2 and τ1, τ3 of Figure 4.4 (b) are encoded into
one transition respectively. Let τ1,2 be the transition that encodes the execution τ1, τ2.
Now the execution τ1,2, τ4 is excluded after only one application of contextualization
because the guard b of τ1,2 contradicts the guard ¬b of τ4 (b stays unaltered when
executing τ1,2).
Large-block encoding may, however, blow up the number of transitions exponentially. To
our experience, using only loop headers as control locations is a good trade off between
precision and complexity of our analysis.

Infeasible Path Elimination. The approach in [SZV14a] refines the control-flow of
a given program by removing infeasible paths from the control flow graph. A path is
infeasible if concatenating the transition relations along the path results in the empty
relation. E.g. in Figure 4.4 (b) the cyclic path τ3, τ1 is infeasible. We call this refinement
technique infeasible path elemination. In fact, contextualization is a more general technique
which implements infeasible path elemination: E.g., by applying contextualization to
Figure 4.4 (b) we obtain an LTS similar to the one shown in Figure 4.4 (c). Here the
path τ3, τ1 is removed, while the feasible execution τ1, τ3 still remains.

89

4. Extensions

void foo(uint n){
int i = n;

l1 : while (i > 0) {
l2 : while(i > 0) {

i--;
if(?)

break;
}

}
}

Loop Bound for l1: n

lb

l1

l2

l3

le

i′ = nτ0

i > 0 ∧
i′ = i

τ1

i > 0 ∧
i′ = i− 1

τ2

i′ = i τ5

i′ = i
τ3

i ≤ 0 ∧
i′ = i

τ4

lτ0

lτ1

lτ2lτ4

lτ3

lτ5

le

le

le

λ0

λ1

λ2

λ2

λ5

λ3

λ3

λ4

(a) (b) (c)

Figure 4.6: (a) Example, (b) Labeled Transition System, (c) LTS after Contextualization,
we denote by λi the transition relation of transition τi of the original LTS

Loop Unrolling. Note that in the case of Figure 4.6 (b) contextualization essentially
unrolls the inner loop once. Loop unrolling is a control-flow refinement technique which
detects whether an inner loop must be executed within an execution of the outer loop.
If so, the inner loop is unrolled once. Contextualization can be understood as a more
general technique which implements loop unrolling.

Unfolding

In our implementation we only apply the presented contextualization technique. We
can, of course, apply any control-flow refinement technique as a preprocessing to our
abstraction procedure, thereby enriching the abstraction with additional information.
We have demonstrated the effectiveness and power of contextualization on the discussed
examples. In order to demonstrate that our approach can also benefit from other
control-flow refinement techniques, we consider an adaption of the technique introduced
in [GJK09]. We call this technique unfolding.

Consider the program in Figure 4.8 (a). Proving termination of the outer loop is
challenging: b is set to true before reaching the inner loop, if b remains true the break
statement is reached and the execution of the outer loop is stopped. If, however, b is set

90

4.1. Extensions of the Abstraction Procedure

lb

l1

l2

l3

le

[i]′ ≤ [n]τ0

[i]′ ≤ [i]

τ1

[i]′ ≤ [i]− 1

τ2

[i]′ ≤ [i] τ5

[i]′ ≤ [i]

τ3

[i]′ ≤ [i]
τ4

lτ0

lτ1

lτ2lτ4

lτ3

lτ5

le

le

le

[i]′ ≤ [n]

[i]′ ≤ [i]

[i]′ ≤ [i]− 1

[i]′ ≤ [i]− 1

[i]′ ≤ [i]

[i]′ ≤ [i]

[i]′ ≤ [i]

[i]′ ≤ [i]

(a) (b)

Figure 4.7: Abstractions of Figure 4.6 (a): (a) DCP obtained by abstraction from original
LTS, (b) DCP obtained by abstraction from LTS after contextualization

to false inside of the inner loop, i is decreased by at least 1. This ensures termination of
the outer loop. We conclude, that proving termination of the example requires to analyze
the interplay between the executions of the inner and the outer loop. In the worst-case
the outer loop can be executed n times: On each execution of the outer loop we enter the
if-branch of the inner loop exactly once, thereby setting b to false and decreasing i by 1.

Figure 4.8 (b) shows the LTS of the example. In order to reduce the number of control
locations, thereby simplifying the subsequent discussion, we use large-block encoding
here (e.g., we have only one transition per loop-path of the inner loop). As discussed,
large-block encoding is also used in our implementation.

In Figure 4.8 (c) we depict the DCP as obtained when applying our abstraction procedure
directly to the LTS in Figure 4.8 (b). This DCP does in fact not terminate: We can
execute the loop-path τ1, τ4 infinitely often. The reason is, that the previously discussed
relation between the executions of the inner and the outer loop is lost during the
abstraction process.

For the case of Figure 4.8 (b) contextualization does not solve the issue: By contextual-
ization we introduce a case distinction on which transition is executed next by creating
corresponding new control locations. This case distinction does not allow to prove

91

4. Extensions

void foo(uint n){
int i = n;

l1 : while (i > 0) {
bool b = true;
int j = n;

l2 : while(j > 0 && ?)
{
j--;
if(?) {

b = false;
i--;

}
}
if(b)
break;

}
}

Loop Bound for l1: n

lb

l1

l2

le

le

i′ = nτ0

i > 0 ∧
i′ = i ∧
j′ = n ∧
b′ = true

τ1

j > 0 ∧
j′ = j − 1 ∧
i′ = i

τ2

j > 0 ∧
j′ = j − 1 ∧
i′ = i− 1 ∧
b′ = false

τ3

i′ = i ∧
¬b

τ4

lb

l1

l2

le

le

[i]′ ≤ [n]τ0

[i]′ ≤ [i]
[j]′ ≤ [n]
[b]′ ≤ [1]

τ1

[j]′ ≤ [j]− 1
[i]′ ≤ [i]
[b]′ ≤ [b] τ2

[j]′ ≤ [j]− 1
[i]′ ≤ [i]− 1
[b]′ ≤ [0]

τ3

[i]′ ≤ [i] τ4

(a) (b) (c)

Figure 4.8: (a) Example, (b) Labeled Transition System, (c) DCP obtained by abstraction

termination of the example. We rather need a different kind of case distinction here: We
need to distinguish between the case where b is set to false inside of the inner loop and
the case where b stays unaltered during the iteration of the inner loop. I.e., we need
to distinguish whether τ3 (which sets b to false) is executed at least once within one
iteration of the outer loop or not. This case distinction is implemented by the control-flow
refinement technique that was introduced in [GJK09] and which we call unfolding. We
adapt unfolding to our framework by stating an appropriate formalization:

Given a program P(L, T, lb, le) we create a new program P ′(L′, T ′, l′b, l′e) where

• L′ = {lS | l ∈ L and S ∈ 2T } and

• T ′ = {lS1
1

λ1−→ lS1∪τ1
2 | τ1 = l1

λ1−→ l2 ∈ E}.

We set l′b = l∅b . We set l′e = l∅e . We add edges lSe −→ l∅e for all S ∈ 2T with S 6= ∅ to T ′.

We can apply unfolding also to only part of a program. E.g., for the LTS in Figure 4.8 (b)
it is sufficient to apply unfolding only to the inner loop. The resulting LTS is shown in
Figure 4.9 (a).

After unfolding we apply dead transition elimination which we discuss next.

92

4.1. Extensions of the Abstraction Procedure

lb

l1

l∅2

l
{τ2}
2

l2,{τ3}l
{τ2,τ3}
2

le

le

λ0

λ1

λ2

λ3

λ2

λ3

λ4

λ4

λ2

λ3
λ3

λ2

λ4

λ4

lb

l1

l∅2

l
{τ2}
2l

{τ3}
2l

{τ2,τ3}
2

le

le

[i]′ ≤ [n]

[i]′ ≤ [i]
[j]′ ≤ [n]
[b]′ ≤ [1]

[j]′ ≤ [j]− 1
[i]′ ≤ [i]
[b]′ ≤ [b][j]′ ≤ [j]− 1

[i]′ ≤ [i]− 1
[b]′ ≤ [0]

[i]′ ≤ [i]
[b]′ ≤ [b]
[j]′ ≤ [j]− 1

[j]′ ≤ [j]− 1
[i]′ ≤ [i]− 1
[b]′ ≤ [0]

[i]′ ≤ [i]
[i]′ ≤ [i]

[j]′ ≤ [j]− 1
[i]′ ≤ [i]
[b]′ ≤ [b]

[j]′ ≤ [j]− 1
[i]′ ≤ [i]− 1
[b]′ ≤ [0]

[j]′ ≤ [j]− 1
[i]′ ≤ [i]
[b]′ ≤ [b]

(a) (b)

Figure 4.9: (a) LTS after unfolding of inner loop (by λi we refer to the transition relation
of transition τi of the original LTS in Figure 4.8 (b)), dashed transitions are removed by
dead transition elimination, (b) DCP obtained by abstraction

Dead Transition Elimination

Definition 43 (Reachable States). Let P(L, T, le, lb) be a program over states Σ. By
Reach : L → 2Σ be denote the set of states that is reachable at l. Let l ∈ L, we define
Reach(l) =
{σ ∈ Σ | ∃ run ρ = (lb, σ0) λ0−→ (l1, σ1) λ1−→ . . . of P with li = l and σi = σ for some i}.

Dead transition elimination removes those transitions from a given LTS which can never
be taken during program run. A transition l1

λ−→ l2 ∈ T is dead iff {(s1, s2) ∈ λ | s1 ∈
Reach(l1)} = ∅, where Reach(l1) denotes the states that are reachable at l1 (Definition 43).
Obviously a transition l1

λ−→ l2 ∈ T can never be executed iff no state s ∈ Σ with (s,_) ∈ λ
is reachable at its source location l1. Note that it is sound to approximate “deadness”
using an over-approximation of Reach(l). Over-approximations of the reachable states
can be computed by invariant analysis.

Example. A simple invariant analysis suffices for inferring that b is invariant at l{τ2}
2

in Figure 4.9 (a). Since transition τ4 is guarded by ¬b, over-approximating Reach(l{τ2}
2)

93

4. Extensions

by the set of all states in which b is true, is sufficient for concluding that the transition
l
{τ2}
2

τ4−→ l1 is dead. We thus eliminate l{τ2}
2

τ4−→ l1 from the LTS. In the same way the
transition l∅2

τ4−→ l1 is eliminated.

We obtain the DCP depicted in Figure 4.9 (b) by applying our abstraction procedure to
the refined LTS after dead transition elimination. Note that this DCP terminates: [i]
decreases on all cyclic paths of the outer loop. We now obtain the correct bound n for
the outer loop of Figure 4.9 (b) by our bound algorithm (Chapter 3).

4.1.4 Symbolic Increments

Consider the example in Figure 4.10 (a). The update i := i + c cannot be directly
approximated by a difference constraint (Definition 3) because c 6∈ Z. In Figure 4.10 (b)
we show the DCP that we obtain from Figure 4.10 (a) by our abstraction algorithm
(Section 2.2).

Note that Figure 4.10 (b) does not terminate.

Nevertheless examples such as the one in Figure 4.10 (a) are, in principle, within reach
of our bound algorithm (Chapter 3). We now introduce a straightforward extension of
our basic abstract program model which allows to naturally over-approximate updates of
form i := i+ exprc, where exprc is a (symbolic) expression over the programs parameters
and constants (i.e., a constant expression).

Definition 44 (Difference Constraints with Symbolic Increments). We denote an in-
equality of form x′ ≤ y + c with x ∈ V and y ∈ A a difference constraint with symbolic
increment (over A) if c ∈ C. Recall that C denotes the set of symbolic constants. Note
that x′ ≤ y + c is a difference constraint iff c ∈ Z.

We extend our abstract program model of difference constraint programs (Definition 4
and Definition 5) to difference constraint programs with symbolic increments by extending
the domain of the edge labeling accordingly. For an example see Figure 4.10 (c).

We now discuss how we can exploit the expressive power of DCPs with symbolic increments
by extending our abstraction algorithm appropriately: In Abstraction I (Section 2.2.1),
step “2. Abstracting Transitions” we allow the constant c to be any expression formed
over Z, parameters and constants of the program. In Abstraction II (Section 2.2.2) we
generate the constraint y′ ≤ x+[c] from a constraint y′ ≤ x+c if c 6∈ Z. This is obviously
sound because c ≤ [c].

We discuss in Section 4.2.4 how our bound algorithm infers the correct bound n× c for
the loop at l2 in Figure 4.10 (a) based on the abstraction in Figure 4.10 (c).

We further discuss in Section 4.2.4 how we express updates of form x := x+ expr, where
expr is an expression over the programs parameters and variables (e.g., the update
x := x + i in Figure 4.14), in our extended program model of DCPs with symbolic
increments by interleaving bound analysis and program abstraction.

94

4.2. Extensions of the Bound Algorithm

void foo(uint n,
uint c){

int j = n;
int i = 0;

l1 : while (j > 0) {
j = j - 1;
i = i + c;

}
l2 : while (i > 0) {

i = i - 1;
}

}

Loop Bound for l2: n× c

lb

l1

l2 le

[j]′ ≤ [n]
[i]′ ≤ [0]τ0

[j]′ ≤ [j]τ2

[j]′ ≤ [j]− 1

τ1

[j]′ ≤ [j]

τ3

lb

l1

l2 le

[j]′ ≤ [n]
[i]′ ≤ [0]τ0

[j]′ ≤ [j]
[i]′ ≤ [i]τ2

[j]′ ≤ [j]− 1
[i]′ ≤ [i] + [c]

τ1

[j]′ ≤ [j]
[i]′ ≤ [i]− 1

τ3

(a) (b) (c)

Figure 4.10: (a) Example, (b) DCP as obtained by our standard abstraction algorithm,
(c) DCP with symbolic increments as obtained by our extended abstraction algorithm

We note that iteration patterns such as the one in Figure 4.10 (a) or Figure 4.14 seem to
be rare in real-world C code. During our experiments we found only a few such iterations.

4.2 Extensions of the Bound Algorithm

In the following we extend our bound algorithm (presented in Chapter 3) by various
features: In Section 4.2.1 we present an extension that handles special cases such as
non-linear control flow (break statements). In Section 4.2.2 and Section 4.2.3 we introduce
extensions by which we obtain lower constant factors in the computed bound expressions.
In Section 4.2.4 we extend our bound algorithm to handle symbolic increments.

4.2.1 Generalizing Local Bounds to Sets of Local Bounds

Consider the example in Figure 4.11. In Figure 4.11 (b) the program is shown in form
of a labeled transition system. We have that x is a local bound for τ1 and y is a local
bound for τ2. However, it is not straightforward to find a local bound for τ3: In order
to form a local bound for τ3 we need to combine x and y to a linear combination, e.g.,
2x+ y. It is unclear how to automatically come up with such expressions.

In the following we discuss a simple generalization of our algorithm by which we avoid
an explicit composition of local bounds.

We generalize the local bound mapping ζ : E → Expr(A) (Definition 18) to a local bound
set mapping ζ : E → 2Expr(A).

95

4. Extensions

void foo(uint n) {
int x = n; int y = 0;
while(x > 0) {

if(y > 0 && ?)
y = y - 1;

else {
x = x - 1;
y = y + 1;

} } }

Complexity: 2n

lb

l1le l2

x′ = n ∧
y′ = 0 τ0 x′ = x ∧

y′ = y − 1τ1

x′ = x− 1 ∧
y′ = y + 1

τ2

x′ = x ∧
y′ = y

τ3

lb

l1le l2

[x]′ ≤ [n]
[y]′ ≤ [0] τ0 [x]′ ≤ [x]

[y]′ ≤ [y]− 1τ1

[x]′ ≤ [x]− 1
[y]′ ≤ [y] + 1

τ2

[x]′ ≤ [x]
[y]′ ≤ [y]

τ3

(a) (b) (c)

Figure 4.11: (a) Example, (b) Labeled Transition System, (c) DCP obtained by abstrac-
tion

Definition 45 (Local Bound Set Mapping). Let ∆P(L,E, lb, le) be a DCP over A. Let
ρ = (lb, σ0) u0−→ (l1, σ1) u1−→ · · · be a run of ∆P. We call a function ζ : E → 2Expr(A) a
local bound set mapping for ρ if for all τ ∈ E it holds that
](τ, ρ) ≤ (

∑
v∈ζ(τ)∩V

↓(v, ρ)) +
∑

expr∈ζ(τ)\V
JexprK(σ0).

We say that ζ is a local bound set mapping for ∆P if ζ is a local bound set mapping for
all runs of ∆P.

Example: For Figure 4.11 (c) we have that ζ : E → 2Expr(A) with ζ(τ0) = {1}, ζ(τ1) =
{[y]}, ζ(τ2) = {[x]} and ζ(τ3) = {[x], [y]} is a local bound set mapping.

We generalize the transition bound algorithm TB to local bound set mappings by summing
up over all expr ∈ ζ(τ). We exemplify the generalization by extending Definition 27.
Note that, in particular, our full bound algorithm (Definition 42) can be extended the
same way. We discuss the specifics of dealing with sets of path-sensitive local bounds
(path-sensitive local bounds were introduced in Section 3.8.1) below.

96

4.2. Extensions of the Bound Algorithm

Call Evaluation and Simplification Using

TB(τ3)

→ TB([x]) + TB([y])
→ [n] + TB([y])
→ [n] + [n]
= 2× [n]

ζ(τ3) = {[x], [y]},
TB([x]),
TB([y])

TB([x])
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 1×max([n] + 0, 0)
= [n]

R([x]) = {(τ0, [n], 0)},
I([x]) = ∅,
[n] ∈ C,
TB(τ0)

TB([y])

→ TB(τ1)× 1 +
TB(τ0)×max([0] + 0, 0)

= TB(τ1)× 1 + 0
→ [n]× 1 + 0
= [n]

I([y]) = {(τ1, 1)},
R([y]) = {(τ0, [0], 0)},
[0] ∈ C,
TB(τ1)

TB(τ1) → TB([x])
= [n]

ζ(τ1) = {[x]},
TB([x])

TB(τ0) → TB(1)
→ 1

ζ(τ0) = {1}

Table 4.1: Computation of TB(τ3) for Figure 4.11 (c) by Definition 46

Definition 46 (Bound Algorithm based on Local Bound Sets). Let ∆P(L,E, lb, le)
be a DCP over A. Let ζ : E → 2Expr(A). Let VB : A 7→ Expr(A) be defined as in
Definition 27. We define TB : E 7→ Expr(A) as:

TB(τ) =
∑

lb∈ζ(τ)
TB(lb)

TB(lb) = lb, if lb 6∈ V, else
TB(lb) = Incr(lb) +

∑
(t,a,c)∈R(lb)

TB(t)×max(VB(a) + c, 0)

where Incr(v) =
∑

(τ,c)∈I(v)
TB(τ)× c (we set Incr(v) = 0 for I(v) = ∅).

Example: For Figure 4.11 we get TB(τ3) = 2n, details are shown Table 4.1 ([n] = n
because n has type unsigned).

Inferring a Local Bound Set Mapping. Our algorithm for finding local bounds can
be easily extended for finding local bound sets: Steps (1) and (2) remain unchanged.
Step (3) is generalized as follows: Let v1, . . . , vk ∈ V and τ = l1

u−→ l2 ∈ E. We set
ζ(τ) = {v1, . . . , vk} if it holds that for each execution of τ a transition in ξ(v1)∪· · ·∪ξ(vk)

97

4. Extensions

void foo(uint n) {
int x = n;
while(1) {

skip;
if(x > 0)
x--;

else
break;

}
}

lb

l1

l2 le

[x]′ ≤ [n];τ0

[x]′ ≤ [x]
τ1

[x]′ ≤ [x]− 1
τ2

τ3

(a) (b)

Figure 4.12: (a) Example with a “break”-statement, (b) DCP obtained by abstraction

is executed. This can be implemented by checking, if τ does not belong to a strongly
connected component (SCC) SCC of the direct graph (L,E′) where
E′ = E ∪ {le

∅−→ lb} \ (ξ(v1) ∪ · · · ∪ ξ(vk)).
Note that step (3) is parametrized in the number k ∈ N of variables considered. For
obvious reasons it is preferable to find local bound sets of minimal size. Given a transition
τ , we therefore first try to find a local bound set of size k = 1 for τ and increment k
only if the search fails. With a fixed limit for k the complexity of our procedure for
finding local bounds remains polynomial. To our experience limiting k to 3 is sufficient
in practice.

Handling break statements Consider Figure 4.12 (a). The loop (resp. its back-edge)
can be executed n times, the skip instruction (a placeholder for some code of interest),
however, can be executed n+ 1 times. Consider the abstraction shown in Figure 4.12 (b).
Our algorithm for finding local bounds, as we discussed it so far, fails to find a local bound
(set) for τ1 (modeling the skip instruction). We extend the algorithm as follows: We set
ξ(1) = {τ ∈ E | τ is not part of any SCC}. I.e., for Figure 4.12 (b) we set ξ(1) = {τ0, τ3}.
We add 1 ∈ Expr(A) to the set of “variables” v1, . . . , vk. I.e., for our example we have
v1 = [x] and v2 = 1. The algorithm now computes ζ(τ3) = {[x], 1} for k = 2 given that
ξ([x]) = {τ2}. Based on ζ(τ3) = {[x], 1} our algorithm from Definition 46 correctly infers
TB(τ3) = [n] + 1 = n+ 1 (n has type unsigned).

Sets of Path-Sensitive Local Bounds

We shortly discuss how our path-sensitive bound algorithms is extended by sets of local
bounds.

Applying the previously discussed modifications to Definition 36 results in Definition 47.

98

4.2. Extensions of the Bound Algorithm

Definition 47 (Bound Algorithm for VASS based on Local Bound Sets (path-sensitive)).
Let ∆P(L,E, lb, le) be a DCP over A. Let ζ : E → 2Expr(A).
We define TB : E 7→ Expr(A) as:

TB(τ) =
∑

lb∈ζ(τ)
TB(lb)

TB(lb) = lb, if lb 6∈ V, else
TB(lb) = Incr(lb) +

∑
(_,a,c)∈R(lb)

max(VB(a) + c, 0)

where

1. Incr(v) =
∑

π∈C+(v)
TB(trn(π))× SumID(π)(v) (we set Incr(v) = 0 for C+(v) = ∅)

2. TB({τ1, τ2, . . . , τn}) = min
1≤i≤n

TB(τi)

Finding Path-Sensitive Local Bound Sets. Recall, that our path-sensitive reason-
ing is based on path-sensitive local bounds (Definition 38). Accordingly, Definition 47
requires sets of path-sensitive local bounds. We now discuss how to determine such a set
of local bounds for a given transition τ ∈ E.
Let τ ∈ E. Assume we have inferred that {v1, . . . vk} with vi ∈ V is a local bound set for
τ by the algorithm discussed in Section 4.2.1. We infer a path-sensitive local bound set
for τ as follows: We check whether C (τ) ⊆

⋃k
i=1 C−(vi). If so, we set ζ(τ) = {v1, . . . vk}.

If the check fails we set ζ(τ) = ∅.
Generalization to the case where the local bound set for τ is of form
{v1, . . . vk, expr1, . . . , exprn}
with vi ∈ V and expri 6∈ V is straightforward: Similar to Definition 45 we require that
n∑
i=1

expri is a bound on the number of times that the paths C (τ) \
k⋃
i=1

C−(vi) can be
executed, i.e., a path bound. We infer path bounds based on the following observation:
Let tb(τ) denote a bound for τ . Let π be a path. We have that in particular min

τ∈trn(π)
tb(τ)

is a path bound for π.

Example II. Consider Example s_SFD_process in Figure 3.14 (page 66). Assume
we want to compute a loop bound for the outer loop at l1, i.e., a bound for its single
back-edge τ3. By the algorithm sketched in the previous paragraph we determine the local
bound set {[p], [m]} for τ3, i.e., we set ζ(τ3) = {[p], [m]}. Our algorithm from Definition 47
infers TB(τ3) = [n]+[n]. The details are given in Table 4.2. We thus obtain the tight loop
bound 2n (n has type unsigned) for the outer loop at l1 of Example s_SFD_process.
(The precise loop bound for the outer loop is 2n− 1).

99

4. Extensions

Call Evaluation and Simplification Using

TB(τ3)
→ TB([p]) + TB([m])
→ [n] + TB([m])
→ [n] + [n]

ζ(τ3) = {[p], [m]},
TB([p]),
TB([m])

TB([p])
→ Incr([p]) + max([n] + 0, 0)
→ 0 + max([n] + 0, 0)
= [n]

R([p]) = (τ0, [n], 0),
[n] ∈ C,
Incr([p])

TB([m])
→ Incr([m]) + max([0] + 0, 0)
= Incr([m])
→ [n]

R([m]) = (τ0, [0], 0),
[0] ∈ C,
Incr([m])

Incr([m])
→ TB({τ1, τ2, τ3})× 1
→ [n]× 1
= [n]

C+([m]) = {τ1 ◦ τ2 ◦ τ3},
TB({τ1, τ2, τ3})

TB({τ1, τ2, τ3})
→ min(TB(τ1),TB(τ2),TB(τ3))
→ min([n] + [n], [n], [n] + [n])
= [n]

TB(τ1),
TB(τ2),
TB(τ3)

TB(τ1)
→ TB([p]) + TB([m])
→ [n] + TB([m])
→ [n] + [n]

ζ(τ1) = {[p], [m]},
TB([p]),
TB([m])

TB(τ2)
→ Incr([p]) + max([n] + 0, 0)
→ 0 + max([n] + 0, 0)
= [n]

ζ(τ2) = [p],
R([p]) = (τ0, [n], 0),
[n] ∈ C,
Incr([p])

Incr([p]) → 0 C+([p]) = ∅

Table 4.2: Computation of TB(τ3) for Example s_SFD_process (Figure 3.14 (b)) by
Definition 47

4.2.2 Multiple Transitions with the same Local Bound

Example SingleLinkCluster in Figure 4.13 (a) is an example which we encoun-
tered during our experiments, it models the function SingleLinkCluster in file 456.hm-
mer/src/weight.c of the SPEC CPU 2006 Benchmark [spe].

Example SingleLinkCluster has 3 nested loops with the loop counters a, b and
i. Similar to Example tarjan (discussed in Section 1.4.1) we have that in Exam-
ple SingleLinkCluster the counter b of the middle loop is incremented on the outer
loop. But moreover, b is also incremented in the innermost loop with counter i. I.e.,
executing the innermost loop may increase the number of executions of the middle loop
which in turn increases the number of executions of the inner loop.

In Figure 4.13 (b) the DCP, obtained by applying our abstraction procedure from

100

4.2. Extensions of the Bound Algorithm

void SingleLinkCluster(int n) {
int a = n, b = 0;

l1 : while (a > 0) {
a--;
b++;

l2 : while (b > 0) {
b--;

l3 : for (int i = n-1; i > 0; i--) {
if (a > 0 && ?) {

a--;
b++;

l4 : }
}

}
}

}

Bound of Loop at l2: max(n, 0)

lb

l1

l2

l3

l4

le

u3 ≡
[a]′ ≤ [a]
[b]′ ≤ [b]
[i]′ ≤ [i]

[a]′ ≤ [n]
[b]′ ≤ [0]τ0

[a]′ ≤ [a]− 1
[b]′ ≤ [b] + 1τ1

[a]′ ≤ [a]
[b]′ ≤ [b]− 1
[i]′ ≤ [n]− 1

τ2

u3

τ3
[a]′ ≤ [a]− 1
[b]′ ≤ [b] + 1
[i]′ ≤ [i]

τ4
[a]′ ≤ [a]
[b]′ ≤ [b]
[i]′ ≤ [i]− 1

τ5

[a]′ ≤ [a]
[b]′ ≤ [b]

τ6

[a]′ ≤ [a]
[b]′ ≤ [b]

τ7

(a) (b)

Figure 4.13: (a) Example SingleLinkCluster, (b) DCP obtained by abstraction

Section 2.2 to Example SingleLinkCluster, is shown.

Example I. Assume we want to compute a bound on the number of times that
the middle loop at l2 of Example SingleLinkCluster can be executed. We thus
compute a bound for τ6 (the single back-edge of the middle loop). We obtain TB(τ6) =
2× [n]. The details are given in Table 4.3. (For simplicity we apply our algorithm from
Definition 27, our complete algorithm from Definition 42 infers the same bound.) We thus
get 2×max(n, 0) as a loop bound for the loop at l2. The loop at l2, however, can only
be executed up to max(n, 0) times: Initially b, the local bound of τ6, is 0, b is increased
by 1 when executing τ1 or τ4. On both transitions, however, a is decreased. I.e., both, τ1
and τ4, have local bound a. Since a is initially n the total amount by which the potential
of executing τ6 can be increased is n.

We generalize our observation: Let τ1, τ2 ∈ E be two transitions with the same local bound,
i.e., ζ(τ1) = ζ(τ2). If τ1 and τ2 cannot be executed without decreasing the common local
bound ζ(τ1) twice, once for τ1 and once for τ2 (e.g., τ1 and τ4 in SingleLinkCluster),
we have that](τ1, ρ) +](τ2, ρ) ≤ JTB(τ1)K(σ0) = JTB(τ2)K(σ0). Thus, TB(τ1) is a bound
on the number of times that τ1 and τ2 can be executed on any run of ∆P. We exploit

101

4. Extensions

Call Evaluation and Simplification Using

TB(τ6)
→ Incr([b]) + TB(τ0)×max([0] + 0, 0)
= Incr([b])
→ 2× [n]

ζ(τ6) = [b],
R([b]) = {(τ0, [0], 0)},
Incr([b])

Incr([b])

→ TB(τ1)× 1 + TB(τ4)× 1
→ [n]× 1 + TB(τ4)× 1
→ [n]× 1 + [n]× 1
= 2× [n]

I([b]) = {(τ1, 1), (τ4, 1)},
TB(τ1),
TB(τ4)

TB(τ1)

→ Incr([a]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [a],
R([a]) = {(τ0, [n], 0)},
Incr([a]),
TB(τ0)

TB(τ4)

→ Incr([a]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n], 0)
= [n]

ζ(τ4) = [a],
R([a]) = {(τ0, [n], 0)},
Incr([a]),
TB(τ0)

TB(τ0) → 1 ζ(τ0) = 1
Incr([a]) → 0 I([a]) = ∅

Table 4.3: Computation of TB(τ5) for Example SingleLinkCluster (Figure 4.13) by
Definition 27

this observation: Assume some v ∈ V is incremented by c1 on τ1 and by c2 on τ2. For
computing Incr(v) we only add TB(τ1)×max{c1, c2} instead of TB(τ1)×c1+TB(τ2)×c2.
This idea can be further generalized to multiple transitions.

Example II. Applying the described optimization to our algorithm we obtain TB(τ6) =
[n] for Example SingleLinkCluster as shown in Table 4.4. Our algorithm thus infers
the precise loop bound max(n, 0) for the loop at l2.

4.2.3 Bounds involving Integer Division

Reconsider the example from Figure 4.1 (a) (page 85). As discussed in Section 4.1.1 the
loop at l2 of Figure 4.1 (a) (corresponds to transition τ3 in the abstraction) has loop
bound bn+1

2 c. However, for the abstraction in Figure 4.2 our bound algorithm from
Definition 27 computes either TB(τ3) = n if we choose ζ(τ3) = [i] or TB(τ3) = n+ 1 if
we choose ζ(τ3) = [i+ 1] (see Table 4.5 for details). We make the following observation:

Let ∆P(L,E, lb, le) be a DCP over A. Let τ ∈ E. Let v ∈ V be a local bound for
τ , i.e., for all runs ρ of ∆P we have that](τ, ρ) ≤ ↓(v, ρ). Let c ∈ N. Let ↓(v, c, ρ)
denote the number of times that the value of v decreases on a run ρ of ∆P by at least c

102

4.2. Extensions of the Bound Algorithm

Call Evaluation and Simplification Using

TB(τ6)
→ Incr([b]) + TB(τ0)×max([0] + 0, 0)
= Incr([b])
[n]

ζ(τ6) = [b],
R([b]) = {(τ0, [0], 0)},
Incr([b])

Incr([b])
→ TB(τ1)×max(1, 1)
→ [n]×max(1, 1)
= [n]

I([b]) = {(τ1, 1), (τ4, 1)},
TB(τ1),
ζ(τ1) = ζ(τ4) = [a],
τ1, τ4 are in distinct loops

TB(τ1)

→ Incr([a]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [a],
R([a]) = {(τ0, [n], 0)},
Incr([a]),
TB(τ0)

TB(τ0) → 1 ζ(τ0) = 1
Incr([a]) → 0 I([a]) = ∅

Table 4.4: Computation of TB(τ5) for Example SingleLinkCluster (Figure 4.13)
using the optimization for “multiple transitions with the same local bound” (Section 4.2.2)

Call Evaluation and Simplification Using

TB(τ3)

→ Incr([i+ 1]) + TB(τ0)×max([0] + 1, 0)
→ [n] + TB(τ0)×max([0] + 1, 0)
→ [n] + 1×max([0] + 1, 0)
= [n] + 1

ζ(τ3) = [i+ 1],
R([i+1]) = {(τ0, [0], 1)},
[0] ∈ C,
Incr([i+ 1]),
TB(τ0)

Incr([i+ 1])
→ TB(τ1)× 1
→ [n]× 1
= [n]

I([i+ 1]) = {(τ1, 1)},
TB(τ1)

TB(τ0) → 1 ζ(τ0) = 1

TB(τ1)

→ Incr([j]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [j],
R([j]) = {(τ0, [n], 0)},
[n] ∈ C
Incr([j]),
TB(τ0)

Incr([j]) → 0 I([j]) = ∅

Table 4.5: Computation of TB(τ3) for Figure 4.2 by Definition 27

103

4. Extensions

(refines Definition 15). If for all runs ρ of ∆P we have that](τ, ρ) ≤ ↓(v, c, ρ) (refines
Definition 16) then JbTB(τ)

c cK is a bound for τ (assuming ζ(τ) = v).

In our simple abstract program model, c ∈ N is obtained syntactically from a constraint
v′ ≤ v− c. See Section 3.6 on how we determine relevant constraints.

Example. For the DCP in Figure 4.2 (the abstraction of Figure 4.1 (a)) we infer that
[i + 1] is a local bound for τ3 by the algorithm discussed in Section 3.6. We thus set
ζ(τ3) = [i+ 1]. We obtain](τ3, ρ) ≤ ↓([i + 1], 2, ρ) for all runs ρ of Figure 4.2 directly
from the constraint [i + 1] ≤ [i + 1] − 2 on τ3. We thus conclude that JbTB(τ3)

2 cK is a
bound for τ . With TB(τ3) = n+ 1 (see Table 4.5) we obtain the precise bound bn+1

2 c for
τ3.

4.2.4 Symbolic Increments

We discussed in Section 4.1.4 an extension of our program model (DCPs with symbolic
increments) that allows to represent updates of form i = i+ c where c is some symbolic
expression over the program parameters. Reconsider the program in Figure 4.10 (a). By
the extension of our abstraction algorithm that we discussed in Section 4.1.4 we obtain
the DCP with symbolic increments shown in Figure 4.10 (c).
We now discuss how our bound algorithm computes the precise loop bound n× c for the
loop at l2 of Figure 4.10 (a): Since the symbolic constant [c] of the abstract program can
take any value in Z, in particular a positive one, we consider the predicate [i]′ ≤ [i] + [c]
in Figure 4.10 (c) to be an increment of [i] and thus set I([i]) = {τ1, [c]}. Table 4.6 shows
in detail how our algorithm obtains TB(τ3) = [n]× [c] (transition τ3 corresponds to the
loop at l2) based on I([i]) = {τ1, [c]}.

We generalize our algorithm to DCPs with symbolic increments by generalizing Defini-
tion 19 to Definition 48.

Definition 48 (Resets and Increments for DCPs with symbolic increments). Let ∆P =
(L,E, lb, le) be a DCP with symbolic increments over A. Let v ∈ V. We define the resets
R(v) and increments I(v) of v as follows:
R(v) = {(l1

u−→ l2, a, c) ∈ E ×A× (Z ∪ C) | v′ ≤ a + c ∈ u, a 6= v}
I(v) = {(l1

u−→ l2, c) ∈ E × (N ∪ C) | v′ ≤ v + c ∈ u where c ∈ N and c > 0 or c ∈ C}

Now consider the example shown in Figure 4.14 (a) which is similar to the running
example of [BEF+16]. The precise loop bound for the loop at l2 is

n∑
i=1

2i = 2×
n∑
i=1

i = 2× n2 + n

2 = n2 + n.

Even in our extended program model of DCPs with symbolic increments we cannot
express the update x = x+ i of x in the loop at l1, since i is not a program parameter,

104

4.2. Extensions of the Bound Algorithm

Call Evaluation and Simplification Using

TB(τ3)
→ Incr([i]) + TB(τ0)×max([0], 0)
= Incr([i])
→ [n]× [c]

ζ(τ3) = [i],
R([i]) = {(τ0, [0], 0)},
[0] ∈ C,
Incr([i]),
TB(τ0)

Incr([i]) → TB(τ1)× [c]
→ [n]× [c]

I([i]) = {(τ1, [c])},
TB(τ1)

TB(τ0) → 1 ζ(τ0) = 1

TB(τ1)

→ Incr([j]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [j],
R([j]) = {(τ0, [n], 0)},
[n] ∈ C,
Incr([j]),
TB(τ0)

Incr([j]) → 0 I([j]) = ∅

Table 4.6: Computation of TB(τ3) for Figure 4.10 (c) by Definition 27, extended to
DCPs with symbolic increments by Definition 48

void foo(uint n){
int j = n;
int i = 0;
int x = 0;

l1 : while (j > 0) {
j = j - 1;
i = i + 2;
x = x + i;

}
l2 : while (x > 0) {

x = x - 1;
}

}

Loop Bound for l2: n2 + n

lb

l1

l2 le

[j]′ ≤ [n]
[i]′ ≤ [0]
[x]′ ≤ [0]

τ0

[j]′ ≤ [j]
[i]′ ≤ [i]τ2

[j]′ ≤ [j]− 1
[i]′ ≤ [i] + 2

τ1

[j]′ ≤ [j]

τ3

lb

l1

l2 le

[j]′ ≤ [n]
[i]′ ≤ [0]
[x]′ ≤ [0]

τ0

[j]′ ≤ [j]
[i]′ ≤ [i]τ2

[j]′ ≤ [j]− 1
[i]′ ≤ [i] + [2× n]

τ1

[j]′ ≤ [j]
[i]′ ≤ [i]− 1

τ3

(a) (b) (c)

Figure 4.14: (a) Example, (b) DCP as obtained by our abstraction algorithm, (c) DCP
with symbolic increments as obtained by our extended abstraction algorithm, using the
upper bound invariant i ≤ 2× n

105

4. Extensions

Call Evaluation and Simplification Using

VB([i])
→ Incr([i]) + max([0], 0)
= Incr([i])
→ [n]× 2

R([i]) = {(τ0, [0], 0)},
[0] ∈ C,
Incr([i])

Incr([i]) → TB(τ1)× 2
→ [n]× 2

I([i]) = {(τ1, 2)},
TB(τ1)

TB(τ0) → 1 ζ(τ0) = 1

TB(τ1)

→ Incr([j]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [j],
R([j]) = {(τ0, [n], 0)},
[n] ∈ C,
Incr([j]),
TB(τ0)

Incr([j]) → 0 I([j]) = ∅

Table 4.7: Computation of VB([i]) for Figure 4.14 (b) by Definition 27

Call Evaluation and Simplification Using

TB(τ3)

→ Incr([x]) + TB(τ0)×max([0], 0)
= Incr([x])
→ [n]× [2× n]

ζ(τ3) = [x],
R([x]) = {(τ0, [0], 0)},
[0] ∈ C,
Incr([x])

Incr([x]) → TB(τ1)× [2× n]
→ [n]× [2× n]

I([x]) = {(τ1, [2× n])},
TB(τ1)

TB(τ0) → 1 ζ(τ0) = 1

TB(τ1)

→ Incr([j]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [j],
R([j]) = {(τ0, [n], 0)},
[n] ∈ C,
Incr([j]),
TB(τ0)

Incr([j]) → 0 I([j]) = ∅

Table 4.8: Computation of TB(τ3) for Figure 4.14 (c) by Definition 27, extended to
DCPs with symbolic increments by Definition 48.

106

4.2. Extensions of the Bound Algorithm

but a variable which value changes during program run. We thus obtain the DCP shown
in Figure 4.14 (b) from our (extended) abstraction algorithm.

However, considering Figure 4.14 (b) we can obtain an upper bound invariant for max(i, 0),
namely [i] ≤ 2× [n], by applying our variable bound algorithm: We get VB([i]) = 2× [n]
as shown in Table 4.7.

Given that i ≤ [i] ≤ 2× [n] = [2×n] we now over-approximate i in the update x = x+i by
[2×n] and get the predicate x′ ≤ x+ [2×n] which is a difference constraint with symbolic
increment. We thus obtain the DCP with symbolic increments shown in Figure 4.14 (c)
as a valid abstraction of the original program in Figure 4.14 (a).

Applying our bound algorithm on Figure 4.14 (c) we obtain TB(τ3) = [n]× [2× n] (see
Table 4.8 for details), given that n is of type unsigned we thus obtain the tight loop
bound 2n2 for the loop at l2 in Figure 4.14 (a). The precise loop bound is n2 + n.

In the same way the running example of [BEF+16] is handled by our approach.

In general, we abstract an update of form x = x+ expr where expr is some expression
over variables, constants and program parameters by 1) inferring an upper bound invariant
expr ≤ exprc, where exprc is an expression over constants and program parameters only.
Based on expr ≤ exprc, we 2) obtain a DCP with symbolic increments as discussed in
Section 4.1.4. We obtain the upper bound invariant expr ≤ exprc by 1a) abstracting
the program under scrutiny based on the norm [expr] and 1b) computing VB([expr])
(Definition 27) on the resulting abstraction. We fail to abstract the update x = x+ expr
if either step 1a) or step 1b) fails.

4.2.5 More Precise Variable Bounds

Consider the example in Figure 4.15 (a). It is easy to see that the assertion at the end of
the example holds: Variable x is set to 0 before each execution of the inner loop, and the
inner loop may be executed at most n times within one iteration of the outer loop.

However, our algorithm computes VB([x]) = [n] × [n] as depicted in Table 4.9 (we
show the computation as performed by Definition 27, however, our full algorithm from
Definition 42 obtains the same result). The reason is, that our variable bound algorithm
ignores the reset of [x] to [0] on transition τ1. We show how this problem can be solved
by a simple extension of our algorithm.

For simplicity we exemplify our extension on Definition 27. It can, however, be applied
in the same way to our full bound algorithm from Definition 42.

107

4. Extensions

void foo(uint n) {
int i = n;
uint x = 0;
while(i > 0) {

int j = n;
x = 0;
while(j > 0 && ?) {

j--;
x++;

}
i--;

}
assert(x <= n);

}

lb

l1

l2

le

[i]′ ≤ [n]
[x]′ ≤ [0]τ0

[i]′ ≤ [i]
[x]′ ≤ [0]
[j]′ ≤ [n]

τ1
[i]′ ≤ [i]− 1
[x]′ ≤ [x]

τ4

[i]′ ≤ [i]− 1
[x]′ ≤ [x] + 1
[j]′ ≤ [j]− 1

τ3

(a) (b)

Figure 4.15: (a) Example, (b) DCP abstraction

Call Evaluation and Simplification Using

VB([x])

→ Incr([x]) + TB(τ1)×max([0], 0)
+ TB(τ0)×max([0], 0)

= Incr([x])
→ [n]× [n]

R([x]) = {(τ1, [0], 0),
(τ1, [0], 0)},

[0] ∈ C,
Incr([x])

Incr([x])
→ TB(τ3)× 1
→ ([n]× [n])× 1
= [n]× [n]

I([x]) = {(τ3, 1},
TB(τ3)

TB(τ3)

→ Incr([j]) + TB(τ1)×max([n] + 0, 0)
→ 0 + TB(τ1)×max([n] + 0, 0)
→ 0 + [n]×max([n] + 0, 0)
= [n]× [n]

ζ(τ3) = [j],
R([j]) = {(τ1, [n], 0)},
[n] ∈ C,
Incr([j]),
TB(τ1)

Incr([j]) → 0 I([j]) = ∅

TB(τ1)

→ Incr([i]) + TB(τ0)×max([n] + 0, 0)
→ 0 + TB(τ0)×max([n] + 0, 0)
→ 0 + 1×max([n] + 0, 0)
= [n]

ζ(τ1) = [i],
R([i]) = {(τ0, [n], 0)},
[n] ∈ C,
Incr([i]),
TB(τ0)

Incr([i]) → 0 I([i]) = ∅
TB(τ0) → 1 ζ(τ0) = 1

Table 4.9: Computation of VB([x]) for Figure 4.15 (b) by Definition 27

108

4.2. Extensions of the Bound Algorithm

Call Evaluation and Simplification Using

VB([x])

→ Incr([x], ζ[τ1 7→ 1])
+ TB(τ1)×max([0], 0)
+ TB(τ0)×max([0], 0)

= Incr([x], ζ[τ1 7→ 1])
→ [n]

R([x]) = {(τ1, [0], 0),
(τ0, [0], 0)},

[0] ∈ C,
Incr([x], ζ[τ1 7→ 1])

Incr([x], ζ[τ1 7→ 1])
→ TB(τ3, ζ[τ1 7→ 1])× 1
→ [n]× 1
= [n]

I([x]) = {(τ3, 1},
TB(τ3, ζ[τ1 7→ 1])

TB(τ3, ζ[τ1 7→ 1])

→ Incr([j], ζ[τ1 7→ 1])
+ TB(τ1, ζ[τ1 7→ 1])
× max([n] + 0, 0)

→ 0 + TB(τ1, ζ[τ1 7→ 1])
× max([n] + 0, 0)

→ 0 + 1×max([n] + 0, 0)
= [n]

ζ[τ1 7→ 1](τ3) = [j],
R([j]) = {(τ1, [n], 0)},
[n] ∈ C,
Incr([j]),
TB(τ1, ζ[τ1 7→ 1])

Incr([j], ζ[τ1 7→ 1]) → 0 I([j]) = ∅
TB(τ1, ζ[τ1 7→ 1]) → 1 ζ[τ1 7→ 1](τ1) = 1

Table 4.10: Computation of VB([x]) for Figure 4.15 (b) by Definition 49

Definition 49 (Bound Algorithm). Let ∆P(L,E, lb, le) be a DCP over A. Let ζ : E →
Expr(A). We define VB : A 7→ Expr(A) and TB : E 7→ Expr(A) as:

VB(a) = a, if a ∈ C, else
VB(v) = Incr(v, ζ[{τ 7→ 1 | (τ,_,_) ∈ R(v)}]) + max

(_,a,c)∈R(v)
(VB(a) + c)

TB(τ) = TB(τ, ζ)

TB(τ, ξ) = ξ(τ), if ξ(τ) 6∈ V, else
TB(τ, ξ) = Incr(ξ(τ), ξ) +

∑
(t,a,c)∈R(ξ(τ))

TB(t, ξ)×max(VB(a) + c, 0)

where

1. Incr(v, ξ) =
∑

(τ,c)∈I(v)
TB(τ, ξ)× c (we set Incr(v, ξ) = 0 for I(v) = ∅)

2. ζ[{τ 7→ 1 | (τ,_,_) ∈ R(v)}] denotes a mapping that results from ζ by assigning
all τ with (τ,_,_) ∈ R(v) the expression 1

109

4. Extensions

Discussion. Definition 49 differs from Definition 27 by 1) the new, second parameter
ξ of TB and Incr (note that by default ξ is set to the local bound mappign ζ), and 2)
setting the parameter ξ to ζ[{τ 7→ 1 | (τ,_,_) ∈ R(v)}] when calling Incr from VB.
Note that ξ is used as local bound mapping in the definition of TB. The notation
ζ[{τ 7→ 1 | (τ,_,_) ∈ R(v)}] denotes a mapping that results from ζ by assigning all
transitions τ with (τ,_,_) ∈ R(v) the expression ‘1’. I.e., when Incr is called from
within VB(v), all transitions which reset v are assigned the constant transition bound
‘1’. This has the effect, that only one repetition of these transitions is considered when
reasoning how often a transition that increments v can be executed. The single execution
of a transition that resets v models the initialization of v, before v is incremented.

Example. Reconsider the example in Figure 4.15. Table 4.10 shows how we obtain
VB([x]) = [n], i.e., the upper bound invariant x ≤ n (x and n have type unsigned), by
our algorithm from Definition 49.

110

CHAPTER 5
Evaluation

5.1 Implementation
We have implemented the presented algorithm into our prototype tool loopus [looa].
loopus reads in the LLVM [LA04] intermediate representation and performs an intra-
procedural analysis. We designed loopus to work with the LLVM intermediate rep-
resentation as it typically results from compiling C code with the clang compiler. We
do not have experience with LLVM intermediate representations obtained from other
programming languages or by other compilers.

loopus is capable of computing bounds for loops as well as analyzing the complexity of
non-recursive functions. In both cases we assume the back-edge metric (see Section 1) as
cost model.

In our implementation we perform program abstraction on-demand during bound com-
putation. I.e., we abstract program parts in the moment they turn out to be relevant for
inferring the required bound. This has the obvious advantage that no time is spent in
abstracting irrelevant parts of the program.

loopus models integers as mathematical integers (not bit-vectors), which is the stan-
dard approach in the bound analysis literature. We use the Z3 SMT solver [dMB08]
for performing control-flow refinement and program abstraction. Our implementation
considers only loop headers as program locations. I.e., we apply large-block encoding as
discussed in Section 4.1.3.

By default loopus inlines calls to functions which are not recursive nor contain loops.

By a command-line option the tool can be instructed to compute bounds not in terms of
the function parameters but in terms of the variables which are defined at the header of
the strongly connected component (SCC) of the control flow graph in which the loop is
situated.

111

5. Evaluation

paths 1 2 3 - 9 10 - 99 100 - 299 300 - 1999 2000 - 4999 ≥ 5000
unsliced 1174 578 616 310 66 44 11 34
sliced 1623 512 424 183 37 30 8 16
merged 1766 429 415 186 24 10 1 2
refined 1766 429 414 187 24 10 1 2

Table 5.1: Number of simple and cyclic paths with respective number of SCCs in the
cBench [cbe] benchmark

We discussed in Section 3.2 that an successful answer of our bound algorithm implies that
the local bounds can be ordered to form a lexicographic ranking function which proves
termination of the loop or function under scrutiny. In our implementation we explicitly
check if this condition applies before starting the bound algorithm. This allows for an
early failure of our analysis in case no lexicographic ranking function can be generated.
We could restart the analysis with a different choice of local bounds, but this feature is
not yet implemented. By a command-line option the tool can be asked to print out the
inferred ranking function, thereby proving termination.

5.1.1 Handling of Pointers and Data Structures

By default loopus soundly abstracts from all instructions which cannot directly be
modeled in terms of integer valued expressions. Real C code, however, often contains
pointers and (recursive) data structures. A typical loop iteration pattern is the iteration
over a list or a tree. As a means to test the potential of our tool and its performance, and
in order to find interesting examples, we implemented heuristic methods for handling
non-integer code. These heuristics can be activated by command-line parameters. If the
corresponding command-line parameter is set, loopus infers bounds on loops iterating
over arrays or recursive data structures by introducing shadow variables that represent
norms such as the length of a list or the size of an array. Further, loopus makes the
following optimistic assumptions if the corresponding command-line parameters are set:
1) pointers do not alias; 2) a recursive data structure is acyclic if a loop iterates over it; 3)
a loop iterating over an array of characters is assumed to be terminating if an inequality
check on the string termination character ’\0’ is found1; 4) given a loop condition of form
‘a 6= 0’ loopus heuristically decides to either assume ‘a > 0’ or ‘a < 0’ as loop-invariant;
5) similarly, loopus assumes ‘x > 0’ when an update of a loop counter of the form
‘x = x ∗ 2’ or ‘x = x/2’ is detected. These assumptions are reported to the user if they
were applied while computing the bound. The validity of the reported assumptions can,
in principle, be checked by an external tool.

5.1.2 Slicing, Path Reduction and Control-Flow Refinement

As discussed, the potentially exponential complexity of our analysis evolves from combining
transitions to paths as it is necessary for our reasoning on reset chains (Section 3.5)

1This assumption is often necessary to infer a bound since the type system of C does not distinguish
between an array of characters and a string

112

5.2. Experiments

Succ. 1 n n2 n3 n>3 2n Total Time # Time Outs
loopus’15 806 205 489 97 13 2 0 15m 6
loopus’14 431 200 188 43 0 0 0 40m 20
KoAT 430 253 138 35 2 0 2 5.6h 161
CoFloCo 386 200 148 38 0 0 0 4.7h 217

Table 5.2: Tool Results on analyzing the complexity of 1659 functions in the cBench
benchmark, none of the tools infers log bounds.

Succ. 1 n n2 n3 n>3 2n
loopus’15 753 196 466 84 7 0 0
loopus’14 414 192 181 41 0 0 0
KoAT 420 245 136 35 2 0 2
CoFloCo 382 198 146 38 0 0 0

Table 5.3: Tool Results on analyzing the complexity of the subset of those functions in
the cBench benchmark on which no tool timed out.

and for our path-sensitive reasoning (Section 3.8). We therefore take several measures
in order to reduce the number of paths that must be considered: First of all, loopus
applies program slicing with regard to the loop exit conditions, i.e., we delete all program
behavior that cannot affect the number of loop iterations. In the next step, we exclude
duplicates of simple and cyclic paths (see Definition 33) through syntactic comparison.
On loops with more than 250 simple and cyclic paths left, we apply what we call path
merging: For each simple and cyclic path p the conjunction cp over all its predicates is
built. Paths which assign syntactically identical expressions to the loop counters are
grouped. The simple and cyclic paths in the same group G are substituted by a new
simple and cyclic path with the single predicate

∨
p∈G cp (we simplify this predicate by

standard techniques from propositional logic). The merged path over-approximates all
paths in G. Though some path sensitivity is lost by this technique, we can still bound 81
(31%) of the 259 loops to which path merging is applied when running our tool on the
cBench [cbe] benchmark. After the second path reduction step we apply the control-flow
refinement techniques discussed in Section 4.1.3. Table 5.1 states the number of SCCs in
the cBench benchmark with the respective number of paths in the original program (first
row), in the sliced program (second row), after deleting path duplicates and applying
path merging (third row), and after applying control-flow refinement (last row). We state
the paths per SCC because in our implementation all loops in one SCC are processed at
once. Our statistics (Table 5.1) demonstrate that slicing and merging significantly reduce
the number of paths while control-flow refinement does not lead to any problematic
increase in the path count.

113

5. Evaluation

5.2 Experiments

In the following we discuss three experimental setups and tool comparisons. Our first
experiment, which we discuss in Section 5.2.1 is performed on a benchmark of open-source
C programs. For our second experiment (Section 5.2.2), we assembled a benchmark
of challenging programs from the literature on automatic bound analysis. The third
experiment was performed on a set of interesting loop iteration patterns that we found
in real source code. The different iteration patterns in this benchmark are instances of
the amortized complexity problem, like, e.g., Example xnu (see Section 1.4.7).

5.2.1 Evaluation on Real-World C Code

Experimental Setup. For our experimental comparison we used the program and
compiler optimization benchmark Collective Benchmark [cbe] (cBench), which contains
a total of 1027 different C files (after removing code duplicates) with 211.892 lines of
code. We set up the first comparison of complexity analysis tools on real-world code. For
comparing our new tool (loopus’15) we chose the 3 most promising tools from recent
publications: the tool KoAT implementing the approach of [BEF+16], the tool CoFloCo
implementing [FH14] and our own earlier implementation (loopus’14) [SZV14a]. Note
that we compared against the most recent versions of KoAT and CoFloCo (download
01/23/15).2 We were not able to evaluate Rank and C4B on our benchmark because both
tools support only a limited subset of C. The experiments were performed on a Linux
system with an Intel dual-core 3.2 GHz processor and 16 GB memory. The task was to
perform a complexity analysis on function level. We used the following experimental set
up:
1) We compiled all 1027 C files in the benchmark into the LLVM intermediate represen-
tation using clang.
2) We extracted all 1751 functions which contain at least one loop using the tool llvm-
extract (comes with the LLVM tool suite). Extracting the functions to single files
guarantees an intra-procedural setting for all tools.
3) We used the tool l lvm2kittel [llv] to translate the 1751 LLVM modules into 1751 text
files in the integer transition system (ITS) format that is read in by KoAT.
4) We used the transformation described in [FH14] to translate the ITS format of KoAT
into the cost equations representation that is read in by CoFloCo. This last step is
necessary because there exists no direct way for translating C or the LLVM intermediate
representation into the CoFloCo input format.
5) We decided to exclude the 91 recursive functions from the benchmark set because
we were not able to run CoFloCo on these examples (the transformation tool does not
support recursion), KoAT was not successful on any of them, and loopus does not
support recursion.

In total our example set thus comprises 1659 functions.

2https://github.com/s-falke/kittel-koat, https://github.com/aeflores/CoFloCo

114

5.2. Experiments

Succ. 1 n n2 n3 n>3 2n Time w/o TO # Time Outs
loopus’15 86 2 51 27 1 5 0 4s 0
loopus’14 86 2 50 28 2 4 0 4s 0
CoFloCo 87 3 45 34 2 3 0 1m40s 1
Rank 78 3 49 21 3 2 0 20s 0
C4B 36 0 36 0 0 0 0 6s 0
KoAT 90 3 43 36 3 5 0 3m50s 3

Table 5.4: Tool Results on analyzing examples from the literature, none of the tools infers
log bounds. The time out was 120 seconds. A higher time out did not yield additional
results.

Evaluation. Table 5.2 shows the results of all 4 tools on our benchmark using a time
out of 60 seconds. The first column shows the number of functions which were successfully
bounded by the respective tool, the last column shows the number of time outs, on the
remaining examples (not shown in the table) the respective tool did not time out but
was also not able to compute a bound. The column Time shows the total time used by
the respective tool to process the benchmark. loopus’15 computes the complexity for
about twice as many functions as KoAT, CoFloCo, and loopus’14 while needing an
order of magnitude less time than KoAT and CoFloCo, and significantly less time than
loopus’14. We conclude that our implementation is both more scalable and, on real C
code, more successful than implementations of other state-of-the-art approaches.

Pointers and Shapes. Even loopus’15 computed bounds for only about half of the
functions in the benchmark. Studying the benchmark code we concluded that for many
functions pointer alias and/or shape analysis is needed for inferring functional complexity.
In our experimental comparison such information was not available to the tools. Using
optimistic (but unsound) assumptions on pointer aliasing and heap layout (see our
discussion in Section 5.1), our tool loopus’15 was able to compute the complexity for
in total 1185 out of the 1659 functions in the benchmark, using 28 minutes total time.
For the reasons of failure see our discussion in Section 5.3.

The benchmark and further experimental results can be found on [looa] where our tool is
also offered for download.

5.2.2 Evaluation on Examples from the Literature

In order to evaluate the precision of our approach on a number of known challenges to
bound analysis, we performed a tool comparison on 110 examples from the literature. Our
example set comprises those examples from the tool evaluation in [BEF+16] and [SZV14a]
that were available as imperative code (C or pseudo code, in total 89 examples), and
additionally the examples used for the evaluation of [CHS15] (15 examples) as well as
the running examples of [SZV15] (6 examples). We added the tools Rank (implement-
ing [ADFG10]) and C4B (implementing [CHS15]) to the comparison, because we were

115

5. Evaluation

able to formulate the examples over the restricted C subset that is supported by the two
tools (this was not possible for our experiment on real-world code).

The results of our evaluation are shown in Table 5.4. Our two tools loopus’15 and
loopus’14 compute the highest number of linear bounds and are also significantly faster
than the other tools, in particular than KoAT and CoFloCo. On the other hand, KoAT
computes the highest number of bounds in total (4 more than loopus). CoFloCo
computes, in total, 1 bound more than our tool. The comparable low number of bounds
computed by C4B is also due to the fact that the approach implemented in C4B is limited
to linear bounds.

In summary, our second evaluation shows that our approach is not only successful on the
class of problems on which we focused in this thesis, but solves also many other bound
analysis problems from the literature. Note, that in contrast to our first evaluation, our
second benchmark contains small examples from academia (1293 LOC, in average 12
lines per file). On these examples our implementation is comparable in strength to the
implementation of other state-of-the-art approaches to bound analysis. Since not all
features of our analysis are implemented in our prototype tool (see Section 5.3), there is
room for further improvement. More details on the results computed by each tool can be
found on [loob].

5.2.3 Evaluation on Challenging Iteration Patterns from Real Code

Scanning through two C-code benchmarks (cBench [cbe] and SPEC CPU 2006 [spe]), we
found a number of 23 different loop iteration patterns which we consider to be particular
challenging for state-of-the-art bound analyses. The 23 patterns have the following
property in common: (1) There is an inner loop L with loop counter c, such that c is
increased on an outer loop of L. (2) Nevertheless, the amortized cost of L (the overall
worst-case cost of executing L, averaged over the number of executions of its outer loop)
is lower than the worst-case cost of a single execution (a single instance of consecutive
iterations) of L.

E.g., Example xnu (discussed in Section 1.4.7) is an instance of such a loop iteration
pattern.

We ran the most recent version of loopus, available at [looa], on the benchmark.

The complete benchmark is available at [looc]. For each pattern we link its origin in the
header of the respective file. Note that for some patterns we found several instances.

Table 5.5 states the results that were obtained by loopus, CoFloCo, KoAT, Rank and
C4B:
‘3’ denotes that the bound computed by the respective tool is tight (in the same asymptotic
class, Definition 14),
‘O(nx)’ denotes that the respective tool did not infer a tight bound but a bound in the
asymptotic class O(nx),
‘7’ denotes that no bound was inferred,

116

5.2. Experiments

‘TO’ denotes that the tool timed out (the time out limit was 20 minutes, a longer time
out did not yield additional results),
‘©’ denotes that we were not able to translate the example into the input format of the
tool.
We determined the asymptotic complexity (on base of the back-edge metric) for each file
by hand, it is annotated behind the filename in Table 5.5.

We explain the last 5 rows of Table 5.5:
Total Tight states the number of examples for which the respective tool inferred a tight
bound (see Definition 14).
Total Overapprox. states the number of examples for which the respective tool inferred
a bound that is not tight.
Total Fail states the number of examples for which the respective tool did not report a
bound, but returned within the time out limit of 20 minutes.
Total Timed Out states the total number of examples on which the respective tool
timed out (the time out limit was 20 minutes).
Total Time states the overall time consumed by the respective tool for processing the
complete benchmark.
Total Time w/o TO states the overall time consumed by the respective tool on those
examples on which the tool did not time out.

loopus fails to infer a tight bound only for Configure.c and analyse_other.c. For
both files the reason is that our improvement for obtaining more precise variable bounds
(discussed in Section 4.2.5) is not yet implemented in our tool. Our analysis, as presented
in this work, is capable of inferring tight bounds for both files.

loopus is far more successful in inferring tight bounds for the examples than any of the
competitors. loopus infers 21, Rank 7, C4B 6, CoFloCo 6 and KoAT 2 tight bounds.

There are 9 examples for which only loopus infers a tight bound:
cf_decode_eol.c, PackBitsEncode.c, s_SFD_process.c, send_tree.c,
subsetdump.c, ParseFile.c, SingleLinkCluster.c, xdr3dfcoord.c, and XNU.c.

The experiment demonstrates, that our bound analysis complements the state-of-the-art,
by inferring tight bounds for a class of real-world loop iterations, on which existing
techniques mostly fail or obtain coarse over-approximations.

Technical remarks. (1) We counted the time needed by the tool Aspic (a pre-
processor for Rank which performs invariant generation) into the time of the bound
analysis performed by Rank. (2) For the examples s_SFD_process.c, load_mems.c
and SingelLinkCluster.c, Rank reported an unsound bound and the error message
(“count_points: ? infinite domain”). On these examples we therefore as-
sessed Rank’s return value as fail.

117

5. Evaluation

loopus CoFloCo KoAT Rank C4B
cf_decode_eol.c O(n) 3 7 O(n2) 7 7

cryptRandWriteFile.c O(n) 3 3 O(n2) 3 3

encode_mcu_AC_refine.c O(n) 3 7 O(n2) 3 7

hc_compute.c O(n2) 3 O(n3) TO 3 7

inflated_stored.c O(n) 3 3 7 7 7

PackBitsEncode.c O(n) 3 TO O(n2) © 7

s_SFD_process.c O(n) 3 7 O(n2) 7 7

send_tree.c O(n) 3 O(n2) O(n2) O(n2) 7

sendMTFValues.c O(n) 3 O(n2) 3 O(n2) 3

set_color_ht.c O(n2) 3 3 O(n3) 7 7

subsetdump.c O(n) 3 O(n2) O(n2) 7 7

zwritehexstring_at.c O(n) 3 3 O(n2) 3 3

analyse_other.c O(n3) O(n4) 7 O(n13) 7 7

ApplyBndRobin.c O(n4) 3 7 3 © ©
asctoeg.c O(n2) 3 3 O(n3) 3 7

Configure.c O(n) O(n2) O(n2) O(n2) 3 7

load_mems.c O(n) 3 7 O(n3) 7 3

local_alloc.c O(n) 3 3 O(n2) 3 3

ParseFile.c O(n) 3 TO O(n3) © 7

Perl_scan_vstring.c O(n) 3 7 O(n2) 7 3

SingleLinkCluster.c O(n2) 3 7 TO 7 7

xdr3dfcoord.c O(n) 3 O(n2) O(n2) © 7

XNU.c O(n) 3 O(n2) O(n2) 7 7

Total Tight 21 6 2 7 6
Total Overapprox. 2 7 18 2 0
Total Fail 0 8 1 10 16
Total Timed Out 0 2 2 0 0
Total Time 5s 41m16s 74m31s 28s 19m55s
Total Time w/o TO 5s 1m16s 34m31s 28s 19m55s

Table 5.5: Tool Results on 23 challenging loop iteration patterns from cBench and SPEC
CPU 2006 Benchmarks. The time out was 20 minutes, a longer time out did not yield
additional results.

118

5.3. Limitations of Our Implementation

5.3 Limitations of Our Implementation
The following features of our analysis are not yet implemented into our prototype tool:

• Control-flow refinement by unfolding (Section 4.1.3)

• Bounds involving integer division (Section 4.2.3)

• Bounds involving logarithm (Section 2.2.1)

• Enhanced precision for variable bounds (Section 4.2.5)

• Back-tracking for choosing an alternative local bound mapping in case of failure
(Section 5.1 and Section 3.6)

• Optimization in presence of multiple transitions with the same local bound (Sec-
tion 4.2.2)

Further, Control-flow refinement by contextualization (Section 4.1.3) is not completely
implemented and currently applied very limited.

Our tool can currently only process reducible control flow. As discussed, this is not a
general limitation of our approach.

5.3.1 Reasons for Failure

Even if the heuristics we discussed in Section 5.1.1 are activated, our tool fails to infer a
bound in certain cases. We report on numbers from an experimental run of our tool on
the cBench benchmark [cbe]. In order to facilitate the manual inspection of the errors,
we instructed the tool to compute loop bounds in terms of the variables defined at the
respective SCC header. In total the tool failed to infer bounds for 1005 loops out of the
4210 loops in the benchmark (after removing code duplicates).

(1) No local bound.
For 903 loops our analysis failed because there was a back-edge (a transition which
implements a back jump) for which no local bound could be inferred. We inspected a
random sample of 50 loops out of the 903 loops. On these 50 samples, the failures turned
out to be due to insufficient modeling features of our implementation: bitwise operations
(not modeled, 5 cases), function inlining (applied very restrictive, 4 cases), unsigned
integers (modeled as integers, 2 cases), external functions (not modeled, 4 cases). In 5
cases termination is conditional and cannot be proven (e.g., a character stream is assumed
to contain the line-break character). In 7 cases function pointers need to be resolved. In
27 cases invariant analysis is needed (7 array invariants, 20 arithmetic invariants).

(2) Forming a lexicographic ranking function failed.
Recall that proving termination by ordering the local bounds to a lexicographic ranking
function is a precondition for the success of our bound algorithm (see discussion on

119

5. Evaluation

termination of our algorithm in Section 3.2, page 42). As discussed, this condition is
explicitly checked in our implementation before applying our bound algorithm. For a
total of 64 loops our analysis found a local bound for every back-edge but was not able
to form a lexicographic ranking function. However, a manual inspection of the 64 loops
revealed that only in 4 cases our technique was insufficient to show termination. For the
other 60 loops the real reason for failure is that our greedy implementation chose the
wrong local bound for a transition (for the same reasons discussed in (1)); the failure
was thus caused by variables that were actually not relevant for the termination of the
loop. Our implementation could be extended by back-tracking such that an alternative
local bound is tried in case of failure. This would allow to handle these 60 cases. In
the 4 remaining cases a more sophisticated implementation of control-flow refinement by
contextualization (Section 4.1.3) would allow to obtain a bound by our technique.

(3) Failure of VB(v).
For the 38 remaining loops (1005 - 967) the main reason for not being able to compute a
bound was that our variable bound method VB(v) failed to infer a bound on the value
of some reset: E.g., a variable x is reset to some non-constant expression e and our
abstraction techniques in combination with our variable bound method failed to infer
an upper bound on e. This typically happened due to a missing heap invariant (e.g., all
array elements are smaller than n).

We conclude that, in the case of our experimental run, the reasons of failure were rather
due to technical reasons than due to general limitations of our analysis.

120

CHAPTER 6
Conclusion

In Section 1.7 we announced five key contributions to the field of automated complexity
and resource bound analysis. Based on the presented material, we now give a detailed
discussion on each of our contributions.

1. We have demonstrated that difference constraints are a suitable abstract program
model for automatic complexity and resource bound analysis. Despite their syntactic
simplicity, difference constraints are expressive enough to model the complexity-related
aspects of many imperative programs. In particular, difference constraints allow to
model amortized complexity problems such as the bound analysis challenge posed by
Example xnu(discussed in Section 1.4.7). We developed appropriate techniques for
abstracting imperative programs to DCPs (Chapter 2): We described how to extract
norms (integer-valued expressions over the program state) from imperative programs and
showed how to use these norms as variables in DCPs.

We think that the abstract program model of difference constraint programs is worth
further investigation: Given that difference constraints can model standard counter ma-
nipulations (counter increments, decrements and resets), a further research on complexity
analysis of difference constraint programs is of high value. We consider DCPs to be a very
suitable program model for studying the principle challenges of automated complexity
and resource bound analysis for imperative programs.

2. We presented a new approach to bound analysis and automatic complexity analysis.
Our approach complements existing approaches in several aspects. (We draw a detailed
comparison to the state-of-the-art in bound analysis in Section 6.4.) Our analysis handles
bound analysis problems of high practical relevance which current approaches cannot
handle: Current techniques [SZV14a, BEF+16, CHS15, FH14] fail on Figure 2.1 and
similar problems. We have argued that such problems, e.g., occur naturally in parsing and
string matching routines. During our experiments on real-world source code, we found
23 different iteration patterns that pose a challenge for similar reasons as Example xnu:

121

6. Conclusion

In these patterns, the worst-case cost of a single inner loop execution is lower than the
worst-case cost of the inner loop averaged over the iterations of the outer loop. Our
analysis (Chapter 3) can handle all of these iteration patterns.

3. We stress that our approach is more scalable than existing approaches. We presented
empirical evidence of the good performance characteristics of our analysis by a large
experiment and tool comparison on real source code in Section 5.2.1. We discuss the
main technical reasons for scalability of our analysis in Section 6.1.

4. Our approach deals with many challenges bound analysis is known to be confronted:
In Section 5.2.2 we compared our tool on a benchmark of challenging problems from
publications on bound analysis. The results show that our prototype implementation
can handle most of these problems. Here, our implementation, while comparable in
terms of strengths to other implementations of state-of-the-art bound analysis techniques,
performs the task significantly faster than the competitors. The results obtained by
our prototype tool could be further enhanced by completing the implementation (see
Section 5.3).

5. In Chapter 7 we prove soundness of our bound algorithm (Section 7.1), of the reasoning
on reset chains (Section 7.2), and of the path-sensitive reasoning (Section 7.3). Note that
the sets I(v) and R(v) capture simple local properties, it is therefore straightforward to
convince oneself of their correct statement in the computation tables (e.g., Table 3.3,
page 50). The same applies for the local bound mapping ζ.

6.1 Discussion on the Scalability of Our Approach

Having completed the technical discussion of our analysis (Chapter 2 and Chapter 3),
we have gathered the necessary details to reflect the performance characteristics of our
approach. In the following we state what we consider to be the main technical reasons
that make our analysis scale.

First of all, we achieve scalability by local reasoning: Note that our abstraction procedure
relies on purely local information, i.e., information that is available on single program
transitions. In particular, we do not apply any global invariant analysis. Further, the sets
I(v) and R(v), by which our main algorithm is parametrized, are built by sorting the
difference constraints on single (abstract) program transitions based on simple syntactic
criteria. Our algorithm for computing the mapping ζ (Section 3.6) is linear and remains
polynomial even in the generalized case (Section 4.2.1).

We use bound analysis to infer bounds on variable values (variable bounds). Unlike
classical invariant analysis this approach is demand-driven and does not perform a fixed
point iteration (see Discussion in Section 3.4).

Note that the only general purpose reasoner we employ is an SMT solver. Further,
the SMT solver is only employed in the program abstraction phase. In terms of size,
the problems we feed to the SMT solver are small, namely simple linear arithmetic

122

6.2. Reflection on Research Methodology

formulas, composed of the arithmetic of single transitions. Our approach instruments
the SMT solver only for yes/no answers, no optimal solution (e.g., minimum or minimal
unsatisfiable core) is required.

Our main algorithm (Definition 27) runs in polynomial time. The reasoning on reset
chains (Definition 31) and the path-sensitive reasoning (Definition 40), however, have
exponential worst-case complexity. We did not experience this to be an issue in practice.
In both cases, exponential worst-case complexity results from the potentially exponential
number of paths in the program (exponential in the number of program transitions).
Thanks to the simplicity of our abstract program model straightforward engineering
measures can be taken: Program slicing reduces the number of paths in the program
significantly, further, merging of similar paths or transitions can be applied (Section 5.1.2).

6.2 Reflection on Research Methodology
We want to stress that our research methodology (Section 1.3) has proven beneficial in
the development of the presented ideas: In our previous work [ZGSV11] we identified the
size change abstraction (SCA) [LJBA01] as a suitable program model for bound analysis.
We implemented a bound analysis based on SCA into our tool loopus. By extending
our experiments to a larger code base we identified amortized complexity analysis as a
relevant task for computing precise bounds for many C implementations. Our further
research led to vector additon systems (VASS) as an abstract program model. In [SZV14a]
we presented an algorithm for analyzing amortized program complexity using VASS as
abstract program model. Further experiments on open source C code yielded a number of
interesting examples which we were not able to model as VASS. Some of these examples
were discussed in this work. Our findings revealed that an extension of our abstract
program model is necessary to handle certain iteration patterns that are common in
C code. In [SZV15] we generalized our VASS based approach to difference constraint
programs. Our approach is now able to obtain tight bounds for a large class of real-world
C programs, as we have discussed in this work.

6.3 Open Issues and Future work
Combining our variable bound analysis with a symmetrical lower bound analysis would
result in a new kind of scalable invariant analysis which, importantly, could infer
polynomial relations between program variables, a problem not tackled by standard
abstract interpretation techniques. We plan to investigate the feasibility of this idea.

The bounds that are inferred by our approach are not guaranteed to be precise, meaning
that it is not guaranteed that a program execution exists which reaches the respective
bound. This is a general problem. Existing bound analysis techniques are either limited
to very specific cases like for-loops with only one loop counter, or cannot give any
guarantee on the precision of the inferred bounds. Naturally, bound analysis explicitly or
implicitly abstracts from the concrete program behaviour in order to deal with a generally

123

6. Conclusion

intractable problem. However, observe that the computation trace of our algorithm
(depicted in computation tables, e.g., Table 3.3, page 50) does provide information on
how the transitions of the programs have to be executed in order to reach the inferred
bound. We plan to automatically check if the program execution implicitly underlying the
inferred bound is feasible in practice. In case the corresponding execution turns out to be
infeasible, additional constraints could be taken into account for a re-computation which
will then lead to a more precise bound. This idea could result in a CEGAR [CGJ+00] like
approach for inferring precise (resource) bounds. A similar idea was recently proposed
for WCET analysis [ČHK+15].

Our approach does not handle exponential loop bounds. Exponential loop bounds are,
however, very rare in practice. Nevertheless an extension of our approach to cases as
the one shown in Figure 3.3 (a) (page 46) is of interest: Since termination is decidable
for fan-in free DCPs ([Ben08]), it is an interesting question whether there is a complete
algorithm for bound analysis of fan-in free DCPs.

Given that loops iterating over data structures such as lists or trees are omnipresent in
imperative code, the sound handling of recursive data structures and pointers for bound
analysis is a challenging, but highly relevant task.

We further plan to investigate the applicability of our approach for the analysis of
functional languages. Here an extension to recursive programs will be essential. Though
tail-recursion can be handled, and many functions with a single recursive call turn out to
be tail-recursive after program slicing, our approach cannot yet handle functions with
multiple recursive calls (multiple recursion) such as divide and conquer algorithms (e.g.,
quick sort). In the literature a number of approaches dealing with such recursion patterns
exist (e.g., [ZZ89, HAH12, AGM13]), and it is of interest to formulate these ideas within
our framework. Our abstract program model could, e.g., be extended by a stack in order
to model recursion directly.

The multi-core architecture of modern processors has given momentum to the investigation
of concurrency. Bound analysis techniques for concurrent programs are therefore an
interesting project for future work.

In many scenarios, the average resource consumption, rather than the worst-case con-
sumption, will be of interest. Consider, e.g., a cloud provider seeking to estimate how
much computation power a new application will consume in average. An answer to
such kind of questions could be provided by probabilistic bound analysis, i.e., bound
analysis techniques that take into account the probability by which program transitions
are executed. We believe that our algorithm can be extended by such a reasoning.

Another interesting question is how the abduction principle, successfully applied in the
area of termination analysis (e.g., [DU15]), can be made productive for bound analysis.

124

6.4. Detailed Comparison to Related Work

6.4 Detailed Comparison to Related Work

We presented an overview on the state of the art in bound analysis in Section 1.6. Recall
that current approaches to bound analysis apply general frameworks for global invariant
analysis and automated reasoning such as abstract interpretation, computer algebra,
linear optimization and quantifier elimination. In contrast, our bound analysis
is based on simple static analysis and local reasoning. In Section 6.1 we discussed the
resulting advantages in performance and scalability, empirical evidence of which was
given in Section 5.

Based on the complete presentation of our analysis, we are now ready to state a detailed
comparison of our approach to the most related works [ZGSV11, SZV14a, SZV15, FH14,
BEF+16, CHS15, ADFG10]. Naturally, this discussion also involves technical details.

In the following, we point out specific weaknesses or strengths of the respective bound
analysis in comparison to our approach. Rather than on performance, our discussion
focuses on functional aspects.

6.4.1 Our Previous Approaches

The bound analysis [ZGSV11] is based on the size change abstraction. Size-change
constraints form a strict syntactic subclass of difference constraints which are at the core
of the analysis we presented in this work. Whereas for DCPs termination is undecidable
in general and decidable for the sub-class of fan-in free DCPs [Ben08], termination is
decidable even for size-change programs which are not fan-in free and a complete algorithm
for deciding the complexity of size-change programs has been developed [CDZ14].
For reasoning about inner loops [ZGSV11], computes disjunctive loop summaries, while
such summaries are not computed by the approach discussed in this work. We have
demonstrated by means of numerous examples that our approach nevertheless reasons
about the interaction of outer and inner loops very effectively.

Our previous work [SZV14a] presents a bound analysis that uses vector addition systems
as abstract program model. We formulated vector addition systems as a syntactic sub-class
of our abstract program model of difference constraint programs in Section 3.2.
Our path-sensitive reasoning (Definition 36, page 68) can be understood as a re-
formulation of the algorithm discussed in [SZV14a]: By defining Incr(v) over the cyclic
paths C+(v) rather than over the transitions I(v), Definition 36 implements control-flow
abstraction introduced in [SZV14a]. Our local bounds play the role of local ranking
functions in [SZV14a]: If v ∈ V is a path sensitive local bound for τ ∈ E, then v is
a local ranking function for all cyclic paths on which τ is situated (for all π ∈ C (τ)).
The lexicographic ranking function that is explicitly computed in [SZV14a] is implicitly
underlying Definition 36: As discussed in Section 3.2 (see paragraph on termination), our
bound algorithm terminates only if the local bounds can be ordered to a lexicographic
ranking function. We can thus run Algorithm 2 from [SZV14a] up-front for ensuring
termination of Definition 36.

125

6. Conclusion

[SZV14a] defines the notion of a path bound, the bounds that are computed by [SZV14a]
are bounds on the number of times a given cyclic path can be executed during program
run. In contrast, we compute transition bounds. In Definition 36 a path bound is
computed in terms of transition bounds: We compute the minimum over the bounds
for all transitions which lie on the path. Computing path bounds in terms of transition
bounds allows to handle irreducible control flow, which cannot be handled by [SZV14a].
[SZV14a] is limited to reducible control-flow. The approach we presented in this thesis
does not have this restriction.

We crucially extended our DCP based bound algorithm from [SZV15] by path-sensitive
reasoning (Section 3.8). The approach we presented in this work merges the insights
of [SZV14a] and [SZV15], resulting in one uniform analysis that joins both forces and is
therefore more powerful than [SZV15] and [SZV14a]: [SZV14a] in particular fails to infer
the linear bound for Example xnuSimple (Figure 3.8, page 55) and for Example xnu
(Figure 1.4, page 14). On the other hand, [SZV15] does not support path sensitive analysis
and therefore computes an imprecise bound for Example s_SFD_process (Figure 3.14,
page 66).

6.4.2 Other Related Approaches

In Section 5.2 we experimentally compared our implementation against the recent
approaches to automated complexity analysis [FH14, BEF+16, CHS15, ADFG10].

[BEF+16] is, in one aspect, conceptually similar to our approach: While our algorithm
is built over a mutual recursion between transition bound and variable bound analysis,
[BEF+16] interleaves time bound and variable size bound analysis. A similar idea is also
present in the works [GJ09] and [SZV14b] (the extended version of [SZV14a]).
In contrast to our approach, [BEF+16] computes upper bound invariants only for the abso-
lute values of variables; for many cases, this does not allow to distinguish between variable
increments and decrements: Consider the program foo(int x, int y) {while(y >
0) {x−−; y−−;} while(x > 0) x−−;}. The algorithm described in [BEF+16]
infers the bound |x| + |y| for the second loop, whereas our analysis infers the bound
max(x, 0).
[BEF+16] depends on global invariant analysis. E.g., given a decrement x := x − 1,
[BEF+16] needs to check whether x ≥ 0 holds. If x ≥ 0 cannot be ensured, the decrement
can actually increment the absolute value of x, and will thus be interpreted as |x| = |x|+1.
This can either lead to gross over-approximations or failure of bound computation if the
increment of |x| cannot be bounded. Since our approach does not track the absolute
value but the value, it is not concerned with this problem.
[BEF+16] does not support amortized analysis: E.g., [BEF+16] fails to compute the linear
bounds for Example tarjan, Example xnuSimple, Example xnu, the inner while loop
of Example SingleLinkCluster, Example s_SFD_process and other examples we
discussed in this work.
[BEF+16] can infer bounds for functions with multiple recursive calls which is not
supported by our approach.

126

6.4. Detailed Comparison to Related Work

void foo(uint n) {
uint k = n, j = 0;
while(k > 0) {
int i = n;
while (i > 0) {

i--;
j++;

l3 while (j > 0 && ?)
j--;

}
k--;

}
}

Bound of the loop at l3: n2

void foo(uint n) {
int i = n, k = 0;
while(i > 0) {
int j = n;

l2 while(j > 0) {
k++;
j--;

}
i--;

}
l3 while(k > 0) {

k--;
}

}

Bound of the loop at l3: n2

(a) (b)

Figure 6.1: (a) Example tarjan (Figure 1.2, page 8) with an additional outer loop (loop
counter k), (b) Invariant k ≤ n2 is not expressible in polyhedra abstract domain

[CHS15] is restricted to linear bounds, while our approach derives bounds which are
polynomial (e.g., the bound n2 of the loop at l3 in Figure 6.1 (a) and (b)).
Further, [CHS15] cannot infer bounds involving the maximum operator, [CHS15] thus
over-approximates the bound max(m1 ,m2)+2n of the second loop of Example twoSCCs
(Figure 1.3, page 11) by m1 + m2 + 2n.
[CHS15] fails to deduce the linear bound of Example xnu (discussed in Section 1.4.7).
The reason is that [CHS15] needs the invariant k ≤ e ≤ i in combination with the
Q:WEAK-rule (see [CHS15]) in order to find a bound for Example xnu. However, for
efficiency reasons [CHS15] does not apply any global invariant analysis and for the same
reason the Q:WEAK-rule (“Q:WEAK is not syntax directed.” [CHS15]) is only applied
heuristically. In contrast, our approach infers the linear bound for Example xnu without
relying on invariant analysis (see Section 3.7).
Unlike our analysis, [CHS15] does support general recursion, including mutual recursion.
Another strength of [CHS15] is that its reasoning includes decrements of variables also
across different loops. E.g., [CHS15] obtains the bound n for the function
foo(uint n) {while(n > 0 && ?) n−−; while(n > 0 && ?) n−−;}
whereas our approach infers the bound 2n for this example.

Recall our discussion on [ADFG10] from Section 1.6. For a number of cases the approxi-
mation of the reachable states in shape of a polyhedron does not allow to conclude a
bound on the number of values in the co-domain of the ranking function: As an example
consider Figure 6.1 (a), which shows a version of Example tarjan (Figure 1.2, page 8)

127

6. Conclusion

with an additional outer loop. For the innermost loop at location l3, a linear ranking
function with minimum number of dimensions is 〈k, 2i+ j〉. This ranking function can
indeed be inferred by the approach discussed in [ADFG10]. However, for inferring a
bound on the size of the co-domain of 〈k, 2i+ j〉 in particular a bound on the value of j
is needed. Note that any ranking function for l will include j. However, j can take values
up to n2, but j ≤ n2 is not expressible in the polyhedra domain (which only expresses
arbitrary linear relations). [ADFG10] therefore fails to obtain a bound for the example in
Figure 6.1 (a). In contrast, our approach obtains the precise bound n2 for the loop at l3.

[FH14] cannot infer the bound n2 for the loop at l3 of the program in Figure 6.1 (b):
First of all, note that the loop at l3 indeed can be executed up to n2 times because its
counter k can be incremented up to n2 times in the loop at l2. [FH14] infers that the
loop at l3 can be executed k3 times, where k3 is k at location l3. [FH14], however, fails
to infer that k3 < n2 because this relation is not expressible in the polyhedra abstract
domain. [FH14] also fails to infer the linear bound of Example xnu in Figure 1.4.

128

CHAPTER 7
Proofs

We prove soundness of our basic bound algorithm for DCPs (Definition 27, Theorem 3)
in Section 7.1.

In Section 7.2 we prove soundness of our reasoning on reset chains (Definition 31,
Theorem 4).

Finally, we prove soundness of our path-sensitive reasoning (Definition 40, Theorem 7) in
Section 7.3.

Throughout this chapter we assume a well-defined and fan-in free DCP ∆P(L,E, lb, le)
over A to be given.

We first define some basic notions which we use to state our proofs precisely.

Definition 50 (Indices). Let π = l0
u0−→ l1

u1−→ . . . be a path of ∆P. By len(π) we denote
the length of π, i.e., the total number of transitions on π (possibly ∞). Let 0 ≤ i ≤ j.
By π[i,j] we denote the sub-path of π that starts at li and ends at lj. By π(i) = li

ui−→ li+1
we denote the (i+ 1)th transition on π.
Let τ ∈ E. We define Θ(τ, π) = {0 ≤ i < len(π) | π(i) = τ}.
Let E′ ⊆ E. We define Θ(E′, π) =

⋃
τ∈E′

Θ(τ, π).

We write
Θ(R(v), π) to denote Θ({τ | (τ,_,_) ∈ R(v)}, π), and
Θ(I(v), π) to denote Θ({τ | (τ,_) ∈ I(v)}, π).
We use the same notation for runs ρ of ∆P.

I.e., Θ(τ, π) is the set of all indices of τ on π, Θ(R(v), π) is the set of indices of all
transitions on π which reset v and Θ(I(v), π) is the set of indices of all transitions on π
which increment v.

129

7. Proofs

On a run of ∆P a variable v may take arbitrary values at locations at which v is not
defined, i.e., at locations l with v 6∈ def(l). In a well-defined DCP the value of a variable
at a location where it is not defined can, however, not affect the programs behaviour.
This observation motivates the notion of a normalized run: a normalized run is a run on
which a variable takes value “0” at locations where it is not defined.

Definition 51 (Normalized Run). Let ρ = (l0, σ0) u0−→ (l1, σ1) u1−→ · · · be a run of ∆P.
Let

σ′i(a) =
{

0 if a ∈ V and a 6∈ def(li)
σi(a) else for all 0 ≤ i ≤ len(ρ) and all a ∈ A.

We call bρc = (l0, σ′0) u0−→ (l1, σ′1) u1−→ · · · a normalized run.

Let Ξ be a set of runs of ∆P. We say that Ξ is closed under normalization if ρ ∈ Ξ
implies that bρc ∈ Ξ.

Lemma 1 states that the set of all runs of ∆P is closed under normalization.

Lemma 1. Let ρ be a run of ∆P. Then bρc is a run of ∆P.

Proof. Follows directly from Definition 6 (well-definedness) and Definition 51.

7.1 Soundness of Basic Bound Algorithm
In Lemma 2 and Lemma 3 we formulate the two key insights on which our algorithm is
based.

Lemma 2 formalizes the intuition given in Section 3.12: Let v be a local transition bound
for τ . The question how often τ can appear on a run ρ is translated to the question how
often the transitions which increase the value of v (i.e., (t,_) ∈ I(v) and (t,_,_) ∈ R(v))
can appear on ρ.

Lemma 2. Let ρ be a run of ∆P. Let τ ∈ E. Let v ∈ V be a local transition bound
for τ on bρc. Let vb : A → Z be s.t. vb(a) is a variable bound for a on ρ for all
(_, a,_) ∈ R(v). Then(∑

(t,c)∈I(v)
](t, ρ)× c

)
+

∑
(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c)

is a transition bound for τ on ρ.

Proof. We first show that it is sufficient to consider the case bρc = ρ :
1. Let expr be a transition bound for τ on bρc. Then expr is also a transition bound for
τ on ρ (follows directly from Definition 51).
2. By assumption vb(a) is a variable bound for a on ρ. By Definition 51 we have that
vb(a) is also a variable bound for a on bρc. We thus assume that bρc = ρ.

130

7.1. Soundness of Basic Bound Algorithm

We have to show that
](τ, ρ) ≤

(∑
(t,c)∈I(v)

](t, ρ)× c

)
+

∑
(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c).

A) We first show that

](τ, ρ) ≤
(∑

(t,c)∈I(v)
](t, ρ)× c

)
+

∑
j∈Θ(R(v),ρ)

σj+1(v)

We have

](τ, ρ)
(1)
≤](τ, ρ) +

len(ρ)−1∑
i=0

σi+1(v)− σi(v)

(2a)=](τ, ρ) +
len(ρ)−1∑
i=0

max(σi+1(v)− σi(v), 0) +
len(ρ)−1∑
i=0

min(σi+1(v)− σi(v), 0)

(2)
≤

len(ρ)−1∑
i=0

max(σi+1(v)− σi(v), 0)

(3a)=

 ∑
i∈Θ(I(v),ρ)

max(σi+1(v)− σi(v), 0)

+
∑

i∈Θ(R(v),ρ)

max(σi+1(v)− σi(v), 0)

(3)
≤

 ∑
i∈Θ(I(v),ρ)

max(σi+1(v)− σi(v), 0)

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(4)
≤

 ∑
(t,c)∈I(v)

∑
0≤i<len(ρ) s.t. ρ(i)=t

c

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(5)=

 ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(1) We have
len(ρ)−1∑
i=0

σi+1(v)− σi(v) = σlen(ρ)(v)− σ0(v) = σlen(ρ)(v)

because σ0(v) = 0 with i) ρ = bρc and ii) v 6∈ def(lb) (Definition 6).

Trivially σlen(ρ)(v) ≥ 0. Therefore
len(ρ)−1∑
i=0

σi+1(v)− σi(v) ≥ 0.

(2a) Case Distinction

(2) We have](τ, ρ) ≤ ↓(v, ρ) (Definition 16).

Further ↓(v, τ) ≤
(

len(ρ)−1∑
i=0

min(σi+1(v)− σi(v), 0)
)
×−1.

Thus](τ, ρ) +
len(ρ)−1∑
i=0

min(σi+1(v)− σi(v), 0) ≤ 0.

131

7. Proofs

(3a) σi+1(v) − σi(v) > 0 implies in particular that σi+1(v) > 0. Thus v ∈ def(li+1)
because ρ = bρc by assumption. With σi+1(v) > σi(v) we have that either:
Case 1) (ρ(i),_) ∈ I(v), i.e., i ∈ Θ(I(v), ρ), or
Case 2) (ρ(i),_,_) ∈ R(v), i.e., i ∈ Θ(R(v), ρ).

(3) Since σi(v) ≥ 0 we have that σi+1(v)− σi(v) ≤ σi+1(v).

(4) If i ∈ Θ(I(v), ρ) then there is (t, c) ∈ Incr(v) s.t. ρ(i) = t (Definition 50). Further
σi+1(v)− σi(v) ≤ c and c > 0 (Definition 19).

(5) By definition of](t, ρ) (Definition 15).

B) We show that
∑

j∈Θ(R(v),ρ)
σj+1(v) ≤

∑
(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c):

∑
j∈Θ(R(v),ρ)

σj+1(v) (1)=
∑

(t,a,c)∈R(v)

∑
j∈Θ(t,ρ)

σj+1(v)

(2)
≤

∑
(t,a,c)∈R(v)

∑
j∈Θ(t,ρ)

σj(a) + c

(3)
≤

∑
(t,a,c)∈R(v)

∑
j∈Θ(t,ρ)

vb(a) + c

(4)=
∑

(t,a,c)∈R(v)

](t, ρ)× (vb(a) + c)

(1) By commutativity: Let j ∈ Θ(R(v), ρ). By the assumption that ∆P is fan-in free
there is only exactly one a ∈ A and exactly one c ∈ Z s.t. (ρ(j), a, c) ∈ R(v).

(2) With (ρ(j), a, c) ∈ R(v) we have that σj+1(v) ≤ σj(a) + c (Definition 19).

(3) Let (t, a,_) ∈ R(v). By assumption vb(a) is a variable bound for a on ρ. Let j ∈
Θ(t, ρ). We have that a ∈ def(lj) by well-definedness of ∆P. Thus σj(a) ≤ vb(a).

(4) Let (t, a, c) ∈ R(v). We have
∑

j∈Θ(t,ρ)
vb(a) + c = |Θ(t, ρ)| × (vb(a) + c).

Further |Θ(t, ρ)| =](t, ρ) (Definition 15).

With A) and B) we have

](τ, ρ) ≤

 ∑
(t,c)∈I(v)

](t, ρ)× c

+
∑

(t,a,c)∈R(v)
](t, ρ)× (vb(a) + c).

Lemma 3 states that the value of a variable v ∈ V on a run ρ of ∆P is limited by the
maximum over all values to which v is reset on ρ plus the total amount by which v is
incremented on ρ.

132

7.1. Soundness of Basic Bound Algorithm

Lemma 3. Let v ∈ V. Let ρ be a run of ∆P. Let vb : A → Z be s.t. vb(a) is a variable
bound for a on ρ for all (_, a,_) ∈ R(v). Then

max
(_,a,c)∈R(v)

(vb(a) + c) +
∑

(τ,c)∈I(v)
](τ, ρ)× c

is a variable bound for v on ρ.

Proof. We have to show that
σi(v) ≤ max

(_,a,c)∈R(v)
(vb(a) + c) +

∑
(τ,c)∈I(v)

](τ, ρ)× c

for all 0 ≤ i ≤ len(ρ) with v ∈ def(li).
Let 0 ≤ i ≤ len(ρ) be s.t. v ∈ def(li). By well-definedness of ∆P there is a 0 ≤ j < i,
a b ∈ A and a c ∈ Z s.t. (ρ(j), b, c) ∈ R(v) and v is not reset on ρ[j+1,i], i.e., for all
j < k < i (ρ(k),_,_) 6∈ R(v). In other words: there is a maximal index j < i such that
v is reset on ρ(j). We have:

σi(v)
(1)
≤ σj+1(v) +

∑
(τ,c)∈I(v)

](τ, ρ[j+1,i])× c

(2)
≤ σj+1(v) +

∑
(τ,c)∈I(v)

](τ, ρ)× c

(3)
≤ σj(b) + c+

∑
(τ,c)∈I(v)

](τ, ρ)× c

(4)
≤ vb(b) + c+

∑
(τ,c)∈I(v)

](τ, ρ)× c

(5)
≤ max

(_,a,c)∈R(v)
(vb(a) + c) +

∑
(τ,c)∈I(v)

](τ, ρ)× c

(1) We have that v is not reset on ρ[j+1,i]. If v is incremented on ρ[j+1,i] there are
indices j < k < i s.t. (ρ(k),_) ∈ I(v). Let (τ, c) ∈ I(v). An execution of τ can
increase the value of v by at most c (Definition 19). Therefore the total number
](τ, ρ[j+1,i]) of executions of τ on ρ[j+1,i] adds at most](τ, ρ[j+1,i])× c to v. Thus
in total v cannot be increased by more than

∑
(τ,c)∈I(v)

](τ, ρ[j+1,i])× c on ρ.

(2)](τ, ρ[j+1,i]) ≤](τ, ρ). Further for all (_, c) ∈ I(v) c ≥ 0 (Definition 19).

(3) σj+1(v) ≤ σj(b) + c (Definition 4).

(4) With (ρ(j), b, c) ∈ R(v) we have by assumption that vb(b) is a variable bound for b
on ρ. Further b ∈ def(lj) by well-definedness of ∆P. Thus σj(b) ≤ vb(b).

(5) We have (ρ(j), b, c) ∈ R(v). Therefore vb(b) + c ≤ max
(_,a,c)∈R(v)

(vb(a) + c).

133

7. Proofs

7.1.1 Proof of Theorem 3

We show the more general claim formulated in Theorem 8.

Theorem 8. Let ∆P(L,E, lb, le) be a well-defined and fan-in free DCP over atoms A.
Let Ξ be a set of runs of ∆P closed under normalization. Let ζ : E 7→ Expr(A) be a local
bound mapping for all ρ ∈ Ξ. Let TB and VB be defined as in Definition 27. Let a ∈ A
and τ ∈ E. Let ρ ∈ Ξ. Let σ0 be the initial state of ρ. We have: (I) JTB(τ)K(σ0) is a
transition bound for τ on ρ. (II) JVB(a)K(σ0) is a variable bound for a on ρ.

Proof. Let ρ = (σ0, l0) u0−→ (σ1, l1) u1−→ · · · ∈ Ξ.

If JTB(τ)K =∞ (I) holds trivially. If JVB(a)K =∞ (II) holds trivially.

Assume JTB(τ)K 6=∞ and JVB(a)K 6=∞. Then in particular the computations of TB(τ)
resp. VB(a) terminate. We proceed by induction over the call tree of TB(τ) resp. VB(a).

Base Case:

(I) No function call is triggered when computing VB(a). This is the case iff a ∈ C
(Definition 27). Then VB(a) = a and the claim holds trivially with a ∈ C.
(II) No function call is triggered when computing TB(τ). This is the case iff ζ(τ) 6∈ V
(Definition 27). Then JTB(τ)K(σ0) = Jζ(τ)K(σ0) is a transition bound for τ on ρ by
Definition 18.

Step Case:

(I) a 6∈ C, thus a ∈ V. Let v = a. Let 0 ≤ i ≤ len(ρ) be s.t. v ∈ def(li). We have:

σi(v)
(1)
≤ max

(_,b,c)∈R(v)
(JVB(b)K(σ0) + c) +

∑
(t,c)∈I(v)

](t, ρ)× c

(2)
≤ max

(_,b,c)∈R(v)
(JVB(b)K(σ0) + c) +

∑
(t,c)∈I(v)

JTB(t)K(σ0)× c

(3)= J max
(_,b,c)∈R(v)

(VB(b) + c)K(σ0) + JIncr(v)K(σ0)

(4)= JVB(v)K(σ0)

(1) By Lemma 3: Let (_, b,_) ∈ R(v). We have that VB(b) is recursively called when
computing VB(v) (Definition 27). Note that with JVB(v)K 6=∞ also JVB(b)K 6=∞.
By I.H. JVB(b)K(σ0) is a variable bound for b on ρ.

134

7.1. Soundness of Basic Bound Algorithm

(2) Let (t,_) ∈ I(v). We have that TB(t) is called when computing VB(v) (Defi-
nition 27). Note that with JVB(v)K 6= ∞ also JTB(t)K 6= ∞. By I.H.](t, ρ) ≤
JTB(t))K(σ0). We thus get

∑
(t,c)∈I(v)

](t, ρ)× c ≤
∑

(t,c)∈I(v)
JTB(t)K(σ0)× c because

for all (_, c) ∈ I(v) we have c > 0 (Definition 19).

(3) JIncr(v)K(σ0) =
∑

(t,c)∈I(v)
JTB(t)K(σ0)× c (Definition 27 and Definition 17).

(4) Definition 27 and Definition 17.

(II) ζ(τ) ∈ V. We have:

](τ, ρ)
(1)
≤ (

∑
(t,c)∈I(ζ(τ))

](t, ρ)× c) +
∑

(t,b,c)∈R(ζ(τ))

](t, ρ)× JVB(b)K(σ0) + c

(2)
≤

∑
(t,c)∈I(ζ(τ))

JTB(t)K(σ0)× c +
∑

(t,b,c)∈R(ζ(τ))

](t, ρ)× JVB(b)K(σ0) + c

(3)= JIncr(ζ(τ))K(σ0) +
∑

(t,b,c)∈R(ζ(τ))

](t, ρ)× JVB(b)K(σ0) + c

(4)
≤ JIncr(ζ(τ))K(σ0) +

∑
(t,b,c)∈R(ζ(τ))

JTB(t)K(σ0)×max(JVB(b)K(σ0) + c, 0)

(5)= JTB(τ)K(σ0)

(1) By Lemma 2: Since Ξ is closed under normalization we have that ζ(τ) is a local
transition bound for τ on bρc. Further: Let (_, b,_) ∈ R(ζ(τ)). We have that
VB(b) is called during the computation of TB(τ) (Definition 27). Note that with
JTB(τ)K 6=∞ also JVB(b)K 6=∞. By I.H. JVB(b)K(σ0) is a variable bound for b.

(2) Let (t,_) ∈ I(ζ(τ)). We have that there is a recursive call to TB(t) during
the computation of TB(τ) (Definition 27). Note that with JTB(τ)K 6= ∞ also
JTB(t)K 6= ∞. By I.H.](t, ρ) ≤ JTB(t)K(σ0). Further for all (_, c) ∈ I(v) c ≥ 0
(Definition 19).

(3) Definition 27 and Definition 17.

(4) Let (t,_,_) ∈ R(ζ(τ)). We have that TB(t) is recursively called during the
computation of TB(τ) (Definition 27). Note that with JTB(τ)K 6=∞ also JTB(t)K 6=
∞. By I.H.](t, ρ) ≤ JTB(t)K(σ0).

(5) Definition 27 and Definition 17.

135

7. Proofs

7.2 Soundness of Reasoning on Reset Chains
Lemma 7 extends Lemma 2 by chained resets.

Lemma 4, Lemma 5 and Lemma 6 are helper lemmas needed for the proof of Lemma 7.

Definition 52 (Matching of a Reset Chain). Let κ = an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−→ · · · a0 be
a reset chain of ∆P. Let ρ be a run of ∆P. We call in, in−1 . . . i1 ∈ N with 0 ≤ in <
in−1 · · · < i1 < len(ρ) a matching of κ on ρ iff ρ(ij) = τj holds for all n ≥ j ≥ 1. We call
in the first index and i1 is the last index. A matching in, in−1, . . . , i1 of κ on ρ is precise
iff for all n > j ≥ 1 it holds that aj is not reset on ρ[ij+1+1,ij], i.e., (ρ(k),_,_) 6∈ R(aj)
for all ij+1 < k < ij.

Informally: There is a matching of κ = an
τn,cn−−−→ an−1

τn−1,cn−1−−−−−−→ · · · a0 on a run ρ if ρ
contains the transitions τn, τn−1, . . . , τ1 in that order. A matching in, in−1, . . . i1 is precise
if for all n > j ≥ 1 it holds that aj flows into aj−1 when executing ρ(ij) because aj is
not reset between the reset of aj to aj+1 on ρ(ij+1) and the reset of aj−1 to aj on ρ(ij).

Definition 53 (First- and Last-Indices of Precise Matchings). Let ρ be a run of ∆P.
Let κ = an

τn,cn−−−→ an−1
τn,cn−−−→ . . .

τ1,c1−−−→ a0 be a reset chain. We define α(κ, ρ) to denote
the set
{(in, i1) | ∃in−1, . . . , i2 s.t. in, in−1, in−2, . . . , i2, i1 is a precise matching of κ on ρ}.

I.e., α(κ, ρ) is the set of first- and last-indices of all precise matchings of κ on ρ. Note
that in particular i ≤ j for all (i, j) ∈ α(κ, ρ), i.e., the interval [i . . . j] is non-empty.

Given a reset chain κ from b to v and a precise matching of κ on a run ρ with first index
i and last index j, Lemma 4 states that the value of v in state σj on ρ is bounded by the
value of b in state σi on ρ and the increments of a ∈ atm(κ) between index i and index j
on ρ.

Lemma 4. Let ρ be a run of ∆P. Let b ∈ A and v ∈ V. Let κ be a reset chain from b
to v. Let (i, j) ∈ α(κ, ρ). Then
σj+1(v) ≤ σi(b) + c(κ) +

∑
a∈atm(κ)\{v}

∑
(τ,c)∈I(a)

](τ, ρ[i+1,j])× c.

Proof. We show the claim by induction on the length of κ.

Base Case: Let κ = b
τ,c−−→ v. With (i, j) ∈ α(κ, ρ) we have that i = j and ρ(i) = ρ(j) = τ .

Further we have that (τ, b, c) ∈ R(v) (Definition 28). Thus σj+1(v) = σi+1(v) ≤ σi(b) + c
(Definition 19). Note that atm(κ) \ {v} = ∅ since b /∈ atm(κ) (Definition 28).

Step Case: Let κ = an+1
τn+1,cn+1−−−−−−→ an

τn,cn−−−→ . . .
τ1,c1−−−→ v with an+1 = b. Let

in+1, in, in−1, . . . , i1 be a precise matching of κ on ρ with in+1 = i and i1 = j.

σj+1(v) = σi1+1(v)
(1)
≤ σin(an) + c(κ[n,0]) +

∑
a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1,i1])× c

136

7.2. Soundness of Reasoning on Reset Chains

(2)
≤ σin+1+1(an) + (

∑
(τ,c)∈I(an)

](τ, ρ[in+1+1,in])× c)

+ c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1,i1])× c

(3)
≤ σin+1(an+1) + cn+1 + (

∑
(τ,c)∈I(an)

](τ, ρ[in+1+1,in])× c)

+ c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1,i1])× c

(4)
≤ σin+1(an+1) + cn+1 + (

∑
(τ,c)∈I(an)

](τ, ρ[in+1+1,i1])× c)

+ c(κ[n,0]) +
∑

a∈atm(κ[n,0])\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,i1])× c

(5)= σin+1(an+1) + c(κ) +
∑

a∈atm(κ)\{v}

∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,i1])× c

(1) By I.H.: We have that κ[n,0] is also a reset chain (Definition 28, note that κ[n,0] is
non-empty by definition of κ) and since in+1, in, . . . , i1 is a precise matching of κ
on ρ, in, . . . , i1 is a precise matching of κ[n,0] on ρ (Definition 52).

(2) We have that for all in+1 < j < in (ρ(j),_,_) 6∈ R(an) (Definition 52), i.e., an is
not reset on ρ[in+1+1,in]. In the proof of Lemma 3 we show that
σin(an) ≤ σin+1+1(an) +

∑
(τ,c)∈I(an)

](τ, ρ[in+1+1,in])× c.

(3) σin+1+1(an) ≤ σin+1(an+1) + cn+1 (Definition 28)

(4) Note that [in+1 + 1 . . . in] is a sub-interval of [in+1 + 1 . . . i1]. Therefore
](τ, ρ[in+1+1,in]) ≤](τ, ρ[in+1+1,i1]) for all τ ∈ E. Accordingly [in + 1 . . . i1] is a
sub-interval of [in+1 + 1 . . . i1]. Therefore](τ, ρ[in+1,i1]) ≤](τ, ρ[in+1+1,i1]) for all
τ ∈ E. We thus get∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,in])× c ≤
∑

(τ,c)∈I(a)
](τ, ρ[in+1+1,i1])× c and∑

(τ,c)∈I(a)
](τ, ρ[in+1,i1])× c ≤

∑
(τ,c)∈I(a)

](τ, ρ[in+1+1,i1])× c

because we have that for all v ∈ V and for all (_, c) ∈ I(v) it holds that c > 0
(Definition 19).

(5) We have c(κ) = c(κ[n,0]) + cn+1 and atm(κ) = atm(κ[n,0]) ∪ {an} (Definition 28).

Let v ∈ V . Lemma 5 states that for each index j on a run ρ s.t. v is reset on ρ(j), there
is a corresponding optimal reset chain κ and a precise matching of κ on ρ ending at j.

137

7. Proofs

Lemma 5. Let ρ be a run of ∆P. Let v ∈ V. Let (τ,_,_) ∈ R(v). Let j be s.t. ρ(j) = τ .
There is a κ ∈ R(v) and a i ≤ j s.t. (i, j) ∈ α(κ, ρ).

Proof. Let a ∈ A and c ∈ Z be such that (τ, a, c) ∈ R(v) (note that by determinism of
∆P there is exactly one such a and c). We proof the claim by the following recursive
reasoning:

[Start] We show that there is a sound reset chain κ that ends at v and a precise matching
of κ on ρ that ends at j: Obviously a

τ,c−−→ v is a reset chain. Further a
τ,c−−→ v is trivially

sound (Definition 28). We have that j is a precise matching for a
τ,c−−→ v on ρ because by

assumption ρ(j) = τ (Definition 52).
[Recursive Step] We thus have that there is a sound reset chain κ = an

τn,cn−−−→ an−1
τn−1,cn−1−−−−−−→

. . .
τ1,c1−−−→ v and a precise matching in, in−1, . . . , i1 of κ on ρ with i1 = j. If κ is optimal

then κ ∈ R(v) (Definition 28) and with (in, j) ∈ α(κ, ρ) the claim is proven. Assume κ is
not optimal. Then an ∈ V because κ is not maximal (Definition 28). By well-definedness
of ∆P an is reset on ρ[0,in], i.e., there is a 0 ≤ k < in s.t. (ρ(k),_,_) ∈ R(an). Let
in+1 denote the maximal such k. Let τn+1 = ρ(in+1). Let an+1 ∈ A and cn+1 ∈ Z be
s.t. (τn+1, an+1, cn+1) ∈ R(an). Then κ = an+1

τn+1,cn+1−−−−−−→ an
τn,cn−−−→ an−1 . . . v is a reset

chain ending in v and in+1, in, . . . , i1 is a precise matching of κ on ρ (Definition 52). We
show that κ is sound: First note that κ[n,0] = κ and because κ is sound we have that
for all 1 ≤ i < n it holds that ai is reset on all paths from the target location of τ1 to
the source location of τi. It remains to show that this also holds for an. Since κ is not
optimal there is a sound reset chain that extends κ (Definition 28). Now, because an is
on that extended sound reset chain we have that also an is reset on all paths from the
target location of τ1 to the source location of τn (Definition 28). We conclude that κ is
sound. We can thus recursively apply our reasoning on κ.
[Termination] Since by assumption the reset graph is acyclic and its node set A is finite,
a optimal reset chain κ ∈ R(v) and a matching of κ that ends at j is constructed by
iterating the stated reasoning finitely often.

Note that with Lemma 4 and Lemma 5 we can bound the value to which v is reset at
index j in terms of the value of in(κ) at index i, where i is the start-index of the matching
that ends at j.

Lemma 6 states that precise matchings of optimal reset chains that share a common
suffix never overlap.

Lemma 6. Let ρ be a run of ∆P. Let v ∈ V. Let κ,κ ∈ R(v) be s.t. κ and κ have
a common suffix, i.e., there exists l > 0 s.t. κ[l,0] = κ[l,0]. Let (ik, i1) ∈ α(κ, ρ) and
(jn, j1) ∈ α(κ, ρ). Either κ = κ and [ik . . . i1] = [jn . . . j1] or the two intervals [ik . . . i1]
and [jn . . . j1] are disjoint, i.e., i1 < jn or j1 < ik.

Proof. Let κ = ak
τk,ck−−−→ ak−1 . . . a1

τ1,c1−−−→ v .
Let κ = bn

tn,cn−−−→ bn−1 . . . b1
t1,c1−−−→ v.

138

7.2. Soundness of Reasoning on Reset Chains

Let ik, ik−1, . . . i1 be a precise matching of κ on ρ.
Let jn, jn−1, . . . j1 be a precise matching of κ on ρ.

[A] We show that if i1 = j1 then ik = jn and κ = κ: W.l.o.g. assume k ≤ n.

[A.1] We show that for all k ≤ l ≤ 1 il = jl: By assumption i1 = i1 = j1 = j1.
We conclude that a1 = b1 because since ∆P is fan-in free there is exactly one a1 s.t.
(a1,_, ρ(i1)) ∈ R(v). Assume i2 6= j2. Case j2 < i2: By Definition 52 a1 is not reset
on ρ[j2+1,j1], i.e., (ρ(k),__) 6∈ R(a1) for all j2 < k < j1. Note that j2 < i2 < i1 = j1.
We have (ρ(i2),_,_) ∈ R(b1) (Definition 52 and Definition 28). With a1 = b1 we have
(ρ(i2),_,_) ∈ R(a1). Contradiction. Case i2 < j2: Analogous. Thus i2 = j2. We apply
the same reasoning for i3, i4 . . . ik consecutively.

[A.2] We show that k = n: By [A.1] we have that κ[k,1] = κ (Definition 52). Thus κ is a
suffix of κ. But by assumption κ is optimal. Thus κ = κ (Definition 28).

[A] is proven with [A.1] and [A.2].

[B] We show that if i1 6= j1 then i1 < jn or j1 < ik, i.e., the intervals [ik . . . i1] and
[jn . . . j1] are disjoint:

[B.1] We have ρ(i1) = ρ(j1) = t1 because by assumption κ and κ have a common suffix.

[B.2] We show [B.2.i] that for all l with jn ≤ l < j1 it holds that ρ(l) 6= t1 and [B.2.ii]
that for all l with ik ≤ l < i1 it holds that ρ(l) 6= t1.
[B.2.i] Assume there is some l with jn ≤ l < j1 s.t. ρ(l) = t1. Then there is some
n ≥ r > 1 s.t. jr ≤ l < jr−1. Since jn, jn−1, . . . j1 is a precise matching of κ we have that
for all jr < s < jr−1 (ρ(s),_,_) 6∈ R(ar−1) (Definition 52). But since κ is sound ar−1
must be reset on all paths from the target location of t1 to the source location of tr−1, i.e.,
in particular on ρ[l+1,jr−1] because ρ(l) = t1 and ρ(jr−1) = tr−1 (Definition 52). Thus
there must be some s with jr ≤ l < s < jr−1 s.t. (ρ(s),_,_) ∈ R(ar−1). Contradiction.
[B.2.ii] Analogous.

[B.1] and [B.2] imply [B]: By assumption i1 6= j1. W.l.o.g. let i1 < j1. With ik ≤ i1 and
jn ≤ j1 we have ik < j1. We thus have to show that i1 < jn: Assume jn ≤ i1: Then
jn ≤ i1 < j1. But with [B.1] this contradicts [B.2]. Therefore i1 < jn.

With [A] and [B] the claim is proven.

Lemma 7 extends Lemma 2 by chained resets. Let v be a local transition bound for τ :
The question how often a given transition τ may appear on a run ρ is translated to the
question how often the transitions that increase the value of the local transition bound v
are executed. But in contrast to Lemma 2 Lemma 7 takes the context under which these
transitions may increase v into account. See Section 3.5 for more details.

Lemma 7. Let ρ = (σ0, l0) u0−→ (σ1, l1) u1−→ . . . be a run of ∆P. Let τ ∈ E. Let v ∈ V be
a local bound for τ on bρc. Let vb : A → Z be s.t. vb(a) is a variable bound for a on ρ

139

7. Proofs

for all a ∈ {in(κ) | κ ∈ R(v)}. Then ∑
a∈

⋃
κ∈R(v)

atm1(κ)

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

(min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

is a transition bound for τ on ρ.

Proof. As argued in the proof of Lemma 2 it is sufficient to consider the case ρ = bρc.

A) As shown in the proof of Lemma 2 we have that

](τ, ρ) ≤
(∑

(t,c)∈I(v)
](t, ρ)× c

)
+

∑
j∈Θ(R(v),ρ)

σj+1(v)

B) We show that

∑
j∈Θ(R(v),ρ)

σj+1(v) ≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

(min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

With Lemma 5 we have that for each j ∈ Θ(R(v), ρ) there is at least one κ ∈ R(v) and
one i ≤ j s.t. (i, j) ∈ α(κ, ρ).

Further: Let κ ∈ R(v). Let (i, j) ∈ α(κ, ρ). With Lemma 4 we have that:

σj+1(v) ≤ σi(in(κ)) + c(κ) +
∑

a∈atm(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ[i+1,j])× c

Therefore:

∑
j∈Θ(R(v),ρ)

σj+1(v) ≤
∑

κ∈R(v)

∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ) +
∑

a∈atm(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ[i+1,j])× c

(1a)=
∑

κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+

 ∑
(i,j)∈α(κ,ρ)

∑
a∈atm(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ[i+1,j])× c


140

7.2. Soundness of Reasoning on Reset Chains

(1b)=
∑

κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)ρ

σi(in(κ)) + c(κ)

+
∑

a∈atm(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

(1)=
∑

κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)ρ

σi(in(κ)) + c(κ)

+
∑

a∈atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

(2)
≤

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(3a)=

 ∑
κ∈R(v)

∑
a∈atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(3b)=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

∑
κ∈R(v) s.t. a∈atm1(κ)

 ∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(3c)=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

 ∑
κ∈R(v) s.t. a∈atm1(κ)

∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j])

× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

141

7. Proofs

(3)
≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

σi(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(4)
≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

 ∑
(i,j)∈α(κ,ρ)

vb(in(κ)) + c(κ)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(5a)=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

|α(κ, ρ)| × (vb(in(κ)) + c(κ))

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(5)
≤

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

(min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(1a) Commutativity.

(1b) Distributivity.

(1) We have atm(κ) = atm1(κ) ∪ atm2(κ), atm1(κ) ∩ atm2(κ) = ∅ and v ∈ atm1(κ)
(Definition 30).

(2) With Lemma 6 we have that all intervals in α(κ, ρ) are pairwise disjoint. Therefore∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j]) ≤](t, ρ). Further note that c > 0 for (_, c) ∈ I(a).

142

7.2. Soundness of Reasoning on Reset Chains

(3a) Commutativity.

(3b) Commutativity.

(3c) Distributivity.

(3) Let κ1, κ2 ∈ R(v). Assume a ∈ atm1(κ1) ∩ atm1(κ2) and a 6= v. By Definition 30
there is exactly one path in the reset graph from a to v. Thus κ1 and κ2 have
a common suffix: they share the single path from a to v in the reset graph. We
therefore have by Lemma 6 that all intervals in α(κ1, ρ) ∪ α(κ2, ρ) are pairwise
disjoint. Therefore

∑
κ∈R(v) s.t. a∈atm1(κ)

∑
(i,j)∈α(κ,ρ)

](t, ρ[i+1,j]) ≤](t, ρ). Further note

that c > 0 for (_, c) ∈ I(a).

(4) Let κ ∈ R(v). By assumption vb(in(κ)) denotes a variable bound for in(κ) on ρ.

(5a) With
∑

(i,j)∈α(κ,ρ)
vb(in(κ)) + c(κ) = |α(κ, ρ)| × (vb(in(κ)) + c(κ))

(5) Let κ ∈ R(v). Let (i1, j1), (i2, j2) ∈ α(κ, ρ). We have by Lemma 6 that all intervals
in α(κ, ρ) are pairwise disjoint. Further each transition t ∈ trn(κ) appears at least
once on each sub-run ρ[i,j] with (i, j) ∈ α(κ, ρ). Therefore: |α(κ, ρ)| ≤ min

t∈trn(κ)
](t, ρ).

C)

](τ, ρ)
(1)
≤

 ∑
(t,c)∈I(v)

](t, ρ)× c

+

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)\{v}

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

(min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(2)=

 ∑
a∈

⋃
κ∈R(v)

atm1(κ)

∑
(t,c)∈I(a)

](t, ρ)× c


+

∑
κ∈R(v)

(min
t∈trn(κ)

](t, ρ))×max(vb(in(κ)) + c(κ), 0)

+
∑

a∈atm2(κ)

∑
(t,c)∈I(a)

](t, ρ)× c

(1) With A) and B).

(2) We have R(v) 6= ∅ by well-definedness of ∆P and therefore R(v) 6= ∅. Further
v ∈ atm1(κ) for all κ ∈ R(v).

143

7. Proofs

7.2.1 Proof of Theorem 4

We prove the more general claim formulated in Theorem 9.

Theorem 9 (Soundness of Bound Algorithm using Reset Chains). Let ∆P(L,E, lb, le)
be a well-defined and fan-in free DCP over atoms A with a reset dag. Let Ξ be a set of
runs of ∆P that is closed under normalization. Let ζ : E 7→ Expr(A) be a local bound
mapping for all ρ ∈ Ξ. Let TB and VB be defined as in Definition 31. Let τ ∈ E
and a ∈ A. Let ρ ∈ Ξ. Let σ0 be the initial state of ρ. We have: (I) JTB(τ)K(σ0) is a
transition bound for τ on ρ. (II) JVB(a)K(σ0) is a variable bound for a on ρ.

Proof. Let ρ = (σ0, l0) u0−→ (σ1, l1) u1−→ · · · ∈ Ξ.

If JTB(τ)K =∞ (I) holds trivially. If JVB(a)K =∞ (II) holds trivially.

Assume JTB(τ)K 6=∞ and JVB(a)K 6=∞. Then in particular the computation of TB(τ)
resp. VB(a) terminate. We proceed by induction over the call tree of TB(τ) resp. VB(a).

Base Case: As in the proof of Theorem 8 (Section 7.1.1).

Step Case:
I) As in the proof of Theorem 8 (Section 7.1.1).
II)

](τ, ρ)
(1)
≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

](t, ρ)× c


+

∑
κ∈R(ζ(τ))

(min
t∈trn(κ)

](t, ρ))×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

](t, ρ)× c

(2)
≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

](t, ρ)× c


+

∑
κ∈R(ζ(τ))

(min
t∈trn(κ)

JTB(t)K(σ0))×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

](t, ρ)× c

144

7.2. Soundness of Reasoning on Reset Chains

(3)
≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

](t, ρ)× c


+

∑
κ∈R(ζ(τ))

JTB(trn(κ))K(σ0)×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

](t, ρ)× c

(4)
≤

 ∑
b∈

⋃
κ∈R(ζ(τ))

atm1(κ)

∑
(t,c)∈I(b)

JTB(t)K(σ0)× c


+

∑
κ∈R(ζ(τ))

JTB(trn(κ))K(σ0)×max(JVB(in(κ))K(σ0) + c(κ), 0)

+
∑

b∈atm2(κ)

∑
(t,c)∈I(b)

JTB(t)K(σ0)× c

(5)= JIncr(
⋃

κ∈R(ζ(τ))

atm1(κ))K(σ0)

+
∑

κ∈R(ζ(τ))

JTB(trn(κ))K(σ0)×max(JVB(in(κ))K(σ0) + c(κ), 0)

+ JIncr(atm2(κ))K(σ0)
(6)= JTB(τ)K(σ0)

(1) By Lemma 7: Since Ξ is closed under normalization we have that ζ(τ) is a local
bound for τ on bρc. Further: Let κ ∈ R(ζ(τ)). We have that VB(in(κ)) is called
during the computation of TB(τ) (Definition 31). Note that with JTB(τ)K 6=∞
also JVB(in(κ))K 6=∞. By I.H. JVB(in(κ))K(σ0) is a variable bound for in(κ).

(2) Let κ ∈ R(ζ(τ)). Let t ∈ trn(κ). We have that TB(t) is called during the
computation of TB(τ). Thus for t ∈ trn(κ) with JTB(t)K 6= ∞ we have that
JTB(t)K(σ0) is a transition bound for t on ρ by I.H.. Note that with JTB(τ)K 6=∞
there is a t ∈ trn(κ) s.t. JTB(t)K 6=∞. Thus min

t∈trn(κ)
](t, ρ) ≤ min

t∈trn(κ)
JTB(t)K(σ0).

(3) With TB(trn(κ)) = min
t∈trn(κ)

TB(t) (Definition 31) and Definition 17.

(4) Let κ ∈ R(ζ(τ)). Let b ∈ atm(κ). Let (t,_) ∈ I(b). We have that TB(t) is
called when computing TB(τ) (Definition 31). Note that with JTB(τ)K 6=∞ also
JTB(t)K 6=∞. By I.H.](t, ρ) ≤ JTB(t)K(σ0).

(5) Definition 31 and Definition 17.

145

7. Proofs

(6) Definition 31 and Definition 17.

7.3 Soundness of Path-Sensitive Reasoning

7.3.1 Preliminaries

A main idea of our soundness proof is as follows: We decompose a given run ρ of ∆P
into the simple and cyclic paths that are taken by ρ. Based on this decomposition our
proof reasons about the increments and decrements that occurs on the obtained simple
and cyclic paths.

Definition 55 to Definition 57 and Lemma 8 to Lemma 11 are concerned with the
decomposition of a given run.

The essential lemmas for the proof of Theorem 7 are Lemma 12 and Lemma 13. These
lemmas should be familiar from the proof of the basic bound algorithm (Section 7.1):
Lemma 12 is a path-sensitive version of Lemma 2, Lemma 13 is a path-sensitive version
of Lemma 3.

We now discuss the aforementioned decomposition of a run ρ into the simple and cyclic
paths taken by ρ: As an example consider Figure 3.1 (c) (page 38). Consider a run of
Figure 3.1 (c) that takes the path π = lb

u0−→ l1
u1−→ l2

u2−→ l2
u2−→ l2

u3−→ l1
∅−→ le. This path

can be decomposed into the simple and acyclic path π0 = lb
u0−→ l1

∅−→ le, and the simple
and cyclic paths π1 = l1

u1−→ l2
u3−→ l1, π2 = l2

u2−→ l2 and π3 = l2
u2−→ l2.

Below, we formulate path decomposition in two steps: In a first step (Definition 56), the
transitions on the path are reordered by permuting (Definition 55) the transition indices.
In a second step (Definition 57), the obtained sequence of transitions is split into simple
paths.

The result is a list of simple paths such that only the first element of this list forms an
acyclic (or empty) path, while all other elements of the list form cyclic paths (Lemma 10).

The two-step-approach of first reordering the transitions on the paths and then splitting
the resulting transition sequence into simple paths, facilitates the proofs of our essential
lemmas: The reordering allows to exploit commutativity and associativity of the addition
operation: Given a path π, a reordering $(π) of the transitions on π and a variable v,
we have that SumID(π)(v) = SumID($(π))(v) (SumID(π)(v) is defined in Definition 35,
page 67). Further, let Splt($(π)) denote a splitting of the reordering $(π), i.e., the
sequence of transitions $(π) is split into several sequences of transitions Splt($(π)).
Then obviously SumID($(π))(v) =

∑
l∈Splt($(π))

SumID(l)(v).

Definition 54 (Lists). Let D be some domain. We call a finite sequence 〈e0, e1, e2, . . . , en〉
with ei ∈ D a list over D. By ε we denote the empty list. By ◦ we denote the list con-
catenation operator: E.g., 〈1, 2〉 ◦ 〈3, 4〉 = 〈1, 2, 3, 4〉. We denote the set of all lists over

146

7.3. Soundness of Path-Sensitive Reasoning

D by L(D). We say that a list L1 = 〈l0, l1, . . . , ln〉 over L(D) is a splitting of a list L2
over D iff l0 ◦ l1 · · · ◦ ln = L2. A list L = 〈e0, e2, . . . , en〉 over D defines the function
L : [0, n] → D with L(i) = ei for all 0 ≤ i ≤ n. By](e, L) we denote the number of
elements ei of L s.t. ei = e. By hd(L) = e0 we denote the first element of the list, by
tl(L) = 〈e1, . . . en〉 we denote the list without its first element.

Definition 55 (Path Index Permutation). Let ∆P(L,E, lb, le) be a DCP. Let π = l0
u0−→

l1
u1−→ . . . be a path of ∆P. We call a bijective function [0 . . . (len(π)−1)]→ [0 . . . (len(π)−

1)] an index permutation of π. We represent index permutations in form of lists: E.g.,
an index permutation idxp = 〈1, 2, 0〉 defines the function idxp : [0 . . . 2]→ [0 . . . 2] with
idxp(0) = 1, idxp(1) = 2 and idxp(2) = 0.
Recall, that by π(i) = li

ui−→ li+1 we denote the i + 1th transition on π. Let idxp be
an index permutation of π. Depending on the context, we denote by idxp either the
index permutation itself, or the transition sequence π(idxp(0)), π(idxp(1)) . . . or the path
formed by these transitions (if such a path exists).

Definition 56 (The Index Permutation $). Let ∆P(L,E, lb, le) be a DCP. Let π be a
path of ∆P. We define the index permutation $(π) by stating $(π) = $(π, 0, len(π)),
where

$(π, i, j) =


ε if i = j

Let i < k ≤ j be the smallest k s.t. lk = li
$(π, k, j) ◦ 〈i〉 ◦$(π, i+ 1, k)

}
if li appears on π[i+1,j]

〈i〉 ◦$(π, i+ 1, j) else

.

Example: Consider Figure 3.1 (c) (page 38).
Consider the path π = lb

u0−→ l1
u1−→ l2

u2−→ l2
u2−→ l2

u3−→ l1
∅−→ le.

We have: $(π) = $(π, 0, 5) =
〈
lb

u0−→ l1, l1
∅−→ le, l1

u1−→ l2, l2
u3−→ l1, l2

u2−→ l2, l2
u2−→ l2

〉
(for the sake of readability we denote an element of $(π) by the respective transition
rather than the index on π).

Lemma 8. Let ∆P(L,E, lb, le) be a DCP. Let π be a path of ∆P. Let 0 ≤ i < j < len(π).
$(π, i, j) is an index permutation of π[i,j].

Proof. By Definition.

Definition 57 (The Splitting Splt$ of $). Let ∆P(L,E, lb, le) be a DCP. Let π =
l0

u0−→ l1
u1−→ . . . ln be a path of ∆P. We define the function Splt$(π) that returns a

splitting (Definition 54) of $ by stating Splt$(π) = Splt$(π, 0, len(π)), where

Splt$(π, i, j) =


〈ε〉 if i = j

Let i < k ≤ j be the smallest k s.t. lk = li
Splt$(π, k, j) ◦ 〈〈i〉 ? Splt$(π, i+ 1, k)〉

}
if li appears on π[i+1,j]

〈i〉 ? Splt$(π, i+ 1, j) else.

147

7. Proofs

Here, ? denotes the operator s.t. l1 ? L2 = 〈l1 ◦ hd(L2)〉 ◦ tl(L2).
E.g., l1 ? 〈l2, l3 . . . 〉 = 〈l1 ◦ l2, l3, . . . 〉.

Example: Consider Figure 3.1 (c).
Consider the path π = lb

u0−→ l1
u1−→ l2

u2−→ l2
u2−→ l2

u3−→ l1
∅−→ le.

We have Splt$(π) = Splt$(π, 0, 5) =
〈
lb

u0−→ l1
∅−→ le, l1

u1−→ l2
u3−→ l1, l2

u2−→ l2, l2
u2−→ l2

〉
(for the sake of readability we denote an element of Splt$(π) by the path that is formed
by the respective transitions rather than the list of indices).

Lemma 9. Let ∆P(L,E, lb, le) be a DCP. Let π be a path of ∆P. Let 0 ≤ i < j < len(π).
Splt$(π, i, j) is a splitting of $(π, i, j).

Proof. By Definition.

Lemma 10. Let ∆P(L,E, lb, le) be a DCP. Let π = l0
u0−→ l1

u1−→ . . . ln be a path of ∆P
with n > 0. We have:
1) If l0 6= ln then hd(Splt$(π)) ∈ S(l0, ln) else hd(Splt$(π)) = ε.
2) tl(Splt$(π)) ⊆

⋃
l∈L
S(l, l).

Proof. We prove the following more general claim:

Let 0 ≤ i ≤ j < n. We write Splt$(i, j) as a shorthand for Splt$(π, i, j). If i < j then
1) If li 6= lj then Splt$(i, j)(0) ∈ S(li, lj) else Splt$(i, j)(0) = ε
2) Splt$(i, j)(h) ∈

⋃
l∈L
S(l, l) for h > 0.

We proceed by induction over the call tree of Splt$(i, j).

Base Case) No recursive call to Splt$ is triggered. This is the case if i = j. The claim
thus holds trivially.

Step Case) We have that i < j. Case Distinction:
Case A) li appears on π[i+1,j]. Let i < k ≤ j be the smallest k s.t. lk = li. We have

Splt$(i, j) = Splt$(k, j) ◦ 〈〈i〉 ? Splt$(i+ 1, k)〉 (7.1)

by Definition 57.
By I.H. the claim holds for Splt$(k, j) and for Splt$(i+ 1, k). We therefore have:
i) If lk 6= lj then Splt$(k, j)(0) ∈ S(lk, lj) else Splt$(k, j)(0) = ε.
ii) Splt$(k, j)(h) ∈

⋃
l∈L
S(l, l) for h > 0.

iii) If li+1 6= lk then Splt$(i+ 1, k)(0) ∈ S(li+1, lk) else Splt$(i+ 1, k)(0) = ε.
iv) Splt$(i+ 1, k)(h) ∈

⋃
l∈L
S(l, l) for h > 0.

148

7.3. Soundness of Path-Sensitive Reasoning

A.1) We show “if li 6= lj then Splt$(i, j)(0) ∈ S(li, lj) else Splt$(i, j)(0) = ε”:
We have that

Splt$(i, j)(0) = Splt$(k, j)(0) (7.2)

with (7.1).
Case Distinction: Case li 6= lj) With i) and lk = li 6= lj and (7.2) it holds that
Splt$(i, j)(0) ∈ S(li, lj).
Case li = lj) With i) and lk = li = lj and (7.2) it holds that Splt$(i, j)(0) = ε.

A.2) We show “Splt$(i, j)(h) ∈
⋃
l∈L
S(l, l) for h > 0”: We have that for h > 0

Splt$(i, j)(h) = 〈〈i〉 ? Splt$(i+ 1, k)〉 (h− 1) (7.3)

with (7.1). By definition of the ?-operator we have that for h > 0

〈〈i〉 ? Splt$(i+ 1, k)〉 (h) = Splt$(i+ 1, k)(h)

and thus with iv) we have for h > 0 that

(〈i〉 ? Splt$(i+ 1, k))(h) ∈
⋃
l∈L
S(l, l)

and thus with (7.3) we have that for h > 1

Splt$(i, j)(h) ∈
⋃
l∈L
S(l, l)

.

It remains to show that Splt$(i, j)(1) ∈
⋃
l∈L
S(l, l): We have that

Splt$(i, j)(1) (1)= 〈〈i〉 ? Splt$(i+ 1, k)〉 (0) (2)= 〈i〉 ◦ Splt$(i+ 1, k)(0)

where (1) holds with (7.3) and (2) holds by definition the ?-operator (Definition 57).
Case Distinction: Case lk 6= li+1) With iii) 〈i〉 ◦ Splt$(i+ 1, k)(0) ∈ S(li, lk) because by
assumption lk = li and thus the path 〈i〉 ◦ Splt$(i+ 1, k)(0) remains simple. Thus with
li = lk we have Splt$(i, j)(1) ∈ S(li, li).
Case lk = li+1) With iii) 〈i〉 ◦ Splt$(i + 1, k)(0) = 〈i〉. Thus with 〈i〉 ∈ S(li, li+1) and
li = lk = li+1 we have Splt$(i, j)(1) ∈ S(li, li).

Case B) li does not appear on π[i+1,j]. We have

Splt$(i, j) = 〈i〉 ? Splt$(i+ 1, j) (7.4)

by Definition 57.
By I.H. the claim holds for Splt$(i+ 1, j). We therefore have
i) If li+1 6= lj then Splt$(i+ 1, j)(0) ∈ S(li+1, lj) else Splt$(i+ 1, j)(0) = ε.

149

7. Proofs

ii) Splt$(i+ 1, j)(h) ∈
⋃
l∈L
S(l, l) for h > 0.

B.1) We show “if li 6= lj then Splt$(i, j)(0) ∈ S(li, lj) else Splt$(i, j)(0) = ε”. Since by
assumption li does not appear on π[i+1,j] we have that li 6= lj . It remains to show that
Splt$(i, j)(0) ∈ S(li, lj): We have that

Splt$(i, j)(0) = 〈i〉 ◦ Splt$(i+ 1, j)(0) (7.5)

with (7.4) and the definition of the ?-operator (Definition 57).
Case Distinction: Case li+1 6= lj) By assumption li does not appear on π[i+1,j] and since
$(i+ 1, j) is an index permutation of π[i+1,j] (Lemma 8), we have that li does also not
appear on $(i+ 1, j) either. Since Splt$(i+ 1, j) is a splitting of $(i+ 1, j) (Lemma 9)
we have that li does not appear on Splt$(i+ 1, j)(0) either and therefore we have with
i) 〈i〉 ◦ Splt$(i+ 1, j)(0) ∈ S(li, lj). Thus with (7.5) Splt$(i, j)(0) ∈ S(li, lj).
Case li+1 = lj) With i) and (7.5) it holds that Splt$(i, j)(0) = 〈i〉 and therefore
Splt$(i, j)(0) ∈ S(li, lj) since li+1 = lj .

B.2) We show “Splt$(i, j)(h) ∈
⋃
l∈L
S(l, l) for h > 0”. We have that for h > 0

Splt$(i, j)(h) = Splt$(i+ 1, j)(h)

with (7.4) and the definition of the ?-operator (Definition 57). The claim thus follows
with ii).

Finally, Lemma 11 is a helper lemma that is used in the proofs of the main lemmas
Lemma 12 and Lemma 13. The lemma states that a list L of transitions cannot appear
more often in a list of lists splt(idxp) of transitions, that resulted from permuting and
splitting the path π, than the minimal number of times that any transition τ ∈ L appears
on π.

Lemma 11. Let ∆P(L,E, lb, le) be a DCP. Let π be a path of ∆P. Let idxp be an
index permutation of π. Let L = 〈τ1, τ2, . . . τk〉 be a list of transitions (i.e., τi ∈ E). Let
splt(idxp) be a splitting of idxp. Then](L, splt(idxp)) ≤ min

τ∈L
](τ, π).

Proof. Let τ ∈ L.

](L, splt(idxp))
(1)
≤

∑
l∈splt(idxp)

](τ, l)

(2)=](τ, idxp)
(3)=](τ, π)

(1) Let l ∈ splt(idxp). If l = L then](τ, l) > 0 because τ ∈ L by assumption.

150

7.3. Soundness of Path-Sensitive Reasoning

(2) Because splt(idxp) is a splitting of idxp.

(3) Because idxp is an index permutation of π.

7.3.2 Essential Lemmas

Lemma 12 is a path-sensitive version of Lemma 2.

Lemma 12. Let ∆P(L,E, lb, le) be a DCP over A. Let ρ = (σ0, l0) u0−→ (σ1, l1) u1−→ . . .
be a complete run of ∆P. Let τ ∈ E. Let v ∈ V be a path sensitive local bound for τ
on bρc. Let vb(a, l1) denote a upper bound invariant for a at l1 on ρ where a ∈ A and
l1 ∈ L s.t. (l1

u−→ l2, a,_) ∈ R(v) for some l2 ∈ L. Then(∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)
)

+
∑

(l1
u−→l2,a,c)∈R(v)

](l1
u−→ l2, ρ)× (vb(a, l1) + c)

is a transition bound for τ on ρ.

Proof. As argued in the proof of Lemma 2 it is sufficient to consider the case ρ = bρc.

A) We first show that

](τ, ρ) ≤ (
∑

π∈C+(v)
(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)) +
∑

j∈Θ(R(v),ρ)
σj+1(v)

We write $ as shorthand for $(ρ) and Splt$ as a shorthand for Splt$(ρ) (in this
context ρ is interpreted as the path taken by ρ).

We have:

](τ, ρ)
(1)
≤](τ, ρ) +

len(ρ)−1∑
i=0

σi+1(v)− σi(v)

(2a)=](τ, ρ) +
len(ρ)−1∑
i=0

σ$(i)+1(v)− σ$(i)(v)

(2)=](τ, ρ) +
∑

l∈Splt$

∑
i∈l

σi+1(v)− σi(v)

(3a)
≤](τ, ρ) +

∑
l∈Splt$

∑
i∈l with (ρ(i),_)∈I(v)∪D(v)

σi+1(v)− σi(v)

(3)=](τ, ρ) +
∑

l∈Splt$

+
∑

i∈l with (ρ(i),_,_)∈R(v)

σi+1(v)− σi(v)

151

7. Proofs

(3b)=](τ, ρ) +

 ∑
l∈Splt$

∑
i∈l with (ρ(i),_)∈I(v)∪D(v)

σi+1(v)− σi(v)


(3)=](τ, ρ) +

∑
l∈Splt$

∑
i∈l with (ρ(i),_,_)∈R(v)

σi+1(v)− σi(v)

(3c)
≤](τ, ρ) +

 ∑
l∈Splt$

∑
i∈l with (ρ(i),c)∈I(v)∪D(v)

c


(3)=](τ, ρ) +

∑
l∈Splt$

∑
i∈l with (ρ(i),_,_)∈R(v)

σi+1(v)− σi(v)

(3)=](τ, ρ) +

 ∑
l∈Splt$

SumID(l)(v)


(3)=](τ, ρ) +

∑
l∈Splt$

∑
i∈l with (ρ(i),_,_)∈R(v)

σi+1(v)− σi(v)

(4a)
≤](τ, ρ) +

 ∑
l∈Splt$

SumID(l)(v)

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(4b)=](τ, ρ) +

 ∑
π∈S(lb,le)∪

⋃
l∈L

S(l,l)

](π, Splt$)× SumID(π)(v)

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(4c)=](τ, ρ) +

 ∑
π∈C−(v)

](π, Splt$)× SumID(π)(v)


(10)=](τ, ρ) +

 ∑
π∈C+(v)

](π, Splt$)× SumID(π)(v)

 +
∑

j∈Θ(R(v),ρ)

σj+1(v)

(4)
≤

 ∑
π∈C+(v)

](π, Splt$)× SumID(π)(v)

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(5)
≤

 ∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(v)(π)

+
∑

j∈Θ(R(v),ρ)

σj+1(v)

(1) In the proof of Lemma 2 we show that
len(ρ)−1∑
i=0

σi+1(v)− σi(v) > 0.

152

7.3. Soundness of Path-Sensitive Reasoning

(2a) By commutativity: With Lemma 8 $ is an index permutation of ρ.

(2) With Lemma 9 Splt$ is a splitting (Definition 54) of $.

(3a) Let l ∈ Splt$ and i ∈ l. Assume (ρ(i),_,_) 6∈ R(v), I.e., v is not reset on ρ(i).
Then either i) v 6∈ def(li+1) or ii) v′ ≤ v + ci ∈ ui for some ci ∈ Z.
Case i): By assumption ρ = bρc, therefore σi+1(v) = 0. Thus σi+1(v)− σi(v) ≤ 0.
Case ii): If ci 6= 0 then (ρ(i),_) ∈ I(v)∪D(v). Else σi+1(v)−σi(v) ≤ 0. Soundness
thus follows by commutativity.

(3b) Commutativity

(3c) For (ρ(i), c) ∈ I(v) ∪ D(v) we have that σi+1(v) − σi(v) ≤ c (Definition 19 and
Definition 34).

(3) Let l ∈ Splt$. Let l = 〈i1, i2, . . . ik〉. With Lemma 10 and lb 6= le (note that ∆P
is well-defined and ρ is complete) we have that the transitions i1(ρ), i2(ρ) . . . , ik(ρ)
form a non-empty path of ∆P . Note that in the notation SumID(l)(v) the list l is
interpreted as representing this path. Soundness thus follows from Definition 35:∑
i∈l with (ρ(i),c)∈I(v)∪D(v)

c = SumID(l)(v)

(4a) With σi(v) ≥ 0 for all i we have that σi+1(v) ≥ σi+1(v)− σi(v).

(4b) With Lemma 10 and lb 6= le (note that ∆P is well-defined and ρ is complete) we
have that Splt$ ⊆ S(lb, le) ∪

⋃
l∈L
S(l, l). Recall that](π, Splt$) counts how often

π occurs in the list Splt$ (Definition 54). Here we interpret an indice list in Splt$
as the path formed by the respective transitions.

(4c) Let π ∈ S(lb, le) ∪
⋃
l∈L
S(l, l). If SumID(π)(v) 6= 0 then SumID(π)(v) ∈ C+(v) or

SumID(π)(v) ∈ C−(v) (Definition 35).

(4) a) We show that](τ, ρ) ≤
∑

π∈C−(v)
](π, Splt$):

](τ, ρ) (i)= |{0 ≤ i < len(ρ) | ρ(i) = τ}|
(ii)= |{0 ≤ i < len(ρ) | ρ($(i)) = τ}|
(iii)=

∑
l∈Splt$

](τ, l)

(iv)=
∑

l∈Splt$

ITE(l ∈ C (τ), 1, 0)

(v)=
∑

π∈C(τ)
](π, Splt$)

(vi)
≤

∑
π∈C−(v)

](π, Splt$)

153

7. Proofs

(i) Definition 15.
(ii) $ is an index permutation of ρ.
(iii) Splt$ is a splitting of $.
(iv) Let l ∈ Splt$. By Lemma 10 and lb 6= le (note that ∆P is well-defined and ρ
is complete) we have that the indices in l form a non-empty simple path of ∆P.
Thus](τ, l) = 1 iff l ∈ C (τ) and](τ, l) = 0 else.
(v) Definition 54.
(vi) We have that C (τ) ⊆ C−(v) because by assumption v is a path sensitive local
bound for τ (Definition 38).

Thus](τ, ρ)−
(∑
π∈C−(v)

](π, Splt$)
)
≤ 0.

b) Soundness of (4) now follows from∑
π∈C−(v)

](π, Splt$)× SumID(π)(v) ≤ −
∑

π∈C−(v)
](π, Splt$)

because SumID(π)(v) < 0 for π ∈ C−(v) (Definition 35).

(5) Let π be a path of ∆P. By Lemma 11 we have that](π, Splt$) ≤ min
τ∈π

](τ, ρ).

B) By reasoning analogous to step B in the proof of Lemma 2 we get:∑
j∈Θ(R(v),ρ)

σj+1(v) ≤
∑

(l1
u−→l2,a,c)∈R(v)

](t, ρ)× (vb(a, l1) + c)

With A) and B) we have

](τ, ρ) ≤

 ∑
π∈C+(v)

(min
t∈trn(π)

](t, ρ))× SumID(π)(v)

+
∑

(l1
u−→l2,a,c)∈R(v)

](l1
u−→ l2, ρ)× (vb(a, l1) + c)

Lemma 13 is a path-sensitive version of Lemma 3.

Lemma 13. Let v ∈ V. Let l ∈ L be s.t. v ∈ def(l). Let ρ = (σ0, l0) u0−→ (σ1, l1) u1−→ . . .
be a run of ∆P. Let vb(a, l1) denote an upper bound invariant for a at l1 on ρ where
a ∈ A and l1 ∈ L s.t. (l1

u−→ l2, a,_) ∈ R(v) for some l2 ∈ L. Then max
(l1

u−→l2,a,c)∈R(v)
vb(a, l1) + c + max

π∈Sa(l2,l)
SumID(π)(v)


+

∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)

is an upper bound invariant for v at l on ρ. We assume max
π∈Sa(l2,l)

· · · = 0 for Sa(l2, l) = ∅.

154

7.3. Soundness of Path-Sensitive Reasoning

Proof. We have to show that

σi(v) ≤

 max
(l1

u−→l2,a,c)∈R(v)
vb(a, l1) + c + max

π∈Sa(l2,l)
SumID(π)(v)


+

∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)

for all 0 ≤ i ≤ len(ρ) with li = l (Definition 25).

Let 0 ≤ m ≤ len(ρ) be s.t. lm = l. Since v ∈ def(l) (by assumption) we have by well-
definedness of ∆P that there is a 0 ≤ h < m, a a ∈ A and a c ∈ Z s.t. (ρ(h), a, c) ∈ R(v)
and v is not reset on ρ[h+1,m], i.e., for all h < i < m (ρ(i),_,_) 6∈ R(v). In other words:
There is a maximal index h < m such that v is reset on ρ(h).

We write$(i, j) as shorthand for$(ρ, i, j) and Splt$(i, j) as a shorthand for Splt$(ρ, i, j)
(in this context ρ is interpreted as the path taken by ρ).

We have:

σm(v) (1a)= σh+1(v) +
m−1∑
i=h+1

σi+1(v)− σi(v)

(1b)= σh+1(v) +
m−h−2∑
i=0

σ$(h+1,m)(i)+1(v)− σ$(h+1,m)(i)(v)

(1c)= σh+1(v) +
∑

l∈Splt$(h+1,m)\{ε}

∑
i∈l

σi+1(v)− σi(v)

(1)
≤ σh+1(v) +

∑
l∈Splt$(h+1,m)\{ε}

∑
i∈l with (ρ(i),c)∈I(v)∪D(v)

c

(2a)= σh+1(v) +
∑

l∈Splt$(h+1,m)\{ε}

SumID(l)(v)

(2b)= σh+1(v) + SumID(hd(Splt$(h+ 1,m)))(v) +
∑

l∈tl(Splt$(h+1,m))

SumID(l)(v)

(2)
≤ σh+1(v) + max

π∈Sa(lh+1,l)
SumID(π)(v) +

∑
l∈tl(Splt$(h+1,m))

SumID(l)(v)

(3a)= σh+1(v) + max
π∈Sa(lh+1,l)

SumID(π)(v)

+
∑

π∈
⋃
l∈L

S(l,l)

](π, tl(Splt$(h+ 1,m)))× SumID(π)(v)

(3b)
≤ σh+1(v) + max

π∈Sa(lh+1,l)
SumID(π)(v)

+
∑

π∈C+(v)

](π, tl(Splt$(h+ 1,m)))× SumID(π)(v)

155

7. Proofs

(3)
≤ σh+1(v) + max

π∈Sa(lh+1,l)
SumID(π)(v) +

∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)

(4a)
≤ σh(a) + c + max

π∈Sa(lh+1,l)
SumID(π)(v) +

∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)

(4b)
≤ vb(a, lh) + c + max

π∈Sa(lh+1,l)
SumID(π)(v) +

∑
π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)

(4)
≤

(
max

(l1
u−→l2,a,c)∈R(v)

vb(a, l1) + c + max
π∈Sa(l2,l)

SumID(π)(v)
)

+
∑

π∈C+(v)

(min
τ∈trn(π)

](τ, ρ))× SumID(π)(v)

(1a) We have
m−1∑
i=h+1

σi+1(v)− σi(v) = σm(v)− σh+1(v).

Thus σh+1(v) +
m−1∑
i=h+1

σi+1(v)− σi(v) = σm(v).

(1b) By commutativity: With Lemma 8 $(h+ 1,m) is an index permutation of ρ[h+1,m].

(1c) With Lemma 9 Splt$(h+ 1,m) is a splitting (Definition 54) of $(h+ 1,m).

(1) By assumption we have that for all h < i < m (ρ(i),_,_) 6∈ R(v). By well-
definedness of ∆P we have that for all h < i ≤ m v ∈ def(li). Thus for all
h < i < m there is a ci ∈ Z s.t. v′ ≤ v + ci ∈ ui. Let l ∈ Splt$(h + 1,m).
Since $(h + 1,m) is an index permutation of ρ[h+1,m] and Splt$(h + 1,m) is a
splitting of $(h + 1,m) we have that

∑
i∈l

σi+1(v) − σi(v) ≤
∑
i∈l

ci (Definition 5).

Observe that if ci 6= 0 then (ρ(i), ci) ∈ I(v) or (ρ(i), ci) ∈ D(v). Further note that
since ∆P is fan-in free there is exactly one such ci for each h < i < m. Thus∑
i∈l

σi+1(v)− σi(v) ≤
∑

i∈l with (ρ(i),c)∈I(v)∪D(v)
c

(2a) Let l ∈ Splt$(h+ 1,m). Let l = 〈i1, i2, . . . ik〉 6= ε. With Lemma 10 we have that
the transitions i1(ρ), i2(ρ) . . . , ik(ρ) form a path of ∆P. Note that in the notation
SumID(l)(v) l is interpreted as representing this path. Soundness thus follows
from Definition 35:

∑
i∈l with (ρ(i),c)∈I(v)∪D(v)

c = SumID(l)(v)

(2b) Let L be a list. Then 〈hd(L)〉 ◦ tl(L) = L (Definition 54). We assume that
SumID(ε)(v) = 0.

(2) Case Distinction: Case [lh+1 6= lm] With Lemma 10 we have that hd(Splt$(h +
1,m)) ∈ S(lh+1, lm). By assumption lm = l. Thus SumID(hd(Splt$(h+1,m)))(v) ≤

max
π∈Sa(lh+1,l)

SumID(π)(v).

Case [lh+1 = lm] With Lemma 10 we have that hd(Splt$(h + 1,m)) = ε. Thus

156

7.3. Soundness of Path-Sensitive Reasoning

SumID(hd(Splt$(h+ 1,m)))(v) = 0 (by assumption). With lh+1 = lm = l we have
Sa(lh+1, l) = ∅ and thus max

π∈Sa(lh+1,l)
SumID(π)(v) = 0 (by assumption).

(3a) With Lemma 10 we have that tl(Splt$(h + 1,m)) ⊆
⋃
l∈L
S(l, l). Recall that

](π, tl(Splt$(h+1,m))) counts how often π occurs in the list tl(Splt$(h+1,m))
(Definition 54). Here we interpret an indice list in Splt$(h + 1,m) as the path
formed by the respective transitions.

(3b) Let π ∈
⋃
l∈L
S(l, l). We have that π ∈ C+(v) if SumID(π)(v) > 0 (Definition 35).

(3) Let π ∈ C+(v). We have that](π, Splt$(h + 1,m)) ≤ min
τ∈π

](τ, ρ[h+1,m]) by
Lemma 11. Soundness follows from i)](τ, ρ[h+1,m]) ≤](τ, ρ) for τ ∈ E and ii)
](π, tl(Splt$(h+ 1,m))) ≤](π, Splt$(h+ 1,m)).

(4a) By assumption (ρ(h), a, c) ∈ R(v). Thus σh+1(v) ≤ σh(a) + c (Definition 19), note
that ∆P is fan-in free by assumption.

(4b) By assumption vb(a, lh) is a upper bound invariant for a at lh since (lh
uh−→

lh+1, a,_) ∈ R(v) by definition of h.

(4) By assumption (ρ(h), a, c) ∈ R(v). Soundness thus follows by semantics of ’max’.

7.3.3 Proof of Theorem 7

We show the more general claim formulated in Theorem 10. Note that by Lemma 1 in
particular the set of complete runs of ∆P is closed under normalization.

Theorem 10. Let ∆P(L,E, lb, le) be a well-defined and fan-in free DCP over atoms
A. Let Ξ be a set of complete runs of ∆P that is closed under normalization. Let
ζ : E 7→ Expr(A) be a path sensitive local bound mapping for all ρ ∈ Ξ. Let a ∈ A
and τ ∈ E. Let l ∈ L be s.t. a ∈ def(l). Let ρ ∈ Ξ. Let σ0 denote the initial state of ρ.
Let TB(τ) and VB(a, l) be as defined in Definition 40. We have: (I) JTB(τ)K(σ0) is a
transition bound for τ on ρ. (II) JVB(a, l)K(σ0) is an upper bound invariant for a at l
on ρ.

Proof. Let ρ = (σ0, l0) u0−→ (σ1, l1) u1−→ . . . (σn, le) ∈ Ξ.

If JTB(τ)K =∞ (I) holds trivially. If JVB(a, l)K =∞ (II) holds trivially.

Assume JTB(τ)K 6= ∞ and JVB(a, l)K 6= ∞. Then in particular the computations of
TB(τ) resp. VB(a, l) terminate. We proceed by induction over the call tree of TB(τ)
resp. VB(a, l).

157

7. Proofs

Base Case:

(I) No function call is triggered when computing VB(a, l). This is the case iff a ∈ C
(Definition 40). Then VB(a, l) = a and the claim holds trivially with a ∈ C.
(II) No function call is triggered when computing TB(τ). This is the case iff ζ(τ) 6∈ V
(Definition 40). Then JTB(τ)K(σ0) = Jζ(τ)K(σ0) is a transition bound for τ on ρ by
Definition 18.

Step Case:

(I) a 6∈ C, thus a ∈ V. Let v = a. By assumption v ∈ def(l). Let 0 ≤ i ≤ len(ρ) be s.t.
li = l. We have to show that σi(v) ≤ JVB(a, l)K(σ0) holds for all 0 ≤ i ≤ len(ρ) with
li = l (Definition 25).

We have:

σi(v)
(1)
≤

(
max

(l1
u−→l2,b,c)∈R(v)

JVB(b, l1)K(σ0) + c + max
π∈Sa(l2,l)

SumID(π)(v)
)

+
∑

π∈C+(v)

(min
t∈trn(π)

](t, ρ))× SumID(π)(v)

(2)
≤

(
max

(l1
u−→l2,b,c)∈R(v)

JVB(b, l1)K(σ0) + c + max
π∈Sa(l2,l)

SumID(π)(v)
)

+
∑

π∈C+(v)

(min
t∈trn(π)

JTB(τ)K(σ0))× SumID(π)(v)

(3a)=
(

max
(l1

u−→l2,b,c)∈R(v)
JVB(b, l1)K(σ0) + c + max

π∈Sa(l2,l)
SumID(π)(v)

)
+

∑
π∈C+(v)

JTB(trn(π))K(σ0)× SumID(π)(v)

(3b)=
(

max
(l1

u−→l2,b,c)∈R(v)
JVB(b, l1)K(σ0) + c + max

π∈Sa(l2,l)
SumID(π)(v)

)
+ JIncr(v)K(σ0)

(3c)= JIncr(v)K(σ0) + J max
(l1

u−→l2,b,c)∈R(v)
VB(b, l1) + c + max

π∈Sa(l2,l)
SumID(π)(v)K(σ0)

(3)= JVB(v)K(σ0)

(1) By Lemma 13: Let (l1
u−→ l2, b,_) ∈ R(v). We have that VB(b, l1) is recur-

sively called when computing VB(v, l) (Definition 40). With JVB(v, l)K 6=∞ also
JVB(b, l1)K 6=∞. Since b ∈ def(l1) by well-definedness of ∆P we thus have by I.H.
that VB(b, l1) is an upper bound invariant for b at l1 on ρ.

158

7.3. Soundness of Path-Sensitive Reasoning

(2) Let π ∈ C+(v). Let t ∈ trn(π). We have that TB(t) is called when computing
VB(v) (Definition 40). Let t ∈ trn(π) be s.t. JTB(t)K 6= ∞. Since JVB(v)K 6= ∞
we have that such a t ∈ trn(π) exists. By I.H.](t, ρ) ≤ JTB(t)K(σ0). Therefore

min
t∈trn(π)

](t, ρ) ≤ min
t∈trn(π)

JTB(t)K(σ0).

(3a) With Definition 40 and Definition 17 we have that
min

t∈trn(π)
JTB(τ)K(σ0) = JTB(trn(π))K(σ0).

(3b) Definition 40 and Definition 17

(3c) Commutativity and Definition 17

(3) Definition 40 and Definition 17

(II) ζ(τ) ∈ V (Definition 40).

We have:

](τ, ρ)
(1)
≤

 ∑
π∈C+(ζ(τ))

(min
t∈trn(π)

](t, ρ))× SumID(π)(ζ(τ))


+

∑
(l1

u−→l2,b,c)∈R(ζ(τ))

](l1
u−→ l2, ρ)× (JVB(b, l1)K(σ0) + c)

(2)
≤

 ∑
π∈C+(ζ(τ))

(min
t∈trn(π)

JTB(t)K(σ0))× SumID(π)(ζ(τ))


+

∑
(l1

u−→l2,b,c)∈R(ζ(τ))

](l1
u−→ l2, ρ)× (JVB(b, l1)K(σ0) + c)

(3)
≤

 ∑
π∈C+(ζ(τ))

(min
t∈trn(π)

JTB(t)K(σ0))× SumID(π)(ζ(τ))


+

∑
(l1

u−→l2,b,c)∈R(ζ(τ))

JTB(l1
u−→ l2)K(σ0)× (JVB(b, l1)K(σ0) + c)

(4a)=

 ∑
π∈C+(ζ(τ))

JTB(trn(π))K(σ0)× SumID(π)(ζ(τ))


+

∑
(l1

u−→l2,b,c)∈R(ζ(τ))

JTB(l1
u−→ l2)K(σ0)× (JVB(b, l1)K(σ0) + c)

(4b)= JIncr(ζ(τ))K(σ0) +
∑

(l1
u−→l2,b,c)∈R(ζ(τ))

JTB(l1
u−→ l2)K(σ0)× (JVB(b, l1)K(σ0) + c)

(4)= JTB(τ)K(σ0)

159

7. Proofs

(1) By Lemma 12: Since Ξ is closed under normalization we have that ζ(τ) is a local
bound for τ on bρc as well. Let (l1

u−→ l2, b,_) ∈ R(ζ(τ)). We have that VB(b, l1) is
called during the computation of TB(τ) (Definition 40). With TB(τ) 6= ∞ also
VB(b, l1) 6=∞. Since b ∈ def(l1) by well-definedness of ∆P we thus have by I.H.
that VB(b) is an upper bound invariant for b at l1 on ρ.

(2) Let π ∈ C+(ζ(τ)). Let t ∈ trn(π). We have that TB(t) is called when computing
TB(τ) (Definition 40). Let t ∈ trn(π) be s.t. JTB(t)K 6= ∞. Since JTB(τ)K 6= ∞
we have that such a t ∈ trn(π) exists. By I.H.](t, ρ) ≤ JTB(t)K(σ0). Therefore

min
t∈trn(π)

](t, ρ) ≤ min
t∈trn(π)

JTB(t)K(σ0).

(3) Let (t,_,_) ∈ R(ζ(τ)). We have that TB(t) is recursively called during the
computation of TB(τ) (Definition 40). With TB(τ) 6=∞ also TB(t) 6=∞. By I.H.
](t, ρ) ≤ JTB(t)K(σ0).

(4a) With Definition 40 and Definition 17 we have that
min

t∈trn(π)
JTB(τ)K(σ0) = JTB(trn(π))K(σ0).

(4b) Definition 40 and Definition 17

(4) Definition 40 and Definition 17

160

List of Figures

1.1 Examples for Bound Analysis . 2
1.2 Example tarjan . 8
1.3 Example twoSCCs . 11
1.4 Example xnu . 14
1.5 Minimal example for path-sensitive analysis 17
1.6 Example with two loop counters . 19

2.1 Example xnu with LTS . 28
2.2 DCP of Example xnu . 34

3.1 Example tarjan with LTS and abstraction 38
3.2 Example SingleLinkSimple with abstraction 44
3.3 Example with bound of exponential size . 46
3.4 Example twoSCCs with abstraction . 47
3.5 (a) Example with exponential loop bound, (b) DCP obtained by abstraction 49
3.6 Example for variable renaming . 50
3.7 Example for reasoning with reset chains . 51
3.8 Example xnuSimple with abstraction . 55
3.9 DCP with a reset dag (no reset tree) . 57
3.10 Example for transforming a reset graph into a reset DAG 60
3.11 Example for ensuring stratifiability part I . 61
3.12 Example for ensuring stratifiability part II . 62
3.13 Reset Graph of Example xnu . 64
3.14 Example s_SFD_process with abstraction 66
3.15 Examples for path sensitive reasoning with constant resets 71
3.16 Examples for path sensitive reasoning for DCPs 73

4.1 Example for modeling arbitrary decrements 85
4.2 Abstraction of example for modeling arbitrary decrements 85
4.3 Example for modeling flags . 86
4.4 Example for control-flow refinement . 87
4.5 Abstraction of example for control-flow refinement 88
4.6 Example for contextualization . 90
4.7 Abstraction of example for contextualization 91

161

4.8 Example for unfolding . 92
4.9 Abstraction of example for unfolding . 93
4.10 Example with symbolic increment . 95
4.11 Example for “sets of local bounds” . 96
4.12 Example with a “break”-statement . 98
4.13 Example SingleLinkCluster with abstraction 101
4.14 Example with variable increment . 105
4.15 Example for “More Precise Variable Bounds” 108

6.1 Example tarjan with an additional outer loop 127

162

List of Tables

3.1 Bound Computation for Example tarjan . 42
3.2 Bound Computation for Example SingleLinkSimple 45
3.3 Bound Computation for Example twoSCCs 50
3.4 Bound Computation for Figure 3.7 without reset chains 52
3.5 Bound Computation for Figure 3.7 with reset chains 54
3.6 Bound Computation for Example xnuSimple 56
3.7 Run of Figure 3.9 . 57
3.8 Bound Computation for Figure 3.9 . 59
3.9 Bound Computation for Example xnu . 64
3.10 Bound Computation for Example s_SFD_process I 69
3.11 Bound Computation for Figure 3.15 . 72
3.12 Bound Computation for Figure 3.16 I . 75
3.13 Bound Computation for Figure 3.16 II . 76

4.1 Bound Computation with “sets of local bounds” 97
4.2 Bound Computation for Example s_SFD_process II 100
4.3 Bound Computation for Example SingleLinkCluster I 102
4.4 Bound Computation for Example SingleLinkCluster II 103
4.5 Bound Computation involving the division operator 103
4.6 Bound Computation with symbolic increment 105
4.7 Bound Computation with variable increment I 106
4.8 Bound Computation with variable increment II 106
4.9 Bound Computation without enhanced precision of variable bound algorithm 108
4.10 Bound Computation with enhanced precision of variable bound algorithm . . 109

5.1 Slicing, path reduction and control-flow refinement 112
5.2 Tool Results on cBench benchmark . 113
5.3 Tool Results on analyzing the complexity of the subset of those functions in

the cBench benchmark on which no tool timed out. 113
5.4 Tool Results on examples from the literature 115
5.5 Tool Results on 23 challenging loop iteration patterns 118

163

List of Definitions

1 Definition – Program . 27
2 Definition – Variables, Symbolic Constants, Atoms 28
3 Definition – Difference Constraints . 28
4 Definition – Difference Constraint Program, Syntax 29
5 Definition – Difference Constraint Program, Semantics 29
6 Definition – Well-defined DCP . 29
7 Definition – Difference Constraint Invariants 30
8 Definition – DCP Abstraction of a Program 30
9 Definition – Norm . 30
10 Definition – Guard . 30

11 Definition – Counter Notation I . 38
12 Definition – Transition Bound . 39
13 Definition – Precise Transition Bound . 39
14 Definition – Tight Transition Bound . 39
15 Definition – Counter Notation II . 39
16 Definition – Local Bound . 39
17 Definition – Expressions over A . 40
18 Definition – Local Bound Mapping . 40
19 Definition – Resets and Increments . 41
20 Definition – Monotone Difference Constraints. 41
21 Definition – Lossy Vector Addition System with States. 41
22 Definition – Bound Algorithm for VASS. 41
23 Definition – DCP with only Constant Resets. 43
24 Definition – Bound Algorithm for DCPs with only Constant Resets 43
25 Definition – Upper Bound Invariant . 47
26 Definition – Variable Bound . 47
27 Definition – Bound Algorithm . 48
28 Definition – Reset Chain Graph . 52
29 Definition – Bound Algorithm using Reset Chains (reset forest) 54
30 Definition – atm1(κ) and atm2(κ) . 58
31 Definition – Bound Algorithm using Reset Chains (reset DAG) 58
32 Definition – Variable Flow Graph . 59

164

33 Definition – Simple and (A)Cyclic Paths 67
34 Definition – Decrements . 67
35 Definition – Incrementing and Decrementing Paths 67
36 Definition – Bound Algorithm for VASS (path-sensitive) 68
37 Definition – Simple Paths that contain a given Transition 69
38 Definition – Path Sensitive Local Bound Mapping 70
39 Definition – Bound Algorithm for DCPs with only constant resets (path-

sensitive) . 70
40 Definition – Bound Algorithm (path-sensitive) 74
41 Definition – Notation . 77
42 Definition – Full Bound Algorithm . 77

43 Definition – Reachable States . 93
44 Definition – Difference Constraints with Symbolic Increments 94
45 Definition – Local Bound Set Mapping . 96
46 Definition – Bound Algorithm based on Local Bound Sets 96
47 Definition – Bound Algorithm for VASS based on Local Bound Sets (path-

sensitive) . 98
48 Definition – Resets and Increments for DCPs with symbolic increments . 104
49 Definition – Bound Algorithm . 107

50 Definition – Indices . 129
51 Definition – Normalized Run . 130
52 Definition – Matching of a Reset Chain 136
53 Definition – First- and Last-Indices of Precise Matchings 136
54 Definition – Lists . 146
55 Definition – Path Index Permutation . 147
56 Definition – The Index Permutation $. 147
57 Definition – The Splitting Splt$ of $. 147

165

Bibliography

[AAG+12] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano
Zanardini. Cost analysis of object-oriented bytecode programs. Theor.
Comput. Sci., 413(1):142–159, 2012.

[AAGP11] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-form
upper bounds in static cost analysis. J. Autom. Reasoning, 46(2):161–203,
2011.

[ABG12] Diego Esteban Alonso-Blas and Samir Genaim. On the limits of the classical
approach to cost analysis. In SAS, pages 405–421, 2012.

[ADFG10] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-
dimensional rankings, program termination, and complexity bounds of
flowchart programs. In SAS, pages 117–133, 2010.

[AGM13] Elvira Albert, Samir Genaim, and Abu Naser Masud. On the inference of
resource usage upper and lower bounds. ACM Trans. Comput. Log., 14(3):22,
2013.

[BAL07] Amir M Ben-Amram and Chin Soon Lee. Program termination analysis
in polynomial time. ACM Transactions on Programming Languages and
Systems (TOPLAS), 29(1):5, 2007.

[BEF+16] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and
Juergen Giesl. Analyzing runtime and size complexity of integer programs.
ACM, 2016.

[Ben08] Amir M. Ben-Amram. Size-change termination with difference constraints.
ACM Transactions on Programming Languages and Systems (TOPLAS),
30(3), 2008.

[BHHK10] Régis Blanc, Thomas A Henzinger, Thibaud Hottelier, and Laura Kovács.
Abc: algebraic bound computation for loops. In International Conference on
Logic for Programming Artificial Intelligence and Reasoning, pages 103–118.
Springer, 2010.

167

[BM99] Ahmed Bouajjani and Richard Mayr. Model checking lossy vector addition
systems. In STACS 99, pages 323–333. Springer, 1999.

[BMS05] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking with
reachability. In CAV, pages 491–504, 2005.

[cbe] http://ctuning.org/wiki/index.php/CTools:CBench.

[CDF12] Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive profiling.
In PLDI, pages 89–98, 2012.

[CDZ14] Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Size-change ab-
straction and max-plus automata. In MFCS, pages 208–219, 2014.

[CGJ+00] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In International Conference
on Computer Aided Verification, pages 154–169. Springer, 2000.

[ČHK+15] Pavol Černỳ, Thomas A Henzinger, Laura Kovács, Arjun Radhakrishna,
and Jakob Zwirchmayr. Segment abstraction for worst-case execution time
analysis. In European Symposium on Programming Languages and Systems,
pages 105–131. Springer, 2015.

[CHS15] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional
certified resource bounds. PLDI, 2015.

[CLRS01] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford
Stein. Introduction to algorithms, volume 6. MIT press Cambridge, 2001.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In TACAS, pages 337–340, 2008.

[DU15] Vijay D’Silva and Caterina Urban. Conflict-driven conditional termination.
In International Conference on Computer Aided Verification, pages 271–286.
Springer, 2015.

[FH14] Antonio Flores-Montoya and Reiner Hähnle. Resource analysis of complex
programs with cost equations. In APLAS, pages 275–295, 2014.

[GG08] Bhargav S. Gulavani and Sumit Gulwani. A numerical abstract domain
based on expression abstraction and max operator with application in timing
analysis. In CAV, pages 370–384, 2008.

[GJ09] Sumit Gulwani and Sudeep Juvekar. Bound analysis using backward symbolic
execution. Technical Report MSR-TR-2004-95, Microsoft Research, 2009.

[GJK09] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-flow refinement and
progress invariants for bound analysis. In PLDI, pages 375–385, 2009.

168

http://ctuning.org/wiki/index.php/CTools:CBench

[GLAS09] Sumit Gulwani, Tal Lev-Ami, and Mooly Sagiv. A combination framework
for tracking partition sizes. In POPL, pages 239–251, 2009.

[GMC09] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. Speed: precise
and efficient static estimation of program computational complexity. In
POPL, pages 127–139, 2009.

[GZ10] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In
PLDI, pages 292–304, 2010.

[HAH12] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized
resource analysis. ACM Trans. Program. Lang. Syst., 34(3):14, 2012.

[HJ03] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for
first-order functional programs. In POPL, pages 185–197, 2003.

[JSS+12] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu.
Understanding and detecting real-world performance bugs. In PLDI, pages
77–88, 2012.

[KKZ11] Jens Knoop, Laura Kovács, and Jakob Zwirchmayr. Symbolic loop bound
computation for wcet analysis. In International Andrei Ershov Memorial
Conference on Perspectives of System Informatics, pages 227–242. Springer,
2011.

[KNP+10] Charles Killian, Karthik Nagaraj, Salman Pervez, Ryan Braud, James W
Anderson, and Ranjit Jhala. Finding latent performance bugs in systems im-
plementations. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, pages 17–26. ACM, 2010.

[LA04] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO, pages 75–88, 2004.

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change
principle for program termination. In POPL, pages 81–92, 2001.

[llv] https://github.com/s-falke/llvm2kittel.

[looa] http://forsyte.at/software/loopus/.

[loob] http://forsyte.at/static/people/sinn/loopusJAR/.

[looc] http://forsyte.at/static/people/sinn/loopusPhD/.

[Mét88] Daniel Le Métayer. Ace: An automatic complexity evaluator. ACM Trans.
Program. Lang. Syst., 10(2):248–266, 1988.

[Min06] Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

169

https://github.com/s-falke/llvm2kittel
http://forsyte.at/software/loopus/
http://forsyte.at/static/people/sinn/loopusJAR/
http://forsyte.at/static/people/sinn/loopusPhD/

[MTLT10] Stephen Magill, Ming-Hsien Tsai, Peter Lee, and Yih-Kuen Tsay. Automatic
numeric abstractions for heap-manipulating programs. In POPL, pages
211–222, 2010.

[MV06] Panagiotis Manolios and Daron Vroon. Termination analysis with calling
context graphs. In CAV, pages 401–414, 2006.

[NJT13] Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and fixing
performance bugs. In Proceedings of the 10th Working Conference on Mining
Software Repositories, pages 237–246. IEEE Press, 2013.

[PR04] Andreas Podelski and Andrey Rybalchenko. A complete method for the
synthesis of linear ranking functions. In VMCAI, pages 239–251, 2004.

[Ros89] Mads Rosendahl. Automatic complexity analysis. In FPCA, pages 144–156,
1989.

[SGS14] Helmut Seidl, Thomas Martin Gawlitza, and Martin Schwarz. Parametric
strategy iteration. In Temur Kutsia and Andrei Voronkov, editors, SCSS
2014. 6th International Symposium on Symbolic Computation in Software
Science, volume 30 of EPiC Series in Computing, pages 62–76. EasyChair,
2014.

[Smi09] Geoffrey Smith. On the foundations of quantitative information flow. In
FOSSACS, pages 288–302, 2009.

[spe] https://www.spec.org/cpu2006/.

[SZV14a] Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. In CAV, pages
745–761. Springer, 2014.

[SZV14b] Moritz Sinn, Florian Zuleger, and Helmut Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. arXiv preprint
arXiv:1401.5842, 2014.

[SZV15] Moritz Sinn, Florian Zuleger, and Helmut Veith. Difference constraints: An
adequate abstraction for complexity analysis of imperative programs. In
FMCAD, pages 144–151, 2015.

[SZV16] Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource
bound analysis of imperative programs using difference constraints. J. Autom.
Reasoning, page to appear, 2016.

[Tar85] R. E. Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic Discrete Methods, 6(2):306–318, April 1985.

170

https://www.spec.org/cpu2006/

[Tur36] A. M. Turing. On Computable Numbers, with an application to the Entschei-
dungsproblem. Proc. London Math. Soc., 2(42):230–265, 1936.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David B. Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter P.
Puschner, Jan Staschulat, and Per Stenström. The worst-case execution-time
problem - overview of methods and survey of tools. ACM Trans. Embedded
Comput. Syst., 7(3), 2008.

[Weg75] Ben Wegbreit. Mechanical program analysis. Commun. ACM, 18(9):528–539,
1975.

[ZAH11] Shahed Zaman, Bram Adams, and Ahmed E Hassan. Security versus per-
formance bugs: a case study on firefox. In Proceedings of the 8th working
conference on mining software repositories, pages 93–102. ACM, 2011.

[ZGSV11] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound
analysis of imperative programs with the size-change abstraction. In SAS,
pages 280–297, 2011.

[ZH12] Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic profiling. In
PLDI, pages 67–76, 2012.

[ZZ89] Paul Zimmermann andWolf Zimmermann. The automatic complexity analysis
of divide-and-conquer algorithms. 1989.

171

	Kurzfassung
	Abstract
	Contents
	Introduction
	Complexity, Resource Bounds and Cost
	Application Domains
	Aim of the Work and Methodological Approach
	Motivation and Overview
	Structure of the Work
	Related Work and State of the Art
	Contributions

	Program Model and Abstraction
	Difference Constraint Programs
	Program Abstraction
	Example

	Algorithm
	Formal Problem Statement and Basic Definitions
	Bound Algorithm for Lossy Vector Addition Systems
	Bound Algorithm for DCPs with Constant Resets
	Bound Algorithm for DCPs
	Reasoning Based on Reset Chains
	Finding Local Bounds
	Example
	Path-Sensitive Reasoning
	Full Bound Algorithm
	Parametrization by a Cost Model
	Comparison to Invariant Analysis
	Relation to Amortized Complexity Analysis

	Extensions
	Extensions of the Abstraction Procedure
	Extensions of the Bound Algorithm

	Evaluation
	Implementation
	Experiments
	Limitations of Our Implementation

	Conclusion
	Discussion on the Scalability of Our Approach
	Reflection on Research Methodology
	Open Issues and Future work
	Detailed Comparison to Related Work

	Proofs
	Soundness of Basic Bound Algorithm
	Soundness of Reasoning on Reset Chains
	Soundness of Path-Sensitive Reasoning

	List of Figures
	List of Tables
	Bibliography

